
Start

Oracle® Documaker

Enterprise Web Processing
Services

User Guide
12.7.0
Part number: F51808-01
December 2021

Copyright © 2009, 2020, 2021 Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Notice

CONTENTS

Overview ...5
Choosing the Right Web Services ..6
Introduction to EWPS ..7
Available Services and Methods of Use ...8

Using SOAP ... 10
Using JSON .. 12
Choosing Between SOAP and JSON ... 14

Common Schema Types ...16
LibraryList ...17
BusUnitsList ..18
TemplateList ...19
RecipientList ...20
ComposeData ...21
Props ...22
CoreProperties ..23
ImportFileType ..24
Errors ..25
ResponseGroup ..26
DistributionOptions ..27
DistributionResults ..29

Business Scenarios ...32
Publishing a Quote Form from a Rating Application ...33

Option 1: Mapping the Data Using Oracle Insurance Tools 34
Option 2: Resolving the Data Mapping Before the doPublish Request 36

Initiating an Issuance Process from a Rating Application41
Option 1: Mapping the Data using Oracle Insurance Tools 42
Option 2: Resolving the Data Mapping Before the doPublish Request 44

Available Web Services ...48
Configuring the Provider ...68

Returning a PDF File in a doPublish Response ... 70
Accessing a Workspace Definition File via a Web Service71

Additional Resources ..73
SOAP ..74
Web Services ..75

References and Projects .. 75
Web Services Standards and Specifications .. 76
Other Resources .. 76

Web Services Description Language ..77
Using the XML Configuration File ...78

Using the Jmeter Test Script to Test EWPS ..81
What is Jmeter ..82
Using Jmeter ...83
Running the Jmeter Test Script ..86

5

Chapter 1

Overview

The need to produce customer information 24 hours a day, seven days a week has shifted
a large percentage of publishing volume away from traditional batch processing to a real-
time, customer-driven, business model.

Moreover, companies increasingly want to leverage the web to reach their customers and
prospects, resulting in new requirements for scalability and reliability.

At Oracle Insurance, we recognize that organizations are changing how they do business,
and we have come to the marketplace with technology and architecture in keeping with
this significant market shift.

This chapter discusses the following topics:

• Choosing the Right Web Services on page 6

• Introduction to EWPS on page 7

• Available Services and Methods of Use on page 8

Choosing the Right Web Services

6

CHOOSING THE
RIGHT WEB

SERVICES

Oracle Documaker offers two different web services applications:

• Enterprise Web Publishing Services (EWPS)

• Documaker Web Services (DWS)

Use this table to determine which web services to use:

Use To interact with Oracle Documaker...

EWPS Library resources or transactions in a state of publishing by Documaker Server.

These web service methods offer a number of ways to gather information about the
MRL, locate documents or field information, and retrieve a form during transaction
processing.

EWPS also lets you update a document in WIP, publish a document from an extract
file or publish a document stored in WIP.

DWS Document Factory.

These web services, introduced in Documaker version 12.0, let you submit a job that
tells the system to publish a document from an input or extract file. DWS also
provides a generic web service method, doCallIDS, that lets you work with
Docupresentment (DS) using specific request types.

Because of Documaker Web Services' concrete schema, you should use the
doCallIDS method with the Business Process Execution Language (BPEL) to
facilitate workflow within the iDocumaker application. This method can also be used
by BPEL outside of iDocumaker or by other web service clients to make specific
requests to IDS or Documaker and should be used if your request needs to be
asynchronous.

See the Documaker Enterprise Administration Guide for information about the
methods offered with DWS.

https://docs.oracle.com/cd/F30719_01/documaker_DocumakerEnterprise_ag_12.6.4.pdf

Introduction to EWPS

7

INTRODUCTION
TO EWPS

The Enterprise Web Processing Services (EWPS) framework offers functionality via a set
of established and interoperable standards such as XML and web services. This allows a
multitude of enterprise applications — including policy production and claims
correspondence — to be designed and developed around a core functional infrastructure.

Oracle Insurance’s contract-first approach to design

So, what exactly is WSDL? WSDL stands for Web Services Description Language. WSDL is
kind of an XML grammar for describing web services interfaces (available functions).

WSDL leverages XML schema to describe the basic types used by a web service and
provides all sorts of additional information that frame the contract of the interface,
including things like ports, bindings, and so on.

NOTE: For more information about WSDL, see Web Services Description Language on
page 77.

Available Services and Methods of Use

8

AVAILABLE
SERVICES AND

METHODS OF
USE

EWPS provides access to the Oracle Insurance suite of publishing, composition,
workflow, and content management engines. It enables third-party applications to build
custom applications, tools, and services that leverage the full breadth of Oracle Insurance
functionality.

EWPS emphasizes business value throughout the whole web services technology stack.
This self-service model means you can use a multitude of essential mechanisms — WS-I
SOAP interfaces for application integration, JSON for UI integration, or pre-packaged
business parts for design-time integration — in any sort solution.

EWPS is available in an Apache Axis2 package for J2EE.

Strategic opportunities for integration with EWPS

Available Services and Methods of Use

9

Typical EWPS-enabled applications include:

• Self-service publishing solutions

• Document search utilities

• Composition and workflow systems

• Systems that embed publishing artifacts in their web pages

• Applications that assist users in creating various types of documents and forms

An EWPS-enabled application can present data in ways that best meet the needs of a
particular business scenario.

EWPS supports these protocols:

• SOAP (Simple Object Access Protocol). See Using SOAP on page 10 for more
information.

• JSON (JavaScript Object Notation) See Using JSON on page 12 for more
information.

Available Services and Methods of Use

10

USING SOAP
With the SOAP API, the request interface (called a proxy) contains business-object
interfaces and stubs generated directly from a WSDL document that specifies the EWPS
schema and service address.

The third-party application works with data in the form of object properties. It sends and
receives the data by calling object methods. The auto-generated SOAP proxy handles the
details of serializing/de-serializing the SOAP request from EWPS into objects that are
easy to work with.

NOTE: The SOAP API is built on open standards like SOAP and WSDL. These
standards are supported by a wide-range of development tools on a variety of
platforms. For more information, see SOAP on page 74.

Request:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <doGetTemplateListRequest xmlns="http://
webservices.docucorp.com/ewps/schema/2005-12-01">

 <AuthUser>string</AuthUser>

 <LibraryId>string</LibraryId>

 <BusUnitsList>

 <Key1 id="string" package="string">

 <Key2 id="string" />

 <Key2 id="string" />

 </Key1>

 <Key1 id="string" package="string">

 <Key2 id="string" />

 <Key2 id="string" />

 </Key1>

 </BusUnitsList>

 <EffectiveDate>string</EffectiveDate>

 <Start>integer</Start>

 <MaxResults>integer</MaxResults>

 <NameQuery>string</NameQuery>

 <DescQuery>string</DescQuery>

 <SortBy>string</SortBy>

 <ResponseGroup>

 <Response>string</Response>

 <Response>string</Response>

 </ResponseGroup>

 </doGetTemplateListRequest>

 </soap:Body>

</soap:Envelope>

Response:

<?xml version="1.0" encoding="utf-8"?>

Available Services and Methods of Use

11

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>

 <doGetTemplateListResponse xmlns="http://
webservices.docucorp.com/ewps/schema/2005-12-01">

 <Result>Success</Result>

<TemplateList>

 <Story StoryName="string" id="string">

 <Key1 id="string" package="string">

<Key2 id="string"/>

 </Key1>

 <Description>string</Description>

 <Props>

 <Prop name="string">string</Prop>

 </Props>

 </Story>

 <Story StoryName="string" id="string">

 <Key1 id="string" package="string">

<Key2 id="string"/>

 </Key1>

 <Required>boolean</Required>

 <Description>string</Description>

 <Props>

 <Prop name="string">string</Prop>

 </Props>

 </Story>

</TemplateList>

<RecipientList>

 <Recipient name="string">

 <Copies>integer</Copies>

 <Story StoryName="string" id="string"/>

 </Recipient>

 <Recipient name="string">

 <Copies>integer</Copies>

 <Story StoryName="string" id="string"/>

 </Recipient>

</RecipientList>

<StartIndex>integer</StartIndex>

<EndIndex>integer</EndIndex>

<TotalResults>integer</TotalResults>

<SearchTime>string</SearchTime>

 </doGetTemplateListResponse>

 </soap:Body>

</soap:Envelope>

Sample SOAP request and response template

Available Services and Methods of Use

12

USING JSON
The JSON API works just like the SOAP API, except requests and responses are handled
in JSON rather than XML. JSON is a lightweight data-interchange format based upon a
subset of the JavaScript language.

NOTE: For an overview of JSON, including the various tools and techniques for working
with JSON, go to this web site: http://www.json.org.

Request: (using JavaScript – actual request is an HTTP POST)

var request = {

"LibraryId":"string",

"Start":integer,

"MaxResults":integer,

"BusUnitsList":

[{

"Key2":

[{

"id":"string"

}],

"id":"string",

"package":"string"

}]

 };

http://server/EWPS/DocumentService/<request.toJSONString()>

Response:

{

"TemplateList":

[{

"Key1":

{

"Key2":

[{

"id":"string"

}],

"id":"string",

"package":"string"

},

"Required":boolean,"

"Description":"string",

"Props":

[{

"name":"string",

"Value":"string"

}],

"StoryName":"string",

"id":"string",

"alias":"string"

},

{

"Key1":

http://www.json.org

Available Services and Methods of Use

13

{

"Key2":

[{

"id":"string"

}],

"id":"string",

"package":"string"

},

"Required":boolean,

"Description":"string",

"Props":

[{

"name":"string",

"Value":"string"

}],

"StoryName":"string",

"id":"string",

"alias":string

},

"RecipientList":

[{

"Copies":"string",

"Story":

[{

"extracopies":integer,

"StoryName":"string",

"id":"string",

"alias":"string"

},

{

"extracopies":integer,

"StoryName":"string",

"id":"string",

"alias":"string"

}],

"name":"string"

}],

"StartIndex":integer,

"EndIndex":integer,

"TotalResults":integer,

"SearchTime":"0.031",

"Result":integer

}

Sample JSON request and response.template

Available Services and Methods of Use

14

CHOOSING BETWEEN SOAP AND JSON
Both the SOAP API and JSON API share the same underlying schema, so the basic
format of the input and output data is the same regardless of the API being used — both
access the same EWPS functionality and data. As a result, you can use one or the other or
both. It just depends on whichever approach works best for your situation.

Here is a complete listing of available services and a general overview of what they are
used for:

Service An operation used to... Expanded terminology

doGetLibraries Get a list of the possible form libraries
available for collaborative authoring,
composition, or publishing services.

Form Library – Config,
MRL

doGetBusUnits Get a list of candidate business-unit
selection criteria for a particular
library. This helps refine the
document-selection process.

doGetTemplatelist Get a list of candidate forms available
for collaborative authoring,
composition, or publishing services.

doGetTemplateListData Get the schema for a given template
list, including details pertaining to the
Story, StoryFragments and Field
information for the template list
selection.

For Documaker
publishing, think of a
story as a form and a story
fragment as a section

doCreateFolder
(ComposeData)

Create a remote folder for
composition, collaborative authoring,
or publishing from a list of story
templates and field data
(ComposeData).

