
Oracle® TimesTen In-Memory
Database
ttIsql User's Guide and Reference

Release 22.1
F93303-02
October 2024

Oracle TimesTen In-Memory Database ttIsql User's Guide and Reference, Release 22.1

F93303-02

Copyright © 2024, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Get Started with ttIsql

About ttIsql 1-1

Starting ttIsql 1-1

Customizing the ttIsql Command Prompt 1-2

Command Shortcuts 1-2

2 Use ttIsql

About Using ttIsql in Interactive or Batch Mode 2-1

Help Commands 2-3

View and Set Attributes 2-7

Use, Declare, Set Variables and Parameters 2-9

Declaring and Setting Bind Variables 2-10

Automatically Creating Bind Variables for Retrieved Columns 2-12

Parameters 2-14

Run SQL Statements 2-16

Prepare a SQL Statement for Subsequent Runs 2-16

Manage Transactions 2-20

Display Database Structures 2-21

describe Command 2-22

cachegroups Command 2-22

repschemes Command 2-23

dssize Command 2-24

tablesize Command 2-24

monitor Command 2-25

List Database Objects by Object Type 2-27

View and Change Query Optimizer Plans 2-28

Use the showplan Command 2-28

View Commands and Explain Plans from the SQL Command Cache 2-31

View Commands in the SQL Command Cache 2-31

Display Query Plan for Statement in SQL Command Cache 2-32

Create and Run PL/SQL Blocks Within ttIsql 2-34

Pass Data From PL/SQL Using OUT Parameters Within ttIsql 2-35

Manage ODBC Functions 2-36

iii

Canceling ODBC Functions 2-36

Timing ODBC Function Calls 2-37

'editline' Feature for Linux and UNIX Only 2-37

Emacs Binding 2-38

vi Binding 2-38

3 ttIsql Command Reference

accept 3-1

allfunctions 3-1

allindexes 3-2

allpackages 3-3

allprocedures 3-3

allsequences 3-4

allsynonyms 3-4

alltables 3-5

allviews 3-5

builtins 3-5

bye 3-7

cachegroups 3-7

cachesqlget 3-8

cd 3-8

clearhistory 3-9

clienttimeout 3-9

close 3-9

cmdcache 3-10

commit 3-11

commitdurable 3-11

compare 3-11

connect 3-12

createandloadfromoraquery 3-12

define 3-13

describe 3-13

dssize 3-14

e: 3-14

edit 3-15

exec 3-15

execandfetch 3-16

explain 3-16

fetchall 3-17

fetchnext 3-17

fetchone 3-18

iv

free 3-18

grid 3-18

help 3-21

history 3-22

host 3-23

if-then-else 3-23

monitor 3-23

remark 3-25

retryconnect 3-25

rpad 3-25

run 3-26

savehistory 3-26

setjoinorder 3-27

setuseindex 3-27

setvariable 3-27

showjoinorder 3-28

sleep 3-28

sqlcolumns 3-29

sqlgetinfo 3-29

sqlstatistics 3-29

sqltables 3-30

statsclear 3-30

statsestimate 3-31

statsupdate 3-31

tablesize 3-31

use 3-32

variable 3-32

version 3-33

waitfor 3-33

waitforresult 3-33

whenever sqlerror 3-34

xlabookmarkdelete 3-34

v

About This Content

This guide provides background information to help you understand how TimesTen works, as
well as step-by-step instructions that show how to perform the most commonly-needed tasks..

Audience

To work with this guide, you should understand how database systems work and have some
knowledge of Structured Query Language (SQL).

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

6

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Get Started with ttIsql

The TimesTen ttIsql utility is a general tool for working with a TimesTen database.

This chapter includes the following topics:

• About ttIsql

• Starting ttIsql

• Customizing the ttIsql Command Prompt

• Command Shortcuts

About ttIsql
You can use the ttIsql command line interface to issue SQL statements and built-in ttIsql
commands to perform various operations.

Some common tasks that are accomplished using ttIsql include:

• Set up and maintain databases: You can create tables and indexes, alter existing tables,
and update table statistics quickly and easily using ttIsql.

• Connection setup: You can connect or disconnect to the TimesTen and Oracle databases.

• Retrieve information on database structures: You can retrieve the definitions for tables,
indexes, and cache groups using built-in ttIsql commands. In addition, the current size
and state of the database can be displayed.

• Run and optimize database operations: You can use the ttIsql utility to run, alter, and
display query optimizer plans for the purpose of tuning SQL operations. The time required
to run various ODBC function calls can also be displayed.

Starting ttIsql
TimesTen includes the ttIsql utility in a TimesTen distribution. Before using ttIsql, you can
set specific environment variables after you create the TimesTen instance.

You can locate the ttIsql utility in the bin subdirectory of the TimesTen instance. See
Overview of Installations and Instances in the Installation, Migration, and Upgrade Guide.

These environment variables include TIMESTEN_HOME, PATH, and LD_LIBRARY_PATH. On Linux,
you set the environment variables by sourcing the ttenv.sh (for a Bourne or Bourne-
compatible shell) or ttenv.csh (for a C shell).

The shell script for sourcing the environment variables is located in the bin subdirectory of the
instance directory.

$ source ./<instance_dir>/bin/ttenv.sh

1-1

After setting the environment variables, you can run the following command:

$ ttIsql
Copyright (c) 1996, 2024, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Command>

Customizing the ttIsql Command Prompt
You can customize the ttIsql command prompt by using the set command with the prompt
attribute.

When you are not connected to the database, the command prompt will be:

Command> set prompt MY_DSN;
MY_DSN

When you are connected to the database and you want to embed spaces, you must quote the
string:

Command> set prompt "MY_DSN %c> ";
MY_DSN con1>

If you don't have a connection, the command prompt will be:

Command> set prompt "MY_DSN %c> ";
MY_DSN >

Command Shortcuts
By default, ttIsql supports keystroke shortcuts when entering commands.

The ttIsql keystroke shortcuts are:

Keystroke Action

Left Arrow Moves the insertion point left (back).

Right Arrow Moves the insertion point right (forward).

Up Arrow Scroll to the command before the one being displayed. Places the
cursor at the end of the line.

If the command being added to the history is identical to the most
recently added command, it is skipped.

Down Arrow Scrolls to a more recent command history item and puts the cursor
at the end of the line.
If the command being added to the history is identical to the most
recently added command, it is skipped.

Ctrl-A Moves the insertion point to the beginning of the line.

Ctrl-E Moves the insertion point to the end of the line.

Ctrl-K "Kill" - Saves and erases the characters on the command line from
the current position to the end of the line.

Ctrl-Y "Yank"- Restores the characters previously saved and inserts them
at the current insertion point.

Ctrl-F Forward character - move forward one character. (See Right Arrow.)

Chapter 1
Customizing the ttIsql Command Prompt

1-2

Keystroke Action

Ctrl-B Backward character - moved back one character. (See Left Arrow.)

Ctrl-P Previous history. (See Up Arrow.)

Ctrl-N Next history. (See Down Arrow.)

To turn this feature off:

Command>set editline 0;

To turn this feature on, replace 0 with 1.

Chapter 1
Command Shortcuts

1-3

2
Use ttIsql

You can use the ttIsql utility in running various SQL statements and built-in ttIsql
commands. You can run the ttIsql commands either in the interactive mode or in the batch
mode.

This chapter includes the following topics:

• About Using ttIsql in Interactive or Batch Mode

• Help Commands

• View and Set Attributes

• Use, Declare, Set Variables and Parameters

• Run SQL Statements

• Display Database Structures

• List Database Objects by Object Type

• View and Change Query Optimizer Plans

• Create and Run PL/SQL Blocks Within ttIsql

• Manage ODBC Functions

• 'editline' Feature for Linux and UNIX Only

About Using ttIsql in Interactive or Batch Mode
You can use the ttIsql utility in two different ways: interactive mode or batch mode.

When you use ttIsql in the interactive mode, you can type commands directly into ttIsql
from the console. When you use ttIsql in the batch mode, you can run a prepared script of
ttIsql commands by specifying the name of the file.

Use Interactive mode for the following types of tasks:

• Experimenting with TimesTen features, testing design alternatives, and improving query
performance.

• Solving database problems by examining database statistics.

Use Batch mode for the following types of tasks:

• Performing periodic maintenance operations including the updating of table statistics,
compacting the database, and purging log files.

• Initializing a database by creating tables, indexes, and cache groups and then populating
the tables with data.

• Generating simple reports by running common queries.

When you start ttIsql from the shell, ttIsql is in the default interactive mode. The ttIsql
utility prompts you to type in a valid ttIsql built-in command or SQL statement at the
Command> prompt. The following example starts ttIsql in the interactive mode and then

2-1

connects to a TimesTen database by running the connect command using database1 DSN or
without using DSN. There are two ways to connect to the database as shown in the example:

$ ttIsql
Command> connect database1;
Connection successful:
DSN=database1;DataStore=/disk1/databases/
database1;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSi
ze=128;(Default setting AutoCommit=1)

Command>connect “DSN=database1”;
Connection successful:
DSN=database1;DataStore=/disk1/databases/
database1;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSi
ze=128;(Default setting AutoCommit=1)

When connecting to the database using ttIsql, you can also specify the DSN or connection
string on the ttIsql command line. The connect command is implicitly run.

$ ttIsql -connstr "DSN=database1"
connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/
database1;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSi
ze=128;(Default setting AutoCommit=1)

Command>quit;

You can access the batch mode in two different ways. The most common way is to specify the
-f option on the ttIsql command line followed by the name of file to run.

For example, running a file containing a CREATE TABLE statement looks like the following:

$ ttIsql -f create.sql -connstr "DSN=database1"

connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/
database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)

run "create.sql"

CREATE TABLE LOOKUP (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64))

exit;
Disconnecting...
Done.

Chapter 2
About Using ttIsql in Interactive or Batch Mode

2-2

The other way to use the batch mode is to enter the run command directly from the interactive
command prompt. The run command is followed by the name of the file containing ttIsql
built-in commands and SQL statements to run:

Command> run "create.sql";
CREATE TABLE LOOKUP (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64));
Command>

In this example, the create.sql file is placed in the current directory of the OS shell from
where the interactive ttIsql utillity is started. Both relative and absolute paths are allowed for
the run command.

Help Commands
The ttIsql utility has an online version of command syntax definitions and descriptions for all
built-in ttIsql commands.

To access this online help from within ttIsql, use the help command from the shell's
command prompt:

$ ttIsql -help
Usage: ttIsql [-h | -help | -helpcmds | -helpfull | -V]
 ttIsql [-f <filename>] [-v <verbosity>] [-e <commands>]
 [-interactive] [-N <ncharEncoding>] [-wait]
 [{<DSN> | -connstr <connStr>}]

 -h Prints this message and exits.

 -help Prints this message and exits.

 -helpcmds Prints a brief description of ttIsql commands and exits.

 -helpfull Prints a full description of ttIsql commands and exits.

 -V Prints version information and exits.

 <DSN>, <connStr> The ODBC connection string or DSN to use as an
 argument to the connect command. The connect command
 will then be the first command executed when
 starting ttIsql.

 -f <filename> Specifies an input file of ttIsql commands to be
 executed on start up.

 -v <verbosity> Specifies the output verbosity level. The output
 verbosity level argument takes a value of 0, 1, 2,
 3 or 4.

 If verbosity = 0 then only error messages are displayed.

 If verbosity = 1 then the basic output generated by
 commands is displayed.

 Verbosity = 2 is the default verbosity level. At this

Chapter 2
Help Commands

2-3

level
 simplified SQL error and information messages are
 displayed. Command output includes additional information,
 and commands that are read from an external file are
 echoed to the display.

 If verbosity = 3 then more detailed SQL error and
 information messages are displayed.

 If verbosity = 4 then the most detailed SQL error and
 information messages are displayed. At this level
 additional informational messages are displayed depending
 upon the command executed.

 -e <commands> Specifies a semicolon-separated list of ttIsql commands
 to execute on start up.

 -N <ncharEncoding> Specifies the character encoding method for native
 character input/output. Valid values are ASCII,
 and LOCALE. The default encoding method (LOCALE)
 is derived from the current environment locale settings.

 -wait Forces the program to wait during a connection attempt
 until the connection attempt is successful.

 -interactive Forces interactive mode. This is useful when running from
 an emacs comint buffer.

 Default command line options can be set by exporting an environment
 variable called TTISQL. The value of the TTISQL environment variable
 is a string with the same syntax requirements as the ttIsql command
 line. If the same option is present in the TTISQL environment
 variable and the command line, then the command line version always
 takes precedence.

 Examples:

 ttIsql -connStr "DSN=mydsn" -v 4
 ttIsql -helpfull
 ttIsql -connStr "DSN=mydsn" -e "autocommit 0; showplan 1;"
 ttIsql -connStr "DSN=mydsn" -f script.sql -N ASCII

To view the list of available commands displayed by the help command:

Command> help

Use "help all" to get a description of all commands or use "help <cmd>" to

limit it to that command.

? fetchnext spool
! free sqlcolumns
@@ functions sqlgetinfo
accept getenv sqlquerytimeout
allfunctions grid sqlquerytimeoutmsec

Chapter 2
Help Commands

2-4

allindexes help sqlstatistics
allpackages history sqltables
allprocedures host statsclear
allsequences if statsestimate
allsynonyms indexes statsupdate
alltables isolation synonyms
allviews monitor tables
autocommit multipleconnections tblsize
builtins ncharencoding timing
cachegroups noecho tryhash
cachesqlget optfirstrow trymaterialize
cd optprofile trymergejoin
clearhistory packages trynestedloopjoin
clienttimeout passthrough tryrowid
close prefetchcount tryrowlocks
closeall prepare tryserial
cmdcache print trytbllocks
columnlabels procedures trytmphash
commit putenv trytmptable
commitdurable prompt trytmprange
compact remark tryrange
compare repschemes undefine
connect retryconnect unsetjoinorder
createandloadfromoraquery rollback unsetuseindex
define rpad use
describe run variable
disconnect savehistory verbosity
dssize sequences version
e: set vertical
edit setjoinorder views
exec setuseindex waitfor
execandfetch setvariable waitforresult
exit show whenever
explain showjoinorder xlabookmarkdelete
fetchall showplan <sql_statement>
fetchone sleep

To view a detailed description of any built-in ttIsql commands, type the help command
followed by one or more ttIsql commands to display help for. The example below displays the
online description for the connect and disconnect commands:

Command>help connect disconnect

Arguments in <> are required.
Arguments in [] are optional.

