
Oracle® Database
Oracle GoldenGate Microservices
Documentation

(21c)
F70348-11
November 2023

Oracle Database Oracle GoldenGate Microservices Documentation, (21c)

F70348-11

Copyright © 2022, 2023, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xx

Documentation Accessibility xx

Related Information xx

Conventions xxi

1 Concepts

Oracle GoldenGate 1-1

Why Do You Need Oracle GoldenGate? 1-1

When Do You Use Oracle GoldenGate? 1-2

Topologies for Oracle GoldenGate 1-3

Oracle GoldenGate Product Family 1-3

Oracle GoldenGate Microservices Architecture 1-4

Features of Oracle GoldenGate Microservices Architecture 1-5

Access Points for Oracle GoldenGate Microservices 1-6

Admin Client 1-7

REST API 1-8

Components of Oracle GoldenGate Microservices Architecture 1-8

Directories and Variables in Microservices Architecture 1-8

Deployment 1-11

Service Manager 1-11

Administration Service 1-11

Distribution Service 1-12

Receiver Service 1-13

Target-Initiated Distribution Path 1-15

Performance Metrics Service 1-15

Components of Data Replication in Oracle GoldenGate 1-15

Types of Data Replication Configurations 1-15

Oracle GoldenGate Processes 1-16

Extract 1-16

Replicat 1-16

Distribution Paths for Data Transport 1-17

iii

Oracle GoldenGate Objects 1-17

Trail Files 1-17

Parameter Files 1-18

Checkpoint Files 1-19

2 Install and Patch

Overview 2-1

Understanding and Obtaining the Oracle GoldenGate Distribution 2-1

Verify Certification and System Requirements 2-1

Operating System Requirements 2-3

Memory Requirements 2-3

Disk Requirements 2-4

Network Requirements 2-6

Operating System Privileges 2-6

Other Operating System Requirements 2-7

Choose a Db2 z/OS Operating System for Installing Oracle GoldenGate 2-8

Where to Install Oracle GoldenGate for SQL Server 2-10

Windows Console Character Sets 2-10

Other Programs and Settings 2-10

Installing Microsoft ODBC Drivers for Linux 2-12

Prequisities to Install Microservices Architecture for PostgreSQL and SQL Server 2-12

Prerequisites for Installing Oracle GoldenGate for PostgreSQL 2-13

Prerequisites for Installing Oracle GoldenGate Microservice Architecture for SQL
Server 2-15

Installing Oracle GoldenGate 2-15

Installing Oracle GoldenGate Microservices Architecture 2-15

Performing an Interactive Installation with OUI for MA 2-16

Performing a Silent Installation with OUI 2-17

Integrating Oracle GoldenGate Microservices Architecture into a Cluster 2-18

Software Installation Directories and Programs for Oracle GoldenGate 2-18

Post-installation Tasks 2-20

Install the DataDirect Driver for PostgreSQL 2-20

Installing Patches for Oracle GoldenGate Microservices Architecture 2-20

Downloading Patches for Oracle GoldenGate 2-21

Patching Oracle GoldenGate Microservices Architecture Using OPatch 2-21

Post-Patch Installation Tasks for Non-Oracle Databases for Microservices Architecture 2-24

Patching Oracle GoldenGate MySQL 5.7 with DDL Replication Enabled 2-25

Patching Oracle GoldenGate for SQL Server - Extract Requirements 2-25

Patching Oracle GoldenGate for PostgreSQL to Release Version 21.8.0.0.2 and
Later 2-26

Uninstalling the Patch for Oracle and Non-Oracle Databases Using OPatch 2-26

iv

Uninstalling Oracle GoldenGate Microservices Architecture 2-26

Removing Deployments and Service Manager 2-27

Removing Deployments and Service Manager Using Oracle GoldenGate
Configuration Assistant 2-27

Using Oracle GoldenGate Configuration Assistant - Silent 2-27

Files to be Removed Manually 2-28

Uninstalling Microservices Architecture with Oracle Universal Installer 2-28

Uninstalling Microservices Architecture Using Silent Mode 2-29

3 Deploy

About Deployments 3-1

What is a Deployment? 3-1

Secure Deployment 3-2

Non-Secure Deployment 3-2

Local and Remote Deployments 3-2

Add a Deployment 3-2

Before Adding a Deployment 3-3

Start the OGGCA Wizard 3-3

Select Service Manager Options 3-3

Configuration Options 3-5

Deployment Details 3-5

Select Deployment Directories 3-6

Specify Environment Variables 3-7

Administrator Account 3-9

Specify Security Options 3-10

Advanced Security Settings 3-12

Sharding Options 3-12

Port Settings 3-12

Replication Settings 3-14

Summary 3-15

Configure Deployment 3-15

Finish 3-16

Manage Deployments from the Service Manager 3-16

Add Users to a Deployment 3-18

Edit Users 3-19

Delegate User Authentication and Authorization to an External ID Provider 3-20

Configure the Authorization Profile to Set Up IDCS Access Credentials 3-20

Access the Authorization Profile 3-20

Manage Certificates for Deployments 3-21

Apply Certificates to an Oracle GoldenGate Deployment 3-21

Replace Certificates in a Deployment 3-21

v

Add Client Certificate 3-22

Add a CA Certificate 3-22

Modify Configuration for the Service Manager 3-23

Access the Service Manager Information Page 3-23

Modify Configuration for the Deployment 3-24

Access the Deployment Information Page 3-24

Manage the Status of Deployment and Microservices 3-25

Change the State of a Deployment 3-26

Change the State of Microservices in a Deployment 3-26

Manage the Microservices Configuration Details 3-27

View and Edit the Microservice Configuration 3-27

View and Edit the Restart Options for Microservices 3-27

Monitor Oracle GoldenGate Processes, Trails, and Paths 3-28

Search and Read the Log Information from the Diagnosis Page 3-28

Search and Read Log Information for Microservices in a Deployment 3-30

Manage the Debug Log 3-31

Enable Debug Logging 3-31

Use the Debug Log 3-31

Remove a Deployment 3-32

Before Removing the Deployment 3-32

Start OGGCA to Remove Deployment 3-32

Remove the Service Manager 3-33

Start OGGCA to Remove the Service Manager 3-33

Files to be Removed Manually After Removing Deployment 3-33

Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices 3-34

Prerequisites for Using ReverseProxySettings 3-35

Configure Reverse Proxy with NGINX on Linux 3-36

4 Configure

Db2 z/OS 4-1

Prepare Database Users and Privileges 4-1

Database User for Oracle GoldenGate Processes 4-1

Prepare Database Connection, System, and Parameter Settings 4-2

Configure a Database Connection 4-3

Database Configuration 4-4

Prepare Tables for Processing 4-8

Transaction Log Settings and Requirements 4-10

Prepare Db2 z/OS Transaction Logs for Oracle GoldenGate 4-10

Db2 z/OS: Supported Data Types, Objects, and Operations 4-12

Supported Db2 z/OS Data Types 4-13

vi

Non-Supported Db2 for z/OS Data Types 4-13

Supported Objects and Operations for Db2 z/OS 4-13

Non-Supported Objects and Operations for Db2 z/OS 4-14

MySQL 4-15

Prepare Database Users and Privileges 4-15

Database User for Oracle GoldenGate Processes for MySQL 4-15

Prepare Database Connection, System, and Parameter Settings 4-16

Configure the Database Connection 4-16

Database Configuration 4-17

Transaction Log Settings and Requirements 4-23

Ensuring Data Availability 4-23

Setting Logging Parameters 4-23

Changing the Log-Bin Location 4-25

Capturing using a MySQL Replication Slave 4-25

MySQL: Supported Data Types, Objects, and Operations 4-26

Character Sets in MySQL 4-26

Oracle GoldenGate for MySQL Supported Data Types 4-27

Non-Supported MySQL Data Types 4-28

Supported Objects and Operations for MySQL 4-29

Details of Support for Objects and Operations in MySQL DDL 4-30

Non-Supported Objects and Operations for MySQL 4-30

Systems Schemas 4-31

Oracle 4-31

Prepare Database Users and Privileges 4-32

Grant User Privileges for Oracle Database 21c and Lower 4-32

Prepare Database Connection, System, and Parameter Settings 4-36

Database Configuration 4-36

Configure Secure Connections to Oracle Database from Oracle GoldenGate 4-45

Transaction Log Settings and Requirements 4-46

Configuring Logging Properties 4-46

Oracle: Supported Data Types, Objects, and Operations for DDL and DML 4-52

Details of Support for Oracle Data Types and Objects 4-53

Details of Support for Oracle Database Editions 4-60

Details of Support for Objects and Operations in Oracle DML 4-61

Details of Support for Objects and Operations in Oracle DDL 4-65

PostgreSQL 4-71

Prepare Database Users and Privileges 4-71

Database Privileges for Oracle GoldenGate for PostgreSQL 4-71

Prepare Database Connection, System, and Parameter Settings 4-73

Configuring a Database Connection 4-74

Database Configuration 4-77

vii

Prepare Tables for Processing 4-79

Enabling Table-Level Supplemental Logging 4-81

PostgreSQL: Supported Data Types, Objects, and Operations 4-82

Supported Databases 4-82

Supported PostgreSQL Data Types 4-82

Non-Supported PostgreSQL Data Types 4-85

Supported Objects and Operations for PostgreSQL 4-86

SQL Server 4-87

Prepare Database Users and Privileges 4-87

Extract and Replicat Users for SQL Server 4-87

Amazon RDS User Permissions and Requirements 4-88

User that Enables Supplemental Logging and Other Features 4-90

Prepare Database Connection, System, and Parameter Settings 4-90

Configuring a Database Connection 4-90

Configuring a Database 4-92

Transaction Log Settings and Requirements 4-96

Preparing the Database for Oracle GoldenGate — CDC Capture 4-96

CDC Capture Method Operational Considerations 4-99

Requirements Summary for Capture and Delivery of Databases in an Always On
Availability Group 4-104

Database Connection 4-104

Supplemental Logging 4-104

Operational Requirements and Considerations 4-105

SQL Server: Supported Data Types, Objects, and Operations 4-106

Instance Requirements 4-106

Database Requirements 4-107

Table Requirements 4-108

Supported SQL Server Data Types 4-108

Non-Supported SQL Server Data Types and Features 4-110

Supported Objects and Operations for SQL Server 4-110

Non-Supported Objects and Operations for SQL Server 4-111

System Schemas for SQL Server 4-113

5 Quickstarts

Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture 5-1

Set Up Data Replication with Oracle GoldenGate Microservices Architecture 5-20

Switching from Nonintegrated Replicat to Parallel Nonintegrated Replicat 5-32

6 Extract

About Extract 6-1

viii

Before Adding an Extract 6-2

Register an Extract 6-2

Registering Extract for Oracle 6-2

Registering Extract in Microservices Architecture for PostgreSQL 6-3

Access the Configurations Page 6-3

Add Database Credentials 6-3

Enable TRANDATA 6-4

Oracle: Enable TRANDATA or SCHEMATRANDATA 6-4

Db2 z/OS: Enable Change Capture 6-5

SQL Server: Enable Supplemental Logging and Other Features 6-5

Add Heartbeat Table 6-6

Create the Oracle GoldenGate CDC Cleanup Task 6-7

Running the Heartbeat Update and Purge Function for PostgreSQL 6-7

Add a Checkpoint Table 6-7

Add Extracts 6-8

Add a Primary Extract 6-8

Additional Parameter Options for Extract 6-12

Add a Change Data Capture (CDC) Extract 6-13

PostgreSQL: Change Data Capture (CDC) Extract 6-15

SQL Server: Change Data Capture (CDC) Extract 6-15

Add Online Extract Groups 6-16

Add an Extract Group 6-16

Create a Parameter File for Online Extraction 6-17

Extract Actions 6-18

Access Extract Details 6-19

Start or Stop Extract 6-19

Delete Extract 6-19

Extract: Advance Tasks 6-20

Downstream Extract for Downstream Database Mining 6-20

Configure Extract for a Downstream Deployment 6-20

Use Cases for Downstream Mining Configuration 6-30

PostgreSQL: Extract Considerations for Remote Deployment 6-42

Positioning Extract to a Specific Start Point 6-42

Remove Table-level Supplemental Logging 6-43

DDL Replication 6-43

MySQL: DDL Replication 6-43

MySQL: Prerequisites for Transaction Log Based DDL Configuration 6-44

Plug-in Based DDL Configuration Prerequisites and Considerations 6-44

DDL Filtering for Replication 6-47

Using DDL Filtering for Replication 6-47

Oracle: DDL Replication 6-49

ix

Prerequisites for Configuring DDL 6-50

Overview of DDL Synchronization 6-50

Limitations of Oracle GoldenGate DDL Support 6-50

Configuration Guidelines for DDL Support 6-53

Understanding DDL Scopes 6-55

Correctly Identifying Unqualified Object Names in DDL 6-58

Enabling DDL Support 6-59

Filtering DDL Replication 6-59

Special Filter Cases 6-60

How Oracle GoldenGate Handles Derived Object Names 6-61

Using DDL String Substitution 6-64

Controlling the Propagation of DDL to Support Different Topologies 6-65

Add Supplemental Log Groups Automatically 6-67

Removing Comments from Replicated DDL 6-67

Replicating an IDENTIFIED BY Password 6-67

How DDL is Evaluated for Processing 6-68

Viewing DDL Report Information 6-69

Tracing DDL Processing 6-72

Using Edition-Based Redefinition 6-72

Manage Trail Files 6-73

Assign Storage for Oracle GoldenGate Trails 6-73

Estimate Space for the Trails 6-74

Add a Trail 6-74

Using Oracle GoldenGate with MySQL Group Replication 6-75

Oracle GoldenGate Features to Support MySQL Group Replication 6-75

Requirements for Supporting Group Replication 6-76

Limitations of Group Replication with Oracle GoldenGate for MySQL 6-76

SSL Configuration on Group Replication Cluster 6-77

Overview of Database Cluster SSL Configuration for Group Replication 6-77

Create Server Certificates 6-78

Configure Database Nodes and Router 6-79

7 Instantiate

About Instantiating with Initial Load Extract 7-1

Add Initial Load Extract Using the Admin Client 7-2

Step 1: Create a Primary Extract 7-2

Step 2: Determine the Instantiation SCN 7-4

Step 3: Create and Start the Initial Load Replicat 7-5

Step 4: Create and start the Initial Load Extract 7-7

Step 5: Create the Distribution Paths 7-7

x

Step 6: Create the Primary Replicat 7-8

Configuring an Initial Synchronization for a PostgreSQL Source Database using Precise
Instantiation 7-9

8 Distribute

About Distribution Service 8-1

Add a Distribution Path 8-2

About Target-Initiated Distribution Paths 8-8

Add Target-Initiated Distribution Paths 8-9

Manage Distribution Paths 8-14

Path Actions 8-14

Reposition a Path 8-14

Change the Path Filtering 8-15

Review the Distribution Path Information 8-16

9 Replicat

About Replicat 9-1

Types of Replicat 9-1

About Integrated Replicat 9-2

About Classic Replicat 9-2

About Parallel Replicat 9-3

Benefits of Parallel Replicat 9-5

Parallel Replication Architecture 9-5

Basic Parameters for Parallel Replicat 9-6

About Non-integrated Parallel Replicat 9-7

About Integrated Parallel Replicat 9-7

About Coordinated Replicat 9-10

About Barrier Transactions 9-11

How Barrier Transactions are Processed 9-12

Add a Replicat 9-12

Before you Add a Replicat 9-12

Add a Checkpoint Table 9-13

Select a Replicat Type for your Deployment 9-14

Add a Replicat 9-18

Basic Parameters for Different Replicat Modes 9-20

Replicat Actions 9-22

Access Replicat Process Details 9-22

Stop, Start a Replicat 9-23

Alter Replicat 9-23

Delete Replicat 9-23

xi

Advance Tasks 9-23

Controlling Checkpoint Retention 9-24

Excluding Replicat Transactions in Bidirectional Replication 9-24

Additional Parameter Options for Integrated Replicat 9-24

10

Secure

Oracle GoldenGate Security and Other Considerations 10-1

Create Certificates for a Secure Deployments 10-1

Single Deployment: Create Different Types of Certificates for a Secure Deployment 10-2

Create a Self-Signed Trusted (Root) Certificate 10-2

Create Server Certificates 10-4

Create a Client Certificate 10-5

Set Up Trusted Certificates 10-6

Two Deployments: Create External, Trusted Server and Client Certificates 10-7

Add a Target Server Certificate as a CA Certificate 10-7

Encrypting Trail Files 10-10

Generate Master Keys and Encryption Key 10-10

Key Management Service (KMS) 10-10

Why Use KMS to Store Oracle GoldenGate Encryption Keys? 10-11

Create and Apply Encryption Profile in a Deployment 10-11

Configure an Encryption Profile 10-12

Using Oracle Key Vault Trail File Encryption in Oracle GoldenGate 10-13

Oracle Key Vault Capabilities 10-13

Prerequisites for Configuring OKV on Oracle GoldenGate 10-14

Requirements for Setting up an Encryption Profile 10-15

Client Behavior Against Different Key States for Oracle Key Vault 10-17

Using OCI KMS Trail File Encryption in Oracle GoldenGate 10-17

Oracle GoldenGate with OCI KMS Workflow 10-17

Prerequisites for Connecting Oracle GoldenGate with OCI KMS 10-18

Configure OCI KMS to Connect with Oracle GoldenGate 10-21

Configure Oracle GoldenGate Processes to Enable OCI KMS Trail File Encryption 10-26

Test Data Replication with Trail File Encryption Using OCI KMS 10-31

Streaming Protocols 10-33

Authentication Modes Used to Start a Distribution Path 10-33

Managing Identities in a Credential Store 10-34

Credential Store Tasks 10-34

Specifying the Alias in a Parameter File or Command 10-35

Encrypting and Storing User Credentials 10-35

Configure Kerberos Authentication 10-36

Configure Kerberos Authentication with MA 10-37

xii

Example: Using USERIDALIAS in Parameter File for Kerberos Account 10-39

11

Administer

Microservices: Command Line Interface 11-1

About Admin Client 11-2

Using Wildcards in Command Arguments 11-4

Using Command History 11-5

Storing and Calling Frequently Used Command Sequences 11-5

Controlling Extract and Replicat 11-6

Deleting Extract and Replicat 11-7

Specifying Object Names in Oracle GoldenGate Input 11-8

Specifying Filesystem Path Names in Parameter Files on Windows Systems 11-8

Supported Database Object Names 11-8

Specifying Names that Contain Slashes 11-10

Qualifying Database Object Names 11-10

Specifying Case-Sensitive Database Object Names 11-12

Using Wildcards in Database Object Names 11-13

Differentiating Case-Sensitive Column Names from Literals 11-16

Working with Parameter Files 11-16

Creating a Parameter File Using Admin Client 11-16

Creating a Parameter File with a Text Editor 11-19

Validating a Parameter File 11-19

Simplifying the Creation of Parameter Files 11-20

Using Wildcards 11-20

Using OBEY 11-20

Using Macros 11-21

Using Parameter Substitution 11-21

Use SQLEXEC for Executing Commands, Stored Procedures, and Queries 11-22

Performing Processing with SQLEXEC 11-22

Using SQLEXEC 11-22

Apply SQLEXEC as a Standalone Statement 11-23

Apply SQLEXEC within a TABLE or MAP Statement 11-24

Using Input and Output Parameters 11-25

Passing Values to Input Parameters 11-25

Passing Values to Output Parameters 11-26

SQLEXEC Examples Using Parameters 11-26

Handling SQLEXEC Errors 11-28

Handling Database Errors 11-28

Handling Missing Column Values 11-28

Additional SQLEXEC Guidelines 11-29

xiii

Simplify and Automate Work with Oracle GoldenGate Macros 11-29

Define a Macro 11-30

Call a Macro 11-32

Call a Macro that Contains Parameters 11-33

Call a Macro without Input Parameters 11-35

Calling Other Macros from a Macro 11-36

Create Macro Libraries 11-36

Tracing Macro Expansion 11-38

Bi-Directional Replication 11-38

Prerequisites for Bidirectional Replication 11-38

Enable Bi-Directional Loop Detection 11-39

Considerations for an Active-Active Configuration 11-40

Preventing Data Looping 11-41

Preventing the Capture of Replicat Operations 11-43

MySQL: Bi-Directional Replication 11-44

PostgreSQL: Bi-Directional Replication 11-45

Preparing DBFS for an Active-Active Configuration 11-46

Supported Operations and Prerequisites 11-47

Applying the Required Patch 11-47

Examples Used in these Procedures 11-47

Partitioning the DBFS Sequence Numbers 11-47

Configuring the DBFS file system 11-49

Mapping Local and Remote Peers Correctly 11-50

Using Procedural Replication 11-52

About Procedural Replication 11-52

Procedural Replication Process Overview 11-53

Determining Whether Procedural Replication Is On 11-53

Enabling and Disabling Supplemental Logging 11-54

Filtering Features for Procedural Replication 11-55

Handling Procedural Replication Errors 11-56

Listing the Procedures Supported for Oracle GoldenGate Procedural Replication 11-57

Monitoring Oracle GoldenGate Procedural Replication 11-58

Automatic Conflict Detection and Resolution 11-58

About Automatic Conflict Detection and Resolution 11-59

Automatic Conflict Detection and Resolution 11-59

Requirements for Automatic Conflict Detection and Resolution 11-60

Column Groups 11-62

DELETE TOMBSTONE Table 11-64

Earliest Timestamp Conflict Detection and Resolution 11-64

Latest Timestamp Conflict Detection and Resolution 11-65

Delete Always Wins Timestamp CDR 11-66

xiv

Delta Conflict Detection and Resolution 11-67

Site Priority CDR 11-69

Track PK Updates in Delete Tombstone 11-69

Configuring Delta Conflict Detection and Resolution 11-70

Configuring Latest Timestamp Conflict Detection and Resolution 11-71

Configuring Delta Conflict Detection and Resolution 11-72

Managing Automatic Conflict Detection and Resolution 11-73

Altering Conflict Detection and Resolution for a Table 11-73

Altering a Column Group 11-74

Purging Tombstone Rows 11-74

Removing Conflict Detection and Resolution From a Table 11-75

Removing a Column Group 11-75

Removing Delta Conflict Detection and Resolution 11-75

Monitoring Automatic Conflict Detection and Resolution 11-76

Displaying Information About the Tables Configured for Conflicts 11-76

Displaying Information About Conflict Resolution Columns 11-77

Displaying Information About Column Groups 11-78

Manual Conflict Detection and Resolution 11-79

Overview of the Oracle GoldenGate CDR Feature 11-79

Configuring the Oracle GoldenGate Parameter Files for Error Handling 11-80

Tools for Mapping Extra Data to the Exceptions Table 11-81

Sample Exceptions Mapping with Source and Target Columns Only 11-82

Sample Exceptions Mapping with Additional Columns in the Exceptions Table 11-83

Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution 11-85

Making the Required Column Values Available to Extract 11-86

Viewing CDR Statistics 11-86

CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD 11-87

Table Used in this Example 11-88

MAP Statement with Conflict Resolution Specifications 11-88

Description of MAP Statement 11-88

INSERTROWEXISTS with the USEMAX Resolution 11-89

UPDATEROWEXISTS with the USEMAX Resolution 11-90

UPDATEROWMISSING with OVERWRITE Resolution 11-91

DELETEROWEXISTS with OVERWRITE Resolution 11-92

DELETEROWMISSING with DISCARD Resolution 11-93

CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX 11-94

Table Used in this Example 11-94

MAP Statement 11-94

Description of MAP Statement 11-95

Error Handling 11-95

CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE 11-97

xv

Table Used in this Example 11-97

MAP Statement 11-97

Description of MAP Statement 11-97

Error Handling 11-98

Configure Managed Processes 11-100

Automate Maintenance Tasks 11-101

Mapping and Manipulating Data 11-102

Guidelines for Using Self-describing Trails 11-103

Parameters that Control Mapping and Data Integration 11-103

Mapping between Dissimilar Databases 11-103

Mapping and Conversion on NonStop Systems 11-103

Mapping and Conversion on Windows and UNIX Systems 11-104

Globalization Considerations when Mapping Data 11-104

Conversion between Character Sets 11-104

Preservation of Locale 11-105

Support for Escape Sequences 11-105

Mapping Columns Using TABLE and MAP 11-107

Supporting Case and Special Characters in Column Names 11-107

Configuring Table-level Column Mapping with COLMAP 11-108

Configuring Global Column Mapping with COLMATCH 11-111

Understanding Default Column Mapping 11-114

Data Type Conversions 11-114

Numeric Columns 11-114

Character-type Columns 11-115

Datetime Columns 11-115

Selecting and Filtering Rows 11-115

Selecting Rows with a FILTER Clause 11-116

Selecting Rows with a WHERE Clause 11-119

Considerations for Selecting Rows with FILTER and WHERE 11-120

Retrieving Before and After Values 11-121

Selecting Columns 11-122

Selecting and Converting SQL Operations 11-122

Using Transaction History 11-123

Testing and Transforming Data 11-124

Handling Column Names and Literals in Functions 11-126

Using the Appropriate Function 11-126

Transforming Dates 11-126

Performing Arithmetic Operations 11-127

Manipulating Numbers and Character Strings 11-128

Handling Null, Invalid, and Missing Data 11-128

Performing Tests 11-129

xvi

Using Tokens 11-130

Defining Tokens 11-131

Using Token Data in Target Tables 11-131

Handling Processing Errors 11-132

Overview of Oracle GoldenGate Error Handling 11-133

Handling Extract Errors 11-133

Handling Replicat Errors during DML Operations 11-133

Handling Errors as Exceptions 11-134

Handling Replicat errors during DDL Operations 11-137

Handling TCP/IP Errors 11-137

Maintaining Updated Error Messages 11-138

Resolving Oracle GoldenGate Errors 11-138

12

Performance

Monitor 12-1

Commands Used for Monitoring 12-1

Monitor Processes from the Performance Metrics Service 12-5

Review Messages from Messages Overview Tab 12-5

Review Status Changes 12-6

Purge Datastore 12-6

Protocols for Performance Monitoring for Different Operating Systems 12-6

Monitoring an Extract Recovery 12-7

Monitor Lag 12-7

About Lag 12-7

Monitor Lag Using Automatic Heartbeat Tables 12-8

Db2 z/OS: Interpret Statistics for Update Operations 12-19

Monitoring Processing Volume 12-19

Using the Error Log 12-19

Using the Process Report 12-20

Scheduling Runtime Statistics in the Process Report 12-21

Viewing Record Counts in the Process Report 12-21

Prevent SQL Errors from Filling the Replicat Report File 12-21

Use the Discard File 12-22

Maintain the Discard and Report Files 12-22

Reconcile the Time Differences 12-23

Tuning 12-23

Tuning the Performance of Oracle GoldenGate 12-23

xvii

13

Autonomous Database

About Capturing and Replicating Data Using Autonomous Databases 13-1

Details of Support When Using Oracle GoldenGate with Autonomous Database 13-2

Configure Extract to Capture from an Autonomous Database 13-3

Establishing Oracle GoldenGate Credentials 13-3

Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous
Databases 13-4

Configure Extract to Capture from an Autonomous Database 13-4

Configure Replicat to Apply to an Oracle Autonomous Database 13-8

Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous Database 13-9

Configure Oracle GoldenGate for an Autonomous Database 13-9

Obtain the Autonomous Database Client Credentials 13-10

Configure Replicat to Apply to an Autonomous Database 13-11

14

Upgrade

Obtaining the Oracle GoldenGate Distribution 14-1

Prerequisites 14-1

Oracle GoldenGate Upgrade Considerations 14-2

Extract Upgrade Considerations 14-2

Replicat Upgrade Considerations 14-3

Upgrading Oracle GoldenGate Microservices – GUI Based 14-3

Upgrading Oracle GoldenGate Microservices Using REST APIs 14-5

15

Reference

About Oracle GoldenGate Trails 15-1

Trail Recovery Mode 15-1

Trail Record Format 15-2

Trail File Header Record 15-2

Tokens Area 15-9

Oracle GoldenGate Operation Types 15-9

Oracle GoldenGate Checkpoint Tables 15-15

Internal Checkpoint Information 15-17

INFO EXTRACT SHOWCH Command: Checkpoint Information 15-18

INFO REPLICAT, SHOWCH: Checkpoint Information 15-20

Supported Character Sets 15-21

Supported Character Sets - Oracle 15-21

Supported Character Sets - Non-Oracle 15-28

Supported Locales 15-36

Commit Sequence Number (CSN) 15-42

xviii

Using the Commit Sequence Number 15-42

Connecting Microservices and Classic Architectures 15-45

Connect Oracle GoldenGate Classic Architecture to Microservices Architecture 15-45

Connect Oracle GoldenGate Microservices Architecture to Classic Architecture 15-47

xix

Preface

The Oracle GoldenGate Microservices Documentation contains the Oracle
GoldenGate Microservices concepts, tasks, advance tasks, security, and other
reference information.

• Audience

• Documentation Accessibility

• Related Information

• Conventions

Audience
This guide is intended for system administrators and database users to learn about
Oracle GoldenGate Microservices. It is assumed that readers are familiar with web
technologies and have a general understanding of Windows and UNIX platforms.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Information
The Oracle GoldenGate Product Documentation is available from the following
location:

Oracle GoldenGate Documentation

Oracle GoldenGate for Big Data Documentation:

Oracle GoldenGate for Big Data

For OCI GoldenGate, refer to:

OCI GoldenGate

For details on Oracle Database High Availability, see:

Oracle Database High Availability

Preface

xx

https://www.oracle.com/corporate/accessibility/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html
https://docs.oracle.com/en/middleware/goldengate/big-data/index.html
https://www.oracle.com/integration/goldengate/
https://www.oracle.com/database/technologies/high-availability.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, such as "From the File menu, select Save." Boldface also is used for
terms defined in text or in the glossary.

italic

italic
Italic type indicates placeholder variables for which you supply particular
values, such as in the parameter statement: TABLE table_name. Italic type
also is used for book titles and emphasis.

monospace
MONOSPACE

Monospace type indicates code components such as user exits and scripts;
the names of files and database objects; URL paths; and input and output
text that appears on the screen. Uppercase monospace type is generally
used to represent the names of Oracle GoldenGate parameters, commands,
and user-configurable functions, as well as SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a process or utility
unless the name is intended to be a specific case. Keywords in upper case
(ADD EXTRACT, ADD EXTTRAIL, FORMAT RELEASE).

LOWERCASE Names of processes to be written in lower case. Examples: ADD EXTRACT
exte, ADD EXTRAIL ea.

{ } Braces within syntax enclose a set of options that are separated by pipe
symbols, one of which must be selected, for example: {option1 | option2
| option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name [,
SAVE count]. Multiple options within an optional element are separated by a
pipe symbol, for example: [option1 | option2].

Sample Locations Compass directions such as east, west, north, south to be used for
demonstrating Extract and Replicat locations.

Datacenters names to use the standard similar to dc1, dc2.

Group names Prefixes for each process, as follows:
• Extract: ext. Usage with location: extn, where n indicates 'north'

compass direction.
• Replicat: rep. Usage with location: repn, where n indicates 'north'

compass direction.
• Distribution Path: dp. Usage with location: dpn, where n indicates 'north'

compass direction.
• Checkpoint table: ggs_checkpointtable
• Trail file names: e or d depending on whether the trail file is for the

Extract of distribution path. Suffix derived in alphabetical order. Usage for
an Extract trail file: ea, eb, ec.

• Trail file subdirectory: The name will use compass directions to refer to
the trail subdirectories. Example for trail subdirectory name would be /
east, /west, /north, /south.

Preface

xxi

1
Concepts

Learn about the concepts of Oracle GoldenGate, its components, and Microservices
Architecture.

Topics:

• Oracle GoldenGate

• Oracle GoldenGate Microservices Architecture

• Components of Oracle GoldenGate Microservices Architecture

• Components of Data Replication in Oracle GoldenGate

Oracle GoldenGate
Oracle GoldenGate is an application that provides real-time data integration, data replication,
transactional change data capture, data transformations, high availability solutions, and
verification between operational and analytical enterprise systems.

With Oracle GoldenGate, you can move committed transactions across multiple systems in
your enterprise over a secure or non-secure configuration. It supports a wide range of
databases and data sources, providing replication between same types or between
heterogeneous databases. For example, you could replicate between an Oracle Autonomous
Database instance and an Oracle Database instance, or between two Oracle Database
instances set up as source and target, or a two-way replication between MySQL database
and Oracle Database instances. In addition, you can replicate to Java Messaging Queues,
flat files, and to Big Data in combination with Oracle GoldenGate for Big Data.

To know more, see https://www.oracle.com/middleware/technologies/goldengate.html.

Topics:

• Why Do You Need Oracle GoldenGate?

• When Do You Use Oracle GoldenGate?

• Topologies for Oracle GoldenGate

• Oracle GoldenGate Product Family

Why Do You Need Oracle GoldenGate?
Enterprise data is typically distributed across the enterprise in heterogeneous databases. To
get data between different data sources, you can use Oracle GoldenGate to load, distribute,
and filter transactions within your enterprise in real-time and enable migrations between
different databases in near zero-downtime.

To do this, you need a means to effectively move data from one system to another in real-
time and with zero-downtime. Oracle GoldenGate is Oracle’s solution to replicate and
integrate data.

In a data replication environment, Oracle GoldenGate performs the following functions:

1-1

https://www.oracle.com/middleware/technologies/goldengate.html

• Data movement in real-time, reducing latency.

• Only committed transactions are moved, to leverage consistency and improved
performance.

• REST-based microservices to handle different types of data replication
environments.

• High performance with minimal overhead on the underlying databases and
infrastructure.

• Integration with a wide range of databases providing complete support for
replication across different data types, database objects and other requirements.

• Security configurations at different levels and different topologies for a customized
secure configuration.

When Do You Use Oracle GoldenGate?
Oracle GoldenGate meets almost any data movement requirement. Some of the most
common use cases include:

Business Continuity and High Availability

Business Continuity is the ability of an enterprise to provide its functions and services
without any lapse in its operations. High Availability is the highest possible level of fault
tolerance. To achieve business continuity, systems are designed with multiple servers,
multiple storage, and multiple data centers to provide high availability that supports
business continuity in true sense. To establish and maintain such an environment, data
needs to be moved between these multiple servers and data centers, which is easily
done using Oracle GoldenGate.

Consider a scenario where you are working in a multinational bank that has its
headquarters in London, UK. You work in one of the banks’ branches in Bangalore,
India. This bank uses a specific account for its financial application that is used
globally at all the branches. You have been asked by your manager to daily
synchronize the transactions that have happened for this account in the database in
the Bangalore branch with the centralized database situated at the UK. The volume of
transactions is massive, and even the slightest delay can greatly impact the business.
This same process is required at multiple destinations for every database in all the
branches of the bank worldwide. This process has to be monitored continuously,
preferably through some sort of GUI-based tool for the ease of management.
Additionally, the bank has several other, non-critical applications used at all the
branches. These applications are based on heterogeneous databases, such as
MySQL, but the transactions done over these databases also must be loaded into an
Oracle Database located at the headquarters. The replication technology used must
support both Oracle and heterogeneous databases so that they can talk to each other.
Oracle GoldenGate is an apt solution in such a scenario.

Initial Load and Database Migration

Initial load is a process of extracting data records from a source database and loading
those records onto a target database. Initial load is a data migration process that is
performed only once. Oracle GoldenGate allows you to perform initial load data
migrations without taking your systems offline.

Chapter 1
Oracle GoldenGate

1-2

Data Integration

Data integration involves combining data from several disparate sources, which are stored
using various technologies, and provide a unified view of the data. Oracle GoldenGate
provides real-time data integration.

Topologies for Oracle GoldenGate
After installation, Oracle GoldenGate can be configured to meet your organization's business
requirements.

Oracle GoldenGate can be configured in different topologies, ranging from simple
unidirectional topology to more complex peer-to-peer. Supported topologies depend on the
underlying database requirements and its supported configurations.

Oracle GoldenGate Product Family
There are a wide range of products in the Oracle GoldenGate product family.

• OCI GoldenGate: Oracle Cloud Infrastructure GoldenGate is a fully managed, native
cloud service that moves data in real-time, at scale. OCI GoldenGate processes data as
it moves from one or more data management systems to target databases. You can also
design, run, orchestrate, and monitor data replication tasks without having to allocate or
manage any compute environments.

• Oracle GoldenGate for Marketplace: Oracle GoldenGate Microservices on Marketplace
allows you to deploy Oracle GoldenGate in an off-box architecture, which means you can
run and manage your Oracle GoldenGate deployment from a single location.

Chapter 1
Oracle GoldenGate

1-3

• Oracle GoldenGate for Big Data: Oracle GoldenGate for Big Data contains built-
in support to write operation data from Oracle GoldenGate trail records into
various Big Data targets (such as, HDFS, HBase, Kafka, Flume, JDBC,
Cassandra, and MongoDB).

• Oracle GoldenGate Application Adapters: Oracle GoldenGate Application
Adapters integrate with installations of the Oracle GoldenGate core product to
bring in Java Message Service (JMS) information or to deliver information as JMS
messages or files.

• Oracle GoldenGate for HP NonStop (Guardian): Oracle GoldenGate for HP
NonStop enables you to manage business data at a transactional level by
extracting and replicating selected data records and transactional changes across
a variety of heterogeneous applications and platforms.

• Oracle GoldenGate Veridata: Oracle GoldenGate Veridata compares one set of
data to another and identifies data that is out-of-sync, and allows you to repair any
out-of-sync data.

• Oracle GoldenGate Plug-in for EMCC: The Enterprise Manager Plug-in for
Oracle GoldenGate extends the Oracle Enterprise Manager Cloud Control and
provides visual support for monitoring and managing Oracle GoldenGate
processes.

• Oracle GoldenGate Monitor: Oracle GoldenGate Monitor is a real-time, Web-
based monitoring console that delivers an at-a-glance, graphical view of all of the
Oracle GoldenGate instances and their associated databases within your
enterprise.

• Oracle GoldenGate Studio: Oracle GoldenGate Studio enables you to design
and deploy high-volume, real-time replication by automatically handling table and
column mappings, allowing drag and drop custom mappings, generating best
practice configurations from templates, and contains context sensitive help.

Oracle GoldenGate Microservices Architecture
Oracle GoldenGate Microservices Architecture (MA) allows you to configure and
manage data replication over homogeneous or heterogeneous database environments
using RESTful services. These microservices can be accessed using various
interfaces including a web interface, command line interface, REST API, or any other
service that allows accessing REST-based microservices.

The following diagram illustrates the replication process cycle within a secure (HTTPS)
or non-secure (HTTP) environment.

Chapter 1
Oracle GoldenGate Microservices Architecture

1-4

Topics:

• Features of Oracle GoldenGate Microservices Architecture

• Access Points for Oracle GoldenGate Microservices

Features of Oracle GoldenGate Microservices Architecture
Oracle GoldenGate Microservices Architecture handles different tasks performed at different
stages of the data replication cycle. Some of the product features include the following:

Chapter 1
Oracle GoldenGate Microservices Architecture

1-5

• Oracle GoldenGate Microservices Architecture is bundled with utilities required to
configure microservices associated with each deployment. See Components of
Oracle GoldenGate Microservices Architecture.

• It is designed with the industry-standard HTTPS communication protocol and the
JavaScript Object Notation (JSON) data interchange format.

• The architecture provides options to secure the data replication environment with a
variety of security strategies including securing data at rest and in motion, TLS
encryption, OAuth 2.0 authentication and authorization, integration with external
user authentication services among others.

Access Points for Oracle GoldenGate Microservices
Oracle GoldenGate microservices are accessible from a variety of clients or service
interfaces. You can use these service interfaces to connect or log in to the
microservices and set up data replication tasks, manage and monitor processes using
statistical data, tune performance, configure security options, and many other
associated tasks.

The Oracle GoldenGate Microservices Architecture is bundled with the following
service interfaces:

• Admin Client: Provides access to microservices from the command line.

• Browser-based user interface for a GUI-based experience

• REST API service endpoints

The following diagram shows a variety of clients (Oracle products, command line
interface, browsers, and programmatic REST API interfaces) that you can use to
access and manage deployments, microservices, and all other Oracle GoldenGate
processes.

Chapter 1
Oracle GoldenGate Microservices Architecture

1-6

Microservices Architecture includes an HTML5 based web interface to administer, manage,
monitor, and secure deployments. You can access this web interface with the help of URLs
specific to each microservice and the Service Manager. The web interface includes the
Service Manager, Administration Service, Distribution Service, Receiver Service, and the
Performance Monitoring Service.

You can use these web interface access points to create and run all Extract, Replicat, and
Distribution path processes. Along with this, you can set up database credentials, add users
that can access the deployment after defining roles for them, and monitor the performance of
processes.

See About Extract and About Replicat.

The REST API provides service endpoints to manage Oracle GoldenGate deployments and
replication services. See REST API Documentation.

You can use any of these options to work with your Oracle GoldenGate Microservices
Architecture setup.

• Admin Client

• REST API

Admin Client
The Admin Client is a command line utility (similar to the classic GGSCI utility). You can use it
to issue the complete range of commands that configure, control, and monitor Oracle
GoldenGate. See About Admin Client.

Chapter 1
Oracle GoldenGate Microservices Architecture

1-7

https://docs.oracle.com/en/middleware/goldengate/core/21.1/oggra/index.html

Admin Client is used to create, modify, and remove processes, instead of using the MA
web user interface. The Admin Client program is located in the $OGG_HOME/bin
directory, where $OGG_HOME is the Oracle GoldenGate home directory. If you need to
automate the Admin Client connection with the deployment, you can use an Oracle
Wallet to store the user credentials. The credentials stored must have the following
characteristics:

• Single user name (account) and password

• Local to the environment where the Admin Client runs

• Available only to the currently logged user

• Managed by the Admin Client

• Referenced using a credential name

• Available for Oracle GoldenGate deployments and proxy connections.

REST API
The REST API for Oracle GoldenGate provides service endpoints that you use to
perform various data replication tasks directly from the REST API interface. This is an
alternative to using the web interface or the command line to set up data replication
processes and tasks.

See REST API Documentation.

Components of Oracle GoldenGate Microservices
Architecture

• Directories and Variables in Microservices Architecture

• Deployment

• Service Manager

• Administration Service

• Distribution Service

• Receiver Service

• Performance Metrics Service

Directories and Variables in Microservices Architecture
The Microservices Architecture is designed with a simplified installation and
deployment directory structure.

This directory structure is based on the Linux Foundation Filesystem Hierarchy
Standard. Additional flexibility has been added to allow parts of the deployment
subdirectories to be placed at other locations in the file system or on other devices,
including shared network devices. The design comprises a read-only Oracle
GoldenGate home directory where Oracle GoldenGate Microservices Architecture is
installed and custom deployment specific directories are created as follows:

• bin
• cfgtoollogs

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-8

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oggra/

• deinstall
• diagnostics
• include
• install
• inventory
• jdk
• jlib
• lib

– instantclient
– sql
– utl

• OPatch
• oraInst.loc
• oui
• srvm
The following figure shows the files and directories under the Services Manager (srvm)
directory:

The following table describes the key MA directories and the variables that are used when
referring to those directories during an Oracle GoldenGate installation. When you see these
variables in an example or procedure, replace the variable with the full path to the
corresponding directory path in your enterprise topology.

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-9

Directory Name Variable Description Default Directory
Path

Oracle GoldenGate
home

OGG_HOME The Oracle
GoldenGate home
that is created on a
host computer is the
directory that you
choose to install the
product. This read-
only directory contains
binary, executable,
and library files for the
product.

/
ogg_install_loc
ation

Deployment etc home OGG_ETC_HOME The location where
your deployment
configuration files are
stored including
parameter files.

/
ogg_deployment_
location/etc

Deployment
configuration home

OGG_CONF_HOME The location where
each deployment
information and
configuration artifacts
are stored.

/
ogg_deployment_
location/etc/
conf

Deployment security
home

OGG_SSL_HOME The location where
each deployment
security artifacts
(certificates, wallets)
are stored.

/
ogg_deployment_
location/etc/ss
l

Deployment variable
home

OGG_VAR_HOME The location where
each deployment
logging and reporting
processing artifacts
are stored.

/
ogg_deployment_
location/var

Deployment data
home

OGG_DATA_HOME The location where
each deployment data
artifacts (trail files) are
stored.

/
ogg_deployment_
location/var/li
b/data

You can change the default location of all of these to customize where you want to
store these files.

In a configuration where the OGG_VAR_HOME is a local directory and the OGG_HOME is a
shared read-only remote directory, many deployments with local OGG_VAR_HOME can
share one read-only shared OGG_HOME.

This directory design facilitates a simple manual upgrade. To upgrade, you stop the
services and then set the OGG_HOME in the web interface (or via a REST command)
and then restart the processes. On restart, Oracle GoldenGate picks up the updated
environment variables. You simply switch a deployment to use a new Oracle
GoldenGate release by changing the Oracle GoldenGate home directory path in the
Service Manager to a new Oracle GoldenGate home directory, which completes the
upgrade. Restart the microservices, Extract and Replicat processes.

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-10

Deployment
A deployment is a configuration to set up for Oracle GoldenGate Microservices to allow
creating users, choose if you want to create a secure SSL environment, define the host and
port for various microservices offered with Oracle GoldenGate Microservices Architecture.
When you add a deployment for the first time, you can set up a new Service Manager and
then add more deployments to the existing Service Manager. To learn more about these
features of a deployment, see About Deployments.

Service Manager
A Service Manager acts as a watchdog for other services available with Microservices
Architecture.

A Service Manager allows you to manage one or multiple Oracle GoldenGate deployments
on a local host. A Service Manager has a one to many relationship with the Administration
Service. Each Oracle GoldenGate installation has a single Service Manager that is
responsible for multiple deployments.

Optionally, Service Manager may run as a system service and maintains inventory and
configuration information about your deployments and allows you to maintain multiple local
deployments. Using Service Manager, you can start and stop instances, and query
deployments and the other services.

See Manage Deployments from the Service Manager.

Administration Service
The Administration Service supervises, administers, manages, and monitors processes within
an Oracle GoldenGate deployment.

The Administration Service operates as the central control entity for managing the replication
components in your Oracle GoldenGate deployments. You use it to create and manage your
local Extract and Replicat processes without the need to access the server where Oracle
GoldenGate is installed. The key feature of the Administration Service is the REST API
service Interface that can be accessed from any HTTP or HTTPS client, such as the
Microservices Architecture service interfaces or other clients like Perl and Python.

In addition, the Admin Client can be used to make REST API calls to communicate directly
with the Administration Service. See Admin Client for details.

The Administration Service is responsible for coordinating and orchestrating Extracts,
Replicats, and paths to support greater automation and operational managements. Its
operation and behavior is controlled through published query and service interfaces. These
interfaces allow clients to issue commands and control instructions to the Administration
Service using REST JSON-RPC invocations that support REST API interfaces.

The Administration Service includes an embedded web application that you can use directly
with any web browser and does not require any client software installation.

Use the Administration Service to create and manage:

• Extract and Replicat processes

– Add, alter, and delete

– Register and unregister

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-11

– Start and stop

– Review process information, statistics, reports, and status including LAG and
checkpoints

– Retrieve the report and discard files

• Configuration (parameter) files

• Checkpoint, trace, and heartbeat tables

• Supplemental logging for procedural replication, schema, and tables

• Tasks both custom and standard, such as auto-restart and purge trails

• Credential stores

• Encryption keys (MASTERKEY)

• Add users and assign their roles

Distribution Service
Distribution Service functions as a networked data distribution agent in support of
conveying and processing data and commands in a distributed deployment. It is a high
performance application that is able to handle multiple commands and data streams
from multiple source trail files, concurrently.

Distribution Service replaces the classic multiple source-side data pumps with a single
instance service. This service distributes one or more trails to one or more destinations
and provides lightweight filtering only (no transformations).

Multiple communication protocols can be used, which provide you the ability to tune
network parameters on a per path basis. These protocols include:

• Oracle GoldenGate protocol for communication between the Distribution Service
and the Collector in a non services-based (classic) target. It is used for inter-
operability.

Note:

TCP encryption does not work in a mixed environment of Classic and
Microservices architecture. The Distribution Service in Microservices
Architecture cannot be configured to use the TCP encryption to
communicate with the Server Collector in Classic Architecture running in
a deployment. Also, the Receiver Service in Microservices Architecture
cannot accept a connection request from a data pump in Classic
Architecture configured with RMTHOST ... ENCRYPT parameter running in
a deployment.

• WebSockets for HTTPS-based streaming, which relies on SSL security.

• UDP protocols.

• Proxy support for cloud environments:

– SOCKS5 for any network protocol.

– HTTP for HTTP-type protocols only, including WebSocket.

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-12

• Passive Distribution Service to initiate path creation from a remote site. Paths are source-
to-destination replication configurations though are not included in this release.

Note:

A Distribution Service cannot filter data in the trail so it will send all operations.

Receiver Service
A Receiver Service is the central control service that handles all incoming trail files. It
interoperates with the Distribution Service and it replaces multiple discrete target-side
Collectors with a single instance service.

Use Receiver Service to:

• Monitor path events

• Add target-initiated paths

• Query the status of incoming paths

• View the statistics of incoming paths

• Diagnose path issues

WebSockets (ws) is the default HTTPS initiated full-duplex streaming protocol used by the
Receiver Service. It enables you to fully secure your data using SSL security. The Receiver
Service seamlessly traverses through HTTP forward and reverse proxy servers.

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-13

Additionally, the Receiver Service supports the following protocols:

• UDP-based protocol for wide area networks: For more information, see http://
udt.sourceforge.net/.

• Classic Oracle GoldenGate protocol for classic deployments so that the
Distribution Service communicates with the Collector and the Data Pump
communicates with the Receiver Service.

Note:

TCP encryption does not work in a mixed environment of Classic and
Microservices architecture. The Distribution Service in Microservices
Architecture cannot be configured to use the TCP encryption to communicate
with the Server Collector in Classic Architecture running in a deployment.
Also, the Receiver Service in Microservices Architecture cannot accept a
connection request from a data pump in Classic Architecture configured with
RMTHOST ... ENCRYPT parameter running in a deployment.

Topics:

• Target-Initiated Distribution Path

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-14

https://udt.sourceforge.io/
https://udt.sourceforge.io/

Target-Initiated Distribution Path
Target-initiated paths for microservices enable the Receiver Server to initiate a path to the
Distribution Service on the target deployment and pull trail files. This feature allows the
Receiver Server to create a target initiated path for environments such as Demilitarized Zone
Paths (DMZ) or Cloud to on-premise, where the Distribution Server in the source Oracle
GoldenGate deployment cannot open network connections in the target environment to the
Receiver Server due to network security policies.

If the Distribution Server cannot initiate connections to the Receiver Server, but Receiver
Server can initiate a connection to the machine running the Distribution Server, then the
Receiver Server establishes a secure or non-secure target initiated path to the Distribution
Server through a firewall or Demilitarized (DMZ) zone using Oracle GoldenGate and pull the
requested trail files.

The Receiver Server endpoints display that the retrieval of the trail files was initiated by the
Receiver Server.

Performance Metrics Service
All Oracle GoldenGate processes send metrics to the Performance Metrics Service, which
enables you to monitor the performance of all processes from a single interface.

The Performance Metrics Service uses the metrics service to collect and store instance
deployment performance results. This metrics collection and repository is separate from the
administration layer information collection. You can monitor performance metrics using other
embedded web applications and use the data to tune your deployments for maximum
performance.

Use the Performance Metrics Service to:

• Query for various metrics and receive responses in the services JSON format or the
classic XML format

• Integrate third party metrics tools

• View error logs

• View active process status

• Monitor system resource utilization

Components of Data Replication in Oracle GoldenGate
• Types of Data Replication Configurations

• Oracle GoldenGate Processes

• Oracle GoldenGate Objects

Types of Data Replication Configurations
Oracle GoldenGate can be configured for the following purposes:

• A static extraction of data records from one database and loading of those records to
another database or data source.

Chapter 1
Components of Data Replication in Oracle GoldenGate

1-15

• Continuous extraction and replication of transactional Data Manipulation Language
(DML) operations and Data Definition Language (DDL) changes (for supported
databases) to keep source and target data consistent.

• Data extraction from supported database sources and replication to Big Data and
file targets using Oracle GoldenGate for Big Data.

Oracle GoldenGate Processes
• Extract

• Replicat

• Distribution Paths for Data Transport

Extract
The Extract process is configured to run on the source endpoint from where the
committed database transactions need to be captured. This process is the extraction
or the data capture mechanism of Oracle GoldenGate.

You can configure the Extract process to capture data from the following types of data
sources:

• Source tables: This source type is used for initial loads.

• Database recovery logs or transaction logs: While capturing from the logs, the
actual method varies depending on the database type. An example of this source
type is the Oracle database redo logs.

See About Extract to learn more.

Replicat
The Replicat process applies the updates from the trail files to the target database. It
reads the trail file on the target database, reconstructs the DML or DDL operations,
and applies them to the target database.

The Replicat process uses dynamic SQL to compile a SQL statement once and then
executes it many times with different bind variables. You can configure the Replicat
process so that it waits a specific amount of time before applying the replicated
operations to the target database.

For example, a delay may be desirable to prevent the propagation of errant SQL, to
control data arrival across different time zones, or to allow time for other planned
events to occur.

For the two common uses cases of Oracle GoldenGate, Replicat functions as follows:

• Initial Loads: When you set up Oracle GoldenGate for initial loads, the Replicat
process applies a static data copy to target objects or routes the data to a high-
speed bulk-load utility.

• Change Synchronization: When you set up Oracle GoldenGate to keep the
target database synchronized with the source database, the Replicat process
applies the source operations to the target objects using a native database
interface or ODBC, depending on the database type.

You can configure multiple Replicat processes with one or more Extract processes in
parallel to increase throughput. To preserve data integrity, each set of process handles

Chapter 1
Components of Data Replication in Oracle GoldenGate

1-16

a different set of objects. To differentiate among Replicat processes, you can create Replicat
groups with a unique group name.

See About Replicat to learn about different types of Replicats modes.

Distribution Paths for Data Transport
A distribution path or DISTPATH defines the path of trail file between endpoints. The
distribution path is configured from the Distribution Service. See Distribution Service to learn
more.

A target-initiated distribution path, which is also called the receiver path or RECVPATH
defines the path of the trail, from the Receiver Service to the Distribution Service in
environments with secure target endpoints. See Add Target-Initiated Distribution Paths.

Oracle GoldenGate Objects
• Trail Files

• Parameter Files

• Checkpoint Files

Trail Files
A trail is a series of files on disk where Oracle GoldenGate stores the captured changes to
support the continuous extraction and replication of database changes.

A trail can exist on the source system, an intermediary system, the target system, or any
combination of these systems, depending on how you configure Oracle GoldenGate. On the
local system, it is known as an Extract trail (or local trail). On a remote system, it is known as
a remote trail. By using a trail for storage, Oracle GoldenGate supports data accuracy and
fault tolerance. The use of a trail also allows extraction and replication activities to occur
independently of each other. With these processes separated, you have more choices for
how data is processed and delivered. For example, instead of extracting and replicating
changes continuously, you could extract changes continuously and store them in the trail for
replication to the target later, whenever the target application needs them.

In addition, trails allow Oracle database to operate in heterogeneous environment. The data
is stored in a trail file in a consistent format, so it can be read by the Replicat process for all
supported databases.

Topics:

• Processes that Write to the Trail File

• Processes that Read from the Trail File

• Trail File Creation and Maintenance

Processes that Write to the Trail File
Oracle GoldenGate Extract writes to the trail file. All local trails must have different full-path
names though you can use the same trail names in different paths.

In Oracle GoldenGate MA, distribution paths and receiver paths are used to distribute remote
trails. The Distribution Service and Receive Service are used to configure distribution path
and receiver path, respectively. Distribution path transfers the trail over a network, to defined

Chapter 1
Components of Data Replication in Oracle GoldenGate

1-17

targets. The trail may contain data from multiple Extracts, which transferred to a
remote system.

Processes that Read from the Trail File
The Replicat processes, and the Distribution Path read from the trail files. Extract
captures DML and DDL operations using a local trail, performs further processing if
needed, and transfers the data to a trail that is read by the next Oracle GoldenGate
process, which is the Replicat.

In case of distributed deployment, a Distribution Service process will read the remote
trail file and send it across the network to a waiting Receiver Service process.

The Replicat process reads the trail and applies the replicated DML and DDL
operations to the target database.

Trail File Creation and Maintenance
The trail files are created as needed during processing. You specify a two-character
name for the trail when you add it to the Oracle GoldenGate configuration with the ADD
RMTTRAIL or ADD EXTTRAIL command. By default, trails are stored in the dirdat sub-
directory of the Oracle GoldenGate directory. You can specify a six or nine digit
sequence number using the TRAIL_SEQLEN_9D | TRAIL_SEQLEN_6D GLOBALS
parameter; TRAIL_SEQLEN_9D is set by default. It is recommended to use the 9-digit
sequence number when possible.

As each new file is created, it inherits the two-character trail name appended with a
unique nine digit sequence number from 000000000 through 999999999 (for example
c:\ggs\dirdat\tr000000001). When the sequence number reaches 999,999,999 or
999,999 (depending on the prior setting) the Extract process will abend.

Trail files can be purged on a routine basis by using the Manager parameter
PURGEOLDEXTRACTS.

You can create more than one trail to separate the data from different objects or
applications. To maximize throughput, and to minimize I/O load on the system,
extracted data is sent into and out of a trail in large blocks. The transactional order of
the trail file or the trail sequence is preserved.

Parameter Files
Most Oracle GoldenGate functionality is controlled by means of parameters specified
in parameter files. A parameter file is a plain text file that is read by an associated
Oracle GoldenGate process.

Oracle GoldenGate Microservices Architecture uses the following runtime parameters:

• Global runtime parameters: These are different from the GLOBALS parameter.
They apply to all database objects that are specified in a parameter file. Some
global runtime parameters affect process behavior, while others affect such things
as memory utilization. USERIDALIAS is an example of a global runtime parameter. A
global parameter should be listed only once in the file. When listed more than
once, only the last instance is active, and all other instances are ignored.

• Object-specific parameter: These parameters enable you to apply different
processing rules for different sets of database objects. GETINSERTS and
IGNOREINSERTS are examples of object-specific parameters. Each precedes a MAP

Chapter 1
Components of Data Replication in Oracle GoldenGate

1-18

statement that specifies the objects to be affected. Object-specific parameters take effect
in the order of their listing in the file.

Runtime parameters allow controlling various aspects of Oracle GoldenGate synchronization,
such as:

• Data selection, mapping, transformation, and replication

• DDL and sequence selection, mapping, and replication (where supported)

• Error resolution

• Logging

• Status and error reporting

• System resource usage

• Startup and runtime behavior

Although you can have multiple Extracts and Replicats running in a single deployment, each
one can only be associated with a single parameter file. Extracts and Replicats are identified
by their case-insensitive name. For example, an Extract called exte, would have 1 associated
parameter file called exte.prm.

See Working with Parameter Files to learn more.

Checkpoint Files
When database checkpoints are used, Oracle GoldenGate creates a checkpoint table with a
user-defined name in the database, using Oracle GoldenGate commands. These checkpoint
tables are created for Extract and Replicat processes. For Extract, there are read and write
checkpoints set up at data source. For Replicat, the checkpoint is set up in the trail file.

See Oracle GoldenGate Checkpoint Tables.

Chapter 1
Components of Data Replication in Oracle GoldenGate

1-19

2
Install and Patch

This section lists details about installation prerequisites for Oracle GoldenGate, steps to
install Oracle GoldenGate for different databases, post-installation tasks, installing patches,
and uninstalling Oracle GoldenGate.

Topics:

• Overview

• Operating System Requirements

• Installing Oracle GoldenGate

• Software Installation Directories and Programs for Oracle GoldenGate

• Post-installation Tasks

• Installing Patches for Oracle GoldenGate Microservices Architecture

• Uninstalling Oracle GoldenGate Microservices Architecture

Overview
Learn about the prerequisites for installing Oracle GoldenGate.
Topics:

• Understanding and Obtaining the Oracle GoldenGate Distribution

• Verify Certification and System Requirements

Understanding and Obtaining the Oracle GoldenGate Distribution
You can download Oracle GoldenGate from the Oracle GoldenGate Downloads page: https://
www.oracle.com/middleware/technologies/goldengate-downloads.html.

Verify Certification and System Requirements
Ensure that you install your product on a supported hardware or software configuration. For
more information, see the Certification Matrix for this release.

Oracle tests and verifies the performance of your product on all certified systems and
environments. As new certifications occur, they are added to the proper certification
document. New certifications can occur at any time, and for this reason the certification
documents are kept outside of the documentation libraries and are available on Oracle
Technology Network.

Here are some additional details about the supported platforms:

• Cross Endian Support: Most Oracle GoldenGate products support cross endian
replication, which means that the source and target database can be a different platform
(or even endian) than the actual server where Oracle GoldenGate is installed.

2-1

https://www.oracle.com/middleware/technologies/goldengate-downloads.html
https://www.oracle.com/middleware/technologies/goldengate-downloads.html
https://www.oracle.com/integration/goldengate/certifications/

• Fully Certified Criteria: Oracle GoldenGate certifications are often phased in, for a
particular new release of the product, Oracle typically supports Oracle databases
first and then the various non-Oracle and Big Data technologies. In some cases,
Oracle GoldenGate may support the data store you are looking for, but you may
need to check the certification matrix for a previous release. Platforms that are in
the certification matrix are platforms where either full regression testing is done or
where basic validation is performed for continuity purposes.

• Fully Supported by Inference: There are other technologies that are supported for
Oracle GoldenGate that may not be explicitly listed in the certification matrix. For
example, Oracle certify its technologies based on a combination of Chipset,
Operating System, Data Store Type, and Data Store Version. As long as these
four criteria are met, support is available.

• Fully Supported through Open Source Compatibility: There are a number of Open
Source technologies that Oracle GoldenGate is certified with such as Big Data and
non-Oracle databases. Sometimes, users may have open source environments
and need Oracle GoldenGate to provide support with such unique infrastructures,
such as Apache HBase on Azure Data Lake. In such cases, Oracle GoldenGate
does support any unique open source enviroment if the Chipset, Operating
System, Open Source Framework and Framework Version are certified by Oracle
GoldenGate. For example, in case of Apache HBase, Oracle GoldenGate support
needs to check the version of Apache HBase, for which Oracle GoldenGate is
certified, and if that version happens to be running on some Cloud, then Oracle
GoldenGate will be supported. In each of these Open Source examples (that are
not explicitly certified), Oracle GoldenGate support is available using the base
open source configurations, such as Apache on certified hardware. However,
Oracle may not be obligated to support each possible infrastructure combination
that users may select.

• Java JDBC Support: Many SQL, NoSQL and Big Data technologies support Java
JDBC capabilities. Oracle GoldenGate for Big Data enables replication of
transactions into any JDBC compliant drivers. Individual drivers may vary in terms
of performance and metadata coverage, so there is no specific guarantee that
Oracle GoldenGate JDBC support will work with every JDBC driver, but most
common JDBC drivers and commercial implementations usually work with Oracle
GoldenGate JDBC and these are supported. If you don’t find your technology in
the certification matrix, but you know that there is a JDBC drive available, then it
could be that you may have both technical compatibility and a supported
configuration.

• Managed and Unmanaged Data Stores: With the advent of managed Cloud
services such as native cloud services, many data stores are now available with
automated lifecycle, patching, and other conveniences. In many cases, managed
data stores are fully compatible and consistent with Oracle GoldenGate
certifications and support. However, in some cases, a cloud vendor may turn-off or
restrict access to features that Oracle GoldenGate requires for full features
compatibility, particularly with Oracle GoldenGate Extract capabilities. If you have
a question about a third party cloud managed service for a data store that Oracle
GoldenGate may usually support, but you do not see that managed service listed
in the Oracle GoldenGate certification matrix, directly contact Oracle GoldenGate
product management.

Chapter 2
Overview

2-2

Operating System Requirements
Learn about the operating system resources required to install and run Oracle GoldenGate.

Topics:

• Memory Requirements

• Disk Requirements

• Network Requirements

• Operating System Privileges

• Other Operating System Requirements

• Windows Console Character Sets

• Other Programs and Settings

• Prequisities to Install Microservices Architecture for PostgreSQL and SQL Server

Memory Requirements
All Platforms

The amount of memory that is required for Oracle GoldenGate depends on the amount of
data being processed, the number of Oracle GoldenGate processes running, the amount of
RAM available to Oracle GoldenGate, and the amount of disk space that is available to
Oracle GoldenGate for storing pages of RAM temporarily on disk when the operating system
needs to free up RAM (typically when a low watermark is reached). This temporary storage of
RAM to disk is commonly known as swapping or paging (herein referred to as swapping).
Depending on the platform, the term swap space can be a swap partition, a swap file, a page
file (Windows) or a shared memory segment (IBM for i).

Modern servers have sufficient RAM combined with sufficient swap space and memory
management systems to run Oracle GoldenGate. However, increasing the amount of RAM
available to Oracle GoldenGate may significantly improve its performance, as well as that of
the system in general.

Typical Oracle GoldenGate installations provide RAM in multiples of gigabytes to prevent
excessive swapping of RAM pages to disk. The more contention there is for RAM the more
swap space that is used.

Excessive swapping to disk causes performance issues for the Extract process in particular,
because it must store data from each open transaction until a commit record is received. If
Oracle GoldenGate runs on the same system as the database, then the amount of RAM that
is available becomes critical to the performance of both.

RAM and swap usage are controlled by the operating system, not the Oracle GoldenGate
processes. The Oracle GoldenGate cache manager takes advantage of the memory
management functions of the operating system to ensure that the Oracle GoldenGate
processes work in a sustained and efficient manner. In most cases, users need not change
the default Oracle GoldenGate memory management configuration.

For more information about evaluating Oracle GoldenGate memory requirements, see the
CACHEMGR parameter in the Reference for Oracle GoldenGate.

Chapter 2
Operating System Requirements

2-3

Db2 z/OS: Memory Requirements

Oracle GoldenGate requires the following memory resources on the Oracle
GoldenGate remote system and the database host system.

On a remote system

The amount of memory that is required for Oracle GoldenGate depends on the amount
of data being processed, the number of Oracle GoldenGate processes running, the
amount of RAM available to Oracle GoldenGate, and the amount of disk space that is
available to Oracle GoldenGate for storing pages of RAM temporarily on disk when the
operating system needs to free up RAM (typically when a low watermark is reached).
This temporary storage of RAM to disk is commonly known as swapping or paging.
Depending on the platform, the term swap space can be a swap partition, a swap file,
or a shared memory segment (IBM i platforms).

Modern servers have sufficient RAM combined with sufficient swap space and memory
management systems to run Oracle GoldenGate. However, increasing the amount of
RAM available to Oracle GoldenGate may significantly improve its performance, as
well as that of the system in general.

Typical Oracle GoldenGate installations provide RAM in multiples of gigabytes to
prevent excessive swapping of RAM pages to disk. The more contention there is for
RAM the more swap space that is used.

Excessive swapping to disk causes performance issues for the Extract process in
particular, because it must store data from each open transaction until a commit record
is received. If Oracle GoldenGate runs on the same system as the database, the
amount of RAM that is available becomes critical to the performance of both.

RAM and swap usage are controlled by the operating system, not the Oracle
GoldenGate processes. The Oracle GoldenGate cache manager takes advantage of
the memory management functions of the operating system to ensure that the Oracle
GoldenGate processes work in a sustained and efficient manner. In most cases, users
need not change the default Oracle GoldenGate memory management configuration.

For more information about evaluating Oracle GoldenGate memory requirements, see
the CACHEMGR parameter in the Reference for Oracle GoldenGate.

On the Db2 host system

Allocate approximately 10-50 MB of virtual memory for each Oracle GoldenGate log
reader, oggreadb, that is invoked depending on the size of the log buffer. There is one
invocation per Extract process on the remote system. To adjust the maximum log
buffer size, use the TRANLOGOPTIONS BUFSIZE parameter in the Extract parameter file.

When setting up the Workload Manager (WLM) environment for the Extract log read
components, it is recommended to set NUMTCB in the range of 10-40 depending on your
environment. This is based on the IBM general guidelines available here:

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/perf/src/tpc/
db2z_assignprocfunc2wlmappenv.html

Disk Requirements
Disk space requirements vary based on the platform, database, and Oracle
GoldenGate architecture to be installed.

Chapter 2
Operating System Requirements

2-4

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/installing&id=GWURF413
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/perf/src/tpc/db2z_assignprocfunc2wlmappenv.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/perf/src/tpc/db2z_assignprocfunc2wlmappenv.html

Disk Requirements for Oracle GoldenGate Installation Files

The disk space requirements for a Oracle GoldenGate installation vary based on your
operating system and database. Ensure that you have adequate disk space for the
downloaded file, expanded files, and installed files, which can be up to 2GB.

Temporary Disk Requirements

When total cached transaction data exceeds the CACHESIZE setting of the CACHEMGR
parameter, Extract begins writing cache data to temporary files located in the Oracle
GoldenGate installation directory. For Microservices Architecture, it is the /var/temp folder for
that deployment.

The cache manager assumes that all of the free space on the file system is available. These
directories can fill up quickly if there are many transactions with large transaction sizes. To
prevent I/O contention and possible disk-related Extract failures, dedicate a disk to this
directory. You can assign a name to this directory with the CACHEDIRECTORY option of the
CACHEMGR parameter.

Note:

CACHEMGR is an internally self-configuring and self-adjusting parameter. It is rare that
this parameter requires modification. Doing so unnecessarily may result in
performance degradation. It is best to acquire empirical evidence before opening an
Oracle Service Request and consulting with Oracle Support.

It is typically more efficient for the operating system to swap to disk than it is for Extract to
write temporary files. The default CACHESIZE setting assumes this. Thus, there should be
sufficient disk space to account for this, because only after the value for CACHESIZE is
exceeded will Extract write transaction cached data to temporary files in the file system name
space. If multiple Extract processes are running on a system, the disk requirements can
multiply. Oracle GoldenGate writes to disk when there is not enough memory to store an
open transaction. Once the transaction has been committed or rolled back, committed data is
written to trail files and the data are released from memory and Oracle GoldenGate no longer
keeps track of that transaction. There are no minimum disk requirements because when
transactions are committed after every single operation these transactions are never written
to disk.

Note:

Oracle recommends that you do not change the CACHESIZE because performance
can be adversely effected depending on your environment.

Other Disk Space Considerations

In addition to the disk space required for the files and binaries that are installed by Oracle
GoldenGate, allow additional disk space to hold the Oracle GoldenGate trails. Trails can be
created up to 2GB in size, with a default of 500MB. The space required depends upon the
selected size of the trails, the amount of data being captured for replication, and how long the
consumed trails are kept on the disk. The recommended minimum disk allocated for Trails
may be computed as:

Chapter 2
Operating System Requirements

2-5

((transaction log size * 0.33) * number of log switches per day) * number of days
to retain trails

Based on this equation, if the transaction logs are 1GB in size and there is an average
of 10 log switches per day, it means that Oracle GoldenGate will capture 3.3GB data
per day. To be able to retain trails for 7 days, the minimum amount of disk space
needed to hold the trails is 23GB.

A trail is a set of self-aging files that contain the working data at rest and during
processing. You may need more or less than this amount, because the space that is
consumed by the trails depends on the volume of data that will be processed.

Db2 z/OS - Disk Requirements

On the Db2 host system

(Only applicable if you are installing stored procedures.) Assign a zFS (zSeries file
systems) or hierarchical file system volume. To determine the size of the Oracle
GoldenGate download file, examine the size of zOSPrograms.zip on the remote
Db2 system after extracting the installation image.

Network Requirements
The following network resources must be available to support Oracle GoldenGate:

• Use the fastest network possible and install redundancies at all points of failure for
optimal performance and reliability, especially in maintaining low latency on the
target.

• You can configure Oracle GoldenGate Microservices to use a reverse proxy.
Oracle GoldenGate Microservices includes a script called ReverseProxySettings
that generates configuration file for only the NGINX reverse proxy server.

See Configure Reverse Proxy with NGINX to Access Oracle GoldenGate
Microservices.

• Configure the system to use both TCP and UDP services, including DNS. Oracle
GoldenGate supports IPv4 and IPv6 and can operate in a system that supports
one or both of these protocols.

• Configure the network with the host names or IP addresses of all systems that will
be hosting Oracle GoldenGate processes and to which Oracle GoldenGate will be
connecting.

• Oracle GoldenGate requires some unreserved and unrestricted TCP/IP network
ports, the number of which depends on the number and types of processes in your
configuration.

• Keep a record of the ports that you assigned to Oracle GoldenGate processes.
You specify them with parameters when configuring deployments for the
Microservices Architecture.

• Configure your firewalls to accept connections through the Oracle GoldenGate
ports.

Operating System Privileges
The following are the privileges in the operating system that are required to install
Oracle GoldenGate Microservices Architecture and to run the processes:

Chapter 2
Operating System Requirements

2-6

• The user who installs Oracle GoldenGate must be granted read and write privileges on
the Oracle GoldenGate software home directory.

• To install on Windows, the user who installs Oracle GoldenGate must log in as an
Administrator.

• The user who configures deployments using the oggca.sh script and creates Oracle
GoldenGate Extract, Replicat processes must have read, write, and delete privileges on
files and subdirectories in the Oracle GoldenGate directory.

• For Extract processes that read from transaction logs and backups, the user must have
read access to the logs and backup files.

• Oracle recommends that you dedicate the Extract and Replicat operating system users to
Oracle GoldenGate. Sensitive information might be available to anyone who runs an
Oracle GoldenGate process, depending on how database authentication is configured.

Manager Running on Windows

The Manager process can run as a Windows service, or it can run interactively as the current
user. The Manager process requires:

• Full control permissions over the files and folders within the Oracle GoldenGate
directories.

• Full control permissions over the trail files, when they are stored in a location other than
the Oracle GoldenGate directory.

• Membership in the server's local Administrators Group (on all nodes in a cluster).

• If you are running Manager as a Windows service with an Extract or Replicat that is
connected to a database using Windows Authentication, then the process attempts to log
in to the database with the account that the Manager is running under. Ensure that the
Manager's service account has the correct access to the database.

The programs that capture and replicate data, Extract and Replicat, run under the Manager
account and inherit the Manager's operating system level privileges.

Db2 z/OS - Operating System Privileges

The remote host requires privileges to use the chmod +rw command on the subdirectories in
the Oracle GoldenGate product directory.

The following table shows the other required operating system privileges for Oracle
GoldenGate:

Table 2-1 Operating System Privileges

Db2 z/OS User Privilege Extract Stored
Procedures

Replicat

CONNECT to the remote Db2 subsystem. Yes Yes Yes

Other Operating System Requirements
The following additional features of the operating system must be available to support Oracle
GoldenGate.

• To use Oracle GoldenGate user exits, install the C/C++ Compiler, which creates the
programs in the required shared object or DLL.

Chapter 2
Operating System Requirements

2-7

• Gzip to decompress the Oracle GoldenGate installation files. Otherwise, you must
unzip the installation on a PC by using a Windows-based product, and then FTP it
to the AIX, DB2 for i, or DB2 z/OS platforms.

• For best results on DB2 platforms, apply high impact (HIPER) maintenance on a
regular basis staying within one year of the current maintenance release. The
HIPER process identifies defects that could affect data availability or integrity. IBM
provides Program Temporary Fixes (PTF) to correct defects found in DB2 for i and
DB2 z/OS.

• For Oracle GoldenGate running on a Windows system, install the Microsoft Visual
C++ Redistributable Package for Visual Studio 2015, 2017, and 2019. This
package installs runtime components of Visual C++ Libraries that are required for
Oracle GoldenGate processes.

• Download and install the x64 version of Visual C++ 2015, 2017, and 2019
package:

https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-
downloads

• For Oracle GoldenGate for Oracle to be installed on a remote hub server,
download and install the Oracle Database 21c client for the operating system
platform where Oracle GoldenGate will be installed and ensure that you install the
Administrator version of the client.

• For Oracle GoldenGate for Db2 z/OS, the objects require a minimum hardware
platform of z10, a minimum operating system release 1.13, and a minimum Db2
release 11.

Oracle GoldenGate supports Sysplex data sharing.

• Choose a Db2 z/OS Operating System for Installing Oracle GoldenGate

• Where to Install Oracle GoldenGate for SQL Server

Choose a Db2 z/OS Operating System for Installing Oracle GoldenGate
Oracle GoldenGate for Db2 z/OS operates remotely on zLinux, AIX or Intel Linux
systems. To capture data, a small component must be installed on the Db2 z/OS
system that contains the Db2 instance that will allow Oracle GoldenGate to read the
Db2 log data.

To install Oracle GoldenGate on a remote zLinux, AIX or Linux system, you have the
following options for connecting to Db2 on the z/OS system:

• Db2 Connect v10.5 or greater

• IBM Data Server Driver for ODBC and CLI v10.5 or greater

• IBM Data Server Client v10.5 or greater

• IBM Data Server Runtime Client v10.5 or greater

Consider the following:

• Extract uses Open Database Connectivity (ODBC) to connect to the Db2
subsystem on the z/OS system. If one of the other drivers is not already installed,
the IBM Data Server Driver for ODBC and CLI is the most lightweight driver and is
recommended for most configurations, although the other drivers are suitable also.

• To capture Db2 log data, the log reader component must be installed in a Library
(PDSE) on the z/OS system. Load Libraries (PDS) are not supported. The library

Chapter 2
Operating System Requirements

2-8

https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads

must be authorized program facility (APF) helps your installation protect the system.
APF-authorized programs can access system facility (APF) authorized. The log read
component is called through SQL from the remote system and since it is APF authorized,
an authorized Workload Manager (WLM) environment must also be used to run these
programs since the default Db2 supplied WLM environment is not able to run authorized
workload.

• No special requirements beyond what capture already has for Oracle GoldenGate
delivery. Because this Oracle GoldenGate release is a fully-remote distribution, the
former Oracle GoldenGate Db2 Remote product is no longer shipped separately.
However, Windows is not supported in Oracle GoldenGate for Db2 z/OS in this release. If
you still require delivery to z/OS from Windows, then Oracle GoldenGate Db2 Remote
12.2 is still available.

• UNIX System Services (USS) is no longer required (as in prior releases) except for a few
installation procedures.

• Windows only: To apply data to a Db2 target from Windows, Oracle GoldenGate Db2
Remote v12.2 must be used. Capture is not support in this scenario.

• Install Oracle GoldenGate Db2 Remote on a remote system for remote delivery to the
Db2 target system. In this configuration, Replicat connects to the target Db2 database by
using the ODBC API that is supplied in Db2 Connect . This configuration requires Db2
LUW to be installed on the remote system.

Note:

All of the Oracle GoldenGate functionality that is supported for Db2 for z/OS is
supported by DB2Connect. In addition, ASCII character data is converted to
EBCDIC automatically by Db2 Connect.

• Although it is possible to install Oracle GoldenGate on zLinux, AIX, and Intel based Linux,
the best performance is seen with a system that has the lowest network latency to the
z/OS system that you use. Although it is possible to run over a wide area network, the
performance suffers due to the increased network latency. Oracle recommends using a
zLinux partition on the same physical hardware as the z/OS system that is running Db2
using Hipersockets or a VLAN between the partitions. Otherwise, systems connected
with OSA adapters in the same machine room, would be the next best choice.
Alternatively, the fastest Ethernet connection between the systems that is available would
be acceptable.

Using the Remote Delivery to the Db2 z/OS using DB2Connect

1. For the intermediary system, select any platform that Oracle GoldenGate supports for the
Db2 for LUW database. This is the system on which Oracle GoldenGate is installed.

2. Install and run Db2 for LUW on the selected remote system so that the Replicat process
can use the supplied Db2 Connect driver.

3. Catalog the Db2 target node in the Db2 for LUW database on the remote system by
using the following Db2 command:

catalog tcpip node db2_node_name remote DNS_name server DB2_port-number

Chapter 2
Operating System Requirements

2-9

4. Add the target Db2 database to the Db2 for LUW catalog on the intermediary
system by using the following Db2 command:

catalog db database_name as database_alias at node db_node_name

See the IBM Db2 LUW documentation for more information about these commands.

Where to Install Oracle GoldenGate for SQL Server
Oracle GoldenGate for SQL Server must be installed on a supported operating system
as per the Certification Matrix, and can be installed on the database server itself or on
an application hub server, based on your preference.

Windows Console Character Sets
The operating system and the command console must have the same character sets.
Mismatches occur on Microsoft Windows systems, where the operating system is set
to one character set, but the DOS command prompt uses a different, older DOS
character set. Oracle GoldenGate uses the character set of the operating system to
send information to the Admin Client command output. So, a non-matching console
character set causes characters not to display correctly. You can set the character set
of the console before opening an Admin Client session by using the following DOS
command:

chcp codepagenumber

For example, chcp 437.

For a code page overview, see https://msdn.microsoft.com/en-us/library/windows/
desktop/dd317752(v=vs.85).aspx and the list of code page identifiers https://
msdn.microsoft.com/en-us/library/windows/desktop/dd317756(v=vs.85).aspx.

Other Programs and Settings
The following additional programs and settings for different databases must be
available to support Oracle GoldenGate.

Other Programs and Settings for MySQL

Oracle GoldenGate requires OpenSSL shared libraries to be installed. If you are using
Oracle GoldenGate for MySQL 8.0 and Oracle GoldenGate is installed on the local
database server, then add the MySQL installation path to the PATH variable as follows:

For Windows:

PATH=MYSQL_HOME\bin;%PATH%

For Linux:

export PATH=MYSQL_HOME/bin:$PATH

Chapter 2
Operating System Requirements

2-10

https://www.oracle.com/middleware/technologies/fusion-certification.html
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317752(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317752(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317756(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317756(v=vs.85).aspx

If you need to set up Oracle GoldenGate for MySQL 5.7 or earlier or are installing Oracle
GoldenGate on a remote server, then you need to install OpenSSL and add its installation
location to the PATH variable. This is required for both Linux and Windows.

Other Programs and Settings for PostgreSQL

Additional requirements for PostgreSQL are:

• To capture from a PostgreSQL database, Oracle GoldenGate requires the
test_decoding database plugin to be installed for the database, which may not have
been installed by default.

• Ensure that the postgresqlversion#-contrib package is installed on the database
server.

For example:

sudo yum install postgresql13-contrib

When installing Oracle GoldenGate on a remote server (one different from where the
database is running), set the remote server's time and time zone to that of the source
database server so that Oracle GoldenGate Extract can correctly position by time when
creating the Extract with the BEGIN option, otherwise, position by a valid LSN value.

Other Programs and Settings for SQL Server

Observe the following program and settings information for Oracle GoldenGate for SQL
Server:

• Install either the Microsoft ODBC Driver 17 or Microsoft ODBC Driver 18 for the operating
system where Oracle GoldenGate is to be installed:

For Oracle GoldenGate on Windows, install the driver available at the following link:

https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?
view=sql-server-2017

For Oracle GoldenGate on Linux, install the driver available at this link, and follow the
instructions for RHEL and Oracle Linux packages:

https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-
odbc-driver-for-sql-server?view=sql-server-2017

Note:

Support for Microsoft ODBC Driver 18 was added with Oracle GoldenGate
release version 21.8.0.0.3. Versions prior to release 21.8.0.0.3 do not support
the Microsoft ODBC Driver 18 for SQL Server.

• For Classic Architecture installations of Oracle GoldenGate for SQL Server, the
GoldenGate CDC cleanup job requires the Microsoft sqlcmd Utility. Download instructions
for Windows and Linux systems can be found at:

https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

• To install capture on a remote Linux or Windows server, set the remote server's time and
time zone to that of the database server, or use LSN based positioning for the Extract.

Chapter 2
Operating System Requirements

2-11

https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

Topics:

• Installing Microsoft ODBC Drivers for Linux

Installing Microsoft ODBC Drivers for Linux
For Oracle GoldenGate installed on Linux, the Microsoft ODBC. The following tasks
are required to install the Linux drivers.

1. (Oracle GoldenGate Marketplace only) Edit the file /etc/passwd, to grant
temporary shell access to the root user.

$ sudo vi /etc/passwd

2. (Oracle GoldenGate Marketplace only) In the file /etc/passwd, change the value
for the root user from /usr/sbin/nologin to /bin/bash. Save and close the file.

3. Using Microsoft’s RedHat Enterprise Server installation instructions for adding the
ODBC Drivers for Linux, perform the following steps with default values by
answering 'y' when prompted.

$ sudo su

$ #RedHat Enterprise Server 7
$ curl https://packages.microsoft.com/config/rhel/7/prod.repo
> /etc/yum.repos.d/mssql-release.repo

$ exit
$ sudo yum remove unixODBC-utf16 unixODBC-utf16-devel #to avoid
conflicts
$ sudo ACCEPT_EULA=Y yum install msodbcsql17
$ sudo ACCEPT_EULA=Y yum install mssql-tools
$ echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bash_profile
$ echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bashrc
$ source ~/.bashrc

4. (Oracle GoldenGate Marketplace only) After installing the Linux drivers, you can
reset the original shell access values for the root user.

$ sudo vi /etc/passwd

5. (Oracle GoldenGate Marketplace only) Change the value for the root user
from /bin/bash to /usr/sbin/nologin. Save and close the file.

Prequisities to Install Microservices Architecture for PostgreSQL and
SQL Server

The following topics detail the prerequisites for installing Microservices Architecture for
PostgreSQL and SQL Server.

Topics:

• Prerequisites for Installing Oracle GoldenGate for PostgreSQL

Chapter 2
Operating System Requirements

2-12

• Prerequisites for Installing Oracle GoldenGate Microservice Architecture for SQL Server

Prerequisites for Installing Oracle GoldenGate for PostgreSQL
PostgreSQL libpq Module

For Oracle GoldenGate installations beginning with release 21.6.0 and after, required
PostgreSQL libpq libraries are now included in the Oracle GoldenGate installation package
and do not need to be installed separately.

For Oracle GoldenGate installations prior to release 21.6.0, PostgreSQL libpq libraries need
to be manually installed where Oracle GoldenGate is to be installed. The steps to install the
correct libpq module when running Oracle GoldenGate versions prior to release 21.6.0 are:

Note:

It is highly recommended to patch Oracle GoldenGate to the most recent patch
available on the support.oracle.com page. If you plan to install the base release
21.3 (GA release) immediately followed by the release 21.6 patch or later, then
there is no need to install the PostgreSQL libpq module separately.

Installing the PostgreSQL libpq Module
The steps to install PostgreSQL libpq module are:

1. Follow the steps to install the PostgreSQL package, available at: https://
www.postgresql.org/download/https://www.postgresql.org/download/

2. Choose the Linux operating system family and Red Hat/Rocky/CentOS Linux
distribution from the Packages and Installers drop-down list.

3. Select the highest PostgreSQL version that is supported with Oracle GoldenGate.

4. Select the platform on which Oracle GoldenGate is to be installed, such as Red Hat
Enterprise, Rocky, or Oracle version 8.

5. Select the architecture as x86_64 from the Architecture drop-down.

This will provide the PostgreSQL setup scripts needed to install the required package(s).

6. Install the repository RPM and the libs module. The sample code is given below:

Install the repository RPM: sudo dnf install -y
https://download.postgresql.org/pub/repos/yum/reporpms/EL-8-x86_64/pgdg-
redhat-repo-latest.noarch.rpm
Disable the built-in PostgreSQL module:
sudo dnf -qy module disable postgresql
Install PostgreSQL libs module:
sudo dnf install -y postgresql14-libs

Database Software for Capture

To capture from a PostgreSQL database, Oracle GoldenGate requires the test_decoding
database plug-in be installed for the database. This plug-in might not have been installed by
default when the database was installed.

Chapter 2
Operating System Requirements

2-13

http://support.oracle.com
https://www.postgresql.org/download/

Ensure that the postgresqlversion#-contrib package is installed on the database
server, as shown in the example:

sudo yum install postgresql14-contrib
Other Programs and Settings

Configure the LD_LIBARY_PATH and OGG_HOME environment variables prior to installing
Oracle GoldenGate.

Note:

It is highly recommended to patch Oracle GoldenGate to the most recent
patch available on support.oracle.com. If you plan to install the base release
21.3 (the GA release) immediately followed by a patched version, then
perform the steps given below to set the environment variables based on the
final patch version that you will install.

• For Oracle GoldenGate installations prior to release 21.6.0, set the following
environment variables before installing Oracle GoldenGate:

1. OGG_HOME – The planned Oracle GoldenGate installation path.

2. LD_LIBARY_PATH – Includes the $OGG_HOME/lib and PostgreSQL libpq
directories.

Example:

export OGG_HOME=<GoldenGate_Installation_Path>
export LD_LIBRARY_PATH=$OGG_HOME/lib:/usr/pgsql-14/lib

• For Oracle GoldenGate installations of release 21.6.0 and after, set the following
environment variables before installing Oracle GoldenGate:

1. OGG_HOME – The planned Oracle GoldenGate installation path.

2. LD_LIBARY_PATH – Includes the $OGG_HOME/lib and PostgreSQL libpq
directories.

Example:

export OGG_HOME=<GoldenGate_Installation_Path>
export LD_LIBRARY_PATH=$OGG_HOME/lib

• When installing Oracle GoldenGate on a remote server (one different from where
the database is running), set the remote server's time and time zone to that of the
source database server so that Oracle GoldenGate Extract can correctly position
by time when creating the Extract with the BEGIN option, otherwise, position by a
valid LSN value.

Chapter 2
Operating System Requirements

2-14

http://support.oracle.com/

Prerequisites for Installing Oracle GoldenGate Microservice Architecture for SQL
Server

Open a terminal session and using Microsoft’s RedHat Enterprise Server installation
instructions for adding the ODBC Drivers for Linux, perform the following steps with default
values. Respond with 'y' when prompted.

sudo su #RedHat Enterprise Server 7
curl https://packages.microsoft.com/config/rhel/7/prod.repo >
/etc/yum.repos.d/mssql-release.repo
exit

sudo yum remove unixODBC-utf16 unixODBC-utf16-devel #to avoid conflicts
sudo ACCEPT_EULA=Y yum install msodbcsql17
sudo ACCEPT_EULA=Y yum install mssql-tools
echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bash_profile
echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bashrc
source ~/.bashrc

Installing Oracle GoldenGate
Learn about the steps for installing Oracle GoldenGate Microservices Architecture for the first
time and includes instructions to download the base release of a new version of Oracle
GoldenGate.

To download and install subsequent patches to the base release, go to the Patches and
Updates tab of My Oracle Support at:

http://support.oracle.com

Also see Installing Patches for Oracle GoldenGate Microservices Architecture.

Topics:

• Installing Oracle GoldenGate Microservices Architecture

• Integrating Oracle GoldenGate Microservices Architecture into a Cluster

Installing Oracle GoldenGate Microservices Architecture

Note:

Oracle recommends using Oracle GoldenGate Microservices Architecture. From
Oracle GoldenGate 21c onward, Oracle GoldenGate Classic Architecture for Oracle
Database has been deprecated and may be desupported and unavailable in future
releases.

The steps for installing Oracle GoldenGate Microservices Architecture for Oracle and Non-
Oracle databases are the same. However, there are some requirements before you begin the
installation.

Chapter 2
Installing Oracle GoldenGate

2-15

http://support.oracle.com/

Verify that you meet the operating system and required database configuration before
beginning the installation. See:

• Operating System Requirements

• Prepare Databases

The Oracle GoldenGate Microservices Architecture (MA) installation involves the
following steps:

1. Install the Oracle GoldenGate software. See Performing an Interactive Installation
with OUI for MA and Performing a Silent Installation with OUI.

2. Set the necessary environment variables for your database, if required.

Note:

(Oracle only) From the Oracle GoldenGate 21c release onward,
ORACLE_HOME and LD_LIBRARY_PATH do not point to any database
directories. With the unified build feature, these environment variables
now point to the OGG_HOME (sub)directories as the Oracle Database Client
Software is embedded in Oracle GoldenGate.

3. Run the Oracle GoldenGate Configuration Assistant (oggca) wizard to add a
deployment for the Oracle GoldenGate installation. For steps to run the OGGCA
utility, see Add a Deployment.

The installer registers the Oracle GoldenGate home directory ($OGG_HOME) with the
central inventory that is associated with the selected database. The inventory stores
information about all Oracle software products installed on a host if the product was
installed using OUI.

Disk space is also required for the Oracle GoldenGate Bounded Recovery feature.
Bounded Recovery is a component of the general Extract checkpointing facility. It
caches long-running open transactions to disk at specific intervals to enable fast
recovery upon a restart of Extract. At each bounded recovery interval (controlled by
the BRINTERVAL option of the BR parameter) the disk required is as follows: for each
transaction with cached data, the disk space required is usually 64k plus the size of
the cached data rounded up to 64k. Not every long-running transaction is persisted to
disk.

For complete information about Bounded Recovery, see the BR parameter in
Reference for Oracle GoldenGate.

Topics:

• Performing an Interactive Installation with OUI for MA

• Performing a Silent Installation with OUI

Performing an Interactive Installation with OUI for MA
Use the graphical user interface to install Oracle GoldenGate with prompts for required
installation information. These instructions apply to new installations and upgrades:

1. Create a temporary staging directory where you will install Oracle GoldenGate.

For example, on Linux the directory would be mkdir /u01/stage/oggsc.

Chapter 2
Installing Oracle GoldenGate

2-16

For Windows, create a directory where you will install Oracle GoldenGate such as,
gghome, and a directory where you will keep the installation .zip file such as ogg. For
example: C:\>mkdir gghome ogg

2. Extract the installation .zip file into the temporary staging directory. For example:

For Linux: unzip ./fbo_ggs_Linux_x64_services.zip -d ./temp directory
For Windows: C:\ogg>unzip fbo_ggs_Windows_x64_Oracle_services_shiphome.zip -d
temp

3. From the expanded directory, run the fbo_ggs_Linux_x64_Oracle_services_shiphome/
Disk1/runInstaller program on UNIX or Linux. On Windows, run the
fbo_ggs_Windows_x64_Oracle_services_shiphome/Disk1/setup.exe program.

The OUI Install Wizard is started.

4. On the Select Installation Option page, select the Oracle Database version for your
environment, then click Next.

5. On the Specify Installation Details page, specify the following:

a. For Software Location, specify the location where Oracle GoldenGate software will
be installed. This will be your Oracle GoldenGate Home (OGG_HOME) after the
installation is complete. For example: C:\gghome for Windows. If you have
the $OGG_HOME environment variable set, this should be the path displayed. The
specified directory cannot be a registered home in the Oracle Central Inventory.

b. Click Next.

6. On the Summary page, confirm that there is enough space for the installation and that
the installation selections are correct.

a. (Optional) Click Save Response File to save the installation information to a
response file. You can run the installer from the command line with this file as input to
duplicate the results of a successful installation on other systems. You can edit this
file or create a new one from a template.

b. Click Install to begin the installation or Back to go back and change any input
specifications. When upgrading an existing Oracle GoldenGate installation, OUI
notifies you that the software location has files or directories. Click Yes to continue.

c. If you created a central inventory directory, you are prompted to run the
INVENTORY_LOCATION/orainstRoot.sh script. This script must be executed as the
root operating system user. This script establishes the inventory data and creates
subdirectories for each installed Oracle product (in this case, Oracle GoldenGate).

You are notified when the installation is finished.

7. Click Close to complete the installation.

You'll need to perform DataDirect driver installation for PostgreSQL after installing Oracle
GoldenGate. See Install the DataDirect Driver for PostgreSQL for steps to perform this task.

Performing a Silent Installation with OUI
Silent installation from the command line interface can be performed if your system does not
have an X-Windows or graphical interface or you want to perform the installation in an
automated way. Silent installations ensure that multiple users in your organization use the
same installation options when installing Oracle products.

Chapter 2
Installing Oracle GoldenGate

2-17

Silent installations are driven by using a response file. Response files can be saved by
selecting the Save Response File option during an interactive Oracle Universal
Installer session or by editing the oggcore.rsp template located in the response
directory after unzipping the binaries.

The Oracle GoldenGate response file contains a standard set of Oracle configuration
parameters in addition to parameters that are specific to Oracle GoldenGate. These
parameters correspond to the fields in the interactive session. The response file
location is unzipped_directory/fbo_gg_Linux_x64_services_shiphome/Disk1/
response.

To perform the installation using a response file, issue the following command:

unzipped_directory/fbo_gg_Linux_x64_services_shiphome/Disk1/
runInstaller -silent -nowait -responseFile
absolute_path_to_response_file

You'll need to perform DataDirect driver installation for PostgreSQL after installing
Oracle GoldenGate. See Install the DataDirect Driver for PostgreSQL for steps to
perform this task.

Integrating Oracle GoldenGate Microservices Architecture into a
Cluster

If you installed Oracle GoldenGate in a cluster, take the following steps to integrate
Oracle GoldenGate within the cluster solution.

Oracle GoldenGate Microservices Architecture provides REST-enabled services with
features including remote configuration, administration, and monitoring through
HTML5 web pages, command line interfaces, and APIs.

For more information about installing and using Oracle GoldenGate in a cluster, see
the Oracle GoldenGate Microservices Architecture with Oracle Real Application
Clusters Configuration Best Practices technical brief.

Software Installation Directories and Programs for Oracle
GoldenGate

The following table describes the major directories of an Oracle GoldenGate
Microservices installation.

Table 2-2 Directories in an Oracle GoldenGate MA installation

Directory Description

bin Sub-directory for most of the Oracle
GoldenGate executable files.

lib Contains libraries, utility files, and scripts.

jdk Java Developer Kit directory

oui Oracle Universal Installer directory

Chapter 2
Software Installation Directories and Programs for Oracle GoldenGate

2-18

https://www.oracle.com/a/tech/docs/maa-ggmicroservices-on-rac.pdf
https://www.oracle.com/a/tech/docs/maa-ggmicroservices-on-rac.pdf

Table 2-2 (Cont.) Directories in an Oracle GoldenGate MA installation

Directory Description

OPatch Location of Oracle Patch Utility directory to
install patches (opatch).

deinstall Location of deinstall.sh, which is the
software deinstallation script.

The following table describes the programs and utilities exclusively available with MA. Set
the $OGG_HOME/lib/instantclient among other libraries that are used for database
connectivity.

Name Description Default Directory

adminsrvr The Administration Service
supervises, administers,
manages, and monitors
processes operating within an
Oracle GoldenGate deployment
for both active and inactive
processes.

$OGG_HOME/bin

distsrvr A Distribution Service is a
service that functions as a
networked data distribution agent
in support of conveying and
processing data and commands
in a distributed deployment.

$OGG_HOME/bin

extract Extract data process. $OGG_HOME/bin
oggca.sh The MA Configuration Assistant. $OGG_HOME/bin
orapki Utility to manage public key

infrastructure elements, such as
wallets and certificate revocation
lists.

$OGG_HOME/bin

pmsrvr The Performance Metrics
Service uses the metrics service
to collect and store instance
deployment performance results.

$OGG_HOME/bin

recvsrvr A Receiver Service is the central
control service that handles all
incoming trail files.

$OGG_HOME/bin

replicat Replicat data process. $OGG_HOME/bin
ServiceManager A Service Manager acts as a

watchdog for other microservices
in Oracle GoldenGate.

$OGG_HOME/bin

sqlplus SQLPlus is an interactive, batch
query tool installed with every
Oracle Database Server or Client
installation. It has a command-
line user interface, a windows
GUI, and a web-based user
interface.

$OGG_HOME/lib/
instantclient

Chapter 2
Software Installation Directories and Programs for Oracle GoldenGate

2-19

Name Description Default Directory

sql An SQL directory that contains
the healthcheck, legacy, and
sharding utilities.

$OGG_HOME/lib

utl A utility directory that contains
the install, logging,
reverseproxy, and sharding
utilities.

$OGG_HOME/lib

Post-installation Tasks
Learn about any post-installation tasks that may be required after installing Oracle
GoldenGate Microservices Architecture for your database.

Topics:

• Install the DataDirect Driver for PostgreSQL

Install the DataDirect Driver for PostgreSQL
After installing Oracle GoldenGate for PostgreSQL, the Extract and Replicat processes
use a DataDirect ODBC driver to connect to a PostgreSQL database. This driver is
packaged with Oracle GoldenGate and needs to be installed and configured
separately.

Installing for Linux
After installing Oracle GoldenGate for PostgreSQL on Linux, the DataDirect driver is
automatically installed, but an ODBCINI variable needs to be set, if it has not already
been done.

1. Create the ODBCINI variable for the Deployment from the deployment’s
Configuration tab of the Service Manager Overview page.

2. Set Value to the full path location of the odbc file where you will configure the
database DSN connections. For example:

Value equals: /etc/odbc.ini
3. Restart the deployment.

Installing Patches for Oracle GoldenGate Microservices
Architecture

Patching for Oracle GoldenGate refers to applying interim one-off software fixes as
well as cumulative software bundle patches to an existing, lower version of the
software, yet one that is in the same release label as the patch to be applied.
Cumulative and one-off patches for Oracle GoldenGate can be applied on top of a
base release or previously patched release, or they may be a one-off patch that should
be applied to a specific Oracle GoldenGate version.

Patches for Oracle GoldenGate can be found on My Oracle Support when available,
and are located under the Patches & Updates section of MOS.

Chapter 2
Post-installation Tasks

2-20

https://support.oracle.com

Note:

When patching multiple installations that already have Deployments and a shared
Service Manager configured, the Service Manager will only be patched when the
Oracle GoldenGate installation where the Service Manager was first created from,
gets patched.

Topics:

• Downloading Patches for Oracle GoldenGate

• Patching Oracle GoldenGate Microservices Architecture Using OPatch

• Post-Patch Installation Tasks for Non-Oracle Databases for Microservices Architecture

• Uninstalling the Patch for Oracle and Non-Oracle Databases Using OPatch

Downloading Patches for Oracle GoldenGate
Download the appropriate patches for the Oracle GoldenGate build for each system that will
be part of the Oracle GoldenGate configuration.

1. Using a browser, navigate to http://support.oracle.com.

2. Log in with your Oracle ID and password.

3. Select the Patches & Updates tab.

4. On the Search tab, click Product or Family.

5. In the Product field, type Oracle GoldenGate.

6. From the Release drop-down list, select the patch version that you want to download.

7. Optionally, to limit the number of patches listed in the search results, select the required
platform from the Platform drop-down list.

8. Click Search.

9. In the Patch Advanced Search Results list, select the patch that best meets your
criteria.

When you select a patch, a dialog box pops up under the build description, and then you
are advanced to the patch details page.

10. Click the Download link for the patch and save the file to your system.

Note:

Before installing the patch, see Release Notes for Oracle Database for any new
features, parameter changes, patching requirements, known issues, or bug fixes
that affect your current configuration.

Patching Oracle GoldenGate Microservices Architecture Using OPatch
After you download the patch, set up the following prerequisites before installing the patch:

Chapter 2
Installing Patches for Oracle GoldenGate Microservices Architecture

2-21

http://support.oracle.com
https://docs.oracle.com/en/middleware/goldengate/core/21.3/release-notes/#Oracle%C2%AE-Database

1. Download and install the most recent release of OPatch, and keep a note of the
installation directory where you installed the latest release of OPatch.

Details from where to download OPatch are available at: How To Download And
Install The Latest OPatch(6880880) Version (Doc ID 274526.1)

2. Download the Oracle GoldenGate patch and maintain a location for storing the
contents of the patch ZIP file. This location or the absolute path is referred to as
patch_top_dir in the subsequent steps.

3. Navigate to the patch_top_dir directory and run the following command to extract
the contents of the patch ZIP file to the location you created previously.

cd patch_top_dir
unzip patch_number_version_platform.zip

4. Navigate to the unzipped patch directory:

cd patch_top_dir/patch_number_dir
5. Set the ORACLE_HOME environment variable to the Oracle GoldenGate installation

directory that is to be patched:

For Linux: $ export ORACLE_HOME=GoldenGate_Installation_Path
For Windows: > set ORACLE_HOME=GoldenGate_Installation_Path

6. Set the PATH environment variable to include the locations of the ORACLE_HOME and
OPatch directories.

For Linux: $ export PATH=$PATH:$ORACLE_HOME:/OPatch
For Windows: >set PATH=%PATH%;%ORACLE_HOME%;C:\OPatch

7. Verify the Oracle inventory, which OPatch accesses to install the patches. To verify
the inventory, run the following command:

opatch lsinventory

If the command displays any errors, contact Oracle Support to resolve the issue.

8. Run the OPatch prerequisites check and verify that it passes.

opatch prereq CheckConflictAgainstOHWithDetail -ph ./

If any errors are displayed, identify the error type. OPatch categorizes conflicts in
the following types:

• Conflicts with a patch already applied to the ORACLE_HOME: In this case, stop
the patch installation and contact Oracle Support Services.

• Conflicts with a patch already applied to the ORACLE_HOME that is a subset of
the patch you are trying to apply: In this case, continue with the patch
installation because the new patch contains all the fixes from the existing
patch in the ORACLE_HOME. The subset patch will automatically be rolled back
prior to the installation of the new patch.

9. Before patching Oracle GoldenGate, if you have any deployments for the
installation, ensure that you shut down all processes such as Extracts, Replicats,
and Distribution paths, and stop all services for the deployments.

Chapter 2
Installing Patches for Oracle GoldenGate Microservices Architecture

2-22

https://support.oracle.com/knowledge/Oracle%20Database%20Products/274526_1.html
https://support.oracle.com/knowledge/Oracle%20Database%20Products/274526_1.html

This can be done in the Administration Service’s and Service Manager’s WebUI, or in the
Admin Client.

If using the Admin Client, perform the following steps to connect to each deployment and
stop all processes.

10. If using the Admin Client, connect to each deployment and stop all processes.

a. Start the Admin Client and connect to the deployment.

/GoldenGate_Installation_Path/bin/adminclient
OGG (not connected) 1>CONNECT https://host:srv_mgrport
DEPLOYMENT <deployment-name> AS <user> PASSWORD <password>

b. Stop the Extract and Replicat processes and the Distribution Paths.

STOP ER *
STOP DISTPATH ALL

c. Stop the services for the deployment and verify that they are all stopped:

STOP SERVICE *
STATUS SERVICE *

d. Exit the Admin Client and stop the Service Manager:

OGG (https://host:port deployment-name) exit
##Command for Service Manager not registered as a service/daemon
export OGG_VAR_HOME=OGG_SRVMGR_DIRECTORY/var
export OGG_ETC_HOME=OGG_SRVMGR_DIRECTORY/etc
OGG_SRVMGR_DIRECTORY/bin/stopSM.sh
##Command for Service Manager registered as a service/daemon
For Linux: $ sudo systemctl stop OracleGoldenGate
For Windows: To stop the Service Manager for Windows, use the Windows
Services applet (services.msc) and stop the Oracle GoldenGate Service
Manager service.

11. Disconnect all user sessions to the deployment as well as close all running Oracle
GoldenGate programs, including Admin Client.

Perform the following steps to install the patch:

12. Install the patch by running the following command:

opatch apply

When the OPatch command starts, it validates the patch and ensures that there are no
conflicts with the software already installed in ORACLE_HOME of the Oracle GoldenGate
release.

13. After the patch installation completes, run the following command to verify that the Oracle
inventory contains the installed patch:

opatch lsinventory

Chapter 2
Installing Patches for Oracle GoldenGate Microservices Architecture

2-23

Note:

For Oracle GoldenGate for PostgreSQL installations patched to release
version 21.8.0.0.2 and later, prior to restarting the Extracts and
Replicats, update the DSN entries in theodbc.ini file to take advantage
of the new driver version. For more information, see Patching Oracle
GoldenGate for PostgreSQL to Release Version 21.8.0.0.2 and Later.

14. After the patch installation completes, start the Service Manager, the services, and
Oracle GoldenGate processes.

a. Start the Service Manager:

For Linux:

##Command for Service Manager not registered as a service/daemon
$ export OGG_VAR_HOME=OGG_SRVMGR_DIRECTORY/var
$ export OGG_ETC_HOME=OGG_SRVMGR_DIRECTORY/etc
$ OGG_SRVMGR_DIRECTORY/bin/startSM.sh
##Command for Service Manager registered as a service/daemon
$ sudo systemctl start OracleGoldenGate
For Windows: Use the Windows Services applet (services.msc) and
start the Oracle GoldenGate Service Manager service.

b. Start the Admin Client and connect to the deployment.

/GoldenGate_Installation_Path/bin/adminclient
OGG (not connected) 1>CONNECT https://host:srvmgr_port DEPLOYMENT
deployment-name AS user PASSWORD password

c. Start services for the deployment and verify that they are all running:

START SERVICE *
STATUS SERVICE *

d. Start the Extract, Replicat and Distribution paths:

START ER *
START DISTPATH ALL

Post-Patch Installation Tasks for Non-Oracle Databases for
Microservices Architecture

This topic lists the post-patch installation tasks for non-Oracle databases, Microsoft
SQL Server and MySQL.

Topics:

• Patching Oracle GoldenGate MySQL 5.7 with DDL Replication Enabled

• Patching Oracle GoldenGate for SQL Server - Extract Requirements

Chapter 2
Installing Patches for Oracle GoldenGate Microservices Architecture

2-24

• Patching Oracle GoldenGate for PostgreSQL to Release Version 21.8.0.0.2 and Later

Patching Oracle GoldenGate MySQL 5.7 with DDL Replication Enabled

To patch Oracle GoldenGate MySQL 5.7 with DDL replication enabled:

1. Stop the metadata server using the following DDL install script stop option.

./ddl_install.sh stop user-id password port-number

2. Replace the metadata_server executable in the installation directory.

3. Start the metadata server running currently using ddl install script start option:

./ddl_install.sh start user-id password port-number

Note:

The DDL operations issued in between starting and stopping the metadata_server
would be lost.

Patching Oracle GoldenGate for SQL Server - Extract Requirements

You must follow the existing patching procedures discussed in previous topics, Downloading
Patches for Oracle GoldenGate and Patching Oracle GoldenGate Microservices Architecture
Using OPatch. In addition, you must re-run ADD TRANDATA for each table that is already
enabled for TRANDATA using these steps:

1. Stop all Oracle GoldenGate processes.

2. Follow normal patch procedures for binary replacement but do not start any Oracle
GoldenGate processes. See Installing Patches for Oracle GoldenGate Microservices
Architecture for details.

3. Manually stop the SQL Server CDC Capture job for the database. If the job is processing
a large transaction, it may take some time before it actually stops.

4. Ensure that the Extract is stopped.

5. Using Admin client, run ADD TRANDATA again for every table that you previously enabled it
for, including the heartbeat tables and any Replicat checkpoint table used as a
FILTERTABLE object for active/active configurations.

Note:

Do not run the DELETE TRANDATA command.

6. Manually restart the SQL Server CDC Capture job.

7. Manually restart the Oracle GoldenGate processes such as Extract, Replicat, and
Manager.

Chapter 2
Installing Patches for Oracle GoldenGate Microservices Architecture

2-25

Patching Oracle GoldenGate for PostgreSQL to Release Version 21.8.0.0.2
and Later

When patching Oracle GoldenGate for PostgreSQL from release versions prior to
21.8.0.0.2, to version 21.8.0.0.2 or later, you need to update the DSN entries in the
odbc.ini file to take advantage of the new driver delivered as part of those patches.

Perform these steps after overwriting the existing version of Oracle GoldenGate for
PostgreSQL and prior to restarting Oracle GoldenGate Extract and Replicat
processes:

1. Update any existing DSN entries in the odbc.ini file and change the driver
attributes for each DSN entry, to the following values:

• Driver – For Oracle GoldenGate release versions 21.8.0.0.2 and later, set the
value to: /<GoldenGate_Installation_Folder>/datadirect/lib/
ggpsql25.so

2. Finish following the normal steps for patching Oracle GoldenGate.

Uninstalling the Patch for Oracle and Non-Oracle Databases Using
OPatch

To uninstall the patch, follow these steps:

1. Install the latest OPatch version, set the required environment variables, and stop
the Oracle GoldenGate processes and services. The patch installation steps are
documented in the previous topic.

2. Navigate to the patch_top_dir/patch_number directory:

$ cd patch_top_dir/patch_number

3. Uninstall the patch by running the following command:

$ opatch rollback -id patch_number

4. Start the services from the Oracle GoldenGate home.

Uninstalling Oracle GoldenGate Microservices Architecture
Learn about uninstallling Oracle GoldenGate Microservices Architecture processes
and files from the host in Linux, UNIX, and Windows environments.

It is assumed that you no longer need the data in the Oracle GoldenGate trails, and
that you no longer need to preserve the current Oracle GoldenGate environment. To
preserve your current environment and data, make a backup of the Oracle
GoldenGate directory and all subdirectories before starting this procedure.

Before uninstalling Oracle GoldenGate Microservices Architecture, you must stop the
Service Manager and all the deployments.

Topics:

Chapter 2
Uninstalling Oracle GoldenGate Microservices Architecture

2-26

• Removing Deployments and Service Manager

• Files to be Removed Manually

• Uninstalling Microservices Architecture with Oracle Universal Installer

• Uninstalling Microservices Architecture Using Silent Mode

Removing Deployments and Service Manager
Learn how to remove a deployment using OGGCA.

Topics:

• Removing Deployments and Service Manager Using Oracle GoldenGate Configuration
Assistant

• Using Oracle GoldenGate Configuration Assistant - Silent

Removing Deployments and Service Manager Using Oracle GoldenGate
Configuration Assistant

To remove a deployment using Oracle GoldenGate Configuration Assistant (OGGCA),
perform the following steps:

1. Connect to the Administration Server of all deployments to be removed, and stop any
running Extracts and Replicats.

2. In Linux systems, run the command ./oggca.sh from the $OGG_HOME/bin directory to
launch the Oracle GoldenGate Configuration Assistant (OGGCA). In Windows systems,
right-click the oggca.bat file and select Run as administrator. This file is located in the
OGG_HOME\bin directory.

3. Select the Existing Service Manager option and click Next.

4. Select Remove Existing Oracle GoldenGate deployment and click Next.

5. Follow the steps in the OGGCA wizard to remove the deployment.

6. Repeat the steps to remove multiple deployments and the Service Manager.

Using Oracle GoldenGate Configuration Assistant - Silent
To run the Configuration Assistant in silent mode, execute it with the -silent -responseFile
fullPathToResponseFile flags.

The properties expected to be set in the response file for removing a deployment are:

CONFIGURATION_OPTION,
DEPLOYMENT_NAME,
ADMINISTRATOR_USER,
ADMINISTRATOR_PASSWORD,
HOST_SERVICEMANAGER,
PORT_SERVICEMANAGER,
SECURITY_ENABLED,
REMOVE_DEPLOYMENT_FROM_DISK

Chapter 2
Uninstalling Oracle GoldenGate Microservices Architecture

2-27

Files to be Removed Manually

Operating System Files to be Removed Manually to
Unregister an Existing Service Manager

Linux 6

Note:

Linux 6 is not
certified for
Oracle
GoldenGate 21c
(21.3.0). This
information may
be required
when trying to
perform
upgrades or
downgrades.

• /etc/init.d/OracleGoldenGate
• /etc/rc.d/*OracleGoldenGate
• /etc/rc*.d/*OracleGoldenGate
• /etc/oggInst.loc

Linux 7 and Linux 8 /etc/systemd/system/
OracleGoldenGate.service

Uninstalling Microservices Architecture with Oracle Universal Installer

Note:

It's important to remove all deployments prior to uninstalling Oracle
GoldenGate home directory.

To uninstall Oracle GoldenGate Microservices Architecture with Oracle Universal
Installer:

1. Navigate to the following directory:

/$OGG_HOME/deinstall/
2. Run the command:

On UNIX and Linux: ./deinstall.sh
On Windows: \deinstall.bat

See Files to be Removed Manually for steps that you may need to perform manually.

Chapter 2
Uninstalling Oracle GoldenGate Microservices Architecture

2-28

Uninstalling Microservices Architecture Using Silent Mode

Note:

It's important to remove all deployments prior to uninstalling Oracle GoldenGate
home directory.
See Files to be Removed Manually for steps that you may need to perform
manually.

To uninstall Oracle GoldenGate Microservices Architecture with Oracle Universal Installer
silent mode:

1. Navigate to the following directory:

cd /$OGG_HOME/deinstall/

Make sure that you've set the OGG_HOME variable correctly as the uninstallation is silent so
you will not be prompted.

2. Run the command:

deinstall.sh -silent

Here's the output:

ALERT: Ensure all the processes running from the current Oracle Home are
shutdown prior to running this software uninstallation script.
Proceed with removing Oracle GoldenGate home:
/net/xyz02/scratch/scott/view_storage/scott_x21300x/local/ggtest/
install_202214
 (yes/no)? [no] yes
Starting Oracle Universal Installer...
Checking swap space: must be greater than 500 MB.
Actual 11648 MB
Passed
Preparing to launch Oracle Universal Installer from /tmp/
OraInstall2022-08-19_10-52-30AM.
 Please wait ...
Oracle Universal Installer, Version 21.1.3.0 Production Copyright (C)
1999, 2022, Oracle. All rights reserved.Starting deinstall
Deinstall in progress (Wednesday, August 19, 2022 10:52:33 AM
PDT)... 100%
Done.
Deinstall successful

Chapter 2
Uninstalling Oracle GoldenGate Microservices Architecture

2-29

3
Deploy

This section lists details about adding and managing deployments.

Topics:

• About Deployments

• Add a Deployment

• Manage Deployments from the Service Manager

• Remove a Deployment

• Remove the Service Manager

• Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

About Deployments
Learn about deployments and its types in this section.

Topics:

• What is a Deployment?

• Secure Deployment

• Non-Secure Deployment

• Local and Remote Deployments

What is a Deployment?
A deployment is a configuration package to set up Oracle GoldenGate Microservices for your
choice of database. Deployments can be setup to be secure or non-secure and are added to
a Service Manager.

Oracle GoldenGate Configuration Wizard (OGGCA) is a utility that allows you to configure
your deployments. See the Add a Deployment topic to learn more about using OGGCA to
configure various options associated with a deployment.

When you start the deployment configuration for the first time on the host server:

• Decide if you need a secure or non-secure deployment. This is because you cannot
change from secure to non-secure or non-secure to secure deployments after
configuration.

• Configure a new Service Manager on your host server. After the first time configuration,
all new deployments should be added to the existing Service Manager available on the
host server.

3-1

Note:

Oracle recommends that you have a single Service Manager per host server,
to avoid redundant upgrade and maintenance tasks with Oracle GoldenGate
releases.

Secure Deployment
If you decide to set up a secure deployment, then the deployment configuration
provides you options to set up a secure SSL/TLS connection, using server and client
certificates.

A secure deployment uses RESTful API calls over an SSL/TLS connection to transmit
trail data between the Distribution Service and Receiver Service.

See Specify Security Options in the Add a Deployment topic, to learn about
configuring security for source and target deployments.

Non-Secure Deployment
For a non-secure deployment, you don't need to apply server and client side
certificates for the deployment. RESTful API calls occur over plain-text HTTP over the
network.

Local and Remote Deployments
• Local deployment: For a local deployment, the source database and Oracle

GoldenGate are installed on the same server. No extra consideration is needed for
local deployments.

• Remote deployment: For a remote deployment, the source database and Oracle
GoldenGate are installed on separate servers.

Add a Deployment
Follow the steps to add a deployment.

Topics:

• Before Adding a Deployment

• Start the OGGCA Wizard

• Select Service Manager Options

• Configuration Options

• Deployment Details

• Select Deployment Directories

• Specify Environment Variables

• Administrator Account

• Specify Security Options

Chapter 3
Add a Deployment

3-2

• Advanced Security Settings

• Sharding Options

• Port Settings

• Replication Settings

• Summary

• Configure Deployment

• Finish

Before Adding a Deployment
Before you begin adding a deployment using OGGCA, make sure that you have addressed
the following questions:

• Will the deployment be secure or non-secure?

• Which environment variables are to be configured for the database and operating system
available on the host server?

• Will the users of Oracle GoldenGate be authenticated and authorized from Oracle Identity
Cloud Service (IDCS)?

Start the OGGCA Wizard
Adding deployments is the first task in the process of setting up a data replication platform.
Deployments are managed from the Service Manager. After completing the Oracle
GoldenGate MA installation, you can add initial and subsequent deployments using the
Oracle GoldenGate Configuration Assistant (OGGCA) wizard.

Note:

Oracle recommends that you maintain a single Service Manager per host, to avoid
redundant upgrade and maintenance tasks with Oracle GoldenGate releases.

To start the OGGCA wizard:

1. Navigate to the $OGG_HOME/bin directory to access the Oracle GoldenGate
Configuration Assistant (oggca) utility.

2. Run the oggca.sh program on UNIX or oggca.bat on Windows.

The Oracle GoldenGate Configuration Assistant (oggca) wizard is displayed.

The following topics provide details on the configuration that you can set on each of the
OGGCA screens.

Select Service Manager Options

Chapter 3
Add a Deployment

3-3

1. Select the Create a New Service Manager option if you are running OGGCA for
the first time. When you run OGGCA for the first time, the Existing Service
Manager option is disabled. If its not the first time, then you can choose the
Existing Service Manager option, which would load the port and other settings as
configured for the existing Service Manager. The deployment would be added to
this Service Manager.

2. For a new Service Manager, enter the Service Manager Deployment Home
directory. Oracle recommends that you create a ServiceManager directory within
the deployment sub-directory structure to store the Service Manager files.

3. Enter the connection details for the Service Manager.

a. Listening hostname/address: Enter a hostname such as localhost or the IP
address of the server where Service Manager will run.

b. Listening Port: Enter a unique port number that the Service Manager will
listen on, or choose the port already in use if selecting an existing Service
Manager.

4. (Optional) Select the option Register the Service Manager as a system service
(daemon) to avoid manually starting and stopping it if the machine is rebooted.

If there is an existing Service Manager registered as a service and you select a
new Service Manager to register as a service, an alert is displayed indicating that
you cannot register the new one as a system service. All other Service Managers
are started and stopped using scripts installed in the bin directory of the
deployment.

5. (Optional) Select the Integrate with XAG option to integrate your deployment with
an Oracle Grid Infrastructure for Oracle Database. This is only available for Oracle
database in a cluster environment. This option cannot be used when running your
Service Manager as a system service.

Chapter 3
Add a Deployment

3-4

6. Click Next.

Configuration Options

1. Click the Add new GoldenGate deployment option. You can only add or remove one
deployment for one Service Manager at a time.

2. Click Next.

Deployment Details

Chapter 3
Add a Deployment

3-5

1. In the Deployment Name box, specify the deployment name using these
conventions:

• Must begin with a letter.

• Can be a standard ASCII alphanumeric string not exceeding 32 characters.

• Cannot include extended ASCII characters.

• Special characters that are allowed include underscore (‘_’), forward slash (‘/’),
dash (‘-’), period (‘.’).

• Cannot be “ServiceManager”.

2. Select the Enable FIPS check box to enable Oracle GoldenGate services to use
FIPS-compliant libraries.

3. (Oracle Database only) Select Enable Sharding to use the database sharding
feature in the deployment. The schema must be ggadmin.

4. Select the Oracle GoldenGate installation directory. If you have set the $OGG_HOME
environment variable, the directory is automatically populated. Otherwise, the
parent directory of the oggca.sh (Linux) or oggca.bat (Windows) script is used.

5. Click Next.

Select Deployment Directories

Chapter 3
Add a Deployment

3-6

1. In the Deployment home box, specify a deployment directory to store the deployment
registry and configuration files. Oracle recommends that you create a separate directory
outside of the $OGG_HOME (installation directory) for easier upgrades. The additional fields
are automatically populated based on the specified deployment directory.

Note:

The deployment directory name (user deployment directory) needs to be
different than the directory name chosen in the first screen (Service Manager
deployment directory). You can customize the deployment directories so that
they are named and located differently from the default. Enter or select different
directories for the various deployment elements. For deployment directory
structure, see Directories and Variables in Microservices Architecture.

2. (Optional) Select the Customize directories check box, if you want to change the default
locations for the Oracle GoldenGate configuration files.

3. Click Next.

Specify Environment Variables

Chapter 3
Add a Deployment

3-7

1. Specify the values for the environment variables depending on database
configurations. Double-click in the field to add or edit it. If you have previously set
any of these environment variables, the value is automatically detected and
populated in the respective environment variable field.

OGG_HOME

The directory where you installed Oracle GoldenGate. This variable is fixed and
cannot be changed.

Note:

On a Windows platform, ensure that there's no space in the
OGG_HOME directory path otherwise OGGCA will not run.

IBMCLIDRIVER

Valid for Db2 z/OS.

Specifies the location where the IBM Data Server Driver for ODBC and CLI
(IBMCLIDRIVER) software is installed.

LD_LIBRARY_PATH

This variable is used to specify the path to search for libraries on UNIX and Linux.
It may have a different name on some operating systems, such as LIBPATH on IBM
AIX on POWER Systems (64-Bit), and SHLIB_PATH on HP-UX. This path points to
the Oracle GoldenGate installation directory and the underlying instant client
directory by default.

Chapter 3
Add a Deployment

3-8

If you are using User Exits, then append the LD_LIBRARY_PATH variable with the path to
the additional shared libraries of the User Exit.

TNS_ADMIN

Valid for Oracle database.

This variable points to the directory location containing tnsnames.ora, which has the
database connection details. This variable is optional.

This variable is recommended, but optional, and points to the directory location
containing tnsnames.ora, which has the database connection details. If this variable is
not set, Oracle GoldenGate looks for $HOME/.tnsnames.ora or /etc/tnsnames.ora.

For example: TNS_ADMIN=/u01/app/oracle/network/admin
STREAMS_POOL_SIZE

For Oracle Database Sharding only. This variable is mandatory for sharded databases.
Use the default or set your pool size value that is at least 1200MB.

JAVA_HOME

If this variable is present during deployment creation, it will automatically be populated.

You can add or remove other environment variables to customize your deployment
according to the database host.

2. Click Next.

Administrator Account

Chapter 3
Add a Deployment

3-9

Configuration in this screen allows you to create credentials for the security user for
Oracle GoldenGate. If this is not the first run of OGGCA, then you need to enter the
administrator account credentials that are used to log in to the Service Manager
because the deployment is getting added to this Service Manager.

If you want to integrate with Oracle Identity Cloud Service (IDCS) for authentication
and authorization of users, then use this screen to specify the credentials for the IDCS
account.

1. Enter a user name and password to log in to Oracle GoldenGate MA. This user is
the security user for this deployment.

2. If you are using IDCS (as your external Identity Provider), then specify the user
credentials for the IDCS server. On your first log in to the Service Manager, you
need to enable the Authorization Profile for the Service Manager deployment. See
Delegate User Authentication and Authorization to an External ID Provider.

3. Select the Enable strong password policy in the new deployment checkbox to
ensure setting a highly secure password for your user account. This password
policy applies for the Oracle GoldenGate security user only but not for IDCS
default settings. See Manage Oracle Identity Cloud Service Password Policies
section in Administering Oracle Identity Cloud Service guide for IDCS accounts.

Note:

For Administrator Account, you must enter a user and password for a
provisioned external IDP identity that is mapped to the SECURITY group
previously configured for the Service Manager deployment.

The strong password policy has the following requirements:

• At least one lowercase character [a...z]

• At least one upposercase character [A...Z]

• At least one digit [0...9]

• At least one special character [- ! @ % & * . #]

• The length should be between 8 and 30 characters.

For details on the different types of users, see Add New Users to the Deployment.

1. If you are using an existing Service Manager, you must enter the same log in
credentials that were created during the first run of OGGCA.

2. Select the Enable a strong password policy check box for the new deployment.
If you select this option, then the password must adhere to restrictions, otherwise
an error occurs, which requires you to specify a stronger password.

3. Click Next.

Specify Security Options

Chapter 3
Add a Deployment

3-10

1. Select the SSL/TLS security check box to enable security for the deployment. If you
enabled Sharding for Oracle database, then must enable this option.

2. Deselect this option if you don't want to set up a secure deployment or want to use other
types of security configurations such NGINX or reverse proxy support.

3. When you deselect the SSL/TLS security check box, the option This non-secure
deployment will be used to send trail data to a secure deployment remains enabled.
Select this check box to set up the deployment as a non-secure deployment that would
send trail data to a secure target deployment.

4. In the Server (wallet or certificate) section, select one of the options, and then provide
the required file locations. If you select the Use existing wallet option, the wallet
directory must have the appropriate certificates already imported into it. If you choose to
use a certificate, enter the corresponding pass phrase.

When using a self-signed certificate, a new Oracle Wallet is created in the new
deployment and these certificates are imported into it. For certificates, enter the location
of the private key file and the pass phrase. The private key files must be in the PKCS#8
format.

5. (Optional) The Client section is enabled if you select the This non-secure deployment
will be used to send trail data to a secure deployment option. This option is useful
when Distribution Service from the source deployment is not secure whereas the
Receiver Service on the target deployment is secured. The sender (source) may be
configured for public access while the Receiver Service requires authentication and
authorization, which is established using PKI before the incoming data is applied. This
option allows sending trail data to a secure deployment for environments such as DMZ
where:

Chapter 3
Add a Deployment

3-11

If you select the Use Existing Wallet option, then specify the location of the
existing wallet that stores the client certificates. Make sure that the certificates are
already imported in the wallet directory.

If you select the Use certificates option, then enter the passphrase.

For more information, see Single Deployment: Create Different Types of
Certificates for a Secure Deployment.

Advanced Security Settings
If security is enabled, then this screen is displayed with the encryption options TLS 1.1
and TLS 1.2. TLS 1.2 is selected by default. When you open the Advanced Security
Settings for the first time with TLS 1.2, the available cipher suites are listed.

1. Use the arrows to add or remove cipher suites.

2. Use Up and Down to reorder how the cipher suites are applied and click Next.

Sharding Options
If Sharding is enabled on the Deployment Details screen, then this screen is displayed.
You can specify the sharding options on this screen:

1. Locate and import your Oracle GoldenGate Sharding Certificate. Enter the
distinguished name from the certificate that will be used by the database sharding
code to identify itself when making REST API calls to the Oracle GoldenGate MA
services.

2. Enter a unique name for the certificate.

3. Click Next.

Port Settings

Chapter 3
Add a Deployment

3-12

1. Enter the Administration Service port number, and then when you leave the field the
other port numbers are populated in ascending numbers. Optionally, you can enter
unique ports for each of the services.

2. Select Enable Monitoring to use the Performance Metrics Service.

Note:

For Oracle GoldenGate Microservices, selecting Enable Monitoring does not
require Oracle GoldenGate Management Pack License. The license is required
only when Enterprise Manager Plugin for GoldenGate is used to monitor Oracle
GoldenGate Microservices instance.

3. Click inside the Performance Metrics Service port fields to populate or enter the ports you
want to use. Ensure that you choose available ports for TCP.

Select the UDP port for performance monitoring. The option to select the UDP port is
displayed only with deployments on Windows and other operating systems that don't
support UDS communication with Performance Metric Service. See Protocols for
Performance Monitoring for Different Operating Systems.

You can change the TCP port from the Service Manager console after the deployment is
done. For more information on PMSRVR, see ENABLEMONITORING.

4. Select the type of datastore as Berkeley Database (BDB), which is the default or Open
LDAP Lightning Memory-Mapped Database (LMDB).

Chapter 3
Add a Deployment

3-13

For learning more about BDB, see Oracle Berkeley DB 12c Release 1. For details
on LMDB, see http://www.lmdb.tech/doc/.

5. You can also designate the Performance Monitor as a Critical Service if
integrating the Service Manager with XAG.

6. Select the location of your datastore. BDB and LMDB are in-memory and disk-
resident databases. The Performance Metrics Service uses the datastore to store
all performance metrics information.

7. Click Next.

The oggca utility validates whether or not the port you entered is currently in use or
not.

Replication Settings

1. Enter the Oracle GoldenGate default schema that you want to use to store the
replication objects such as checkpoint and heartbeat tables.

Note:

OGGCA doesn't connect to the database, so it cannot validate the
schema. The schema specified in OGGCA is written to the GLOBALS
file as a default schema. When creating an Extract, if you do not specify
a replication schema, Extract will use this schema.

2. Click Next.

Chapter 3
Add a Deployment

3-14

http://www.lmdb.tech/doc/

Summary

1. Review the detailed configuration settings of the deployment before you continue.

2. (Optional) You can save the configuration information to a response file. Oracle
recommends that you save the response file. You can run the installer from the command
line using this file as an input to duplicate the results of a successful configuration on
other systems. You can edit this file or a new one from the provided template.

Note:

When saving to a response file, the administrator password is not saved for
security reasons. You must edit the response file and enter the password if you
want to reuse the response file for use on other systems.

3. Click Finish and then click Next.

Configure Deployment
This screen displays the progress of the deployment creation and configuration. There could
be some notifications during the progress if the Service Manager is registered as a service.

A pop-up appears that directs you how to run the script to register the service. The
Configuration Assistant verifies that these scripts have been run. If you did not run them, you

Chapter 3
Add a Deployment

3-15

are queried if you want to continue. When you click Yes, the configuration completes
successfully. When you click No, a temporary failed status is set and you click Retry to
run the scripts.

Click Ok after you run the script to continue.

After the creation and configuration process completes, you'll see a message that the
deployment is added successfully. Click Next.

Finish

On the Finish screen, click Close to exist OGGCA.

Manage Deployments from the Service Manager
About Service Manager

The Service Manager is the primary watchdog service within Oracle GoldenGate MA
that allows you to control and administer the deployments and associated services
running on the host server.

From OGGCA you can configure the Service Manager to run in three different modes:

• Manually

• As a Daemon

• Integrated with XAG agent

Its primary functions include the following tasks:

Chapter 3
Manage Deployments from the Service Manager

3-16

• View and manage the status of microservices

• Manage Deployment Configuration

• Manage Service Manager Configuration

• Start and stop deployments

• Access the microservices associated with a deployment

• Access details for Administration Service, Distribution Service, Performance Metrics
Service, and Receiver Service

• Add and Manage Oracle GoldenGate Users

• Add and Manage Certificates

• Add and Manage Authorization Profile for External Identity Providers

• Monitor Log Information for Diagnosing Errors

• Enable and Manage Debug Logs

Log in to Service Manager

To start using your Oracle GoldenGate MA deployment, you have to connect to the Service
Manager:

1. Open a web browser and connect to the Service Manager that you created with Oracle
GoldenGate Configuration Assistant. The URL is similar to http://host:port, where
host is the name of the service or IP of the service that is running the Service Manager
and port is the port number of the Service Manager. For a secure deployment, the URL
is similar to https://localhost:9001.

2. Enter the user name and password you created during deployment and sign in.

Start and Stop the Service Manager

The start and stop process of the Service Manager within Oracle GoldenGate Microservices
Architecture is different based on how the Service Manager is configured within your
environment.

• If the Service Manager is configured in manual mode then there are scripts in
the $DEPLOYMENT_HOME/servicemanager/bin directory that you can run to start or stop
the Service Manager. The $DEPLOYMENT_HOME is the directory where Oracle GoldenGate
is installed.

– To start the Service Manager: $DEPLOYMENT_HOME/servicemanager/bin/startSM.sh
– To stop the Service Manager: $DEPLOYMENT_HOME/servicemanager/bin/stopSM.sh

Note:

If you want to start or stop the Service Manager, you also have to set
the $OGG_ETC_HOME and $OGG_VAR_HOME to the Service Manager sub-directories.

• If the Service Manager is configured as a daemon, the scripts required to start or stop for
manual interaction are not created. The operating system is responsible for starting or
stopping the Service Manager.

Chapter 3
Manage Deployments from the Service Manager

3-17

For OEL 7 and OEL 8:

systemctl start OracleGoldenGate

systemctl status OracleGoldenGate

systemctl stop OracleGoldenGate

• If the Service Manager is configured to run with the XAG agent in an Oracle
Cluster Ready Service (CRS); then the start and stop process is handled by the
CRS stack.

Topics:

• Add Users to a Deployment

• Delegate User Authentication and Authorization to an External ID Provider

• Manage Certificates for Deployments

• Modify Configuration for the Service Manager

• Modify Configuration for the Deployment

• Manage the Status of Deployment and Microservices

• Manage the Microservices Configuration Details

• Monitor Oracle GoldenGate Processes, Trails, and Paths

• Manage the Debug Log

Add Users to a Deployment
Each deployment has its own set of users with specific roles. The administrator
account user, which is created when the Service Manager is created for a host, can
log into the Service Manager and other microservices. This user can also create users
with specific roles to access or operate Oracle GoldenGate processes. This
administrator account user can access all deployments that are added to this existing
Service Manager.

However, all other users created from either the Service Manager or Administration
Service are associated with the specific deployment. These users are not available
with other deployments on the same host server.

Each deployment has its own set of users with specific roles. The administrator
account user, which is created when the Service Manager is created for a host using
OGGCA, can log into the Service Manager and other microservices. This user can
also create users with specific roles to access or operate Oracle GoldenGate
processes. This administrator account user can access all deployments that are added
to this existing Service Manager. However, all subsequent users created from either
the Service Manager or Administration Service are associated with the specific
deployment. These users are not available with other deployments on the same host
server. The other users are specific to the MA deployment and the security user needs
to create users to every MA deployment individually.

To create users from the Service Manager or Administration Service:

1. Log in to either the Service Manager or the Administration Service.

2. From the left navigation pane, select Administrator.

Chapter 3
Manage Deployments from the Service Manager

3-18

3. Click Users (+) to add users.

4. Enter a unique user name.

5. Select one of the roles from the Role list box. The options are User, Operator,
Administrator, and Security.

Role ID Privilege Level

User Allows information-only service requests, which do not alter or effect the operation of
either the MA. Examples of Query/Read-Only information include performance metric
information and resource status and monitoring information.