For Documaker
publishing, think of a
folder as a WIP item,
Future use for
Documanage Archive
Folders.

doCreateFolder (Import) Create a remote folder for
composition, collaborative authoring,
or publishing from an extract file
(Import) used with a set of pre-defined
rules.

doGetFolderList Get a list of Folders for a specific
owner, search criteria, or both.

Think of owners as a
specific user

doGetFolder Retrieve the contents of a folder.

doModifyFolder Add, remove, re-arrange, and generally
modify the templates/data
(ComposeData) and/or
CoreProperties of a folder.

doDeleteFolder Delete a folder from the application.

Available Services and Methods of Use

15

doPublish (FolderId) Publish a document from a pre-
existing folder (FolderId).

See DistributionOptions on page 27
for information pertaining to the
various publishing and distribution
options.

doPublish
(ComposeData)

Publish a document from a list of story
templates and field data
(ComposeData).

See DistributionOptions on page 27
for information pertaining to the
various publishing and distribution
options.

doPublish (Import) Publish a document from an extract
file (Import) with a set of pre-defined
rules.

See DistributionOptions on page 27
for information pertaining to the
various publishing and distribution
options.

Service An operation used to... Expanded terminology

16

Chapter 2

Common Schema Types

Here are the common schema types used throughout Oracle Insurance’s Enterprise Web
Processing Solution (EWPS).

These schema may be part of a message contract in one or more instances:

• LibraryList on page 17

• BusUnitsList on page 18

• TemplateList on page 19

• RecipientList on page 20

• ComposeData on page 21

• Props on page 22

• CoreProperties on page 23

• ImportFileType on page 24

• Errors on page 25

• ResponseGroup on page 26

• DistributionOptions on page 27

• DistributionResults on page 29

LibraryList

17

LIBRARYLIST

The LibraryList group provides information about libraries and their respective
publishing services.

Here is a sample group:

<LibraryList>

 <Library id="Amergen">

 <Service type="Entry" name="Entry"/>

 <Service type="WIP" name="Work in Process"/>

 <Service type="Archive" name="Archive"/>

 </Library>

 <Library id="DOCC">

 <Service type="Entry" name="Entry"/>

 </Library>

</LibraryList>

Item Description

Library A library the provider supports.

BusUnitsList

18

BUSUNITSLIST

The BusUnitsList group provides information about business units that you can use to
refine and filter the document selection process. Additional business unit refinement
appears as nested lists of Key criteria (Key1, Key2, Key3, and so on).

Here is a sample group:

<BusUnitsList>

 <Key1 id="AMERGEN PACKAGE" package="AMERGEN PACKAGE">

 <Key2 id="CRIME"/>

 <Key2 id="INLAND MARINE"/>

 <Key2 id="LIABILITY"/>

 <Key2 id="PROPERTY"/>

 <Key2 id="MOTOR TRUCK CARGO"/>

 </Key1>

 <Key1 id="AMERGEN GL" package="GENERAL LIABILITY">

 <Key2 id="LIABILITY"/>

 </Key1>

 <Key1 id="AMERGEN PROPERTY" package="COMM'L PROPERTY">

 <Key2 id="PROPERTY"/>

 </Key1>

 <Key1 id="AMERGEN IM">

 <Key2 id="INLAND MARINE"/>

 </Key1>

 <Key1 id="AMERGEN MTC">

 <Key2 id="MOTOR TRUCK CARGO"/>

 </Key1>

 <Key1 id="AMERGEN AUTO">

 <Key2 id="AUTO"/>

 </Key1>

 <Key1 id="AMERGEN IM">

 <Key2 id="INLAND MARINE;PWC"></Key2>

 <Key2 id="INLAND MARINE;OTHER"></Key2>

 </Key1>

</BusUnitsList>

Item Description

Key1 A company available for the library ID provided in the request payload.

Key2 A line of business available for Key1

TemplateList

19

TEMPLATELIST

The TemplateList group provides information about candidate templates (story) returned
from a query or when filtering requests for a library.

Here is a sample group:

<TemplateList>

 <Story StoryName="Letter" id="1" alias="">

 <Required>Yes</Required>

 <Description>Customer Letter</Description>

 </Story>

 <Story StoryName="Bill Letter" id="2" alias="">

 <Required>No</Required>

 <Description>Bill Letter</Description>

 </Story>

 <Story StoryName="Bill Letter" id="2.1" alias="">

 <Required>No</Required>

 <Description>Bill Letter Duplicate</Description>

 </Story>

</TemplateList>

NOTE: For a Documaker implementation, a story can be limited in scope and be
considered to be roughly equivalent to a form. As part of a broader schema for
future growth and functionality, a story can extend across multiple pages, and
several stories can share a single page.

A story can encompass the entire contents of a document package, or it may
include an individual block of content. Additionally, a story could be quite
dynamic; appearing in blocks throughout a document. such as the first part on
page 1, the second part on page 5, and so on.

Item Description

Story A provider form.

RecipientList

20

RECIPIENTLIST

The RecipientList group provides a way to associate recipients with story templates. The
RecipientList is exclusive to composition services such as doGetTemplateList and the
folder-oriented services.

Here is a sample group:

<RecipientList>

 <Recipient name="AGENT">

 <Story StoryName="Letter" id="1" alias="" extracopies="1"/>

 <Story StoryName="Bill Letter" id="2" alias="" extracopies="0"/>

 </Recipient>

 <Recipient name="HOME OFFICE">

 <Story StoryName="Letter" id="1" alias="" extracopies="0"/>

 <Story StoryName="Bill Letter" id="2" alias="" extracopies="0"/>

 </Recipient>

 <Recipient name="INSURED">

 <Story StoryName="Letter" id="1" alias="" extracopies="0"/>

 <Story StoryName="Bill Letter" id="2" alias="" extracopies="0"/>

 </Recipient>

</RecipientList>

Item Description

Recipient A recipient listing the Story elements that it will receive for a document.

ComposeData

21

COMPOSEDATA

The ComposeData group (requests only) provides information about the user-entered
data on a particular page of a document composition to be saved for stateful requests.

NOTE: Schema for FIELD attributes are primarily driven by the type of View that is
returned, mostly via the attributes found at the field (such as INPUT) level.

Here is a sample group:

<ComposeData>

 <Field name="GlobalField" type="" required="True">data</Field>

 <Story StoryName="Letter" id="1" alias="">

 <Field name="StoryFieldField" type="">data</Field>

 <StoryFragments>

 <StoryFragment FragmentName="CPADR">

 <Field name="StoryFragmentField1" type="">Bob</Field>

 <Field name=" StoryFragmentField2" type="">Main</Field>

 <Remark datestamp="06/06/2005, 11:44">Review</Remark>

 </StoryFragment>

 <StoryFragment FragmentName="CPBODY">

 <Field name="StoryFragmentField3" required="True">text
here</Field>

 </StoryFragment>

 </StoryFragments>

 </Story>

</ComposeData>

NOTE: For a Documaker implementation, a StoryFragment can be considered to be similar
to a section or image.

Item Description

Field A global, Story, or StoryFragment level field.

Story A form containing one or more StoryFragment elements.

Props

22

PROPS

The Props group provides a generic structure for extended properties that are not native
to base schema objects.

For example, a recipient might have extended property information for distribution
addresses or a folder could have extended property information with its CoreProperties
to handle application-specific attributes.

The following schema objects can have extended properties:

• Story

• Recipient

• Folder (CoreProperties)

Here is a sample group:

<Props>

 <Prop name="propertyname1">propertyvalue1</Prop>

 <Prop name="propertyname2">propertyvalue2</Prop>

 <Prop name="propertyname3">propertyvalue3</Prop>

 <Prop name="propertyname4">propertyvalue4</Prop>

 ...

</Props>

CoreProperties

23

COREPROPERTIES

The CoreProperties group provides information about the core properties of a document
or folder.

Here is a sample group:

<CoreProperties>

 <Library id="DOCUCORP"/>

 <Description>Past Due Notification</Description>

 <DocumentId>90125</DocumentId>

 <DocumentType>NB</DocumentType>

 <StatusCode>N</StatusCode>

 <EffectiveDate>2005-12-01</EffectiveDate>

 <Key1 id="AMERGEN PACKAGE" package="AMERGEN PACKAGE">

 <Key2 id="CRIME"/>

 <Key2 id="INLAND MARINE"/>

 <Key2 id="LIABILITY"/>

 <Key2 id="PROPERTY"/>

 <Key2 id="MOTOR TRUCK CARGO"/>

 </Key1>

 <Props>

 <Prop name="RECNUM">66421AER7</Prop>

 </Props>

</CoreProperties>

Item Description

Library The library for the document.

Description The description for the document.

DocumentId The Key ID for the document.

DocumentType The transaction or document type for the document.

StatusCode The status code for the document, such as W for Work in Progress.

EffectiveDate The effective date for the document.

Key1 The company value for the document.

Key2 The line of business for the document.

Props A set of properties that correspond to the fields in the index for the
document.

ImportFileType

24

IMPORTFILETYPE

The ImportFileType provides a generic structure for passing a chunk (file) of opaque data
to a service as a base64Binary element. Note that data can be referenced as in-line data
(location=”ATTACH”) or via a URL (location=”URL”).

Here is a sample group:

<Import>

 <ImportFile location="ATTACH" p5:contentType="text/xml"
xmlns:p5="http://www.w3.org/2005/05/
xmlmime">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLT…

 </ImportFile>

 <ImportFile location="URL" p5:contentType="text/xml"
xmlns:p5="http://www.w3.org/2005/05/xmlmime"> file:////1.1.1.1/
38ED0A22842449A49D921B7542D09EC0.XML

 </ImportFile>

</Import>

Oracle Insurance supports different contentType definitions, which you can use to
provide EWPS with information about the type of file being sent. Here are the supported
contentTypes and their meaning:

contentTypes Tells the system to treat the referenced file as

application/vnd.docucorp+xml Oracle Insurance XML format

application/vnd.docucorp+v2 Oracle Insurance V2 format (PPS import)

application/vnd.docucorp+extract A raw extract file.

Errors

25

ERRORS

The Errors group provides information about any errors or problems that occurred
during a request.

Here is a sample group:

<Errors>

<Error>

<ErrorCode>String</ErrorCode>

<DetailedMessage>String</DetailedMessage>

<ErrorSource>String</ErrorSource>

<Severity>Warning</Severity>

<Remedy>String</Remedy>

<Trace>String</Trace>

</Error>

<Error>

<ErrorCode>String</ErrorCode>

<DetailedMessage>String</DetailedMessage>

<ErrorSource>String</ErrorSource>

<Severity>Warning</Severity>

<Remedy>String</Remedy>

<Trace>String</Trace>

</Error>

</Errors>

ResponseGroup

26

RESPONSEGROUP

The ResponseGroup group, only used for web service requests, provides a way to specify
one or more optional response groups as part of an overall web service response.

NOTE: This group is reserved for future use.

Here is a sample group:

<ResponseGroup>

 <Response>Group1</Response>

 <Response>Group2</Response>

 <Response>Group3</Response>

</ResponseGroup>

DistributionOptions

27

DISTRIBUTIONOPTIONS

The DistributionOptions group provides information about publishing channels and the
recipient-specific distribution options contained therein. You can handle each recipient
differently with specific options (sample A) or bundled together as a group (sample B).