Command Usage: connect [DSN|connection_string] [as <connection_id>]
Command Aliases: (none)
Description: Connects to the data source specified by the optional DSN or
connection string argument. If an argument is not given, then the DSN or
connection string from the last successful connection is used. A connection
ID
may optionally be specified, for use in referring to the connection when
multiple
connections are enabled. The DSN is used as the default connection ID. If

Chapter 2
Help Commands

2-5

that ID
is already in use, the connection will be assigned the ID "conN", where N is
some
number larger than 0.
Requires an active connection: NO
Requires autocommit turned off: NO
Reports elapsed execution time: YES
Works only with a TimesTen data source: NO
Example: connect; -or- connect RunData; -or- connect "DSN=RunData";
-or- connect RunData as rundata1;

Command Usage: disconnect [all]
Command Aliases: (none)
Description: Disconnects from the currently connected data source or all
connections when the "all" argument is included. If a transaction is active
when
disconnecting then the transaction will be rolled back automatically. If a
connection exists when executing the "bye", "quit" or "exit" commands then
the
"disconnect" command will be executed automatically.
Requires an active connection: NO
Requires autocommit turned off: NO
Reports elapsed execution time: YES
Works only with a TimesTen data source: NO
Example: disconnect;

In case of attributes, you can view and set attributes with the show and set commands and in
case of commands, you can run built-in commands from the ttIsql utility. See View and Set
Attributes.

To view the list of attributes:

Command>help attributes
Known attributes:
 - autoprint
 - autovariables
 - autocommit
 - clienttimeout
 - columnlabels
 - connstr
 - define
 - distribution
 - dynamicloadenable
 - dynamicloaderrormode
 - echo
 - editline
 - failovermessage
 - errors
 - feedback
 - isolation
 - long
 - longchunksize
 - multipleconnections
 - ncharencoding
 - optfirstrow
 - optprofile

Chapter 2
Help Commands

2-6

 - passthrough
 - prefetchcount
 - prompt
 - querythreshold
 - rowdelimiters
 - sqlquerytimeout
 - sqlquerytimeoutmsec
 - serveroutput
 - session_action
 - session_client_info
 - session_module
 - showcurrenttime
 - showplan
 - termout
 - timing
 - tryhash
 - trymaterialize
 - trymergejoin
 - trynestedloopjoin
 - tryrange
 - tryrowid
 - tryrowlocks
 - tryserial
 - trytbllocks
 - trytmphash
 - trytmprange
 - trytmptable
 - verbosity
 - vertical

For detailed attribute help, do "help attribute <attributename>"

To view help for a specific attribute:

Command>help attribute showcurrenttime;

Attribute usage: showcurrenttime

Attribute Usage: showcurrenttime [0|off|1|on]
Description: The current time is printed just after the command is read and
before the command is executed.
Used with Set: YES
Used with Show: YES

View and Set Attributes
You can view and set attributes with the show and set commands.

Use show all command to display the setting for all set/show attributes.

Command>show all;
Connection independent attribute values:
 - autoprint = 0 (OFF)
 - autovariables = 0 (OFF

Chapter 2
View and Set Attributes

2-7

 - columnlabels = 0 (OFF)
 - define = 0 (OFF)
 - echo 1 (ON)
 - editline = 1 (ON)
 - FEEDBACK ON
 - LONG 80
 - LONGCHUNKSIZE 65536
 - multipleconnections = 0 (OFF)
 - ncharencoding = LOCALE (AL32UTF8)
 - prompt = 'Command> '
 - rowdelimiters = 1 (ON) before:'< ', after:' >', separator:', '
 - showcurrenttime = 0 (OFF)
 - termout = 1 (ON)
 - timing = 0 (OFF)
 - verbosity = 2
 - vertical = 0 (OFF)

Connection specific attribute values:

 - autocommit = 1 (ON)
 - Client timeout = 0
 - Connection String DSN=<database name>;UID=<uid>; DataStore=<database
path>;
 DatabaseCharacterSet=AL32UTF8; ConnectionCharacterSet=US7ASCII;
 DRIVER=/sw/tthome/install/lib/libtten.so; PermSize=20;TempSize=20;
 - No failover messages.
 - PL/SQL Errors: No errors.
 - isolation = READ_COMMITTED
 - Prefetch count = 5
 - Query threshold = 0 seconds (no threshold)
 - Query timeout = 0 seconds (no timeout)
 - Query timeout = 0 seconds (no timeout)
 - serveroutput OFF
 - SESSION_ACTION =
 - SESSION_CLIENT_INFO =
 - SESSION_MODULE = _ttIsql@phoenix92527

Current Optimizer Settings:
 - Scan: 1
 - Hash: 1
 - Range: 1
 - TmpHash: 1
 - TmpRange: 1
 - TmpTable: 1
 - NestedLoop: 1
 - MergeJoin: 1
 - GenPlan: 0
 - TblLock: 1
 - RowLock: 1
 - HashGb: 1
 - Rowid: 1
 - FirstRow: 0
 - IndexedOr: 1
 - PassThrough: 0
 - BranchAndBound: 1
 - ForceCompile: 0

Chapter 2
View and Set Attributes

2-8

 - ShowJoinOrder: 0
 - TransparentLoad: 0
 - UseBoyerMooreStringSearch: 0
 - DynamicLoadEnable: 1
 - DynamicLoadErrorMode: 0
 - NoRemRowIdOpt: 0
 - FastPrepare: 1
 - VectorProcess: 1
 - Rewrite: 1
 - DynamicLoadMultiplePKs: 1
 - DynamicLoadRootTbl: 0
 - TmpIdxForMatRes: 0

Current Join Order:
 <>
Command

To view the setting for the Passthrough attribute, enter:

Command>show passthrough;
PassThrough = 0

To change the Passthrough setting, enter:

Command>set passthrough 1;

You have the help attributes command to list the help for all the attributes that could be set
or shown. See Help Commands.

To view the detailed attribute help:

Command> help attribute clienttimeout

Attribute usage: clienttimeout

Command Usage: clienttimeout [<timeout seconds>]
Command Aliases: (none)
Description: Sets the client timeout (in seconds) for the current connection.
If the optional argument is omitted then the current client timeout is
reported. The client timeout can take a value between 0 and 99999 inclusive.
Requires an active connection: YES
Requires autocommit turned off: NO
Reports elapsed execution time: YES
Works only with a TimesTen data source: YES
Example: show clienttimeout; -or- set clienttimeout 10;
Used with Set: YES
Used with Show: YES

Use, Declare, Set Variables and Parameters
You can declare, set, use bind variables and parameters in ttIsql.

• Declaring and Setting Bind Variables

Chapter 2
Use, Declare, Set Variables and Parameters

2-9

• Automatically Creating Bind Variables for Retrieved Columns

• Parameters

Declaring and Setting Bind Variables
You can declare and set variables and arrays in ttIsql that can be referenced in a SQL
statement, SQL script, or PL/SQL block.

The variables declared using the variable and setvariable command must be one of the
following data types: NUMBER, CHAR, NCHAR, VARCHAR2, NVARCHAR2, CLOB, NCLOB, BLOB, or
REFCURSOR. However, when binding arrays, TimesTen supports only binding arrays of the
NUMBER, CHAR, NCHAR, VARCHAR2, or NVARCHAR2 data types.

Note:

All variables that are declared exist for the life of the ttIsql session. However, if you
declare a new variable with the same name, the new variable replaces the old
variable.

To see the help usage on the variable or the var command:

Command> help var;
Arguments in <> are required.
Arguments in [] are optional.

Command Usage: variable [<VariableName> [<DataType>] [:= <Value>]]
Command Aliases: var
Description: Declares a bind variable that can be referenced in a statement,
or
displays the definition of the variable if the type is missing. The type can
be one of the following: (n), NUMBER, CHAR(n), NCHAR(n), VARCHAR2(n) ,
NVARCHAR2(n), BLOB, CLOB, NCLOB, or REFCURSOR. If only '(n)' is supplied, it
is assumed to be VARCHAR2 (n).

The syntax for binding multiple values to an array using the variable command
is as follows: variable ArrayName '[' ArraySize ']' DataType(n) := '['
Value1,... ValueX ']'

Requires an active connection: NO

Requires autocommit turned off: NO

Reports elapsed execution time: NO

Works only with a TimesTen data source: NO

Example: variable; -or- variable a varchar2(30); -or- var arr[5] number :=
[1, 2, 3];

Chapter 2
Use, Declare, Set Variables and Parameters

2-10

To declare, set the value of variables, and print their values:

Command> var a varchar2(100); #declare variable a

Command> var b varchar2(100) := 'This is B'; #declare variable b and assign
value to it

Command> var; #display available variables

variable A

datatype VARCHAR2(100)

variable B

datatype VARCHAR2(100)

Command> print a; #print the value of variable a

A : <NULL>

Command> print; #print values of all available variables

A : <NULL>

B : This is B

The following examples declare bind variables with the variable or var command for a
number, character string, and an array. Each is assigned to a value either when declared or by
using the setvariable or setvar command.

Command> VARIABLE house_number NUMBER := 268; #declare variable house_number and assign
the value
Command> PRINT house_number; #print the value of house_number variable
HOUSE_NUMBER : 268

Command> VARIABLE street_name VARCHAR2(15); #declare variable street_name
Command> SETVARIABLE street_name := 'Oracle Parkway'; #set the value of the variable
street_name
Command> PRINT street_name;
STREET_NAME : Oracle Parkway

Command> VARIABLE occupants[5] VARCHAR2(15); #declare an array variable
Command> SETVARIABLE occupants[1] := 'Pat'; #set the value at the first position of the
array
Command> SETVARIABLE occupants[2] := 'Terry'; #set the value at the second position of
the array
Command> PRINT occupants; #print the array
OCCUPANTS : ARRAY [5] (Current Size 2)
OCCUPANTS[1] : Pat
OCCUPANTS[2] : Terry

The following is an example of binding multiple values in an array using square brackets to
delineate the values and commas to separate each value for the array:

Chapter 2
Use, Declare, Set Variables and Parameters

2-11

Command> VARIABLE occupants[5] VARCHAR2(15) := ['Pat', 'Terry']; #declare an array
variable with values
Command> PRINT occupants; #print an array
OCCUPANTS : ARRAY [5] (Current Size 2)
OCCUPANTS[1] : Pat
OCCUPANTS[2] : Terry

When using array binds, PL/SQL enables you to bind each variable to a PL/SQL variable with
the following declaration, where TypeName is any unique identifier for the PL/SQL data type and
DataType can be specified as CHAR, NCHAR, VARCHAR2, or NVARCHAR2.

TYPE TypeName IS TABLE OF DataType(<precision>) INDEX BY BINARY_INTEGER;

If the variable is declared as array of NUMBER, you can bind it to a PL/SQL variable of the
following data types: NUMBER, INTEGER, FLOAT, or DOUBLE PRECISION. To do so, use the
appropriate declaration:

TYPE TypeName IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
TYPE TypeName IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;
TYPE TypeName IS TABLE OF FLOAT INDEX BY BINARY_INTEGER;
TYPE TypeName IS TABLE OF DOUBLE PRECISION INDEX BY BINARY_INTEGER;

The following example declares the occupants VARCHAR2 array, which is then declared and
used within a PL/SQL block:

Command> VARIABLE occupants[5] VARCHAR2(15);
Command> SETVARIABLE occupants[1] := 'Pat';
Command> SETVARIABLE occupants[2] := 'Terry';
Command> DECLARE
TYPE occuname IS TABLE OF VARCHAR2(15) INDEX BY BINARY_INTEGER;
x occuname;
BEGIN
x := :occupants;
FOR LROW IN x.FIRST..x.LAST LOOP
x(LROW) := x(LROW) || ' Doe';
END LOOP;
:occupants := x;
END;
/

PL/SQL procedure successfully completed.

Command> PRINT occupants;
OCCUPANTS : ARRAY [5] (Current Size 2)
OCCUPANTS[1] : Pat Doe
OCCUPANTS[2] : Terry Doe

Automatically Creating Bind Variables for Retrieved Columns
When you set autovariables on in ttIsql, TimesTen creates an automatic bind variable
named after each column fetched. As the rows are fetched, the fetched values are copied into
the variables.

The following example selects all rows from the employees table. Since all columns are
retrieved, automatic variables are created and named for each column. The bind variable
contains the last value retrieved for each column.

Command> SET AUTOVARIABLES ON;
Command> SELECT * FROM employees;
...

Chapter 2
Use, Declare, Set Variables and Parameters

2-12

< 204, Hermann, Baer, HBAER, 515.123.8888, 1994-06-07 00:00:00, PR_REP, 10000,
 <NULL>, 101, 70 >
< 205, Shelley, Higgins, SHIGGINS, 515.123.8080, 1994-06-07 00:00:00, AC_MGR,
12000, <NULL>, 101, 110 >
< 206, William, Gietz, WGIETZ, 515.123.8181, 1994-06-07 00:00:00, AC_ACCOUNT,
8300, <NULL>, 205, 110 >

Command> PRINT;
EMPLOYEE_ID : 206
FIRST_NAME : William
LAST_NAME : Gietz
EMAIL : WGIETZ
PHONE_NUMBER : 515.123.8181
HIRE_DATE : 1994-06-07 00:00:00
JOB_ID : AC_ACCOUNT
SALARY : 8300
COMMISSION_PCT : <NULL>
MANAGER_ID : 205
DEPARTMENT_ID : 110

As each result set is fetched, each column value is placed into a variable named after the
column. If more than one row is fetched, the last value of each column overrides the value of
the variable. To prevent the variables from being overwritten, turn off the setting.

If you provide an alias for a column name, the automatic bind variable name uses the alias,
rather than the column name.

Command> SET AUTOVARIABLES ON;
Command> SELECT employee_id ID, First_name SURNAME, last_name LASTNAME
 FROM employees;

ID, SURNAME, LASTNAME
...
< 204, Hermann, Baer >
< 205, Shelley, Higgins >
< 206, William, Gietz >
107 rows found.
Command> PRINT;
ID : 206
SURNAME : William
LASTNAME : Gietz

You can also use the describe command to show the column names. The following example
uses the describe command to display the column names for the ttConfiguration built-in
procedure.

Command> DESCRIBE TTCONFIGURATION;

Procedure TTCONFIGURATION:
 Parameters:
 PARAMNAME TT_VARCHAR (30)
 Columns:
 PARAMNAME TT_VARCHAR (30) NOT NULL
 PARAMVALUE TT_VARCHAR (1024)

1 procedure found.

For any query that fetches data without a known named column, set columnlabels on to show
the column names. The following example shows that the columns returns from
ttConfiguration built-in procedure are paramname and paramvalue.

Chapter 2
Use, Declare, Set Variables and Parameters

2-13

Command> SET AUTOVARIABLES ON;
Command> SET COLUMNLABELS ON;

Command> call TTCONFIGURATION('LockLevel');

PARAMNAME, PARAMVALUE
< LockLevel, 0 >
1 row found.
Command> print paramname;
PARAMNAME : LockLevel

Parameters
Parameters let you bind values that will be used in processing SQL statements. These
parameters are marked by using ? or by using :IDENTIFIER within the SQL statement.

ttIsql will prepare your SQL statement text. It will then look for variables that match the
parameter names. For parameters where there are no matching variables, ttIsql will prompt
for the values. The name of the parameter when ? is used is QMARK_N where N starts with 1 and
is incremented as each ? is encountered in the statement. For example, QMARK_1, QMARK_2, etc.
The name of :PARAM is PARAM.