Operator Allows users to perform only operational actions, such as creating, starting and
stopping resources. Operators cannot alter the operational parameters or profiles of the
MA server.

Administrator Grants full access to the user, including the ability to alter general, non-security related
operational parameters and profiles of the server.

Security Grants administration of security related objects and invoke security related service
requests. This role has full privileges.

6. Select the user type from the Type list box as Password or Certificate.

If you select the user type as Password, then the authentication is done based on the
username and password.

If you select the user type as Certificate, then the user will authenticate itself by
presenting a client certificate. After you select the Certificate option, you need to enter
the common name (in the certificate that will be presented such CN="certuser").

Note:

The certificate is with the user and not saved by the Oracle GoldenGate
service. When presented for authentication, the Oracle GoldenGate service first
authenticates that the certificate presented can be trusted and then checks if
the common name in the certificate has been registered as a valid user. If yes,
it will assign the appropriate user role.

7. Enter information that describes the user.

8. Click Submit. The user is registered.

Topics:

• Edit Users

Edit Users
User role cannot be changed. You must delete a user and add it, as required. However, you
can modify or edit the following user attributes:

• You can switch the User Type from Basic to Certificate or the other way around.

• You can also change the password for the user, if required.

To edit user attributes:

1. Navigate to the Administrator page from the Service Manager or Administration
Service.

Chapter 3
Manage Deployments from the Service Manager

3-19

2. Click the Edit User (pencil) in the Action column of the Users table.

3. Change the required attribute.

4. Click Submit to confirm the modifications to the user attributes.

Delegate User Authentication and Authorization to an External ID
Provider

Learn about delegating user authentication and authorization to an external ID
provider.

Topics:

• Configure the Authorization Profile to Set Up IDCS Access Credentials

• Access the Authorization Profile

Configure the Authorization Profile to Set Up IDCS Access Credentials
Oracle GoldenGate interoperates with external identity provider Oracle Identity Cloud
Service (IDCS) for authentication and authorization of user credentials that are
associated with your deployment.

After you set up the Oracle Identity Cloud Service (IDCS) user credentials in OGGCA
on the Administrator Account screen, you need to perform these steps to set up an
authorization profile for IDCS. This authorization profile will allow connecting and
accessing the IDCS server to authorize users for Oracle GoldenGate.

To configure this type of user authentication and authorization, you need to create an
authorization profile in Oracle GoldenGate.

Access the Authorization Profile
Use the following steps to set up this type of authorization profile for your deployment:

1. Click the deployment name or the Service Manager name from the Service
Manager Overview page's Deployment section.

2. From the Deployment or Service Manager Details page, click the Authorization
Profiles tab.

3. Click the plus sign (+) next to the Profiles section to start creating an authorization
profile. Enter the following details for the profile:

• Profile Name: Name of the authorization profile.

• Description (optional): Short summary of the profile being created.

• Enable Profile: Activates the profile for the deployment.

• Authorization Profile Type: IDCS

• Tenant Discovery URI: IDP server's OpenID Discovery Docs endpoint
(/.well-known/openid-configuration).

• Client ID: IDP application’s client ID

• Client Secret: IDP application’s client secret (securely stored)

4. In the Group Mapping section, the user mapping for IDCS groups to Oracle
GoldenGate user roles is configured. You need to enter the name of the IDCS

Chapter 3
Manage Deployments from the Service Manager

3-20

group with the corresponding user role. These values are case-sensitive. Here are the
user role options that map the name of a group with respective role in IDCS:

• Security Role

• Administrator Role

• Operator Role

• User Role

5. Click Submit to create an authorization profile.

6. To enable the authorization profile for your deployment, select the authorization profile
that you want to enable and click the Enable Profile toggle switch.

Manage Certificates for Deployments
Learn about managing certificates for deployments.

Topics:

• Apply Certificates to an Oracle GoldenGate Deployment

• Replace Certificates in a Deployment

• Add Client Certificate

• Add a CA Certificate

Apply Certificates to an Oracle GoldenGate Deployment
Certificates can apply to:

• A specific deployment: These certificates are local to the deployment. See Single
Deployment: Create Different Types of Certificates for a Secure Deployment.

• Shared across deployments added to the same Service Manager: These are shared
certificates created from the Service Manager Certificate Management page. These
certificates can be shared across multiple deployments supervised by one Service
Manager.

• Different source and target deployments: These are called external certificates
(extern) with different source and target deployments. See Two Deployments: Create
External, Trusted Server and Client Certificates.

Note:

Adding a non-CA self-signed certificate as a trusted certificate using Certificate
Management page's CA Cert section is not supported and will result in an error.

Replace Certificates in a Deployment
You cannot renew a certificate. You can only replace it with a new certificate. Make sure to
check the expiry details of certificates that you intend to replace. Use the following steps to
replace certificates:

1. Click the Certificate Management tab from the left navigation pane of the Service
Manager.

Chapter 3
Manage Deployments from the Service Manager

3-21

2. Select the deployment from the drop-down list to view information about the
server, client certificates, and CA certificates.

3. Click the Detail icon from the Action column of the certificate store table to view
details about the certificate including certificate start and expiration dates, shown
in the following image:

4. Click the Replace (pencil) icon to replace server certificates.

5. Click the Delete icon in the Action column to delete the certificate.

Add Client Certificate
To add a client certificate:

1. Click the plus (+) sign next to the Client Certificates section. The Add Client
Certificate dialog box appears.

2. Enter the following details for the client certificate:

• Unique Name: Name of the certificate.

• Certificate PEM: Enter a certificate .pem file or upload a .pem file.

• Private-Key PEM: Enter or upload the private key for the .pem file.

• CA Certificates: Enter or upload the CA certificate.

3. Click Add.

Add a CA Certificate
To add a CA certificate:

1. Click the plus (+) sign next to CA Certificates. The Add CA Certificate dialog box
appears.

2. Enter the following details for the CA certificate:

• Unique Name for the CA certificate.

• Certificate PEM value can be entered in the box or uploaded.

• Certificate location can be shared. CA Certificates for the Service Manager
are always shared and cannot be local. When adding or replacing CA
certificates, the Shared option is always force-checked.

3. Click Add.

Chapter 3
Manage Deployments from the Service Manager

3-22

Modify Configuration for the Service Manager
Learn about how to modify configuration for the Service Manager.

Topics:

• Access the Service Manager Information Page

Access the Service Manager Information Page
To modify the Service Manager:

1. Select the Service Manager from the Deployments section of the Service Manager
Overview page.

2. Use the Service Manager information page to edit the configuration for the Service
Manager using these tabs. The tabs that you can edit for the Service Manager are the
same as the tabs for the deployment.

The following tabs can be used to set up options for the Service Manager:

• Details Tab

• Configuration Tab

• Certificates

• Authorization Profiles

Details Tab
Use this tab to review the selected deployment configuration. All the deployment directories
that you configured with OGGCA are displayed. For Oracle database, you can only edit the
Oracle GoldenGate home (OGG_HOME) directory. This allows you to use a different installation
than the one you originally configured.

For SQL Server and Db2 z/OS, you need to follow the steps given in the Setting up
Environment Variables for Db2 z/OS, Setting up for DB2 z/OS, and Setting up for SQL Server
sections in the Using Oracle GoldenGate on Oracle Cloud Marketplace guide.

Note:

It's important to do the settings for SQL Server and DB2 z/OS to make sure that the
Administration Service starts when using either of these databases.

Configuration Tab
Use this tab to review and change the selected deployment environment variables. The
environment variables that you configured with OGGCA are displayed. You can add new
variables, modify existing variables, and delete selected variables. For Oracle database,
make sure that TNS_ADMIN is set. See Specify Environment Variables for more information.

Chapter 3
Manage Deployments from the Service Manager

3-23

Certificates
Use this tab to add and manage certificates for the server, client and CA certificates.
There is a difference between the Certificates tab and the Certificate Management
page. The Certificates tab is associated with the deployment or Service Manager
because you arrive at this tab by clicking the deployment name or the Service
Manager. However, the Certificate Management page allows you to manage
certificates by selecting the deployment or Service Manager on that page itself.

See Manage Certificates for Deployments for more information.

Authorization Profiles
Use this tab to delegate user and group management to external ID providers such as
Oracle Identity Cloud Service (IDCS). Integration with an external Identity
Management (IDM) system using OpenID/OAuth2.0 protocol provides Oracle
GoldenGate users with:

• A single sign-on experience

• Ease of deploying Oracle GoldenGate cloud integration with IDCS.

See Delegate User Authentication and Authorization to an External ID Provider for
more information.

Modify Configuration for the Deployment
Learn about how to modify the configuration for the deployment.

Topics:

• Access the Deployment Information Page

Access the Deployment Information Page
To modify the Service Manager:

1. Select the Service Manager from the Deployments section of the Service
Manager Overview page.

2. Use the Service Manager information page to edit the configuration for the Service
Manager using these tabs. The tabs that you can edit for the Service Manager are
the same as the tabs for the deployment.

The following tabs can be used to set up options for the Service Manager:

• Details Tab

• Configuration Tab

• Certificates

• Authorization Profiles

Details Tab
Use this tab to review the selected deployment configuration. All the deployment
directories that you configured with OGGCA are displayed. For Oracle database, you

Chapter 3
Manage Deployments from the Service Manager

3-24

can only edit the Oracle GoldenGate home (OGG_HOME) directory. This allows you to use a
different installation than the one you originally configured.

For SQL Server and Db2 z/OS, you need to follow the steps given in the Setting up
Environment Variables for Db2 z/OS, Setting up for DB2 z/OS, and Setting up for SQL Server
sections in the Using Oracle GoldenGate on Oracle Cloud Marketplace guide.

Note:

It's important to do the settings for SQL Server and DB2 z/OS to make sure that the
Administration Service starts when using either of these databases.

Configuration Tab
Use this tab to review and change the selected deployment environment variables. The
environment variables that you configured with OGGCA are displayed. You can add new
variables, modify existing variables, and delete selected variables. For Oracle database,
make sure that TNS_ADMIN is set. See Specify Environment Variables for more information.

Certificates
Use this tab to add and manage certificates for the server, client and CA certificates. There is
a difference between the Certificates tab and the Certificate Management page. The
Certificates tab is associated with the deployment or Service Manager because you arrive at
this tab by clicking the deployment name or the Service Manager. However, the Certificate
Management page allows you to manage certificates by selecting the deployment or Service
Manager on that page itself.

See Manage Certificates for Deployments for more information.

Authorization Profiles
Use this tab to delegate user and group management to external ID providers such as Oracle
Identity Cloud Service (IDCS). Integration with an external Identity Management (IDM)
system using OpenID/OAuth2.0 protocol provides Oracle GoldenGate users with:

• A single sign-on experience

• Ease of deploying Oracle GoldenGate cloud integration with IDCS.

See Delegate User Authentication and Authorization to an External ID Provider for more
information.

Manage the Status of Deployment and Microservices
Learn about managing the status of the deployment and the Microservices.

Topics:

• Change the State of a Deployment

• Change the State of Microservices in a Deployment

Chapter 3
Manage Deployments from the Service Manager

3-25

Change the State of a Deployment
The state of a deployment is visible from the Status column of the Deployments
section of the Service Manager Overview page. It is either in Running or Stopped
state.

Note:

If the Service Manager is registered as a system daemon, then the Service
Manager along with the other servers are automatically started when the
host server is (re)started.

To change the state of a deployment:

1. Log in to the Service Manager using the administrator account credentials.

2. In the Deployments section of the Service Manager Overview page, locate the
deployment that you need to start or stop.

3. From the Action column, you can select from the available options:

• Start: If the deployment is in stopped state, this option allows you to start the
deployment.

• Stop: If the deployment is running, this option allows you stop it.

• Restart: If the deployment is running but there are certain changes that are
applied upon restart, then this option allows you to restart the deployment.

The option displayed depends on the current state of the deployment.

4. Verify that all the microservices associated with the deployment are in the same
state as the deployment. By default, all microservices are in Running state after
the deployment process is successful.

Change the State of Microservices in a Deployment
You can toggle between the states of the microservices associated with a deployment,
to manage errors or apply changes to a deployment configuration in microservices.
The microservices can be in the following states:

• Running

• Stopped

• Disabled

To change the state of the microservices associated with a deployment:

1. From the Services section of the Service Manager Overview page, go to the
Action column for the specific microservice.

2. Choose from the available options to change the state of the microservice:

• Start/Stop: If the microservice is running, then the Stop option is available,
and if its stopped, then the Start option appears.

Chapter 3
Manage Deployments from the Service Manager

3-26

• Disable/Enable: If the microservice is in Stopped state, only then you can use the
Disable option to disable the service. When a microservice is disabled, then the
Action button changes to the Enable button, which implies that to change the state
of the microservice, you would first need to enable it.

Manage the Microservices Configuration Details
Learn about managing the Microservices configuration details.

Topics:

• View and Edit the Microservice Configuration

• View and Edit the Restart Options for Microservices

View and Edit the Microservice Configuration
Use the Service Manager Overview page to view and edit the microservices configuration
and restart options.

Note:

For all microservices, the configuration and restart options are the same but may
have different values.

To access the configuration details of any of the microservices:

1. Click the See Details icon in the Details column of the Service section in the Service
Manager Overview page. The Service Information page is displayed.

2. In the Details tab of the Service Information page, click the pencil icon in the Service
Configuration section to edit the following configuration options for a microservice:

• Port: Use this field to change the port number for the corresponding microservice.

• U-Mask: File mode creation mask

• Config Force: Use this toggle switch to enable or disable storing of configuration
data forcefully.

• Enabled: Displays if the microservice is enabled or not. You can choose the toggle
switch to enable the microservice.

• Status: Displays the status of the service.

View and Edit the Restart Options for Microservices
The restart options for a microservice allow you to define the behavior of a microservice,
when it needs to restart. To modify the restart options from the Service Information page:

1. Click the pencil icon from the Restart Options section of the Service Information page.

2. View or edit the following restart options for the microservice:

• Enabled: If set to true, then the service will attempt to restart automatically if it
encounters an error.

• On Success: If set to false, then the service is only restarted if it fails.

Chapter 3
Manage Deployments from the Service Manager

3-27

• Delay: The time (in minutes) to pause between discovering that a process is
terminated abruptly and restarting it.

• Retries: The maximum number of trials to restart the service, before aborting
the retry effort.

• Window: The time interval in which the retries are counted. The default is 120
minutes.

• Disable on Failure: If set to true, the service is disabled after it fails all
execution attempts in an execution window.

Monitor Oracle GoldenGate Processes, Trails, and Paths
Learn about how to monitor Oracle GoldenGate processes, trails, and paths.

Topics:

• Search and Read the Log Information from the Diagnosis Page

• Search and Read Log Information for Microservices in a Deployment

Search and Read the Log Information from the Diagnosis Page
Log information allows you to monitor all the messages logged for your Service
Manager. This includes processes, trails, paths, microservices, and deployments
managed from the Service Manager.

Collective log information for all processes, trails, and paths associated with all
deployments and microservices can be accessed from the Diagnosis page in Service
Manager. Log information includes details such as the following:

• Lag information for Extract, Replicat processes, which provides the latency value
between the last record processed and its timestamp in the data source.

• Heartbeat table activities from the heartbeat history table. Also see Monitor Lag
Using Automatic Heartbeat Tables.

• Status messages for Oracle GoldenGate processes, trails, and paths

• Error messages for Oracle GoldenGate processes, trails, and paths

• Status of deployments and microservices

• Error messages of deployments or microservices

• Heartbeat

You can perform the following tasks on this page:

• Sort the Log Information table by column

• Refresh the log using the Refresh button

• Search for specific log messages using the search criteria as date, severity, and
message

Notice the Notifications tab at the bottom of the page. It displays messages from the
service, which are not updated in the log due to transaction errors. For example,
failure to log in to the database using the database credentials.

Access the Diagnosis page from the Application Navigation pane of the Service
Manager. The complete log information is displayed on the page.

Chapter 3
Manage Deployments from the Service Manager

3-28

Topics:

• Search for Log Messages

Search for Log Messages
If you want need to search for a specific message, you can also search for it by following
these steps:

1. Enter a search criteria in the Search box. The search criteria can be Date, or Severity of
the message(s), or the Message string itself. You can add multiple search criteria in the
search box.

2. If you select Date, then you get the options:

• Starting on: Displays the log information from the specified start date.

• Ending on: Displays the log information till the specified end date.

• Range between: Displays the log information between the start and end date range.

The screen shows the Date search criteria with the Starting on date.

3. If you select Severity of the message in the log, then you get to choose from the
following levels of severity:

Chapter 3
Manage Deployments from the Service Manager

3-29

The screen shows various severity levels of messages. You can select any of
these severity levels and search for log messages.

• Warn

• Fatal

• Report

• Info

• Debug

• Success

• Error

4. Click Clear Filter if you want to delete the search criteria.

Search and Read Log Information for Microservices in a Deployment
You can view and search for log messages associated with one specific microservice
in a deployment. This option narrows the log information to display the messages for
the selected microservice in the deployment. To access the log information in this
manner:

1. From the Services section of the Service Manager Overview page, click the See
Details icon in the Details column.

Chapter 3
Manage Deployments from the Service Manager

3-30

2. Click the Log tab on the Service Information page. Log information specific to the
microservice is displayed on this page.

3. Select the search criteria in the Search box to view specific log messages.

4. Enter values for the search criteria as discussed in Search for Log Messages.

Manage the Debug Log
Learn about managing the Debug Log.

Topics:

• Enable Debug Logging

• Use the Debug Log

Enable Debug Logging
To enable debug logging:

1. Click the Debug Log option from the navigation pane of the Service Manager page.

2. Click the Enable Debug Log toggle switch to start logging debug information.

Use the Debug Log
You can view, download, delete the debug log file to from this page. It is recommended that
you delete the debug log after some time. You can maintain a local copy of the debug log to
help with debugging issues and then delete the debug log to avoid space issues on the host
server.

1. Click the Download Debug Log File option to save a local copy of the debug log.

2. Click the Load Debug Log File option to view the debug log on this page.

3. Click the Delete Debug Log File button to delete a debug log.

4. Search for specific entries in the debug log using the Search By box, if required.

5. Click Refresh to get the latest log information, if it doesn't get refreshed automatically.

Chapter 3
Manage Deployments from the Service Manager

3-31

Remove a Deployment
Learn about removing a deployment.

Topics:

• Before Removing the Deployment

• Start OGGCA to Remove Deployment

Before Removing the Deployment
Removing a deployment is not the same as removing a Service Manager. When you
remove a deployment, it doesn't imply that the Service Manager would also need to be
removed as there could be multiple deployments added to the same Service Manager.

You can remove a deployment using the Oracle GoldenGate Configuration Assistant
(OGGCA) wizard.

Note:

When you remove a deployment or uninstall Oracle GoldenGate MA, the
system does not automatically stop processes. As a result, you may have to
stop processes associated with the deployment and you must clean files
manually.

Before removing a deployment, stop the deployment, its associated microservices,
and ER processes.

Start OGGCA to Remove Deployment
To start the deployment removal process, follow these steps:

1. Run the OGGCA wizard from the following location:

cd $OGG_HOME/bin

./OGGCA.sh

2. Select Existing Service Manager from the Select Service Manager Options
screen. Click Next.

3. Select Remove Existing Oracle GoldenGate Deployment from the
Configuration Options screen.

4. Select the deployment you need to remove from the Deployment Name list box.

5. Select the Delete Deployment Files from Disk check box if you want to remove
all the deployment files (including configuration files) from the host server. These
configuration files are usually located in the /etc and /conf directories.

6. Enter the Administration account user name and password and click Next.

7. See the list of settings that are deleted with the deployment and click Finish.

Chapter 3
Remove a Deployment

3-32

Remove the Service Manager
Learn about removing the Service Manager.

Topics:

• Start OGGCA to Remove the Service Manager

• Files to be Removed Manually After Removing Deployment

Start OGGCA to Remove the Service Manager
The option to remove the Service Manager is available in OGGCA, only if there are no
available deployments to remove. To remove the Service Manager:

1. Run the OGGCA wizard from the /bin directory of Oracle GoldenGate home:

cd $OGG_HOME/bin
./oggca.sh

2. Select Existing Service Manager from the Select Service Manager Options screen.
Click Next.

3. Select the Service Manager from the drop down list.

4. Select Remove Service Manager Deployment from the Configuration Options screen.

5. Click Finish to remove the Service Manager.

Files to be Removed Manually After Removing Deployment
It’s mandatory to delete some files manually only in case there's a Service Manager
registered but you have to unregister it and register a new one. To remove files manually, you
must have root or sudo privileges. The files to be deleted include:

Operating System Files to be Removed Manually to Unregister an
Existing Service Manager

Linux 6

Note:

Linux 6 is not
certified for Oracle
GoldenGate 21c
(21.3.0). This
information may be
required when trying
to perform upgrades
or downgrades.

• /etc/init.d/OracleGoldenGate
• /etc/rc.d/*OracleGoldenGate
• /etc/rc*.d/*OracleGoldenGate
• /etc/oggInst.loc

Linux 7 and Linux 8 /etc/systemd/system/
OracleGoldenGate.service

Chapter 3
Remove the Service Manager

3-33

The following commands are executed to stop the Service Manager:

systemctl stop OracleGoldenGate
systemctl disable OracleGoldenGate *

Note:

If the Service Manager is not registered as a service (with or without the
integration with XAG), OGGCA stops the Service Manager deployment,
otherwise, a script called unregisterServiceManager is created. When
executed by the user, it runs the systemctl commands and deletes the
mentioned files.

Configure Reverse Proxy with NGINX to Access Oracle
GoldenGate Microservices

Learn how to configure reverse proxy service using NGINX for accessing Oracle
GoldenGate Microservices without using port numbers.

Reverse proxy enables accessing microservices using one single port (443) in a
deployment. This enables encapsulation of the URL for microservices over an
unsecure deployment.

Note:

Reverse proxy is optional, however, Oracle recommends that you ensure
easy access to microservices and provide enhanced security.

You can run microservices in an unsecure deployment on loopback address and front
it with an HTTP reverse proxy using the NGINX installation.

When sending trail files from Oracle GoldenGate Classic to Microservices environment
that is configured with a reverse proxy, use a pump Extract from Oracle GoldenGate
Classic with SOCKSPROXY option. When sending trail files from Oracle GoldenGate
Microservices to Classic Architecture use the ogg protocol in the Distribution Service
configuration.

See Connecting Classic to MA and Connecting MA to Classic in Administering Oracle
GoldenGate Cloud Service for UNIX.

You can configure Oracle GoldenGate Microservices Architecture to use a reverse
proxy. Oracle GoldenGate MA includes a script called ReverseProxySettings that
generates configuration file for only the NGINX reverse proxy server.

For example, the Administration Service is available on http://
goldengate.example.com:9001 and the Distribution Service is on http://
goldengate.example.com:9002. With reverse proxy, each of the microservices
can simply be accessed from the single address. For example, http://

Chapter 3
Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

3-34

goldengate.example.com/distsrvr for the Distribution Service. The URL is different
for each service and is by name instead of by port.

You can use these options by running the ReverseProxySettings utility. Here are the options
available with this utility:

-o or --output
The output file name. The default file name is ogg.conf.

-P or --password
A password for a Service Manager account.

-l or --log
Log file name and initiates logging. The default is no logging.

--trailOnly
Configure only for inbound trail data.

-t or --type
The proxy server type. The default is Nginx.

-s or --no-ssl
Configure without SSL.

-h or --host
The virtual host name for reverse proxy.

-p or --port
The reverse proxy port number. The defaults are 80 or 443.

-? or --help
Display usage information.

-u or --user
Name of the Service Manager account to use.

-v or --version
Displays the version.

These values are used when connecting to the Service Manager and are required when
authentication is enabled.

Topics:

• Prerequisites for Using ReverseProxySettings

• Configure Reverse Proxy with NGINX on Linux

Prerequisites for Using ReverseProxySettings

You can use any reverse proxy service with MA. The following example provides a process
that you can follow to configure other reverse proxy services in conjunction with the
documentation for your proxy server.

The following prerequisites provide details on the minimum requirements to configure an
NGINX Reverse Proxy. Similar requirements may be required for your environment and
reverse proxy, if you are using a different utility for proxy configuration.

Chapter 3
Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

3-35

1. Install NGINX, see Install the NGINX Web Server and Proxy on Oracle Linux. For
Oracle Linux, the command to install NGINX is:

yum -y install nginx
2. Check the JRE version to be JRE 8 or higher.

3. Install Oracle GoldenGate MA.

4. Create one or more active MA deployments.

5. Ensure that the Oracle user has sudo permissions.

6. Configure the PATH environment variable to include the NGINX installation
directory path.

Configure Reverse Proxy with NGINX on Linux

An Oracle GoldenGate MA installation includes the ReverseProxySettings utility. The
ReverseProxySettings utility is located in the $OGG_HOME/lib/utl/reverseproxy
directory. To identify additional commands that can be used with the
ReverseProxySettings utility, run the utility with the --help option:

$OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings --help

To add the NGINX certificate to the Distribution Service’s client wallet as a trusted
certificate, see Set Up Trusted Certificates.

1. To generate a configuration file for NGINX reverse proxy, navigate to the location
of the ReverseProxySettings utility:

cd $OGG_HOME/lib/utl/reverseproxy

2. Run the ReverseProxySetting utility:

ReverseProxySettings -u adminuser -P adminpwd -o ogg.conf http://
localhost:9100

In this code snippet, adminuser is the deployment user name and adminpwd is the
deployment user password used to login to the deployment.

3. Replace the existing NGINX configuration with the configuration that was
generated using the ReverseProxySetting utility for your MA deployment:

sudo mv ogg.conf /etc/nginx/conf.d/nginx.conf

However, this NGINX configuration isn't complete without the events section, and
enclosing the map and server sections in http.

Optionally, you can use the default nginx.conf file and add the generated
ogg.conf by adding an include statement similar to this:

include /etc/nginx/conf.d/ogg.conf;
In this case, you must comment out the other servers section.

Chapter 3
Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

3-36

https://docs.oracle.com/en/learn/oracle-linux-nginx/#before-you-begin

4. Generate a self-signed certificate for NGINX:

sudo sh /etc/ssl/certs/make-dummy-cert /etc/nginx/ogg.pem

For distribution paths to go through the reverse proxy, you need to use a valid certificate.
It's better to specify the same certificate that the deployment is using to process incoming
requests, otherwise, starting the path will fail with the next error in Distribution Service:

2019-03-26T11:26:00.324-0700 ERROR| ERROR OGG-10351 Oracle GoldenGate
Distribution
 Service for Oracle: Generic error -1 noticed. Error description -
Certificate validation
 error: Unacceptable certificate from test00abc: application verification
failure. (A4)

5. Validate the NGINX configuration:

sudo nginx -t

The output would show the following, if the command is successful:

NGINX: the configuration file /etc/NGINX/NGINX.conf syntax is ok
NGINX: configuration file /etc/NGINX/NGINX.conf test is successful

6. Reload NGINX with the new configuration:

sudo nginx -s reload

If the changes for the configuration file are not loaded, stop and restart the proxy.

7. To test if you can access the microservices after NGINX is set up successfully, open the
web browser.

8. Enter the proxy URL for the Service Manager using port number 443, similar to the
following:

http://dc.example.com:443

This would open the Service Manager login page, from where you can access the other
microservices also. If you want to directly access a microservice, you can enter the proxy
URL for that microservice, as given in the ogg.conf file, generated previously.

Also see this video on configuring the NGINX reverse proxy.

SSL Termination

When there is an unsecure connection between the reverse proxy, which uses a TLS-based
connection, and the origin server, it is referred to as reverse proxy SSL-termination.

Chapter 3
Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

3-37

https://www.youtube.com/watch?v=gjRX8Ue6x1M&ab_channel=OracleLearning

Note:

In SSL-Termination the connections between the reverse proxy and the
origin servers are unsecure.

However, SSL-bridging is also supported where the connections between the client
and reverse proxy is secured and the connection between the reverse proxy and the
origin server is also secured.

Chapter 3
Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

3-38

4
Configure

This section lists details about prepareing and configuring Oracle GoldenGate for supported
databases.

Topics:

• Db2 z/OS

• MySQL

• Oracle

• PostgreSQL

• SQL Server

Db2 z/OS
This section lists details about configuring Oracle GoldenGate for Db2 z/OS.

Topics:

• Prepare Database Users and Privileges

• Prepare Database Connection, System, and Parameter Settings

• Transaction Log Settings and Requirements

• Db2 z/OS: Supported Data Types, Objects, and Operations

Prepare Database Users and Privileges
Learn about creating database users and assigning privileges for Oracle GoldenGate for Db2
z/OS.

Topics:

• Database User for Oracle GoldenGate Processes

Database User for Oracle GoldenGate Processes
Oracle GoldenGate requires a database user account. Create this account and assign
privileges according to the following guidelines.

Assign the Db2 privileges listed in the following table to the user by which Extract and
Replicat will be running. These are in addition to any permissions that Db2 ODBC requires.
All Extract privileges apply to initial-load and log-based Extract processes, except where
noted. The following authorities can be provided by granting either SYSCTRL or DBADM plus
SQLADM authority to the user running the Oracle GoldenGate processes.

4-1

Table 4-1 Privileges Needed by Oracle GoldenGate for Db2 z/OS

User privilege Extract Replicat

MONITOR2
(does not apply to initial-load Extract)

Y N

SELECT ON the following SYSIBM tables:

SYSTABLES
SYSCOLUMNS
SYSTABLEPART
SYSKEYS
SYSINDEXES
SYSCOLAUTH
SYSDATABASE
SYSFOREIGNKEYS
SYSPARMS
SYSRELS
SYSROUTINES
SYSSYNONYMS
SYSTABAUTH
SYSAUXRELS

Y Y

SELECT on source tables1 Y N

INSERT, UPDATE, DELETE on target tables N Y

CREATE TABLE2 N Y

EXECUTE on ODBC plan (default is DSNACLI) Y N

Privileges required by SQLEXEC procedures or queries that
you will be using.3

Y N

1 SELECT on source tables required only if tables contain LOB columns, or for an initial-load Extract, if
used.

2 Required if using ADD CHECKPOINTTABLE from the command line interface to use the database
checkpoint feature.

3 SQLEXEC enables stored procedures and queries to be executed by an Oracle GoldenGate process.

Prepare Database Connection, System, and Parameter Settings
Learn about configuring database connection, system and parameters settings for
Oracle GoldenGate for Db2 z/OS.

Topics:

• Configure a Database Connection

• Database Configuration

• Prepare Tables for Processing

Chapter 4
Db2 z/OS

4-2

Configure a Database Connection
This section contains instructions for setting up the Extract and Replicat connections to a Db2
z/OS database.

Topics:

• Ensuring ODBC Connection Compatibility

• Specifying the Number of Connection Threads

Ensuring ODBC Connection Compatibility
To ensure that you configure the Db2 ODBC initialization file correctly, follow the guidelines in
the Db2 UDB z/OS ODBC Guide and Reference manual. One important consideration is the
coding of the open and close square brackets (the [character and the] character). The
square bracket characters are "variant" characters that are encoded differently in different
coded character set identifiers (CCSID), but must be of the IBM-1047 CCSID in the ODBC
initialization file. Db2 ODBC does not recognize brackets of any other CCSID. Note the
following:

• The first (or open) bracket must use the hexadecimal characters X'AD' (0xAD).

• The second (or close) bracket must use the hexadecimal characters X'BD' (0xBD).

To set the correct code for square brackets, use any of the following methods.

• Use the hex command in OEDIT and change the hex code for each character
appropriately.

• Use the iconv utility to convert the ODBC initialization file. For example, to convert from
CCSID IBM-037 to IBM-1047, use the following command:

iconv -f IBM-037 -t IBM-1047 ODBC.ini > ODBC-1047.ini

mv ODBC-1047.ini ODBC.ini
• Change your terminal emulator or terminal configuration to use CCSID IBM-1047 when

you create or alter the file.

Specifying the Number of Connection Threads
Every Oracle GoldenGate process makes a database connection. Depending on the number
of processes that you will be using and the number of other Db2 connections that you expect,
you might need to adjust the following Db2 system parameters on the DSNTIPE DB2 Thread
Management Panel:

• MAX USERS (macro DSN6SYSP CTHREAD)

• MAX TSO CONNECT (macro DSN6SYSP IDFORE)

• MAX BATCH CONNECT (macro DSN6SYSP IDBACK)

If using RRSAF, allow:

• Two DB2 threads per process for each of the following:

– Extract

– Replicat

Chapter 4
Db2 z/OS

4-3

– The Admin Client command DBLOGIN (logs into the database)

– DEFGEN utility (generates data definitions for column mapping)

• One extra Db2 thread for Extract for IFI calls.

• One extra Db2 thread for each SQLEXEC parameter statement that will be issued by
each Extract and Replicat process. For more information about SQLEXEC, see the
Reference for Oracle GoldenGate.

If using CAF, there can be only one thread per Oracle GoldenGate process.

Database Configuration
No special Db2 z/OS database settings are required for Oracle GoldenGate.

• Specify the Path to the Initialization File

• Install Extract Components on Db2 z/OS

• Use Shared Memory Manager for Extract

• Support Globalization Functions

Specify the Path to the Initialization File
Specify the ODBC initialization file by setting the DSNAOINI environment variable in the
z/OS UNIX profile, as in the following example:

export DSNAOINI="/etc/odbc810.ini"

Install Extract Components on Db2 z/OS
The Oracle GoldenGate Db2 z/OS objects require a minimum hardware platform of
z10, a minimum operating system release 1.13, and a minimum Db2 release 11.

To install the components needed for Oracle GoldenGate for Db2 z/OS for Extract:

1. Ensure that a library (PDSE) must exist on the Db2 z/OS system and it must be in
the authorized library list. This library is the location where the Oracle GoldenGate
objects will reside.

2. Ensure that an APF-authorized WLM environment exists that references the PDSE
from the preceding step. Oracle recommends that NUMTCB for the WLM
environment be 10-40 for stored procedures. This depends on the maximum
number of Extracts that are running concurrently against the database and on how
much throughput each requires. If you want flexibility in selecting NUMTCB, you
specify it in the startup JCL for the WLM, but not in the creation panel.

3. You can set up security for the WLM application environments and for creating
stored procedures by completing the following:

a. (Optional) Specify which WLM-established address spaces can run stored
procedures. If you do not complete this step, then any WLM-established
address space can run stored procedures.

b. Grant access to users to create procedures in specific WLM address spaces.

c. Grant access to users to create procedures in specific schemas. Use the
GRANT statement with the CREATIN option for the appropriate schema.

Chapter 4
Db2 z/OS

4-4

d. Grant access to users to create packages for procedures in specific collections. Use
the GRANT statement with the CREATE option for the appropriate collection.

e. Grant access to refresh the WLM environments to the appropriate people.

4. Ensure the ID used to run the WLM startup JCL procedure has permission to use
RRSAF. Each time one of the Db2 WLM address spaces is started, it uses RRSAF to
attach to Db2. See the Db2 11 for z/OS Installation and Migration Guide

5. In the Linux or UNIX installation of Oracle GoldenGate for Db2 z/OS, there is a ZIP file
called zOSPrograms.zip. Unzip zOSPrograms.zip to zOSPrograms.tar and copy
zOSPrograms.tar in binary mode to your Db2 z/OS system into an HFS directory.

6. On your Db2 z/OS system in USS or OMVS, change directories to the directory
containing zOSPrograms.tar.

7. Restore the objects with the command: tar -xovf zOSPrograms.tar

Note:

In this command, the copy target is double-quote forward-slash single-quote
authorized PDSE name single-quote double quote. The -X is an uppercase
capital X not a lowercase x.

8. Copy the objects to the authorized PDSE. Use the cp –X ogg[irmj][abt][0-9]*
“//’authorized_PDSE_name’” where authorized_PDSE_name is the name of the APF
authorized PDSE, intended for the Oracle GoldenGate objects.

9. Using your SQL tool of choice, you must create the SQL procedures so that Oracle
GoldenGate can call the Extract process. The Oracle GoldenGate stored procedures
should have permission granted to only those users that are used for replication.

There is an example SQL script provided in the Oracle GoldenGate install directory that
contains the SQL statements to setup the stored procedures on the Db2 z/OS instance.
The demo_db2_setupb_os390.sql script is for Db2 v11.1 and higher can be run from any
SQL tool on any platform that can connect to your Db2 z/OS instance. This script should
be run on the Db2 instance you are using with your Extract. The script that is provided in
the remote installation directory is in ASCII format. The same script is restored through
zOSPrograms.tar on the Db2 z/OS system in EBCDIC and is suitable for use through
native Db2 z/OS tools such as SPUFI.

Edit the following line before running the scripts:

• The WLM ENVIRONMENT line must be modified to use the correct name for the WLM
environment that you are using.

Note:

The oggifi0001 schema name is configurable using the TRANLOGOPTIONS
REMOTESCHEMA schemaname parameter. The procedure names are not configurable.
Each of the external names in the script and the PDSE can be renamed as long as
the script names and the PDSE object names match. This allows for migration to
new versions or if specific naming procedures must be adhered to on Db2 z/OS.

Chapter 4
Db2 z/OS

4-5

https://www.ibm.com/docs/en/SSEPEK_11.0.0/pdf/db2z_11_instbook.pdf

Note:

Remember to perform all these steps after every new patch installation.

Use Shared Memory Manager for Extract
Oracle GoldenGate Extract spawns a separate task started from WLM to monitor
ECSA (shared) memory usage.

There are specific fields in shared memory that are updated for every read performed
by the Extract. These fields are updated whether or not data is returned. The monitor
checks those fields to ensure the Extract has not become inactive. If the Extract is
inactive, then the common memory is released and the monitor ends.

The wait interval and inactive time the monitor uses can be controlled using the remote
memory options parameter and sub parameters, as shown in the following example:

remote_memory_options wait_interval 2000 inactive_time 01:00

The wait interval is expressed in hundredths of seconds in the example and causes
the monitor to wait 20 seconds between each memory check. If the monitor has
checked for 1 hour (format HH:MM) and the Extract is still inactive, then the monitor
will shut down after releasing the shared memory. If the Extract returns to an active
state any time during that hour, then the monitor will reset it's state and continue
monitoring.

The wait_interval can have values from 100 to 6000 and the default is 1000. The
inactive_time can be from 00:10 to 12:00 and the default is 00:30. If the monitor
does not start properly, a warning message will be displayed in the Extract report and
the Extract will continue processing. The Extract will attempt to release ECSA memory
when it shuts down.

The remote memory parameter has three options to make this feature work. The
syntax for these parameters is:

• task_procedure proc name
• task_library proc library
• task_setup task setup program

Note:

The values for the remote memory parameter are case insensitive.

Default values are procedure name OGGPR001 and the task setup program OGGJT001.
There is no default for task library as the procedure might be installed in one of the
MVS system default proc libraries. The task library parameter is only needed if the
procedure is not in a system default library.

A sample procedure JCL file will be included in the zOSPrograms.zip file. The JCL has
the following format:

Chapter 4
Db2 z/OS

4-6

//*==
 //* EXAMPLE JCL FOR RUNNING THE COMMON MEMORY MONITOR PROCEDURE
 //* ADDRESS SPACE NEEDING AN AUTHORIZED LOAD LIBRARY
 //* NOTE: THE PROGRAM OGGMT001 CAN BE RENAMED IN THE LIBRARY BUT THE
 //* NEW NAME MUST MATCH THE PROGRAM NAME IN THIS JCL
 //*==
 // OGGDSNNA PROC RGN=0K TR=,EX=,MEM=,LEN=,SEC=,DUR=,VER=
 // OGGDSNNX EXEC PGM=OGGMT001,REGION=&RGN,TIME=NOLIMIT,
 // PARM='&TR &EX &MEM &LEN &SEC &DUR &VER'
 //*--
 //* REPLACE &PREFIX.**.AUTHLOAD LIBRARIES WITH SITE SPECIFIC FILE(S)
 //* ALSO REPLACE THE CEE LIBRARY WITH SITE SPECIFIC FILE
 //* DSNN COULD REPRESENT A DB2 SPECIFIC LOAD LIBRARY IF ONE EXISTS
 //*--
 // STEPLIB DDDISP=SHR,DSN=&PREFIX..WLMPROD.USER.AUTHLOAD
 // DD DISP=SHR,DSN=&PREFIX..WLMTEST.USER.AUTHLOAD
 // DD DISP=SHR,DSN=&PREFIX..WLMDSNN.USER.AUTHLOAD
 // DD DISP=SHR,DSN=CEE.SCEERUN
 //SYSPRINT DD SYSOUT=*
 //SYSOUT DD SYSOUT=*
 //*==

The libraries marked with PREFIX will need to be modified to work for your system. The
PGM=OGGMT001 value can be changed in case you rename the programs you find in the
zOSPrograms.zip file. The parameters, on the PROC statement are there for information
purposes, the job setup program supplies those values, which are passed to it from the
Extract.

Support Globalization Functions
Oracle GoldenGate provides globalization support and you should take into consideration
when using this support.

Topics:

• Replicating From a Source that Contains Both ASCII and EBCDIC

• Specifying Multi-Byte Characters in Object Names

Replicating From a Source that Contains Both ASCII and EBCDIC

When replicating to or from a Db2 source system to a target that has a different character set,
some consideration must be given to the encoding of the character data on the Db2 source if
it contains a mix of ASCII and EBCDIC data. Character set conversion by any given Replicat
requires source data to be in a single character set.

The source character set is specified in the trail header. Thus, the Oracle GoldenGate trail
can contain either ASCII or EBCDIC data, but not both. Unicode tables are processed without
any special configuration and are exempt from the one-character set requirement.

With respect to a source that contains both character encoding types, you have the following
options:

• You can use one Extract for all of your tables, and have it write the character data to the
trail as either ASCII or as EBCDIC.

• You can use different Extracts: one Extract to write the ASCII character data to a trail,
and another Extract to write the EBCDIC character data to a different trail. You then

Chapter 4
Db2 z/OS

4-7

associate each trail with its own Extract and Replicat process, so that the two data
streams are processed separately.

To output the correct character set in either of those scenarios, use the
TRAILCHARSETASCII and TRAILCHARSETEBCDIC parameters. The default is
TRAILCHARSETEBCDIC. Without these parameters, ASCII and EBCDIC data are written
to the trail as-is. When using these parameters, note the following:

• If used on a single-byte Db2 subsystem, these parameters cause Extract to
convert all of the character data to either the ASCII or EBCDIC single-byte CCSID
of the subsystem to which Extract is connected, depending on which parameter is
used (except for Unicode, which is processed as-is).

• If used on a multi-byte Db2 subsystem, these parameters cause Extract to capture
only ASCII or EBCDIC tables (and Unicode). Character data is written in either the
ASCII or EBCDIC mixed CCSID (depending on the parameter used) of the Db2
z/OS subsystem to which Extract is connected.

Specifying Multi-Byte Characters in Object Names

If the name of a schema, table, column, or stored procedure in a parameter file
contains a multi-byte character, the name must be double-quoted.

For more information about specifying object names, see Specifying Object Names in
Oracle GoldenGate Input.

Prepare Tables for Processing
You must perform the following tasks to prepare your tables for use in an Oracle
GoldenGate environment for Db2 z/OS.

Topics:

• Disable Triggers and Cascade Constraints

• Ensure Row Uniqueness for Tables

• Handle Tables with ROWID Columns

Disable Triggers and Cascade Constraints
Disable triggers, cascade delete constraints, and cascade update constraints on the
target tables, or alter them to ignore changes made by the Oracle GoldenGate
database user. Oracle GoldenGate replicates DML that results from a trigger or
cascade constraint. If the same trigger or constraint gets activated on the target table,
it becomes redundant because of the replicated version, and the database returns an
error. Consider the following example, where the source tables are emp_src and
salary_src and the target tables are emp_targ and salary_targ.

• A delete is issued for emp_src.

• It cascades a delete to salary_src.

• Oracle GoldenGate sends both deletes to the target.

• The parent delete arrives first and is applied to emp_targ.

• The parent delete cascades a delete to salary_targ.

• The cascaded delete from salary_src is applied to salary_targ.

Chapter 4
Db2 z/OS

4-8

• The row cannot be located because it was already deleted in step 5.

Ensure Row Uniqueness for Tables
Oracle GoldenGate requires some form of unique row identifier on the source and target
tables to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to
use a larger, less efficient WHERE clause.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

Topics:

• Using KEYCOLS to Specify a Custom Key

Using KEYCOLS to Specify a Custom Key

If a table does not have one of the preceding types of row identifiers, or if you prefer those
identifiers not to be used, you can define a substitute key if the table has columns that always
contain unique values. You define this substitute key by including a KEYCOLS clause within the
Extract TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. For more information, see
Reference for Oracle GoldenGate.

Handle Tables with ROWID Columns
Any attempt to insert into a target table that includes a column with a data type of ROWID
GENERATED ALWAYS (the default) will fail with the following ODBC error:

Chapter 4
Db2 z/OS

4-9

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/table-map.html#GUID-C2356234-3780-48EE-9E7A-F21DC352638C
https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/table-map.html#GUID-C2356234-3780-48EE-9E7A-F21DC352638C

ODBC error: SQLSTATE 428C9 native database error -798. {DB2 FOR OS/390}
{ODBC DRIVER}{DSN08015} DSNT408I SQLCODE = -798, ERROR: YOU CANNOT INSERT
A VALUE INTO A COLUMN THAT IS DEFINED WITH THE OPTION GENERATED ALWAYS.
COLUMN NAME ROWIDCOL.
You can do one of the following to prepare tables with ROWID columns to be
processed by Oracle GoldenGate:

• Ensure that any ROWID columns in target tables are defined as GENERATED BY
DEFAULT.

• If it is not possible to change the table definition, you can work around it with the
following procedure.

To workaround ROWID GENERATE ALWAYS:

1. For the source table, create an Extract TABLE statement, and use a COLSEXCEPT
clause in that statement that excludes the ROWID column. For example:

TABLE tab1, COLSEXCEPT (rowidcol);
The COLSEXCEPT clause excludes the ROWID column from being captured and
replicated to the target table.

2. For the target table, ensure that Replicat does not attempt to use the ROWID
column as the key. This can be done in one of the following ways:

• Specify a primary key in the target table definition.

• If a key cannot be created, create a Replicat MAP parameter for the table, and
use a KEYCOLS clause in that statement that contains any unique columns
except for the ROWID column. Replicat will use those columns as a key. For
example:

MAP tab1, TARGET tab1, KEYCOLS (num, ckey);

Transaction Log Settings and Requirements
Know more about transaction log settings, requirements and the steps to add
transaction logs for Oracle GoldenGate for Db2 z/OS.

Topics:

• Prepare Db2 z/OS Transaction Logs for Oracle GoldenGate

Prepare Db2 z/OS Transaction Logs for Oracle GoldenGate
Learn to configure the Db2 transaction logging to support data capture by Oracle
GoldenGate Extract.

Oracle GoldenGate can capture Db2 transaction data from the active and archived
logs. Follow these guidelines to configure the logs so that Extract can capture data.

To enable change capture for Oracle GoldenGate for Db2 z/OS, see Db2 z/OS: Enable
Change Capture

Topics:

• Enable Access to Log Records

• Size and Retain Logs

Chapter 4
Db2 z/OS

4-10

• Use Archive Logs on Tape

• Control Log Flushes

Enable Access to Log Records
Activate Db2 Monitor Trace Class 1 ("TRACE(MONITOR) CLASS(1) ") so that Db2 allows Extract
to read the active log. The default destination of OPX is sufficient, because Oracle GoldenGate
does not use a destination.

To Start the Trace Manually

1. Log on to Db2 as a Db2 user who has the TRACE privilege or at least SYSOPR authority.

2. Issue the following command:

start trace(monitor) class(1) scope(group)

To Start the Trace Automatically When Db2 is Started

Do either of the following:

• Set MONITOR TRACE to "YES" on the DSNTIPN installation tracing panel.

• Set 'DSN6SYSP MON=YES ' in the DSNTIJUZ installation job, as described in the Db2 UDB
Installation Guide.

Note:

The primary authorization ID, or one of the secondary authorization IDs, of the
ODBC plan executor also must have the MONITOR2 privilege.

Size and Retain Logs
When tables are defined with DATA CAPTURE CHANGES, more data is logged than when they
are defined with DATA CAPTURE NONE . If any of the following is true, you might need to
increase the number and size of the active and archived logs.

• Your applications generate large amounts of Db2 data.

• Your applications have infrequent commits.

• You expect to stop Extract for long periods of time.

• Your network is unreliable or slow.

To control log retention, use the DSN6LOGP MAXARCH system parameter in the DSNTIJUZ
installation job.

Retain enough log data so that Extract can start again from its checkpoints after you stop it or
after an unplanned outage. Extract must have access to the log that contains the start of the
oldest uncommitted unit of work, and all logs thereafter.

If data that Extract needs during processing was not retained, either in online or archived
logs, one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which log data is available (and
accept possible data loss on the target).

Chapter 4
Db2 z/OS

4-11

• Resynchronize the source and target tables, and then start the Oracle GoldenGate
environment over again.

Note:

The IBM documentation makes recommendations for improving the
performance of log reads. In particular, you can use large log output buffers,
large active logs, and make archives to disk.

Use Archive Logs on Tape
Oracle GoldenGate can read Db2 archive logs on tape, but it will degrade
performance. For example, Db2 reserves taped archives for a single recovery task.
Therefore, Extract would not be able to read an archive tape that is being used to
recover a table until the recovery is finished. You could use DFHSM or an equivalent
tools to move the archive logs in a seamless manner between online DASD storage
and tape, but Extract will have to wait until the transfer is finished. Delays in Extract
processing increase the latency between source and target data.

Control Log Flushes
When reading the transaction log, Extract does not process a transaction until it
captures the commit record. If the commit record is on a data block that is not full, it
cannot be captured until more log activity is generated to complete the block. The API
that is used by Extract to read the logs only retrieves full physical data blocks.

A delay in receiving blocks that contain commits can cause latency between the
source and target data. If the applications are not generating enough log records to fill
a block, Extract generates its own log records by issuing SAVEPOINT and COMMIT
statements, until the block fills up one way or the other and is released.

In a data sharing group, each API call causes DB2 to flush the data blocks of all active
members, eliminating the need for Extract to perform flushes.

To prevent Extract from performing flushes, use the Extract parameter
TRANLOGOPTIONS with the NOFLUSH option.

Db2 z/OS: Supported Data Types, Objects, and Operations
This section contains support information for Oracle GoldenGate on Db2 z/OS
database.

Oracle GoldenGate for Db2 for z/OS supports capture and delivery of initial load and
transactional data for supported Db2 for z/OS database versions.

Oracle GoldenGate for Db for z/OS supports the mapping, filtering, and transformation
of source data, unless noted otherwise in this document, along with replicating data
derived from other source databases supported by Oracle GoldenGate, into Db2 for
z/OS databases.

Oracle GoldenGate for Db2 for z/OS is installed and runs remotely on Linux and
zLinux.

Topics:

Chapter 4
Db2 z/OS

4-12

• Supported Db2 z/OS Data Types

• Non-Supported Db2 for z/OS Data Types

• Supported Objects and Operations for Db2 z/OS

• Non-Supported Objects and Operations for Db2 z/OS

Supported Db2 z/OS Data Types
Here is the list of the Db2 for z/OS data types that Oracle GoldenGate supports and any
limitations of this support.

• Oracle GoldenGate does not perform character set conversion for columns that could
contain multi-byte data. This includes GRAPHIC, VARGRAPHIC and DBCLOB data types, as
well as CHAR, VARCHAR, and CLOB for tables defined with ENCODING_SCHEME of 'M' (multiple
CCSID set or multiple encoding schemes) or 'U' (Unicode). Such data is only supported if
the source and target systems are the same CCSID.

• Oracle GoldenGate supports ASCII, EBCDIC, and Unicode data format. Oracle
GoldenGate converts between ASCII and EBCDIC data automatically. Unicode is not
converted.

• Oracle GoldenGate supports most Db2 data types except those listed in Non-Supported
Db2 for z/OS Data Types.

Limitations of Support

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you should
review the database documentation to determine the expected approximations. Oracle
GoldenGate rounds or truncates values that exceed the supported precision.

• Oracle GoldenGate does not support the filtering, column mapping, or manipulation of
large objects greater than 4K in size. You can use the full Oracle GoldenGate
functionality for objects that are 4K or smaller.

• Oracle GoldenGate supports the default TIMESTAMP and the TIMESTAMP with TIMEZONE to
up to 9 digit fractional value, but no further.

Non-Supported Db2 for z/OS Data Types
Here is the list of Db2 for z/OS data types that Oracle GoldenGate does not support. Data
that is not supported may affect the integrity of the target data in relation to the source data.

• Negative dates

• User-defined types

• XML

Supported Objects and Operations for Db2 z/OS
Here is the list of database objects and types of operations that Oracle GoldenGate supports.

• Extraction and replication of DML operations on Db2 for z/OS tables that contain rows of
up to 512KB in length. This size exceeds the maximum row size of Db2.

• INSERT operations from the IBM LOAD utility are supported for change capture if the utility
is run with LOG YES and SHRLEVEL CHANGE, and the source tables that are being loaded

Chapter 4
Db2 z/OS

4-13

have DATA CAPTURE CHANGES enabled (required by Oracle GoldenGate) and are
specified in the Oracle GoldenGate Extract configuration. Oracle GoldenGate also
supports initial loads with the LOAD utility to instantiate target tables during initial
synchronization.

• Oracle GoldenGate supports the maximum number of columns per table, which is
supported by the database.

• Oracle GoldenGate supports the maximum column size that is supported by the
database.

• Extraction and replication of data that is stored using DB2 data compression
(CREATE TABLESPACE COMPRESS YES).

• Capture from temporal history tables is supported.

• TRUNCATE TABLE is supported, but because this command issues row deletes to
perform the truncate, they are shown in Oracle GoldenGate statistics as such, and
not as a truncate operation. To replicate a TRUNCATE , the Replicat process uses a
DELETE operation without a WHERE clause.

• TRUNCATES are always captured from a Db2 for z/OS source, but can be ignored by
Replicat if the IGNORETRUNCATES parameter is used in the Replicat parameter file.

• UNICODE columns in EBCDIC tables are supported.

• Supported options with SHOWTRANS

SHOWTRANS [transaction_ID] [COUNT n]
[DURATION duration unit]
[FILE file_name] |

transaction_ID and count cannot be specified together.

transaction_ID and duration cannot be specified together.

• Options supported with SKIPTRANS and FORCETRANS:

SKIPTRANS transaction_ID
[FORCE] FORCETRANS transaction_ID [FORCE]

Non-Supported Objects and Operations for Db2 z/OS
The following objects and operations are not supported by Oracle GoldenGate on Db2
z/OS:

• Extraction or replication of DDL operations

• Clone tables

• Data manipulation, including compression, that is performed within user-supplied
Db2 exit routines, such as:

– Date and time routines

– Edit routines (CREATE TABLE EDITPROC)

– Validation routines (CREATE TABLE VALIDPROC)

• Replicating with BATCHSQL is not fully functional for Db2 z/OS. Non-insert
operations are not supported so any update or delete operations will cause

Chapter 4
Db2 z/OS

4-14

Replicat to drop temporarily out of BATCHSQL mode. The transactions will stop and errors
will occur.

MySQL
This section lists details about configuring Oracle GoldenGate for MySQL.

Topics:

• Prepare Database Users and Privileges

• Prepare Database Connection, System, and Parameter Settings

• Transaction Log Settings and Requirements

• MySQL: Supported Data Types, Objects, and Operations

Prepare Database Users and Privileges
Learn about creating database users and assigning privileges for Oracle GoldenGate for
MySQL.

Topics:

• Database User for Oracle GoldenGate Processes for MySQL

Database User for Oracle GoldenGate Processes for MySQL
Requirements for the database user for Oracle GoldenGate processes are as follows:

• Create a database user that is dedicated to Oracle GoldenGate. It can be the same user
for all the Oracle GoldenGate processes that must connect to a database.

• To support DDL replication, the MySQL user must have privileges to install the database
plug-ins. The required permissions for the plug-in is only required with MySQL 5.7. The
INSERT privilege is required on the mysql.plugin system table.

• To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or operate
as, the Oracle GoldenGate database user.

• Keep a record of the database users. They must be specified in the Oracle GoldenGate
parameter files with the USERID parameter.

• The Oracle GoldenGate user requires read access to the INFORMATION_SCHEMA database.

• The Oracle GoldenGate user requires the following user privileges.

Privilege Source Extract Target Replicat Purpose

SELECT X X Connect to the
database and select
object definitions

REPLICATION SLAVE NA NA Connect and receive
updates from the
replication master’s
binary log

Chapter 4
MySQL

4-15

Privilege Source Extract Target Replicat Purpose

REPLICATION CLIENT X NA Allows to show master,
slave, and binary log
information

CREATE
CREATE VIEW
EVENT
INSERT
UPDATE
DELETE

X X Source and target
database heartbeat
and checkpoint table
creation, and data
record generation and
purging

DROP X X Dropping a Replicat
checkpoint table or
deleting a heartbeat
table implementation

EXECUTE X X To execute stored
procedures

INSERT, UPDATE,
DELETE on target
tables

NA X Apply replicated DML
to target objects

DDL privileges on
target objects (if using
DDL support)

NA X Issue replicated DDL
on target objects

• To capture binary log events, an Administrator must provide the following
privileges to the Extract user:

– Read and Execute permissions for the directory where the MySQL
configuration file (my.cnf) is located.

– Read permission for the MySQL configuration file (my.cnf).

– Read and Execute permissions for the directory where the binary logs are
located.

– Read and Execute permission for the tmp directory. The tmp directory is /tmp.
The MySQL database connection requires access to the /tmp/mysql.sock file
for versions prior to MySQL 8.0.

Prepare Database Connection, System, and Parameter Settings
Learn about configuring database connection, system, and parameter settings for
Oracle GoldenGate for MySQL.

Topics:

• Configure the Database Connection

• Database Configuration

Configure the Database Connection
Oracle GoldenGate gets the name of the database it is supposed to connect to from
the SOURCEDB parameter. To configure the connection for the SOURCEDB parameter, use
the following format:

Chapter 4
MySQL

4-16

SOURCEDB dbname@hostname:port, USERID mysqluser, PASSWORD welcome
The dbname is the name of the MySQL instance, hostname is the name or IP address of the
MySQL database server, port is the port number of the MySQL instance. If using an
unqualified host name, that name must be properly configured in the DNS database.
Otherwise, use the fully qualified host name, for example myhost.company.com.

• Configuring a Two-way SSL Connection in MySQL Capture and Delivery

Configuring a Two-way SSL Connection in MySQL Capture and Delivery
To use the two way SSL in Oracle GoldenGate for MySQL capture and delivery, you need to
supply the full paths of the certificate authority (ca.pem), the client certificate (client-
cert.pem) and the client key (client-key.pem) files to the capture and delivery.

To know more about generating the certificate files, see:

https://dev.mysql.com/doc/refman/5.7/en/creating-ssl-rsa-files-using-mysql.html

You need to provide these paths in the Extract and Replicat parameter files using the SETENV
parameter.

Following are the SETENV environment parameters to set the two-way SSL connection:

• OGG_MYSQL_OPT_SSL_CA: Sets the full path of the certification authority.

• OGG_MYSQL_OPT_SSL_CERT: Sets the full path of the client certificate.

• OGG_MYSQL_OPT_SSL_KEY: Sets the full path of the client key.

In the following example, the MySQL SSL certificate authority, client certificate, and client key
paths are set to the Oracle GoldenGate MySQL Extract and Replicat parameter:

SETENV (OGG_MYSQL_OPT_SSL_CA='/var/lib/mysql.pem')
SETENV (OGG_MYSQL_OPT_SSL_CERT='/var/lib/mysql/client-cert.pem')
SETENV (OGG_MYSQL_OPT_SSL_KEY='/var/lib/mysql/client-key.pem')

For a MySQL user configured with X509 encryption scheme, the MySQL database requires
the ssl-key and ssl-cert options at the time of logging in. So, when an Oracle GoldenGate
credential store entry is created for this user, the SSL options in the credential store alias
must mandatorily include sslKey and sslCert regardless of sslMode used.

Database Configuration
Learn about supported databases, database storage engine, database character set, and
how to prepare tables for processing as part of configuring MySQL for Oracle GoldenGate.

Topics:

• Supported Databases

• Database Storage Engine

• Database Character Set

• Set the Session Character Set

• Prepare Tables for Processing

• Configure MySQL for Remote Capture

Chapter 4
MySQL

4-17

https://dev.mysql.com/doc/refman/5.7/en/creating-ssl-rsa-files-using-mysql.html

Supported Databases
Oracle GoldenGate for MySQL supports capture and delivery for MySQL, Oracle
MySQL Database Service, Amazon Aurora MySQL, Amazon RDS for MariaDB,
Amazon RDS for MySQL, Azure Database for MySQL, Google Cloud SQL for MySQL,
and MariaDB.

With Oracle GoldenGate release 21.10, SingleStoreDB and SingleStoreDB Cloud are
now supported for delivery only, using the Oracle GoldenGate for MySQL Replicat.

From Oracle GoldenGate 21c (21.7) for MySQL 8.0 and higher, capture and delivery
for MySQL configured with Group Replication in single-primary mode is supported. For
more information, see Using Oracle GoldenGate with MySQL Group Replication.

For a complete list of supported databases and versions, review the Certification
Matrix for your version of Oracle GoldenGate.

• Limitations of Support

Limitations of Support

Following are the limitations of support for Oracle GoldenGate for MySQL:

• MySQL databases enabled with binary log transaction compression are not
supported with Oracle GoldenGate Extract.

• MySQL databases enabled with binary log encryption are not supported with
Oracle GoldenGate Extract.

Database Storage Engine
Requirements for the database storage engine are as follows:

• Oracle GoldenGate supports the InnoDB storage engine for a source MySQL
database.

• All the components of Oracle GoldenGate for MySQL, including Extract, Replicat,
and Admin Client connect to the database using the MySQL native API.

• Oracle GoldenGate supports capture and apply from and to the InnoDB engine.
Apply to MyISAM engine works, but there might be data integrity issues as
MyISAM engine in non-transactional.

Database Character Set
MySQL provides a facility that allows users to specify different character sets at
different levels.

Level Example

Database create database test charset utf8;

Table create table test(id int, name char(100)) charset utf8;

Column create table test (id int, name1 char(100) charset gbk, name2
char(100) charset utf8));

Chapter 4
MySQL

4-18

https://www.oracle.com/integration/goldengate/certifications/
https://www.oracle.com/integration/goldengate/certifications/

Limitations of Support

• When you specify the character set of your database as utf8mb4/utf8, the default
collation is utf8mb4_unicode_ci/utf8_general_ci. If you specify
collation_server=utf8mb4_bin, the database interprets the data as binary. For
example, specifying the CHAR column length as four means that the byte length returned
is 16 (for utf8mb4) though when you try to insert data more than four bytes the target
database warns that the data is too long. This is the limitation of database so Oracle
GoldenGate does not support binary collation. To overcome this issue, specify
collation_server=utf8mb4_bin when the character set is utf8mb4 and
collation_server=utf8_bin for UTF-8.

• The following character sets are not supported:

armscii8
keybcs2
utf16le
geostd8

Set the Session Character Set
The Extract and Replicat processes use a session character set when connecting to the
database from the command line interface (Admin Client). For MySQL, the session character
set is taken from the SESSIONCHARSET option of the SOURCEDB and the TARGETDB. Make certain
that you specify a session character set in one of these ways when you configure Oracle
GoldenGate.

Prepare Tables for Processing
This section describes how to prepare the tables for processing. Table preparation requires
these tasks.

Topics:

• Ensure Row Uniqueness for Tables

• Limit Row Changes in Tables That Do Not Have a Key

• Triggers and Cascade Constraints Considerations

Ensure Row Uniqueness for Tables

Oracle GoldenGate requires some form of unique row identifier on the source and target
tables to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Chapter 4
MySQL

4-19

Note:

If there are other, non-usable keys on a table or if there are no keys at all
on the table, Oracle GoldenGate logs an appropriate message to the
report file. Constructing a key from all of the columns impedes the
performance of Oracle GoldenGate on the source system. On the target,
this key causes Replicat to use a larger, less efficient WHERE clause.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s)
are not used, you can define a substitute key, if the table has columns that always
contain unique values. You define this substitute key by including a KEYCOLS
clause within the Extract TABLE parameter and the Replicat MAP parameter. The
specified key will override any existing primary or unique key that Oracle
GoldenGate finds. See TABLE | MAP in Reference for Oracle GoldenGate.

• Tables with a Primary Key Derived from a Unique Index

• Specify Your Own Key for Oracle GoldenGate to Use

Tables with a Primary Key Derived from a Unique Index
In the absence of a primary key on a table, MySQL will promote a unique index to
primary key if the indexed column is NOT NULL. If there are more than one of these not-
null indexes, the first one that was created becomes the primary key. To avoid Replicat
errors, create these indexes in the same order on the source and target tables.

For example, assume that source and target tables named ggvam.emp each have
columns named first, middle, and last, and all are defined as NOT NULL. If you create
unique indexes in the following order, Oracle GoldenGate will abend on the target
because the table definitions do not match.

Source:

CREATE UNIQUE INDEX UQL ON ggvam.emp(first);
CREATE UNIQUE INDEX UQ2 on ggvam.emp(middle);
CREATE UNIQUE INDEX UQ3 on ggvam.emp(last);

Target:

CREATE UNIQUE INDEX UQ1 ON ggvam.emp(last);
CREATE UNIQUE INDEX UQ2 ON ggvam.emp(first);
CREATE UNIQUE INDEX UQ3 ON ggvam.emp(middle);

The result of this sequence is that MySQL promotes the index on the source "first"
column to primary key, and it promotes the index on the target "last" column to
primary key. Oracle GoldenGate will select the primary keys as identifiers when it
builds its metadata record, and the metadata will not match. To avoid this error, decide
which column you want to promote to primary key, and create that index first on the
source and target.

Specify Your Own Key for Oracle GoldenGate to Use
If a table does not have one of the preceding types of row identifiers, or if you prefer
those identifiers not to be used, you can define a substitute key if the table has
columns that always contain unique values. You define this substitute key by including
a KEYCOLS clause within the Extract TABLE parameter and the Replicat MAP parameter.

Chapter 4
MySQL

4-20

The specified key will override any existing primary or unique key that Oracle GoldenGate
finds.

Limit Row Changes in Tables That Do Not Have a Key

If a target table does not have a primary key or a unique key, duplicate rows can exist. In this
case, Oracle GoldenGate could update or delete too many target rows, causing the source
and target data to go out of synchronization without error messages to alert you. To limit the
number of rows that are updated, use the DBOPTIONS parameter with the LIMITROWS option in
the Replicat parameter file. LIMITROWS can increase the performance of Oracle GoldenGate
on the target system because only one row is processed.

Triggers and Cascade Constraints Considerations

• Triggers

• Cascade Constraints Considerations

Triggers
Disable triggers on the target tables, or alter them to ignore changes made by the Oracle
GoldenGate database user. Oracle GoldenGate replicates DML that results from a trigger. If
the same trigger gets activated on the target table, then it becomes redundant because of the
replicated version, and the database returns an error.

Cascade Constraints Considerations
Cascading updates and deletes captured by Oracle GoldenGate are not logged in binary log,
so they are not captured. This is valid for both MySQL and MariaDB. For example, when you
run the delete statement in the parent table with a parent child relationship between tables,
the cascading deletes (if there are any) happens for child table, but they are not logged in
binary log. Only the delete or update record for the parent table is logged in the binary log
and captured by Oracle GoldenGate.

See https://mariadb.com/kb/en/replication-and-foreign-keys/ and https://dev.mysql.com/doc/
refman/8.0/en/innodb-and-mysql-replication.html for details.

To properly handle replication of cascading operations, it is recommended to disable cascade
deletes and updates on the source and code your application to explicitly delete or update the
child records prior to modifying the parent record. Alternatively, you must ensure that the
target parent table has the same cascade constraints configured as the source parent table,
but this could lead to an out-of-sync condition between source and target, especially in cases
of bi-directional replication.

Configure MySQL for Remote Capture
Oracle GoldenGate remote capture for MySQL, Amazon RDS for MySQL, Amazon Aurora
MySQL, Azure Database for MySQL are used to capture transaction log data from a
database located remotely to the Oracle GoldenGate installation.

Database Server Configuration

For remote capture to work, configure the MySQL server as follows:

1. Grant access permissions to the Oracle GoldenGate remote capture user.

Chapter 4
MySQL

4-21

https://mariadb.com/kb/en/replication-and-foreign-keys/
https://dev.mysql.com/doc/refman/8.0/en/innodb-and-mysql-replication.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-and-mysql-replication.html

Run the following statements against the remote database to create the user and
grant the permissions needed for remote capture.

CREATE USER 'username'@'host' IDENTIFIED BY 'Password';
GRANT ALL PRIVILEGES ON *.* TO 'username'@'host’ WITH GRANT OPTION;
FLUSH PRIVILEGES;

2. The server_id value of the remote MySQL server should be greater than 0. This
value can be verified by issuing the following statement on the MySQL remote
server:

SHOW VARIABLES LIKE ‘server_id’;

If the server_id value is 0, modify the my.cnf configuration file to set to a value
greater than 0.

Oracle GoldenGate Configuration

Oracle GoldenGate configuration has the following steps:

1. Provide the remote database's connection information in the Extract's parameter
file.

SOURCEDB remotedb@mysqlserver.company.com:port, USERID username,
PASSWORD
password

2. Add the following parameter to the Extract's parameter file, after the connection
information.

TRANLOGOPTIONS ALTLOGDEST REMOTE

Limitations of Oracle GoldenGate Remote Capture for MySQL

Co-existence of Oracle GoldenGate for MySQL remote capture with the MySQL’s
native replication slave is supported with following conditions and limitations:

• The native replication slave should be assigned a different server_id than the
currently running slaves. The slave server_id values can be seen using the
following MySQL command on the master server.

SHOW SLAVE HOSTS;

– If the Oracle GoldenGate capture abends with error "A slave with the same
server_uuid or server_id as this slave has connected to the
master", then change the capture's name and restart the capture.

– If the native replication slave dies with the error "A slave with the same
server_uuid or server_id as this slave has connected to the
master", then change the native replication slave’s server_id and restart it.

• Remote capture is supported for Oracle GoldenGate on running on Linux and can
support databases running on Linux or Windows.

Chapter 4
MySQL

4-22

Transaction Log Settings and Requirements
Know more about transaction log settings and requirements for Oracle GoldenGate for
MySQL.

Topics:

• Ensuring Data Availability

• Setting Logging Parameters

• Changing the Log-Bin Location

• Capturing using a MySQL Replication Slave

Ensuring Data Availability
Retain enough binary log data so that if you stop Extract or there is an unplanned outage,
Extract can start again from its checkpoints. Extract must have access to the binary log that
contains the start of the oldest uncommitted unit of work, and all binary logs thereafter. The
recommended retention period is at least 24 hours worth of transaction data, including both
active and archived information. You might need to do some testing to determine the best
retention time given your data volume and business requirements.

If data that Extract needs during processing was not retained, either in active or backup logs,
one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which binary log data is available
(and accept possible data loss on the target).

• Resynchronize the source and target tables, and then start the Oracle GoldenGate
environment over again.

To determine where the Extract checkpoints are, use the INFO EXTRACT command. For more
information, see INFO EXTRACT in Command Line Interface Reference for Oracle
GoldenGate.

Setting Logging Parameters
To capture from the MySQL transaction logs, the Oracle GoldenGate Extract process must be
able to find the index file, which contains the paths of all binary log files.

Extract expects that all of the table columns are in the binary log. As a result,
binlog_row_image set as full is supported and this is the default. Other values of
binlog_row_image are not supported.

Note:

Oracle recommends that the binary log is retained for at least 24 hours.

In MySQL 5.7, the server_id option must be specified along with log-bin, otherwise the
server will not start. For MySQL 8.0, the server_id is enabled by default.

Extract checks the following parameter settings to get this index file path:

Chapter 4
MySQL

4-23

1. Extract TRANLOGOPTIONS parameter with the ALTLOGDEST option. If this parameter
specifies a location for the log index file, Extract accepts this location over any
default that is specified in the MySQL Server configuration file. When ALTLOGDEST
is used, the binary log index file must also be stored in the specified directory. This
parameter should be used if the MySQL configuration file does not specify the full
index file path name, specifies an incorrect location, or if there are multiple
installations of MySQL on the same machine. From Oracle GoldenGate 21c
onwards, ALTLOGDEST parameter is optional for local Extract, however, for remote
Extract this parameter is mandatory. When ALTLOGDEST is not specified, the binary
log index and binary log filepaths will be fetched from the database directly. The
paths thus fetched are also subject to same accessibilitychecks as in the existing
process.

To specify the index file path using TRANLOGOPTIONS with ALTLOGDEST, use a
command similar to the following:

TRANLOGOPTIONS ALTLOGDEST "/mnt/rdbms/mysql/data/logs/binlog.index"
To capture from a remote server or in case of remote capture, you only need to
specify the REMOTE option instead of the index file path on the remote server. For
remote capture, specify the following in the Extract parameter file:

TRANLOGOPTIONS ALTLOGDEST REMOTE
2. The MySQL Server configuration file: The configuration file stores default startup

options for the MySQL server and clients. On Windows, the name of the
configuration file is my.ini. On other platforms, it is my.cnf. In the absence of
TRANLOGOPTIONS with ALTLOGDEST, Extract gets information about the location of
the log files from the configuration file. However, even with ALTLOGDEST, these
Extract parameters must be set correctly:

• binlog-ignore-db=oggddl: This prevents DDL logging history table entries in
the binlog and is set in the my.cnf or my.ini file.

• log-bin: This parameter is used to enable binary logging. This parameter also
specifies the location of the binary log index file and is a required parameter
for Oracle GoldenGate, even if ALTLOGDEST is used. If log-bin is not specified,
binary logging will be disabled and Extract returns an error.

• log-bin-index: This parameter specifies the location of the binary log index. If
it is not used, Extract assumes that the index file is in the same location as the
log files. If this parameter is used and specifies a different directory from the
one that contains the binary logs, the binary logs must not be moved once
Extract is started.

• max_binlog_size: This parameter specifies the size, in bytes, of the binary log
file.

Note:

The server creates a new binary log file automatically when the size
of the current log reaches the max_binlog_size value, unless it
must finish recording a transaction before rolling over to a new file.

• binlog_format: This parameter sets the format of the logs. It must be set to
the value of ROW, which directs the database to log DML statements in binary

Chapter 4
MySQL

4-24

format. Extract silently ignores the binlog events that are not written in the ROW
format instead of abending when it detects a binlog_format other than ROW.

Note:

MySQL binary logging does not allow logging to be enabled or disabled for
specific tables. It applies globally to all tables in the database.

• mysql.rds_set_configuration: When capturing from MySQL Amazon RDS
instance, you need to call the mysql.rds_set_configuraton stored procedure on
MySQL command line, to retain the binary logs for a specific duration. By default, the
default value of binlog_retention_hours for MySQL Amazon RDS is set to NULL,
which implies that the binary logs are not retained.

The following example shows the command to preserve the binary log for 24 hours:

mysql > call mysql.rds_set_configuration('binlog retention hours', 24);
To locate the configuration file, Extract checks the MYSQL_HOME environment variable:
If MYSQL_HOME is set, Extract uses the configuration file in the specified directory. If
MYSQL_HOME is not set, Extract queries the information_schema.global_variables
table to determine the MySQL installation directory. If a configuration file exists in that
directory, Extract uses it.

3. For MariaDB version 10.2 and later, Oracle GoldenGate works in the same way as for
MySQL but a new variable needs to be configured in the my.cnf or my.ini file. The
variable that needs to be added is "binlog-annotate-row-events=OFF". Restart MariaDB
after configuring this variable and then start the Extract process.

Changing the Log-Bin Location
Modifying the binary log location by using the log-bin variable in the MySQL configuration file
might result in two different path entries inside the index file, which could result in errors. To
avoid any potential errors, change the log-bin location by doing the following:

1. Stop any new DML operations.

2. Let the extract finish processing all of the existing binary logs. You can verify this by
noting when the checkpoint position reaches the offset of the last log.

3. After Extract finishes processing the data, stop the Extract group and, if necessary, back
up the binary logs.

4. Stop the MySQL database.

5. Modify the log-bin path for the new location.

6. Start the MySQL database.

7. To clean the old log name entries from index file, use flush master or reset master
(based on your MySQL version).

8. Start Extract.

Capturing using a MySQL Replication Slave
You can configure a MySQL replication slave to capture the master's binary log events from
the slave.

Chapter 4
MySQL

4-25

Typically, the transactions applied by the slave are logged into the relay logs and not
into the slave's binlog. For the slave to write transactions in its binlog, that it receives
from the master , you must start the replication slave with the log-slave-updates
option as 1 in my.cnf in conjunction with the other binary logging parameters for
Oracle GoldenGate. After the master's transactions are in the slave's binlog , you can
set up a regular Oracle GoldenGate capture on the slave to capture and process the
slave's binlog.

MySQL: Supported Data Types, Objects, and Operations
This section contains support information for Oracle GoldenGate on MySQL Database.

Oracle GoldenGate for MySQL supports capture and delivery of initial load and
transactional data for supported MySQL database versions and supported variants,
such as MariaDB, Amazon RDS for MySQL, Amazon Aurora MySQL, and Google
Cloud SQL for MySQL.

Oracle GoldenGate for MySQL supports the mapping, filtering, and transformation of
source data, unless noted otherwise in this document, along with replicating data
derived from other source databases supported by Oracle GoldenGate, into MySQL
databases.

Topics:

• Character Sets in MySQL

• Oracle GoldenGate for MySQL Supported Data Types

• Non-Supported MySQL Data Types

• Supported Objects and Operations for MySQL

• Details of Support for Objects and Operations in MySQL DDL

• Non-Supported Objects and Operations for MySQL

• Systems Schemas

Character Sets in MySQL
MySQL allows users to specify different character sets at different levels.

Level Example

Database create database test charset utf8;

Table create table test(id int, name char(100)) charset utf8;

Column create table test (id int, name1 char(100) charset gbk, name2
char(100) charset utf8));

Limitations of Support

Oracle GoldenGate supports mixed character sets per listed objects, with the following
limitations.

Chapter 4
MySQL

4-26

• Binary collations are not supported for multi-byte character sets. For example, do not set
the collation_server variable equal to utf8mb4_bin when the character set is utf8mb4.

• The following character sets are not supported:

armscii8
utf8mb3
keybcs2
utf16le
geostd8

Oracle GoldenGate for MySQL Supported Data Types
Oracle GoldenGate for MySQL supports the following data types:

• BLOB
• BIGINT
• BINARY
• BIT(M)
• CHAR
• DATE
• DATETIME
• DECIMAL
• DOUBLE
• ENUM
• FLOAT
• INT
• JSON
• LONGBLOB
• LONGTEXT
• MEDIUMBLOB
• MEDIUMINT
• MEDIUMTEXT
• SMALLINT
• TEXT
• TIME
• TIMESTAMP
• TINYBLOB
• TINYINT
• TINYTEXT
• VARBINARY

Chapter 4
MySQL

4-27

• VARCHAR
• YEAR
• Limitations and Clarifications

Limitations and Clarifications
When running Oracle GoldenGate for MySQL, be aware of the following:

• Functional indexes are not supported for Capture or Delivery.

• Oracle GoldenGate does not support BLOB or TEXT types when used as a primary
key.

• Oracle GoldenGate supports a TIME type range from 00:00:00 to 23:59:59.

• Oracle GoldenGate supports timestamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a timestamp is converted from GMT to local time, these
limits also apply to the resulting timestamp. Depending on the time zone,
conversion may add or subtract hours, which can cause the timestamp to exceed
the lower or upper supported limit.

• Oracle GoldenGate does not support negative dates.

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you
should review the database documentation to determine the expected
approximations. Oracle GoldenGate rounds or truncates values that exceed the
supported precision.

• When you use ENUM type in non-strict sql_mode, the non-strict sql_mode does not
prevent you from entering an invalid ENUM value and an error will be returned. To
avoid this situation, do one of the following:

– Use sql_mode as STRICT and restart Extract. This prevents users from entering
invalid values for any of the data types. An IE user can only enter valid values
for those data types.

– Continue using non-strict sql_mode, but do not use ENUM data types.

– Continue using non-strict sql_mode and use ENUM data types with valid values
in the database. If you specify invalid values, the database will silently accept
them and Extract will abend.

• Table with single column is not supported for JSON datatype. Extract will abend in
case it is configured for a table which has a single column of JSON datatype.

• JSON datatype does not support CDR. The following message gets logged in the
report file if GETBEFORECOLS is configured and the table has columns of JSON
datatypes:

INFO OGG-06556 The following columns will not be considered for CDR

The limtations for CDR applies to cases where the GETBEFORECOLS and
COMPARECOLS are used.

Non-Supported MySQL Data Types
Oracle GoldenGate for MySQL does not support the following data types:

Chapter 4
MySQL

4-28

All spatial types (Geometry and so on), SET.

Note:

Extract abends if it is configured to capture from tables that contain any of the
unsupported data types, so ensure that Extract is not configured to capture from
tables containing columns of unsupported data types.

Supported Objects and Operations for MySQL
Oracle GoldenGate for MySQL supports the following objects and operations:

• Oracle GoldenGate supports the following DML operations on source and target
database transactional tables:

– Insert operation

– Update operation (compressed included)

– Delete operation (compressed included)

– Truncate operation

• Oracle GoldenGate supports the extraction and replication of DDL (data definition
language) operations.

• Oracle GoldenGate supports transactional tables up to the full row size and maximum
number of columns that are supported by MySQL and the database storage engine that
is being used. InnoDB supports up to 1017 columns.

• Generated columns are supported and captured.

• Oracle GoldenGate supports the AUTO_INCREMENT column attribute. The increment value
is captured from the binary log by Extract and applied to the target table in a Replicat
insert operation.

• Oracle GoldenGate can operate concurrently with MySQL native replication.

• Oracle GoldenGate supports the DYNSQL feature for MySQL.

Note:

XA transactions are not supported for capture and any XA transactions logged
in binlog cause Extract to abend. So, you must not use XA transactions
against a database that Extract is configured to capture.
If XA transactions are being used for databases that are not configured for
Oracle GoldenGate capture, then exclude those databases from logging into
MySQL binary logs by using the parameter binlog-ignore-db in the MySQL
server configuration file.

Limitations on Automatic Heartbeat Table support are as follows:

– Ensure that the database in which the heartbeat table is to be created already exists
to avoid errors when adding the heartbeat table.

Chapter 4
MySQL

4-29

– In the heartbeat history lag view, the information in fields like
heartbeat_received_ts, incoming_heartbeat_age, and
outgoing_heartbeat_age are shown with respect to the system time. You
should ensure that the operating system time is setup with the correct and
current time zone information.

• Position by End of File (EOF) is supported in MySQL. Oracle GoldenGate Extract
for MySQL finds the position corresponding to the end of the file and starts reading
transactions from there. The EOF position is not exact, if data is continuously
written to the binary log.

The Extract is added and altered using:

ADD EXTRACT group_name, TRANLOG, EOF

ALTER EXTRACT group_name, EOF

Details of Support for Objects and Operations in MySQL DDL
Here's a list of the MySQL objects and operation types that Oracle GoldenGate
supports for the capture and replication of DDL operations.

• DDL replication for MySQL is only supported between MySQL databases as
sources and targets.

• Basic extraction and replication of DDL operations are supported for MySQL
5.7.10 and higher.

• For MySQL 5.7.10, only local DDL capture is supported.

• For MySQL 8.0, local and remote DDL capture is supported.

• Only the CREATE TABLE, ALTER TABLE, and DROP TABLE operations are supported.

• TRUNCATE operations are supported as DML through the GETTRUNCATES Extract and
Replicat parameter and do not require configuring Oracle GoldenGate for MySQL
DDL support.

• DDL replication is not supported in a Oracle GoldenGate bi-directional
configuration.

• DDL replication is not supported for cloud based database services where the
binlog_row_metadata database setting cannot be set to FULL.

Non-Supported Objects and Operations for MySQL
Oracle GoldenGate for MySQL does not support the following objects and operations:

• The Oracle GoldenGate BATCHSQL feature.

• Array fetching during initial load.

• The following character sets are not supported:

ULIB_CS_ARMSCII8, /* American National 166-9 */
ULIB_CS_GEOSTD8, /* Geogian Standard */
ULIB_CS_KEYBCS2, /* Kemennicky MS-DOS

Chapter 4
MySQL

4-30

• Capturing NLS LOB data using the FETCHMOCOLS and FETCHMODCOLEXCEPT TABLE options
is not supported when DDL is enabled.

• Renaming tables.

• DDL statements inside stored procedures is not supported.

• When the time zone of the Oracle GoldenGate installation server does not match the time
zone of the source database server, then the TIMESTAMP data sent to the target
database will differ from the source database. For Oracle GoldenGate Microservices
installations, regardless of the time zones being the same, Extract will resolve the time
zone to UTC. Determine the source database time zone by running the following query:

select @@system_time_zone;

This will return a time zone value, such as PDT.

Create a variable in the deployment that contains the source Extract, called TZ and set it
to the value of the source database time zone. After this, stop any running Oracle
GoldenGate processes and restart the Administration Service, and then start the Extracts
and Replicats.

• Extraction and replication from and to views is not supported.

• Transactions applied by the slave are logged into the relay logs and not into the slave's
binlog. If you want a slave to write transactions the binlog that it receives from the
master , you need to start the replication slave with the log slave-updates option as 1 in
my.cnf. This is in addition to the other binary logging parameters. After the master's
transactions are in the slave's binlog, you can then setup a regular capture on the slave
to capture and process the slave's binlog.

Systems Schemas
The following schemas or objects are not automatically replicated by Oracle GoldenGate
unless they are explicitly specified without a wildcard.

• 'information_schema'
• 'performance_schema'
• 'mysql'

Oracle
This section lists details about configuring Oracle GoldenGate for Oracle.

Topics:

• Prepare Database Users and Privileges

• Prepare Database Connection, System, and Parameter Settings

• Configure Secure Connections to Oracle Database from Oracle GoldenGate

• Transaction Log Settings and Requirements

• Oracle: Supported Data Types, Objects, and Operations for DDL and DML

Chapter 4
Oracle

4-31

Prepare Database Users and Privileges
Learn about creating database users and assigning privileges for Oracle GoldenGate
for Oracle.

Topics:

• Grant User Privileges for Oracle Database 21c and Lower

Grant User Privileges for Oracle Database 21c and Lower
The user privileges that are required for connecting to Oracle database from Oracle
GoldenGate depend on the type of user.

Privileges should be granted depending on the actions that the user needs to perform
as the GoldenGate Administrator User on the source and target databases. For
example, to grant DML operation privileges to insert, update, and delete transactions
to a user, use the GRANT ANY INSERT/UPDATE/DELETE privileges and to further allow
users to work with tables and indexes as part of DML operations, use the GRANT
CREATE/DROP/ALTER ANY TABLE/INDEX privileges.

If the GoldenGate Administrator user has the DBA role, additional object privileges are
not needed. However, there might be security constraints granting the DBA role to the
GoldenGate Administration user. The DBA role is not necessarily required for Oracle
GoldenGate.

If there are many objects being replicated, you might consider using the ANY privilege
for DML and DDL operations. This simplifies the provision of privileges to the
GoldenGate Administrator users, as you only need to grant a few privileges depending
on the database operations.

The following table describes some of the essential privileges for GoldenGate
Administrator user for Oracle database. For explanation purposes, the table uses
c##ggadmin as an example of a common user for a multitenant container database
and ggadmin as the pluggable database (PDB) user. PDBEAST and PDBWEST are used as
examples of PDB names.

The following table describes the essential privileges for GoldenGate Administrator
user for using Oracle GoldenGate with on source and target Oracle databases:

Privilege Extract Replicat All
Modes

Purpose

RESOURCE Yes Yes Required to create objects

In Oracle Database 12cR1 and
later, instead of RESOURCE,
grant the following privilege:

ALTER USER user QUOTA
{size | UNLIMITED} ON
tablespace;

Chapter 4
Oracle

4-32

Privilege Extract Replicat All
Modes

Purpose

CONNECT Yes Yes Common user SYSTEM connects
to the root container. This
privilege is essential when the
DBA role is not assigned to the
user.

See an example of Permissions
granted to an Oracle mutitenant
database common user.

CREATE SESSION Yes Yes Required to connect to the
database.

CREATE VIEW Yes Yes Required to add the heartbeat
table view.

If you want to be specific to
each object, you can also
provide the privileges for each
object individually. You may
consider creating a specific
database role to maintain such
privileges.

ALTER SYSTEM Yes Yes Perform administrative changes,
such as enabling logging.

ALTER USER Yes Yes Required for multitenant
architecture and GGADMIN
should be a valid Oracle
GoldenGate administrator
schema.

EXEC
DBMS_GOLDENGATE_AUTH.GRAN
T_ADMIN_PRIVILEGE
('REPUSER',
CONTAINER=>'PDBEAST');

Yes Yes • Required for Autonomous
Databases (ATP and ADW)
Extract and Replicat.
Extracts in the root
container (CDB$ROOT))
might require a value of
ALL or a specific PDB
(example: pdbeast).

• Grant privileges for Extract
and Replicat users. See
Example: Grant privileges
using the
DBMS_GOLDENGATE_AU
TH.GRANT_ADMIN_PRIVI
LEGE package

• Grant privilges to capture
from Virtual Private
Database

• Grants privilges to capture
redacted data

Grant DV_GOLDENGATE_ADMIN
and
DV_GOLDENGATE_REDO_ACCESS
privileges connected as SYS
user to the Extract and the
Replicat user.

Yes Yes Capture from Data Vault. See
Privileges for Capturing from
Oracle Data Vault.

Chapter 4
Oracle

4-33

Privilege Extract Replicat All
Modes

Purpose

Grant Replicat privileges in
DBMS_MACADM.ADD_AUTH_TO_R
EALM if applying to a realm.

NA Yes Capture from Data Vault. See
Privileges for Capturing from
Oracle Data Vault.

INSERT, UPDATE, DELETE on
target tables

NA Yes Apply replicated DML to target
objects. See Details of Support
for Objects and Operations in
Oracle DML

GRANT INSERT ANY TO...

GRANT UPDATE ANY TO...

GRANT DELETE ANY TO...

NA Yes Grant these privileges to the
Replicat user, instead of
granting INSERT, UPDATE,
DELETE to every table, if
replicating every table.

If DDL replication is performed,
grant the following as Database
Vault owner:

EXECUTE
DBMS_MACADM.AUTHORIZE_D
DL(‘GGADMIN USER',
‘SCHEMA FOR DDL’);

No No Capture from Data Vault. See
Privileges for Capturing from
Oracle Data Vault.

DDL privileges on target objects
(if using DDL support)

NA Yes Issue replicated DDL on target
objects. See Details of Support
for Objects and Operations in
Oracle DDL.

GRANT [CREATE|ALTER|DROP]
ANY [TABLE|INDEX|VIEW|
PROCEDURE] to GGADMIN;

Yes Yes Grants privileges for DDL
Replication for tables.

CREATE ANY TABLE Yes Yes Grants privileges for creating
table in any schema. To allow
creating tables only in a specific
schema, use the CREATE
TABLE privilege.

CREATE ANY VIEW Yes Yes Grants privilges to create view
in any database schema. To
allow creating views in a specific
schema, use the CREATE VIEW
privilege.

SELECT ANY DICTIONARY
Yes Yes Allow all privileges to work

properly on dictionary tables.

Chapter 4
Oracle

4-34

Example: Permissions granted for the Oracle database common user

Privilges granted for the Oracle database common user, which is c##ggadmin in the following
example:

CREATE USER c##ggadmin IDENTIFIED BY passw0rd CONTAINER=all DEFAULT
TABLESPACE GG_DATA TEMPORARY TABLESPACE temp;
GRANT RESOURCE to c##ggadmin;
GRANT CREATE SESSION to c##ggadmin;
GRANT CREATE VIEW to c##ggadmin;
GRANT CREATE TABLE to c##ggadmin;
GRANT CONNECT to c##ggadmin CONTAINER=all;
GRANT DV_GOLDENGATE_ADMIN; –-- for data vault user
GRANT DV_GOLDENGATE_REDO_ACCESS; –-- for data vault user
GRANT ALTER SYSTEM to c##ggadmin;
GRANT ALTER USER to c##ggadmin;
ALTER USER c##ggadmin SET CONTAINER_DATA=all CONTAINER=current;
ALTER USER c##ggadmin QUOTA unlimited ON GG_DATA;
GRANT SELECT ANY DICTIONARY to c##ggadmin;
GRANT SELECT ANY TRANSACTION to c##ggadmin;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('c##ggadmin');

In this example, DBA privilege is not provided but the user will be able to access the
DBA_SYS_PRIVS package, if required.

Privileges granted for PDB user ggadmin are provided in the following example:

Example: Grant privileges using the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE package

This procedure grants the privileges needed by a user to be an Oracle GoldenGate
administrator The following example grants explicit privileges for Extract on Oracle
multitenant database:

BEGIN
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE
(GRANTEE => 'c##ggadmin', PRIVILEGE_TYPE => 'CAPTURE',
 GRANT_SELECT_PRIVILEGES => TRUE, DO_GRANTS => TRUE, CONTAINER => 'ALL'
);
END;

See DBMS_GOLDENGATE_AUTH in Oracle Database PL/SQL Packages and Types Reference for
more information.

• Privileges for Capturing from Oracle Data Vault

Privileges for Capturing from Oracle Data Vault
Grant the following privileges connected as SYS user in Oracle database. These privileges are
set for Extract and Replicat user credentials:

Chapter 4
Oracle

4-35

• EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE ('userID','*',
GRANT_OPTIONAL_PRIVILEGES=>'*');
GRANT DV_GOLDENGATE_ADMIN, DV_GOLDENGATE_REDO_ACCESS to userID;

• Grant Replicat the privileges in DBMS_MACADM.ADD_AUTH_TO_REALM if applying to a
realm.

Connect as Database Vault owner and execute the following scripts:

BEGIN
DVSYS.DBMS_MACADM.ADD_AUTH_TO_REALM(
REALM_NAME => 'Oracle Default Component Protection Realm',GRANTEE
=> 'userID',AUTH_OPTIONS => 1) ;
END ;
/
EXECUTE_DBMS_MACADM.AUTHORIZE_DDL('SYS', 'SYSTEM');

• For DDL replication, grant the following as the Database Vault owner:

EXECUTE DBMS_MACADM.AUTHORIZE_DDL
(‘userID', ‘SCHEMA FOR DDL’);

Prepare Database Connection, System, and Parameter Settings
Learn about configuring database connection, system, and parameter settings for
Oracle GoldenGate for Oracle.

Topics:

• Database Configuration

Database Configuration
Know more about configuring the Oracle database for Oracle GoldenGate

Topics:

• Enable Oracle GoldenGate for Oracle

• Setting Flashback Query

• Handling Other Database Properties

• Configure a Multitenant Container Database

• Configure the Auto Capture Mode for Extract

• Managing Server Resources

• Ensuring Row Uniqueness in Source and Target Table

• Support for Oracle Sequences

Chapter 4
Oracle

4-36

Enable Oracle GoldenGate for Oracle
The database services required to support Oracle GoldenGate capture and apply must be
enabled explicitly for all Oracle database versions. This is required for Extract and all Replicat
modes.

To enable Oracle GoldenGate, set the following database initialization parameter. All
instances in Oracle RAC must have the same setting.

ENABLE_GOLDENGATE_REPLICATION=true

This parameter alters the DBA_FEATURE_USAGE_STATISTICS view. For more information about
this parameter, see Initialization Parameters.

Setting Flashback Query
To know about the data that Oracle GoldenGate fetches, see Details of Support for Oracle
Data Types and Objects.

By default, Oracle GoldenGate uses Flashback Query to fetch the values from the undo
(rollback) tablespaces. That way, Oracle GoldenGate can reconstruct a read-consistent row
image as of a specific time or SCN to match the redo record.

For best fetch results, configure the source database as follows:

1. Set a sufficient amount of redo retention by setting the Oracle initialization parameters
UNDO_MANAGEMENT and UNDO_RETENTION as follows (in seconds).

UNDO_MANAGEMENT=AUTO

UNDO_RETENTION=86400

UNDO_RETENTION can be adjusted upward in high-volume environments.

2. Calculate the space that is required in the undo tablespace by using the following
formula.

undo_space = UNDO_RETENTION * UPS + overhead

Where:

• undo_space is the number of undo blocks.

• UNDO_RETENTION is the value of the UNDO_RETENTION parameter (in seconds).

• UPS is the number of undo blocks for each second.

• overhead is the minimal overhead for metadata (transaction tables, etc.).

Use the system view V$UNDOSTAT to estimate UPS and overhead.

3. For tables that contain LOBs, do one of the following:

• Set the LOB storage clause to RETENTION. This is the default for tables that are
created when UNDO_MANAGEMENT is set to AUTO.

Chapter 4
Oracle

4-37

• If using PCTVERSION instead of RETENTION, set PCTVERSION to an initial value of
25. You can adjust it based on the fetch statistics that are reported with the
STATS EXTRACT command. If the value of the STAT_OPER_ROWFETCH
CURRENTBYROWID or STAT_OPER_ROWFETCH_CURRENTBYKEY field in these statistics
is high, increase PCTVERSION in increments of 10 until the statistics show low
values.

Oracle GoldenGate provides the following parameters to manage fetching.

Parameter or Command Description

STATS EXTRACT
command with
REPORTFETCH option

Shows Extract fetch statistics on demand.

STATOPTIONS parameter
with REPORTFETCH option

Sets the STATS EXTRACT command so that it always shows fetch
statistics.

MAXFETCHSTATEMENTS
parameter

Controls the number of open cursors for prepared queries that
Extract maintains in the source database, and also for SQLEXEC
operations.

MAXFETCHSTATEMENTS
parameter

Controls the default fetch behavior of Extract: whether Extract
performs a flashback query or fetches the current image from the
table.

FETCHOPTIONS
parameter with the
USELATESTVERSION or
NOUSELATESTVERSION
option

Handles the failure of an Extract flashback query, such as if the
undo retention expired or the structure of a table changed. Extract
can fetch the current image from the table or ignore the failure.

REPFETCHEDCOLOPTIONS
parameter

Controls the response by Replicat when it processes trail records
that include fetched data or column-missing conditions.

Handling Other Database Properties
There are some database properties that may affect Oracle GoldenGate and the
parameters used to resolve or work around certain conditions.

The following table lists the database properties and the associated concern/
resolution.

Database Property Concern/Resolution

Table with interval
partitioning

To support tables with interval partitioning, make certain that the WILDCARDRESOLVE
parameter remains at its default of DYNAMIC.

Table with virtual columns Virtual columns are not logged, and Oracle does not permit DML on virtual columns.
You can, however, capture this data and map it to a target column that is not a virtual
column by doing the following:

Include the table in the Extract TABLE statement and use the FETCHCOLS option of
TABLE to fetch the value from the virtual column in the database.

In the Replicat MAP statement, map the source virtual column to the non-virtual target
column.

Table with inherently
updateable view

To replicate to an inherently updateable view, define a key on the unique columns in
the updateable view by using a KEYCOLS clause in the same MAP statement in which
the associated source and target tables are mapped.

Chapter 4
Oracle

4-38

Database Property Concern/Resolution

Redo logs or archives in
different locations

The TRANLOGOPTIONS parameter contains options to handle environments where the
redo logs or archives are stored in a different location than the database default or on
a different platform from that on which Extract is running. For more information, see
Reference for Oracle GoldenGate.

TRUNCATE operations To replicate TRUNCATE operations, choose one of two options:

• Standalone TRUNCATE support by means of the GETTRUNCATES parameter
replicates TRUNCATE TABLE, but no other TRUNCATE options. Use only if not
using Oracle GoldenGate DDL support.

• The full DDL support replicates TRUNCATE TABLE, ALTER TABLE TRUNCATE
PARTITION, and other DDL.

Sequences To replicate DDL for sequences (CREATE, ALTER, DROP, RENAME), use Oracle
GoldenGate DDL support.

To replicate just sequence values, use the SEQUENCE parameter in the Extract
parameter file. This does not require the Oracle GoldenGate DDL support
environment. For more information, see Reference for Oracle GoldenGate.

Configure a Multitenant Container Database
Oracle GoldenGate with Oracle Database allows each pluggable database (PDB) to have
Extract registered for a specific PDB, which is called a per-PDB Extract.

The following diagram shows the configuration for different approaches in a multitenant
container database configuration:

There are two approaches to configure an Extract for an Oracle multitenant database.

• Approach 1: Adding Extract directly from the PDB. This approach is useful when Extract
captures from isolated PDBs, managing ownership and responsibility at the PDB level.

• Approach 2: Adding Extract in the root container and referencing the associated PDBs
This approach is useful when Extract captures data from multiple PDBs.

If you use Approach 1, you can create a per-PDB Extract by connecting as the local PDB
user (for example, ggadmin) and then register this Extract with the PDB. As you are already
logged in as the PDB user, the container clause is not required. Similarly, the
SOURCECATALOG and two-part naming convention is adequate.

If you use Approach 2, you can connect to the root container with the common database
user c##ggadmin and create Extract for specific PDBs. This Extract needs to be registered for

Chapter 4
Oracle

4-39

the specific PDB using the container clause. The container clause might contain a
single or multiple PDBs.

Note:

Even if you use a root-level Extract, you need the user credentials for each
PDB from which you need to capture. The hearbeat table also resides in the
individual PDBs.

To set up an Extract, see Add a Primary Extract.

Considerations for Multitenant Container Database Configuration

Consider the following guidelines when configuring a multitenant container databases
for data replication using Oracle GoldenGate:

• The different pluggable databases in the multitenant container database can have
different character sets. Oracle GoldenGate captures data from any multitenant
database with different character sets into one trail file and replicates the data
without corruption due to using different character sets.

• To create and register a per-PDB Extract, you will need to connect to the PDB user
such as ggadmin created for PDB-level access. Use the USERIDALIAS parameter to
configure a SQL*Net connection string such as ggadmin@pdbeast. You do not need
the container clause or the SOURCECATALOG to set up the per-PDB Extract.

• To add a user for the root container, Extract must connect to the root container
(cdb$root) as a common user in order to interact with the logmining server. To
specify the root container, use the appropriate SQL*Net connect string for the
database user that you specify with the USERIDALIAS parameter, such as
c##ggadmin@dbeast.

• To support source CDB 12.2, Extract must specify the trail format as release 12.3.
Due to changes in the redo logs, to capture from a multitenant database that is
Oracle 12.2 or higher, the trail format release must be 12.3 or higher.

• DDL replication works as a normal replication for multitenant databases.

See Add Database Credentials to add a multitenant container database user in Oracle
GoldenGate credentials. See Grant User Privileges for Oracle Database 21c and
Lower depending on the Oracle database installation that you need to configure.

• Flush Sequence for Multitenant Container Database

Flush Sequence for Multitenant Container Database

You can only use the FLUSH SEQUENCE command within Oracle GoldenGate, if the
sequence.sql script applies the database procedures into the GoldenGate Admin
schema of the database.

Use the FLUSH SEQUENCE command immediately after you start Extract for the first time
during an initial synchronization or a re-synchronization. This command updates an
Oracle sequence, so that initial redo records are available at the time that Extract
starts to capture transaction data. Normally, redo is not generated until the current
cache is exhausted. The flush gives Replicat an initial start point with which to
synchronize to the correct sequence value on the target system. From then on, Extract

Chapter 4
Oracle

4-40

can use the redo that is associated with the usual cache reservation of sequence values.

1. The following Oracle procedures are used by FLUSH SEQUENCE:

Database Procedure User and Privileges

Source updateSequence Grants EXECUTE to the owner of the Oracle GoldenGate
DDL objects, or other selected user if not using DDL
support.

Target replicateSequence Grants EXECUTE to the Oracle GoldenGate Replicat user.

The sequence.sql script installs these procedures. Normally, this script is run as part of
the Oracle GoldenGate installation process, but make certain that was done before using
FLUSH SEQUENCE. If sequence.sql was not run, the flush fails and an error message
similar to the following is generated:

Cannot flush sequence {0}. Refer to the Oracle GoldenGate for Oracle
documentation for instructions on how to set up and run the sequence.sql
script. Error {1}.

2. The GLOBALS file must contain a GGSCHEMA parameter that specifies the schema in which
the procedures are installed. This user must have CONNECT, RESOURCE, and DBA privileges.

3. Before using FLUSH SEQUENCE, issue the DBLOGIN command as the database user that
has EXECUTE privilege on the updateSequence procedure. If logging into a multitenant
container database, log into the pluggable database that contains the sequence that is to
be flushed.

FLUSH SEQUENCE must be issued at the PDB level, to create an Oracle GoldenGate user in
each PDB for which the sequence replication is required. Use DBLOGIN to log into that PDB,
and run the FLUSH SEQUENCE command.

It is recommended that you use the same schema in each PDB, so that it works with the
GGSCHEMA GLOBALS parameter file.

In the following example, the environment setup is for Oracle 21c to Oracle 21c Replication,
with integrated Extract, parallel Replicat using Oracle GoldenGate 21c (21.3.0).

The following table lists the names of source and target CDB, PDBs, and their corresponding
user credentials for connecting to the database.

Source CDB Target CDB

NORTH SOUTH
PDB Name: DBEAST PDB Name: DBWEST
Common user: c##ggadmin
PDB user for sequences: ggate

PDB User: ggadmin

sqlplus / as sysdba
ALTER SESSION SESSION SET CONTAINER=CERTMISSN;
CREATE USER ggate IDENTIFIED BY password DEFAULT TABLESPACE USERS TEMPORARY
TABLESPACE TEMP QUOTA UNLIMITED ON USERS CONTAINER=CURRENT;

Chapter 4
Oracle

4-41

Run @sequence.sql

sqlplus / as sysdba
ALTER SESSION SET CONTAINER=DBEAST;
@sequence.sql

When prompted enter the following:

GGADMIN GLOBALS
GGSCHEMA GGADMIN

Run the FLUSH SEQUENCE command:

DBLOGIN USERIDALIAS ggeast DOMAIN OracleGoldenGate
FLUSH SEQUENCE DBEAST.HR.*

Target Oracle GoldenGate Configuration:

sqlplus / as sysdba
ALTER SESSION SET CONTAINER =PDBWEST;
@sequence.sql

When prompted, enter the PDB user name ggadmin.

This also applies to the @sequence.sql script, which you must also run on each PDB
from where you are going to capture.

Configure the Auto Capture Mode for Extract
The auto capture mode allows automatically capturing the tables that have been
enabled for Oracle GoldenGate auto capture.

See How to Capture Supplemental Logging for Oracle GoldenGate in the Oracle
Database Utilities guide.

Here are some benefits of using the auto capture mode:

• Easy to configure captured table set

• No requirement to update TABLE/TABLEEXCLUDE parameter

• No need to stop or restart Extract when captured table set changes

Enabling Auto Capture Mode for Extract

Enable the auto capture mode using TRANLOGOPTIONS:

TRANLOGOPTIONS ENABLE_AUTO_CAPTURE | DISABLE_AUTO_CAPTURE

When Extract is running in the auto capture mode, don't filter an LCR if the object is
not part of exclusion list set by TABLE EXCLUDE parameter or any inclusion list set by
TABLE parameter.

Chapter 4
Oracle

4-42

The LIST TABLES command shows the list of tables enabled for AUTO_CAPTURE.

Note:

Auto capture is available from Oracle GoldenGate 21c with Oracle Database 19.18
data patch and higher. In case of database upgrade , any Extract which was
registered prior to Oracle Database 19.18 cannot be converted to auto capture.
Only new Extracts that are created after upgrateding to Oracle Database 19.18 and
later, can be converted to auto capture Extract.

See DML Auto Capture and Details of Support for Objects and Operations in Oracle DDL to
know about the DML and DDL considerations.

Also see this article Oracle GoldenGate 21c: Auto Capture of Tables to learn more.

Managing Server Resources
Extract interacts with an underlying logmining server in the source database and Replicat
interacts with an inbound server in the target database. This section provides guidelines for
managing the shared memory consumed by the these servers.

The shared memory that is used by the servers comes from the Streams pool portion of the
System Global Area (SGA) in the database. Therefore, you must set the database
initialization parameter STREAMS_POOL_SIZE high enough to keep enough memory available
for the number of Extract and Replicat processes that you expect to run in integrated mode.
Note that Streams pool is also used by other components of the database (like Oracle
Streams, Advanced Queuing, and Datapump export/import), so make certain to take them
into account while sizing the Streams pool for Oracle GoldenGate.

By default, one Extract requests the logmining server to run with MAX_SGA_SIZE of 1GB. Thus,
if you are running three Extracts in the same database instance, you need at least 3 GB of
memory allocated to the Streams pool. As a best practice, keep 25 percent of the Streams
pool available. For example, if there are 3 Extracts, set STREAMS_POOL_SIZE for the database
to the following value:

3 GB * 1.25 = 3.75 GB

Ensuring Row Uniqueness in Source and Target Table
Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority, depending on the number and type of
constraints that were logged (see Configuring Logging Properties).

1. Primary key if it does not contain any extended (32K) VARCHAR2/NVARCHAR2 columns.
Primary key without invisible columns.

2. Unique key: Unique key without invisible columns.

In the case of a non-integrated Replicat, the selection of the unique key is as follows:

• First unique key alphanumerically with no virtual columns, no UDTs, no function-
based columns, no nullable columns, and no extended (32K) VARCHAR2/NVARCHAR2
columns. To support a key that contains columns that are part of an invisible index,
you must use the ALLOWINVISIBLEINDEXKEYS parameter in the Oracle GoldenGate
GLOBALS file.

Chapter 4
Oracle

4-43

https://www.oracle-scn.com/oracle-goldengate-21c-auto-capture-of-tables/

• First unique key alphanumerically with no virtual columns, no UDTs, no
extended (32K) VARCHAR2/NVARCHAR2 columns, or no function-based columns,
but can include nullable columns. To support a key that contains columns that
are part of an invisible index, you must use the ALLOWINVISIBLEINDEXKEYS
parameter in the Oracle GoldenGate GLOBALS file.

3. Not Nullable Unique keys: At least one column from one of the unique keys must
be not nullable. This is because NOALLOWNULLABLEKEYS is the default.

Note:

ALLOWNULLABLEKEYS is not valid for integrated Replicat.

4. If none of the preceding key types exist (even though there might be other types of
keys defined on the table) Oracle GoldenGate constructs a pseudo key of all
columns that the database allows to be used in a unique key, excluding virtual
columns, UDTs, function-based columns, extended (32K) VARCHAR2/NVARCHAR2
columns, and any columns that are explicitly excluded from the Oracle
GoldenGate configuration by an Oracle GoldenGate user.

Unless otherwise excluded due to the preceding restrictions, invisible columns are
allowed in the pseudo key.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on
the table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of
Oracle GoldenGate on the source system. On the target, this key causes
Replicat to use a larger, less efficient WHERE clause.

If a table does not have an appropriate key, or if you prefer the existing key(s) not to be
used, you can define a substitute key if the table has columns that always contain
unique values. You define this substitute key by including a KEYCOLS clause within the
Extract TABLE parameter and the Replicat MAP parameter. The specified key will
override any existing primary or unique key that Oracle GoldenGate finds. For more
information, see Reference for Oracle GoldenGate.

Support for Oracle Sequences
To support Oracle sequences, you must install some database procedures.

From the SQL prompt, run the script $OGG_HOME/lib/sql/legacy/sequence.sql on
the source and target database as a DBA.

In a container database (CDB), connect as a local user with DBA privileges in the
pluggable database (PDB).

In a non-CDB, connect as DBA for the database.

The Oracle GoldenGate Admin User does not necessarily need DBA privileges.
However, the Oracle GoldenGate Admin User must have the SELECT ANY DICTIONARY
and the [CREATE |ALTER|DROP] ANY SEQUENCE privileges in addition to the privileges

Chapter 4
Oracle

4-44

granted by the OGG_CAPTURE | OGG_APPLY role for Oracle Database 23c and higher or through
the procedure call DBMS_GOLDEN_GATE_AUTH.GRANT_ADMIN_PRIVILEGE for earlier database
versions.

The following example shows how to login to a CDB as the system user and run the
sequence.sql script:

sqlplus system/***@cdb23_pdbeast
@sequence.sql

You will be prompted to provide the Oracle GoldenGate Admin User, such as ggadmin.

When the script successfully finishes, it returns the status for sequence replication:

STATUS OF SEQUENCE SUPPORT
--
SUCCESSFUL installation of Oracle Sequence Replication support

Configure Secure Connections to Oracle Database from Oracle
GoldenGate

To specify database connection string in a secure manner while configuring Oracle
GoldenGate connections to the database, the following options are available:

• Include the USERIDALIAS option in the Extract and Replicat parameter files

• Set up a Bequeath connection

Security Options for Specifying the Connection String in the Extract and Replicat
Parameter Files

The following are the security options for specifying the connection string in the Extract or
Replicat parameter file.

Credential store method:

USERIDALIAS ggeast

In the case of USERIDALIAS, the alias ggeast is stored in the Oracle GoldenGate credential
store with the actual connection string. The following example uses the INFO
CREDENTIALSTORE command to display the details of the credentials configured in Oracle
GoldenGate:

INFO CREDENTIALSTORE DOMAIN OracleGoldenGate

Output:

Domain: OracleGoldenGate
 Alias: ggeast
 Userid: ggadmin@dc1.example.com:1521/DBEAST.example.com

Chapter 4
Oracle

4-45

Setting up a Bequeath connection

Oracle GoldenGate can connect to a database instance without using the network
listener if a Bequeath connect descriptor is added in the tnsnames.ora.

The following example shows the configuration for connecting to a database using
Bequeath connect descriptor:

dbbeq = (DESCRIPTION=
 (ADDRESS=(PROTOCOL=beq)
 (ENVS='ORACLE_SID=sales,ORACLE_HOME=/app/db_home/
oracle,LD_LIBRARY_PATH=/app/db_home/oracle/lib')
 (PROGRAM=/app/db_home/oracle/bin/oracle)
 (ARGV0=oraclesales)
 (ARGS='(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))'))
 (CONNECT_DATA=(SID=sales)))

In this example:

/app/db_home is the target Oracle database installation directory

sales is the database service name

The ORACLE_SID, ORACLE_HOME, and LD_LIBRARY_PATH in the ENVS parameter refers to
the target.

Note:

Make sure that there is no white space between these environment variable
settings.

Transaction Log Settings and Requirements
Know more about transaction log settings and requirements for Oracle GoldenGate for
Oracle.

Topics:

• Configuring Logging Properties

Configuring Logging Properties
Oracle GoldenGate relies on the redo logs to capture the data that it needs to replicate
source transactions. The Oracle redo logs on the source system must be configured
properly before you start Oracle GoldenGate processing.

This section addresses the following logging levels that apply to Oracle GoldenGate.
The logging level that you use depends on Oracle GoldenGate features that you are
using.

Chapter 4
Oracle

4-46

Note:

Redo volume is increased as the result of this required logging. You can wait until
you are ready to start Oracle GoldenGate processing to enable the logging.

This table shows the Oracle GoldenGate use cases for the different logging properties.

Logging option Command Name What it does Use case

Forced logging mode ALTER DATABASE
FORCE LOGGING;

Forces the logging of all
transactions and loads.

Strongly recommended
for all Oracle
GoldenGate use cases.
FORCE LOGGING
overrides any table-level
NOLOGGING settings.

Minimum database-level
supplemental logging

ALTER DATABASE ADD
SUPPLEMENTAL LOG
DATA

Enables minimal
supplemental logging to
add row-chaining
information to the redo
log.

Required for all Oracle
GoldenGate use cases

Schema-level
supplemental logging,
default setting

See Enable Subset
Database Replication
Logging.

ADD SCHEMATRANDATA Enables unconditional
supplemental logging of
the primary key and
conditional
supplemental logging of
unique key(s) and
foreign key(s) of all
tables in a schema. All
of these keys together
are known as the
scheduling columns.

Enables the logging for
all current and future
tables in the schema. If
the primary key, unique
key, and foreign key
columns are not
identical at both source
and target, use
ALLCOLS.

Schema-level
supplemental logging
with unconditional
logging for all supported
columns. (See Enable
Schema-level
Supplemental Logging
for non-supported
column types.)

ADD SCHEMATRANDATA
with ALLCOLS option

Enables unconditional
supplemental logging of
all of the columns in a
table, for all of the tables
in a schema.

Used for bidirectional
and active-active
configurations where all
column values are
checked, not just the
changed columns, when
attempting to perform an
update or delete. This
takes more resources
though allows for the
highest level of real-time
data validation and thus
conflict detection.

This method should also
be used if they are going
to be using the
HANDLECOLLISIONS
parameter for initial
loads.

Schema-level
supplemental logging,
minimal setting

ADD SCHEMATRANDATA
with
NOSCHEDULINGCOLS
option

Enables unconditional
supplemental logging of
the primary key and all
valid unique indexes of
all tables in a schema.

Use only for
nonintegrated Replicat.
This is the minimum
required schema-level
logging.

Chapter 4
Oracle

4-47

Logging option Command Name What it does Use case

Table-level supplemental
logging with built-in
support for integrated
Replicat

See Enable Table-level
Supplemental Logging

ADD TRANDATA Enables unconditional
supplemental logging of
the primary key and
conditional
supplemental logging of
unique key(s) and
foreign key(s) of a table.
All of these keys
together are known as
the scheduling columns.

Required for all Oracle
GoldenGate use cases
unless schema-level
supplemental logging is
used. If the primary key,
unique key, and foreign
key columns are not
identical at both source
and target, use
ALLCOLS.

Table-level supplemental
logging with
unconditional logging for
all supported columns.
(See Enable Table-level
Supplemental Logging
for non-supported
column types.)

ADD TRANDATA with
ALLCOLS option

Enables unconditional
supplemental logging of
all of the columns of the
table.

Used for bidirectional
and active-active
configurations where all
column values are
checked, not just the
changed columns, when
attempting to perform an
update or delete. This
takes more resources
though allows for the
highest level of real-time
data validation and thus
conflict detection.

It can also be used
when the source and
target primary, unique,
and foreign keys are not
the same or are
constantly changing
between source and
target.

Table-level supplemental
logging, minimal setting

ADD TRANDATA with
NOSCHEDULINGCOLS
option

Enables unconditional
supplemental logging of
the primary key and all
valid unique indexes of a
table.

Use for nonintegrated
Replicat and non-
parallel Replicat. This is
the minimum required
table-level logging.

Topics:

• Enable Subset Database Replication Logging

• Enable Schema-level Supplemental Logging

• Enable Table-level Supplemental Logging

Enable Subset Database Replication Logging
Oracle strongly recommends putting the Oracle source database into forced logging
mode. Forced logging mode forces the logging of all transactions and loads, overriding
any user or storage settings to the contrary. This ensures that no source data in the
Extract configuration gets missed.

There is a fine-granular database supplemental logging mode called Subset Database
Replication available in LogMiner, which is the basic recommended mode for all
Oracle GoldenGate and XStream clients. It replaces the previously used Minimum
Supplemental Logging mode.

Chapter 4
Oracle

4-48

To know more, see ALTER DATABASE in the Oracle Database SQL Language Reference.

The subset database replication logging is enabled at CDB$ROOT (and all user-PDBs inherit it)
currently.

Note:

Database-level primary key (PK) and unique index (UI) logging is only discouraged
if you are replicating a subset of tables. You can use it with Live Standby, or if
Oracle GoldenGate is going to replicate all tables, like to reduce the downtime for a
migration or upgrade.

Perform the following steps to verify and enable, if necessary, subset database replication
logging and forced logging.

1. Log in to SQL*Plus as a user with ALTER SYSTEM privilege.

2. Issue the following command to determine whether the database is in supplemental
logging mode and in forced logging mode. If the result is YES for both queries, the
database meets the Oracle GoldenGate requirement.

SELECT SUPPLEMENTAL_LOG_DATA_MIN, FORCE_LOGGING FROM V$DATABASE;

3. If the result is NO for either or both properties, continue with these steps to enable them
as needed:

ALTER PLUGGABLE DATABASE pdbname ADD SUPPLEMENTAL LOG DATA SUBSET
DATABASE REPLICATION;;
ALTER DATABASE FORCE LOGGING;

4. Issue the following command to verify that these properties are now enabled.

SELECT SUPPLEMENTAL_LOG_DATA_MIN, FORCE_LOGGING FROM V$DATABASE;

The output of the query must be YES for both properties.

5. Switch the log files.

ALTER SYSTEM SWITCH LOGFILE;

Enable Schema-level Supplemental Logging
Oracle GoldenGate supports schema-level supplemental logging. Schema-level logging is
required for an Oracle source database when using the Oracle GoldenGate DDL replication
feature. In all other use cases, it is optional, but then you must use table-level logging instead
(see Enable Table-level Supplemental Logging).

By default, schema-level logging automatically enables unconditional supplemental logging of
the primary key and conditional supplemental logging of unique key(s) and foreign key(s) of
all tables in a schema. Options enable you to alter the logging as needed.

Chapter 4
Oracle

4-49

Note:

Oracle strongly recommends using schema-level logging rather than table-
level logging, because it ensures that any new tables added to a schema are
captured if they satisfy wildcard specifications. This method is also
recommended because any changes to key columns are automatically
reflected in the supplemental log data too. For example, if a key changes,
there is no need to issue ADD TRANDATA.

Perform the following steps on the source system to enable schema-level
supplemental logging.

1. Start the command line on the source system.

2. Issue the DBLOGIN command with the alias of a user in the credential store who
has privilege to enable schema-level supplemental logging.

DBLOGIN USERIDALIAS alias

See USERIDALIAS in Reference for Oracle GoldenGate for more information about
USERIDALIAS and additional options.

3. When using ADD SCHEMATRANDATA or ADD TRANDATA on a multitenant database, you
can either log directly into the PDB and perform the command. Alternately, if you
are logging in at the root level (using a C## user), then you must include the PDB.
Issue the ADD SCHEMATRANDATA command for each schema for which you want to
capture data changes with Oracle GoldenGate.

ADD SCHEMATRANDATA pdb.schema [ALLCOLS | NOSCHEDULINGCOLS]

Where:

• Without options, ADD SCHEMATRANDATA schema enables the unconditional
supplemental logging on the source system of the primary key and the
conditional supplemental logging of all unique key(s) and foreign key(s) of all
current and future tables in the given schema. Unconditional logging forces the
primary key values to the log whether or not the key was changed in the
current operation. Conditional logging logs all of the column values of a foreign
or unique key if at least one of them was changed in the current operation.
The default is optional to support nonintegrated Replicat but is required to
support integrated Replicat because primary key, unique keys, and foreign
keys must all be available to the inbound server to compute dependencies.

• ALLCOLS can be used to enable the unconditional supplemental logging of all
of the columns of a table and applies to all current and future tables in the
given schema. Use to support integrated Replicat when the source and target
tables have different scheduling columns. (Scheduling columns are the
primary key, the unique key, and the foreign key.)

• NOSCHEDULINGCOLS logs only the values of the primary key and all valid unique
indexes for existing tables in the schema and new tables added later. This is
the minimal required level of schema-level logging and is valid only for
Replicat in nonintegrated mode.

Chapter 4
Oracle

4-50

In the following example, the command enables default supplemental logging for the hr
schema.

ADD SCHEMATRANDATA pdbeast.hr ALLCOLS

In the following example, the command enables the supplemental logging only for the
primary key and valid unique indexes for the HR schema.

ADD SCHEMATRANDATA pdbeast.hr NOSCHEDULINGCOLS

Enable Table-level Supplemental Logging
Enable table-level supplemental logging on the source system in the following cases:

• To enable the required level of logging when not using schema-level logging (see Enable
Schema-level Supplemental Logging). Either schema-level or table-level logging must be
used. By default, table-level logging automatically enables unconditional supplemental
logging of the primary key and conditional supplemental logging of unique key(s) and
foreign key(s) of a table. Options enable you to alter the logging as needed.

• To prevent the logging of the primary key for any given table.

• To log non-key column values at the table level to support specific Oracle GoldenGate
features, such as filtering and conflict detection and resolution logic.

• If the key columns change on a table that only has table-level supplemental logging, you
must perform ADD TRANDATA on the table prior to allowing any DML activity on the table.

Perform the following steps on the source system to enable table-level supplemental logging
or use the optional features of the command.

1. Run the command line on the source system.

2. Issue the DBLOGIN command using the alias of a user in the credential store who has
privilege to enable table-level supplemental logging.

DBLOGIN USERIDALIAS alias

See USERIDALIAS in Reference for Oracle GoldenGatefor more information about
DBLOGIN and additional options.

3. Issue the ADD TRANDATA command.

ADD TRANDATA [PDB.]schema.table [, COLS (columns)] [, NOKEY] [, ALLCOLS |
NOSCHEDULINGCOLS]

Where:

• PDB is the name of the root container or pluggable database if the table is in a
multitenant container database.

• schema is the source schema that contains the table.

• table is the name of the table. See Specifying Object Names in Oracle GoldenGate
Input for instructions for specifying object names.

Chapter 4
Oracle

4-51

• ADD TRANDATA without other options automatically enables unconditional
supplemental logging of the primary key and conditional supplemental logging
of unique key(s) and foreign key(s) of the table. Unconditional logging forces
the primary key values to the log whether or not the key was changed in the
current operation. Conditional logging logs all of the column values of a foreign
or unique key if at least one of them was changed in the current operation.
The default is optional to support nonintegrated Replicat (see also
NOSCHEDULINGCOLS) but is required to support integrated Replicat because
primary key, unique keys, and foreign keys must all be available to the
inbound server to compute dependencies. For more information about
integrated Replicat, see About Integrated Replicat.

• ALLCOLS enables the unconditional supplemental logging of all of the columns
of the table. Use to support integrated Replicat when the source and target
tables have different scheduling columns. (Scheduling columns are the
primary key, the unique key, and the foreign key.)

• NOSCHEDULINGCOLS is valid for Replicat in nonintegrated mode only. It issues
an ALTER TABLE command with an ADD SUPPLEMENTAL LOG DATA ALWAYS
clause that is appropriate for the type of unique constraint that is defined for
the table, or all columns in the absence of a unique constraint. This command
satisfies the basic table-level logging requirements of Oracle GoldenGate
when schema-level logging will not be used. See Ensuring Row Uniqueness in
Source and Target Table for how Oracle GoldenGate selects a key or index.

• COLS columns logs non-key columns that are required for a KEYCOLS clause or
for filtering and manipulation. The parentheses are required. These columns
will be logged in addition to the primary key unless the NOKEY option is also
present.

• NOKEY prevents the logging of the primary key or unique key. Requires a
KEYCOLS clause in the TABLE and MAP parameters and a COLS clause in the ADD
TRANDATA command to log the alternate KEYCOLS columns.

4. If using ADD TRANDATA with the COLS option, create a unique index for those
columns on the target to optimize row retrieval. If you are logging those columns
as a substitute key for a KEYCOLS clause, make a note to add the KEYCOLS clause to
the TABLE and MAP statements when you configure the Oracle GoldenGate
processes.

Oracle: Supported Data Types, Objects, and Operations for DDL and
DML

This section contains support information for Oracle GoldenGate on Oracle Database.

Topics:

• Details of Support for Oracle Data Types and Objects

• Details of Support for Oracle Database Editions

• Details of Support for Objects and Operations in Oracle DML

• Details of Support for Objects and Operations in Oracle DDL

Chapter 4
Oracle

4-52

Details of Support for Oracle Data Types and Objects
Within the database, you can use the Dictionary view DBA_GOLDENGATE_SUPPORT_MODE to get
information about supported objects. There are different types for replication support:

• Support by Capturing from Redo

• Procedural Replication Support

Most data types are supported (SUPPORT_MODE=FULL), which imply that Oracle GoldenGate
captures the changes out of the redo. In some unique cases, the information cannot be
captured, but the information can be fetched with a connection to the database
(SUPPORT_MODE=ID KEY).

From Oracle GoldenGate 21c onward, DML on tables that are not supported will be
automatically skipped when DBA_GOLDENGATE_SUPPORT_MODE.SUPPORT_MODE= NONE is set.
However, DDLs for these objects are still captured based on the DDL INCLUDE/EXCLUDE
settings. See Details of Support for Objects and Operations in Oracle DDL for DDL support.

Tables supported with ID KEY require a connection to the source database or an ADG
Standby database for fetching to support those tables. If using downstream Extract, with
NOUSERID you must specify a FETCHUSERID or FETCHUSERIDALIAS connection.

Other changes can be replicated with Procedural Replication (SUPPORT_MODE=PLSQL) that
requires additional parameter setting of Extract. In the unlikely case that there is no native
support, no support by fetching and no procedural replication support, there is no Oracle
GoldenGate support.

Detailed support information for Oracle data types, objects, and operations starts with the
following:

Extract Redo Support:

The following data types allow capturing directly from the redo logs and do not require any
fetching. If used in a downstream mining configuration, the NOUSERID parameter may be used.

• NUMBER, BINARY FLOAT, BINARY DOUBLE, and (logical) UROWID
• DATE and TIMESTAMP
• CHAR, VARCHAR2, LONG, NCHAR, NVARCHAR2, BOOLEAN
• RAW, LONG RAW, CLOB, NCLOB, BLOB, SECUREFILE, BASICFILE, and BFILE (LOB size limited to

4GB)

• XML columns stored as CLOB, Binary and Object-Relational (OR)

• XMLType columns and XMLType tables stored as XML CLOB, XML Object Relational, and XML
Binary

• Native JSON datatype identified by the DTYJSON code.

• UDTs (user-defined or abstract data types) on BYTE semantics with source database
compatibility 12.0.0.0.0 or higher

• ANYDATA data type with source database compatibility 12.0.0.0.0 or higher

• Hierarchy-enabled tables are managed by the Oracle XML database repository with
source database compatibility 12.2.0.0.0 or higher and enabled procedural replication

• REF types with source database compatibility 12.2.0.0.0 or higher

Chapter 4
Oracle

4-53

• DICOM with source database compatibility 12.0.0.0.0 or higher

• SDO _TOPO_GEOMETRY, SDO_GEORASTER, or ST_GEOMETRY with source database
compatibility 12.2.0.0.0 or higher and enabled procedural replication

• Identity columns with source database compatibility 18.1.0.0.0 or higher

• SDO_RDF_TRIPLE_S with source database compatibility 19.1.0.0.0 or higher

Data Types Fetched from the Database

Data types listed here are not readable in the redo logs and must be fetched by the
Extract process during it's processing. The method for fetching these records is
controlled by the use of the FETCHOPTIONS parameter.

It is recommended that the database that is generating the redo data is the same
database that Oracle GoldenGate uses to fetch the data. However, if this is not
possible, an Active Data Guard Standby database open for read-only can also be used
as the fetch database.

SECUREFILE LOBs

• Modified with DBMS_LOB.FRAGMENT_* procedures

• NOLOGGING LOBs

• Deduplicated LOBs with a source database release less than 12gR2

Object tables contain the following attributes:

• Nested table

• SDO_TOPO_GEOMETRY
• SDO_GEORASTER
Fetch does not support ANYDATA columns in a UDT.

Additional Considerations

• NUMBER can be up to the maximum size permitted by Oracle. The support of the
range and precision for floating-point numbers depends on the host machine. In
general, the precision is accurate to 16 significant digits, but you should review the
database documentation to determine the expected approximations. Oracle
GoldenGate rounds or truncates values that exceed the supported precision.

• Non-logical UROWID columns will be identified by Extract. A warning message is
generated in the report file. The column information is not part of the trail record.
All other supported datatypes of the record are part of the trail record and are
replicated.

• TIMESTAMP WITH TIME ZONE as TZR (region ID) for initial loads, SQLEXEC or
operations where the column can only be fetched from the database. In those
cases, the region ID is converted to a time offset by the source database when the
column is selected. Replicat applies the timestamp as date and time data into the
target database with a time offset value.

• VARCHAR expansion from 4K to 32K (extended or long VARCHAR)

– 32K long columns cannot be used as:

* Row identifiers

* Part of a key or unique index

Chapter 4
Oracle

4-54

* In a KEYCOLS clause of the TABLE or MAP parameter

* Resolution columns in a CDR (conflict detection and resolution)

– If an extended VARCHAR column is part of unique index or constraint, then direct path
inserts to this table may cause Replicat to abend with a warning. Verify that the
extended VARCHAR caused the abend by checking ALL_INDEXES or ALL_IND_COLUMNS
for a unique index or ALL_CONS_COLUMNS or ALL_CONSTRAINTS for a unique constraint.
Once you determine that an extended VARCHAR, you can temporarily drop the index or
disable the constraint:

* Unique Index: DROP INDEX index_name;

* Unique Constraint: ALTER TABLE table_name MODIFY CONSTRAINT
constraint_name DISABLE;

• BFILE column are replicating the locator. The file on the server file system outside of the
database and is not replicated

• Multi-byte character data: The source and target databases must be logically identical in
terms of schema definition for the tables and sequences being replicated.
Transformation, filtering, and other manipulation cannot be used.

• The character sets between the two databases must be one of the following:

– Identical on the source and on the target

– Equivalent, which is not the same character set but containing the same set of
characters

– Target is a superset of the source

Multi-byte data can be used in any semantics: bytes or characters.

• UDTs can have different source and target schemas. UDTs, including values inside object
columns or rows, cannot be used within filtering criteria in TABLE or MAP statements, or as
input or output for the Oracle GoldenGate column-conversion functions, SQLEXEC, or other
built-in data manipulation tools. Support is only provided for like-to-like Oracle source and
targets.

To fully support object tables created using the CREATE TABLE as SELECT (CTAS)
statement, Extract must be configured to capture DML from the CTAS statement. Oracle
object table can be mapped to a non-Oracle object table in a supported target database.

• XML column type cannot be used for filtering and manipulation. You can map the XML
representation of an object to a character column by means of a COLMAP clause in a TABLE
or MAP statement.

Oracle recommends the AL32UTF8 character set as the database character set when
working with XML data. This ensures the correct conversion by Oracle GoldenGate from
source to target. With DDL replication enabled, Oracle GoldenGate replicates the CTAS
statement and allows it to select the data from the underlying target tables. OIDs are
preserved if TRANLOGOPTIONS GETCTASDML parameter is set. For XMLType tables, the row
object IDs must match between source and target.

• For JSON datatype, DTYJSON is stored in the binary JSON format for query and space
efficiency as well as transportability between platforms. A column with JSON data as text
is declared using any of the text data types (VARCHAR2, CLOB) and the IS JSON constraint.
JSON datatype is supported by Oracle GoldenGate Extract, and Replicat processes
along with XStream Out, XStream In processes. JSON support limits the inline text JSON
to 4K to prevent Replicat from abending.

Chapter 4
Oracle

4-55

By default Extract writes native JSON columns in text format but using
binary_json_format parameter forces to write in native format. So, this paramater
must not be set for VARCHAR2, NVARVAR2, CLOB, NCLOB. The parameter is not set by
default. If you are only replicating from Oracle to Oracle you can set the parameter
and gain a bit of performance. Also the Column manipulation functions like str are
supported only for text JSON.

• It is recommended that de-duplication is removed for LOB data types on the target
database. If DEDUPLICATION is left enabled, it causes severe performance impact
on the apply side.

SQLEXEC Limitations

There might be a few cases where replication support exists, but there are limitations
of processing such as in case of using SQLEXEC. The following table lists these
limitations:

Datatypes Supported By SQLEXEC Support Limitations

NUMBER, BINARY FLOAT, BINARY DOUBLE
UROWID

Special cases of:
• XML types
• UDTs
• Object tables
• Collections or nested tables

(N)CHAR, (N) VARCHAR2 LONG, RAW, LONG
RAW (N)CLOB, CLOB, BLOB, SECUREFILE,
BASICFILE and BFILE

Not supported

XML columns, XMLType Not supported

Native JSON datatype VARCHAR2, NVARCHAR2, CLOB, NCLOB not
supported with the Extract parameter
binary_json_format.

UDT Not supported

ANYDATA Not supported

Hierarchy-enabled tables Not supported

RET Types Not supported

DICOM Not supported

SDO_TOPO_GEOMETRY, SDO_GEORASTER Not supported

Identity columns Not supported

SDO_RDF_TRIPLE_S Not supported

Note:

SECUREFILE LOBs updated using DBMS_LOG.FRAGMENT or SECUREFILE LOBs
that are set to NOLOGGING are fetched instead of read from the redo.

Chapter 4
Oracle

4-56

Note:

Any datatype not listed in the table is fully supported by SQLEXEC with the same
limitations as the regular product.

Topics:

• Handling Special Data Types

• Non-Supported Oracle Data Types

Handling Special Data Types
Here are the special configuration requirements for different Oracle data types for Extract.

Topics:

• Multibyte Character Types

• TIMESTAMP

• Large Objects (LOB)

• XML

• User Defined Types

Multibyte Character Types

Multi-byte characters are supported as part of a supported character set. If the semantics
setting of an Oracle source database is BYTE and the setting of an Oracle target is CHAR, use
the Replicat parameter SOURCEDEFS in your configuration, and place a definitions file that is
generated by the DEFGEN utility on the target. These steps are required to support the
difference in semantics, whether or not the source and target data definitions are identical.
Replicat refers to the definitions file to determine the upper size limit for fixed-size character
columns.

TIMESTAMP

To replicate timestamp data, Oracle Database normalizes TIMESTAMP WITH LOCAL TIME ZONE
data to the local time zone of the database that receives it, the target database in case of
Oracle GoldenGate. To preserve the original time stamp of the data that it applies, Replicat
sets its session to the time zone of the source database. You can override this default and
supply a different time zone by using the SOURCETIMEZONE parameter in the Replicat
parameter file. To force Replicat to set its session to the target time zone, use the
PRESERVETARGETTIMEZONE parameter.