Here is a discussion of the parameters you can use:

Parameter Description

Copies (Optional) Determines the number of copies desired for each
recipient type. The default is one copy.

DocucorpArchive (Optional) Determines if the transaction should be archived into the
Docucorp Smart Archive.

Distribution Source (Optional) Determines the source of the information driving the
distribution. You can choose from Ad Hoc or Predefined. The
default is Ad Hoc.

Priority (Optional) Determines the publishing priority of the document.

DEFERRED means that a true batch system handles all distribution
and publish type specifications. Basically, the system saves the
transaction to WIP with a Batch status code for the nightly process to
pick it up and print it.

For DEFERRED, a generic DistributionResults is returned stating
the status was Sent.

REALTIME means the publishing system will be executed
immediately and will tell you what happened during the print process.

If REALTIME is used, a detailed listing of the output is returned via
the DistributionResults complex type.

The default is REALTIME.

PublishType (Optional) Determines the type of document.

• XER (Metacode)
• AFP
• PCL
• PXL (PCL6)
• PDF
• RTF
• HTML
• PST (PostScript)
• BPD (TIFF or other bitmap)
• TXT (line print)
• GDI (Windows print)
• XMP (XML output)
• VIPP (Xerox flavor of PostScript)
• V2 (Standard Export File)

The default is PDF.

DistributionOptions

28

Here is sample group A — a simple example with Predefined source:

<DistributionOptions source="PREDEFINED">

 <Priority>REALTIME</Priority>

</DistributionOptions>

Here is sample group B — a simple example with Ad Hoc source:

<DistributionOptions source="ADHOC">

 <Channel>

<Recipient name="ALLRECIPS"/>

 </Channel>

</DistributionOptions>

Here is sample group C — a simple example for Preview:

<DistributionOptions source="ADHOC">

 <Channel>

<Recipient name="RECIP"/>

<Preview>True</Preview>

 </Channel>

</DistributionOptions>

DistributionType (Optional) Determines channel of distribution. The default is
Immediate Print. Not valid if the Distribution Source is Predefined.

• Immediate Print
• Deferred Print (a scheduled or nightly batch)

Disposition (Optional) Determines how the document should be returned. You
can choose from:

• URL (for a file location)
• ATTACH (for an attachment)

See table below for defaults for each distribution type.

Preview (Optional) Determines if the document should be generated as a
Print or Template preview.

Storys (Optional) Used to determine which story parts and extra copies
are published for each recipient. Not valid with a distribution type
of Batch. The default is all story parts.

Recipient (Optional) Describes the recipients requested for print. To let the
form set/extract and publishing system handle all default recipients,
do not specify any recipients in this structure.

When you use a predefined distribution source, you can use a specific
recipient to override the disposition generated from the predefined
system.

Parameter Description

DistributionResults

29

DISTRIBUTIONRESULTS

The DistributionResults group provides read-only information about the recipient-
specific published document results. You can handle each recipient differently with
specific options (sample A), bundle them as a group (sample B), or group them in any
combination.

This group includes these parameters:

Here is sample group A — a simple example with a pre-defined source:

<DistributionResults source="PREDEFINED">

 <Channel>

<Recipient name="RECIP" id="1">

<Props>

<Prop name="RECIP_NAME1">Andy Jones</Prop>

</Props>

</Recipient>

<PublishType>PDF</PublishType>

<DistributionType>Immediate Print</DistributionType>

<Documents>

 <Document status="URL">file://
\\myserver\documents\23480283423408098.pdf</Document>

</Documents>

 </Channel>

 <Channel>

<Recipient name="RECIP" id="2">

<Props>

<Prop name="RECIP_NAME1">Don Rogers</Prop>

</Props>

</Recipient>

<PublishType>PDF</PublishType>

<DistributionType>Immediate Print</DistributionType>

<Documents>

Parameter Description

Story This is the list of story templates that contains data (fields and
StoryFragments) that comprise the forms.

PublishType (Optional) Determines type of document. The default is PDF.

Documents A listing of published documents as base64Binary elements or URL
references to external files.

DocumentStatus This indicates the status of the resulting document:

• Failure - The document had some failure and detailed information
can be found in the Error object.

• Sent - Indicates the Document was sent to the DistributionType of
Deferred Print, FAX, or Email.

• URL - A URL reference to the document.
• ATTACH - Indicates that the published document will be sent back

as a 64-bit code encryption. These are the same encryptions found
in Docupresentment send/receive message files. You must use a
base-64 decoder to view the attachment.

DistributionResults

30

 <Document status="URL">file://
\\myserver\documents\8798uoi79iuyiuyi.pdf</Document>

</Documents>

 </Channel>

 <Channel>

<Recipient name="RECIP" id="3">

<Props>

<Prop name="RECIP_NAME1">Don Abbot</Prop>

</Props>

</Recipient>

<DistributionType>Deferred Print</DistributionType>

<Documents>

 <Document status="sent"/>

</Documents>

 </Channel>

 <Channel>

<Recipient name="RECIP" id="4">

<Props>

<Prop name="RECIP_NAME1">Andy Jones</Prop>

</Props>

</Recipient>

<PublishType>TIFF</PublishType>

<DistributionType>Immediate Print</DistributionType>

<Documents>

 <Document status="URL">ftp://client.docucorp.com/ewps/spool/
8205243jlkj345903823.tiff</Document>

</Documents>

 </Channel>

</DistributionResults>

Here is sample group B — a simple example with Ad Hoc source:

<DistributionResults source="ADHOC">

 <Channel>

<Recipient name="ALLRECIPS"/>

<PublishType>PDF</PublishType>

<DistributionType>Immediate Print</DistributionType>

<Documents>

 <Document status="ATTACH" p5:contentType="application/pdf"
xmlns:p5="http://www.w3.org/2005/05/
xmlmime">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLT…</Document>

</Documents>

 </Channel>

</DistributionResults>

Here is sample group C — a simple example for Preview:

<DistributionResults ="ADHOC">

 <Channel>

<Recipient name="RECIP" id="1"/>

<PublishType>PDF</PublishType>

<Documents>

 <Document status="ATTACH" p5:contentType="application/pdf"
xmlns:p5="http://www.w3.org/2005/05/
xmlmime">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLT…</Document>

</Documents>

 </Channel>

</DistributionResults>

DistributionResults

31

NOTE: Distribution options must be configured in the Documaker system to properly
product the distribution channels provided in the request. See the Documaker
Administration Guide for more information.

https://docs.oracle.com/cd/F30719_01/DocumakerStandard_ag_12.6.4.pdf
https://docs.oracle.com/cd/F30719_01/DocumakerStandard_ag_12.6.4.pdf

32

Chapter 3

Business Scenarios

As mentioned earlier, Enterprise Web Processing Services (EWPS) provides set of well-
defined services that have been designed from the standpoint of functionality and
business-use.

Here are some typical business scenarios and how you can use Enterprise Web Processing
Services to address them:

• Publishing a Quote Form from a Rating Application on page 33

• Initiating an Issuance Process from a Rating Application on page 41

Publishing a Quote Form from a Rating Application

33

PUBLISHING A
QUOTE FORM

FROM A RATING
APPLICATION

Suppose a carrier wants to use Oracle Insurance to produce a real-time quote form from
their rating application. Some carriers may host an online rating application as an added
benefit to their agents. Since an agent is providing sufficient data to get a quote, this data
can be used to populate and publish the quote form.

How do you map the rating application data to the actual quote form? Should the
customer be responsible for resolving all mapping prior to the web service call or should
you use Oracle Insurance tools for mapping?

Using EWPS, you can accomplish this task using the doPublish web service two ways:

• Use Oracle Insurance tools to do the mapping — The carrier produces an Oracle
Insurance standard XML or data extract file to be used as an import file.

See Option 1: Mapping the Data Using Oracle Insurance Tools on page 34 for more
information.

• Mapping resolved prior to the doPublish request — The carrier can get schema for
the quote form via the doGetTemplateListData web service and then provide a
ComposeData structure populated with data.

See Option 2: Resolving the Data Mapping Before the doPublish Request on page
36 for more information.

Publishing a Quote Form from a Rating Application

34

OPTION 1: MAPPING THE DATA USING ORACLE
INSURANCE TOOLS

Process flow diagram

Step 1 MAPPING. The rating data is mapped to the quote form using Oracle Insurance tools. A
layout or copy-book of the extract feed is provided as a reference point.

Step 2 EXTRACT. The rating engine generates a standardized extract file with data for the quote
form.

Step 3 DOPUBLISH. The rating engine calls the EWPS doPublish web service with the extract
data. For example, here is a sample request:

Publishing a Quote Form from a Rating Application

35

…and the response:

Step 4 DISTRIBUTION. The carrier distributes the quote form as necessary.

Publishing a Quote Form from a Rating Application

36

OPTION 2: RESOLVING THE DATA MAPPING BEFORE THE
DOPUBLISH REQUEST

Process flow diagram

Step 1 MAPPING. The carrier uses the doGetTemplateListData web service to get field-level
information for mapping purposes. For example, here is a sample request:

Publishing a Quote Form from a Rating Application

37

…and the response:

Publishing a Quote Form from a Rating Application

38

Step 2 DOPUBLISH. The rating engine calls the EWPS doPublish web service with
ComposeData. For example, here is a sample request:

Publishing a Quote Form from a Rating Application

39

...and the response:

Publishing a Quote Form from a Rating Application

40

Step 3 DISTRIBUTION. The carrier distributes the quote form as necessary.

Initiating an Issuance Process from a Rating Application

41

INITIATING AN
ISSUANCE

PROCESS FROM
A RATING

APPLICATION

Once a quote as been bound, an underwriter initiates the issuance process. Typically, the
assigned underwriter produces the quote and will know when the time is right to issue the
policy, which means some human intervention is required for issuance.

So how do you know what forms are needed to issue the policy and how do you know
how to map the data? Can the carrier can manage the job of mapping/triggering the policy
forms based on the type of quote and the data (using doGetTemplateListData) or do you
use Oracle Insurance tools for mapping and form triggering?

You can accomplish this business scenario using multiple steps — use the EWPS
doCreateFolder web service to create the transaction and use another application, such as
a policy administration system or iDocumaker/iPPS to complete the issuance process.

Using EWPS, you can accomplish the task of creating the transaction using the
doCreateFolder web service one of two ways:

• Using Oracle Insurance tools to map the data — The carrier produces an Oracle
Insurance standard XML or data extract file to be used as an import file.

See Option 1: Mapping the Data using Oracle Insurance Tools on page 42 for more
information.

• Mapping resolved prior to doCreateFolder request — The carrier can get schema for
the quote form via the doGetTemplateListData web service and then provide a
ComposeData structure populated with data.

See Option 2: Resolving the Data Mapping Before the doPublish Request on page
44 for more information.

Initiating an Issuance Process from a Rating Application

42

OPTION 1: MAPPING THE DATA USING ORACLE
INSURANCE TOOLS

Process flow diagram

Step 1 MAPPING. The rating data is mapped to the policy forms using Oracle Insurance tools.
A layout or copy-book of the extract feed is provided as a reference point for mapping
and triggering.

Step 2 EXTRACT. The rating engine generates a standardized extract file with data for the quote
form.

Step 3 DOPUBLISH. The rating engine calls the EWPS doCreateFolder web service with the
extract data. For example, here is a sample request:

Initiating an Issuance Process from a Rating Application

43

…and the response:

Step 4 ISSUANCE. The agent or underwriter completes the issuance as desired via their policy
administration system or by using an application such as iPPS.