With dynamic parameters, you are prompted for input for each parameter on a separate line.
Values for parameters are specified the same way literals are specified in SQL.

Parameter values must be terminated with a semicolon character.

The possible types of values that can be entered are:

• Numeric literals. For example, 1234.5
• Time, date or timestamp literals within single quotation marks. Examples:

'12:30:00'
'2000-10-29'
'2000-10-29 12:30:00'

• Unicode string literals within single quotation marks preceded by 'N'. For example, N'abc'
• A NULL value. For example, NULL
• The '*' character that indicates that the parameter input process should be stopped. For

example, *
• The '?' character prints the parameter input help information. For example, ?
This example shows that A and B are dynamic parameters and not variables.

Command> select * from dual where :a > 100 and :b < 100;
Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 'A' (NUMBER) > 110
Enter Parameter 2 'B' (NUMBER) > 99
< X >
1 row found.

Command> print;

Chapter 2
Use, Declare, Set Variables and Parameters

2-14

The print command does not show result as they are dynamic parameters.

This examples shows that :a and :b are used as variables and also, they are used as
parameters but are not dynamic.

Command> var a number;
Command> exec :a := 110;

PL/SQL procedure successfully completed.

Command> print a;
A : 110
Command> var b number;
Command> exec :b := 99;

PL/SQL procedure successfully completed.

Command> select * from dual where :a > 100 and :b < 100;
< X >
1 row found.
Command> print;
A : 110
B : 99

This example shows that both :a and :b are variables and there is a dynamic parameter :c
that can be combined together.

Command> var a number;
Command> exec :a := 110;
Command> var b number;
Command> exec :b := 99;
Command> select * from dual where :a > 100 and :b < 100 and :c > 0;
Enter Parameter 3 'C' (NUMBER) > 1
< X >
1 row found.
Command> print;
A : 110
B : 99

In this example, since _QMARK_1 is not declared, ttIsql will prompt for the parameter value.
The :a parameter is filled in with the A variable whose value is 110. The :b is filled in with the B
variable whose value is 99. These values are then sent to the engine, which processes the
statement and returns the value abc11099.

Command> select cast(? as varchar2(10)) || :a || :b from dual;

Type '?' for help on entering parameter values.

Type '*' to end prompting and abort the command.

Type '-' to leave the parameter unbound.

Chapter 2
Use, Declare, Set Variables and Parameters

2-15

Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 '_QMARK_1' (VARCHAR2) > 'abc';

< abc11099 >

1 row found.

Run SQL Statements
This topic provides information about the SQL statements that are run by the ttIsql utility.

SQL statements are generally considered to be either data definition language (DDL)
statements or data manipulation language (DML) statements.

DDL statements create or modify the database schema. CREATE TABLE and DROP TABLE are
examples of the DDL statements.

DML statements modify database objects. INSERT, UPDATE, and DELETE are examples of the
DML statements. The SELECT statement retrieves data from one or more tables or views.

For SQL commands, see SQL Statements.

Prepare a SQL Statement for Subsequent Runs
TimesTen application is recommended to prepare a single SQL statement and run it as many
times as needed without re-preparing the same SQL statement each time it ran.

The ttIsql utility has a set of built-in commands to work with prepared SQL statements.

These commands are summarized below:

• prepare - Prepares a SQL statement. Corresponds to a SQLPrepare ODBC call.

• exec - Runs a prepared statement. Corresponds to a SQLExecute ODBC call.

• execandfetch - Runs a previously prepared statement and fetches all result rows.
Corresponds to a SQLExecute call followed by one or more calls to SQLFetch.

• fetchone - Fetches only one row for a previously run statement. Corresponds to exactly
one SQLFetch call.

• fetchall - Fetches all result rows for a previously run statement. Corresponds to one or
more SQLFetch calls.

• close - Closes the result set cursor on a previously run statement that generated a result
set. Corresponds to a SQLFreeStmt call with the SQL_CLOSE option.

• free - Closes and deletes a previously prepared statement. Corresponds to a SQLFreeStmt
call with the SQL_DROP option.

• describe * - Describes all the prepared statements including the input parameters and the
result columns.

The ttIsql utility prepared statement commands also handle SQL statement parameter
markers. When parameter markers are included in a prepared SQL statement, ttIsql
automatically prompts by name for the value of each parameter in the statement at runtime.

This example uses the prepared statement commands of the ttIsql utility to prepare an
INSERT statement into a table containing a NUMBER and a CHAR column. The statement is

Chapter 2
Run SQL Statements

2-16

prepared and then runs twice with different values for each of the statement's two parameters.
The ttIsql utility timing command is used to display the elapsed time required to run the
primary ODBC function call associated with each command.

Command> connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/
database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)

Command> timing 1;
Command> create table t1 (key number not null primary key, value char(20));
Execution time (SQLExecute) = 0.007247 seconds.

Command> prepare insert into t1 values (:f, :g);
Execution time (SQLPrepare) = 0.000603 seconds.

Command> exec;
Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/' to leave the remaining parameters unbound and execute the command.
Enter Parameter 1 'F' (NUMBER) > 1;
Enter Parameter 2 'G' (CHAR) > 'abc';
1 row inserted.
Execution time (SQLExecute) = 0.000454 seconds.

Command> exec;
Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/' to leave the remaining parameters unbound and execute the command.
Enter Parameter 1 'F' (NUMBER) > 2;
Enter Parameter 2 'G' (CHAR) > 'def';
1 row inserted.
Execution time (SQLExecute) = 0.000300 seconds.

Command> free;
Command> select * from t1;
< 1, abc >
< 2, def >
2 rows found.
Execution time (SQLExecute + Fetch Loop) = 0.000226 seconds.

The prepare command is immediately followed by the SQL statement to prepare. Whenever a
SQL statement is prepared in ttIsql, a unique command ID is assigned to the prepared
statement. The ttIsql utility uses this ID to keep track of multiple prepared statements. A
maximum of 256 prepared statements per connection can exist in a ttIsql session
simultaneously. When the free command runs, the command ID is automatically disassociated
from the prepared SQL statement.

To see the command IDs generated by ttIsql when using the prepared statement commands,
use the describe * command to list all prepared statements with their IDs. Command IDs can
be referenced explicitly when using ttIsql's prepared statement commands.

Chapter 2
Run SQL Statements

2-17

This example prepares and runs a SELECT statement with a predicate containing one NUMBER
parameter. The exec 2 and exec 3 run the prepared statements. After the execution of the 2
and 3 prepared statements, it shows “Cursor is open. Ncharencoding is LOCALE.”

Command> prepare 1 select 1 from dual;
Command> prepare 2 select 2 from dual;
Command> prepare 3 select 3 from dual;
Command>exec 2;
Command>exec 3;
Command>describe *;

There are 3 prepared commands.

Prepared Statement [1];
SQL: select 1 from dual

Columns:
EXP NUMBER(10) Not NULL

Prepared Statement [2];
SQL: select 2 from dual

Cursor is open. Ncharencoding is LOCALE.
Columns:
EXP NUMBER(10) Not NULL

Prepared Statement [3];
SQL: select 3 from dual

Cursor is open. Ncharencoding is LOCALE.
Columns:
EXP
result columns.

This example shows free 2 command to remove the prepared command, prepare 2.

Command>free 2;
Command>describe *;

Prepared Statement [1];
SQL: select 1 from dual

Columns:
EXP NUMBER(10) Not NULL

Prepared Statement [3];
SQL: select 3 from dual

Cursor is open. Ncharencoding is LOCALE.
Columns:
EXP NUMBER(10) Not NULL

Command>exec 2;

Chapter 2
Run SQL Statements

2-18

The prepared command with id=2 was not found.
The command failed.

This example uses the prepared command, prepare 10 and prepare 11 to INSERT values into
the table t2 and run the command to insert two rows into the table. The fetchone command is
used to fetch only one result row generated by the statement. The execandfetch 12 command
displays all rows of the table t2.

Command> create table t2 (a int, b varchar(30));
Command> create sequence s;
Command> set autocommit 0;
Command> prepare 10 insert into t2 values(s.nextval, 'A');
Command> prepare 11 insert into t2 values(s.nextval, 'B');
Command> prepare 12 select * from t2;
Command> describe *;

There are 3 prepared commands.

Prepared Statement [10]:
 SQL: insert into t2 values(s.nextval, 'A')
 Columns:
 (none)

Prepared Statement [11]:
 SQL: insert into t2 values(s.nextval, 'B')
 Columns:
 (none)

Prepared Statement [12]:
 SQL: select * from t2
 Columns:
 A NUMBER (38)
 B VARCHAR2 (30)

Command> exec 10;
1 row inserted.
Command> exec 11;
1 row inserted.
Command> exec 12;

Command> fetchone;
< 1, A >
1 row found.

Command> fetchone;
< 2, B >
1 row found.

Command> execandfetch 12;
< 1, A >
< 2, B >
2 rows found.

Command> exec 10;
1 row inserted.

Chapter 2
Run SQL Statements

2-19

Command> execandfetch 12;
< 1, A >
< 2, B >
< 3, A >
3 rows found.
Command>

Manage Transactions
The ttIsql utility has several built-in commands for managing transactions.

These commands are summarized below:

• autocommit - Turns on or off the autocommit feature. This can also be set as an attribute of
the set command.

• commit - Commits the current transaction.

• commitdurable - Ensures the committed work is durably commit to the transaction log on
disk in case of database failure.

• isolation - Changes the transaction isolation level. This can also be set as an attribute of
the set command.

• rollback - Rolls back the current transaction.

• sqlquerytimeout - Specifies the number of seconds to wait for a SQL statement to run
before returning to the application. This can also be set as an attribute of the set
command.

When starting ttIsql, the autocommit feature is turned on by default, even within a SQL script.
In this mode, every SQL operation against the database is committed automatically.

To turn the autocommit feature off, run the autocommit command with an argument of 0. When
autocommit is turned off, transactions must be committed or rolled back manually by running
the commit, commitdurable or rollback commands. The commitdurable command ensures
that the transaction's effect is preserved to disk in case of database failure. If autocommit is off,
the uncommitted statements that are rolled back are not reported when ttIsql exits.

The isolation command can be used to change the current connection's transaction isolation
level. The isolation level can be changed only at the beginning of a transaction. The isolation
command accepts one of the following constants: READ_COMMITTED and SERIALIZABLE. If the
isolation command is modified without an argument then the current isolation level is
reported.

The sqlquerytimeout command sets the timeout period for SQL statements. If the run time of
a SQL statement exceeds the number of seconds set by the sqlquerytimeout command, the
SQL statement does not run and an 6111 error is generated. See Setting a Timeout Duration
for SQL Statements in the Java Developer's Guide and Setting a Timeout Duration for SQL
Statements in the C Developer's Guide.

Chapter 2
Run SQL Statements

2-20

Note:

TimesTen roll back and query timeout features do not stop cache operations that are
being processed on the Oracle database. This includes passthrough statements,
flushing, manual loading, manual refreshing, synchronous writethrough, propagating
and dynamic loading.

The following example demonstrates the common use of the ttIsql built-in transaction
management commands.

$ ttIsql
Copyright (c) Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Command> connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)
Command> autocommit 0;
Command> CREATE TABLE LOOKUP (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64));
Command> commit;
Command> INSERT INTO LOOKUP VALUES (1, 'ABC');
1 row inserted.
Command> SELECT * FROM LOOKUP;
< 1, ABC >
1 row found.
Command> rollback;
Command> SELECT * FROM LOOKUP;
0 rows found.
Command> isolation;
isolation = READ_COMMITTED
Command> commitdurable;
Command> Set sqlquerytimeout 5;
Command> select count (*) from tables, views, columns, all_source;
 6111: SQL statement has reached its timeout limit [timeout msec = 5000, elapsed msec =
5120] and has been terminated
The command failed.
Command> sqlquerytimeout;
Query timeout = 10 seconds
Command> disconnect;
Disconnecting...
Command> exit;
Done.

Display Database Structures
There are several ttIsql commands that display information on database structures.

The most useful commands are summarized below:

• describe - Displays information on database objects.

• cachegroups - Displays the attributes of cache groups.

• repschemes - Reports information on replication schemes defined in the currently
connected data source.

Chapter 2
Display Database Structures

2-21

• dssize - Reports the current sizes of the permanent and temporary database memory
regions.

• tablesize - Displays the size of tables that have been analyzed with the
ttComputeTabSizes tool.

• monitor - Displays a summary of the current state of the database.

describe Command
Use the describe command to display information on individual database objects. Displays
parameters for prepared SQL statements and built-in procedures.

The argument to the describe command can be the name of a table, cache group, view,
materialized view, sequence, synonym, a built-in procedure, a SQL statement or a command
ID for a previously prepared SQL statement, a PL/SQL function, PL/SQL procedure or PL/SQL
package.

The describe command requires a semicolon character to terminate the command.

Command> CREATE TABLE t1 (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64));
Command> describe t1;

Table USER.T1:
 Columns:
 *KEY NUMBER NOT NULL
 VALUE CHAR (64)
1 table found.

(primary key columns are indicated with *)
Command> describe SELECT * FROM T1 WHERE KEY=?;

Prepared Statement:
 Parameters:
 Parameter 1 NUMBER
 Columns:
 KEY NUMBER NOT NULL
 VALUE CHAR (64)
Command> describe ttOptUseIndex;

Procedure TTOPTUSEINDEX:
 Parameters:
 Parameter INDOPTION VARCHAR (1024)
 Columns:
 (none)

1 procedure found.
Command>

cachegroups Command
The cachegroups command is used to provide detailed information on cache groups defined in
the current database.

The attributes of the root and child tables defined in the cache group are displayed in addition
to the WHERE clauses associated with the cache group. The argument to the cachegroups

Chapter 2
Display Database Structures

2-22

command is the name of the cache group that you want to display information for and when no
argument is provided, it returns information of all the cache groups defined by the connected
user in the current database.

Command> cachegroups;
Cache Group CACHEUSER.READCACHE:
 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined
 Root Table: SALES.READTAB
 Table Type: Read Only

 Cache Group CACHEUSER.WRITECACHE:
 Cache Group Type: Asynchronous Writethrough (Dynamic)
 Autorefresh: No
 Aging: LRU on
 Root Table: SALES.WRITETAB
 Table Type: Propagate
2 cache groups found.

repschemes Command
The repschemes command is used to report information on replication schemes defined in the
currently connected data source.

This information includes the attributes of all elements associated with the replication schemes.
If the optional argument is omitted then information on all replication schemes defined in the
current data source is reported.

Command>repschemes [[<scheme_owner_pattern>.]<scheme_name_pattern>];

Example:

Command>create active standby pair rep1, rep2;
The command succeeded.