To prevent Oracle GoldenGate from abending on TIMESTAMP WITH TIME ZONE as TZR, use the
Extract parameter TRANLOGOPTIONS with INCLUDEREGIONIDWITHOFFSET to replicate TIMESTAMP
WITH TIMEZONE as TZR from an Oracle source that is at least version 10g to an earlier Oracle
target, or from an Oracle source to a non-Oracle target. This option allows replicating to
Oracle versions that do not support TIMESTAMP WITH TIME ZONE as TZR and to database
systems that only support time zone as a UTC offset.

You can also use the SOURCETIMEZONE parameter to specify the source time zone for data that
is captured by an Extract that is earlier than version 12.1.2. Those versions do not write the
source time zone to the trail.

Chapter 4
Oracle

4-57

Large Objects (LOB)

The following are some configuration guidelines for Extract LOBs.

1. Store large objects out of row if possible.

2. Extract captures LOBs from the redo log. For UPDATE operations on a LOB
document, only the changed portion of the LOB is logged. To force whole LOB
documents to be written to the trail when only the changed portion is logged, use
the TRANLOGOPTIONS parameter with the FETCHPARTIALLOB option in the Extract
parameter file. When Extract receives partial LOB content from the logmining
server, it fetches the full LOB image instead of processing the partial LOB. Use
this option when replicating to a non-Oracle target or in other conditions where the
full LOB image is required.

XML

The following are tools for working with XML within Oracle GoldenGate constraints.

• Although Extract does not support the capture of changes made to an XML
schema, you may be able to evolve the schemas and then resume replication of
them without the need for a resynchronization, see Supporting Changes to XML
Schemas.

• Extract captures XML from the redo log. For UPDATE operations on an XML
document, only the changed portion of the XML is logged if it is stored as OBJECT
RELATIONAL or BINARY. To force whole XML documents to be written to the trail
when only the changed portion is logged, use the TRANLOGOPTIONS parameter with
the FETCHPARTIALXML option in the Extract parameter file. When Extract receives
partial XML content from the logmining server, it fetches the full XML document
instead of processing the partial XML. Use this option when replicating to a non-
Oracle target or in other conditions where the full XML image is required.

Topics:

• Supporting Changes to XML Schemas

Supporting Changes to XML Schemas
Learn about supporting changes to an XML schema. Extract does not support the
capture of changes made to an XML schema.

Topics:

• Supporting RegisterSchema

• Supporting DeleteSchema

• Supporting CopyEvolve

Supporting RegisterSchema
RegisterSchema can be handled by registering the schema definition on both source
and target databases before any table is created that references the XML schema.

Supporting DeleteSchema

Issue DeleteSchema on the source database first.

After Replicat is caught up with the changes made to the source database, issue the
DeleteSchema call on the target database.

Chapter 4
Oracle

4-58

Supporting CopyEvolve
The CopyEvolve procedure evolves, or changes, a schema and can modify tables by adding
or removing columns.

The CopyEvolve procedure can also be used to change whether or not XML documents are
valid. Handling CopyEvolve requires more coordination.

Use the following procedure if you are issuing CopyEvolve on the source database.

1. Quiesce changes to dependent tables on the source database.

2. Execute the CopyEvolve on the primary or source database.

3. Wait for Replicat to finish applying all of the data from those tables to the target database.

4. Stop Replicat.

5. Apply the CopyEvolve on the target database.

6. Restart Replicat.

User Defined Types

If Oracle Database is compatible with releases greater than or equal to 12.0.0.0.0, then
Extract captures data from redo (no fetch), see Setting Flashback Query.

If replicating source data that contains user-defined types with the NCHAR, NVARCHAR2, or
NCLOB attribute to an Oracle target, use the HAVEUDTWITHNCHAR parameter in the Replicat
parameter file. When this type of data is encountered in the trail, HAVEUDTWITHNCHAR causes
Replicat to connect to the Oracle target in AL32UTF8, which is required when a user-defined
data type contains one of those attributes. HAVEUDTWITHNCHAR is required even if NLS_LANG is
set to AL32UTF8 on the target. By default Replicat ignores NLS_LANG and connects to an
Oracle Database in the native character set of the database. Replicat uses the OCIString
object of the Oracle Call Interface, which does not support NCHAR, NVARCHAR2, or NCLOB
attributes, so Replicat must bind them as CHAR. Connecting to the target in AL32UTF8 prevents
data loss in this situation. HAVEUDTWITHNCHAR must appear before the USERID or USERIDALIAS
parameter in the parameter file.

Non-Supported Oracle Data Types
Oracle GoldenGate does not support the following data types.

• Time offset values outside the range of +12:00 and -12:00..Oracle GoldenGate supports
time offset values between +12:00 and -12:00.

• Tables that only contain a single column and that column one of the following:

– UDT

– LOB (CLOB, NCLOB, BLOB, BFILE)

– XMLType column

– VARCHAR2 (MAX) where the data is greater than 32KB

• Tables with LOB, UDT, XML, or XMLType column without one of the following:

– Primary Key

– Scalar columns with a unique constraint or unique index

Table where the combination of all scalar columns do not guarantee uniqueness are
unsupported.

Chapter 4
Oracle

4-59

• Tables with the following XML characteristics:

– Tables with a primary key constraint made up of XML attributes

– XMLType tables with a primary key based on an object identifier (PKOID).

– XMLType tables, where the row object identifiers (OID) do not match between
source and target

– XMLType tables created by an empty CTAS statement.

– XML schema-based XMLType tables and columns where changes are made
to the XML schema (XML schemas must be registered on source and target
databases with the dbms_xml package).

– The maximum length for the entire SET value of an update to an XMLType
larger than 32K, including the new content plus other operators and XQuery
bind values.

– SQL*Loader direct-path insert for XML-Binary and XML-OR.

• Tables with following UDT characteristics:

– UDTs that contain CFILE or OPAQUE (except of XMLType)

– UDTs with CHAR and VARCHAR attributes that contain binary or unprintable
characters

– UDTs using the RMTTASK parameter

• UDTs and nested tables with following condition:

– Nested table UDTs with CHAR, NVARCHAR2 or NCLOB attributes.

– Nested tables with CLOB, BLOB, extended (32k) VARCHAR2 or RAW
attributes in UDTs.

– Nested table columns/attributes that are part of any other UDT.

• When data in a nested table is updated, the row that contains the nested table
must be updated at the same time. Otherwise there is no support.

• When VARRAYS and nested tables are fetched, the entire contents of the column
are fetched each time, not just the changes. Otherwise there is no support.

• Object table contains the following attributes:

– Nested table

– SDO_TOPO_GEOMETRY

– SDO_GEORASTER

See additional exclusions in Details of Support for Oracle Data Types and Objects.

Details of Support for Oracle Database Editions

This topic describes the Database Editions from the Oracle Database Product Family
supported with the current Oracle GoldenGate release.

Oracle Database Express Edition (XE) is supported for delivery only and does not
support any of the integrated features such as integrated Replicat or parallel Replicat
in integrated mode.

Oracle Database Standard Edition 2 (SE2) is supported, with the following limitation:

Chapter 4
Oracle

4-60

• Extract, integrated Replicat, and parallel Replicat in integrated mode are limited to a
single thread.

Oracle Database Enterprise Edition (EE) has full Oracle GoldenGate functionality.

Oracle Database Personal Edition (PE) is supported for delivery only, and does not support
any of the integrated features such as integrated or parallel Replicat in integrated mode.

Details of Support for Objects and Operations in Oracle DML
Here is a list of Oracle objects and operations that Oracle GoldenGate supports for the
capture and replication of DML operations.

Topics:

• Multitenant Container Database

• Tables, Views, and Materialized Views

• System Partitioning

• Sequences and Identity Columns

• Non-supported Objects and Operations in Oracle DML

• DML Auto Capture

Multitenant Container Database
Oracle GoldenGate captures from, and delivers to, a multitenant container database. See
Configure a Multitenant Container Database.

Application Containers are not supported.

Tables, Views, and Materialized Views
Oracle GoldenGate supports the following DML operations made to regular tables, index-
organized tables, clustered tables, and materialized views.

• INSERT
• UPDATE
• DELETE
• Associated transaction control operations

Tip:

You can use the DBA_GOLDENGATE_SUPPORT_MODE data dictionary view to display
information about the level of Oracle GoldenGate capture process support for the
tables in your database. The PLSQL value of DBA_GOLDENGATE_SUPPORT_MODE
indicates that the table is supported natively, but requires procedural supplemental
logging. For more information, see the DBA_GOLDENGATE_SUPPORT_MODE. If you need
to display all tables that have no primary and no non-null unique indexes, you can
use the DBA_GOLDENGATE_NOT_UNIQUE. For more information, see
DBA_GOLDENGATE_NOT_UNIQUE.

Chapter 4
Oracle

4-61

Topics:

• Limitations of Support for Regular Tables

• Limitations of Support for Views

• Limitations of Support for Materialized Views

Limitations of Support for Regular Tables

These limitations apply to Extract.

• Oracle GoldenGate supports tables that contain any number of rows.

• A row can be up to 4 MB in length. If Oracle GoldenGate is configured to include
both the before and after image of a column in its processing scope, the 4 MB
maximum length applies to the total length of the full before image plus the length
of the after image. For example, if there are UPDATE operations on columns that
are being used as a row identifier, the before and after images are processed and
cannot exceed 4 MB in total. Before and after images are also required for
columns that are not row identifiers but are used as comparison columns in conflict
detection and resolution (CDR). Character columns that allow for more than 4 KB
of data, such as a CLOB, only have the first 4 KB of data stored in-row and
contribute to the 4MB maximum row length. Binary columns that allow for more
than 4kb of data, such as a BLOB the first 8 KB of data is stored in-row and
contributes to the 4MB maximum row length.

• Oracle GoldenGate supports the maximum number of columns per table that is
supported by the database.

• Oracle GoldenGate supports the maximum column size that is supported by the
database.

• Oracle GoldenGate supports tables that contain only one column, except when the
column contains one of the following data types:

– LOB
– LONG
– LONG VARCHAR
– Nested table
– User Defined Type (UDT)

– VARRAY
– XMLType

• Set DBOPTIONS ALLOWUNUSEDCOLUMN before you replicate from and to tables with
unused columns.

• Oracle GoldenGate supports tables with these partitioning attributes:

– Range partitioning

– Hash Partitioning Interval Partitioning

– Composite Partitioning

– Virtual Column-Based Partitioning

– Reference Partitioning

– List Partitioning

Chapter 4
Oracle

4-62

• Oracle GoldenGate supports tables with virtual columns, but does not capture change
data for these columns or apply change data to them: The database does not write virtual
columns to the transaction log, and the Oracle Database does not permit DML on virtual
columns. For the same reason, initial load data cannot be applied to a virtual column. You
can map the data from virtual columns to non-virtual target columns.

• Oracle GoldenGate will not consider unique/index with virtual columns.

• Oracle GoldenGate supports replication to and from Oracle Exadata. To support Exadata
Hybrid Columnar Compression, the source database compatibility must be set to
11.2.0.0.0 or higher.

• Oracle GoldenGate supports Transparent Data Encryption (TDE).

• Oracle GoldenGate supports TRUNCATE statements as part of its DDL replication support,
or as standalone functionality that is independent of the DDL support.

• Oracle GoldenGate supports the capture of direct-load INSERT, with the exception of
SQL*Loader direct-path insert for XML Binary and XML Object Relational. Supplemental
logging must be enabled, and the database must be in archive log mode. The following
direct-load methods are supported.

– /*+ APPEND */ hint

– /*+ PARALLEL */ hint

– SQLLDR with DIRECT=TRUE
• Oracle GoldenGate fully supports capture from compressed objects for Extract.

• Oracle GoldenGate supports XA and PDML distributed transactions.

• Oracle GoldenGate supports DML operations on tables with FLASHBACK ARCHIVE
enabled. However, Oracle GoldenGate does not support DDL that creates tables with the
FLASHBACK ARCHIVE clause or DDL that creates, alters, or deletes the flashback data
archive itself.

Limitations of Support for Views

These limitations apply to Extract.

• Oracle GoldenGate supports capture from a view when Extract is in initial-load mode
(capturing directly from the source view, not the redo log).

• Oracle GoldenGate does not capture change data from a view, but it supports capture
from the underlying tables of a view.

Limitations of Support for Materialized Views

Materialized views are supported by Extract with the following limitations.

• Materialized views created WITH ROWID are not supported.

• The materialized view log can be created WITH ROWID.

• The source table must have a primary key.

• Truncates of materialized views are not supported. You can use a DELETE FROM
statement.

• DML (but not DDL) from a full refresh of a materialized view is supported. If DDL support
for this feature is required, open an Oracle GoldenGate support case.

• For Replicat the Create MV command must include the FOR UPDATE clause

Chapter 4
Oracle

4-63

• Either materialized views can be replicated or the underlying base table(s), but not
both.

System Partitioning
System partitioning is an Oracle database feature that allows a table to be created with
named partitions. A system partitioned table is not maintained by the database. Each
DML must specify the partition where the row is to reside. Extract and all modes of
Replicat support system partitioning. Each trail file record header pertaining to a
system partitioned table includes the partition name. From Oracle GoldenGate 21c
onward, a Partition Name Record (PNR) is generated for system partitioned tables, if it
is included in the PARTITION parameter.

See PARTITION | PARTITIONEXCLUDE in the Reference for Oracle GoldenGate.

Sequences and Identity Columns
• Identity columns are supported from Oracle database 18c onward and requires

Extract, Parallel Replicat in Integrated mode, or Integrated Replicat.

• Oracle GoldenGate supports the replication of sequence values and identity
columns in a unidirectional and active-passive high-availability configuration.

• Oracle GoldenGate ensures that the target sequence values will always be higher
than those of the source (or equal to them, if the cache is zero).

Topics:

• Limitations of Support for Sequences

Limitations of Support for Sequences

These limitations apply to Extract.

• Oracle GoldenGate does not support the replication of sequence values in an
active-active bi-directional configuration.

• The cache size and the increment interval of the source and target sequences
must be identical. The cache can be any size, including 0 (NOCACHE).

• The sequence can be set to cycle or not cycle, but the source and target
databases must be set the same way.

• Tables with default sequence columns are excluded from replication for Extract.

Non-supported Objects and Operations in Oracle DML
The following are additional Oracle objects or operations that are not supported by
Extract:

• REF are supported natively for compatibility with Oracle Database 12.2 and higher,
but not primary-key based REFs (PKREFs)

• Sequence values in an active-active bi-directional configuration

• Database Replay

• Tables created as EXTERNAL

Chapter 4
Oracle

4-64

DML Auto Capture

Oracle GoldenGate supports the following DML operations with auto capture mode:

• TABLEEXCLUSION parameter is supported.

• TABLE parameter is supported.

• Extract writes the table DML records delivered by the database for auto capture to trail
file.

Details of Support for Objects and Operations in Oracle DDL
Learn about the Oracle objects and operations that Oracle GoldenGate supports for the
capture and replication of DDL operations.

Topics:

• Supported Objects and Operations in Oracle DDL

• Non-supported Objects and Operations in Oracle DDL

Supported Objects and Operations in Oracle DDL
DDL capture support is integrated into the database logmining server. You must set the
database parameter compatibility to 11.2.0.4.0 or higher. Extract supports DDL that includes
password-based column encryption, such as:

• CREATE TABLE t1 (a number, b varchar2(32) ENCRYPT IDENTIFIED BY
my_password);

• ALTER TABLE t1 ADD COLUMN c varchar2(64) ENCRYPT IDENTIFIED BY my_password;
The following additional statements apply to Extract with respect to DDL support.

• All Oracle GoldenGate topology configurations are supported for Oracle DDL replication.

• Active-active (bi-directional) replication of Oracle DDL is supported between two (and
only two) databases that contain identical metadata.

• Oracle GoldenGate supports DDL on the following objects:

– clusters

– directories

– functions

– indexes

– packages

– procedure

– tables

– tablespaces

– roles

– sequences

– synonyms

Chapter 4
Oracle

4-65

– triggers

– types

– views

– materialized views

– users

– invisible columns

• Oracle Edition-Based Redefinition (EBR) database replication of Oracle DDL is
supported for Extract for the following Oracle Database objects:

– functions

– library

– packages (specification and body)

– procedure

– synonyms

– types (specification and body)

– views

• From Oracle GoldenGate 21c onward, DDLs that are greater than 4 MB in size will
be provided replication support.

• Oracle GoldenGate supports Global Temporary Tables (GTT) DDL operations to
be visible to Extract so that they can be replicated. You must set the DDLOPTIONS
parameter to enable this operation because it is not set by default.

• Oracle GoldenGate supports dictionary for use with NOUSERID and TRANLOGOPTIONS
GETCTASDML. This means that Extract receives object metadata from the LogMiner
dictionary without querying the dictionary objects. Oracle GoldenGate uses the
dictionary automatically when the source database compatibility parameter is
greater than or equal to 11.2.0.4.

When using dictionary and trail format in the Oracle GoldenGate release 12.2.x,
Extract requires the Logminer patch to be applied on the mining database if the
Oracle Database release is earlier than 12.1.0.2.

• Oracle GoldenGate supports replication of invisible columns in Extract. Trail format
release 12.2 is required. Replicat must specify the MAPINVISIBLECOLUMNS
parameter or explicitly map to invisible columns in the COLMAP clause of the MAP
parameter.

If SOURCEDEFS or TARGETDEFS is used, the metadata format of a definition file for
Oracle tables must be compatible with the trail format. Metadata format 12.2 is
compatible with trail format 12.2, and metadata format earlier than 12.2 is
compatible with trail format earlier than 12.2. To specify the metadata format of a
definition file, use the FORMAT RELEASE option of the DEFSFILE parameter when the
definition file is generated in DEFGEN.

• DDL statements to create a namespace context (CREATE CONTEXT) are captured by
Extract and applied by Replicat.

• Extract in pump mode supports the following DDL options:

– DDL INCLUDE ALL
– DDL EXCLUDE ALL

Chapter 4
Oracle

4-66

– DDL EXCLUDE OBJNAME
The SOURCECATALOG and ALLCATALOG option of DDL EXCLUDE is also supported.

If no DDL parameter is specified, then all DDLs are written to trail. If DDL EXCLUDE
OBJNAME is specified and the object owner is does not match an exclusion rule, then it is
written to the trail.

• Starting with Oracle database 21c, the following DDL is available to support blocking of
DML/DDL changes that are not replicated by Oracle GoldenGate:

ALTER DATABASE [ENABLE | DISABLE] goldengate blocking mode;

When Oracle GoldenGate blocking mode is enabled, DMLs that use support_mode NONE
in tables and execute unsupported Oracle PL/SQL statements will fail with the following
error:

ORA-26981: "operation was unsupported during Oracle GoldenGate blocking
mode"

For Oracle database 21c, the following features cause a table to have support_mode
NONE in Oracle GoldenGate:

– BFILE as an attribute of ADT column, or typed table

– Table with no scalars

– OLAP AW$ table

– Sharded queue table

– Sorted Hash Cluster Table

– Primary key constraint on ADT attribute in relational table

– Primary key/unique key constraint on long raw/varchar (over 4000 bytes)

– V$DATABASE column, Goldengate_Blocking_Mode can be queried to determine the
current blocking mode status.

• For DDL auto capture mode:

– It is relevant only for DDL INCLUDE MAPPED because Extract captures DDLs based on
TABLE and TABLEEXCLUDE parameter.

– Only table-related DDLs can be auto-captured.

– DDLs to enable auto capture at table level:

CREATE/ALTER TABLE … ENABLE LOGICAL REPLICATION ALLKEYS;

or

CREATE/ALTER TABLE … ENABLE LOGICAL REPLICATION ALLOW NOVALIDATE KEYS;

See How to Capture Supplemental Logging for Oracle GoldenGate in Oracle Database
Utilities guide.

• The following operations are supported for partition related DDLs and partition
maintenance operations

Chapter 4
Oracle

4-67

– Drop partition:

If a partition is recreated with the same name, then it will get a new object
number. The internal caches are cleared to minimize space consumption when
a drop partition DDL is processed.

– Truncate partition:

Partition name and object number stays the same. Base table object version
stays the same.

– Rename partition:

The partition object number stays the same but gets a new name. The base
table's object version gets bumped. In memory name cache will get invalidated
upon seeing this DDL and repopulated upon the next DML. The cache, which
stores if a given partition object number is interesting or not will also need to
be reevaluated as a the new partition name may switch from filtered to not
filtered or vice versa.

– Exchange partition:

Exchanges data in a partition with that in a table or vice versa. The obj# of the
partition being exchanged does not change. Dataobj# does change but is not
used by Extract. The partition itself still belongs to the same table.

– Merge partition:

Merges one or more partitions into a new partition. The DDL creates the new
partition and drops the partitions from which it was merged. In memory caches
should be cleared to save space and the user should ensure proper filter rules
for the newly created partition.

– Split partition:

The partition being split keeps its original name and object number and new
partition is created for the split data. The user must ensure partition filter rules
are correct for the newly created partition.

– Coalesce partition:

Reduces the number of partitions in a hash partitioned table. The specific
partition that is coalesced is selected by the database, and is dropped after its
contents have been redistributed. The remaining partitions keep their same
name and object number. The internal caches should be cleared to minimize
space consumption.

– Modify partition:

Modifies default and real attributes of partitions, apart from adding or dropping
of values for list partitions. All modifications leave the partitions name and
object number intact.

– Move partition:

Partition data is moved to a new tablespace. Partition name and number
remain the same.

– Redef table:

dbms_redefinition can be used to partition a table through the use of an
interim table. The partitions are created on the interim table and after the
finish_redef operation, the tables swap names. The partitions created on the
interim table keep their names and object numbers when the tables are

Chapter 4
Oracle

4-68

swapped. The Extract filter cache, needs to be reevaluated upon finish_redef as
the partitions now belong to the base table. The user must ensure proper filter rules.

– Redef partition:

When redefining a table, the partitions follow from the original table to the interim
table. For example, consider the case where the original table has partitions, which
live in the USER tablespace, and the interim table is created with no partitions and the
table lives in the NEW tablespace. In this case, after the finish_redef operation,
when the tables are swapped the partition still lives in the USER tablespace. Redef
partition allows a partition to be moved to the interim table's NEW tablespace. The
partition retains its name and object number.

– System generated partition names:

When partitions are created automatically for hash partitions and operations such as
split partition, the partition name is in the form of SYS_P sequence value. Similarly,
subpartitions are of the form SYS_SUBP sequence value. It is recommended that the
partition is renamed before excepting DML to conform to filter rules.

Non-supported Objects and Operations in Oracle DDL
Here's a list of non-supported objects and operations in Oracle DDL.

Topics:

• Excluded Objects

• Other Non-supported DDL

Excluded Objects

The following names or name prefixes are considered Oracle-reserved and must be excluded
from the Oracle GoldenGate DDL configuration. Oracle GoldenGate will ignore objects that
contain these names.

Excluded schemas:

 "ANONYMOUS", // HTTP access to XDB
 "APPQOSSYS", // QOS system user
 "AUDSYS", // audit super user
 "BI", // Business Intelligence
 "CTXSYS", // Text
 "DBSNMP", // SNMP agent for OEM
 "DIP", // Directory Integration Platform
 "DMSYS", // Data Mining
 "DVF", // Database Vault
 "DVSYS", // Database Vault
 "EXDSYS", // External ODCI System User
 "EXFSYS", // Expression Filter
 "GSMADMIN_INTERNAL", // Global Service Manager
 "GSMCATUSER", // Global Service Manager
 "GSMUSER", // Global Service Manager
 "LBACSYS", // Label Security
 "MDSYS", // Spatial
 "MGMT_VIEW", // OEM Database Control
 "MDDATA",
 "MTSSYS", // MS Transaction Server
 "ODM", // Data Mining
 "ODM_MTR", // Data Mining Repository
 "OJVMSYS", // Java Policy SRO Schema

Chapter 4
Oracle

4-69

 "OLAPSYS", // OLAP catalogs
 "ORACLE_OCM", // Oracle Configuration Manager User
 "ORDDATA", // Intermedia
 "ORDPLUGINS", // Intermedia
 "ORDSYS", // Intermedia
 "OUTLN", // Outlines (Plan Stability)
 "SI_INFORMTN_SCHEMA", // SQL/MM Still Image
 "SPATIAL_CSW_ADMIN", // Spatial Catalog Services for Web
 "SPATIAL_CSW_ADMIN_USR",
 "SPATIAL_WFS_ADMIN", // Spatial Web Feature Service
 "SPATIAL_WFS_ADMIN_USR",
 "SYS",
 "SYSBACKUP",
 "SYSDG",
 "SYSKM",
 "SYSMAN", // Adminstrator OEM
 "SYSTEM",
 "TSMSYS", // Transparent Session Migration
 "WKPROXY", // Ultrasearch
 "WKSYS", // Ultrasearch
 "WK_TEST",
 "WMSYS", // Workspace Manager
 "XDB", // XML DB
 "XS$NULL",
 "XTISYS", // Time Index

Special schemas:

 "AURORAJISUTILITY$", // JSERV
 "AURORAORBUNAUTHENTICATED", // JSERV
 "DSSYS", // Dynamic Services Secured Web Service
 "OSE$HTTP$ADMIN", // JSERV
 "PERFSTAT", // STATSPACK
 "REPADMIN",
 "TRACESVR" // Trace server for OEM

Excluded tables (the * wildcard indicates any schema or any character):

 "*.AQ$*", // advanced queues
 "*.DR$*$*", // oracle text
 "*.M*_*$$", // Spatial index
 "*.MLOG$*", // materialized views
 "*.OGGQT$*",
 "*.OGG$*", // AQ OGG queue table
 "*.ET$*", // Data Pump external tables
 "*.RUPD$*", // materialized views
 "*.SYS_C*", // constraints
 "*.MDR*_*$", // Spatial Sequence and Table
 "*.SYS_IMPORT_TABLE*",
 "*.CMP*$*", // space management, rdbms >= 12.1
 "*.DBMS_TABCOMP_TEMP_*", // space management, rdbms < 12.1
 "*.MDXT_*$*" // Spatial extended statistics tables

Other Non-supported DDL

Oracle GoldenGate does not support the following:

• DDL on nested tables.

• DDL on identity columns.

Chapter 4
Oracle

4-70

• ALTER DATABASE and ALTER SYSTEM (these are not considered to be DDL) Using
dictionary, you can replicate ALTER DATABASE DEFAULT EDITION and ALTER PLUGGABLE
DATABASE DEFAULT EDITION. All other ALTER [PLUGABLE] DATABASE commands are
ignored.

• DDL on a standby database.

• Database link DDL.

• DDL that creates tables with the FLASHBACK ARCHIVE clause and DDL that creates, alters,
or deletes the flashback data archive itself. DML on tables with FLASHBACK ARCHIVE is
supported.

• Some DDL will generate system generated object names. The names of system
generated objects may not always be the same between two different databases. So,
DDL operations on objects with system generated names should only be done if the
name is exactly the same on the target.

PostgreSQL
This section lists details about configuring Oracle GoldenGate for PostgreSQL.

Topics:

• Prepare Database Users and Privileges

• Prepare Database Connection, System, and Parameter Settings

• Enabling Table-Level Supplemental Logging

• PostgreSQL: Supported Data Types, Objects, and Operations

Prepare Database Users and Privileges
Learn about creating database users and assigning privileges for Oracle GoldenGate for
PostgreSQL.

Topics:

• Database Privileges for Oracle GoldenGate for PostgreSQL

Database Privileges for Oracle GoldenGate for PostgreSQL
Oracle GoldenGate processes require a database user to capture and deliver data to a
PostgreSQL database and it is recommended to create a dedicated PostgreSQL database
user for Extract and Replicat.

The following database user privileges are required for Oracle GoldenGate to capture from
and apply to a PostgreSQL database.

Privilege Extract Replicat Purpose

Database Replication Privileges

CONNECT Yes Yes Required for database
connectivity.

GRANT CONNECT ON
DATABASE dbname TO
gguser;

Chapter 4
PostgreSQL

4-71

Privilege Extract Replicat Purpose

WITH REPLICATION Yes NA Required for the user to
register Extract with a
replication slot.

ALTER USER gguser
WITH REPLICATION;

WITH SUPERUSER Yes NA Required to enable table
level supplemental
logging (ADD
TRANDATA) but can be
revoked after
TRANDATA is enabled
for the table(s).

ALTER USER gguser
WITH SUPERUSER;
For Azure Database for
PostgreSQL, only the
Admin user has
SUPERUSER authority
and is the only user that
can enable TRANDATA.

USAGE ON SCHEMA Yes Yes For metadata access to
tables in the schema to
be replicated.

GRANT USAGE ON
SCHEMA tableschema
TO gguser;

SELECT ON TABLES Yes Yes Grant select access on
tables to be replicated.

GRANT SELECT ON ALL
TABLES IN SCHEMA
tableschema TO
gguser;

INSERT, UPDATE,
DELETE,TRUNCATE on
target tables.
Alternatively, if
replicating every table,
then you can use the
GRANT INSERT,
UPDATE, DELETE,
TRUNCATE ON ALL
TABLES IN SCHEMA
TO... to the Replicat
user, instead of granting
INSERT, UPDATE,
DELETE to every table.

NA Yes Apply replicated DML to
target objects.

GRANT INSERT,
UPDATE, DELETE,
TRUNCATE ON TABLE
tablename TO
gguser;

Heartbeat and Checkpoint Table Privileges

Chapter 4
PostgreSQL

4-72

Privilege Extract Replicat Purpose

CREATE ON DATABASE Yes Yes Required by the Extract
and Replicat user to add
an Oracle GoldenGate
schema for heartbeat
and checkpoint table
creation.

GRANT CREATE ON
DATABASE dbname TO
gguser;
Alternatively, if
GGSCHEMA is the same
as the user, then the
objects can be created
under the user by
issuing CREATE SCHEMA
AUTHORIZATION
ggsuser;

CREATE, USAGE ON
SCHEMA

Yes Yes For heartbeat and
checkpoint table
creation/deletion if the
Extract or Replicat user
does not own the
objects.

GRANT CREATE, USAGE
ON SCHEMA ggschema
TO gguser;

EXECUTE ON ALL
FUNCTIONS

Yes Yes For heartbeat update
and purge function
execution if the user
calling the functions
does not own the
objects.

GRANT EXECUTE ON
ALL FUNCTIONS IN
SCHEMA ggschema TO
gguser;

SELECT, INSERT,
UPDATE, DELETE

Yes Yes For heartbeat and
checkpoint table inserts,
updates and deletes if
the user does not own
the objects.

GRANT SELECT,
INSERT, UPDATE,
DELETE, ON ALL
TABLES IN SCHEMA
ggschema TO gguser;

Prepare Database Connection, System, and Parameter Settings
Learn about configuring database connection, system, and parameter settings for Oracle
GoldenGate for MySQL.

Chapter 4
PostgreSQL

4-73

Topics:

• Configuring a Database Connection

• Database Configuration

• Prepare Tables for Processing

Configuring a Database Connection
Oracle GoldenGate connects to a PostgreSQL database through an ODBC (Open
Database Connectivity) driver and requires a system Data Source Name (DSN) be
created with the correct database connection details for each source and target
PostgreSQL database.

This section contains instructions for setting up the DSN connections that Extract and
Replicat will use.

Ensure that you have installed and configured the driver prior to creating a DSN, by
following the Installing the DataDirect driver for PostgreSQL instructions.

Note:

Do not use PgBouncer setup for Extract connections to the PostgreSQL
database because PgBouncer does not understand the replication protocol,
because of which the Extract connection is not identified as replication
connection.

Note:

Topics:

• Configuring a Database Connection in Linux

• Configuring a Database Connection in Windows

• Configuring SSL Support for PostgreSQL

Configuring a Database Connection in Linux
To create a database connection in Linux for Oracle GoldenGate processes, create a
DSN (Data Source Name) inside the /etc/odbc.ini file. Multiple DSNs can be part of
the same ODBC file.

Use the following minimum settings when creating the DSN file:

• Data Source Name – A user defined name of a source or target database
connection that will be referenced by Oracle GoldenGate processes, such as
Extract or Replicat. DSN names are allowed up to 32 alpha-numeric characters in
length, and can include only underscore (_) and dash (-) from special characters.

• IANAAppCodePage=4 – Is the default setting but can be modified according to the
guidance specified on the https://docs.progress.com/bundle/datadirect-connect-

Chapter 4
PostgreSQL

4-74

https://docs.progress.com/bundle/datadirect-connect-odbc-71/page/IANAAppCodePage_9.html#IANAAppCodePage_9

odbc-71/page/IANAAppCodePage_9.html#IANAAppCodePage_9 page when the
database character set is not Unicode.

• InstallDir – Is the value of the Oracle GoldenGate installation path, for
example: /u01/app/ogg.

• Driver – For Oracle GoldenGate release versions prior to 21.8, set to /
<GoldenGate_Installation_Path>/lib/GGpsql25.so.

For Oracle GoldenGate release versions 21.8 and later, set the value to /
<GoldenGate_Installation_Path>/datadirect/lib/ggpsql25.so.

• Database – Is the name of the source or target database.

• HostName – Is the database host IP address or host name.

• PortNumber – Is the listening port of the database.

• You can also provide a LogonID and Password for the Extract or Replicat user, but these
will be stored in clear text. It is recommended to leave these fields out of the DSN and
instead store them in the Oracle GoldenGate wallet as a credential alias, and reference
them with the USERIDALIAS parameter in Extract and Replicat.

The following is a sample /etc/odbc.ini file with two DSN entries. The Data Source names
used in the example below are PG_src and PG_tgt.

1. Create a DSN for each source or target database in the /etc/odbc.ini file.

sudo vi /etc/odbc.ini

#Sample DSN entries [ODBC Data Sources]
PG_src=Oracle GoldenGate PostgreSQL Wire Protocol
PG_tgt=Oracle GoldenGate PostgreSQL Wire Protocol

[ODBC] IANAAppCodePage=4 InstallDir=/u01/app/ogg

[PG_src]
Driver=/u01/app/ogg/datadirect/lib/ggpsql25.so
Description=Oracle GoldenGate PostgreSQL Wire Protocol
Database=sourcedb
HostName=remotehost
PortNumber=5432

[PG_tgt]
Driver=/u01/app/ogg/datadirect/lib/ggpsql25.so
Description=Oracle GoldenGate PostgreSQL Wire Protocol
Database=targetdb
HostName=remotehost

Chapter 4
PostgreSQL

4-75

https://docs.progress.com/bundle/datadirect-connect-odbc-71/page/IANAAppCodePage_9.html#IANAAppCodePage_9

PortNumber=5432

2. Save and close the odbc.ini file.

Configuring a Database Connection in Windows
To create a database connection in Windows, use the Windows ODBC Data Source
Administrator to create a system DSN for each source and target database.

1. On the Windows system, open the Control Panel folder.

2. Open the Administrative Tools folder.

3. Open ODBC Data Sources (64-bit). The ODBC Data Source Administrator dialog
box is displayed.

4. Select the System DSN tab, and then click Add.

5. Under Create New Data Source, select the Oracle GoldenGate PostgreSQL Wire
Protocol driver and click Finish.

6. The Create a New Data Source wizard is displayed.

7. Supply the following:

• For Data Source Name, type a name for the DSN, up to 32 alpha-numeric
characters in length, excluding special keyboard characters except for the
underscore and dash.

• (Optional) For Description, type a description of this DSN.

• Provide the database server’s Host Name, the database Port Number, and
Database Name.

8. Click OK to close the dialog box.

You can also provide the User Name information under the Security tab but it is
recommended instead to leave this field empty and instead store the user name
and password in the Oracle GoldenGate wallet as a credential alias, and reference
them with the USERIDALIAS parameter in Extract and Replicat.

Configuring SSL Support for PostgreSQL
SSL can be enabled by setting the configuration parameter SSL to on in the
PostgreSQL configuration file ($PGDATA/postgresql.conf). If SSL is enabled, the
corresponding hostssl entry must be present or added in the pg_hba.conf file.

When SSL is enabled, Oracle GoldenGate uses the root certificate, root certification
revocation list (CRL), server client certificate, and key from the default locations, as
shown in the following snippet:

~/.postgresql/root.crt
~/.postgresql/root.crl
~/.postgresql/postgresql.crt
~/.postgresql/postgresql.key

You need to create the desired entities from this list, and store them in appropriate
locations.

Chapter 4
PostgreSQL

4-76

If the SSL configuration is setup using non-default locations, then the following environment
variables should be set up as per the environment.

PGSSLROOTCERT
PGSSLCRL
PGSSLCERT
PGSSLKEY

Topics:

• Changes required in $ODBCINI file

Changes required in $ODBCINI file

The SSL support can be enabled by setting the EncryptionMethod DSN attribute to 1 or 6 in
the $ODBCINI file.

If set to 0 (No Encryption), data is not encrypted.

If set to 1 (SSL), data is encrypted using the SSL protocols specified in the Crypto Protocol
Version connection option. If the specified encryption method is not supported by the
database server, the connection fails and the driver returns an error.

If set to 6 (RequestSSL), the login request and data are encrypted using SSL if the server is
configured for SSL. If the server is not configured for SSL, an unencrypted connection is
established. The SSL protocol used is determined by the setting of the Crypto Protocol
Version connection option.

If the database server/client certificates also need to be validated, then the corresponding
KeyStore file needs to be created and the below mentioned ODBC DSN attributes should be
setup accordingly in $ODBCINI.

KeyStore=<path to .p12 keystore file> KeyStorePassword=<keystore-passwd>
TrustStore=<path to root certificate> ValidateServerCertificate=1

Note:

Azure Database for PostgreSQL defaults to enforce SSL connections. To adhere to
this requirement, perform the requirements listed here, or optionally, you can
disable enforcing SSL connections from the Connection security settings of the
database instance using the Microsoft Azure Portal.

Database Configuration
For Oracle GoldenGate, configure the following parameters in the PostgreSQL database
configuration file, $PGDATA/postgresql.conf:

• For remote connectivity of an Extract or Replicat, set the PostgreSQL listen_addresses
to allow for remote database connectivity. For example:

listen_addresses=remotehost_ip_address

Chapter 4
PostgreSQL

4-77

Note:

Ensure that client authentication is set to allow connections from an
Oracle GoldenGate host by configuring the pg_hba.conf file. For more
information, refer to this document: The pg_hba.conf File

• To support Oracle GoldenGate Extract, write-ahead logging must be set to
logical, which adds information necessary to support transactional record
decoding.

The number of maximum replication slots must be set to accommodate one open
slot per Extract, and in general, no more than one Extract is needed per database.
If for example PostgreSQL Native Replication is already in use and is using all of
the currently configured replication slots, increase the value to allow for the
registration of an Extract.

Maximum write-ahead senders should be set to match the maximum replication
slots value.

Optionally, commit timestamps can be enabled in the write-ahead log, which when
set at the same time logical write-ahead logging is enabled, will track the first DML
commit record from that point on, with the correct timestamp value. Otherwise, the
first record encountered by Oracle GoldenGate capture will have an incorrect
commit timestamp.

wal_level = logical # set to logical for
Capture

max_replication_slots = 1 # max number of
replication slots,
 # one slot per Extract/
client

max_wal_senders = 1 # one sender per max repl
slot

track_commit_timestamp = on # optional, correlates tx
commit time
 # with begin tx log
record (useful for
 # timestamp-based
positioning)

• After making any of the preceding changes, restart the database.

Topics:

• Database Settings for PostgreSQL Cloud Databases

Database Settings for PostgreSQL Cloud Databases
Use these instructions to manage the database settings for Azure for PostgreSQL,
Amazon Aurora PostgreSQL, Amazon RDS for PostgreSQL, and Google Cloud SQL
for PostgreSQL.

Topics:

Chapter 4
PostgreSQL

4-78

https://www.postgresql.org/docs/13/auth-pg-hba-conf.html

• Azure Database for PostgreSQL

• Amazon Aurora PostgreSQL and Amazon RDS for PostgreSQL

• Google Cloud SQL for PostgreSQL

Azure Database for PostgreSQL

When configuring Oracle GoldenGate for PostgreSQL Extract against an Azure Database for
PostgreSQL, logical decoding must be enabled and set to LOGICAL.

Read the Microsoft documentation for the instructions:

https://learn.microsoft.com/en-us/azure/postgresql/

Other database settings for Azure Database for PostgreSQL can be managed through the
Server parameters section of the database instance.

For connections to an Azure Database for PostgreSQL instance, the default Azure
Connection Security settings require SSL connections. To adhere to this requirement, further
steps are required to support SSL connections with Oracle GoldenGate.

Follow the content listed under Configuring SSL Support for PostgreSQL for more
information.

Amazon Aurora PostgreSQL and Amazon RDS for PostgreSQL

For Amazon Aurora PostgreSQL and Amazon RDS for PostgreSQL, database settings are
modified within parameter groups. Review the Amazon AWS documentation for information
on how to edit database settings within a new parameter group and assign it to a database
instance.

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/
USER_WorkingWithParamGroups.html

• Ensure that the database configuration settings listed previously are correct, by verifying
them in the parameter group assigned to the instance.

• The wal_level setting for Amazon database services is configured with a parameter
called rds.logical_replication, whose default is 0 and should be set to 1 if the
database is to be used a source database for Oracle GoldenGate Extract.

Google Cloud SQL for PostgreSQL

When configuring an Oracle GoldenGate for PostgreSQL Extract for a Google Cloud SQL for
PostgreSQL database, logical decoding must be set and is done by setting the
cloudsql.logical_decoding variable to ON. Follow the instructions provided by Google on
how to enable this database flag. For more information, see https://cloud.google.com/sql/
docs/postgres/flags#postgres-l.

Prepare Tables for Processing
You must perform the following tasks to prepare your tables for use in an Oracle GoldenGate
environment for PostgreSQL.

Topics:

• Disabling Triggers and Cascade Constraints on the Target

Chapter 4
PostgreSQL

4-79

https://learn.microsoft.com/en-us/azure/postgresql/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
https://cloud.google.com/sql/docs/postgres/flags#postgres-l
https://cloud.google.com/sql/docs/postgres/flags#postgres-l

• Ensuring Row Uniqueness for Tables

Disabling Triggers and Cascade Constraints on the Target
If Oracle GoldenGate is configured to capture DML operations from source tables that
occur due to trigger operations or cascade constraints, then disable the triggers and
cascade delete and cascade update constraints on the target tables.

If not disabled, the same trigger or constraint gets activated on the target table and
becomes redundant because of the replicated data. Consider the following example,
where the source tables are emp_src and salary_src and the target tables are
emp_targ and salary_targ
1. A delete is issued for emp_src.

2. It cascades a delete to salary_src.

3. Oracle GoldenGate sends both deletes to the target.

4. The parent delete arrives first and is applied to emp_targ.

5. The parent delete cascades a delete to salary_targ.

6. The cascaded delete from salary_src is applied to salary_targ.

7. The row cannot be located because it was already deleted in step 5.

In the Replicat MAP statements, map the source tables to appropriate targets, and map
the child tables that the source tables reference with triggers or foreign-key cascade
constraints. Triggered and cascaded child operations must be mapped to appropriate
targets to preserve data integrity. Include the same parent and child source tables in
the Extract TABLE parameters.

Ensuring Row Uniqueness for Tables
Oracle GoldenGate requires some form of unique row identifier on the source and
target tables to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate
selects a row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-
materialized computed column.

3. If none of the preceding key types exist (even though there might be other types of
keys defined on the table) Oracle GoldenGate constructs a pseudo key of all
columns that the database allows to be used in a unique key, excluding those that
are not supported by Oracle GoldenGate in a key or those that are excluded from
the Oracle GoldenGate configuration. For PostgreSQL LOB types such as text,
xml, bytea, char, varchar, Oracle GoldenGate supports these columns as a
primary key in source or target tables up to a length of 8191 bytes.

Chapter 4
PostgreSQL

4-80

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to
use a larger, less efficient WHERE clause.
For tables that have no uniqueness and have repeat rows with the same
values, Replicat will Abend on update and delete operations for these rows.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

Enabling Table-Level Supplemental Logging
Enabling Supplemental logging is a process in which Oracle GoldenGate sets source
database table level logging to support change data capture of source DML operations, and
depending on the level of logging, to include additional, unchanged columns which would be
needed in cases such as bi-directional replication with conflict detection and resolution
configured.

There are four levels of table level logging in PostgreSQL, which equate to the REPLICA
IDENTITY setting of a table, and those include NOTHING, USING INDEX, DEFAULT, and FULL.

Oracle GoldenGate requires FULL logging for use cases that require uncompressed trail
records and Conflict Detection and Resolution, but in cases where tables have a Primary Key
or Unique Index whose changes are being replicated in a simple uni-directional configuration
or where full before-images or uncompressed records are not needed, then the DEFAULT level
is acceptable. NOTHING and USING INDEX logging levels are not supported by Oracle
GoldenGate and cannot be set with ADD TRANDATA.

The following is the syntax for issuing ADD TRANDATA from the Admin Client.

DBLOGIN SOURCEDB dsn_name USERIDALIAS alias_name
ADD TRANDATA schema.tablename ALLCOLS

Note:

For tables that have a primary key or unique index, the ALLCOLS option is required in
order to set FULL logging for the table, otherwise DEFAULT logging is set.

FULL logging is always set for tables without a primary key or unique index, regardless of
whether ALLCOLS is specified or not.

Chapter 4
PostgreSQL

4-81

To check the level of supplemental logging:

INFO TRANDATA schema.tablename

PostgreSQL: Supported Data Types, Objects, and Operations

Oracle GoldenGate for PostgreSQL supports capture and delivery of initial load and
transactional data for supported PostgreSQL database versions.

Oracle GoldenGate for PostgreSQL supports the mapping, filtering, and transformation
of source data, unless noted otherwise in this document, as well as replicating data
derived from other source databases supported by Oracle GoldenGate, into
PostgreSQL databases.

Topics:

• Supported Databases

• Supported PostgreSQL Data Types

• Non-Supported PostgreSQL Data Types

• Supported Objects and Operations for PostgreSQL

Supported Databases
The following are supported databases and limitations for Oracle GoldenGate for
PostgreSQL:

• Only user databases are supported for capture and delivery.

• Oracle GoldenGate does not support capture from archived logs.

• Capture and delivery are not supported against replica, standby databases.

• High Availability:

– Oracle GoldenGate Extract does not support seamless role transitioning from
a primary to a secondary Extract with PostgreSQL high availability
configurations. However, manual procedural operations could be followed to
provide continuity from the new primary Extract.

– For more information, see the details available in the Oracle Support note,
Oracle GoldenGate Procedures for PostgreSQL HA Failover (Doc ID
2818379.1).

Supported PostgreSQL Data Types
Here's a list of PostgreSQL data types that Oracle GoldenGate supports along with the
limitations of this support.

• bigint
• bigserial
• bit(n)
• bit varying(n)
• boolean

Chapter 4
PostgreSQL

4-82

• bytea
• char (n)
• cidr
• citext
• date
• decimal
• double precision
• inet
• integer
• interval
• json
• jsonb
• macaddr
• macaddr8
• money
• numeric
• real
• serial
• smallint
• smallserial
• text
• time with/without timezone

• timestamp with/without timezone

• uuid
• varchar(n)
• varbit
• xml

Limitations of Support

• If columns of char, varchar, text, or bytea data types are part of a primary or unique
key, then the maximum individual lengths for these columns must not exceed 8191 bytes.

• Columns of data type CITEXT that are part of the Primary Key are supported up to 8000
bytes in size. CITEXT columns that are greater than 8000 bytes and are part of the
Primary Key are not supported.

• real, double, numeric, decimal: NaN input values are not supported.

• The following limitations apply to bit/varbit data types:

Chapter 4
PostgreSQL

4-83

– They are supported up to 4k in length. For lengths greater than 4k the data is
truncated and only the lower 4k bits are captured.

– The source bit(n) column can be applied only onto a character type column on
a non-PostgreSQL target and can be applied onto a char type or a bit/
varbit column on PostgreSQL target.

• The following limitations are applicable to both timestamp with time zone and
timestamp without time zone:

– The timestamp data with BC or AD tags in the data is not supported.

– The timestamp data older than 1883-11-18 12:00:00 is not supported.

– The timestamp data with more than 4 digits in the YEAR component is not
supported.

– Infinity/-Infinity input strings for timestamp columns are not supported.

• The following are the limitations when using interval:

– The capture of mixed sign interval data from interval type columns is not
supported. You can use DBOPTIONS ALLOWNONSTANDARDINTERVALDATA in the
Extract parameter file to capture the mixed sign interval data (or any other
format of interval data, which is not supported by Oracle GoldenGate) as a
string (not as standard interval data).

The following are a few examples of data that gets written to the trail file, on
using the DBOPTIONS ALLOWNONSTANDARDINTERVALDATA in the Extract param file:

– +1026-9 +0 +0:0:22.000000 is interpreted as 1026 years, 9 months, 0 days,
0 hours, 0 minutes, 22 seconds.

– -0-0 -0 -8 is interpreted as 0 years, 0 months, 0 days, -8 hours.

– +1-3 +0 +3:20 is interpreted as 1 year, 3 months, 0 days, 3 hours, 20
minutes.

• Replicat: If the source interval data was captured using DBOPTIONS
ALLOWNONSTANDARDINTERVALDATA and written as a string to the trail, the
corresponding source column is allowed to be mapped to either a char or a
binary type column on the target.

• date limitations are:

– The date data with BC or AD tags in the data is not supported.

– Infinity/-Infinity input strings for date columns are not supported.

• Columns of text, json, xml, bytea, char (>8191), varchar (>8191) are treated
as LOB columns and have the following limitations:

– When using GETUPDATEBEFORES, the before image of LOB columns is never
logged.

– When using NOCOMPRESSUPDATES, LOB columns are logged in the after image
only if they were modified.

• The support of range and precision for floating-point numbers depends on the host
machine. In general, the precision is accurate to 16 significant digits, but you
should review the database documentation to determine the expected
approximations. Oracle GoldenGate rounds or truncates values that exceed the
supported precision.

Chapter 4
PostgreSQL

4-84

Non-Supported PostgreSQL Data Types
Oracle GoldenGate for PostgreSQL does not support the following data types:

• Arrays
• box
• circle
• Composite Types
• Domain Types
• Enumerated Types
• line
• lseq
• Object Identifiers Types
• path
• pg_lsn
• pg_snapshot
• point
• polygon
• Pseudo-Types
• Range Types
• tsquery
• tsvector
• User-defined Types (UDTs)
• Extensions and Additional Supplied Modules listed at: https://www.postgresql.org/docs/

current/contrib.html

Note:

If the Extract parameter file contains a table with unsupported data types, the
Extract will stop with an error message. To resume replication, remove the table
from the Extract file or remove the column from the table with an unsupported data
type.

Note:

If an Extension or Additional Supplied Module is supported, it will be explicitly added
to the Supported PostgreSQL data types list.

Chapter 4
PostgreSQL

4-85

https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/contrib.html

Supported Objects and Operations for PostgreSQL
• Oracle GoldenGate for PostgreSQL only supports DML operations (Insert/Update/

Deletes). DDL replication is not supported.

• Oracle GoldenGate for PostgreSQL supports replication of truncate operations
beginning with PostgreSQL 11 and above, and requires the GETTRUNCATES
parameter in Extract and Replicat.

• Case-Sensitive/Insensitive names Usage:

– Unquoted names are case-insensitive and are implicitly lowercase. For
example, CREATE TABLE MixedCaseTable and SELECT * FROM
mixedcasetable are equivalent.

– Quoted table and column names are case-sensitive and need to be listed
correctly in Extracts and Replicats and with Oracle GoldenGate commands.

For example, TABLE appschema.”MixedCaseTable” and ADD TRANDATA
appschema.”MixedCaseTable” would be required to support a case-sensitive
table name.

Topics:

• Tables and Views

• Sequences and Identity Columns

Tables and Views
Tables to be included for capture and delivery must meet the following requirements
and must only include data types listed under Supported PostgreSQL Data Types.

• Oracle GoldenGate for PostgreSQL supports capture of transactional DML from
user tables, and delivery to user tables.

• Oracle GoldenGate for PostgreSQL supports delivery to partitioned tables.

• Globalization is supported for object names (table /schema/database/column
names) and column data.

Limitations:

• Oracle GoldenGate for PostgreSQL does not support capture and delivery for
views.

• Oracle GoldenGate for PostgreSQL does not support capture from partitioned
tables.

Sequences and Identity Columns
• Sequences are supported on source and target tables for unidirectional,

bidirectional, and multi- directional implementations.

• Identity columns created using the GENERATED BY DEFAULT AS IDENTITY clause,
are supported on source and target tables, for unidirectional, bidirectional, and
multi- directional implementations.

• Identity columns created using the GENERATED ALWAYS AS IDENTITY clause, are
not supported in target database tables and the Identity property should be
removed from target tables or changed to GENERATED BY DEFAULT AS IDENTITY.

Chapter 4
PostgreSQL

4-86

• For bidirectional and multi-directional implementations, define the Identity columns and
sequences with an INCREMENT BY value equal to the number of servers in the
configuration, with a different MINVALUE for each one.

For example, MINVALUE /INCREMENT BY values for a bidirectional, two-database
configuration would be as follows:

Database1, set the MINVALUE at 1 with an INCREMENT BY of 2.

Database2, set the MINVALUE at 2 with an INCREMENT BY of 2.

For example, MINVALUE /INCREMENT BY values for a multi-directional, three-database
configuration would be as follows:

Database1, set the MINVALUE at 1 with an INCREMENT BY of 3.

Database2, set the MINVALUE at 2 with an INCREMENT BY of 3.

Database3, set the MINVALUE at 3 with an INCREMENT BY of 3.

SQL Server
This section lists details about configuring Oracle GoldenGate for SQL Server.

Topics:

• Prepare Database Users and Privileges

• Prepare Database Connection, System, and Parameter Settings

• Transaction Log Settings and Requirements

• Requirements Summary for Capture and Delivery of Databases in an Always On
Availability Group

• SQL Server: Supported Data Types, Objects, and Operations

Prepare Database Users and Privileges
The following database users and privileges are required for Oracle GoldenGate to capture
from and apply to a SQL Server database.

Topics:

• Extract and Replicat Users for SQL Server

• Amazon RDS User Permissions and Requirements

• User that Enables Supplemental Logging and Other Features

Extract and Replicat Users for SQL Server
The Oracle GoldenGate Extract process captures data from SQL Server tables for initial
loads, and from the SQL Server change data capture tables for a change data Extract. The
Replicat process applies the data to a target SQL Server database. These processes can use
either Windows Authentication (for Oracle GoldenGate running on Windows) or SQL Server
Authentication to connect to a database.

• To use Windows authentication, the Extract and Replicat processes inherit the login
credentials of the Manager process. By default, the Manager process runs interactively
as the user logged on to the Windows server or optionally can be added as a Windows

Chapter 4
SQL Server

4-87

Service with a default service name of GGSMGR. Whichever method that the
Manager process is running, the user that it is running as needs to have the
following SQL Server privileges listed here.

Oracle GoldenGate Process Manager Privileges

Extract (source system) The account must be at least a member of
the db_owner fixed database role of the
source database.

For SQL Server CDC and heartbeat job,
check the functionality and also add the user
to the msdb role, SQLAgentReaderRole.

Replicat (target system) The BUILTIN\Administrators account
must be at least a member of the db_owner
fixed database role of the target database.

• To use SQL Server authentication, create a dedicated SQL Server login for Extract
and Replicat and assign the privileges listed here.

Extract connecting using SQL Server
authentication

Replicat connecting using SQL Server
authentication

The account must at least be a member of
the db_owner fixed database role of the
source database.

For SQL Server CDC and heartbeat job,
check the functionality and also add the user
to the msdb role, SQLAgentReaderRole.

The account must at least be a member of
the db_owner fixed database role of the
target database.

If you are using SQL Server authentication, you must specify the user and
password with the USERID parameter with the PASSWORD option in the Extract or
Replicat parameter file. Alternately, you can use the Oracle GoldenGate credential
store and specify a user alias with the USERIDALIAS parameter.

If using Windows authentication, no USERID and PASSWORD parameters are
required.

Examples:

Connecting from the command line using Windows Authentication.

DBLOGIN SOURCEDB DSN_Name
Extract connection parameter using SQL Server authentication.

SOURCEDB DSN_Name USERID ggs PASSWORD pword
Replicat connection parameter using Windows authentication.

TARGETDB DSN_Name

Amazon RDS User Permissions and Requirements
Here are the steps to set up the permissions for Amazon RDS for SQL Server:

Chapter 4
SQL Server

4-88

1. Using the Amazon RDS for SQL Server master user name, create a new SQL Server
login to be used by Oracle GoldenGate processes.

USE [master]
GO
CREATE [login] WITH PASSWORD=N'password', DEFAULT_DATABASE=[source
database]
GO

2. Grant the following permissions to the login, based on whether to support capture or
delivery for Amazon RDS for SQL Server.

a. Extract user and ADD/DELETE TRANDATA, ADD/DELETE/ALTER HEARTBEATTABLE,
Create/Drop the Oracle GoldenGate CDC cleanup job.

USE [msdb] GO CREATE USER [<user>] FOR LOGIN [<login>];
grant execute on msdb.dbo.rds_cdc_enable_db to [<user>];
grant execute on msdb.dbo.rds_cdc_disable_db to [<user>];
grant select on msdb.dbo.sysjobs to [<user>];
grant select on msdb.dbo.sysjobactivity to [<user>];
ALTER ROLE [SQLAgentUserRole] ADD MEMBER [<user>];
ALTER ROLE [SQLAgentOperatorRole] ADD MEMBER [<user>];
GO USE [<source database>] GO CREATE USER [<user>] FOR LOGIN
[<login>];
ALTER ROLE [db_owner] ADD MEMBER [<user>];
GO

b. Replicat User and ADD/DELETE HEARTBEATTABLE TARGETONLY, ADD/DELETE
CHECKPOINTTABLE:

USE [msdb]
GO
CREATE USER [<user>] FOR LOGIN [<login>];
grant select on msdb.dbo.sysjobs to [<user>];
grant select on msdb.dbo.sysjobactivity to [<user>];
ALTER ROLE [SQLAgentUserRole] ADD MEMBER [<user>];
GO
USE [<target database name>]
GO
ALTER ROLE [db_owner] ADD MEMBER [<user>];
GO

c. Add a new schema in the database to be used by Oracle GoldenGate objects that
may get created in the database, depending on the use case. This schema name
needs to be referenced in the GLOBALS file using the parameter GGSCHEMA, or if
installing the Microservices Architecture, you are prompted during the deployment
creation for the schema name.

USE [source database,target database]
GO
CREATE SCHEMA [OGG schema name];

Chapter 4
SQL Server

4-89

User that Enables Supplemental Logging and Other Features
A database user must issue the ADD TRANDATA command to enable supplemental
logging on the source database in an Oracle GoldenGate configuration. A database
login command (DBLOGIN) is issued from the command line interface before ADD
TRANDATA is issued.

• The database user that enables TRANDATA must have sysadmin rights.

Extract can run with dbowner permissions. However, you also need sysadmin rights to
issue the ADD/ALTER/ DELETE/INFO HEARTBEATTABLE commands, or to create the
Oracle GoldenGate CDC Cleanup job using the ogg_cdc_cleanup_setup.bat batch
file.

Prepare Database Connection, System, and Parameter Settings
Learn about configuring database connection, system, and parameter settings for
Oracle GoldenGate for SQL Server.

Topics:

• Configuring a Database Connection

• Configuring a Database

Configuring a Database Connection
Learn about configuring a database connection for SQL Server.

Topics:

• Extract and Replicat Database Connectivity

• Creating a Database Connection on Linux

• Creating a Database Connection on Windows

• Connecting to the Listener of a SQL Server Always On Configuration

Extract and Replicat Database Connectivity
Extract and Replicat connect to a SQL Server database using a system ODBC DSN
(Data Source Name) and use ODBC for its metadata queries and transactional data
processing.

Creating a Database Connection on Linux
Before creating a database connection for Oracle GoldenGate processes running on
Linux, install the latest version of Microsoft ODBC driver for SQL Server (Linux).

Select the following link for download and installation steps:

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-
odbc-driver-for-sql-server?view=sql-server-ver15

For the installation, choose the steps listed under Red Hat Enterprise Linux and
Oracle.

Chapter 4
SQL Server

4-90

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15

After the ODBC software is installed, follow the example below to create an ODBC DSN for
Linux:

1. Create a template file for your data source(s):

vi odbc_template_file.ini
2. Describe the data source in the template file. Multiple unique DSN entries can be listed in

the template file, if needed.

In the following example, mydsn_2019_source is the DSN name, which will be used with
DBLOGIN and SOURCEDB or TARGETDB to connect to the Extract or Replicat to the database.

[mydsn_2019_source]
Driver = ODBC Driver 17 for SQL Server
Server = myserver,1433
Database = source_database

3. Install the data source using the following command.

odbcinst -i -s -f odbc_template_file.ini
This command adds the DSN to the system odbc.ini file. For more information, select
the following link:

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/connection-string-keywords-
and-data-source-names-dsns?view=sql-server-2017

Creating a Database Connection on Windows
Before creating a database connection for Oracle GoldenGate processes running on
Windows, install the latest version of Microsoft ODBC Driver for SQL Server.

Follow these steps to create a system DSN on the Windows server where Oracle
GoldenGate is installed.

To create a SQL Server DSN,

1. Open the ODBC Data Sources (64-bit) application.

2. In the ODBC Data Source Administrator dialog box, select the System DSN tab, and then
click Add.

3. Under Create New Data Source, select the ODBC Driver {version} for SQL Server and
then click Finish. The Create a New Data Source to SQL Server wizard appears.

4. Enter the following details, and click Next:

• Name: Can be of your choosing. In a Windows cluster, use one name across all
nodes in the cluster.

• Description: (Optional) Type a description of this data source.

• Server: Type the SQL Server connection string or server\instance name. For Always
On connections, use the listener\instance name of the Always On Availability Group.

5. For login authentication, select one of the following options, and then click Next:

a. With Integrated Windows Authentication

b. With SQL Server authentication using a login ID and password entered by the user

6. Select Change the default database to, and then select the source or target database
from the list. Enable the Use ANSI settings. Click Next.

Chapter 4
SQL Server

4-91

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/connection-string-keywords-and-data-source-names-dsns?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/connection-string-keywords-and-data-source-names-dsns?view=sql-server-2017

7. Leave the next page set to the defaults. Click Finish.

8. Click Test Data Source to test the connection.

9. If the test is successful, close the confirmation box and the Create a New Data
Source box.

10. Repeat this procedure for each SQL Server source and target database.

Connecting to the Listener of a SQL Server Always On Configuration
Extract and Replicat can connect to the listener of an Always On configuration or
directly to the current primary replica of the group, depending on the DSN connection
used.

The advantage of creating the connection to the listener is that Extract or Replicat can
reconnect to the new primary replica upon failover without having to reconfigure the
DSN to the new primary.

An Extract can also be configured to route its read-only queries to an available
readable, synchronous mode secondary replica. By default, if Extract connects to a
listener, all processing will be done against the primary replica, but if an Extract is
configured with the TRANLOGOPTIONS ALWAYSONREADONLYROUTING parameter, its read-
only queries are routed by the listener to an available readable secondary replica.

See TRANLOGOPTIONS and Requirements Summary for Capture and Delivery of
Databases in an Always On Availability Group for more information.

If creating the DSN to connect to a Listener of an Always On configuration, enable the
Multi-subnet failover option when creating the DSN. For Linux DSN connections, use
the MultiSubnetFailover=Yes option in the DSN entry.

Configuring a Database
Learn about configuring a database for SQL Server.

Topics:

• SQL Server Supported Versions

• Preparing Tables for Processing

SQL Server Supported Versions
Certified versions of SQL Server can be found on the published certification matrix
available for each release of Oracle GoldenGate, which is available at the following
link:

https://www.oracle.com/middleware/technologies/fusion-certification.html

Oracle GoldenGate Extract supports Enterprise Edition and some versions of SQL
Server Standard Edition. Review the Exceptions and Additonal Information column of
the certification matrix to see the details of which Standard Edition versions of SQL
Server are supported for Extract.

Oracle GoldenGate Delivery supports both SQL Server Enterprise and Standard
editions.

Oracle GoldenGate supports remote capture and delivery for Azure SQL Database
Managed Instance and remote delivery for Azure SQL Database.

Chapter 4
SQL Server

4-92

https://www.oracle.com/middleware/technologies/fusion-certification.html

Oracle GoldenGate supports remote capture and delivery for Amazon RDS for SQL Server.

Preparing Tables for Processing
The table attributes in the following sections must be addressed in your Oracle GoldenGate
environment.

Topics:

• Disabling Triggers and Cascade Constraints on the Target

• Replicat Consideration for Target Identity Columns, Triggers, and Constraints

• Setting the NOT FOR REPLICATION flag for Target Identity Columns, Triggers, and
Constraints

• Ensuring Row Uniqueness in Source and Target Table

• Improving IDENTITY Replication with Array Processing

Disabling Triggers and Cascade Constraints on the Target

In an environment where SQL Server is the target, consider triggers and cascade constraints
that may repeat an operation that occurred on the source. For example, if the source has an
insert trigger on TableA that inserts a record into TableB, and Oracle GoldenGate is
configured to capture and deliver both TableA and TableB, the insert trigger on the target
table, TableA, must be disabled. Otherwise, Replicat inserts into TableA, and the trigger fires
and insert into TableB. Replicat will then try to insert into TableB, and then terminate
abnormally.

When a trigger or cascade constraint repeats an operation that occurred on the source, you
do not have to disable the trigger or constraint when the following conditions are both true:

• You use the DBOPTIONS USEREPLICATIONUSER parameter in Replicat.

• You use OLE DB connection for Replicat. The use of the OLE DB connection is the
default configuration. Note that the trigger, constraint, or IDENTITY property must have
NOT FOR REPLICATION enabled.

In the following scenario, disable the triggers and constraints on the target:

• Uni-directional replication where all tables on the source are replicated.

In the following scenarios, enable the triggers and constraints on the target:

• Uni-directional replication where tables affected by a trigger or cascade operation are not
replicated, and the only application that loads these tables is using a trigger or cascade
operation.

• Uni-directional or -bi-directional replication where all tables on the source are replicated.
In this scenario, set the target table cascade constraints and triggers to enable NOT FOR
REPLICATION, and use the DBOPTIONS USEREPLICATIONUSER parameter in Replicat.

Replicat Consideration for Target Identity Columns, Triggers, and Constraints

When replicating data to a target SQL Server database that has identity columns, triggers,
and cascade and check constraints, consider the following:

• For columns that have an identity column, Replicat sets the IDENTITY_INSERT ON for the
table, which may reduce delivery performance.

Chapter 4
SQL Server

4-93

• For tables that have triggers or cascade constraints, execution of the trigger or
cascade operation may result in a Replicat error if the Replicat is configured to
deliver the same data that a trigger will insert or cascade constraint will update or
delete.

For example, TableA on the source has a trigger that inserts a record into TableB.
The Extract is configured to capture records for both TableA and TableB. On the
target, the Replicat will first insert a record for TableA, then the trigger for TableA
fires and inserts into TableB, followed by the Replicat attempting to insert the
same record into TableB, which will result in a Replicat error.

• Check any foreign key constraints are also enforced, which may reduce delivery
performance.

To overcome these situations, there are several options that can be implemented
based on the replication use case.

• For unidirectional implementations where a Replicat is the only process writing
data to the target tables, consider the following options for Identity columns,
triggers and constraints on the target tables.

1. Disable or drop the Identity property, triggers and constraints on the target
tables.

2. Modify the identity property, triggers and constraints and set the NOT FOR
REPLICATION option on for each and ensure that the Microsoft ODBC driver is
at least version 17.8.1.

• For multi-directional implementations where both a Replicat and application write
data to the target tables, and triggers and constraints are enabled, modify the
Identity property, triggers and constraints and set the NOT FOR REPLICATION option
on for each and ensure that the Microsoft ODBC driver is at least version 17.8.1.

Additionally, to use IDENTITY columns in a multi-directional replication
configuration, define the IDENTITY columns to have an increment value equal to
the number of servers in the configuration, with a different seed value for each
one.

For example, a three-database configuration would be as follows:

Database1 set the seed value at 0 with an increment of 3.

Database2 set the seed value at 1 with an increment of 3.

Database3 set the seed value at 2 with an increment of 3.

Setting the NOT FOR REPLICATION flag for Target Identity Columns, Triggers, and
Constraints

1. Set the NOT FOR REPLICATION flag on the following objects.

• Foreign key constraints

• Check constraints

• IDENTITY columns

• Triggers (requires textual changes to the definition. See the SQL Server
documentation for more information.)

For active-passive configurations, set it only on the passive database. For active-
active configurations, set it on both databases.

Chapter 4
SQL Server

4-94

2. Partition IDENTITY values for bidirectional configurations.

3. In the Replicat MAP statements, map the source tables to appropriate targets, and map
the child tables that the source tables reference with triggers or foreign-key cascade
constraints. Triggered and cascaded child operations are replicated by Oracle
GoldenGate, so the referenced tables must be mapped to appropriate targets to preserve
data integrity. Make sure to include the same parent and child source tables in the Extract
TABLE parameters.

Note:

If referenced tables are omitted from the MAP statements, no errors alert you to
integrity violations, such as if a row gets inserted into a table that contains a
foreign key to a non-replicated table.

Ensuring Row Uniqueness in Source and Target Table

Oracle GoldenGate requires some form of unique row identifier on the source and target
tables to locate the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority:

1. Primary key

2. First unique key alphanumerically that does not contain a timestamp or non-materialized
computed column.

3. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding those that are not supported by
Oracle GoldenGate in a key or those that are excluded from the Oracle GoldenGate
configuration.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to
use a larger, less efficient WHERE clause.

4. If a table does not have an appropriate key, or if you prefer that the existing key(s) are not
used, you can define a substitute key, if the table has columns that always contain unique
values. You define this substitute key by including a KEYCOLS clause within the Extract
TABLE parameter and the Replicat MAP parameter. The specified key will override any
existing primary or unique key that Oracle GoldenGate finds. See TABLE | MAP in
Reference for Oracle GoldenGate.

• Using KEYCOLS to Specify a Custom Key

Using KEYCOLS to Specify a Custom Key

Chapter 4
SQL Server

4-95

If a table does not have an applicable row identifier, or if you prefer that identifiers are
not used, you can define a substitute key, providing that the table has columns that
always contain unique values. You define this substitute key by including a KEYCOLS
clause within the Extract TABLE parameter and the Replicat MAP parameter. The
specified key overrides any existing primary or unique key that Oracle GoldenGate
finds.

Improving IDENTITY Replication with Array Processing

Because only one table per session can have IDENTITY_INSERT set to ON, Replicat
must continuously toggle IDENTITY_INSERT when it applies IDENTITY data to multiple
tables in a session. To improve the performance of Replicat in this situation, use the
BATCHSQL parameter. BATCHSQL causes Replicat to use array processing instead of
applying SQL statements one at a time.

Transaction Log Settings and Requirements
Know more about transaction log settings and requirements for Oracle GoldenGate for
SQL Server.

Topics:

• Preparing the Database for Oracle GoldenGate — CDC Capture

• CDC Capture Method Operational Considerations

Preparing the Database for Oracle GoldenGate — CDC Capture
Learn how to enable supplemental logging in the source database tables that are to be
used for capture by the Extract for SQL Server and how to purge older CDC staging
data.

You can learn more about CDC Capture using the following:

Using the Oracle GoldenGate for SQL Server CDC Capture Replication http://
www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/goldengate/12c/sql_cdcrep/
sql_cdcrep.html.

Topics:

• Enabling CDC Supplemental Logging

• Purging CDC Staging Data

Enabling CDC Supplemental Logging
With the CDC Extract, the method of capturing change data is via SQL Server Change
Data Capture tables, so it is imperative that you follow the procedures and
requirements below, so that change data is correctly logged, maintained, and captured
by Extract.

You will enable supplemental logging with the ADD TRANDATA command so that Extract
can capture the information that is required to reconstruct transactions.

ADD TRANDATA must be issued for all tables that are to be captured by Oracle
GoldenGate, and to do so requires that a valid schema be used in order to create the
necessary Oracle GoldenGate tables and stored procedures.

Chapter 4
SQL Server

4-96

http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/goldengate/12c/sql_cdcrep/sql_cdcrep.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/goldengate/12c/sql_cdcrep/sql_cdcrep.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/fmw/goldengate/12c/sql_cdcrep/sql_cdcrep.html

Enabling supplemental logging for a CDC Extract does the following:

• Enables SQL Server Change Data Capture at the database level, if it’s not already
enabled.

– EXECUTE sys.sp_cdc_enable_db
• Creates a Change Data Capture staging table for each base table enabled with

supplemental logging by running EXECUTE sys.sp_cdc_enable_table, and creates a
trigger for each CDC table. The CDC table exists as part of the system tables within the
database and has a naming convention like, cdc.OracleGG_basetableobjectid_CT.

• Creates a tracking table of naming convention schema.OracleGGTranTables. This table is
used to store transaction indicators for the CDC tables, and is populated when the trigger
for a CDC table is fired. The table will be owned by the schema listed in the GLOBALS
file’s, GGSCHEMA parameter.

• Creates a unique fetch stored procedure for each CDC table, as well as several other
stored procedures that are required for Extract to function. These stored procedures will
be owned by the schema listed in the GLOBALS file’s, GGSCHEMA parameter.

• Also, as part of enabling CDC for tables, SQL Server creates two jobs per database:

cdc.dbname_capture
cdc.dbname_cleanup

• The CDC Capture job is the job that reads the SQL Server transaction log and populates
the data into the CDC tables, and it is from those CDC tables that the Extract will capture
the transactions. So it is of extreme importance that the CDC capture job be running at all
times. This too requires that SQL Server Agent be set to run at all times and enabled to
run automatically when SQL Server starts.

• Important tuning information of the CDC Capture job can be found in CDC Capture
Method Operational Considerations.

• The CDC Cleanup job that is created by Microsoft does not have any dependencies on
whether the Oracle GoldenGate Extract has captured data in the CDC tables or not.
Therefore, extra steps need to be followed in order to disable or delete the CDC cleanup
job immediately after TRANDATA is enabled, and to enable Oracle GoldenGate's own CDC
cleanup job. See Retaining the CDC Table History Data for more information.

The following steps require a database user who is a member of the SQL Server System
Administrators (sysadmin) role.

1. In the source Oracle GoldenGate installation, ensure that a GLOBALS (all CAPS and no
extension) file has been created with the parameter GGSCHEMA schemaname. Ensure that
the schema name used has been created (CREATE SCHEMA schemaname) in the source
database. This schema will be used by all subsequent Oracle GoldenGate components
created in the database, therefore it is recommended to create a unique schema that is
solely used by Oracle GoldenGate, such as ‘ogg’. It is recommended not to use the SQL
Server schema cdc and to create a new schema specific to Oracle GoldenGate.

2. On the source system, run the command line interface (Admin Client).

3. Connect to the deployment.

4. Issue the following command to log into the database:

DBLOGIN USERIDALIAS alias
Where:

Chapter 4
SQL Server

4-97

• USERIDALIAS alias is the alias for the credentials if they are stored in a
credentials store. If using DBLOGIN with a DSN that is using Integrated
Windows authentication, the connection to the database for the Admin Client
session will be that of the user running Admin Client. In order to issue ADD
TRANDATA or DELETE TRANDATA, this user must be a member of the SQL
Server sysadmin server role.

5. In Admin Client, issue the following command for each table that is, or will be, in
the Extract configuration. You can use a wildcard to specify multiple table names.

ADD TRANDATA owner.table
ADD TRANDATA owner.*
Optionally, you can designate the filegroup in which the SQL Server Change Data
Capture staging tables will be placed, by using the FILEGROUP option with an
existing filegroup name.

ADD TRANDATA owner.table FILEGROUP cdctables
See ADD TRANDATA

Purging CDC Staging Data
When enabling supplemental logging, data that is required by Extract to reconstruct
transactions are stored in a series of SQL Server CDC system tables, as well Oracle
GoldenGate objects that are used to track operation ordering within a transaction.
These tables require routine purging in order to reduce data storage within the
database. As part of enabling supplemental logging using TRANDATA, SQL Server
creates its own Change Data Capture Cleanup job, however this job is unaware that
an Extract may still require data from these CDC system tables and can remove that
data before the Extract has a chance to capture it.

If data that Extract needs during processing has been deleted from the CDC system
tables, then one of the following corrective actions might be required:

• Alter Extract to capture from a later point in time for which CDC data is available
(and accept possible data loss on the target).

• Resynchronize the source and target tables, and then start the Oracle GoldenGate
environment over again.

To remedy the situation of CDC data being removed before before an Extract can
process it, Oracle GoldenGate for SQL Server requires that a Purge Change Data task
be created. This task will purge CDC staging data while ensuring that no data is
purged that the Extract has yet to process.

Use the following steps immediately after enabling supplemental logging (TRANDATA)
and prior to starting the Extract, to create the Oracle GoldenGate Purge Change Data
task. The Purge Change Data task runs within the Administration Service and will
automatically delete the SQL Server CDC Cleanup job when first created. No further
SQL Server Agent job for the purge process but the Administration Service must be
running in order for the cleanup task to function correctly.

To create a Purge Change Data task:

With Oracle GoldenGate for Microservices Architecture, after adding TRANDATA to
tables but prior to starting Extract, a Purge Change Data task must be created to
perform CDC cleanup on the database. This can be done through either one of the
following:

Chapter 4
SQL Server

4-98

• Manual REST API requests

• Administration Server Web UI

To create a Purge Change Data task using the Administration Service Web UI:

1. Click Configuration from the menu on the left to open the Configuration page.

2. Click Tasks from the Configuration page to open the Tasks page.

3. Click Purge Change Data from the Tasks page.

4. Click the plus sign to display a form, and fill out the required fields to create a new Purge
Change Data task.

a. Operation Name: Name of the purge task to be created.

b. Enabled: Set the task to enabled, which is the default value.

c. Credential Domain and Credential Alias: Select an existing Credential Alias for the
source database.

d. Keep Rule: This value determines in hours or days, the amount of CDC staging data
to keep in the source database. Depending on the version of Oracle GoldenGate, the
default values are either 3 days or 1 hour. Lower CDC data retention periods reduce
the amount of CDC staging data stored in the database but limit the ability for a user
to reposition the Extract back to a time older than the data that exists in the staging
tables.

e. Purge Frequency: This value represents how often the task runs, with a default
value of every 10 minutes. It is recommended to keep the default value unless
overhead from the purge task is impacting database performance during periods of
high user activity.

Note:

You can create only one Purge Change Data task per source database.

Additional information of the Oracle GoldenGate CDC Cleanup job can be found in CDC
Capture Method Operational Considerations.

CDC Capture Method Operational Considerations
Learn about the SQL Server CDC Capture options, features, and recommended settings.

Topics:

• Tuning SQL Server Change Data Capture

• Oracle GoldenGate CDC Object Versioning

• Valid and Invalid Extract Parameters for SQL Server Change Data Capture

• Details of the Oracle GoldenGate CDC Cleanup Process

• Changing from Classic Extract to a CDC Extract

Tuning SQL Server Change Data Capture

The following information is useful in improving the capture performance of the Extract.

Chapter 4
SQL Server

4-99

• Ensure that Auto Create Statistics and Auto Update Statistics are enabled for the
database. Maintaining statistics on the cdc.OracleGG_#####_CT tables,
cdc.lsn_time_mapping table, and OracleGGTranTables table are crucial to the
performance and latency of the Extract.

• The SQL Server Change Data Capture job collects data from the SQL Server
transaction log and loads it into the Change Data Capture staging tables within the
database.

As part of the job that is created, there are several available tuning parameters
that can be used, and information on how to best tune the job can be found in the
following article: https://technet.microsoft.com/en-us/library/
dd266396(v=sql.100).aspx

As a general recommendation, you should change the SQL Server Change Data
Capture Job polling interval from the default of 5 seconds to 1 second.

To change the default polling interval of the CDC Capture job, execute the
following queries against the database:

EXEC [sys].[sp_cdc_change_job]
@job_type = N'capture’,
@pollinginterval = 1,
GO,
--stops cdc job
EXEC [sys].[sp_cdc_stop_job],
@job_type = N'capture’,
GO,
--restarts cdc job for new polling interval to take affect
EXEC [sys].[sp_cdc_start_job],
@job_type = N'capture’,

Oracle GoldenGate CDC Object Versioning

Oracle GoldenGate provides a version tracking subsystem to track the CDC objects
that are created by Oracle GoldenGate when enabling supplemental logging. These
objects are:

• Oracle GoldenGate change tracking tables in the format OracleGG_object id_CT.
• Stored procedures in the format fetch_database name_object id
• Stored procedures OracleCDCExtract, OracleGGCreateProcs, and

OracleGGCreateNextBatch.

• After successfully completing the ADD TRANDATA command, Oracle GoldenGate
creates a table called OracleGGVersion under the GGSCHEMA specified in the
GLOBALS file, if it does not already exist.

Next, Oracle GoldenGate inserts a record into the table that tracks the start and
end time of the TRANDATA session. When Extract starts up, it checks for
consistency between itself and the Oracle GoldenGate CDC objects by comparing
its internal version number with the version numbers found in the
OracleGGVersion table. If it finds that the version numbers do not match, it abends
with a message similar to the following:

ERROR OGG-05337 The Oracle GoldenGate CDC object versions on database,
source, are not consistent with the expected version, 2. The following

Chapter 4
SQL Server

4-100

https://technet.microsoft.com/en-us/library/dd266396(v=sql.100).aspx
https://technet.microsoft.com/en-us/library/dd266396(v=sql.100).aspx

versions(s) were found: 1. Rerun ADD TRANDATA for all tables previously
enabled, including heartbeat, heartbeat seed, and filter tables.

Valid and Invalid Extract Parameters for SQL Server Change Data Capture

This section describes parameters used for the CDC Capture method.

TRANLOGOPTIONS LOB_CHUNK_SIZE
The Extract parameter LOB_CHUNK_SIZE is added for the CDC Capture method to support
large objects. If you have huge LOB data sizes, then you can adjust the LOB_CHUNK_SIZE from
the default of 4000 bytes, to a higher value up to 65535 bytes, so that the fetch size is
increased, reducing the trips needed to fetch the entire LOB.

Example: TRANLOGOPTIONS LOB_CHUNK_SIZE 8000

TRANLOGOPTIONS MANAGECDCCLEANUP/NOMANAGECDCCLEANUP
The Extract parameter MANAGECDCCLEANUP/NOMANAGECDCCLEANUP is used by the CDC Capture
method to instruct the Extract on whether or not to maintain recovery checkpoint data in the
Oracle GoldenGate CDC Cleanup job. The default value is MANAGECDCCLEANUP and it doesn’t
have to be explicitly listed in the Extract. However, it does require creating the Oracle
GoldenGate CDC Cleanup job prior to starting the Extract. MANAGECDCCLEANUP should be used
for all production environments, where NOMANAGECDCCLEANUP may be used for temporary and
testing implementations as needed.

Example: TRANLOGOPTIONS MANAGECDCCLEANUP

TRANLOGOPTIONS EXCLUDEUSER/EXCLUDETRANS
The SQL Server CDC Capture job does not capture user information or transaction names
associated with a transaction, and as this information is not logged in the CDC staging tables,
Extract has no method of excluding DML from a specific user or DML of a specific transaction
name. The EXCLUDEUSER and EXCLUDETRANS parameters are therefore not valid for the CDC
Capture process.

TRANLOGOPTIONS MANAGESECONDARYTRUNCATIONPOINT/NOMANAGESECONDARYTRUNCATIONPOINT/
ACTIVESECONDARYTRUNCATIONPOINT
The SQL Server Change Data Capture job is the only process that captures data from the
transaction log when using the Oracle GoldenGate CDC Capture method. The secondary
truncation point management is not handled by the Extract, and for the Change Data Capture
Extract, these parameters are not valid.

TRANLOGOPTIONS ALWAYSONREADONLYROUTING
The ALWAYSONREADONLYROUTING parameter allows Extract for SQL Server to route its read-
only processing to an available read-intent Secondary when connected to an Always On
availability group listener.

TRANLOGOPTIONS QUERYTIMEOUT
Specifies how long queries to SQL Server will wait for results before reporting a timeout error
message. This option takes an integer value to represent the number of seconds. The default
query timeout value is 300 seconds (5 minutes). The minimum value is 0 seconds (infinite
timeout). The maximum is 2147483645 seconds.

Chapter 4
SQL Server

4-101

TRANLOGOPTIONS TRANCOUNT
Allows adjustment of the number of transactions processed per each call by Extract to
pull data from the SQL Server change data capture staging tables. Based on your
transaction workload, adjusting this value may improve capture rate throughput,
although not all workloads will be positively impacted. The minimum value is 1,
maximum is 100, and the default is 10.

Details of the Oracle GoldenGate CDC Cleanup Process

The Oracle GoldenGate Purge Change Data task is required for a CDC Extract by
default, since Extract defaults to TRANLOGOPTIONS MANAGECDCCLEANUP.

There should only be one purge task for each database enabled for CDC Capture, and
you must create the task using the steps mentioned in the Preparing the Database for
Oracle GoldenGate — CDC Capture section of this document.

Modifying the Oracle GoldenGate Purge Change Data Task

The default purge task frequency schedule, and data retention period for the Oracle
GoldenGate Purge Change Data task is to run every 10 minutes, with a data retention
policy of 3 days or 1 hour, depending on the version of Oracle GoldenGate installed.

For customer specific requirements, it may be necessary to adjust the retention period
(Keep Rule option) and the task run-time schedule (Purge Frequency option).

The Keep Rule option determines in hours or days, the amount of CDC staging data to
keep in the source database. Depending on the version of Oracle GoldenGate
installed, the default values are either 3 days or 1 hour. Lower CDC data retention
periods reduce the amount of CDC staging data stored in the database but limit the
ability for a user to reposition the Extract back to a time older than the data that exists
in the staging tables. Typically, there would be no need to reposition an existing Extract
back to an earlier point in time, so it is recommended to use the newer default setting
of 1 hour unless there is a specific case that requires more staging data to remain in
the database. Note that though if you change this value from a higher retention period
to a very short retention period, the next time the task schedule runs, it could consume
a lot of transaction log space and system overhead. So it is recommended to slowly
decrease the Keep Rule value over time, until you reach the desired ending value.

The Purge Frequency represents how often the task runs, with a default of every 10
minutes. It is recommended to keep the default value unless overhead from the purge
task is impacting database performance during periods of high user activity.

To modify an existing Purge Change Data task, navigate to the Configuration from
the menu on the left of the Administration Service, to open the Configuration page.

1. Click Tasks from the Configuration page to open the Tasks page.

2. Click Purge Change Data from the Tasks page.

3. Click the Alter Task icon next to an existing task.

4. Modify the values of Keep Rule and Purge Frequency options as required.

5. Click Submit to save the changes.

Chapter 4
SQL Server

4-102

Deleting the Oracle GoldenGate Purge Change Data Task

Deleting a Purge Change Data task for a database should only be done if there are no
Extracts configured to capture against the specific database.

To delete an existing Purge Change Data task, navigate to the Configuration option from the
menu on the left of the Administration Service, to open the Configuration page.

1. Click Tasks from the Configuration page to open the Tasks page.

2. Click Purge Change Data from the Tasks page.

3. Click the Delete Task icon next to the task to be removed.

Changing from Classic Extract to a CDC Extract

If you plan to change from using a Classic Extract from Oracle GoldenGate 12c (12.3.0.1) or
earlier, to an Oracle GoldenGate 21c CDC Extract, then you must remove the supplemental
logging that was implemented using the Classic Extract installation method, and re-enable
supplemental logging using the CDC Extract installation binaries, as the calls to enable
TRANDATA are different between the two versions, and the implementation of TRANDATA for
Classic Extract is not supported by the CDC Extract.

Follow these general guidelines to remove and re-enable supplemental logging. Special
consideration and planning should be involved if migrating from Classic to CDC Extract in a
production system. The information provided here does not cover all requirements and is only
offered as general requirements regarding supplemental logging:

1. Ensure that the Classic Extract has processed all remaining data in the logs and can be
gracefully stopped.

2. Do one of the following, depending on how Extract was running in relation to other
replication or CDC components:

• If Extract was not running concurrently with SQL Server transactional replication or a
non-Oracle CDC configuration on the same database, open a query session in
Management Studio and issue the following statement against the source database
to disable and delete any CDC or replication components, and to clear the secondary
truncation point.

EXEC sys.sp_cdc_disable_db
• If Extract was running concurrently with SQL Server transactional replication or a

non-Oracle CDC configuration on the same database, run GGSCI from the Classic
Extract’s installation folder, login to the source database with the DBLOGIN, and then
issue the following command for each table that is in the Extract configuration. You
can use a wildcard to specify multiple table names

DELETE TRANDATA owner.table
DELETE TRANDATA owner.*

3. Delete any heartbeat table entries if one was installed.

DELETE HEARTBEATTABLE
4. Using the Oracle GoldenGate CDC Extract installation binaries, follow the steps listed in

Preparing the Database for Oracle GoldenGate — CDC Capture to re-enable
supplemental logging and other necessary components, and re-add the heartbeat table.

Chapter 4
SQL Server

4-103

Requirements Summary for Capture and Delivery of Databases in an
Always On Availability Group

Oracle GoldenGate for SQL Server supports capture from a primary replica or a read-
only, synchronous mode secondary replica of an Always On Availability Group, and
delivery to the primary replica.

When capturing from either a primary or a secondary replica in an Always On
Availability Group, it is important to understand that the capture process must only
read hardened transactions from the log, and that there be no potential for data loss
between any replica database that Oracle GoldenGate is or will capture from.

Topics:

• Database Connection

• Supplemental Logging

• Operational Requirements and Considerations

Database Connection

For both Extract and Replicat, it is recommended to create a System DSN that uses
the Always On Availability Group Listener for the connection.

• For the Replicat, connecting to the Listener allows the Replicat to reconnect if the
primary replica performs a failover to a new instance, without having to manually
edit the DSN settings to point to the new primary.

• For the Extract connecting to the Listener not only allows reconnecting to the
primary without editing the DSN to point to the new instance, but also provides the
optional ability to run the Extract’s data extraction stored procedures, against a
read-only secondary.

• For both Extract and Replicat connected to an Always On environment, use the
AUTORESTART parameter for the Manager, to restart the processes after a failover.

• To route the Extract’s data extraction queries to a read-only secondary, ensure that
the DSN connection uses the Listener, that you have one or more read-only
secondary replicas that are configured to handle read-only routing, and that the
Extract runs with the TRANLOGOPTIONS ALWAYSONREADONLYROUTING parameter.

– Ensure that the Application Intent field of the DSN configuration is set to
READWRITE and not READONLY

– Refer to the following Microsoft documentation on how to configure read-only
routing: https://docs.microsoft.com/en-us/sql/database-engine/availability-
groups/windows/configure-read-only-routing-for-an-availability-group-sql-
server?view=sql-server-2017

Supplemental Logging
Supplemental logging must be enabled by normal means (ADD TRANDATA) using Admin
Client connected to the primary replica and not against a secondary replica.

Chapter 4
SQL Server

4-104

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/configure-read-only-routing-for-an-availability-group-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/configure-read-only-routing-for-an-availability-group-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/configure-read-only-routing-for-an-availability-group-sql-server?view=sql-server-2017

• Create a DSN to the primary replica, or to the Always On Availability Group Listener, to
connect using DBLOGIN to run ADD TRANDATA.

• The login used to enable supplemental logging must have sysadmin membership of the
primary replica instance.

• When enabling supplemental logging against the primary replica database, the SQL
Server Change Data Capture job does not automatically get created on any secondary
replicas. Upon failover from a primary to a secondary, you must manually create the SQL
Server Change Data Capture job and the Oracle CDC Cleanup job if in use, on the new
primary replica.

EXECUTE sys.sp_cdc_add_job N'capture
– When creating the SQL Server CDC Capture job on the new primary, the default

configuration settings are put in place. So if you have previously modified the default
values on the former primary replica, you need to run sys.sp_cdc_change_job on the
new primary and set the values accordingly.

Note:

Consult the Microsoft documentation on how to enable the CDC Capture job for
AlwaysOn Secondary Replicas for more information.

Operational Requirements and Considerations

• When an instance is no longer the primary instance but has the SQL Server CDC
Capture job installed, the job ceases to run after some time and does not attempt to
restart. Upon failover back to that instance, the job does not automatically start, so it must
be manually started.

• If secondary replica databases are not in sync with the primary replica database, the
CDC capture job will not advance in the log, and therefore no records will be captured by
an Extract, until such time that the primary and secondary replicas are synchronized. See
this article from Microsoft for more details:

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/
replicate-track-change-data-capture-always-on-availability?view=sql-server-2017

Note:

When capturing from either a primary or a secondary replica in an Always On
Availability Group, it is important to understand that the capture process must
only read hardened transactions from the log, and that there be no potential for
data loss between any replica database that Oracle GoldenGate is or will
capture from.

• When running an Extract from a middle tier Windows or Linux server, set the middle tier
server's date, time, and time zone to the same as that of the primary replica.

• Upon failover from a primary to a secondary replica, reinstall the Oracle GoldenGate
CDC Cleanup job on the new primary by re-running the ogg_cdc_cleanup_setup.bat file
with the createJob option.

Chapter 4
SQL Server

4-105

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/replicate-track-change-data-capture-always-on-availability
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/replicate-track-change-data-capture-always-on-availability?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/replicate-track-change-data-capture-always-on-availability?view=sql-server-2017

• If Extract is configured to capture from a readable secondary replica, but not
configured with read-only routing, the SQL Server CDC Capture job must be
created against the secondary replica prior to starting the Extract, as the Extract
will check if the job exists. To create the SQL Server CDC Capture job, any
potential secondary that will have an Extract connected to it, must at some point
be set to a writable Primary database and then follow the steps above, under
supplemental logging, to manually add the SQL Server CDC Capture job.

• If uninstalling Oracle GoldenGate and disabling Change Data Capture on a
database that is part of an Always On availability group, follow the extra steps
provided in Disabling Change Data Capture.

SQL Server: Supported Data Types, Objects, and Operations

Learn about support information for Oracle GoldenGate on SQL Server Database.

With Oracle GoldenGate for SQL Server supports capture and delivery of initial load
and transactional data for supported SQL Server database versions.

Oracle GoldenGate for SQL Server supports the mapping, filtering, and transformation
of source data, unless noted otherwise in this document, as well as replicating data
derived from other source databases supported by Oracle GoldenGate, into SQL
Server databases.

Topics:

• Instance Requirements

• Database Requirements

• Table Requirements

• Supported SQL Server Data Types

• Non-Supported SQL Server Data Types and Features

• Supported Objects and Operations for SQL Server

• Non-Supported Objects and Operations for SQL Server

• System Schemas for SQL Server

Instance Requirements
• The SQL Server server name (@@SERVERNAME) must not be NULL.

• (Extract) For Oracle GoldenGate to capture transactional data, the SQL Server
Agent must be running on the source SQL Server instance and the SQL Server
Change Data Capture job must be running against the database. If SQL Server
Transactional Replication is also enabled for the database, then the SQL Server
Log Reader Agent must be running.

• If your data for TEXT, NTEXT, IMAGE, or VARCHAR(MAX), NVARCHAR(MAX) and
VARBINARY(MAX) columns will exceed the SQL Server default size set for the max
text repl size option, then extend the size. Use sp_configure to view or adjust
the current value of max text repl size.

Chapter 4
SQL Server

4-106

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/replicate-track-change-data-capture-always-on-availability?view=sql-server-ver15

Note:

For Amazon RDS for SQL Server, to adjust instance settings, you need to use
Parameter Groups instead of sp_configure.

• It is recommended to install the most recent Service Pack or Cummulative Update for
your SQL Server instance to ensure proper functionality. For SQL Server 2012, 2014,
2016, and 2017, Microsoft has identified and fixed several important issues that directly
affect the SQL Server Change Data Capture feature. This situation impacts the ability for
Oracle GoldenGate to correctly capture data. The current known issues that require
Microsoft patches include KB3030352, KB3166120, and KB4073684.

Database Requirements
Observe the following requirements and limitations for supporting Oracle GoldenGate:

• Only user databases are supported for capture and delivery.

• Ensure that Auto Create Statistics and Auto Update Statistics are enabled for the
database.

• The database must be set to the compatibility level of the SQL Server instance version.

• Oracle GoldenGate supports SQL Server databases configured with Transparent Data
Encryption (TDE).

• (Extract) The source database can be set to any recovery model that supports the
change data capture feature in Microsoft SQL Server.

• If the source database was created by restoring a backup from a different instance you
must synchronize the database owner SID with the SID on the new
instance. Alternatively, you can use sp_changedbowner to set the restored database to a
current login.

• (AlwaysOn) Extract supports capturing from the primary database, or a read-only,
synchronous-commit mode. Asynchronous-commit mode are not supported for capture.

• Replicat performance consideration: Beginning with SQL Server 2016, Microsoft changed
the default setting for the database option TARGET_RECOVERY_TIME from 0 to 60 seconds.
It has been demonstrated in internal testing that this can reduce the Replicat's
throughput. If you experience Replicat throughput degradation, consider adjusting the
TARGET_RECOVERY_TIME setting to 0.

Limitations:

• Oracle GoldenGate does not support capture or delivery of system databases.

• Oracle GoldenGate does not support capture from contained databases.

• Source database names cannot exceed 121 characters. This limitation is due to the SQL
Server stored procedures that are used to enable supplemental logging.

• If you are configuring the Oracle GoldenGate heartbeat functionality, the SQL Server
database name must not exceed 107 characters.

• Capture from SQL Server databases enabled with In-Memory OLTP (in-memory
optimization) is not supported. When you add a Memory Optimized Data file group to
your database, Oracle GoldenGate is not allowed to enable supplemental logging for any
table in the database. Conversely, if supplemental logging has been enabled for any table

Chapter 4
SQL Server

4-107

in the database prior to the creation of a Memory Optimized Data file group, SQL
Server does not allow a Memory Optimized Data file group to be created.

• (AlwaysOn) Capture from databases configured in asynchronous-commit mode of
an AlwaysOn Availability group are not supported.

Table Requirements
Tables to be included for capture and delivery must include only the data types that are
listed in Supported SQL Server Data Types.

• Oracle GoldenGate supports capture of transactional DML from user tables, and
delivery to user tables and writeable views.

• DDL operations are not supported.

• Oracle GoldenGate supports the maximum permitted table names and column
lengths for tables that are tracked by SQL Server Change Data Capture.

• The sum of all column lengths for a table to be captured from must not exceed the
length that SQL Server allows for enabling Change Data Capture for the table. If
the sum of all column lengths exceeds what is allowed by SQL Server procedure
sys.sp.cdc_enable_table, then ADD TRANDATA cannot be enabled for that table.
The maximum allowable record length decreases as more columns are present,
so there is an inverse relationship between maximum record length and the
number of columns in the table.

Supported SQL Server Data Types
The following data types are supported for capture and delivery, unless specifically
noted in the limitations that follow:

• Binary Data Types

– (binary, varbinary, varbinary (max))
– (varbinary (max)with FILESTREAM)

• Character Data Types

– (char, nchar, nvarchar, nvarchar (max), varchar, varchar (max))
• Date and Time Data Types

– (date, datetime2, datetime, datetimeoffset, smalldatetime, time)
• Numeric Data Types

– (bigint, bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, tinyint)

• LOBs

– (image, ntext, text)
• Other Data Types

– (timestamp, uniqueidentifier, hierarchyid, geography, geometry,
sql_variant (Delivery only), XML)

• Oracle GoldenGate for SQL Server can replicate column data that contains SPARSE
settings..

Chapter 4
SQL Server

4-108

Limitations:

• Oracle GoldenGate does not support filtering, column mapping, or manipulating large
objects larger than 4KB. Full Oracle GoldenGate functionality can be used for objects of
up to 4KB.

• Oracle GoldenGate treats XML data as a large object (LOB), as does SQL Server when
the XML does not fit into a row. SQL Server extended XML enhancements (such as lax
validation, DATETIME , union functionality) are not supported.

• A system-assigned TIMESTAMP column or a non-materialized computed column cannot be
part of a key. A table containing a TIMESTAMP column must have a key, which can be a
primary key or unique constraint, or a substitute key specified with a KEYCOLS clause in
the TABLE or MAP statements. For more information see Assigning Row Identifiers.

• Oracle GoldenGate supports multibyte character data types and multi byte data stored in
character columns. Multibyte data is supported only in a like-to-like, SQL Server
configuration. Transformation, filtering, and other types of manipulation are not supported
for multibyte character data.

• If capture of data for TEXT, NTEXT, IMAGE, VARCHAR (MAX), NVARCHAR(MAX) and VARBINARY
(MAX) columns will exceed the SQL Server default size set for the max text repl size
option, extend the size. Use sp_configure to view the current value of max text repl
size and adjust the option as needed.

Note:

Amazon RDS for SQL Server does not allow max text repl size to be greater
than 64MB.

• Columns of IMAGE, NTEXT, and TEXT data types are logged as a NULL value for delete and
before image update operations. Columns of VARBINARY(MAX), VARCHAR(MAX), and
NVARCHAR(MAX) are logged as a NULL value for before image update operations unless the
column was updated.

For more information, review the Large Object Data Types content in the following
Microsoft document:

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-
instance-ct-transact-sql?view=sql-server-ver15

• Oracle GoldenGate supports UDT and UDA data of up to 2 GB in size. All UDTs except
SQL_Variant are supported.

• Common Language Runtime (CLR), including SQL Server built-in CLR data types (such
as, geometry, geography, and hierarchy ID), are supported. CLR data types are
supported only in a like-to-like SQL Server configuration. Transformation, filtering, and
other types of manipulation are not supported for CLR data.

• VARBINARY (MAX) columns with the FILESTREAM attribute are supported up to a size of 4
GB. Extract uses standard Win32 file functions to read the FILESTREAM file.

• The range and precision of floating-point numbers depends on the host machine. In
general, precision is accurate to 16 significant digits, but you should review the database
documentation to determine the expected approximations. Oracle GoldenGate rounds or
truncates values that exceed the supported precision.

Chapter 4
SQL Server

4-109

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-ver15

• Oracle GoldenGate supports time stamp data from 0001/01/03:00:00:00 to
9999/12/31:23:59:59. If a time stamp is converted from GMT to local time, these
limits also apply to the resulting time stamp. Depending on the time zone,
conversion may add or subtract hours, which can cause the time stamp to exceed
the lower or upper supported limit.

Limitations on Computed Columns:

• Computed columns, either persisted or non-persisted, are not supported by
Microsoft’s Change Data Capture. Therefore, no data is written to the trail for
columns that contain computed columns. To replicate data for non-persisted
computed columns, use the FETCHCOLS or FETCHMODCOLS option of the TABLE
parameter to fetch the column data from the table. Keep in mind that there can be
discrepancies caused by differences in data values between the time that the
column was changed in the data base and the time that Extract fetches the data
for the transaction record that is being processed.

• Replicat does not apply DML to any computed column, even if the data for that
column is in the trail, because the database does not permit DML on that type of
column. Data from a source persisted computed column, or from a fetched non-
persisted column, can be applied to a target column that is not a computed
column.

• In an initial load, all of the data is selected directly from the source tables, not the
transaction log. Therefore, in an initial load, data values for all columns, including
non-persisted computed columns, is written to the trail or sent to the target,
depending on the method that is used. As when applying change data, however,
Replicat does not apply initial load data to computed columns, because the
database does not permit DML on that type of column.

• Oracle GoldenGate does not permit a non-persisted computed column to be used
in a KEYCOLS clause in a TABLE or MAP statement.

• If a unique key includes a non-persisted computed column and Oracle
GoldenGate must use the key, the non-persisted computed column is ignored.
This may affect data integrity if the remaining columns do not enforce uniqueness.

• If a unique index is defined on any non-persisted computed columns, it is not
used.

• If a unique key or index contains a non-persisted computed column and is the only
unique identifier in a table, Oracle GoldenGate must use all of the columns as an
identifier to find target rows. Because a non-persisted computed column cannot be
used in this identifier, Replicat may apply operations containing this identifier to the
wrong target rows.

Non-Supported SQL Server Data Types and Features
• SQL_Variant data type is not supported for capture.

• Tables that contain unsupported data types may cause Extract to Abend. As a
workaround, you must remove TRANDATA from those tables and remove them from
the Extract’s TABLE statement, or use the Extract’s TABLEEXCLUDE parameter for the
table.

Supported Objects and Operations for SQL Server
The following objects and operations are supported:

Chapter 4
SQL Server

4-110

• Parallel Replicat is supported with Oracle GoldenGate for SQL Server.

• Oracle GoldenGate supports capture of transactional DML from user tables and delivery
to user tables and writeable views.

• TEXT, NTEXT, IMAGE, VARBINARY, VARBINARY (MAX) VARCHAR (MAX), and NVARCHAR
(MAX) columns are supported in their full size for operations that are logged by SQL
Server Chang Data Capture. For example, columns of IMAGE, NTEXT, and TEXT data types
are logged as a NULL value for delete operations. For more information, review the Large
Object Data Types content at the following Microsoft document:

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-
instance-ct-transact-sql?view=sql-server-ver15

• Oracle GoldenGate supports the maximum row sizes that are permitted for tables that
are enabled for SQL Server Change Data Capture.

• Oracle GoldenGate supports capture from tables enabled with PAGE and ROW
compression. For partitioned tables that use compression, all partitions must be enabled
with the same compression type.

• Oracle GoldenGate supports capture for partitioned tables if the table has the same
physical layout across all partitions.

• The sum of all column lengths for a table to be captured from must not exceed the length
that SQL Server allows for enabling Change Data Capture for the table. If the sum of all
column lengths exceeds what is allowed by the SQL Server procedure
sys.sp.cdc_enable_table, then ADD TRANDATA cannot be added for that table. The
maximum allowable record length decreases as more columns are present, so there is an
inverse relationship between maximum record length and the number of columns in the
table.

Non-Supported Objects and Operations for SQL Server
The following objects and operations are not supported:

• For source databases, operations that are not supported by SQL Server Change Data
Capture, such as TRUNCATE statements. Refer to Microsoft SQL Server Documentation for
a complete list of the operations that are limited by enabling SQL Server Change Data
Capture.

• Oracle GoldenGate for SQL Server does not support the capture or delivery of DDL
changes for SQL Server and extra steps are required for Oracle GoldenGate processes
on the source and target to handle any table level DDL changes, including table index
rebuild operations. See Requirements for Table Level DDL Changes.

• Views are not supported.

• Operations by the TextCopy utility and WRITETEXT and UPDATETEXT statements. These
features perform operations that either are not logged by the database or are only
partially logged, so they cannot be supported by the Extract process.

• Partitioned tables that have more than one physical layout across partitions.

• Partition switches against a source table. SQL Server Change Data Capture treats
partition switches as DDL operations, and the data moved from one partition to another is
not logged in the CDC tables, so you must follow the procedures in Requirements for
Table Level DDL Changes to manually implement a partition switch when the table is
enabled for supplemental logging.

Chapter 4
SQL Server

4-111

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-ver15

• Due to a limitation with SQL Server's Change Data Capture, column level
collations that are different from the database collation, may cause incorrect data
to be written to the CDC tables for character data and Extract will capture them as
they are written to the CDC tables. It is recommended that you use NVARCHAR,
NCHAR or NTEXT data type for columns containing non-ASCII data or use the same
collation for table columns as the database. For more information see, About
Change Data Capture (SQL Server).

• Due to a limitation with SQL Server's Change Data Capture, NOOPUPDATES are not
captured by the SQL Server Change Data Capture agent so there are no records
for Extract to capture for no-op update operations.

• Temporal tables are not supported for enabling Change Data Capture, therefore
cannot be configured for Extract for source implementations.

Topics:

• Requirements for Table Level DDL Changes

Requirements for Table Level DDL Changes

Oracle GoldenGate for SQL Server does not support the capture or delivery of DDL
changes. However, beginning with Oracle GoldenGate 21c, changes made to tables
enabled with TRANDATA will not cause Extract to abend. Extract will continue to process
change data for the table as it existed when TRANDATA was enabled.

Operations considered to be table-level DDL changes include, but are not limited to:
ALTER TABLE, TRUNCATE TABLE, index rebuilds, and partition switches.

To avoid data inconsistencies due to table level DDL changes, the following steps are
required.

1. Source: Pause or Stop application data to the table or tables to be modified.

2. Source: Ensure that there are no open transactions against the table to be
modified.

3. Source: Ensure that the SQL Server CDC Capture job processes all remaining
transactions for the table that is to be modified.

4. Source: Ensure that the Extract processes all the transactions for the table that is
to be modified, prior to making any DDL changes.

5. Target: Ensure that the Replicat processes all the transactions for the table that is
to be modified, prior to making any DDL changes.

6. Optionally, implementing an Event Marker table can be used to determine when all
of the remaining transactions have been processed for the table that is to be
modified, and handle the coordination of when to correctly stop the Extract and
Replicat.

7. Source: Stop the Extract process.

8. Target: Stop the Replicat process.

9. Source: Disable supplemental logging for the table to be modified by running
DELETE TRANDATA.

10. Source: Make table DDL changes to the source table.

11. Target: Make table DDL changes to the target table.

Chapter 4
SQL Server

4-112

https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server?view=sql-server-2017

12. Source: Re-enable supplemental logging by running ADD TRANDATA to the table(s) after
the modifications have been performed.

13. Source: Start the Extract.

14. Target: Start the Replicat.

15. Source: Resume application data to the table or tables that were modified.

System Schemas for SQL Server
The following schemas or objects are not be automatically replicated by Oracle GoldenGate
unless they are explicitly specified without a wildcard.

• "sys"
• "cdc"
• "INFORMATION_SCHEMA"
• "guest"

Chapter 4
SQL Server

4-113

5
Quickstarts

This section lists the Oracle GoldenGate quickstarts.

Topics:

• Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

• Set Up Data Replication with Oracle GoldenGate Microservices Architecture

• Switching from Nonintegrated Replicat to Parallel Nonintegrated Replicat

Set Up Bidirectional Replication for Oracle GoldenGate
Microservices Architecture

This quickstart demonstrates an active-active bidirectional replication between two pluggable
databases over a single multitenant container Oracle database instance.

An active-active bidirectional replication implies that both data sources and targets (PDBs in
this case), have the potential to send updates to each other. There are two data sources with
identical sets of data that can be changed by application users on either side. Oracle
GoldenGate replicates transactional data changes from each database to the other to keep
both sets of data current.

The following diagram depicts the bidirectional replication workflow shown in this quickstart:

5-1

Note:

This quickstart uses a single multitenant container database with two PDBs
to demonstrate bidirectional replication between two PDBs. However, in most
real-life scenarios, bidirectional data replication happens across different
multitenant container databases or different database instances.

Here's what's covered:

• Process Names in the Bidirectional Data Replication Environment

• Considerations for Configuring a Bidirectional Replication

• Oracle Multitenant Container Database Privileges Required for Data Replication

• Automatic Conflict Detection and Resolution (ACDR) Configuration

• Bidirectional Data Replication Process Configuration

Process Names in the Bidirectional Data Replication Environment

The following nomenclature is used to refer to processes for the database and Oracle
GoldenGate.

Container Database
(CDB$ROOT) Process
Names

Pluggable Database
(DBEAST) Process Names

Pluggable Database
(DBWEST) Process Name

• CDB$ROOT database
user: c##ggadmin

• Database credential
alias: cggnorth

• Database user: ggadmin
• Database alias: ggeast
• Extract: exte
• Replicat repn

• Database user: ggadmin
• Database alias: ggwest
• Extract: extw
• Replicat: reps

On DBWest:

Considerations for Configuring a Bidirectional Replication

To maintain data integrity and avoid conflicts, you need to configure the Extract and
Replicat processes to prevent data looping and conflict using certain parameters and
the automatic conflict detection and resolution (ACDR) feature.

Ideally, all situations that could lead to potential conflicts in a bidirectional or
multidirectional replication must be avoided. However, if conflicts occur, Oracle
GoldenGate provides the automatic conflict detection and resoution (ACDR) feature to
handle them.

• At the PDB level:

The Automatic Conflict Detection and Resolution feature (ACDR) available with
Oracle database, allows you to manage conflict detection and resolution using the
DBMS_GOLDENGATE_ADM package, using the ADD_AUTO_CDR procedure. You need to
enable this package at the database level on both PDBs in this case. See Enable
ACDR.

• Oracle GoldenGate Extract parameter settings

– LOGALLSUPCOLS: This parameter controls writing of supplementally logged
columns specified using ADD TRANDATA and the columns enabled for Conflict

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-2

Detection and Resolution (CDR) in Oracle GoldenGate. This parameter is set by
default for Extract.

– UPDATERECORDFORMAT: This parameter is set by default for integrated Extract, so don't
need to set it in the parameter file. Its function is to combine the before and after
images of an UPDATE operation into a single record in the trail. The COMPACT option
generates one trail record that contains the before and after images of an UPDATE,
where the before image includes all the columns that are available in the transaction
record, but the after image is limited to the primary key columns and the columns that
were modified in the UPDATE.

– EXCLUDETAG option ensures that there is not looping of data. Looping of data happens
when a database sends updates to the second database and the second database
assumes those updates to be a new changes, and tries to replicate this update back
to the source database itself. These parameter settings are done when configuring
the Extract parameter file, as shown in Step 3: Add Extracts of this document.

• Oracle GoldenGate Replicat parameter settings:

ACDR works with integrated Replicat or parallel integrated Replicat. See the Replicat
Parameter file in this document to know more.

Set the Required Privileges for Oracle Multitenant Database

In Oracle database, you need to enable replication for Oracle GoldenGate and assign
privileges to the database user at the CDB level and the pluggable database (PDB) level.

The database is in ARCHIVELOG mode and FORCE LOGGING and Supplemental Logging is
enabled. For the container database, assign the following privileges to the common user
(cdb$root):

CDB User Privileges

CGGNORTH DATABASE SETUP AT CDB LEVEL
ALTER SESSION SET CONTAINER=cdb$root;
ALTER SYSTEM SET ENABLE_GOLDENGATE_REPLICATION=TRUE;
ALTER SYSTEM SET STREAMS_POOL_SIZE=2G;
ALTER DATABASE FORCE LOGGING;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
CREATE USER c##ggadmin IDENTIFIED BY PASSWORD CONTAINER=ALL DEFAULT
TABLESPACE GG_DATA TEMPORARY TABLESPACE TEMP;
GRANT CONNECT, RESOURCE, DBA TO c##ggadmin CONTAINER=ALL;
GRANT CREATE SESSION TO c##ggadmin CONTAINER=ALL;
EXEC
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('c##ggadmin',CONTAINER=>'ALL');

PDB User Privileges for DBEAST

ALTER SESSION SET CONTAINER=dbeast;
CREATE USER ggadmin IDENTIFIED BY PASSWORD CONTAINER=CURRENT;
GRANT CONNECT, RESOURCE, DBA TO GGADMIN CONTAINER=CURRENT;
GRANT CREATE SESSION TO ggadmin CONTAINER=CURRENT;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('ggadmin');

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-3

PDB User Privileges for DBWEST

ALTER SESSION SET CONTAINER=dbwest;
CREATE USER ggadmin IDENTIFIED BY PASSWORD CONTAINER=CURRENT;
GRANT CONNECT, RESOURCE, DBA TO ggadmin CONTAINER=CURRENT;
GRANT CREATE SESSION TO ggadmin CONTAINER=CURRENT;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('ggadmin');

Note:

Granting DBA role is not mandatory for every user. Privileges should be
granted depending on the actions that the user needs to perform on the
database. For example, to grant DML operation privileges to insert, update,
and delete transactions to ggadmin, use the GRANT ANY INSERT/UPDATE/
DELETE privileges and to further allow users to work with tables and indexes
as part of DML operations, use the GRANT CREATE/DROP/ALTER ANY TABLE/
INDEX privileges. In this quickstart, the assumption is that the database user
is a database administrator. See Grant User Privileges for Oracle Database
21c and Lower and Configure a Multitenant Container Database to know
more about specific privilege requirements.

Enable ACDR

Before enabling ACDR at the database level, it is recommended that you stop any
running Extract or Replicat processes. To enable ACDR for the PDB DBEAST:

EXEC DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR('hr', 'employees',
RECORD_CONFLICTS=>TRUE);

The output will show as:

PL/SQL procedure successfully completed.

Now, switch to the other PDB, DBWEST and run the same command:

EXEC DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR('hr', 'employees');

This enables the ACDR package on both PDBs.

You can check if ACDR has been enabled for the PDBs by checking for invisible
columns that are added to manage ACDR at the column level. Run the following
commands to test this:

Use the view ALL_GG_AUTO_CDR_TABLES to list down the columns used for ACDR in the
PDBs:

SELECT table_owner, table_name, tombstone_table,
row_resolution_column, FROM all_gg_auto_cdr_tables;

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-4

The output for this command shows:

TABLE_OWNER

TABLE_NAME

TOMBSTONE_TABLE

ROW_RESOLUTION_COLUMN

HR
EMPLOYEES
DT$_EMPLOYEES
CDRTS$ROW

Notice the two invisible columns that are added here:

• DT$_EMPLOYEES: This is the tombstone table used for locking any delete transactions.

• CDRTS$ROW: This is the row resolution column. When there is a conflict, this column which
contains the timestamp for the transaction, is used to decide the record that would be
applied in a row. This implies that the record with the latest timestamp would be used to
apply changes in the row.

These columns are appended to schema.table on both PDBs, DBEAST and DBWEST.

After you have enabled ACDR, you'll need to edit the Replicat parameter file to include the
invisible columns. Add the MAPINVISIBLECOLUMNS parameter in the Replicat parameter file, to
allow Replicat to include target columns with default column mapping. This is explained in
detail when configuring the Replicat Parameter File in Step 4: Add Replicat section.

Restart the Extract and Replicat processes from the web interface:

1. Log in to the Administration Service web interface.

2. From the Administration Service Overview page, click the Action button next to the
Extract process, exte.

3. Click Start.

The green check mark would appear next to the process indicating that the processes
started successfully.

Similarly, start the other Extract and Replicat processes on both PDBs.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-5

Configure the Replication Process from Oracle GoldenGate MA Web Interface

Using the following steps, you'll be able to configure data capture (Extract) and apply
(Replicat) processes. You'll also be able to test if the replication has started.

• Step 1: Add Database Credentials from the Administration Service

• Step 2: Add Heartbeat and Checkpoint Tables

• Step 3: Add Extracts

• Step 4: Add a Replicat

• Test and Monitor Transactions

• Test Automatic Conflict Detection and Resolution

The DISTPATH process is not used for this configuration.

Step 1: Add Database Credentials from the Administration Service

In this section, you'll add the database credentials to connect to the source and target
databases using EZConnect.

1. Keep your database user credentials, which created in the previous session,
ready. You'll use them to connect Oracle GoldenGate to the database server.

2. Open the Service Manager login page in a web browser and log in to the Service
Manager with your Oracle GoldenGate administrator user credentials. If logging in
for the first time, you have to log in with the administrator account user credentials,
created when adding your deployment with Oracle GoldenGate Configuration
Assistant wizard.

3. From the Service Manager Overview page, click the port number for the
Administration Service of the deployment.

This opens the Administration Service login page.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-6

4. Log in to the Administration Service using the same credentials, which you used to log in
to the Service Manager. The Administration Service Overview page is displayed.

5. Click the Application Navigation icon to open the left-navigation pane and click
Configuration to open the Database tab of the Configuration page.

6. Click the plus (+) sign in the Credentials section to begin adding database user
credentials.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-7

7. You need to add connections for container database (CDB) and pluggable
databases (PDBs). Each CDB is used to capture (Extract) from the source
database and PDB for delivery (Replicat).

Use the EZconnect syntax to configure the database connection. You need the
username, password, hostname, port number, and service name connection
information to use the EZConnect syntax.

Here's the syntax that you need to specify in the User ID field:

username@hostname:port/service_name
Here's an example for setting the User ID with EZConnect:

c##ggadmin@dc.example.com:1521/DBWEST.example.com
8. Click on the blue icon in the Actions column to connect to the database. The icon

turns blue when the connection is successful.

After connecting to the database, the sections to add checkpoint table,
TRANDATA, and heartbeat table are displayed.

Step 2: Add Heartbeat, and Checkpoint Tables

Add the heartbeat tables for the PDBs to monitor any possible lags.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-8

Add a checkpoint table for the target database to ensure that if there is a failure, then the
Extract and Replicat processes can restart from the point of failure.

Note:

You don't need to add TRANDATA as this is internally done with the PL/SQL call of
ADD_AUTO_CDR. You might want to check that supplemental logging is enabled for
the tables.

1. Use the TRANDATA Information section to check if supplemental logging has been
enabled for the tables set up for capture.

You can search for the schema for which you added the trandata, using the magnifier
glass search icon. This will display the trandata information. The following image shows
the trandata information for the HR schema in the pluggable database DBEAST.

See Configuring Logging Properties to learn the steps for configuring the logging
properties at the Schema, Table or Procedure level.

2. To set up the checkpoint table for Replicat, you need to connect to the target database
credentials (ggwest) from the Credentials section.

3. Click the plus sign (+) to add the checkpoint table for the PDBs.

Click Submit. The checkpoint table is added.

Also see the Before Adding an Extract section, for details on creating heartbeat tables.

4. Add another checkpoint table for the second Replicat, reps, by repeating the steps 3 and
4.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-9

5. Add the heartbeat tables for both source and target endpoints by connecting to
ggeast and ggwest database credential aliases.

For bidirectional, active/active replication, the heartbeat table should be in the
same schema for the outgoing Extracts and incoming Replicats at each site. For
example, see the following use case:

Site A Site B

EAB –-------------> RAB
RBA –-------------> EBA
In this example, EAB and RBA heartbeat tables must use the same schema.
However, EAB and RAB can use different schemas.

Add the heartbeat table by clicking the plus sign.

6. Click Submit after adjusting the heartbeat options.

Step 3: Add Extracts

In this section, you will add two extracts, exte and extw. The Extract process captures
data from the source database and writes it to a trail file. The trail file for exte is ea and
for extw is ew.

1. Click the Overview option from the left-navigation pane of the Administration
Service and click the plus sign (+) from the Extract section.

2. From Add Extract wizard, select Integrated Extract.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-10

3. Click Next and specify the Extract options in the Extract Options screen. See the detailed
steps to add an Extract from the Add a Primary Extract section.

If you are creating the Extract for a pluggable database, then you'll see option Register
to PDBs as soon as you enter the credentials domain and alias. Select the PDB in the
container database that you want to use for replication.

4. After you enter the options for the Extract (exte), click Next. The next screen displays the
Extract parameter file to help you review the Extract settings.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-11

Here's the Extract parameter file for the Extract exte:

EXTRACT exte
USERIDALIAS cggnorth DOMAIN OracleGoldenGate
EXTTRAIL east/ea
SOURCECATALOG DBEAST
TRANLOGOPTIONS EXCLUDETAG 00
DDL INCLUDE MAPPED OBJNAME hr.*
DDLOPTIONS REPORT
TABLE DBEAST.hr.*;

Review these settings and update the Extract configuration as needed.

For multitenant databases, you need to add entries for Extract to capture from
multiple pluggable databases to a single trail. In the parameter file, source objects
must be specified in TABLE statements with the fully qualified three-part names in
the format of container.schema.object or using the SOURCECATALOG parameter
with two-part names schema.object.

Click Create and Run to start your Extract.

To create the Extract extw:

1. Navigate back to the Overview page using the Application Navigation pane.

2. From Add Extract wizard, select Integrated Extract.

3. Click Next and specify the Extract options in the Extract Options screen.

4. Select the PDB as DBWEST in the container database that you want to use for
replication.

5. After you enter the options for the Extract, click Next. The next screen displays the
Extract parameter file to help you review the Extract settings.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-12

6. Enter the options for Extract parameter:

EXTRACT extw
USERIDALIAS cggnorth DOMAIN OracleGoldenGate
EXTTRAIL west/ew
SOURCECATALOG DBWEST
TRANLOGOPTIONS EXCLUDETAG 00
DDL INCLUDE MAPPED OBJNAME hr.*
DDLOPTIONS REPORT
TABLE DBWEST.hr.*;

Review these settings and update the Extract configuration as needed.

7. Click Create and Run to start your Extract.

Step 4: Add a Replicat

In this section, you will add Replicats repe and repw. The Replicat process delivers the
change data from the trail file (ea) created by the Extract, to the target database. Replicat
reads the trail file on the target database, reconstructs the DML or DDL operations, and
applies them to the target database.

1. Before you Add a Replicat, make sure that you added your checkpoint table for the target
database (DBWEST) by connecting to the ggwest database credentials.

2. Select a Replicat type to deliver data to the target database. Follow the wizard to
complete adding a Replicat.

3. Select the Parallel Integrated Replicat option in the Replicat Options screen.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-13

4. Click Next to view the Replicat Parameter File screen. All the parameters that
you have specified are available for review here.
For multitenant container databases, Replicat can only apply to one pluggable
database. To specify the correct one, use a SQL*Net connect string for the
database user that you specify with the USERID or USERIDALIAS parameter. For
example: ggadmin@DBWEST.

In the parameter file, specify only the schema.object in the TARGET portion of the
MAP statements. In the MAP portion, identify source objects captured from more
than one pluggable database with their three-part names or use the
SOURCECATALOG parameter with two-part names.

In case of integrated parallel Replicat, MAPINVISIBLECOLUMNS parameter is set by
default. You don't need to set it in the Replicat parameter file explicitely.

Here's a sample of the Replicat Parameter File:

REPLICAT repe
USERIDALIAS ggwest DOMAIN OracleGoldenGate
DDLOPTIONS REPORT
SOURCECATALOG DBEAST
MAP hr.*, TARGET hr.*;

To create the second Replicat repw, follow these steps:

1. Repeat steps 1 and 2 from the steps to add the first Replicat (repe).

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-14

2. In the Replicat options screen, enter the following details:

Apart from entering the other options, make sure you enter the following details:

a. Specify the trail name as ew and the trail file subdirectory as west.

b. Select the checkpoint table as DBWEST.ggs_checkpoint.

c. Click Next.

d. Change or modify the Replicat parameter file, as follows:

REPLICAT repw
USERIDALIAS ggeast DOMAIN OracleGoldenGate
SOURCECATALOG DBWEST
DDL INCLUDE ALL
DDLOPTIONS REPORT
MAPEXCLUDE ggadmin.ggs_checkpoint*
MAPINVISIBLECOLUMNS
MAP hr.*, TARGET hr.*;

After the Replicat starts successfully, you can see the Extract and Replicat processes in
running state on the Administration Service Overview page.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-15

Test and Monitor Transactions

The following screen shows that records were captured by the exte Extract from the
hr.employees table on DBEAST.

Check that the same is updated on the Replicat (repe) as well:

The 2 records in the hr.employees table are replicated to the endpoint (DBWEST).

Let's see the Extract (extw) on DBWEST.

Notice that the value of inserted records is 5. Out of these 5 records, 2 were
replicated by repe into hr.employees on DBWEST. 3 new records were then inserted
into hr.employees on DBWEST.

When these 3 records are inserted in the hr.employees table in the PDB DBWEST, then
only the updated records should be replicated in DBEAST. The following screen shows
that only the updated records are added to DBEAST.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-16

As shown in this figure, there are 3 INSERTS, indicating that there was no duplication of
records.

This is one way of implementing an active-active bidirectional replication in Oracle
GoldenGate MA.

Test Automatic Conflict Detection and Resolution

In this section, the latest timestamp of a record is checked to check if ACDR is able to resolve
the conflict in records. To check automatic resolution of conflicts, let's create the following
records.

Transaction in DBEAST:

In the following example, UPDATE transactions have been run simulateneously on DBEAST
and DBWEST and with ACDR, the conflict is detected and resolved.

Here's the query to update a records in hr.employees on DBEAST:

UPDATE hr.employees set LAST_NAME='Simmonds', EMAIL='HSIMMONDS' where
EMPLOYEE_ID=204;

UPDATE hr.employees set SALARY='15000' where EMPLOYEE_ID=203;

Simulteneously, another query is run on DBWEST for the same rows, as shown in the following
example:

UPDATE hr.employees set LAST_NAME='Symmonds', EMAIL='HSYMMONDS' where
EMPLOYEE_ID=204;

UPDATE hr.employees set SALARY='25000' where EMPLOYEE_ID=203;

To check which of these entries was the winner or the entry that was finally applied, and to
know the criteria used to apply that entry, use the following options:

Use DBA_APPLY_ERROR_MESSAGES view

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-17

On DBEAST, run the following query:

select OBJECT_NAME, CONFLICT_TYPE,APPLIED_STATE,CONFLICT_INFO from
DBA_APPLY_ERROR_MESSAGES;

The output for this query displays the following:

Run the same query on DBWEST also.

Make the CDRTS$ROW visible by running the following command:

ALTER TABLE hr.employees modify CDRTS$ROW visible;

To check the record that was eventually applied to the rows, run the SELECT query on
the table hr.employees. You can run this query on either DBEAST or DBWEST:

SELECT * from hr.employees WHERE employee_id=204

The output shows as follows:

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-18

You can note the timestamp for this transaction: 11.38.45.774317 AM.

Now, let's check the timestamp on DBWEST:

As the conflict is resolved, the timestamp shows the same data on both PDBs.

Run the following command to check if the conflicts were detected and resolved on the
Oracle GoldenGate side. Here's the command to check this:

STATS REPLICAT repe, REPORTCDR

The output for this command displays the following:

As shown in this statistical report, there were 3 conflicts and 2 of them were resolved. The
UPDATEROWEXISTS conflict type is used for resolution.

Chapter 5
Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture

5-19

You can also see this report from the web interface:

Set Up Data Replication with Oracle GoldenGate
Microservices Architecture

Use this quickstart to configure data replication using Oracle GoldenGate
Microservices Architecture for a multitenant container database with two pluggable
databases to demonstrate data replication from an Oracle to Oracle database in a
HUB configuration.

Note:

This quickstart does not perform an initial load instantiation and assumes
that the tables and data are the same in the source and target endpoints.

The source and target databases in this diagram refer to the container and pluggable
databases (PDBs).

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-20

Container Database
(CDB$ROOT) Process Names

Pluggable Database (DBEAST)
Process Names

Pluggable Database
(DBWEST) Process Name

• CDB$ROOT database user:
c##ggadmin

• Database credential alias:
cggnorth

• Database user: ggadmin
• Database alias: ggeast
• Extract: exte

• Database user: ggadmin
• Database alias: ggwest
• Extract: extw

Configure and Set Privileges for Oracle Multitenant Database

In Oracle database, you need to enable replication for Oracle GoldenGate and assign
privileges to the database user at the CDB level and the pluggable database (PDB) level.

The database is in ARCHIVELOG mode and FORCE LOGGING and Supplemental Logging is
enabled. For the container database, assign the following privileges to the common user
(cdb$root):

CDB User Privileges

CGGNORTH DATABASE SETUP AT CDB LEVEL
ALTER SESSION SET CONTAINER=cdb$root;
ALTER SYSTEM SET ENABLE_GOLDENGATE_REPLICATION=TRUE;
ALTER SYSTEM SET STREAMS_POOL_SIZE=2G;
ALTER DATABASE FORCE LOGGING;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
ARCHIVE LOG LIST;
CREATE TABLESPACE GG_DATA DATAFILE '+DATA' SIZE 100M AUTOEXTEND ON NEXT 100M;
CREATE USER c##ggadmin IDENTIFIED BY PASSWORD CONTAINER=ALL DEFAULT
TABLESPACE GG_DATA TEMPORARY TABLESPACE TEMP;
GRANT ALTER SYSTEM TO c##ggadmin CONTAINER=ALL;
GRANT DBA TO c##ggadmin CONTAINER=ALL;
GRANT CREATE SESSION TO c##ggadmin CONTAINER=ALL;
GRANT ALTER ANY TABLE TO c##ggadmin CONTAINER=ALL;
GRANT RESOURCE TO c##ggadmin CONTAINER=ALL;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE(' c##ggadmin
',CONTAINER=>'ALL');

Source PDB User Privileges (DBEAST)

ALTER SESSION SET CONTAINER=dbeast;
CREATE TABLESPACE GG_DATA DATAFILE '+DATA' SIZE 100M AUTOEXTEND ON NEXT 100M;
CREATE USER ggadmin IDENTIFIED BY PASSWORD CONTAINER=CURRENT;
GRANT CREATE SESSION TO ggadmin CONTAINER=CURRENT;
GRANT ALTER ANY TABLE TO ggadmin CONTAINER=CURRENT;
GRANT RESOURCE TO ggadmin CONTAINER=CURRENT;
GRANT DBA TO ggadmin CONTAINER=CURRENT;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('ggadmin');

Target PDB User Privileges (DBWEST):

ALTER SESSION SET CONTAINER=dbwest;
CREATE USER ggadmin IDENTIFIED BY PASSWORD CONTAINER=CURRENT;
GRANT ALTER SYSTEM TO ggadmin CONTAINER=CURRENT;

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-21

GRANT CREATE SESSION TO ggadmin CONTAINER=CURRENT;
GRANT ALTER ANY TABLE TO ggadmin CONTAINER=CURRENT;
GRANT RESOURCE TO ggadmin CONTAINER=CURRENT;
GRANT DBA TO ggadmin CONTAINER=CURRENT;
GRANT DV_GOLDENGATE_ADMIN, DV_GOLDENGATE_REDO_ACCESS TO GGADMIN
CONTAINER=CURRENT;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('ggadmin');

Note:

Granting DBA role is not mandatory for every user. Privileges should be
granted depending on the actions that the user needs to perform on the
database. For example, to grant DML operation privileges to insert, update,
and delete transactions to ggadmin, use the GRANT ANY INSERT/UPDATE/
DELETE privileges and to further allow users to work with tables and indexes
as part of DML operations, use the GRANT CREATE/DROP/ALTER ANY TABLE/
INDEX privileges. In this quickstart, the assumption is that the database user
is a database administrator. See Grant User Privileges for Oracle Database
21c and Lower and Configure a Multitenant Container Database to know
more about specific privilege requirements.

Configure the Replication Process from Oracle GoldenGate MA Web Interface

Data replication processes include Extracts, Replicats processes, along with
Distribution Paths (DISTPATH) or Receiver Paths or Target-Initiated Paths (RECVPATH).

Using the following steps, you'll be able to configure data capture (Extract) and apply
(Replicat) processes. You'll also be able to test if the replication has started. The
DISTPATH process is not used for this configuration.

Step 1: Add Database Credentials from the Administration Service

In this section, you'll add the database credentials to connect to the source and target
databases using EZConnect.

1. Keep your database user credentials, which created in the previous session,
ready. You'll use them to connect Oracle GoldenGate to the database server.

2. Open the Service Manager login page in a web browser and log in to the Service
Manager with your Oracle GoldenGate administrator user credentials. If logging in
for the first time, you have to log in with the administrator account user credentials,
created when adding your deployment with Oracle GoldenGate Configuration
Assistant wizard.

3. From the Service Manager Overview page, click the port number for the
Administration Service of the deployment.

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-22

This opens the Administration Service login page.

4. Log in to the Administration Service using the same credentials, which you used to log in
to the Service Manager. The Administration Service Overview page is displayed.

5. Click the Application Navigation icon to open the left-navigation pane and click
Configuration to open the Database tab of the Configuration page.

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-23

6. Click the plus (+) sign in the Credentials section to begin adding database user
credentials.

7. You need to add connections for container database (CDB) and pluggable
databases (PDBs). Each CDB is used to capture (Extract) from the source
database and PDB for delivery (Replicat).

Use the EZconnect syntax to configure the database connection. You need the
username, password, hostname, port number, and service name connection
information to use the EZConnect syntax.

Here's the syntax that you need to specify in the User ID field:

username@hostname:port/service_name
Here's an example for setting the User ID with EZConnect:

c##ggadmin@dc.example.com:1521/dc1.example.com

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-24

The following screen shows the database credential (cggnorth) for connecting to the
user c#ggadmin added to the credentials list. You can also see the credentials being
added for the Alias (ggeast) for connecting to the DBEAST PDB.

8. Click on the blue icon in the Actions column to connect to the database. The icon turns
blue when the connection is successful.

After connecting to the database, the sections to add checkpoint table, TRANDATA, and
heartbeat table are displayed.

Step 2: Add TRANDATA, Heartbeat, and Checkpoint Tables

In this section, you will add TRANDATA for the source database to enable writing information
to the redo logs. This would ensure that the rows added to the source database are uniquely
identified on the target database and are updated. You'll add heartbeat tables for the source
and target databases to monitor any possible lags. You will also add a checkpoint table for
the target database to ensure that if there is a failure, then the Extract and Replicat
processes can restart from the point of failure.

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-25

1. Add TRANDATA to the source connection. Use the TRANDATA Information
section to set up database logging properties. This is an essential step to enable
supplemental logging and ensure that the data is written to the database redo log.

After you add the trandata, you can search for the schema for which you've add
the trandata, using the search icon. This will display the trandata information. The
following image shows the trandata information for the HR schema in the pluggable
database DBEAST.

See Configuring Logging Properties to learn the steps for configuring the logging
properties at the Schema, Table or Procedure level.

2. To set up the checkpoint table for Replicat, you need to connect to the target
database credentials (ggwest) from the Credentials section.

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-26

3. Click the plus sign (+) to add the checkpoint table for the target (pluggable) database.

Click Submit. The checkpoint table is added.