Initiating an Issuance Process from a Rating Application

44

OPTION 2: RESOLVING THE DATA MAPPING BEFORE THE
DOPUBLISH REQUEST

Process flow diagram

Step 1 MAPPING. The carrier uses the doGetTemplateListData web service to get field-level
information for mapping and triggering purposes. For example, here is a sample request:

Initiating an Issuance Process from a Rating Application

45

…and the response:

Initiating an Issuance Process from a Rating Application

46

Step 2 DOCREATEFOLDER. The rating engine calls the EWPS doCreateFolder web service with
ComposeData. For example, here is a sample request:

Initiating an Issuance Process from a Rating Application

47

…and the response:

Step 3 ISSUANCE. The agent or underwriter completes the issuance as desired via their policy
administration system or by using an application such as iDocumaker.

48

Chapter 4

Available Web Services

There are several web services available with EWPS. This chapter describes these services.

You can use the following composition services:

• doGetLibraries on page 49

• doGetBusUnits on page 50

• doGetTemplateList on page 51

• doGetTemplateListData on page 53

• doCreateFolder on page 54

• doGetFolderList on page 56

• doGetFolder on page 58

• doModifyFolder on page 59

• doDeleteFolder on page 61

You can use this service for composition or publishing:

• doCallAPI on page 62

You can use this service for publishing:

• doPublish on page 69

In addition, you can set up a web service to send Studio resource information, in the form
of a WDF file, to the Documaker Add-In for Microsoft Word. For more information, see
Accessing a Workspace Definition File via a Web Service on page 71.

49

doGetLibraries
Use this service to get a simple list of candidate document libraries available for publishing
services.

This web service is non-stateful in nature and accepts optional user identification for
library profiling purposes.

Operation/Message types The following operation/message types should be supported and follow the synchronous
request/response scenario:

Scenario Synchronous Request/Response using SOAP over HTTP

Message style doc/literal

Message Parameter Description Type
Request
doGetLibrariesRequest AuthUser Optional user identification. String

ResponseGroup Optionally return certain response groups,
including:

• LibraryList

ResponseGroup

Response
doGetLibrariesResponse Result Returns Success or an error message. String

Errors A list of the errors returned if the request
completed, but not 100% successfully.

ErrorList

LibraryList A list of the available libraries. LibraryList

Fault
BadRequest An exception because of a bad request or

malformed parameters.
Client

ServiceException An exception because of server problem or
configuration.

Server

50

doGetBusUnits
Use this service to get a list of candidate business unit (BU) selection criteria for a
particular library that helps refine the document selection process.

This web service is non-stateful in nature and accepts optional user identification for
library profiling purposes.

Operation/Message types The following operation/message types should be supported and follow the synchronous
request/response scenario:

Scenario Synchronous Request/Response using SOAP over HTTP

Message style doc/literal

Message Parameter Description Type
Request
doGetBusUnitsRequest AuthUser Optional user identification. String

LibraryId Required library selection (ID). String

EffectiveDate Optional date qualifier. String

ResponseGroup Optionally return certain response groups, including:

• BusUnitsList

ResponseGroup

Response
doGetBusUnitsResponse Result Returns Success or an error message. String

Errors A list of the errors returned if the request completed,
but not 100% successfully.

ErrorList

BusUnitsList A list of available business-unit groupings to refine
transaction selection.

BusUnitsList

Fault
BadRequest An exception because of a bad request or malformed

parameters.
Client

ServiceException An exception because of server problem or
configuration.

Server

51

doGetTemplateList
Use this service recursively to get a list of the candidate forms available for publishing
services. Use the Start and MaxResults parameters to specify where the template listing
should start and how many records are returned. The NameQuery and DescQuery
parameters filter the results by their form name, description, in-line contents, or any
combination thereof.

This web service is non-stateful in nature and accepts optional user identification for
library profiling purposes.

Operation/Message types The following operation/message types should be supported and follow the synchronous
request/response scenario:

Scenario Synchronous Request/Response using SOAP over HTTP

Message style doc/literal

Message Parameter Description Type
Request
doGetTemplateListRequest AuthUser Optional user identification. String

LibraryId Required library selection (ID). String

BusUnitsList A list of selected business-unit groupings to refine
transaction selection.

BusUnitsList

EffectiveDate Optional date qualifier. String

Start One-based index of the first desired result. Integer

MaxResults Number of results desired per query. Integer

NameQuery Use to refine the search by template name. You
can use all or part of this parameter in the query.

String

DescQuery Use to refine the search by template description.
You can use all or part of this parameter in the
query.

String

SortBy Optional parameter to specify how the list you
retrieve is ordered. You can sort the list by:

• NAME
• DESCRIPTION

String

ResponseGroup Optionally return certain response groups,
including

• TemplateList:

ResponseGroup

Response
doGetTemplateListResponse Result Returns Success or an error message String

Errors A list of the errors returned if the request
completed, but not 100% successfully.

ErrorList

TemplateList A list of the available story templates. TemplateList

StartIndex The index (1-based) of the first search result in
TemplateList.

Integer

EndIndex The index (1-based) of the last search result in
TemplateList

Integer

TotalResults The total number of results that exist for the
search request.

Integer

52

SearchTime The total amount of time the service took to
complete the search in seconds.

String

Fault
BadRequest An exception because of a bad request or

malformed parameters.
Client

ServiceException An exception because of server problem or
configuration.

Server

53

doGetTemplateListData
Use this service to get schema for a given TemplateList, including details about the Story,
StoryFragments, and Fields information for the TemplateList. This service is useful if you
want to map field-level data to a document package.

The ComposeData type in the response contains a full aggregate of schema for each story
in the TemplateList, which lets you interrogate any portion of the schema for varying
types and scope of elements.

This web service is non-stateful in nature and accepts optional user identification for
library profiling purposes.

Operation/Message types The following operation/message types should be supported and follow the synchronous
request/response scenario:

Scenario Synchronous Request/Response using SOAP over HTTP

Message style doc/literal

Message Parameter Description Type
Request
doGetTemplateListDataRequest AuthUser Optional user identification. String

LibraryId Required library selection (ID). String

TemplateList A list of the available story templates. TemplateList

EffectiveDate Optional date qualifier. String

ResponseGroup Optionally return certain response groups,
including:

• ComposeData

ResponseGroup

Response
doGetTemplateListDataResponse Result Returns Success or an error message. String

Errors A list of the errors returned if the request
completed, but not 100% successfully.

ErrorList

ComposeData A fragment of the schema for the selected
list of templates – use to map data for
downstream composition and publishing
services.

ComposeData

Fault
BadRequest An exception because of a bad request or

malformed parameters.
Client

ServiceException An exception because of server problem or
configuration.

Server

54

doCreateFolder
Use this service to create a remote folder of selected story templates you want to work on.
A remote folder works somewhat like an e-Commerce shopping cart, except it is designed
for managing an active document package with stateful composition.

The doCreateFolderRequest service is considered abstract in nature, which means it cannot
be implemented. Instead, doCreateFolder supports the implementation of these
underlying concrete types:

This web service is stateful in nature and returns a unique FolderId to be used in
subsequent requests.

Operation/Message types The following operation/message types should be supported and follow the synchronous
request/response scenario:

Type Use this type if you...

doCreateFolder_Import Want Oracle Insurance rules to handle the dynamic
triggering of Story and StoryFragment types and mapping
of data to the document.

(<doCreateFolderRequest
xsi:type=”doCreateFolderReq_Import”…)

doCreateFolder_ComposeData Know which story templates you need and (optionally)
want to map specific data elements to the document.

(<doCreateFolderRequest
xsi:type=”doCreateFolderReq_ComposeData”…)

Scenario Synchronous Request/Response using SOAP over HTTP

Message style doc/literal

Message Parameter Description Type
Abstract Request
doCreateFolderRequest Owner Identity of the document or folder owner,

for identification purposes.
Owner

CoreProperties Core properties of the folder. CoreProperties

ResponseGroup Optionally return certain response groups,
including:

• TemplateList
• CoreProperties

ResponseGroup

Typed Request
doCreateFolderReq_Import ImportFile Attachment data for the import files that

drives the publishing request
ImportFileList

TemplateList Optional listing of selected story templates. TemplateList

Typed Request
doCreateFolderReq_ComposeData ComposeData A list of selected story templates with

composition data to be merged with the
active document for composition or
publishing.

ComposeData

Response

55

doCreateFolderResponse Result Returns Success or an error message. String

Errors A list of the errors returned if the request
completed, but not 100% successfully.

ErrorList

FolderId Unique folder identifier. String

TemplateList A list of all story templates currently in the
remote folder.

TemplateList

CoreProperties The core properties of the folder. CoreProperties

Fault
BadRequest An exception because of a bad request or

malformed parameters.
Client

ServiceException An exception because of server problem or
configuration.

Server

56

doGetFolderList
Use this service to get a list of folders.

This web service is stateful in nature and requires a FolderId to maintain the state of the
request.

Operation/Message types The following operation/message types should be supported and follow the synchronous
request/response scenario:

Scenario Synchronous Request/Response using SOAP over HTTP

Message style doc/literal

Message Parameter Description Type
Request
doGetFolderListRequest Owner Identity of the document or folder owner, for

identification purposes.
Owner

LibraryId Required library selection (ID). String

Start One-based index of the first desired result. Integer

MaxResults Number of results desired per query. Integer

DocumentIdQuery Use to refine the search by DocumentId. You can
use all or part of this parameter in the query.

String

DescQuery Use to refine the search by Description. You can
use all or part of this parameter in the query.

String

PropQuery Use to refine the search by one or more custom
properties. You can use all or part of this parameter
in the query.

PropQueryInfo

SortBy Optional parameter to specify how to order the list
you retrieve. You can sort the list by:

• DOCUMENTID
• DESCRIPTION
• <PROPERTY>

String

ResponseGroup Optionally return certain response groups,
including:

• TemplateList
• ComposeData

ResponseGroup

Response
doGetFolderListResponse Result Returns Success or an error message. String

Errors A list of the errors returned if the request
completed, but not 100% successfully.

ErrorList

FolderList A list of folders returned from the search query. FolderListType

StartIndex The index (1-based) of the first search result in
FolderList.

Integer

EndIndex The index (1-based) of the last search result in
FolderList

Integer

TotalResults The total number of results that exist for the search
request.

Integer

SearchTime The total amount of time the service took to
complete the search in seconds.

String

Fault

57

BadRequest An exception because of a bad request or
malformed parameters.

Client

ServiceException An exception because of server problem or
configuration.

Server

58

doGetFolder
Use this service to get the contents of a pre-existing folder.

This web service is stateful in nature and requires a FolderId to maintain the state of the
request.

Operation/Message types The following operation/message types should be supported and follow the synchronous
request/response scenario:

Scenario Synchronous Request/Response using SOAP over HTTP

Message style doc/literal

Message Parameter Description Type
Request
doGetFolderRequest LibraryId Required library selection (ID). String

FolderId Unique folder identifier. String

ResponseGroup Optionally return certain response groups,
including:

• TemplateList
• CoreProperties
• ComposeData

ResponseGroup

Response
doGetFolderResponse Result Returns Success or an error message. String

Errors A list of the errors returned if the request completed,
but not 100% successfully.