Command>repschemes;

Replication Scheme Active Standby:

 Master Store: REP1 on xxx
 Master Store: REP2 on xxx

 Excluded Tables:
 None

 Excluded Cache Groups:
 None

 Excluded sequences:

Chapter 2
Display Database Structures

2-23

 None

 Store: REP1 on xxx
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

 Store: REP2 on xxx
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

1 replication scheme found.

dssize Command
The dssize command is used to report the current memory status of the permanent and
temporary memory regions as well as the maximum, allocated and in-use sizes for the
database.

However, for TimesTen Scaleout, the dssize command only reports on the current memory
status for the current element.

The dssize command reports the same information that is displayed in the SYS.V$MONITOR and
SYS.GV$MONITOR system views. The following example uses the k option to print the database
size information in KB:

Command> dssize k;
The following values are in KB:

 PERM_ALLOCATED_SIZE: 40960
 PERM_IN_USE_SIZE: 9742
 PERM_IN_USE_HIGH_WATER: 9742
 TEMP_ALLOCATED_SIZE: 32768
 TEMP_IN_USE_SIZE: 9442
 TEMP_IN_USE_HIGH_WATER: 9505

tablesize Command
The tablesize command displays the detailed analysis of the amount of space used by a
table.

Once you call the ttComputeTabSizes built-in procedure, which analyzes the table size of the
indicated tables, the tablesize command displays the total size data for all analyzed tables.

Note:

See ttComputeTabSizes in the Oracle TimesTen In-Memory Database Reference.

Chapter 2
Display Database Structures

2-24

Running the tablesize command with no arguments displays available sizing information for
all tables that have had the ttComputeTabSizes computation run. When you provide a table as
an argument, tablesize displays available sizing only for the indicated table.

The syntax for tablesize is as follows:

tablesize [[owner_name_pattern.]table_name_pattern]

The following example invokes the ttComputeTabSizes built-in procedure to calculate the table
size of the employees table. Then, the tablesize command displays the sizing information
gathered for the employees table.

Command>call ttComputeTabSizes('employees');
Command>tablesize employees;

Sizes of USER1.EMPLOYEES:

 INLINE_ALLOC_BYTES: 60432
 NUM_USED_ROWS: 107
 NUM_FREE_ROWS: 149
 AVG_ROW_LEN: 236
 OUT_OF_LINE_BYTES: 0
 METADATA_BYTES: 1304
 TOTAL_BYTES: 61736
 LAST_UPDATED: 2011-06-29 12:55:28.000000

1 table found.

These values provide insights into overhead and how the total space is used for the table.

For example:

• The NUM_FREE_ROWS value describes the number of rows allocated for the table, but not
currently in use. Space occupied by free rows cannot be used by the system for storing
other system objects or structures.

• Use the TOTAL_BYTES value to calculate how much permanent space your table occupies.

• LAST_UPDATED is the time of the last size computation. If you want a more recent
computation, re-run ttComputeTabSizes and display the new output.

To find a description for each calculated value, see SYS.ALL_TAB_SIZES section in the Oracle
TimesTen In-Memory Database System Tables and Views Reference.

monitor Command
The monitor command displays all of the information provided by the dssize command and
additional statistics on the number of connections, checkpoints, lock timeouts, commits,
rollback operations and other information collected since the last time the database was loaded
into memory.

Command>monitor;
TIME_OF_1ST_CONNECT: Wed Apr 20 10:34:17 2011
DS_CONNECTS: 11
DS_DISCONNECTS: 0
DS_CHECKPOINTS: 0

Chapter 2
Display Database Structures

2-25

DS_CHECKPOINTS_FUZZY: 0
DS_COMPACTS: 0
PERM_ALLOCATED_SIZE: 40960
PERM_IN_USE_SIZE: 5174
PERM_IN_USE_HIGH_WATER: 5174
TEMP_ALLOCATED_SIZE: 18432
TEMP_IN_USE_SIZE: 4527
TEMP_IN_USE_HIGH_WATER: 4527
SYS18: 0
TPL_FETCHES: 0
TPL_EXECS: 0
CACHE_HITS: 0
PASSTHROUGH_COUNT: 0
XACT_BEGINS: 2
XACT_COMMITS: 1
XACT_D_COMMITS: 0
XACT_ROLLBACKS: 0
LOG_FORCES: 0
DEADLOCKS: 0
LOCK_TIMEOUTS: 0
LOCK_GRANTS_IMMED: 17
LOCK_GRANTS_WAIT: 0
SYS19: 0
CMD_PREPARES: 1
CMD_REPREPARES: 0
CMD_TEMP_INDEXES: 0
LAST_LOG_FILE: 0
REPHOLD_LOG_FILE: -1
REPHOLD_LOG_OFF: -1
REP_XACT_COUNT: 0
REP_CONFLICT_COUNT: 0
REP_PEER_CONNECTIONS: 0
REP_PEER_RETRIES: 0
FIRST_LOG_FILE: 0
LOG_BYTES_TO_LOG_BUFFER: 64
LOG_FS_READS: 0
LOG_FS_WRITES: 0
LOG_BUFFER_WAITS: 0
CHECKPOINT_BYTES_WRITTEN: 0
CURSOR_OPENS: 1
CURSOR_CLOSES: 1
SYS3: 0
SYS4: 0
SYS5: 0
SYS6: 0
CHECKPOINT_BLOCKS_WRITTEN: 0
CHECKPOINT_WRITES: 0
REQUIRED_RECOVERY: 0
SYS11: 0
SYS12: 1
TYPE_MODE: 0
SYS13: 0
SYS14: 0
SYS15: 0
SYS16: 0

Chapter 2
Display Database Structures

2-26

SYS17: 0
SYS9:

List Database Objects by Object Type
You can use ttIsql to list tables, indexes, views, sequences, synonyms, PL/SQL functions,
procedures, and packages in a database.

Commands prefixed by all display all of this type of object. For example, the functions
command lists PL/SQL functions that are owned by the user, whereas allfunctions lists all
PL/SQL functions.

Note:

To run all* commands to see other user's object information, you need to have the
permission to do so.

You can optionally specify patterns for object owners and object names.

Use these commands to list database objects:

• tables and alltables - Lists tables.

• indexes and allindexes - Lists indexes.

• views and allviews - Lists views.

• sequences and allsequences - Lists sequences.

• synonyms and allsynonyms - Lists synonyms.

• functions and allfunctions - Lists PL/SQL functions.

• procedures and allprocedures - Lists PL/SQL procedures.

• packages and allpackages - Lists PL/SQL packages.

The following example demonstrates the procedures and allprocedures commands. User
TERRY creates a procedure called proc1 while connected to database1. Note that a slash
character (/) is entered on a new line following the PL/SQL statements.

The procedures command and the allprocedures command show that it is the only PL/SQL
procedure in the database.

$ ttIsql database1
Copyright (c) Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
connect "DSN=database1";
Connection successful:
DSN=database1;UID=Terry;DataStore=/disk1/databases/
database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)
Command>create or replace procedure proc1 as begin null; end;
 > /
Procedure created.
Command>procedures;
 TERRY.PROC1
1 procedure found.

Chapter 2
List Database Objects by Object Type

2-27

Command>allprocedures;
 TERRY.PROC1
1 procedure found.

Now connect to the same DSN as PAT and create a procedure called q. The allprocedures
command shows the PL/SQL procedures created by Terry and PAT.

$ ttIsql "DSN=database1;UID=PAT"
Copyright (c) Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
connect "DSN=database1;UID=PAT";
Connection successful: DSN=database1;UID=PAT;
DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)
Command>create or replace procedure q as begin null; end;
 > /
Procedure created.
Command>procedures;
 PAT.Q
1 procedure found.
Command>allprocedures;
 TERRY.PROC1
 PAT.Q
2 procedures found.

In this example, PAT is able to see the TERRY's procedure, it cannot happen unless PAT has the
permission.

View and Change Query Optimizer Plans
You can view the query optimizer plans, commands in the SQL command cache, or query
plans for commands in the SQL command cache.

• Use the showplan Command

• View Commands and Explain Plans from the SQL Command Cache

Use the showplan Command
The built-in showplan command is used to display the query optimizer plans used by TimesTen
for processing queries.

In addition, ttIsql contains built-in query optimizer hint commands for altering the query
optimizer plan. By using the showplan command in conjunction with the ttIsql commands
summarized below, the optimum execution plan can be designed.

• optprofile - Displays the current optimizer hint settings and join order.

• setjoinorder - Sets the join order.

• setuseindex - Sets the index hint.

• tryhash - Enables or disables the use of hash indexes.

• trymergejoin - Enables or disables merge joins.

• trynestedloopjoin - Enables or disables nested loop joins.

• tryserial - Enables or disables serial scans.

• trytmphash - Enables or disables the use of temporary hash indexes.

Chapter 2
View and Change Query Optimizer Plans

2-28

• trytmptable - Enables or disables the use of an intermediate results table.

• trytmprange - Enables or disables the use of temporary range indexes.

• tryrange - Enables or disables the use of range indexes.

• tryrowid - Enables or disables the use of rowid scans.

• trytbllocks - Enables or disables the use of table locks.

• unsetjoinorder - Clears the join order.

• unsetuseindex - Clears the index hint.

When using the showplan command and the query optimizer hint commands, the autocommit
feature must be turned off. Use the ttIsql autocommit command to turn off autocommit.

This example shows how these commands can be used to change the query optimizer
execution plan.

Command>CREATE TABLE T1 (A NUMBER);
Table created.
Command>CREATE TABLE T2 (B NUMBER);
Table created.
Command>CREATE TABLE T3 (C NUMBER);
Table created.
Command>INSERT INTO T1 VALUES (3);
1 row inserted.
Command>INSERT INTO T2 VALUES (3);
1 row inserted.
Command>INSERT INTO T3 VALUES (3);
1 row inserted.
Command>INSERT INTO T1 VALUES (4);
1 row inserted.
Command>INSERT INTO T2 VALUES (5);
1 row inserted.
Command>INSERT INTO T3 VALUES (6);
1 row inserted.
Command>autocommit 0;
Command>showplan;
Command>SELECT * FROM T1, T2, T3 WHERE A=B AND B=C;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 3
 OPERATION: TblLkSerialScan
 TBLNAME: T2
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 2
 LEVEL: 3
 OPERATION: TblLkSerialScan
 TBLNAME: T3
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: T2.B = T3.C

 STEP: 3
 LEVEL: 2

Chapter 2
View and Change Query Optimizer Plans

2-29

 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 4
 LEVEL: 2
 OPERATION: TblLkSerialScan
 TBLNAME: T1
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: T1.A = T2.B AND T1.A = T2.B

 STEP: 5
 LEVEL: 1
 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

< 3, 3, 3 >
1 row found.

Command>trytbllocks 0;
Command>tryserial 0;
Command>SELECT * FROM T1, T2, T3 WHERE A=B AND B=C;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 3
 OPERATION: TmpRangeScan
 TBLNAME: T2
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 2
 LEVEL: 3
 OPERATION: RowLkSerialScan
 TBLNAME: T3
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: T2.B = T3.C

 STEP: 3
 LEVEL: 2
 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 4
 LEVEL: 2

Chapter 2
View and Change Query Optimizer Plans

2-30

 OPERATION: RowLkSerialScan
 TBLNAME: T1
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: T1.A = T2.B AND T1.A = T2.B

 STEP: 5
 LEVEL: 1
 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

< 3, 3, 3 >
1 row found.

In this example, the query optimizer plan is displayed for a Select query. The first version of
the query simply uses the query optimizer's default execution plan. However, in the second
version, the trytbllocks and tryserial ttIsql built-in hint commands have been used to
alter the query optimizer's plan. Instead of using serial scans and nested loop joins, the second
version of the query uses temporary index scans, serial scans, and nested loops. The second
version uses row lock instead of table lock because the optimizer hint for table lock is turned
off.

In this way, the showplan command in conjunction with ttIsql's built-in query optimizer hint
commands can be used to quickly determine which execution plan should be used to meet the
application requirements. The query optimizer generates the best query plan based on the
statistics. When you observe the bad query performance, then you need to use the optimizer
hints to change the query plan.

View Commands and Explain Plans from the SQL Command Cache
You can view commands and their explain plans.

The following sections describe how to view commands and their explain plans:

• View Commands in the SQL Command Cache

• Display Query Plan for Statement in SQL Command Cache

View Commands in the SQL Command Cache
The cmdcache command invokes the ttSqlCmdCacheInfo built-in procedure to display the
contents of the TimesTen SQL command cache.

If you run the cmdcache command without parameters, the full SQL command cache contents
are displayed. Identical to the ttSqlCmdCacheInfo built-in procedure, you can provide a
command ID to specify a specific command to be displayed.

In addition, the cmdcache command can filter the results so that only those commands that
match a particular owner or query text are displayed.

The syntax for the cmdcache command is as follows:

cmdcache [[by {sqlcmdid | querytext | owner}] <query_substring>

If you provide the owner parameter, the results are filtered by the owner, identified by the
<query_substring>, displayed within each returned command. If you provide the querytext

Chapter 2
View and Change Query Optimizer Plans

2-31

parameter, the results are filtered so that all queries are displayed that contain the substring
provided within the <query_substring>. If only the <query_substring> is provided, such as
cmdcache <query_substring>, the command assumes to filter the query text by the
<query_substring>. See cmdcache command.

 Command> cmdcache profile;
< 552126952, -1, 0, 1, 0, 0, 4784, SYS, select pn.profile# from sys.profname$ pn where
pn.name = :profilename, 0, <NULL>, 0, 0, 0, 0, <NULL>, 0, 0, 0, 0 >
< 552131576, -1, 0, 1, 0, 0, 6088, SYS, select p.resource#, p.limit# from sys.profile$ p
where p.type# = 0 and p.profile# = :profileid, 0, <NULL>, 0, 0, 0, 0, <NULL>, 0, 0, 0, 0
>
< 552110408, -1, 1, 1, 0, 0, 7160, SYS, select u.user#, u.password, u.identification,
u.astatus, u.lcount, u.ltime, u.profile# from sys.user$ u where u.name = :name and
u.type# = 1, 1, 2024-09-24 19:48:13.409000, 0, 0, 0, 0, <NULL>, 1304, 1304, 0, 0 >
3 rows found.

Display Query Plan for Statement in SQL Command Cache
The ttIsql explain command displays the query plan for an individual command.

• If you provide a command ID from the SQL command cache, the explain command
invokes the ttSqlCmdQueryPlan built-in procedure to display the query plan for an
individual command in the TimesTen SQL command cache. If you want the explain plan
displayed in a formatted method, run the explain command instead of calling the
ttSqlCmdQueryPlan built-in procedure. Both provide the same information, but the
ttSqlCmdQueryPlan built-in procedure provides the data in a raw data format.

• If you provide a SQL statement or the history item number, the explain command
compiles the SQL statements necessary to display the explain plan for this particular SQL
statement.

The syntax for the explain command is as follows:

explain [plan for] {[<Connid>.]<ttisqlcmdid> | sqlcmdid <sqlcmdid> | <sqlstmt>
| !<historyitem>}

Identical to the ttSqlCmdQueryPlan built-in procedure, you can provide a command ID to
specify a specific command to be displayed. The command ID can be retrieved with the
cmdcache command, as described in View Commands in the SQL Command Cache.