Also see the Before Adding an Extract section, for details on creating heartbeat tables.

4. Add the heartbeat tables for both source and target endpoints by connecting to ggeast
and ggwest database credential aliases. Add the heartbeat table by clicking the plus
sign.

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-27

5. Click Submit after adjusting the heartbeat options.

Step 3: Add an Extract

In this section, you will add an Extract process (exte). The Extract process captures
data from the source database and writes it to a trail file (ea).

1. Click the Overview option from the left-navigation pane of the Administration
Service and click the plus sign (+) from the Extract section.

2. From Add Extract wizard, select Integrated Extract.

Note:

Before creating Replicat, you need to create an initial load Extract when
starting the replication process for the first time. To learn about the initial
load Extract and it's use case, see Add Initial Load Extract Using the
Admin Client.

3. Click Next and specify the Extract options in the Extract Options screen. See the
detailed steps to add an Extract from the Add a Primary Extract section.

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-28

If you are creating the Extract for a pluggable database, then you'll see option Register
to PDBs as soon as you enter the credentials domain and alias. Select the PDB in the
container database that you want to use for replication.

4. After you enter the options for the Extract, click Next. The next screen displays the
Extract parameter file to help you review the Extract settings.

Here's the Extract parameter file for the Extract exte:

EXTRACT exte
USERIDALIAS cggnorth DOMAIN OracleGoldenGate
EXTTRAIL east/ea
SOURCECATALOG DBEAST
DDL INCLUDE MAPPED
TABLE hr.*;

Review these settings and update the Extract configuration as needed.

For multitenant databases, you need to add entries for Extract to capture from multiple
pluggable databases to a single trail. In the parameter file, source objects must be
specified in TABLE and SEQUENCE statements with their fully qualified three-part names in
the format of container.schema.object or using the SOURCECATALOG parameter with two-
part names schema.object.

5. Click Create and Run to start your Extract.

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-29

Step 4: Add a Replicat

In this section, you will add a Replicat process (repe). The Replicat process delivers
the change data from the trail file (ea) created by the Extract, to the target database.
Replicat reads the trail file on the target database, reconstructs the DML or DDL
operations, and applies them to the target database.

1. Before you Add a Replicat, make sure that you added your checkpoint table for the
target database (DBWEST) by connecting to the ggwest database credentials.

2. Select a Replicat type to deliver data to the target database. Follow the wizard to
complete adding a Replicat. See Add a Replicat.

3. Enter the Parallel Nonintegrated Replicat options in the Replicat Options screen.

4. Click Next to view the Replicat Parameter File screen. All the parameters that
you have specified are available for review here.
For multitenant container databases, Replicat can only apply to one pluggable
database. To specify the correct one, use a SQL*Net connect string for the
database user that you specify with the USERID or USERIDALIAS parameter. For

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-30

example: ggadmin@DBWEST. In the parameter file, specify only the schema.object in the
TARGET portion of the MAP statements. In the MAP portion, identify source objects captured
from more than one pluggable database with their three-part names or use the
SOURCECATALOG parameter with two-part names.

Here's a sample of the Replicat Parameter File:

REPLICAT repe
USERIDALIAS ggwest DOMAIN OracleGoldenGate
--DDL EXCLUDE ALL
DDLERROR default discard
REPERROR (default,discard)
DDLOPTIONS REPORT
SOURCECATALOG DBEAST
MAP hr.*, TARGET hr.*;

After the Replicat starts successfully, you can see the Extract and Replicat processes in
running state on the Administration Service Overview page.

Step 5: Test the Replication

To test if the replication has started, try insert, update, or delete operations on your database
and then follow these steps:

1. Click Action from the Extract (exte) section and click Details.

2. Click the Statistics tab. You'll see additions to the Insert, Updates, or Deletes columns
on this page.

Also see the Statistics tab using the Replicat Details option. You would see the updates
in the Table Statistics section.

Chapter 5
Set Up Data Replication with Oracle GoldenGate Microservices Architecture

5-31

Switching from Nonintegrated Replicat to Parallel
Nonintegrated Replicat

The process for switching to parallel integrated or parallel nonintegrated Replicat is the
same for all Replicat modes. This topic describes the process to switch from
nonintegrated Replicat to parallel nonintegrated Replicat.

Before Starting the Switching Process

1. Create a parallel nonintegrated Replicat process, repe that reads from the
exisiting trail file:

ADD REPLICAT repe, PARALLEL, EXTTRAIL ea, checkpointtable
ggadmin.ggs_checkpoint1

In this command, repe is the name of the Replicat. ea is the trail name. The trail
name supplied while creating this Replicat is the same as the other Replicat in
nonintegrated mode.

Note:

If the checkpoint table is configured in GLOBALS, then there is no need
to include the checkpointtable option with this command. If not, then
use this option to provide the checkpoint table name.

2. Do not start the parallel nonintegrated Replicat (repe).

3. Stop the current nonintegrated Replicat, repea.

STOP REPLICAT repea

4. On the target side, access the Replicat report file (.rpt) to know the values of the
following components:

• Last applied CSN by the current nonintegrated Replicat process.

Chapter 5
Switching from Nonintegrated Replicat to Parallel Nonintegrated Replicat

5-32

• Trail sequence and RBA of the exisitng Replicat process.

To access the details of the Replicat, run the command:

INFO REPLICAT repea DETAIL

The output for this command shows an output similar to the following:

Replicat REPEA Last Started 2022-06-16 04:21 Status STOPPED
Description eastt
Checkpoint Lag 00:00:00 (updated 01:59:59 ago)
Log Read Checkpoint File east/ea000000009
 2022-06-14 04:38:34.084220 RBA 9382
Settings Profile Default
Encryption Profile LocalWallet

Current Log BSN value: (no data)

Last Committed Transaction CSN value: 50698907

 Extract Source Begin
End

 east/ea000000009 2022-06-16 04:21 2022-06-14
04:38
 east/ea000000000 * Initialized * 2022-06-16
04:21
 east/ea000000009 2022-06-14 04:38 2022-06-14
04:38
 east/ea000000009 2022-06-14 04:38 2022-06-14
04:38
 east/ea000000009 2022-06-16 03:55 2022-06-14
04:38
 east/ea000000000 * Initialized * 2022-06-16
03:55
 east/ea000000000 * Initialized * First
Record
 east/ea000000000 * Initialized * First
Record
 east/ea000000000 * Initialized * First
Record
 east/ea000000000 * Initialized * First
Record

Current directory /scratch/preeshuk/ggtest/install_ogg21.3_210725/bin

Report file /scratch/oggoradep/var/lib/report/REPEA.rpt
Parameter file /scratch/oggoradep/etc/conf/ogg/REPEA.prm
Checkpoint file /scratch/oggoradep/var/lib/checkpt/REPEA.cpr
Checkpoint table DBEAST.GGADMIN.GGS_CHECKPOINT
Process file /scratch/oggoradep/var/run/REPEA.pcr
Error log /scratch/oggoradep/var/log/ggserr.log

Chapter 5
Switching from Nonintegrated Replicat to Parallel Nonintegrated Replicat

5-33

Start the Switching Process

To start using the nonintegrated parallel Replicat, you need to alter it to port the
content from the other Replicat. Use the following steps to perform this task:

1. Run the ALTER REPLICAT command as follows:

ALTER REPLICAT replicat_name, EXTSEQNO extseqno, EXTRBA extrba

For example, for the Replicat repe, here's the command:

ALTER REPLICAT repe, EXTSEQNO 9, EXTRBAm 9382

2. Start the newly created parallel nonintegrated Replicat process using the following
command:

START REPLICAT repe AFTERCSN csn_value

For example:

START REPLICAT repe AFTERCSN 50698907

This starts the Replicat at the specified CSN value in the trail file.

Chapter 5
Switching from Nonintegrated Replicat to Parallel Nonintegrated Replicat

5-34

6
Extract

This section lists details about adding and managing Extracts.

Topics:

• About Extract

• Before Adding an Extract

• Add Extracts

• Extract: Advance Tasks

• DDL Replication

• Manage Trail Files

• Using Oracle GoldenGate with MySQL Group Replication

About Extract
Extract is a process that is configured to run against the source database or configured to run
on a downstream mining database (Oracle only) with capturing data generated in the true
source database located somewhere else. This process is the extraction or the data capture
mechanism of Oracle GoldenGate.

You can configure an Extract for the following use cases:

• Initial Loads: When you set up Oracle GoldenGate for initial loads, the Extract process
captures the current, static set of data directly from the source objects. See Add Initial
Load Extract Using the Admin Client and Replicat: Advance Tasks.

• Change Synchronization: When you set up Oracle GoldenGate to keep the source data
synchronized with another set of data, the Extract process captures the DML and DDL
operations performed on the configured objects after the initial synchronization has taken
place. Extracts can run locally on the same server as the database or on another server
using the downstream integrated Extract (in case of Oracle database) for reduced
overhead. It stores these operations until it receives commit records or rollbacks for the
transactions that contain them. If it receives a rollback, it discards the operations for that
transaction. If it receives a commit, it persists the transaction to disk in a series of files
called a trail, where it is queued for propagation to the target system. All the operations in
each transaction are written to the trail as a sequentially organized transaction unit and
are in the order in which they were committed to the database (commit sequence order).
This design ensures both speed and data integrity.

Note:

Extract ignores operations on objects that are not in the Extract configuration, even
though a transaction may also include operations on objects that are in the Extract
configuration.

6-1

The Extract process can be configured to capture data from the following types of data
sources:

• Source tables: This source type is used for initial loads.

• Database recovery logs or transaction logs: While capturing from the logs, the
actual method varies depending on the database type. An example of this source
type is the Oracle database redo logs, which are used for supplemental logging.

Before Adding an Extract
Learn about the prequisites of adding an Extract.

Topics:

• Register an Extract

• Access the Configurations Page

• Add Database Credentials

• Enable TRANDATA

• Add Heartbeat Table

• Add a Checkpoint Table

Register an Extract
Valid for Oracle and PostgreSQL.

Registering an Extract is needed for Oracle and PostgreSQL databases.

Topics:

• Registering Extract for Oracle

• Registering Extract in Microservices Architecture for PostgreSQL

Registering Extract for Oracle
Follow these instructions to register an Extract. Extract registration must be done prior
to creating an Extract. See REGISTER EXTRACT in the Command Line Interface
Reference for Oracle GoldenGate for more information.

1. Using the Admin Client, connect to the deployment, then connect to the credential
alias for the source database.

CONNECT https://remotehost:srvmgrport DEPLOYMENT deployment_name AS
deployment_user PASSWORD deployment_password

OGG (https://remotehost:16000oracle_source)> DBLOGIN USERIDALIAS
alias

Chapter 6
Before Adding an Extract

6-2

2. Register the Extract, which internally creates a replication slot for the Extract. Extract
names cannot be more than 8 alpha-numeric characters.

OGG (https://remotehost:16000oracle_source)> REGISTER EXTRACT extname

You can also register an Extract from the Oracle GoldenGate MA web interface. See Add a
Primary Extract.

Registering Extract in Microservices Architecture for PostgreSQL
An Extract for PostgreSQL must be registered with the database and be granted a reserved
replication slot. Replication slots are allocated through the database configuration setting
max_replication_slots and can be configured as discussed in Database Configuration.

Follow these instructions to register an Extract. Extract registration must be done prior to
creating an Extract. See REGISTER EXTRACT in the Command Line Interface Reference for
Oracle GoldenGate for more information.

1. Using the Admin Client, connect to the deployment, then connect to the credential alias
for the source database.

OGG> CONNECT https://remotehost:srvmgrport DEPLOYMENT
 deployment_name AS deployment_user PASSWORD deployment_password

OGG (https://remotehost:16000postgresql_source)> DBLOGIN USERIDALIAS alias

2. Register the Extract, which internally creates a replication slot for the Extract. Extract
names cannot be more than 8 alpha-numeric characters.

OGG (https://remotehost:16000postgresql_source)> REGISTER EXTRACT extname

You can also register an Extract from the Oracle GoldenGate MA web interface. See Add a
Primary Extract.

Access the Configurations Page
Configure connections to the database from Oracle GoldenGate by setting up database user
credentials from the Configurations page of the Administration Service left-navigation pane.

See Add Database Credentials for steps to create credentials for the database and test the
connection. You can set up database credentials to set up connections to multiple databases,
as required by the Extract and Replicat processes.

Add Database Credentials
You must have a working database credential for your Extract and Replicat processes.

1. Launch the Administration Service interface and log in.

2. Click Configuration from the Application Navigation pane.

3. Click the plus sign (+) sign next to Credentials.

4. Enter the following details in the displayed fields:

Chapter 6
Before Adding an Extract

6-3

Database Credential Options Description

Credential Domain Specify a domain name to which the
database credential is associated. For
example, "OracleGoldenGate" is the default
domain name, incase you don't specify a
domain name.

Credential Alias This is the alias for your database
credential.

User ID This is the username of the database user.

For Oracle database, if you use the
EZconnect syntax to connect to the
database, then you can specify the value in
this field in the following manner:

dbusername@hostname:port/
service_name
dbusername is the database user name.

hostname or IP address of the server where
the database is running.

port is the port number for connecting to
the database server. Usually, this value is
1521.

service_name is the name of the service
provided in the tnsnames.ora file for the
database connection.

Password Password used by database user to log in to
the database.

5. Click Submit.

6. Click the Connect to database icon to test that the connection is working correctly.
If the connection is successful, the Connect to database icon turns blue. You'll also
see sections to set up checkpoint and heartbeat tables after the connection is
successful.

Enable TRANDATA
Valid for Oracle and Non-Oracle databases.

Depending on the source database, supplemental logging must be enabled. This can
be done at the table, schema, or global (database) level.

You can skip ADD TRANDATA in case of initial load without CDC.

Topics:

• Oracle: Enable TRANDATA or SCHEMATRANDATA

• Db2 z/OS: Enable Change Capture

• SQL Server: Enable Supplemental Logging and Other Features

Oracle: Enable TRANDATA or SCHEMATRANDATA
Valid for Oracle.

Chapter 6
Before Adding an Extract

6-4

Depending on the source database, supplemental logging must be enabled. This can be
done at the table, schema, or global (database) level.

To enable supplemental logging at the table and schema level, on Configuration page:

1. Select the Table or Schema option as required and click plus sign to add.

2. Enter the name of the table for which you need to set up supplemental logging. Make
sure to enter the full table name with schema name, such as, schema.table1. You can
also use wildcard instead of specific table name.

3. Select the Add TRANDATA Information in the background? option as required.

4. Click Submit.

You can also use the commands ADD TRANDATA and ADD SCHEMATRANDATA for setting up
trandata and schema level trandata. For details, see ADD TRANDATA and ADD
SCHEMATRANDATA. You can skip ADD TRANDATA in case of initial load without CDC.

Db2 z/OS: Enable Change Capture
Follow these steps to configure Db2 to log data changes in the expanded format that is
supplied by the DATA CAPTURE CHANGES feature of the CREATE TABLE and ALTER TABLE
commands. This format provides Oracle GoldenGate with the entire before and after images
of rows that are changed with update statements.

1. From the Oracle GoldenGate directory, start the Admin Client.

2. Log on to Db2 as a user that has ALTER TABLE privileges.

DBLOGIN SOURCEDB DSN, USERID user[, PASSWORD password][,
encryption_options]

3. Issue the following command. where table is the fully qualified name of the table. You
can use a wildcard to specify multiple table names but not owner names.

ADD TRANDATA table

By default, ADD TRANDATA issues the following command:

ALTER TABLE name DATA CAPTURE CHANGES;

SQL Server: Enable Supplemental Logging and Other Features
A database user must issue the ADD TRANDATA command to enable supplemental logging
on the source database in an Oracle GoldenGate configuration. A database login command
(DBLOGIN) is issued from the command line interface before ADD TRANDATA is issued.

• The database user that enables TRANDATA must have sysadmin rights.

Extract can run with dbowner permissions. However, you also need sysadmin rights to issue
the ADD/ALTER/ DELETE/INFO HEARTBEATTABLE commands, or to create the Oracle
GoldenGate CDC Cleanup job using the ogg_cdc_cleanup_setup.bat batch file.

Chapter 6
Before Adding an Extract

6-5

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/ggmas&id=GCLIR-GUID-D3FD004B-81E4-4185-92D3-812834A5DEFC
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/ggmas&id=GCLIR-GUID-5DA7C3DC-5D87-4A8B-AD23-6EF587A5CF41
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/ggmas&id=GCLIR-GUID-5DA7C3DC-5D87-4A8B-AD23-6EF587A5CF41

Add Heartbeat Table
Heartbeat tables are used to monitor lag throughout the data replication cycle.
Automatic heartbeats are sent from each source database into the replication streams,
by updating the records in a heartbeat seed table and a heartbeat table, and
constructing a heartbeat history table. Each of the replication processes in the
replication path process these heartbeat records and update the information in them.
These heartbeat records are inserted or updated into the heartbeat table at the target
databases.

To create the heartbeat table, you have to follow these steps on the source and target
system:

Note:

Creating the heartbeat table is optional but is recommended.

1. From the Administration Service, select Configuration from the navigation pane.

2. Select the + sign next to the Heartbeat section of the Database tab. You'll need to
enter the values for the heartbeat frequency, retention time, and purge frequency.

Here are the steps to add a heartbeat table from the Admin Client:

1. Launch the Admin Client from the command line.

2. Connect to the deployment from the Admin Client.

CONNECT https://remotehost:srvmgrport DEPLOYMENT deployment_name AS
deployment_user PASSWORD deployment_password

Here's an example:

CONNECT https://remotehost:16000 DEPLOYMENT ggdep_postgres AS
ggadmin PASSWORD P@ssWord

3. Connect to the source and target databases using the DBLOGIN USERIDALIAS
command. The following example shows the connection to the source database
with credential alias ggeast:

(https://remotehost:16000 ggdep_postgres)> DBLOGIN USERIDALIAS
ggeast

4. Add the heartbeat table:

(https://remotehost:16000 ggdep_postgres)> ADD HEARTBEATTABLE

Optionally, for a target only database, one that is used for unidirectional replication
only, you can include the TARGETONLY option which will not create a heartbeat record
update function.

See ADD HEARTBEATTABLE for details about command options.

Chapter 6
Before Adding an Extract

6-6

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/ggmas&id=GCLIR-GUID-126E30A2-DC7A-4C93-93EC-0EB8BA7C13CB

Topics:

• Create the Oracle GoldenGate CDC Cleanup Task

• Running the Heartbeat Update and Purge Function for PostgreSQL

Create the Oracle GoldenGate CDC Cleanup Task
For SQL Server users, there is a requirement to create Oracle GoldenGate CDC Cleanup
tasks before adding an Extract. You can do so by performing the steps in Details of the
Oracle GoldenGate CDC Cleanup Process.

Running the Heartbeat Update and Purge Function for PostgreSQL
Oracle GoldenGate for PostgreSQL supports a heartbeat table configuration, with some
limitations regarding the update and purge tasks.

The heartbeat table and associated functions are created from the ADD HEARTBEATTABLE
command, however for PostgreSQL, there is no automatic scheduler to call the functions.

One main function controls both the heartbeat record update and the heartbeat history table
purge functions. The default settings for both of these features are 60 seconds for the update
frequency and 1 day for the history record purge, which deletes all records older than 30 days
by default.

To call the main heartbeat record function, users should create an operating system level job
that executes

“select ggschema.gg_hb_job_run();”

. When this function is called, it will take into account the update frequency settings and
history record purge settings and use those values regardless of the scheduler settings for
the function call.

For example, users can create a Cron Job with the following syntax, and have it run every
minute.

*****PGPASSWORD="gguserpasswd" psql -U gguser -d dbname -h remotehost -p
5432 -c "select ggschema.gg_hb_job_run();" >/dev/null
 2>&1

Windows Task Scheduler, pgAdmin, or pg_cron are other programs that could be used to
schedule the function call.

Add a Checkpoint Table
You can view the checkpoint table within the checkpoint section. In case you want to add a
checkpoint table for the target system:

1. Click the plus sign to enable adding a checkpoint table.

2. Add the checkpoint table name in the format

table.checkpoint_table_name

Chapter 6
Before Adding an Extract

6-7

.

3. Click Submit. After the checkpoint is created, you'll be able to see in the list of
checkpoint tables.

To perform this task from the command line, see ADD CHECKPOINTTABLE in the
Command Line Interface Reference for Oracle GoldenGate.

Add Extracts
Learn about adding different type of Extract(s), depending on the specific requirement,
and database used with Oracle GoldenGate.

Topics:

• Add a Primary Extract

• Add a Change Data Capture (CDC) Extract

• Add Online Extract Groups

• Extract Actions

Add a Primary Extract
Set up database credentials to create and run Extract using the steps in Add Database
Credentials.
Now, you're ready to add an Extract for your deployment.

1. From the Overview page of the Administration Service, click the + sign next to
Extracts.

2. Choose the type of Extract to create and click Next.

Note:

To learn about creating initial load Extract, see About Instantiating with
Initial Load Extract. You can also create a Change Data Capture (CDC)
Extract for MySQL and SQL Server databases. See Add a Change Data
Capture (CDC) Extract.

3. Provide the required information designated with an asterisk (*). Here's a
description of the options in the different sections for the Add Extract screen:

Option Description Database

Basic Information Section

Process Name Name of the Extract process.
The name of the Extract
process can be up to 8
characters.

All databases

Description Description of the Extract
process being created.

All databases

Chapter 6
Add Extracts

6-8

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/ggmas&id=GCLIR-GUID-870D65C1-A18E-4B2D-8257-F58E9A808197

Option Description Database

Intent Describes the purpose of
creating the Extract. The
default option is
Unidirectional. Other options
are High Availability, Disaster
Recovery, N-Way, which are
informational only.

All databases

Begin Used to set the beginning
location in the redo or
transaction log from which
the Extract will start to
capture data. Available
options are Now, Custom
Time, CSN or Position in
Log, and EOF depending on
the supported database.

All databases

Trail Name A two character trail name. All databases

Trail Subdirectory, Size,
Sequence, and Offset

You can further configure the
trail details.

All databases

Remote Enable this option if the
Extract trail is remote.

For Oracle databases,
enable this option if the
Extract trail is to be written
directly to a remote Oracle
GoldenGate Classic
installation.

For MySQL, setting this
option enables the
TRANLOGOPTIONS
ALTLOGDEST REMOTE
parameter to support a
remote Extract, and is not
related to trails.

Oracle, MySQL

Registration Information Section

CSN Commit Sequence Number
(CSN) value

Oracle

Share Choose the method to share
the LogMiner data dictionary.
Options are:
• Automatic: This option

allows the system to
choose the method for
sharing the dictionary .

• None: Choosing this
option, will not allow the
dictionary to be shared.

• Extract: Choose this
option to allow sharing
the LogMiner dictionary
for specific Extract.

Oracle

Optimized Enable this option to
optimize the Extract
registration.

Oracle

Chapter 6
Add Extracts

6-9

Option Description Database

Downstream Capture Enable this option to set up a
downstream Extract for log
mining.

Oracle

Register Only Use this option to just
register the Extract and not
add the Extract. The
registration creates the
replication slot when you
register the Extract or use
the Register Only option.

PostgreSQL

Source Database Credential

Create new credential If you haven't set up your
database login credentials,
you can create and save the
database login credentials
from here.

All

Credential Domain Create a domain for the
database.

All

Credential Alias Specify a credential for the
database login.

All

User ID Specify a user name for
logging into the database.

All

Password, Verify Password Enter the password used to
login to the database and
reenter the password to
verify.

All

Credential Domain Saves the credential user
under the specified domain
name. Enables the same
alias to be used by multiple
Oracle GoldenGate
installations that use the
same credential store. The
default domain is Oracle
GoldenGate.

All databases

Chapter 6
Add Extracts

6-10

Option Description Database

Credential Alias Specifies an alias for the
user name. Use this option if
you do not want the user
name to be in a parameter
file or command. If

ALIAS

is not used, the alias defaults
to the user name, which then
must be used in parameter
files and commands where a
login is required. You can
create multiple entries for a
user, each with a different
alias, by using the

ADD USER

option with

ALIAS

.

All databases

Downstream Mining

Mining Credential Domain Domain name of the
downstream mining
database.

Oracle

Mining Credential Alias Alias for the mining
downstream database.

Oracle

No UserID Enable this option if there is
no source database
connection. Selecting this
option enables the ADG
fetch options.

Oracle

ADG Fetch Credential
Domain

Domain name for the ADG
fetch database.

Oracle

ADG Fetch Credential Alias Domain alias for the ADG
fetch database.

Oracle

4. (Optional) Enter the encryption profile description. If you have not created an encryption
profile, then the Local Wallet profile would be selected, by default.

a. Select the profile name from the list box. You can select the Local Wallet or a custom
profile.

b. Select the encryption profile type from the list box.

c. Specify the masterkey for the encryption profile. This option doesn't exist with SQL
Server.

5. This is an optional step. Enter the Managed Options while creating all types of Extract
processes. See Configure Managed Processes.

The following table provides these options:

Chapter 6
Add Extracts

6-11

Option Description

Profile Name Provides the name of the autostart and
autorestart profile. You can select the default
or custom options.

If you have already created a profile, then
you can select that profile also. If you select
the Custom option, then you can set up a
new profile from this section itself.

Critical to deployment health (Oracle only) Enable this option if the profile
is critical for the deployment
health.Note:This option only appears while
creating the Extract or Replicat and not
when you set up the managed processes in
the Profiles page.

Auto Start Enables autostart for the process.

Startup Delay Time to wait in seconds before starting the
process

Auto Restart Configures how to restart the process if it
terminates

Max Retries Specify the maximum number of retries to
try to start the process

Retry Delay Delay time in trying to start the process

Retries Window The duration interval to try to start the
process

Restart on Failure only If true the task is only restarted if it fails.

Disable Task After Retries Exhausted If true then the task is disabled after
exhausting all attempts to restart the
process.

6. Click Next.

7. You can edit the parameter file in the text area to list the table details that you are
interested in capturing. For example, table source.table1;.

8. You can select Register Extract in the background to register the Extract in the
background asynchronously. This option is required for Oracle and PostgreSQL
databases. See Register an Extract.

9. Click Create and Run to create and start the Extract. If you select Create, the
Extract is created but you need to start it using the Extract drop-down on the
Overview page.

You are returned to the Overview page of the Administration Service. Select the
Action list if you want to look at the Extract details such as process information,
checkpoint, statistics, parameters, and report.

Topics:

• Additional Parameter Options for Extract

Additional Parameter Options for Extract

Learn about additional parameters that may be required for your Extract configuration.

Extract uses a database logmining server in the mining database to mine the redo
stream of the source database. You can set parameters that are specific to the

Chapter 6
Add Extracts

6-12

logmining server by using the TRANLOGOPTIONS parameter with the INTEGRATEDPARAMS option
in the Extract parameter file.

Note:

For detailed information and usage guidance for these parameters, see the
"DBMS_CAPTURE_ADM" section in Oracle Database PL/SQL Packages and Types
Reference.

The following parameters can be set with INTEGRATEDPARAMS:

• CAPTURE_IDKEY_OBJECTS: Controls the capture of objects that can be supported by FETCH.
The default for Oracle GoldenGate is Y (capture ID key logical change records).

• DOWNSTREAM_REAL_TIME_MINE: Controls whether the logmining server operates as a real-
time downstream capture process or as an archived-log downstream capture process.
The default is N (archived-log mode). Specify this parameter to use real-time capture in a
downstream logmining server configuration. For more information on establishing a
downstream mining configuration, see Downstream Extract for Downstream Database
Mining.

• INLINE_LOB_OPTIMIZATION: Controls whether LOBs that can be processed inline (such as
small LOBs) are included in the LCR directly, rather than sending LOB chunk LCRs. The
default for Oracle GoldenGate is Y (Yes).

• MAX_SGA_SIZE: Controls the amount of shared memory used by the logmining server. The
shared memory is obtained from the streams pool of the SGA. The default is 1 GB.

• PARALLELISM: Controls the number of processes used by the logmining server. The
default is 2. For Oracle Standard Edition, this must be set to 1.

• TRACE_LEVEL: Controls the level of tracing for the Extract logmining server. For use only
with guidance from Oracle Support. The default for Oracle GoldenGate is 0 (no tracing).

• WRITE_ALERT_LOG: Controls whether the Extract logmining server writes messages to the
Oracle alert log. The default for Oracle GoldenGate is Y (Yes).

See Managing Server Resources.

Add a Change Data Capture (CDC) Extract
These steps configure a CDC Extract to capture transactional data from a source database.

CDC Extract is available with SQL Server and PostgreSQL databases.

Note:

One Extract per database is generally sufficient, but multiple Extracts are allowed if
the replication slots are available.

1. Using the Admin Client, or REST API client on the source system, create the Extract
parameter file. EDIT PARAMS extname

Chapter 6
Add Extracts

6-13

In this sample, extname is the name of the primary Extract and matches the name
of the Extract that was registered with the database in the previous steps.

To learn about using Oracle GoldenGate Microservices to perform this task, see
Add a Primary Extract.

2. Enter the Extract parameters in the order shown, starting a new line for each
parameter statement. Sample basic parameters for Extract for Microservices
installations:

EXTRACT extname
SOURCEDB dsn_name
USERIDALIAS alias
EXTTRAIL ep
GETTRUNCATES
TABLE schema.*;

Parameter Description

EXTRACT extname extname is the name of the Extract and
cannot be more than 8 alpha-numeric
characters in length. For more information,
see extract in Reference for Oracle
GoldenGate.

SOURCEDB dsn_name Specifies the name of the database
connection DSN.

USERIDALIAS alias Specifies the alias of the database login
credential of the user that is assigned to
Extract. This credential must exist in the
Oracle GoldenGate credential store.

EXTTRAIL trailname Specifies a two character, local trail to which
the primary Extract writes captured data.

GETTRUNCATES Optional parameter but needed in order to
capture truncation operations.

Chapter 6
Add Extracts

6-14

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/gghdb&id=GWURF-GUID-C21EA6F6-8D8F-4BD2-AA0E-1C8271734567

Parameter Description

TABLE schema.object;

or

TABLE schema.*;

Specifies the database object for which to
capture data.
• TABLE specifies a table or a wildcarded

set of tables.
• schema is the schema name or a

wildcarded set of schemas.
• object is the table or sequence name, or

a wildcarded set of those objects.
• * is a wildcard for all tables in the

schema.
Terminate the parameter statement with a
semi-colon.

To exclude a name from a wildcard
specification, use the SCHEMAEXCLUDE,
TABLEEXCLUDE, and
EXCLUDEWILDCARDOBJECTSONLY
parameters as appropriate.

Note:

If the schema of tables to be
captured from is the same as the
schema in GGSCHEMA of the
GLOBALS file, which is not
recommended, then you cannot
use schema.* in the TABLE
statement.

3. Enter any optional Extract parameters that are recommended for your configuration. You
can edit this file at any point before starting processing by using the EDIT PARAMS
command.

4. Save and close the file.

5. Add the Extract and its associated trail file.

Topics:

• PostgreSQL: Change Data Capture (CDC) Extract

• SQL Server: Change Data Capture (CDC) Extract

PostgreSQL: Change Data Capture (CDC) Extract
The Oracle GoldenGate Extract process for PostgreSQL receives logical records from the
PostgreSQL test_decoding database plugin and writes them in commit order into trail files
for downstream consumption by a Replicat.

SQL Server: Change Data Capture (CDC) Extract
See CDC Capture Method Operational Considerations for operational considerations when
adding a CDC Extract for SQL Server.

Chapter 6
Add Extracts

6-15

Add Online Extract Groups

You can use the MA web interface or the Admin Client command line interface to set
up Extract groups in these forms. This section describes the options and parameters
used with the ADD EXTRACT command.

Topics:

• Add an Extract Group

• Create a Parameter File for Online Extraction

Add an Extract Group

ADD EXTRACT group
{, datasource}
{, BEGIN start_point} | {position_point}
[, PARAMS pathname]
[, REPORT pathname]
[, DESC 'description']

Where:

• group is the name of the Extract group. A group name is required.

• datasource is required to specify the source of the data to be extracted. Use one
of the following:

– TRANLOG specifies the transaction log as the data source. When using this
option for Oracle Enterprise Edition, you must issue the DBLOGIN command as
the Extract database user (or a user with the same privileges) before using
ADD EXTRACT (and also before issuing DELETE EXTRACT to remove an Extract
group).

Use the bsds option for Db2 z/OS to specify the Bootstrap Data Set file name
of the transaction log.

– INTEGRATED TRANLOG specifies that this Extract will operate in integrated
capture mode to receive logical change records (LCR) from an Oracle
Database logmining server. This parameter applies only to Oracle databases.

– EXTTRAILSOURCE trail_name to specify the relative or fully qualified name of a
local trail.

• BEGIN start_point defines an online Extract group by establishing an initial
checkpoint and start point for processing. Transactions started before this point
are discarded. Use one of the following:

– NOW to begin extracting changes that are timestamped at the point when the
ADD EXTRACT command is executed to create the group or, for Extract in
integrated mode, from the time the group is registered with the REGISTER
EXTRACT command. Extract needs to be registered for Oracle and PostgreSQL
databases only.

Chapter 6
Add Extracts

6-16

YYYY-MM-DD HH:MM[:SS[.CCCCCC]] as the format for specifying an exact timestamp
as the begin point. Use a begin point that is later than the time at which replication or
logging was enabled.

• position_point specifies a specific position within a specific transaction log file at which
to start processing. For the specific syntax to use for your database.

• PARAMS pathname is required if the parameter file for this group will be stored in a location
other than the dirprm sub-directory of the Oracle GoldenGate directory. Specify the fully
qualified name. The default location is recommended.

• REPORT pathname is required if the process report for this group will be stored in a
location other than the dirrpt sub-directory of the Oracle GoldenGate directory. Specify
the fully qualified name. The default location is recommended.

• DESC 'description' specifies a description of the group.

Create a Parameter File for Online Extraction
Follow these instructions to create a parameter file for an online Extract group. A parameter
file is not required for an alias Extract group.

1. On the source system, issue the following command:
EDIT PARAMS name
Where:

name is either the name of the Extract group that you created with the ADD EXTRACT
command or the fully qualified name of the parameter file if you defined an alternate
location when you created the group.

2. Enter the parameters in the order shown in the following table, starting a new line for
each parameter statement. Some parameters apply only for certain configurations.

Parameter Description

EXTRACT group
• group is the name of the Extract group that

you created with the ADD EXTRACT
command.

Configures Extract as an online process with
checkpoints.

[SOURCEDB dsn | container | catalog]
[, USERIDALIAS alias options | ,
USERID user, options]

Specifies database connection information.
SOURCEDB specifies the source data source
name (DSN). See for more information.
USERID and USERIDALIAS specify database
credentials if required.

RMTHOSTOPTIONS host, MGRPORT port, [,
ENCRYPT algorithm KEYNAME key_name]

Specifies the target system, the port where
Manager is running, and optional encryption of
data across TCP/IP. Only required when
sending data over IP to a remote system (if ADD
RMTTRAIL was used to create the trail). Not
required if the trail is on the local system (if ADD
EXTTRAIL was used).
Not valid for a passive Extract group.

ENCRYPTTRAIL algorithm Encrypts all trails that are specified after this
entry.

Chapter 6
Add Extracts

6-17

Parameter Description

LOGALLSUPCOLS Use when using integrated Replicat for an
Oracle target, or when using Conflict Detection
and Resolution (CDR) support. Writes the
before images of scheduling columns to the trail.
(Scheduling columns are primary key, unique
index, and foreign key columns.) See
LOGALLSUPCOLS in Reference for Oracle
GoldenGate.

SOURCECATALOG Specifies a default container in an Oracle
multitenant container database or SEQUENCE
statements. Enables the use of two-part names
(schema.object) where three-part names
otherwise would be required for those
databases. You can use multiple instances of
this parameter to specify different default
containers or catalogs for different sets of TABLE
or SEQUENCE parameters.

SEQUENCE [container.]owner.sequence; Specifies the fully qualified name of an Oracle
sequence to capture. Include the container
name if the database is a multitenant container
database (CDB).

TABLE [container. |
catalog.]owner.object;

Specifies the fully qualified name of an object or
a fully qualified wildcarded specification for
multiple objects. If the database is an Oracle
multitenant container database, the object name
must include the name of the container or
catalog unless SOURCECATALOG is used. See
Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names
in parameter files.

CATALOGEXCLUDE
SCHEMAEXCLUDE
TABLEEXCLUDE
EXCLUDEWILDCARDOBJECTSONLY

Parameters that can be used in conjunction with
one another to exclude specific objects from a
wildcard specification in the associated TABLE
statement.

3. Enter any appropriate optional Extract parameters listed in the Oracle GoldenGate
Parameters.

4. Save and close the parameter file.

Extract Actions

Extract actions include tasks like monitoring details for the Extract, checkpoint details,
DDL/DML statistics, cache manager statistics, and other details.

Use the Action button to start or stop the Extract or view and manage its details.
When you select the Action, Details option for an Extract, you can perform the
following tasks for it.

When you change the status, the list options change accordingly. As status changes,
the icons change to indicate the current and final status. The events are added to the
Critical Events table. Additionally, progress pop-up notifications appear at the bottom
of the page.

Topics:

Chapter 6
Add Extracts

6-18

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/admin&id=GWURF-GUID-F5A57FAA-20DE-4C36-AB37-BACEE4571A04
https://docs.oracle.com/en/middleware/goldengate/core/21.3/admin/getting-started-oracle-goldengate-process-interfaces.html#GUID-12E08D28-53C7-4C0A-8B37-6790A2C9C4BD
https://docs.oracle.com/en/middleware/goldengate/core/21.3/admin/getting-started-oracle-goldengate-process-interfaces.html#GUID-12E08D28-53C7-4C0A-8B37-6790A2C9C4BD
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/admin&id=GWURF-GUID-2E0A4248-E8DA-4561-A77F-46206E6F1ECB
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/admin&id=GWURF-GUID-2E0A4248-E8DA-4561-A77F-46206E6F1ECB

• Access Extract Details

• Start or Stop Extract

• Delete Extract

Access Extract Details

From the Extract section of the Administration Service Overview page, click Action, Details
for the specific Extract to view its details. The following tabs are displayed:

• Process Information:

The status of the selected Extract process including the type, credentials, and trail details
including trail name, trail subdirectory, trail sequence, and trail size.

• Checkpoint:

The checkpoint log name, path, timestamp, sequence, and offset value. You can monitor
the input details, such as when starting, at recovery, and the current state. The
checkpoint output values display the current checkpoint details.

• Statistics:

The active replication maps along with replication statistics based on the process type.
You sort the lost to view the entire statistical data, daily, or hourly basis.

• Cache Manager Statistics:

Access the global statistics and object pool statistics information for the Extract process
from this page.

• Parameters:

The parameters configured when the process was added. You can edit the parameters by
clicking the pencil icon. Make sure that you apply your changes.

• Report:

A detailed report of the process including parameter settings and a log of the
transactions. You could copy the report text and save it to a file so that you can share or
archive it.

Start or Stop Extract
From the Administration Service Overview page, click Action, Start/Stop option. If the
Extract is in abended state, it displays with a yellow icon. A green icon indicates that the
Extract is running and a red icon indicates Extract is in stopped state.

Delete Extract

To delete an Extract:

1. Stop the Extract using the Actions, Stop option from the Extract section of the
Administration Service Overview page.

2. Click Delete to remove the Extract.

Chapter 6
Add Extracts

6-19

Note:

The Delete option appears only when the Extract is in Stopped state.

Extract: Advance Tasks
Learn about advance tasks and use cases for different topologies used when
configuring Oracle GoldenGate Extracts.

Topics:

• Downstream Extract for Downstream Database Mining

• PostgreSQL: Extract Considerations for Remote Deployment

• Positioning Extract to a Specific Start Point

• Remove Table-level Supplemental Logging

Downstream Extract for Downstream Database Mining
Learn about downstream database mining.

Topics:

• Configure Extract for a Downstream Deployment

• Use Cases for Downstream Mining Configuration

Configure Extract for a Downstream Deployment

A downstream Oracle GoldenGate deployment allows you to offload the source
database redo logs to a downstream mining database. A downstream mining database
can accept both archived logs and online redo logs from a source database.

This workflow shows the source multitenant container database (CDBNORTH)
offloading redo logs to the downstream database (CDBSOUTH) through the logmining
server.

Chapter 6
Extract: Advance Tasks

6-20

Note:

Configuring Extract for a downstream deployment is only applicable to Oracle
database.

Topics:

• Evaluate Extract Options for a Downstream Deployment

• Prepare the Source Database for the Downstream Deployment

• Prepare the Downstream Mining Database to Receive Online Redo Logs

• Enable Downstream Extract Registration Using ADG Redirection in Downstream
Configuration

Evaluate Extract Options for a Downstream Deployment
To configure an Extract on the downstream mining database side, consider the following
guidelines:

• Multiple source databases can send their redo data to a single downstream database;
however the downstream mining database can accept online redo logs from only one of
those source databases. The rest of the source databases must ship archived logs.

• When online logs are shipped to the downstream database, real-time capture by Extract
is possible. Changes are captured as though Extract is reading from the source logs. In
order to accept online redo logs from a source database, the downstream mining
database must have standby redo logs configured.

• When using a downstream mining configuration, the source database and mining
database must be the same endian and same bitsize, which is 64 bits. For example, if the
source database was on Linux 64-bit, you can have the mining database run on Windows
64-bit, because they have the same endian and bitsize.

Prepare the Source Database for the Downstream Deployment
There must be an Extract user on the source database. Extract uses the credentials of this
user to do metadata queries and to fetch column values as needed from the source
database.

Add the credentials for connecting Extract to the source database from the Microservices
Architecture web interface.

Topics:

• Add Database Credentials to Connect to the Source Database

• Configure Redo Transport from Source Database to Downstream Mining Database

Add Database Credentials to Connect to the Source Database

To create and run Extract and Replicat processes, you need to set up database credentials to
connect Extract/Replicat users to the respective source or target databases.

1. Launch the Administration Service interface and log in.

2. Click Configuration from the Application Navigation pane.

Chapter 6
Extract: Advance Tasks

6-21

3. Click the plus sign (+) sign next to Credentials.

4. Enter the following details in the displayed fields:

Database Credential Options Description

Credential Domain Specify a domain name to which the
database credential is associated. For
example, "OracleGoldenGate" is the default
domain name, incase you don't specify a
domain name.

Credential Alias This is the alias for your database
credential.

User ID This is the username of the database user.

For Oracle database, if you use the
EZconnect syntax to connect to the
database, then you can specify the value in
this field in the following manner:

dbusername@hostname:port/
service_name
dbusername is the database user name.
hostname or IP address of the server where
the database is running.
port is the port number for connecting to
the database server. Usually, this value is
1521.

service_name is the name of the service
provided in the tnsnames.ora file for the
database connection.

Password Password used by database user to log in to
the database.

5. Click Submit.

6. Click the Connect to database icon to test that the connection is working
correctly. If the connection is successful, the Connect to database icon turns blue.

When you successfully log into your database, you can add and manage checkpoint
tables, transaction information (TRANDATA), and heartbeat tables. All of the tables
can be searched using the various search fields. As you type, the table is filtered and
you can use the search button with the search text.

Configure Redo Transport from Source Database to Downstream Mining Database

To set up the transfer of redo log files from a source database to the downstream
mining database, and to prepare the downstream mining database to accept these
redo log files, perform the steps given in this topic.

The following summarizes the rules for supporting multiple sources sending redo to a
single downstream mining database:

• Only one source database can be configured to send online redo to the standby
redo logs at the downstream mining database. The log_archive_dest_n setting
for this source database should not have a TEMPLATE clause.

• Source databases that are not sending online redo to the standby redo logs of the
downstream mining database must have a TEMPLATE clause specified in the
log_archive_dest_n parameter.

Chapter 6
Extract: Advance Tasks

6-22

• Each of the source databases that sends redo to the downstream mining database must
have a unique DBID. You can select the DBID column from the v$database view of these
source databases to ensure that the DBIDs are unique.

• The FAL_SERVER value must be set to the downstream mining database. FAL_SERVER
specifies the FAL (fetch archive log) server for a standby database. The value is a list of
Oracle Net service names, which are assumed to be configured properly on the standby
database system to point to the desired FAL servers. The list contains the net service
name of any database that can potentially ship redo to the downstream database.

• When using redo transport, there could be a delay in processing redo due to network
latency. For Extract, this latency is monitored by measuring the delay between LCRs
received from source database and reporting it. If the latency exceeds a threshold, a
warning message appears in the report file and a subsequent information message
appears when the lag drops to normal values. The default value for the threshold is 10
seconds.

Chapter 6
Extract: Advance Tasks

6-23

Note:

The archived logs shipped from the source databases are called foreign
archived logs. You must not use the recovery area at the downstream mining
database to store foreign archived logs. Such a configuration is not
supported by Extract. Foreign archived logs stored in the Flash Recovery
Area (FRA) are not automatically deleted by RMAN jobs. These archived
logs must be manually purged.
These instructions take into account the requirements to ship redo from
multiple sources, if required. You must configure an Extract process for each
of those sources.

To configure redo transport:

1. Configure database connection to connect the source database with the
mining database.

2. Configure authentication at each source database and at the
downstream mining database to support the transfer of redo data. Redo
transport sessions are authenticated using either the Secure Sockets
Layer (SSL) protocol or a remote login password file. If a source
database has a remote login password file, copy it to the appropriate
directory of the mining database system. The password file must be the
same at all source databases, and at the mining database.

3. At each source database, configure one LOG_ARCHIVE_DEST_n
initialization parameter to transmit redo data to the downstream mining
database. Set the attributes of this parameter as shown in one of the
following examples, depending on whether real-time or archived-log-only
capture mode is to be used.

• Example for real-time capture at the downstream logmining server,
where the source database sends its online redo logs to the
downstream database:

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap'

• Example for archived-log-only capture at the downstream logmining
server:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_2='SERVICE=DMBSCAP.EXAMPLE.COM ASYNC
NOREGISTER VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
TEMPLATE=/usr/oracle/log_for_dbms1/dbms1_arch_%t_%s_%r.log
DB_UNIQUE_NAME=dbmscap'

Note:

When using an archived-log-only downstream mining
database, you must specify a value for the TEMPLATE attribute.
Oracle also recommends that you use the TEMPLATE clause in
the source databases so that the log files from all remote

Chapter 6
Extract: Advance Tasks

6-24

source databases are kept separated from the local database log
files, and from each other.

4. At the source database, set a value of ENABLE for the
LOG_ARCHIVE_DEST_STATE_n initialization parameter that corresponds with the
LOG_ARCHIVE_DEST_n parameter that corresponds to the destination for the
downstream mining database, as shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

5. At the source database, and at the downstream mining database, set the
DG_CONFIG attribute of the LOG_ARCHIVE_CONFIG initialization parameter to
include the DB_UNIQUE_NAME of the source database and the downstream
database, as shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)'

Prepare the Downstream Mining Database to Receive Online Redo Logs
A downstream mining database can accept both archived logs and online redo logs from a
source database.

Topics:

• Creating the Downstream Mining User Account

• Configure the Mining Database to Archive Local Redo Log Files

• Configure the Wallet for the Downstream Mining Database

• Prepare a Downstream Mining Database for Real-time Capture

Creating the Downstream Mining User Account

When using a downstream mining configuration, there must be an Extract mining user on the
downstream database. The mining Extract process uses the credentials of this user to
interact with the downstream logmining server.

The downstream mining user is specified by the TRANLOGOPTIONS parameter with the
MININGUSERALIAS option.

See Add Database Credentials to Connect to the Source Database to assign the correct
credentials for the version of your database.

Configure the Mining Database to Archive Local Redo Log Files

This procedure configures the downstream mining database to archive redo data in its online
redo logs. These are redo logs that are generated at the downstream mining database.

Archiving must be enabled at the downstream mining database if you want to run Extract in
real-time integrated capture mode, but it is also recommended for archive-log-only capture.
Extract in integrated capture mode writes state information in the database. Archiving and
regular backups will enable you to recover this state information in case there are disk
failures or corruption at the downstream mining database.

Chapter 6
Extract: Advance Tasks

6-25

To Archive Local Redo Log Files:

1. Alter the downstream mining database to be in archive log mode. You can do this
by issuing the following

 DDL.STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set the first archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Alternatively, you can use a command like this example:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION='USE_DB_RECOVERY_FILE_DEST'
valid_for=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Note:

The online redo logs generated by the downstream mining database can
be archived to a recovery area. However, you must not use the recovery
area of the downstream mining database to stage foreign archived logs
or to archive standby redo logs. For information about configuring a fast
recovery area, see the Oracle Database Backup and Recovery User’s
Guide.

3. Enable the local archive destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Configure the Wallet for the Downstream Mining Database

When TDE is enabled on source database and downstream database, then the source
wallet or keys should be the same on the downstream mining database and the source
database.

Follow these steps to copy the wallet directory from the source database to the
downstream mining database:

1. Shutdown the downstream database using the shutdown immediate command.

2. Remove the wallet directory on downstream database view: rm $T_WORK/wallet/*
3. Copy the $T_WORK/wallet/* from the source database view to the downstream

database view.

4. Restart the downstream database.

5. Run checksum on the source database view and downstream database view to
ensure that it matches: cksum $T_WORK/wallet/*

Chapter 6
Extract: Advance Tasks

6-26

Prepare a Downstream Mining Database for Real-time Capture

This procedure is only required if you want to use real-time capture at a downstream mining
database. It is not required to use archived-log-only capture mode. To use real-time capture,
it is assumed that the downstream database has already been configured to archive its local
redo data as shown in Configuring the Mining Database to Archive Local Redo Log Files.
Topics:

• Create the Standby Redo Log Files

• Configure the Database to Archive Standby Redo Log Files Locally

Create the Standby Redo Log Files
The following steps outline the procedure for adding standby redo log files to the downstream
mining database. The following summarizes the rules for creating the standby redo logs:

• Each standby redo log file must be at least as large as the largest redo log file of the redo
source database. For administrative ease, Oracle recommends that all redo log files at
source database and the standby redo log files at the downstream mining database be of
the same size.

• The standby redo log must have at least one more redo log group than the redo log at the
source database, for each redo thread at the source database.

The specific steps and SQL statements that are required to add standby redo log files
depend on your environment. See Oracle Data Guard Concepts and Administration 11g
Release 2 (11.2) for detailed instructions about adding standby redo log files to a database.

Note:

If there are multiple source databases sending redo to a single downstream mining
database, only one of those sources can send redo to the standby redo logs of the
mining database. An Extract process that mines the redo from this source database
can run in real-time mode. All other source databases must send only their archived
logs to the downstream mining database, and the Extracts that read this data must
be configured to run in archived-log-only mode.

To Create the Standby Redo Log Files:

1. In SQL*Plus, connect to the source database as an administrative user.

2. Determine the size of the source log file. Make note of the results.

SELECT BYTES FROM V$LOG;

3. Determine the number of online log file groups that are configured on the source
database. Make note of the results.

 SELECT COUNT(GROUP#) FROM V$LOG;

4. Connect to the downstream mining database as an administrative user.

5. Add the standby log file groups to the mining database. The standby log file size must be
at least the size of the source log file size. The number of standby log file groups must be
at least one more than the number of source online log file groups. This applies to each
instance (thread) in a RAC installation. So if you have "n" threads at the source database,

Chapter 6
Extract: Advance Tasks

6-27

each having "m" redo log groups, you should configure n*(m+1) redo log groups at
the downstream mining database.
The following example shows three standby log groups.

ALTER DATABASE ADD STANDBY LOGFILE GROUP 3
('/oracle/dbs/slog3a.rdo', '/oracle/dbs/slog3b.rdo')
SIZE 500M; ALTER DATABASE ADD STANDBY LOGFILE
GROUP 4 ('/oracle/dbs/slog4.rdo', '/oracle/dbs/slog4b.rdo')
SIZE 500M; ALTER DATABASE ADD STANDBY LOGFILE GROUP 5 ('/oracle/dbs/
slog5.rdo', '/oracle/dbs/slog5b.rdo') SIZE 500M;

6. Confirm that the standby log file groups were added successfully.

SELECT GROUP#, THREAD#, SEQUENCE#, ARCHIVED, STATUS FROM V$STANDBY_LOG;

The output should be similar to the following:

GROUP# THREAD# SEQUENCE# ARC STATUS ---------- ---------- ---------- ---
---------- 3 0 0
YES UNASSIGNED 4 0 0 YES UNASSIGNED 5 0 0 YES UNASSIGNED

7. Ensure that log files from the source database are appearing in the location that is
specified in the

LOCATION

attribute of the local

LOG_ARCHIVE_DEST_n

that you set. You might need to switch the log file at the source database to see
files in the directory.

Configure the Database to Archive Standby Redo Log Files Locally
This procedure configures the downstream mining database to archive the standby
redo logs that receive redo data from the online redo logs of the source database.
Keep in mind that foreign archived logs should not be archived in the recovery area of
the downstream mining database.

To Archive Standby Redo Logs Locally:

1. At the downstream mining database, set the second archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/
srl_dbms1
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

Oracle recommends that foreign archived logs (logs from remote source
databases) be kept separate from local mining database log files, and from each
other. You must not use the recovery area of the downstream mining database to
stage foreign archived logs.

2. Enable the LOG_ARCHIVE_DEST_2 parameter you set in the previous step as shown
in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

Chapter 6
Extract: Advance Tasks

6-28

Enable Downstream Extract Registration Using ADG Redirection in Downstream Configuration
Oracle GoldenGate supports downstream Extract registration using ADG redirection in a
downstream mining database configuration.

This approach uses an Active Dataguard (ADG) configured in a cascaded mode to transport
redo logs to a downstream mining database to use with downstream Extract, which reduces
the overhead on the source database.

Extract must be started using sourceless option so that it does not connect to source
database instead connects to ADG using FETCHUSERID or FETCHUSERIDALIAS when it needs to
fetch any non-native datatypes.

During register, Oracle GoldenGate connects to ADG as source database instead of the
database where redo originates. ADG redirection is supported for the following commands
and parameters in Admin Client:

Note:

SCHEMATRANDATA and TRANDATA, even though the command is executed on the
Standby, the actual log groups are created and maintained on the primary database
where the actual DML operations take place:

• SCHEMATRANDATA
• TRANDATA
• FLUSH SEQUENCE
• TRACETABLE
• HEARTBEATTABLE
• REGISTER EXTRACT

This feature is supported for CDB and supports wildcard registration. It is only supported
when using Oracle Database 21c and higher.

Here are the steps to enable downstream Extract to work with ADG Standby:

1. Add an additional LOG_ARCHIVE_DESTINATION_N (LAD) on the ADG standby, as shown in
the following example:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_3='service=service name mining db ASYNC
NOREGISTER VALID_FOR(STANDBY_LOGFILES,STANDBY_ROLES) DB_UNIQUE_NAME=db
unique name of 3rd db' scope=both

This step transports and generates the standby_logfiles for an ADG Standby.

2. Set the LOG_ARCHIVE_CONFIG on the ADG Standby to ship the logs to the mining
database, as shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG=‘dg_config(db unique name of 1st
db,db unique name of 2nd db,db unique name of 3rd db)’ scope=both;

Chapter 6
Extract: Advance Tasks

6-29

3. On the mining database, set up the location to store the incoming
standby_logfiles on the mining database:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='location=
USE_DB_RECOVERY_FILE_DEST VALID_FOR=(STANDBY_LOGFILE,ALL_ROLES)'
scope=both

4. Run LOG_ARCHIVE_CONFIG on the mining database, so that the Extract process is
able to read them on the mining database, as shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG=‘dg_config(db unique name of
1st db, db unique name of 2nd db, db unique name of 3rd db)’
scope=both

5. For a downstream Extract, you need to ensure that the database connections are
appropriately configured for the Admin Client. When registering the Extract, you
need to make sure that DBLOGIN connection is made to the ADG Standby, that is
open for read only activity. To add the Extract and register it, use the following
command:

DBLOGIN USERID ggadmin@inst2, PASSWORD ggadmin (inst2 is the ADG
not primary)
MININGDBLOGIN USERID ggadmin@inst3, password ggadmin (inst3 is the
mining database)

6. Now, register an Extract that uses the NOUSERID parameter:

ADD EXTRACT exte, INTEGRATED TRANLOG, BEGIN NOW REGISTER EXTRACT
exte DATABASE

7. After the Extract is registered, you can use this Extract to mine data and start the
Extract normally.

Use Cases for Downstream Mining Configuration
Read about the different downstream mining configuration use cases.

Topics:

• Case 1: Capture from One Source Database in Real-time Mode

• Case 2: Capture from Multiple Sources in Archive-log-only Mode

• Case 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-
only Mode

Case 1: Capture from One Source Database in Real-time Mode
This example captures changes from source database DBMS1 by deploying an
Extract at a downstream mining database DBMSCAP.

The example assumes that you created the necessary standby redo log files as shown
in Configure Extract for a Downstream Deployment.

This assumes that the following users exist:

Chapter 6
Extract: Advance Tasks

6-30

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and metadata
from DBMS1. This user has the alias of ggadm1 in the Oracle GoldenGate credential
store and logs in as ggadm1@dbms1. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the source database.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve logical change
records from the logmining server at the downstream mining database DBMSCAP. This user
has the alias of ggadmcap in the Oracle GoldenGate credential store and logs in as
ggadmcap@dbmscap. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the mining database.

Topics:

• Prepare the Mining Database to Archive its Local Redo

• Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from the
Source Database

• Prepare the Source Database to Send Redo to the Mining Database

• Set up Extract (ext1) on DBMSCAP

Prepare the Mining Database to Archive its Local Redo

To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by
issuing the following DDL:

STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local redo:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from the
Source Database

To prepare the mining database to archive the redo received in standby redo logs from the
source database:

1. At the downstream mining database, set log_archive_dest_2 as shown in the following
example:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms1
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

Chapter 6
Extract: Advance Tasks

6-31

2. Enable log_archive_dest_2 as shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

3. Set DG_CONFIG at the downstream mining database:

 ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)'

Prepare the Source Database to Send Redo to the Mining Database

To prepare the source database to send redo to the mining database::

1. Make sure that the source database is running with the required compatibility:

select name, value from v$parameter where name = 'compatible';

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at the source database:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)';

3. Set up redo transport at the source database..

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM
ASYNC
OPTIONAL NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Extract (ext1) on DBMSCAP

To set up Extract (ext1) on DBMSCAP:

1. Register Extract with the downstream mining database. In the credential store, the
alias name of ggadm1 is linked to a user connect string of ggadm1@dbms1. The alias
name of ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

DBLOGIN USERIDALIAS ggadm1

MININGDBLOGIN USERIDALIAS ggadmcap

REGISTER EXTRACT ext1 DATABASE

2. Create Extract at the downstream mining database:

ADD EXTRACT ext1 INTEGRATED TRANLOG BEGIN NOW

Chapter 6
Extract: Advance Tasks

6-32

3. Edit Extract parameter file ext1.prm. The following lines must be present to take
advantage of real-time capture. In the credential store, the alias name of ggadm1 is linked
to a user connect string of ggadm1@dbms1. The alias name of ggadmcap is linked to a user
connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm1 TRANLOGOPTIONS MININGUSERALIAS ggadmcap TRANLOGOPTIONS
INTEGRATEDPARAMS (downstream_real_time_mine Y)

4. Start Extract.

START EXTRACT ext1

Note:

You can create multiple Extracts running in real-time Extract mode in the
downstream mining database, as long as they all are capturing data from the same
source database, such as capturing changes for database DBMS1 in the preceding
example.

Case 2: Capture from Multiple Sources in Archive-log-only Mode
The following example captures changes from database DBMS1 and DBMS2 by deploying an
Extract at a downstream mining database DBMSCAP.

It assumes the following users:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and metadata from
DBMS1. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS1.

• User GGADM2 in DBMS2 whose credentials Extract will use to fetch data and metadata from
DBMS2. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS2.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve logical change
records from the logmining server at the downstream mining database. It is assumed that
the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the downstream mining database DBMSCAP.

This procedure also assumes that the downstream mining database is configured in archive
log mode.

Topics:

• Prepare the Mining Database to Archive its Local Redo

• Prepare the Mining Database to Archive Redo from the Source Database

Prepare the Mining Database to Archive its Local Redo

To prepare the mining database to archive its local redo:

Chapter 6
Extract: Advance Tasks

6-33

1. The downstream mining database must be in archive log mode. You can do this by
issuing the following DDL.

STARTUP MOUNT; ALTER DATABASE ARCHIVELOG; ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local
redo.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

4. Start Extract.

START EXTRACT ext1

Note:

You can create multiple Extracts running in real-time Extract mode in the
downstream mining database, as long as they all are capturing data from the
same source database, such as capturing changes for database DBMS1 in
the preceding example.

Prepare the Mining Database to Archive Redo from the Source Database

Set DG_CONFIG at the downstream mining database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbms2, dbmscap)'

Topics:

• Prepare the First Source Database to Send Redo to the Mining Database

• Prepare the Second Source Database to Send Redo to the Mining Database

• Set up Extracts at Downstream Mining Database

Prepare the First Source Database to Send Redo to the Mining Database
To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required
compatibility.

select name, value from v$parameter where name = 'compatible'; NAME
VALUE
 --------- --------------------- compatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.

Chapter 6
Extract: Advance Tasks

6-34

2. Set DG_CONFIG at DBMS1 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbmscap)';

3. Set up redo transport at DBMS1 source database. The TEMPLATE clause is mandatory if
you want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
OPTIONAL NOREGISTER TEMPLATE='/usr/orcl/arc_dest/dbms1/
dbms1_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Note:

You can create multiple Extracts running in real-time Extract mode in the
downstream mining database, as long as they all are capturing data from the same
source database, such as capturing changes for database DBMS1 in the preceding
example.

Prepare the Second Source Database to Send Redo to the Mining Database
To prepare the second source database to send redo to the mining database:

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible'; NAME VALUE
 --------- --------------------- compatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS2 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';

3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is mandatory if
you want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
OPTIONAL NOREGISTER TEMPLATE='/usr/orcl/arc_dest/dbms2/
dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Chapter 6
Extract: Advance Tasks

6-35

Note:

You can create multiple Extracts running in real-time Extract mode in the
downstream mining database, as long as they all are capturing data from the
same source database, such as capturing changes for database DBMS1 in
the preceding example.

Set up Extracts at Downstream Mining Database
These steps set up Extract at the downstream database to capture from the archived
logs sent by DBMS1 and DBMS2.

Case 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode
The following example captures changes from database DBMS1, DBMS2 and DBMS3
by deploying an Extract at a downstream mining database DBMSCAP.

Note:

This example assumes that you created the necessary standby redo log files
as shown in Prepare the Downstream Mining Database to Receive Online
Redo Logs.
It assumes the following users:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and
metadata from DBMS1. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS1.

• User GGADM2 in DBMS2 whose credentials Extract will use to fetch data and
metadata from DBMS2. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS2.

• User GGADM3 in DBMS3 whose credentials Extract will use to fetch data and
metadata from DBMS3. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at DBMS3.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve logical
change records from the logmining server at the downstream mining database. It
is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure
was called to grant appropriate privileges to this user at the downstream mining
database DBMSCAP.

This procedure also assumes that the downstream mining database is configured in
archive log mode.

In this example, the redo sent by DBMS3 will be mined in real time mode, whereas the
redo data sent from DBMS1 and DBMS2 will be mined in archive-log-only mode.

Topics:

Chapter 6
Extract: Advance Tasks

6-36

• Prepare the Mining Database to Archive its Local Redo

• Prepare the Mining Database to Accept Redo from the Source Databases

• Prepare the First Source Database to Send Redo to the Mining Database

• Prepare the Second Source Database to Send Redo to the Mining Database

• Prepare the Second Source Database to Send Redo to the Mining Database

• Prepare the Third Source Database to Send Redo to the Mining Database

Prepare the Mining Database to Archive its Local Redo

To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by
issuing the following DDL:

STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local redo.:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Prepare the Mining Database to Accept Redo from the Source Databases

Because redo data is being accepted in the standby redo logs of the downstream mining
database, the appropriate number of correctly sized standby redo logs must exist. If you did
not configure the standby logs, see Create the Standby Redo Log Files.

1. At the downstream mining database, set the second archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example. This is
needed to handle archive standby redo logs.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms3
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

2. Enable the LOG_ARCHIVE_DEST_STATE_2 initialization parameter that corresponds with the
LOG_ARCHIVE_DEST_2 parameter as shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

3. Set DG_CONFIG at the downstream mining database to accept redo data from all of the
source databases.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbms2, dbms3,
dbmscap)'

Chapter 6
Extract: Advance Tasks

6-37

Prepare the First Source Database to Send Redo to the Mining Database

To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required
compatibility.

select name, value from v$parameter where name = 'compatible';

2. Set DG_CONFIG at DBMS1 source database:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbmscap)';

3. Set up redo transport at DBMS1 source database. The TEMPLATE clause is
mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM
ASYNC OPTIONAL NOREGISTER TEMPLATE='/usr/orcl/arc_dest/dbms1/
dbms1_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Second Source Database to Send Redo to the Mining Database

To prepare the second source database to send redo to the mining database::

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

2. Set DG_CONFIG at DBMS2 source database:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';

3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is
mandatory if you want to send redo data directly to foreign archived logs at the
downstream mining database.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM
ASYNC
OPTIONAL NOREGISTER TEMPLATE='/usr/orcl/arc_dest/dbms2/
dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Chapter 6
Extract: Advance Tasks

6-38

Prepare the Second Source Database to Send Redo to the Mining Database

To prepare the second source database to send redo to the mining database::

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

2. Set DG_CONFIG at DBMS2 source database:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';

3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is mandatory if you
want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
OPTIONAL NOREGISTER TEMPLATE='/usr/orcl/arc_dest/dbms2/
dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Third Source Database to Send Redo to the Mining Database

To prepare the third source database to send redo to the mining database:

1. Make sure that DBMS3 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible'; NAME VALUE
 --------- --------------------- compatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS3 source database:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms3, dbmscap)';

3. Set up redo transport at DBMS3 source database. Because DBMS3 is the source that
will send its online redo logs to the standby redo logs at the downstream mining
database, do not specify a TEMPLATE clause.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
 OPTIONAL NOREGISTER
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Topics:

Chapter 6
Extract: Advance Tasks

6-39

• Set up Extracts at Downstream Mining Database

Set up Extracts at Downstream Mining Database
These steps set up Extract at the downstream database to capture from the archived
logs sent by DBMS1 and DBMS2.

Topics:

• Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1

• Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2

• Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs
Sent by DBMS3

Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1
Perform the following steps on the DBMSCAP downstream mining database:

1. Register Extract with DBMSCAP for the DBMS1 source database. In the credential
store, the alias name of ggadm1 is linked to a user connect string of
ggadm1@dbms1.The alias name of ggadmcap is linked to a user connect string of
ggadmcap@dbmscap.

DBLOGIN USERIDALIAS ggadm1
MININGDBLOGIN
USERIDALIAS ggadmcap
REGISTER EXTRACT ext1 DATABASE

2. Add Extract at the mining database DBMSCAP:

ADD EXTRACT ext1 INTEGRATED TRANLOG BEGIN NOW

3. Edit the Extract parameter file ext1.prm. In the credential store, the alias name of
ggadm1 is linked to a user connect string of ggadm1@dbms1. The alias name of
ggadmcap is linked to a user connect string of ggadmcap@dbmscap:

USERIDALIAS ggadm1 TRANLOGOPTIONS MININGUSERALIAS
ggadmcap TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine
N)

4. Start Extract:

START EXTRACT ext1

Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2
Perform the following steps on the DBMSCAP downstream mining database:

1. Register Extract with the mining database for source database DBMS2. In the
credential store, the alias name of ggadm2 is linked to a user connect string of
ggadm2@dbms2.The alias name of ggadmcap is linked to a user connect string of
ggadmcap@dbmscap.

DBLOGIN USERIDALIAS ggadm2
MININGDBLOGIN USERIDALIAS ggadmcap
REGISTER EXTRACT ext2 DATABASE

Chapter 6
Extract: Advance Tasks

6-40

2. Create Extract at the mining database:

ADD EXTRACT ext2 INTEGRATED TRANLOG, BEGIN NOW

3. Edit the Extract parameter file ext2.prm. In the credential store, the alias name of
ggadm2 is linked to a user connect string of ggadm2@dbms2. The alias name of ggadmcap
is linked to a user connect string of ggadmcap@dbmscap:

USERIDALIAS ggadm2 TRANLOGOPTIONS MININGUSERALIAS ggadmcap TRANLOGOPTIONS
INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract:

START EXTRACT ext2

Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs Sent by DBMS3
Perform the following steps on the DBMSCAP downstream mining database:

1. Register Extract with the mining database for source database DBMS3. In the credential
store, the alias name of ggadm3 is linked to a user connect string of ggadm3@dbms3.The
alias name of ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

DBLOGIN USERID ggadm3
MININGDBLOGIN USERID ggadmcap
REGISTER EXTRACT ext3 DATABASE

2. Create Extract at the mining database:

ADD EXTRACT ext3 INTEGRATED TRANLOG, BEGIN NOW

3. Edit the Extract parameter file ext3.prm. In the credential store, the alias name of
ggadm3 is linked to a user connect string of ggadm3@dbms3. The alias name of ggadmcap
is linked to a user connect string of ggadmcap@dbmscap:

USERIDALIAS ggadm3
TRANLOGOPTIONS MININGUSERALIAS ggadmcap TRANLOGOPTIONS
INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract:

START EXTRACT ext3

Note:

You can create multiple Extracts running in real-time integrated capture mode in the
downstream mining database, as long as they all are capturing data from the same
source database, such as all capturing for database DBMS3 in the preceding
example.

Chapter 6
Extract: Advance Tasks

6-41

PostgreSQL: Extract Considerations for Remote Deployment
For a remote deployment, the source database and Oracle GoldenGate are installed
on separate servers. Remote deployments are the only option available for supporting
cloud databases, such as Azure for PostgreSQL or Amazon Aurora PostgreSQL.

For remote deployments, operating system endianness between the database server
and Oracle GoldenGate server need to be the same.

Server time and time zones of the Oracle GoldenGate server should be synchronized
with that of the database server. If this is not possible, then positioning of an Extract
when creating or altering one will need to be done by LSN.

In remote capture use cases, using SQLEXEC may introduce additional latency, as the
SQLEXEC operation must be done serially for each record that the Extract processes. If
special filtering that would require a SQLEXEC is done by a remote hub Extract and the
performance impact is too severe, it may become necessary to move the Extract
process closer to the source database.

With remote deployments, low network latency is important, and it is recommended
that the network latency between the Oracle GoldenGate server and the source
database server be less than 1 millisecond.

Positioning Extract to a Specific Start Point
You can position the Extract to a specific start point in the transaction logs using the
ADD/ALTER EXTRACT commands:

{ADD | ALTER EXTRACT} group, LOGNUM log_num, LOGPOS log_pos
• group is the name of the Oracle GoldenGate Extract group for which the start

position is required.

• LOGNUM is the log file number. For example, if the required log file name is
test.000034, the LOGNUM value is 34. Extract will search for this log file.

Note:

In Microservices Architecture, ADD EXTRACT will fail if the LOGNUM value
contains zeroes preceding the value. For example, ADD EXTRACT ext1,
TRANLOG, LOGNUM 000001, LOGPOS 0 will fail. Instead, set LOGNUM to 1 for
this example to succeed.

• LOGPOS is an event offset value within the log file that identifies a specific
transaction record. Event offset values are stored in the header section of a log
record. To position at the beginning of a binlog file, set the LOGPOS as 0.

In MySQL logs, an event offset value can be unique only within a given binary file. The
combination of the position value and a log number will uniquely identify a transaction
record. Maximum Log number length is 8 bytes unsigned integer and Maximum Log
offset length is 8 bytes unsigned integer. Log number and Log offset are separated by
a pipe (‘|’) delimiter. Transactional records available after this position within the
specified log will be captured by Extract. In addition, you can position an Extract using
a timestamp.

Chapter 6
Extract: Advance Tasks

6-42

Remove Table-level Supplemental Logging
If a table is no longer required to be captured by Oracle GoldenGate and the TABLE
parameter for the table has been removed from the Extract parameter file, or TABLEEXCLUDE is
used to exclude the table from a wildcard statement, then supplemental logging can be
removed from the table.

Note:

If the Extract resolves a table that does not have supplemental logging enabled, it
will abend depending on the type of DML operation.

Using DELETE TRANDATA to remove supplemental logging sets the Replicat Identity level of the
table to NOTHING. Supplemental logging can be disabled using the Microservices Architecture
web interface from the Administration Service, Configuration page, under the Credential
created for a source database, or can be issued with the DELETE TRANDATA command.

The following is the syntax for issuing DELETE TRANDATA.

DBLOGIN USERIDALIAS alias_name
DELETE TRANDATA schema.tablename

To check the level of supplemental logging:

INFO TRANDATA schema.tablename

DDL Replication
Learn about DDL replication.

Topics:

• MySQL: DDL Replication

• Oracle: DDL Replication

MySQL: DDL Replication
Learn about DDL replication in MySQL.

Topics:

• MySQL: Prerequisites for Transaction Log Based DDL Configuration

• Plug-in Based DDL Configuration Prerequisites and Considerations

• DDL Filtering for Replication

• Using DDL Filtering for Replication

Chapter 6
DDL Replication

6-43

MySQL: Prerequisites for Transaction Log Based DDL Configuration
The prerequisites for configuring transaction log based DDL replication are as follows:

• Logging of full metadata is mandatory after upgrading to MySQL 8.0 onwards with
Oracle GoldenGate 21c and higher. To enable full metadata logging:

1. Set the value of MySQL server variable binlog_row_metadata to FULL, inside
MySQL configuration file, my.cnf for Linux and my.ini for Windows.

2. Restart the database server after changing the configuration file for the
settings to take effect.

• DDL replication is not supported in Oracle GoldenGate bi-directional configuration
as there is no method to filter the DDL operations to prevent DDL looping.

• DDL replication for remote capture is supported for MySQL 8.0 onwards.
Transaction log based DDL replication works with both remote or local capture.
This was a limitation for earlier Oracle GoldenGate releases. For example, Oracle
GoldenGate 19c remote capture did not support DDL replication.

• Transaction log based DDL replication can handle DDLs issued within stored
procedures, which is a limitation with plugin-based DDL replication.

• By design, the heartbeat table DDLs are ignored by the capture and you should
create the heartbeat tables manually at the target.

Plug-in Based DDL Configuration Prerequisites and Considerations
This is an older approach to performing DDL Replication. The prerequisites for
configuring DDL replication are as follows:

• DDL replication is supported for MySQL 5.7.

• DDL replication is not supported in a Oracle GoldenGate bi-directional
configuration as there is no method to filter the DDL operations to prevent DDL
looping.

• Remote capture for MySQL 5.7 doesn’t support DDL replication.

• Oracle GoldenGate DDL replication uses two plug-ins as a shared library,
ddl_rewriter and ddl_metadata, which must be installed on your MySQL server
before Oracle GoldenGate replication starts.

• The standalone application, Oracle GoldenGate metadata_server, must be
running to capture the DDL metadata.

• The history table under the new oggddl database (oggddl.history). This
metadata history table is used to store and retrieve the DDL metadata history. The
history table records must be ignored from being logged into the binary log so you
must specify binlog-ignore-db=oggddl in the my.cnf file.

• You should not manually drop the oggddl database or the history table because
all DDL statements that run after this event will be lost.

• You should not stop the metadata_server during DDL capture as all the DDL
statements that run after this event will be lost.

• You should not manually remove the ddl_rewriter and the ddl_metadata plugins
during DDL capture because all DDL statements that run after this event will be
lost.

Chapter 6
DDL Replication

6-44

• DDL executed within the stored procedure is not supported. For example , a DDL
executed as in the following is not supported.

CREATE PROCEDURE atssrc.generate_data()
BEGIN
DECLARE i INT DEFAULT 0;
WHILE i < 800 DO
SET i = i + 1;
IF (i = 100) then
alter table atssrc.`ddl6` add col2 DATE after id;
ELSEIF (i = 200) then
alter table atssrc.`ddl6` add col3 DATETIME after datetime;
ELSEIF (i = 300) then
alter table atssrc.`ddl6` add `col4` timestamp NULL DEFAULT NULL after
channel;
ELSEIF (i = 400) then
alter table atssrc.`ddl6` add col5 YEAR after value;
END IF;
END WHILE;
END$$
DELIMITER ;
call atssrc.generate_data();

• By design, the heartbeat table DDLs are ignored by the capture and you should create
the heartbeat tables manually at the target.

Topics:

• Installing DDL Replication

• Using the Metadata Server

• Troubleshooting Plug-in Based DDL Replication

• Upgrading from Plugin-based DDL Replication to Transaction Log-based DDL Replication

• Uninstalling Plug-In Based DDL Replication

Installing DDL Replication
To install DDL replication, you run the installation script that is provided with Oracle
GoldenGate as the replication user. This user must have Create, Insert,Select, Delete,
Drop, and Truncate database privileges. Additionally, this user must have write permission to
copy the Oracle GoldenGate plugin in the MySQL plugin directory. For example, the MySQL
plugin are typically in /usr/lib64/mysql/plugin/.

The installation script options are install, uninstall, start, stop, and restart.

The command to install DDL replication uses the install option, user id, password, and port
number respectively:

bash-3.2$./ddl_install.sh install-option user-id password port-number

For example:

bash-3.2$./ddl_install.sh install root welcome 3306

Chapter 6
DDL Replication

6-45

The DDL replication installation script completes the following tasks:

Using the Metadata Server
You can use the following options with the metadata server:

• You must have the Oracle GoldenGate metadata_server running to capture the
DDL metadata.

• Run the install script with start option to start the metadata server.

• Run the install script with stop option to stop the metadata server.

• Run the install script with restart option to stop the running metadata server and
start again.

• Oracle GoldenGate DDL replication uses two plugins as a shared library,
ddl_rewriter and ddl_metadata, both of which must be installed on your MySQL
server before Oracle GoldenGate replication starts.

• The oggddl.history metadata history table is used to store and retrieve the DDL
metadata history.

There is a single history table and metadata server for each MySQL server. If you want
to issue and capture DDLs from multiple instances of an Extract process on the same
database server at the same time, there is a possibility of conflict between accessing
and populating the metadata history table. Oracle recommends that you do not run
and capture DDLs using multiple Extract instances on the same MySQL server.

Troubleshooting Plug-in Based DDL Replication
Plug-in based DDL replication relies on a metadata history table and the metadata
plugin and server. To troubleshoot when DDL replication is enabled, the history table
contents and the metadata plugin server logs are required.
You can use the mysqldump command to generate the history table dump using one of
the following examples:

mysqldump [options] database [tables]
mysqldump [options] --databases [options] DB1 [DB2 DB3...]
mysqldump [options] --all-databases [options]

For example, bash-3.2$ mysqldump -uroot -pwelcome oggddl history > outfile
The metadata plugins and server logs are located in the MySQL and Oracle
GoldenGate installation directories respectively.

If you find an error in the log files, you need to ensure that the metadata server is
running.

Upgrading from Plugin-based DDL Replication to Transaction Log-based DDL Replication
If you are using the plug-in based solution on MySQL 5.7 and plan to upgrade to
MySQL 8.0, which uses transaction log based DDL replication, you need to:

1. Uninstall the plug-in components as mentioned in Uninstalling Plug-In Based DDL
Replication

2. Upgrade your database.

Chapter 6
DDL Replication

6-46

3. Re-enable DDL replication support based on the steps provided in MySQL: Prerequisites
for Transaction Log Based DDL Configuration and check the prerequisites and
configuration considerations.

Uninstalling Plug-In Based DDL Replication
If you no longer want to capture the DDL events, then you can use the same install script and
select the uninstall option to disable the DDL setup. Also, any Extract with DDL parameters
should be removed or disabled. If you want to capture the DDL again, you can run the install
script again. You should take care when multiple instances of the capture process is running
on the same instance of your MySQL server. The DDL setup should not be disturbed or
uninstalled when multiple capture processes are running and when at most one capture is
designed to capture the DDL statement.

Use the installation script with the uninstall option to uninstall DDL Replication. For
example:

bash-3.2$./ddl_install.sh uninstall root welcome 3306

The script performs the following tasks:

1. Uninstalls the ddl_rewriter and ddl_metadata plugins.

2. Deletes the oggddl.history table if exists.

3. Removes the plugins from MySQL plugin directory.

4. Stops the metadata_server if it is running.

DDL Filtering for Replication
The following options are supported for MySQL DDL replication:

Option Description

DDL INCLUDE OPTYPE CREATE OBJTYPE
TABLE;

Include create table.

DDL INCLUDE OBJNAME ggvam.* Include tables under the ggvamdatabase.

DDL EXCLUDE OBJNAME ggvam.emp*; Exclude all the tables under the ggvam database
and table name starting with the empwildcard.

DDL INCLUDE INSTR ‘XYZ’ Include DDL that contains this string.

DDL EXCLUDE INSTR ‘WHY’ Excludes DDL that contains this string.

DDL INCLUDE MAPPED MySQL DDL uses this option and should be used
as the default for Oracle GoldenGate MySQL DDL
replication. DDL INCLUDE ALL and DDL are not
supported.

DDL EXCLUDE ALL Default option.

For a full list of options, see DDL in Reference for Oracle GoldenGate.

Using DDL Filtering for Replication
The following options are supported for MySQL DDL replication:

Chapter 6
DDL Replication

6-47

Option Description

DDL INCLUDE OPTYPE CREATE OBJTYPE
TABLE;

Include create table.

DDL INCLUDE OBJNAME ggvam.* Include tables under the ggvamdatabase.

DDL EXCLUDE OBJNAME ggvam.emp*; Exclude all the tables under the ggvam
database and table name starting with the
empwildcard.

DDL INCLUDE INSTR ‘XYZ’ Include DDL that contains this string.

DDL EXCLUDE INSTR ‘WHY’ Excludes DDL that contains this string.

DDL INCLUDE MAPPED MySQL DDL uses this option and should be
used as the default for Oracle GoldenGate
MySQL DDL replication. DDL INCLUDE ALL
and DDL are not supported.

DDL EXCLUDE ALL Default option.

For a full list of options, see DDL in Reference for Oracle GoldenGate.

Using DDL Statements and Options

• INCLUDE (default) means include all objects that fit the rest of the description.
EXCLUDE means to omit items that fit the description. Exclude rules take
precedence over include rules.

• OPTYPE specifies the types of operations to be included or excluded. You can use
CREATE and ALTER. Multiple OPTYPE can be specified using parentheses. For
example, optype (create, alter). The asterisk (*) wildcard can be specified to
indicate all operation types, and this is the default.

• OBJTYPE specifies the TABLE operations to include or exclude. The wildcard can be
specified to indicate all object types, and this is the default.

• OBJNAME specifies the actual object names to include or exclude. For example,
eric.*. Wildcards are specified as in other cases where multiple tables are
specified. The default is *.

• String indicates that the rule is true if any of the strings in stringspec are present
(or false if excludestring is specified and the stringspec is present). If multiple
string entries are made, at least one entry in each stringspec must be present
to make the rule evaluate true.

For example:

ddlops string (“a”, “b”), string (“c”) evaluates true if string “a”
OR “b” is present, AND string “c” is present

• local is specified if you want the rule to apply only to the current Extract trail (the
Extract trail to which the rule applies must precede this ddlops specification).

• The semicolon is required to terminate the parameter entry.

For example:

ddl optype (create, drop), objname (eric.*);
ddl exclude objname (eric.tab*);

Chapter 6
DDL Replication

6-48

exttrail a;
exttrail b;
ddl optype (create), objname (joe.*), string (“abc”, “xyz”) local;
ddl optype (alter), objtype (index);

In this preceding example, the exttrail a gets creates and drops for all objects that
belong to eric, except for objects that start with tab, exttrail a also gets all alter index
statements, unless the index name begins with tab (the rule is global even though it’s
included in exttrail b). exttrail b gets the same objects as a, and it also gets all
creates for objects that belong to joe when the string abcor xyz is present in the DDL
text. The ddlops.c module stores all DDL operation parameters and executes related
rules.

Additionally, you can use the DDLOPTIONS parameter to configure aspects of DDL processing
other than filtering and string substitution. You can use multiple DDLOPTIONS statements and
Oracle recommends using one. If you are using multiple DDLOPTIONS statements, then make
each of them unique so that one does not override the other. Multiple DDLOPTIONS statements
are executed in the order listed in the parameter file.

See DDL and DDLOPTIONS.

Oracle: DDL Replication
Learn about DDL replication in Oracle.

Topics:

• Prerequisites for Configuring DDL

• Overview of DDL Synchronization

• Limitations of Oracle GoldenGate DDL Support

• Configuration Guidelines for DDL Support

• Understanding DDL Scopes

• Correctly Identifying Unqualified Object Names in DDL

• Enabling DDL Support

• Filtering DDL Replication

• Special Filter Cases

• How Oracle GoldenGate Handles Derived Object Names

• Using DDL String Substitution

• Controlling the Propagation of DDL to Support Different Topologies

• Add Supplemental Log Groups Automatically

• Removing Comments from Replicated DDL

• Replicating an IDENTIFIED BY Password

• How DDL is Evaluated for Processing

• Viewing DDL Report Information

• Tracing DDL Processing

• Using Edition-Based Redefinition

Chapter 6
DDL Replication

6-49

Prerequisites for Configuring DDL
Extract supports the DDL capture method for Oracle 11.2.0.4 or later. An Extract can
capture DDL operations from a source Oracle database natively through the Oracle
logmining server.

Oracle databases that have the COMPATIBLE parameter set to 11.2.0.4 or higher
support DDL capture through the database logmining server. This method is known as
native DDL capture. Native DDL capture is the only supported method for capturing
DDL from a multitenant container database.

For downstream mining, the source database must also have database COMPATIBLE
set to 11.2.0.4 or higher to support DDL capture through the database logmining
server.

Overview of DDL Synchronization
Oracle GoldenGate supports the synchronization of DDL operations from one
database to another.

DDL synchronization can be active when:

• business applications are actively accessing and updating the source and target
objects.

• Oracle GoldenGate transactional data synchronization is active.

The components that support the replication of DDL and the replication of
transactional data changes (DML) are independent of each other. Therefore, you can
synchronize:

• just DDL changes

• just DML changes

• both DDL and DML

For a list of supported objects and operations for DDL support for Oracle, see
Supported Objects and Operations in Oracle DDL.

Limitations of Oracle GoldenGate DDL Support
Here are the limitations of Oracle GoldenGate DDL support.

For any additional limitations that were found after this documentation was published,
see the Release Notes for Oracle GoldenGate.

Topics:

• DDL Statement Length

• Supported Topologies

• Filtering, Mapping, and Transformation

• Renames

• Interactions Between Fetches from a Table and DDL

• Comments in SQL

Chapter 6
DDL Replication

6-50

• Compilation Errors

• Interval Partitioning

• DML or DDL Performed Inside a DDL Trigger

• LogMiner Data Dictionary Maintenance

DDL Statement Length
Oracle GoldenGate measures the length of a DDL statement in bytes, not in characters. The
supported length is approximately 4 MB, allowing for some internal overhead that can vary in
size depending on the name of the affected object and its DDL type, among other
characteristics. If the DDL is longer than the supported size, Extract will issue a warning and
ignore the DDL operation.

Supported Topologies
Oracle GoldenGate supports DDL synchronization only in a like-to-like configuration. The
source and target object definitions must be identical.

DDL replication is only supported for Oracle to Oracle replication. It is not supported between
different databases, like Oracle to Teradata, or SQL Server to Oracle. Oracle GoldenGate
does not support DDL on a standby database. Oracle GoldenGate supports DDL replication
in all supported unidirectional configurations, and in bidirectional configurations between two,
and only two, systems. For special considerations in an Oracle active-active configuration,
see Propagating DDL in Active-Active (Bidirectional) Configurations.

Filtering, Mapping, and Transformation
DDL operations cannot be transformed by any Oracle GoldenGate process. However, source
DDL can be mapped and filtered to a different target object by a primary Extract or a Replicat
process.

Renames
RENAME operations on tables are converted to the equivalent ALTER TABLE RENAME so that a
schema name can be included in the target DDL statement. For example RENAME EMP TO
EMPLOYEES could be changed to ALTER TABLE hr.EMP RENAME TO hr.EMPLOYEES.

The conversion is reported in the Replicat process report file.

Interactions Between Fetches from a Table and DDL
Oracle GoldenGate supports some data types by identifying the modified row from the redo
stream and then querying the underlying table to fetch the changed columns. For instance,
partial updates on LOBs are supported by identifying the modified row and the LOB column
from the redo log, and then querying for the LOB column value for the row from the base
table. A similar technique is employed to support UDT.

Note:

Extract only requires fetch for UDT when not using native object support.

Chapter 6
DDL Replication

6-51

Such fetch-based support is implemented by issuing a flashback query to the
database based on the SCN (System Change Number) at which the transaction
committed. The flashback query feature has certain limitations. Certain DDL
operations act as barriers such that flashback queries to get data prior to these DDLs
do not succeed. Examples of such DDL are ALTER TABLE MODIFY COLUMN and ALTER
TABLE DROP COLUMN.

Thus, in cases where there is Extract capture lag, an intervening DDL may cause fetch
requests for data prior to the DDL to fail. In such cases, Extract falls back and fetches
the current snapshot of the data for the modified column. There are several limitations
to this approach: First, the DDL could have modified the column that Extract needs to
fetch (for example, suppose the intervening DDL added a new attribute to the UDT
that is being captured). Second, the DDL could have modified one of the columns that
Extract uses as a logical row identifier. Third, the table could have been renamed
before Extract had a chance to fetch the data.

To prevent fetch-related inconsistencies such as these, take the following precautions
while modifying columns.

1. Pause all DML to the table.

2. Wait for Extract to finish capturing all remaining redo, and wait for Replicat to finish
processing the captured data from trail. To determine whether Replicat is finished,
issue the following command until you see a message that there is no more data
to process.

INFO REPLICAT group

3. Execute the DDL on the source.

4. Resume source DML operations.

Comments in SQL
If a source DDL statement contains a comment in the middle of an object name, that
comment will appear at the end of the object name in the target DDL statement. For
example:

Source:

CREATE TABLE hr./*comment*/emp ...

Target:

CREATE TABLE hr.emp /*comment*/ ...

This does not affect the integrity of DDL synchronization. Comments in any other area
of a DDL statement remain in place when replicated.

Compilation Errors
If a CREATE operation on a trigger, procedure, function, or package results in
compilation errors, Oracle GoldenGate executes the DDL operation on the target
anyway. Technically, the DDL operations themselves completed successfully and
should be propagated to allow dependencies to be executed on the target. For
example in recursive procedures.

Chapter 6
DDL Replication

6-52

Interval Partitioning
DDL replication is unaffected by interval partitioning, because the DDL is implicit. However,
this is system generated name so Replicat cannot convert this to the target.I believe this is
expected behavior. You must drop the partition on the source. For example:

ALTER TABLE employees DROP PARTITION FOR (20);

DML or DDL Performed Inside a DDL Trigger
DML or DDL operations performed from within a DDL trigger are not captured.

LogMiner Data Dictionary Maintenance
Oracle recommends that you gather dictionary statistics after the Extract is registered
(logminer session) and the logminer dictionary is loaded, or after any significant DDL activity
on the database.

Configuration Guidelines for DDL Support
Here are the guidelines for configuring Oracle GoldenGate processes to support DDL
replication.

Topics:

• Database Privileges

• Parallel Processing

• Object Names

• Data Definitions

• Truncates

• Initial Synchronization

• Data Continuity After CREATE or RENAME

Database Privileges
See Grant User Privileges for Oracle Database 21c and Lower.

Parallel Processing
If using parallel Extract and/or Replicat processes, keep related DDL and DML together in the
same process stream to ensure data integrity. Configure the processes so that:

• all DDL and DML for any given object are processed by the same Extract group and by
the same Replicat group.

• all objects that are relational to one another are processed by the same process group.

For example, if repe processes DML for EMPLOYEES, then it should also process the DDL for
EMPLOYEES. If APPRAISAL has a foreign key to EMPLOYEES, then its DML and DDL operations
also should be processed by repe.

Chapter 6
DDL Replication

6-53

If an Extract group writes to multiple trails that are read by different Replicat groups,
Extract sends all of the DDL to all of the trails. Use each Replicat group to filter the
DDL by using the filter options of the DDL parameter in the Replicat parameter file.

Object Names
Oracle GoldenGate preserves the database-defined object name, case, and character
set. This support preserves single-byte and multibyte names, symbols, and accent
characters at all levels of the database hierarchy.

Object names must be fully qualified with their two-part or three-part names when
supplied as input to any parameters that support DDL synchronization. You can use
the question mark (?) and asterisk (*) wildcards to specify object names in
configuration parameters that support DDL synchronization, but the wildcard
specification also must be fully qualified as a two-part or three-part name. To process
wildcards correctly, the WILDCARDRESOLVE parameter is set to DYNAMIC by default. If
WILDCARDRESOLVE is set to anything else, the Oracle GoldenGate process that is
processing DDL operations will abend and write the error to the process report.

Data Definitions
Because DDL support requires a like-to-like configuration, the ASSUMETARGETDEFS
parameter must be used in the Replicat parameter file. Replicat will abend if objects
are configured for DDL support and the SOURCEDEFS parameter is being used.

For more information about ASSUMETARGETDEFS, see Reference for Oracle GoldenGate.

Truncates
TRUNCATE statements can be supported as follows:

• As part of the Oracle GoldenGate full DDL support, which supports TRUNCATE
TABLE, ALTER TABLE TRUNCATE PARTITION, and other DDL. This is controlled by
the DDL parameter (see Enabling DDL Support .)

• As standalone TRUNCATE support. This support enables you to replicate TRUNCATE
TABLE, but no other DDL. The GETTRUNCATES parameter controls the standalone
TRUNCATE feature. For more information, see Reference for Oracle GoldenGate.

To avoid errors from duplicate operations, only one of these features can be active at
the same time.

Initial Synchronization
To configure DDL replication, start with a target database that is synchronized with the
source database. DDL support is compatible with the Replicat initial load method.

Before executing an initial load, disable DDL extraction and replication. DDL
processing is controlled by the DDL parameter in the Extract and Replicat parameter
files.

After initial synchronization of the source and target data, use all of the source
sequence values at least once with NEXTVAL before you run the source applications.
You can use a script that selects NEXTVAL from every sequence in the system. This
must be done while Extract is running.

Chapter 6
DDL Replication

6-54

Data Continuity After CREATE or RENAME
To replicate DML operations on new Oracle tables resulting from a CREATE or RENAME
operation, the names of the new tables must be specified in TABLE and MAP statements in the
parameter files. You can use wildcards to make certain that they are included.

To create a new user with CREATE USER and then move new or renamed tables into that
schema, the new user name must be specified in TABLE and MAP statements. To create a user
fin2 and move new or renamed tables into that schema, the parameter statements could
look as follows, depending on whether you want the fin2 objects mapped to the same, or
different, schema on the target:

Extract:

TABLE fin2.*;

Replicat:

MAP fin2.*, TARGET different_schema.*;

Understanding DDL Scopes
Database objects are classified into scopes. A scope is a category that defines how DDL
operations on an object are handled by Oracle GoldenGate.

The scopes are:

• MAPPED
• UNMAPPED
• OTHER
The use of scopes enables granular control over the filtering of DDL operations, string
substitutions, and error handling.

Topics:

• Mapped Scope

• Unmapped Scope

• Other Scope

Mapped Scope
Objects that are specified in TABLE and MAP statements are of MAPPED scope. Extraction and
replication instructions in those statements apply to both data (DML) and DDL on the
specified objects, unless override rules are applied.

For objects in TABLE and MAP statements, the DDL operations listed in the following table are
supported.

Chapter 6
DDL Replication

6-55

Operations On any of these Objects1

CREATE
ALTER
DROP
RENAME
COMMENT ON2

TABLE3

INDEX
TRIGGER
SEQUENCE
MATERIALIZED VIEW
VIEW
FUNCTION
PACKAGE
PROCEDURE
SYNONYM
PUBLIC SYNONYM4

GRANT
REVOKE

TABLE
SEQUENCE
MATERIALIZED VIEW

ANALYZE TABLE
INDEX
CLUSTER

1 TABLE and MAP do not support some special characters that could be used in an object name affected
by these operations. Objects with non-supported special characters are supported by the scopes of
UNMAPPED and OTHER.

2 Applies to COMMENT ON TABLE, COMMENT ON COLUMN
3 Includes AS SELECT
4 Table name must be qualified with schema name.

For Extract, MAPPED scope marks an object for DDL capture according to the
instructions in the TABLE statement. For Replicat, MAPPED scope marks DDL for
replication and maps it to the object specified by the schema and name in the TARGET
clause of the MAP statement. To perform this mapping, Replicat issues ALTER SESSION
to set the schema of the Replicat session to the schema that is specified in the TARGET
clause. If the DDL contains unqualified objects, the schema that is assigned on the
target depends on circumstances described in Understanding DDL Scopes.

Assume the following TABLE and MAP statements:

Extract (source)

TABLE fin.expen;
TABLE hr.tab*;

Replicat (target)

MAP fin.expen, TARGET fin2.expen2;
MAP hr.tab*, TARGET hrBackup.bak_*;

Chapter 6
DDL Replication

6-56

Also assume a source DDL statement of:

ALTER TABLE fin.expen ADD notes varchar2(100);

In this example, because the source table fin.expen is in a MAP statement with a TARGET
clause that maps to a different schema and table name, the target DDL statement becomes:

ALTER TABLE fin2.expen2 ADD notes varchar2(100);

Likewise, the following source and target DDL statements are possible for the second set of
TABLE and MAP statements in the example:

Source:

CREATE TABLE hr.tabPayables ... ;

Target:

CREATE TABLE hrBackup.bak_tabPayables ...;

When objects are of MAPPED scope, you can omit their names from the DDL configuration
parameters, unless you want to refine their DDL support further. If you ever need to change
the object names in TABLE and MAP statements, the changes will apply automatically to the
DDL on those objects.

If you include an object in a TABLE statement, but not in a MAP statement, the DDL for that
object is MAPPED in scope on the source but UNMAPPED in scope on the target.

Unmapped Scope
If a DDL operation is supported for use in a TABLE or MAP statement, but its base object name
is not included in one of those parameters, it is of UNMAPPED scope.

An object name can be of UNMAPPED scope on the source (not in an Extract TABLE statement),
but of MAPPED scope on the target (in a Replicat MAP statement), or the other way around.
When Oracle DDL is of UNMAPPED scope in the Replicat configuration, Replicat will by default
do the following:

1. Set the current schema of the Replicat session to the schema of the source DDL object.

2. Execute the DDL as that schema.

3. Restore Replicat as the current schema of the Replicat session.

Other Scope
DDL operations that cannot be mapped are of OTHER scope. When DDL is of OTHER scope in
the Replicat configuration, it is applied to the target with the same schema and object name
as in the source DDL.

An example of OTHER scope is a DDL operation that makes a system-specific reference, such
as DDL that operates on data file names.

Chapter 6
DDL Replication

6-57

Some other examples of OTHER scope:

CREATE USER joe IDENTIFIED by joe;
CREATE ROLE ggs_gguser_role IDENTIFIED GLOBALLY;
ALTER TABLESPACE gg_user TABLESPACE GROUP gg_grp_user;

Correctly Identifying Unqualified Object Names in DDL
Extract captures the current schema (also called session schema) that is in effect
when a DDL operation is executed. The current container is also captured if the source
is a multitenant container database.

The container and schema are used to resolve unqualified object names in the DDL.

Consider the following example:

CONNECT ggadmin/PASSWORD
CREATE TABLE EMPLOYEES (X NUMBER);
CREATE TABLE EAST.FINANCE(X NUMBER) AS SELECT * FROM EMPLOYEES;

In both of those DDL statements, the unqualified table TAB1 is resolved as SCOTT.TAB1
based on the current schema SCOTT that is in effect during the DDL execution.

There is another way of setting the current schema, which is to set the
current_schema for the session, as in the following example:

CONNECT ggadmin/PASSWORD
ALTER SESSION SET CURRENT_SCHEMA=SRC;
CREATE TABLE EMPLOYEES (X NUMBER);
CREATE TABLE HR.FINANCE(X NUMBER) AS SELECT * FROM EMPLOYEES;

In both of those DDL statements, the unqualified table EMPLOYEES is resolved as
HR.EMPLOYEES based on the current schema HR that is in effect during the DDL
execution.

Extract captures the current schema that is in effect during DDL execution, and it
resolves the unqualified object names (if any) by using the current schema. As a
result, MAP statements specified for Replicat, work correctly for DDL with unqualified
object names.

You can also map a source session schema to a different target session schema, if
that is required for the DDL to succeed on the target. This mapping is global and
overrides any other mappings that involve the same schema names. To map session
schemas, use the DDLOPTIONS parameter with the MAPSESSIONSCHEMA option.

If the default or mapped session schema mapping fails, you can handle the error with
the following DDLERROR parameter statement, where error 1435 means that the schema
does not exist.

DDLERROR 1435 IGNORE INCLUDE OPTYPE ALTER OBJTYPE SESSION

Chapter 6
DDL Replication

6-58

Enabling DDL Support
Data Definition Language (DDL) is useful in dynamic environments which change constantly.

By default, the status of DDL replication support is as follows:

• On the source, Oracle GoldenGate DDL support is disabled by default. You must
configure Extract to capture DDL by using the DDL parameter.

• On the target, DDL support is enabled by default, to maintain the integrity of transactional
data that is replicated. By default, Replicat will process all DDL operations that the trail
contains. If needed, you can use the DDL parameter to configure Replicat to ignore or
filter DDL operations.

Filtering DDL Replication
By default, all DDL is passed to Extract.

You can use the filtering with DDL parameter method to filter DDL operations so that specific
(or all) DDL is applied to the target database according to your requirements. Valid for native
DDL capture. This is the preferred method of filtering and is performed within Oracle
GoldenGate, and both Extract and Replicat can execute filter criteria. Extract can perform
filtering, or it can send the entire DDL to a trail, and then Replicat can perform the filtering.
Alternatively, you can filter in a combination of different locations. The DDL parameter gives
you control over where the filtering is performed, and it also offers more filtering options,
including the ability to filter collectively based on the DDL scope (for example, include all
MAPPED scope).

Note:

If a DDL operation fails in the middle of a TRANSACTION, it forces a commit, which
means that the transaction spanning the DDL is split into two. The first half is
committed and the second half can be restarted. If a recovery occurs, the second
half of the transaction cannot be filtered since the information contained in the
header of the transaction is no longer there.

Topics:

• Filtering with the DDL Parameter

Filtering with the DDL Parameter
The DDL parameter is the main Oracle GoldenGate parameter for filtering DDL within the
Extract and Replicat processes.

When used without options, the DDL parameter performs no filtering, and it causes all DDL
operations to be propagated as follows:

• As an Extract parameter, it captures all supported DDL operations that are generated on
all supported database objects and sends them to the trail.

Chapter 6
DDL Replication

6-59

• As a Replicat parameter, it replicates all DDL operations from the Oracle
GoldenGate trail and applies them to the target. This is the same as the default
behavior without this parameter.

When used with options, the DDL parameter acts as a filtering agent to include or
exclude DDL operations based on:

• scope

• object type

• operation type

• object name

• strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine multiple
inclusion and exclusion options, along with other options, to filter the DDL to the
required level.

• DDL filtering options are valid for a primary Extract that captures from the
transaction source.

• When combined, multiple filter option specifications are linked logically as AND
statements.

• All filter criteria specified with multiple options must be satisfied for a DDL
statement to be replicated.

• When using complex DDL filtering criteria, it is recommended that you test your
configuration in a test environment before using it in production.

See DDL parameter syntax and additional usage guidelines in the Reference for Oracle
GoldenGate.

Note:

Before you configure DDL support, it might help to review How DDL is
Evaluated for Processing.

Special Filter Cases
This topic describes the special cases that you must consider before creating your
DDL filters.

The following are the special cases for creating filter conditions.

• DDL EXCLUDE ALL

• Implicit DDL

DDL EXCLUDE ALL
DDL EXCLUDE ALL is a special processing option that is intended primarily for Extract.
DDL EXCLUDE ALL blocks the replication of DDL operations, but ensures that Oracle
GoldenGate continues to keep the object metadata current. When Extract receives

Chapter 6
DDL Replication

6-60

DDL directly from the logmining server (triggerless DDL capture mode), current metadata is
always maintained.

You can use DDL EXCLUDE ALL when using a method other than Oracle GoldenGate to apply
DDL to the target and you want Oracle GoldenGate to replicate data changes to the target
objects. It provides the current metadata to Oracle GoldenGate as objects change, thus
preventing the need to stop and start the Oracle GoldenGate processes. The following
special conditions apply to DDL EXCLUDE ALL:

• DDL EXCLUDE ALL does not require the use of an INCLUDE clause.

• When using DDL EXCLUDE ALL, you can set the WILDCARDRESOLVE parameter to IMMEDIATE
to allow immediate DML resolution if required.

To prevent all DDL metadata and operations from being replicated, omit the DDL parameter
entirely.

Implicit DDL
User-generated DDL operations can generate implicit DDL operations. For example, the
following statement generates two distinct DDL operations.

CREATE TABLE customers (custID number, name varchar2(50), address
varchar2(75), address2 varchar2(75), city varchar2(50), state (varchar2(2),
zip number, contact varchar2(50), areacode number(3), phone number(7),
primary key (custID));

The first (explicit) DDL operation is the CREATE TABLE statement itself.

The second DDL operation is an implicit CREATE UNIQUE INDEX statement that creates the
index for the primary key. This operation is generated by the database engine, not a user
application.

How Oracle GoldenGate Handles Derived Object Names
DDL operations can contain a base object name and also a derived object name.

A base object is an object that contains data. A derived object is an object that inherits some
attributes of the base object to perform a function related to that object. DDL statements that
have both base and derived objects are:

• RENAME and ALTER RENAME
• CREATE and DROP on an index, synonym, or trigger

Consider the following DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

In this case, the table is the base object. Its name (hr.tabPayroll) is the base name and is
subject to mapping with TABLE or MAP under the MAPPED scope. The derived object is the
index, and its name (hr.indexPayrollDate) is the derived name.

You can map a derived name in its own TABLE or MAP statement, separately from that of the
base object. Or, you can use one MAP statement to handle both. In the case of MAP, the
conversion of derived object names on the target works as follows:

Chapter 6
DDL Replication

6-61

• MAP Exists for Base and Derived Objects

• MAP Exists for Derived Object, But Not Base Object

• New Tables as Derived Objects

• Disabling the Mapping of Derived Objects

MAP Exists for Base and Derived Objects
If there is a MAP statement for the base object and also one for the derived object, the
result is an explicit mapping. Assuming the DDL statement includes MAPPED, Replicat
converts the schema and name of each object according to its own TARGET clause. For
example, assume the following:

Extract (source)

TABLE hr.tab*; TABLE hr.index*;

Replicat (target)

MAP hr.tab*, TARGET hrBackup.*;MAP hr.index*, TARGET hrIndex.*;

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as follows:

CREATE INDEX hrIndex.indexPayrollDate ON TABLE hrBackup.tabPayroll
(payDate);

Use an explicit mapping when the index on the target must be owned by a different
schema from that of the base object, or when the name on the target must be different
from that of the source.

MAP Exists for Derived Object, But Not Base Object
If there is a MAP statement for the derived object, but not for the base object, Replicat
does not perform any name conversion for either object. The target DDL statement is
the same as that of the source. To map a derived object, the choices are:

• Use an explicit MAP statement for the base object.

• If names permit, map both base and derived objects in the same MAP statement by
means of a wildcard.

• Create a MAP statement for each object, depending on how you want the names
converted.

New Tables as Derived Objects
The following explains how Oracle GoldenGate handles new tables that are created
from:

Chapter 6
DDL Replication

6-62

• RENAME and ALTER RENAME
• CREATE TABLE AS SELECT
Topics:

• Prerequisites for Configuring DDL

• RENAME and ALTER TABLE RENAME

Prerequisites for Configuring DDL

The CREATE TABLE AS SELECT (CTAS) statements include SELECT statements and INSERT
statements that reference any number of underlying objects. By default, Oracle GoldenGate
obtains the data for the AS SELECT clause from the target database. You can force the CTAS
operation to preserve the original inserts using this parameter.

Note:

For this reason, Oracle XMLType tables created from a CTAS (CREATE TABLE AS
SELECT) statement cannot be supported. For XMLType tables, the row object IDs
must match between source and target, which cannot be maintained in this
scenario. XMLType tables created by an empty CTAS statement (that does not insert
data in the new table) can be maintained correctly.

In addition, you could use the GETCTASDML parameter that allows CTAS to replay the
inserts of the CTAS thus preserving OIDs during replication. This parameter is only
supported with Integrated Dictionary and any downstream Replicat must be
12.1.2.1 or greater to consume the trail otherwise, there may be divergence.

The objects in the AS SELECT clause must exist in the target database, and their names must
be identical to the ones on the source.

In a MAP statement, Oracle GoldenGate only maps the name of the new table (CREATE TABLE
name) to the TARGET specification, but does not map the names of the underlying objects from
the AS SELECT clause. There could be dependencies on those objects that could cause data
inconsistencies if the names were converted to the TARGET specification.

The following shows an example of a CREATE TABLE AS SELECT statement on the source and
how it would be replicated to the target by Oracle GoldenGate.

CREATE TABLE a.tab1 AS SELECT * FROM a.tab2;

The MAP statement for Replicat is as follows:

MAP a.tab*, TARGET a.x*;

The target DDL statement that is applied by Replicat is the following:

CREATE TABLE a.xtab1 AS SELECT * FROM a.tab2;

Chapter 6
DDL Replication

6-63

The name of the table in the AS SELECT * FROM clause remains as it was on the
source: tab2 (rather than xtab2).

To keep the data in the underlying objects consistent on source and target, you can
configure them for data replication by Oracle GoldenGate. In the preceding example,
you could use the following statements to accommodate this requirement:

Source

TABLE a.tab*;

Target

MAPEXCLUDE a.tab2
MAP a.tab*, TARGET a.x*;
MAP a.tab2, TARGET a.tab2;

See Correctly Identifying Unqualified Object Names in DDL.

RENAME and ALTER TABLE RENAME

In RENAME and ALTER TABLE RENAME operations, the base object is always the new
table name. In the following example, the base object name is considered to be
index_paydate.

ALTER TABLE hr.indexPayrollDate RENAME TO index_paydate;

or...

RENAME hr.indexPayrollDate TO index_paydate;

The derived object name is hr.indexPayrollDate.

Disabling the Mapping of Derived Objects
Use the DDLOPTIONS parameter with the NOMAPDERIVED option to prevent the
conversion of the name of a derived object according to a TARGET clause of a MAP
statement that includes it. NOMAPDERIVED overrides any explicit MAP statements that
contain the name of the base or derived object. Source DDL that contains derived
objects is replicated to the target with the same schema and object names as on the
source.

The following table shows the results of MAPDERIVED compared to NOMAPDERIVED,
based on whether there is a MAP statement just for the base object, just for the derived
object, or for both.

Using DDL String Substitution
This feature provides a convenience for changing and mapping directory names,
comments, and other things that are not directly related to data structures. For
example, you could substitute one tablespace name for another, or substitute a string
within comments. String substitution is controlled by the DDLSUBST parameter. For more
information, see Reference for Oracle GoldenGate.

Chapter 6
DDL Replication

6-64

Note:

Before you create a DDLSUBST parameter statement, it might help to review How
DDL is Evaluated for Processing.

Controlling the Propagation of DDL to Support Different Topologies
To support bidirectional and cascading replication configurations, it is important for Extract to
be able to identify the DDL that is performed by Oracle GoldenGate and by other
applications, such as the local business applications.

Depending on the configuration that you want to deploy, it might be appropriate to capture
one or both of these sources of DDL on the local system.

Note:

Oracle GoldenGate DDL consists of ALTER TABLE statements performed by Extract
to create log groups and the DDL that is performed by Replicat to replicate source
DDL changes.

The following options of the DDLOPTIONS parameter control whether DDL on the local system
is captured by Extract and then sent to a remote system, assuming Oracle GoldenGate DDL
support is configured and enabled:

• The GETREPLICATES and IGNOREREPLICATES options control whether Extract captures or
ignores the DDL that is generated by Oracle GoldenGate. The default is
IGNOREREPLICATES, which does not propagate the DDL that is generated by Oracle
GoldenGate. To identify the DDL operations that are performed by Oracle GoldenGate,
the following comment is part of each Extract and Replicat DDL statement:

/* GOLDENGATE_DDL_REPLICATION */

• The GETAPPLOPS and IGNOREAPPLOPS options control whether Extract captures or ignores
the DDL that is generated by applications other than Oracle GoldenGate. The default is
GETAPPLOPS, which propagates the DDL from local applications (other than Oracle
GoldenGate).

The result of these default settings is that Extract ignores its own DDL and the DDL that is
applied to the local database by a local Replicat, so that the DDL is not sent back to its
source, and Extract captures all other DDL that is configured for replication. The following is
the default DDLOPTIONS configuration.

DDLOPTIONS GETAPPLOPS, IGNOREREPLICATES

This behavior can be modified. See the following topics:

• Propagating DDL in Active-Active (Bidirectional) Configurations

• Prerequisites for Configuring DDL

Chapter 6
DDL Replication

6-65

Propagating DDL in Active-Active (Bidirectional) Configurations
Oracle GoldenGate supports active-active DDL replication between two systems. For
an active-active bidirectional replication, the following must be configured in the Oracle
GoldenGate processes:

1. DDL that is performed by a business application on one system must be replicated
to the other system to maintain synchronization. To satisfy this requirement,
include the GETAPPLOPS option in the DDLOPTIONS statement in the Extract
parameter files on both systems.

2. DDL that is applied by Replicat on one system must be captured by the local
Extract and sent back to the other system. To satisfy this requirement, use the
GETREPLICATES option in the DDLOPTIONS statement in the Extract parameter files
on both systems.

Note:

An internal Oracle GoldenGate token will cause the actual Replicat DDL
statement itself to be ignored to prevent loopback. The purpose of
propagating Replicat DDL back to the original system is so that the
Replicat on that system can update its object metadata cache, in
preparation to receive incoming DML, which will have the new metadata.

3. Each Replicat must be configured to update its object metadata cache whenever
the remote Extract sends over a captured Replicat DDL statement. To satisfy this
requirement, use the UPDATEMETADATA option in the DDLOPTIONS statement in the
Replicat parameter files on both systems.

The resultant DDLOPTIONS statements should look as follows:

Extract (primary and secondary)

DDLOPTIONS GETREPLICATES, GETAPPLOPS

Replicat (primary and secondary)

DDLOPTIONS UPDATEMETADATA

WARNING:

Before you allow new DDL or DML to be issued for the same object(s) as the
original DDL, allow time for the original DDL to be replicated to the remote
system and then captured again by the Extract on that system. This will
ensure that the operations arrive in correct order to the Replicat on the
original system, to prevent DML errors caused by metadata inconsistencies.
See the following diagram for more information.

For more information, see Reference for Oracle GoldenGate.

Chapter 6
DDL Replication

6-66

Prerequisites for Configuring DDL
In a cascading configuration, use the following setting for DDLOPTIONS in the Extract
parameter file on each intermediary system. This configuration forces Extract to capture the
DDL from Replicat on an intermediary system and cascade it to the next system downstream.

DDLOPTIONS GETREPLICATES, IGNOREAPPLOPS

For more information about DDLOPTIONS, see DDLOPTIONS.

Add Supplemental Log Groups Automatically
Use the DDLOPTIONS parameter with the ADDTRANDATA option for performing tasks described in
this topic.

You can perform the following tasks using the DDLOPTIONS:

• Enable Oracle's supplemental logging automatically for new tables created with a CREATE
TABLE.

• Update Oracle's supplemental logging for tables affected by an ALTER TABLE to add or
drop columns.

• Update Oracle's supplemental logging for tables that are renamed.

• Update Oracle's supplemental logging for tables where unique or primary keys are added
or dropped.

To use DDLOPTIONS ADDSCHEMATRANDATA, the ADD SCHEMATRANDATA command must be issued
on the Admin Client to enable schema-level supplemental logging.

By default, the ALTER TABLE that adds the supplemental logging is not replicated to the target
unless the GETREPLICATES parameter is in use.

DDLOPTIONS ADDTRANDATA is not supported for multitenant container databases, see
Configuring Logging Properties for more information.

Removing Comments from Replicated DDL
You can use the DDLOPTIONS parameter with the REMOVECOMMENTS BEFORE and
REMOVECOMMENTS AFTER options to prevent comments that were used in the source DDL from
being included in the target DDL.

By default, comments are not removed, so that they can be used for string substitution.

Replicating an IDENTIFIED BY Password
Use the DDLOPTIONS parameter with the DEFAULTUSERPASSWORDALIAS and REPLICATEPASSWORD
| NOREPLICATEPASSWORD options to control how the password of a replicated {CREATE |
ALTER} USER name IDENTIFIED BY password statement is handled. These options must be
used together.

See the USEPASSWORDVERIFIERLEVEL option of DDLOPTIONS for important information about
specifying the password verifier when Replicat operates against an Oracle 10g or 11g
database.

Chapter 6
DDL Replication

6-67

Note:

Replication of CREATE | ALTER PROFILE will fail as the profile/password
verification function must exist in the SYS schema. To replicate these DDLs
successfully, password verification function must be created manually on
both source/target(s) since DDL to SYS schema is excluded.

How DDL is Evaluated for Processing
Learn about the order in which different criteria in the Oracle GoldenGate parameters
are processed, and the differences between how Extract and Replicat each process
the DDL.

Extract

1. Extract captures a DDL statement.

2. Extract separates comments, if any, from the main statement.

3. Extract searches for the DDL parameter. (This example assumes it exists.)

4. Extract searches for the IGNOREREPLICATES parameter. If it is present, and if
Replicat produced this DDL on this system, Extract ignores the DDL statement.
(This example assumes no Replicat operations on this system.)

5. Extract determines whether the DDL statement is a RENAME. If so, the rename is
flagged internally.

6. Extract gets the base object name and, if present, the derived object name.

7. If the statement is a RENAME, Extract changes it to ALTER TABLE RENAME.

8. Extract searches for the DDLOPTIONS REMOVECOMMENTS BEFORE parameter. If it is
present, Extract removes the comments from the DDL statement, but stores them
in case there is a DDL INCLUDE or DDL EXCLUDE clause that uses INSTR or
INSTRCOMMENTS.

9. Extract determines the DDL scope: MAPPED, UNMAPPED or OTHER:

• It is MAPPED if the operation and object types are supported for mapping, and
the base object name and/or derived object name (if RENAME) is in a TABLE
parameter.

• It is UNMAPPED if the operation and object types are not supported for mapping,
and the base object name and/or derived object name (if RENAME) is not in a
TABLE parameter.

• Otherwise the operation is identified as OTHER.

10. Extract checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it
evaluates the DDL parameter criteria in those clauses. All options must evaluate to
TRUE in order for the INCLUDE or EXCLUDE to evaluate to TRUE. The following occurs:

• If an EXCLUDE clause evaluates to TRUE, Extract discards the DDL statement
and evaluates another DDL statement. In this case, the processing steps start
over.

Chapter 6
DDL Replication

6-68

• If an INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have any
INCLUDE or EXCLUDE clauses, Extract includes the DDL statement, and the processing
logic continues.

11. Extract searches for a DDLSUBST parameter and evaluates the INCLUDE and EXCLUDE
clauses. If the criteria in those clauses add up to TRUE, Extract performs string
substitution. Extract evaluates the DDL statement against each DDLSUBST parameter in
the parameter file. For all true DDLSUBST specifications, Extract performs string
substitution in the order that the DDLSUBST parameters are listed in the file.

12. Now that DDLSUBT has been processed, Extract searches for the REMOVECOMMENTS AFTER
parameter. If it is present, Extract removes the comments from the DDL statement.

13. Extract searches for DDLOPTIONS ADDTRANDATA. If it is present, and if the operation is
CREATE TABLE, Extract issues the ALTER TABLE name ADD SUPPLEMENTAL LOG GROUP
command on the table.

14. Extract writes the DDL statement to the trail.

Viewing DDL Report Information
By default, Oracle GoldenGate shows basic statistics about DDL at the end of the Extract and
Replicat reports.

To enable expanded DDL reporting, use the DDLOPTIONS parameter with the REPORT option.
Expanded reporting includes the following information about DDL processing:

• A step-by-step history of the DDL operations that were processed by Oracle GoldenGate.

• The DDL filtering and processing parameters that are being used.

Expanded DDL report information increases the size of the report file, but it might be useful in
certain situations, such as for troubleshooting or to determine when an ADD TRANDATA to add
supplemental logging was applied.

To view a report, use the VIEW REPORT command.

VIEW REPORT group

Topics:

• Viewing DDL Reporting in Replicat

• Viewing DDL Reporting in Extract

• Statistics in the Process Reports

Viewing DDL Reporting in Replicat
The Replicat report lists:

• The entire syntax and source Oracle GoldenGate SCN of each DDL operation that
Replicat processed from the trail. You can use the source SCN for tracking purposes,
especially when there are restores from backup and Replicat is positioned backward in
the trail.

• A subsequent entry that shows the scope of the operation (MAPPED, UNMAPPED, OTHER) and
how object names were mapped in the target DDL statement, if applicable.

• Another entry that shows how processing criteria was applied.

Chapter 6
DDL Replication

6-69

• Additional entries that show whether the operation succeeded or failed, and
whether or not Replicat applied error handling rules.

The following excerpt from a Replicat report illustrates a sequence of steps, including
error handling:

2011-01-20 15:11:45 GGS INFO 2104 DDL found, operation [drop
table myTableTemp], Source SCN [1186713.0].
 2011-01-20 15:11:45 GGS INFO 2100 DDL is of mapped scope, after
mapping new operation [drop table "QATEST2"."MYTABLETEMP"].
 2011-01-20 15:11:45 GGS INFO 2100 DDL operation included
[include objname myTable*], optype [DROP], objtype [TABLE], objname
[QATEST2.MYTABLETEMP].
 2011-01-20 15:11:45 GGS INFO 2100 Executing DDL operation.
 2011-01-20 15:11:48 GGS INFO 2105 DDL error ignored for next
retry: error code [942], filter [include objname myTableTemp], error
text [ORA-00942: table or view does not exist], retry [1].
 2011-01-20 15:11:48 GGS INFO 2100 Executing DDL operation ,
trying again due to RETRYOP parameter.
 2011-01-20 15:11:51 GGS INFO 2105 DDL error ignored for next
retry: error code [942], filter [include objname myTableTemp], error
text [ORA-00942: table or view does not exist], retry [2].
 2011-01-20 15:11:51 GGS INFO 2100 Executing DDL operation,
trying again due to RETRYOP parameter.
 2011-01-20 15:11:54 GGS INFO 2105 DDL error ignored for next
retry: error code [942], filter [include objname myTableTemp], error
text [ORA-00942: table or view does not exist], retry [3].
 2011-01-20 15:11:54 GGS INFO 2100 Executing DDL operation,
trying again due to RETRYOP parameter.
 2011-01-20 15:11:54 GGS INFO 2105 DDL error ignored: error code
[942], filter [include objname myTableTemp], error text [ORA-00942:
table or view does not exist].

Viewing DDL Reporting in Extract
The Extract report lists the following:

• The entire syntax of each captured DDL operation, the start and end SCN, the
Oracle instance, the DDL sequence number (from the SEQNO column of the history
table), and the size of the operation in bytes.

• A subsequent entry that shows how processing criteria was applied to the
operation, for example string substitution or INCLUDE and EXCLUDE filtering.

• Another entry showing whether the operation was written to the trail or excluded.

The following, taken from an Extract report, shows an included operation and an
excluded operation. There is a report message for the included operation, but not for
the excluded one.

2011-01-20 15:11:41 GGS INFO 2100 DDL found, operation [create
table myTable (
 myId number (10) not null,
 myNumber number,
 myString varchar2(100),
 myDate date,

Chapter 6
DDL Replication

6-70

 primary key (myId)
)], start SCN [1186754], commit SCN [1186772] instance [test11g (1)], DDL
seqno [4134].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation included [INCLUDE
OBJNAME myTable*], optype [CREATE], objtype [TABLE], objname
[QATEST1.MYTABLE].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation written to extract
trail file.

2011-01-20 15:11:42 GGS INFO 2100 Successfully added TRAN DATA for
table with the key, table [QATEST1.MYTABLE], operation [ALTER TABLE
"QATEST1"."MYTABLE" ADD SUPPLEMENTAL LOG GROUP "GGS_MYTABLE_53475" (MYID)
ALWAYS /* GOLDENGATE_DDL_REPLICATION */].

2011-01-20 15:11:43 GGS INFO 2100 DDL found, operation [create table
myTableTemp (
 vid varchar2(100),
 someDate date,
 primary key (vid)
)], start SCN [1186777], commit SCN [1186795] instance [test11g (1)], DDL
seqno [4137].

2011-01-20 15:11:43 GGS INFO 2100 DDL operation excluded [EXCLUDE
OBJNAME myTableTemp OPTYPE CREATE], optype [CREATE], objtype [TABLE],
objname [QATEST1.MYTABLETEMP].

Statistics in the Process Reports
You can send current statistics for DDL processing to the Extract and Replicat reports by
using the SEND command in Admin Client.

SEND {EXTRACT | REPLICAT} group REPORT

The statistics show totals for:

• All DDL operations

• Operations that are MAPPED in scope

• Operations that are UNMAPPED in scope

• Operations that are OTHER in scope

• Operations that were excluded (number of operations minus included ones)

• Errors (Replicat only)

• Retried errors (Replicat only)

• Discarded errors (Replicat only)

• Ignored operations (Replicat only)

Chapter 6
DDL Replication

6-71

Tracing DDL Processing
If you open a support case with Oracle GoldenGate Technical Support, you might be
asked to turn on tracing. TRACE and TRACE2 control DDL tracing.

Using Edition-Based Redefinition
Oracle GoldenGate supports the use of Edition-based Redefinition (EBR) with Oracle
Databases enabling you to upgrade the database component of an application while it
is in use, thereby minimizing or eliminating down time.

Editions are non-schema objects that Editioned objects belong to. Editions can be
thought of as owning editioned objects or as a namespace. Every database starts with
one edition named, ORA$BASE; this includes upgraded databases. More than one
edition can exist in a database and each can only have one child. For example, if you
create three editions in succession, edition1, edition2, edition3, then edition1 is the
parent of edition2 which is the parent of edition3. This is irrespective of the user or
database session that creates them or which edition was current when the new one is
created. When you create an edition, it inherits all the editioned objects of its parent.
To use editions with Oracle GoldenGate, you must create them.

An object is considered editioned if it is an editionable type, it is created with the
EDITIONABLE attribute, and the schema is enabled for editioning of that object type.
When you create, alter, or drop an editioned object, the redo log will contain the name
of the edition in which it belongs. In a container database, editions belong to the
container and each container has its own default edition.

The CREATE | DROP EDITION DDLs are captured for all Extract configurations. They
fall into the OTHER category and assigned an OBJTYPE option value of EDITION. The
OBJTYPE option can be used for filtering, for example:

DDL EXCLUDE OBJTYPE EDITION
DDL EXCLUDE OBJTYPE EDITION OPTYPE CREATE
DDL EXCLUDE OBJTYPE EDITION OPTYPE DROP
DDL EXCLUDE OBJTYPE EDITION OPTYPE DROP ALLOWEMPTYOWNER OBJNAME
edition_name

You must use the following syntax to exclude an edition from Extract or Replicat:

EXCLUDE OBJTYPE EDITION, ALLOWEMPTYOWNER OBJNAME edition_name

Editions fall into the OTHER category so no mapping is performed on the edition name.
When applied, the USE permission is automatically granted to the Replicat user.
Replicat will also perform a grant use on edition name with grant option to the
original creating user if that user exists on the target database. Because editions are
not mappable operations, they do not have owners so the standard EXCLUDE statement
does not work.

The DDLs used to create or alter editions does not actually enable the user for
editions, rather they enable the schema for editions. This is an important distinction
because it means that the Replicat user does not need to be enabled for editions to
apply DDLs to editioned objects. When Replicat applies a CREATE EDITION DDL, it
grants the original creating user permission to USE it if the original user exists on the

Chapter 6
DDL Replication

6-72

target database. For any unreplicated CREATE EDITION statements, you must issue a USE
WITH GRANT OPTION grant to the Replicat user.

Whether or not an editionable objects becomes editioned is controlled by the schema it is
applied in. Replicat switches its current session Edition before applying a DDL if the edition
name attribute exists in the trail file and it is not empty.

Container database environments are supported for both Extract and Replicat. No additional
configuration is necessary. The Replicat user's schema can not be enabled for editions if it is
a common user. The Replicat user's schema does not need to be enabled for editions when
applying DDLs to editioned objects in other schemas.

Manage Trail Files
After data has been extracted, it must be processed into one or more trails, where it is stored
for processing by another Oracle GoldenGate process. A trail is a sequence of files that are
created and aged as needed. Processes that read a trail are:

• Distribution Service: Extracts data from a local trail for further processing, if needed,
and transfers it to the target system.

• Receiver Service: Receives the trail and transfers to Replicat, which reads the trail and
applies change data to the target database.

You can create more than one trail to separate the data of different tables or applications, or
to satisfy the requirements of a specific replication topology, such as a cascading topology.
You link tables specified with a TABLE statement to a trail specified with an EXTTRAIL or
RMTTRAIL parameter statement in the Extract parameter file.

• Assign Storage for Oracle GoldenGate Trails

• Estimate Space for the Trail

• Add a Trail

See About Oracle GoldenGate Trails.

Topics:

• Assign Storage for Oracle GoldenGate Trails

• Estimate Space for the Trails

• Add a Trail

Assign Storage for Oracle GoldenGate Trails
In a typical configuration, there is at least one trail on the source system and one on the
target system. Allocate enough disk space to allow for the following:

• The primary Extract process captures transactional data from the source database and
writes it to the local trail. There must be enough disk space to contain the data
accumulation, or the primary Extract will abend.

• For a trail at the target location, provide enough disk space to handle data accumulation
according to the purge rules set with the PURGEOLDEXTRACTS parameter. Even with
PURGEOLDEXTRACTS in use, data will always accumulate on the target because it is
transferred across the network faster than it can be applied to the target database. Also
see Purge Datastore.

Chapter 6
Manage Trail Files

6-73

To prevent trail activity from interfering with business applications, assign a separate
disk or file system to contain the trail files. Trail files can reside on drives that are local
to the Oracle GoldenGate installation, or they can reside on NAS or SAN devices. In
an Oracle cluster, they can reside on ASM or DBFS storage. See Preparing DBFS for
an Active-Active Configuration.

Estimate Space for the Trails
The following are guidelines for estimating the amount of disk space that will be
required to store Oracle GoldenGate trail data.

1. Estimate the longest time that the network could be unavailable. Plan to store
enough data to withstand the longest possible outage, because otherwise you will
need to resynchronize the source and target data if the outage outlasts disk
capacity.

2. Estimate how much transaction log volume your business applications generate in
one hour.

3. Use the following formula to calculate the required disk space.

[log volume in one hour] x [number of hours downtime] x .4 = trail
disk space

This equation uses a multiplier of 40 percent because only about 40 percent of the
data in a transaction log is needed by Oracle GoldenGate.

Note:

This formula is a conservative estimate, and you should run tests once
you have configured Oracle GoldenGate to determine exactly how much
space you need.

To prevent trail activity from interfering with business applications, assign a separate
disk or file system to contain the trail files. Trail files can reside on drives that are local
to the Oracle GoldenGate installation, or they can reside on NAS or SAN devices. In
an Oracle cluster, they can reside on ASM or DBFS storage.

Add a Trail
When you create, or add, a trail, you do not physically create any files on disk. The
files are created automatically by an Extract process. Rather, you specify the name of
the trail and associate it with the Extract group that writes to it.

To add a trail, issue the following command on the source system.

ADD {RMTTRAIL | EXTTRAIL} pathname, EXTRACT group [, MEGABYTES n]

Where:

• RMTTRAIL specifies a trail on a remote system.

• EXTTRAIL specifies a trail on the local system.

Chapter 6
Manage Trail Files

6-74

– EXTTRAIL cannot be used for an Extract in PASSIVE mode.

– EXTTRAIL must be used to specify a local trail.

• pathname is the relative or fully qualified name of the trail, including a two-character name
that can be any two alphanumeric characters, for example c:\ggs\dirdat\rt. Oracle
GoldenGate appends a serial number to each trail file as it is created during processing.
Typically, trails are stored in the dirdat sub-directory of the Oracle GoldenGate directory.

• EXTRACT group specifies the name of the Extract group that writes to this trail. Only one
Extract group can write to a trail.

• MEGABYTES n is an optional argument with which you can set the size, in megabytes, of
each trail file (default is 100).

Example: Create a Local Trail

This example creates a local trail named /ggs/dirdat/lt for Extract group exte.

ADD EXTTRAIL /ggs/dirdat/lt, EXTRACT exte

Example: Create a Remote Trail

This example creates a trail named c:\ggs\dirdat\rt for Extract group finance, with each
file sized at approximately 50 megabytes.

ADD RMTTRAIL c:\ggs\dirdat\rt, EXTRACT finance, MEGABYTES 200

Using Oracle GoldenGate with MySQL Group Replication
This topic describes the requirements and configuration steps for setting up Oracle
GoldenGate to support MySQL Group Replication.

Topics:

• Oracle GoldenGate Features to Support MySQL Group Replication

• Requirements for Supporting Group Replication

• SSL Configuration on Group Replication Cluster

Oracle GoldenGate Features to Support MySQL Group Replication
The following are Oracle GoldenGate features required to support capture from a MySQL
database Group Replication instance.

CSN Format
The Extract for MySQL Group Replication uses a new CSN format that is based on the
Group Replication Global Transaction ID. This CSN format should be used with ATCSN and
AFTERCSN when manually positioning a MySQL Group Replication Extract or Replicat whose
source trail was generated by a MySQL Group Replication Extract.
An example of the sequence used in group replication capture is:

00000000000000000001:f77024f9-f4e3-11eb-a052-0021f6e03f10:0000000000000010654

In this sequence, the Oracle GoldenGate sequence number is 00000000000000000001 and
the GTID is f77024f9-f4e3-11eb-a052-0021f6e03f10:0000000000000010654.

Chapter 6
Using Oracle GoldenGate with MySQL Group Replication

6-75

Extended Checkpoint Support
The Extract for MySQL Group Replication includes an extended checkpoint file in
addition to the core Extract checkpoint file. The extended checkpoint file is created in
the same checkpoint directory where the core checkpoint and has a cpex extension
after the name of the capture group for example, extmysql.cpex.
This file is created when Extract starts and is deleted when Extract is deleted and
should not be edited.

Using GTID-based Extract
If gtid_mode is enabled in MySQL database, then Oracle GoldenGate Extract for
MySQL automatically starts using the GTID-based recovery mechanism and extended
checkpoint, which enables it to support failover and recovery. There is no extra
parameter required for the Extract.

Note:

If not using Group Replication, it is recommended to disable gtid_mode on
the source MySQL database. This will return the Extract’s capture behavior
to using the log number and offset method.

Requirements for Supporting Group Replication
This topic describes the requirements for using Oracle GoldenGate with MySQL Group
Replication database clusters.

• Oracle GoldenGate for MySQL Group Replication supports MySQL version 8.0
and higher and requires Oracle GoldenGate version 21.7 or higher.

• Only Group Replication configured in Single-Primary Mode is supported for
Extract.

• The MySQL database setting gtid_mode must be enabled.

Topic:

• Limitations of Group Replication with Oracle GoldenGate for MySQL

Limitations of Group Replication with Oracle GoldenGate for MySQL
Here are the limitations of support when running group replication with Oracle
GoldenGate for MySQL:

• Oracle GoldenGate Extract with MySQL 21.7 Group Replication does not support
multi-primary Group Replication mode.

• Oracle GoldenGate Extract with MySQL Group Replication does not support
writing to remote trails. If using RMTTRAILwith an Extract, the Extract will abend
with the following error

"Trail file ea is remote. Only local trail allowed for this
extract."

In this example, ea is the remote trail file name.

Chapter 6
Using Oracle GoldenGate with MySQL Group Replication

6-76

If you need to use remote trails, then you can use data Pump to send the trail in Classic
Architecture. In Microservices Architecture, use the DISTPATH to transport the trail. See
Manage Distribution Paths.

SSL Configuration on Group Replication Cluster
Learn about SSL configuration on Group Replication Cluster.

Topics:

• Overview of Database Cluster SSL Configuration for Group Replication

• Create Server Certificates

• Configure Database Nodes and Router

Overview of Database Cluster SSL Configuration for Group Replication
A clustered database environment contains different nodes, constituting one primary node
and one or more secondary nodes. There can be only one primary node at any instant. Each
node has its own distinct hostname with a MySQL database instance, which is maintained by
a separate configuration for that particular node. All the nodes in the cluster collectively
represent the database.

There is a Router as well, which is the first point of contact for any client trying to connect to
the database.

When enabling SSL connectivity, all of the database nodes and the Router will need to have
their own authorization keys and server certificates. These certificates must be authorized by
a common Certificate Authority (CA).

The certificates that are commonly used for this setup are:

• ca.pem: The certificate of the common CA (Certification Authority)

• server-cert.pem: The certificate that is certified by the CA for identifying the database
node

• server-key.pem: The private key of the individual database node

• router-cert.pem: The certificate that is certified by the CA for identifying the router

• router-key.pem: The private key of the router

Configuration for the Router and database nodes is described in the following tables. For the
purpose of this explanation, the following example shows one router and three database
nodes.