ErrorList

Owner Identity of the document or folder owner, for
identification purposes.

Owner

FolderId Unique folder identifier. String

TemplateList A list of all story templates currently in the remote
folder.

TemplateList

CoreProperties The core properties of the folder. CoreProperties

Fault
BadRequest An exception because of a bad request or malformed

parameters.
Client

ServiceException An exception because of server problem or
configuration.

Server

59

doModifyFolder
Use this service to add, remove, re-arrange, and generally modify the contents, XML data,
and/or general information of a folder.

Here are the rules that apply to the use of doModifyFolder:

This web service is stateful in nature and requires a FolderId to maintain the state of the
request.

Operation/Message types The following operation/message types should be supported and the synchronous
request/response scenario:

Rule Description

CoreProperties Any property item omitted means the pre-existing property in the folder
remains intact.

Additionally, any property passed as a blank/empty value indicates the pre-
existing property in the folder should be cleared — subject to certain
underlying publishing rules, wherein the clearing of a property would
effectively invalidate the folder in the system.

ComposeData Including ComposeData in the request means there is an intention to
update/modify the document itself. If there is a mismatch between Story
items, ComposeData determines the new document packaging (overwrites
the current document).

Additionally, if a field item is included in the request, it means there is an
intention to update/modify the same field in the folder.

Conversely, omitting field items in the request indicates there is an intention
to preserve the current content of the field in the folder.

Scenario Synchronous Request/Response using SOAP over HTTP

Message style doc/literal

Message Parameter Description Type
Request
doModifyFolderRequest Owner Identity of the document or folder owner, for

identification purposes.
Owner

LibraryId Required library selection (ID). String

FolderId Unique folder identifier. String

ComposeData The fragment of composition data to be injected/
merged with the active document for composition or
publishing

ComposeData

CoreProperties Modified core properties of the folder. CoreProperties

ResponseGroup Optionally return certain response groups, including:

• TemplateList
• CoreProperties

ResponseGroup

Response
doModifyFolderResponse Result Returns Success or an error message. String

Errors A list of the errors returned if the request completed,
but not 100% successfully.

ErrorList

60

FolderId Unique folder identifier. String

TemplateList A list of all story templates currently in the remote
folder.

TemplateList

CoreProperties The core properties of the folder. CoreProperties

Fault
BadRequest An exception because of a bad request or malformed

parameters.
Client

ServiceException An exception because of server problem or
configuration.

Server

61

doDeleteFolder
Use this service to delete a folder.

This web service is stateful in nature and requires a FolderId to make the request.

Operation/Message types The following operation/message types should be supported and follow the synchronous
request/response scenario:

Scenario Synchronous Request/Response using SOAP over HTTP

Message style doc/literal

Message Parameter Description Type
Request
doDeleteFolderRequest LibraryId Required library selection (ID). String

FolderId Unique folder identifier. String

Response
doDeleteFolderResponse Result Returns Success or an error message. String

Errors A list of the errors returned if the request completed,
but not 100% successfully.

ErrorList

Fault
BadRequest An exception because of a bad request or malformed

parameters.
Client

ServiceException An exception because of server problem or
configuration.

Server

62

doCallAPI
Use this service operation to submit any request type to a provider such as
Docupresentment. This service operation allows more flexibility than the other service
operations discussed in this document by providing more abstraction of a request payload
that can be submitted to a provider. For instance, you can submit and return any number
of name/value pairs, collections, and attachments. This also means that unlike the other
service operations discussed in this document, doCallAPI does not lend itself well to the
definition of a well-defined service. Only use this service when one of the other service
operations does not provide the necessary functionality.

NOTE: This service operation is only supported in Java.

Parameter Description Type Occurrence
Request payload (doCallAPIRequest) elements
schemaVersion The schema version to use. The default is 1.0, but version 1.1 can also

be used.
schemaVersion
Enum

0…1

timeOut The timeout value in seconds for the service operation to receive a
response from the provider. The default is 30 seconds.

int 0…1

ProviderName The provider name for the operation that should be invoked. The
default is IDSProvider, which represents a Docupresentment server as
a provider.

string 1

Operation The provider operation that should be invoked. The default is
processRequest but you can also provide a value of Discovery to ask the
doCallAPI service operation to return a list of supported operations
for the provider.

string 1

Props A list of Prop, FileProp and Collection elements to send to the
provider.See the definition of each for more details.

PropertyList 1

Prop A name/value pair to send to the provider for a specific operation.
You can submit a Prop name/value pair of name Discovery and value
true to ask doCallAPI service operation to return additional
information about the expected Prop elements for the Operation value
provided.

Here are the attributes:

• name – The name of the name/value pair.
• Text – The value of the name/value pair.

Here is an example:

<Prop name="Reqtype">SSS</Prop>

PropertyInfo 0…many

63

FileProp A file attachment to send to the provider. The attachment can be
inline base64 content or a valid HTTP or File URL to a file accessible
by the doCallAPI service operation.

Here are the attributes:

• name – The name of the attachment.
• location – The location of the attachment. Use ATTACH if the

content is provided as base64 inline text. Use URL if the
content will be provided by an HTTP or File URL.

• URLLocation – only present when the type is PropFile_URL
and should contain the value of the HTTP or File URL.

• contentType – You can omit this value. It is only present
because the base class used for PropFile_ATTACH and
PropFile_URL types contains this attribute.

• Text – None (blank) when location is set equal to URL,
otherwise, the base64 inline text content of the attachment
when FileProp element is a child of Props element and none
(blank) when it is a child of ResponseProps element.

Here is an example:

<FileProp xsi:type="contract:PropFile_URL"
location="URL" URLLocation="file:///c:/
test.xml" name="MyAttachment"/>

PropFile_ATT
ACH or
PropFile_URL

0…many

Collection A collection of items to send to the provider. Each item can contain
one or more columns with a name and value. You can also think of
a collection as a row set with one or more rows, each row containing
one or more name/value pairs.

Here are the attributes:

• name – The name of the collection
• Text – None (blank)

Here is an example:

<Collection name="My Collection">

 <Item name="My Item 1">

 <Column name="name1">

 value1

 </Column>

 <Column name="name2">

 value2

 </Column>

 </Item>

 <Item name="My Item 2">

 <Column name="name1">

 value1

 </Column>

 <Column name="name2">

 value2

 </Column>

 </Item>

</Collection>

CollectionType 0…many

Parameter Description Type Occurrence

64

ResponseProps An element that defines how attachments should be returned by the
provider. As such, it contains one or more FileProp elements. See the
definition of FileProp for more information.

Here is an example:
< ResponseProps>
<FileProp xsi:type="contract:PropFile_ATTACH"
location="ATTACH"
name="ATC1"/>
<FileProp xsi:type="contract:PropFile_URL"
location="URL" URLLocation="file:///c:/
test.xml" name="ATC2"/>
</ResponseProps>

ResponsePrope
rtyList

0…many

Response payload (doCallAPIResponse) elements
Props A list of Prop, FileProp and Collection elements returned by the

provider. See the definition of each for more details.
PropertyList 1

Prop A name/value pair returned by the provider.

Here are the attributes:

• name – The name of the name/value pair.
• Text – The value of the name/value pair.

Here is an example:

<Prop name="Reqtype">SSS</Prop>

PropertyInfo 0…many

FileProp A file attachment returned by the provider. The attachment can be
inline base64 content or a valid HTTP or file URL.

Here are the attributes:

• name – The name of the attachment.
• location – The location of the attachment. Will be ATTACH if

the content is returned as base64 inline text, otherwise URL if
the content is returned as an HTTP or file URL.

• URLLocation – Only present when the type is PropFile_URL
and should contain the value of the HTTP or file URL.

• contentType – You can omit this value. It is only present
because the base class used for PropFile_ATTACH and
PropFile_URL types contains this attribute.

• Text – None (blank) when location is set equal to URL,
otherwise, the base64 inline text content of the attachment
returned by the provider.

Here is an example:

<FileProp xsi:type="contract:PropFile_URL"
location="URL" URLLocation="file:///c:/
test.xml" name="MyAttachment"/>

PropFile_ATT
ACH or
PropFile_URL

0…many

Parameter Description Type Occurrence

65

Here is an example request payload:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ns="http://
www.w3.org/2005/05/xmlmime" xmlns:contract="http://
webservices.docucorp.com/ewps/schema/2005-12-01">

 <soap:Body>

 <contract:doCallAPIRequest schemaVersion="1.0">

 <contract:timeOut>30</contract:timeOut>

 <contract:ProviderName>IDSProvider</contract:ProviderName>

 <contract:Operation>processRequest</contract:Operation>

 <contract:Props>

 <contract:Prop name="REQTYPE">ECH</contract:Prop>

 <contract:Prop name="Foo">Foo</contract:Prop>

 <contract:FileProp xsi:type="contract:PropFile_ATTACH"
location="ATTACH" name="ATTACHMENT1">

PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4NCjxtZXNzYWdlPg0
KCTxkYXRh

Pg0KCSAgPHZhciBuYW1lPSJDT05GSUciPkFNRVJHRU48L3Zhcj4NCgkgIDx2YXIgbmF
tZT0iVVNF

UklEIj5GT1JNQUtFUjwvdmFyPg0KCSAgPHZhciBuYW1lPSJQQVNTV09SRCI+Rk9STUF
LRVI8L3Zh

cj4NCgkgIDx2YXIgbmFtZT0iUkVRVFlQRSI+VEVTVDwvdmFyPg0KCSAgPHZhciBuYW1
lPSJEWU5B

TUlDLUNPTkZJR1VSQVRJT04tRklMRSI+QzpcZG9jc2Vydlx0ZXN0ZmlsZXNcdGVzdC1
jb25maWct

Collection A collection of items returned by the provider. Each item can contain
one or more columns with a name and value. You can also think of
a collection as a row set with one or more rows, each row containing
one or more name/value pairs.