The following example provides an explain plan for command ID 38001456:

Command>EXPLAIN SQLCMDID 38001456;

Query Optimizer Plan:
 Query Text: select * from all_objects where object_name = 'DBMS_OUTPUT'

 STEP: 1
 LEVEL: 12
 OPERATION: TblLkRangeScan
 TABLENAME: OBJ$
 TABLEOWNERNAME: SYS
 INDEXNAME: USER$.I_OBJ
 INDEXEDPRED:
 NONINDEXEDPRED: (RTRIM(NAME)) = DBMS_OUTPUT;NOT(10 = TYPE#) ;
(FLAGS ^ 128 = 0) ;

 STEP: 2
 LEVEL: 12
 OPERATION: RowLkRangeScan

Chapter 2
View and Change Query Optimizer Plans

2-32

 TABLENAME: OBJAUTH$
 TABLEOWNERNAME: SYS
 INDEXNAME: OBJAUTH$.I_OBJAUTH1
 INDEXEDPRED: ((GRANTEE#=1) OR (GRANTEE#=10)) AND ((PRIVILEGE#=8))
 NONINDEXEDPRED: OBJ# = OBJ#;

 STEP: 3
 LEVEL: 11
 OPERATION: NestedLoop(Left OuterJoin)
 TABLENAME:
 TABLEOWNERNAME:
 INDEXNAME:
 INDEXEDPRED:
 NONINDEXEDPRED:
...
 STEP: 21
 LEVEL: 1
 OPERATION: Project
 TABLENAME:
 TABLEOWNERNAME:
 INDEXNAME:
 INDEXEDPRED:
 NONINDEXEDPRED:

Command>

In addition, the ttIsql explain command can generate an explain plan for any SQL query you
provide. For example, the following shows the explain plan for the SQL query: "SELECT * FROM
employees;"

Command>EXPLAIN SELECT * FROM employees;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 1
 OPERATION: TblLkRangeScan
 TBLNAME: EMPLOYEES
 IXNAME: EMP_NAME_IX
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

You can also retrieve explain plans based upon the command history. The following example
shows how you explain a previously run SQL statement using the history command ID:

Command>SELECT * FROM all_objects WHERE object_name = 'DBMS_OUTPUT';
< SYS, DBMS_OUTPUT, <NULL>, 241, <NULL>, PACKAGE, 2009-10-13 10:41:11, 2009-10-13
10:41:11, 2009-10-13:10:41:11, VALID, N, N, N, 1, <NULL> >
< PUBLIC, DBMS_OUTPUT, <NULL>, 242, <NULL>, SYNONYM, 2009-10-13 10:41:11,
2009-10-13 10:41:11, 2009-10-13:10:41:11, INVALID, N, N, N, 1, <NULL> >
< SYS, DBMS_OUTPUT, <NULL>, 243, <NULL>, PACKAGE BODY, 2009-10-13 10:41:11,
2009-10-13 10:41:11, 2009-10-13:10:41:11, VALID, N, N, N, 2, <NULL> >
3 rows found.
Command>HISTORY;
1 connect "DSN=cache";
2 help cmdcache;
3 cmdcache;
4 explain select * from dual;
5 select * from all_objects where object_name = 'DBMS_OUTPUT';
Command>EXPLAIN !5;

Chapter 2
View and Change Query Optimizer Plans

2-33

Query Optimizer Plan:

 STEP: 1
 LEVEL: 10
 OPERATION: TblLkRangeScan
 TBLNAME: SYS.OBJ$
 IXNAME: USER$.I_OBJ
 INDEXED CONDITION: <NULL>
 NOT INDEXED: O.FLAGS & 128 = 0 AND CAST(RTRIM (O.NAME) AS VARCHAR2(30
BYTE) INLINE) = 'DBMS_OUTPUT' AND O.TYPE# <> 10

 STEP: 2
 LEVEL: 10
 OPERATION: RowLkRangeScan
 TBLNAME: SYS.OBJAUTH$
 IXNAME: OBJAUTH$.I_OBJAUTH1
 INDEXED CONDITION: (OA.GRANTEE# = 1 OR OA.GRANTEE# = 10) AND OA.PRIVILEGE# = 8
 NOT INDEXED: OA.OBJ# = O.OBJ#

 STEP: 3
 LEVEL: 9
 OPERATION: NestedLoop(Left OuterJoin)
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 4
 LEVEL: 9
 OPERATION: TblLkRangeScan
 TBLNAME: SYS.OBJAUTH$
 IXNAME: OBJAUTH$.I_OBJAUTH1
 INDEXED CONDITION: (OBJAUTH$.GRANTEE# = 1 OR OBJAUTH$.GRANTEE# = 10) AND
(OBJAUTH$.PRIVILEGE# = 2 OR OBJAUTH$.PRIVILEGE# = 3 OR OBJAUTH$.PRIVILEGE# = 4 OR
OBJAUTH$.PRIVILEGE# = 5 OR OBJAUTH$.PRIVILEGE# = 8)
 NOT INDEXED: O.OBJ# = OBJAUTH$.OBJ#
...
 STEP: 19
 LEVEL: 1
 OPERATION: NestedLoop(Left OuterJoin)
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: O.OWNER# = 1 OR (O.TYPE# IN (7,8,9) AND (NOT(ISNULLROW
(SYS.OBJAUTH$.ROWID)) OR NOT(ISNULLROW (SYS.SYSAUTH$.ROWID)))) OR (O.TYPE# IN
(1,2,3,4,5) AND NOT(ISNULLROW (SYS.SYSAUTH$.ROWID))) OR (O.TYPE# = 6 AND NOT(
ISNULLROW (SYS.SYSAUTH$.ROWID))) OR (O.TYPE# = 11 AND NOT(ISNULLROW
(SYS.SYSAUTH$.ROWID))) OR (O.TYPE# NOT IN (7,8,9,11) AND NOT(ISNULLROW
(SYS.OBJAUTH$.ROWID))) OR (O.TYPE# = 28 AND NOT(ISNULLROW (SYS.SYSAUTH$.ROWID)))
OR (O.TYPE# = 23 AND NOT(ISNULLROW (SYS.SYSAUTH$.ROWID))) OR O.OWNER# = 10

Create and Run PL/SQL Blocks Within ttIsql
You can create and run PL/SQL blocks from the ttIsql command line.

Set serveroutput on to display results generated from the PL/SQL block:

set serveroutput on

Create an anonymous block that puts a text line in the output buffer. Note that the block must
be terminated with a slash (/).

Chapter 2
Create and Run PL/SQL Blocks Within ttIsql

2-34

Command> BEGIN
DBMS_OUTPUT.put_line('Welcome!');
END;
/
Welcome!
PL/SQL procedure successfully completed.
Command>

See PL/SQL Blocks in the PL/SQL Developer's Guide. For information on error handling in
ttIsql for PL/SQL objects, see Showing Errors in ttIsql in the PL/SQL Developer's Guide.

Pass Data From PL/SQL Using OUT Parameters Within ttIsql
You can pass data back to applications from PL/SQL by using OUT parameters.

This example returns information about how full is a TimesTen database.

Create the tt_space_info PL/SQL procedure and use SQL to provide values for the permpct,
permmaxpct, temppct, and tempmaxpct parameters.

Command> CREATE OR REPLACE PROCEDURE tt_space_info
(permpct OUT PLS_INTEGER,
permmaxpct OUT PLS_INTEGER,
temppct OUT PLS_INTEGER,
tempmaxpct OUT PLS_INTEGER) AS
monitor sys.monitor%ROWTYPE;
BEGIN
SELECT * INTO monitor FROM sys.monitor;
permpct := monitor.perm_in_use_size * 100 /
monitor.perm_allocated_size;
permmaxpct := monitor.perm_in_use_high_water * 100 /
monitor.perm_allocated_size;
temppct := monitor.temp_in_use_size * 100 /
monitor.temp_allocated_size;
tempmaxpct := monitor.temp_in_use_high_water * 100 /
monitor.temp_allocated_size;
END;
/

Procedure created.

Declare the variables and call tt_space_info. The parameter values are passed back to
ttIsql so they can be printed:

Command> VARIABLE permpct NUMBER
Command> VARIABLE permpctmax NUMBER
Command> VARIABLE temppct NUMBER
Command> VARIABLE temppctmax NUMBER
Command> BEGIN
tt_space_info(:permpct, :permpctmax, :temppct, :temppctmax);
END;
/

PL/SQL procedure successfully completed.

Command> PRINT permpct;
PERMPCT : 4

Command> PRINT permpctmax;
PERMPCTMAX : 4

Chapter 2
Create and Run PL/SQL Blocks Within ttIsql

2-35

Command> PRINT temppct;
TEMPPCT : 11

Command> PRINT temppctmax;
TEMPPCTMAX : 11

You can also pass back a statement handle that can be run by a PL/SQL statement with an
OUT refcursor parameter. The PL/SQL statement can choose the query associated with the
cursor. The following example opens a refcursor, which randomly chooses between ascending
or descending order.

Command> VARIABLE ref REFCURSOR;
Command> BEGIN
IF (mod(dbms_random.random(), 2) = 0) THEN
open :ref for select object_name from SYS.ALL_OBJECTS order by 1 asc;
ELSE
open :ref for select object_name from SYS.ALL_OBJECTS order by 1 desc;
end if;
END;
/

PL/SQL procedure successfully completed.

To fetch the result set from the refcursor, use the PRINT command:

Command> PRINT ref;
REF :
< ACCESS$ >
< ALL_ARGUMENTS >
< ALL_COL_PRIVS >
< ALL_DEPENDENCIES >
...
143 rows found.

Or if the result set was ordered in descending order, the following would print:

Command> PRINT ref;
REF :
< XLASUBSCRIPTIONS >
< WARNING_SETTINGS$ >
< VIEWS >
...
143 rows found.

Manage ODBC Functions
You can perform the following on ODBC functions within ttIsql:

• Canceling ODBC Functions

• Timing ODBC Function Calls

Canceling ODBC Functions
The ttIsql command attempts to cancel an ongoing ODBC function when the user presses
Ctrl-C.

Chapter 2
Manage ODBC Functions

2-36

Timing ODBC Function Calls
Information on the time required to run common ODBC function calls can be displayed by
using the timing command.

When the timing feature is enabled, many built-in ttIsql commands report the elapsed
runtime associated with the primary ODBC function call corresponding to the ttIsql
command.

In this example, when running the connect command several ODBC function calls run,
however, the primary ODBC function call associated with connect is SQLDriverConnect and
this is the function call that is timed and reported.

Command> timing 1;
Command> connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)
Execution time (SQLDriverConnect) = 1.2626 seconds.
Command>

The SQLDriverConnect call took about 1.26 seconds to run.

When using the timing command to measure queries, the time required to run the query plus
the time required to fetch the query results is measured. To avoid measuring the time to format
and print query results to the display, set the verbosity level to 0 before running the query.

Command> timing 1;
Command> verbosity 0;
Command> SELECT * FROM t1;
Execution time (SQLExecute + FetchLoop) = 0.064210 seconds.

Command> timing 1;
Command> prepare 2 select 2 from dual;
Execution time (SQLPrepare) = 0.000385 seconds.
Command> exec 2;
Execution time (SQLExecute) = 0.000042 seconds.
Command> verbosity 0;
Command> fetchall 2;
Execution time (Fetch Loop) = 0.000050 seconds.

'editline' Feature for Linux and UNIX Only
On Linux and UNIX systems, you can use the 'editline' library to set up emacs (default) or vi
bindings that enable you to scroll through previous ttIsql commands, as well as edit and
resubmit them.

This feature is not available or needed on Windows.

To disable the 'editline' feature in ttIsql, use the ttIsql command set editline off.

The set up and keystroke information is described for each type of editor:

• Emacs Binding

• vi Binding

Chapter 2
'editline' Feature for Linux and UNIX Only

2-37

Emacs Binding
To use the emacs binding, create a file ~/.editrc and put "bind" on the last line of the file, run
ttIsql. The editline lib prints the current bindings.

The keystrokes when using ttIsql with the emacs binding are:

Keystroke Action

<Left-Arrow> Move the insertion point left (back up).

<Right-Arrow> Move the insertion point right (move forward).

<Up-Arrow> Scroll to the command prior to the one being displayed. Places the cursor at
the end of the line.

<Down-Arrow> Scroll to a more recent command history item and put the cursor at the end of
the line.

<Ctrl-A> Move the insertion point to the beginning of the line.

<Ctrl-E> Move the insertion point to the end of the line.

<Ctrl-K> Save and erase the characters on the command line from the current position
to the end of the line.

<Ctrl-Y> "Yank" (Restore) the characters previously saved and insert them at the
current insertion point.

<Ctrl-F> Forward char - move forward 1 (see Right Arrow).

<Ctrl-B> Backward char - move back 1 (see Left Arrow).

<Ctrl-P> Previous History (see Up Arrow).

<Ctrl-N> Next History (see up Down Arrow).

<ESC-k> or <Ctrl-Up-
Arrow>

Scroll up one line to edit within a multiple line PL/SQL block.

<ESC-j> or <Ctrl-Down-
Arrow>

Scroll down one line to edit within a multiple line PL/SQL block.

vi Binding
To use the vi bindings, create a file ~/.editrc and put "bind -v" in the file, run ttIsql.

To get the current settings, create a file ${HOME}/.editrc and put "bind" on the last line of the
file. When you run ttIsql, the editline lib prints the current bindings.

The keystrokes when using ttIsql with the vi binding are:

Keystroke Action

<Left-Arrow>, h Move the insertion point left (back up).

<Right-Arrow>, l Move the insertion point right (forward).

<Up-Arrow>, k Scroll to the prior command in the history and put the cursor at the end of the
line.

<Down-Arrow>, j Scroll to the next command in the history and put the cursor at the end of the
line.

ESC Vi Command mode.

0, $ Move the insertion point to the beginning of the line, Move to end of the line.

Chapter 2
'editline' Feature for Linux and UNIX Only

2-38

Keystroke Action

i, I Insert mode, Insert mode at beginning of the line.

a, A Add ("Insert after") mode, Append at end of line

R Replace mode.

C Change to end of line.

B Move to previous word.

e Move to end of word.

<Ctrl-P> Previous History (see Up Arrow).

<Ctrl-N> Next History (see Down Arrow).

Chapter 2
'editline' Feature for Linux and UNIX Only

2-39

3
ttIsql Command Reference

This chapter contains the syntax, description, and examples of the ttIsql commands listed
alphabetically.

Each command description contains the following parts:

• Syntax - Shows how to enter the command.

• Description - Provides a brief description of the basic uses of the command.