Table 6-1 Router and Database Node Configuration

Router -

Hostname mysqlrouter.company.com
Config Filename mysqlrouter.conf
Port 6446
Common Name mysqlrouter.company.com
Certificate Name server-cert.pem

Chapter 6
Using Oracle GoldenGate with MySQL Group Replication

6-77

Table 6-1 (Cont.) Router and Database Node Configuration

Router -

Key file name server-key.pem
Database Node 1 -

Hostname dbnode1.company.com
Config Filename my.cnf
Port 3308
Common Name dbnode1
Certificate Name server-cert.pem
Key file name server-key.pem
Node Rank Primary

Database Node2 -

Hostname dbnode2.company.com
Config Filename my.cnf
Port 3308
Common Name dbnode2
Certificate Name server-cert.pem
Key file name server-key.pem
Node Rank Secondary

Database Node3 -

Hostname dbnode3.company.com
Config Filename my.cnf
Port 3308
Common Name dbnode3
Certificate Name server-cert.pem
Key file name server-key.pem
Node Rank Secondary

Create Server Certificates
Before you begin configuring the router and database nodes, you'll need to create SSL
server certificates. For connecting database nodes and router using SSL, you must
have the right SSL keys and certificates for secure communication. All certificates
must be recognized by a common Certification Authority (CA). If the keys and
certificates were auto-generated during database/router installation (or if they are self-
signed) then the connection might fail. Only certificates that are authorized by a CA
are allowed to proceed further.

If the authorized server key and certificates are already available, then ensure that the
certificates have the correct permissions and have been placed in the correct path for
the router/database node.

Chapter 6
Using Oracle GoldenGate with MySQL Group Replication

6-78

For steps to generate SSL certificates for server, see:

Creating SSL Certificates and Keys Using OpenSSL

Tasks for Configuring SSL Certificates

1. Generate a separate certificate and key for each database node.

2. Use the same ca.pem which is common to all database nodes and routers.

3. In the server-certificate for the database nodes, specify the common name without the
domain name. See the common name in the Table 6-1 in Overview of Database Cluster
SSL Configuration for Group Replication for reference.

4. Ensure that the server certificate name and key file name match the corresponding
database node and router values.

5. To verify the CN values in each generated server certificate, invoke openSSL using the
following commands :

openssl x509 -text -in ca.pem
openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

The issuer CN must be the same for all. The subject CN must contain only hostname
without domain name.

6. After generating the certificates, verify them against the CA file.

7. Copy the generated certificate and key file to the MySQL data directory for each
database node and router. Ensure that you provide read permission to all users and
retain write permission to file owner only.

8. Copy the common ca.pem to every node and router and provide read permissions to all
users.

Configure Database Nodes and Router
Use the settings similar to the following, to configure database nodes and router for
connecting over a secure SSL connection.

Router
In the Router config file, ensure that the below settings are present:

CLIENT_SSL_MODE=PREFERRED
CLIENT_SSL_CERT=absolute path of the generated router certificate
CLIENT_SSL_KEY=absolute path of the generated router key
SERVER_SSL_MODE=AS_CLIENT
SERVER_SSL_VERIFY=VERIFY_IDENTITY
SERVER_SSL_CA=absolute path of the common ca.pem placed on this server

After it is configured, provide read permissions to all users and revoke write permissions
from group and others.

Chapter 6
Using Oracle GoldenGate with MySQL Group Replication

6-79

https://dev.mysql.com/doc/refman/5.7/en/creating-ssl-files-using-openssl.html

Database Node
In each of the MySQL database nodes, make sure the following are set under the
appropriate section:

SSL_CAPATH=absolute path of the common ca.pem placed on this node
SSL_CA=ca.pem
SSL_CERT=server-cert.pem
SSL_KEY=server-key.pem
GROUP_REPLICATION_SSL_MODE=REQUIRED
REQUIRE_SECURE_TRANSPORT=ON

After configuring the database node, provide read permissions to all users and revoke
write permissions from group and others.

Testing the Connection

After the configurations are in place and the appropriate permissions have been
provided to the configuration files, test the settings by restarting the database nodes
and router.

Test the Database Nodes Connection
Ensure that the database node does not terminate. Check the logs under log-error
setting in the configuration file for any errors or warnings that indicate the SSL
settings were not accepted. Try connecting to the specific node using the following
command line (use the common name as specified in the certificate for this node):

mysql -u username -p password -h db_common_name -P db_port --ssl-
mode=VERIFY_IDENTITY --ssl-ca=path/of/ca.pem

Make sure that the connection does not generate any errors.
Similarly, connect with different SSL-modes by providing the appropriate parameter
values.

Note:

The ssl-cert and ssl-key are not mandatory for VERIFY_IDENTITY.
However, if the database user requires X509 authentication, then both ssl-
cert and ssl-key must be provided with client-cert and client-key.

Test all database nodes using this method and then test the router connection.

Test the Router Connection
After the database nodes are up, restart the router and monitor it ensuring it does not
terminate.
Check the logs under log-error setting in the configuration file for any errors or
warnings that indicate the SSL settings were not accepted. If there are no errors or
warnings, try connecting to the database from the router using the following

Chapter 6
Using Oracle GoldenGate with MySQL Group Replication

6-80

command. Make sure you use the common name as specified in the certificate for the router:

mysql -u username -p password -h router_common_name -P router_port --ssl-
mode=VERIFY_IDENTITY --ssl-ca=path/of/ca.pem

Ensure that connection goes through without any errors.

Verify the Connection from the Router to the Database Node
First determine the currently active primary node, using the following command:

MySQL> SHOW VARIABLES like '%hosts%';

Now logout from the database and switchover the database to another node. Then login to
the database from the router again, using the following command:

mysql -u username -p password -h router_common_name -P router_port --ssl-
mode=VERIFY_IDENTITY --ssl-ca=path/of/ca.pem

Check the currently active primary node using the same command again:

MySQL> SHOW VARIABLES like '%hosts%';

Chapter 6
Using Oracle GoldenGate with MySQL Group Replication

6-81

7
Instantiate

This section lists details about instantiating with Initial Load Extract and adding the Initial
Load Extract using the Admin Client.

Topics:

• About Instantiating with Initial Load Extract

• Add Initial Load Extract Using the Admin Client

• Configuring an Initial Synchronization for a PostgreSQL Source Database using Precise
Instantiation

About Instantiating with Initial Load Extract
Using the initial load Extract for instantiation, you can replicate data precisely from a source
to a target database with zero data loss. To configure this Extract, you'll require a combination
of file-based initial load and change data capture (CDC) processes.

In Microservices Architecture, the process of instantiation includes the following tasks:

• Add and configure an Initial Load Extract: This Extract is used to copy the existing
contents of one or more tables from the source to the target database.

• Configure Change Data Capture: Used to copy transactional changes from the source to
the target database.

7-1

Note:

MA doesn’t support loading data with an Oracle GoldenGate direct load.

File-based initial load process is the preferred method for performing data replication
in MA. It’s key components are:

• Initial Load Extract and Replicat: Replicates the existing content of the database
tables.

• Primary Extract and Replicat: Replicates change data from the database tables.

• Distribution Paths: Transfers trail files to the target system.

Before you begin, make sure that the database credential alias is created.

You can use the Oracle GoldenGate web interface, Admin Client, or cURL commands
to set up this configuration.

Add Initial Load Extract Using the Admin Client
Learn about adding the Initial Load Extract using the Admin Client.

Topics:

• Step 1: Create a Primary Extract

• Step 2: Determine the Instantiation SCN

• Step 3: Create and Start the Initial Load Replicat

• Step 4: Create and start the Initial Load Extract

• Step 5: Create the Distribution Paths

• Step 6: Create the Primary Replicat

Step 1: Create a Primary Extract
Precise instantiation is used to replicate database resources correctly from the source
to the target database. The primary Extract is started first to initiate change data
capture early. Precise instantiation is based on the following assumptions:

Note:

For precise instantiation to work, the instantiation SCN must come after the
registration SCN.

• The primary Extract is started. It is responsible for change data capture and noting
it’s registration SCN.

• The database is monitored. The database waits for the oldest open transaction’s
SCN to come after the registration SCN. This is the instantiation SCN.

Chapter 7
Add Initial Load Extract Using the Admin Client

7-2

• The instantiation SCN is used when creating the initial load Extract and Replicat
processes.

• The instantiation SCN is used to create the primary Replicat, once the initial load
replication is complete.

To begin, create and start the primary Extract EXTPRIM from the AdminClient, as shown in the
following example:

Command:

OGG (not connected) 1> CONNECT https://oggdep.example.com:9100 as oggadmin
password oggadmin !
Output:

Using default deployment 'OGGDEP'
Command:

OGG (https://oggdep.example.com:9100 OGGDEP) 2> DBLOGIN USERIDALIAS oggadmin
Output:

Successfully logged into database.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP) 3> ADD EXTRACT extprim INTEGRATED
TRANLOG BEGIN NOW
Output:

2018-03-16T13:37:07Z INFO OGG-08100 EXTRACT (Integrated) added.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 4> REGISTER EXTRACT
extprim DATABASE
Output:

2018-03-16T13:37:30Z INFO OGG-02003 Extract EXTPRIM successfully registered with
database at SCN 1608891.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 5> EDIT PARAMS extprim
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 6> VIEW PARAMS extprim
Output:

--
-- E X T P R I M . p r m
-- Primary Extract Parameter File
--
Extract EXTPRIM
UseridAlias oggadmin

Chapter 7
Add Initial Load Extract Using the Admin Client

7-3

ExtTrail AA
Table user01.*;

Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 7> ADD EXTTRAIL
aa EXTRACT extprim
Output:

2018-03-16T13:37:55Z INFO OGG-08100 EXTTRAIL added.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 8> START EXTRACT
extprim
Output:

2018-03-16T13:38:02Z INFO OGG-00975 EXTRACT EXTPRIM starting
2018-03-16T13:38:02Z INFO OGG-15426 EXTRACT EXTPRIM started

In this example, oggadmin is the database credential alias.

After creating the primary Extract, retrieve the SCN registration number. Run the
REGISTER EXTRACT command in the AdminClient. The following example retrieves
an SCN value of 1608891.

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 4> REGISTER
EXTRACT extprim DATABASE
Output:

2018-03-16T13:37:30Z INFO OGG-02003 Extract EXTPRIM successfully
registered with database at SCN 1608891.

Step 2: Determine the Instantiation SCN
The Administration Service in Oracle GoldenGate Microservices Architecture, provides
an endpoint for retrieving information about open database transactions. This
information can be used to identify the SCN to use when instantiating the initial load
Extract.

In the following example, the instantiation SCN is 1609723, which is the oldest SCN of
all open transactions that is also past the registration SCN of 1608891, identified in the
previous step.

-- Query for active transactions
--
SELECT T.START_SCN, T.STATUS TSTATUS, T.START_DATE,
 S.SID, S.SERIAL#, S.INST_ID, S.USERNAME, S.OSUSER, S.STATUS
SSTATUS, S.LOGON_TIME
 FROM gv$transaction T
 INNER JOIN gv$session S
 ON s.saddr = t.ses_addr

UNION ALL

Chapter 7
Add Initial Load Extract Using the Admin Client

7-4

--
-- Query for current status
--
SELECT CURRENT_SCN, 'CURRENT', CURRENT_DATE,
 NULL, NULL, NULL, 'SYS', NULL, NULL, NULL
 from v$database

ORDER BY 1;

The results of this query can be used to determine the instantiation SCN. The results for this
specific query are:

1538916 ACTIVE 2018-03-16 18:10:31.0 3865 9176 1 OGGADMIN oracle INACTIVE
2018-03-16 18:10:26.0 1540555 CURRENT 2018-03-16 18:21:50.0 SYS
The SCN used to instantiate the initial load Extract is obtained using SQL*Plus. In the
following example, the SQL query uses the instantiation SCN value as 1624963, which is the
oldest SCN of all open transactions that are also past the registration SCN of 1608891.

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 14> SHELL ECHO
'SELECT MIN(START_SCN) FROM gv$transaction;' | ${ORACLE_HOME}/bin/sqlplus -
S / as sysdba

MIN(START_SCN)

 1624963

If there are no open transactions, then this SQL query returns an empty result. A detailed
query that takes into account the situation where there are no open transactions is:

SELECT MIN(SCN) as INSTANTIATION_SCN
 FROM (SELECT MIN(START_SCN) as SCN
 FROM gv$transaction
 UNION ALL
 SELECT CURRENT_SCN
 FROM gv$database);

Step 3: Create and Start the Initial Load Replicat
Before you begin this step, make sure that the checkpoint table oggadmin.checkpoints,
already exists on the target system. The initial load Replicat is responsible for populating the
target database. Run the following command on the AdminClient to create and start the initial
load Replicat (REPINIT):

Command:

OGG (not connected) 1> CONNECT https://oggdep.example.com:9100 as oggadmin
password oggadmin !
Output:

Using default deployment 'OGGDEP'
Command:

Chapter 7
Add Initial Load Extract Using the Admin Client

7-5

OGG (https://oggdep.example.com:9100 OGGDEP) 2> DBLOGIN USERIDALIAS
oggadmin
Output:

Successfully logged into database.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 3> ADD
CHECKPOINTTABLE oggadmin.checkpoints
Output:

ADD "oggadmin.checkpoints" succeeded.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 4> ADD REPLICAT
repinit EXTTRAIL dd CHECKPOINTTABLE oggadmin.checkpoints
Output:

2018-03-16T13:56:41Z INFO OGG-08100 REPLICAT added.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 5> EDIT PARAMS
repinit
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 6> VIEW PARAMS
repinit
Output:

--
-- R E P I N I T . p r m
-- File-Based Initial Load Replicat Parameter File
--
Replicat REPINIT
UseridAlias oggadmin
Map user01.*
 Target user01.*;

Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 7> START REPLICAT
repinit
Output:

2018-03-16T13:58:21Z INFO OGG-00975 REPLICAT REPINIT starting
2018-03-16T13:58:21Z INFO OGG-15426 REPLICAT REPINIT started

Chapter 7
Add Initial Load Extract Using the Admin Client

7-6

Step 4: Create and start the Initial Load Extract
Using the instantiation SCN that you retrieved (1624963), the initial load Extract is created to
write contents of the database tables to the trail. Create and start the initial load extract,
EXTINIT.

Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 15> ADD EXTRACT extinit
SOURCEISTABLE sourceistable
Output:

2018-03-16T14:08:38Z INFO OGG-08100 EXTRACT added.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 16> EDIT PARAMS extinit
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 17> VIEW PARAMS extinit
Output:

--
-- E X T I N I T . p r m
-- File-Based Initial Load Extract Parameter File
--
Extract EXTINIT
UseridAlias oggadmin
ExtFile CC Megabytes 2000 Purge
Table user01.*, SQLPredicate "As Of SCN 1609723";

Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 18> START EXTRACT
extinit
Output:

2018-03-16T14:13:42Z INFO OGG-00975 EXTRACT EXTINIT starting
2018-03-16T14:13:42Z INFO OGG-15426 EXTRACT EXTINIT started

Step 5: Create the Distribution Paths
Create two distribution paths (AABB and CCDD) for copying the local trails to the remote host
from the Admin Client:

Command:

OGG (https://oggdep.example.com:9100 oggdep) 15> ADD DISTPATH aabb SOURCE
TRAIL://oggdep.example.com:9102/services/v2/sources?trail=AA target wss://
dallas.oggdevops.us:9103/services/v2/targets?trail=BB
Output:

Chapter 7
Add Initial Load Extract Using the Admin Client

7-7

2018-03-16T17:28:27Z INFO OGG-08511 The path 'AABB' has been added.
Command:

OGG (https://oggdep.oggdevops.us:9100 oggdep) 16> ADD DISTPATH ccdd SOURCE
TRAIL://oggdep.example.com:9102/services/v2/sources?trail=CC target wss://
dallas.oggdevops.us:9103/services/v2/targets?trail=DD
Output:

2018-03-16T17:28:35Z INFO OGG-08511 The path 'CCDD' has been added.
Command:

OGG (https://oggdep.example:9100 oggdep) 17> START DISTPATH aabb
Output:

2018-03-16T17:28:42Z INFO OGG-08513 The path 'AABB' has been started.
Command:

OGG (https://oggdep.example.com:9100 oggdep) 18> START DISTPATH ccdd
Output:

2018-03-16T17:28:47Z INFO OGG-08513 The path 'CCDD' has been started.
If you use the ogg protocol instead of wss, then you must use the TARGETTYPE option.
The syntax in that case would be:

ADD DISTPATH path-name SOURCE source-uri TARGET target-uri [TARGETTYPE
(MANAGER | COLLECTOR | RECVSRVR)]
TARGETTYPE specifies the target type in case the distribution path uses the legacy
protocol. This argument is only valid if the target URI schema is ogg.

Step 6: Create the Primary Replicat
Once the initial load Extract and Replicat complete, they can be deleted. Then, the
primary Replicat process is created on the remote host for applying change data to the
target database.

Use the AdminClient to create the primary Replicat process.

Note:

The primary Replicat is started at the instantiation SCN.

Command:

OGG (https://oggdep.example.com:9100 oggdep as oggadmin) 12> ADD REPLICAT
repprim EXTTRAIL bb CHECKPOINTTABLE oggadmin.checkpoints
Output:

2018-03-16T17:37:46Z INFO OGG-08100 REPLICAT added.

Chapter 7
Add Initial Load Extract Using the Admin Client

7-8

Command: EDIT PARAMS

OGG (https://oggdep.example.com:9100 oggdep as oggadmin) 13> EDIT PARAMS repprim
Command:

OGG (https://oggdep.example.com:9100 oggdep as oggadmin) 14> VIEW PARAMS repprim
Output:

--
-- R E P P R I M . p r m
-- Replicat Parameter File
--
Replicat REPPRIM
USERIDALIAS oggadmin
Map user01.*
 Target user01.*;

Command:

OGG (https://oggdep.example.com:9100 oggdep as oggadmin) 15> START REPLICAT
repprim ATCSN 1624963
Output:

2018-03-16T17:38:10Z INFO OGG-00975 REPLICAT REPPRIM starting
2018-03-16T17:38:10Z INFO OGG-15426 REPLICAT REPPRIM started

Configuring an Initial Synchronization for a PostgreSQL Source
Database using Precise Instantiation

Data synchronization from a source PostgreSQL database to an Oracle GoldenGate target
can be accomplished with the optional method of using precise instantiation. This method
was introduced with Oracle GoldenGate 21c (21.8.0).

Precise instantiation has the advantage of not requiring any collision handling in the target
Replicat. This is important for targets that do not support collision handling, such as flat files.
This method uses a database snapshot to synchronize the output of the initial load Extract
with the starting position of the Change Data Capture Extract. This snapshot is managed by
the initial load Extract, so it is not possible for multiple initial load Extracts to use the same
snapshot. Therefore, this method is not supported when using multiple intial load Extracts to
parallelize the workload.

The following example uses the Admin Client within Microservices Architecture. It is assumed
that you are familiar with Oracle GoldenGate and have setup the source and target
databases correctly, with all required prerequisites. These steps require a minimum of Oracle
GoldenGate 21c (21.8.0) or higher.

Perform the following steps to set up end-to-end initial load and synchronization processes
using the precise instantiation method:

Chapter 7
Configuring an Initial Synchronization for a PostgreSQL Source Database using Precise Instantiation

7-9

1. Register a Change Data Capture (CDC) Extract with the source PostgreSQL
database.

DBLOGIN USERIDALIAS src_alias
REGISTER EXTRACT extecdc

In this example, extecdc is the Extract name. For Microservices Architecture, use
DBLOGIN USERIDALIAS for database connection setup.

2. Create an initial load Extract.

ADD EXTRACT extinit, SOURCEISTABLE
EDIT PARAMS extinit

The initial load Extract parameter file must contain the INITIALLOADOPTIONS
USESNAPSHOT parameter. For example:

EXTRACT extinit
INITIALLOADOPTIONS USESNAPSHOT
SOURCEDB USERIDALIAS src_alias
EXTFILE west/ei, MEGABYTES 500, PURGE
TABLE public.*;

See INITIALLOADOPTIONS to learn about the usage of this parameter with the
USESNAPSHOT option.

3. Start the initial load Extract.

START EXTRACT extinit

4. When the initial load Extract has completed and stopped, review its report file to
determine the positioning LSN to be used by the CDC Extract.

For example, in the following output, the positioning LSN to be used by the CDC
Extract will be ‘0/173F770’.

INFO OGG-100001 A consistent point is
established in database 'tpcc' using replication slot
ogg_initx_1234 at LSN 0/173F770
and snapshot name '00000003-00000026-1'.

INFO OGG-100002 Create or position the CDC
extract to LSN 0/173F770. Example: ADD EXTRACT <cdc-extract>
TRANLOG LSN 0/173F770
or ALTER EXTRACT <cdc-extract> LSN 0/173F770.

Chapter 7
Configuring an Initial Synchronization for a PostgreSQL Source Database using Precise Instantiation

7-10

5. Create and start an initial load Replicat that reads the trail from the initial load Extract.

DBLOGIN USERIDALIAS tgt_alias

ADD CHECKTPOINTTABLE ggs.checkpoint

ADD REPLICAT repinit, EXTTRAIL west/ei, CHECKPOINTTABLE ggs.ggcheckpoint

START REPLICAT repinit

Here is an example of the initial load Replicat parameter file:

REPLICAT repinit
TARGETDB USERIDALIAS tgt_alias
END RUNTIME
BATCHSQL
MAP public.*, TARGET public.*;

6. Add and start the CDC Extract (extecdc) using the consistent LSN value referred to in
the initial load Extract report file.

ADD EXTRACT extecdc, TRANLOG, LSN 0/173F770

ADD EXTTRAIL ea, EXTRACT extecdc

START EXTRACT extecdc

Here is an example of a CDC Extract parameter file:

EXTRACT extecdc
SOURCEDB USERIDALIAS src_alias
EXTTRAIL west/ea
TABLE public.*;

7. When the initial load Replicat completes and stops, add and start a CDC Replicat that
reads the trail from the CDC Extract.

ADD REPLICAT repecdc, EXTTRAIL west/ea, CHECKPOINTTABLE ggs.ggcheckpoint

START REPLICAT repecdc

8. Monitor the lag in both the CDC Extract and the CDC Replicat, and when they are both
close to zero seconds, then the data stream from source to target database should be
close to real-time.

Chapter 7
Configuring an Initial Synchronization for a PostgreSQL Source Database using Precise Instantiation

7-11

8
Distribute

This section lists details about the distribution service, how to add a distribution path, how to
add a target-initiated distribution paths, and about managing distrubution paths.

Topics:

• About Distribution Service

• Add a Distribution Path

• About Target-Initiated Distribution Paths

• Add Target-Initiated Distribution Paths

• Manage Distribution Paths

About Distribution Service
Distribution Service functions as a networked data distribution agent in support of conveying
and processing data and commands in a distributed deployment. It is a high performance
application that is able to handle multiple commands and data streams from multiple source
trail files, concurrently.

Distribution Service replaces the classic multiple source-side data pumps with a single
instance service. This service distributes one or more trails to one or more destinations and
provides lightweight filtering only (no transformations).

Multiple communication protocols can be used, which provide you the ability to tune network
parameters on a per path basis. See Streaming Protocols.

These protocols include:

• Oracle GoldenGate (ogg) protocol for communication between the Distribution Service
and the Collector in a non services-based (classic) target. It is used for inter-operability.

Note:

TCP encryption does not work in a mixed environment of Classic and
Microservices architecture. The Distribution Service in Microservices
Architecture cannot be configured to use the TCP encryption to communicate
with the Server Collector in Classic Architecture running in a deployment. Also,
the Receiver Service in Microservices Architecture cannot accept a connection
request from a data pump in Classic Architecture configured with RMTHOST …
ENCRYPT parameter running in a deployment.

• WebSockets (wss) for HTTPS-based streaming, which relies on SSL security.

• UDP protocols.

• Proxy support for cloud environments:

8-1

– SOCKS5 for any network protocol.

– HTTP for HTTP-type protocols only, including WebSocket.

Note:

A Distribution Service cannot filter data in the trail and will send all
operations.
The Distribution Service is accessible from the Service Manager Overview
page or by directly specifying the URL.

Log in to the Distribution Service for the associated deployment. From the
Distribution Service Overview page you can see dashboard that displays the
path that connects the Extract and Replicat processes. You can also add
paths from this page. Use the dashboard to perform the following operations.

Action Reference

• Add paths
• View path details
• Start or Stop the path
• Reposition the path
• Enable sharding using filters
• Set or customize the DML filtering
• Set the DDL filtering
• Set or customize Procedure filtering
• Customize Tag filtering
• Delete a Path

See Add a Distribution Path and also Path
Actions

Add a Distribution Path
A path is used to send trail data between two data endpoints of a deployment. You can
add, monitor, reposition, and manage these paths using the Distribution Service. This
topic discusses the steps to create a distribution path (DISTPATHS).

A distribution path defines the route for the trail to send and receive data for different
topologies such as:

• Path between two secure deployments with USERID ALIAS target
authentication: In this case, the distribution path uses the user credentials of the
target Oracle GoldenGate user as credentials for accessing the target deployment.
On the target deployment, a user with Operator role can be created and then the
credentials of this user need to be added as credentials on the source Oracle
GoldenGate deployment as credentials. The wss (secure web socket) protocol is
used for this type of distribution path.

• Path between two secure deployments with Certificate target authentication:
In this case, the distribution path users trusted CA certificates to access the target
deployment. The wss (secure web socket) protocol is used for this type of
distribution path.

Chapter 8
Add a Distribution Path

8-2

• Path between two deployments with OAuth target authentication: In this case, the
Oracle GoldenGate user authentication is outsourced to an OAuth service such as IDCS.

Paths can also be initiated from the Receiver Service. In cases where there are network
security policies that prevent the Distribution Service to open a network connection in the
target endpoint to the Receiver Service, the path is initiated from the Receiver Service to the
Distribution Service. These types of paths are called target-initiated paths, which are suitable
in environments such as Demilitarized Zone Paths (DMZ) or Cloud to on-premise networks.

A path is created to send the trail data over a network from the Extract to the Replicat. To add
a distribution path from the Distribution Service:

1. Log in to the Distribution Service.

2. Click the plus (+) sign next to Path on the Distribution Service home page.

The Add Path page is displayed.

3. Enter the details as follows:

Options Description

Path Name Select a name for the path.

Description Provide a description. For example, the name of
the Extract and Replicat processes associated
with the distribution path.

Reverse proxy enabled? Select to use reverse proxy. To know more
about configuring you reverser proxy server, see
Configure Reverse Proxy with NGINX to Access
Oracle GoldenGate Microservices.

Source: Trail Name Select the Extract name from the drop-down list,
which populates the trail name automatically. If it
doesn’t, enter the trail name that you provided
while adding the Extract.

Generated Source URI: A URI is automatically generated for the trail
based on the Extract information you provided.
You can edit this URI by clicking the pencil, then
modifying the source. Typically, you will need to
edit the URI if you want to use reverse proxy.

Chapter 8
Add a Distribution Path

8-3

Options Description

Target Authentication Method Select the authentication method for the target
URI.

• OAuth: Use the OAuth if the source and
target deployments are IDCS-enabled. This
option uses the client credentials for
authentication from the Distribution Service
to the Receiver Service.

• Certificate: Choose a certificate from the
drop-down. Trusted CA certificates are
managed from the Certificate Management
page in Service Manager. See Manage
Certificates for Deployments. This option is
available after you add certificates on the
source deployment to trust the target
deployment.

• UserID Alias: Select this option to set up
the target authentication using a user ID
alias to connect to the target host. This user
ID alias is for an Oracle GoldenGate user
that is created on the target host. You need
to have an exisiting user on the target
Oracle GoldenGate deployment that would
be added as Credentials in the
Administration Service of the Oracle
GoldenGate source deployment. For
example, on a target deployment EAST,
you create a user, ggnet with Operator role.
Then, on the source deployment WEST,
you add the credentials for this user in the
Administration Service.

Target If you select the User ID Alias target
authentication method, then select the following
options:

• From the drop-down list, select the data
transfer protocol as wss (secure web
socket), which is selected for a secure
deployment .

• Target Host: Enter the URL of the target
host, for example, localhost, if the target is
on the same system.

• Port Number: You may enter the port
number of the Receiver Service and the
trail name of the Replicat you created
earlier. However, it’s not mandatory.

• Trail Name: Path takes the source trail and
sends the date to a target trail given here,
which can be consumed by any Replicats
created later.

• Domain: Name of the target domain.
• Alias: User alias of the target domain.
You can also choose ogg or ws (web socket)
protocol.

For the ogg protocol, you need to specify only
the target host, port number, and trail file name.

For the ws protocol, the options are the same as
the wss protocol.

Chapter 8
Add a Distribution Path

8-4

Options Description

Generated Target URI A target URI is automatically generated for the
trail based on the target authentication method
and target you provided. You can edit this URI
by clicking the pencil, then modifying the target.

Target Encryption Algorithm Select the encryption algorithm for the target
trail. Options include NONE, AES128, AES192,
AES256.

Enable Network Compression Set the compression threshold value if you
enable this option.

Compression Threshold Option appears when you enable the network
compression. Specify the compresion threshold
value.

Sequence Length The length of the trail sequence number.

Trail Size (MB) The maximum size of a file in a trail.

Configure Trail Format Toggle this switch to enable and configure the
trail file format.

Type Select one of these types of trail file formats:

• Plain Text
• XML
• SQL

Compatible With Select the utility that is compatible with the trail
file. Options are:

• BCP
• SQLLOADER
• COMCAST

Timestamp Precision Specify the timestamp precision value for the
trail file.

Extra Columns Includes placeholders for additional columns at
the end of each record. Use this option when a
target table has more columns than the source
table.

Specify a value between 1 and 9.

Include SYSKEY Select this option incase your Replicat
configuration includes tables with SYSKEY.

Quote Style Select the quote style depending on the
database requirements.

Include Column Name? Enable this option to include column names in
the trail file.

Null Is Space? Select this option to indicate that any null values
in the trail file is a space.

Include Place Holder? Outputs a placeholder for missing columns.

Include Header Fields? Select to include header fields in the trail file.

Delimiter An alternative delimiter character.

Use Qualified Name? Select to use the fully qualified name of the
parameter file.

Include Transaction Info? Enable to to include transaction information.

Encryption Profile Select the encryption profile for the distribution
path from the options provided in this section.

Chapter 8
Add a Distribution Path

8-5

Options Description

Profile Name The default option is the Local Wallet. However,
if you have created an encryption profile for OCI
KMS or OKV, then those options would show in
the drop-down list. Select the encryption profile
if you want to configure trail encryption in the
distribution path.

Encryption Profile Type Encryption profile type value can be Local
Wallet, OCI KMS, or OKV depending on the
type of encryption profile that is created for the
deployment.

Masterkey Name Enter a master key name here if you have
created a master key, otherwise the default
master key OGG_DEFAULT_MASTERKEY is
assigned.

Begin Select the point from where you need to log
data. You can select the following options from
the drop-down list:

• Now
• Custom Time
• Position is Log (default)

Source Sequence Number Select the sequence number of the trail from
source deployment Extract.

Source RBA Offset This setting provides the Relative Byte Address
(RBA) offset value which is the point in the trail
file (in bytes) from where you want the process
to start.

Critical The default value is false. If set to true, this
indicates that the distribution path is critical to
the deployment.

Auto Restart The default value is false. If set to true, the
distribution path restarts automatically if it's
terminated.

Auto Restart Options Section

Retries The number of times to try an restart the task
(path process).

Delay The duration interval to wait between retries.

Chapter 8
Add a Distribution Path

8-6

Rule Configuration Description

Enable filtering If you enable filtering by selecting it from the
toggle button and click Add Rule, you’ll see the
Rule Definition dialog box.

• Rule Name
• Rule Action: Select either Exclude or

Include
• Filter Type: Select from the following list

of options:

– Object Type: Select from three object
types: DML, DDL, and Procedure

– Object Names: Select this option to
provide an existing object name. A 3–
part naming convention depends on
whether you are using CDB. With CDB,
you need to use a 3–part naming
convention, otherwise a 2–part
convention is mandatory. 3–part
convention includes container,
schema, object. 2–part convention
includes schema, object name.

– Procedure Feature Name: Select
this option to filter, based on existing
procedure feature name.

– Column Based: If you select this
option, you are presented with the
option to enter the table and column
name to which the rule applies. You
can filter out using column value with
LT, GT, EQ, LE, GE, and NE conditions.
You can also specify if you want to
have before image or after image in
filtered data.

– Tag: Select this option to set the filter
based on tags.

– Chunk ID: Displays the configuration
details of database shards, however,
the details can’t be edited.

• Negate: Select this check box if you need
to negate any existing rule.

You can also see the JSON script for the rule by
clicking the JSON tab.

Additional Options Descriptions

Eof Delay (centiseconds) You can specify the Eof Delay in centiseconds.
On Linux platforms, the default settings can be
retained. However, on non-Linux platforms, you
may need to adjust this setting for high
bandwidth, high latency networks, or for
networks that have Quality of Service (QoS)
settings (DSCP and Time of Service (ToS)).

Checkpoint Frequency Frequency of the path that is taking the
checkpoint (in seconds).

TCP Flush Bytes Enter the TCP flush size in bytes.

Chapter 8
Add a Distribution Path

8-7

Additional Options Descriptions

TCP Flush Seconds Enter the TCP flush interval in seconds.

TCP Options Section

DSCP Select the Differentiated Services Code Point
(DSCP) value from the drop-down list, or search
for it from the list.

TOS Select the Type of service (TOS) value from the
drop-down list.

TCP_NODELAY Enable this option to prevent delay when using
the Nagle’s option.

Quick ACK Enable this option to send quick
acknowledgment after receiving data.

TCP_CORK Enable this option to allow using the Nagle’s
algorithm cork option.

System Send Buffer Size You can set the value for the send buffer size for
flow control.

System Receive Buffer Size You can set the value for the receive buffer size
for flow control.

Keep Alive Timeout for keep-alive.

4. Click Create Path or Create and Run, as required.

After the path is created, you’ll be able to see the new path in the Distribution
Service Overview page. You should be able to see this distribution path from the
Receiver Service Overview page of the target deployment.

About Target-Initiated Distribution Paths
Target-initiated paths for microservices enable the Receiver Service to initiate a path to
the Distribution Service on the target deployment and pull trail files.

This feature allows the Receiver Service to create a target initiated path for
environments such as Demilitarized Zone Paths (DMZ) or Cloud to on-premise, where
the Distribution Service in the source Oracle GoldenGate deployment cannot open
network connections in the target environment to the Receiver Service due to network
security policies.

If the Distribution Service cannot initiate connections to the Receiver Service, but
Receiver Service can initiate a connection to the machine running the Distribution
Service, then the Receiver Service establishes a secure or non-secure target initiated
path to the Distribution Service through a firewall or Demilitarized (DMZ) zone using
Oracle GoldenGate and pull the requested trail files.

The Receiver Service endpoints display that the retrieval of the trail files was initiated
by the Receiver Service.

You can enable this option from the Configuration Assistant wizard Security options,
see Add a Deployment.

Chapter 8
About Target-Initiated Distribution Paths

8-8

Add Target-Initiated Distribution Paths
A target-initiated distribution path is created from the Receiver Service. These paths can be
used when communication must be initiated from the target.

To create a target-initiated distribution path:

1. Log in to the Receiver Service.

2. Click the + sign on the Overview page to start adding a path.

3. The following table lists the options to set up the path:

Options Description

Path Name Name of the target-initiated distribution path

Description Provide a description of the path.

Reverse Proxy Enabled Select to use reverse proxy. To know more about
configuring your reverse proxy servers, see
Configure Reverse Proxy with NGINX to Access
Oracle GoldenGate Microservices.

Source Authentication Method Select the authentication method for the source
URI. Authentication options are OAuth 2.0,
Certificate, UserID Alias.

Source From the drop-down list, select your data transfer
protocol. The default option is Secure Web Socket
Proctocl (wss). Other option is ws.

You also need to enter the following details:

• Source Host: URL of the source host for
example, localhost, if the source is on the
same system.

• Port Number: Enter the port number of the
Distribution Service.

• Trail Name: Enter the trail name you want to
read on your source.

Note:

The Distribution Service doesn't
not create any trail on source. It
can only read the provided trail
name.

• Domain: Enter the domain for the host.
• Alias: Provide an alias for this host.
Path takes the source trail and sends the data to a
target trail given here, which can be consumed by
any Replicats created later.

Generated Source URI A URI is automatically generated for the trail
based on the source information you provided.

Target Name of the target trail of the Replicat you created
earlier.

Generated Target URI A Target URI is automatically generated for the
trail based on target trail information you provided.

Chapter 8
Add Target-Initiated Distribution Paths

8-9

Options Description

Target Encryption Algorithm Select the encryption algorithm for the target trail.
Options include AES128, AES192, AES256.

Enable Network Compression Set the compression threshold value if you decide
enable this option.

Sequence Length The length of the trail sequence number.

Trail Size The maximum size of a file in a trail.

Configure Trail Format Toggle this switch to enable and configure the trail
file format.

Type Select one of these types of trail file formats:
• Plain Text
• XML
• SQL

Compatible With Select the utility that is compatible with the trail
file. Options are:
• BCP
• SQLLOADER
• COMCAST

Timestamp Precision Specify the timestamp precision value for the trail
file.

Extra Columns Includes placeholders for additional columns at the
end of each record. Use this option when a target
table has more columns than the source table.
Specify a value between 1 and 9.

Include SYSKEY Select this option incase your Replicat
configuration includes tables with SYSKEY.

Quote Style Select the quote style depending on the database
requirements.

Include Column Name? Enable this option to include column names in the
trail file.

Null Is Space? Select this option to indicate that any null values in
the trail file is a space.

Include Place Holder? Outputs a placeholder for missing columns.

Include Header Fields? Select to include header fields in the trail file.

Delimiter An alternative delimiter character.

Use Qualified Name? Select to use the fully qualified name of the
parameter file.

Include Transaction Info? Enable to to include transaction information.

Encryption Profile Section

Begin Select the point from where you need to log data.
You can select the following options from the drop-
down list:

• Now
• Custom Time
• Position is Log (default)

Source Sequence Number Select the sequence number of the trail from
source deployment Extract.

Chapter 8
Add Target-Initiated Distribution Paths

8-10

Options Description

Source RBA Offset This setting provides the Relative Byte Address
(RBA) offset value which is the point in the trail file
(in bytes) from where you want the process to
start.

Critical The default value is false. If set to true, this
indicates that the distribution path is critical to the
deployment.

Auto Restart The default value is false. If set to true, the
distribution path is restarted automatically when
killed.

Auto Restart Options Set up the auto restart option in this section.

Retries The number of times to try an restart the task
(path process).

Delay The duration interval to wait between retries.

Chapter 8
Add Target-Initiated Distribution Paths

8-11

Role Configuration Description

Enable filtering If you enable filtering by selecting it from the
toggle button and click Add Rule, you’ll see
the Rule Definition dialog box.

• Rule Name
• Rule Action: Select either Exclude or

Include
• Filter Type: Select from the following

list of options:
– Object Type: Select from three

object types: DML, DDL, and
Procedure

– Object Names: Select this option to
provide an existing object name. A 3–
part naming convention depends on
whether you are using CDB. With
CDB, you need to use a 3–part
naming convention, otherwise a 2–
part convention is mandatory. 3–part
convention includes container,
schema, object. 2–part convention
includes schema, object name.

– Procedure Feature Name: Select
this option to filter, based on existing
procedure feature name.

– Column Based: If you select this
option, you are presented with the
option to enter the table and column
name to which the rule applies. You
can filter out using column value with
LT, GT, EQ, LE, GE, NE conditions. You
can also specify if you want to have
before image or after image in filtered
data.

– Tag: Select this option to set the filter
based on tags.

– Chunk ID: Displays the configuration
details of database shards, however,
the details can’t be edited.

• Negate: Select this check box if you need
to negate any existing rule.

You can also see the JSON script for the rule
by clicking the JSON tab.

Additional Options Description

Eof Delay (centiseconds) You can specify the Eof Delay in centiseconds.
On Linux platforms, the default settings can be
retained. However, on non-Linux platforms,
you may need to adjust this setting for high
bandwidth, high latency networks, or for
networks that have Quality of Service (QoS)
settings (DSCP and Time of Service (ToS)).

Checkpoint Frequency Frequency of the path that is taking the
checkpoint (in seconds).

Chapter 8
Add Target-Initiated Distribution Paths

8-12

Additional Options Description

TCP Flush Bytes Enter the TCP flush size in bytes.

TCP Flush Seconds Enter the TCP flush interval in seconds.

TCP Options Section

DSCP Select the Differentiated Services Code Point
(DSCP) value from the drop-down list, or
search for it from the list.

TOS Select the Type of service (TOS) value from
the drop-down list.

TCP_NODELAY Enable this option to prevent delay when using
the Nagle’s option.

Quick ACK Enable this option to send quick
acknowledgment after receiving data.

TCP_CORK Enable this option to allow using the Nagle’s
algorithm cork option.

System Send Buffer Size You can set the value for the send buffer size
for flow control.

System Receive Buffer Size You can set the value for the receive buffer
size for flow control.

Keep Alive Timeout for keep-alive.

For target-initiated distribution paths, the use case for the ws and wss protocols is explained
in the following table:

Deployment Type Target Deployment (Non
Secure)

Target Deployment (Secure)

Source Deployment (Non-
secure) ws ws

Source Deployment (Secure)
wss wss

The wss protocol must be specified whenever the source deployment (Distribution Service
host) has been configured with security enabled. The secured communication channel can be
created using an SSL certificate in a client Wallet, even if the target deployment (Receiver
Service host) has disabled security.

Features and Limitations for Using Target-initiated Distrbution Paths

Here are the limitations when working with target-initiated distribution paths:

• There is no support for interaction between legacy and secure deployments using this
mode of operation for target-initiated distribution paths.

• No support for ogg protocol. Only ws and wss protocols are supported.

• It is possible to only get information and stop a target-initiated distribution path on
Distribution Service and after the path stops, it is not be visible on the Distribution
Service.

You can also set up target-initiated distribution paths using the Admin Client.

Chapter 8
Add Target-Initiated Distribution Paths

8-13

For command options, see the Admin Client commands ADD RECVPATH, ALTER
RECVPATH, INFO RECVPATH, DELETE RECVPATH, START RECVPATH.

Manage Distribution Paths
Learn about managing distribution paths.

Topics:

• Path Actions

• Reposition a Path

• Change the Path Filtering

• Review the Distribution Path Information

Path Actions

After a new path is added, you can perform actions such as stop or pause a path, view
reports and statistics, reposition the path, change its filtering, and delete a path.

On the Overview page of the Distribution Service, click the Action button next the
Distribution Path name. From the drop-down list, you can use the following path
actions:

• Details: Use this option to view details of the path. You can view the path
information including the source and target. You can also edit the description of the
path. Statistical data is also displayed including metrics for LCR Read from Trails,
LCR Sent, LCR Filtered, DDL, Procedure, DML inserts, updates, and deletes, and
so on. You can also update the App Options and TCP Options.

• Start or Stop: Use these options to start or stop a path. If the path isn’t started, the
Start option is displayed instead of the Stop option. For a target-initiated
distribution path, you can only stop this path from the Distribution Service and
cannot delete or start it from the Distribution Service. After you stop the path, it'll
not be available on the Distrbution Service.

• Delete: Use this option to delete a path. This option is available only when the
path is in stopped state. Click Yes on the confirmation screen to complete path
deletion.

• Reposition: Use this option to change the Source Sequence Number and Source
RBA Offset

• Change Filtering: Use this option to enter sharding, DML filtering, DDL filtering,
Procedure filtering, and Tag filtering options.

Depending on the action you select, you can see the change in status at the bottom of
the Overview page.

Reposition a Path

You can reposition a path whenever it’s necessary.

On the Distribution Service Overview page, click the Action button for the path. From
the drop-down list, click Reposition.

Chapter 8
Manage Distribution Paths

8-14

Change one or both of the source database options to reposition the path, then apply the
changes.

Change the Path Filtering

If you want to change the filter settings for an existing path, the steps are mostly the same as
those for creating the filtering for a new path.

On the Distribution Service Overview page, click Action for the path. From the drop-down
list, click Change Filtering.

Rule Cofiguration Task

Add paths If you enable filtering by selecting it from the
toggle button and click Add Rule , you’ll see the
Rule Definition dialog box.

• Rule Name
• Rule Action: Select either Exclude or

Include
• Filter Type: Select from the following list of

options:
– Object Type: Select from three object

types: DML, DDL, and Procedure
– Object Names: Select this option to

provide an existing object name. A 3–part
naming convention depends on whether
you are using CDB. With CDB, you need
to use a 3–part naming convention,
otherwise a 2–part convention is
mandatory. 3–part convention includes
container, schema, object. 2–part
convention includes schema, object
name.

– Procedure Feature Name: Select this
option to filter, based on existing
procedure feature name.

– Column Based: If you select this option,
you are presented with the option to enter
the table and column name to which the
rule applies. You can filter out using
column value with LT, GT, EQ, LE, GE, NE
conditions. You can also specify if you
want to have before image or after image
in filtered data.

– Tag: Select this option to set the filter
based on tags.

– Chunk ID: Displays the configuration
details of database shards, however, the
details can’t be edited.

• Negate: Select this check box if you need to
negate any existing rule.

You can also see the JSON script for the rule by
clicking the JSON tab.

After you add a rule, it is listed in Inclusion Rules. You can delete rules or edit them. When
you edit a rule, you have the same options as adding a rule with the following added filters:

Chapter 8
Manage Distribution Paths

8-15

Options Description

OR AND Select one logical operator.

Chunk ID Edit or delete the database shard settings if
sharding is used.

Object Type: Edit or delete the type of object for the rule.

Review the Distribution Path Information

You can constantly monitor the activity of the path on the Distribution Service Process
Information page.

• The path details that you configured. You can change the Description, source and
target URIs, Target Authentication Method, DB Name, Target Encryption
Algorithm, Enable Network Compression, Sequence Length, Trail Size, configure
trail format, mark as Critical and enable Auto Restart. When changing the trail
format, be sure to apply your changes.

• The advanced options are the delay, flush, and TCP that you configured. You can
change any or all of these options, then apply to the path.

The Statistics tab shows you detailed information about the path, such as the different
path types and tables. You can use the arrows to sort the tables and the search to
quickly locate a specific table. The search is case insensitive and starts searching as
you type to update the table.

Chapter 8
Manage Distribution Paths

8-16

9
Replicat

This section lists details about Replicat, types of Replicat, steps to add a replicat, and other
tasks associated with Replicat.

Topics:

• About Replicat

• Types of Replicat

• Add a Replicat

• Replicat Actions

• Advance Tasks

About Replicat
Replicat is a process that delivers data to a target system. It reads the trail file on the target
database, reconstructs the DML or DDL operations, and applies them to the target database.

The Replicat process uses SQL to compile a SQL statement once and then executes it many
times with different bind variables. You can configure the Replicat process so that it waits a
specific amount of time before applying the replicated operations to the target database. For
example, a delay may be desirable to prevent the propagation of errant SQL, to control data
arrival across different time zones, or to allow time for other planned events to occur.

For the following two common uses cases of Oracle GoldenGate, the function of the Replicat
process is as follows:

• Initial Loads: When you set up Oracle GoldenGate for initial loads, the Replicat process
applies a static data copy to target objects or routes the data to a high-speed bulk-load
utility.

• Change Synchronization: When you set up Oracle GoldenGate to keep the target
database synchronized with the source database, the Replicat process applies the
source operations to the target objects using a native database interface or ODBC,
depending on the database type.

You can configure multiple Replicat processes with one or more Extract processes to
increase the throughput. To preserve data integrity, each set of processes handles a different
set of objects. To differentiate among Replicat processes, you assign each one a group
name.

Types of Replicat
The Replicat process can be configured in the following three modes (also referred to as
Replicat types):

• Classic Replicat: In classic mode, Replicat is a single-threaded process that uses
standard SQL to apply data to the target tables. See Classic Replicat for more details.

9-1

• Coordinated Replicat: In this mode, the Replicat process is threaded. One
coordinator thread spawns and coordinates one or more threads that execute
replicated SQL operations in parallel. A coordinated Replicat process uses one
parameter file and is monitored and managed as one unit. See Coordinated
Replicat for more details.

• Integrated Replicat: In this mode, the Replicat process leverages the apply
processing functionality that is available within the Oracle Database. Within a
single Replicat configuration, multiple inbound server child processes known as
apply servers apply transactions in parallel while preserving the original
transaction atomicity. See Integrated Replicat for more details.

• Parallel Replicat: Is a new variant of Replicat that applies transactions in parallel
to improve performance. Parallel Replicat only supports replicating data from trails
with full metadata, which requires the classic trail format. It takes into account
dependencies between transactions, similar to Integrated Replicat. See Parallel
Replicat for more details.

• Initial Load Replicat: In this mode, when you set up Oracle GoldenGate for initial
loads, the Replicat process applies a static data copy to target objects or routes
the data to a high-speed bulk-load utility. See Add Initial Load Extract Using the
Admin Client for more details.

Topics:

• About Parallel Replicat

• About Integrated Replicat

• About Classic Replicat

• About Coordinated Replicat

About Integrated Replicat
In integrated mode, available for Oracle databases of version 11.2.0.4 or later, Replicat
leverages the apply processing functionality that is available within the target Oracle
database. In this mode, Replicat reads the trail, constructs logical change records that
represent source DML or DDL transactions, and transmits these records to an inbound
server in the Oracle target database. The inbound server applies the data to the target
database.

Note:

Integrated Replicat is an online process only. Do not use it to perform initial
loads.

About Classic Replicat
In classic mode, Replicat is a single-threaded process that uses standard SQL to
apply data to the target tables. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

Chapter 9
Types of Replicat

9-2

• Constructs SQL statements that represent source database DML or DDL transactions (in
committed order).

• Applies the SQL to the target through the SQL interface that is supported for the given
target database, such as ODBC or the native database interface.

This figure illustrates the Classic Replicat architecture.

As shown in this figure, you can apply transactions in parallel with a Classic Replicat, but only
by partitioning the workload across multiple Replicat processes. A parameter file must be
created for each Replicat.

To determine whether to use classic mode for any objects, you must determine whether the
objects in one Replicat group will ever have dependencies on objects in any other Replicat
group, transactional or otherwise. Not all workloads can be partitioned across multiple
Replicat groups and still preserve the original transaction atomicity. For example, tables for
which the workload routinely updates the primary key cannot easily be partitioned in this
manner. DDL replication (if supported for the database) is not viable in this mode, nor is the
use of some SQLEXEC or EVENTACTIONS features that base their actions on a specific record.

If your tables do not have any foreign key dependencies or updates to primary keys, classic
mode may be suitable. Classic mode requires less overhead than coordinated mode.

About Parallel Replicat
Parallel Replicat is another variant of Replicat that applies transactions in parallel to improve
performance.

It takes into account dependencies between transactions, similar to Integrated Replicat. The
dependency computation, parallelism of the mapping and apply is performed outside the
database so can be off-loaded to another server. The transaction integrity is maintained in
this process. In addition, parallel Replicat supports the parallel apply of large transactions by
splitting a large transaction into chunks and applying them in parallel.

Parallel Replicat supports the following two modes: Integrated and Non-integrated. Only
Oracle database supports parallel Replicat and integrated parallel Replicat. However, parallel
Replicat supports all databases when using the non-integrated option.

Chapter 9
Types of Replicat

9-3

To use parallel Replicat, you need to ensure that you have the following values, which
are also the default values:

• Metadata in the trail (which means you can't use parallel Replicat if your trails are
formatted below 12.1).

• You must have scheduling columns in your trail file.

• You must use UPDATERCORDFORMAT COMPACT.

With integrated parallel Replicat, the Replicat sends the LCRs to the inbound server,
which applies the data to the target database, and in regular parallel Replicat, Oracle
GoldenGate applies the LCR as a SQL statement directly to the database, similar to
how the other non-integrated Replicats work.

Note:

For best performance for an OLTP workload, parallel Replicat in non-
integrated mode is recommended.

The components of parallel Replicat are:

• Mappers operate in parallel to read the trail, map trail records, convert the mapped
records to the Integrated Replicat LCR format, and send the LCRs to the Merger
for further processing. While one Mapper maps one set of transactions, the next
Mapper maps the next set of transactions. The trail information is split and the trail
file is untouched because it orders trail information in order.

• Master processes have two threads, Collater and Scheduler. The Collater receives
mapped transactions from the Mappers and puts them back into trail order for
dependency calculation. The Scheduler calculates dependencies between
transactions, groups transactions into independent batches, and sends the
batches to the Appliers to be applied to the target database.

• Appliers reorder records within a batch for array execution. It applies the batch to
the target database and performs error handling. It also tracks applied transactions
in checkpoint tables.

Note:

Parallel Replicat requires that any foreign key columns are indexed.

Topics:

• Benefits of Parallel Replicat

• Parallel Replication Architecture

• Basic Parameters for Parallel Replicat

• About Non-integrated Parallel Replicat

• About Integrated Parallel Replicat

Chapter 9
Types of Replicat

9-4

Benefits of Parallel Replicat
The following are the benefits of using parallel Replicat:

• Integrated Parallel Replicat enables heavy workloads to be partitioned automatically
among parallel apply processes that apply multiple transactions concurrently, while
preserving the integrity and atomicity of the source transaction. Both a minimum and
maximum number of apply processes can be configured with the PARALLELISM and
MAX_PARALLELISM parameters. Replicat automatically adds additional servers when the
workload increases, and then adjusts downward again when the workload lightens.

• Integrated Parallel Replicat requires minimal work to configure. All work is configured
within one Replicat parameter file, without configuring range partitions.

• High-performance apply streaming is enabled for integrated parallel Replicat by means of
a lightweight application programming interface (API) between Replicat and the inbound
server.

• Barrier transactions are coordinated by integrated parallel Replicat among multiple server
apply processes.

• DDL operations are processed as direct transactions that force a barrier by waiting for
server processing to complete before the DDL execution.

• Transient duplicate primary key updates are handled by integrated parallel Replicat in a
seamless manner.

• Parallel Replicat can break a single large transaction into smaller chunks and apply those
chunks in parallel. See SPLIT_TRANS_RECS for details.

Parallel Replication Architecture
Parallel replication processes leverage the apply processing functionality that is available
within the Oracle Database in integrated mode. Within a single Replicat configuration,
multiple inbound server child processes, known as apply servers, apply transactions in
parallel while preserving the original transaction atomicity.

The following architecture diagram depicts the flow of change records through the various
processes of a parallel replication from the trail files to the target database, for a non-
integrated parallel Replicat.

The following is the description of the architecture diagram given above:

Chapter 9
Types of Replicat

9-5

• The Mappers read the trail file and map records, forward the mapped records to
the Master. The batches are sent to the Appliers where they are applied to the
target database.

• The Master process consists of two separate threads, Collater and Scheduler. The
Collater is responsible for managing and communicating with the Mappers, along
with receiving the mapped transactions and reordering them into a single in-order
stream. The Scheduler is responsible for managing and communicating with the
Appliers, along with reading transactions from the Collater, batching them, and
scheduling them to Appliers.

• The Scheduler controller communicates with the Scheduler to gather any
necessary information (such as, the current low watermark position). The
Scheduler controller is required for CDB mode for Oracle Database because it is
responsible for aggregating information pertaining to the different target PDBs and
reporting a unified picture. The Scheduler controller is created for simplicity and
uniformity of implementation, even when not in CDB mode. Every process reads
the parameter file and shares a single checkpoint file.

Basic Parameters for Parallel Replicat
The following table lists the basic parallel Replicat parameters and their description.

Parameter Description

MAP_PARALLELISM Configures number of mappers. This controls
the number of threads used to read the trail
file. The minimum value is 1, maximum value
is 100 and the default value is 2.

APPLY_PARALLELISM Configures number of appliers. This controls
the number of connections in the target
database used to apply the changes. The
default value is four.

MIN_APPLY_PARALLELISM
MAX_APPLY_PARALLELISM

The Apply parallelism is auto-tuned. You can
set a minimum and maximum value to define
the ranges in which the Replicat automatically
adjusts its parallelism. There are no defaults.
Do not use with APPLY_PARALLELISM at same
time.

SPLIT_TRANS_REC Specifies that large transactions should be
broken into pieces of specified size and
applied in parallel. Dependencies between
pieces are still honored. Disabled by default.

COMMIT_SERIALIZATION Enables commit FULL serialization mode,
which forces transactions to be committed in
trail order.

Advanced Parameters

LOOK_AHEAD_TRANSACTIONS Controls how far ahead the Scheduler looks
when batching transactions. The default value
is 10000.

Chapter 9
Types of Replicat

9-6

Parameter Description

CHUNK_SIZE Controls how large a transaction must be for
parallel Replicat to consider it as large. When
parallel Replicat encounters a transaction
larger than this size, it will serialize it, resulting
in decreased performance. However,
increasing this value will also increase the
amount of memory consumed by parallel
Replicat.

Example Parameter File

replicat repA userid ggadmin, password *** MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2 MAX_APPLY_PARALLELISM 10 SPLIT_TRANS_RECS 60000 map *.*,
target *.*;

About Non-integrated Parallel Replicat
In non-integrated mode, the Replicat process uses standard SQL to apply data directly to the
target tables. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs SQL statements that represent source database DML or DDL transactions (in
committed order).

• Applies the SQL to the target through Oracle Call Interface (OCI).

Use non-integrated Replicat when you want to make heavy use of features that are not
supported in integrated Replicat mode. You can apply transactions in parallel with a non-
integrated Replicat by using a coordinated Replicat configuration.

About Integrated Parallel Replicat
In integrated mode, the Replicat process leverages the apply processing functionality that is
available within the Oracle Database. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs logical change records (LCR) that represent source database DML
transactions (in committed order). DDL is applied directly by Replicat.

• Attaches to a background process in the target database known as a database inbound
server by means of a lightweight streaming interface.

• Transmits the LCRs to the inbound server, which applies the data to the target database.

Within a single Replicat configuration, multiple inbound server child processes known as
apply servers apply transactions in parallel while preserving the original transaction atomicity.
You can increase this parallelism as much as your target system will support when you
configure the Replicat process or dynamically as needed. The following diagram illustrates
integrated Replicat configured with two parallel apply servers.

Chapter 9
Types of Replicat

9-7

In the above diagram, Integrated Replicat applies transactions asynchronously.
Transactions that do not have interdependencies can be safely executed and
committed out of order to achieve fast throughput. Transactions with dependencies are
guaranteed to be applied in the same order as on the source.

A reader process in the inbound server computes the dependencies among the
transactions in the workload based on the constraints defined at the target database
(primary key, unique, foreign key). Barrier transactions and DDL operations are
managed automatically, as well. A coordinator process coordinates multiple
transactions and maintains order among the apply servers.

If the inbound server does not support a configured feature or column type, Replicat
disengages from the inbound server, waits for the inbound server to complete
transactions in its queue, and then applies the transaction to the database in direct
apply mode through OCI. Replicat resumes processing in integrated mode after
applying the direct transaction.

The following features are applied in direct mode by Replicat:

• DDL operations

• Sequence operations

• SQLEXEC parameter within a TABLE or MAP parameter

• EVENTACTIONS processing

• UDT

Note:

By default, UDT's are applied with the inbound server. Only if
NOUSENATIVEOBJSUPPORT is in place, then Extract handling is done by
Replicat directly.

Chapter 9
Types of Replicat

9-8

Because transactions are applied serially in direct apply mode, heavy use of such operations
may reduce the performance of the integrated Replicat mode. Integrated Replicat performs
best when most of the apply processing can be performed in integrated mode, see Monitoring
and Controlling Processing After the Instantiation in Using Oracle GoldenGate for Oracle
Database.

Note:

User exits are executed in integrated mode. However, user exit may produce
unexpected results, if the exit code depends on data in the replication stream.

Note:

Integrated Replicat requires that any foreign key columns are indexed.

Topics:

• Benefits of Integrated Replicat

• Integrated Replicat Requirements

Benefits of Integrated Replicat
The following are the benefits of using integrated Replicat versus non-integrated Replicat.

• Integrated Replicat enables heavy workloads to be partitioned automatically among
parallel apply processes that apply multiple transactions concurrently, while preserving
the integrity and atomicity of the source transaction. Both a minimum and maximum
number of apply processes can be configured with the PARALLELISM and
MAX_PARALLELISM parameters. Replicat automatically adds additional servers when the
workload increases, and then adjusts downward again when the workload lightens.

• Integrated Replicat requires minimal work to configure. All work is configured within one
Replicat parameter file, without configuring range partitions.

• High-performance apply streaming is enabled for integrated Replicat by means of a
lightweight application programming interface (API) between Replicat and the inbound
server.

• Barrier transactions are coordinated by integrated Replicat among multiple server apply
processes.

• DDL operations are processed as direct transactions that force a barrier by waiting for
server processing to complete before the DDL execution.

• Transient duplicate primary key updates are handled by integrated Replicat in a seamless
manner.

Integrated Replicat Requirements
To use integrated Replicat, the following must be true.

• Supplemental logging must be enabled on the source database to support the
computation of dependencies among tables and scheduling of concurrent transactions on

Chapter 9
Types of Replicat

9-9

the target. Instructions for enabling the required logging are in Configuring Logging
Properties. This logging can be enabled at any time up to, but before you start the
Oracle GoldenGate processes.

• Integrated Parallel Replicat is supported on Oracle Database 12.2.0.1 and greater.

About Coordinated Replicat
In coordinated mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Performs data filtering, mapping, and conversion.

• Applies the SQL to the target through the SQL interface that is supported for the
given target database, such as ODBC or the native database interface.

The difference between classic mode and coordinated mode is that Replicat is multi-
threaded in coordinated mode. Within a single Replicat instance, multiple threads read
the trail independently and apply transactions in parallel. Each thread handles the
filtering, mapping, conversion, SQL construction, and error handling for its assigned
workload. A coordinator thread coordinates the transactions across threads to account
for dependencies among the threads.

The source transactions could be split across CR processes such that the integrity of
the total source transaction is not maintained. The portion of the transaction processed
by a CR process is done in committed order but the whole transaction across all CR
processes is not.

Coordinated Replicat allows for user-defined partitioning of the workload so as to apply
high volume transactions concurrently. In addition, it automatically coordinates the
execution of transactions that require coordination, such as DDL, and primary key
updates with THREADRANGE partitioning. Such a transaction is executed as one
transaction in the target with full synchronization: it waits until all prior transactions are
applied first, and all transactions after this barrier transaction have to wait until this
barrier transaction is applied.

Only one parameter file is required for a coordinated Replicat, regardless of the
number of threads. You use the THREAD or THREADRANGE option in the MAP statement to
specify which threads process the transactions for those objects, and you specify the
maximum number of threads when you create the Replicat group.

This figure illustrates the architecture of Coordinated Replicat.

Chapter 9
Types of Replicat

9-10

As shown in this figure, the Coordinated Replicat includes the following two processes:

• About Barrier Transactions

• How Barrier Transactions are Processed

About Barrier Transactions
Barrier transactions are managed automatically in a coordinated Replicat configuration.
Barrier transactions are transactions that require coordination across threads. Examples
include DDL statements, transactions that include updates to primary keys, and certain
EVENTACTIONS actions.

Optionally, you can force other transactions to be treated like a barrier transaction through the
use of the COORDINATED keyword in a MAP statement. One use case for this would be force a
SQLEXEC to be executed in a manner similar to a serial execution. This could be beneficial if
the results can become ambiguous unless the state of the target is consistent across all
transactions.

Chapter 9
Types of Replicat

9-11

Note:

Coordinated Replicat doesn't do dependency calculations for non-barrier
transactions when a mapped table is partitioned based on THREADRANGE. It
relies on specified THREADRANGE columns to compute a hash value. It
partitions the incoming data based on the hash value and sends all the
records that match this hash value to same thread.

How Barrier Transactions are Processed
All threads converge and wait at the start of a barrier transaction. The barrier
transaction is suspended until the other threads reach its start position. If any threads
were already processing part of the barrier transaction, those threads perform a
rollback. Grouped transactions, such as those controlled by the BATCHSQL or
GROUPTRANSOPS parameters, are also rolled back and then reapplied until they reach
the start of the barrier transaction.

All of the threads converge and wait at the start of the next transaction after the barrier
transaction as well. The two synchronization points, before and after the barrier
transaction, ensure that metadata operations and EVENTACTIONS actions all occur in
the proper order relevant to the data operations.

Once the threads are synchronized at the start of the barrier transaction, the barrier
transaction is processed serially by the thread that has the lowest thread ID among all
of the threads specified in the MAP statements, and then parallel processing across
threads is resumed. You can force barrier transactions to be processed through a
specific thread, which is always thread 0, by specifying the
USEDEDICATEDCOORDINATIONTHREAD parameter in the Replicat parameter file.

Add a Replicat
Learn about the prerequisites to add a Replicat, select the approriate Replicat type,
and the steps to add a Replicat.

Topics:

• Before you Add a Replicat

• Select a Replicat Type for your Deployment

• Add a Replicat

• Basic Parameters for Different Replicat Modes

Before you Add a Replicat
Before you add a Replicat, add a checkpoint table. After you connect to the database,
you can create the checkpoint table by following these steps:

1. From the Administration Service, go the Configuration page using the navigation
pane.

2. Click the + sign next to the Checkpoint section on the Database tab.

Chapter 9
Add a Replicat

9-12

3. Enter the checkpoint table name in the Checkpoint Table box. The table name must be
a two-part or three-part value. For example, GGADMIN.CHKP1.

You can add the checkpoint table using the ADD CHECKPOINTTABLE command from the
Admin Client.

Topics:

• Add a Checkpoint Table

Add a Checkpoint Table
Not valid for Replicat for Java, Oracle GoldenGate Applications Adapter, or Oracle
GoldenGate for Big Data.

Use ADD CHECKPOINTTABLE to create a checkpoint table in the target database. Replicat
uses the table to maintain a record of its read position in the trail for recovery purposes.

The use of a checkpoint table is strongly recommended, because it causes checkpoints to be
part of the Replicat transaction. This allows Replicat to recover more easily in certain
circumstances than when a checkpoint file alone is used. Parallel and Coordinated Replicats
require checkpoint tables.

One table can serve as the default checkpoint table for all Replicat groups in an Oracle
GoldenGate instance if you specify it with the CHECKPOINTTABLE parameter in a GLOBALS file.
More than one instance of Oracle GoldenGate (multiple installations) can use the same
checkpoint table. Oracle GoldenGate keeps track of the checkpoints even when the same
Replicat group name exists in different instances.

Use the DBLOGIN command to establish a database connection before using this command.
Do not change the names or attributes of the columns in this table. You may, however,
change table storage attributes.

Admin Client Syntax

ADD CHECKPOINTTABLE [[container. | catalog.] owner.table]
The name cannot contain any special characters, such as quotes, backslash, dollar sign, and
percent symbol. Record the name of the table, because you need it to view statistics or
delete the table if needed.

The owner and name can be omitted if you are using this table as the default checkpoint
table and it is listed with CHECKPOINTTABLE in the GLOBALS file. It is recommended, but not
required, that the table be created in a schema dedicated to Oracle GoldenGate. If an owner
and name are not specified, a default table is created based on the CHECKPOINTTABLE
parameter in the GLOBALS parameter file.

Record the name of the table, because you will need it to view statistics or delete the table if
needed.

Record the name of the checkpoint table as that will be used when you add a Replicat, or
delete a Replicat and need to drop the checkpoint table using the DELETE
CHECKPOINTTABLE command.

In MA, the default schema for the checkpoint table is controlled by the Oracle GoldenGate
user that is defined for each deployment.

Examples

Chapter 9
Add a Replicat

9-13

The following adds a checkpoint table with the default name specified in the GLOBALS
file.

ADD CHECKPOINTTABLE

The following adds a checkpoint table with a user-defined name.

ADD CHECKPOINTTABLE ggadmin.ggs_checkpoint

Select a Replicat Type for your Deployment
The Replicat process is responsible for applying trail data to the target database.
Although you can choose from different types of Replicat modes, Oracle recommends
that you use the parallel nonintegrated Replicat, unless a specific feature requires a
different type of Replicat. Parallel Replicat is available for both Oracle and non-Oracle
databases.

The following table lists the features supported by the respective Replicats.

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

Batch Processing Yes Yes Yes Yes

Barrier
Transactions

Yes Yes Yes No

Dependency
Computation

Yes Yes No No

Chapter 9
Add a Replicat

9-14

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

Auto-parallelism

N

o

t

e

:

A
u
t
o
-
p
a
r
a
l
l
e
l
i
s
m
i
s
d
i
s
a
b
l
e
d
,
b
y
d
e
f
a
u
l
t
.
O
n
l
y
f

Yes Yes No No

Chapter 9
Add a Replicat

9-15

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

o
u
r
t
h
r
e
a
d
s
a
r
e
u
s
e
d
i
n
t
h
e
d
e
f
a
u
l
t
s
e
t
t
i
n
g
s
.
I
f
y
o
u
w
a
n
t
t
o
c
h
a
n
g

Chapter 9
Add a Replicat

9-16

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

e
R
e
p
l
i
c
a
t
t
o
u
s
e
M
I
N
_
P
A
R
A
L
L
E
L
I
S
M
a
n
d

M
A
X
_
P
A
R
A
L
L
E
L
I
S
M
,
t
h
e

Chapter 9
Add a Replicat

9-17

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

n
a
u
t
o
-
p
a
r
a
l
l
e
l
i
s
m
i
s
u
s
e
d
.

DML Handler Yes, Integrated
mode

Yes No No

Procedural
Replication

Yes, used for
integrated
Parallel Replicat
(iPR)

Yes No No

Auto CDR Yes, used by iPR
only

Yes No No

Dependency-
aware
Transaction Split

Yes No No No

Cross-RAC-node
Processing

Yes No Yes No

ALLOWDUPTARGE
TMAP
See
ALLOWDUPTAR
GETMAP |
NOALLOWDUPT
ARGETMAP

No. Oracle
Database with
iPR

No, Oracle
Database

Yes Yes

Add a Replicat
You can add Replicats for the target deployment from the Administration Service.
Make sure that you have configured your deployments correctly, checked your

Chapter 9
Add a Replicat

9-18

database credentials, and created an Extract before you set up your Replicat. For details, see
Manage Deployments from the Service Manager. Once you’ve set up your source and target
deployment, you can create and run the Replicat by following these steps:

1. Click the + sign next to Replicats on the Administration Service home page. The Add
Replicat page is displayed.

2. Select a Replicat type and click Next.

Note:

Some Replicat types are only available for certain databases. All Replicat types
may not be applicable to your database.

The types of Replicat are:

• Integrated Replicat

• Non-integrated Replicat: This option is displayed with heterogeneous or non-Oracle
databases.

• Classic Replicat: This option is displayed with Oracle database.

• Coordinated Replicat

• Parallel Replicat: If you select this option, then select an integrated or non-integrated
parallel Replicat.

– Integrated: This option appears when you select Parallel Replicat.

– Non Integrated: This option appears when you select Parallel Replicat.

3. Enter the required Replicat options on the Replicat Options page and click Next. To know
more about the Replicat options, see the online help.

4. For managed processes, the options to enter are:

Option Description

Profile Name Provides the name of the autostart and
autorestart profile. You can select the default or
custom options.

If you have already created a profile, then you
can select that profile also. If you select the
Custom option, then you can set up a new
profile from this section itself.

Critical to deployment health (Oracle only) Enable this option if the profile is
critical for the deployment health.

Note:

This option only appears while
creating the Extract or Replicat and
not when you set up the managed
processes in the Profiles page.

Chapter 9
Add a Replicat

9-19

Option Description

Auto Start Enables autostart for the process

Startup Delay Time to wait in seconds before starting the
process

Auto Restart Configures how to restart the process if it
terminates

Max Retries Specify the maximum number of retries to try to
start the process

Retry Delay Delay time in trying to start the process

Retries Window The duration interval to try to start the process

Restart on Failure only If true, the task is only restarted if it fails.

Disable Task After Retries Exhausted If true, then the task is disabled after exhausting
all attempts to restart the process.

5. Check the Replicat parameter files and modify it as follows:

REPLICAT repe USERIDALIAS ggwest DOMAIN OracleGoldenGate
--DDL EXCLUDE ALL DDLERROR default discard REPERROR
(default,discard)
DDLOPTIONS REPORT
SOURCECATALOG DBEAST MAP hr.*, TARGET hr.*;

6. Click Create and Run to create and run the Replicat.

Basic Parameters for Different Replicat Modes
Configure a Replicat parameter file to configure Replicat against a pluggable
database. Replicat can operate in any mode within a pluggable database. These steps
configure the Replicat parameter file.

1. On the target system, create the Replicat parameter file using Oracle GoldenGate
Command Line Interface.

EDIT PARAMS name
Where: name is the name of the Replicat group.

2. Enter the Replicat parameters in the order shown, starting a new line for each
parameter statement.

Basic parameters for the Replicat group in nonintegrated mode:

REPLICAT financer
USERIDALIAS tiger2
ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;

Basic parameters for the Replicat group in integrated Replicat mode:

REPLICAT financer
DBOPTIONS INTEGRATEDPARAMS(parallelism 6)
USERIDALIAS tiger2

Chapter 9
Add a Replicat

9-20

ASSUMETARGETDEFS
MAP hr.*, TARGET hr2.*;

Parameter Description

REPLICAT group group is the name of the Replicat group.

DBOPTIONS DEFERREFCONST Applies to Replicat in nonintegrated mode.
DEFERREFCONST sets constraints to
DEFERRABLE to delay the enforcement of
cascade constraints by the target database until
the Replicat transaction is committed.

DBOPTIONS INTEGRATEDPARAMS
(parameter[, ...])

This parameter specification applies to Replicat
in integrated mode. It specifies optional
parameters for the inbound server.

USERIDALIAS alias Specifies the alias of the database login
credential of the user that is assigned to
Replicat. This credential must exist in the Oracle
GoldenGate credential store.

MAP [container.]schema.object, TARGET
schema.object;

Specifies the relationship between a source
table or sequence, or multiple objects, and the
corresponding target object or objects.

• MAP specifies the source table or sequence,
or a wildcarded set of objects.

• TARGET specifies the target table or
sequence or a wildcarded set of objects.

• container is the name of a container, if
the source database is a multitenant
container database.

• schema is the schema name or a
wildcarded set of schemas.

• object is the name of a table or sequence,
or a wildcarded set of objects.

Terminate this parameter statement with a semi-
colon.

To exclude objects from a wildcard specification,
use the MAPEXCLUDE parameter.

3. If using integrated Replicat or parallel Replicat in integrated mode, add the following
parameters to the Extract parameter file:

• LOGALLSUPCOLS: This parameter ensures the capture of the supplementally logged
columns in the before image. It's the default parameter and shouldn't be turned off or
disabled. It is valid for any source database that is supported by Oracle GoldenGate.
For Extract versions older than 12c, you can use GETUPDATEBEFORES and
NOCOMPRESSDELETES parameters to satisfy the same requirement. The database must
be configured to log the before and after values of the primary key, unique indexes,
and foreign keys.

• The UPDATERECORDFORMAT parameter set to COMPACT: This setting causes Extract to
combine the before and after images of an UPDATE operation into a single record in
the trail. This is the default option and it is recommended that you don't change the
default setting.

Chapter 9
Add a Replicat

9-21

4. Enter any optional Replicat parameters that are recommended for your
configuration. You can edit this file at any point before starting processing by using
the EDIT PARAMS command.

5. Save and close the file.

Sample Replicat Parameter File

Replicat Actions
Replicat actions include starting or stopping Replicat, alter Replicat parameters,
forcibly stopping Replicat, or deleting a Replicat.

You can manage a Replicat process or a Replicat group from the Administration
Service Overview Page.

Topics:

• Access Replicat Process Details

• Stop, Start a Replicat

• Alter Replicat

• Delete Replicat

Access Replicat Process Details
Process Information
Displays Replicat process details such as status of Replicat as running or stopped.
You can also edit the encryption profile and managed options for auto start and auto
restart from here.

Chapter 9
Replicat Actions

9-22

Checkpoint
Displays the checkpoint log name, path, timestamp, sequence, and offset value. You can
click the Checkpoint Detail icon to view elaborate information about the checkpoint.

Statistics
Displays the active replication maps along with replication statistics based on the type of
Replicat.

Parameters
Displays the parameters configured when the Replicat was added. You can edit the
parameters by clicking the edit pencil icon. See Basic Parameters for Parallel Replicat. Also
see Additional Parameter Options for Integrated Replicat

Report
Displays the details about the Replicat including the parameters with which the replicat is
running, and run time messages.

Stop, Start a Replicat
There are various options to start or stop a Replicat.

• Start/Stop: Select this option to start or stop a Replicat immediately.

• Start/Stop (in the background): Select this option to start or stop Replicat using a
background process.

• Start with Options: Select this option to change the Replicat start point, CSN value, filter
duplicates before starting the Replicat. When you select this option, a screen is displayed
where you can reset the CSN value, Replicat start point, and filter duplicates if required.

• Force Stop: Select this option to forcibly stop a Replicat process or group, immediately.

Alter Replicat
The Alter Replicat option allows you to reset some Replicat options. When you click Alter
Replicat, a screen is displayd for options that you can modify for the specific Replicat or
Replicat group. These options are:

• Replicat begin position.

• Replicat description.

• Intent of the Replicat.

Click Submit to apply the Replicat alterations.

Start the Replicat.

Delete Replicat
Select this action from the Replicat Actions button, when you have stopped the Replicat.
This option allows you to stop Replicat processes in a group in the background.

Advance Tasks
Learn about advance tasks associated with Replicat.

Topics:

Chapter 9
Advance Tasks

9-23

• Controlling Checkpoint Retention

• Excluding Replicat Transactions in Bidirectional Replication

• Additional Parameter Options for Integrated Replicat

Controlling Checkpoint Retention

The CHECKPOINTRETENTIONTIME option of the TRANLOGOPTIONS parameter controls the
number of days that Replicat retains checkpoints before purging them automatically.
Partial days can be specified using decimal values. For example, 8.25 specifies 8 days
and 6 hours. The default is seven days.

Excluding Replicat Transactions in Bidirectional Replication

In a bidirectional configuration, Replicat must be configured to mark its transactions,
and Extract must be configured to exclude Replicat transactions so that they do not
propagate back to their source.

This can be implemented in two ways:

Method 1

Valid only for Oracle to Oracle implementations.

Replicat can be in either integrated or nonintegrated mode. Use the following
parameters:

• Use DBOPTIONS with the SETTAG option in the Replicat parameter file. The inbound
server tags the transactions of that Replicat with the specified value, which
identifies those transactions in the redo stream. The default value for SETTAG is 00.

• Use the TRANLOGOPTIONS parameter with the EXCLUDETAG option in an Extract
parameter file. The logmining server associated with that Extract excludes redo
that is tagged with the SETTAG value. Multiple EXCLUDETAG statements can be used
to exclude different tag values, if desired.

Method 2

Valid for any implementation; Oracle or heterogeneous database configurations.

Use the Extract TRANLOGOPTIONS parameter with the EXCLUDEUSER or EXCLUDEUSERID
option to ignore the Replicat DDL and DML transactions based on its user name or ID.
Multiple EXCLUDEUSER statements can be used. The specified user is subject to the
rules of the GETREPLICATES or IGNOREREPLICATES parameter.

Additional Parameter Options for Integrated Replicat

You can set these parameters by using the DBOPTIONS parameter with the
INTEGRATEDPARAMS option or dynamically by issuing the SEND REPLICAT command with
the INTEGRATEDPARAMS option.

The default Replicat configuration should be sufficient. However, if needed, you can
set the following inbound server parameters to support specific requirements.

Chapter 9
Advance Tasks

9-24

Note:

For detailed information and usage guidance for these parameters, see the
"DBMS_APPLY_ADM" section in Oracle Database PL/SQL Packages and Types
Reference.

See DBOPTIONS for more information about the parameter.

• COMMIT_SERIALIZATION: Controls the order in which applied transactions are committed
and has 2 modes, DEPENDENT_TRANSACTIONS and FULL. The default mode for Oracle
GoldenGate is DEPENDENT_TRANSACTIONS where dependent transactions are applied in
the correct order though may not necessarily be applied in source commit order. In FULL
mode, the source commit order is enforced when applying transactions.

• BATCHSQL_MODE: Controls the batch execution scheduling mode including pending
dependencies. A pending dependency is a dependency on another transaction that has
already been scheduled, but not completely executed. The default is DEPENDENT. You can
use following three modes:

DEPENDENT
Dependency aware scheduling without an early start. Batched transactions are
scheduled when there are no pending dependencies.

DEPENDENT_EAGER
Dependency aware batching with early start. Batched transactions are scheduled
irrespective of pending dependencies.

SEQUENTIAL
Sequential batching. Transactions are batched by grouping the transactions sequentially
based on the original commit order.

• DISABLE_ON_ERROR: Determines whether the apply server is disabled or continues on an
unresolved error. The default for Oracle GoldenGate is N (continue on errors), however,
you can set the option to Y if you need to disable the apply server when an error occurs.

• EAGER_SIZE: Sets a threshold for the size of a transaction (in number of LCRs) after
which Oracle GoldenGate starts applying data before the commit record is received. The
default for Oracle GoldenGate is 15100.

• ENABLE_XSTREAM_TABLE_STATS: Controls whether statistics on applied transactions are
recorded in the V$GOLDENGATE_TABLE_STATS view or not collected at all. The default for
Oracle GoldenGate is Y (collect statistics).

• MAX_PARALLELISM: Limits the number of apply servers that can be used when the load is
heavy. This number is reduced again when the workload subsides. The automatic tuning
of the number of apply servers is effective only if PARALLELISM is greater than 1 and
MAX_PARALLELISM is greater than PARALLELISM. If PARALLELISM is equal to
MAX_PARALLELISM, the number of apply servers remains constant during the workload.
The default for Oracle GoldenGate is 50.

• MAX_SGA_SIZE: Controls the amount of shared memory used by the inbound server. The
shared memory is obtained from the streams pool of the SGA. The default for Oracle
GoldenGate is INFINITE.

Chapter 9
Advance Tasks

9-25

• MESSAGE_TRACKING_FREQUENCY: Controls how often LCRs are marked for high-level
LCR tracing through the apply processing. The default value is 2000000, meaning
that every 2 millionth LCR is traced. A value of zero (0) disables LCR tracing.

• PARALLELISM: Sets a minimum number of apply servers that can be used under
normal conditions. Setting PARALLELISM to 1 disables apply parallelism, and
transactions are applied with a single apply server process. The default for Oracle
GoldenGate is 4. For Oracle Standard Edition, this must be set to 1.

• PARALLELISM_INTERVAL: Sets the interval in seconds at which the current workload
activity is computed. Replicat calculates the mean throughput every 5 X
PARALLELISM_INTERVAL seconds. After each calculation, the apply component can
increase or decrease the number of apply servers to try to improve throughput. If
throughput is improved, the apply component keeps the new number of apply
servers. The parallelism interval is used only if PARALLELISM is set to a value
greater than one and the MAX_PARALLELISM value is greater than the PARALLELISM
value. The default is 5 seconds.

• PRESERVE_ENCRYPTION: Controls whether to preserve encryption for columns
encrypted using Transparent Data Encryption. The default for Oracle GoldenGate
is N (do not apply the data in encrypted form).

• TRACE_LEVEL: Controls the level of tracing for the Replicat inbound server. For use
only with guidance from Oracle Support. The default for Oracle GoldenGate is 0
(no tracing).

• WRITE_ALERT_LOG: Controls whether the Replicat inbound server writes messages
to the Oracle alert log. The default for Oracle GoldenGate is Y (yes).

Chapter 9
Advance Tasks

9-26

10
Secure

This section lists details about creating an applying master and encryption keys, streaming
protocols, managing identities, and configuring Kerberos authentication.

Topics:

• Oracle GoldenGate Security and Other Considerations

• Create Certificates for a Secure Deployments

• Encrypting Trail Files

• Streaming Protocols

• Managing Identities in a Credential Store

• Configure Kerberos Authentication

Oracle GoldenGate Security and Other Considerations
An Oracle GoldenGate Microservices deployment can be installed with various security
features. When setting up a secure deployment, some information is required for proper
configuration depending on whether self-signed certificates are used or provided. See Create
Certificates for a Secure Deployments.

Oracle GoldenGate fully supports virtual machine environments created with any
virtualization software on any platform unless otherwise noted. When installing Oracle
GoldenGate into a virtual machine environment, select a build that matches the database and
the operating system of the virtual machine, not the host system.

Note:

Oracle customers with an active support contract and running supported versions of
Oracle products (including Oracle GoldenGate) receive assistance from Oracle
when running those products on VMware virtualized environments. If Oracle
identifies the underlying issue is not caused by Oracle’s products or is being run in
a computing environment not supported by Oracle, Oracle will refer customers to
VMware for further assistance and Oracle will provide assistance to VMware as
applicable in resolving the issue.
This support policy does not affect Oracle or VMware licensing policies.

Create Certificates for a Secure Deployments
Learn about creating different types of certificates for a single deployment in a hub. In case of
two deployments, learn about the options to add external certificates in cases where the
distribution path needs to be established between deployments with different source and
target databases.

10-1

Topics:

• Single Deployment: Create Different Types of Certificates for a Secure
Deployment

• Two Deployments: Create External, Trusted Server and Client Certificates

Single Deployment: Create Different Types of Certificates for a Secure
Deployment

These certificates are used if you have one deployment having a Distribution path from
the Distibution and Reciver Service within a single (or same) deployment.

Here's how you can create client and server certificates to set up a secure Oracle
GoldenGate Microservices Architecture deployment.

Topics:

• Create a Self-Signed Trusted (Root) Certificate

• Create Server Certificates

• Create a Client Certificate

• Set Up Trusted Certificates

Create a Self-Signed Trusted (Root) Certificate

You may apply your existing trusted certificate or use the orapki in the OGG_HOME/bin
directory.

Note:

Adding a non-CA self-signed certificate as a trusted certificate using
Certificate Management page's CA Cert section is not supported and will
result in an error.

Here's an example of how you can create a root certificate using orapki:

1. Create a directory to store your wallets and certificates. For example, ~/
wallet_directory.

2. Create an automatic login wallet. This example uses root_ca for the wallet name.

orapki wallet create -wallet ~/wallet_directory/root_ca -auto_login
-pwd welcome123

3. In the orapki command to create self-signed (root user) certificate, specify the-
sign_alg sha256 option.

Chapter 10
Create Certificates for a Secure Deployments

10-2

4. In orapki wallet:

orapki wallet add -wallet ~/wallet_directory/root_ca -dn "CN=RootCA" -
addext_basic_cons -pathlen 10 -keysize 2048 -self_signed -validity 7300 -
pwd welcome123 -sign_alg sha256

5. Export the certificate to a .pem file.

orapki wallet export -wallet ~/wallet_directory/root_ca -dn "CN=RootCA" -
cert ~/wallet_directory/rootCA_Cert.pem -pwd welcome123

The certificate creation is complete.
The following code snippet illustrates how to set up orapki generated wallets:

1. (Self-Signing) Root Certificate
orapki wallet create -wallet ${WORKDIR}/wallet_SRC/rootCA_SRC -auto_login -
pwd welcome123 -nologo
orapki wallet add -wallet ${WORKDIR}/wallet_SRC/rootCA_SRC -dn
"CN=RootCA_SRC" -addext_basic_cons -pathlen 10 -keysize 2048 \
 -
self_signed -validity 1825 \
 -
pwd welcome123 -nologo
orapki wallet export -wallet ${WORKDIR}/wallet_SRC/rootCA_SRC -dn
"CN=RootCA_SRC" -cert ${WORKDIR}"/wallet_SRC/rootCA_SRC_CERT.pem" -pwd
welcome123 -nologo

2. Server Certificate
orapki wallet create -wallet ${WORKDIR}"/wallet_SRC/server_"${v_hostname} -
auto_login -pwd welcome123 -nologo
orapki wallet add -wallet ${WORKDIR}"/wallet_SRC/server_"${v_hostname} -
dn "CN=${v_hostname}" \
 -
addext_basic_cons -pathlen 10 -keysize 2048 \
 -pwd
welcome123 -nologo
orapki wallet export -wallet ${WORKDIR}"/wallet_SRC/server_"${v_hostname} -
dn "CN=${v_hostname}" \
 -request ${WORKDIR}"/wallet_SRC/server_"$
{v_hostname}"_req.pem" -pwd welcome123 -nologo
orapki cert create -wallet ${WORKDIR}/wallet_SRC/rootCA_SRC \
 -request ${WORKDIR}"/wallet_SRC/server_"$
{v_hostname}"_req.pem" \
 -cert ${WORKDIR}"/wallet_SRC/server_"$
{v_hostname}"_Cert.pem" \
 -serial_num 25 -validity 365 -pwd welcome123 -
nologo

orapki wallet add -wallet ${WORKDIR}"/wallet_SRC/server_"${v_hostname} \
 -trusted_cert -cert ${WORKDIR}"/wallet_SRC/
rootCA_SRC_CERT.pem" -pwd welcome123 -nologo

orapki wallet add -wallet ${WORKDIR}"/wallet_SRC/server_"${v_hostname} \
 -user_cert -cert ${WORKDIR}"/wallet_SRC/server_"$

Chapter 10
Create Certificates for a Secure Deployments

10-3

{v_hostname}"_Cert.pem" -pwd welcome123 -nologo

3. Distribution Server Certificate
orapki wallet create -wallet ${WORKDIR}/wallet_SRC/client_SRC -
auto_login -pwd welcome123 -nologo
orapki wallet add -wallet ${WORKDIR}/wallet_SRC/client_SRC -dn
"CN=client_SRC" -keysize 2048 -pwd welcome123 -nologo
orapki wallet export -wallet ${WORKDIR}/wallet_SRC/client_SRC -dn
"CN=client_SRC" \
 -request ${WORKDIR}/wallet_SRC/
client_SRC_req.pem -pwd welcome123 -
nologo
orapki cert create -wallet ${WORKDIR}/wallet_SRC/rootCA_SRC \
 -request ${WORKDIR}/wallet_SRC/client_SRC_req.pem
\
 -cert ${WORKDIR}/wallet_SRC/client_SRC_Cert.pem \
 -serial_num 26 -validity 365 -pwd welcome123 -
nologo

Create Server Certificates

The following steps are an example of how you can create a sever certificate using a
root certificate named root_ca.

1. Create a directory to store your wallets and certificates. For example, ~/
wallet_directory.

2. Create an automatic login server wallet.

orapki wallet create -wallet ~/wallet_directory/$(hostname) -
auto_login -pwd welcome123

Enter the password for the server when prompted.

3. Add a Certificate Signing Request (CSR) to the server’s wallet.

orapki wallet add -wallet ~/wallet_directory/$(hostname) -dn "CN=$
(hostname)" -keysize 2048 -pwd welcome123

Note:

The addext_basic_cons -pathlen 10 option is important as it is used to
apply the later certificate into another secure store, when setting
certificates for two different deployments. See Two Deployments: Create
External, Trusted Server and Client Certificates.

4. Export the CSR to a .pem file.

orapki wallet export -wallet ~/wallet_directory/$(hostname) -dn
"CN=$(hostname)" -request ~/wallet_directory/servername_req.pem -
pwd welcome123

Chapter 10
Create Certificates for a Secure Deployments

10-4

5. Using the CSR, create a signed server certificate and sign it using the root certificate.
Assign a unique serial number to each certificate.

orapki cert create -wallet ~/wallet_directory/root_ca -request ~/
wallet_directory/servername_req.pem -cert ~/wallet_directory/
servername_Cert.pem -serial_num 20 -validity 375 -sign_alg sha256

6. Add the root certificate into the server’s wallet as a trusted certificate.

orapki wallet add -wallet ~/wallet_directory/$(hostname) -trusted_cert -
cert ~/wallet_directory/rootCA_Cert.pem -pwd welcome123

7. Add the server certificate as a user certificate into the server’s wallet.

orapki wallet add -wallet ~/wallet_directory/$(hostname) -user_cert -cert
~/wallet_directory/servername_Cert.pem -pwd welcome123

The wallet creation is complete.

Create a Client Certificate

The following steps are an example of how you can create a Distribution Service user
certificate:

1. Create a directory to store your wallets and certificates. For example, ~/
wallet_directory.

2. Create an automatic login client wallet. This example uses dist_client for the wallet
name.

orapki wallet create -wallet ~/wallet_directory/dist_client -auto_login -
pwd welcome123

3. Add a CSR to the wallet.

orapki wallet add -wallet ~/wallet_directory/dist_client -dn
"CN=dist_client" -keysize 2048 -pwd welcome123

4. Export the CSR to a .pem file.

orapki wallet export -wallet ~/wallet_directory/dist_client -dn
"CN=dist_client" -request ~/wallet_directory/dist_client_req.pem -pwd
welcome123

5. Using CSR, create a signed client certificate and sign it using the root certificate. Assign
a unique serial number to each certificate.

orapki cert create -wallet ~/wallet_directory/root_ca -request ~/
wallet_directory/dist_client_req.pem -cert ~/wallet_directory/
dist_client_Cert.pem -serial_num 30 -validity 375 -pwd welcome123

Chapter 10
Create Certificates for a Secure Deployments

10-5

6. Add the root certificate as a trusted certificate into the client’s wallet.

orapki wallet add -wallet ~/wallet_directory/dist_client -
trusted_cert -cert ~/wallet_directory/rootCA_Cert.pem -pwd
welcome123

7. Add the client certificate as a user certificate into the client’s wallet.

orapki wallet add -wallet ~/wallet_directory/dist_client -user_cert
-cert ~/wallet_directory/dist_client_Cert.pem -pwd welcome123

The wallet creation is complete.

Set Up Trusted Certificates

There are two types of TLS connections. To use TLS, there are certain requirement for
the certificate trust chain.

The wss communication protocol is used in the Distribution Service for the Distribution
Path to meet the needs of secure communication using TLS in Oracle GoldenGate
Microservices Architecture.

Note:

Adding a non-CA self-signed certificate as a trusted certificate using Service
Manager's Certificate Management web interface's CA Cert section is not
supported and will result in an error.

Setting up the server's CA certificate as a Trusted Certificate for External
Identity Provider

To work with an external Identity Provider (IDP) such as IDCS, you need to upload the
IDP server's (IDCS) CA certificate as a trusted certificate.

See Manage Certificates for Deployments.

Distribution Service and Receiver Service

Both the Distribution Service and Receiver Service need certificates. The Distribution
Service uses the certificate in the client wallet location under outbound section. The
location of that wallet can be found in the deploymentConfiguration.dat file under
deployment_home/etc/conf.

The certificates in both wallets need to be trusted by each other, so either both need to
have commercial certificates issued by Classic Architecture, or they have to trust each
other for self-signed certificates.

For self-signed certificates, you can choose from one of the following:

• Have both certificates signed by the same root certificate. (rootCA)

• The other side’s certificate is added to the local wallet as a trusted certificate

For the Receiver Service, the certificate is in the wallet for the local wallet location,
which is also in the deploymentConfiguration.dat file.

Chapter 10
Create Certificates for a Secure Deployments

10-6

On the Distribution Service, if the hostname used in the Receiver Service’s certificate can’t be
routed correctly, /etc/hosts file should be updated with the correct IP address for that host.
The Distribution Service will use this IP address to communicate with the Receiver Service
once it accepts the certificate from the Receiver Service.

Using the Reverse Proxy (NGINX) with the Distribution Service and Receiver Service

You only need to add the Nginx certificate to the Distribution Service’s client wallet as a
trusted certificate. Usually the certificate used by NGINX is self-signed.

The host name in the Nginx certificate should also be routable. If not, on the Distribution
Service, /etc/hosts file needs to be updated to reflect the correct IP address for that host
name.The Distribution Service will use the host name in the certificate to communicate to the
target. If the NGINX certificate doesn’t have a valid host name in it, but has a Subject
Alternative Name record, then the host name is the DNS name there.

See Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices

Two Deployments: Create External, Trusted Server and Client Certificates

Each system (deployment) has its own set of Root, server, and client certificates, which are
created using the orapki utility. These certificates can be part of wallets such as wallet_A and
wallet_B.

In addition to these certificates, there is another set of external (extern) certificates for
situations where the distribution path needs to be established between different source and
target deployments, such as source A and target B.

Here's how you can create trusted, server, and client certificates for two different secure
Oracle GoldenGate Microservices Architecture deployments:

• Add a Target Server Certificate as a CA Certificate

Add a Target Server Certificate as a CA Certificate
Use the following steps to create and manage server certificates as CA certificates for a
target deployment that is different from the source deployment.

From these steps, you will be able to create a client certificate client_src_to_trg of the type
rootCA_extern, which are generated using OpenSSL.

Source Deployment
At the source deployment side, perform the following tasks:

1. In the Service Manager, navigate to the Certificate Management page.

2. Under the CA Certificates Shared section, click the plus sign (+) to add the certificate of
the target server. This is the server certificate from the target side that was earlier
created with orapki for the initial setup. See Manage Certificates for Deployments for
steps to add the certificate.

Chapter 10
Create Certificates for a Secure Deployments

10-7

Note:

The source Distribution Service must trust the server certificate used by
the target. This needs to be added to the source secure store.

3. Under the Client Certificates section, click the plus sign (+) to add the client
certificate (client_SRC_to_TRG), which will be used for the distribution path
between source and target side.

You might notice that this client certificate is signed by another trusted Root
certificate (rootCA_extern). It is a client certificate that is created outside of the
initial setup that was created earlier with orapki.

Both, the root- and client certificates that are signed by this Root, are
independent of the certificates from the initial deployment of the Oracle
GoldenGate source and target instances.

Here's a sample of the client certificate configuration (client_src_to_trg.cfg) file:

[req]
default_bits = 4096
default_md = sha512
prompt = no
encrypt_key = no
distinguished_name = req_distinguished_name
[req_distinguished_name]
commonName = "client_src_to_trg"
[my_extensions]

Here are sample rootCA_extern.cfg configuration file:

[req]
default_bits = 4096
default_md = sha512
prompt = no
encrypt_key = no
distinguished_name = req_distinguished_name
req_extensions = v3_req
x509_extensions = v3_ca
x509_extensions = usr_cert
[req_distinguished_name]
#countryName = "US"
#stateOrProvinceName = "CA"
#localityName = "Redwood City"
#streetAddress = "400 Oracle Pkwy"
#organizationName = "Oracle USA Inc"
#organizationalUnitName = "Security"
commonName = "rootCA_extern"
#emailAddress = "rootsecurity@oracle.com"
[v3_req]
basicConstraints=CA:TRUE
[v3_ca]
basicConstraints=CA:TRUE

Chapter 10
Create Certificates for a Secure Deployments

10-8

[usr_cert]
basicConstraints=CA:TRUE
[my_extensions]

Target Deployment
For a secure target deployment, perform the following tasks:

1. Under the CA Certificates section, click the plus sign (+) to add the trusted Root
certificate (rootCA_extern) that was used to sign the previously added client certificate
from the source side.

The target (Receiver Service) must trust either the client certificate or the issuer of the
client certificate. Therefore, it needs to be added to the target secure store.

Note:

This step is only needed if the target deployment is a secure deployment.
Otherwise, if the target deployment is an unsecure deployment that has
NGINX, this step is not needed because NGINX default configuration trusts all
the clients and doesn’t verify clients' certificate.

2. From the Administration Service, add the user and role of the client that is used later for
adding a distribution path. This user uses certificates for authorization. See Add Users to
a Deployment for steps to add users and roles.

Both the client certificate and the trusted Root certificate are independent from the
certificates that were added in the initial deployment of the Oracle GoldenGate source and
target instances. The certificates are created with OpenSSL commands.
Here's a sample rootCA certificate:

rootCA certificate
openssl req -x509 -newkey rsa:4096 -keyout rootCA_extern.key -out
rootCA_extern.cert -days 73000 -nodes -config rootCA_extern.cfg

client certificate
openssl req -new -newkey rsa:2048 -nodes -keyout client.key -out client.csr -
config client.cfg
openssl x509 -req -days 73000 -in client.csr -CA rootCA_extern.cert -CAkey
rootCA_extern.key -CAcreateserial -out client.cert

Creating the Distribution Path
After completing the setup of your rootCA_extern certificate on the target deployment, you
can add a distribution path at the source deployment using the client certificate that was
created for routing data from the source to the target system.
At the target deployment, you have to add a user with a specific role. This user is
CN=client_src_to_trg.
See Add a Distribution Path for steps to create your distribution path.

Chapter 10
Create Certificates for a Secure Deployments

10-9

Note:

You will need to select the Target Authentication Method as Certificate to set
up the distribution path between the source and target deployment.

Encrypting Trail Files
Learn about using different Oracle key management systems available with Oracle
GoldenGate.

Topics:

• Generate Master Keys and Encryption Key

• Key Management Service (KMS)

• Create and Apply Encryption Profile in a Deployment

• Using Oracle Key Vault Trail File Encryption in Oracle GoldenGate

• Using OCI KMS Trail File Encryption in Oracle GoldenGate

Generate Master Keys and Encryption Key
You can generate the master key and encryption keys using the Key Management tab
in the Configuration page of the Administration Service.

Using Master Keys

If you want to encrypt your data, then create a Master Key by clicking the + sign in the
Master Key section. The master key is generated automatically.

You can change the status of the key to Available or Unavailable, by clicking the edit
icon in the Master Key table. You can also delete the Master Key from the table by
clicking the delete icon.

Using the Encryption Keys

To use this method of data encryption, you configure Oracle GoldenGate to generate
an encryption key and store the key in a local ENCKEYS file. The ENCKEYS file must be
secured through the normal method of assigning file permissions in the operating
system. This procedure generates an AES encryption key and provides instructions for
storing it in the ENCKEYS file.

To generate the ENCKEYS files, click the + sign in the Encryption Keys section. The
Encryption Key is generated.

Key Management Service (KMS)

Oracle GoldenGate supports Oracle Key Vault (OKV) and Oracle Cloud Infrastructure
Key Management Service (OCI KMS) methods to manage encryption keys.

Oracle GoldenGate Microservices Architecture supports KMS to provide scalability in
managing encryption keys and credentials along with security such that the key isn't
stored or managed by Oracle GoldenGate.

Chapter 10
Encrypting Trail Files

10-10

Oracle GoldenGate uses the encapsulation approach to encrypt trail files. It generates a data
encryption key (DEK) for each trail file, known as local key. An encrypted version of the local
key is included in the trail file header and a master key is used to encrypt the data encryption
key. This process is called encapsulation encryption.

In Oracle GoldenGate, a KMS can be used to manage cryptographic keys within an
enterprise.

• Why Use KMS to Store Oracle GoldenGate Encryption Keys?

Why Use KMS to Store Oracle GoldenGate Encryption Keys?

Oracle GoldenGate encryption of trail files is enhanced by using OKV or OCI KMS as the Key
Management Service (KMS) to store master keys.

Each time Oracle GoldenGate creates a trail file, it generates a new encryption key
automatically. This encryption key encrypts the trail contents. The master key encrypts the
encryption key. This process of encrypting encryption keys is known as key wrap and is
described in standard ANS X9.102 from American Standards Committee.

Key management refers to managing cryptographic keys within an enterprise. It deals with
generating, exchanging, storing, using, and replacing keys as required. A KMS also includes
key servers, user procedures, and protocols. The security of the enterprise is dependent
upon successful key management.

The advantages of using KMS with Oracle GoldenGate are:

• Centralized lifecycle management of master keys. You'll be able to generate and upload
master keys to Oracle Key Vault directly using custom attributes and perform lifecycle
maintenance tasks within the KMS directly.

• Oracle GoldenGate doesn't need to store the master keys locally and is not involved in
the lifecycle management of the master keys.

• Oracle GoldenGate can leverage from the specialized KMS features that provide key
management with several layers of security.

Create and Apply Encryption Profile in a Deployment

In Oracle GoldenGate, the encryption profile is used to define, which trail encryption method
to use.

An encryption profile is the configuration information that is used to retrieve a master key
from a local wallet or a Key Management Service (KMS) such as OKV or OCI KMS.
Encryption profile configuration is only available with Microservices Architecture.

Following methods are available for managing encryption of master keys:

• Local Wallets

• Key Management Systems:

– Oracle Key Vault

– Oracle Cloud Infrastructure

Chapter 10
Encrypting Trail Files

10-11

Each Extract and Replicat process is associated with an encryption profile. The default
encryption profile is stored in the local wallet, if you haven't specified any other
encryption profile.

If you use a different encryption profile, which uses a KMS, then it includes all the
information necessary to connect and authenticate to the KMS server. It also contains
the details necessary to retrieve a particular master key that will be used for encryption
and decryption. Any KMS uses an authentication token to access their APIs. Oracle
GoldenGate Microservices Architecture stores this access token as a credential. This
credential is created using the encryption profile in Microservices Architecture.

Oracle Golden Gate processes need to make a request to the Key Management
Service (KMS) each time a trail file is opened.

• For Oracle Key Vault (OKV), the encryption profile parameter time to live (TTL) is
used to keep the master key on memory until TTL has been reached.

• In OCI KMS, the actual master key is never returned and instead the client sends
the data to encrypt or decrypt. Thereafter, the server returns the result to the client.

An encryption profile is used by the Oracle GoldenGate processes to encrypt or
decrypt depending on whether the processes are writing or reading trail files.

• Extract: Encrypt (writer)

• Replicat: Decrypt (Reader)

• Distribution Service Path (DISTPATH): Encrypt/Decrypt (Writer/Reader).

• LogDump: Decrypt (Reader)

• Configure an Encryption Profile

Configure an Encryption Profile

Oracle GoldenGate Administration Service provides options to set up encryption
profiles for managed Extract and Replicat processes.

To set up the encryption profile, click Profile from the navigation pane and then select
the Key Management System (KMS) tab.

1. By default, the Local Wallet profile is created. If you select the Local Wallet
encryption profile, you'll see its options, which you can edit using the pen icon.

Options Description

Description A description of the local wallet.

Default Profile This option is enabled by default. You can
select to disable it.

Encryption Profile Type This option cannot be changed for the local
wallet.

Masterkey Name OGG_DEFAULT_MASTERKEY default master
key for the local wallet. You cannot edit this
value.

Masterkey Version This is the master key version number. The
value is set to LATEST and cannot be
changed.

Chapter 10
Encrypting Trail Files

10-12

2. Click the + sign next to Profile to create an encryption profile by specifying the following
details:

Option Description

Profile Name Name of the encryption profile

Description Describe the encryption profile.

Default Profile If you want to make this profile the default, then
enable this option.

Encryption Profile Type Available options are Oracle Key Vault (OKV)
and Oracle Cloud Infrastructure (OCI).

3. Before you set up OKV, you need to perform a client installation. See Step 1: Configure
the Oracle Key Vault Server Environment in the Oracle Key Vault Administrator's Guide.

OKV Configuration Options Options to set up Oracle Key Vault (OKV)

KMS Library Path Specify the directory location where Oracle Key
Vault is installed.

Oracle Key Vault Version Specify the supported Oracle Key Vault version.

Masterkey Name Specify the name of the master key.

Time to Live Time to live (TTL) for the key retrieved by
Extract from KMS. When encrypting the next
trail, Extract checks if TTL has expired. If so, it
retrieves the latest version of the master key.
The default is 24 hours.

4. For configuring the encryption profile for OCI KMS, see Using OCI KMS Trail File
Encryption in Oracle GoldenGate.

Using Oracle Key Vault Trail File Encryption in Oracle GoldenGate

Learn about the benefits of using Oracle Key Vault (OKV) with Oracle GoldenGate
Microservices Architecture. Determine the system requirements, processes and parameters
available with Oracle GoldenGate for configuring OKV with Oracle GoldenGate.

Topics:

• Oracle Key Vault Capabilities

• Prerequisites for Configuring OKV on Oracle GoldenGate

• Requirements for Setting up an Encryption Profile

• Client Behavior Against Different Key States for Oracle Key Vault

Oracle Key Vault Capabilities

The following table provides the behavior and capabilities of Oracle Key Vault (OKV).

For more information about configuring OKV, see Installing and Configuring Oracle Key
Vault .

Chapter 10
Encrypting Trail Files

10-13

KMS Name KMS Type Support Tags Support Importing of
Keys

Oracle Key Vault Keyname and custom
attributes for
versioning

Yes Yes

Prerequisites for Configuring OKV on Oracle GoldenGate

Learn the prerequisites for setting up OKV with Oracle GoldenGate.

The following steps belong to the OKV configuration on the machine where the Oracle
GoldenGate instance is running:

1. Download the okvrestservices.jar from the OKV server, where Oracle
GoldenGate is deployed as the same system user as the deployment.

2. Download and install the endpoint file, okvclient.jar from the OKV server, where
Oracle GoldenGate is deployed as the same system user as the deployment. For
example,

OS> java -jar okvclient.jar -d /u01/app/oracle/OKV
3. Create the key. The name of the wallet is provided by the OKV administrator. The

following example show how the key is created:

OS> java -jar okvrestservices.jar kmip
 --config /u01/app/oracle/OKV/conf/okvclient.ora
 --service create_key
 --algorithm AES
 --length 256
 --mask
"ENCRYPT,DECRYPT,TRANSLATE_ENCRYPT,TRANSLATE_DECRYPT,TRANSLATE_WRAP,
TRANSLATE_UNWRAP"
 --wallet OKV_WALLET76876ABA-B06D-4F35-BF7C-D9306D29764B

Alternatively, you can register your own key, as shown in the following example:

OS>java -jar okvrestservices.jar kmip
 --config ./conf/okvclient.ora --service reg_key -
ENCRYPT,DECRYPT,TRANSLATE_ENCRYPT,TRANSLATE_DECRYPT,TRANSLATE_WRAP,T
RANSLATE_UNWRAP
 --wallet OGG_WALLET
 --object /u01/key.txt64B3AAD0-BE77-1821-
E053-0100007FD178

4. Set the OKV_HOME environment variable.

OS> setenv OKV_HOME /u01/app/oracle/OKV
The sub-directory structure contains the necessary libraries, binaries, and
configuration files for the OKV environment. See Oracle Key Vault Installation and
Configuration in the Oracle Key Vault Administration Guide for details about the
configuration within the OKV server.

Chapter 10
Encrypting Trail Files

10-14

https://docs.oracle.com/en/database/oracle/key-vault/18.1/okvag/okv_install.html
https://docs.oracle.com/en/database/oracle/key-vault/18.1/okvag/okv_install.html

5. Activate the key as shown in the following example:

OS> java -jar okvrestservices.jar kmip
 --config /u01/app/oracle/OKV/conf/okvclient.ora
 --service activate
 --uid 76876ABA-B06D-4F35-BF7C-D9306D29764B
INFO: Success

6. Add the Oracle GoldenGate related key attributes (KeyName, KeyVersion) to the
configuration. The key name must match the master keyname in the KMS encryption
profile created within Oracle GoldenGate. The key value must match the version number
of the masterkey.

OS> java -jar okvrestservices.jar kmip
 --config /u01/app/oracle/OKV/conf/okvclient.ora
 --service add_custom_attr
 --uid 76876ABA-B06D-4F35-BF7C-D9306D29764B
 --attribute x-OGG-KeyName
 --type TEXT
 --value OGG_Masterkey
INFO: Success

OS> java -jar okvrestservices.jar kmip
 --config /u01/app/oracle/OKV/conf/okvclient.ora
 --service add_custom_attr
 --uid 76876ABA-B06D-4F35-BF7C-D9306D29764B
 --attribute x-OGG-KeyVersion
 --type TEXT
 --value 1
INFO: Success

7. Use okvutil to list the configuration setting and check the endpoint status. As shown in
the following example:

OS>okvutil list -v 4
okvutil version 18.2.0.0.0
Endpoint type: Oracle (non-database)
Configuration file: /u01/app/oracle/OKV/conf/okvclient.ora
Server: 10.245.64.45:5696 10.245.64.46:5696
Standby Servers:Read Servers: 10.245.64.48:5696
Auto-login wallet found, no password needed
Trying to connect to 10.245.64.45:5696 ...
Connected to 10.245.64.45:5696.
Unique ID Type Identifier
72B673E8-840B-4AD6-8400-CB77B68D74B5 Template Default template for OGG_EP
76876ABA-B06D-4F35-BF7C-D9306D29764B Symmetric Key -

The next steps are managed within Oracle GoldenGate and are shown as an implementation
from the Admin Client.

Requirements for Setting up an Encryption Profile

Chapter 10
Encrypting Trail Files

10-15

This topic describes the requirements when configuring an encryption profile in Oracle
GoldenGate.

You can create multiple encryption profiles within a deployment, but an Oracle
GoldenGate process (Extract, Replicat, distribution path) can only use one encryption
profile at a time. For distribution paths using filtering, decryption is done to apply the
filters but the output trail file remains encrypted. In PASSTHRU, a distribution path will
not attempt to use the encryption profile or decrypt the trail file unless explicitly
specified.

Any of the existing encryption profiles within a deployment can be set as the default
profile. This default profile is only relevant during the creation of an Extract, Replicat or
Distribution Path processes. If an encryption profile is not explicitly specified during the
creation of a process, the current default profile is assigned to the new process.
Changing the default profile does not update the encryption profile assigned to any
existing Oracle GoldenGate processes.

Note:

It is advised not to change the encryption profile or master key of a process
that has already processed trail files.

The Administration Service web interface allows you to manage your encryption
profiles. You cannot modify an encryption profile. If you need to change it, you must
delete and add a new profile using the Administration Service.

You can configure encryption profiles from the Administration Service or the Admin
Client.

Tool to Set up Encryption Profile Description

Administation Service To configure the encryption profile using the
Administration Server, see Configure an
Encryption Profile.

Admin Client The Admin Client commands used to set up
the encryption profile for Extract, Replicat, and
Distribution Path, include:

ADD ENCRYPTIONPROFILE,

ALTER ENCRYPTIONPROFILE,

DELETE ENCRYPTIONPROFILE,

INFO ENCRYPTIONPROFILE.

In addition, the ADD or ALTER the Extract,
DISTPATH, or Replicat commands have been
modified to include the parameter
ENCRYPTIONPROFILE encryption-
profile-name.

To know more, see Admin Client Command
Line Interface Commands in Command Line
Interface Reference for Oracle GoldenGate.

Chapter 10
Encrypting Trail Files

10-16

Client Behavior Against Different Key States for Oracle Key Vault
This topic describes the relative behavior of the of the reader or writer client processes
depending on the different encryption key states.

A key can be in the following states:

Key State Trail Writer (encryption) Trail Reader (decryption)

Active Trail writer chooses the highest
version number with Active state
for encryption.

Trail reader can use this key and
version number to decrypt the
trail.

Preactive Trail writer ignores and does not
consider the key version number
with these states.

Not Applicable

Deactivated None Trail file reader retrieves and
decrypts the trail if the key and
version number is deactivated or
compromised.

Compromised None Trail file reader retrieves and
decrypts the trail if the key and
version number is deactivated or
compromised.

Destroyed Non Trail file reader generates an
error and abends if the key and
version number required to
decrypt is in the destroyed or
destroyed-compromised state.

Destroyed-Compromised None Trail file reader raises an error
and abends if the key and
version number required to
decrypt is in the destroyed or
destroyed-compromised state.

Using OCI KMS Trail File Encryption in Oracle GoldenGate
Learn about the prerequisites, requirements, and steps to configure an OCI KMS encryption
profile in Oracle GoldenGate to allow trail file encryption using OCI KMS with Extract,
Replicat, or Distribution Path processes.

Topics:

• Oracle GoldenGate with OCI KMS Workflow

• Prerequisites for Connecting Oracle GoldenGate with OCI KMS

• Configure OCI KMS to Connect with Oracle GoldenGate

• Configure Oracle GoldenGate Processes to Enable OCI KMS Trail File Encryption

• Test Data Replication with Trail File Encryption Using OCI KMS

Oracle GoldenGate with OCI KMS Workflow

Chapter 10
Encrypting Trail Files

10-17

The following diagrams explains how Oracle GoldenGate works with OCI KMS for trail
file encryption.

This diagram shows the source deployment EAST containing an Extract associated
with the OCI KMS encryption profile. To create the encryption profile in Oracle
GoldenGate, the OCI user needs to access the OCI tenancy and get some values
from the OCI vault and generate the master key and the API key for the OCI user.

The OCI vault contains information about the tenancy OCID, user OCID, and
cryptographic endpoint URL used for downloading the digital CA certificate. The
master key associated with the vault is also generated from the OCI vault. The API
key pair is also required, which you can generate from the OCI tenancy or upload an
existing key pair. See Configure OCI KMS to Connect with Oracle GoldenGate for
details.

After you have saved all the values from the OCI tenancy, you can create an
encryption profile in Oracle GoldenGate Administration Service. This encryption profile
is then associated with the Extract and the Extract parameter file applies the
encryption algorithm (AES 128, AES 192, AES 256) that you have decided to apply,
using the ENCRYPTTRAIL parameter. The encrypted trail file is transported by the
DISTPATH to the target deployment (WEST). The Replicat parameter file on the target
deployment (WEST) includes the DECRYPTTRAIL parameter, which allows decrypting
the trail file. See Configure Oracle GoldenGate Processes to Enable OCI KMS Trail
File Encryption .

Prerequisites for Connecting Oracle GoldenGate with OCI KMS
Perform the tasks in this section before you begin configuring an OCI KMS encryption
profile in Oracle GoldenGate.

Topics:

• Download the CA Certificate using the Cryptographic Endpoint

• Add the Digital CA Certificate as a Trusted CA Certificate in Oracle GoldenGate

Chapter 10
Encrypting Trail Files

10-18

Download the CA Certificate using the Cryptographic Endpoint
To perform the steps in this topic, you need to have a Vault in your OCI teanancy where the
cryptographic endpoint URL is mentioned. This URL is required to download the digital CA
certificate, for establishing a trusted connection from Oracle GoldenGate to the OCI teanancy.
If you don't have an existing vault, then see Create or Access the OCI Vault, and return to this
topic for steps to download the CA certificate using the cryptographic endpoint.

If you have an existing Vault in your OCI tenancy, then follow the steps provided in this topic,
to download the CA certificate using the cryptographic endpoint.

1. Navigate to Identity & Security page from the left-navigation pane and select Vault to
open the Vault Information page.

2. From the Vault Information page, copy the cryptographic endpoint value and OCID.

3. Open a web browser and paste the cryptographic endpoint value in the browser URL bar.
The browser does not display any page. However, you can click the Connection is
secure to view the CA certificate.

This CA certificate is required by Oracle GoldenGate to be able to trust this OCI tenancy
when connecting to it.

4. Go to the Downloads section of the web browser. The CA certificate are listed here.

Chapter 10
Encrypting Trail Files

10-19

5. Click Export to download the Root certificate.

Tip:

Keep the same directory for downloading the API key and the Root
certificate.

Add the Digital CA Certificate as a Trusted CA Certificate in Oracle GoldenGate
The digital CA certificate which you downloaded previously using the cryptographic
endpoint URL, needs to be added to the Oracle GoldenGate source deployment as a
trusted CA certificate. See Set Up Trusted Certificates.

Note:

In OCI GoldenGate Service, you can skip this step as the CA certificate is
already added as part of the service.

Chapter 10
Encrypting Trail Files

10-20

From the Oracle GoldenGate Service Manager, perform the following steps to add the digital
CA certificate as a Trusted CA certificate for the source deployment:

1. Log in to Oracle GoldenGate Service Manager.

2. From the left-navigation pane, select the Certificate Management option.

As of now, there is no certificate added as a trusted certificate to connect to the specific
OCI tenancy. You will need to add the root certificate that you had downloaded in step of

3. Add the root certificate as a trusted certificate to the CA Certificates in the Oracle
GoldenGate deployment. This enables Oracle GoldenGate to trust a connection with the
specific OCI tenancy. Also see, Add a CA Certificate.

Configure OCI KMS to Connect with Oracle GoldenGate
From the OCI KMS tenancy, certain values are needed to set up a connection between
Oracle GoldenGate and OCI KMS. These values are:

• Tenancy ID

• Cryptographic Endpoint

• User OCID

• API Key

Chapter 10
Encrypting Trail Files

10-21

Before configuring Oracle GoldenGate to connect with OCI KMS, you need to log in to
the OCI tenancy to perform the following tasks:

• Create a vault, if not already created and get the cryptographic endpoint and
User OCID values. See

• Create and download an API private key pair and information associated with
the API key such as the fingerprint and API key value.

• Download the CA certificate using the cryptographic endpoint. This step is
also a prerequisite for configuring Oracle GoldenGate encryption profile. See
Download the CA Certificate using the Cryptographic Endpoint for details.

Use the following steps to view and save the OCI KMS values, which would be
required while setting up Oracle GoldenGate processes for connecting to OCI KMS:

Topics:

• Create or Access the OCI Vault

• Generate the Master Key and Download the API Private Key

Create or Access the OCI Vault
Access the vault if it already exists in your OCI tenancy to determine the values for:

• Cryptographic Endpoint: This is the link from where you need to obtain the
trusted certificate. Copy this link for use in the later steps.

• OCID: This is the unique ID for your OCI environment. It will be required while
setting up the encryption profile in Oracle GoldenGate.

Use the following steps to create and access the vault:

1. Log in to your Oracle Cloud account.

2. From the left-navigation pane of the Oracle Cloud home page, click the Identity &
Security option and then select Vault.

3. Click Create Vault to create a vault, if you haven't already created a vault. In this
case, the vault (WSJCVAULT) is already created.

4. Click the vault name, for example WSJCVAULT shown in the following image, to
access the information regarding vault ocid, cryptographic endpoint, and master

Chapter 10
Encrypting Trail Files

10-22

key details. In the following image, the General Information section contains the ocid
and cryptographic endpoint details and the Master Encryption Keys in the
Compartment_WH section displays the master key details.

From this page, you get the values required to set up a trusted connection between
Oracle GoldenGate and OCI KMS. Copy this information to a notepad for reference.

Generate the Master Key and Download the API Private Key
The following steps assume that you are already logged into your OCI tenancy.

Generate Master Key

To create the master key:

1. Navigate to the Vault Information page.

2. Click Create Key to display the Create Key page.

3. Specify the name of the Master key and encryption algorithm among other details to
create a master key, as shown in the following image.

4. Click Create Key. This generates the master key that would be used by Oracle
GoldenGate.

Chapter 10
Encrypting Trail Files

10-23

Generate API Key

To connect the user with OCI KMS, create an API key using the following steps:

1. From the vault information page, click the User Settings icon on the top-right
corner.

2. Click the API Key option from the Resource section of the left panel to open the
API Keys section.

3. Click Add API Key to open the Add API Key dialog box.

4. Select the Generate the API key Pair option to create a key pair for the OCI user
to connect with OCI KMS. You also have the option to upload an existing public
key file using the Choose Public Key File option or paste the value of public key

Chapter 10
Encrypting Trail Files

10-24

in the text box using the Paste Public Key option.

5. Click Download Private Key and keep it in a known location. You can rename the file to
a user-friendly name such as API_private_key.pem.

6. Click Add. This displays the Configuration File Preview dialog box, which contains all
information associated with the API key such as the fingerprint, tenancy, region and other
details. Copy and save these values in notepad.

Tip:

Maintain the same notepad file to store information about the API key's
fingerprint, tenancy value and the information about the cryptographic endpoint
and OCID values for the OCI vault.

Chapter 10
Encrypting Trail Files

10-25

7. Click Close to return to the API Keys section where the new API key is listed.

The next step is to set up Oracle GoldenGate encryption profile using all these details
and then apply the encryption profile to Extract, Replicat processes, as needed. See
the Configure Oracle GoldenGate Processes to Enable OCI KMS Trail File Encryption
for next steps.

To learn about the OCI KMS encrypt and decrypt endpoints, see /encrypt and /decrypt
endpoint documentation in Oracle Cloud Infrastructure Documentation.

Configure Oracle GoldenGate Processes to Enable OCI KMS Trail File
Encryption

Before beginning the steps in this section, make sure that you have completed the
Prerequisites for Connecting Oracle GoldenGate with OCI KMS .

Chapter 10
Encrypting Trail Files

10-26

https://docs.cloud.oracle.com/iaas/api/#/en/key/release/EncryptedData/Encrypt
https://docs.cloud.oracle.com/iaas/api/#/en/key/release/DecryptedData/Decrypt

In the Oracle GoldenGate interface, perform the following tasks when configuring Oracle
GoldenGate to set up a trusted connection with OCI KMS:

• Create an encryption profile using the OCID, cryptographic endpoint, API key, tenancy,
and fingerprint values.

• Apply the encryption profile to Extract, Distribution Path, or Replicat processes.

Use the following steps to apply OCI KMS-based trail encryption from Oracle GoldenGate
Microservices Architecture:

Topics:

• Create Encryption Profile in Oracle GoldenGate Processes

• Apply the OCI KMS Encryption Profile for Extract

Create Encryption Profile in Oracle GoldenGate Processes
Use the following steps to apply OCI KMS-based trail file encryption from Oracle GoldenGate
Microservices Architecture web interface:

1. Log in to the Administration Service and select the Profile option from the left-navigation
pane.

2. Click the Key Management System (KMS) tab.

3. Open the notepad file where you saved the details for the OCI KMS API key and crypto
endpoint details. See step 8 for reference from the Configure OCI KMS to Connect with
Oracle GoldenGate. The following image displays the values obtained from API

Chapter 10
Encrypting Trail Files

10-27

Configuration File Preview dialog box:

The information would include the following values:

• Crypto Endpoint URL: This value is displayed in the Vault page of OCI KMS.

• Tenancy OCID: This value can be obtained from the API values that were
copied in the notepad file.

• Key OCID: To obtain this value:

a. Go to the OCI Vault page and click the API key to open the key details
page where the OCID for the API key is provided.

b. Copy the API private key OCID from the Key Details page.

Chapter 10
Encrypting Trail Files

10-28

• User OCID: Obtain this value from the API configuration details.

• API Private Key: Upload the API Private Key from the location where you saved it
while performing tasks in Configure OCI KMS to Connect with Oracle GoldenGate.

• API Key Fingerprint: Obtain this value from the API configuration details.

4. Validate the encryption profile.

You will see a message box similar to the following confirming that the validation of the
encryption profile was successful.

Apply the OCI KMS Encryption Profile for Extract
Use the following steps to implement the OCI KMS encryption profile for Extract:

1. From the Administration Service Overview page, click Add Extract.

2. After providing other details for the Extract, scroll down and expand the Encryption
Profile section and select OCIKMS profile, such as OCIKMST1.

Chapter 10
Encrypting Trail Files

10-29

3. In the Extract parameter file, include the ENCRYPTTRAIL AES256 option. The Extract
parameter file would look similar to the following:

EXTRACT ktst
USERIDALIAS ggwest DOMAIN OracleGoldenGate
ENCRYPTTRAIL AES256
EXTTRAIL tt
TABLE WPDB.U1.*;

4. Click Create to add Extract and then start the Extract.

5. On the target host, select Add Replicat from the Administration Service Overview
page to add a Replicat.

6. Select the type of Replicat and populate the Replicat details.

7. Scroll to the Encryption Profile section, and select the same OCIKMS encryption
profile (in this case OCIKMSTS1). Click Next.

8. In the Replicat parameter file, include the DECRYPTTRAIL option. The Replicat
parameter file looks similar to the following:

REPLICAT renct
USERIDALIAS ggeast DOMAIN OracleGoldenGate
DECRYPTTRAIL
MAP WPDB.U1.*, TARGET U2.*;

9. Create and then start the Replicat process.

10. If you want to apply the encryption profile on a Distribution Path (DISTPATH), then
you need to do the following steps:

a. Create the OCI KMS encryption profile on the target host.

b. Create the DISTPATH and apply the OCI KMS encryption profile to it. See Add
a Distribution Path.

c. Use the same encryption profile to decrypt the trail on the target. This implies
that you use the encryption profile created on the target host, while adding a
Replicat.

The next section describes steps to test that the committed transactions are captured
and applied when using an encryption profile

See ADD ENCRYPTIONPROFILE, ALTER ENCRYPTIONPROFILE if you want to set up the
encryption profile using the Admin Client.

Chapter 10
Encrypting Trail Files

10-30

Test Data Replication with Trail File Encryption Using OCI KMS
Test the trail file encryption on the source side and trail file decryption on the target side using
the steps given in this topic.

Topics:

• Test Trail File Encryption in the Source Deployment

• Test the Trail File Decryption on the Target Deployment

Test Trail File Encryption in the Source Deployment
In Configure Oracle GoldenGate Processes to Enable OCI KMS Trail File Encryption , the
Extract is set up with the OCI KMS encryption profile.

In this example, you will be able to confirm that the encryption profile is being used by Extract
by viewing the Extract report file.

To check if Extract is using the OCI KMS encryption profile:

1. From the Administration Service, click Extract, Details, Report tab to view the Extract
report file.

2. For troubleshooting purposes, you can check if the trail file is encrypted at source, using
Logdump commands. See the Scanning a Trail File to Check for Trail File Encryption
from the Logdump Reference for Oracle GoldenGate.

Test the Trail File Decryption on the Target Deployment
On the target side, the following example tests that Replicat applies the 3000 transactions
that were captured from source. To make sure that the Replicat is using the OCI KMS
encryption profile to decrypt the trail file, check the Replicat report file.

1. From the Administration Service Overview page, click Replicat, Details, Statistics.

Chapter 10
Encrypting Trail Files

10-31

2. On the Statistics page, the applied transactions are displayed as shown in the
following figure:

3. Check the Replicat report file to see if the encryption profile is implemented and
used by the Replicat.

Tip:

To check if the trail data is received in encrypted format on the target,
you can run Replicat without the DECRYPTTRAIL parameter. In this
case, the Replicat report file displays that the trail data is encrypted and
could not be decrypted without proper key setting.

With these use cases, you can test that the trail file on the Extract side is using OCI
KMS encryption profile to encrypt the trail data. On the Replicat side, the OCI KMS
encryption profile is used to decrypt the trail data and apply the transactions on the
target.

Chapter 10
Encrypting Trail Files

10-32

Streaming Protocols
You will need to select a protocol that would be in place when the Distribution Path transfers
trail files over the network. This configuration setup is done when you create a Distribution
Path in the Distribution Service.

For details about selecting the streaming protocol, see Add a Distribution Path.

While setting up the Distribution Path, if you select USERIDALIAS as the target authentication
method, then you can select from one of the following protocols that would be used for
streaming trail data over the network:

• Secure Web Socket (wss): Secure and recommended protocol.

• Web Sockets (ws): Unsecure deployments.

• Oracle GoldenGate protocol (ogg): Provides interoperability with a non-microservices
deployment.

• The following matrix provides the combinations of streaming protocols used with Oracle
GoldenGate Microservices:

Source/Target MA Non-secure MA Secure

MA Non-secure Supported:
– For MA to MA between

Distribution Service and
Receiver Service, you
need to add a distribution
path.

– Non-secure Distribution
Service to non-secure
Receiver Service is using
the ogg or ws protocol.

– For receiver path or target-
initiated distribution path, it
is reverse on source side.

See the help for ADD
DISTPATH command and for
using the web interface to set
up the path, see Add a
Distribution Path.

Supported:
– Non-secure Distribution

Service can connect to
secure Receiver Service if
the Distribution Service
passes on the appropriate
client certificates.

– For secure target, the wss
protocol is used.

MA Secure NA Supported secure Distribution
Service to secure Receiver
Service using a distribution
path with the wss protocol.

• Authentication Modes Used to Start a Distribution Path

Authentication Modes Used to Start a Distribution Path
Here are the authentication modes used when starting the distribution path from the
Distribution Service to the Receiver Service:

Chapter 10
Streaming Protocols

10-33

Note:

Authorization is minimum for the Operator role.

1. Credentials:

Digest user account created at the target and credentials saved at source, one-
way TLS for wss target server CA certificate must be in source trust store.

2. Client certificate:

Client certificate user created at target and client certificate saved in client at
source certificate store. m-TLS used source validates target server certificate and
target validates source client certificate using the respective CA trust store.

3. OAuth 2.0

Managing Identities in a Credential Store
Oracle GoldenGate uses credential stores to maintain encrypted database passwords
and user IDs and associate them with an alias.

Starting with Oracle GoldenGate 23c, maximum password length has been increased
to 1024 bytes.

It is the alias, not the actual user ID or password, that is specified in a command or
parameter file, and no user input of an encryption key is required. The credential store
is implemented as an autologin wallet within the Oracle Credential Store Framework
(CSF).

Another benefit of using a credential store is that multiple installations of Oracle
GoldenGate can use the same one, while retaining control over their local credentials.
You can partition the credential store into logical containers known as domains, for
example, one domain per installation of Oracle GoldenGate. Domains enable you to
develop one set of aliases and then assign different local credentials to those aliases
in each domain. For example, credentials for user ogg1 can be stored as ALIAS ext
under DOMAIN system1, while credentials for user ogg2 can be stored as ALIAS ext
under DOMAIN system2.

Topics:

• Credential Store Tasks

• Specifying the Alias in a Parameter File or Command

• Encrypting and Storing User Credentials

Credential Store Tasks
1. (Optional) To store the credential store in a location other than the dircrd

subdirectory of the Oracle GoldenGate installation directory, specify the desired
location with the CREDENTIALSTORELOCATION parameter in the GLOBALS file.

2. From the Oracle GoldenGate installation directory, start the command line.

Chapter 10
Managing Identities in a Credential Store

10-34

3. After using the CONNECT command to login to the deployment (when using the Admin
Client), isssue the following commands to perform various tasks with the credential store.

Command Description

ADD CREDENTIALSTORE Adds a database credential store.

ALTER CREDENTIALSTORE Adds each set of credentials to the credential
store.

INFO CREDENTIALSTORE Retrieves information about an Oracle
GoldenGate credential store. This information
includes the aliases that a credential store
contains and the user IDs that correspond to
them. The encrypted passwords in the
credential store are not returned.

DELETE CREDENTIALSTORE Removes a credential store from the system.
The credential store wallet and its contents are
permanently deleted.

Specifying the Alias in a Parameter File or Command
The following commands and parameters accept an alias as substitution for a login
credential.

Table 10-1 Specifying Credential Aliases in Parameters and Commands

Purpose of the Credential Parameter or Command to Use

Oracle GoldenGate database login. USERIDALIAS alias

Oracle GoldenGate database login for a
downstream Oracle mining database.

TRANLOGOPTIONS MININGUSERALIAS alias

Password substitution for {CREATE | ALTER}
USER name IDENTIFIED BY password.

DDLOPTIONS DEFAULTUSERPASSWORDALIAS alias

Oracle GoldenGate database login from the
Admin Client.

DBLOGIN USERIDALIAS alias

Oracle GoldenGate database login to a
downstream Oracle mining database from the
Admin Client.

MININGDBLOGIN USERIDALIAS alias

Encrypting and Storing User Credentials
As you set up and install Oracle GoldenGate, you must occasionally log-in to the database by
using the DBLOGIN command, for tasks such as adding supplemental logging with the ADD
TRANDATA command.

Encrypting the login password is a recommended security measure. However, using a secure
password in the standard DBLOGIN command requires first encrypting it by using the ENCRYPT
PASSWORD command. To avoid this step while protecting the user ID from exposure, you can
create an Oracle GoldenGate credential store before you start setting up and configuring the
user credentials.

Chapter 10
Managing Identities in a Credential Store

10-35

When you use a credential store, you only have to supply an alias for the login
credential whenever you log in with DBLOGIN. The credential store also makes the work
of specifying login credentials for the Extract and Replicat processes easier and more
secure when configuring the parameter files. You can create basic entries in the
credential store at first and then use the management commands to expand it as
needed. You can create an encryption profile using the Admin Client to set up your
credential store.

Configure Kerberos Authentication
Oracle GoldenGate already supports operating system level login for Oracle database.
The support of Kerberos authentication is enabled on top of the existing OS level
external authentication feature.

To enable Kerberos authentication in Oracle GoldenGate for Oracle database, the
following configurations are assumed:

• Kerberos KDC is configured, and Kerberos system is installed locally.

• Kerberos Principals are configured for externally authenticated Database Users.

• Kerberos Caches are configured locally for each Kerberos Principal.

• Oracle Net Services are configured properly.

• Oracle Server parameter files are configured with Kerberos related settings.

• Externally authenticated database users are created with proper privileges.

• TNS_ADMIN environment variable is configured for Oracle GoldenGate.

For Microservices Architecture you need to first create an alias before you use
DBLOGIN:

CONNECT http://localhost:9005 as ggadmin password We1come_$

Using default deployment demo:

ALTER CREDENTIALSTORE ADD USER
/@EAST nopassword alias dbeast

2020-06-22T21:08:33Z INFO OGG-15102 Credential store created.
2020-06-22T21:08:33Z INFO OGG-15114 Credential store altered.

INFO CREDENTIALSTORE

Default domain: OracleGoldenGate
 Alias: dbeast
 Userid: /@EAST

DBLOGIN USERIDALIAS dbeast

Successfully logged into database EAST.

Chapter 10
Configure Kerberos Authentication

10-36

Here, the NET SERVICE is the simple name for the database service. Alternatively, a complete
connect string (descriptor) can be used instead of the Oracle net service name.

Here's an example of a predefined net service name and connect descriptor mapping:

EAST = (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=db1))
(CONNECT_DATA=(SERVICE_NAME=EAST.regress.rdbms.test.us.oracle.com)))

A valid DBLOGIN command without USERID and password can then be specified as:

DBLOGIN USERID /@EAST

To know more, see the ALTER CREDENTIALSTORE, DBLOGIN USERIDALIAS, and MININGDBLOGIN
commands. Also see, USERID | NOUSERID, USERIDALIAS parameters.