Here are the attributes:

• name – The name of the collection
• Text – None (blank)

Here is an example:

<Collection name="My Collection">

 <Item name="My Item 1">

 <Column name="name1">

 value1

 </Column>

 <Column name="name2">

 value2

 </Column>

 </Item>

 <Item name="My Item 2">

 <Column name="name1">

 value1

 </Column>

 <Column name="name2">

 value2

 </Column>

 </Item>

</Collection>

CollectionType 0…many
Parameter Description Type Occurrence

66

ZmlsZS54bWw8L3Zhcj4NCgk8L2RhdGE+DQoJPGF0dGFjaG1lbnRzPg0KCQk8ZmlsZSB
uYW1lPSJB

VFRBQ0hNRU5UMSI+QzpcZG9jc2Vydlx0ZXN0ZmlsZXNcaW1wb3J0LnhtbDwvZmlsZT4
NCgk8L2F0

dGFjaG1lbnRzPgkNCjwvbWVzc2FnZT4NCg==</contract:FileProp>

 <contract:FileProp xsi:type="contract:PropFile_URL"
location="URL" URLLocation="http://localhost:8080/ewps-axis2/cache/
test.xml" name="ATTACHMENT2"/>

 <contract:FileProp xsi:type="contract:PropFile_URL"
location="URL" URLLocation="file:///c:/java/tomcat/webapps/ewps-
axis2/cache/test.xml" name="ATTACHMENT3"/>

 <contract:Collection name="Collection1">

 <contract:Item name="Item1">

 <contract:Column name="column1">value1</contract:Column>

 <contract:Column name="column2">value2</contract:Column>

 </contract:Item>

 <contract:Item name="Item2">

 <contract:Column name="name1">string1</contract:Column>

 <contract:Column name="name2">string2</contract:Column>

 </contract:Item>

 </contract:Collection>

 <contract:Collection name="Collection2">

 <contract:Item name="Coll1">

 <contract:Column name="testname1">testvalue1</
contract:Column>

 <contract:Column name="testname2">testvalue2</
contract:Column>

 </contract:Item>

 <contract:Item name="Coll2">

 <contract:Column name="myname1">stringvalue1</
contract:Column>

 <contract:Column name="myname2">stringvalue2</
contract:Column>

 </contract:Item>

 </contract:Collection>

 </contract:Props>

 <contract:ResponseProps>

 <contract:FileProp name="ATTACHMENT1" location="URL"
URLLocation="file:///c:/temp/test1.xml"/>

 <contract:FileProp name="ATTACHMENT2" location="ATTACH"/>

 <contract:FileProp name="ATTACHMENT3" location="URL"
URLLocation="file:///c:/temp/test2.xml"/>

 </contract:ResponseProps>

 </contract:doCallAPIRequest>

 </soap:Body>

</soap:Envelope>

Here is the corresponding response payload example:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">

 <soapenv:Body>

 <doCallAPIResponse xmlns="http://webservices.docucorp.com/ewps/
schema/2005-12-01">

 <Props>

 <Prop name="Foo">Foo</Prop>

 <Prop name="IDSGUID">ef87ae86d4d53eb5010b6791190894f1</
Prop>

67

 <Prop name="IDSHOSTNAME">jrobertsnb1</Prop>

 <Prop name="REQTYPE">ECH</Prop>

 <Prop name="SERVERTIMESPENT">0.000</Prop>

 <Prop name="SERVERTIMESPENTMS">0</Prop>

 <Prop name="Timeout">30</Prop>

 <Prop name="ServiceResults">SUCCESS</Prop>

 <Prop name="ServiceTimeMillis">125</Prop>

 <FileProp name="ATTACHMENT1" location="URL"
URLLocation="file:///c:/temp/test1.xml"/>

 <FileProp name="ATTACHMENT2"
location="ATTACH">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiP
z4NCjxtZXNzYWdlPg0KCTxkYXRh

Pg0KCSAgPHZhciBuYW1lPSJDT05GSUciPkFNRVJHRU48L3Zhcj4NCgkgIDx2YXIgbmF
tZT0iVVNF

UklEIj5GT1JNQUtFUjwvdmFyPg0KCSAgPHZhciBuYW1lPSJQQVNTV09SRCI+Rk9STUF
LRVI8L3Zh

cj4NCgkgIDx2YXIgbmFtZT0iUkVRVFlQRSI+VEVTVDwvdmFyPg0KCSAgPHZhciBuYW1
lPSJEWU5B

TUlDLUNPTkZJR1VSQVRJT04tRklMRSI+QzpcZG9jc2Vydlx0ZXN0ZmlsZXNcdGVzdC1
jb25maWct

ZmlsZS54bWw8L3Zhcj4NCgk8L2RhdGE+DQoJPGF0dGFjaG1lbnRzPg0KCQk8ZmlsZSB
uYW1lPSJB

VFRBQ0hNRU5UMSI+QzpcZG9jc2Vydlx0ZXN0ZmlsZXNcaW1wb3J0LnhtbDwvZmlsZT4
NCgk8L2F0

dGFjaG1lbnRzPgkNCjwvbWVzc2FnZT4NCg==</FileProp>

 <FileProp name="ATTACHMENT3" location="URL"
URLLocation="file:///c:/temp/test2.xml"/>

 <Collection name="Collection1">

 <Item name="1">

 <Column name="column1">value1</Column>

 <Column name="column2">value2</Column>

 </Item>

 <Item name="2">

 <Column name="name1">string1</Column>

 <Column name="name2">string2</Column>

 </Item>

 </Collection>

 <Collection name="Collection2">

 <Item name="1">

 <Column name="testname1">testvalue1</Column>

 <Column name="testname2">testvalue2</Column>

 </Item>

 <Item name="2">

 <Column name="myname1">stringvalue1</Column>

 <Column name="myname2">stringvalue2</Column>

 </Item>

 </Collection>

 </Props>

 </doCallAPIResponse>

 </soapenv:Body>

</soapenv:Envelope>

68

Configuring the Provider

Each provider supported by the doCallAPI service operation contains a configuration
section with the same name as that of ProviderName inside the ewps.config.xml
configuration file. You can use this section to configure connection properties for each
provider. For example, the IDSProvider section for Docupresentment contains the same
configuration properties as those of the queue configuration properties for
Docupresentment. Here is an example:

<IDSProvider>

 <entry
name="marshaller.class">com.docucorp.messaging.data.marshaller.SOAP
MIMEDSIMessageMarshaller</entry>

 <entry
name="queuefactory.class">com.docucorp.messaging.http.DSIHTTPMessag
eQueueFactory</entry>

 <entry name="http.url">http://localhost:49152</entry>

 <entry name="http.reuse.ports">15</entry>

 <entry name="http.putmessage.tries">15</entry>

 <entry name="timeout">30</entry>

</IDSProvider>

The request payload can provide the configuration properties for the provider, overriding
the properties defined in the ewps.config.xml configuration file. The configuration
properties should be provided as a collection with the same name as that of ProviderName.
Here is an example of a request payload that does that:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ns="http://
www.w3.org/2005/05/xmlmime" xmlns:contract="http://
webservices.docucorp.com/ewps/schema/2005-12-01">

 <soap:Body>

 <contract:doCallAPIRequest schemaVersion="1.0">

 <contract:ProviderName>IDSProvider</contract:ProviderName>

 <contract:Operation>processRequest</contract:Operation>

 <contract:Props>

 <contract:Prop name="REQTYPE">SSS</contract:Prop>

 <contract:Prop name="CONFIG">DOCCDEMO</contract:Prop>

 <contract:Collection name="IDSProvider">

 <contract:Item name="Properties">

 <contract:Column
name="marshaller.class">com.docucorp.messaging.data.marshaller.SOAP
MIMEDSIMessageMarshaller</contract:Column>

 <contract:Column
name="queuefactory.class">com.docucorp.messaging.http.DSIHTTPMessag
eQueueFactory</contract:Column>

 <contract:Column name="http.url">http://127.0.0.1:49152</
contract:Column>

 </contract:Item>

 </contract:Collection>

 </contract:Props>

 <contract:ResponseProps>

 </contract:ResponseProps>

 </contract:doCallAPIRequest>

 </soap:Body>

</soap:Envelope>

69

doPublish
Use this service to publish a composed document, either from a stateful transaction or via
an imported transaction.

A stateful request simply requires a FolderId, which is the identifier to handle a folder-
based publishing request with pre-selected story templates in a ComposeData structure.
Stateless requests can be driven by an import file (such as XML or a pre-defined extract)
or the selection of desired story templates in a folder.

The doPublishRequest is considered abstract in nature, which means it cannot be
implemented. Instead, doPublish supports the implementation of two underlying concrete
types, as follows:

Operation/Message types The following operation/message types should be supported and follow the synchronous
request/response scenario:

Type Publishes a document from...

doPublish_Import An import file
(<doPublishRequest xsi:type=”doPublishReq_Import”…)

doPublish_ComposedData Composed data
(<doPublishRequest
xsi:type=”doPublishReq_ComposedData”…)

doPublish_FolderId A FolderId
(<doPublishRequest xsi:type=”doPublishReq_FolderId”…)

Scenario Synchronous Request/Response using SOAP over HTTP

Message style doc/literal

Message Parameter Description Type
Abstract Request
doPublishRequest LibraryId Optional library selection identifier

(required for SourceType=IMPORT
or FOLDERID).

String

DistributionOptions Required grouping that specifies
various publishing and distribution
options.

DistributionOptions

Typed Request
doPublishRequest_Import SourceType Fixed identifier for the type of

publishing request (IMPORT).
String

Import Attachment data for the import files
that drives the publishing request.

ImportFileList

Typed Request
doPublishRequest_FolderId SourceType Fixed identifier for the type of

publishing request (FOLDERID).
String

FolderId Unique identifier for the remote
Folder

String

Typed Request

70

RETURNING A PDF FILE IN A DOPUBLISH RESPONSE

Use the doPublishAttachment INI option in the CONFIG.INI file to enable a print
stream produced by Documaker extract file processing to be returned in the EWPS
doPublish response. With this option set to Yes, any input to doPublish, such as a
Documaker standard XML file or an extract file, can be configured to return base64
attachments.

< IDSServer >

doPublishAttachment = Yes

NOTE: :This INI option only affects doPublish processing with an import file, not
ComposeData or FolderID. You must use this option with the EWPS doPublish
disposition distribution option of ATTACH.

doPublishRequest_ComposeData SourceType Fixed identifier for the type of
publishing request
(COMPOSEDATA).

String

ComposeData A list of selected story templates with
composition data to be merged with
the active document for composition
or publishing.

ComposeData

Response
doPublishResponse Result Returns Success or an error message. String

Errors A list of the errors returned if the
request completed, but not 100%
successfully.

ErrorList

DistributionResults The DistributionResults group
contains information pertaining to
recipients and their published
document results.

DistributionResults

Fault
BadRequest An exception because of a bad

request or malformed parameters.
Client

ServiceException An exception because of server
problem or configuration.

Server

Option Description

doPublishAttachment Enter Yes to enable a print stream produced by Documaker extract file
processing to be returned in the EWPS doPublish response.

With this option set to Yes, any input to doPublish can be configured
to return base64 attachments.

The default is No.

Accessing a Workspace Definition File via a Web Service

71

ACCESSING A
WORKSPACE

DEFINITION FILE
VIA A WEB

SERVICE

You can use a web service to provide a Documaker Workspace Definition file (WDF) to
the Documaker Add-In for Microsoft Word. This file contains information about the
workspace such as recipients, triggers, and fields which makes it easier for Add-In users
to insert these objects into their documents.

The Documaker Add-in for Microsoft Word is pre-configured to get a WDF file with key
information about the resource library. The Documaker Add-In for Microsoft Word Help
explains how to set up the web service and make sure it is working properly.

These items must be in place to enable the web service to access the definition file:

• Docupresentment version 2.2 with Documaker Shared Objects version 11.5 or
higher must be installed and configured to use the workspace that will use the content
created with the Add-in. Do this by adding the configuration name to the dap.ini file
and creating a specific configuration file for the workspace, if it does not already exist.
Here is an example:

< Config:workspace_name >

INIFile = c:\fap\mstrres\workspace_name\fsisys.ini

INIFile = c:\fap\mstrres\workspace_name\fsiuser.ini

Also add this option in the Configurations control group:

< Configurations >

Config = workspace_name

• Put the GENDEFXML request type in the IDS configuration file (docserv.xml) to
call the DPRGenerateDefinitionFile rule.