• Examples - Gives one or more examples of the command.

accept
Syntax

accept variable [NUM[BER] | CHAR | BINARY_FLOAT | BINARY_DOUBLE] [DEF[AULT] default]
[PROMPT text|NOPR[OMPT]] [HIDE]

Description

Gets input from a user and DEFINES the variable. If a type is specified then it validates for that
type. The default (enclosed in quotes) is assigned if the user just presses enter. The prompt is
displayed before waiting for input (or can be suppressed). The HIDE option stops the terminal
from displaying the entered text (for passwords).

The prompt is displayed before waiting for input, if specified without the HIDE option.

Examples

To display the prompt Password:, place the reply in a CHAR variable named PSWD, and suppress
the display, enter:

accept pswd CHAR PROMPT 'Password: ' HIDE

To display the prompt Enter weekly salary: and place the reply in a NUMBER variable named
SALARY with a default of 000.0, enter:

accept salary NUMBER FORMAT '999.99' DEFAULT '000.0' -
PROMPT 'Enter weekly salary: '

To display the prompt Enter employee lastname: and place the reply in a CHAR variable
named LASTNAME, enter:

accept lastname CHAR FORMAT 'A20' -
PROMPT 'Enter employee lastname: '

allfunctions
Syntax

allfunctions [[owner_name_pattern.] table_name_pattern]

3-1

Description

Lists, in a single column, the names of all the PL/SQL functions that match the given pattern
selected from SYS.ALL_OBJECTS. When a pattern is missing, the pattern defaults to "%".

If passthrough is enabled, lists PL/SQL functions matching the pattern in the Oracle database.

For more details, see List Database Objects by Object Type.

Examples

Command> allfunctions;
 SYS.ORA_STRING_DISTANCE
 SYS.TT_COMPLEXITY_CHECK
 SYS.TT_STIG_VERIFY_FUNCTION
 SYS.TT_STRONG_VERIFY_FUNCTION
 SYS.TT_VERIFY_FUNCTION
 USER.F
6 functions found.

This example displays the functions that matches the given pattern.

Command> allfunctions %TT%;
 SYS.TT_COMPLEXITY_CHECK
 SYS.TT_STIG_VERIFY_FUNCTION
 SYS.TT_STRONG_VERIFY_FUNCTION
 SYS.TT_VERIFY_FUNCTION
4 functions found.

allindexes
Syntax

allindexes [[owner_name_pattern.] table_name_pattern]

Description

Describes the indexes that it finds on the tables that match the input pattern selected from
SYS.ALL_OBJECTS. When a pattern is missing, the patterns default to "%".

If passthrough is enabled, lists indexes on tables matching the pattern in the Oracle database.

For more details, see List Database Objects by Object Type.

Examples

Command> allindexes;
Indexes on system table SYS.ACCESS$:
 I_ACCESS1: non-unique range index on columns:
 D_OBJ#
 ORDER#
 1 index found.
Indexes on system table SYS.ARGUMENT$:
 I_ARGUMENT1: unique range index on columns:
 OBJ#
 PROCEDURE$
 OVERLOAD#
 SEQUENCE#
 I_ARGUMENT2: non-unique range index on columns:

Chapter 3
allindexes

3-2

 OBJ#
 PROCEDURE#
 SEQUENCE#
 2 indexes found.
…..
118 indexes found on 122 tables.

allpackages
Syntax

allpackages [[owner_name_pattern.] table_name_pattern]

Description

Lists, in a single column, the names of all the PL/SQL packages that match the given pattern
selected from SYS.ALL_OBJECTS. When a pattern is missing, the patterns default to "%".

If passthrough is enabled, lists PL/SQL packages matching the pattern in the Oracle database.

For more details, see List Database Objects by Object Type.

Examples

Command> allpackages;
 SYS.DBMS_LOB
 SYS.DBMS_LOCK
 SYS.DBMS_OUTPUT
 SYS.DBMS_PREPROCESSOR
 SYS.DBMS_RANDOM
 SYS.DBMS_SQL
 SYS.DBMS_STANDARD
 SYS.DBMS_SYS_ERROR
 SYS.DBMS_SYS_SQL
 SYS.DBMS_UTILITY
 SYS.PLITBLM
 SYS.STANDARD
 SYS.SYS_STUB_FOR_PURITY_ANALYSIS
 SYS.TT_DB_VERSION
 SYS.TT_STATS
 SYS.TT_STATS2
 SYS.UTL_FILE
 SYS.UTL_IDENT
 SYS.UTL_RAW
 SYS.UTL_RECOMP
20 packages found.

allprocedures
Syntax

allprocedures [[owner_name_pattern.] procedure_name_ pattern]

Description

Lists, in a single column, the names of all the PL/SQL procedures that match the given pattern
selected from SYS.ALL_OBJECTS. When a pattern is missing, the pattern defaults to "%".

If passthrough is enabled, lists PL/SQL procedures matching the pattern in the Oracle
database.

Chapter 3
allpackages

3-3

For more details, see List Database Objects by Object Type.

Examples

Command> allprocedures;
TERRY.PROC1
HERRY.PROC2
2 procedures found.

allsequences
Syntax

allsequences [[owner_name_pattern.] table_name_pattern]

Description

Lists, in a single column, the names of all the sequences that match the given pattern selected
from SYS.ALL_OBJECTS. When a pattern is missing, the pattern defaults to "%".

If passthrough is enabled, lists sequences on tables matching the pattern in the Oracle
database.

For more details, see List Database Objects by Object Type.

Examples

Command> allsequences;
 SYS.OBJECTSEQUENCE
 SYS.OBJECT_GRANT
 SYS.PROFNUM$
 SYS.SPID
 SYS.SYSTEM_GRANT
 SYS.USERSEQUENCE
6 sequences found.

allsynonyms
Syntax

allsynonyms [[schema_pattern.] object_pattern]

Description

Lists, in a single column, the names of all synonyms that match the given pattern. When a
pattern is missing, the pattern defaults to "%".

If passthrough is enabled, lists synonyms on tables matching the pattern in the Oracle
database.

Examples

Command> allsynonyms;
 PUBLIC.ALL_ARGUMENTS
 PUBLIC.ALL_COL_PRIVS
 PUBLIC.ALL_DEPENDENCIES
 PUBLIC.ALL_DIRECTORIES
 PUBLIC.ALL_ERRORS
 PUBLIC.ALL_EXTERNAL_TABLES

Chapter 3
allsequences

3-4

 PUBLIC.ALL_IDENTIFIERS
 PUBLIC.ALL_OBJECTS
….

alltables
Syntax

alltables [[owner_name_pattern.] table_name_pattern]

Description

Lists, in a single column, the names of all the tables that match the given pattern selected from
SYS.ALL_OBJECTS. When a pattern is missing, the pattern defaults to "%".

If passthrough is enabled, lists tables matching the pattern in the Oracle database.

For more details, see List Database Objects by Object Type.

Examples

Command> alltables;
 SYS.ACCESS$
 SYS.ARGUMENT$
 SYS.CACHE_GROUP
…

allviews
Syntax

allviews [[owner_name_pattern.] view_name_pattern]

Description

Lists, in a single column, the names of all the views that match the specified pattern selected
from SYS.ALL_OBJECTS. When a pattern is missing, the pattern defaults to "%".

If passthrough is enabled, lists views matching the pattern in the Oracle database.

For more details, see List Database Objects by Object Type.

Examples

Command> allviews;
 SYS.ALL_ARGUMENTS
 SYS.ALL_COL_PRIVS
 SYS.ALL_DEPENDENCIES

builtins
Syntax

builtins [builtin_name_ pattern]

Chapter 3
alltables

3-5

Description

Lists, in a single column, the names of all the TimesTen built-in procedures that match the
given pattern. When the pattern is missing, the pattern defaults to "%". See List of Built-In
Procedures.

Examples

Command> builtins;
 TTAGINGLRUCONFIG
 TTAGINGSCHEDULENOW
 TTAGINGTABLELRUCONFIG
 TTAPPLICATIONCONTEXT
 TTBACKUPSTATUS
 TTBLOCKINFO
 TTBOOKMARK
 TTCACHEADGSTANDBYSTATEGET
 TTCACHEADGSTANDBYSTATESET
 TTCACHEADGSTANDBYTIMEOUTGET
 TTCACHEADGSTANDBYTIMEOUTSET
 TTCACHEALLOWFLUSHAWTSET
 TTCACHEAUTOREFINTERVALSTATSGET
 TTCACHEAUTOREFRESH
 TTCACHEAUTOREFRESHLOGDEFRAG
 TTCACHEAUTOREFRESHSELECTLIMIT
….…...
141 procedures found.

Command> builtins %GET
 TTCACHEADGSTANDBYSTATEGET
 TTCACHEADGSTANDBYTIMEOUTGET
 TTCACHEAUTOREFINTERVALSTATSGET
 TTCACHEAUTOREFRESHSTATSGET
 TTCACHEAWTTHRESHOLDGET
 TTCACHECONNPOOLGET
 TTCACHEPOLICYGET
 TTCACHESQLGET
 TTCACHEUIDGET
 TTCKPTCONFIGGET
 TTDBWRITECONCURRENCYMODEGET
 TTDISTADVICECAPTUREINFOGET
 TTEPOCHSESSIONGET
 TTHOSTNAMEGET
 TTINDEXADVICECAPTUREINFOGET
 TTLATCHSTATSGET
 TTRAMPOLICYAUTORELOADGET
 TTRAMPOLICYGET
 TTREPPOLICYGET
 TTREPQUERYTHRESHOLDGET
 TTREPSTATEGET
 TTREPSYNCGET
 TTREPTRANSMITGET
 TTREPXACTTOKENGET
 TTSQLCMDCACHEINFOGET
 TTSTATSCONFIGGET
 TTTABLESCHEMAFROMORAQUERYGET
 TTXACTIDGET
28 procedures found.

Chapter 3
builtins

3-6

bye
Syntax

bye or exit

Description

Exits ttIsql.

Example

Command> exit;
Disconnecting...
Done.

cachegroups
Syntax

cachegroups [[cache_group_owner_pattern.] cache_group_name_pattern]

Description

Reports information on cache groups defined in the currently connected data source, including
the state of any terminated databases that contain autorefresh cache groups.

If the optional argument is not specified then information on all cache groups in the current
data source is reported.

Examples

Command> cachegroups;
 Cache Group CACHEUSER.READCACHE:
 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined
 Root Table: SALES.READTAB
 Table Type: Read Only
1 cache group found.

Command> cachegroups SCOTT.%;
 Cache Group SCOTT.MYCACHEGROUP:
 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined
 Root Table: SALES.READTAB
 Table Type: Read Only
1 cache group found.

Chapter 3
bye

3-7

cachesqlget
Syntax

cachesqlget [ASYNCHRONOUS_WRITETHROUGH | CACHE_CONFIG |INCREMENTAL_AUTOREFRESH |
ORACLE_DDL_TRACKING][[<cache_group_owner>.]<cache_group_name>] <INSTALL|UNINSTALL>
[<filename>]

Description

Generates an Oracle SQL*Plus compatible script for the installation or uninstallation of Oracle
database objects associated with a readonly cache group, a user managed cache group with
incremental autorefresh or an AWT cache group.

If INSTALL is specified, the Oracle SQL statement to install the Oracle database objects is
generated.

If UNINSTALL is specified, the Oracle SQL statement used to remove the Oracle objects is
generated. If a cache group is not specified with UNINSTALL, a SQL statement to remove all
Oracle database objects in the autorefresh user's account is generated.

If the optional filename argument is included, the generated SQL statement is saved to the
specified external file. If the external file exists, its contents are destroyed before writing to the
file.

Examples

Command> cacheSqlGet SCOTT.MYCACHEGROUP INSTALL create.sql;
Command> cacheSqlGet ASYNCHRONOUS_WRITETHROUGH INSTALL create.sql;
Command> cacheSqlGet UNINSTALL;

cd
Syntax

cd directory

Description

Changes the current directory. This is the equivalent of the cd command in the interactive
shells.

After changing to the directory directory, the define alias _CWD will be set to this directory.

Subsequent commands that rely on relative paths will use this directory as the starting point.

Examples of affected commands are spool, run, savehistory, host, and edit.

Example

Command> host pwd;
/tmp/dir1
Command> cd /tmp/dir2;
Command> host pwd;
/tmp/dir2

Chapter 3
cachesqlget

3-8

clearhistory
Syntax

clearhistory

Description

Clears the history buffer.

Example

Command> history
1 connect sampledb;
2 ls
Command> clearhistory;
Command> history;

clienttimeout
Syntax

clienttimeout [timeout seconds]

Description

Sets the client timeout value in seconds for the current connection. If no value is specified,
displays the current value. The client timeout can take a value between 0 and 99999 inclusive.

The clienttimeout has the same value as the client attribute in the ttc_timeout. It is the
client timeout for the client server.

Examples

Command>show clienttimeout;
Client timeout = 0

Command>set clienttimeout 10;

close
Syntax

close [[connect_id.] command_id]

closeall

Description

Closes the prepared command identified by connection name connect_id and command ID
command_id. If command_id is not specified, closes the most recent command. If closeall is
selected, closes all currently open prepared commands.

For examples, see Prepare a SQL Statement for Subsequent Runs.

Chapter 3
clearhistory

3-9

cmdcache
Syntax

cmdcache [[by {sqlcmdid |querytext|owner}] query_subsstring]

Description

Displays the contents of the TimesTen SQL command cache.

Specify the sqlcmdid, querytext or owner column and query substring to search for a specific
portion of a SQL query. If no column is specified, searches the querytext column.

If passthrough is enabled, the command ID is not passed through to the Oracle database.