On the Oracle GoldenGate side, if you want to issue the DBLOGIN command with different
externally authenticated users, the usage of a default Kerberos cache location is specified in
the SQLNET.ORA file. This is then assumed to be the externally authenticated user for the
database login.

For example, observe a Kerberos Cache location specified in the client side SQLNET.ORA file:

SQLNET.KERBEROS5_CONF = /ade/b/3910426782/oracle/work/krb/krb.conf
SQLNET.KERBEROS5_KEYTAB = /ade/b/3910426782/oracle/work/krb/v5srvtab
SQLNET.KERBEROS5_CC_NAME = /ade/b/3910426782/oracle/work/krb/krb.cc

In this example, the krb.cc is the Kerberos Cache used in this Oracle GoldenGate
deployment. If you open the krb.cc cache file with the oklist utility, you can see that the
default principal is used as the externally authenticated user oratst@US.ORACLE.COM.

ade:[demo_vw2] [demo@test02swv krb]$ oklist krb.cc

Kerberos Utilities for Linux: Version 20.0.0.0.0 - Production on 27-JUN-2020
23:59:13

Copyright (c) 1996, 2021 Oracle. All rights reserved.

Configuration file : /ade/b/3910426782/oracle/work/krb/krb.conf.
Ticket cache: FILE:krb.cc
Default principal: oratst@US.ORACLE.COM

Valid starting Expires Service principal
06/27/20 12:12:34 06/28/20 12:12:34 krbtst/US.ORACLE.COM@US.ORACLE.COM
06/27/20 12:12:34 06/28/20 12:12:34 oratst/
demo2swv.us.oracle.com@US.ORACLE.COM

Topics:

• Configure Kerberos Authentication with MA

Configure Kerberos Authentication with MA
Here are the steps to configure kerberos authentication from the Admin Client.

Chapter 10
Configure Kerberos Authentication

10-37

Connect to the Administration Service from the Admin Client:

CONNECT http://localhost:9005 DEPLOYMENT oggdep as ggadmin PASSWORD
We1come_$

Alter the credentialstore after connecting to the Administration Service of the
deployment oggdep:

ALTER CREDENTIALSTORE ADD USER /@DBEAST NOPASSWORD ALIAS ggeast

Output shows:

2020-06-22T21:08:33Z INFO OGG-15102 Credential store created.
2020-06-22T21:08:33Z INFO OGG-15114 Credential store altered.

Run the following command to verify that the credentialstore was altered successfully:

INFO CREDENTIALSTORE

Output displays the following:

Default domain: OracleGoldenGate
 Alias: ggeast
 Userid: /@DBEAST

When using the MA web UI to create the credential, if the User ID field begins with a /
character, then the password is not required. So, in the User ID field, enter /
connect_string where connect_string is your connection string.

Here, the NET SERVICE is the simple name for the database service. Alternatively, a
complete connect string (descriptor) can be used instead of the Oracle net service
name.

Here's an example of a predefined net service name and connect descriptor mapping:

DBEAST = (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=db1))
(CONNECT_DATA=(SERVICE_NAME=DBEAST.regress.rdbms.test.example.com)))

• Example: Using USERIDALIAS in Parameter File for Kerberos Account

Chapter 10
Configure Kerberos Authentication

10-38

Example: Using USERIDALIAS in Parameter File for Kerberos Account
The following example shows how to set the USERIDALIAS values in the parameter file after
creating the credential store with Kerberos authentication:

ALTER CREDENTIALSTORE ADD USER /@ggadmin NOPASSWORD ALIAS ggadmin

2020-12-17T21:08:33
INFO OGG-15102 Credential store created.2020-12-17T21:08:33
INFO OGG-15114 Credential store altered.

ALTER CREDENTIALSTORE ADD USER /@ggadmin_mining NOPASSWORD ALIAS
ggadmin_mining

2020-12-17T21:09:45
INFO OGG-15102 Credential store created.2020-12-17T21:09:45
INFO OGG-15114 Credential store altered.

INFO CREDENTIALSTORE

Default domain: OracleGoldenGate
Alias: ggadmin
Userid: /@ggadmin

Default domain: OracleGoldenGate
Alias: ggadmin_mining
Userid: /@ggadmin_mining

After altering the credentialstore, you can specify USERIDALIAS options in the parameter file:

USERIDALIAS ggadmin
DOMAIN OracleGoldenGate
TRANLOGOPTIONS MININUSERIDLIAS ggadmin_mining
DOMAIN OracleGoldenGate

Chapter 10
Configure Kerberos Authentication

10-39

11
Administer

This section lists details about Microservices command line interface, parameters files,
configuring bi-directional and procedural replication, managing automatic and manual conflict
detection and resolution, configuring managed processes, mapping and manipulating data,
and handling processing errors.

Topics:

• Microservices: Command Line Interface

• Working with Parameter Files

• Use SQLEXEC for Executing Commands, Stored Procedures, and Queries

• Simplify and Automate Work with Oracle GoldenGate Macros

• Bi-Directional Replication

• Using Procedural Replication

• Automatic Conflict Detection and Resolution

• Manual Conflict Detection and Resolution

• Configure Managed Processes

• Automate Maintenance Tasks

• Mapping and Manipulating Data

• Handling Processing Errors

Microservices: Command Line Interface
To start either the Admin Client, you need to change the current working directory to the
Oracle GoldenGate home directory (OGG_HOME).

Note:

The environment variable OGG_HOME and OGG_VAR_HOME must be set before starting
the Admin Client.

• About Admin Client

• Using Wildcards in Command Arguments

• Using Command History

• Storing and Calling Frequently Used Command Sequences

• Controlling Extract and Replicat

• Deleting Extract and Replicat

11-1

• Specifying Object Names in Oracle GoldenGate Input

About Admin Client

Admin Client is a command line utility. It uses the REST API published by the
microservices to accomplish control and configuration tasks in an Oracle GoldenGate
deployment.

Admin Client is a command line utility that can be used to created, modify, and remove
Oracle GoldenGate processes and can be used in place of the MA web user
interface.The Admin Client program is located in the $OGG_HOME/bin directory,
where $OGG_HOME is the Oracle GoldenGate home directory.

If you need to automate the Admin Client connection with the deployment, you can use
an Oracle Wallet to store the user credentials. The credentials stored must have the
following characteristics:

• Single user name (account) and password

• Local to the environment where the Admin Client runs

• Available only to the currently logged user

• Managed by the Admin Client

• Referenced using a credential name

• Available for Oracle GoldenGate deployments and proxy connections.

Note:

To use the Admin Client for administration tasks, you need the user
credentials that work with both the Service Manager and Administration
Service.

To use the Admin Client, perform the following steps:

1. In Linux, set the OGG_HOME, and PATH environment variable to the following:

export OGG_HOME=ogg_install_location

export PATH=$OGG_HOME/bin:$PATH

If you configure a secure deployment using SSL certificate files (.pem or .der), you
must add the OGG_CLIENT_TLS_CAPATH environment variable. This is required to be
able to connect to the deployment from Admin Client. This variable is used to
specify the location where the certificate files are located on the host. For clients
only needing to validate server certificates, the OGG_CLIENT_TLS_CAPATH
environment variable should refer to a file containing a trusted CA Certificate that
is shared with the server to which the client is expected to connect.

export OGG_CLIENT_TLS_CAPATH =
deployment_rootCA_certificate_location

Chapter 11
Microservices: Command Line Interface

11-2

Note:

For Microsoft Windows, the default certificate file format is .der while all other
platforms use .pem as the default format.

2. Run the command:

[oracle]$ adminclient

The output displays the Oracle GoldenGate Admin Client prompt, where you can connect
to the deployment from the Admin Client:

OGG (not connected) 1>

3. Connect to a deployment or to a proxy server from the Admin Client as a security user.
This is the user you created while adding the deployment for your Oracle GoldenGate
instance using OGGCA.

CONNECT http(s)://localhost:port DEPLOYMENT deployment name AS security
role user PASSWORD password

Note:

If your password to connect to a secure or non-secure deployment from the
Admin Client has an exclamation mark (!) at the end, then you must enter the
password in double quotes when using the CONNECT command in a single line.
Otherwise, the password is not accepted and the connection fails. This is
required for all deployments with a strong password policy.

Syntax:

CONNECT - Connect to an Oracle GoldenGate Service Manager
 |CONNECT server-url [DEPLOYMENT deployment-name]
 |[(AS deployment-credentials-name|
 | USER deployment-user-name)
 |[PASSWORD deployment-password]]
 |[PROXY proxy-uri|
 |[(AS proxy-credentials-name
 |USER proxy-user-name)
 |[PASSWORD proxy-password]]] [!]

See the CONNECT command in the Command Line Interface Reference for Oracle
GoldenGate to know more.

Chapter 11
Microservices: Command Line Interface

11-3

Note:

The deployment credentials cannot be stored as a USERIDALIAS in the
credential store because the Oracle wallet used for storing database
credentials is managed by the Administration Service. Instead, a
separate Oracle wallet is created for the Admin Client. The Oracle wallet
is stored in the users home directory.

The following example shows adding Oracle GoldenGate deployment user to
connect to the deployment from the Admin Client:

ADD CREDENTIALS admin USER ggadmin PASSWORD oggadmin-A1

Output:

2019-02-14T00:35:38Z INFO OGG-15114 Credential store altered.

The following example shows adding Oracle GoldenGate deployment proxy user
to connect to the deployment from the Admin Client:

ADD CREDENTIALS proxy USER proxyadmin PASSWORD oggadmin-A2

Output:

2019-02-14T00:35:48Z INFO OGG-15114 Credential store altered.

OGG (Not Connected)4> CONNECT http://www.example.com:12000
deployment EAST PROXY http:111.1.1.1:3128 as proxyadmin password
oggadmin-A2
Using default deployment 'Local'
OGG (http://www.example.com:12000 Local) 4>

If the credentials are invalid for a proxy connection, then an error similar to the
following error occurs:

ERROR: Proxy server user name 'proxyadmin' or password is incorrect.

4. You can view the full list of Admin Client commands using the HELP command. Use
the HELP SHOWSYNTAX command to view the syntax for specific commands.

Using Wildcards in Command Arguments
You can use wildcards with certain Oracle GoldenGate commands to control multiple
Extract and Replicat groups as a unit. The wildcard symbol that is supported by Oracle
GoldenGate is the asterisk (*). An asterisk represents any number of characters. For
example, to start all Extract groups whose names contain the letter X, issue the
following command.

START EXTRACT *X*

Chapter 11
Microservices: Command Line Interface

11-4

Using Command History
The execution of multiple commands is made easier with the following tools:

• Use the HISTORY command to display a list of previously executed commands.

• Use the ! command to execute a previous command again without editing it.

• Use the FC command to edit a previous command and then execute it again.

Storing and Calling Frequently Used Command Sequences
You can automate a frequently-used series of commands by using an OBEY file and the OBEY
command. The OBEY file takes the character set of the local operating system. To specify a
character that is not compatible with that character set, use the Unicode notation.

To use OBEY

1. Create and save a text file that contains the commands, one command per line. This is
your OBEY file. The name can be anything supported by the operating system. You can
nest other OBEY files within an OBEY file.

2. Run the Admin Client.

3. (Optional) If using an OBEY file that contains nested OBEY files, issue the following
command. This command enables the use of nested OBEY files for the current session
and is required whenever using nested OBEY files.

ALLOWNESTED

4. Call the OBEY file by using the OBEY command from the Admin Client.

OBEY file_name

Where:

file_name is the relative or fully qualified name of the OBEY file.

Example 11-1 OBEY command file

ADD EXTRACT myext, TRANLOG, BEGIN now
START EXTRACT myext

ADD REPLICAT myrep, EXTTRAIL /ggs/dirdat/aa
START REPLICAT myrep

INFO EXTRACT myext, DETAIL
INFO REPLICAT myrep, DETAIL

The following example illustrates an OBEY command file for use with the OBEY command. It
creates and starts Extract and Replicat groups and retrieves processing information.

See OBEY for more information in Reference for Oracle GoldenGate.

Chapter 11
Microservices: Command Line Interface

11-5

Controlling Extract and Replicat
Here are basic directions for controlling Extract and Replicat processes.

To Start Extract or Replicat

START {EXTRACT | REPLICAT} group_name

Where:

group_name is the name of the Extract or Replicat group or a wildcard set of groups
(for example, * or fin*).

To Stop Extract or Replicat Gracefully

STOP {EXTRACT | REPLICAT} group_name

Where:

group_name is the name of the Extract or Replicat group or a wildcard set of groups
(for example, * or fin*).

To Stop Replicat Forcefully

STOP REPLICAT group_name !
The current transaction is aborted and the process stops immediately. You cannot stop
Extract forcefully.

To End a Process that STOP Cannot Stop

KILL {EXTRACT | REPLICAT} group_name

Ending a process does not shut it down gracefully, and checkpoint information can be
lost.

To Control Multiple Processes at Once

command ER wildcard specification

Where:

• command is: KILL, START, or STOP

• wildcard specification is a wildcard specification for the names of the process
groups that you want to affect with the command. The command affects every
Extract and Replicat group that satisfies the wildcard. Oracle GoldenGate supports
up to 100,000 wildcard entries.

Chapter 11
Microservices: Command Line Interface

11-6

Deleting Extract and Replicat
This section contains basic directions for deleting Extract and Replicat processes.

To Delete an Extract Group

1. Connect to the deployment from the Admin Client.

2. Issue the DBLOGIN command as the Extract database user (or a user with the same
privileges). You can use either of the following commands, depending on whether a local
credential store exists.

DBLOGIN [SOURCEDB dsn] {USERID user, PASSWORD password
[encryption_options] | USERIDALIAS alias [DOMAIN domain]}

3. Stop the Extract process.

STOP EXTRACT group_name

4. Issue the following command.

DELETE EXTRACT group_name

5. (Oracle) Unregister the Extract group from the database.

UNREGISTER EXTRACT group_name,database_name

To Delete a Replicat Group

1. Stop the Replicat process.

STOP REPLICAT group_name

2. Issue one of the following commands to log into the database.

DBLOGIN [SOURCEDB dsn] {USERID user, PASSWORD password
[encryption_options] | USERIDALIAS alias [DOMAIN domain]}

Where:

• SOURCEDB dsn supplies the data source name, if required as part of the connection
information.

• USERID user, PASSWORD password specifies an explicit database login credential.

• USERIDALIAS alias [DOMAIN domain] specifies an alias and optional domain of a
credential that is stored in a local credential store.

• encryption_options is one of the options that encrypt the password.

3. Issue the following command to delete the group.

DELETE REPLICAT group_name

Chapter 11
Microservices: Command Line Interface

11-7

Deleting a Replicat group preserves the checkpoints in the checkpoint table (if being
used). Deleting a process group also preserves the parameter file. You can create the
same group again, using the same parameter file, or you can delete the parameter file
to remove the group's configuration permanently.

Specifying Object Names in Oracle GoldenGate Input
The following rules apply when specifying object names in parameter files (such as in
TABLE and MAP statements), column-conversion functions, commands, and in other
input.

Topics:

• Specifying Filesystem Path Names in Parameter Files on Windows Systems

• Supported Database Object Names

• Specifying Names that Contain Slashes

• Qualifying Database Object Names

• Specifying Case-Sensitive Database Object Names

• Using Wildcards in Database Object Names

• Differentiating Case-Sensitive Column Names from Literals

Specifying Filesystem Path Names in Parameter Files on Windows Systems
On Windows systems, if the name of any directory in a filesystem path name begins
with a number, the path must be specified with forward slashes, not backward slashes,
when listing that path in Oracle GoldenGate input, such as parameter files or
commands. This requirement prevents Oracle GoldenGate from interpreting the name
as an octal escape sequence. For example, the following paths contain a directory
named \2014 that will be interpreted as the octal sequence \201:

C:\ogg\2014\install\dirdat\aa
C:\ogg\install\2014\dirdat\aa

The preceding path can be used with forward slashes as follows:

C:/ogg/2014/install/dirdat/aa
C:/ogg/install/2014/dirdat/aa

For more information, see Support for Escape Sequences.

Supported Database Object Names
Object names in parameter files, command, and other input can be any length and in
any supported character set. For supported character sets, see Supported Character
Sets.

Oracle GoldenGate supports most characters in object and column names. Specify
object names in double quote marks if they contain special characters such as white
spaces or symbols.

Chapter 11
Microservices: Command Line Interface

11-8

The following lists of supported and non-supported characters covers all databases
supported by Oracle GoldenGate; a given database platform may or may not support all
listed characters.

Topics:

• Supported Special Characters

• Non-supported Special Characters

Supported Special Characters
Oracle GoldenGate supports all characters that are supported by the database, including the
following special characters. Object names that contain these special characters must be
enclosed within double quotes in parameter files.

Character Description

/ Forward slash (See Specifying Names that Contain Slashes)

* Asterisk (Must be escaped by a backward slash when used in parameter file, as
in: *)

? Question mark (Must be escaped by a backward slash when used in parameter
file, as in: \?)

@ At symbol (Supported, but is often used as a resource locator by databases. May
cause problems in object names)

Pound symbol

$ Dollar symbol

% Percent symbol (Must be %% when used in parameter file)

^ Caret symbol

() Open and close parentheses

_ Underscore

- Dash

<space> Space

Non-supported Special Characters
The following characters are not supported in object names and non-key column names.

Character Description

\ Backward slash (Must be \\ when used in parameter file)

{ } Begin and end curly brackets (braces)

[] Begin and end brackets

= Equal symbol

+ Plus sign

! Exclamation point

~ Tilde

| Pipe

& Ampersand

Chapter 11
Microservices: Command Line Interface

11-9

Character Description

: Colon

; Semi-colon

, Comma

' ' Single quotes

" " Double quotes

' Accent mark (Diacritical mark)

. Period

< Less-than symbol (or beginning angle bracket)

> Greater-than symbol (or ending angle bracket)

Specifying Names that Contain Slashes
If a table name contains a forward-slash character (/) in any part of its name, that
name component must be enclosed within double quotes unless the object name is
from an IBM i platform . The following are some examples:

"c/d"
"/a".b
a."b/"

If the name contains a forward slash that is not enclosed within double quotes, Oracle
GoldenGate treats it as a name that originated on the IBM i platform (from a DB2 for i
database). The forward slash in the name is interpreted as a separator character.

Qualifying Database Object Names
Object names must be fully qualified in the parameter file. This means that every name
specification must be qualified, not only those supplied as input to Oracle GoldenGate
parameter syntax, but also names in a SQL procedure or query that is supplied as
SQLEXEC input, names in user exit input, and all other input supplied in the parameter
file.

Oracle GoldenGate supports two-part and three-part object names, as appropriate for
the database.

Topics:

• Two-part Names

• Three-part Names

• Applying Data from Multiple Containers or Catalogs

• Specifying a Default Container or Catalog

Two-part Names
Most databases require only two-part names to be specified, in the following format:

owner.object

For example: HR.EMP

Chapter 11
Microservices: Command Line Interface

11-10

Where:

owner is a schema or database, depending on how the database defines a logical
namespace that contains database objects. object is a table or other supported database
object.

The databases for which Oracle GoldenGate supports two-part names are as follows, shown
with their appropriate two-part naming convention:

• Db2 for i: schema.object and library/file(member)

• Db2 LUW: schema.object

• Db2 on z/OS: schema.object

• MySQL: database.object

• Oracle Database (non-CDB databases): schema.object

• SQL Server: schema.object

• Teradata: database.object

Three-part Names
Oracle GoldenGate supports three-part names for the following databases:

• Oracle container databases (CDB)

Three-part names are required to capture from a source Oracle container database because
one Extract group can capture from more than one container. Thus, the name of the
container, as well as the schema, must be specified for each object or objects in an Extract
TABLE statement.

Specify a three-part Oracle CDB name as follows:

container.schema.object

For example: PDBEAST.HR.EMP

Applying Data from Multiple Containers or Catalogs
To apply data captured from multiple source containers or catalogs to a target Oracle
container database, both three- and two-part names are required. In the MAP portion of the
MAP statement, each source object must be associated with a container or catalog, just as it
was in the TABLE statement. This enables you (and Replicat) to properly map data from
multiple source containers or catalogs to the appropriate target objects. In the TARGET portion
of the MAP statement, however, only two-part names are required. This is because Replicat
can connect to only one target container or catalog at a time, and schema.owner is a sufficient
qualifier. Multiple Replicat groups are required to support multiple target containers or
catalogs. Specify the target container or catalog with the TARGETDB parameter.

Specifying a Default Container or Catalog
You can use the SOURCECATALOG parameter to specify a default catalog for any subsequent
TABLE, MAP, (or Oracle SEQUENCE) specifications in the parameter file.

The following example shows the use of SOURCECATALOG to specify the default Oracle PDB
named pdbeast for region and jobs objects, and the default PDB named pdbwest for

Chapter 11
Microservices: Command Line Interface

11-11

appraisal objects. The objects in pdbeast are specified with a fully qualified three-part
name, which does not require a default catalog to be specified.

TABLE pdbeast.hr.emp*;
SOURCECATALOG pdbeast
TABLE region.country*;
TABLE jobs.desg*;
SOURCECATALOG pdbwest
TABLE appraisal.sal*;

Specifying Case-Sensitive Database Object Names
Oracle GoldenGate supports case-sensitive names. Follow these rules when
specifying case-sensitive objects.

• Specify object names from a case-sensitive database in the same case that is
used to store them in the host database. Keep in mind that, in some database
types, different levels of the database can have different case-sensitivity, such as
case-sensitive schema but case-insensitive table. If the database requires quotes
to enforce case-sensitivity, put quotes around each object that is case-sensitive in
the qualified name.

Correct: TABLE "Sales"."ACCOUNT"
Incorrect: TABLE "Sales.ACCOUNT"

• Oracle GoldenGate converts case-insensitive names to the case in which they are
stored when required for mapping purposes.

Table 11-1 provides an overview of the support for case-sensitivity in object names,
per supported database. Refer to the database documentation for details on this type
of support.

Table 11-1 Case Sensitivity of Object Names Per Database

Database Requires quotes to
enforce case-
sensitivity?

Unquoted object
name

Quoted object name

DB2 Yes. Differentiates
between case-
sensitive and case-
insensitive by use of
quotes.

Case-insensitive,
stores in upper case

Case-sensitive, stores
in mixed case

MySQL

(Case-sensitive
database)

No

• Always case-
sensitive, stores
in mixed case

• The names of
columns, triggers,
and procedures
are case-
insensitive

No effect No effect

Chapter 11
Microservices: Command Line Interface

11-12

Table 11-1 (Cont.) Case Sensitivity of Object Names Per Database

Database Requires quotes to
enforce case-
sensitivity?

Unquoted object
name

Quoted object name

Oracle Database Yes. Differentiates
between case-
sensitive and case-
insensitive by use of
quotes.

Case-insensitive,
stores in upper case

Case-sensitive, stores
in mixed case

SQL Server

(Database created as
case-sensitive)

No

Always case-sensitive,
stores in mixed case

No effect No effect

SQL Server

(Database created as
case-insensitive)

No

Always case-
insensitive, stores in
mixed case

No effect No effect

Teradata No

Always case-
insensitive, stores in
mixed case

No effect No effect

Note:

For all supported databases, passwords are always treated as case-sensitive
regardless of whether the associated object name is quoted or unquoted.

Using Wildcards in Database Object Names
You can use wildcards for any part of a fully qualified object name, if supported for the
specific database. These name parts can be the following: the container, database, or catalog
name, the owner (schema or database name), and table or sequence name. For specifics on
how object names and wildcards are supported, see the Oracle GoldenGate installation and
configuration guide for that database.

Where appropriate, Oracle GoldenGate parameters permit the use of two wildcard types to
specify multiple objects in one statement:

• A question mark (?) replaces one character. For example in a schema that contains
tables named TABn, where n is from 0 to 9, a wildcard specification of HQ.TAB? returns
HQ.TAB0, HQ.TAB1, HQ.TAB2, and so on, up to HQ.TAB9, but no others. This wildcard is not
supported for the DB2 LUW database nor for DEFGEN. This wildcard can only be used
to specify source objects in a TABLE or MAP parameter. It cannot be used to specify target
objects in the TARGET clause of TABLE or MAP.

• An asterisk (*) represents any number of characters (including zero sequence). For
example, the specification of HQ.T* could return such objects as HQ.TOTAL, HQ.T123, and
HQ.T. This wildcard is valid for all database types throughout all Oracle GoldenGate
commands and parameters where a wildcard is allowed.

Chapter 11
Microservices: Command Line Interface

11-13

• In TABLE and MAP statements, you can combine the asterisk and question-mark
wildcard characters in source object names only.

Topics:

• Rules for Using Wildcards for Source Objects

• Rules for Using Wildcards for Target Objects

• Fallback Name Mapping

• Asterisks or Question Marks as Literals in Object Names

• How Wildcards are Resolved

• Excluding Objects from a Wildcard Specification

Rules for Using Wildcards for Source Objects
For source objects, you can use the asterisk alone or with a partial name. For
example, the following source specifications are valid:

• TABLE HQ.*;
• TABLE PDB*.HQ.*;
• MAP HQ.T_*;
• MAP HQ.T_*, TARGET HQ.*;
The TABLE, MAP and SEQUENCE parameters take the case-sensitivity and locale of the
database into account for wildcard resolution. For databases that are created as case-
sensitive or case-insensitive, the wildcard matches the exact name and case. For
example, if the database is case-sensitive, SCHEMA.TABLE is matched to SCHEMA.TABLE,
Schema.Table is matched to Schema.Table, and so forth. If the database is case-
insensitive, the matching is not case-sensitive.

For databases that can have both case-sensitive and case-insensitive object names in
the same database instance, with the use of quote marks to enforce case-sensitivity,
the wildcarding works differently. When used alone for a source name in a TABLE
statement, an asterisk wildcard matches any character, whether or not the asterisk is
within quotes. The following statements produce the same results:

TABLE hr.*;
TABLE hr."*";

Similarly, a question mark wildcard used alone matches any single character, whether
or not it is within quotes. The following produce the same results:

TABLE hr.?;
TABLE hr."?";

If a question mark or asterisk wildcard is used with other characters, case-sensitivity is
applied to the non-wildcard characters, but the wildcard matches both case-sensitive
and case-insensitive names.

• The following TABLE statements capture any table name that begins with lower-
case abc. The quoted name case is preserved and a case-sensitive match is
applied. It captures table names that include "abcA" and "abca" because the
wildcard matches both case-sensitive and case-insensitive characters.

Chapter 11
Microservices: Command Line Interface

11-14

TABLE hr."abc*";
TABLE hr."abc?";

• The following TABLE statements capture any table name that begins with upper-case ABC,
because the partial name is case-insensitive (no quotes) and is stored in upper case by
this database. However, because the wildcard matches both case-sensitive and case-
insensitive characters, this example captures table names that include ABCA and "ABCa".

TABLE hr.abc*;
TABLE hr.abc?;

Rules for Using Wildcards for Target Objects
When using wildcards in the TARGET clause of a MAP statement, the target objects must exist
in the target database. (The exception is when DDL replication is being used, which allows
new schemas and their objects to be replicated as they are created.)

For target objects, only an asterisk can be used. If an asterisk wildcard is used with a partial
name, Replicat replaces the wildcard with the entire name of the corresponding source
object. Therefore, specifications such as the following are incorrect:

TABLE HQ.T_*, TARGET RPT.T_*;
MAP HQ.T_*, TARGET RPT.T_*;

The preceding mappings produce incorrect results, because the wildcard in the target
specification is replaced with T_TEST (the name of a source object), making the whole target
name T_T_TESTn. The following illustrates the incorrect results:

• HQ.T_TEST1 maps to RPT.T_T_TEST1
• HQ.T_TEST2 maps to RPT.T_T_TEST2
• (The same pattern applies to all other HQ.T_TESTn mappings.)

The following examples show the correct use of asterisk wildcards.

MAP HQ.T_*, TARGET RPT.*;

The preceding example produces the following correct results:

• HQ.T_TEST1 maps to RPT.T_TEST1
• HQ.T_TEST2 maps to RPT.T_TEST2
• (The same pattern applies to all other HQ.T_TESTn mappings.)

Fallback Name Mapping
Oracle GoldenGate has a fallback mapping mechanism in the event that a source name
cannot be mapped to a target name. If an exact match cannot be found on the target for a
case-sensitive source object, Replicat tries to map the source name to the same name in
upper or lower case (depending on the database type) on the target. Fallback name mapping
is controlled by the NAMEMATCH parameters. For more information, see Reference for Oracle
GoldenGate.

Asterisks or Question Marks as Literals in Object Names
If the name of an object itself includes an asterisk or a question mark, the entire name must
be escaped and placed within double quotes, as in the following example:

Chapter 11
Microservices: Command Line Interface

11-15

TABLE HT."\?ABC";

How Wildcards are Resolved
By default, when an object name is wildcarded, the resolution for that object occurs
when the first row from the source object is processed. (By contrast, when the name of
an object is stated explicitly, its resolution occurs at process startup.) To change the
rules for resolving wildcards, use the WILDCARDRESOLVE parameter. The default is
DYNAMIC.

Excluding Objects from a Wildcard Specification
You can combine the use of wildcard object selection with explicit object exclusion by
using the EXCLUDEWILDCARDOBJECTSONLY, CATALOGEXCLUDE, SCHEMAEXCLUDE,
MAPEXCLUDE, and TABLEEXCLUDE parameters.

Differentiating Case-Sensitive Column Names from Literals
By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and
literals. In Oracle GoldenGate parameter files, conversion functions, user exits, and
commands, case-sensitive column names must be enclosed within double quotes if
the database requires quotes around a name to support case-sensitivity. For example:

"columnA"

Case-sensitive column names in databases that do not require quotes to enforce
case-sensitivity must be specified as they are stored in the database. For example:

ColumnA

Literals must be enclosed within single quotes. In the following example, Product_Code
is a case-sensitive column name in an Oracle database, and the other strings are
literals.

@CASE ("Product_Code", 'CAR', 'A car', 'TRUCK', 'A truck')

Working with Parameter Files
• Creating a Parameter File Using Admin Client

• Validating a Parameter File

• Simplifying the Creation of Parameter Files

Creating a Parameter File Using Admin Client
To create a parameter file, run the EDIT PARAMS command from the Admin Client.
When you create a parameter file with EDIT PARAMS, it is saved to the dirprm sub-
directory of the Oracle GoldenGate directory. You can create a parameter file in a
directory other than dirprm, but you also must specify the full path name with the
PARAMS option of the ADD EXTRACT or ADD REPLICAT command when you create your
process groups. Once paired with an Extract or Replicat group, a parameter file must
remain in its original location for Oracle GoldenGate to operate properly after
processing has started.
The EDIT PARAMS command launches the following text editors in Admin Client:

Chapter 11
Working with Parameter Files

11-16

• Notepad on Microsoft Windows systems.

• The vi editor on UNIX and Linux systems. DB2 for i only supports vi when connected with
SSH or xterm. For more information, see Creating a Parameter File with a Text Editor.

Chapter 11
Working with Parameter Files

11-17

https://docs.oracle.com/en/middleware/goldengate/core/21.3/admin/using-oracle-goldengate-parameter-files.html#GUID-6A740567-3CEE-4715-837B-D316C47E9EF2

Note:

You can change the default editor through Admin Client by using the SET
EDITOR command.

1. From the $OGG_HOME/bin directory, run the Admin Client.

2. Connect to the Admin Client using the CONNECT command.

3. In Admin Client, issue the following command to open the default
text editor:

EDIT PARAMS group_name

where:

– group_name is the name of the Extract or Replicat group for
which the file is being created. The name of an Extract or
Replicat parameter file must match that of the process
group.The following creates or edits the parameter file for an
Extract group named extora:

EDIT PARAMS extora

4. Using the editing functions of the text editor, enter as many comment
lines as you want to describe this file, making certain that each
comment line is preceded with two hyphens (--).

5. On non-commented lines, enter the Oracle GoldenGate parameters,
starting a new line for each parameter statement.
Oracle GoldenGate parameters have the following syntax:

PARAMETER_NAME argument [,option] [&]

Where:

– PARAMETER_NAME is the name of the parameter.

– argument is a required argument for the parameter. Some
parameters take arguments, but others do not. Commas
between arguments are optional.
EXTRACT myext USERIDALIAS ogg1 ENCRYPT AES192
KEYNAME mykey ENCRYPTTRAIL AES 192 EXTTRAIL ./
dirdat/c1, PURGE CUSEREXIT userexit.dll MyUserExit,
INCLUDEUPDATEBEFORES, & PARAMS "init.properties"
TABLE myschema.mytable;

– [,option] is an optional argument.

– [&] is required at the end of each line in a multi-line parameter
statement, as in the CUSEREXIT parameter statement in the
previous example. The exceptions are the following, which can
accept, but do not require, the ampersand because they
terminate with a semicolon:

* MAP

Chapter 11
Working with Parameter Files

11-18

* TABLE

* SEQUENCE

* FILE

* QUERY

Note:

The RMTHOST and RMTHOSTOPTIONS parameters can be specified
together; the RMTHOST parameter is not required for
RMTHOSTOPTIONS if the dynamic IP assignment is properly
configured. When RMTHOSTOPTIONS is used, the MGRPORT option is
ignored.

6. Save and close the file.

• Creating a Parameter File with a Text Editor

Creating a Parameter File with a Text Editor
You can create a parameter file outside Admin Client by using a text editor, but make certain
to:

• Save the parameter file with the name of the Extract or Replicat group that owns it. Use
the .prm file extension. For example: exte.prm.

• Save the parameter file in the dirprm directory of the Oracle GoldenGate home directory.

Validating a Parameter File
You can validate the parameter file from the Administration Service web interface. You can
validate the Extract and Replicat parameters from the Reports tab. To access the Reports
tab:

1. From Extract or Replicat section of the Administration Service Overview Page, click
Action and then click Details.

2. Click the Reports tab to view the report for Extract and Replicat parameters, error log,
and other information.

See Access Extract Details to learn how to check and edit the Extract parameters. See
Access Replicat Process Details to learn about editing Replicat parameter files. Also see
Additional Parameter Options for Integrated Replicat

You can also use the checkprm validation native command is run from the command line and
give an assessment of the specified parameter file, with a configurable application and
running environment. It can provide either a simple PASS/FAIL or with additional details about
how the values of each parameter are stored and interpreted.

Chapter 11
Working with Parameter Files

11-19

The CHECKPRM executable file can be found in the $OGG_HOME/bin directory of
Microservices Architecture. See checkprm in the Reference for Oracle GoldenGate.
The input to checkprm is case insensitive. If a value string contains spaces, it does not
need to be quoted because checkprm can recognize meaningful values. If no mode is
specified to checkprm, then all parameters applicable to any mode of the component
will be accepted.
The output of checkprm is assembled with four possible sections:

• help messages

• pre-validation error

• validation result

• parameter details

A pre-validation error is typically an error that prevents a normal parameter validation
from executing, such as missing options or an inaccessible parameter file. If an option
value is specified incorrectly, a list of possible inputs for that option is provided. If the
result is FAIL, each error is in the final result message. If the result is PASS, a message
that some of the parameters are subject to further runtime validation. The parameter
detailed output contains the validation context, and the specified parameters. The
parameter and options are printed with proper indentation to illustrate these
relationships.

See CHECKPARAMS parameter.

Simplifying the Creation of Parameter Files
You can reduce the number of times that a parameter must be specified by using the
following time-saving tools.

Topics:

• Using Wildcards

• Using OBEY

• Using Macros

• Using Parameter Substitution

Using Wildcards
For parameters that accept object names, you can use asterisk (*) and question mark
(?) wildcards. The use of wildcards reduces the work of specifying numerous object
names or all objects within a given schema. For more information about using
wildcards, see Using Wildcards in Database Object Names.

Using OBEY
You can create a library of text files that contain frequently used parameter settings,
and then you can call any of those files from the active parameter file by means of the
OBEY parameter. The syntax for OBEY is:

OBEY file_name

Where:

Chapter 11
Working with Parameter Files

11-20

file_name is the relative or full path name of the file.

Upon encountering an OBEY parameter in the active parameter file, Oracle GoldenGate
processes the parameters from the referenced file and then returns to the active file to
process any remaining parameters. OBEY is not supported for the GLOBALS parameter file.

If using the CHARSET parameter in a parameter file that includes an OBEY parameter, the
referenced parameter file does not inherit the CHARSET character set. The CHARSET character
set is used to read wildcarded object names in the referenced file, but you must use an
escape sequence (\uX) for all other multibyte specifications in the referenced file.

See Reference for Oracle GoldenGate for more information about OBEY.

See Reference for Oracle GoldenGate for more information about CHARSET.

Using Macros
You can use macros to automate multiple uses of a parameter statement. See Simplify and
Automate Work with Oracle GoldenGate Macros .

Using Parameter Substitution
You can use parameter substitution to assign values to Oracle GoldenGate parameters
automatically at run time, instead of assigning static values when you create the parameter
file. That way, if values change from run to run, you can avoid having to edit the parameter
file or maintain multiple files with different settings. You can simply export the required value
at runtime. Parameter substitution can be used for any Oracle GoldenGate process.

To Use Parameter Substitution

1. For each parameter for which substitution is to occur, declare a runtime parameter
instead of a value, and precede the runtime parameter name with a question mark (?) as
shown in the following example.

SOURCEISFILE
EXTFILE ?EXTFILE
MAP scott?TABNAME, TARGET tiger ACCOUNT_TARG;

2. Before starting the Oracle GoldenGate process, use the shell of the operating system to
pass the runtime values by means of an environment variable, as shown in the following
examples:

Example 11-2 Parameter substitution on Windows

C:\GGS> set EXTFILE=C:\ggs\extfile
C:\GGS> set TABNAME=PROD.ACCOUNTS
C:\GGS> replicat paramfile c:\ggs\dirprm\parmfl

Example 11-3 Parameter substitution on UNIX (Korn shell)

$ EXTFILE=/ggs/extfile
$ export EXTFILE
$ TABNAME=PROD.ACCOUNTS
$ export TABNAME
$ replicat paramfile ggs/dirprm/parmfl

UNIX is case-sensitive, so the parameter declaration in the parameter file must be the same
case as the shell variable assignments.

Chapter 11
Working with Parameter Files

11-21

Use SQLEXEC for Executing Commands, Stored
Procedures, and Queries

The SQLEXEC parameter of Oracle GoldenGate enables Extract and Replicat to
communicate with the database to do the following:

• Execute a database command, stored procedure, or SQL query to perform a
database function, return results (SELECT statements) or perform DML (INSERT,
UPDATE, DELETE) operations.

• Retrieve output parameters from a procedure for input to a FILTER or COLMAP
clause.

Note:

SQLEXEC provides minimal globalization support. To use SQLEXEC in the
capture parameter file of the source capture, make sure that the client
character set in the source .prm file is either the same or a superset of the
source database character set.

• Performing Processing with SQLEXEC

• Using SQLEXEC

• Apply SQLEXEC as a Standalone Statement

• Apply SQLEXEC within a TABLE or MAP Statement

• Using Input and Output Parameters

• Handling SQLEXEC Errors

• Additional SQLEXEC Guidelines

Performing Processing with SQLEXEC
SQLEXEC extends the functionality of both Oracle GoldenGate and the database by
allowing Oracle GoldenGate to use the native SQL of the database to execute custom
processing instructions.

• Stored procedures and queries can be used to select or insert data into the
database, to aggregate data, to denormalize or normalize data, or to perform any
other function that requires database operations as input. Oracle GoldenGate
supports stored procedures that accept input and those that produce output.

• Database commands can be issued to perform database functions required to
facilitate Oracle GoldenGate processing, such as disabling triggers on target
tables and then enabling them again.

Using SQLEXEC
The SQLEXEC parameter can be used as follows:

• as a clause of a TABLE or MAP statement

Chapter 11
Use SQLEXEC for Executing Commands, Stored Procedures, and Queries

11-22

• as a standalone parameter at the root level of the Extract or Replicat parameter file.

Apply SQLEXEC as a Standalone Statement
When used as a standalone parameter statement in the Extract or Replicat parameter file,
SQLEXEC can execute a stored procedure, query, or database command. As such, it need not
be tied to any specific table and can be used to perform general SQL operations.

For example, if the Oracle GoldenGate database user account is configured to time-out when
idle, you could use SQLEXEC to execute a query at a defined interval, so that Oracle
GoldenGate does not appear idle. As another example, you could use SQLEXEC to issue an
essential database command, such as to disable target triggers. A standalone SQLEXEC
statement cannot accept input parameters or return output parameters.

Parameter syntax Purpose

SQLEXEC 'call procedure_name()'
Execute a stored procedure

SQLEXEC 'sql_query'
Execute a query

SQLEXEC 'database_command'
Execute a database command

Argument Description

'call
procedure_name ()'

Specifies the name of a stored procedure to execute. The statement must
be enclosed within single quotes.

Example:

SQLEXEC 'call prc_job_count ()'

'sql_query'
Specifies the name of a query to execute. The query must be contained all
on one line and enclosed within single quotes.

Specify case-sensitive object names the way they are stored in the
database, such as within double quotes for Oracle object names that are
case-sensitive.

SQLEXEC 'SELECT "col1" from "schema"."table"'

'database_command'
Specifies a database command to execute. Must be a valid command for
the database.

SQLEXEC provides options to control processing behavior, memory usage, and error handling.
For more information, see SQLEXEC in the Reference for Oracle GoldenGate.

Chapter 11
Use SQLEXEC for Executing Commands, Stored Procedures, and Queries

11-23

Apply SQLEXEC within a TABLE or MAP Statement
When used within a TABLE or MAP statement, SQLEXEC can pass and accept
parameters. It can be used for procedures and queries, but not for database
commands.

Syntax

This syntax executes a procedure within a TABLE or MAP statement.

SQLEXEC (SPNAME sp_name,
[ID logical_name,]
{PARAMS param_spec | NOPARAMS})

Argument Description

SPNAME
Required keyword that begins a clause to execute a stored
procedure.

sp_name
Specifies the name of the stored procedure to execute.

ID logical_name
Defines a logical name for the procedure. Use this option to
execute the procedure multiple times within a TABLE or MAP
statement. Not required when executing a procedure only once.

PARAMS param_spec |
NOPARAMS

Specifies whether or not the procedure accepts parameters. One
of these options must be used (see Using Input and Output
Parameters).

Syntax

This syntax executes a query within a TABLE or MAP statement.

SQLEXEC (ID logical_name, QUERY ' query ',
{PARAMS param_spec | NOPARAMS})

Argument Description

ID logical_name
Defines a logical name for the query. A logical name is required
in order to extract values from the query results. ID
logical_name references the column values returned by the
query.

Chapter 11
Use SQLEXEC for Executing Commands, Stored Procedures, and Queries

11-24

Argument Description

QUERY ' sql_query '
Specifies the SQL query syntax to execute against the database.
It can either return results with a SELECT statement or change
the database with an INSERT, UPDATE, or DELETE statement.
The query must be within single quotes and must be contained
all on one line. Specify case-sensitive object names the way they
are stored in the database, such as within quotes for Oracle
case-sensitive names.

SQLEXEC 'SELECT "col1" from "schema"."table"'

PARAMS param_spec |
NOPARAMS

Defines whether or not the query accepts parameters. One of
these options must be used (see Using Input and Output
Parameters).

If you want to execute a query on a table residing on a different database than the current
database, then the different database name has to be specified with the table. The delimiter
between the database name and the tablename should be a colon (:).

The following are some example use cases:

select col1 from db1:tab1
select col2 from db2:schema2.tab2
select col3 from tab3
select col3 from schema4.tab4

Using Input and Output Parameters
Oracle GoldenGate provides options for passing input and output values to and from a
procedure or query that is executed with SQLEXEC within a TABLE or MAP statement.

• Passing Values to Input Parameters

• Passing Values to Output Parameters

• SQLEXEC Examples Using Parameters

Passing Values to Input Parameters
To pass data values to input parameters within a stored procedure or query, use the PARAMS
option of SQLEXEC.

Syntax

PARAMS ([OPTIONAL | REQUIRED] param = {source_column | function}
[, ...])

Where:

• OPTIONAL indicates that a parameter value is not required for the SQL to execute. If a
required source column is missing from the database operation, or if a column-

Chapter 11
Use SQLEXEC for Executing Commands, Stored Procedures, and Queries

11-25

conversion function cannot complete successfully because a source column is
missing, the SQL executes anyway.

• REQUIRED indicates that a parameter value must be present. If the parameter value
is not present, the SQL will not be executed.

• param is one of the following:

– For a stored procedure, it is the name of any parameter in the procedure that
can accept input, such as a column in a lookup table.

– For an Oracle query, it is the name of any input parameter in the query
excluding the leading colon. For example, :param1 would be specified as
param1 in the PARAMS clause.

– For a non-Oracle query, it is pn, where n is the number of the parameter within
the statement, starting from 1. For example, in a query with two parameters,
the param entries are p1 and p2.

• {source_column | function} is the column or Oracle GoldenGate conversion
function that provides input to the procedure.

Passing Values to Output Parameters
To pass values from a stored procedure or query as input to a FILTER or COLMAP
clause, use the following syntax:

Syntax

{procedure_name | logical_name}.parameter

Where:

• procedure_name is the actual name of the stored procedure. Use this argument
only if executing a procedure one time during the life of the current Oracle
GoldenGate process.

• logical_name is the logical name specified with the ID option of SQLEXEC. Use this
argument if executing a query or a stored procedure that will be executed multiple
times.

• parameter is either the name of the parameter or RETURN_VALUE, if extracting
returned values.

SQLEXEC Examples Using Parameters
These examples use stored procedures and queries with input and output parameters.

Note:

Additional SQLEXEC options are available for use when a procedure or query
includes parametes. See SQLEXEC in the Reference for Oracle GoldenGate.

Chapter 11
Use SQLEXEC for Executing Commands, Stored Procedures, and Queries

11-26

Example 11-4 SQLEXEC with a Stored Procedure

This example uses SQLEXEC to run a stored procedure named LOOKUP that performs a query to
return a description based on a code. It then maps the results to a target column named
NEWACCT_VAL.

CREATE OR REPLACE PROCEDURE LOOKUP
(CODE_PARAM IN VARCHAR2, DESC_PARAM OUT VARCHAR2)
BEGIN
 SELECT DESC_COL
 INTO DESC_PARAM
 FROM LOOKUP_TABLE
 WHERE CODE_COL = CODE_PARAM
END;

Contents of MAP statement:

MAP sales.account, TARGET sales.newacct, &
 SQLEXEC (SPNAME lookup, PARAMS (code_param = account_code)), &
 COLMAP (newacct_id = account_id, newacct_val = lookup.desc_param);

SQLEXEC executes the LOOKUP stored procedure. Within the SQLEXEC clause, the PARAMS
(code_param = account_code) statement identifies code_param as the procedure parameter
to accept input from the account_code column in the account table.

Replicat executes the LOOKUP stored procedure prior to executing the column map, so that the
COLMAP clause can extract and map the results to the newacct_val column.

Example 11-5 SQLEXEC with a Query

This example implements the same logic as used in the previous example, but it executes a
SQL query instead of a stored procedure and uses the @GETVAL function in the column map.

A query must be on one line. To split an Oracle GoldenGate parameter statement into
multiple lines, an ampersand (&) line terminator is required.

Query for an Oracle database:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc_col desc_param from lookup_table where code_col
= :code_param', &
PARAMS (code_param = account_code)), &
COLMAP (newacct_id = account_id, newacct_val = &
@getval (lookup.desc_param));

Query for a non-Oracle database:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc_col desc_param from lookup_table where code_col = ?', &
PARAMS (p1 = account_code)), &
COLMAP (newacct_id = account_id, newacct_val = &
@getval (lookup.desc_param));

Chapter 11
Use SQLEXEC for Executing Commands, Stored Procedures, and Queries

11-27

Handling SQLEXEC Errors
There are two types of error conditions to consider when implementing SQLEXEC:

• The column map requires a column that is missing from the source database
operation. This can occur for an update operation if the database only logs the
values of columns that changed, rather than all of the column values. By default,
when a required column is missing, or when an Oracle GoldenGate column-
conversion function results in a "column missing" condition, the stored procedure
does not execute. Subsequent attempts to extract an output parameter from the
stored procedure results in a "column missing condition" in the COLMAP or FILTER
clause.

• The database generates an error.

• Handling Database Errors

• Handling Missing Column Values

Handling Database Errors
Use the ERROR option in the SQLEXEC clause to direct Oracle GoldenGate to respond in
one of the following ways:

Table 11-2 ERROR Options

Action Description

IGNORE Causes Oracle GoldenGate to ignore all errors associated with the stored
procedure or query and continue processing. Any resulting parameter
extraction results in a "column missing" condition. This is the default.

REPORT Ensures that all errors associated with the stored procedure or query are
reported to the discard file. The report is useful for tracing the cause of the
error. It includes both an error description and the value of the parameters
passed to and from the procedure or query. Oracle GoldenGate continues
processing after reporting the error.

RAISE Handles errors according to rules set by a REPERROR parameter specified in the
Replicat parameter file. Oracle GoldenGate continues processing other stored
procedures or queries associated with the current TABLE or MAP statement
before processing the error.

FINAL Performs in a similar way to RAISE except that when an error associated with a
procedure or query is encountered, any remaining stored procedures and
queries are bypassed. Error processing is called immediately after the error.

FATAL Causes Oracle GoldenGate to abend immediately upon encountering an error
associated with a procedure or query.

Handling Missing Column Values
Use the @COLTEST function to test the results of the parameter that was passed, and
then map an alternative value for the column to compensate for missing values, if
desired. Otherwise, to ensure that column values are available, you can use the
FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE parameter to fetch the values from

Chapter 11
Use SQLEXEC for Executing Commands, Stored Procedures, and Queries

11-28

the database if they are not present in the log. As an alternative to fetching columns, you can
enable supplemental logging for those columns.

Additional SQLEXEC Guidelines
Observe the following SQLEXEC guidelines:

• Up to 20 stored procedures or queries can be executed per TABLE or MAP entry. They
execute in the order listed in the parameter statement.

• A database login by the Oracle GoldenGate user must precede the SQLEXEC clause. Use
the SOURCEDB and USERIDALIAS parameter in the Extract parameter file or the TARGETDB
and USERIDALIAS parameter in the Replicat parameter file, as needed for the database
type and configured authentication method.

• The SQL is executed by the Oracle GoldenGate user. This user must have the privilege
to execute stored procedures and call RDBM-supplied procedures.

• Database operations within a stored procedure or query are committed in same context
as the original transaction.

• Do not use SQLEXEC to update the value of a primary key column. If SQLEXEC is used to
update the value of a key column, then the Replicat process will not be able to perform a
subsequent update or delete operation, because the original key value will be
unavailable. If a key value must be changed, you can map the original key value to
another column and then specify that column with the KEYCOLS option of the TABLE or MAP
parameter.

• For Db2, Oracle GoldenGate uses the ODBC SQLExecDirect function to execute a SQL
statement dynamically. This means that the connected database server must be able to
prepare the statement dynamically. ODBC prepares the SQL statement every time it is
executed (at the requested interval). Typically, this does not present a problem to Oracle
GoldenGate users. See the IBM Db2 documentation for more information.

• All object names in a SQLEXEC statement must be fully qualified with their two-part or
three-part names, as appropriate for the database.

• All objects that are affected by a SQLEXEC stored procedure or query must exist with the
correct structures prior to the execution of the SQL. Consequently, DDL on these objects
that affects structure (such as CREATE or ALTER) must happen before SQLEXEC executes.

• All objects affected by a standalone SQLEXEC statement must exist before the Oracle
GoldenGate processes start. Because of this, DDL support must be disabled for those
objects; otherwise, DDL operations could change the structure or delete the object before
the SQLEXEC procedure or query executes on it.

Simplify and Automate Work with Oracle GoldenGate Macros
You can use Oracle GoldenGate macros in parameter files to configure and reuse
parameters, commands, and conversion functions. reducing the amount of text you must
enter to do common tasks. A macro is a built-in automation tool that enables you to call a
stored set of processing steps from within the Oracle GoldenGate parameter file. A macro
can consist of a simple set of frequently used parameter statements to a complex series of
parameter substitutions, calculations, or conversions. You can call other macros from a
macro. You can store commonly used macros in a library, and then call the library rather than
call the macros individually.

Oracle GoldenGate macros work with the following parameter files:

Chapter 11
Simplify and Automate Work with Oracle GoldenGate Macros

11-29

• DEFGEN

• Extract

• Replicat

There are two steps to using macros:

Defining a Macro

Calling a Macro

Topics:

• Define a Macro

• Call a Macro

• Calling Other Macros from a Macro

• Create Macro Libraries

• Tracing Macro Expansion

Define a Macro
To define an Oracle GoldenGate macro, use the MACRO parameter in the parameter file.
MACRO defines any input parameters that are needed and it defines the work that the
macro performs.

Syntax

MACRO #macro_name
PARAMS (#p1, #p2 [, ...])
BEGIN
macro_body
END;

Table 11-3 Macro Definition Arguments

Argument Description

MACRO
Required. Indicates the start of an Oracle GoldenGate macro
definition.

Chapter 11
Simplify and Automate Work with Oracle GoldenGate Macros

11-30

Table 11-3 (Cont.) Macro Definition Arguments

Argument Description

#macro_name
The name of the macro. Macro and parameter names must
begin with a macro character. The default macro character is the
pound (#) character, as in #macro1 and #param1.

A macro or parameter name can be one word consisting of
letters and numbers, or both. Special characters, such as the
underscore character (_) or hyphen (-), can be used. Some
examples of macro names are: #mymacro, #macro1, #macro_1,
#macro-1, #macro$. Some examples of parameter names are
#sourcecol, #s, #col1, and #col_1.

To avoid parsing errors, the macro character cannot be used as
the first character of a macro name. For example, ##macro is
invalid. If needed, you can change the macro character by using
the MACROCHAR parameter. See Reference for Oracle
GoldenGate for Windows and UNIX.

Macro and parameter names are not case-sensitive. Macro or
parameter names within quotation marks are ignored.

PARAMS (#p1, #p2) Optional definition of input parameters. Specify a comma-
separated list of parameter names and enclose it within
parentheses. Each parameter must be referenced in the macro
body where you want input values to be substituted. You can list
each parameter on a separate line to improve readability
(making certain to use the open and close parentheses to
enclose the parameter list). See Call a Macro that Contains
Parameters for more information.

BEGIN Begins the macro body. Must be specified before the macro
body.

macro_body The macro body. The body is a syntax statement that defines the
function that is to be performed by the macro. A macro body can
include any of the following types of statements.

• Simple parameter statements, as in:

COL1 = COL2
• Complex parameter statements with parameter substitution

as in:

MAP #o.#t, TARGET #o.#t, KEYCOLS (#k), COLMAP
(USEDEFAULTS);

• Invocations of other macros, as in:

#colmap (COL1, #sourcecol)

END;
Ends the macro definition. The semicolon is required to complete
the definition.

The following is an example of a macro definition that includes parameters. In this case, the
macro simplifies the task of object and column mapping by supplying the base syntax of the

Chapter 11
Simplify and Automate Work with Oracle GoldenGate Macros

11-31

MAP statement with input parameters that resolve to the names of the owners, the
tables, and the KEYCOLS columns.

MACRO #macro1
PARAMS (#o, #t, #k)
BEGIN
MAP #o.#t, TARGET #o.#t, KEYCOLS (#k), COLMAP (USEDEFAULTS);
END;

The following is an example of a macro that does not define parameters. It executes a
frequently used set of parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

Call a Macro
To call a macro, use the following syntax where you want the macro to run within the
parameter file.

Syntax

[target =] macro_name (val[, ...])

[target =] macro_name (val | {val, val, ...}[, ...])

Table 11-4 Syntax Elements for Calling a Macro

Argument Description

target = Optional. Specifies the target to which the results of the macro
are assigned or mapped. For example, target can be used to
specify a target column in a COLMAP statement. In the following
call to the #make_date macro, the column DATECOL1 is the
target and will be mapped to the macro results.

DATECOL1 = #make_date (YR1, MO1, DAY1)

Without a target, the syntax to call #make_date is:

#make_date (YR1, MO1, DAY1)

macro_name The name of the macro that is being called, for example:
#make_date.

Chapter 11
Simplify and Automate Work with Oracle GoldenGate Macros

11-32

Table 11-4 (Cont.) Syntax Elements for Calling a Macro

Argument Description

(val[, ...]) The parameter input values. This component is required whether
or not the macro defines parameters. If the macro defines
parameters, specify a comma-separated list of input values, in
the order that corresponds to the parameter definitions in the
MACRO parameter, and enclose the list within parentheses. If the
macro does not define parameters, specify the open and close
parentheses with nothing between them ().

(val | {val,
val, ...})[, ...]

The parameter input values. This component is required whether
or not the macro defines parameters. If the macro defines
parameters, specify a comma-separated list of input values, in
the order that corresponds to the parameter definitions in the
MACRO parameter, and enclose the list within parentheses. To
pass multiple values to one parameter, separate them with
commas and enclose the list within curly brackets. If the macro
does not define parameters, specify the open and close
parentheses with nothing between them ().

See the following topics to learn more about syntax for calling a macro:

• Call a Macro that Contains Parameters

• Call a Macro without Input Parameters

Call a Macro that Contains Parameters
To call a macro that contains parameters, the call statement must supply the input values that
are to be substituted for those parameters when the macro runs.

Valid input for a macro parameter is any of the following, preceded by the macro character
(default is #):

• A single value in plain or quoted text, such as: #macro (#name, #address, #phone) or
#macro (#"name", #"address", #"phone").

• A comma-separated list of values enclosed within curly brackets, such as: #macro1
(SCOTT, DEPT, {DEPTNO1, DEPTNO2, DEPTNO3}). The ability to substitute a block of
values for any given parameter add flexibility to the macro definition and its usability in
the Oracle GoldenGate configuration.

• Calls to other macros, such as: #macro (#mycalc (col2, 100), #total). In this
example, the #mycalc macro is called with the input values of col2 and 100.

Oracle GoldenGate substitutes parameter values within the macro body according to the
following rules.

1. The macro processor reads through the macro body looking for instances of parameter
names specified in the PARAMS statement.

2. For each occurrence of the parameter name, the corresponding parameter value
specified during the call is substituted.

3. If a parameter name does not appear in the PARAMS statement, the macro processor
evaluates whether or not the item is, instead, a call to another macro. (See Calling Other

Chapter 11
Simplify and Automate Work with Oracle GoldenGate Macros

11-33

Macros from a Macro.) If the call succeeds, the nested macro is executed. If it
fails, the whole macro fails.

Example 11-6 Using Parameters to Populate a MAP Statement

The following macro definition specifies three parameter that must be resolved. The
parameters substitute for the names of the table owner (parameter #o), the table
(parameter #t), and the KEYCOLS columns (parameter #k) in a MAP statement.

MACRO #macro1 PARAMS (#o, #t, #k) BEGIN MAP #o.#t, TARGET #o.#t,
KEYCOLS (#k), COLMAP (USEDEFAULTS); END;

Assuming a table in the MAP statement requires only one KEYCOLS column, the following
syntax can be used to call #macro1. In this syntax, the #k parameter can be resolved
with only one value.

#macro1 (SCOTT, DEPT, DEPTNO1)

To call the macro for a table that requires two KEYCOLS columns, the curly brackets are
used as follows to enclose both of the required values for the column names:

#macro1 (SCOTT, DEPT, {DEPTNO1, DEPTNO2})

The DEPTNO1 and DEPTNO2 values are passed as one argument to resolve the #t
parameter. Tables with three or more KEYCOLS can also be handled in this manner,
using additional values inside the curly brackets.

Example 11-7 Using a Macro to Perform Conversion

In this example, a macro defines the parameters #year, #month, and #day to convert a
proprietary date format.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year,
'MM', #month, 'DD', #day)
END;

The macro is called in the COLMAP clause:

MAP sales.acct_tab, TARGET sales.account,
COLMAP
(
targcol1 = sourcecol1,
datecol1 = #make_date(YR1, MO1, DAY1),
datecol2 = #make_date(YR2, MO2, DAY2)
);

Chapter 11
Simplify and Automate Work with Oracle GoldenGate Macros

11-34

The macro expands as follows:

MAP sales.acct_tab, TARGET sales.account,
COLMAP
(
targcol1 = sourcecol1,
datecol1 = @DATE ('YYYY-MM-DD', 'CC', @IF (YR1 < 50, 20, 19),'YY', YR1,
'MM', MO1, 'DD', DAY1),
datecol2 = @DATE ('YYYY-MM-DD', 'CC', @IF (YR2 < 50, 20, 19),'YY', YR2,
'MM', MO2, 'DD', DAY2)
);

Call a Macro without Input Parameters
To call a macro without input parameters, the call statement must supply the open and close
parentheses, but without any input values: #macro ().

The following macro is defined without input parameters. The body contains frequently used
parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

This macro is called as follows:

#option_defaults ()
IGNOREUPDATES
MAP owner.srctab, TARGET owner.targtab;

#option_defaults ()
MAP owner.srctab2, TARGET owner.targtab2;

The macro expands as follows:

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
IGNOREUPDATES
MAP owner.srctab, TARGET owner.targtab;

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
MAP owner.srctab2, TARGET owner.targtab2;

Chapter 11
Simplify and Automate Work with Oracle GoldenGate Macros

11-35

Calling Other Macros from a Macro
To call other macros from a macro, create a macro definition similar to the following. In
this example, the #make_date macro is nested within the #assign_date macro, and it is
called when #assign_date runs.

The nested macro must define all, or a subset of, the same parameters that are
defined in the base macro. In other words, the input values when the base macro is
called must resolve to the parameters in both macros.

The following defines #assign_date:

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

The following defines #make_date. This macro creates a date format that includes a
four-digit year, after first determining whether the two-digit input date should be
prefixed with a century value of 19 or 20. Notice that the PARAMS statement of
#make_date contains a subset of the parameters in the #assign_date macro.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month,
'DD', #day)
END;

The following syntax calls #assign_date:

#assign_date (COL1, YEAR, MONTH, DAY)

The macro expands to the following given the preceding input values and the
embedded #make_date macro:

COL1 = @DATE ('YYYY-MM-DD', 'CC', @IF (YEAR < 50, 20, 19),'YY', YEAR, 'MM',
MONTH, 'DD', DAY)

Create Macro Libraries
You can create a macro library that contains one or more macros. By using a macro
library, you can define a macro once and then use it within many parameter files.

To Create a Macro Library

1. Open a new file in a text editor.

2. Use commented lines to describe the library, if needed.

3. Use the following syntax to define each macro:

MACRO #macro_name
PARAMS (#p1, #p2 [, ...])
BEGIN

Chapter 11
Simplify and Automate Work with Oracle GoldenGate Macros

11-36

macro_body
END;

4. Save the file in the dirprm sub-directory of the Oracle GoldenGate directory as:

filename.mac

Where:

filename is the name of the file. The .mac extension defines the file as a macro library.

The following sample library named datelib contains two macros, #make_date and
#assign_date.

-- datelib macro library
--
MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM',
#month, 'DD', #day)
END;

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

To use a macro library, use the INCLUDE parameter at the beginning of a parameter file, as
shown in the following sample Replicat parameter file.

INCLUDE /ggs/dirprm/datelib.mac
REPLICAT rep
ASSUMETARGETDEFS
USERIDALIAS ogg
MAP fin.acct_tab, TARGET fin.account;

When including a long macro library in a parameter file, you can use the NOLIST parameter to
suppress the listing of each macro in the Extract or Replicat report file. Listing can be turned
on and off by placing the LIST and NOLIST parameters anywhere within the parameter file or
within the macro library file. In the following example, NOLIST suppresses the listing of each
macro in the hugelib macro library. Specifying LIST after the INCLUDE statement restores
normal listing to the report file.

NOLIST
INCLUDE /ggs/dirprm/hugelib.mac
LIST
INCLUDE /ggs/dirprm/mdatelib.mac
REPLICAT REP

Chapter 11
Simplify and Automate Work with Oracle GoldenGate Macros

11-37

Tracing Macro Expansion
You can trace macro expansion with the CMDTRACE parameter. With CMDTRACE enabled,
macro expansion steps are shown in the Extract or Replicat report file.

Syntax

CMDTRACE [ON | OFF | DETAIL]

Where:

• ON enables tracing.

• OFF disables tracing.

• DETAIL produces a verbose display of macro expansion.

In the following example, tracing is enabled before #testmac is called, then disabled
after the macro's execution.

REPLICAT REP
MACRO #testmac
BEGIN
COL1 = COL2,
COL3 = COL4,
END;
...
CMDTRACE ON
MAP test.table1, TARGET test.table2,
COLMAP (#testmac);
CMDTRACE OFF

Bi-Directional Replication
In a bi-directional configuration, there are Extract and Replicat processes on both the
source and target systems to support the replication of transactional changes on each
system to the other system. To support this configuration, each Extract must be able to
filter the transactions applied by the local Replicat, so that they are not recaptured and
sent back to their source in a continuous loop. Additionally, AUTO_INCREMENT columns
must be set so that there is no conflict between the values on each system.

Topics:

• Prerequisites for Bidirectional Replication

• MySQL: Bi-Directional Replication

• PostgreSQL: Bi-Directional Replication

• Preparing DBFS for an Active-Active Configuration

Prerequisites for Bidirectional Replication
Topics:

• Enable Bi-Directional Loop Detection

• Considerations for an Active-Active Configuration

Chapter 11
Bi-Directional Replication

11-38

• Preventing Data Looping

• Preventing the Capture of Replicat Operations

Enable Bi-Directional Loop Detection
Loop detection is a requirement for bi-directional implementations of Oracle GoldenGate, so
that an Extract for one source database does not recapture transactions sent by a Replicat
from another source database.

With the CDC Extract capture method, by default, any transaction committed by a Replicat
into a database where an Extract is configured, will recapture that transaction from the
Replicat as long as supplemental logging is enabled for those tables that the Replicat is
delivering to.

In order to ignore recapturing transactions that are applied by a Replicat, you must use the
TRANLOGOPTIONS FILTERTABLE parameter for the CDC Extract. The table used as the filtering
table will be the Oracle GoldenGate checkpoint table that you must create for the Replicat.

Note:

Only Classic and Coordinated Replicats support bi-directional and multi-directional
replication, Parallel Replicat does not support this.

To create a Filter Table and enable Supplemental Logging:

1. On each source database, ensure that a checkpoint table for use by Replicats has been
created. For example:

ADD CHECKPOINTTABLE ggadmin.oggcheck
2. Enable supplemental logging for the the checkpoint table. For example:

ADD TRANDATA ggadmin.ggcheckpoint ALLCOLS
3. Ensure that the Replicat is created with the checkpoint table information.

ADD REPLICAT reptgt1, EXTTRAIL ./dirdat/e2, CHECKPOINTTABLE
ggadmin.ggcheckpoint

4. Configure each Extract with the IGNOREREPLICATES (on by default) and FILTERTABLE
parameters, using the Replicat’s checkpoint table for the filtering table.

TRANLOGOPTIONS IGNOREREPLICATES TRANLOGOPTIONS FILTERTABLE
ggadmin.ggcheckpoint

Note:

Oracle GoldenGate for PostgreSQL supports only one FILTERTABLE statement
per Extract, so for multi-directional implementations, ensure each Replicat uses
the same checkpoint table in the database that they deliver to.

Chapter 11
Bi-Directional Replication

11-39

Considerations for an Active-Active Configuration
The following considerations apply in an active-active configuration. In addition, review
the Oracle GoldenGate installation and configuration document for your type of
database to see if there are any other limitations or requirements to support a bi-
directional configuration.

• Application Design

• Keys

• Database-Generated Values

• Database Configuration

Application Design
When using Active-Active replication, the time zones must be the same on both
systems so that timestamp-based conflict resolution and detection can operate.

Active-active replication is not recommended for use with commercially available
packaged business applications, unless the application is designed to support it.
Among the obstacles that these applications present are:

• Packaged applications might contain objects and data types that are not supported
by Oracle GoldenGate.

• They might perform automatic DML operations that you cannot control, but which
will be replicated by Oracle GoldenGate and cause conflicts when applied by
Replicat.

• You probably cannot control the data structures to make modifications that are
required for active-active replication.

Keys
For accurate detection of conflicts, all records must have a unique, not-null identifier. If
possible, create a primary key. If that is not possible, use a unique key or create a
substitute key with a KEYCOLS option of the MAP and TABLE parameters. In the absence
of a unique identifier, Oracle GoldenGate uses all of the columns that are valid in a
WHERE clause, but this will degrade performance if the table contains numerous
columns.

To maintain data integrity and prevent errors, the following must be true of the key that
you use for any given table:

• contain the same columns in all of the databases where that table resides.

• contain the same values in each set of corresponding rows across the databases.

Database-Generated Values
Do not replicate database-generated sequential values, such as Oracle sequences, in
a bi-directional configuration. The range of values must be different on each system,
with no chance of overlap. For example, in a two-database environment, you can have
one server generate even values, and the other odd. For an n-server environment,
start each key at a different value and increment the values by the number of servers
in the environment. This method may not be available to all types of applications or

Chapter 11
Bi-Directional Replication

11-40

databases. If the application permits, you can add a location identifier to the value to enforce
uniqueness.

Database Configuration
One of the databases must be designated as the trusted source. This is the primary database
and its host system from which the other database is derived in the initial synchronization
phase and in any subsequent resynchronizations that become necessary. Maintain frequent
backups of the trusted source data.

Preventing Data Looping
In a bidirectional configuration, SQL changes that are replicated from one system to another
must be prevented from being replicated back to the first system. Otherwise, it moves back
and forth in an endless loop, as in this example:

1. A user application updates a row on system A.

2. Extract extracts the row on system A and sends it to system B.

3. Replicat updates the row on system B.

4. Extract extracts the row on system B and sends it back to system A.

5. The row is applied on system A (for the second time).

6. This loop continues endlessly.

To prevent data loopback, you may need to provide instructions that:

• prevent the capture of SQL operations that are generated by Replicat, but enable the
capture of SQL operations that are generated by business applications if they contain
objects that are specified in the Extract parameter file.

• identify local Replicat transactions, in order for the Extract process to ignore them.

• Identifying Replicat Transactions

Identifying Replicat Transactions
To configure Extract to identify Replicat transactions, follow the instructions for the database
from which Extract will capture data.

Topics:

• DB2 z/OS

• MySQL

• PostgreSQL and SQL Server

• Oracle

DB2 z/OS

Identify the Replicat user name by using the following parameter statement in the Extract
parameter file.

TRANLOGOPTIONS EXCLUDEUSER user

Chapter 11
Bi-Directional Replication

11-41

This parameter statement marks all DDL and DML transactions that are generated by
this user as Replicat transactions. The user name is included in the transaction record
that is read by Extract.

MySQL

Identify the name of the Replicat checkpoint table by using the following parameter
statement in the Extract parameter file.

TRANLOGOPTIONS FILTERTABLE table_name

Replicat writes a checkpoint to the checkpoint table at the end of each of its
transactions as part of its checkpoint procedure. (This is the table that is created with
the ADD CHECKPOINTTABLE command.) Because every Replicat transaction includes a
write to this table, it can be used to identify Replicat transactions in a bidirectional
configuration. FILTERTABLE identifies the name of the checkpoint table, so that Extract
ignores transactions that contain any operations on it.

PostgreSQL and SQL Server

Identify the name of the Replicat checkpoint table by using the following parameter
statement in the Extract parameter file and ensure that the Replicat checkpoint table
has been enabled for supplemental logging with the ADD TRANDATA command.

TRANLOGOPTIONS FILTERTABLE table_name

Replicat writes a checkpoint to the checkpoint table at the end of each of its
transactions as part of its checkpoint procedure. (This is the table that is created with
the ADD CHECKPOINTTABLE command). Because every Replicat transaction includes a
write to this table, it can be used to identify Replicat transactions in a bi-directional
configuration. FILTERTABLE identifies the name of the checkpoint table, so that Extract
ignores transactions that contain any operations on it.

Oracle

There are multiple ways to identify Replicat transaction in an Oracle environment.
When Replicat is in classic or integrated mode, you use the following parameters:

• Replicats set a tag of 00 by default. Use DBOPTIONS with the SETTAG option in the
Replicat parameter file to change the tag that Replicat sets. Replicat tags the
transactions being applied with the specified value, which identifies those
transactions in the redo stream. Valid values are a single TAG value consisting of
hexadecimal digits.

• Use the TRANLOGOPTIONS parameter with the EXCLUDETAG option in the Extract
parameter file. The logmining server associated with that Extract excludes redo
that is tagged with the SETTAG value.

The following shows how SETTAG can be set in the Replicat parameter file:

DBOPTIONS SETTAG 0935

The following shows how EXCLUDETAG can be set in the Extract parameter file:

TRANLOGOPTIONS EXCLUDETAG 0935

If you are excluding multiple tags, each must have a separate TRANLOGOPTIONS
EXCLUDETAG statement specified.

Chapter 11
Bi-Directional Replication

11-42

You can also use the transaction name or USERID of the Replicat user to identify Replicat
transactions. You can choose which of these to ignore when you configure Extract.

Preventing the Capture of Replicat Operations
Depending on which database you are using, you may or may not need to provide explicit
instructions to prevent the capture of Replicat operations.

• Oracle: Preventing the Capture of Replicat Transactions

• Non-Oracle Database: Preventing Capture of Replicat Transactions

• Manage Conflicts

Oracle: Preventing the Capture of Replicat Transactions
To prevent the capture of SQL that is applied by Replicat to an Oracle database, use the
TRANLOGOPTIONS parameter with the EXCLUDETAG tag option. This parameter directs the
Extract process to ignore transactions that are tagged with the specified redo tag.

See Identifying Replicat Transactions to set the tag value. This is the recommended
approach for Oracle.

Non-Oracle Database: Preventing Capture of Replicat Transactions
To prevent the capture of SQL that is applied by Replicat to other database types, use the
following parameters:

• GETAPPLOPS | IGNOREAPPLOPS: Controls whether or not data operations (DML) produced
by business applications except Replicat are included in the content that Extract writes to
a specific trail or file.

• GETREPLICATES | IGNOREREPLICATES: Controls whether or not DML operations produced
by Replicat are included in the content that Extract writes to a specific trail or file.

Manage Conflicts
Uniform conflict-resolution procedures must be in place on all systems in an active-active
configuration. Conflicts should be identified immediately and handled with as much
automation as possible; however, different business applications will present their own unique
set of requirements in this area.

Because Oracle GoldenGate is an asynchronous solution, conflicts can occur when
modifications are made to identical sets of data on separate systems at (or almost at) the
same time. Conflicts occur when the timing of simultaneous changes results in one of these
out-of-sync conditions:

• A uniqueness conflict occurs when Replicat applies an insert or update operation that
violates a uniqueness integrity constraint, such as a PRIMARY KEY or UNIQUE constraint.
An example of this conflict type is when two transactions originate from two different
databases, and each one inserts a row into a table with the same primary key value.

• An update conflict occurs when Replicat applies an update that conflicts with another
update to the same row. Update conflicts happen when two transactions that originate
from different databases update the same row at nearly the same time. Replicat detects
an update conflict when there is a difference between the old values (the before values)
that are stored in the trail record and the current values of the same row in the target
database.

Chapter 11
Bi-Directional Replication

11-43

• A delete conflict occurs when two transactions originate at different databases,
and one deletes a row while the other updates or deletes the same row. In this
case, the row does not exist to be either updated or deleted. Replicat cannot find
the row because the primary key does not exist.

For example, UserA on DatabaseA updates a row, and UserB on DatabaseB updates
the same row. If UserB's transaction occurs before UserA's transaction is synchronized
to DatabaseB, there will be a conflict on the replicated transaction.

A more complicated example involves three databases and illustrates a more complex
ordering conflict. Assume three databases A, B, and C. Suppose a user inserts a row
at database A, which is then replicated to database B. Another user then modifies the
row at database B, and the row modification is replicated to database C. If the row
modification from B arrives at database C before the row insert from database A, C will
detect a conflict.

Where possible, try to minimize or eliminate any chance of conflict. Some ways to do
so are:

• Configure the applications to restrict which columns can be modified in each
database. For example, you could limit access based on geographical area, such
as by allowing different sales regions to modify only the records of their own
customers. As another example, you could allow a customer service application on
one database to modify only the NAME and ADDRESS columns of a customer table,
while allowing a financial application on another database to modify only the
BALANCE column. In each of those cases, there cannot be a conflict caused by
concurrent updates to the same record.

• Keep synchronization latency low. If UserA on DatabaseA and UserB on
DatabaseB both update the same rows at about the same time, and UserA's
transaction gets replicated to the target row before UserB's transaction is
completed, conflict is avoided. See Managing Conflicts for suggestions on
improving the performance of the Oracle GoldenGate processes.

To avoid conflicts, replication latency must be kept as low as possible. When conflicts
are unavoidable, they must be identified immediately and resolved with as much
automation as possible, either through the Oracle GoldenGate Conflict Detection and
Resolution (CDR) feature, or through methods developed on your own. Custom
methods can be integrated into Oracle GoldenGate processing through the SQLEXEC
and user exit functionality. See Manual Conflict Detection and Resolution for more
information about using Oracle GoldenGate to handle conflicts.

For Oracle database, the automatic Conflict Detection Resolution (CDR) feature
exists. To know more, see Automatic Conflict Detection and Resolution.

MySQL: Bi-Directional Replication
In a bidirectional configuration, there are Extract and Replicat processes on both the
source and target systems to support the replication of transactional changes on each
system to the other system. To support this configuration, each Extract must be able to
filter the transactions applied by the local Replicat, so that they are not recaptured and
sent back to their source in a continuous loop. Additionally, AUTO_INCREMENT columns
must be set so that there is no conflict between the values on each system.

1. Configure Oracle GoldenGate for high availability or active-active replication
according to the instructions in the Propagating DDL in Active-Active
(Bidirectional) Configurations.

Chapter 11
Bi-Directional Replication

11-44

2. To filter out Replicat operations in a bi-directional configuration so that the applied
operations are not captured and looped back to the source again, take the following steps
on each MySQL database:

• Configure each Replicat process to use a checkpoint table. Replicat writes a
checkpoint to this table at the end of each transaction. You can use one global
checkpoint table or one per Replicat process. See Oracle GoldenGate Checkpoint
Tables.

• Specify the name of the checkpoint table with the FILTERTABLE option of the
TRANLOGOPTIONS parameter in the Extract parameter file. The Extract process will
ignore transactions that end with an operation to the specified table, which should
only be those of Replicat.

Note:

Although optional for other supported databases as a means of enhancing
recovery, the use of a checkpoint table is required for MySQL when using
bidirectional replication (and likewise, will enhance recovery).

If using a parallel Replicat in a bidirectional replication, then multiple filter tables are
supported using the TRANLOGOPTIONS FILTERTABLE option. Multiple filter tables allow
the TRANLOGOPTIONS FILTERTABLE to be specified multiple times with different table
names or wildcards.

You can include single or multiple TRANLOGOPTIONS FILTERTABLE entries in the
Extract parameter file. In the following example, multiple TRANLOGOPTIONS
FILTERTABLEentries are included in the Extract parameter file with explicit object
names and wildcards.

TRANLOGOPTIONS FILTERTABLE ggs.chkpt2
TRANLOGOPTIONS FILTERTABLE ggs.chkpt_RABC_*

3. Edit the MySQL server configuration file to set the auto_increment_increment and
auto_increment_offset parameters to avoid discrepancies that could be caused by the
bi-directional operations. The following illustrates these parameters, assuming two
servers: ServerA and ServerB.

ServerA:

auto-increment-increment = 2
auto-increment-offset = 1

ServerB:

auto-increment-increment = 2
auto-increment-offset = 2

PostgreSQL: Bi-Directional Replication
In a bidirectional configuration, there are Extract and Replicat processes on both the source
and target systems to support the replication of transactional changes on each system to the
other system. To support this configuration, each Extract must be able to filter the
transactions applied by the local Replicat, so that they are not recaptured and sent back to
their source in a continuous loop.

Chapter 11
Bi-Directional Replication

11-45

1. Configure Oracle GoldenGate for high availability or active-active replication
according to the instructions in the Propagating DDL in Active-Active
(Bidirectional) Configurations.

2. To filter out Replicat operations in a bi-directional configuration so that the applied
operations are not captured and looped back to the source again, take the
following steps on each PostgreSQL database:

• Configure each Replicat process to use a checkpoint table. Replicat writes a
checkpoint to this table at the end of each transaction. You can use one global
checkpoint table or one per Replicat process.

• Specify the name of the checkpoint table with the FILTERTABLE option of the
TRANLOGOPTIONS parameter in the Extract parameter file. The Extract process
will ignore transactions that end with an operation to the specified table, which
should only be those of Replicat.

If using a parallel Replicat in a bidirectional replication, then multiple filter
tables are supported using the TRANLOGOPTIONS FILTERTABLE option. Multiple
filter tables allow the TRANLOGOPTIONS FILTERTABLE to be specified multiple
times with different table names or wildcards.

You can include single or multiple TRANLOGOPTIONS FILTERTABLE entries in the
Extract parameter file. In the following example, multiple TRANLOGOPTIONS
FILTERTABLEentries are included in the Extract parameter file with explicit
object names and wildcards.

TRANLOGOPTIONS FILTERTABLE ggs.chkpt2
TRANLOGOPTIONS FILTERTABLE ggs.chkpt_RABC_*

Preparing DBFS for an Active-Active Configuration
Learn the steps to configure Oracle GoldenGate to function within an active-active
bidirectional or multi-directional environment where Oracle Database File System
(DBFS) is in use on both (or all) systems.

Topics:

• Supported Operations and Prerequisites
This topic lists what is supported by Oracle GoldenGate for DBFS.

• Applying the Required Patch
Apply the Oracle DBFS patch for bug-9651229 on both databases.

• Examples Used in these Procedures
The following procedures assume two systems and configure the environment so
that DBFS users on both systems see the same DBFS files, directories, and
contents that are kept in synchronization with Oracle GoldenGate.

• Partitioning the DBFS Sequence Numbers
DBFS uses an internal sequence-number generator to construct unique names
and unique IDs.

• Configuring the DBFS file system
To replicate DBFS file system operations, use a configuration that is similar to the
standard bi-directional configuration for DML.

Chapter 11
Bi-Directional Replication

11-46

• Mapping Local and Remote Peers Correctly
The names of the tables that underlie the DBFS file systems are generated internally and
dynamically.

Supported Operations and Prerequisites
This topic lists what is supported by Oracle GoldenGate for DBFS.

Oracle GoldenGate for DBFS supports the following:

• Supported DDL (like TRUNCATE or ALTER) on DBFS objects except for CREATE statements
on the DBFS objects. CREATE on DBFS must be excluded from the configuration, as must
any schemas that will hold the created DBFS objects. The reason to exclude CREATES is
that the metadata for DBFS must be properly populated in the SYS dictionary tables
(which itself is excluded from Oracle GoldenGate capture by default).

• Capture and replication of DML on the tables that underlie the DBFS file system.

The procedures that follow assume that Oracle GoldenGate is configured properly to support
active-active configuration. This means that it must be:

• Installed according to the instructions in this guide.

• Configured according to the instructions in the Oracle GoldenGate Windows and UNIX
Administrator's Guide.

Applying the Required Patch
Apply the Oracle DBFS patch for bug-9651229 on both databases.

To determine if the patch is installed, run the following query:

connect / as sysdba
select procedure_name
from dba_procedures
where object_name = 'DBMS_DBFS_SFS_ADMIN'
and procedure_name = 'PARTITION_SEQUENCE';

The query should return a single row. Anything else indicates that the proper patched version
of DBFS is not available on your database.

Examples Used in these Procedures
The following procedures assume two systems and configure the environment so that DBFS
users on both systems see the same DBFS files, directories, and contents that are kept in
synchronization with Oracle GoldenGate.

It is possible to extend these concepts to support three or more peer systems.

Partitioning the DBFS Sequence Numbers
DBFS uses an internal sequence-number generator to construct unique names and unique
IDs.

These steps partition the sequences into distinct ranges to ensure that there are no conflicts
across the databases. After this is done, further DBFS operations (both creation of new file
systems and subsequent file system operations) can be performed without conflicts of
names, primary keys, or IDs during DML propagation.

Chapter 11
Bi-Directional Replication

11-47

1. Connect to each database as sysdba.

Issue the following query on each database.

SELECT LAST_NUMBER
FROM DBA_SEQUENCES
WHERE SEQUENCE_OWNER = 'SYS'
AND SEQUENCE_NAME = 'DBFS_SFS_$FSSEQ'

2. From this query, choose the maximum value of LAST_NUMBER across both systems,
or pick a high value that is significantly larger than the current value of the
sequence on either system.

3. Substitute this value ("maxval" is used here as a placeholder) in both of the
following procedures. These procedures logically index each system as myid=0
and myid=1.

Node1

Node 2

DECLARE
BEGIN
DBMS_DBFS_SFS_ADMIN.PARTITION_SEQUENCE(NODES => 2, MYID => 0,
NEWSTART => :MAXVAL);
COMMIT;
END;
/

Note:

Notice the difference in the value specified for the myid parameter.
These are the different index values.

For a multi-way configuration among three or more databases, you could make the
following alterations:

• Adjust the maximum value that is set for maxval upward appropriately, and use
that value on all nodes.

• Vary the value of myid in the procedure from 0 for the first node, 1 for the
second node, 2 for the third one, and so on.

4. (Recommended) After (and only after) the DBFS sequence generator is
partitioned, create a new DBFS file system on each system, and use only these
file systems for DML propagation with Oracle GoldenGate. See Configuring the
DBFS file system.

Chapter 11
Bi-Directional Replication

11-48

Note:

DBFS file systems that were created before the patch for bug-9651229 was applied
or before the DBFS sequence number was adjusted can be configured for
propagation, but that requires additional steps not described in this document. If you
must retain old file systems, open a service request with Oracle Support.

Configuring the DBFS file system
To replicate DBFS file system operations, use a configuration that is similar to the standard
bi-directional configuration for DML.

Some guidelines to follow while configuring Oracle GoldenGate for DBFS are:

• Use matched pairs of identically structured tables.

• Allow each database to have write privileges to opposite tables in a set, and set the other
one in the set to read-only. For example:

– Node1 writes to local table t1 and these changes are replicated to t1 on Node2.

– Node2 writes to local table t2 and these changes are replicated to t2 on Node1.

– On Node1, t2 is read-only. On Node2, t1 is read-only.

DBFS file systems make this kind of table pairing simple because:

• The tables that underlie the DBFS file systems have the same structure.

• These tables are modified by simple, conventional DML during higher-level file system
operations.

• The DBFS ContentAPI provides a way of unifying the namespace of the individual DBFS
stores by means of mount points that can be qualified as read-write or read-only.

The following steps create two DBFS file systems (in this case named FS1 and FS2) and set
them to be read-write or read, as appropriate.

1. Run the following procedure to create the two file systems. (Substitute your store names
for FS1 and FS2.)

2. Run the following procedure to give each file system the appropriate access rights.
(Substitute your store names for FS1 and FS2.)

In this example, note that on Node 1, store FS1 is read-write and store FS2 is read-only,
while on Node 2 the converse is true: store FS1 is read-only and store FS2 is read-write.

Note also that the read-write store is mounted as local and the read-only store is
mounted as remote. This provides users on each system with an identical namespace
and identical semantics for read and write operations. Local path names can be modified,
but remote path names cannot.

Example 11-8

DECLARE
DBMS_DBFS_SFS.CREATEFILE SYSTEM('FS1');
DBMS_DBFS_SFS.CREATEFILE SYSTEM('FS2');

DBMS_DBFS_CONTENT.REGISTERSTORE('FS1',

Chapter 11
Bi-Directional Replication

11-49

'POSIX', 'DBMS_DBFS_SFS');
DBMS_DBFS_CONTENT.REGISTERSTORE('FS2',
'POSIX', 'DBMS_DBFS_SFS');
COMMIT;
END;
/

Example 11-9 Node 1

DECLARE
DBMS_DBFS_CONTENT.MOUNTSTORE('FS1', 'LOCAL');
DBMS_DBFS_CONTENT.MOUNTSTORE('FS2', 'REMOTE',
READ_ONLY => TRUE);
COMMIT;
END;
/

Example 11-10 Node 2

DECLARE
DBMS_DBFS_CONTENT.MOUNTSTORE('FS1', 'REMOTE',
READ_ONLY => TRUE);
DBMS_DBFS_CONTENT.MOUNTSTORE('FS2', 'LOCAL');
COMMIT;
END;
/

Mapping Local and Remote Peers Correctly
The names of the tables that underlie the DBFS file systems are generated internally
and dynamically.

Continuing with the preceding example, there are:

• Two nodes (Node 1 and Node 2 in the example).

• Four stores: two on each node (FS1 and FS2 in the example).

• Eight underlying tables: two for each store (a table and a ptable). These tables
must be identified, specified in Extract TABLE statements, and mapped in Replicat
MAP statements.

1. To identify the table names that back each file system, issue the following query.
(Substitute your store names for FS1 and FS2.)

The output looks like the following examples.

2. Identify the tables that are locally read-write to Extract by creating the following
TABLE statements in the Extract parameter files. (Substitute your pluggable
database names, schema names, and table names as applicable.)

3. Link changes on each remote file system to the corresponding local file system by
creating the following MAP statements in the Replicat parameter files. (Substitute
your pluggable database, schema and table names.)

Chapter 11
Bi-Directional Replication

11-50

This mapping captures and replicates local read-write source tables to remote read-only
peer tables:

• file system changes made to FS1 on Node 1 propagate to FS1 on Node 2.

• file system changes made to FS2 on Node 2 propagate to FS2 on Node1.

Changes to the file systems can be made through the DBFS ContentAPI (package
DBMS_DBFS_CONTENT) of the database or through dbfs_client mounts and conventional
file systems tools.

All changes are propagated in both directions.

• A user at the virtual root of the DBFS namespace on each system sees identical
content.

• For mutable operations, users use the /local sub-directory on each system.

• For read operations, users can use either of the /local or /remote sub-directories,
depending on whether they want to see local or remote content.

Example 11-11

select fs.store_name, tb.table_name, tb.ptable_name
from table(dbms_dbfs_sfs.listTables) tb,
table(dbms_dbfs_sfs.listfile systems) fs
where fs.schema_name = tb.schema_name
and fs.table_name = tb.table_name
and fs.store_name in ('FS1', 'FS2')
;

Example 11-12 Example output: Node 1 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAME PTABLE_NAME
------------- ------------- -------------
FS1 SFS$_FST_100 SFS$_FSTP_100
FS2 SFS$_FST_118 SFS$_FSTP_118

Example 11-13 Example output: Node 2 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAME PTABLE_NAME
------------- ------------- -------------
FS1 SFS$_FST_101 SFS$_FSTP_101
FS2 SFS$_FST_119 SFS$_FSTP_119

Example 11-14 Node1

TABLE [container.]schema.SFS$_FST_100
TABLE [container.]schema.SFS$_FSTP_100;

Example 11-15 Node2

TABLE [container.]schema.SFS$_FST_119
TABLE [container.]schema.SFS$_FSTP_119;

Example 11-16 Node1

MAP [container.]schema.SFS$_FST_119, TARGET [container.]schema.SFS$_FST_118;
MAP [container.]schema.SFS$_FSTP_119, TARGET [container.]schema.SFS$_FSTP_118

Chapter 11
Bi-Directional Replication

11-51

Example 11-17 Node2

MAP [container.]schema.SFS$_FST_100, TARGET
[container.]schema.SFS$_FST_101;MAP [container.]schema.SFS$_FSTP_100, TARGET
[container.]schema.SFS$_FSTP_101;

Using Procedural Replication
Learn about procedural replication and how to configure it.

Topics:

• About Procedural Replication

• Procedural Replication Process Overview
Procedural replication uses a trail record to ensure that sufficient information is
encapsulated with the record.

• Determining Whether Procedural Replication Is On
Use the GG_PROCEDURE_REPLICATION_ON function in the DBMS_GOLDENGATE_ADM
package to determine whether Oracle GoldenGate procedural replication is on or
off.

• Enabling and Disabling Supplemental Logging

• Filtering Features for Procedural Replication
You can specify which procedures and packages you want to include or exclude
for procedure replication.

• Handling Procedural Replication Errors
Procedural replication uses REPERROR parameter to configure the behavior of
Replicat when an procedural error occurs.

• Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
The DBA_GG_SUPPORTED_PROCEDURES view displays information about the supported
packages for Oracle GoldenGate procedural replication.

• Monitoring Oracle GoldenGate Procedural Replication
A set of data dictionary views enable you to monitor Oracle GoldenGate
procedural replication.

About Procedural Replication

Oracle GoldenGate procedural replication is used to replicate Oracle Database
supplied PL/SQL procedures avoiding the shipping and applying of high volume
records usually generated by these operations. Procedural replication implements
dictionary changes that control user and session behavior and the swapping of objects
in dictionary.

Procedural replication is not related to the replication of the CREATE, ALTER, and DROP
statements (or DDL), rather it is the replication of a procedure call like:

CALL procedure_name(arg1, arg2, ...);

As opposed to:

exec procedure_name(arg1, arg2, ...)

Chapter 11
Using Procedural Replication

11-52

After you enable procedural replication, calls to procedures in Oracle Database supplied
packages at one database are replicated to one or more other databases and then executed
at those databases. For example, a call to subprograms in the DBMS_REDEFINITION package
can perform an online redefinition of a table. If the table is replicated at several databases,
and if you want the same online redefinition to be performed on the table at each database,
then you can make the calls to the subprograms in the DBMS_REDEFINITION package at one
database, and Oracle GoldenGate can replicate those calls to the other databases.

To support procedural replication, your Oracle Database should be configured to identify
procedures that are enabled for this optimization.

To use procedural replication, the following prerequisites must be met:

• Oracle GoldenGate with Extract and Replicat.

• System supplied packages are only working in combination with DML and DDL.

Procedural Replication Process Overview
Procedural replication uses a trail record to ensure that sufficient information is encapsulated
with the record.

To use Oracle GoldenGate procedural replication, you need to enable it. Your Oracle
Database must have a built in mechanism to identify the procedures that are enabled for this
optimization.

PL/SQL pragmas are used to indicate which procedures can be replicated. When the pragma
is specified, a callback is made to Logminer on entry and exit from the routine. The callback
provides the name of the procedure call and arguments and indicates if the procedure exited
successfully or with an error. Logminer augments the redo stream with the information from
the callbacks. For supported procedures, the normal redo generated by the procedure is
suppressed, and only the procedure call is replicated.

A new trail record is generated to identify procedural replication. This trail record leverages
existing trail column data format for arguments passed to PL/SQL procedures. For LOBs,
data is passed in chunks similar to existing trail format for LOBs. This trail record has
sufficient information to replay the procedure as-is on the target.

When you enable procedural replication, it prevents writing of individual records impacted by
the procedure to the trail file.

If an error is encountered when applying a PL/SQL procedure, Replicat can replay the entire
PL/SQL procedure.

Determining Whether Procedural Replication Is On
Use the GG_PROCEDURE_REPLICATION_ON function in the DBMS_GOLDENGATE_ADM package to
determine whether Oracle GoldenGate procedural replication is on or off.

If you want to use Oracle GoldenGate in an Oracle Database Vault environment with
procedural replication, then you must set the appropriate privileges. See Oracle Database
Vault Administrator’s Guide.

To enable procedural replication:

1. Connect to the database as sys (sqlplus, sqlcl, sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Run the GG_PROCEDURE_REPLICATION_ON function.

Chapter 11
Using Procedural Replication

11-53

Example 11-18 Running the GG_PROCEDURE_REPLICATION_ON Function

SET SERVEROUTPUT ON
DECLARE
 on_or_off NUMBER;
BEGIN
 on_or_off := DBMS_GOLDENGATE_ADM.GG_PROCEDURE_REPLICATION_ON;
 IF on_or_off=1 THEN
 DBMS_OUTPUT.PUT_LINE('Oracle GoldenGate procedural replication is
ON.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Oracle GoldenGate procedural replication is
OFF.');
 END IF;
END;
/

Enabling and Disabling Supplemental Logging

Oracle GoldenGate provides commands to allow you to enable or disable procedural
supplemental logging.

To enable supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with
DBLOGIN.

CONNECT https://localhost:9000 DEPLOYMENT demo AS ggadmin PASSWORD
adminpw

DBLOGIN USERIDALIAS ggeast DOMAIN OracleGoldenGate

2. Add supplemental logging for procedural replication.

ADD PROCEDURETRANDATA

The output shows:

INFO OGG-13005 PROCEDURETRANDATA supplemental logging has been
enabled.

Supplemental logging is enabled for procedure replication.

To disable supplemental logging:

Chapter 11
Using Procedural Replication

11-54

1. Connect to the source database as the Oracle GoldenGate administrator with dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS ggadmin PASSWORD adminpw

DBLOGIN USERIDALIAS ggeast DOMAIN OracleGoldenGate

2. Remove supplemental logging for procedure replication.

DELETE PROCEDURETRANDATA

Supplemental logging is disabled for procedure replication.

To view information about supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS ggadmin PASSWORD adminpw

DBLOGIN USERIDALIAS ggeast DOMAIN OracleGoldenGate

2. Display supplemental logging information for procedure replication.

INFO PROCEDURETRANDATA

Supplemental logging information for procedure replication is displayed.

Filtering Features for Procedural Replication
You can specify which procedures and packages you want to include or exclude for
procedure replication.

You group supported packages and procedures using feature groups. You use the procedure
parameter with the INCLUDE or EXCLUDE keyword to filter features for procedure replication.

In the procedure parameter, INCLUDE or EXCLUDE specify the beginning of a filtering clause.
They specify the procedures to replicate (INCLUDE) or filter out (EXCLUDE). The filtering clause
must consist of the INCLUDE ALL_SUPPORTED or EXCLUDE ALL_SUPPORTED keyword followed by
any valid combination of the other filtering options of the procedure parameter. The EXCLUDE
filter takes precedence over any INCLUDE filters that contain the same criteria.

Note:

When replicating Oracle Streams Advanced Queuing (AQ) procedures, you must
use the RULE option in your parameter file as follows:

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED
or

PROCEDURE INCLUDE FEATURE AQ, RULE
Do not use PROCEDURE INCLUDE FEATURE AQ without the RULE option.

Chapter 11
Using Procedural Replication

11-55

Including all system supplied packages at Extract:

1. Connect to Extract in the source database.

EXTRACT edba
USERIDALIAS admin_dbA DOMAIN ORADEV

2. Create a new trail file.

EXTTRAIL ea
3. Enable procedure replication, if not already done.

TRANLOGOPTIONS INTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLICATION Y)
4. Include filter for procedure replication.

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED
You have successfully included all system supplied packages for procedure
replication.

Excluding specific packages at Replicat:

1. Connect to Replicat in the target database.

REPLICAT rdba
USERIDALIAS admin_dbBDOMAIN ORADEV

2. Include filter for procedure replication.

PROCEDURE EXCLUDE FEATURE RLS
You have successfully excluded specific packages for procedure replication.

Handling Procedural Replication Errors
Procedural replication uses REPERROR parameter to configure the behavior of Replicat
when an procedural error occurs.

By default, Replicat will abend when a procedural replication occurs so using the
following steps sets up error handling:

1. Connect to Replicat in the target database.

REPLICAT rdba
USERIDALIAS admin_dbBDOMAIN ORADEV

2. Include filter for procedure replication.

PROCEDURE EXCLUDE FEATURE RLS
3. Specify error handling parameter, see REPERROR in Reference for Oracle

GoldenGate for other options.

REPERROR (PROCEDURE, DISCARD)
You have successfully handled errors for procedural replication.

Chapter 11
Using Procedural Replication

11-56

Listing the Procedures Supported for Oracle GoldenGate Procedural
Replication

The DBA_GG_SUPPORTED_PROCEDURES view displays information about the supported packages
for Oracle GoldenGate procedural replication.

When a procedure is supported and Oracle GoldenGate procedural replication is on, calls to
the procedure are replicated, unless the procedure is excluded specifically.

1. Connect to the database as sys (sqlplus, sqlcl, sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Query the DBA_GG_SUPPORTED_PROCEDURES view.

Example 11-19 Displaying Information About the Packages Supported for Oracle
GoldenGate Procedural Replication

This query displays the following information about the packages:

• The owner of each package

• The name of each package

• The name of each procedure

• The minimum database release from which the procedure is supported

• Whether there is an exclusion rule that prevents the procedure from being replicated for
some database objects

COLUMN OWNER FORMAT A10
COLUMN PACKAGE_NAME FORMAT A15
COLUMN PROCEDURE_NAME FORMAT A15
COLUMN MIN_DB_VERSION FORMAT A14
COLUMN EXCLUSION_RULE_EXISTS FORMAT A14

SELECT OWNER,
 PACKAGE_NAME,
 PROCEDURE_NAME,
 MIN_DB_VERSION,
 EXCLUSION_RULE_EXISTS
 FROM DBA_GG_SUPPORTED_PROCEDURES;

Your output looks similar to the following:

OWNER PACKAGE_NAME PROCEDURE_NAME MIN_DB_VERSION EXCLUSION_RULE
---------- --------------- --------------- -------------- --------------
XDB DBMS_XDB_CONFIG ADDTRUSTMAPPING 12.2 NO
CTXSYS CTX_DDL ALTER_INDEX 12.2 NO
SYS DBMS_FGA DROP_POLICY 12.2 NO
SYS XS_ACL DELETE_ACL 12.2 NO
.
.
.

Chapter 11
Using Procedural Replication

11-57

Monitoring Oracle GoldenGate Procedural Replication
A set of data dictionary views enable you to monitor Oracle GoldenGate procedural
replication.

You can use the following views to monitor Oracle GoldenGate procedural replication:

View Description

DBA_GG_SUPPORTED_PACKAGES Provides details about supported packages for
Oracle GoldenGate procedural replication.

When a package is supported and Oracle
GoldenGate procedural replication is on, calls
to subprograms in the package are replicated.

DBA_GG_SUPPORTED_PROCEDURES Provides details about the procedures that are
supported for Oracle GoldenGate procedural
replication.

DBA_GG_PROC_OBJECT_EXCLUSION Provides details about all database objects
that are on the exclusion list for Oracle
GoldenGate procedural replication.

A database object is added to the exclusion list
using the INSERT_PROCREP_EXCLUSION_OBJ
procedure in the DBMS_GOLDENGATE_ADM
package. When a database object is on the
exclusion list, execution of a subprogram n the
package is not replicated if the subprogram
operates on the excluded object.

1. Connect to the database as sys (sqlplus, sqlcl, or sqldeveloper) not as an
Oracle GoldenGate administrator.

2. Query the views related to Oracle GoldenGate procedural replication.

Automatic Conflict Detection and Resolution
When Oracle GoldenGate replicates changes between Oracle databases, you can
configure and manage Oracle GoldenGate automatic conflict detection and resolution
in the Oracle databases.

Note:

The automatic conflict detection and resolution feature is specific to Oracle
Database 12c Release 2 (12.2) and later, which is configured in an Oracle
database. It also requires Oracle GoldenGate 12c (12.3.0.1) and later. There
is a manual conflict detection and resolution feature, which is called Oracle
GoldenGate conflict detection and resolution (CDR). Oracle GoldenGate
CDR is configured in the Replicat parameter file. To know more about Oracle
GoldenGate CDR, see

• About Automatic Conflict Detection and Resolution

• Configuring Delta Conflict Detection and Resolution

Chapter 11
Automatic Conflict Detection and Resolution

11-58

• Managing Automatic Conflict Detection and Resolution

• Monitoring Automatic Conflict Detection and Resolution

About Automatic Conflict Detection and Resolution

When Oracle GoldenGate replicates changes between Oracle databases, you can configure
and manage Oracle GoldenGate conflict detection and resolution automatically in these
databases.

This feature is intended for use with active-active configurations, where Oracle GoldenGate
must maintain data synchronization among multiple databases that contain the same data
sets.

Note:

Automatic conflict detection and resolution (ACDR) feature that is available only
when using Oracle GoldenGate with Oracle Database. For non-Oracle databases,
there is a manual conflict detection and resolution (CDR) feature available with
Oracle GoldenGate. Oracle GoldenGate CDR is configured in the Replicat
parameter file.

Topics:

• Automatic Conflict Detection and Resolution

• Requirements for Automatic Conflict Detection and Resolution

• Column Groups

• DELETE TOMBSTONE Table

• Earliest Timestamp Conflict Detection and Resolution

• Latest Timestamp Conflict Detection and Resolution

• Delete Always Wins Timestamp CDR

• Delta Conflict Detection and Resolution

• Site Priority CDR

• Track PK Updates in Delete Tombstone

Automatic Conflict Detection and Resolution

You can configure automatic conflict detection and resolution in an Oracle GoldenGate
configuration that replicates tables between Oracle Databases. To configure conflict detection
and resolution for a table, call the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM
package. These are administration APIs, which are expected to be called by an Oracle
GoldenGate administrator who is granted privileges through the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE. This user needs to have privileges to
modify the affected table. These APIs result in the version number being bumped for the
object and also lock the object due to DDL execution.

Chapter 11
Automatic Conflict Detection and Resolution

11-59

The administrator user must be logged in to the appropriate PDB when calling these
APIs. Three constants, which represent bit flags are now added:

• EARLIEST_TIMESTAMP_RESOLUTION=0x0001 sets TOMBSTONE KEY VERSIONING
automatically

• DELETE_ALWAYS_WINS=0x0002 sets TOMBSTONE KEY VERSIONING automatically.

• IGNORE_SITE_PRIORITY=0x0004
When Oracle GoldenGate captures changes that originated at an Oracle Database,
each change is encapsulated in a row logical change record (LCR). A row LCR is a
structured representation of a DML row change. Each row LCR includes the operation
type, old column values, and new column values. Multiple row LCRs can be part of a
single database transaction.

When more than one replica of a table allows changes to the table, a conflict can
occur when a change is made to the same row in two different databases at nearly the
same time. Oracle GoldenGate replicates changes using the row LCRs. It detects a
conflict by comparing the old values in the row LCR for the initial change from the
origin database with the current values of the corresponding table row at the
destination database identified by the key columns. If any column value does not
match, then there is a conflict.

After a conflict is detected, Oracle GoldenGate can resolve the conflict by overwriting
values in the row with some values from the row LCR, ignoring the values in the row
LCR, or computing a delta to update the row values.

Automatic conflict detection and resolution does not require application changes for
the following reasons:

• Oracle Database automatically creates and maintains invisible timestamp
columns.

• Inserts, updates, and deletes use the delete tombstone log table to determine if a
row was deleted.

• LOB column conflicts can be detected.

• Oracle Database automatically configures supplemental logging on required
columns.

See Also:

• Oracle Database Utilities for information about supplemental logging

Requirements for Automatic Conflict Detection and Resolution

Supplemental logging is required to ensure that each row LCR has the information
required to detect and resolve a conflict. Supplemental logging places additional
information in the redo log for the columns of a table when a DML operation is
performed on the table. When you configure a table for Oracle GoldenGate conflict
detection and resolution, supplemental logging is configured automatically for all of the
columns in the table. The additional information in the redo log is placed in an LCR
when a table change is replicated.

Chapter 11
Automatic Conflict Detection and Resolution

11-60

Extract must be used for capturing. Integrated Replicat or parallel Replicat in integrated mode
must be used on the apply side. LOGALLSUPCOLS should remain the default.

There is a hidden field KEYVER$$ of type timestamp that is optionally added to the DELETE
TOMBSTONE table. This field is required for EARLIEST TIMESTAMP, DELETE ALWAYS WINS, and
SITE PRIORITY resolution and it also exists in the base table. The existence of the field in the
base table needs to be provided in the trail file metadata as a flag or token.

Primary Key updates is also supported in the DELETE TOMBSTONE table. An entry is inserted
into the DELETE TOMBSTONE table for the row of the original key value (before image). The
logic in the Extract which matches inserts in the DELETE TOMBSTONE table to deletes also
needs to be matched to PK updates, or unique key (UK) with at least one non-nullable field, if
there is no PK.

Site priority needs support from the Replicat, both the parameters are implemented and the
setting is passed to the apply.

• Compatibility and Migration

Compatibility and Migration

Replicating from a base table which doesn’t have a KEYVER$$ to a target, which has EARLIEST
TIMESTAMP resolution support, DELETE ALWAYS WINS resolution, or SITE PRIORITY, will
receive an error in cases involving DELETE or PK Update.

Replicating from a base table, which has a KEYVER$$ to a target, which does not, will ignore
the KEYVER$$, when replicating to an earlier release, then the field is dropped or is not
supported).

Example

The following table shows EARLIEST TIMESTAMP resolution on Site1 with no keyver$$ column
or earlier RDBMS version replication to Site 2

Site 1 Site 2 Description

insert insert If the Site1 CDRTS$ timestamp is
earlier then Site1 wins else Site2
wins

insert update Same as insert insert.

insert delete Conflict cannot be resolved,
depending on configuration, error
goes to error queue, discard and
so on.

insert pkupdate Same as insert delete

update insert Same as insert insert

update update Same as insert insert

update delete Same as insert delete

update pkupdate Same as insert delete

delete insert Same as insert delete

delete update Same as insert delete

pkupdate insert Same as insert delete

Chapter 11
Automatic Conflict Detection and Resolution

11-61

Site 1 Site 2 Description

pkupdate update Same as insert delete

pkupdate delete Same as insert delete

Primary Key Updates (pkupdate) interoperability will not resolve correctly without a
backport. Besides the interoperability problems listed above, pkupdates that are
replicated to earlier versions of the RDBMS, will not resolve correctly. A conflicting
insert and replicated pkupdate on the earlier RDBMS may result in 2 rows. The insert
will succeed to the original row and the pkupdate will succeed to update or create the
new row.

No upgrage or downgrade scripts are needed because the changes are just to
procedure attributes and view columns.

Column Groups
A column group is a logical grouping of one or more columns in a replicated table.
When you add a column group, conflict detection and resolution is performed on the
columns in the column group separately from the other columns in the table.

When you configure a table for Oracle GoldenGate conflict detection and resolution
with the ADD_AUTO_CDR procedure, all of the scalar columns in the table are added to a
default column group. To define other column groups for the table, run the
ADD_AUTO_CDR_COLUMN_GROUP procedure. Any columns in the table that are not part of
a user-defined column group remain in the default column group for the table.

Column groups enable different databases to update different columns in the same
row at nearly the same time without causing a conflict. When column groups are
configured for a table, conflicts can be avoided even if different databases update the
same row in the table. A conflict is not detected if the updates change the values of
columns in different column groups.

Chapter 11
Automatic Conflict Detection and Resolution

11-62

This example shows a row being replicated at database A and database B. The following two
column groups are configured for the replicated table at each database:

• One column group includes the Office column. The invisible timestamp column for this
column group is TS1.

• Another column group includes the Title and Salary columns. The invisible timestamp
column for this column group is TS2.

These column groups enable database A and database B to update the same row at nearly
the same time without causing a conflict. Specifically, the following changes are made:

• At database A, the value of Office was changed from 1080 to 1030.

• At database B, the value of Title was changed from MTS1 to MTS2.

Chapter 11
Automatic Conflict Detection and Resolution

11-63

Because the Office column and the Title column are in different column groups, the
changes are replicated without a conflict being detected. The result is that values in
the row are same at both databases after each change has been replicated.

Piecewise LOB Updates

A set of lob operations composed of LOB WRITE, LOB ERASE, and LOB TRIM is a
piecewise LOB update. When a table that contains LOB columns is configured for
conflict detection and resolution, each LOB column is placed in its own column group,
and the column group has its own hidden timestamp column. The timestamp column is
updated on the first piecewise LOB operation.

For a LOB column, a conflict is detected and resolved in the following ways:

• If the timestamp for the LOB’s column group is later than the corresponding LOB
column group in the row, then the piecewise LOB update is applied.

• If the timestamp for the LOB’s column group is earlier than the corresponding LOB
column group in the row, then the LOB in the table row is retained.

• If the row does not exist in the table, then an error occurs

DELETE TOMBSTONE Table

DELETE TOMBSTONE table is a marker for a deleted record to distinguish it from a record,
which never existed. A DELETE TOMBSTONE table contains at minimum the key columns
and operation timestamp. This information is required for delete convergence becasue
some incoming updates and inserts may be delayed from another site and the
incoming LCR needs to be filtered against the tombstone operation timestamp to
determine whether it should be applied.

Earliest Timestamp Conflict Detection and Resolution

Columns with names of the form CDRTS$ column group and CDRTS$ROW are used to
contain timestamps that reflect modification times for column groups and the row. The
DBMS_GOLDENGATE_ADM procedures ADD_AUTO_CDR(), ADD_AUTO_CDR_COLUMN_GROUP(),
REMOVE_AUTO_CDR(), REMOVE_AUTO_CDR_COLUMN_GROUP(), ALTER_AUTO_CDR(), and
ALTER_AUTO_CDR_COLUMN_GROUP() are presently used to configure ACDR with latest
timestamp resolution. They are also used in configuration of ACDR with earliest
timestamp resolution, The field ADDITIONAL_OPTIONS in both ADD_AUTO_CDR() and
ALTER_AUTO_CDR() turn on the use of earliest timestamp. Turning on earliest
timestamp automatically turn on versioning, which adds a new hidden column
KEYVER$$ (version number) of type timestamp. A new flag value is added to
acdrflags_kqldtvc to indicate earliest timestamp usage. This field is also added to
the DELETE TOMBSTONE table. Delete conflicts are the reason that version number is
needed. With an earliest timestamp resolution, delete conflicts, which can be
transparent, might not only incorrectly succeed, they might prevent new inserts of the
row (new versions). With a version timestamp, the delete can be correctly resolved
against a row DML for the same row version.

The original insert of the row receives the current timestamp from its default value. The
delete of this row then inserts the version number and the time when this row was
inserted, into the tombstone table when there is a delete. On a new insert, by default,
the version number receives the current timestamp again, thereby avoiding a false
conflict with the present delete entries in the tombstone table.

Chapter 11
Automatic Conflict Detection and Resolution

11-64

Example

For key version kv and timestamp ts
Database 1: insert tab1 key1 kv1 ts1
Database 2: delete tab1 key1 kv1 ts1
Insertion to DELETE TOMBSTONE table key1 kv1 ts1
Database 1: insert tab1 key1 kv2 ts2
Without using the key version, the insert would be ignoreed, the delete timestamp is earlier.
As the key version is used, you know that kv2 is not the version of the row that was deleted
and the insert succeeds.

Latest Timestamp Conflict Detection and Resolution

When you run the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package to
configure a table for automatic Oracle GoldenGate conflict detection and resolution, a hidden
timestamp column is added to the table. This hidden timestamp column records the time of a
row change, and this information is used to detect and resolve conflicts.

When a row LCR is applied, a conflict can occur for an INSERT, UPDATE, or DELETE operation.
The following table describes each type of conflict and how it is resolved.

Operation Conflict Detection Conflict Resolution

INSERT A conflict is detected when the
table has the same value for a
key column as the new value in
the row LCR.

If the timestamp of the row LCR
is later than the timestamp in the
table row, then the values in the
row LCR replace the values in
the table.

If the timestamp of the row LCR
is earlier than the timestamp in
the table row, then the row LCR
is discarded, and the table
values are retained.

Chapter 11
Automatic Conflict Detection and Resolution

11-65

Operation Conflict Detection Conflict Resolution

UPDATE A conflict is detected in each of
the following cases:

• There is a mismatch
between the timestamp
value in the row LCR and
the timestamp value of the
corresponding row in the
table.

• There is a mismatch
between an old value in a
column group in the row
LCR does not match the
column value in the
corresponding table row. A
column group is a logical
grouping of one or more
columns in a replicated
table.

• The table row does not exist.
If the row is in the tombstone
table, then this is referred to
as an update-delete conflict.

If there is a value mismatch and
the timestamp of the row LCR is
later than the timestamp in the
table row, then the values in the
row LCR replace the values in
the table.

If there is a value mismatch and
the timestamp of the row LCR is
earlier than the timestamp in the
table row, then the row LCR is
discarded, and the table values
are retained.

If the table row does not exist
and the timestamp of the row
LCR is later than the timestamp
in the tombstone table row, then
the row LCR is converted from
an UPDATE operation to an
INSERT operation and inserted
into the table.

If the table row does not exist
and the timestamp of the row
LCR is earlier than the
timestamp in the tombstone table
row, then the row LCR is
discarded.

If the table row does not exist
and there is no corresponding
row in the tombstone table, then
the row LCR is converted from
an UPDATE operation to an
INSERT operation and inserted
into the table.

DELETE A conflict is detected in each of
the following cases:

• There is a mismatch
between the timestamp
value in the row LCR and
the timestamp value of the
corresponding row in the
table.

• The table row does not exist.

If the timestamp of the row LCR
is later than the timestamp in the
table, then delete the row from
the table.

If the timestamp of the row LCR
is earlier than the timestamp in
the table, then the row LCR is
discarded, and the table values
are retained.

If the delete is successful, then
log the row LCR by inserting it
into the tombstone table.

If the table row does not exist,
then log the row LCR by
inserting it into the tombstone
table.

Delete Always Wins Timestamp CDR

Chapter 11
Automatic Conflict Detection and Resolution

11-66

DELETE ALWAYS WINS is enabled through the field ADDITIONAL_OPTIONS in both
DBMS_GOLDENGATE_ADM procedures ADD_AUTO_CDR() and ALTER_AUTO_CDR(). This is again a
delete conflict resolution method, which is not using latest timestamp resolution, therefore,
versioning is needed. Turning on DELETE ALWAYS WINS automatically turns on versioning,
which adds a new hidden column KEYVER$$ (version number) of type timestamp. A new flag
value is also added to acdrflags_kqldtvc to indicate DELETE ALWAYS WINS usage. This field
is also added to the DELETE TOMBSTONE table. The same versioning issues exist as the
EARLIEST TIMESTAMP resolution.

Exmaple:

Key Version kv and Timestamp ts
Database 1: insert tab1 key1 kv1 ts1
Database 2: delete tab1 key1 kv1 ts1
Insertion to DELETE TOMBSTONE table key1 kv1 ts1
Database 1: insert tab1 key1 kv2 ts2
Without using the key version, the insert would be ignored, the delete always wins. As the
key version is used, you know that kv2 is not the version of the row that was deleted and the
insert succeeds.

Delta Conflict Detection and Resolution
With delta conflict detection, a conflict occurs when a value in the old column list of the row
LCR differs from the value for the corresponding row in the table.

To configure delta conflict detection and resolution for a table, run the
ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package. The delta
resolution method does not depend on a timestamp or an extra resolution column. With delta
conflict resolution, the conflict is resolved by adding the difference between the new and old
values in the row LCR to the value in the table. This resolution method is generally used for
financial data such as an account balance. For example, if a bank balance is updated at two
sites concurrently, then the converged value accounts for all debits and credits.

Chapter 11
Automatic Conflict Detection and Resolution

11-67

This example shows a row being replicated at database A and database B. The
Balance column is designated as the column on which delta conflict resolution is
performed, and the TS1 column is the invisible timestamp column to track the time of
each change to the Balance column. A change is made to the Balance value in the
row in both databases at nearly the same time (@T20 in database A and @T22 in
database B). These changes result in a conflict, and delta conflict resolution is used to
resolve the conflict in the following way:

• At database A, the value of Balance was changed from 100 to 110. Therefore, the
value was increased by 10.

• At database B, the value of Balance was changed from 100 to 120. Therefore, the
value was increased by 20.

• To resolve the conflict at database A, the value of the difference between the new
and old values in the row LCR to the value in the table. The difference between
the new and old values in the LCR is 20 (120–100=20). Therefore, the current

Chapter 11
Automatic Conflict Detection and Resolution

11-68

value in the table (110) is increased by 20 so that the value after conflict resolution is 130.

• To resolve the conflict at database B, the value of the difference between the new and old
values in the row LCR to the value in the table. The difference between the new and old
values in the LCR is 10 (110–100=10). Therefore, the current value in the table (120) is
increased by 10 so that the value after conflict resolution is 130.

After delta conflict resolution, the value of the Balance column is the same for the row at
database A and database B.

Site Priority CDR

Note:

SITE PRIORITY resolution takes precedence over all COLUMN GROUP resolution
settings.

Note:

If SITE PRIORITY Replicat parameter is not placed before applicable map
statements in the parameter file, it will not work. This parameter must be placed
before the applicable map statements.

Priority resolution specified in Replicat parameter file between source and target in conflict
resolution.

SITE PRIORITY is turned on for a database or PDB in the Replicat parameter file with the
parameter ACDR SITE_PRIORITY {source_db_name}{OVERWRITE | IGNORE } specified to turn
on SITE PRIORITY resolution for a table. If OVERWRITE is specified, then the source table has
priority and conflicts are resolved by OVERWRITE. Conversely, if IGNORE is specified, then the
target table has priority and source table change are ignored in a conflict. SITE PRIORITY
resolution can be turned off by the field ADDITIONAL_OPTIONS in both DBMS_GOLDENGATE_ADM
procedure ADD_AUTO_CDR() and ALTER_AUTO_CDR() setting the bit IGNORE_SITE_PRIORITY.
Every Replicat source-target relationship can be set up differently, therefore, convergence is
dependent on user setup.

Track PK Updates in Delete Tombstone

Full support of primary key (PK) updates requires handling conflicts on both the rows
represented by the before image of the key and the row represented by the after image of the
key. A PK update is an autonomous delete and insert, so, the PK update conflicts must be
supported as a delete for conflicts with the before image of the key and inserts with the after
image of the key (and row).

Supporting the PK update as a delete of the row represented by the before image of the key
means that it should insert into the delete tombstone table as a delete. An update internal
trigger is added to insert into the tombstone table when the PK is updated (actually the row
identifying key, either the PK if it exists or the chosen UK with at least one non-nullable
column). As a PK update may lead to two conflicts, up to two resolutions are attempted at the
row level, delete of the row with the original PK and the insert of the row with the new PK.

Chapter 11
Automatic Conflict Detection and Resolution

11-69

Example: Using latest timestamp resolution

Database 1: Update to tab1 key1 at ts1
Database 2: Update to tab1 key1 set key1 to key2 ts2
Database 3: Update to tab1 key2 ts3
In this scenario, it appears that at the row level tab1 row with key1 should be deleted
and the database 3 update should be the final modification of tab1 row key2. If instead
the database 2 is at ts3 and database 3 is at ts3, then the PK update at database 2
would be the final modification of tab1 row key2.

Now, consider a case where the database 1 was at ts3, database 2 at ts2 and
database 3 at ts1, then the update to tab1 row key1 on database 1 should succeed
and the PK update from database 2 on tab1 row key2 should succeed. At this point, it
looks like the complete resolution is that both the delete at the before image and the
insert at the after image must be resolved separately. This implies that they are not
dependent on each other and a loss for one, is not a loss for both.

Configuring Delta Conflict Detection and Resolution

The ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package
configures delta conflict detection and resolution.

With delta conflict resolution, you specify one column for which conflicts are detected
and resolved. The conflict is detected if the value of the column in the row LCR does
not match the corresponding value in the table. The conflict is resolved by adding the
difference between the new and old values in the row LCR to the value in the table.

You can configure an Oracle GoldenGate administrator using the
GRANT_ADMIN_PRIVILEGE procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Run the ADD_AUTO_CDR_DELTA_RES procedure and specify the column on which
delta conflict detection and resolution is performed.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 11-20 Configuring Delta Conflict Detection and Resolution for a Table

This example configures delta conflict detection and resolution for the order_total
column in the oe.orders table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS');
END;
/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_DELTA_RES(

Chapter 11
Automatic Conflict Detection and Resolution

11-70

 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS',
 COLUMN_NAME => 'ORDER_TOTAL');
END;
/

• Configuring Latest Timestamp Conflict Detection and Resolution

• Configuring Delta Conflict Detection and Resolution

Configuring Latest Timestamp Conflict Detection and Resolution

The ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package configures latest
timestamp conflict detection and resolution. The ADD_AUTO_CDR_COLUMN_GROUP procedure
adds optional column groups.

With latest timestamp conflict detection and resolution, a conflict is detected when the
timestamp column of the row LCR does not match the timestamp of the corresponding table
row. The row LCR is applied if its timestamp is later. Otherwise, the row LCR is discarded,
and the table row is not changed. When you run the ADD_AUTO_CDR procedure, it adds an
invisible timestamp column for each row in the specified table and configures timestamp
conflict detection and resolution. When you use the ADD_AUTO_CDR_COLUMN_GROUP procedure
to add one or more column groups, it adds a timestamp for the column group and configures
timestamp conflict detection and resolution for the column group.

You can configure an Oracle GoldenGate administrator using the GRANT_ADMIN_PRIVILEGE
procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as a Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest timestamp
conflict detection and resolution.

3. Optional: Run the ADD_AUTO_CDR_COLUMN_GROUP procedure and specify one or more
column groups in the table.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 11-21 Configuring the Latest Timestamp Conflict Detection and Resolution
for a Table

This example configures latest timestamp conflict detection and resolution for the
hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 schema_name => 'hr',
 table_name => 'employees');
END;
/

Example 11-22 Configuring Column Groups

This example configures the following column groups for timestamp conflict resolution on the
hr.employees table:

Chapter 11
Automatic Conflict Detection and Resolution

11-71

• The job_identifier_cg column group includes the job_id, department_id, and
manager_id columns.

• The compensation_cg column group includes the salary and commission_pct
columns.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',
 column_list => 'job_id,department_id,manager_id',
 column_group_name => 'job_identifier_cg');
END;
/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',
 column_list => 'salary,commission_pct',
 column_group_name => 'compensation_cg');
END;
/

Configuring Delta Conflict Detection and Resolution

The ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package
configures delta conflict detection and resolution.

With delta conflict resolution, you specify one column for which conflicts are detected
and resolved. The conflict is detected if the value of the column in the row LCR does
not match the corresponding value in the table. The conflict is resolved by adding the
difference between the new and old values in the row LCR to the value in the table.

You can configure an Oracle GoldenGate administrator using the
GRANT_ADMIN_PRIVILEGE procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Run the ADD_AUTO_CDR_DELTA_RES procedure and specify the column on which
delta conflict detection and resolution is performed.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 11-23 Configuring Delta Conflict Detection and Resolution for a Table

This example configures delta conflict detection and resolution for the order_total
column in the oe.orders table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS');
END;

Chapter 11
Automatic Conflict Detection and Resolution

11-72

/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_DELTA_RES(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS',
 COLUMN_NAME => 'ORDER_TOTAL');
END;
/

Managing Automatic Conflict Detection and Resolution

You can manage Oracle GoldenGate automatic conflict detection and resolution in Oracle
Database with the DBMS_GOLDENGATE_ADM package.

• Altering Conflict Detection and Resolution for a Table

• Altering a Column Group

• Purging Tombstone Rows

• Removing Conflict Detection and Resolution From a Table

• Removing a Column Group

• Removing Delta Conflict Detection and Resolution

Altering Conflict Detection and Resolution for a Table

The ALTER_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package alters conflict detection
and resolution for a table.

Oracle GoldenGate automatic conflict detection and resolution must be configured for the
table:

1. Connect to the inbound server database as the Oracle GoldenGate administrator.

2. Run the ALTER_AUTO_CDR procedure and specify the table to configure for latest
timestamp conflict detection and resolution.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 11-24 Altering Conflict Detection and Resolution for a Table

This example alters conflict detection and resolution for the HR.EMPLOYEES table to specify
that delete conflicts are tracked in a tombstone table.

BEGIN
 DBMS_GOLDENGATE_ADM.ALTER_AUTO_CDR(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 TOMBSTONE_DELETES => TRUE);
END;
/

Chapter 11
Automatic Conflict Detection and Resolution

11-73

Altering a Column Group
The ALTER_AUTO_CDR_COLUMN_GROUP procedure alters a column group.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ALTER_AUTO_CDR_COLUMN_GROUP procedure and specify one or more
column groups in the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 11-25 Altering a Column Group

This example removes the MANAGER_ID column from the JOB_IDENTIFIER_CG column
group for the HR.EMPLOYEES table.

BEGIN
 DBMS_GOLDENGATE_ADM.ALTER_AUTO_CDR_COLUMN_GROUP(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 COLUMN_GROUP_NAME => 'JOB_IDENTIFIER_CG',
 REMOVE_COLUMN_LIST => 'MANAGER_ID');
END;
/

Note:

If there is more than one column, then use a comma-separated list.

Purging Tombstone Rows

The PURGE_TOMBSTONES procedure removes tombstone rows that were recorded before
a specified date and time. This procedure removes the tombstone rows for all tables
configured for conflict resolution in the database.

It might be necessary to purge tombstone rows periodically to keep the tombstone log
from growing too large over time.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the PURGE_TOMBSTONES procedure and specify the date and time.

Example 11-26 Purging Tombstone Rows

This example purges all tombstone rows recorded before 3:00 p.m. on December, 1,
2015 Eastern Standard Time. The timestamp must be entered in TIMESTAMP WITH
TIME ZONE format.

EXEC DBMS_GOLDENGATE_ADM.PURGE_TOMBSTONES('2015-12-01 15:00:00.000000
EST');

Chapter 11
Automatic Conflict Detection and Resolution

11-74

Removing Conflict Detection and Resolution From a Table
The REMOVE_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package removes automatic
conflict detection and resolution from a table. This procedure also removes any column
groups and delta conflict detection and resolution configured for the table.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR procedure and specify the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 11-27 Removing Conflict Detection and Resolution for a Table

This example removes conflict detection and resolution for the hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR(
 schema_name => 'hr',
 table_name => 'employees');
END;
/

Removing a Column Group
The REMOVE_AUTO_CDR_COLUMN_GROUP procedure removes a column group.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR_COLUMN_GROUP procedure and specify the name of the column
group.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 11-28 Removing a Column Group

This example removes the compensation_cg column group from the hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR_COLUMN_GROUP(
 schema_name => 'hr',
 table_name => 'employees',
 column_group_name => 'compensation_cg');
END;
/

Removing Delta Conflict Detection and Resolution

The REMOVE_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package removes
delta conflict detection and resolution for a column.

Delta conflict detection and resolution must be configured for the specified column.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR_DELTA_RES procedure and specify the column.

Chapter 11
Automatic Conflict Detection and Resolution

11-75

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 11-29 Removing Delta Conflict Detection and Resolution for a Table

This example removes delta conflict detection and resolution for the ORDER_TOTAL
column in the OE.ORDERS table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR_DELTA_RES(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS',
 COLUMN_NAME => 'ORDER_TOTAL');
END;
/

Monitoring Automatic Conflict Detection and Resolution

You can monitor Oracle GoldenGate automatic conflict detection and resolution in an
Oracle Database by querying data dictionary views.

• Displaying Information About the Tables Configured for Conflicts

• Displaying Information About Conflict Resolution Columns

• Displaying Information About Column Groups

Displaying Information About the Tables Configured for Conflicts
The ALL_GG_AUTO_CDR_TABLES view displays information about the tables configured
for Oracle GoldenGate automatic conflict detection and resolution.

1. Connect to the database.

2. Query the ALL_GG_AUTO_CDR_TABLES view.

Example 11-30 Displaying Information About the Tables Configured for Conflict
Detection and Resolution

This query displays the following information about the tables that are configured for
conflict detection and resolution:

• The table owner for each table.

• The table name for each table.

• The tombstone table used to store rows deleted for update-delete conflicts, if a
tombstone table is configured for the table.

• The hidden timestamp column used for conflict resolution for each table.

COLUMN TABLE_OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A15
COLUMN TOMBSTONE_TABLE FORMAT A15
COLUMN ROW_RESOLUTION_COLUMN FORMAT A25

SELECT TABLE_OWNER,
 TABLE_NAME,
 TOMBSTONE_TABLE,

Chapter 11
Automatic Conflict Detection and Resolution

11-76

 ROW_RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_TABLES
 ORDER BY TABLE_OWNER, TABLE_NAME;

Your output looks similar to the following:

TABLE_OWNER TABLE_NAME TOMBSTONE_TABLE ROW_RESOLUTION_COLUMN
--------------- --------------- --------------- -------------------------
HR EMPLOYEES DT$_EMPLOYEES CDRTS$ROW
OE ORDERS DT$_ORDERS CDRTS$ROW

Displaying Information About Conflict Resolution Columns
The ALL_GG_AUTO_CDR_COLUMNS view displays information about the columns configured for
Oracle GoldenGate automatic conflict detection and resolution.

The columns can be configured for row or column automatic conflict detection and resolution.
The columns can be configured for latest timestamp conflict resolution in a column group. In
addition, a column can be configured for delta conflict resolution.

1. Connect to the database as an Oracle GoldenGate administrator.

2. Query the ALL_GG_AUTO_CDR_COLUMNS view.

Example 11-31 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for conflict
detection and resolution:

• The table owner for each table.

• The table name for each table.

• If the column is in a column group, then the name of the column group.

• The column name.

• If the column is configured for latest timestamp conflict resolution, then the name of the
hidden timestamp column for the column.

COLUMN TABLE_OWNER FORMAT A10
COLUMN TABLE_NAME FORMAT A10
COLUMN COLUMN_GROUP_NAME FORMAT A17
COLUMN COLUMN_NAME FORMAT A15
COLUMN RESOLUTION_COLUMN FORMAT A23

SELECT TABLE_OWNER,
 TABLE_NAME,
 COLUMN_GROUP_NAME,
 COLUMN_NAME,
 RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_COLUMNS
 ORDER BY TABLE_OWNER, TABLE_NAME;

Chapter 11
Automatic Conflict Detection and Resolution

11-77

Your output looks similar to the following:

TABLE_OWNE TABLE_NAME COLUMN_GROUP_NAME COLUMN_NAME
RESOLUTION_COLUMN
---------- ---------- ----------------- ---------------

HR EMPLOYEES COMPENSATION_CG COMMISSION_PCT
CDRTS$COMPENSATION_CG
HR EMPLOYEES COMPENSATION_CG SALARY
CDRTS$COMPENSATION_CG
HR EMPLOYEES JOB_IDENTIFIER_CG MANAGER_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES JOB_IDENTIFIER_CG JOB_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES JOB_IDENTIFIER_CG DEPARTMENT_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES IMPLICIT_COLUMNS$ PHONE_NUMBER CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ LAST_NAME CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ HIRE_DATE CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ FIRST_NAME CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ EMAIL CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ EMPLOYEE_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_MODE CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_DATE CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ CUSTOMER_ID CDRTS$ROW
OE ORDERS DELTA$ ORDER_TOTAL
OE ORDERS IMPLICIT_COLUMNS$ PROMOTION_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_STATUS CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ SALES_REP_ID CDRTS$ROW

In this example, the columns with IMPLICIT_COLUMNS$ for the column group name are
configured for row conflict detection and resolution, but they are not part of a column
group. The columns with DELTA$ for the column group name are configured for delta
conflict detection and resolution, and these columns do not have a resolution column.

Displaying Information About Column Groups

The ALL_GG_AUTO_CDR_COLUMN_GROUPS view displays information about the column
groups configured for Oracle GoldenGate automatic conflict detection and resolution.

You can configure Oracle GoldenGate automatic conflict detection and resolution
using the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package. You can
configure column groups using the ADD_AUTO_CDR_COLUMN_GROUP procedure in the
DBMS_GOLDENGATE_ADM package.

1. Connect to the database as an Oracle GoldenGate administrator.

2. Query the ALL_GG_AUTO_CDR_COLUMN_GROUPS view.

Example 11-32 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for
conflict detection and resolution:

• The table owner.

Chapter 11
Automatic Conflict Detection and Resolution

11-78

• The table name.

• The name of the column group.

• The hidden timestamp column used for conflict resolution for each column group.

COLUMN TABLE_OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A15
COLUMN COLUMN_GROUP_NAME FORMAT A20
COLUMN RESOLUTION_COLUMN FORMAT A25

SELECT TABLE_OWNER,
 TABLE_NAME,
 COLUMN_GROUP_NAME,
 RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_COLUMN_GROUPS
 ORDER BY TABLE_OWNER, TABLE_NAME;

The output looks similar to the following:

TABLE_OWNER TABLE_NAME COLUMN_GROUP_NAME RESOLUTION_COLUMN
--------------- --------------- --------------------

HR EMPLOYEES COMPENSATION_CG CDRTS$COMPENSATION_CG
HR EMPLOYEES JOB_IDENTIFIER_CG CDRTS$JOB_IDENTIFIER_CG

Manual Conflict Detection and Resolution
This chapter contains instructions for manually configuring Conflict Detection and Resolution
(CDR) using specific parameters. Conflict detection and resolution is required in active-active
configurations, where Oracle GoldenGate must maintain data synchronization among
multiple databases that contain the same data sets.

Topics:

• Overview of the Oracle GoldenGate CDR Feature

• Configuring the Oracle GoldenGate Parameter Files for Error Handling

• Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution

• Making the Required Column Values Available to Extract

• Viewing CDR Statistics

• CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

• CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX

• CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Overview of the Oracle GoldenGate CDR Feature
Oracle GoldenGate Conflict Detection and Resolution (CDR) provides basic conflict
resolution routines that:

• Resolve a uniqueness conflict for an INSERT.

Chapter 11
Manual Conflict Detection and Resolution

11-79

• Resolve a "no data found" conflict for an UPDATE when the row exists, but the
before image of one or more columns is different from the current value in the
database.

• Resolve a "no data found" conflict for an UPDATE when the row does not exist.

• Resolve a "no data found" conflict for a DELETE when the row exists, but the before
image of one or more columns is different from the current value in the database.

• Resolve a "no data found" conflict for a DELETE when the row does not exist.

To use conflict detection and resolution (CDR), the target database must reside on a
Windows, Linux, or UNIX system. It is not supported for databases on the NonStop
platform.