<section name="ReqType:GENDEFXML">

<entry name="function">atcw32->ATCLoadAttachment</entry>

<entry name="function">atcw32->ATCUnloadAttachment</entry>

<entry name="function">dprw32->DPRSetConfig</entry>

<entry name="function">dprw32->DPRGenerateDefinitionFile</entry>

<!-- -->

</section>

NOTE: For more information on the DPRGenerateDefinitionFile rule, see Using the
Documaker Bridge.

The request needs these input variables:

 Config

 BDF Name

Add-In users will enter these variables via the Documaker Add-in for Microsoft
Word configuration option, see Downloading a Workspace Definition File in the
Documaker Add-In for Microsoft Word Help for more information. To test, you can
enter these variables via the DSICOTB test configuration tool. See the Internet
Document Server SDK Reference for more information on this tool.

• Deploy EWPS to the application server via the ewps-axis2.war file. You can find this
file at the root of the Docupresentment directory, docserv\webservices. Use the
location of the deployed EWPS as the endpoint for configuring the web service
connectivity.

https://docs.oracle.com/cd/F30719_01/Documaker_Bridge_ug_12.6.4.pdf
https://docs.oracle.com/cd/F30719_01/Documaker_Bridge_ug_12.6.4.pdf

http://docs.oracle.com/cd/F30719_01/DocupresentmentSDK_rg_12.6.4.pdf

http://docs.oracle.com/cd/F30719_01/DocupresentmentSDK_rg_12.6.4.pdf

Accessing a Workspace Definition File via a Web Service

72

When using Secure Sockets Layer (SSL), verify your certificate with a trusted CA site. To
verify the certificate, create a .csr or .cer file and import the file into the keystore file. Then
submit the .csr or .cer file to a certification service, such as VeriSign. From that site you
can verify or authenticate the certificate and then use that certificate to connect to the
Add-In operating behind the Secure Sockets Layer (SSL).

NOTE: The Documaker Add-In does not accept self-signed certificates.

73

Chapter 5

Additional Resources

The following resources provide information about SOAP, JSON, and web services in
general, as well as other useful topics:

• SOAP on page 74

• Web Services on page 75

• Web Services Description Language on page 77

• Using the XML Configuration File on page 78

The definitions within various sections of this document are taken from several of these
resources.

SOAP

74

SOAP SOAP (Simple Object Access Protocol) is a lightweight protocol intended for exchanging
structured information in a decentralized, distributed environment. SOAP uses XML
technologies to define an extensible messaging framework providing a message construct
that can be exchanged over a variety of underlying protocols.

The framework has been designed to be independent of any particular programming
model and other implementation specific semantics. SOAP supports message security,
attachment, routing, reliability, and choreography.

W3C: http://www.w3.org/TR/soap12-part1/

SOAP Messaging Framework:

W3C: http://www.w3.org/TR/SOAP

W3Schools SOAP Tutorial:

W3Schools: http://www.w3schools.com/soap/default.asp

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/SOAP
http://www.w3schools.com/soap/default.asp

Web Services

75

WEB SERVICES Web services is a technology that lets applications communicate with each other in a
platform- and programming language-independent manner.

A web service is a software interface that describes a collection of operations that can be
accessed over the network through standardized XML messaging. It uses protocols based
on the XML language to describe an operation to execute or data to exchange with
another web service.

Web services promise to increase interoperability and lower the costs of software
integration and data-sharing with partners. As they are based on simple and non-
proprietary standards, web services make it possible for computer programs to
communicate directly with one another and exchange data regardless of location,
operating systems, or languages.

IBM: http://www-106.ibm.com/developerworks/webservices/newto/

REFERENCES AND PROJECTS

IBM developerWorks Web Services
IBM Corporation

http://www-136.ibm.com/developerworks/webservices

O'Reilly Web Services
O'Reilly & Associates, Inc.

http://webservices.oreilly.com

Microsoft Web Services
Microsoft Corporation

http://msdn.microsoft.com/webservices

XML and Web Services
Microsoft Corporation

http://msdn2.microsoft.com/en-us/library/ms950421.aspx

Java Technology and Web Services
Sun Microsystems, Inc.

http://java.sun.com/webservices

Apache Web Services Project
The Apache Software Foundation

http://ws.apache.org

JSON
JSON.org

http://www.json.org

http://www-106.ibm.com/developerworks/webservices/newto/
http://www-136.ibm.com/developerworks/webservices
http://webservices.oreilly.com
http://msdn.microsoft.com/webservices
http://msdn2.microsoft.com/en-us/library/ms950421.aspx
http://java.sun.com/webservices
http://ws.apache.org
http://www.json.org

Web Services

76

WEB SERVICES STANDARDS AND SPECIFICATIONS

Web Services Interoperability Organization
WS-I

http://www.ws-i.org

Web Services Activity
W3C

http://www.w3.org/2002/ws

OASIS
OASIS

http://www.oasis-open.org/home/index.php

OTHER RESOURCES

Web Services Architect

http://www.webservicesarchitect.com

SOA World Magazine

http://webservices.sys-con.com

WebServices.org

http://www.webservices.org

Dr. Dobbs Journal – SOA, Web services, and XML

http://www.ddj.com/dept/webservices

http://www.w3.org/2002/ws
http://www.ws-i.org
http://www.oasis-open.org/home/index.php
http://www.webservicesarchitect.com
http://webservices.sys-con.com
http://www.webservices.org
http://www.ddj.com/dept/webservices

Web Services Description Language

77

WEB SERVICES
DESCRIPTION

LANGUAGE

Web Services Description Language (WSDL) is an XML-based service description on
how to communicate using web services. The WSDL defines services as collections of
network endpoints, or ports. WSDL specification provides an XML format for
documents for this purpose.

The abstract definition of ports and messages is separated from their concrete use or
instance. This allows the reuse of these definitions. A port is defined by associating a
network address with a reusable binding, and a collection of ports define a service.
Messages are abstract descriptions of the data being exchanged, and port types are
abstract collections of supported operations. The concrete protocol and data format
specifications for a particular port type constitutes a reusable binding, where the messages
and operations are then bound to a concrete network protocol and message format. In
this way, WSDL describes the public interface to the web service.

WSDL is often used with SOAP and XML Schema to provide web services over the
Internet. A client program connecting to a web service can read the WSDL to determine
what functions are available on the server. Any special data types used are embedded in
the WSDL file in the form of XML Schema. The client can then use SOAP to actually call
one of the functions listed in the WSDL.

Wikipedia: http://en.wikipedia.org/wiki/Web_Services_Description_Language

Using WSDL in SOAP applications:

IBM: http://www-128.ibm.com/developerworks/library/ws-soap/?dwzone=ws

Understanding WSDL:

Microsoft: http://msdn2.microsoft.com/en-us/library/ms996486.aspx

An overview of WSDL:

Sun: http://developers.sun.com/sw/building/tech_articles/overview_wsdl.html

Apache Axis2 User Guide:

Apache: http://ws.apache.org/axis2/1_1_1/userguide.html

http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://ws.apache.org/axis2/1_1_1/userguide.html
http://developers.sun.com/sw/building/tech_articles/overview_wsdl.html
http://msdn2.microsoft.com/en-us/library/ms996486.aspx
http://www-128.ibm.com/developerworks/library/ws-soap/?dwzone=ws

Using the XML Configuration File

78

USING THE XML
CONFIGURATION

FILE

EWPS uses a file to set up configuration options, including how it communicates with
Docupresentment. The default behavior is to communicate with Docupresentment over
HTTP, on port 49152, with EWPS and Docupresentment on the same machine.

There are several ways to have EWPS change where it looks for the configuration file.
Based on your application server and clustering setup, you should select the approach that
best fits your needs.

EWPS first looks for the following JVM system property:

ewps.config.url

If this is set, EWPS looks for the configuration file at the URL specified in the setting. If
the configuration file is in a file on the local machine, use the file: url naming scheme. Here
is an example:

file:///c:/configurations/ewps.config.xml

If the system property is not set or if there was an error retrieving the configuration file,
EWPS searches its Java classpath for a file named:

ewps.config.xml

With some application servers, such as Tomcat, the file can be located in one of these
EWPS directories...

• /WEB-INF/classes directory

• /WEB-INF/lib directory (if packaged in a JAR file)

Other application servers, such as WebSphere, have options to set up shared libraries that
can be added to a web application's classpath but still remain external to the web
application's deployment.

If none of these options find a configuration file, EWPS looks at the init.file context
parameter in the web application's web.xml file. Some application servers allow access and
the editing of this file directly after web application deployment, while others have
administration consoles to allow the editing of parameters in the web application.

If the parameter is in the form of a URL, EWPS looks for the configuration file at the
URL specified in the setting. If the parameter is not a URL, it is assumed to be a file in
the context and file structure of the web application. The default value for the init.file
context parameter is shown here:

/WEB-INF/xml/ewps.config.xml

Using the XML Configuration File

79

ewps.config.xml file The ewps.config.xml file contains the configuration for the message bus provider. This
file is located in the ewps-axis2.war's WEB-INF/services/EWPSService.aar (Axis2
Archive – Java Archive format) file, under its root.

You can modify this file to define the different message bus providers that
Docupresentment (IDS) is configured to listen on. The ewps.config.xml file contains
configuration examples for the following:

• JMS/ActiveMQ

• WebSphere MQ

• MSMQ (Windows only)

• IDS HTTP

You can find these message bus configuration examples under the <EWPS><Core>
<queuemanager> section of the XML file. Here is an example of the ewps.config.xml file:

<EWPS>

 <Core>

 <queuemanager>

<!-- MESSAGING and QUEUE nodes are used for setting communication
to Docupresentment. Refer to Docupresentment documentation for
possible values -->

<!-- ***Settings for ActiveMQ JMS setup *** -->

<entry name="queuefactory.class">com.docucorp.messaging.jms.
DSIJMSJNDIMessageQueueFactory</entry>

<entry name="jms.inputqueue.connectstring">resultq</entry>

<entry name="jms.outputqueue.connectstring">requestq</entry>

<entry name="jms.qcf.name">queueConnectionFactory</entry>

<entry name="jms.initial.context.factory">org.apache.activemq.
jndi.ActiveMQInitialContextFactory</entry>

<!-- ***Settings for IDS http connection*** -->

<!--

<entry name="queuefactory.class">com.docucorp.messaging.
http.DSIHTTPMessageQueueFactory</entry>

<entry name="http.url">http://localhost:49152</entry>

 -->

<!-- ***Settings for WebSphereMQ connection*** -->

<!--

<entry name="queuefactory.class">com.docucorp.messaging.
mqseries.DSIMQMessageQueueFactory</entry>

<entry name="mq.queue.manager">QM.server1</entry>

<entry name="mq.inputqueue.name">resultq</entry>

<entry name="mq.inputqueue.maxwaitseconds">5</entry>

<entry name="mq.outputqueue.name">requestq</entry>

<entry name="mq.tcpip.host">10.1.10.159</entry>

<entry name="mq.queue.channel">SCC1.server1</entry>

<entry name="mq.tcpip.port">1415</entry>

 -->

<!-- ***Setings for MSMQ connection*** -->

<!--

<entry name="queuefactory.class">com.docucorp.messaging.msmq.
DSIMSMQMessageQueueFactory</entry>

<entry name="msmq.server.name">localhost</entry>

<entry name="msmq.inputqueue.name">DIRECT=TCP:10.1.10.178\
private$\resultq</entry>

Using the XML Configuration File

80

<entry name="msmq.outputqueue.name">DIRECT=TCP:10.1.10.178
\private$\requestq</entry>

<entry name="msmq.timeout">30000</entry>

<entry name="msmq.expiry">1800000</entry>

<entry name="msmq.debuglevel">2</entry>

 -->

 </queuemanager>

 </Core>

</EWPS>

81

Appendix A

Using the Jmeter Test Script to Test EWPS

EWPS provides multiple service operations. Some of the service operations are abstract
and encompass multiple implementations. Such a set of complex service operations can
present a steep learning curve to new users of EWPS, but the EWPS Jmeter test script
helps you get started by providing the following:

• A set of examples for each service request operation. These examples can help you
more quickly implement your system.