Examples

Command> cmdcache;
< 147347040, -1, 1, 1, 0, 0, 8336, ADMIN, call ttsqlcmdcacheinfo(), 1, 2024-08-29
03:08:39.370000, 0, 0, 0, 0, <NULL>, 0, 0, 0, 0 >
< 147586432, -1, 2, 2, 0, 1, 3616, SYS, call ttCkptOneElement(, , 'ttCkptLoadPLSQL');,
0, 2024-08-29 03:08:37.465000, 0, 0, 0, 0, <NULL>, 24, 24, 0, 0 >
< 147393976, -1, 0, 1, 0, 0, 5472, SYS, update sys.user$ u set u.lcount = u.lcount + 1
where u.user# = :userid, 0, <NULL>, 0, <NULL>, 0, 0, <NULL>, 0, 0, 0, 0 >
< 147388856, -1, 0, 1, 0, 0, 5760, SYS, update sys.user$ u set u.lcount = 0, u.astatus
= :astatus where u.user# = :userid, 0, <NULL>, 0, <NULL>, 0, 0, <NULL>, 0, 0, 0, 0 >
< 147405768, -1, 0, 1, 0, 0, 5696, SYS, select u.password, u.password_date from
sys.user_history$ u where u.user# = :userid order by u.password_date desc, 0, <NULL>, 0,
<NULL>, 0, 0, <NULL>, 0, 0, 0, 0 >
< 143321728, -1, 0, 1, 0, 0, 5088, SYS, select pn.profile# from sys.profname$ pn where
pn.name = :profilename, 0, <NULL>, 0, <NULL>, 0, 0, <NULL>, 0, 0, 0, 0 >
< 147383224, -1, 0, 1, 0, 0, 6288, SYS, select p.resource#, p.limit# from sys.profile$ p
where p.type# = 0 and p.profile# = :profileid, 0, <NULL>, 0, <NULL>, 0, 0, <NULL>, 0, 0,
0, 0 >
< 147343648, -1, 1, 1, 0, 1, 3792, ADMIN, CALL ttconfiguration ('TTGrid'), 2, 2024-08-29
03:08:39.069000, 0, 0, 0, 0, <NULL>, 1148, 1148, 0, 0 >
< 154652272, -1, 6, 6, 0, 1, 8032, SYS, select
owner#,name,namespace,obj#,type#,ctime,mtime,stime,status,flags from sys.obj$ where
owner#=:1 and name=:2 and namespace=:3, 6, 2024-08-29 03:08:39.370000, 0, 0, 0, 0,
<NULL>, 1022, 1022, 0, 0 >
< 143311952, -1, 0, 1, 0, 0, 9808, SYS, select 1 from sys.sysauth$ s where (s.grantee#
= :userid or s.grantee# = 1) and (s.privilege# = :priv or s.privilege# = 67), 0, <NULL>,
0, <NULL>, 0, 0, <NULL>, 0, 0, 0, 0 >
< 147411432, -1, 0, 1, 0, 0, 5488, SYS, delete from user_history$ where user# = :userid
and password_date < :pdate, 0, <NULL>, 0, <NULL>, 0, 0, <NULL>, 0, 0, 0, 0 >
< 154654448, -1, 1, 1, 0, 1, 3376, ADMIN, CALL ttOptSetFlag ('passthrough', 0), 0,
2024-08-29 03:08:39.069000, 0, 0, 0, 0, <NULL>, 32, 32, 0, 0 >
< 147399464, -1, 0, 1, 0, 0, 6320, SYS, update sys.user$ u set u.lcount = u.lcount + 1,
u.ltime = sysdate, u.astatus = :astatus where u.user# = :userid, 0, <NULL>, 0, <NULL>,
0, 0, <NULL>, 0, 0, 0, 0 >
< 143304432, -1, 1, 1, 0, 0, 7408, SYS, select u.user#, u.password, u.identification,
u.astatus, u.lcount, u.ltime, u.profile# from sys.user$ u where u.name = :name and
u.type# = 1, 1, 2024-08-29 03:08:31.250000, 0, 0, 0, 0, <NULL>, 1312, 1312, 0, 0 >
14 rows found.

Chapter 3
cmdcache

3-10

commit
Syntax

commit

Description

Commits the current transaction (durably if Durability = 1 for the connection). See Durability.

As opposed to Rollback which will undo the most recent uncommitted work.

For examples, see Manage Transactions.

commitdurable
Syntax

commitdurable

Description

Commits the current transaction durably and ensures that the committed work is recovered in
case of database failure. The current transaction (and every previously committed transaction)
is saved to the disk and is guaranteed to be recovered when it is required.

For examples, see Manage Transactions.

compare
Syntax

compare varA varB

Description

Compares the values of two variables and reports if they are different. The first difference is
reported.

Examples

Command> var a varchar2(10) := 'ABC';
Command> var b varchar2(10) := 'ABC';
Command> var c varchar2(10) := 'ABC1';
Command> compare a a;
Bind variables "A" and "A" match.
Command> compare a b;
Bind variables "A" and "B" match.
Command> compare a c;
Bind variable "A" differs from "C" starting at offset 3.
A : ABC
C : ABC1
The command failed.

Chapter 3
commit

3-11

connect
Syntax

connect[connection_string |[[DSN][as]connid [adding] [connection_string | DSN][as
connid]

Description

Connects to the database with the specified ODBC connection_string.

If no password is supplied in this format, ttIsql prompts for the password.

If no user is given, ttIsql attempts to connect using the user name of the current user as
indicated by the operating system.

If as connid is specified, you can explicitly name the connection. The connid must be only
alphanumeric characters, is case sensitive, must start with an alpha character and can only be
a maximum of 30 characters in length. The name of connid is automatically supplied to the
ConnectionName general connection attribute. If the connect fails, the current connection is set
to a special reserved connection named "none," which is never connected to anything.

When adding is specified, it refers to creating a new connection to the DSN specified by DSN or
by the connection string.

Examples

Command> connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)

createandloadfromoraquery
Syntax

createandloadfromoraquery [owner_name.]table_name [num_threads] query

Description

Takes a table name, the number of threads for parallel load and an Oracle SELECT statement.

Creates the table in TimesTen if the table does not exist. Then, loads the table with the query
result from the Oracle database. If the command creates the table, the table column names
and types are derived from the query result.

Notes:

• The specified TimesTen table cannot be a system table, a synonym, a view, a materialized
view or a detail table of a materialized view, a global temporary table or a cache group
table.

• The query cannot have any parameter bindings.

• Any unsupported column types result in a warning being logged. The output issues a
comment for the unsupported column data type.

• If you do not supply a value for num_threads, defaults to four threads.

Chapter 3
connect

3-12

• For details and usage information, see Loading Data from an Oracle Database into a
TimesTen Table Without Cache in Oracle TimesTen In-Memory Database Operations
Guide.

• You must rollback or commit after running this operation.

• Also see the NOTES section in the description of the built-in procedure ttLoadFromOracle.

Required Privileges:

Requires INSERT privilege on the table specified. Also, requires the CREATE TABLE privilege if
the table does not exist. The Oracle session user must have all required privileges to run the
query on the Oracle database.

Examples

Command> createandloadfromoraquery C1 'select * from PAT.C1';

define
Syntax

define name [= value]

Description

Defines a string substitution alias.

If no value is provided, ttIsql displays the current definition for the specified name.

You must set define on to enable command substitution.

undefine name undefines a string substitution alias.

Examples

Command> Set define on;
Command> define q = 'myvalue';

describe
Syntax

describe [[owner_pattern.] name_pattern | procedure_name_pattern |sql_statement |
[connect_id.]command_id |*]

Description

List information on tables, synonyms, views, materialized views, sequences, cache groups,
PL/SQL functions, PL/SQL procedures, PL/SQL packages and TimesTen built-in procedures in
that order when the argument is [owner_pattern.]name_pattern. Otherwise lists the specific
objects that match the given pattern.

Describes the parameters and results columns when the argument is sql_statement.

If passthrough is set to 3, lists information about the same types of objects in the Oracle
database.

If * is specified, reports the prepared statements for all connections.

Chapter 3
define

3-13

If the table or materialized view being described is in a TimesTen Scaleout database, this
command reports the distribution scheme.

When describing cache groups, reports information on cache groups defined in the currently
connected data source, including the state of any terminated databases that contain
autorefresh cache groups.

If the command is describing a sequence in a TimesTen Scaleout database, displays the batch
field.

The command alias is desc.

For examples, see Prepare a SQL Statement for Subsequent Runs and describe Command.

dssize
Syntax

dssize [k|m|g|t]

Description

Prints database size information in KB, MB, GB or TB. For TimesTen Scaleout, provides the
size of the connected element.

The default is MB. The output indicates the unit returned.

Examples

Command> dssize m;
The following values are in MB:

 PERM_ALLOCATED_SIZE: 32
 PERM_IN_USE_SIZE: 19.085
 PERM_IN_USE_HIGH_WATER: 19.186
 TEMP_ALLOCATED_SIZE: 40
 TEMP_IN_USE_SIZE: 15.088
 TEMP_IN_USE_HIGH_WATER: 21.432

e:
Syntax

e: msg
PROMPT msg

Description

Echoes the specified messages, terminated by the end of the line. A semicolon is not required
to end the line. Messages are not echoed if verbosity is set to 0.

Examples

Command> e: Hi There John.
Hi There John.
Command> e: Bill
Bill
Command> e: All done

Chapter 3
dssize

3-14

All done
Command>

edit
Syntax

edit [file | !history_search_command]

Description

You can use the edit command to edit a file or edit in a text editor. The edit command starts a
text editor such as emacs, gedit, or vi.

If TimesTen does not find an exact file match for the specified file parameter, it searches for
file.sql. If neither file exists, ttIsql starts the editor with the file file.

You can edit a SQL statement that is stored in the history list of the current ttIsql session.
When calling the edit command specify the ! character followed by the number of the
command or a search string.

If you run the edit command with a history_search_command parameter, ttIsql runs the
contents of the file after you exit the text editor. The contents of the file are run as a single
ttIsql command. If you do not want to run the contents of the file, delete the contents of the
file and save the file before you exit the editor.

You can only use one parameter at a time. The history_search_command parameter is defined
as the ! character followed by the number of the command or a search string. If you do not
specify a ! character, the edit command interprets the parameter as file. If you do not
specify a parameter or specify !!, the last ttIsql command is edited.

You can specify the default editor by defining the ttIsql _EDITOR define alias. The following
example sets the default editor to vi:

Command> DEFINE _EDITOR=vi

If you do not define the _EDITOR define alias, ttIsql uses the editor specified by the VISUAL
environment variable. If the _EDITOR define alias and the VISUAL environment variables are not
set, ttIsql uses the editor specified by the EDITOR environment variable. When _EDITOR,
VISUAL, and EDITOR are not set, vi is used for UNIX and Linux systems and notepad.exe is
used for Windows.

exec
Syntax

exec [connect_id.] command_id] | PLSQLSTMT

Description

Runs the prepared command command_id on connection connect_id or runs a PL/SQL
statement.

The connect_id optionally names a ttIsql connection and command_id is an integer from 1 to
255. If PLSQLSTMT is supplied, ttIsql prepends the statement with BEGIN and appends the
statement with END, thus allowing the PL/SQL statement to run.

Chapter 3
edit

3-15

If no argument is supplied, runs the most recent command.

For examples, see Prepare a SQL Statement for Subsequent Runs.

execandfetch
Syntax

execandfetch [[connect_id.]command_id]

Description

Executes the specified prepared SQL statement and fetches all result rows associated with the
statement.

The connect_id optionally names a ttIsql connection and command_id is an integer from 1 to
255. If PLSQLSTMT is supplied, ttIsql prepends the statement with BEGIN and appends the
statement with END, thus allowing the PL/SQL statement to run.

If no argument is supplied, runs the most recent command.

For examples, see Prepare a SQL Statement for Subsequent Runs.

explain
Syntax

explain [plan for] {[Connid.]ttisqlcmdid | sqlcmdid sqlcmdid | sqlstmt |!history}

Description

Explains the plan for the specified SQL statement, including prepared ttIsql statements,
specified in the ttisqlcmdid argument, or the sqlcmdid argument.

A digit that is not qualified with the sqlcmdid argument, is interpreted as a ttIsql prepared
statement ID.

If passthrough is enabled, the command ID is not passed through to the Oracle database.

Example

Command> explain plan for select * from dual;

Query Optimizer Plan (from Query Compilation):

 STEP: 1
 LEVEL: 1
 OPERATION: RowLkSerialScan
 TBLNAME: DUAL
 IXNAME:
 INDEXED CONDITION:
 NOT INDEXED:
 MISCELLANEOUS: cardEst = 1

Chapter 3
execandfetch

3-16

fetchall
Syntax

fetchall [connect_id.]command_id]

Description

Fetches all results from prepared command command_id on connection connect_id.

If command_id is not specified, fetches all results from the most recent command. The
command must already have been run using exec.

For examples, see Prepare a SQL Statement for Subsequent Runs.

fetchnext
Syntax

fetchnext num_rows [connect_id.]command_id]

Description

Fetches up to num_rows rows from prepared command command_id on connection connect_id.

If command_id is not specified, fetches num_rows rows from the most recent command. The
command must already have been run using exec.

Example

Command> create table t1 (a int, b varchar(30));

Command> create sequence s;

Command> set autocommit 0;

Command> prepare 1 insert into t1 values(s.nextval, 'A');

Command> prepare 2 insert into t1 values(s.nextval, 'B');

Command> prepare 5 select * from t1;

Command> describe *;

There are 3 prepared commands.

Prepared Statement [1]:
 SQL: insert into t1 values(s.nextval, 'A')
 Columns:
 (none)

Prepared Statement [2]:
 SQL: insert into t1 values(s.nextval, 'B')
 Columns:
 (none)

Prepared Statement [5]:
 SQL: select * from t1

Chapter 3
fetchall

3-17

 Columns:
 A NUMBER (38)
 B VARCHAR2 (30)

Command> exec 1;
1 row inserted.

Command> exec 2;
1 row inserted.

Command> fetchnext 1;
< 1, A >
1 row found.

Command> fetchnext 1;
< 2, B >
1 row found.

fetchone
Syntax

fetchone [connect_id.]command_id]

Description

Fetches one result from prepared command command_id on connection connect_id.

If command_id is not specified, fetches one result from the most recent command. The
command must already have been run using exec.

For examples, see Prepare a SQL Statement for Subsequent Runs.

free
Syntax

free [[connect_name.]connect_id.] command_id]

Description

Frees prepared command command_id on connection connect_id.

If no command is specified, frees the most recent command.

Use prepare to create the prepared command.

For examples, see Prepare a SQL Statement for Subsequent Runs.

grid
Syntax

grid <stmt>

Chapter 3
fetchone

3-18

Description

Performs that specified statement on a grid database.

Examples

Formats the contents of the SYS.GV$MONITOR table for easy viewing. This command is not
supported in TimesTen Classic.

Command> grid monitor;

HOSTNAME: myhost
INSTANCENAME: mydb_0
ELEMENT: 1
TIME_OF_1ST_CONNECT: Tue Sep 24 19:08:57 2024
DS_CONNECTS: 22
DS_DISCONNECTS: 3
DS_CHECKPOINTS: 6
DS_CHECKPOINTS_FUZZY: 2
DS_COMPACTS: 0
PERM_ALLOCATED_SIZE: 262144
PERM_IN_USE_SIZE: 20366
PERM_IN_USE_HIGH_WATER: 20366
TEMP_ALLOCATED_SIZE: 262144
TEMP_IN_USE_SIZE: 34136
TEMP_IN_USE_HIGH_WATER: 34137
SYS18: 0
TPL_FETCHES: 0
TPL_EXECS: 0
CACHE_HITS: 0
PASSTHROUGH_COUNT: 0
XACT_BEGINS: 473
XACT_COMMITS: 471
XACT_D_COMMITS: 124
XACT_ROLLBACKS: 1
LOG_FORCES: 272
DEADLOCKS: 0
LOCK_TIMEOUTS: 0
LOCK_GRANTS_IMMED: 135704
LOCK_GRANTS_WAIT: 0
SYS19: 0
CMD_PREPARES: 119
CMD_REPREPARES: 1
CMD_TEMP_INDEXES: 0
LAST_LOG_FILE: 0
REPHOLD_LOG_FILE: -1
REPHOLD_LOG_OFF: -1
REP_XACT_COUNT: 0
REP_CONFLICT_COUNT: 0
REP_PEER_CONNECTIONS: 0
REP_PEER_RETRIES: 0
FIRST_LOG_FILE: 0
LOG_BYTES_TO_LOG_BUFFER: 20505784
LOG_FS_READS: 5
LOG_FS_WRITES: 380
LOG_BUFFER_WAITS: 0
CHECKPOINT_BYTES_WRITTEN: 13048504
CURSOR_OPENS: 749
CURSOR_CLOSES: 749
SYS3: 0
SYS4: 0

Chapter 3
grid

3-19

SYS5: 0
SYS6: 0
CHECKPOINT_BLOCKS_WRITTEN: 2423
CHECKPOINT_WRITES: 644
REQUIRED_RECOVERY: 0
SYS11: 0
SYS12: 1
TYPE_MODE: 0
SYS13: 0
SYS14: 0
SYS15: 0
SYS16: 0
SYS17: 0
SYS9:

If the optional_monitor_column is specified, only that column is displayed.