 CDR supports scalar data types such as:

• NUMERIC
• DATE
• TIMESTAMP
• CHAR/NCHAR
• VARCHAR/ NVARCHAR
This means that these column types can be used with the COMPARECOLS parameter and
as the resolution column in the USEMIN and USEMAX options of the RESOLVECONFLICT
parameter. Only NUMERIC columns can be used for the USEDELTA option of
RESOLVECONFLICT. Do not use CDR for columns that contain LOBs, abstract data types
(ADT), or user-defined types (UDT).

Conflict resolution is not performed when Replicat operates in BATCHSQL mode. If a
conflict occurs in BATCHSQL mode, Replicat reverts to GROUPTRANSOPS mode, and then
to single-transaction mode. Conflict detection occurs in all three modes. For more
information, see Reference for Oracle GoldenGate.

Configuring the Oracle GoldenGate Parameter Files for Error Handling
Manual CDR should be used in conjunction with error handling to capture errors that
were resolved and errors that CDR could not resolve.

1. Conflict resolution is performed before these other error-handling parameters:
HANDLECOLLSIONS, INSERTMISSINGUPDATES, and REPERROR. Use the REPERROR
parameter to assign rules for handling errors that cannot be resolved by CDR, or
for errors that you do not want to handle through CDR. It might be appropriate to
have REPERROR handle some errors, and CDR handle others; however, if REPERROR
and CDR are configured to handle the same conflict, CDR takes precedence. The
INSERTMISSINGUPDATES and HANDLECOLLISIONS parameters also can be used to
handle some errors not handled by CDR. See the Reference for Oracle
GoldenGate for details about these parameters.

2. (Optional) Create an exceptions table. When an exceptions table is used with an
exceptions MAP statment, Replicat sends every operation that generates a conflict
(resolved or not) to the exceptions MAP statement to be mapped to the exceptions
table. Omit a primary key on this table if Replicat is to process UPDATE and DELETE
conflicts; otherwise there can be integrity constraint errors.

Chapter 11
Manual Conflict Detection and Resolution

11-80

At minimum, an exceptions table should contain the same columns as the target table.
These rows will contain each row image that Replicat applied to the target (or tried to
apply).

In addition, you can define additional columns to capture other information that helps put
the data in transactional context. Oracle GoldenGate provides tools to capture this
information through the exceptions MAP statement. Such columns can be, but are not
limited to, the following:

• The before image of the trail record. This is a duplicate set of the target columns with
names such as col1_before, col2_before, and so forth.

• The current values of the target columns. This also is a duplicate set of the target
columns with names such as col1_current, col2_current, and so forth.

• The name of the target table

• The timestamp of the conflict

• The operation type

• The database error number

• (Optional) The database error message

• Whether the conflict was resolved or not

3. Create an exceptions MAP statement to map the exceptions data to the exceptions table.
An exceptions MAP statement contains:

• (Required) The INSERTALLRECORDS option. This parameter converts all mapped
operations to INSERTs so that all column values are mapped to the exceptions table.

• (Required) The EXCEPTIONSONLY option. This parameter causes Replicat to map
operations that generate an error, but not those that were successful.

• (Optional) A COLMAP clause. If the names and definitions of the columns in the
exceptions table are identical to those of the source table, and the exceptions table
only contains those columns, no COLMAP is needed. However, if any names or
definitions differ, or if there are extra columns in the exceptions table that you want to
populate with additional data, use a COLMAP clause to map all columns.

• Tools for Mapping Extra Data to the Exceptions Table

• Sample Exceptions Mapping with Source and Target Columns Only

• Sample Exceptions Mapping with Additional Columns in the Exceptions Table

Tools for Mapping Extra Data to the Exceptions Table
The following are some tools that you can use in the COLMAP clause to populate extra
columns:

• If the names and definitions of the source columns are identical to those of the target
columns in the exceptions table, you can use the USEDEFAULTS keyword instead of
explicitly mapping names. Otherwise, you must map those columns in the COLMAP clause,
for example:

COLMAP (exceptions_col1 = col1, [...])

Chapter 11
Manual Conflict Detection and Resolution

11-81

• To map the before image of the source row to columns in the exceptions table, use
the @BEFORE conversion function, which captures the before image of a column
from the trail record. This example shows the @BEFORE usage.

COLMAP (USEDEFAULTS, exceptions_col1 = @BEFORE (source_col1), &
exceptions_col2 = @BEFORE (source_col2), [...])

• To map the current image of the target row to columns in the exceptions table, use
a SQLEXEC query to capture the image, and then map the results of the query to the
columns in the exceptions table by using the 'queryID.column' syntax in the
COLMAP clause, as in the following example:

COLMAP (USEDEFAULTS, name_current = queryID.name, phone_current =
queryID.phone, [...])

• To map timestamps, database errors, and other environmental information, use
the appropriate Oracle GoldenGate column-conversion functions. For example,
the following maps the current timestamp at time of execution.

res_date = @DATENOW ()

See Sample Exceptions Mapping with Additional Columns in the Exceptions Table , for
how to combine these features in a COLMAP clause in the exceptions MAP statement to
populate a detailed exceptions table.

See Reference for Oracle GoldenGate for Windows and UNIX for the usage and
syntax of the parameters and column-conversion functions shown in these examples.

Sample Exceptions Mapping with Source and Target Columns Only
The following is a sample parameter file that shows error handling and simple
exceptions mapping for the source and target tables that are used in the CDR
examples that begin. This example maps source and target columns, but no extra
columns. For the following reasons, a COLMAP clause is not needed in the exceptions
MAP statement in this example:

• The source and target exceptions columns are identical in name and definition.

• There are no other columns in the exceptions table.

Note:

This example intentionally leaves out other parameters that are required
in a Replicat parameter file, such as process name and login credentials,
as well as any optional parameters that may be required for a given
database type. When using line breaks to split a parameter statement
into multiple lines, use an ampersand (&) at the end of each line.

 -- REPERROR error handling: DEFAULT represents all error types. DISCARD
 -- writes operations that could not be processed to a discard file.
REPERROR (DEFAULT, DISCARD)
 -- Specifies a discard file.
DISCARDFILE /users/ogg/discards/discards.dsc, PURGE

Chapter 11
Manual Conflict Detection and Resolution

11-82

 -- The regular MAP statement with the CDR parameters
MAP fin.src, TARGET fin.tgt, &
COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)), &
);
 -- Starts the exceptions MAP statement by mapping the source table to the
 -- exceptions table.
MAP fin.src, TARGET fin.exception, &
 -- directs Replicat only to map operations that caused the error specified
 -- in REPERROR.
EXCEPTIONSONLY, &
 -- directs Replicat to convert all the exceptions to inserts into the
 -- exceptions table. This is why there cannot be a primary key constraint
 -- on the exceptions table.
INSERTALLRECORDS
;

Sample Exceptions Mapping with Additional Columns in the Exceptions Table
The following is a sample parameter file that shows error handling and complex exceptions
mapping for the source and target tables that are used in the CDR examples that begin. In
this example, the exceptions table has the same rows as the source table, but it also has
additional columns to capture context data.

Note:

This example intentionally leaves out other parameters that are required in a
Replicat parameter file, such as process name and login credentials, as well as any
optional parameters that may be required for a given database type. When using
line breaks to split a parameter statement into multiple lines, use an ampersand (&)
at the end of each line.

 -- REPERROR error handling: DEFAULT represents all error types. DISCARD
 -- writes operations that could not be processed to a discard file.
REPERROR (DEFAULT, DISCARD)
 -- Specifies the discard file.
DISCARDFILE /users/ogg/discards/discards.dsc, PURGE
 -- The regular MAP statement with the CDR parameters
MAP fin.src, TARGET fin.tgt, &
COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD))
);
 -- Starts the exceptions MAP statement by mapping the source table to
the -- exceptions table.
MAP fin.src, TARGET fin.exception, &
 -- directs Replicat only to map operations that caused the error

Chapter 11
Manual Conflict Detection and Resolution

11-83

specified
 -- in REPERROR.
EXCEPTIONSONLY, &
 -- directs Replicat to convert all the exceptions to inserts into
the
 -- exceptions table. This is why there cannot be a primary key
constraint
 -- on the exceptions table.
INSERTALLRECORDS &
 -- SQLEXEC query to select the values from the target record
before the
 -- Replicat statement is applied. These are mapped to the *_target
 -- columns later.
SQLEXEC (id qry, query 'select name, phone, address, salary, balance,
& comment, last_mod_time from fin.tgt where name = :p1', PARAMS(p1 =
name)), &
 -- Start of the column mapping, specifies use default column
definitions.
COLMAP (&
 -- USEDEFAULTS maps the source columns to the target exceptions
columns
 -- that receive the after image that Replicat applied or tried to
apply.
 -- In this case, USEDEFAULTS can be used because the names and
definitions
 -- of the source and target exceptions columns are identical;
otherwise
 -- the columns must be mapped explicitly in the COLMAP clause.
USEDEFAULTS, &
 -- captures the timestamp when the resolution was performed.
res_date = @DATENOW (), &
 -- captures and maps the DML operation type.
optype = @GETENV ('LASTERR', 'OPTYPE'), &
 -- captures and maps the database error number that was returned.
dberrnum = @GETENV ('LASTERR', 'DBERRNUM'), &
 -- captures and maps the database error that was returned.
dberrmsge = @GETENV ('LASTERR', 'DBERRMSG'), &
 -- captures and maps the name of the target table
tabname = @GETENV ('GGHEADER', 'TABLENAME'), &
 -- If the names and definitions of the source columns and the
target
 -- exceptions columns were not identical, the columns would need to
 -- be mapped in the COLMAP clause instead of using USEDEFAULTS, as
 -- follows:
 -- name_after = name, &
 -- phone_after = phone, &
 -- address_after = address, &
 -- salary_after = salary, &
 -- balance_after = balance, &
 -- comment_after = comment, &
 -- last_mod_time_after = last_mod_time &
 -- maps the before image of each column from the trail to a column
in the
 -- exceptions table.
name_before = @BEFORE (name), &

Chapter 11
Manual Conflict Detection and Resolution

11-84

phone_before = @BEFORE (phone), &
address_before = @BEFORE (address), &
salary_before = @BEFORE (salary), &
balance_before = @BEFORE (balance), &
comment_before = @BEFORE (comment), &
last_mod_time_before = @BEFORE (last_mod_time), &
 -- maps the results of the SQLEXEC query to rows in the exceptions table
 -- to show the current image of the row in the target.
name_current = qry.name, &
phone_current = qry.phone, &
address_current = qry.address, &
salary_current = qry.salary, &
balance_current = qry.balance, &
comment_current = qry.comment, &
last_mod_time_current = qry.last_mod_time)
;

Once you are confident that your routines work as expected in all situations, you can reduce
the amount of data that is logged to the exceptions table to reduce the overhead of the
resolution routines.

Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution
The following parameters are required to support conflict detection and resolution.

1. Use the COMPARECOLS option of the MAP parameter in the Replicat parameter file to specify
columns that are to be used with before values in the Replicat WHERE clause. The before
values are compared with the current values in the target database to detect update and
delete conflicts. (By default, Replicat only uses the primary key in the WHERE clause; this
may not be enough for conflict detection).

2. Use the RESOLVECONFLICT option of the MAP parameter to specify conflict resolution
routines for different operations and conflict types. You can use RESOLVECONFLICT multiple
times in a MAP statement to specify different resolutions for different conflict types.
However, you cannot use RESOLVECONFLICT multiple times for the same type of conflict.
Use identical conflict-resolution procedures on all databases, so that the same conflict
produces the same end result. One conflict-resolution method might not work for every
conflict that could occur. You might need to create several routines that can be called in a
logical order of priority so that the risk of failure is minimized.

Note:

Additional consideration should be given when a table has a primary key and
additional unique indexes or unique keys. The automated routines provided with the
COMPARECOLS and RESOLVECONFLICT parameters require a consistent way to
uniquely identify each row. Failure to consistently identify a row will result in an error
during conflict resolution. In these situations the additional unique keys should be
disabled or you can use the SQLEXEC feature to handle the error thrown and resolve
the conflict.

Chapter 11
Manual Conflict Detection and Resolution

11-85

For detailed information about these parameters, see Reference for Oracle
GoldenGate. See the examples starting on CDR Example 1: All Conflict Types with
USEMAX, OVERWRITE, DISCARD, for more information on these parameters.

Making the Required Column Values Available to Extract
To use CDR, the following column values must be logged so that Extract can write
them to the trail.

• The full before image of each record. Some databases do not provide a before
image in the log record, and must be configured to do so with supplemental
logging. For most supported databases, you can use the ADD TRANDATA command
for this purpose.

• Use the LOGALLSUPCOLS parameter to ensure that the full before and after images
of the scheduling columns are written to the trail. Scheduling columns are primary
key, unique index, and foreign key columns. LOGALLSUPCOLS causes Extract to
include in the trail record the before image for UPDATE operations and the before
image of all supplementally logged columns for both UPDATE and DELETE
operations.

For detailed information about these parameters and commands, see the Reference
for Oracle GoldenGate. See the examples starting on CDR Example 1: All Conflict
Types with USEMAX, OVERWRITE, DISCARD for more information on how these
parameters work with CDR.

Viewing CDR Statistics
The CDR feature provides the following methods for viewing the results of conflict
resolution.

Here are different techniques you can use to view CDR statistics.

Report File

Replicat writes CDR statistics to the report file:

Total CDR conflicts 7
 CDR resolutions succeeded 6
 CDR resolutions failed 1
 CDR INSERTROWEXISTS conflicts 1
 CDR UPDATEROWEXISTS conflicts 4
 CDR UPDATEROWMISSING conflicts
 CDR DELETEROWEXISTS conflicts 1
 CDR DELETEROWMISSING conflicts 1

Command Line

You can view CDR statistics from the command line by using the STATS REPLICAT
command with the REPORTCDR option:

STATS REPLICAT group, REPORTCDR

Chapter 11
Manual Conflict Detection and Resolution

11-86

Column-conversion Functions

The following CDR statistics can be retrieved and mapped to an exceptions table or used in
other Oracle GoldenGate parameters that accept input from column-conversion functions, as
appropriate.

• Number of conflicts that Replicat detected

• Number of resolutions that the Replicat resolved

• Number of resolutions that the Replicat could not resolve

To retrieve these statistics, use the @GETENV column-conversion function with the STATS or
DELTASTATS information type. The results are based on the current Replicat session. If
Replicat stops and restarts, it resets the statistics.

You can return these statistics for a specific table or set of wildcarded tables:

@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_CONFLICTS')
@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_RESOLUTIONS_SUCCEEDED')
@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_RESOLUTIONS_FAILED')

You can return these statistics for all of the tables in all of the MAP statements in the Replicat
parameter file:

@GETENV ('STATS','CDR_CONFLICTS')
@GETENV ('STATS','CDR_RESOLUTIONS_SUCCEEDED')
@GETENV ('STATS','CDR_RESOLUTIONS_FAILED')

The 'STATS' information type in the preceding examples can be replaced by 'DELTASTATS' to
return the requested counts since the last execution of 'DELTASTATS'. For more information
about @GETENV, see @GETENV

CDR Example 1: All Conflict Types with USEMAX, OVERWRITE,
DISCARD

This example resolves all conflict types by using the USEMAX, OVERWRITE, and DISCARD
resolutions.

• Table Used in this Example

• MAP Statement with Conflict Resolution Specifications

• Description of MAP Statement

• INSERTROWEXISTS with the USEMAX Resolution

• UPDATEROWEXISTS with the USEMAX Resolution

• UPDATEROWMISSING with OVERWRITE Resolution

• DELETEROWEXISTS with OVERWRITE Resolution

• DELETEROWMISSING with DISCARD Resolution

Chapter 11
Manual Conflict Detection and Resolution

11-87

Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

MAP Statement with Conflict Resolution Specifications
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS (ON UPDATE ALL, ON DELETE ALL),
 RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)),
);

Description of MAP Statement
The following describes the MAP statement:

• Per COMPARECOLS, use the before image of all columns in the trail record in the
Replicat WHERE clause for updates and deletes.

• Per DEFAULT, use all columns as the column group for all conflict types; thus the
resolution applies to all columns.

• For an INSERTROWEXISTS conflict, use the USEMAX resolution: If the row exists
during an insert, use the last_mod_time column as the resolution column for
deciding which is the greater value: the value in the trail or the one in the
database. If the value in the trail is greater, apply the record but change the insert
to an update. If the database value is higher, ignore the record.

• For an UPDATEROWEXISTS conflict, use the USEMAX resolution: If the row exists
during an update, use the last_mod_time column as the resolution column: If the
value in the trail is greater, apply the update.

• If you use USEMIN or USEMAX, and the values are exactly the same, then
RESOLVECONFLICT isn't triggered and the incoming row is ignored. If you use
USEMINEQ or USEMAXEQ, and the values are exactly the same, then the resolution is
triggered.

• For a DELETEROWEXISTS conflict, use the OVERWRITE resolution: If the row exists
during a delete operation, apply the delete.

Chapter 11
Manual Conflict Detection and Resolution

11-88

• For an UPDATEROWMISSING conflict, use the OVERWRITE resolution: If the row does not exist
during an update, change the update to an insert and apply it.

• For a DELETROWMISSING conflict use the DISCARD resolution: If the row does not exist
during a delete operation, discard the trail record.

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a >=
condition. For more information, see Reference for Oracle GoldenGate.

INSERTROWEXISTS with the USEMAX Resolution
For this example, the USEMAX resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve an insert where
the row exists in the source and target, but some or all row values are different.

Table 11-5 INSERTROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Before image in trail None (row was inserted on the
source).

N/A

After image in trail name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the after
image of the resolution column. Since there
is an after image, this will be used to
determine the resolution.

Target database image name='Mary'
phone='111111'
address='Ralston'
salary=200
balance=500
comment='aaa'
last_mod_time='9/1/10 1:00'

last_mod_time='9/1/10 1:00 is the
current image of the resolution column in the
target against which the resolution column
value in the trail is compared.

Initial INSERT applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Mary'
2)'1234567890'
3)'Oracle Pkwy'
4)100
5)100
6)NULL
7)'9/1/10 3:00'

This SQL returns a uniqueness conflict on
'Mary'.

Chapter 11
Manual Conflict Detection and Resolution

11-89

Table 11-5 (Cont.) INSERTROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

UPDATE applied by Replicat
to resolve the conflict

SQL bind variables:

1)'1234567890'
2)'Oracle Pkwy'
3)100
4)100
5)NULL
6)'9/1/10 3:00'
7)'Mary'
8)'9/1/10 3:00'

Because USEMAX is specified for
INSERTROWEXISTS, Replicat converts the
insert to an update, and it compares the
value of last_mod_time in the trail record
with the value in the database. The value in
the record is greater, so the after images for
columns in the trail file are applied to the
target.

UPDATEROWEXISTS with the USEMAX Resolution
For this example, the USEMAX resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve an
update where the row exists in the source and target, but some or all row values are
different.

Table 11-6 UPDATEROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Before image in trail name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the
before image of the resolution column.

After image in trail phone='222222'
address='Holly'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column.
Since there is an after image, this will be
used to determine the resolution.

Target database image name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=600
comment='com'
last_mod_time='9/1/10 6:00'

last_mod_time='9/1/10 6:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared.

Chapter 11
Manual Conflict Detection and Resolution

11-90

Table 11-6 (Cont.) UPDATEROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)'9/1/10 5:00'
4)'Mary'
5)'1234567890'
6)'Oracle Pkwy'
7)100
8)100
9)NULL
10)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the balance,
comment, and last_mod_time are
different in the target.

All columns are used in the WHERE clause
because the COMPARECOLS statement is
set to ALL.

UPDATE applied by Replicat to
resolve the conflict

SQL bind variables:

1)'Mary'
2)'222222'
3)'Holly'
4)100
5)100
6)NULL
7)'9/1/10 5:00'
8)'Mary'
9)'9/1/10 5:00'

Because the after value of
last_mod_time in the trail record is less
than the current value in the database,
the database value is retained. Replicat
applies the operation with a WHERE clause
that contains the primary key plus a
last_mod_time value set to less than
9/1/10 5:00. No rows match this
criteria, so the statement fails with a "data
not found" error, but Replicat ignores the
error because a USEMAX resolution is
expected to fail if the condition is not
satisfied.

UPDATEROWMISSING with OVERWRITE Resolution
For this example, the OVERWRITE resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve the case where
the target row is missing. The logical resolution, and the one used, is to overwrite the row into
the target so that both databases are in sync again.

Table 11-7 UPDATEROWMISSING Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail name='Jane'
phone='333'
address='Oracle Pkwy'
salary=200
balance=200
comment=NULL
last_mod_time='9/1/10 7:00'

N/A

After image in trail phone='4444'
address='Holly'
last_mod_time='9/1/10 8:00'

Chapter 11
Manual Conflict Detection and Resolution

11-91

Table 11-7 (Cont.) UPDATEROWMISSING Conflict with OVERWRITE Resolution

Image SQL Comments

Target database image None (row for Jane is missing)

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'4444'
2)'Holly'
3)'9/1/10 8:00'
4)'Jane'
5)'333'
6)'Oracle Pkwy'
7)200
8)200
9)NULL
10)'9/1/10 7:00'

This SQL returns a no-data-found error.
All columns are used in the WHERE
clause because the COMPARECOLS
statement is set to ALL.

INSERT applied by Replicat
to resolve the conflict

SQL bind variables:

1)'Jane'
2)'4444'
3)'Holly'
4)200
5)200
6)NULL
7)'9/1/10 8:00'

The update is converted to an insert
because OVERWRITE is the resolution.
The after image of a column is used if
available; otherwise the before image is
used.

DELETEROWEXISTS with OVERWRITE Resolution
For this example, the OVERWRITE resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve the
case where the source row was deleted but the target row exists. In this case, the
OVERWRITE resolution applies the delete to the target.

Table 11-8 DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail name='Mary'
phone='222222'
address='Holly'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 5:00'

N/A

After image in trail None N/A

Chapter 11
Manual Conflict Detection and Resolution

11-92

Table 11-8 (Cont.) DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

Target database image name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=600
comment=com
last_mod_time='9/1/10 7:00'

The row exists on the target, but the
phone, address, balance, comment,
and last_mod_time columns are
different from the before image in the
trail.

Initial DELETE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Mary'
2)'222222'
3)'Holly'
4)100
5)100d
6)NULL
7)'9/1/10 5:00'

All columns are used in the WHERE
clause because the COMPARECOLS
statement is set to ALL.

A no-data-found error occurs because of
the difference between the before and
current values.

DELETE applied by Replicat
to resolve the conflict

SQL bind variables:

1)'Mary'
Because OVERWRITE is the resolution.
the DELETE is applied using only the
primary key (to avoid an integrity error).

DELETEROWMISSING with DISCARD Resolution
For this example, the DISCARD resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve the case where
the target row is missing. In the case of a delete on the source, it is acceptable for the target
row not to exist (it would need to be deleted anyway), so the resolution is to discard the
DELETE operation that is in the trail.

Table 11-9 DELETEROWMSING Conflict with DISCARD Resolution

Image SQL Comments

Before image in trail name='Jane'
phone='4444'
address='Holly'
salary=200
balance=200
comment=NULL
last_mod_time='9/1/10 8:00'

N/A

After image in trail None N/A

Target database image None (row missing) N/A

Chapter 11
Manual Conflict Detection and Resolution

11-93

Table 11-9 (Cont.) DELETEROWMSING Conflict with DISCARD Resolution

Image SQL Comments

Initial DELETE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Jane'
2)'4444'
3)'Holly'
4)200
5)200
6)NULL
7)'9/1/10 8:00'

This SQL returns a no-data-found error.
All columns are used in the WHERE
clause because the COMPARECOLS
statement is set to ALL.

SQL applied by Replicat to
resolve the conflict

None Because DISCARD is specified as the
resolution for DELETEROWMISSING, so
the delete from the trail goes to the
discard file.

CDR Example 2: UPDATEROWEXISTS with USEDELTA and
USEMAX

This example resolves the condition where a target row exists on UPDATE but non-key
columns are different, and it uses two different resolution types to handle this condition
based on the affected column.

• Table Used in this Example

• MAP Statement

• Description of MAP Statement

• Error Handling

Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

MAP Statement
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE KEYINCLUDING (address, phone, salary, last_mod_time),

Chapter 11
Manual Conflict Detection and Resolution

11-94

 ON DELETE KEYINCLUDING (address, phone, salary, last_mod_time)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary)),
 (DEFAULT, USEMAX (last_mod_time)));

Description of MAP Statement
For an UPDATEROWEXISTS conflict, where a target row exists on UPDATE but non-key columns
are different, use two different resolutions depending on the column:

• Per the delta_res_method resolution, use the USEDELTA resolution logic for the salary
column so that the change in value will be added to the current value of the column.

• Per DEFAULT, use the USEMAX resolution logic for all other columns in the table (the default
column group), using the last_mod_time column as the resolution column. This column is
updated with the current time whenever the row is modified; the value of this column in
the trail is compared to the value in the target. If the value of last_mod_time in the trail
record is greater than the current value of last_mod_time in the target database, the
changes to name, phone, address, balance, comment and last_mod_time are applied to
the target.

Per COMPARECOLS, use the primary key (name column) plus the address, phone, salary, and
last_mod_time columns as the comparison columns for conflict detection for UPDATE and
DELETE operations. (The balance and comment columns are not compared.)

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a >=
condition. For more information, see Reference for Oracle GoldenGate.

Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

Table 11-10 UPDATEROWEXISTS with USEDELTA and USEMAX

Image SQL Comments

Before image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the
before image of the resolution column
for the USEMAX resolution.

salary=100 is the before image for the
USEDELTA resolution.

Chapter 11
Manual Conflict Detection and Resolution

11-95

Table 11-10 (Cont.) UPDATEROWEXISTS with USEDELTA and USEMAX

Image SQL Comments

After image in trail
phone='222222'
address='Holly'
salary=200
comment='new'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column for
USEMAX. Since there is an after image,
this will be used to determine the
resolution.

Target database image
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=600
balance=600
comment='com'
last_mod_time='9/1/10 4:00'

last_mod_time='9/1/10 4:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared.

salary=600 is the current image of the
target column for the USEDELTA
resolution.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)200
4)'new'
5)'9/1/10 5:00'
6)'Mary'
7)'1234567890'
8)'Oracle Pkwy'
9)100
10)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the salary and
last_mod_time are different. (The
values for comment and balance are
also different, but these columns are not
compared.)

UPDATE applied by Replicat
to resolve the conflict for
salary, using USEDELTA.

SQL bind variables:

1)200
2)100
3)'Mary'

Per USEDELTA, the difference between
the after image of salary (200) in the
trail and the before image of salary
(100) in the trail is added to the current
value of salary in the target (600). The
result is 700.

600 + (200 - 100) = 700

UPDATE applied by Replicat
to resolve the conflict for the
default columns, using
USEMAX.

SQL bind variables:

1)'222222'
2)'Holly'
3)'new'
4)'9/1/10 5:00'
5)'Mary'
6)'9/1/10 5:00'

Per USEMAX, because the after value of
last_mod_time in the trail record is
greater than the current value in the
database, the row is updated with the
after values from the trail record.

Note that the salary column is not set
here, because it is resolved with the
UPDATE from the USEDELTA resolution.

Chapter 11
Manual Conflict Detection and Resolution

11-96

CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and
IGNORE

This example resolves the conflict where a target row exists on UPDATE but non-key columns
are different, and it uses three different resolution types to handle this condition based on the
affected column.

• Table Used in this Example

• MAP Statement

• Description of MAP Statement

• Error Handling

Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

MAP Statement
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE ALLEXCLUDING (comment)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary, balance)),
 (max_res_method, USEMAX (last_mod_time), COLS (address, last_mod_time)),
 (DEFAULT, IGNORE));

Description of MAP Statement
• For an UPDATEROWEXISTS conflict, where a target row exists on UPDATE but non-key

columns are different, use two different resolutions depending on the column:

– Per the delta_res_method resolution, use the USEDELTA resolution logic for the
salary and balance columns so that the change in each value will be added to the
current value of each column.

– Per the max_res_method resolution, use the USEMAX resolution logic for the address
and last_mod_time columns. The last_mod_time column is the resolution column.
This column is updated with the current time whenever the row is modified; the value
of this column in the trail is compared to the value in the target. If the value of

Chapter 11
Manual Conflict Detection and Resolution

11-97

last_mod_time in the trail record is greater than the current value of
last_mod_time in the target database, the changes to address and
last_mod_time are applied to the target; otherwise, they are ignored in favor
of the target values.

– Per DEFAULT, use the IGNORE resolution logic for the remaining columns (phone
and comment) in the table (the default column group). Changes to these
columns will always be ignored by Replicat.

• Per COMPARECOLS, use all columns except the comment column as the comparison
columns for conflict detection for UPDATE operations. Comment will not be used in
the WHERE clause for updates, but all other columns that have a before image in the
trail record will be used.

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to
apply a >= condition. For more information, see Reference for Oracle
GoldenGate.

Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

Table 11-11 UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Image SQL Comments

Before image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00

last_mod_time='9/1/10 3:00 is the
before image of the resolution column
for the USEMAX resolution.

salary=100 and balance=100 are the
before images for the USEDELTA
resolution.

After image in trail
phone='222222'
address='Holly'
salary=200
comment='new'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column for
USEMAX. Since there is an after image,
this will be used to determine the
resolution.

salary=200 is the only after image
available for the USEDELTA resolution.
For balance, the before image will be
used in the calculation.

Chapter 11
Manual Conflict Detection and Resolution

11-98

Table 11-11 (Cont.) UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Image SQL Comments

Target database image
name='Mary'
phone='1234567890'
address='Ralston'
salary=600
balance=600
comment='com'
last_mod_time='9/1/10 4:00'

last_mod_time='9/1/10 4:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared for
USEMAX.

salary=600 and balance=600 are the
current images of the target columns for
USEDELTA.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)200
4)'new'
5)'9/1/10 5:00'
6)'Mary'
7)'1234567890'
8)'Oracle Pkwy'
9)100
10)100
11)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the address,
salary, balance and last_mod_time
columns are different.

UPDATE applied by Replicat
to resolve the conflict for
salary, using USEDELTA.

SQL bind variables:

1)200
2)100
3)'Mary'

For salary, there is a difference of 100,
but there was no change in value for
balance, so it is not needed in the
update SQL. Per USEDELTA, the
difference (delta) between the after (200)
image and the before image (100) of
salary in the trail is added to the
current value of salary in the target
(600). The result is 700.

UPDATE applied by Replicat
to resolve the conflict for
USEMAX.

SQL bind variables:

1)'Holly'
2)'9/1/10 5:00'
3)'Mary'
4)'9/1/10 5:00'

Because the after value of
last_mod_time in the trail record is
greater than the current value in the
database, that column plus the address
column are updated with the after values
from the trail record.

Note that the salary column is not set
here, because it is resolved with the
UPDATE from the USEDELTA resolution.

UPDATE applied by Replicat
for IGNORE.

SQL bind variables:

1)'222222'
2)'new'
3)'Mary'

IGNORE is specified for the DEFAULT
column group (phone and comment), so
no resolution SQL is applied.

Chapter 11
Manual Conflict Detection and Resolution

11-99

Configure Managed Processes
Oracle GoldenGate Administration Service provides options to set up managed Extract
and Replicat (ER) processes. These processes are assigned auto-start and auto-
restart properties to control their life cycles.

You can create profiles for managed processes using the Administration Service or the
Admin Client. To create a profile in the Administration Service, perform the following
tasks:

1. Click Profile from the Administration Service navigation pane.

2. In the Managed Process Settings tab, you can click + sign to start creating a
profile. There's also a default profile preset on this page.

3. Enter the details for the profile options including the Profile Name, Description,
Auto Start and Auto Restart options. See the following table for Auto Start and
Auto Restart options.

Option Description

Profile Name Provides the name of the autostart and
autorestart profile. You can select the default
or custom options.

If you have already created a profile, then
you can select that profile also. If you select
the Custom option, then you can set up a
new profile from this section itself.

Critical to deployment health (Oracle only) Enable this option if the profile
is critical for the deployment health.

Note:

This option only appears while
creating the Extract or Replicat
and not when you set up the
managed processes in the
Profiles page.

Auto Start Enables autostart for the process.

Startup Delay Time to wait in seconds before starting the
process

Auto Restart Configures how to restart the process if it
terminates

Max Retries Specify the maximum number of retries to
try to start the process

Retry Delay Delay time in trying to start the process

Retries Window The duration interval to try to start the
process

Restart on Failure only If true the task is only restarted if it failes

Chapter 11
Configure Managed Processes

11-100

Option Description

Disable Task After Retries Exhausted If true then the task is disabled after
exhausting all attempts to restart the
process.

Automate Maintenance Tasks
Use the Tasks tab on the Configuration page, to set up the following automated tasks.

Purging Trails

The Purge Trail page works the same way as the Manager PURGEOLDEXTRACTS parameter in
the Classic Architecture. It allows you to purge trail files when Oracle GoldenGate has
finished processing them. Automating this task ensures that the trail files are periodically
deleted to avoid excessive consumption of disk space.

From the Tasks tab, when you select the Purge Trail page, it allows you to configure the
Administration Service purge trail process.

1. Add a Purge Trail task by clicking the + sign .

2. Enter the Operation Name of the Administration Service task. The operation name is
case sensitive. For example, you can create an operation with the name TASK1 and
another operation named task1.

3. Enter the trail path or trail name in the Trail field.

4. Click the + sign to add the trail to the Selected Trails list.

5. If you don’t need to use checkpoints, disable the option Use Checkpoints. However,
Oracle recommends using checkpoints. If you don't use checkpoints. the trail will be
purged whether or not it has been consumed if the keep rule is met.

6. Set the Keep Rule value to specify the maximum number of hours, days, or number of
files for which the Purge Trails task needs to be active.

7. Specify the number of hours or days when the purge trails task has to run, in the Purge
Frequency field and click Submit.

8. Use the Purge Trails task table to edit or delete the task, as required.

Also see PURGE EXTTRAIL.

Purging Tasks

You can automatically purge processes associated with an Administration Service.

From the Tasks tab, click Purge Tasks.

1. Enter the Operation Name that you need to set up for automatic purging.

2. Select the Extract or Replicat task (initial load process) Process Name for the operation.
The list contains all processes so ensure that you select the correct task.

3. Select the Extract or Replicat task (initial load) Process Type for the operation.

4. If you enable Use Stop Status, the status of the task is used to perform the purge task.

5. Enter the hours or days after which you need to purge the process and click Submit.

6. Edit or delete the purge process task using the relevant icon from the Purge Tasks table.

Chapter 11
Automate Maintenance Tasks

11-101

Reporting Lag

You can manage lag reports from the Lag Report tab. To do so:

1. From the Tasks tab, click Lag Report.

2. The Action column contains all the options to delete, alter, refresh, and view the
lag report task details.

3. Select the required option.

4. If you select the Alter Task option, you are presented with options to edit the lag
report. The options are:

• Enabled: To keep processing the lag report task.

• Check Every (in minutes): To set a time interval to check the lag report.

• Report: To log report for the task.

• If Exceeds: To specify a threshold after which a warning would be initiated.

• Warning: To allow a warning to be generated incase the lag threshold exceeds
the specified limit.

• When Exceeds: The lag threshold after which the warning is triggered.

5. Click Submit.

Mapping and Manipulating Data

Learn about tasks, functions, commands, and processes used for integrating data
between source and target tables.

Topics:

• Guidelines for Using Self-describing Trails

• Parameters that Control Mapping and Data Integration

• Mapping between Dissimilar Databases

• Globalization Considerations when Mapping Data

• Mapping Columns Using TABLE and MAP

• Configuring Global Column Mapping with COLMATCH

• Understanding Default Column Mapping

• Data Type Conversions

• Selecting and Filtering Rows

• Retrieving Before and After Values

• Selecting Columns

• Selecting and Converting SQL Operations

• Using Transaction History

• Testing and Transforming Data

• Using Tokens

Chapter 11
Mapping and Manipulating Data

11-102

Guidelines for Using Self-describing Trails
Self-describing trail files are the default if the trail file format is 12.2 or higher, if you are not
using SOURCEDEFS OVERRIDE or TARGETDEFS OVERRIDE. Oracle recommends that you use self-
describing trail files. You should only use SOURCEDEFS OVERRIDE and TARGETDEFS OVERRIDE
for backward compatibility requirements.

The following are the guidelines for using self-describing trails:

• If using the self-describing trails, then the column names on the source are mapped to
the column names in the target table. Order of columns doesn't matter and if column
names are different, then they need to be explicitly mapped using COLMAP.

• If the source Oracle GoldenGate release is 12.1 or earlier, then you need to use
SOURCEDEFS OVERRIDE or TARGETDEFS OVERRIDE. See SOURCEDEFS OVERRIDE and
TARGETDEFS OVERRIDE in the Reference for Oracle GoldenGate.

Parameters that Control Mapping and Data Integration
All data selection, mapping, and manipulation that Oracle GoldenGate performs is
accomplished by using one or more options of the TABLE and MAP parameters.

• Use TABLE in the Extract parameter file.

• Use MAP in the Replicat parameter file.

TABLE and MAP specify the database objects that are affected by the other parameters in the
parameter file. See Specifying Object Names in Oracle GoldenGate Input for instructions for
specifying object names in these parameters.

Mapping between Dissimilar Databases
Mapping and conversion between tables that have different data structures requires either a
source-definitions file, a target-definitions file, or in some cases both. Mapping between
dissimilar databases is controlled by the self-describing trails, and mapping is done by
column name, regardless of the data type for the source or target column.

If you don't want automatic mapping based on the self-describing trails or want backward
compatibility then you can use SOURCEDEFS or TARGETDEFS.

• Mapping and Conversion on NonStop Systems

• Mapping and Conversion on Windows and UNIX Systems

Mapping and Conversion on NonStop Systems
If you are mapping or converting data from a Windows or UNIX system to a NonStop
Enscribe target, the mapping or conversion must be performed on the Windows or UNIX
source system. Replicat for NonStop cannot convert three-part or two-part SQL table names
and data types to the three-part file names that are used for the Enscribe platform. Extract
can format the trail data with Enscribe names and target data types.

Chapter 11
Mapping and Manipulating Data

11-103

Mapping and Conversion on Windows and UNIX Systems
When Oracle GoldenGate is operating only on Windows-based and UNIX-based
systems, column mapping and conversion can be performed in the Extract process, or
in the Replicat process. To prevent the added overhead of this processing on the
Extract process, you can configure the mapping and conversion to be performed on
the Replicat process or on an intermediary system.

In the case where there are multiple sources and one target, it might be more efficient
to perform the mapping and conversion on the source.

Globalization Considerations when Mapping Data
When planning to map and convert data between databases and platforms, take into
consideration what is supported or not supported by Oracle GoldenGate in terms of
globalization.

Topics:

• Conversion between Character Sets

• Preservation of Locale

• Support for Escape Sequences

Conversion between Character Sets
Oracle GoldenGate converts between source and target character sets if they are
different, so that object names and column data are compared, mapped, and
manipulated properly from one database to another. See Supported Character Sets,
for a list of supported character sets.

To ensure accurate character representation from one database to another, the
following must be true:

• The character set of the target database must be a superset or equivalent of the
character set of the source database. Equivalent means not equal, but having the
same set of characters. For example, Shift-JIS and EUC-JP technically are not
completely equal, but have the same characters in most cases.

• If your client applications use different character sets, the database character set
must also be a superset or equivalent of the character sets of the client
applications.

• In many databases, including Oracle, it is possible to force a character into a
database that is not part of the Character Set. Oracle GoldenGate considers this
as an invalid value, and may not map this character correctly when replicating
data. For these types of situations you can use the REPLACEBADCHAR parameter as
described in the Reference for Oracle GoldenGate.

In this configuration, every character is represented when converting from a client or
source character set to the local database character set.

A Replicat process can support conversion from one source character set to one
target character set.

• Database Object Names

Chapter 11
Mapping and Manipulating Data

11-104

• Column Data

Database Object Names
Oracle GoldenGate processes catalog, schema, table and column names in their native
language as determined by the character set encoding of the source and target databases.
This support preserves single-byte and multibyte names, symbols, accent characters, and
case-sensitivity with locale taken into account where available, at all levels of the database
hierarchy.

Column Data
Oracle GoldenGate supports the conversion of column data between character sets when the
data is contained in the following column types:

• Character-type columns: CHAR/VARCHAR/CLOB to CHAR/VARCHAR/CLOB of another character
set; and CHAR/VARCHAR/CLOB to and from NCHAR/NVARCHAR/NCLOB.

• Columns that contain string-based numbers and date-time data. Conversions of these
columns is performed between z/OS EBCDIC and non-z/OS ASCII data. Conversion is
not performed between ASCII and ASCII versions of this data, nor between EBCDIC and
EBCDIC versions, because the data are compatible in these cases.

Note:

Oracle GoldenGate supports timestamp data from 0001-01-03 00:00:00 to
9999-12-31 23:59:59. If a timestamp is converted from GMT to local time,
these limits also apply to the resulting timestamp. A value of zero month, zero
day field, or an all zero date value isn't supported. For example, values such as
0000-00-00 00:00:00, or any date value that includes a zero month or zero day
field isn't supported.

Character-set conversion for column data is limited to a direct mapping of a source column
and a target column in the COLMAP or USEDEFAULTS clauses of the Replicat MAP parameter. A
direct mapping is a name-to-name mapping without the use of a stored procedure or column-
conversion function. Replicat performs the character-set conversion. No conversion is
performed by Extract.

Preservation of Locale
Oracle GoldenGate takes the locale of the database into account when comparing case-
insensitive object names. See Supported Locales for a list of supported locales.

Support for Escape Sequences
Oracle GoldenGate supports the use of an escape sequence to represent a string column,
literal text, or object name in the parameter file. You can use an escape sequence if the
operating system does not support the required character, such as a control character, or for
any other purpose that requires a character that cannot be used in a parameter file.

An escape sequence can be used anywhere in the parameter file, but is particularly useful in
the following elements within a TABLE or MAP statement:

• An object name

Chapter 11
Mapping and Manipulating Data

11-105

• WHERE clause

• COLMAP clause to assign a Unicode character to a Unicode column, or to assign a
native-encoded character to a column.

• Oracle GoldenGate column conversion functions within a COLMAP clause.

Oracle GoldenGate supports the following types of escape sequence:

• \uFFFF Unicode escape sequence. Any UNICODE code point can be used except
surrogate pairs.

• \377 Octal escape sequence

• \xFF Hexadecimal escape sequence

The following rules apply:

• If used for mapping of an object name in TABLE or MAP, no restriction apply. For
example, the following TABLE specification is valid:

TABLE schema."\u3000ABC";
• If used with a column-mapping function, any code point can be used, but only for

an NCHAR/NVARCHAR column. For an CHAR/VARCHAR column, the code point is limited
to the equivalent of 7-bit ASCII.

• The source and target data types must be identical (for example, NCHAR to NCHAR).

• Begin each escape sequence with a reverse solidus (code point U+005C), followed
by the character code point. (A solidus is more commonly known as the backslash
symbol.) Use the escape sequence, instead of the actual character, within your
input string in the parameter statement or column-conversion function.

Note:

To specify an actual backslash in the parameter file, specify a double
backslash. For example, the following finds a backslash in COL1: @STRFIND
(COL1, '\\').

To Use the \uFFFF Unicode Escape Sequence

• The \uFFFF Unicode escape sequence must begin with a lowercase u, followed by
exactly four hexadecimal digits.

• Supported ranges are as follows:

– 0 to 9 (U+0030 to U+0039)

– A to F (U+0041 to U+0046)

– a to f (U+0061 to U+0066)

\u20ac is the Unicode escape sequence for the Euro currency sign.

Chapter 11
Mapping and Manipulating Data

11-106

Note:

For reliable cross-platform support, use the Unicode escape sequence. Octal and
hexadecimal escape sequences are not standardized on different operating
systems.

To Use the \377 Octal Escape Sequence

• Must contain exactly three octal digits.

• Supported ranges:

– Range for first digit is 0 to 3 (U+0030 to U+0033)

– Range for second and third digits is 0 to 7 (U+0030 to U+0037)

\200 is the octal escape sequence for the Euro currency sign on Microsoft Windows

To Use the \xFF Hexadecimal Escape Eequence

• Must begin with a lowercase x followed by exactly two hexadecimal digits.

• Supported ranges:

– 0 to 9 (U+0030 to U+0039)

– A to F (U+0041 to U+0046)

– a to f (U+0061 to U+0066)

\x80 is the hexadecimal escape sequence for the Euro currency sign on Microsoft Windows
1252 Latin1 code page.

Mapping Columns Using TABLE and MAP
Oracle GoldenGate provides for column mapping at the table level and at the global level.
Default column mapping is also provided in the absence of explicit column mapping rules.

This section contains the following guidelines for mapping columns:

Topics:

• Supporting Case and Special Characters in Column Names

• Configuring Table-level Column Mapping with COLMAP

Supporting Case and Special Characters in Column Names
By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and
literals. In Oracle GoldenGate parameter files, conversion functions, user exits, and
commands, case-sensitive column names must be enclosed within double quotes if double
quotes are required by the database to enforce case-sensitivity. For other case-sensitive
databases that do not require quotes, case-sensitive column names must be specified as
they are stored in the database. Literals must be enclosed within single quotes. See
Differentiating Case-Sensitive Column Names from Literals for more information.

Chapter 11
Mapping and Manipulating Data

11-107

Configuring Table-level Column Mapping with COLMAP
If you are using self-describing trails then any column on the source object is mapped
to the same column name on the target object. You only need to manage column
names that are different between source and target or if you need to transform a
column.

However, if not using self-describing trails then the default mapping is done by column
order and not the column name. So column 1 on the source will be mapped to column
1 on the target, column 2 to column 2 and so on.

Use the COLMAP option of the MAP and TABLE parameters to:

• map individual source columns to target columns that have different names.

• specify default column mapping when an explicit column mapping is not needed.

• Provide instructions for selecting, mapping, translating, and moving data from a
source column into a target column.

Topics:

• Using USEDEFAULTS to Enable Default Column Mapping

• Specifying the Columns to be Mapped in the COLMAP Clause

Using USEDEFAULTS to Enable Default Column Mapping
You can use the USEDEFAULTS option of COLMAP to specify automatic default column
mapping for any corresponding source and target columns that have identical names.
USEDEFAULTS can save you time by eliminating the need to map every target column
explicitly.

Default mapping causes Oracle GoldenGate to map those columns and, if required,
translate the data types based on the data-definitions file. Do not specify default
mapping for columns that are mapped already with an explicit mapping statement.

The following example of a column mapping illustrates the use of both default and
explicit column mapping for a source table ACCTBL and a target table ACCTTAB. Most
columns are the same in both tables, except for the following differences:

• The source table has a CUST_NAME column, whereas the target table has a NAME
column.

• A ten-digit PHONE_NO column in the source table corresponds to separate
AREA_CODE, PHONE_PREFIX, and PHONE_NUMBER columns in the target table.

• Separate YY, MM, and DD columns in the source table correspond to a single
TRANSACTION_DATE column in the target table.

To address those differences, USEDEFAULTS is used to map the similar columns
automatically, while explicit mapping and conversion functions are used for dissimilar
columns.

Chapter 11
Mapping and Manipulating Data

11-108

The following sample shows the column mapping using the COLMAP option of the MAP and
TABLE parameters. It describes the mapping of the source table ACCTBL to the target table
ACCTTAB.

MAP SALES.ACCTBL, TARGET SALES.ACCTTAB,
 COLMAP (USEDEFAULTS,
 NAME = CUST_NAME,
 TRANSACTION_DATE = @DATE ('YYYY-MM-DD',
'YY',YEAR, 'MM', MONTH, 'DD', DAY),
 AREA_CODE = @STREXT (PHONE_NO, 1, 3),
 PHONE_PREFIX = @STREXT (PHONE_NO, 4, 6),
 PHONE_NUMBER = @STREXT (PHONE_NO, 7, 10)
)
;

Table 11-12 Sample Column Mapping

Parameter statement Description

COLMAP
Begins the COLMAP statement.

USEDEFAULTS,
Maps source columns as-is when the target column names are
identical.

NAME = CUST_NAME,
Maps the source column CUST_NAME to the target column
NAME.

TRANSACTION_DATE =
@DATE ('YYYY-MM-DD', 'YY',
YEAR, 'MM', MONTH, 'DD',
DAY),

Converts the transaction date from the source date columns to
the target column TRANSACTION_DATE by using the @DATE
column conversion function.

AREA_CODE =
@STREXT (PHONE_NO, 1, 3),
PHONE_PREFIX =
@STREXT (PHONE_NO, 4, 6),
PHONE_NUMBER =
@STREXT (PHONE_NO, 7, 10))
;

Converts the source column PHONE_NO into the separate target
columns of AREA_CODE, PHONE_PREFIX, and PHONE_NUMBER
by using the @STREXT column conversion function.

See Understanding Default Column Mapping for more information about the rules followed by
Oracle GoldenGate for default column mapping.

Chapter 11
Mapping and Manipulating Data

11-109

Specifying the Columns to be Mapped in the COLMAP Clause
The COLMAP syntax is the following:

COLMAP ([USEDEFAULTS,] target_column = source_expression)

In this syntax, target_column is the name of the target column and
source_expression. Some examples of source_expressions are:

• The name of a source column, such as ORD_DATE.

• Numeric constant, such as 123.

• String constant enclosed within single quotes, such as 'ABCD'.

• An expression using an Oracle GoldenGate column-conversion function. Within a
COLMAP statement, you can use any of the Oracle GoldenGate column-conversion
functions to transform data for the mapped columns, for example:

@STREXT (COL1, 1, 3)

• Here's an example of using BEFORE column_name: BEFORE ORD_DATE
• Here's an example of using AFTER column_name : AFTER ORD_DATE. This is the

default option if a column name is listed.

If the column mapping involves case-sensitive columns from different database types,
specify each column as it is stored in the database.

• If the database requires double quotes to enforce case-sensitivity, specify the
case-sensitive column name within double quotes.

• If the database is case-sensitive without requiring double quotes, specify the
column name as it is stored in the database.

The following shows a mapping between a target column in an Oracle database and a
source column in a case-sensitive SQL Server database.

COLMAP ("ColA" = ColA)

See Specifying Object Names in Oracle GoldenGate Input for more information about
specifying names to Oracle GoldenGate.

See Globalization Considerations when Mapping Data for globalization considerations
when mapping source and target columns in databases that have different character
sets and locales.

Avoid using COLMAP to map a value to a key column (which causes the operation to
become a primary key update), The WHERE clause that Oracle GoldenGate uses to
locate the target row will not use the correct before image of the key column. Instead,
it will use the after image. This will cause errors if you are using any functions based
on that key column, such as a SQLEXEC statement.

Column Mapping Limitations

Here are the column mapping limitations:

Chapter 11
Mapping and Manipulating Data

11-110

• LOB columns cannot be used in FILTER, WHERE columns, or as a source_expression in a
COLMAP statement. LOB columns are BLOB, CLOB, NCLOB, XMLType, User-Defined Data
Types, Nested Tables, VARRAYs and other special data types.

• If the source column contains more than 4000 bytes, it cannot be used in transformation
routines, as the value is stored in the trail as an LOB record. For example a
VARCHAR2(4000 CHAR) in Oracle and the Japanese character set is stored as 3 bytes for
each character. This implies that the column could be 12000 bytes long and Oracle
GoldenGate would store this value as an LOB field.

• The full SQL statement that Oracle GoldenGate would execute would exceed 4MB in
size. For example, if you have a table with thousands of VARCHAR2(4000) columns and
you want to put 4000 bytes in each one, this could cause the total SQL statement that
Oracle GoldenGate is going to execute to exceed the maximum size of 4MB.

Configuring Global Column Mapping with COLMATCH
Use the COLMATCH parameter to create global rules for column mapping. With COLMATCH, you
can map between similarly structured tables that have different column names for the same
sets of data. COLMATCH provides a more convenient way to map columns of this type than
does using table-level mapping with a COLMAP clause in individual TABLE or MAP statements.

Case-sensitivity is supported as follows:

• For MySQL, SQL Server if the database is case-sensitive, COLMATCH looks for an exact
case and name match regardless of whether or not a name is specified in quotes.

• For Oracle Database and Db2 databases, where names can be either case-sensitive or
case-insensitive in the same database and double quotes are required to show case-
sensitivity, COLMATCH requires an exact case and name match when a name is in quotes
in the database.

Syntax

COLMATCH
{NAMES target_column = source_column |
PREFIX prefix |
SUFFIX suffix |
RESET}

Chapter 11
Mapping and Manipulating Data

11-111

Argument Description

NAMES target_column =
source_column

Maps based on column names.

Put double quotes around the column name if
it is case-sensitive and the database requires
quotes to enforce case-sensitivity. For these
database types, an unquoted column name is
treated as case-insensitive by Oracle
GoldenGate.

For databases that support case-sensitivity
without requiring quotes, specify the column
name as it is stored in the database.

If the COLMATCH is between columns in
different database types, make certain the
names reflect the appropriate case
representation for each one. For example, the
following specifies a case-sensitive target
column name "aBc" in an Oracle Database
and a case-sensitive source column name aBc
in a case-sensitive SQL Server database.

COLMATCH NAMES "aBc" = aBc

PREFIX prefix | SUFFIX suffix
Ignores the specified name prefix or suffix.

Put double quotes around the prefix or suffix if
the database requires quotes to enforce case-
sensitivity, for example "P_". For those
database types, an unquoted prefix or suffix is
treated as case-insensitive.

For databases that support case-sensitivity
without requiring quotes, specify the prefix or
suffix as it is stored in the database. For
example, P_ specifies a capital P prefix.

The following example specifies a case-
insensitive prefix to ignore. The target column
name P_ABC is mapped to source column
name ABC, and target column name P_abc is
mapped to source column name abc.

COLMATCH PREFIX p_

The following example specifies a case-
sensitive suffix to ignore. The target column
name ABC_k is mapped to the source column
name ABC, and the target column name
"abc_k" is mapped to the source column
name "abc".

SUFFIX "_k"

RESET
Turns off previously defined COLMATCH rules
for subsequent TABLE or MAP statements.

Chapter 11
Mapping and Manipulating Data

11-112

The following example illustrates when to use COLMATCH. The source and target tables are
identical except for slightly different table and column names.The database is case-
insensitive.

ACCT Table ORD Table

CUST_CODE
CUST_NAME
CUST_ADDR
PHONE
S_REP
S_REPCODE

CUST_CODE
CUST_NAME
ORDER_ID
ORDER_AMT
S_REP
S_REPCODE

ACCOUNT Table ORDER Table

CUSTOMER_CODE
CUSTOMER_NAME
CUSTOMER_ADDRESS
PHONE
REP
REPCODE

CUSTOMER_CODE
CUSTOMER_NAME
ORDER_ID
ORDER_AMT
REP
REPCODE

To map the source columns to the target columns in this example, as well as to handle
subsequent maps for other tables, the syntax is:

COLMATCH NAMES CUSTOMER_CODE = CUST_CODE
COLMATCH NAMES CUSTOMER_NAME = CUST_NAME
COLMATCH NAMES CUSTOMER_ADDRESS = CUST_ADDR
COLMATCH PREFIX S_
MAP SALES.ACCT, TARGET SALES.ACCOUNT, COLMAP (USEDEFAULTS);
MAP SALE.ORD, TARGET SALES.ORDER, COLMAP (USEDEFAULTS);
COLMATCH RESET
MAP SALES.REG, TARGET SALE.REG;
MAP SALES.PRICE, TARGET SALES.PRICE;

Based on the rules in the example, the following occurs:

• Data is mapped from the CUST_CODE columns in the source ACCT and ORD tables to the
CUSTOMER_CODE columns in the target ACCOUNT and ORDER tables.

• The S_ prefix will be ignored.

• Columns with the same names, such as the PHONE and ORDER_AMT columns, are
automatically mapped by means of USEDEFAULTS without requiring explicit rules. See
Understanding Default Column Mapping for more information.

• The previous global column mapping is turned off for the tables REG and PRICE. Source
and target columns in those tables are automatically mapped because all of the names
are identical.

Chapter 11
Mapping and Manipulating Data

11-113

Understanding Default Column Mapping
For self-describing trails, if an explicit column mapping does not exist, either by using
COLMATCH or COLMAP, Oracle GoldenGate maps source and target columns by default
according to the following rules.

This doesn't apply if you are using SOURCEDEFS or TARGETDEFS.

• If a source column is found whose name and case exactly match those of the
target column, the two are mapped.

• If no case match is found, fallback name mapping is used. Fallback mapping
performs a case-insensitive target table mapping to find a name match. Inexact
column name matching is applied using upper cased names. This behavior is
controlled by the GLOBALS parameter NAMEMATCHIGNORECASE. You can disable
fallback name matching with the NAMEMATCHEXACT parameter, or you can keep it
enabled but with a warning message by using the NAMEMATCHNOWARNING parameter.

• Target columns that do not correspond to any source column take default values
determined by the database.

If the default mapping cannot be performed, the target column defaults to one of the
values shown in the following table.

Column Type Value

Numeric Zero (0)

Character or VARCHAR Spaces

Date or Datetime Current date and time

Columns that can take a NULL value Null

Data Type Conversions
The following explains how Oracle GoldenGate maps data types.

Topics:

• Numeric Columns

• Character-type Columns

• Datetime Columns

Numeric Columns
Numeric columns are converted to match the type and scale of the target column. If
the scale of the target column is smaller than that of the source, the number is
truncated on the right. If the scale of the target column is larger than that of the source,
the number is padded with zeros on the right.

You can specify a substitution value for invalid numeric data encountered when
mapping number columns by using the REPLACEBADNUM parameter for more
information.

Chapter 11
Mapping and Manipulating Data

11-114

Character-type Columns
Character-type columns can accept character-based data types such as VARCHAR, numeric in
string form, date and time in string form, and string literals. If the scale of the target column is
smaller than that of the source, the column is truncated on the right. If the scale of the target
column is larger than that of the source, the column is padded with spaces on the right.

Literals must be enclosed within single quotes.

You can control the response of the Oracle GoldenGate process when a valid code point
does not exist for either the source or target character set when mapping character columns
by using the REPLACEBADCHAR parameter for more information.

Datetime Columns
Datetime (DATE, TIME, and TIMESTAMP) columns can accept datetime and character columns,
as well as string literals. Literals must be enclosed within single quotes. To map a character
column to a datetime column, make certain it conforms to the Oracle GoldenGate external
SQL format of YYYY-MM-DD HH:MI:SS.FFFFFF.
Oracle GoldenGate supports timestamp data from 0001-01-03 00:00:00 to 9999-12-31
23:59:59. If a timestamp is converted from GMT to local time, these limits also apply to the
resulting timestamp. Depending on the timezone, conversion may add or subtract hours,
which can cause the timestamp to exceed the lower or upper supported limit.

Required precision varies according to the data type and target platform. If the scale of the
target column is smaller than that of the source, data is truncated on the right. If the scale of
the target column is larger than that of the source, the column is extended on the right with
the values for the current date and time.

Selecting and Filtering Rows
Filtering can only be performed on columns that are available to Oracle GoldenGate. In the
TRANLOG Extract Oracle GoldenGate has access to all columns that are present in the redo
logs and in the database. If the columns are not in the redo logs, they must be explicitly
fetched (using FETCHCOLS) to be able to filter them. In the Extract pump and in the Replicat,
the columns must be available in the trail file. Because of this, any column that you want to
use in a FILTER or WHERE clause must be explicitly logged using ADD TRANDATA COLS, and you
have to retain the default of LOGALLSUPCOLS.

To filter out or select rows for extraction or replication, use the FILTER and WHERE clauses of
the TABLE and MAP parameters.

The FILTER clause offers you more functionality than the WHERE clause because you can
employ any of the Oracle GoldenGate column conversion functions, whereas the WHERE
clause accepts basic WHERE operators.

Topics:

• Selecting Rows with a FILTER Clause

• Selecting Rows with a WHERE Clause

• Considerations for Selecting Rows with FILTER and WHERE

Chapter 11
Mapping and Manipulating Data

11-115

Selecting Rows with a FILTER Clause
Use a FILTER clause to select rows based on a numeric value by using basic
operators or one or more Oracle GoldenGate column-conversion functions.

Note:

To filter a column based on a string, use one of the Oracle GoldenGate string
functions or use a WHERE clause.

The syntax for FILTER in a TABLE statement is as follows:

TABLE source_table,
, FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
, filter_clause);

The syntax for FILTER in a MAP statement is as follows and includes an error-handling
option.

MAP source_table, TARGET target_table,
, FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
[, RAISEERROR error_number]
, filter_clause);

Valid FILTER clause elements are the following:

• An Oracle GoldenGate column-conversion function. These functions are built into
Oracle GoldenGate so that you can perform tests, manipulate data, retrieve
values, and so forth. See Testing and Transforming Data for more information
about Oracle GoldenGate conversion functions.

• Numbers

• Columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

– + (plus)

– - (minus)

– * (multiply)

– / (divide)

– \ (remainder)

• Comparison operators:

Chapter 11
Mapping and Manipulating Data

11-116

– > (greater than)

– >= (greater than or equal)

– < (less than)

– <= (less than or equal)

– = (equal)

– <> (not equal)

– Results derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• Conjunction operators: AND, OR
Use the following FILTER options to specify which SQL operations a filter clause affects. Any
of these options can be combined.

ON INSERT | ON UPDATE | ON DELETE IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE
Use the RAISEERROR option of FILTER in the MAP parameter to generate a user-defined error
when the filter fails. This option is useful when you need to trigger an event in response to the
failure.

Use the @RANGE function within a FILTER clause to distribute the processing workload among
multiple MAP or TABLE statements.

Here's a sample:

REPERROR (9999, EXCEPTION)
MAP OWNER.SRCTAB, TARGET OWNER.TARGTAB,
 SQLEXEC (ID CHECK, ON UPDATE, QUERY ' SELECT COUNT FROM
TARGTAB WHERE PKCOL = :P1 ', PARAMS (P1 = PKCOL)),
 FILTER (BALANCE > 15000),
 FILTER (ON UPDATE, @BEFORE (COUNT) = CHECK.COUNT)
;
MAP OWNER.SRCTAB, TARGET OWNER.TARGEXC,
EXCEPTIONSONLY,
COLMAP (USEDEFAULTS,
ERRTYPE = 'UPDATE FILTER FAILED'
)
;

Table 11-13 Using Multiple FILTER Statements

Parameter file Description

REPERROR (9999, EXCEPTION)
Raises an exception for the specified error.

MAP OWNER.SRCTAB,
TARGET OWNER.TARGTAB,

Starts the MAP statement.

Chapter 11
Mapping and Manipulating Data

11-117

Table 11-13 (Cont.) Using Multiple FILTER Statements

Parameter file Description

SQLEXEC (ID CHECK, ON UPDATE,
QUERY ' SELECT COUNT FROM TARGTAB '
'WHERE PKCOL = :P1 ',
PARAMS (P1 = PKCOL)),

Performs a query to retrieve the present
value of the COUNT column whenever an
update is encountered. There is a
BEFOREFILTER option also that allows the
query or stored procedure to be executed
prior to processing the FILTER clause.
This allows values from the SQLEXEC
portion to be used inside the FILTER at
runtime.

FILTER (BALANCE > 15000),
Uses a FILTER clause to select rows
where the balance is greater than 15000.

FILTER (ON UPDATE, @BEFORE (COUNT) =
CHECK.COUNT)

Uses another FILTER clause to ensure
that the value of the source COUNT column
before an update matches the value in the
target column before applying the target
update.

;
The semicolon concludes the MAP
statement.

MAP OWNER.SRCTAB,
TARGET OWNER.TARGEXC,
EXCEPTIONSONLY,
COLMAP (USEDEFAULTS,
ERRTYPE = 'UPDATE FILTER FAILED');

Designates an exceptions MAP statement.
The REPERROR clause for error 9999
ensures that the exceptions map to
TARGEXC will be executed.

Example 11-33 Calling the @COMPUTE Function

The following example calls the @COMPUTE function to extract records in which the price
multiplied by the amount exceeds 10,000.

MAP SALES.TCUSTORD, TARGET SALES.TORD,
FILTER (@COMPUTE (PRODUCT_PRICE * PRODUCT_AMOUNT) > 10000);

Example 11-34 Calling the @STREQ Function

The following uses the @STREQ function to extract records where the value of a
character column is 'JOE'.

TABLE ACCT.TCUSTORD, FILTER (@STREQ ("Name", 'joe') > 0);

Chapter 11
Mapping and Manipulating Data

11-118

Example 11-35 Selecting Records

The following selects records in which the AMOUNT column is greater than 50 and executes the
filter on UPDATE and DELETE operations.

TABLE ACT.TCUSTORD, FILTER (ON UPDATE, ON DELETE, AMOUNT > 50);

Example 11-36 Using the @RANGE Function

(Replicat group 1 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (1, 2, ID));

(Replicat group 2 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (2, 2, ID));

You can combine several FILTER clauses in one MAP or TABLE statement, as shown in
Table 11-13, which shows part of a Replicat parameter file. Oracle GoldenGate executes the
filters in the order listed, until one fails or until all are passed. If one filter fails, they all fail.

Selecting Rows with a WHERE Clause
Use any of the elements in Table 11-14 in a WHERE clause to select or exclude rows (or both)
based on a conditional statement. Each WHERE clause must be enclosed within parentheses.
Literals must be enclosed within single quotes.

Table 11-14 Permissible WHERE Operators

Element Examples

Column names
PRODUCT_AMT

Numeric values
-123, 5500.123

Literal strings
'AUTO', 'Ca'

Built-in column tests @NULL, @PRESENT, @ABSENT (column is null, present or absent in the row).
These tests are built into Oracle GoldenGate. See Considerations for
Selecting Rows with FILTER and WHERE.

Comparison operators =, <>, >, <, >=, <=
Conjunctive operators

AND, OR

Grouping parentheses Use open and close parentheses () for logical grouping of multiple elements.

Chapter 11
Mapping and Manipulating Data

11-119

Oracle GoldenGate does not support FILTER for columns that have a multi-byte
character set or a character set that is incompatible with the character set of the local
operating system.

Arithmetic operators and floating-point data types are not supported by WHERE. To use
more complex selection conditions, use a FILTER clause or a user exit routine.

The syntax for WHERE is identical in the TABLE and MAP statements:

TABLE table, WHERE (clause);

MAP source_table, TARGET target_table, WHERE (clause);

Considerations for Selecting Rows with FILTER and WHERE
The following suggestions can help you create a successful selection clause.

Note:

The examples in this section assume a case-insensitive database.

• Ensuring Data Availability for Filters

• Comparing Column Values

• Testing for NULL Values

Ensuring Data Availability for Filters
If the database only logs values for changed columns to the transaction log, there can
be errors if any of the unchanged columns are referenced by selection criteria. Oracle
GoldenGate ignores such row operations, outputs them to the discard file, and issues
a warning.

To avoid missing-column errors, create your selection conditions as follows:

• Use only primary-key columns as selection criteria, if possible.

• Make required column values available by enabling supplemental logging for those
columns. Alternatively, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of
the TABLE parameter. These options are valid for all supported databases. They
query the database to fetch the values if they are not present in the log. To retrieve
the values before the FILTER or WHERE clause is executed, include the
FETCHBEFOREFILTER option in the TABLE statement before the FILTER or WHERE
clause. For example:

TABLE DEMO.PEOPLE, FETCHBEFOREFILTER, FETCHCOLS (age), FILTER (age > 50);
• Test for a column's presence first, then for the column's value. To test for a

column's presence, use the following syntax.

column_name {= | <>} {@PRESENT | @ABSENT}

Chapter 11
Mapping and Manipulating Data

11-120

The following example returns all records when the amount column is over 10,000 and
does not cause a record to be discarded when amount is absent.

WHERE (amount = @PRESENT AND amount > 10000)

Comparing Column Values
To ensure that elements used in a comparison match, compare appropriate column types:

• Character columns to literal strings.

• Numeric columns to numeric values, which can include a sign and decimal point.

• Date and time columns to literal strings, using the format in which the column is retrieved
by the application.

Testing for NULL Values
To evaluate columns for NULL values, use the following syntax.

column {= | <>} @NULL

The following returns TRUE if the column value is NULL, and thereby replicates the row. It
returns FALSE for all other cases (including a column missing from the record).

WHERE (amount = @NULL)

The following returns TRUE only if the column is present in the record and is not NULL.

WHERE (amount = @PRESENT AND amount <> @NULL)

Note:

If a value in the trail contains more than 4000 bytes then the @NULL function will
return TRUE.

Retrieving Before and After Values
For update and delete operations, it can be useful to retrieve the BEFORE values of the source
columns (the values before the update occurred). For inserts, all column values are
considered AFTER images.

These values are stored in the trail and can be used in filters and column mappings. For
example, you can:

• Retrieve the before image of a row as part of a column-mapping specification in an
exceptions MAP statement, and map those values to an exceptions table for use in testing
or troubleshooting conflict resolution routines.

• Perform delta calculations. For example, if a table has a Balance column, you can
calculate the net result of a particular transaction by subtracting the original balance from
the new balance, as in the following example:

MAP "owner"."src", TARGET "owner"."targ",
COLMAP (PK1 = PK1, delta = balance – @BEFORE (balance));

Chapter 11
Mapping and Manipulating Data

11-121

Note:

The previous example indicates a case-sensitive database such as
Oracle. The table names are in quote marks to reflect case-sensitivity.

To Reference the Before Value

1. Use the @BEFORE column conversion function with the name of the column for
which you want a before value, as follows:

@BEFORE (column_name)

2. Use the GETUPDATEBEFORES parameter in the Extract parameter file to capture
before images from the transaction record, or use it in the Replicat parameter file
to use the before image in a column mapping or filter. If using the Conflict
Resolution and Detection (CDR) feature, you can use the GETBEFORECOLS option of
TABLE. To use these parameters, all columns must be present in the transaction
log. If the database only logs the values of columns that changed, using the
@BEFORE function may result in a "column missing" condition and the column map
is executed as if the column were not in the record. See Ensuring Data Availability
for Filters to ensure that column values are available.

Oracle GoldenGate also provides the @AFTER function to retrieve after values when
needed for filtering, for use in conversion functions, or other purposes. See
@BEFORE and @AFTER in the Reference for Oracle GoldenGate.

Selecting Columns
To control which columns of a source table are extracted by Oracle GoldenGate, use
the COLS and COLSEXCEPT options of the TABLE parameter. Use COLS to select columns
for extraction, and use COLSEXCEPT to select all columns except those designated by
COLSEXCEPT.

Restricting the columns that are extracted can be useful when a target table does not
contain the same columns as the source table, or when the columns contain sensitive
information, such as a personal identification number or other proprietary business
information.

Selecting and Converting SQL Operations
By default, Oracle GoldenGate captures and applies INSERT, UPDATE, and DELETE
operations. You can use the following parameters in the Extract or Replicat parameter
file to control which kind of operations are processed, such as only inserts or only
inserts and updates.

GETINSERTS | IGNOREINSERTS
GETUPDATES | IGNOREUPDATES
GETDELETES | IGNOREDELETES
You can convert one type of SQL operation to another by using the following
parameters in the Replicat parameter file:

Chapter 11
Mapping and Manipulating Data

11-122

• Use INSERTUPDATES to convert source update operations to inserts into the target table.
This is useful for maintaining a transaction history on that table. The transaction log
record must contain all of the column values of the table, not just changed values. Some
databases do not log full row values to their transaction log, but only values that changed.

• Use INSERTDELETES to convert all source delete operations to inserts into the target table.
This is useful for retaining a history of all records that were ever in the source database.

• Use UPDATEDELETES to convert source deletes to updates on the target.

Using Transaction History
Oracle GoldenGate enables you to retain a history of changes made to a target record and to
map information about the operation that caused each change. This history can be useful for
creating a transaction-based reporting system that contains a separate record for every
operation performed on a table, as opposed to containing only the most recent version of
each record.

For example, the following series of operations made to a target table named CUSTOMER would
leave no trace of the ID of Dave. The last operation deletes the record, so there is no way to
find out Dave's account history or his ending balance.

Table 11-15 Operation History for Table CUSTOMER

Sequence Operation ID BALANCE

1 Insert Dave 1000
2 Update Dave 900
3 Update Dave 1250
4 Delete Dave 1250

Retaining this history as a series of records can be useful in many ways. For example, you
can generate the net effect of transactions.

To Implement Transaction Reporting

1. To prepare Extract to capture before values, use the GETUPDATEBEFORES parameter in the
Extract parameter file. A before value (or before image) is the existing value of a column
before an update is performed. Before images enable Oracle GoldenGate to create the
transaction record.

2. To prepare Replicat to post all operations as inserts, use the INSERTALLRECORDS
parameter in the Replicat parameter file. Each operation on a table becomes a new
record in that table.

3. To map the transaction history, use the return values of the GGHEADER option of the
@GETENV column conversion function. Include the conversion function as the source
expression in a COLMAP statement in the TABLE or MAP parameter.

Using the sample series of transactions shown in Table 11-15 the following parameter
configurations can be created to generate a more transaction-oriented view of customers,
rather than the latest state of the database.

Chapter 11
Mapping and Manipulating Data

11-123

Process Parameter statements

Extract
GETUPDATEBEFORES
TABLE ACCOUNT.CUSTOMER;

Replicat
INSERTALLRECORDS
MAP SALES.CUSTOMER, TARGET SALES.CUSTHIST,
COLMAP (TS = @GETENV ('GGHEADER', 'COMMITTIMESTAMP'),
BEFORE_AFTER = @GETENV ('GGHEADER',
'BEFOREAFTERINDICATOR'),
OP_TYPE = @GETENV ('GGHEADER', 'OPTYPE'),
ID = ID,
BALANCE = BALANCE);

Note:

This is not representative of a complete parameter file for an Oracle
GoldenGate process. Also note that these examples represent a case-
insensitive database.

This configuration makes possible queries such as the following, which returns the net
sum of each transaction along with the time of the transaction and the customer ID.

SELECT AFTER.ID, AFTER.TS, AFTER.BALANCE - BEFORE.BALANCE
FROM CUSTHIST AFTER, CUSTHIST BEFORE
WHERE AFTER.ID = BEFORE.ID AND AFTER.TS = BEFORE.TS AND
AFTER.BEFORE_AFTER = 'A' AND BEFORE.BEFORE_AFTER = 'B';

Testing and Transforming Data
Data testing and transformation can be performed by either Extract or Replicat and is
implemented by using the Oracle GoldenGate built-in column-conversion functions
within a COLMAP clause of a TABLE or MAP statement. With these conversion functions,
you can:

• Transform dates.

• Test for the presence of column values.

• Perform arithmetic operations.

• Manipulate numbers and character strings.

• Handle null, invalid, and missing data.

• Perform tests.

Chapter 11
Mapping and Manipulating Data

11-124

If you need to use logic beyond that which is supplied by the Oracle GoldenGate functions,
you can call your own functions by implementing Oracle GoldenGate user exits.

Oracle GoldenGate conversion functions take the following general syntax:

Syntax

@function (argument)

Table 11-16 Conversion Function Syntax

Syntax element Description

@function
The Oracle GoldenGate function name. Function
names have the prefix @, as in @COMPUTE or
@DATE. A space between the function name and
the open-parenthesis before the input argument is
optional.

argument A function argument.

Table 11-17 Function Arguments

Argument element Example

A numeric constant
123

A string literal enclosed within single quote marks
'ABCD'

The name of a source column
PHONE_NO or phone_no, or "Phone_No"
or Phone_no

Depends on whether the database is case-
insensitive, is case-sensitive and requires quote
marks to enforce the case, or is case-sensitive
and does not require quotes.

An arithmetic expression
COL2 * 100

A comparison expression
((COL3 > 100) AND (COL4 > 0))

Other Oracle GoldenGate functions
AMOUNT = @IF (@COLTEST (AMT,
MISSING, INVALID), 0, AMT)

Chapter 11
Mapping and Manipulating Data

11-125

• Handling Column Names and Literals in Functions

• Using the Appropriate Function

• Transforming Dates

• Performing Arithmetic Operations

• Manipulating Numbers and Character Strings

• Handling Null, Invalid, and Missing Data

• Performing Tests

Handling Column Names and Literals in Functions
By default, literal strings must be enclosed in single quotes in a column-conversion
function. Case-sensitive column names must be enclosed within double quotes if
required by the database, or otherwise entered in the case in which they are stored in
the database.

Using the Appropriate Function
Use the appropriate function for the type of column that is being manipulated or
evaluated. For example, numeric functions can be used only to compare numeric
values. To compare character values, use one of the Oracle GoldenGate character-
comparison functions. LOB columns cannot be used in conversion functions.

This statement would fail because it uses @IF, which is a numerical function, to
compare string values.

@IF (SR_AREA = 'Help Desk', 'TRUE', 'FALSE')

The following statement would succeed because it compares a numeric value.

@IF (SR_AREA = 20, 'TRUE', 'FALSE')

See Manipulating Numbers and Character Strings for more information.

Note:

Errors in argument parsing sometimes are not detected until records are
processed. Verify syntax before starting processes.

Transforming Dates
Use the @DATE, @DATEDIF, and @DATENOW functions to retrieve dates and times, perform
computations on them, and convert them.

This example computes the time that an order is filled

Example 11-37 Computing Time

ORDER_FILLED = @DATE (
 'YYYY-MM-DD HH:MI:SS',

Chapter 11
Mapping and Manipulating Data

11-126

 'JTS',
 @DATE ('JTS',
 'YYMMDDHHMISS',
 ORDER_TAKEN_TIME) +
 ORDER_MINUTES * 60 * 1000000)

Performing Arithmetic Operations
To return the result of an arithmetic expression, use the @COMPUTE function. The value
returned from the function is in the form of a string. Arithmetic expressions can be
combinations of the following elements.

• Numbers

• The names of columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

– + (plus)

– - (minus)

– * (multiply)

– / (divide)

– \ (remainder)

• Comparison operators:

– > (greater than)

– >= (greater than or equal)

– < (less than)

– <= (less than or equal)

– = (equal)

– <> (not equal)

Results that are derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• The conjunction operators AND, OR. Oracle GoldenGate only evaluates the necessary part
of a conjunction expression. Once a statement is FALSE, the rest of the expression is
ignored. This can be valuable when evaluating fields that may be missing or null. For
example, if the value of COL1 is 25 and the value of COL2 is 10, then the following are
possible:

@COMPUTE ((COL1 > 0) AND (COL2 < 3)) returns 0.
@COMPUTE ((COL1 < 0) AND (COL2 < 3)) returns 0. COL2 < 3 is never evaluated.
@COMPUTE ((COL1 + COL2)/5) returns 7.

• Omitting @COMPUTE

Omitting @COMPUTE
The @COMPUTE keyword is not required when an expression is passed as a function argument.

Chapter 11
Mapping and Manipulating Data

11-127

@STRNUM ((AMOUNT1 + AMOUNT2), LEFT)

The following expression returns the same result as the previous one:

@STRNUM ((@COMPUTE (AMOUNT1 + AMOUNT2), LEFT)

Manipulating Numbers and Character Strings
To convert numbers and character strings, Oracle GoldenGate supplies the following
functions:

Table 11-18 Conversion Functions for Numbers and Characters

Purpose Conversion Function

Convert a binary or character string to a number. @NUMBIN
@NUMSTR

Convert a number to a string. @STRNUM
Compare strings. @STRCMP

@STRNCMP
Concatenate strings. @STRCAT

@STRNCAT
Extract from a string. @STREXT

@STRFIND
Return the length of a string. @STRLEN
Substitute one string for another. @STRSUB
Convert a string to upper case. @STRUP
Trim leading or trailing spaces, or both. @STRLTRIM

@STRRTRIM
@STRTRIM

Handling Null, Invalid, and Missing Data
When column data is missing, invalid, or null, an Oracle GoldenGate conversion
function returns a corresponding value.

If BALANCE is 1000, but AMOUNT is NULL, the following expression returns NULL:

NEW_BALANCE = @COMPUTE (BALANCE + AMOUNT)

These exception conditions render the entire calculation invalid. To ensure a
successful conversion, use the @COLSTAT, @COLTEST and @IF functions to test for, and
override, the exception condition.

• Using @COLSTAT

• Using @COLTEST

• Using @IF

Chapter 11
Mapping and Manipulating Data

11-128

Using @COLSTAT
Use the @COLSTAT function to return an indicator to Extract or Replicat that a column is
missing, null, or invalid. The indicator can be used as part of a larger manipulation formula
that uses additional conversion functions.

The following example returns a NULL into target column ITEM.

ITEM = @COLSTAT (NULL)

The following @IF calculation uses @COLSTAT to return NULL to the target column if PRICE and
QUANTITY are less than zero.

ORDER_TOTAL = PRICE * QUANTITY, @IF ((PRICE < 0) AND (QUANTITY < 0), @COLSTAT (NULL))

Using @COLTEST
Use the @COLTEST function to check for the following conditions:

• PRESENT tests whether a column is present and not null.

• NULL tests whether a column is present and null.

• MISSING tests whether a column is not present.

• INVALID tests whether a column is present but contains invalid data.

The following example checks whether the AMOUNT column is present and NULL and whether it
is present but invalid.

@COLTEST (AMOUNT, NULL, INVALID)

Using @IF
Use the @IF function to return one of two values based on a condition. Use it with the
@COLSTAT and @COLTEST functions to begin a conditional argument that tests for one or more
exception conditions and then directs processing based on the results of the test.

NEW_BALANCE = @IF (@COLTEST (BALANCE, NULL, INVALID) OR
@COLTEST (AMOUNT, NULL, INVALID), @COLSTAT (NULL), BALANCE + AMOUNT)

This conversion returns one of the following:

• NULL when BALANCE or AMOUNT is NULL or INVALID
• MISSING when either column is missing

• The sum of the columns.

Performing Tests
The @CASE, @VALONEOF, and @EVAL functions provide additional methods for performing tests
on data before manipulating or mapping it.

• Using @CASE

• Using @VALONEOF

• Using @EVAL

Chapter 11
Mapping and Manipulating Data

11-129

Using @CASE
Use @CASE to select a value depending on a series of value tests.

@CASE (PRODUCT_CODE, 'CAR', 'A car', 'TRUCK', 'A truck')

This example returns the following:

• A car if PRODUCT_CODE is CAR
• A truck if PRODUCT_CODE is TRUCK
• A FIELD_MISSING indication if PRODUCT_CODE fits neither of the other conditions

Using @VALONEOF
Use @VALONEOF to compare a column or string to a list of values.

@IF (@VALONEOF (STATE, 'CA', 'NY'), 'COAST', 'MIDDLE')

In this example, if STATE is CA or NY, the expression returns COAST, which is the
response returned by @IF when the value is non-zero (meaning TRUE).

Using @EVAL
Use @EVAL to select a value based on a series of independent conditional tests.

@EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high')

This example returns the following:

• high amount if AMOUNT is greater than 10000
• somewhat high if AMOUNT is greater than 5000, and less than or equal to 10000,

(unless the prior condition was satisfied)

• A FIELD_MISSING indication if neither condition is satisfied.

Using Tokens
You can capture and store data within the user token area of a trail record header.
Token data can be retrieved and used in many ways to customize the way that Oracle
GoldenGate delivers information.

For example, you can use token data in:

• Column maps

• Stored procedures called by a SQLEXEC statement

• User exits

• Macros

Topics:

• Defining Tokens

• Using Token Data in Target Tables

Chapter 11
Mapping and Manipulating Data

11-130

Defining Tokens
To use tokens, you define the token name and associate it with data. The data can be any
valid character data or values retrieved from Oracle GoldenGate column-conversion
functions.

The token area in the record header permits up to 16,000 bytes of data. Token names, the
length of the data, and the data itself must fit into that space.

To define a token, use the TOKENS option of the TABLE parameter in the Extract parameter file.

Syntax

TABLE table_spec, TOKENS (token_name = token_data [, ...]);

Where:

• table_spec is the name of the source table. A container or catalog name, if applicable,
and an owner name must precede the table name.

• token_name is a name of your choice for the token. It can be any number of alphanumeric
characters and is not case-sensitive.

• token_data is a character string of up to 2000 bytes. The data can be either a string that
is enclosed within single quotes or the result of an Oracle GoldenGate column-
conversion function. The character set of token data is not converted. The token must be
in the character set of the source database for Extract and in the character set of the
target database for Replicat. In the trail file, user tokens are stored in UTF-8.

TABLE ora.oratest, TOKENS (
TK-OSUSER = @GETENV ('GGENVIRONMENT' , 'OSUSERNAME'),
TK-GROUP = @GETENV ('GGENVIRONMENT' , 'GROUPNAME')
TK-HOST = @GETENV('GGENVIRONMENT' , 'HOSTNAME'));

As shown in this example, the Oracle GoldenGate @GETENV function is an effective way to
populate token data. This function provides several options for capturing environment
information that can be mapped to tokens and then used on the target system for column
mapping.

Using Token Data in Target Tables
To map token data to a target table, use the @TOKEN column-conversion function in the source
expression of a COLMAP clause in a Replicat MAP statement. The @TOKEN function provides the
name of the token to map. The COLMAP syntax with @TOKEN is:

Syntax

COLMAP (target_column = @TOKEN ('token_name'))

The following MAP statement maps target columns host, gg_group, and so forth to tokens tk-
host, tk-group, and so forth. Note that the arguments must be enclosed within single quotes.

User tokens Values

tk-host :sysA

Chapter 11
Mapping and Manipulating Data

11-131

User tokens Values

tk-group :extora

tk-osuser :jad

tk-domain :admin

tk-ba_ind :B

tk-commit_ts :2011-01-24 17:08:59.000000

tk-pos :3604496

tk-rba :4058

tk-table :oratest

tk-optype :insert

Example 11-38 MAP Statement

MAP ora.oratest, TARGET ora.rpt,
COLMAP (USEDEFAULTS,
host = @token ('tk-host'),
gg_group = @token ('tk-group'),
osuser= @token ('tk-osuser'),
domain = @token ('tk-domain'),
ba_ind= @token ('tk-ba_ind'),
commit_ts = @token ('tk-commit_ts'),
pos = @token ('tk-pos'),
rba = @token ('tk-rba'),
tablename = @token ('tk-table'),
optype = @token ('tk-optype'));

The tokens in this example will look similar to the following within the record header in
the trail:

Handling Processing Errors
This topic describes how to configure the Oracle GoldenGate processes to handle
errors.

Oracle GoldenGate reports processing errors in several ways by means of its
monitoring and reporting tools. For more information about these tools, see Monitoring
Oracle GoldenGate Processing.

Topics:

• Overview of Oracle GoldenGate Error Handling

• Handling Extract Errors

Chapter 11
Handling Processing Errors

11-132

• Handling Replicat Errors during DML Operations

• Handling Replicat errors during DDL Operations

• Handling TCP/IP Errors

• Maintaining Updated Error Messages

• Resolving Oracle GoldenGate Errors

Overview of Oracle GoldenGate Error Handling
Oracle GoldenGate provides error-handling options for:

• Extract

• Replicat

• TCP/IP

Handling Extract Errors
There is no specific parameter to handle Extract errors when DML operations are being
extracted, but Extract does provide a number of parameters that can be used to prevent
anticipated problems. These parameters handle anomalies that can occur during the
processing of DML operations, such as what to do when a row to be fetched cannot be
located, or what to do when the transaction log is not available. The following is a partial list
of these parameters.

• FETCHOPTIONS
• WARNLONGTRANS
• DBOPTIONS
• TRANLOGOPTIONS
To handle extraction errors that relate to DDL operations, use the DDLERROR parameter.

For a complete parameter list, see Reference for Oracle GoldenGate.

Handling Replicat Errors during DML Operations
To control the way that Replicat responds to an error during one of its DML statements, use
the REPERROR parameter in the Replicat parameter file. You can use REPERROR as a global
parameter or as part of a MAP statement. You can handle most errors in a default fashion (for
example, to cease processing) with DEFAULT and DEFAULT2 options, and also handle other
errors in a specific manner.

The following comprise the range of REPERROR responses:

• ABEND: roll back the transaction and stop processing.

• DISCARD: log the error to the discard file and continue processing.

• EXCEPTION: send the error for exceptions processing.

• IGNORE: ignore the error and continue processing.

• RETRYOP [MAXRETRIES n]: retry the operation, optionally up to a specific number of times.

Chapter 11
Handling Processing Errors

11-133

• TRANSABORT [, MAXRETRIES n] [, DELAY[C]SECS n]: abort the transaction and
reposition to the beginning, optionally up to a specific number of times at specific
intervals.

• RESET: remove all previous REPERROR rules and restore the default of ABEND.

• TRANSDISCARD: discard the entire replicated source transaction if any operation
within that transaction, including the commit, causes a Replicat error that is listed
in the error specification. This option is useful when integrity constraint checking is
disabled on the target.

• TRANSEXCEPTION: perform exceptions mapping for every record in the replicated
source transaction, according to its exceptions-mapping statement, if any
operation within that transaction (including the commit) causes a Replicat error
that is listed in the error specification.

Most options operate on the individual record that generated an error, and Replicat
processes the other, successful operations in the transaction. The exceptions are
TRANSDISCARD and TRANSEXCEPTION: These options affect all records in a transaction if
any record in that transaction generates an error. (The ABEND option also applies to the
entire transaction, but does not apply error handling.)

See REPERROR for syntax and usage.

• Handling Errors as Exceptions

Handling Errors as Exceptions
When the action of REPERROR is EXCEPTION or TRANSEXCEPTION, you can map the
values of operations that generate errors to an exceptions table and, optionally, map
other information about the error that can be used to resolve the error. See About the
Exceptions Table.

To map the exceptions to the exceptions table, use either of the following options of
the MAP parameter:

• MAP with EXCEPTIONSONLY
• MAP with MAPEXCEPTION
Topics:

• Using EXCEPTIONSONLY

• Using MAPEXCEPTION

• About the Exceptions Table

Using EXCEPTIONSONLY
EXCEPTIONSONLY is valid for one pair of source and target tables that are explicitly
named and mapped one-to-one in a MAP statement; that is, there cannot be wildcards.
To use EXCEPTIONSONLY, create two MAP statements for each source table that you
want to use EXCEPTIONSONLY for on the target:

• The first, a standard MAP statement, maps the source table to the actual target
table.

• The second, an exceptions MAP statement, maps the source table to the
exceptions table (instead of to the target table). An exceptions MAP statement

Chapter 11
Handling Processing Errors

11-134

executes immediately after an error on the source table to send the row values to the
exceptions table.

To identify a MAP statement as an exceptions MAP statement, use the INSERTALLRECORDS
and EXCEPTIONSONLY options. The exceptions MAP statement must immediately follow the
regular MAP statement that contains the same source table. Use a COLMAP clause in the
exceptions MAP statement if the source and exceptions-table columns are not identical, or
if you want to map additional information to extra columns in the exceptions table, such
as information that is captured by means of column-conversion functions or SQLEXEC.

For more information about these parameters, see Reference for Oracle GoldenGate.

• A regular MAP statement that maps the source table ggs.equip_account to its target table
equip_account2.

• An exceptions MAP statement that maps the same source table to the exceptions table
ggs.equip_account_exception.

In this case, four extra columns were created, in addition to the same columns that the table
itself contains:

DML_DATE
OPTYPE
DBERRNUM
DBERRMSG

To populate the DML_DATE column, the @DATENOW column-conversion function is used to get
the date and time of the failed operation, and the result is mapped to the column. To populate
the other extra columns, the @GETENV function is used to return the operation type, database
error number, and database error message.

The EXCEPTIONSONLY option of the exceptions MAP statement causes the statement to execute
only after a failed operation on the source table. It prevents every operation from being
logged to the exceptions table.

The INSERTALLRECORDS parameter causes all failed operations for the specified source table,
no matter what the operation type, to be logged to the exceptions table as inserts.

Note:

There can be no primary key or unique index restrictions on the exception table.
Uniqueness violations are possible in this scenario and would generate errors.

Example 11-39 EXCEPTIONSONLY
This example shows how to use REPERROR with EXCEPTIONSONLY and an exceptions MAP
statement. This example only shows the parameters that relate to REPERROR; other
parameters not related to error handling are also required for Replicat.

REPERROR (DEFAULT, EXCEPTION)
MAP ggs.equip_account, TARGET ggs.equip_account2,
COLMAP (USEDEFAULTS);
MAP ggs.equip_account, TARGET ggs.equip_account_exception,
EXCEPTIONSONLY,
INSERTALLRECORDS
COLMAP (USEDEFAULTS,
DML_DATE = @DATENOW (),

Chapter 11
Handling Processing Errors

11-135

OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERRNUM = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG'));

In this example, the REPERROR parameter is set for DEFAULT error handling, and the
EXCEPTION option causes the Replicat process to treat failed operations as exceptions
and continue processing.

Using MAPEXCEPTION
MAPEXCEPTION is valid when the names of the source and target tables in the MAP
statement are wildcarded. Place the MAPEXCEPTION clause in the regular MAP
statement, the same one where you map the source tables to the target tables.
Replicat maps all operations that generate errors from all of the wildcarded tables to
the same exceptions table; therefore, the exceptions table should contain a superset
of all of the columns in all of the wildcarded tables.

Because you cannot individually map columns in a wildcard configuration, use the
COLMAP clause with the USEDEFAULTS option to handle the column mapping for the
wildcarded tables (or use the COLMATCH parameter if appropriate), and use explicit
column mappings to map any additional information, such as that captured with
column-conversion functions or SQLEXEC.

When using MAPEXCEPTION, include the INSERTALLRECORDS parameter in the
MAPEXCEPTION clause. INSERTALLRECORDS causes all operation types to be applied to
the exceptions table as INSERT operations. This is required to keep an accurate record
of the exceptions and to prevent integrity errors on the exceptions table.

For more information about these parameters, see Reference for Oracle GoldenGate.

Example 11-40 MAPEXCEPTION

This is an example of how to use MAPEXCEPTION for exceptions mapping. The MAP and
TARGET clauses contain wildcarded source and target table names. Exceptions that
occur when processing any table with a name beginning with TRX are captured to the
fin.trxexceptions table using the designated mapping.

MAP src.trx*, TARGET trg.*,
MAPEXCEPTION (TARGET fin.trxexceptions,
INSERTALLRECORDS,
COLMAP (USEDEFAULTS,
ACCT_NO = ACCT_NO,
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERR = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG')
)
);

About the Exceptions Table
Use an exceptions table to capture information about an error that can be used for
such purposes as troubleshooting your applications or configuring them to handle the
error. At minimum, an exceptions table should contain enough columns to receive the
entire row image from the failed operation. You can define extra columns to contain
other information that is captured by means of column-conversion functions, SQLEXEC,
or other external means.

Chapter 11
Handling Processing Errors

11-136

To ensure that the trail record contains values for all of the columns that you map to the
exceptions table, you can use either the LOGALLSUPCOLS parameter or the following
parameters in the Extract parameter file:

• Use the NOCOMPRESSDELETES parameter so that all columns of a row are written to the trail
for DELETE operations.

• Use the GETUPDATEBEFORES parameter so that Extract captures the before image of a row
and writes them to the trail.

Handling Replicat errors during DDL Operations
To control the way that Replicat responds to an error that occurs for a DDL operation on the
target, use the DDLERROR parameter in the Replicat parameter file. For more information, see
Reference for Oracle GoldenGate.

Handling TCP/IP Errors
To provide instructions for responding to TCP/IP errors, use the TCPERRS file. This file is in the
Oracle GoldenGate directory

Table 11-19 TCPERRS Columns

Column Description

Error
Specifies a TCP/IP error for which you are defining a response.

Response
Controls whether or not Oracle GoldenGate tries to connect again after the defined
error. Valid values are either RETRY or ABEND.

Delay
Controls how long Oracle GoldenGate waits before attempting to connect again.

Max Retries
Controls the number of times that Oracle GoldenGate attempts to connect again
before aborting.

If a response is not explicitly defined in the TCPERRS file, Oracle GoldenGate responds to
TCP/IP errors by abending.

Example 11-41 TCPERRS File

TCP/IP error handling parameters
Default error response is abend
#
Error Response Delay(csecs) Max Retries

ECONNABORTED RETRY 1000 10
ECONNREFUSED RETRY 1000 12
ECONNRESET RETRY 500 10
ENETDOWN RETRY 3000 50
ENETRESET RETRY 1000 10
ENOBUFS RETRY 100 60
ENOTCONN RETRY 100 10
EPIPE RETRY 500 10
ESHUTDOWN RETRY 1000 10
ETIMEDOUT RETRY 1000 10
NODYNPORTS RETRY 100 10

Chapter 11
Handling Processing Errors

11-137

The TCPERRS file contains default responses to basic errors. To alter the instructions or
add instructions for new errors, open the file in a text editor and change any of the
values in the columns shown in Table 11-19.

Maintaining Updated Error Messages
The error, information, and warning messages that Oracle GoldenGate processes
generate are stored in a data file named ggmessage.dat in the Oracle GoldenGate
installation directory. The version of this file is checked upon process startup and must
be identical to that of the process in order for the process to operate.

Resolving Oracle GoldenGate Errors
To get help with specific troubleshooting issues, go to My Oracle Support at http://
support.oracle.com and search the Knowledge Base.

Chapter 11
Handling Processing Errors

11-138

http://support.oracle.com
http://support.oracle.com

12
Performance

This section lists details about performance monitoring and tuning.

Topics:

• Monitor

• Tuning

Monitor
Learn all about the monitoring tasks.

Topics:

• Commands Used for Monitoring

• Monitor Processes from the Performance Metrics Service

• Monitoring an Extract Recovery

• Monitor Lag

• Db2 z/OS: Interpret Statistics for Update Operations

• Monitoring Processing Volume

• Using the Error Log

• Using the Process Report

• Use the Discard File

• Maintain the Discard and Report Files

• Reconcile the Time Differences

Commands Used for Monitoring

You can view information about Extract and Replicat groups from the Oracle GoldenGate MA
web interface at various levels. Another alternative is to use the command line interface to
monitor various processes.

See Monitor Processes from the Performance Metrics Service.

To learn about command syntax, usage, and examples, see the Command Line Interface
Reference for Oracle GoldenGate.

Command What it Shows

INFO {EXTRACT | REPLICAT} group
[DETAIL]

Run status, checkpoints, approximate lag, and
environmental information.

12-1

Command What it Shows

INFO ALL
Displays the INFO output for all Oracle
GoldenGate processes on the system.

STATS {EXTRACT | REPLICAT} group
Displays statistics on processing volume, such as
number of operations performed.

STATUS {EXTRACT | REPLICAT} group
Displays the run status (starting, running, stopped,
abended) for Extract and Replicat processes.

LAG {EXTRACT | REPLICAT} group
Displays the latency between last record
processed and timestamp in the data source.

INFO {EXTTRAIL | RMTTRAIL } trail
Displays the name of associated process, position
of last data processed, maximum file size.

SEND {EXTRACT | REPLICAT } group
Depending on the process and selected options,
returns information about memory pool, lag, TCP
statistics, long-running transactions, process
status, recovery progress, and more.

VIEW REPORT group
Shows contents of the discard file or process
report.

VIEW GGSEVT
Shows contents of the Oracle GoldenGate error
log.

Chapter 12
Monitor

12-2

Command What it Shows

COMMAND ER wildcard
Information dependent on the COMMAND type:

INFO

LAG

SEND

STATS

STATUS

wildcard

is a wildcard specification for the process groups
to be affected, for example:

INFO ER ext*

STATS ER *

INFO PARAM
Queries for and displays static information.

GETPARAMINFO
Displays currently-running parameter values.

INFO DISTPATH
Returns information about distribution paths.
Before you run this command, ensure that the
Distribution Service is running for that deployment.

INFO EXTTRAIL
Retrieves configuration information for a local trail.
It shows the name of the trail, the Extract that
writes to it, the position of the last data processed,
and the assigned maximum file size.

INFO RMTTRAIL
Retrieves configuration information for a remote
trail. It shows the name of the trail, the Extract that
writes to it, the position of the last data processed,
and the assigned maximum file size.

INFO ER
Retrieves information on multiple Extract and
Replicat groups as a unit.

Chapter 12
Monitor

12-3

Command What it Shows

INFO CHECKPOINTTABLE
Confirms the existence of a checkpoint table and
view the date and time that it was created.

INFO CREDENTIALS
Retrieves a list of credentials.

INFO ENCRYPTIONPROFILE
Returns information about the encryption profiles
available with the Service Manager.

INFO HEARTBEATTABLE
Displays information about the heartbeat tables
configured in the database.

INFO AUTHORIZATIONPROFILE
Lists all the authorization profiles in a deployment
or information on a specific authorization profile for
a specific deployment.

INFO MASTERKEY
Displays the contents of a currently open master-
key wallet. If a wallet store does not exist, a new
wallet store file is created. This wallet store file is
then used to host different encrypted keys as they
are created.

INFO PROFILE
Returns information about managed process
profiles.

INFO RECVPATH
Returns information about a target-initiated
distribution path in the Receiver Service. Before
you run this command, ensure that the Receiver
Service is running.

INFO SCHEMATRANDATA
Valid for Oracle database only. Determine whether
Oracle schema-level supplemental logging is
enabled for the specified schema or if any
instantiation information is available. Use the
DBLOGIN command to establish a database
connection before using this command.

INFO TRACETABLE
Verifies the existence of the specified trace table in
the local instance of the database.

INFO TRANDATA
Displays different outputs depending on the
database.

STATS DISTPATH | RECVPATH
Get the statistics for the distribution path
(DISTPATH) or receiver path (RECVPATH).

STATS ER
Retrieve statistics on multiple Extract and Replicat
groups as a unit. Use it with wildcards to affect
every Extract and Replicat group that satisfies the
wildcard.

Chapter 12
Monitor

12-4

Command What it Shows

STATUS ER
Checks the status of multiple Extract and Replicat
groups as a unit.

STATUS DEPLOYMENT
View the status of the specified deployment.

STATUS PMSRVR
Status of Performance Service.

STATUS SERVICE
Displays the status of specified Oracle
GoldenGate service.

Monitor Processes from the Performance Metrics Service

The Performance Metrics Service uses the metrics service to collect and store instance
deployment performance results. When you arrive at the Performance Metrics Service
Overview page, you see all the Oracle GoldenGate processes in their current state.

You can click a process to view its performance metrics. You can also access service
messages and status change details from this page.

Here’s a general overview of the tasks that you can perform from this page.

Task Description

Review Messages Review Messages from Messages Overview Tab
from the Messages Overview tab.

Review Status Changes Click the Review Status Changes tab to review
changes in status of a service.

Topics:

• Review Messages from Messages Overview Tab

• Review Status Changes

• Purge Datastore

• Protocols for Performance Monitoring for Different Operating Systems

Review Messages from Messages Overview Tab

Messages from the Services are displayed in Performance Metrics Service Overview page.

To review the messages sent or received, do the following:

1. From the Service Manager, click Performance Metrics Service.

The Performance Metrics Service Overview page is displayed.

Chapter 12
Monitor

12-5

2. Click the Messages Overview tab (if it’s not already selected) to see a drill down
into all the service messages.

Scroll through the list of messages or search for a specific message by entering
the text in the message.

3. Click Refresh to get a synchronized real-time list of messages before you start
searching. You can also change the page size to view more or fewer messages.

Review Status Changes

Real-time status changes to microservices can be monitored from the Performance
Metrics Service Status Changes Overview tab.

Status change messages show the date, process name, and its status, which could be
running, starting, stopped, or killed.

To view status changes, click Performance Metrics Service from the Service
Manager home page, and then click the Status Changes Overview tab. A list of
status change messages from the service appears.

If you are searching for specific messages, you can use the search but make sure you
click Refresh before you search to ensure that you get the updated status for services.

Note that the search messages appear in different colors to differentiate critical and
informational messages.

Purge Datastore

You can change the datastore retention and purge it from the Performance Metrics
Service Monitoring Commands tab.

To view status changes, click Performance Metrics Service from the Service Manager
home page, and then click the Monitoring Commands tab.

The current process retention (in days) is displayed.

You can enter the number of retention days or use the sliding icon to set the new
period from 1 to 365 days, then Execute to activate the purge. The details of the purge
are also displayed.

Protocols for Performance Monitoring for Different Operating Systems

Oracle GoldenGate uses Unix Domain Sockets (UDS) for UNIX-based systems to
send monitoring points from Extract, Replicat, and other processes to the Performance
Monitoring Service of the deployment.

UDS is available with Oracle and non-Oracle databases. The UDS file is located in
the $OGG_HOME/var/temp directory of the deployment.

For Oracle GoldenGate 21c, UDS is the only communication protocol for Performance
Metrics Service. For Windows and other operating systems that don't support UDS,
UDP is the default parameter.

Chapter 12
Monitor

12-6

Monitoring an Extract Recovery
If Extract abends when a long-running transaction is open, it can seem to take a long time to
recover when it is started again. To recover its processing state, Extract must search back
through the online and archived logs (if necessary) to find the first log record for that long-
running transaction. The farther back in time that the transaction started, the longer the
recovery takes, in general, and Extract can appear to be stalled.

To confirm that Extract is recovering properly, use the SEND EXTRACT command with the
STATUS option. One of the following status notations appears, and you can follow the progress
as Extract changes its log read position over the course of the recovery.

In recovery[1]
Extract is recovering to its checkpoint in the transaction log. This implies that it is reading
from either the BR checkpoint files and then archived/online logs, or reading from Recovery
Checkpoint in archived/online log.

In recovery[2]
Extract is recovering from its checkpoint to the end of the trail. This implies that a recovery
marker is appended to the output trail when the last transaction was not completely written
then rewriting the transaction.

Recovery complete
The recovery is finished, and normal processing will resume.

Monitor Lag
Lag statistics show you how well the Oracle GoldenGate processes are keeping pace with
the amount of data that is being generated by the business applications. With this
information, you can diagnose suspected problems and tune the performance of the Oracle
GoldenGate processes to minimize the latency between the source and target databases.

Topics:

• About Lag

• Monitor Lag Using Automatic Heartbeat Tables

About Lag
For Extract, lag is the difference, in seconds, between the time that a record was processed
by Extract (based on the system clock) and the timestamp of that record in the data source.

For Replicat, lag is the difference, in seconds, between the time that the last record was
processed by Replicat (based on the system clock) and the timestamp of the record in the
trail.

To view lag statistics, use either the LAG or SEND ER, SEND EXTRACT, SEND REPLICAT
commands.

Chapter 12
Monitor

12-7

Note:

The INFO command also returns a lag statistic, but this statistic is taken from
the last record that was checkpointed, not the current record that is being
processed. It is less accurate than LAG or INFO.

Monitor Lag Using Automatic Heartbeat Tables
You can use the default automatic heartbeat table functionality to monitor end-to-end
replication lag. Automatic heartbeats are sent from each source database into the
replication streams, by updating the records in a heartbeat seed table and a heartbeat
table, and constructing a heartbeat history table. Each of the replication processes
in the replication path process these heartbeat records and update the information in
them. These heartbeat records are inserted or updated into the heartbeat table at the
target databases.

The heartbeat tables contain the following information:

• Source database

• Destination database

• Information about the outgoing replication streams:

– Names of the Extract, Distribution Service, and or Replicat processes in the
path

– Timestamps when heartbeat records were processed by the replication
processes.

• Information about the incoming replication streams:

– Names of the Extract, Distribution Service, and or Replicat processes in the
path

– Timestamps when heartbeat records were processed by the replication
processes.

Using the information in the heartbeat table and the heartbeat history table, the current
and historical lags in each of the replication can be computed.

Replicat can track the current restart position of Extract with automatic heartbeat
tables (LOGBSN). This allows regenerating the trail files from the source database, if
required and minimizes the redo log retention period of the source database. Also, by
tracking the most recent Extract restart position, the tombstone tables for automatic
Conflict Detection and Resolution (ACDR) tables can be purged more frequently.

In a bidirectional configuration, the heartbeat table has as many entries as the number
of replication paths to neighbors that the database has and in a unidirectional setup,
the table at the source is empty. The outgoing columns have the timestamps and the
outgoing path, the local Extract and the downstream processes. The incoming
columns have the timestamps and path of the upstream processes and local Replicat.

In a unidirectional configuration, the target database will populate only the incoming
columns in the heartbeat table.

Chapter 12
Monitor

12-8

Note:

The Automatic Heartbeat functionality is not supported on MySQL version 5.5.

Topics:

• Monitoring an Extract Recovery

• Heartbeat Table End-To-End Replication Flow

• Update Heartbeat Tables

• Purge the Heartbeat History Tables

• Best Practice

• Using the Automatic Heartbeat Commands

Monitoring an Extract Recovery
If Extract abends when a long-running transaction is open, it can seem to take a long time to
recover when it is started again. To recover its processing state, Extract must search back
through the online and archived logs (if necessary) to find the first log record for that long-
running transaction. The farther back in time that the transaction started, the longer the
recovery takes, in general, and Extract can appear to be stalled.

To confirm that Extract is recovering properly, use the SEND EXTRACT command with the
STATUS option. One of the following status notations appears, and you can follow the progress
as Extract changes its log read position over the course of the recovery.

In recovery[1]
Extract is recovering to its checkpoint in the transaction log. This implies that it is reading
from either the BR checkpoint files and then archived/online logs, or reading from Recovery
Checkpoint in archived/online log.

In recovery[2]
Extract is recovering from its checkpoint to the end of the trail. This implies that a recovery
marker is appended to the output trail when the last transaction was not completely written
then rewriting the transaction.

Recovery complete
The recovery is finished, and normal processing will resume.

Heartbeat Table End-To-End Replication Flow
The end-to-end replication process for heartbeat tables relies on using the Oracle
GoldenGate trail format. The process is as follows:

Add a heartbeat table to each of your databases with the ADD HEARTBEATTABLE command.
Add the heartbeat table to all source and target instances and then restart existing Oracle
GoldenGate processes to enable heartbeat functionality. Depending on the database, you
may or may not be required to create or enable a job to populate the heartbeat table data.

Chapter 12
Monitor

12-9

See the following sample:

DBLOGIN USERIDALIAS alias [DOMAIN domain]|[SYSDBA | SQLID sqlid]
[SESSIONCHARSET character_set]}

ADD HEARTBEATTABLE

(Optional) For Oracle Databases, you must ensure that the Oracle DBMS_SCHEDULER is
operating correctly as the heartbeat update relies on it. You can query the
DBMS_SCHEDULER by issuing:

SELECT START_DATE, LAST_START_DATE, NEXT_RUN_DATE
FROM DBA_SCHEDULER_JOBS

Where job_name ='GG_UPDATE_HEARTBEATS';
Then look for valid entries for NEXT_RUN_DATE, which is the next time the scheduler will
run. If this is a timestamp in the past, then no job will run and you must correct it.
A common reason for the scheduler not working is when the parameter
job_queue_processes is set too low (typically zero). Increase the number of
job_queue_processes configured in the database with the ALTER SYSTEM SET
JOB_QUEUE_PROCESSES = ##; command where ## is the number of job queue
processes.

Run an Extract, which on receiving the logical change records (LCR) checks the value
in the OUTGOING_EXTRACT column.

• If the Extract name matches this value, the OUTGOING_EXTRACT_TS column is
updated and the record is entered in the trail.

• If the Extract name does not match then the LCR is discarded.

• If the OUTGOING_EXTRACT value is NULL, it is populated along with
OUTGOING_EXTRACT_TS and the record is entered in the trail.

The Distribution Service on reading the record, checks the value in the
OUTGOING_ROUTING_PATH column. This column has a list of distribution paths.
If the value is NULL, then the column is updated with the current group name (and path
if this is a Distribution Service),"*", update the OUTGOING_ROUTING_TS column, and the
record is written into its target trail file.
If the value has a "*" in the list, then replace it with group name[:pathname],"*"',
update the OUTGOING_ROUTING_TS column, and the record is written into its target trail
file. When the value does not have a asterisk (*) in the list and the distribution path
name is in the list, then the record is sent to the path specified in the relevant group
name[:pathname],"*"' pair in the list. If the distribution path name is not in the list,
then the record is discarded.
Run a Replicat, which on receiving the record checks the value in the
OUTGOING_REPLICAT column.

• If the Replicat name matches the value, the row in the heartbeat table is updated
and the record is inserted into the history table.

Chapter 12
Monitor

12-10

• If the Replicat name does not match, the record is discarded.

• If the value is NULL, the row in the heartbeat and heartbeat history tables are updated
with an implicit invocation of the Replicat column mapping.

Automatic Replicat Column Mapping:

REMOTE_DATABASE = LOCAL_DATABASE
INCOMING_EXTRACT = OUTGOING_EXTRACT
INCOMING_ROUTING_PATH = OUTGOING_ROUTING_PATH with "*" removed
INCOMING_REPLICAT = @GETENV ("GGENVIRONMENT", "GROUPNAME")
INCOMING_HEARTBEAT_TS = HEARTBEAT_TIMESTAMP
INCOMING_EXTRACT_TS = OUTGOING_EXTRACT_TS
INCOMING_ROUTING_TS = OUTGOING_ROUTING_TS
INCOMING_REPLICAT_TS = @DATE ('UYYYY-MM-DD
HH:MI:SS.FFFFFF','JTSLCT',@GETENV ('JULIANTIMESTAMP'))
LOCAL_DATABASE = REMOTE_DATABASE
OUTGOING_EXTRACT = INCOMING_EXTRACT
OUTGOING_ROUTING_PATH = INCOMING_ROUTING_PATH
OUTGOING_HEARTBEAT_TS = INCOMING_HEARTBEAT_TS
OUTGOING_REPLICAT = INCOMING_REPLICAT
OUTGOING_HEARTBEAT_TS = INCOMING_HEARTBEAT_TS

Additional Considerations:

Computing lags as the heartbeat flows through the system relies on the clocks of the source
and target systems to be set up correctly. It is possible that the lag can be negative if the
target system is ahead of the source system. The lag is shown as a negative number so that
you are aware of their clock discrepancy and can take actions to fix it.

The timestamp that flows through the system is in UTC. There is no time zone associated
with the timestamp so when viewing the heartbeat tables, the lag can be viewed quickly even
if different components are in different time zones. You can write any view you want on top of
the underlying tables; UTC is recommended.

All the heartbeat entries are written to the trail in UTF-8.

The outgoing and incoming paths together uniquely determine a row. Meaning that if you
have two rows with same outgoing path and a different incoming path, then it is considered
two unique entries.

Heartbeat Table Details

The GG_HEARTBEAT table displays timestamp information of the end-to-end replication time
and the timing information at the different components primary and secondary Extract and
Replicat.

In a unidirectional environment, only the target database contains information about the
replication lag. That is the time when a record is generated at the source database and
becomes visible to clients at the target database.

Note:

The automatic heartbeat tables don’t populate the OUTGOING_% columns with data,
when both the source and remote databases have the same name. To change the
database name, use the utility DBNEWID. For details, see the DBNEWID Utility.

Chapter 12
Monitor

12-11

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/sutil/oracle-dbnewid-utility.html#GUID-D138A757-6A2A-41A2-B722-A98708C5F5AD

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
replication time from the
remote database is measured.

HEARTBEAT_TIMESTAMP TIMESTAMP(6) The point in time when a
timestamp is generated at the
remote database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated

INCOMING_EXTRACT VARCHAR2 Name of the primary Extract
(capture) at the remote
database

INCOMING_ROUTING_PATH VARCHAR2 Name of the secondary
Extract (pump) at the remote
database

INCOMING_REPLICAT VARCHAR2 Name of the Replicat on the
local database.

INCOMING_HEARTBEAT_TS TIMESTAMP(6) Final timestamp when the
information is inserted into the
GG_HEARTBEAT table at the
local database.

INCOMING_EXTRACT_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by the
primary Extract at the remote
database.

INCOMING_ROUTING_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by the
secondary Extract at the
remote database.

INCOMING_REPLICAT_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by
Replicat at the local database.

OUTGOING_EXTRACT VARCHAR2 Bidirectional/N-way replication:
Name of the primary Extract
on the local database.

OUTGOING_ROUTING_PATH VARCHAR2 Bidirectional/N-way replication:
Name of the secondary
Extract on the local database.

OUTGOING_REPLICAT VARCHAR2 Bidirectional/N-way replication:
Name of the Replicat on the
remote database.

OUTGOING_HEARTBEAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Final timestamp when the
information is inserted into the
table at the remote database.

OUTGOING_EXTRACT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by the
primary Extract on the local
database.

Chapter 12
Monitor

12-12

Column Data Type Description

OUTGOING_ROUTING_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by the
secondary Extract on the local
database.

OUTGOING_REPLICAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by
Replicat on the remote
database.

INCOMING_REPLICAT_LW_CS
N

VARCHAR2

INCOMING_EXTRACT_HEARTB
EAT_CSN

VARCHAR2

INCOMING_EXTRACT_RESTAR
T_CSN

VARCHAR2

INCOMING_EXTRACT_RESTAR
T_TS

TIMESTAMP(6)

The GG_HEARTBEAT_HISTORY table displays historical timestamp information of the end-to-end
replication time and the timing information at the different components primary and secondary
Extract and Replicat.

In a unidirectional environment, only the destination database contains information about the
replication lag.

Timestamps are managed in UTC time zone. That is the time when a record is generated at
the source database and becomes visible to clients at the target database.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the end-
to-end lag is measured.

HEARTBEAT_RECEIVED_TS TIMESTAMP(6) Point in time when a timestamp
from the remote database
receives at the local database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_EXTRACT VARCHAR2 Name of the primary Extract on
the remote database.

INCOMING_ROUTING_PATH VARCHAR2 Name of the secondary Extract
of the remote database.

INCOMING_REPLICAT VARCHAR2 Name of the Replicat on the local
database.

INCOMING_HEARTBEAT_TS TIMESTAMP(6) Final timestamp when the
information is inserted into the
GG_HEARTBEAT_HISTORY table
on the local database.

Chapter 12
Monitor

12-13

Column Data Type Description

INCOMING_EXTRACT_TS TIMESTAMP(6) Timestamp when the generated
timestamp is processed by the
primary Extract on the remote
database.

INCOMING_ROUTING_TS TIMESTAMP(6) Timestamp when the generated
timestamp is processed by the
secondary Extract on the remote
database.

INCOMING_REPLICAT_TS TIMESTAMP(6) Timestamp when the generated
timestamp is processed by
Replicat on the local database.

OUTGOING_EXTRACT VARCHAR2 Bidirectional/N-way replication:
Name of the primary Extract from
the local database.

OUTGOING_ROUTING_PATH VARCHAR2 Bidirectional/N-way replication:
Name of the secondary Extract
from the local database.

OUTGOING_REPLICAT VARCHAR2 Bidirectional/N-way replication:
Name of the Replicat on the
remote database.

OUTGOING_HEARTBEAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Final timestamp when the
information is persistently
inserted into the table of the
remote database.

OUTGOING_EXTRACT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the generated
timestamp is processed by the
primary Extract on the local
database.

OUTGOING_ROUTING_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the generated
timestamp is processed by the
secondary Extract on the local
database.

OUTGOING_REPLICAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the generated
timestamp is processed by
Replicat on the remote database.

REPLICAT_LOW_WATERMARK_CS
N

String This column is populated by
Replicat when it processes this
heartbeat record. It populates
this column with its current low
watermark (LWM) when it
processes this record. This
allows us to choose a LOGBSN
from a heartbeat record which is
as of the Replicat LWM.

Chapter 12
Monitor

12-14

Column Data Type Description

SOURCE_EXTRACT_HEARTBEAT_
CSN

String This column is populated by
Extract and contains the source
commit SCN for the heartbeat
transaction in the source
database. The heartbeat job on
the source database cannot
populate this value as it will not
know the commit SCN apriori.

SOURCE_EXTRACT_RESTART_CS
N

String This column will be populated by
Extract and will contain the
current LOGBSN when Extract
processes this particular
heartbeat record. The heartbeat
job on the source database will
not populate this value.

SOURCE_EXTRACT_RESTART_CS
N_TS

TIMESTAMP This column will be populated by
Extract and will contain the redo
timestamp in UTC that
corresponds to the current
LOGBSN when Extract
processes this particular
heartbeat record. The heartbeat
job on the source database will
not populate this value.

The GG_LAG view displays information about the replication lag between the local and remote
databases.

In a unidirectional environment, only the destination database contains information about the
replication lag. The lag is measured in seconds.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the end-
to-end replication lag from the
remote database is measured.

CURRENT_LOCAL_TS TIMESTAMP(6) Current timestamp of the local
database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat received from the
remote database.

INCOMING_PATH VARCHAR2 Replication path from the remote
database to the local database
with Extract and Replicat
components.

Chapter 12
Monitor

12-15

Column Data Type Description

INCOMING_LAG NUMBER Replication lag from the remote
database to the local database.
This is the time where the
heartbeat where generated at
the remote database minus the
time where the information was
persistently inserted into the
table at the local database.

OUTGOING_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat from the local
database to the remote
database.

OUTGOING_PATH VARCHAR2 Replication Path from Local
database to the remote database
with Extract and Replicat
components

OUTGOING_LAG NUMBER Replication Lag from the local
database to the remote
database. This is the time where
the heartbeat where generated
at the local database minus the
time where the information was
persistently inserted into the
table at the remote database.

REMOTE_EXTRACT_RESTART_CS
N

String Source Extract restart position.

REMOTE_DATABASE
DB_UNIQUE_NAME

String Remote database unique name
is displayed. If no unique name
exists, then the DB_NAME value is
displayed.

REMOTE_EXTRACT_RESTART_CS
N_TIME

Timestamp Timestamp associated with
source Extract redo position.

REMOTE_DB_OLDEST_OPEN_TXN
_AGE

Timestamp Age of the oldest open
transaction at the source
database that Extract is currently
processing. This column can be
calculated as SYSTIMESTAMP -
REMOTE_EXTRACT_RESTART_TI
ME.

LOCAL_REPLICAT_LWM_CSN String Low watermark CSN of the local
Replicat when it processed the
heartbeat.

The GG_LAG_HISTORY view displays the history information about the replication lag
history between the local and remote databases.

In a unidirectional environment, only the destination database contains information
about the replication lag.

The unit of the lag units is in seconds.

Chapter 12
Monitor

12-16

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the end-
to-end replication lag from the
remote database is measured.

HEARTBEAT_RECEIVED_TS TIMESTAMP(6) Point in time when a timestamp
from the remote database
receives on the local database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

DB_NAME String Remote database name.

DB_UNIQUE_NAME String Remote database unique name.
If the database unique name
doesn't exist, then the DB_NAME
and DB_UNIQUE_NAME will be
same.
In a switchover to standby
scenario, the db_unique_name
will change but the db_name and
replication path remain the same

INCOMING_HEARTBEAT_AGE NUMBER The age of the heartbeat table.

INCOMING_PATH VARCHAR2 Replication path from the remote
database to local database with
Extract and Replicat
components.

INCOMING_LAG NUMBER Replication lag from the remote
database to the local database.
This is the time where the
heartbeat was generated at the
remote database minus the time
where the information was
persistently inserted into the
table on the local database.

OUTGOING_HEARTBEAT_AGE NUMBER
OUTGOING_PATH VARCHAR2 Replication path from local

database to the remote database
with Extract and Replicat
components.

OUTGOING_LAG NUMBER Replication lag from the local
database to the remote
database. This is the time where
the heartbeat was generated at
the local database minus the
time where the information was
persistently inserted into the
table on the remote database.

REMOTE_EXTRACT_RESTART_CS
N

String Source Extract restart position.

REMOTE_EXTRACT_RESTART_CS
N_TIME

TIMESTAMP Timestamp associated with
source Extract redo position.

Chapter 12
Monitor

12-17

Column Data Type Description

REMOTE_DB_OLDEST_OPEN_TXN
_AGE

TIMESTAMP Age of the oldest open
transaction at the source
database that Extract is currently
processing. This column can be
calculated as: SYSTIMESTAMP -
REMOTE_EXTRACT_RESTART_TI
ME

LOCAL_REPLICAT_LWM_CSN String Low watermark CSN of the local
Replicat when it processed the
heartbeat.

INCOMING_EXTRACT_LAG
INCOMING_ROUTINE_LAG
INCOMING_REPLICAT_READ_LA
G
INCOMING_REPICAT_LAG
OUTGOING_EXTRACT_LAG
OUTGOING_ROUTINE_LAG
OUTGOING_REPLICAT_READ_LA
G
OUTGOING_REPLICAT_LAG

Update Heartbeat Tables
The HEARTBEAT_TIMESTAMP column in the heartbeat seed table must be updated
periodically by a database job. The default heartbeat interval is 1 minute and this
interval can be specified or overridden using from the command line or the
Administration Service web interface.

For Oracle Database, the database job is created automatically.

For all other supported databases, you must create background jobs to update the
heartbeat timestamp using the database specific scheduler functionality.

See ADD HEARTBEATTABLE, ALTER HEARTBEATTABLE for details on updating the
heartbeat table.

Purge the Heartbeat History Tables
The heartbeat history table is purged periodically using a job. The default interval is 30
days and this interval can be specified or overridden using a command line inteface
such as Admin Client or the Administration Service web interface.

For Oracle Database, the database job is created automatically.

For all other supported databases, you must create background jobs to purge the
heartbeat history table using the database specific scheduler functionality.

Best Practice
Oracle recommends that you:

Chapter 12
Monitor

12-18

• Use the same heartbeat frequency on all the databases to makes diagnosis easier.

• Adjust the retention period if space is an issue.

• Retain the default heartbeat table frequency; the frequency set to be 30 to 60 seconds
gives the best results for most workloads.

• Use lag history statistics to collect lag and age information.

Using the Automatic Heartbeat Commands
You can use the heartbeat table commands to control the Oracle GoldenGate automatic
heartbeat functionality as follows.

Command Description

ADD HEARTBEATTABLE Creates the heartbeat tables required for automatic heartbeat
functionality including the LOGBSN columns.

ALTER HEARTBEATTABLE Alters existing heartbeat objects.

ALTER HEARTBEATTABLE
UPGRADE

Alters the heartbeat tables to add the LOGBSN columns to the
heartbeat tables. This is optional.

DELETE HEARTBEATTABLE Deletes existing heartbeat objects.

DELETE HEARTBEATENTRY Deletes entries in the heartbeat table.

INFO HEARTBEATTABLE Displays heartbeat table information.

Db2 z/OS: Interpret Statistics for Update Operations

The actual number of DML operations that are executed on the Db2 database might not
match the number of extracted DML operations that are reported by Oracle GoldenGate. Db2
does not log update statements if they do not physically change a row, so Oracle GoldenGate
cannot detect them or include them in statistics.

Monitoring Processing Volume
The STATS commands show you the amount of data that is being processed by an Oracle
GoldenGate process, and how fast it is being moved through the Oracle GoldenGate system.
With this information, you can diagnose suspected problems and tune the performance of the
Oracle GoldenGate processes. These commands provide a variety of options to select and
filter the output.

The STATS commands are: STATS EXTRACT, STATS REPLICAT, or STATS ER command.

You can send interim statistics to the report file at any time with the SEND EXTRACT or SEND
REPLICAT command with the REPORT option.

Using the Error Log
Use the Oracle GoldenGate error log to view:

• a history of commands

• Oracle GoldenGate processes that started and stopped

• processing that was performed

Chapter 12
Monitor

12-19

• errors that occurred

• informational and warning messages

Because the error log shows events as they occurred in sequence, it is a good tool for
detecting the cause (or causes) of an error. For example, you might discover that:

• someone stopped a process

• a process failed to make a TCP/IP or database connection

• a process could not open a file

To view the error log, use any of the following:

• Standard shell command to view the ggserr.log file within the root Oracle
GoldenGate directory

• Oracle GoldenGate Director or Oracle GoldenGate Monitor

• VIEW GGSEVT command.

You can control the ggserr.log file behavior to:

• Roll over the file when it reaches a maximum size, which is the default to avoid
disk space issues.

• All messages are appended to the file by all processes without regard to disk
space.

• Disable the file.

• Route messages to another destination, such as the system log.

This behavior is controlled and described in the ogg-ggserr.xml file in one of the
following locations:

Microservices Architecture
$OGG_HOME/etc/conf/logging/

Using the Process Report
Use the process report to view (depending on the process):

• parameters in use

• table and column mapping

• database information

• runtime messages and errors

• runtime statistics for the number of operations processed

Every Extract, Replicat process generates a report file. The report can help you
diagnose problems that occurred during the run, such as invalid mapping syntax, SQL
errors, and connection errors.

To view a process report, use any of the following:

• standard shell command for viewing a text file

• Performance Metrics Service

• VIEW REPORT command.

Chapter 12
Monitor

12-20

• To view information if a process abends without generating a report, use the following
command to run the process from the command shell of the operating system (not Oracle
GoldenGate command line) to send the information to the terminal.

process paramfile path.prm

Where:

– The value for process is either extract or replicat.

– The value for path.prm is the fully qualified name of the parameter file, for example:

REPLICA PARAMFILE /ogg/dirdat/repora.prm

By default, reports have a file extension of .rpt, for example EXTORA.rpt. The default
location is the dirrpt sub-directory of the Oracle GoldenGate directory. However, these
properties can be changed when the group is created. Once created, a report file must
remain in its original location for Oracle GoldenGate to operate properly after processing has
started.

To determine the name and location of a process report, use the INFO EXTRACT, or INFO
REPLICAT commands.

Topics:

• Scheduling Runtime Statistics in the Process Report

• Viewing Record Counts in the Process Report

• Prevent SQL Errors from Filling the Replicat Report File

Scheduling Runtime Statistics in the Process Report
By default, runtime statistics are written to the report once, at the end of each run. For long or
continuous runs, you can use optional parameters to view these statistics on a regular basis,
without waiting for the end of the run.

To set a schedule for reporting runtime statistics, use the REPORT parameter in the Extract or
Replicat parameter file to specify a day and time to generate runtime statistics in the report.
See REPORT.

To send runtime statistics to the report on demand, use the SEND EXTRACT or SEND REPLICAT
command with the REPORT option to view current runtime statistics when needed.

Viewing Record Counts in the Process Report
Use the REPORTCOUNT parameter to report a count of transaction records that Extract or
Replicat processed since startup. Each transaction record represents a logical database
operation that was performed within a transaction that was captured by Oracle GoldenGate.
The record count is printed to the report file and to the screen.

Prevent SQL Errors from Filling the Replicat Report File
Use the WARNRATE parameter to set a threshold for the number of SQL errors that can be
tolerated on any target table before being reported to the process report and to the error log.

Chapter 12
Monitor

12-21

The errors are reported as a warning. If your environment can tolerate a large number
of these errors, increasing WARNRATE helps to minimize the size of those files.

Use the Discard File
By default, a discard file is generated whenever a process is started with the START
command. The discard file captures information about Oracle GoldenGate operations
that failed. This information can help you resolve data errors, such as those that
involve invalid column mapping.

The discard file reports such information as:

• The database error message

• The sequence number of the data source or trail file

• The relative byte address of the record in the data source or trail file

• The details of the discarded operation, such as column values of a DML statement
or the text of a DDL statement.

To view the discard file, use a text editor or use the VIEW REPORT command in Admin
Client.

The default discard file has the following properties:

• The file is named after the process that creates it, with a default extension of .dsc.
Example: finance.dsc.

• The file is created in the dirrpt sub-directory of the Oracle GoldenGate
installation directory.

• The maximum file size is 50 megabytes.

• At startup, if a discard file exists, it is purged before new data is written.

You can change these properties by using the DISCARDFILE parameter. You can
disable the use of a discard file by using the NODISCARDFILE parameter.

If a proces is started from the command line of the operating system, it does not
generate a discard file by default. You can use the DISCARDFILE parameter to specify
the use of a discard file and its properties.

Once created, a discard file must remain in its original location for Oracle GoldenGate
to operate properly after processing has started.

Maintain the Discard and Report Files
By default, discard files and report files are aged the same way. A new discard or
report file is created at the start of a new process run. Old files are aged by appending
a sequence number from 0 (the most recent) to 9 (the oldest) to their names.

If the active report or discard file reaches its maximum file size before the end of a run
(or over a continuous run), the process abends unless there is an aging schedule in
effect. Use the DISCARDROLLOVER and REPORTROLLOVER parameters to set aging
schedules for the discard and report files respectively. These parameters set
instructions for rolling over the files at regular intervals, in addition to when the process
starts. Not only does this control the size of the files and prevent process outages, but
it also provides a predictable set of archives that can be included in your archiving
routine. For more information, see the following documentation:

Chapter 12
Monitor

12-22

• DISCARDROLLOVER
• REPORTROLLOVER
No process ever has more than ten aged reports or discard files and one active report or
discard file. After the tenth aged file, the oldest is deleted when a new report is created. It is
recommended that you establish an archiving schedule for aged reports and discard files in
case they are needed to resolve a service request.

Table 12-1 Current Extract and Aged Reports

Permissions X Date Report

-rw-rw-rw- 1 ggs ggs 4384 Oct 5 14:02 TCUST.rpt

-rw-rw-rw- 1 ggs ggs 1011 Sep 27 14:10 TCUST0.rpt

-rw-rw-rw- 1 ggs ggs 3184 Sep 27 14:10 TCUST1.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:06 TCUST2.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:04 TCUST3.rpt

-rw-rw-rw- 1 ggs ggs 2744 Sep 27 13:56 TCUST4.rpt

-rw-rw-rw- 1 ggs ggs 3571 Aug 29 14:27 TCUST5.rpt

Reconcile the Time Differences
To account for time differences between source and target systems, use the TCPSOURCETIMER
| NOTCPSOURCETIMER parameter in the Extract parameter file. This parameter adjusts the
timestamps of replicated records for reporting purposes, making it easier to interpret
synchronization lag.

Tuning
Learn about tuning the performance of Oracle GoldenGate.

Topics:

• Tuning the Performance of Oracle GoldenGate

Tuning the Performance of Oracle GoldenGate
See Tuning the Performance of Oracle GoldenGate in the Administering Oracle GoldenGate
Cloud Service for UNIX guide.

Chapter 12
Tuning

12-23

13
Autonomous Database

This section provides details about configuring Oracle GoldenGate with Oracle Autonomous
Database, and using Extract and Replicat processes with Autonomous Database instances.

Topics:

• About Capturing and Replicating Data Using Autonomous Databases

• Details of Support When Using Oracle GoldenGate with Autonomous Database

• Configure Extract to Capture from an Autonomous Database

• Configure Replicat to Apply to an Oracle Autonomous Database

About Capturing and Replicating Data Using Autonomous
Databases

You can capture changes from the Oracle Autonomous Database instance and replicate to
any target database or platform that Oracle GoldenGate supports, including another Oracle
Autonomous Database instance.

See Autonomous Database Quickstart Workshop to know more.

Use Case: When Using Oracle GoldenGate with Autonomous Databases

Using Oracle GoldenGate in the Oracle Autonomous Database can be configured to support
the following scenarios:

• Scalable Active-Active architecture: Synchronize changes made across two or more
databases to scale out workloads, provide increase resilience and near instantaneous
failover across multiple data centers or regions.

• Real-Time Data Warehouse: Provide continuous, real-time capture and delivery of
changed data between Oracle Autonomous Database systems.

• Big Data Integration: With Oracle GoldenGate for Big Data you can replicate data from
the Oracle Autonomous Database to provide real-time streaming integration to all
platforms supported by Big Data targets.

• Real-Time Streaming Analytics: Oracle GoldenGate integrates seamlessly with Oracle
Stream Analytics to enable users to identify events of interest by executing queries
against event streams in real time. It allows creating custom operational dashboards that
provide real-time monitoring, transform streaming data, or raise alerts based on stream
analysis.

• Hybrid Replication: Oracle GoldenGate replicates data from the Oracle Autonomous
Database instance back to on-premise or to another cloud database or platform.

The following features are not available with Always Free Autonomous Databases:

• Supplemental logging

• Oracle GoldenGate Extract

13-1

https://apexapps.oracle.com/pls/apex/dbpm/r/livelabs/view-workshop?wid=928

See Always Free Autonomous Database for details.

Details of Support When Using Oracle GoldenGate with
Autonomous Database

Review the supported data types and limitations before replicating data to an Oracle
Autonomous Database.

Oracle GoldenGate Replicat Limitations for Autonomous Databases

These are the limitations of Oracle GoldenGate when replicating to or from the Oracle
Autonomous Database.

Supported Replicats
The following combinations of Replicats are supported in different modes when using
Oracle GoldenGate with Oracle Autonomous Database:

• Classic, Coordinated Replicats, and Parallel Replicat (in both integrated and non-
integrated modes) are supported for Oracle Autonomous Database.

• Integrated Replicat is not supported for Oracle Autonomous Database.

Data Type Limitations for DDL and DML Replication
See the section Non-Supported Oracle Data Types.
Also see Data Types in the Autonomous Database on Dedicated Exadata
Infrastructure Documentation and Data Types in the Using Oracle Autonomous
Database Serverless guide.
DDL replication is supported depending on the restrictions in the Autonomous
Databases.

Details of Support for Archived Log Retention
The two types of Autonomous Databases, Oracle Autonomous Database Serverless
and Oracle Autonomous Database on Dedicated Exadata Infrastructure have different
log retention behavior.

• Oracle Autonomous Database Serverless: Archived log files are kept in Fast
Recovery Area (FRA) for up to 48 hours. After that, it is purged and the archived
log files are moved to NFS mount storage, which is accessible by logminer. Three
copies are created. The logminer should be able to access any of the copies. This
is transparent to Oracle GoldenGate Extract. After it reaches 7 days, the NFS
mounted copy is permanently removed. The Extract abends with the archived
log unavailable error if the required archived log file is older than 7 days.

• Oracle Autonomous Database on Dedicated Exadata Infrastructure: When Oracle
Autonomous Data Guard or Oracle GoldenGate is enabled, archived log files are
kept in Fast Recovery Area (FRA) for up to 7 days. After that, the files are purged.
There is no NFS mount location available for logminer to access archived log files
that are older than 7 days. The Extract abends with the archived log
unavailable error if the required archived log file is older than 7 days.