• An interface which lets you inspect, modify, and expand test plans or create your own
to establish EWPS functionality or test performance.

• A Docupresentment master resource library (MRL) that EWPS can use to invoke
each service operation via the Jmeter test script.

• A way to do regression testing.

Also, the accompanying FSDMS2 library in Docupresentment shows a full working set
by illustrating the library configuration on the Docupresentment side, which is used by
EWPS.

NOTE: To use the Jmeter test script, you must have Docupresentment version 2.2, patch
08 or higher.

What is Jmeter

82

WHAT IS
JMETER

Jmeter is a user interface from Apache that you can use to test the performance and
functionality of Web services as well as other endpoints. You can learn more about Jmeter
at the following link:

http://jakarta.apache.org/jmeter/

A Jmeter script is a test module that contains one or more pre-recorded test cases. A script
can contain assertions and validations for each test case and can be run in a single thread
to test for functionality or in multiple threads to test performance.

http://jakarta.apache.org/jmeter/

Using Jmeter

83

USING JMETER To run the EWPS Jmeter test script, you must first download the latest version of Apache
Jmeter from this site:

http://jakarta.apache.org/jmeter/

NOTE: Version 2.4 or greater is required to run the EWPS-Java-FSDMS2.jmx script.

The Docupresentment installation includes a Jmeter test script for testing the different
EWPS service operations. The Jmeter script file is contained in this zip file:

Docupresentment_installation/jmeter-scripts/EWPS-Java-FSDMS2.zip

Where Docupresentment_installation represents the location were Docupresentment was
installed, such as

The EWPS Jmeter test script contains these test cases:

On Windows c:\docserv

On UNIX /home/docupresentment/docserv

Test Case Description

doGetLibraries Tests the doGetLibraries service operation.

doGetBusUnits Tests the doGetBusUnits service operation.

doGetTemplateList1 Tests the doGetTemplateList service operation. Returns a
template list by matching the effective date.

doGetTemplateListData1 Tests the doGetTemplateListData service operation. Returns the
template list data for the template list returned by the
doGetTemplateList1 service request.

doGetTemplateList2 Tests the doGetTemplateList service operation. Returns a
template list by matching the effective date and form name. The
results are sorted by form name.

doGetTemplateListData2 Tests the doGetTemplateListData service operation. Returns the
template list data for the template list returned by the
doGetTemplatelist2 service request.

doGetTemplateList3 Tests the doGetTemplateList service operation. Returns a
template list by matching the effective date and form description.
The results are sorted by form description.

doGetTemplateListData3 Tests the doGetTemplateListData service operation. Returns the
template list data for the template list returned by the
doGetTemplatelist3 service request.

doCreateFolder1 Tests the doCreateFolder_Import service operation. Creates a
folder (transaction) in WIP using a Documaker import file
provided as a file URL.

http://jakarta.apache.org/jmeter/

Using Jmeter

84

doGetFolder1 Tests the doGetFolder service operation. Retrieves the folder
created by the doCreateFolder1 service request and checks,
through assertions, the Key1, Key2, DocumentId,
DocumentType, StatusCode, and Description core property
values.

doDeleteFolder1 Tests the doDeleteFolder service operation. Deletes the folder
created by the doCreateFolder1 service request.

doCreateFolder2 Tests the doCreateFolder_Import service operation. Creates a
folder (transaction) in WIP using a Documaker import file
provided as inline base64 content.

doGetFolder2 Tests the doGetFolder service operation. Retrieves the folder
created by the doCreateFolder2 service request and checks the
Key1, Key2, DocumentId, DocumentType, StatusCode, and
Description core property values.

doDeleteFolder2 Tests the doDeleteFolder service operation. Deletes the folder
created by the doCreateFolder2 service request.

doCreateFolder3 Tests the doCreateFolder_Import service operation. Creates a
folder (transaction) in WIP using a Documaker import file
provided as a file URL and a TemplateList element that was
returned by the doGetTemplateList2 service request.

doGetFolder3 Tests the doGetFolder service operation. Retrieves the folder
created by the doCreateFolder3 service request checks the Key1,
Key2, DocumentId, DocumentType, StatusCode, and
Description core property values.

doDeleteFolder3 Tests the doDeleteFolder service operation. Deletes the folder
created by the doCreateFolder3 service request.

doCreateFolder4 Tests the doCreateFolder_ComposeData service operation.
Creates a folder (transaction) in WIP using a ComposeData
element returned by the doGetTemplateListData2 service
request and a custom property named INS_PHONE.

doGetFolder4 Tests the doGetFolder service operation. Retrieves the folder
created by the previous service request (doCreateFolder4) and
checks the Key1, Key2, DocumentId, DocumentType,
StatusCode, and Description core property values. Also checks
the custom property INS_PHONE.

doPublish1 Tests the doPublish_FolderId service operation. Publishes an
XML export file from a transaction (folder) ID in WIP using the
ADHOC distribution option and returns the file as a file URL.

doPublish2 Tests the doPublish_FolderId service operation. Publishes an
XML export file from a transaction (folder) ID in WIP using the
ADHOC distribution option and returns the file as base64 inline
content.

doPublish3 Tests the doPublish_ComposeData service operation. Publishes
a PDF file from a ComposeData Element using the ADHOC
distribution option and returns the file as base64 inline content.

Test Case Description

Using Jmeter

85

doPublish4 Tests the doPublish_Import service operation. Publishes a PDF
file from an XML Import file using the PREDEFINED
distribution option and returns the file as a URL.

doModifyFolder1 Tests the doModifyFolder service operation. Modifies the Key
ID (DocumentId), the status code, the INS_PHONE custom
Key, and the Description for a transaction (folder) in WIP.

doGetFolder5 Tests the doGetFolder service operation. Makes sure the values
modified in the doModifyFolder1 service request present.

doModifyFolder2 Tests the doModifyFolder service operation. Modifies the field
and form data for a transaction (folder) in WIP using a
ComposeData element.

doGetFolder6 Tests the doGetFolder service operation. Makes sure the values
modified in the doModifyFolder2 service request present.

doDeleteFolder4 Tests the doDeleteFolder service operation. Deletes the folder
created by the doCreateFolder4 service request.

doGetFolderList Tests the doGetFolderList service operation. Gets a folder list for
the user, library, and other search criteria specified.

doCallAPI1 Tests the doCallAPI service operation. Sends an SSS request type
to Docupresentment.

doCallAPI2 Tests the doCallAPI service operation. Sends an ECH request
type with a 971,272 byte file attachment as base64 inline content
to Docupresentment.

doCallAPI3 Tests the doCallAPI service operation. Sends an ECH request
type with two file attachments. Demonstrates using the
ResponseProps element to indicate how the response file
attachments should be returned. One is returned as a file URL
and the other is returned as inline base64 content.

Test Case Description

Running the Jmeter Test Script

86

RUNNING THE
JMETER TEST

SCRIPT

Follow these steps to run the Jmeter test script:

1 Enter this command from the bin directory to start Jmeter:

jmeter

2 Once Jmeter starts, select File, Open and enter the location of the EWPS jmeter test
script. The jmeter script can be found from the zip file.

3 Select the top most node (EWPS Test Plan) on the left tree view to display the Test
plan properties in the right pane.

You must configure these properties for your environment before you run the Jmeter
test script:

Running the Jmeter Test Script

87

4 Select EWPS Thread Group to display the thread group for the test plan. You can
change the number of threads for the thread group to test performance or accept the
default to test functionality.

Property Description

host Specifies the IP address or server name of the application server hosting
EWPS.

port Specifies the port of the application server hosting EWPS.

libraryid Specifies the library ID EWPS will use. This value corresponds to the library
Docupresentment is configured to use in the DAP.INI file. This INI file
points to the location of the library.

ids.host Specifies the IP address or server name of the machine where
Docupresentment is running the HTTP server (EWPS communicates with
Docupresentment via HTTP with the default setup).

ids.port Specifies the port number for the HTTP server running under
Docupresentment. The port number is specified in the docserv.xml file for
Docupresentment. The default is 49152.

file.input.URL Specifies a file URL used by the doCallAPI service operation to generate a
file attachment in the request payload.

file.output.URL Specifies a file URL used by the doCallAPI service operation to generate a
file from a file attachment in the response payload.

key1 Specifies the company value for the request payload.

key2 Specifies the line of business value for the request payload.

Note: For Key3 value, include the value in the Key2 property by using a
semicolon delimeter.

userid Specifies the user account for the request payload.

effectivedate Specifies the effective date to use for forms and sections stored and
retrieved via the different service operations.

Running the Jmeter Test Script

88

5 To start the test, make sure EWPS and Docupresentment are running, then select
Run, Start from the menu.

6 As the test runs, you can monitor the progress by looking at the summary report. To
see this report, select the Summary Report node in the tree view on the left.

7 To view the results of a particular test case, expand the test case and select its View
Results Tree. Then, select the test case node within the View Results Tree and select
the Request or Response Data tabs to view the payloads.

Running the Jmeter Test Script

89

	Start
	Notice
	Contents
	Overview
	Choosing the Right Web Services
	Introduction to EWPS
	Available Services and Methods of Use
	Using SOAP
	Using JSON
	Choosing Between SOAP and JSON

	Common Schema Types
	LibraryList
	BusUnitsList
	TemplateList
	RecipientList
	ComposeData
	Props
	CoreProperties
	ImportFileType
	Errors
	ResponseGroup
	DistributionOptions
	DistributionResults

	Business Scenarios
	Publishing a Quote Form from a Rating Application
	Option 1: Mapping the Data Using Oracle Insurance Tools
	Step 1
	Step 2
	Step 3
	Step 4

	Option 2: Resolving the Data Mapping Before the doPublish Request
	Step 1
	Step 2
	Step 3

	Initiating an Issuance Process from a Rating Application
	Option 1: Mapping the Data using Oracle Insurance Tools
	Step 1
	Step 2
	Step 3
	Step 4

	Option 2: Resolving the Data Mapping Before the doPublish Request
	Step 1
	Step 2
	Step 3

	Available Web Services
	Operation/Message types
	Operation/Message types
	Operation/Message types
	Operation/Message types
	Operation/Message types
	Operation/Message types
	Operation/Message types
	Operation/Message types
	Operation/Message types
	Configuring the Provider
	Operation/Message types

	Returning a PDF File in a doPublish Response
	Accessing a Workspace Definition File via a Web Service

	Additional Resources
	SOAP
	Web Services
	References and Projects
	Web Services Standards and Specifications
	Other Resources

	Web Services Description Language
	Using the XML Configuration File
	ewps.config.xml file

	Using the Jmeter Test Script to Test EWPS
	What is Jmeter
	Using Jmeter
	Running the Jmeter Test Script