Chapter 13
Details of Support When Using Oracle GoldenGate with Autonomous Database

13-2

Note:

If the database instance is closed for more than 15 minutes, then the retention
time is set back to 3 days. This implies that retention of archived log files is
confirmed only for 3 days, regardless of whether the database instance is
closed. The files are retained for 7 days only if the database instance is not
closed.

Configure Extract to Capture from an Autonomous Database
Oracle Autonomous Database has a tight integration with Oracle GoldenGate. There are a
number of differences when setting up Extract for an Autonomous database instance
compared to a traditional Oracle Database.

Oracle Autonomous Database security has been enhanced to ensure that Extract is only able
to capture changes from the specific tenant it connected to. However, downstream Extract is
not supported.

Before You Begin

Before you start the process of capturing data from the Autonomous Database using Oracle
GoldenGate you must first:

1. Unlock the pre-created Oracle GoldenGate database user ggadmin in the Autonomous
Database.

2. Obtain the Autonomous Database client credentials to connect to the database instance.

Topics:

• Establishing Oracle GoldenGate Credentials

• Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous
Databases

• Configure Extract to Capture from an Autonomous Database

Establishing Oracle GoldenGate Credentials
To capture from an Autonomous Database only the GGADMIN account is used. The GGADMIN
account is created inside the database when the Autonomous Database is provisioned. This
account is locked. It must be unlocked before it can be used with Oracle GoldenGate. This
account is the same account used for both Extracts and Replicats in the Autonomous
Database.

Run the ALTER USER command to unlock the ggadmin user and set the password for it. See
Creating Users with Autonomous Database with Client-Side Tools.

This ALTER USER command must be run by the admin account user for Autonomous
Databases.

ALTER USER ggadmin IDENTIFIED BY PASSWORD ACCOUNT UNLOCK;

Chapter 13
Configure Extract to Capture from an Autonomous Database

13-3

Prerequisites for Configuring Oracle GoldenGate Extract to Capture
from Autonomous Databases

Prior to configuring and starting the Extract process to capture from the Autonomous
Database, make sure that the following requirements are met:

• Oracle Autonomous Database environment is provisioned and running.

• Autonomous Database-level supplemental logging should be enabled by the
ADMIN or GGADMIN.

Configuring Autonomous Database Supplemental Logging for Extract

To add minimal supplemental logging to your Autonomous Database instance, log into
the instance as GGADMIN or ADMIN account and execute the following commands:

ALTER PLUGGABLE DATABASE ADD SUPPLEMENTAL LOG DATA;

To DROP Autonomous Database-level supplemental logging incase you decide to stop
capturing from that database instance:

ALTER PLUGGABLE DATABASE DROP SUPPLEMENTAL
 LOG DATA;

You can verify that the Autonomous Database-level supplemental logging is configured
properly by issuing this SQL statement:

SELECT MINIMAL FROM dba_supplemental_logging;

The output for this statement is:

MINIMAL

YES

The MINIMAL column will be YES if supplemental logging has been correctly set for this
Autonomous Database instance.

Configure Extract to Capture from an Autonomous Database
Following are the steps to configure an Extract to capture from an Oracle Autonomous
Database :

1. Install Oracle GoldenGate for your Oracle Autonomous Database instance.

2. Create a deployment for the Oracle GoldenGate environment. This is the
deployment where the Extract that captures data from the Oracle Autonomous
Database instance will be created. See Add a Deployment.

3. Obtain Oracle Autonomous Database Client Credentials.

To establish connection to your Oracle Autonomous Database instance, download
the client credentials file. To download client credentials, you can use the Oracle

Chapter 13
Configure Extract to Capture from an Autonomous Database

13-4

Cloud Infrastructure Console or Database Actions Launchpad. See Downloading Client
Credentials (Wallets).

Note:

If you do not have administrator access to the Oracle Autonomous Database,
you should ask your service administrator to download and provide the
credentials files to you.

The following steps use the Database Actions Launchpad to download the client
credentials.

a. Log in to your Oracle Autonomous Database account.

b. From the Database Instance page, click Database Actions. This launches the
Database Actions Launchpad. The Launchpad attempts to log you into the database
as ADMIN. If that is not successful, you will be prompted for your database ADMIN
username and password.

c. On the Database Actions Launchpad, under Administration, click Download
Client Credentials (Wallets).

d. Enter a password to secure your Client Credentials zip file and click Download.

Note:

The password you provide when you download the wallet protects the
downloaded Client Credentials wallet.

e. Save the credentials zip file to your local system.

The credentials zip file contains the following files:

• cwallet.sso
• ewallet.p12
• keystore.jks
• ojdbc.properties
• sqlnet.ora
• tnsnames.ora
• truststore.jks
• ewallet.pem
• README.txt
Refer and update (if required) the sqlnet.ora and tnsnames.ora files while configuring
Oracle GoldenGate to work with the Autonomous Database instance.

4. Configure the server where Oracle GoldenGate is running to connect to the Autonomous
Database instance.

a. Log in to the server where Oracle GoldenGate was installed.

Chapter 13
Configure Extract to Capture from an Autonomous Database

13-5

b. Transfer the credentials zip file that you downloaded from Oracle Autonomous
database instance to the Oracle GoldenGate server.

c. In the Oracle GoldenGate server, unzip the credentials file into a new
directory, for example: /u02/data/adwc_credentials. This is your key
directory.

d. To configure the connection details, open your tnsnames.ora file from the
Oracle client location in the Oracle GoldenGate instance.

e. Use the connection string with the LOW consumer group dbname_low, for
example, graphdb1_low, and move it to your local tnsnames.ora file.

See Local Naming Parameters in the tnsnames.ora File chapter in the Oracle
Database Net Services Reference guide.

Note:

The tnsnames.ora file provided with the credentials file contains
three database service names identifiable as:

ADWC_Database_Name_low
ADWC_Database_Name_medium
ADWC_Database_Name_high

Oracle recommends that you use ADWC_Database_Name_low with
Oracle GoldenGate. See Predefined Database Service Names for
Autonomous Database in the Using Oracle Autonomous Database
Serverless guide or Predefined Database Service Names for
Autonomous Databases for Oracle Autonomous Database on
Dedicated Exadata Infrastructure.

f. Edit the tnsnames.ora file in the Oracle GoldenGate instance to include the
connection details available in the tnsnames.ora file in your key directory (the
directory where you unzipped the credentials zip file downloaded from the
Autonomous Database.

Sample Connection String
adw1_low. = (description=
 (retry_count=20)(retry_delay=3)
 (address=(protocol=tcps)(port=1522)(host=adb-
preprod.us-phoenix-1.oraclecloud.com))

(connect_data=(service_name=okd2ybgcz4mjx94_graphdb1_low.adb.orac
lecloud.com))
 (security=(ssl_server_cert_dn="CN=adwc-
preprod.uscom-east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle
Corporation,L=Redwood City,ST=California,C=US"))
)

If the database is within a firewall protected environment, you might not have
direct access to the database. With an existing HTTP Proxy, you can pass the
firewall with the following modifications to the sqlnet.ora and tnsnames.ora:

Chapter 13
Configure Extract to Capture from an Autonomous Database

13-6

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-predefined-generic.html#GUID-E49773B3-6C07-4F6F-906B-42705D237523
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-predefined-generic.html#GUID-E49773B3-6C07-4F6F-906B-42705D237523
https://docs.oracle.com/en-us/iaas/autonomous-database/doc/predefined-database-service-names.html
https://docs.oracle.com/en-us/iaas/autonomous-database/doc/predefined-database-service-names.html

• sqlnet parameters

• address modification of tns_alias

If Extract becomes unresponsive due to a network timeout or connection loss, then
you can add the following into the connection profile in the tnsnames.ora file:

(DESCRIPTION = (RECV_TIMEOUT=30) (ADDRESS_LIST =
 (LOAD_BALANCE=off)(FAILOVER=on)(CONNECT_TIMEOUT=3)
(RETRY_COUNT=3) (ADDRESS = (PROTOCOL = TCP)(HOST = adb-preprod.us-
phoenix-1.oraclecloud.com)(PORT = 1522))

g. To configure the wallet, create a sqlnet.ora file in the Oracle client location in the
Oracle GoldenGate instance.

cd /u02/data/oci/network/admin
ls
sqlnet.ora tnsnames.ora

See Autonomous Database Client Credentials in Using Oracle GoldenGate on Oracle
Cloud Marketplace.

h. Edit this sqlnet.ora file to include your key directory.

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY="/u02/data/adwc_credentials")))
SSL_SERVER_DN_MATCH=yes

5. Use Admin Client to log into the Oracle GoldenGate deployment, depending on whether
you are using Microservices.

6. Create a credential to store the GGADMIN user and password. This user will be used to
connect to the Autonomous Database from the command line, to perform commands that
require a database connection. It will also be used in the USERIDALIAS parameter for the
Extract database connection.

ALTER CREDENTIALSTORE ADD USER
ggadmin@dbgraph1_low PASSWORD complex_password alias adb_alias

7. Connect to the database using DBLOGIN. The DBLOGIN user should be the adb_alias
account user.

DBLOGIN USERIDALIAS adb_alias

8. Configure supplemental logging on the tables, which you want to capture using ADD
TRANDATA or ADD SCHEMATRANDATA. Remember that you are connected directly to the
database instance, so there is no need to include the database name in these
commands. Here's an exmaple:

ADD TRANDATA HR.EMP

or

ADD SCHEMATRANDATA HR

Chapter 13
Configure Extract to Capture from an Autonomous Database

13-7

See Prerequisites for Configuring Oracle GoldenGate Extract to Capture from
Autonomous Databases.

9. Add heartbeat table.

ADD HEARTBEATTABLE

10. Add and configure an Extract to capture from the Oracle Autonomous Database
instance. See Add a Primary Extract for steps to create an Extract.

Oracle GoldenGate Extract is designed to work with the Oracle Autonomous
Database instance to ensure that it only captures from a specific database
instance. This means that the database instance name is not needed for any
TABLE or MAP statements.

The following example creates an Extract (required for capturing from an Oracle
Autonomous Database) called exte, and instructs it to begin now.

ADD EXTRACT exte, INTEGRATED TRANLOG, BEGIN NOW

To capture specific tables, use the two part object names.. For example, to capture
from the table HR.EMP, in your Oracle Autonomous Database instance, use this
entry in the Extract parameter file.

TABLE HR.EMP;

If you want to replicate HR.EMP into COUNTRY.EMPLOYEE, then your map statement
would look like this:

MAP HR.EMP, TARGET COUNTRY.EMPLOYEE;

11. Register Extract with the Oracle Autonomous Database instance. For example, to
register an Extract named exte, use the following command:

REGISTER EXTRACT exte DATABASE

12. You can now start your Extract and perform data replication to the Oracle
Autonomous Database instance. Here's an example:

START EXTRACT exte

This completes the process of configuring an Extract for Oracle Autonomous
Database and you can use it like any other Extract process.

Configure Replicat to Apply to an Oracle Autonomous
Database

You can replicate into the Autonomous Database from any source database or
platform that is supported by Oracle GoldenGate.

Topics:

Chapter 13
Configure Replicat to Apply to an Oracle Autonomous Database

13-8

• Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous Database

• Configure Replicat to Apply to an Autonomous Database

Prerequisites for Configuring Oracle GoldenGate Replicat to an
Autonomous Database

You should have the following details available with you:

• Your source database with Oracle GoldenGate Extract processes configured and writing
trails to where the Replicat is running to apply data to the Autonomous Database target.

• Oracle Autonomous Database is environment provisioned and running.

To deliver data to the Autonomous Database instance using Oracle GoldenGate, perform the
following tasks:
Topics:

• Configure Oracle GoldenGate for an Autonomous Database

• Obtain the Autonomous Database Client Credentials

Configure Oracle GoldenGate for an Autonomous Database
Here are the steps to complete the configuration tasks:

Note:

Instructions are based on the assumption that the source environment is already
configured. Learn the steps required to configure replication into the Autonomous
Database environment.

1. For Oracle GoldenGate on-premises, make sure that Oracle GoldenGate is installed.

You can also use Oracle GoldenGate Microservices Architecture 21c for Marketplace for
Oracle Autonomous Database Serverless 21c. Oracle GoldenGate Microservices
Architecture 21c and higher support Autonomous Database capture using Marketplace
for Oracle Autonomous Database Serverless.

2. Create a deployment for your Oracle GoldenGate environment. This is the deployment
where the Replicat that applies data into the Autonomous Database will be created.

3. The Autonomous Database instance has a pre-created user for Oracle GoldenGate on-
premise called ggadmin. The ggadmin user has been granted the required privileges for
Replicat. This is the user where any objects used for Oracle GoldenGate processing will
be stored, like the checkpoint table and heartbeat objects. By default, this user is locked.
To unlock the ggadmin user, connect to your Oracle Autonomous Database instance as
the ADMIN user using any SQL client tool. See About Connecting to Autonomous
Database Instance.

4. Run the ALTER USER command to unlock the ggadmin user and set the password for it.
This will be used in the command line for any DBLOGIN operations on the Autonomous

Chapter 13
Configure Replicat to Apply to an Oracle Autonomous Database

13-9

Database. It will be used in Replicat to allow Oracle GoldenGate to connect to the
Autonomous Database and apply data.

ALTER USER ggadmin IDENTIFIED BY p0$$word ACCOUNT UNLOCK;

Obtain the Autonomous Database Client Credentials
To establish a connection with an Oracle Autonomous Database instance, you need to
download the client credentials files. There are two ways to download the client
credentials files: the Oracle Cloud Infrastructure Console or Database Actions
Launchpad.

For details, see Downloading Client Credentials (Wallets).

Note:

If you do not have administrator access to the Oracle Autonomous Database,
you should ask your service administrator to download and provide the
credentials files to you.

The following steps use the Database Actions Launchpad to download the client
credentials files.

1. Log in to your Autonomous Database account.

2. From the Database Instance page, click Database Actions. This launches the
Database Actions Launchpad. The Launchpad attempts to log you into the
database as ADMIN. If that is not successful, you will be prompted for your
database ADMIN username and password.

3. On the Database Actions Launchpad, under Administration, click Download
Client Credentials (Wallets).

4. Enter a password to secure your Client Credentials zip file and click Download.

Note:

The password you provide when you download the wallet protects the
downloaded Client Credentials wallet.

5. Save the credentials zip file to your local system. The credentials zip file contains
the following files:

• cwallet.sso
• ewallet.p12
• keystore.jks
• ojdbc.properties
• sqlnet.ora
• tnsnames.ora
• truststore.jks

Chapter 13
Configure Replicat to Apply to an Oracle Autonomous Database

13-10

• ewallet.pem
• README.txt
Refer and update (if required) the sqlnet.ora and tnsnames.ora files while configuring
Oracle GoldenGate to work with the Oracle Autonomous Database instance.

Configure Replicat to Apply to an Autonomous Database
This section assumes that the source environment is already configured and provides the
steps required to establish replication in the Oracle Autonomous Database environment.

In the Oracle GoldenGate instance, you need to complete the following:

1. Follow the steps given in Prerequisites for Configuring Oracle GoldenGate Replicat to an
Autonomous Database.

2. Follow the steps given in Configure Oracle GoldenGate for an Autonomous Database.

3. Follow the steps given in Obtain the Autonomous Database Client Credentials.

4. Log in to the server where Oracle GoldenGate was installed.

5. Transfer the credentials zip file that you downloaded from Oracle Autonomous Database
to your Oracle GoldenGate instance.

6. In the Oracle GoldenGate instance, unzip the credentials file into a new directory /u02/
data/adwc_credentials. This is your key directory.

7. To configure the connection details, open your tnsnames.ora file from the Oracle client
location in the Oracle GoldenGate instance.

cd /u02/data/adwc_credentials
ls
tnsnames.ora

8. Edit the tnsnames.ora file in the Oracle GoldenGate instance to include the connection
details available in the tnsnames.ora file in your key directory (the directory where you
unzipped the credentials zip file downloaded from Oracle Autonomous Database).

Sample Connection String
graphdb1_low = (description=
 (retry_count=20)(retry_delay=3)(address=(protocol=tcps)
(port=1522)(host=adb-preprod.us-phoenix-1.oraclecloud.com))

(connect_data=(service_name=okd2ybgcz4mjx94_graphdb1_low.adb.oraclecloud.c
om))
 (security=(ssl_server_cert_dn="CN=adwc-preprod.uscom-
east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle Corporation,L=Redwood
City,ST=California,C=US")))

If Replicat becomes unresponsive due to a network timeout or connection lost, then you
can add the following into the connection profile in the tnsnames.ora file:

(DESCRIPTION = (RECV_TIMEOUT=120) (ADDRESS_LIST =
 (LOAD_BALANCE=off)(FAILOVER=on)(CONNECT_TIMEOUT=3)(RETRY_COUNT=3)

Chapter 13
Configure Replicat to Apply to an Oracle Autonomous Database

13-11

 (ADDRESS = (PROTOCOL = TCP)(HOST = adb-preprod.us-
phoenix-1.oraclecloud.com)(PORT = 1522))

Note:

The tnsnames.ora file provided with the credentials file contains three
database service names identifiable as:

ADWC_Database_Name_low
ADWC_Database_Name_medium
ADWC_Database_Name_high

For Oracle GoldenGate replication, use ADWC_Database_Name_low.

9. To configure the wallet, create a sqlnet.ora file in the Oracle client location in the
Oracle GoldenGate instance.

cd /u02/data/oci/network/admin
ls
sqlnet.ora tnsnames.ora

10. Edit this sqlnet.ora file to include your key directory.

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY="/u02/data/adwc_credentials")))
SSL_SERVER_DN_MATCH=yes

11. Use the Admin Client to log in to the Oracle GoldenGate deployment.

12. Create a credential to store the GGADMIN user and password for the Replicat to
use. For example:

ADD CREDENTIALSTORE ALTER CREDENTIALSTORE ADD USER
ggadmin@databasename_low PASSWORD complex_password alias adb_alias

13. Add and configure a Replicat to deliver to Oracle Autonomous Database. When
creating the Replicat, use the alias created in the previous step. For setting up
your Replicat and other processes, see Add a Replicat.

Note:

You can use classic Replicat, coordinated Replicat, and parallel Replicat
in non-integrated mode. Parallel Replicat in integrated mode is also
supported for Oracle Autonomous Database.

14. You can now start your Replicat and perform data replication to the Autonomous
Database.

Chapter 13
Configure Replicat to Apply to an Oracle Autonomous Database

13-12

Note:

Oracle Autonomous Database times out and disconnects the Replicat when it is
idle for more than 60 minutes. When Replicat tries to apply changes (when it
gets new changes) after being idle, it encounters a database error and abends.
Oracle recommends that you configure Oracle GoldenGate with the
AUTORESTART profile using managed processes (Microservices Architecture) to
avoid having to manually restart a Replicat when it times out.

Chapter 13
Configure Replicat to Apply to an Oracle Autonomous Database

13-13

14
Upgrade

This section provides instructions for upgrading Oracle GoldenGate Microservices
Architecture for Oracle database.

Topics:

• Obtaining the Oracle GoldenGate Distribution

• Prerequisites

• Upgrading Oracle GoldenGate Microservices – GUI Based

• Upgrading Oracle GoldenGate Microservices Using REST APIs

Obtaining the Oracle GoldenGate Distribution
To obtain Oracle GoldenGate, follow these steps:

1. Go to edelivery: edelivery.oracle.com

Also see MOS note 1645495.1 and 2193391.1 for more information.

To access Oracle Technology Network, go to https://www.oracle.com/middleware/
technologies/goldengate.html

2. Find the Oracle GoldenGate 21c release and download the ZIP file onto your system.

For more information about locating and downloading Oracle Fusion Middleware products,
see the Oracle Fusion Middleware Download, Installation, and Configuration Readme Files
on Oracle Technology Network.

Prerequisites
Learn about prerequisites for upgrading Oracle GoldenGate Microservices Architecture.

As a best practice, perform a minimal or basic upgrade first, which implies performing the
upgrade without adding any new features and additional or non-mandatory parameters.

If Oracle GoldenGate is upgraded at the source side where the Extract exists, then the trail
file format remains the same. Only if a higher FORMAT RELEASE is adjusted to the EXTTRAIL
parameter or an ETROLLOVER is performed, will the trail file get upgraded to a higher release.
This provides the opportunity to upgrade the target system where the Replicat exists,
independently. When all target systems are upgraded, you may update the format release of
the EXTTRAIL parameter to leverage new features that rely on a higher trail file format. No
repositioning of any process is required.

After you verify that the environment is upgraded successfully, you can implement the new
features and additional parameters as required.

The upgrade instructions also include the steps for upgrading the source or target database
and Oracle GoldenGate at the same time.

• Oracle GoldenGate Upgrade Considerations

14-1

http://edelivery.oracle.com
https://www.oracle.com/middleware/technologies/goldengate.html
https://www.oracle.com/middleware/technologies/goldengate.html
https://docs.oracle.com/cd/E23104_01/download_readme.htm

Oracle GoldenGate Upgrade Considerations
Before you start the upgrade, review the information about upgrading Extract and
Replicat.

Even though you may only be upgrading the source or target installations, rather than
both, all processes are involved in the upgrade. All processes must be stopped in the
correct order for the upgrade, regardless of which component you upgrade, and the
trails must be processed until empty.

Oracle recommends that you begin your upgrade with the target rather than the source
to avoid the necessity of adjusting the trail file format.

Installation Binaries and Deployments

With Microservice Architecture, there is a strong separation between where the
software is installed and the deployment directory structure for the Oracle GoldenGate
instance, which contains the parameter files, report files, and trail files. For both these
areas, the software binaries and deployment, are strictly separated. So, there is no
interference between the old and new software installations related to the
deployments. During a software upgrade, the new software will be installed
independently. The deployment working with the old software will be stopped. Then,
the deployment environment will be adjusted to the new software and the deployment
will be restarted.

If you have a reverse proxy configuration on your host machine generated with
OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings, then consider
reconfiguring it to leverage the enhanced ReverseProxySetting utility available with
Oracle GoldenGate 21c (21.3) and higher releases.

Considerations for Upgrading Service Manager and other Deployments

When upgrading Oracle GoldenGate, the Service Manager must be updated first. The
software version of the Service Manager must be higher or equal to the version of the
deployments. There are no issues having a Service Manager running on the highest
version and having deployments with lower versions.

After completing the upgrade, run the UPGRADE HEARTBEATTABLE command to add extra
columns for tables and lag views. These extra columns are used to track the Extract
restart position. See UPGRADE HEARTBEATTABLE to know more.

Topics:

• Extract Upgrade Considerations

• Replicat Upgrade Considerations

Extract Upgrade Considerations
If you are upgrading multiple Extract processes that operate in a consolidated
configuration (many sources to one target), upgrade one Extract at a time.

The output trail file is automatically rolled over when the Extract restarts and the
integrated Extract version is upgraded.

Chapter 14
Prerequisites

14-2

Because the TIMEZONE datatype is managed differently with Oracle GoldenGate 21c, you may
need to run the ALTER REPLICAT extseqno command to synchronize with newer trail files
after consuming the old trail file written by Extract version 1.

Replicat Upgrade Considerations
All Replicat installations should be upgraded at the same time. It is critical to ensure that all
trails leading to all Replicat groups on all target systems are processed until empty, according
to the upgrade instructions.

When upgrading from releases prior to 19c release of Oracle GoldenGate, ensure that you do
not use the SOURCEDEF parameter in Replicat, otherwise the Replicat will abend. However, if
the trail file format is pre-12.2, then SOURCEDEF is still required because no metadata exists in
the trail file.

Because the TIMEZONE datatype is managed differently with Oracle GoldenGate 21c, you may
need to run the ALTER REPLICAT extseqno command to synchronize with newer trail files
after consuming the old trail file written by the Extract.

Upgrading Oracle GoldenGate Microservices – GUI Based
Learn the steps to upgrade Oracle GoldenGate Microservices using the GUI.

Follow these steps to obtain the Oracle GoldenGate installation software and set up the
directories for upgrade.

1. Download the latest Oracle GoldenGate Microservices 21c software from the Oracle
Technology Network or eDelivery.

2. Move the Oracle GoldenGate 21c MA software to a staging folder and unzip it.

For Linux, use the following example:

$ mv /home/user/fbo_ggs_Linux_x64_Oracle_services_shiphome.zip /tmp
$ cd /tmp$ unzip fbo_ggs_Linux_x64_Oracle_services_shiphome.zip

3. Upload the Oracle GoldenGate Microservices 21c software to a staging location on the
server where a previous release of Oracle GoldenGate Microservices exists.

4. Save the changes and return to the Service Manager Overview page.

5. Select the Action dropdown for the deployment and select Restart.

6. Log in to the Administration Service and click Action button in the Replicat section.

7. Click the Parameter File tab and change the value of the BATCHSQL parameter to double
the value of BATCHESPERQUEUE. You must do this before starting Replicat. For example:
BATCHSQL BATCHESPERQUEUE 40000000.

8. Log back into the Adminstration Service and start Extract and Replicat.

At this point, you should have a new Oracle GoldenGate 21c MA home and any prior release
homes of Oracle GoldenGate MA.

Upgrade the Service Manager

After installing the latest Oracle GoldenGate MA version, the next step is to upgrade the
Service Manager:

Chapter 14
Upgrading Oracle GoldenGate Microservices – GUI Based

14-3

1. Log into Service Manager from the URL: https://hostname:servicemanager_port

2. Select the ServiceManager link in the Deployments section of the Service
Manager Overview page.

3. Click the pencil icon next to the Deployment Detail section to open the dialog box
for editing the GoldenGate home path.

4. Update the GoldenGate Home path with the full path to the new Oracle
GoldenGate home.

5. Click Apply.

6. Use the Action dropdown to restart the Service Manager.

Upgrade the Deployment

Deployments can be upgraded in the same step with the Service Manager or they can
be upgraded at a later time after the Service Manager has been upgraded.

To upgrade a deployment:

1. Stop all Extract and Replicat processes gracefully:

• Check for open (long running) transaction and Bounded Recovery as it may
take longer to stop Extract gracefully.

• If any unnecessary open transactions are visible, for example SEND EXTRACT
group_name SHOWTRANS, then those transactions can be skipped or
immediately forced to stop. In this case, a Bounded Recovery checkpoint can
be retrieved using the following command:

SEND EXTRACT group_name, BR BRCHECKPOINT immediate
2. Verify the current location of Oracle GoldenGate home directory from Service

Manager.

a. Login to the Service Manager: http://hostname:servicemanager_port
b. Click the link to the deployment name in the Deployments section on the

Service Manager Overview page. The deployment details are displayed.

3. Edit and update the the deployment with the location of the new Oracle
GoldenGate Home directory.

a. Click the pencil next to Service Manager Deployment Detail to edit the Oracle
GoldenGate Home directory on the Details tab.

b. Update the Oracle GoldenGate Home path with the complete path to the new
Oracle GoldenGate home directory.

c. Click Apply.

d. Confirm that the Oracle GoldenGate Home path has been updated.

e. Select the link for the Administration Service in the Deployment section.

f. Log in and stop any Extracts and Replicats. Close the Administration Service
page and return to the Service Manager page.

4. Return to the Deployment Detail page of the deployment and then select the
Configuration tab to modify the settings for the environment variables. With the
new Unified Build in Oracle GoldenGate 21c, the environment variables for
ORACLE_HOME, LD_LIBRARY_PATH, and TNS_ADMIN need to be adjusted to the Oracle
Database Client software within Oracle GoldenGate. Set the environment
variables as:

Chapter 14
Upgrading Oracle GoldenGate Microservices – GUI Based

14-4

• ORACLE_HOME = $OGG_HOME/lib/instantclient
• LD_LIBRARY_PATH = $OGG_HOME/lib:$OGG_HOME/lib/instantclient
• TNS_ADMIN = Location of tnsnames.ora and sqlnet.ora

• JAVA_HOME = $OGG_HOME/jdk
5. Save the changes and return to the Service Manager Overview page.

6. Save the changes and return to the Service Manager Overview page.

7. Select the Action dropdown for the deployment and select Restart.

8. Log back into the Adminstration Service and start any Extract and Replicats.

Upgrading Oracle GoldenGate Microservices Using REST APIs
Learn how to upgrade Oracle GoldenGate Microservices to Oracle GoldenGate
Microservices 21c using REST APIs.

Follow these steps to obtain the Oracle GoldenGate installation software and set up the
directories for upgrade.

1. Download the latest Oracle GoldenGate Microservices 21c software from the Oracle
Technology Network or eDelivery.

2. Move the Oracle GoldenGate 21c MA software to a staging folder and unzip it.

For Linux, use the following example:

$ mv /home/user/fbo_ggs_Linux_x64_Oracle_services_shiphome.zip /tmp
$ cd /tmp$ unzip fbo_ggs_Linux_x64_Oracle_services_shiphome.zip

3. Upload the Oracle GoldenGate Microservices 21c software to a staging location on the
server where a previous release of Oracle GoldenGate Microservices exists.

4. Save the changes and return to the Service Manager home page.

5. Select the Action dropdown for the deployment and select Restart.

6. Log in to the Administration Service and click Action button in the Replicat section.

7. Click the Parameter File tab and change the value of the BATCHSQL parameter to double
the value of BATCHESPERQUEUE. You must do this before starting Replicat. For example:
BATCHSQL BATCHESPERQUEUE 40000000

8. Log back into the Adminstration Service and start Extract and Replicat.

Upgrade a Service Manager

When upgrading the Service Manager, you can use the following cURL example to update
the Oracle GoldenGate home:

curl -u adminname:adminpwd -X PATCH \
 https://hostname:port/services/v2/deployments/ServiceManager \
 -H 'cache-control: no-cache' \
 -d '{"oggHome":"new OGG_HOME_absolute_path", "status":"restart"}'

In this syntax, enter the new Oracle GoldenGate home directory absolute directory path such
as /u01/app/oracle/product/21c/gghome_1.

Chapter 14
Upgrading Oracle GoldenGate Microservices Using REST APIs

14-5

Check if Service Manager is running from the new $OGG_HOME, using the following
command:

ps -ef|grep -i servicemanager

If you don't see Service Manager in running state, then run the following command:

cd $NEW_OGG_HOME/bin
$./ServiceManager

Upgrade a Deployment

To upgrade a deployment:

1. Stop all Extract and Replicat processes gracefully:

• Check for open (long running) transaction and Bounded Recovery as it may
take longer to stop Extract gracefully.

• If any unnecessary open transactions are visible, for example SEND EXTRACT
group_name SHOWTRANS, then those transactions can be skipped or
immediately forced to stop. In this case, a Bounded Recovery checkpoint can
be retrieved using the following command:

SEND EXTRACT group_name, BR BRCHECKPOINT immediate
2. Change the environment variables for the deployment, as shown in the following

example:

curl -k -u adminname:adminpwd -X PATCH \
https://server.oracle.com:9000/services/v2/deployments/uat_01 \
-H 'cache-control: no-cache' \
-d '{"environment": [{"name": "ORACLE_HOME" , "value": "/u01/app/
oracle/product/21c/gghome_1/lib/instantclient"}
 , {"name": "LD_LIBRARY_PATH" ,
"value": "/u01/app/oracle/product/21c/gghome_1/lib/
instantclient:/u01/app/oracle/product/21c/gghome_1/lib"}
 , {"name": "JAVA_HOME" , "value":
"/u01/app/oracle/product/21c/gghome_1/jdk"}
 , {"name": "TNS_ADMIN" , "value":
"/u01/app/oracle/network/admin"}] }'

3. Run this cURL command to upgrade the Oracle GoldenGate deployment:

 curl -u SM username:SM password -X PATCH
http://hostname:servicemanager port/services/v2/deployments/
Deployment-name
-H 'cache-control: no-cache'
-d '{"oggHome":"new OGG_HOME complete path","status":"restart"}'

4. Start all Extracts and Replicats.

When the Service Manager or deployment restarts, the upgrade is complete.

Chapter 14
Upgrading Oracle GoldenGate Microservices Using REST APIs

14-6

15
Reference

This section lists the support information for Oracle GoldenGate on different databases.

Topics:

• About Oracle GoldenGate Trails

• Oracle GoldenGate Checkpoint Tables

• Supported Character Sets

• Supported Locales

• Commit Sequence Number (CSN)

• Connecting Microservices and Classic Architectures

About Oracle GoldenGate Trails
Oracle GoldenGate trail information is required for troubleshooting and technical support. Use
the Logdump utility to view the Oracle GoldenGate trail records.

Topics:

• Trail Recovery Mode

• Trail Record Format

• Tokens Area

• Oracle GoldenGate Operation Types

Trail Recovery Mode

By default, Extract operates in append mode, where if there is a process failure, a recovery
marker is written to the trail and Extract appends recovery data to the file so that a history of
all prior data is retained for recovery purposes.

In append mode, the Extract initialization determines the identity of the last complete
transaction that was written to the trail at startup time. With that information, Extract ends
recovery when the commit record for that transaction is encountered in the data source; then
it begins new data capture with the next committed transaction that qualifies for extraction
and begins appending the new data to the trail. A Replicat starts reading again from that
recovery point.

Overwrite mode is another version of Extract recovery that was used in versions of Oracle
GoldenGate prior to version 10.0. In these versions, Extract overwrites the existing
transaction data in the trail after the last write-checkpoint position, instead of appending the
new data. The first transaction that is written is the first one that qualifies for extraction after
the last read checkpoint position in the data source.

15-1

If the version of Oracle GoldenGate on the target is older than version 10, Extract will
automatically revert to overwrite mode to support backward compatibility. This
behavior can be controlled manually with the RECOVERYOPTIONS parameter.

Trail Record Format
Each change record written by Oracle GoldenGate to a trail or Extract file includes a
header area, a data area, and possibly a user token area. The record header contains
information about the transaction environment, and the data area contains the actual
data values that were extracted.

The token area contains information that is specified by Oracle GoldenGate users for
use in column mapping and conversion.

Oracle GoldenGate trail files are unstructured. You can view Oracle GoldenGate
records with the Logdump utility provided with the Oracle GoldenGate software. For
more information, see Logdump Reference for Oracle GoldenGate.

Note:

As enhancements are made to the Oracle GoldenGate software, the trail
record format is subject to changes that may not be reflected in this
documentation. To view the current structure, use the Logdump utility.

Topics:

• Trail File Header Record

Trail File Header Record
Each file of a trail contains a file header record that is stored at the beginning of the
file. The file header contains information about the trail file itself. Previous versions of
Oracle GoldenGate do not contain this header.

The file header is stored as a record at the beginning of a trail file preceding the data
records. The information that is stored in the trail header provides enough information
about the records to enable an Oracle GoldenGate process to determine whether the
records are in a format that the current version of Oracle GoldenGate supports.

The trail header fields are stored as tokens, where the token format remains the same
across all versions of Oracle GoldenGate. If a version of Oracle GoldenGate does not
support any given token, that token is ignored. Depracated tokens are assigned a
default value to preserve compatibility with previous versions of Oracle GoldenGate.

To ensure forward and backward compatibility of files among different Oracle
GoldenGate process versions, the file header fields are written in a standardized token
format. New tokens that are created by new versions of a process can be ignored by
older versions, so that backward compatibility is maintained. Likewise, newer Oracle
GoldenGate versions support older tokens. Additionally, if a token is deprecated by a
new process version, a default value is assigned to the token so that older versions
can still function properly. The token that specifies the file version is COMPATIBILITY
and can be viewed in the Logdump utility and also by retrieving it with the
GGFILEHEADER option of the @GETENV function.

Chapter 15
About Oracle GoldenGate Trails

15-2

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/admin&id=GLOGD-GUID-11F54047-D1D7-4348-B145-EB65B824A5C3

A trail or Extract file must have a version that is equal to, or lower than, that of the process
that reads it. Otherwise the process will abend. Additionally, Oracle GoldenGate forces the
output trail to be the same version as that of its input trail or file. Upon restart, Extract rolls a
trail to a new file to ensure that each file is of only one version (unless the file is empty).

From Oracle GoldenGate 21c onward, for Oracle databases, you can specify a globally
unique name for the database using the DB_UNIQUE_NAME parameter. If this database
parameter is not set, then the DB_UNIQUE_NAME is the same as DB_NAME. This feature allows
unique identification of the source of the trail data by viewing the trail file header.

See GETENV parameter to know about the use of the DbUniqueName token.

The DbUniqueName token will be written to trail files with 19.1 compatibility level, however prior
Oracle GoldenGate releases supporting that compatibility level will ignore the new token. The
token belongs to the Database Information group. The field will be limited to 65536 bytes, to
allow fitting all possible values of DB_UNIQUE_NAME, limited to 30 characters.

Because the Oracle GoldenGate processes are decoupled and can be of different Oracle
GoldenGate versions, the file header of each trail file contains a version indicator. By default,
the version of a trail file is the current version of the process that created the file. If you need
to set the version of a trail, use the FORMAT option of the EXTTRAIL, EXTFILE, RMTTRAIL, or
RMTFILE parameter.

You can view the trail header with the FILEHEADER command in the Logdump utility. For more
information about the tokens in the file header, see Logdump Reference for Oracle
GoldenGate.

Topics:

• Partition Name Record in Trail File Header

• Viewing the Partition Name and PNR Index in Logdump

• Example of an Oracle GoldenGate Record

• Record Header Area

• Description of Header Fields

• Using Header Data

• Using Header Data

• Compressed Record Image Format (Windows, UNIX, Linux Sources)

Partition Name Record in Trail File Header
Each DML record in the trail file header can contain an index to a partition name record
(PNR). Because the full partition name can be long, a PNR is created in each trail file for the
first time the partition is written. Each PNR, contains the partition name and partition object
ID.

For primary Extract, PNR is generated only for partition matching and included by PARTITION
and PARTITIONEXCLUDE parameters. DML records from these partitions have an index to the
table definition record and another index to the partition name record. DML records from all
other tables such as non-partitioned tables or partitioned tables not matching or excluded by
the PARTITION or PARTITIONEXCLUDE parameters, only have an index to the table definition
record as done today. For the Distribution Service, the PNR is written if source trail record
contains a PNR index.

Chapter 15
About Oracle GoldenGate Trails

15-3

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/admin&id=GWURF-GUID-B84527F5-91BA-4E2E-BC37-92D1B6C35735
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/admin&id=GLOGD-GUID-11F54047-D1D7-4348-B145-EB65B824A5C3
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/admin&id=GLOGD-GUID-11F54047-D1D7-4348-B145-EB65B824A5C3

Viewing the Partition Name and PNR Index in Logdump
Use the Logdump utility to display the partition name record and the DML containing
the PNR index.

Here's an example that shows capturing the display in a file:

$ logdump > output.txt <<EOF
ghdr on
detail data
open ./dirdat/tr000000000
n 200
EOF

The output displays the PNR and the DML with the PNR index values, as shown in the
following example:

HDR-IND : E (X45) PARTITION : . (XFF80)
UNDOFLAG : . (X00) BEFOREAFTER: A (X41)
RECLENGTH : 0 (X0000) IO TIME : 2019/01/17 16:48:01.129.045
IOTYPE : 170 (XAA) ORIGNODE : 4 (X04)
TRANSIND : . (X03) FORMATTYPE : R (X52)
SYSKEYLEN : 0 (X00) INCOMPLETE : . (X00)
TDR/PNR IDX: (001, 002) AUDITPOS : 13287580
CONTINUED : N (X00) RECCOUNT : 1 (X01)

2019/01/17 16:48:01.129.045 METADATA LEN 0 RBA 3425
PARTITION NAME: P1 PARTITION ID: 75,234 FLAGS: X00000001

HDR-IND : E (X45) PARTITION : . (XFF8C)
UNDOFLAG : . (X00) BEFOREAFTER: A (X41)
RECLENGTH : 18 (X0012) IO TIME : 2019/01/17 16:47:58.000.000
IOTYPE : 5 (X05) ORIGNODE : 255 (XFF)
TRANSIND : . (X00) FORMATTYPE : R (X52)
SYSKEYLEN : 0 (X00) INCOMPLETE : . (X00)
AUDITRBA : 15 AUDITPOS : 13287580
CONTINUED : N (X00) RECCOUNT : 1 (X01)

2019/01/17 16:47:58.000.000 INSERT LEN 18 RBA 3486
NAME: TKGGU1.T1 (PARTITION: P1, TDR/PNR INDEX: 1/2)
AFTER IMAGE: PARTITION X8C G B
 0000 0500 0000 0100 3101 0005 0000 0001 0031 |1........1
COLUMN 0 (X0000), LEN 5 (X0005)
 0000 0100 31 |1
COLUMN 1 (X0001), LEN 5 (X0005)
 0000 0100 31 |1

Example of an Oracle GoldenGate Record
The following illustrates an Oracle GoldenGate record as viewed with Logdump. The
first portion (the list of fields) is the header and the second portion is the data area.
The record looks similar to this on all platforms supported by Oracle GoldenGate.

Chapter 15
About Oracle GoldenGate Trails

15-4

Figure 15-1 Example of an Oracle GoldenGate Record

Record Header Area

The Oracle GoldenGate record header provides metadata of the data that is contained in the
record and includes the following information.

• The operation type, such as an insert, update, or delete

• The before or after indicator for updates

• Transaction information, such as the transaction group and commit timestamp

Description of Header Fields

The following describes the fields of the Oracle GoldenGate record header. Some fields apply
only to certain platforms.
Table: Oracle GoldenGate record header fields

Field Description

Hdr-Ind
Should always be a value of E, indicating that the
record was created by the Extract process. Any
other value indicates invalid data.

RecLength
The length, in bytes, of the record buffer.

IOType
The type of operation represented by the record.
See Table G-2 - Oracle GoldenGate Operation
Types for a list of operation types.

TransInD
The place of the record within the current
transaction. Values are:

0 — first record in transaction

1 — neither first nor last record in transaction

2 — last record in the transaction

3 — only record in the transaction

Chapter 15
About Oracle GoldenGate Trails

15-5

Field Description

AuditRBA
Identifies the transaction log identifier, such as the
Oracle redo log sequence number.

Continued
(Windows and UNIX) Identifies whether or not the
record is a segment of a larger piece of data that
is too large to fit within one record. LOBs, CLOBS,
and some VARCHARs are stored in segments.
Unified records that contain both before and after
images in a single record (due to the
UPDATERECORDFORMAT parameter) may exceed
the maximum length of a record and may also
generate segments.

Y — the record is a segment; indicates to Oracle
GoldenGate that this data continues to another
record.

N — there is no continuation of data to another
segment; could be the last in a series or a record
that is not a segment of larger data.

Partition
For Windows and UNIX records, this field will
always be a value of 4 (FieldComp compressed
record in internal format). For these platforms, the
term Partition does not indicate that the data
represents any particular logical or physical
partition within the database structure.

BeforeAfter
Identifies whether the record is a before (B) or
after (A) image of an update operation. Records
that combine both before and after images as the
result of the UPDATERECORDFORMAT parameter are
marked as after images. Inserts are always after
images, deletes are always before images.

IO Time
The time when the operation occurred, in local
time of the source system, in GMT format. This
time may be the same or different for every
operation in a transaction depending on when the
operation occurred.

FormatType
Identifies whether the data was read from the
transaction log or fetched from the database.

F — fetched from database
R — readable in transaction log

Incomplete
This field is obsolete.

AuditPos
Identifies the position in the transaction log of the
data.

RecCount
(Windows and UNIX) Used for LOB data when it
must be split into chunks to be written to the
Oracle GoldenGate file. RecCount is used to
reassemble the chunks.

Chapter 15
About Oracle GoldenGate Trails

15-6

Using Header Data

Some of the data available in the Oracle GoldenGate record header can be used for mapping
by using the GGHEADER option of the @GETENV function or by using any of the following
transaction elements as the source expression in a COLMAP statement in the TABLE or MAP
parameter.

• GGS_TRANS_TIMESTAMP

• GGS_TRANS_RBA

• GGS_OP_TYPE

• GGS_BEFORE_AFTER_IND

Using Header Data
The data area of the Oracle GoldenGate trail record contains the following:

• The time that the change was written to the Oracle GoldenGate file

• The type of database operation

• The length of the record

• The relative byte address within the trail file

• The table name

• The data changes in hex format

The following explains the differences in record image formats used by Oracle GoldenGate
on Windows, UNIX, Linux, and NonStop systems.

Topics:

• Full Record Image Format (NonStop Sources)

Full Record Image Format (NonStop Sources)

A full record image contains the values of all of the columns of a processed row. Full record
image format is generated in the trail when the source system is HP NonStop, and only when
the IOType specified in the record header is one of the following:

3 — Delete 5 — Insert 10 — Update

Each full record image has the same format as if retrieved from a program reading the
original file or table directly. For SQL tables, datetime fields, nulls, and other data is written
exactly as a program would select it into an application buffer. Although datetime fields are
represented internally as an eight-byte timestamp, their external form can be up to 26 bytes
expressed as a string. Enscribe records are retrieved as they exist in the original file.

When the operation type is Insert or Update, the image contains the contents of the record
after the operation (the after image). When the operation type is Delete, the image contains
the contents of the record before the operation (the before image).

Chapter 15
About Oracle GoldenGate Trails

15-7

For records generated from an Enscribe database, full record images are output
unless the original file has the AUDITCOMPRESS attribute set to ON. When AUDITCOMPRESS
is ON, compressed update records are generated whenever the original file receives an
update operation. (A full image can be retrieved by the Extract process by using the
FETCHCOMPS parameter.)

Compressed Record Image Format (Windows, UNIX, Linux Sources)

A compressed record image contains only the key (primary, unique, KEYCOLS) and
the columns that changed in the processed row. By default, trail records written by
processes on Windows and UNIX systems are always compressed.

The format of a compressed record is as follows:

column_index
 column_length
 column_data[...]

Where:

• column_index

is the ordinal index of the column within the source table (2 bytes).

• colum_length

is the length of the data (2 bytes).

• column_data

is the data, including

NULL

or

VARCHAR

length indicators.

Enscribe records written from the NonStop platform may be compressed. The format
of a compressed Enscribe record is as follows:

field_offset
 field_length field_value[...]

Where:

• field_offset

Chapter 15
About Oracle GoldenGate Trails

15-8

is the offset within the original record of the changed value (2 bytes).

• field_length

is the length of the data (2 bytes).

• field_value

is the data, including

NULL

or

VARCHAR

length indicators.

The first field in a compressed Enscribe record is the primary or system key.

Tokens Area
The trail record also can contain two areas for tokens. One is for internal use and is not
documented here, and the other is the user tokens area. User tokens are environment values
that are captured and stored in the trail record for replication to target columns or other
purposes. If used, these tokens follow the data portion of the record and appear similar to the
following when viewed with Logdump:

Parameter Value

TKN-HOST TKN-GROUP TKN-BA_IND TKN-
COMMIT_TS TKN-POS TKN-RBA TKN-TABLE
TKN-OPTYPE TKN-LENGTH TKN-TRAN_IND

: syshq : EXTORA : AFTER : 2011-01-24
17:08:59.000000 : 3604496 : 4058 :
SOURCE.CUSTOMER : INSERT : 57 : BEGIN

Oracle GoldenGate Operation Types
The following are some of the Oracle GoldenGate operation types. Types may be added as
new functionality is added to Oracle GoldenGate. For a more updated list, use the SHOW
RECTYPE command in the Logdump utility:

Type Description Platform

1-Abort A transaction aborted. NSK TMF

2-Commit A transaction committed. NSK TMF

3-Delete A record/row was deleted. A
Delete record usually contains
a full record image. However, if
the COMPRESSDELETES
parameter was used, then only
key columns will be present.

All

4-EndRollback A database rollback ended NSK TMF

Chapter 15
About Oracle GoldenGate Trails

15-9

Type Description Platform

5-Insert A record/row was inserted. An
Insert record contains a full
record image.

All

6-Prepared A networked transaction has
been prepared to commit.

NSK TMF

7-TMF-Shutdown A TMF shutdown occurred. NSK TMF

8-TransBegin No longer used. NSK TMF

9-TransRelease No longer used. NSK TMF

10-Update A record/row was updated. An
Update record contains a full
record image. Note: If the
partition indicator in the record
header is 4, then the record is in
FieldComp format (see below)
and the update is compressed.

All

11-UpdateComp A record/row in TMF AuditComp
format was updated. In this
format, only the changed bytes
are present. A 4-byte descriptor
in the format of 2-
byte_offset2-byte_length
precedes each data fragment.
The byte offset is the ordinal
index of the column within the
source table. The length is the
length of the data.

NSK TMF

12-FileAlter An attribute of a database file
was altered.

NSK

13-FileCreate A database file was created. NSK

14-FilePurge A database file was deleted. NSK

15-FieldComp A row in a SQL table was
updated. In this format, only the
changed bytes are present.
Before images of unchanged
columns are not logged by the
database. A 4-byte descriptor in
the format of 2-byte_offset2-
byte_length precedes each
data fragment. The byte offset is
the ordinal index of the column
within the source table. The
length is the length of the data. A
partition indicator of 4 in the
record header indicates
FieldComp format.

All

16-FileRename A file was renamed. NSK

17-AuxPointer Contains information about
which AUX trails have new data
and the location at which to read.

NSK TMF

18-NetworkCommit A networked transaction
committed.

NSK TMF

19-NetworkAbort A networked transaction was
aborted.

NSK TMF

Chapter 15
About Oracle GoldenGate Trails

15-10

Type Description Platform

90-(GGS)SQLCol A column or columns in a SQL
table were added, or an attribute
changed.

NSK

100-(GGS)Purgedata All data was removed from the
file (PURGEDATA).

NSK

101-(GGS)Purge(File) A file was purged. NSK non-TMF

102-(GGS)Create(File) A file was created. The Oracle
GoldenGate record contains the
file attributes.

NSK non-TMF

103-(GGS)Alter(File) A file was altered. The Oracle
GoldenGate record contains the
altered file attributes.

NSK non-TMF

104-(GGS)Rename(File) A file was renamed. The Oracle
GoldenGate record contains the
original and new names.

NSK non-TMF

105-(GGS)Setmode A SETMODE operation was
performed. The Oracle
GoldenGate record contains the
SETMODE information.

NSK non-TMF

106-GGSChangeLabel A CHANGELABEL operation was
performed. The Oracle
GoldenGate record contains the
CHANGELABEL information.

NSK non-TMF

107-(GGS)Control A CONTROL operation was
performed. The Oracle
GoldenGate record contains the
CONTROL information.

NSK non-TMF

115 and 117

(GGS)KeyFieldComp(32)

A primary key was updated. The
Oracle GoldenGate record
contains the before image of the
key and the after image of the
key and the row. The data is in
FieldComp format
(compressed), meaning that
before images of unchanged
columns are not logged by the
database.

Windows and UNIX

116-LargeObject

116-LOB

Identifies a RAW, BLOB, CLOB, or
LOB column. Data of this type is
stored across multiple records.

Windows and UNIX

132-(GGS) SequenceOp Identifies an operation on a
sequence.

Windows and UNIX

Chapter 15
About Oracle GoldenGate Trails

15-11

Type Description Platform

134-UNIFIED UPDATE

135-UNIFIED PKUPDATE

Identifies a unified trail record
that contains both before and
after values in the same record.
The before image in a UNIFIED
UPDATE contains all of the
columns that are available in the
transaction record for both the
before and after images. The
before image in a UNIFIED
UPDATE contains all of the
columns that are available in the
transaction record, but the after
image is limited to the primary
key columns and the columns
that were modified in the
UPDATE.

Windows and UNIX

160 - DDL_Op Identifies a DDL operation Windows and UNIX

161-

RecordFragment

Identifies part of a large row that
must be stored across multiple
records (more than just the base
record).

Windows and UNIX

200-GGSUnstructured Block

200-BulkIO

A BULKIO operation was
performed. The Oracle
GoldenGate record contains the
RAW DP2 block.

NSK non-TMF

Chapter 15
About Oracle GoldenGate Trails

15-12

Type Description Platform

201 through 204 These are different types of
NonStop trace records. Trace
records are used by Oracle
GoldenGate support analysts.
The following are descriptions.

• ARTYPE_FILECLOSE_GGS

201

— the source application
closed a file that was open
for unstructured I/O. Used by
Replicat

• ARTYPE_LOGGERTS_GGS
202

— Logger heartbeat record
• ARTYPE_EXTRACTERTS_G

GS 203

— unused
• ARTYPE_COLLECTORTS_G

GS

204

— unused

NSK non-TMF

205-GGSComment Indicates a comment record
created by the Logdump utility.
Comment records are created by
Logdump at the beginning and
end of data that is saved to a file
with Logdump's SAVE command.

All

Chapter 15
About Oracle GoldenGate Trails

15-13

Type Description Platform

249 through 254 These are different types of
NonStop trace records. Trace
records are used by Oracle
GoldenGate support analysts.
The following are descriptions.

• ARTYPE_LOGGER_ADDED_
STATS

249

— a stats record created by
Logger when the source
application closes its open
on Logger (if

SENDERSTATS

is enabled and stats are
written to the logtrail)

• ARTYPE_LIBRARY_OPEN
250

— written by

BASELIB

to show that the application
opened a file

• ARTYPE_LIBRARY_CLOSE
 251

— written by

BASELIB

to show that the application
closed a file.

• ARTYPE_LOGGER_ADDED_
OPEN 252

— unused
• ARTYPE_LOGGER_ADDED_

CLOSE

253 — unused

NSK non-TM

Chapter 15
About Oracle GoldenGate Trails

15-14

Type Description Platform

• ARTYPE_LOGGER_ADDED_
INFO

254

— written by Logger and
contains information about
the source application that
performed the I/O in the
subsequent record (if

SENDERSTATS

is enabled and stats are
written to the logtrail). The
file name in the trace record
is the object file of the
application. The trace data
has the application process
name and the name of the
library (if any) that it was
running with.

Oracle GoldenGate Checkpoint Tables
When database checkpoints are being used, Oracle GoldenGate creates a checkpoint table
with a user-defined name in the database upon execution of the ADD CHECKPOINTTABLE
command, or a user can create the table by using the chkpt_db_create.sql script (where
db is an abbreviation of the type of database that the script supports).

There are two tables: the main checkpoint table and an auxiliary checkpoint table that is
created automatically. The auxiliary table, known as the transaction table, bears the name of
the primary checkpoint table appended with _lox. Each Replicat, or each thread of a
coordinated Replicat, uses one row in the checkpoint table to store its progress information.
At checkpoint time, there typically are some number of transactions (among the total n
transactions) that were applied, and the rest are still in process. For example, if Replicat is
processing a group of n transactions ranging from CSN1 to CSN3. CSN1 is the high watermark
and CSN3 is the low watermark. Any transaction with a CSN higher than the high watermark
has not been processed, and any transaction with a CSN lower than the low watermark has
already been processed. Completed transactions are stored in the LOG_CMPLT_XID column of
the checkpoint table. Any overflow of these transactions is stored in the transaction table
(auxiliary checkpoint table) in the LOG_CMPLT_XID column of that table.

Currently, Replicat (or each Replicat thread of a coordinated Replicat) applies transactions
serially (not in parallel); therefore, the high watermark (the LOG_CSN value in the table) is
always the same as the low watermark (the LOG_CMPLT_CSN value in the table), and there
typically is only one transaction ID in the LOG_CMPLT_XID column. The only exception is when
there are multiple transactions sharing the same CSN.

Do not change the names or attributes of the columns in these tables. You can change table
storage attributes as needed.

Chapter 15
Oracle GoldenGate Checkpoint Tables

15-15

Column Description

LOG_BSN
The LOG_BSN provides information needed to
set Extract back in time to reprocess
transactions. Some filtering by Replicat is
necessary because Extract will likely re-
generate a small amount of data that was
already applied by Replicat.

VERSION
The version of the checkpoint table format.
Enables future enhancements to be identified
as version numbers of the table.

AUDIT_TS
The timestamp of the commit of the source
transaction.

SEQNO
The sequence number of the input trail that
Replicat was reading at the time of the
checkpoint.

RBA
The relative byte address that Replicat
reached in the trail identified by SEQNO. RBA +
SEQNO provide an absolute position in the trail
that identifies the progress of Replicat at the
time of checkpoint.

GROUP_NAME (primary key)
The name of a Replicat group using this table
for checkpoints. There can be multiple Replicat
groups using the same table. This column is
part of the primary key.

LAST_UPDATE_TS
The date and time when the checkpoint table
was last updated.

CREATE_TS
The date and time when the checkpoint table
was created.

CURRENT_DIR
The current Oracle GoldenGate home
directory or folder.

LOG_CMPLT_XIDS
Stores the transactions between the high and
low watermarks that are already applied.

LOG_CMPLT_CSN
Stores the low watermark, or the lower
boundary, of the CSNs. Any transaction with a
lower CSN than this value has already been
processed.

LOG_CSN
Stores the high watermark, or the upper
boundary, of the CSNs. Any transaction with a
CSN higher than this value has not been
processed.

LOG_XID
Not used. Retained for backward compatibility.

Chapter 15
Oracle GoldenGate Checkpoint Tables

15-16

Column Description

GROUP_KEY (primary key)
A unique identifier that, together with

GROUPNAME

, uniquely identifies a checkpoint regardless of
how many Replicat groups are writing to the
same table. This column is part of the primary
key.

Column Description

GROUP_KEY
A unique identifier that, together with GROUPNAME,
uniquely identifies a checkpoint regardless of how
many Replicat groups are writing to the same
table. This column is part of the primary key of the
transaction table.

LOG_CMPLT_XIDS_SEQ
Creates unique rows in the event there are so
many overflow transactions that multiple rows are
required to store them all. This column is part of
the primary key of the transaction table.

LOG_CMPLT_XIDS
Stores the overflow of transactions between the
high and low watermarks that are already applied.

LOG_CMPLT_CSN
The foreign key that references the checkpoint
table. This column is part of the primary key of the
transaction table.

GROUP_NAME
The name of a Replicat group using this table for
checkpoints. There can be multiple Replicat
groups using the same table. This column is part
of the primary key of the transaction table.

Topics:

• Internal Checkpoint Information

• INFO EXTRACT SHOWCH Command: Checkpoint Information

• INFO REPLICAT, SHOWCH: Checkpoint Information

Internal Checkpoint Information
The INFO command with the SHOWCH option not only displays current checkpoint entries, but it
also displays metadata information about the record itself. This information is not
documented and is for use by the Oracle GoldenGate processes and by support personnel
when resolving a support case.

The metadata is contained in the following entries in the SHOWCH output.

Header:

 Version = 2

Chapter 15
Oracle GoldenGate Checkpoint Tables

15-17

 Record Source = A

 Type = 1

 # Input Checkpoints = 1

 # Output Checkpoints = 0

 File Information:

 Block Size = 2048

 Max Blocks = 100

 Record Length = 2048

 Current Offset = 0

 Configuration:

 Data Source = 0

 Transaction Integrity = -1

 Task Type = 0

 Status:

 Start Time = 2011-01-12 13:10:13

 Last Update Time = 2011-01-12 21:23:31

 Stop Status = A

 Last Result = 400

INFO EXTRACT SHOWCH Command: Checkpoint Information

The following sample presents the checkpoint information returned by the INFO
EXTRACT command with the SHOWCH option. In this case, the data source is an Oracle
RAC database cluster, so there is thread information included in the output. You can
view past checkpoints by specifying the number of them that you want to view after the
SHOWCH argument.

EXTRACT JC108XT Last Started 2011-01-01 14:15 Status ABENDED
Checkpoint Lag 00:00:00 (updated 00:00:01 ago)
Log Read Checkpoint File /orarac/oradata/racq/redo01.log
 2011-01-01 14:16:45 Thread 1, Seqno 47, RBA 68748800
Log Read Checkpoint File /orarac/oradata/racq/redo04.log
 2011-01-01 14:16:19 Thread 2, Seqno 24, RBA 65657408
Current Checkpoint Detail:
Read Checkpoint #1
 Oracle RAC Redo Log

Chapter 15
Oracle GoldenGate Checkpoint Tables

15-18

 Startup Checkpoint (starting position in data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68548112
 Timestamp: 2011-01-01 13:37:51.000000
 SCN: 0.8439720
 Redo File: /orarac/oradata/racq/redo01.log

Recovery Checkpoint (position of oldest unprocessed transaction in data
source):
 Thread #: 1
 Sequence #: 47
 RBA: 68748304
 Timestamp: 2011-01-01 14:16:45.000000
 SCN: 0.8440969
Redo File: /orarac/oradata/racq/redo01.log
 Current Checkpoint (position of last record read in the data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68748800
 Timestamp: 2011-01-01 14:16:45.000000
 SCN: 0.8440969
 Redo File: /orarac/oradata/racq/redo01.log
Read Checkpoint #2
 Oracle RAC Redo Log
 Startup Checkpoint(starting position in data source):
 Sequence #: 24
 RBA: 60607504
 Timestamp: 2011-01-01 13:37:50.000000
 SCN: 0.8439719
 Redo File: /orarac/oradata/racq/redo04.log
Recovery Checkpoint (position of oldest unprocessed transaction in data
source):
 Thread #: 2
 Sequence #: 24
 RBA: 65657408
 Timestamp: 2011-01-01 14:16:19.000000
 SCN: 0.8440613
 Redo File: /orarac/oradata/racq/redo04.log
 Current Checkpoint (position of last record read in the data source):
 Thread #: 2
 Sequence #: 24
 RBA: 65657408
 Timestamp: 2011-01-01 14:16:19.000000
 SCN: 0.8440613
 Redo File: /orarac/oradata/racq/redo04.log
Write Checkpoint #1
 GGS Log Trail
 Current Checkpoint (current write position):
 Sequence #: 2
 RBA: 2142224
 Timestamp: 2011-01-01 14:16:50.567638
 Extract Trail: ./dirdat/eh
 Header:
 Version = 2

Chapter 15
Oracle GoldenGate Checkpoint Tables

15-19

 Record Source = A
 Type = 6
 # Input Checkpoints = 2
 # Output Checkpoints = 1
 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0
Configuration:
 Data Source = 3
 Transaction Integrity = 1
 Task Type = 0
 Status:
 Start Time = 2011-01-01 14:15:14
 Last Update Time = 2011-01-01 14:16:50
 Stop Status = A
 Last Result = 400

INFO REPLICAT, SHOWCH: Checkpoint Information

The basic command shows current checkpoints. To view a specific number of previous
checkpoints, type the value after the SHOWCH argument.

REPLICAT JC108RP Last Started 2011-01-12 13:10 Status RUNNING
Checkpoint Lag 00:00:00 (updated 111:46:54 ago)
Log Read Checkpoint File ./dirdat/eh000000000
 First Record RBA 3702915
Current Checkpoint Detail:
 Read Checkpoint #1
 GGS Log Trail
 Startup Checkpoint(starting position in data source):
 Sequence #: 0
 RBA: 3702915
 Timestamp: Not Available
 Extract Trail: ./dirdat/eh
 Current Checkpoint (position of last record read in the data source):
 Sequence #: 0
 RBA: 3702915
 Timestamp: Not Available
 Extract Trail: ./dirdat/eh
 Header:
 Version = 2
 Record Source = A
 Type = 1
 # Input Checkpoints = 1
 # Output Checkpoints =
 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0
 Configuration:

Chapter 15
Oracle GoldenGate Checkpoint Tables

15-20

 Data Source = 0
 Transaction Integrity = -1
 Task Type = 0
 Status:
 Start Time = 2011-01-12 13:10:13
 Last Update Time = 2011-01-12 21:23:31
 Stop Status = A
 Last Result = 400

Supported Character Sets

Here's a list of character sets that Oracle GoldenGate supports when converting data from
source to target.

The identifiers that are shown should be used for Oracle GoldenGate parameters or
commands when a character set must be specified, instead of the actual character set name.
Currently Oracle GoldenGate does not provide a facility to specify the database-specific
character set.

Topics:

• Supported Character Sets - Oracle

• Supported Character Sets - Non-Oracle

Supported Character Sets - Oracle

Table 15-1 Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

al32utf8 Unicode 9.0 Universal Character Set (UCS), UTF-8 encoding scheme

ar8ados710t Arabic MS-DOS 710 8-bit Latin/Arabic

ar8ados710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic

ar8ados720t Arabic MS-DOS 720 8-bit Latin/Arabic

ar8ados720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic

ar8aptec715t APTEC 715 8-bit Latin/Arabic

ar8aptec715 APTEC 715 Server 8-bit Latin/Arabic

ar8arabicmacs Mac Server 8-bit Latin/Arabic

ar8arabicmact Mac 8-bit Latin/Arabic

ar8arabicmac Mac Client 8-bit Latin/Arabic

ar8asmo708plus ASMO 708 Plus 8-bit Latin/Arabic

ar8asmo8x ASMO Extended 708 8-bit Latin/Arabic

ar8ebcdic420s EBCDIC Code Page 420 Server 8-bit Latin/Arabic

ar8ebcdicx EBCDIC XBASIC Server 8-bit Latin/Arabic

Chapter 15
Supported Character Sets

15-21

Table 15-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ar8hparabic8t HP 8-bit Latin/Arabic

ar8iso8859p6 ISO 8859-6 Latin/Arabic

ar8mswin1256 MS Windows Code Page 1256 8-Bit Latin/Arabic

ar8mussad768t Mussa'd Alarabi/2 768 8-bit Latin/Arabic

ar8mussad768 Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic

ar8nafitha711t Nafitha International 711 Server 8-bit Latin/Arabic

ar8nafitha711 Nafitha Enhanced 711 Server 8-bit Latin/Arabic

ar8nafitha721t Nafitha International 721 8-bit Latin/Arabic

ar8nafitha721 Nafitha International 721 Server 8-bit Latin/Arabic

ar8sakhr706 SAKHR 706 Server 8-bit Latin/Arabic

ar8sakhr707t SAKHR 707 8-bit Latin/Arabic

ar8sakhr707 SAKHR 707 Server 8-bit Latin/Arabic

ar8xbasic XBASIC 8-bit Latin/Arabic

az8iso8859p9e ISO 8859-9 Azerbaijani

bg8mswin MS Windows 8-bit Bulgarian Cyrillic

bg8pc437s IBM-PC Code Page 437 8-bit (Bulgarian Modification)

blt8cp921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic

blt8ebcdic1112s EBCDIC Code Page 1112 8-bit Server Baltic Multilingual

blt8ebcdic1112 EBCDIC Code Page 1112 8-bit Baltic Multilingual

blt8iso8859p13 ISO 8859-13 Baltic

blt8mswin1257 MS Windows Code Page 1257 8-bit Baltic

blt8pc775 IBM-PC Code Page 775 8-bit Baltic

bn8bscii Bangladesh National Code 8-bit BSCII

cdn8pc863 IBM-PC Code Page 863 8-bit Canadian French

ce8bs2000 Siemens EBCDIC.DF.04-2 8-bit Central European

cel8iso8859p14 ISO 8859-13 Celtic

ch7dec DEC VT100 7-bit Swiss (German/French)

cl8bs2000 Siemens EBCDIC.EHC.LC 8-bit Latin/Cyrillic-1

cl8ebcdic1025c EBCDIC Code Page 1025 Client 8-bit Cyrillic

cl8ebcdic1025r EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl8ebcdic1025s EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl8ebcdic1025 EBCDIC Code Page 1025 8-bit Cyrillic

cl8ebcdic1025x EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic

cl8ebcdic1158r EBCDIC Code Page 1158 Server 8-bit Cyrillic

Chapter 15
Supported Character Sets

15-22

Table 15-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

cl8ebcdic1158 EBCDIC Code Page 1158 8-bit Cyrillic

cl8iso8859p5 ISO 8859-5 Latin/Cyrillic

cl8isoir111 SOIR111 Cyrillic

cl8koi8r RELCOM Internet Standard 8-bit Latin/Cyrillic

cl8koi8u KOI8 Ukrainian Cyrillic

cl8maccyrillics Mac Server 8-bit Latin/Cyrillic

cl8maccyrillic Mac Client 8-bit Latin/Cyrillic

cl8mswin1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic

d7dec DEC VT100 7-bit German

d7siemens9780x Siemens 97801/97808 7-bit German

d8bs2000 Siemens 9750-62 EBCDIC 8-bit German

d8ebcdic1141 EBCDIC Code Page 1141 8-bit Austrian German

d8ebcdic273 EBCDIC Code Page 273/1 8-bit Austrian German

dk7siemens9780x Siemens 97801/97808 7-bit Danish

dk8bs2000 Siemens 9750-62 EBCDIC 8-bit Danish

dk8ebcdic1142 EBCDIC Code Page 1142 8-bit Danish

dk8ebcdic277 EBCDIC Code Page 277/1 8-bit Danish

e7dec DEC VT100 7-bit Spanish

e7siemens9780x Siemens 97801/97808 7-bit Spanish

e8bs2000 Siemens 9750-62 EBCDIC 8-bit Spanish

ee8bs2000 Siemens EBCDIC.EHC.L2 8-bit East European

ee8ebcdic870c EBCDIC Code Page 870 Client 8-bit East European

ee8ebcdic870s EBCDIC Code Page 870 Server 8-bit East European

ee8ebcdic870 EBCDIC Code Page 870 8-bit East European

ee8iso8859p2 ISO 8859-2 East European

ee8macces Mac Server 8-bit Central European

ee8macce Mac Client 8-bit Central European

ee8maccroatians Mac Server 8-bit Croatian

ee8maccroatian Mac Client 8-bit Croatian

ee8mswin1250 MS Windows Code Page 1250 8-bit East European

ee8pc852 IBM-PC Code Page 852 8-bit East European

eec8euroasci EEC Targon 35 ASCI West European/Greek

eec8europa3 EEC EUROPA3 8-bit West European/Greek

el8dec DEC 8-bit Latin/Greek

Chapter 15
Supported Character Sets

15-23

Table 15-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

el8ebcdic423r IBM EBCDIC Code Page 423 for RDBMS server-side

el8ebcdic875r EBCDIC Code Page 875 Server 8-bit Greek

el8ebcdic875s EBCDIC Code Page 875 Server 8-bit Greek

el8ebcdic875 EBCDIC Code Page 875 8-bit Greek

el8gcos7 Bull EBCDIC GCOS7 8-bit Greek

el8iso8859p7 ISO 8859-7 Latin/Greek

el8macgreeks Mac Server 8-bit Greek

el8macgreek Mac Client 8-bit Greek

el8mswin1253 MS Windows Code Page 1253 8-bit Latin/Greek

el8pc437s IBM-PC Code Page 437 8-bit (Greek modification)

el8pc737 IBM-PC Code Page 737 8-bit Greek/Latin

el8pc851 IBM-PC Code Page 851 8-bit Greek/Latin

el8pc869 IBM-PC Code Page 869 8-bit Greek/Latin

et8mswin923 MS Windows Code Page 923 8-bit Estonian

f7dec DEC VT100 7-bit French

f7siemens9780x Siemens 97801/97808 7-bit French

f8bs2000 Siemens 9750-62 EBCDIC 8-bit French

f8ebcdic1147 EBCDIC Code Page 1147 8-bit French

f8ebcdic297 EBCDIC Code Page 297 8-bit French

hu8abmod Hungarian 8-bit Special AB Mod

hu8cwi2 Hungarian 8-bit CWI-2

i7dec DEC VT100 7-bit Italian

i7siemens9780x Siemens 97801/97808 7-bit Italian

i8ebcdic1144 EBCDIC Code Page 1144 8-bit Italian

i8ebcdic280 EBCDIC Code Page 280/1 8-bit Italian

in8iscii Multiple-Script Indian Standard 8-bit Latin/Indian

is8macicelandics Mac Server 8-bit Icelandic

is8macicelandic Mac Client 8-bit Icelandic

is8pc861 IBM-PC Code Page 861 8-bit Icelandic

iw7is960 Israeli Standard 960 7-bit Latin/Hebrew

iw8ebcdic1086 EBCDIC Code Page 1086 8-bit Hebrew

iw8ebcdic424s EBCDIC Code Page 424 Server 8-bit Latin/Hebrew

iw8ebcdic424 EBCDIC Code Page 424 8-bit Latin/Hebrew

iw8iso8859p8 ISO 8859-8 Latin/Hebrew

Chapter 15
Supported Character Sets

15-24

Table 15-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

iw8machebrews Mac Server 8-bit Hebrew

iw8machebrew Mac Client 8-bit Hebrew

iw8mswin1255 MS Windows Code Page 1255 8-bit Latin/Hebrew

iw8pc1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew

ja16dbcs IBM EBCDIC 16-bit Japanese

ja16ebcdic930 IBM DBCS Code Page 290 16-bit Japanese

ja16euctilde Same as ja16euc except for the way that the wave dash and the tilde are
mapped to and from Unicode

ja16euc EUC 24-bit Japanese

ja16eucyen EUC 24-bit Japanese with '\' mapped to the Japanese yen character

ja16macsjis Mac client Shift-JIS 16-bit Japanese

ja16sjistilde Same as ja16sjis except for the way that the wave dash and the tilde are
mapped to and from Unicode.

ja16sjis Shift-JIS 16-bit Japanese

ja16sjisyen Shift-JIS 16-bit Japanese with '\' mapped to the Japanese yen character

ja16vms JVMS 16-bit Japanese

ko16dbcs IBM EBCDIC 16-bit Korean

ko16ksc5601 KSC5601 16-bit Korean

ko16ksccs KSCCS 16-bit Korean

ko16mswin949 MS Windows Code Page 949 Korean

la8iso6937 ISO 6937 8-bit Coded Character Set for Text Communication

la8passport German Government Printer 8-bit All-European Latin

lt8mswin921 MS Windows Code Page 921 8-bit Lithuanian

lt8pc772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic)

lt8pc774 IBM-PC Code Page 774 8-bit Lithuanian (Latin)

lv8pc1117 IBM-PC Code Page 1117 8-bit Latvian

lv8pc8lr Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic

lv8rst104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic)

n7siemens9780x Siemens 97801/97808 7-bit Norwegian

n8pc865 IBM-PC Code Page 865 8-bit Norwegian

ndk7dec DEC VT100 7-bit Norwegian/Danish

ne8iso8859p10 ISO 8859-10 North European

nee8iso8859p4 ISO 8859-4 North and North-East European

nl7dec DEC VT100 7-bit Dutch

Chapter 15
Supported Character Sets

15-25

Table 15-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ru8besta BESTA 8-bit Latin/Cyrillic

ru8pc855 IBM-PC Code Page 855 8-bit Latin/Cyrillic

ru8pc866 IBM-PC Code Page 866 8-bit Latin/Cyrillic

s7dec DEC VT100 7-bit Swedish

s7siemens9780x Siemens 97801/97808 7-bit Swedish

s8bs2000 Siemens 9750-62 EBCDIC 8-bit Swedish

s8ebcdic1143 EBCDIC Code Page 1143 8-bit Swedish

s8ebcdic278 EBCDIC Code Page 278/1 8-bit Swedish

se8iso8859p3 ISO 8859-3 South European

sf7ascii ASCII 7-bit Finnish

sf7dec DEC VT100 7-bit Finnish

th8macthais Mac Server 8-bit Latin/Thai

th8macthai Mac Client 8-bit Latin/Thai

th8tisascii Thai Industrial Standard 620-2533 - ASCII 8-bit

th8tisebcdics Thai Industrial Standard 620-2533 - EBCDIC Server 8-bit

th8tisebcdic Thai Industrial Standard 620-2533 - EBCDIC 8-bit

tr7dec DEC VT100 7-bit Turkish

tr8dec DEC 8-bit Turkish

tr8ebcdic1026s EBCDIC Code Page 1026 Server 8-bit Turkish

tr8ebcdic1026 EBCDIC Code Page 1026 8-bit Turkish

tr8macturkishs Mac Server 8-bit Turkish

tr8macturkish Mac Client 8-bit Turkish

tr8mswin1254 MS Windows Code Page 1254 8-bit Turkish

tr8pc857 IBM-PC Code Page 857 8-bit Turkish

us7ascii ASCII 7-bit American

us8bs2000 Siemens 9750-62 EBCDIC 8-bit American

us8icl ICL EBCDIC 8-bit American

us8pc437 IBM-PC Code Page 437 8-bit American

vn8mswin1258 MS Windows Code Page 1258 8-bit Vietnamese

vn8vn3 VN3 8-bit Vietnamese

we8bs2000e Siemens EBCDIC.DF.04-F 8-bit West European with Euro symbol

we8bs2000l5 Siemens EBCDIC.DF.04-9 8-bit WE & Turkish

we8bs2000 Siemens EBCDIC.DF.04-1 8-bit West European

we8dec DEC 8-bit West European

Chapter 15
Supported Character Sets

15-26

Table 15-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

we8dg DG 8-bit West European

we8ebcdic1047e Latin 1/Open Systems 1047

we8ebcdic1047 EBCDIC Code Page 1047 8-bit West European

we8ebcdic1140c EBCDIC Code Page 1140 Client 8-bit West European

we8ebcdic1140 EBCDIC Code Page 1140 8-bit West European

we8ebcdic1145 EBCDIC Code Page 1145 8-bit West European

we8ebcdic1146 EBCDIC Code Page 1146 8-bit West European

we8ebcdic1148c EBCDIC Code Page 1148 Client 8-bit West European

we8ebcdic1148 EBCDIC Code Page 1148 8-bit West European

we8ebcdic284 EBCDIC Code Page 284 8-bit Latin American/Spanish

we8ebcdic285 EBCDIC Code Page 285 8-bit West European

we8ebcdic37c EBCDIC Code Page 37 8-bit Oracle/c

we8ebcdic37 EBCDIC Code Page 37 8-bit West European

we8ebcdic500c EBCDIC Code Page 500 8-bit Oracle/c

we8ebcdic500 EBCDIC Code Page 500 8-bit West European

we8ebcdic871 EBCDIC Code Page 871 8-bit Icelandic

we8ebcdic924 Latin 9 EBCDIC 924

we8gcos7 Bull EBCDIC GCOS7 8-bit West European

we8hp HP LaserJet 8-bit West European

we8icl ICL EBCDIC 8-bit West European

we8iso8859p15 ISO 8859-15 West European

we8iso8859p1 ISO 8859-1 West European

we8iso8859p9 ISO 8859-9 West European & Turkish

we8isoicluk ICL special version ISO8859-1

we8macroman8s Mac Server 8-bit Extended Roman8 West European

we8macroman8 Mac Client 8-bit Extended Roman8 West European

we8mswin1252 MS Windows Code Page 1252 8-bit West European

we8ncr4970 NCR 4970 8-bit West European

we8nextstep NeXTSTEP PostScript 8-bit West European

we8pc850 IBM-PC Code Page 850 8-bit West European

we8pc858 IBM-PC Code Page 858 8-bit West European

we8pc860 IBM-PC Code Page 860 8-bit West European

we8roman8 HP Roman8 8-bit West European

yug7ascii ASCII 7-bit Yugoslavian

Chapter 15
Supported Character Sets

15-27

Table 15-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

zhs16cgb231280 CGB2312-80 16-bit Simplified Chinese

zhs16dbcs IBM EBCDIC 16-bit Simplified Chinese

zhs16gbk GBK 16-bit Simplified Chinese

zhs16maccgb231280 Mac client CGB2312-80 16-bit Simplified Chinese

zht16big5 BIG5 16-bit Traditional Chinese

zht16ccdc HP CCDC 16-bit Traditional Chinese

zht16dbcs IBM EBCDIC 16-bit Traditional Chinese

zht16dbt Taiwan Taxation 16-bit Traditional Chinese

zht16hkscs31 MS Windows Code Page 950 with Hong Kong Supplementary Character Set
HKSCS-2001 (character set conversion to and from Unicode is based on
Unicode 3.1)

zht16hkscs MS Windows Code Page 950 with Hong Kong Supplementary Character Set
HKSCS-2001 (character set conversion to and from Unicode is based on
Unicode 3.0)

zht16mswin950 MS Windows Code Page 950 Traditional Chinese

zht32euc EUC 32-bit Traditional Chinese

zht32sops SOPS 32-bit Traditional Chinese

zht32tris TRIS 32-bit Traditional Chinese

Supported Character Sets - Non-Oracle

Identifier to use in
parameter files
and commands

Character set

UTF-8 ISO-10646 UTF-8, surrogate pairs are 4 bytes per character

UTF-16 ISO-10646 UTF-16

UTF-16BE UTF-16 Big Endian

UTF-16LE UTF-16 Little Endian

UTF-32 ISO-10646 UTF-32

UTF-32BE UTF-32 Big Endian

UTF-32LE UTF-32 Little Endian

Chapter 15
Supported Character Sets

15-28

Identifier to use in
parameter files
and commands

Character set

CESU-8 Similar to UTF-8, correspond to UCS-2 and surrogate pairs are 6 bytes
per character

US-ASCII US-ASCII, ANSI X34-1986

windows-1250 Windows Central Europe

windows-1251 Windows Cyrillic

windows-1252 Windows Latin-1

windows-1253 Windows Greek

windows-1254 Windows Turkish

windows-1255 Windows Hebrew

windows-1256 Windows Arabic

windows-1257 Windows Baltic

windows-1258 Windows Vietnam

windows-874 Windows Thai

cp437 DOS Latin-1

ibm-720 DOS Arabic

cp737 DOS Greek

cp775 DOS Baltic

cp850 DOS multilingual

cp851 DOS Greek-1

cp852 DOS Latin-2

cp855 DOS Cyrillic

cp856 DOS Cyrillic / IBM

Chapter 15
Supported Character Sets

15-29

Identifier to use in
parameter files
and commands

Character set

cp857 DOS Turkish

cp858 DOS Multilingual with Euro

cp860 DOS Portuguese

cp861 DOS Icelandic

cp862 DOS Hebrew

cp863 DOS French

cp864 DOS Arabic

cp865 DOS Nordic

cp866 DOS Cyrillic / GOST 19768-87

ibm-867 DOS Hebrew / IBM

cp868 DOS Urdu

cp869 DOS Greek-2

ISO-8859-1 ISO-8859-1 Latin-1/Western Europe

ISO-8859-2 ISO-8859-2 Latin-2/Eastern Europe

ISO-8859-3 ISO-8859-3 Latin-3/South Europe

ISO-8859-4 ISO-8859-4 Latin-4/North Europe

ISO-8859-5 ISO-8859-5 Latin/Cyrillic

ISO-8859-6 ISO-8859-6 Latin/Arabic

ISO-8859-7 ISO-8859-7 Latin/Greek

ISO-8859-8 ISO-8859-8 Latin/Hebrew

ISO-8859-9 ISO-8859-9 Latin-5/Turkish

Chapter 15
Supported Character Sets

15-30

Identifier to use in
parameter files
and commands

Character set

ISO-8859-10 ISO-8859-10 Latin-6/Nordic

ISO-8859-11 ISO-8859-11 Latin/Thai

ISO-8859-13 ISO-8859-13 Latin-7/Baltic Rim

ISO-8859-14 ISO-8859-14 Latin-8/Celtic

ISO-8859-15 ISO-8859-15 Latin-9/Western Europe

IBM037 IBM 037-1/697-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US,
and 037/1175 Traditional Chinese

IBM01140 IBM 1140-1/695-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US,
and 1140/1175 Traditional Chinese

IBM273 IBM 273-1/697-1 EBCDIC, Austria, Germany

IBM01141 IBM 1141-1/695-1 EBCDIC, Austria, Germany

IBM277 IBM 277-1/697-1 EBCDIC, Denmark, Norway

IBM01142 IBM 1142-1/695-1 EBCIDC, Denmark, Norway

IBM278 IBM 278-1/697-1 EBCDIC, Finland, Sweden

IBM01143 IBM 1143-1/695-1 EBCDIC, Finland, Sweden

IBM280 IBM 280-1/697-1 EBCDIC, Italy

IBM01144 IBM 1144-1/695-1 EBCDIC, Italy

IBM284 IBM 284-1/697-1 EBCDIC, Latin America, Spain

IBM01145 IBM 1145-1/695-1 EBCDIC, Latin America, Spain

IBM285 IBM 285-1/697-1 EBCDIC, United Kingdom

IBM01146 IBM 1146-1/695-1 EBCDIC, United Kingdom

IBM290 IBM 290 EBCDIC, Japan (Katakana) Extended

IBM297 IBM 297-1/697-1 EBCDIC, France

Chapter 15
Supported Character Sets

15-31

Identifier to use in
parameter files
and commands

Character set

IBM01147 IBM 1147-1/695-1 EBCDIC, France

IBM420 IBM 420 EBCDIC, Arabic Bilingual

IBM424 IBM 424/941 EBCDIC, Israel (Hebrew - Bulletin Code)

IBM500 IBM 500-1/697-1 EBCDIC, International

IBM01148 IBM 1148-1/695-1 EBCDIC International

IBM870 IBM 870/959 EBCDIC, Latin-2 Multilingual

IBM871 IBM 871-1/697-1 EBCDIC Iceland

IBM918 IBM EBCDIC code page 918, Arabic 2

IBM1149 IBM 1149-1/695-1, EBCDIC Iceland

IBM1047 IBM 1047/103 EBCDIC, Latin-1 (Open Systems)

ibm-803 IBM 803 EBCDIC, Israel (Hebrew - Old Code)

IBM875 IBM 875 EBCDIC, Greece

ibm-924 IBM 924-1/1353-1 EBCDIC International

ibm-1153 IBM 1153/1375 EBCDIC, Latin-2 Multilingual

ibm-1122 IBM 1122/1037 EBCDIC, Estonia

ibm-1157 IBM 1157/1391 EBCDIC, Estonia

ibm-1112 IBM 1112/1035 EBCDIC, Latvia, Lithuania

ibm-1156 IBM 1156/1393 EBCDIC, Latvia, Lithuania

ibm-4899 IBM EBCDIC code page 4899, Hebrew with Euro

ibm-12712 IBM 12712 EBCDIC, Hebrew (max set including Euro)

ibm-1097 IBM 1097 EBCDIC, Farsi

Chapter 15
Supported Character Sets

15-32

Identifier to use in
parameter files
and commands

Character set

ibm-1018 IBM 1018 EBCDIC, Finland Sweden (ISO-7)

ibm-1132 IBM 1132 EBCDIC, Laos

ibm-1137 IBM EBCDIC code page 1137, Devanagari

ibm-1025 IBM 1025/1150 EBCDIC, Cyrillic

ibm-1154 IBM EBCDIC code page 1154, Cyrillic with Euro

IBM1026 IBM 1026/1152 EBCDIC, Latin-5 Turkey

ibm-1155 IBM EBCDIC code page 1155, Turkish with Euro

ibm-1123 IBM 1123 EBCDIC, Ukraine

ibm-1158 IBM EBCDIC code page 1158, Ukranian with Euro

IBM838 IBM 838/1173 EBCDIC, Thai

ibm-1160 IBM EBCDIC code page 1160, Thai with Euro

ibm-1130 IBM 1130 EBCDIC, Vietnam

ibm-1164 IBM EBCDIC code page 1164, Vietnamese with Euro

ibm-4517 IBM EBCDIC code page 4517, Arabic French

ibm-4971 IBM EBCDIC code page 4971, Greek

ibm-9067 IBM EBCDIC code page 9067, Greek 2005

ibm-16804 IBM EBCDIC code page 16804, Arabic

KOI8-R Russian and Cyrillic (KOI8-R)

KOI8-U Ukranian (KOI8-U)

eucTH EUC Thai

ibm-1162 Windows Thai with Euro

Chapter 15
Supported Character Sets

15-33

Identifier to use in
parameter files
and commands

Character set

DEC-MCS DEC Multilingual

hp-roman8 HP Latin-1 Roman8

ibm-901 IBM Baltic ISO-8 CCSID 901

ibm-902 IBM Estonia ISO-8 with Euro CCSID 902

ibm-916 IBM ISO8859-8 CCSID

ibm-922 IBM Estonia ISO-8 CCSID 922

ibm-1006 IBM Urdu ISO-8 CCSID 1006

ibm-1098 IBM Farsi PC CCSID 1098

ibm-1124 Ukranian ISO-8 CCSID 1124

ibm-1125 Ukranian without Euro CCSID 1125

ibm-1129 IBM Vietnamese without Euro CCSID 1129

ibm-1131 IBM Belarusi CCSID 1131

ibm-1133 IBM Lao CCSID 1133

ibm-4909 IBM Greek Latin ASCII CCSID 4909

JIS_X201 JIS X201 Japanese

windows-932 Windows Japanese

windows-936 Windows Simplified Chinese

ibm-942 IBM Windows Japanese

windows-949 Windows Korean

windows-950 Windows Traditional Chinese

eucjis EUC Japanese

Chapter 15
Supported Character Sets

15-34

Identifier to use in
parameter files
and commands

Character set

EUC-JP IBM/MS EUC Japanese

EUC-CN EUC Simplified Chinese, GBK

EUC-KR EUC Korean

EUC-TW EUC Traditional Chinese

ibm-930 IBM 930/5026 Japanese

ibm-933 IBM 933 Korean

ibm-935 IBM 935 Simplified Chinese

ibm-937 IBM 937 Traditional Chinese

ibm-939 IBM 939/5035 Japanese

ibm-1364 IBM 1364 Korean

ibm-1371 IBM 1371 Traditional Chinese

ibm-1388 IBM 1388 Simplified Chinese

ibm-1390 IBM 1390 Japanese

ibm-1399 IBM 1399 Japanese

ibm-5123 IBM CCSID 5123 Japanese

ibm-8482 IBM CCSID 8482 Japanese

ibm-13218 IBM CCSID 13218 Japanese

ibm-16684 IBM CCSID 16684 Japanese

shiftjis Japanese Shift JIS, Tilde 0x8160 mapped to U+301C

gb18030 GB-18030

GB2312 GB-2312-1980

Chapter 15
Supported Character Sets

15-35

Identifier to use in
parameter files
and commands

Character set

GBK GBK

HZ HZ GB2312

Ibm-1381 IBM CCSID 1381 Simplified Chinese

Big5 Big5, Traditional Chinese

Big5-HKSCS Big5, HongKong ext.

Big5-HKSCS2001 Big5, HongKong ext. HKSCS-2001

ibm-950 IBM Big5, CCSID 950

ibm-949 CCSID 949 Korean

ibm-949C IBM CCSID 949 Korean, has backslash

ibm-971 IBM CCSID 971 Korean EUC, KSC5601 1989

x-IBM1363 IBM CCSID 1363, Korean

Supported Locales

Here's a list of the locales that are supported by Oracle GoldenGate. The locale is
used when comparing case-insensitive object names.

af
af_NA
af_ZA
am
am_ET
ar
ar_AE
ar_BH
ar_DZ
ar_EG
ar_IQ
ar_JO
ar_KW
ar_LB
ar_LY

Chapter 15
Supported Locales

15-36

ar_MA
ar_OM
ar_QA
ar_SA
ar_SD
ar_SY
ar_TN
ar_YE
as
as_IN
az
az_Cyrl
az_Cyrl_AZ
az_Latn
az_Latn_AZ
be
be_BY
bg
bg_BG
bn
bn_BD
bn_IN
ca
ca_ES
cs
cs_CZ
cy
cy_GB
da
da_DK
de
de_AT
de_BE
de_CH
de_DE
de_LI
de_LU
el
el_CY
el_GR
en
en_AU
en_BE
en_BW
en_BZ
en_CA
en_GB
en_HK
en_IE

Chapter 15
Supported Locales

15-37

en_IN
en_JM
en_MH
en_MT
en_NA
en_NZ
en_PH
en_PK
en_SG
en_TT
en_US
en_US_POSIX
en_VI
en_ZA
en_ZW
eo
es
es_AR
es_BO
es_CL
es_CO
es_CR
es_DO
es_EC
es_ES
es_GT
es_HN
es_MX
es_NI
es_PA
es_PE
es_PR
es_PY
es_SV
es_US
es_UY
es_VE
et
et_EE
eu
eu_ES
fa
fa_AF
fa_IR
fi
fi_FI
fo
fo_FO
fr

Chapter 15
Supported Locales

15-38

fr_BE
fr_CA
fr_CH
fr_FR
fr_LU
fr_MC
ga
ga_IE
gl
gl_ES
gu
gu_IN
gv
gv_GB
haw
haw_US
he
he_IL
hi
hi_IN
hr
hr_HR
hu
hu_HU
hy
hy_AM
hy_AM_REVISED
id
id_ID
is
is_IS
it
it_CH
it_IT
ja
ja_JP
ka
ka_GE
kk
kk_KZ
kl
kl_GL
km
km_KH
kn
kn_IN
ko
ko_KR
kok

Chapter 15
Supported Locales

15-39

kok_IN
kw
kw_GB
lt
lt_LT
lv
lv_LV
mk
mk_MK
ml
ml_IN
mr
mr_IN
ms
ms_BN
ms_MY
mt
mt_MT
nb
nb_NO
nl
nl_BE
nl_NL
nn
nn_NO
om
om_ET
om_KE
or
or_IN
pa
pa_Guru
pa_Guru_IN
pl
pl_PL
ps
ps_AF
pt
pt_BR
pt_PT
ro
ro_RO
ru
ru_RU
ru_UA
sk
sk_SK
sl
sl_SI

Chapter 15
Supported Locales

15-40

so
so_DJ
so_ET
so_KE
so_SO
sq
sq_AL
sr
sr_Cyrl
sr_Cyrl_BA
sr_Cyrl_ME
sr_Cyrl_RS
sr_Latn
sr_Latn_BA
sr_Latn_ME
sr_Latn_RS
sv
sv_FI
sv_SE
sw
sw_KE
sw_TZ
ta
ta_IN
te
te_IN
th
th_TH
ti
ti_ER
ti_ET
tr
tr_TR
uk
uk_UA
ur
ur_IN
ur_PK
uz
uz_Arab
uz_Arab_AF
uz_Cyrl
uz_Cyrl_UZ
uz_Latn
uz_Latn_UZ
vi
vi_VN
zh
zh_Hans

Chapter 15
Supported Locales

15-41

zh_Hans_CN
zh_Hans_SG
zh_Hant
zh_Hant_HK
zh_Hant_MO
zh_Hant_TW

Commit Sequence Number (CSN)
When working with Oracle GoldenGate, you might need to refer to a Commit
Sequence Number (CSN). A CSN is an identifier that Oracle GoldenGate constructs to
identify a transaction for the purpose of maintaining transactional consistency and data
integrity. It uniquely identifies a point in time in which a transaction commits to the
database.

The CSN can be required to position Extract in the transaction log, to reposition
Replicat in the trail, or for other purposes. It is returned by some conversion functions
and is included in reports and certain command output.

A CSN is a monotonically increasing identifier generated by Oracle GoldenGate that
uniquely identifies a point in time when a transaction commits to the database. It
purpose is to ensure transactional consistency and data integrity as transactions are
replicated from source to target. Each kind of database management system
generates some kind of unique serial number of its own at the completion of each
transaction, which uniquely identifies the commit of that transaction. For example, the
Oracle RDBMS generates a System Change Number, which is a monotonically
increasing sequence number assigned to every event by Oracle RDBMS. The CSN
captures this same identifying information and represents it internally as a series of
bytes, but the CSN is processed in a platform-independent manner. A comparison of
any two CSN numbers, each of which is bound to a transaction-commit record in the
same log stream, reliably indicates the order in which the two transactions completed.

The CSN is cross-checked with the transaction ID (displayed as XID in Oracle
GoldenGate informational output). The XID-CSN combination uniquely identifies a
transaction even in cases where there are multiple transactions that commit at the
same time, and thus have the same CSN. For example, this can happen in an Oracle
RAC environment, where there is parallelism and high transaction concurrency.

The CSN value is stored as a token in any trail record that identifies the commit of a
transaction. This value can be retrieved with the @GETENV column conversion function
and viewed with the Logdump utility.

• Using the Commit Sequence Number
This appendix contains information about using the Oracle GoldenGate Commit
Sequence Number (CSN) with Oracle and non-Oracle databases.

Using the Commit Sequence Number
This appendix contains information about using the Oracle GoldenGate Commit
Sequence Number (CSN) with Oracle and non-Oracle databases.

All database platforms except Oracle, Db2 LUW, and Db2 z/OS have fixed-length
CSNs, which are padded with leading zeroes as required to fill the fixed length. CSNs
that contain multiple fields can be padded within each field. For more information on

Chapter 15
Commit Sequence Number (CSN)

15-42

CSN, see in Overview: Commit Sequence Number (CSN) in the Oracle GoldenGate
Microservices guide.

MySQL does not create a transaction ID as part of its event data, so Oracle GoldenGate
considers a unique transaction identifier to be a combination of the following:

• the log file number of the log file that contains the START TRANSACTION record for the
transaction that is being identified

• the record offset of that record

Table 15-2 Oracle GoldenGate CSN Values Per Database

Database CSN Value

Db2 for i sequence_number
Where:

• sequence_number is the fixed-length, 20 digit, decimal-based Db2 for i
journal sequence number.

Example:

12345678901234567890

Db2 LUW LRI
Where:

For version 10.1 and later, LRI is a period-separated pair of numbers for the
Db2 log record identifier.

Example:

123455.34645

Db2 z/OS
LSN

where:

• LSN is, up to 20 hexadecimal digit representation of the 10 byte LSN in the
transaction log.

Note:

Oracle GoldenGate uses LSN to represent both the non-data
sharing LSN and data sharing LRSN as the format is same.

Example:

0x1A3367F6BA12289

Chapter 15
Commit Sequence Number (CSN)

15-43

Table 15-2 (Cont.) Oracle GoldenGate CSN Values Per Database

Database CSN Value

MySQL
LogNum:LogPosition

Where:
• LogNum is the the name of the log file that contains the START

TRANSACTION record for the transaction that is being identified.

• LogPosition is the event offset value of that record. Event offset values
are stored in the record header section of a log record.

For example, if the log number is 12 and the log position is 121, the CSN is:

000012:000000000000121

MySQL (Group
Replication) SeqNum:GTID

In the preceding syntax:
• SeqNum is the Oracle GoldenGate sequence number.

• GTID the MySQL global transaction identifier.

For example, if the sequence number is 00000000000000000001 and the
GTID is f77024f9-f4e3-11eb-
a052-0021f6e03f10:0000000000000010654, then the CSN value is:

00000000000000000001:f77024f9-f4e3-11eb-
a052-0021f6e03f10:0000000000000010654

Oracle
system_change_number

Where:
• system_change number is the Oracle SCN value.

Example:

6488359

Chapter 15
Commit Sequence Number (CSN)

15-44

Table 15-2 (Cont.) Oracle GoldenGate CSN Values Per Database

Database CSN Value

SQL Server Can be any of these, depending on how the database returns it:

• Colon separated hex string (8:8:4) padded with leading zeroes and 0X
prefix

• Colon separated decimal string (10:10:5) padded with leading zeroes

• Colon separated hex string with 0X prefix and without leading zeroes

• Colon separated decimal string without leading zeroes
• Decimal string
Where:
• The first value is the virtual log file number, the second is the segment

number within the virtual log, and the third is the entry number.
Examples:

0X00000d7e:0000036b:01bd
0000003454:0000000875:00445
0Xd7e:36b:1bd
3454:875:445
3454000000087500445

Connecting Microservices and Classic Architectures
This topic lists the steps to establish a connection between Oracle GoldenGate Microservices
and Classic architectures.

Topics:

• Connect Oracle GoldenGate Classic Architecture to Microservices Architecture

• Connect Oracle GoldenGate Microservices Architecture to Classic Architecture

Connect Oracle GoldenGate Classic Architecture to Microservices
Architecture

Oracle GoldenGate Classic Architecture uses the data pump Extract in Admin Client and
GGSCI to connect to Microservices Architecture

Chapter 15
Connecting Microservices and Classic Architectures

15-45

Note:

Oracle GoldenGate Classic Architecture's pump Extract can only connect to
an un-secured Microservice Architecture deployment, of which the receiver
server's port is open for ingress traffic.

If the above requirement is a security concern, it is recommended to install
Microservices Architecture on the same target, along with Classic
Architecture, and use a reverse proxy server to allow wss distribution path
between these two Microservices Architecture deployments. After this
distribution path is established, the Classic Architecture deployment can pick
up the trail from the same location on the target.

To connect Oracle GoldenGate Classic Architecture and Microservices follow these
steps:

Note:

To establish a connection between Oracle GoldenGate Classic Architecture
and Microservices, only non-secured MA deployments are supported.
Secure Microservices Architecture deployments are not supported.

Create a data pump Extract

Note:

To perform this task, an existing data pump Extract must be running in
Classic Architecture.

1. Log in to GGSCI.

2. Add a data pump Extract using the command:

ADD EXTRACT dp_name, EXTTRAILSOURCE ./dirdat/aa
This example uses, dp_name as the name of the data pump Extract.

3. Add the remote trail to the data pump Extract using the command:

ADD RMTTRAIL ab, EXTRACT dp_name, MEGABYTES 500

4. Edit the parameter file for the data pump Extract using the command:

EDIT PARAMS dp_name

Chapter 15
Connecting Microservices and Classic Architectures

15-46

Here is an example of the data pump Extract parameter file:

EXTRACT dp_name
RMTHOST hostname-or-IP-address, PORT receiver-service-port
RMTTRAIL ab
PASSTHRU
TABLE pdb.schema.table;

Start the data pump Extract
Use the following command to start the data pump Extract dp_name:

START EXTRACT dp_name

Once the data pump Extract has started, the Receiver Service establishes a path and begins
reading the remote trail file. The remote trail file appears in the $OGG_VAR_HOME/lib/data of
the associated deployment running the Receiver Service.

Connect Oracle GoldenGate Microservices Architecture to Classic
Architecture

To establish a connection to Classic Architecture from Microservices Architecture, the
Distribution Service in Oracle GoldenGate Microservices Architecture must know where to
place the remote trail file for reading.

To connect Oracle GoldenGate Microservices Architecture and Classic Architecture follow
these steps:

Note:

For this procedure to work only the ogg protocol is supported and an existing
Extract must be running in Microservices Architecture.

Task 1: Start Manager in Classic Architecture

1. Log in to GGSCI.

2. Use the command:

START MANAGER

For more information, see START MANAGER in Reference for Oracle GoldenGate.

Task 2: Add a Distribution Path

1. Launch the Distribution Service web interface.

2. Click the plus (+) sign next to Path. The Add Path page is displayed.

3. Enter the following details on the Add Path page:

Options Description

Path Name Enter the name of the Distribution Path.

Chapter 15
Connecting Microservices and Classic Architectures

15-47

Options Description

Description Enter the description of the Distribution Path.

Source Select Extract from the drop-down list.
Enter the Extract name in the text box below it.

Generated Source URI Enter the location of the source trail file.

Target Select ogg as the target protocol from the
drop-down list.
Enter the following in the given order:

a. Target Hostname: Name of the target
host service to which the connection will
be established.

b. Target Manager Port: Port number of the
Oracle GoldenGate Classic Architecture
Manager port.

c. Target sub-directory for the trail file:
Name of the subdirectory where the trail
file is to be stored. For example, .dirdat.

d. Target trail file name: Name of the target
trail file, such as ea.

Generated Target URI The location of the target trail file is displayed.

Target Encryption Algorithm Select NONE from the drop-down list.
To encrypt the target trail file, select the
appropriate encryption algorithm from the
drop-down list.

Enable Network Compression Select this option if you want to enable network
compression.

Sequence Length Select the required value from the drop-down
list for target trail sequence length. The default
value is 9.

Trail Size (MB) Specify the value of the trail file size, as per
your requirements.

Configure Trail Format Select this option if you want the trail file in any
of the following formats:
• TEXT
• SQL
• XML

Encryption Profile This is the encryption profile that was used to
encrypt the trail file when it was generated.
However, certain encryption methods are only
available in Microservices Architecture and are
not supported by Classic Architecture, so use
this feature with caution.

Chapter 15
Connecting Microservices and Classic Architectures

15-48

Options Description

Target Type Select Manager as the target type.
Alternatively, you can select Collector or
Receiver Service.
When connecting Microservices architecture
with other Microservices architecture, select
the Receiver Service option. When
connecting Microservices architecture with
Classic architecture, select either the Manager
or Collector option. If you select the Collector
option, you need to start a static collector
beforehand on the Classic architecture and use
that static collector port as the value of the
Target Manager Port field.

Begin Select the Position in Log option from the
drop-down list.

Source Sequence Number Enter the sequence value of the source trail.

Source RBA Offset Enter the value of the RBA offset of the source
trail if you want the path to start reading from a
specific RBA.

4. Click Create Path or Create and Run, as required. Select Cancel if you need to
get out of the Add Path page without adding a path.

After the path is created, you’ll be able to see the new path in the Distribution Service home
page.

Chapter 15
Connecting Microservices and Classic Architectures

15-49

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Concepts
	Oracle GoldenGate
	Why Do You Need Oracle GoldenGate?
	When Do You Use Oracle GoldenGate?
	Topologies for Oracle GoldenGate
	Oracle GoldenGate Product Family

	Oracle GoldenGate Microservices Architecture
	Features of Oracle GoldenGate Microservices Architecture
	Access Points for Oracle GoldenGate Microservices
	Admin Client
	REST API

	Components of Oracle GoldenGate Microservices Architecture
	Directories and Variables in Microservices Architecture
	Deployment
	Service Manager
	Administration Service
	Distribution Service
	Receiver Service
	Target-Initiated Distribution Path

	Performance Metrics Service

	Components of Data Replication in Oracle GoldenGate
	Types of Data Replication Configurations
	Oracle GoldenGate Processes
	Extract
	Replicat
	Distribution Paths for Data Transport

	Oracle GoldenGate Objects
	Trail Files
	Processes that Write to the Trail File
	Processes that Read from the Trail File
	Trail File Creation and Maintenance

	Parameter Files
	Checkpoint Files

	2 Install and Patch
	Overview
	Understanding and Obtaining the Oracle GoldenGate Distribution
	Verify Certification and System Requirements

	Operating System Requirements
	Memory Requirements
	Disk Requirements
	Network Requirements
	Operating System Privileges
	Other Operating System Requirements
	Choose a Db2 z/OS Operating System for Installing Oracle GoldenGate
	Where to Install Oracle GoldenGate for SQL Server

	Windows Console Character Sets
	Other Programs and Settings
	Installing Microsoft ODBC Drivers for Linux

	Prequisities to Install Microservices Architecture for PostgreSQL and SQL Server
	Prerequisites for Installing Oracle GoldenGate for PostgreSQL
	Prerequisites for Installing Oracle GoldenGate Microservice Architecture for SQL Server

	Installing Oracle GoldenGate
	Installing Oracle GoldenGate Microservices Architecture
	Performing an Interactive Installation with OUI for MA
	Performing a Silent Installation with OUI

	Integrating Oracle GoldenGate Microservices Architecture into a Cluster

	Software Installation Directories and Programs for Oracle GoldenGate
	Post-installation Tasks
	Install the DataDirect Driver for PostgreSQL

	Installing Patches for Oracle GoldenGate Microservices Architecture
	Downloading Patches for Oracle GoldenGate
	Patching Oracle GoldenGate Microservices Architecture Using OPatch
	Post-Patch Installation Tasks for Non-Oracle Databases for Microservices Architecture
	Patching Oracle GoldenGate MySQL 5.7 with DDL Replication Enabled
	Patching Oracle GoldenGate for SQL Server - Extract Requirements
	Patching Oracle GoldenGate for PostgreSQL to Release Version 21.8.0.0.2 and Later

	Uninstalling the Patch for Oracle and Non-Oracle Databases Using OPatch

	Uninstalling Oracle GoldenGate Microservices Architecture
	Removing Deployments and Service Manager
	Removing Deployments and Service Manager Using Oracle GoldenGate Configuration Assistant
	Using Oracle GoldenGate Configuration Assistant - Silent

	Files to be Removed Manually
	Uninstalling Microservices Architecture with Oracle Universal Installer
	Uninstalling Microservices Architecture Using Silent Mode

	3 Deploy
	About Deployments
	What is a Deployment?
	Secure Deployment
	Non-Secure Deployment
	Local and Remote Deployments

	Add a Deployment
	Before Adding a Deployment
	Start the OGGCA Wizard
	Select Service Manager Options
	Configuration Options
	Deployment Details
	Select Deployment Directories
	Specify Environment Variables
	Administrator Account
	Specify Security Options
	Advanced Security Settings
	Sharding Options
	Port Settings
	Replication Settings
	Summary
	Configure Deployment
	Finish

	Manage Deployments from the Service Manager
	Add Users to a Deployment
	Edit Users

	Delegate User Authentication and Authorization to an External ID Provider
	Configure the Authorization Profile to Set Up IDCS Access Credentials
	Access the Authorization Profile

	Manage Certificates for Deployments
	Apply Certificates to an Oracle GoldenGate Deployment
	Replace Certificates in a Deployment
	Add Client Certificate
	Add a CA Certificate

	Modify Configuration for the Service Manager
	Access the Service Manager Information Page
	Details Tab
	Configuration Tab
	Certificates
	Authorization Profiles

	Modify Configuration for the Deployment
	Access the Deployment Information Page
	Details Tab
	Configuration Tab
	Certificates
	Authorization Profiles

	Manage the Status of Deployment and Microservices
	Change the State of a Deployment
	Change the State of Microservices in a Deployment

	Manage the Microservices Configuration Details
	View and Edit the Microservice Configuration
	View and Edit the Restart Options for Microservices

	Monitor Oracle GoldenGate Processes, Trails, and Paths
	Search and Read the Log Information from the Diagnosis Page
	Search for Log Messages

	Search and Read Log Information for Microservices in a Deployment

	Manage the Debug Log
	Enable Debug Logging
	Use the Debug Log

	Remove a Deployment
	Before Removing the Deployment
	Start OGGCA to Remove Deployment

	Remove the Service Manager
	Start OGGCA to Remove the Service Manager
	Files to be Removed Manually After Removing Deployment

	Configure Reverse Proxy with NGINX to Access Oracle GoldenGate Microservices
	Prerequisites for Using ReverseProxySettings
	Configure Reverse Proxy with NGINX on Linux

	4 Configure
	Db2 z/OS
	Prepare Database Users and Privileges
	Database User for Oracle GoldenGate Processes

	Prepare Database Connection, System, and Parameter Settings
	Configure a Database Connection
	Ensuring ODBC Connection Compatibility
	Specifying the Number of Connection Threads

	Database Configuration
	Specify the Path to the Initialization File
	Install Extract Components on Db2 z/OS
	Use Shared Memory Manager for Extract
	Support Globalization Functions
	Replicating From a Source that Contains Both ASCII and EBCDIC
	Specifying Multi-Byte Characters in Object Names

	Prepare Tables for Processing
	Disable Triggers and Cascade Constraints
	Ensure Row Uniqueness for Tables
	Using KEYCOLS to Specify a Custom Key

	Handle Tables with ROWID Columns

	Transaction Log Settings and Requirements
	Prepare Db2 z/OS Transaction Logs for Oracle GoldenGate
	Enable Access to Log Records
	Size and Retain Logs
	Use Archive Logs on Tape
	Control Log Flushes

	Db2 z/OS: Supported Data Types, Objects, and Operations
	Supported Db2 z/OS Data Types
	Non-Supported Db2 for z/OS Data Types
	Supported Objects and Operations for Db2 z/OS
	Non-Supported Objects and Operations for Db2 z/OS

	MySQL
	Prepare Database Users and Privileges
	Database User for Oracle GoldenGate Processes for MySQL

	Prepare Database Connection, System, and Parameter Settings
	Configure the Database Connection
	Configuring a Two-way SSL Connection in MySQL Capture and Delivery

	Database Configuration
	Supported Databases
	Limitations of Support

	Database Storage Engine
	Database Character Set
	Set the Session Character Set
	Prepare Tables for Processing
	Ensure Row Uniqueness for Tables
	Tables with a Primary Key Derived from a Unique Index
	Specify Your Own Key for Oracle GoldenGate to Use

	Limit Row Changes in Tables That Do Not Have a Key
	Triggers and Cascade Constraints Considerations
	Triggers
	Cascade Constraints Considerations

	Configure MySQL for Remote Capture

	Transaction Log Settings and Requirements
	Ensuring Data Availability
	Setting Logging Parameters
	Changing the Log-Bin Location
	Capturing using a MySQL Replication Slave

	MySQL: Supported Data Types, Objects, and Operations
	Character Sets in MySQL
	Oracle GoldenGate for MySQL Supported Data Types
	Limitations and Clarifications

	Non-Supported MySQL Data Types
	Supported Objects and Operations for MySQL
	Details of Support for Objects and Operations in MySQL DDL
	Non-Supported Objects and Operations for MySQL
	Systems Schemas

	Oracle
	Prepare Database Users and Privileges
	Grant User Privileges for Oracle Database 21c and Lower
	Privileges for Capturing from Oracle Data Vault

	Prepare Database Connection, System, and Parameter Settings
	Database Configuration
	Enable Oracle GoldenGate for Oracle
	Setting Flashback Query
	Handling Other Database Properties
	Configure a Multitenant Container Database
	Flush Sequence for Multitenant Container Database

	Configure the Auto Capture Mode for Extract
	Managing Server Resources
	Ensuring Row Uniqueness in Source and Target Table
	Support for Oracle Sequences

	Configure Secure Connections to Oracle Database from Oracle GoldenGate
	Transaction Log Settings and Requirements
	Configuring Logging Properties
	Enable Subset Database Replication Logging
	Enable Schema-level Supplemental Logging
	Enable Table-level Supplemental Logging

	Oracle: Supported Data Types, Objects, and Operations for DDL and DML
	Details of Support for Oracle Data Types and Objects
	Handling Special Data Types
	Multibyte Character Types
	TIMESTAMP
	Large Objects (LOB)
	XML
	Supporting Changes to XML Schemas
	Supporting RegisterSchema
	Supporting DeleteSchema
	Supporting CopyEvolve

	User Defined Types

	Non-Supported Oracle Data Types

	Details of Support for Oracle Database Editions
	Details of Support for Objects and Operations in Oracle DML
	Multitenant Container Database
	Tables, Views, and Materialized Views
	Limitations of Support for Regular Tables
	Limitations of Support for Views
	Limitations of Support for Materialized Views

	System Partitioning
	Sequences and Identity Columns
	Limitations of Support for Sequences

	Non-supported Objects and Operations in Oracle DML
	DML Auto Capture

	Details of Support for Objects and Operations in Oracle DDL
	Supported Objects and Operations in Oracle DDL
	Non-supported Objects and Operations in Oracle DDL
	Excluded Objects
	Other Non-supported DDL

	PostgreSQL
	Prepare Database Users and Privileges
	Database Privileges for Oracle GoldenGate for PostgreSQL

	Prepare Database Connection, System, and Parameter Settings
	Configuring a Database Connection
	Configuring a Database Connection in Linux
	Configuring a Database Connection in Windows
	Configuring SSL Support for PostgreSQL
	Changes required in $ODBCINI file

	Database Configuration
	Database Settings for PostgreSQL Cloud Databases
	Azure Database for PostgreSQL
	Amazon Aurora PostgreSQL and Amazon RDS for PostgreSQL
	Google Cloud SQL for PostgreSQL

	Prepare Tables for Processing
	Disabling Triggers and Cascade Constraints on the Target
	Ensuring Row Uniqueness for Tables

	Enabling Table-Level Supplemental Logging
	PostgreSQL: Supported Data Types, Objects, and Operations
	Supported Databases
	Supported PostgreSQL Data Types
	Non-Supported PostgreSQL Data Types
	Supported Objects and Operations for PostgreSQL
	Tables and Views
	Sequences and Identity Columns

	SQL Server
	Prepare Database Users and Privileges
	Extract and Replicat Users for SQL Server
	Amazon RDS User Permissions and Requirements
	User that Enables Supplemental Logging and Other Features

	Prepare Database Connection, System, and Parameter Settings
	Configuring a Database Connection
	Extract and Replicat Database Connectivity
	Creating a Database Connection on Linux
	Creating a Database Connection on Windows
	Connecting to the Listener of a SQL Server Always On Configuration

	Configuring a Database
	SQL Server Supported Versions
	Preparing Tables for Processing
	Disabling Triggers and Cascade Constraints on the Target
	Replicat Consideration for Target Identity Columns, Triggers, and Constraints
	Setting the NOT FOR REPLICATION flag for Target Identity Columns, Triggers, and Constraints
	Ensuring Row Uniqueness in Source and Target Table
	Using KEYCOLS to Specify a Custom Key

	Improving IDENTITY Replication with Array Processing

	Transaction Log Settings and Requirements
	Preparing the Database for Oracle GoldenGate — CDC Capture
	Enabling CDC Supplemental Logging
	Purging CDC Staging Data

	CDC Capture Method Operational Considerations
	Tuning SQL Server Change Data Capture
	Oracle GoldenGate CDC Object Versioning
	Valid and Invalid Extract Parameters for SQL Server Change Data Capture
	Details of the Oracle GoldenGate CDC Cleanup Process
	Changing from Classic Extract to a CDC Extract

	Requirements Summary for Capture and Delivery of Databases in an Always On Availability Group
	Database Connection
	Supplemental Logging
	Operational Requirements and Considerations

	SQL Server: Supported Data Types, Objects, and Operations
	Instance Requirements
	Database Requirements
	Table Requirements
	Supported SQL Server Data Types
	Non-Supported SQL Server Data Types and Features
	Supported Objects and Operations for SQL Server
	Non-Supported Objects and Operations for SQL Server
	Requirements for Table Level DDL Changes

	System Schemas for SQL Server

	5 Quickstarts
	Set Up Bidirectional Replication for Oracle GoldenGate Microservices Architecture
	Set Up Data Replication with Oracle GoldenGate Microservices Architecture
	Switching from Nonintegrated Replicat to Parallel Nonintegrated Replicat

	6 Extract
	About Extract
	Before Adding an Extract
	Register an Extract
	Registering Extract for Oracle
	Registering Extract in Microservices Architecture for PostgreSQL

	Access the Configurations Page
	Add Database Credentials
	Enable TRANDATA
	Oracle: Enable TRANDATA or SCHEMATRANDATA
	Db2 z/OS: Enable Change Capture
	SQL Server: Enable Supplemental Logging and Other Features

	Add Heartbeat Table
	Create the Oracle GoldenGate CDC Cleanup Task
	Running the Heartbeat Update and Purge Function for PostgreSQL

	Add a Checkpoint Table

	Add Extracts
	Add a Primary Extract
	Additional Parameter Options for Extract

	Add a Change Data Capture (CDC) Extract
	PostgreSQL: Change Data Capture (CDC) Extract
	SQL Server: Change Data Capture (CDC) Extract

	Add Online Extract Groups
	Add an Extract Group
	Create a Parameter File for Online Extraction

	Extract Actions
	Access Extract Details
	Start or Stop Extract
	Delete Extract

	Extract: Advance Tasks
	Downstream Extract for Downstream Database Mining
	Configure Extract for a Downstream Deployment
	Evaluate Extract Options for a Downstream Deployment
	Prepare the Source Database for the Downstream Deployment
	Add Database Credentials to Connect to the Source Database
	Configure Redo Transport from Source Database to Downstream Mining Database

	Prepare the Downstream Mining Database to Receive Online Redo Logs
	Creating the Downstream Mining User Account
	Configure the Mining Database to Archive Local Redo Log Files
	Configure the Wallet for the Downstream Mining Database
	Prepare a Downstream Mining Database for Real-time Capture
	Create the Standby Redo Log Files
	Configure the Database to Archive Standby Redo Log Files Locally

	Enable Downstream Extract Registration Using ADG Redirection in Downstream Configuration

	Use Cases for Downstream Mining Configuration
	Case 1: Capture from One Source Database in Real-time Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from the Source Database
	Prepare the Source Database to Send Redo to the Mining Database
	Set up Extract (ext1) on DBMSCAP

	Case 2: Capture from Multiple Sources in Archive-log-only Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Archive Redo from the Source Database
	Prepare the First Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Set up Extracts at Downstream Mining Database

	Case 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Accept Redo from the Source Databases
	Prepare the First Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Prepare the Third Source Database to Send Redo to the Mining Database
	Set up Extracts at Downstream Mining Database
	Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1
	Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2
	Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs Sent by DBMS3

	PostgreSQL: Extract Considerations for Remote Deployment
	Positioning Extract to a Specific Start Point
	Remove Table-level Supplemental Logging

	DDL Replication
	MySQL: DDL Replication
	MySQL: Prerequisites for Transaction Log Based DDL Configuration
	Plug-in Based DDL Configuration Prerequisites and Considerations
	Installing DDL Replication
	Using the Metadata Server
	Troubleshooting Plug-in Based DDL Replication
	Upgrading from Plugin-based DDL Replication to Transaction Log-based DDL Replication
	Uninstalling Plug-In Based DDL Replication

	DDL Filtering for Replication
	Using DDL Filtering for Replication

	Oracle: DDL Replication
	Prerequisites for Configuring DDL
	Overview of DDL Synchronization
	Limitations of Oracle GoldenGate DDL Support
	DDL Statement Length
	Supported Topologies
	Filtering, Mapping, and Transformation
	Renames
	Interactions Between Fetches from a Table and DDL
	Comments in SQL
	Compilation Errors
	Interval Partitioning
	DML or DDL Performed Inside a DDL Trigger
	LogMiner Data Dictionary Maintenance

	Configuration Guidelines for DDL Support
	Database Privileges
	Parallel Processing
	Object Names
	Data Definitions
	Truncates
	Initial Synchronization
	Data Continuity After CREATE or RENAME

	Understanding DDL Scopes
	Mapped Scope
	Unmapped Scope
	Other Scope

	Correctly Identifying Unqualified Object Names in DDL
	Enabling DDL Support
	Filtering DDL Replication
	Filtering with the DDL Parameter

	Special Filter Cases
	DDL EXCLUDE ALL
	Implicit DDL

	How Oracle GoldenGate Handles Derived Object Names
	MAP Exists for Base and Derived Objects
	MAP Exists for Derived Object, But Not Base Object
	New Tables as Derived Objects
	Prerequisites for Configuring DDL
	RENAME and ALTER TABLE RENAME

	Disabling the Mapping of Derived Objects

	Using DDL String Substitution
	Controlling the Propagation of DDL to Support Different Topologies
	Propagating DDL in Active-Active (Bidirectional) Configurations
	Prerequisites for Configuring DDL

	Add Supplemental Log Groups Automatically
	Removing Comments from Replicated DDL
	Replicating an IDENTIFIED BY Password
	How DDL is Evaluated for Processing
	Viewing DDL Report Information
	Viewing DDL Reporting in Replicat
	Viewing DDL Reporting in Extract
	Statistics in the Process Reports

	Tracing DDL Processing
	Using Edition-Based Redefinition

	Manage Trail Files
	Assign Storage for Oracle GoldenGate Trails
	Estimate Space for the Trails
	Add a Trail

	Using Oracle GoldenGate with MySQL Group Replication
	Oracle GoldenGate Features to Support MySQL Group Replication
	Requirements for Supporting Group Replication
	Limitations of Group Replication with Oracle GoldenGate for MySQL

	SSL Configuration on Group Replication Cluster
	Overview of Database Cluster SSL Configuration for Group Replication
	Create Server Certificates
	Configure Database Nodes and Router

	7 Instantiate
	About Instantiating with Initial Load Extract
	Add Initial Load Extract Using the Admin Client
	Step 1: Create a Primary Extract
	Step 2: Determine the Instantiation SCN
	Step 3: Create and Start the Initial Load Replicat
	Step 4: Create and start the Initial Load Extract
	Step 5: Create the Distribution Paths
	Step 6: Create the Primary Replicat

	Configuring an Initial Synchronization for a PostgreSQL Source Database using Precise Instantiation

	8 Distribute
	About Distribution Service
	Add a Distribution Path
	About Target-Initiated Distribution Paths
	Add Target-Initiated Distribution Paths
	Manage Distribution Paths
	Path Actions
	Reposition a Path
	Change the Path Filtering
	Review the Distribution Path Information

	9 Replicat
	About Replicat
	Types of Replicat
	About Integrated Replicat
	About Classic Replicat
	About Parallel Replicat
	Benefits of Parallel Replicat
	Parallel Replication Architecture
	Basic Parameters for Parallel Replicat
	About Non-integrated Parallel Replicat
	About Integrated Parallel Replicat
	Benefits of Integrated Replicat
	Integrated Replicat Requirements

	About Coordinated Replicat
	About Barrier Transactions
	How Barrier Transactions are Processed

	Add a Replicat
	Before you Add a Replicat
	Add a Checkpoint Table

	Select a Replicat Type for your Deployment
	Add a Replicat
	Basic Parameters for Different Replicat Modes

	Replicat Actions
	Access Replicat Process Details
	Stop, Start a Replicat
	Alter Replicat
	Delete Replicat

	Advance Tasks
	Controlling Checkpoint Retention
	Excluding Replicat Transactions in Bidirectional Replication
	Additional Parameter Options for Integrated Replicat

	10 Secure
	Oracle GoldenGate Security and Other Considerations
	Create Certificates for a Secure Deployments
	Single Deployment: Create Different Types of Certificates for a Secure Deployment
	Create a Self-Signed Trusted (Root) Certificate
	Create Server Certificates
	Create a Client Certificate
	Set Up Trusted Certificates

	Two Deployments: Create External, Trusted Server and Client Certificates
	Add a Target Server Certificate as a CA Certificate

	Encrypting Trail Files
	Generate Master Keys and Encryption Key
	Key Management Service (KMS)
	Why Use KMS to Store Oracle GoldenGate Encryption Keys?

	Create and Apply Encryption Profile in a Deployment
	Configure an Encryption Profile

	Using Oracle Key Vault Trail File Encryption in Oracle GoldenGate
	Oracle Key Vault Capabilities
	Prerequisites for Configuring OKV on Oracle GoldenGate
	Requirements for Setting up an Encryption Profile
	Client Behavior Against Different Key States for Oracle Key Vault

	Using OCI KMS Trail File Encryption in Oracle GoldenGate
	Oracle GoldenGate with OCI KMS Workflow
	Prerequisites for Connecting Oracle GoldenGate with OCI KMS
	Download the CA Certificate using the Cryptographic Endpoint
	Add the Digital CA Certificate as a Trusted CA Certificate in Oracle GoldenGate

	Configure OCI KMS to Connect with Oracle GoldenGate
	Create or Access the OCI Vault
	Generate the Master Key and Download the API Private Key

	Configure Oracle GoldenGate Processes to Enable OCI KMS Trail File Encryption
	Create Encryption Profile in Oracle GoldenGate Processes
	Apply the OCI KMS Encryption Profile for Extract

	Test Data Replication with Trail File Encryption Using OCI KMS
	Test Trail File Encryption in the Source Deployment
	Test the Trail File Decryption on the Target Deployment

	Streaming Protocols
	Authentication Modes Used to Start a Distribution Path

	Managing Identities in a Credential Store
	Credential Store Tasks
	Specifying the Alias in a Parameter File or Command
	Encrypting and Storing User Credentials

	Configure Kerberos Authentication
	Configure Kerberos Authentication with MA
	Example: Using USERIDALIAS in Parameter File for Kerberos Account

	11 Administer
	Microservices: Command Line Interface
	About Admin Client
	Using Wildcards in Command Arguments
	Using Command History
	Storing and Calling Frequently Used Command Sequences
	Controlling Extract and Replicat
	Deleting Extract and Replicat
	Specifying Object Names in Oracle GoldenGate Input
	Specifying Filesystem Path Names in Parameter Files on Windows Systems
	Supported Database Object Names
	Supported Special Characters
	Non-supported Special Characters

	Specifying Names that Contain Slashes
	Qualifying Database Object Names
	Two-part Names
	Three-part Names
	Applying Data from Multiple Containers or Catalogs
	Specifying a Default Container or Catalog

	Specifying Case-Sensitive Database Object Names
	Using Wildcards in Database Object Names
	Rules for Using Wildcards for Source Objects
	Rules for Using Wildcards for Target Objects
	Fallback Name Mapping
	Asterisks or Question Marks as Literals in Object Names
	How Wildcards are Resolved
	Excluding Objects from a Wildcard Specification

	Differentiating Case-Sensitive Column Names from Literals

	Working with Parameter Files
	Creating a Parameter File Using Admin Client
	Creating a Parameter File with a Text Editor

	Validating a Parameter File
	Simplifying the Creation of Parameter Files
	Using Wildcards
	Using OBEY
	Using Macros
	Using Parameter Substitution

	Use SQLEXEC for Executing Commands, Stored Procedures, and Queries
	Performing Processing with SQLEXEC
	Using SQLEXEC
	Apply SQLEXEC as a Standalone Statement
	Apply SQLEXEC within a TABLE or MAP Statement
	Using Input and Output Parameters
	Passing Values to Input Parameters
	Passing Values to Output Parameters
	SQLEXEC Examples Using Parameters

	Handling SQLEXEC Errors
	Handling Database Errors
	Handling Missing Column Values

	Additional SQLEXEC Guidelines

	Simplify and Automate Work with Oracle GoldenGate Macros
	Define a Macro
	Call a Macro
	Call a Macro that Contains Parameters
	Call a Macro without Input Parameters

	Calling Other Macros from a Macro
	Create Macro Libraries
	Tracing Macro Expansion

	Bi-Directional Replication
	Prerequisites for Bidirectional Replication
	Enable Bi-Directional Loop Detection
	Considerations for an Active-Active Configuration
	Application Design
	Keys
	Database-Generated Values
	Database Configuration

	Preventing Data Looping
	Identifying Replicat Transactions
	DB2 z/OS
	MySQL
	PostgreSQL and SQL Server
	Oracle

	Preventing the Capture of Replicat Operations
	Oracle: Preventing the Capture of Replicat Transactions
	Non-Oracle Database: Preventing Capture of Replicat Transactions
	Manage Conflicts

	MySQL: Bi-Directional Replication
	PostgreSQL: Bi-Directional Replication
	Preparing DBFS for an Active-Active Configuration
	Supported Operations and Prerequisites
	Applying the Required Patch
	Examples Used in these Procedures
	Partitioning the DBFS Sequence Numbers
	Configuring the DBFS file system
	Mapping Local and Remote Peers Correctly

	Using Procedural Replication
	About Procedural Replication
	Procedural Replication Process Overview
	Determining Whether Procedural Replication Is On
	Enabling and Disabling Supplemental Logging
	Filtering Features for Procedural Replication
	Handling Procedural Replication Errors
	Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
	Monitoring Oracle GoldenGate Procedural Replication

	Automatic Conflict Detection and Resolution
	About Automatic Conflict Detection and Resolution
	Automatic Conflict Detection and Resolution
	Requirements for Automatic Conflict Detection and Resolution
	Compatibility and Migration

	Column Groups
	DELETE TOMBSTONE Table
	Earliest Timestamp Conflict Detection and Resolution
	Latest Timestamp Conflict Detection and Resolution
	Delete Always Wins Timestamp CDR
	Delta Conflict Detection and Resolution
	Site Priority CDR
	Track PK Updates in Delete Tombstone

	Configuring Delta Conflict Detection and Resolution
	Configuring Latest Timestamp Conflict Detection and Resolution
	Configuring Delta Conflict Detection and Resolution

	Managing Automatic Conflict Detection and Resolution
	Altering Conflict Detection and Resolution for a Table
	Altering a Column Group
	Purging Tombstone Rows
	Removing Conflict Detection and Resolution From a Table
	Removing a Column Group
	Removing Delta Conflict Detection and Resolution

	Monitoring Automatic Conflict Detection and Resolution
	Displaying Information About the Tables Configured for Conflicts
	Displaying Information About Conflict Resolution Columns
	Displaying Information About Column Groups

	Manual Conflict Detection and Resolution
	Overview of the Oracle GoldenGate CDR Feature
	Configuring the Oracle GoldenGate Parameter Files for Error Handling
	Tools for Mapping Extra Data to the Exceptions Table
	Sample Exceptions Mapping with Source and Target Columns Only
	Sample Exceptions Mapping with Additional Columns in the Exceptions Table

	Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution
	Making the Required Column Values Available to Extract
	Viewing CDR Statistics
	CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD
	Table Used in this Example
	MAP Statement with Conflict Resolution Specifications
	Description of MAP Statement
	INSERTROWEXISTS with the USEMAX Resolution
	UPDATEROWEXISTS with the USEMAX Resolution
	UPDATEROWMISSING with OVERWRITE Resolution
	DELETEROWEXISTS with OVERWRITE Resolution
	DELETEROWMISSING with DISCARD Resolution

	CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX
	Table Used in this Example
	MAP Statement
	Description of MAP Statement
	Error Handling

	CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE
	Table Used in this Example
	MAP Statement
	Description of MAP Statement
	Error Handling

	Configure Managed Processes
	Automate Maintenance Tasks
	Mapping and Manipulating Data
	Guidelines for Using Self-describing Trails
	Parameters that Control Mapping and Data Integration
	Mapping between Dissimilar Databases
	Mapping and Conversion on NonStop Systems
	Mapping and Conversion on Windows and UNIX Systems

	Globalization Considerations when Mapping Data
	Conversion between Character Sets
	Database Object Names
	Column Data

	Preservation of Locale
	Support for Escape Sequences

	Mapping Columns Using TABLE and MAP
	Supporting Case and Special Characters in Column Names
	Configuring Table-level Column Mapping with COLMAP
	Using USEDEFAULTS to Enable Default Column Mapping
	Specifying the Columns to be Mapped in the COLMAP Clause

	Configuring Global Column Mapping with COLMATCH
	Understanding Default Column Mapping
	Data Type Conversions
	Numeric Columns
	Character-type Columns
	Datetime Columns

	Selecting and Filtering Rows
	Selecting Rows with a FILTER Clause
	Selecting Rows with a WHERE Clause
	Considerations for Selecting Rows with FILTER and WHERE
	Ensuring Data Availability for Filters
	Comparing Column Values
	Testing for NULL Values

	Retrieving Before and After Values
	Selecting Columns
	Selecting and Converting SQL Operations
	Using Transaction History
	Testing and Transforming Data
	Handling Column Names and Literals in Functions
	Using the Appropriate Function
	Transforming Dates
	Performing Arithmetic Operations
	Omitting @COMPUTE

	Manipulating Numbers and Character Strings
	Handling Null, Invalid, and Missing Data
	Using @COLSTAT
	Using @COLTEST
	Using @IF

	Performing Tests
	Using @CASE
	Using @VALONEOF
	Using @EVAL

	Using Tokens
	Defining Tokens
	Using Token Data in Target Tables

	Handling Processing Errors
	Overview of Oracle GoldenGate Error Handling
	Handling Extract Errors
	Handling Replicat Errors during DML Operations
	Handling Errors as Exceptions
	Using EXCEPTIONSONLY
	Using MAPEXCEPTION
	About the Exceptions Table

	Handling Replicat errors during DDL Operations
	Handling TCP/IP Errors
	Maintaining Updated Error Messages
	Resolving Oracle GoldenGate Errors

	12 Performance
	Monitor
	Commands Used for Monitoring
	Monitor Processes from the Performance Metrics Service
	Review Messages from Messages Overview Tab
	Review Status Changes
	Purge Datastore
	Protocols for Performance Monitoring for Different Operating Systems

	Monitoring an Extract Recovery
	Monitor Lag
	About Lag
	Monitor Lag Using Automatic Heartbeat Tables
	Monitoring an Extract Recovery
	Heartbeat Table End-To-End Replication Flow
	Update Heartbeat Tables
	Purge the Heartbeat History Tables
	Best Practice
	Using the Automatic Heartbeat Commands

	Db2 z/OS: Interpret Statistics for Update Operations
	Monitoring Processing Volume
	Using the Error Log
	Using the Process Report
	Scheduling Runtime Statistics in the Process Report
	Viewing Record Counts in the Process Report
	Prevent SQL Errors from Filling the Replicat Report File

	Use the Discard File
	Maintain the Discard and Report Files
	Reconcile the Time Differences

	Tuning
	Tuning the Performance of Oracle GoldenGate

	13 Autonomous Database
	About Capturing and Replicating Data Using Autonomous Databases
	Details of Support When Using Oracle GoldenGate with Autonomous Database
	Configure Extract to Capture from an Autonomous Database
	Establishing Oracle GoldenGate Credentials
	Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous Databases
	Configure Extract to Capture from an Autonomous Database

	Configure Replicat to Apply to an Oracle Autonomous Database
	Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous Database
	Configure Oracle GoldenGate for an Autonomous Database
	Obtain the Autonomous Database Client Credentials

	Configure Replicat to Apply to an Autonomous Database

	14 Upgrade
	Obtaining the Oracle GoldenGate Distribution
	Prerequisites
	Oracle GoldenGate Upgrade Considerations
	Extract Upgrade Considerations
	Replicat Upgrade Considerations

	Upgrading Oracle GoldenGate Microservices – GUI Based
	Upgrading Oracle GoldenGate Microservices Using REST APIs

	15 Reference
	About Oracle GoldenGate Trails
	Trail Recovery Mode
	Trail Record Format
	Trail File Header Record
	Partition Name Record in Trail File Header
	Viewing the Partition Name and PNR Index in Logdump
	Example of an Oracle GoldenGate Record
	Record Header Area
	Description of Header Fields
	Using Header Data
	Using Header Data
	Full Record Image Format (NonStop Sources)

	Compressed Record Image Format (Windows, UNIX, Linux Sources)

	Tokens Area
	Oracle GoldenGate Operation Types

	Oracle GoldenGate Checkpoint Tables
	Internal Checkpoint Information
	INFO EXTRACT SHOWCH Command: Checkpoint Information
	INFO REPLICAT, SHOWCH: Checkpoint Information

	Supported Character Sets
	Supported Character Sets - Oracle
	Supported Character Sets - Non-Oracle

	Supported Locales
	Commit Sequence Number (CSN)
	Using the Commit Sequence Number

	Connecting Microservices and Classic Architectures
	Connect Oracle GoldenGate Classic Architecture to Microservices Architecture
	Connect Oracle GoldenGate Microservices Architecture to Classic Architecture