Command> grid monitor PERM_IN_USE_SIZE;
PERM_IN_USE_SIZE: 20570

This example shows a 3x1 grid table. The table structure and row distribution looks like:

create table MYUSER.T1 (
 A NUMBER(38) NOT NULL,
 primary key (A))
 distribute by hash (A);

Command> grid showdistribution T1;
Row Distribution for table MYUSER.T1:

 HOSTNAME: MYHOST
 INSTANCENAME: inst_0
 ELEMENT: 1
 REPLICASET: 1
 DATASPACEGROUP: 1
 ROWCOUNT: 42
 PERCENT OF TOTAL: 34.14634%
 DEVIATION FROM MEAN: 2.43902%

 HOSTNAME: MYHOST
 INSTANCENAME: inst_1
 ELEMENT: 2
 REPLICASET: 2
 DATASPACEGROUP: 1
 ROWCOUNT: 41
 PERCENT OF TOTAL: 33.33333%
 DEVIATION FROM MEAN: 0%

 HOSTNAME: MYHOST
 INSTANCENAME: inst_2
 ELEMENT: 3
 REPLICASET: 3
 DATASPACEGROUP: 1
 ROWCOUNT: 40
 PERCENT OF TOTAL: 32.52033%
 DEVIATION FROM MEAN: -2.43902%

Chapter 3
grid

3-20

help
Syntax

help [command [command ...]| all | comments | attributes]

Description

Prints brief or detailed help information for commands.

If specific commands are given as arguments, then detailed help for each command is printed.

If you do not know the exact name of a command, try typing just a few characters that may be
part of the command name. ttIsql searches and displays help for any commands that include
the characters.

If all is given as an argument, then detailed help for all commands is printed.

If comments is given as an argument, then information on using ttIsql comments within scripts
is printed.

If attributes is given as an argument, then information on the set/show attributes is printed.

If no argument is given, then brief help information for all commands is printed. See Help
Commands.

Examples

Command> help;
 Use "help all" to get a description of all commands or use "help <cmd>" to
limit it to that command.

? fetchnext spool
! free sqlcolumns
@@ functions sqlgetinfo
accept getenv sqlquerytimeout
allfunctions grid sqlquerytimeoutmsec
allindexes help sqlstatistics
allpackages history sqltables
allprocedures host statsclear
allsequences if statsestimate
allsynonyms indexes statsupdate
alltables isolation synonyms
allviews monitor tables
….….… ….….… ….….

Command> help explain;

Arguments in <> are required.
Arguments in [] are optional.

Command Usage: explain [plan for] {[<connection_name>.]<ttisqlcmdid> | sqlcmdid
<sqlcmdid> | <stmt> | !<historyitem> }
Command Aliases: (none)
Description: Explain a plan for either the prepared ttisql cmd, the sqlcmdid,
<sqlstmt>, or the statement from the given history item.. When the SQL text
is given this is shorthand for "autocommit 0; showplan 1; prepare <sqlstmt>;
restore autocommit and showplan." The literals "plan for" are not required for

Chapter 3
help

3-21

TT, but are part of the Oracle RDBMS syntax; ttIsql will insert the keywords
'plan for' when passthrough=3. When a cmdid is given, the plan is retrieved
via the builtin ttsqlcmdqueryplan(). The cmdid form will not work with
passthrough > 0.
Requires an active connection: YES
Requires autocommit turned off: NO
Reports elapsed execution time: YES
Works only with a TimesTen data source: YES
Example: explain select * from dual; -or- explain plan for select * from dual;

history
Syntax

history [-all] [-h] [-r] [num_commands]

Description

ttIsql implements a csh-like command history.

Lists previously run commands. The num_commands parameter specifies the number of
commands to list. If the num_commands parameter is omitted then the previous 10 commands
are listed by default.

The output of this command omits consecutive duplicate commands. Use the -all option to
include the consecutive duplicate commands.

Use the -h option to omit the command numbers.

Use the -r parameter to list the commands in reverse order.

The history list stores up to 100 of the most recently run commands. The history command by
default displays the last 10 SQL statements or ttIsql built-in commands that were run. To
display more than that last 10 commands, specify the maximum number to display as an
argument to the history command.

Examples

Command> history;
1 INSERT INTO T3 VALUES (3)
2 INSERT INTO T1 VALUES (4)
3 INSERT INTO T2 VALUES (5)
4 INSERT INTO T3 VALUES (6)
5 autocommit 0
6 showplan
7 SELECT * FROM T1, t2, t3 WHERE A=B AND B=C AND A=B
8 trytbllocks 0
9 tryserial 0
10 SELECT * FROM T1, t2, t3 WHERE A=B AND B=C AND A=B
Command>

Each entry in the history list is identified by a unique number. The ! character followed by the
number of the command can be used to run the command again. For example:

Command> ! 5;
autocommit 0

To run the last command again simply type a sequence of two ! characters:

Command> !!;
autocommit 0

Chapter 3
history

3-22

To run the last command that begins with a given string type the ! character followed by the
first few letters of the command. For example:

Command> ! auto;
autocommit 0

host
Syntax

host <os_command>

Description

Runs an operating system command. The command is run in the same console as ttIsql.

This command sets the environment variable TT_CONNSTR in the environment of the process it
creates.

The value of the variable is the connection string of the current connection.

To see the exit status of the command, use the define command with _EXIT_STATUS.

Examples

Command> host ls -1 *.hh;
Algorithms.hh
Timer.hh
a.hh

Command> host ls /dev/null;
/dev/null

Command> host vi script.sql;

if-then-else
Syntax

if-then-else

Description

The if-then-else command construct enables you to implement conditional branching logic in
a ttIsql session. For more details, see IF-THEN-ELSE Command Construct.

Example

Command> if :a = 1 then "e:a is 1" else "e:a is not 1";

monitor
Syntax

monitor [optional_monitor_column]

Chapter 3
host

3-23

Description

Formats the contents of the SYS.MONITOR table for easy viewing.

If the optional_monitor_column is specified, only that column is displayed.

For details, see monitor Command.

Example

Command> monitor;
 TIME_OF_1ST_CONNECT: Thu Sep 5 00:48:03 2024
 DS_CONNECTS: 14
 DS_DISCONNECTS: 1
 DS_CHECKPOINTS: 4
 DS_CHECKPOINTS_FUZZY: 0
 DS_COMPACTS: 0
 PERM_ALLOCATED_SIZE: 32768
 PERM_IN_USE_SIZE: 19567
 PERM_IN_USE_HIGH_WATER: 19646
 TEMP_ALLOCATED_SIZE: 40960
 TEMP_IN_USE_SIZE: 17665
 TEMP_IN_USE_HIGH_WATER: 21946
 SYS18: 0
 TPL_FETCHES: 0
 TPL_EXECS: 0
 CACHE_HITS: 0
 PASSTHROUGH_COUNT: 0
 XACT_BEGINS: 435
 XACT_COMMITS: 434
 XACT_D_COMMITS: 124
 XACT_ROLLBACKS: 0
 LOG_FORCES: 127
 DEADLOCKS: 0
 LOCK_TIMEOUTS: 0
 LOCK_GRANTS_IMMED: 134549
 LOCK_GRANTS_WAIT: 0
 SYS19: 0
 CMD_PREPARES: 396
 CMD_REPREPARES: 0
 CMD_TEMP_INDEXES: 0
 LAST_LOG_FILE: 0
 REPHOLD_LOG_FILE: -1
 REPHOLD_LOG_OFF: -1
 REP_XACT_COUNT: 0
 REP_CONFLICT_COUNT: 0
 REP_PEER_CONNECTIONS: 0
 REP_PEER_RETRIES: 0
 FIRST_LOG_FILE: 0
 LOG_BYTES_TO_LOG_BUFFER: 18984608
 LOG_FS_READS: 2
 LOG_FS_WRITES: 229
 LOG_BUFFER_WAITS: 0
 CHECKPOINT_BYTES_WRITTEN: 40875376
 CURSOR_OPENS: 1326
 CURSOR_CLOSES: 1326
 SYS3: 0
 SYS4: 0
 SYS5: 0
 SYS6: 0
 CHECKPOINT_BLOCKS_WRITTEN: 2182
 CHECKPOINT_WRITES: 535

Chapter 3
monitor

3-24

 REQUIRED_RECOVERY: 0
 SYS11: 0
 SYS12: 1
 TYPE_MODE: 0
 SYS13: 0
 SYS14: 0
 SYS15: 0
 SYS16: 0
 SYS17: 0
 SYS9:

remark
Syntax

remark msg

Description

Allows to embed comments in SQL scripts.

When rem or remark is the first word on the line, ttIsql reads the line and ignores it.

Example

Command> remark This is a variable.

retryconnect
Syntax

retryconnect [0|1]

Description

Disables (0) or enables (1) the wait for connection retry feature.

If the connection retry feature is enabled then connection attempts to a data source that initially
fail due to a temporary situation are retried until the connection attempt succeeds. For
example, if data source recovery is in progress when attempting to connect, the connection
retry feature causes the connect command to continue to attempt a connection until the
recovery process is complete.

If the optional argument is omitted then the connection retry feature is enabled by default.

Examples

Command> retryconnect;
Command> retryconnect 0;

rpad
Syntax

rpad varname desiredlength paddingstring

Chapter 3
remark

3-25

Description

The RPAD command acts like the SQL function RPAD()with some limitations:

• The desired length is in bytes, not characters.

• The padding string is not expanded for string literal escapes, such as unicode escapes.

• The padding string can contain partial unicode characters or full unicode characters and it
may split the padding string in the middle of a multibyte character or surrogate pair.

Only variables that are character based (CHAR, VARCHAR) can be padded with the RPAD
command.

Examples

Command> var myvar varchar2(200) := 'Hi There';
Command> rpad myvar 50 'Timesten';
Command> print myvar;
MYVAR : Hi ThereTimestenTimestenTimestenTimestenTimestenTi

run
Syntax

run filename [arguments]|
start filename [arguments...]|
@@ filename [arguments...]|
@ filename [arguments...]

Description

Reads and runs SQL commands from filename. The run command can be nested up to five
levels.

The @@ command is identical to the @ command only if the file is specified with an absolute
path.

When you specify @ with a relative path, the path is relative to the startup directory of ttIsql.
When you specify @@, the path is relative to the currently running input file. Therefore @@ is
useful when used in a script that must call other scripts. It does not matter what directory the
invoker of ttIsql is in when the script is run.

Examples

Command> run hello.sql;
Hi, I am there.

savehistory
Syntax

savehistory [-all [-h] [-a | -f] outputfile

Description

Writes the history buffer to the specified outputfile.

Consecutive duplicate commands are omitted.

Chapter 3
run

3-26

Use the -all option to include the consecutive duplicate commands.

Use the -h option to omit the command numbers.

Use -a to append to an existing output file. Use -f to force the overwriting of an existing output
file.

For details, see clearhistory and history.

Examples

Command> savehistory myhistory;
Command> savehistory -a myhistory;

setjoinorder
Syntax

setjoinorder tblNames [...]

Description

Specifies the join order for the optimizer. AutoCommit must be off. unsetjoinorder clears the
join order advice to the optimizer.

The join order is specified as a list of tables and table aliases. Use it to influence the query
plan.

Examples

Command> Select * from TBL1 T1, TBL2 T2, TBL3 T3 where …..;
Command> Setjoinorder T2 T1 T3;

Showjoinorder reveals the most recent set value. See showjoinorder.

setuseindex
Syntax

setuseindex index_name,correlation_name, {0 | 1} [;...]

Description

Sets the index hint for the query optimizer. unsetuseindex clears the index hint for the query
optimizer.

Examples

Command> setuseindex _TMPTTREE, T1, 1;

setvariable
Syntax

setvariable variable_name := value

Chapter 3
setjoinorder

3-27

Description

Sets the value of a scalar bind variable or an element of an array bind variable.

For more information, see Declaring and Setting Bind Variables in Oracle TimesTen In-Memory
Database Operations Guide.

Examples

Command> setvariable myvar := 'TimesTen';

showjoinorder
Syntax

showjoinorder {0 | 1}

Description

Enables or disables the storing of join orders. It is enabled by default.

0 - Disables the storing of join orders

1 - Enables the storing of join orders.

Call the ttoptshowjoinorder built-in procedure explicitly to display the join order after SELECT,
UPDATE, DELETE or MERGE SQL statements.

The showjoinorder command must be executed at the beginning of every transaction that you
want to see join order information for. As soon as a commit or rollback occurs showjoinorder
is automatically disabled.

Examples

Command> showjoinorder;

sleep
Syntax

sleep [n] [ms]

Description

Suspends operation for n seconds or n milliseconds, if the unit ms is included. If n is not
specified, then operation is suspended for 1 second.

Examples

Command> sleep;
Command> sleep 60;
Command> sleep 500 ms;

Chapter 3
showjoinorder

3-28

sqlcolumns
Syntax

sqlcolumns [owner_name_pattern.]table_name_pattern

Description

Prints results of an ODBC call to SQLColumns. If the optional argument is omitted then all
columns in the data source are reported.

Examples

Command> create table t (c int, b int);
Command> sqlcolumns T;
< <NULL>, USER, T, C, 3, NUMBER, 38, 39, 0, 10, 1, , <NULL>, 3, <NULL>, <NULL>, 1, YES,
1, <NULL>, 0, 0, 00 >
< <NULL>, USER, T, B, 3, NUMBER, 38, 39, 0, 10, 1, , <NULL>, 3, <NULL>, <NULL>, 2, YES,
1, <NULL>, 0, 0, 00 >
2 rows found.

sqlgetinfo
Syntax

sqlgetinfo <infotype>

Description

Prints results of an ODBC call to SQLGetInfo. An info_type argument is required for this
command.

Examples

Command> sqlgetinfo SQL_DRIVER_VER;
SQL_DRIVER_VER = 22.01.0001.0028 Oracle TimesTen IMDB version 22.1.1.28.0

Command> sqlgetinfo SQL_DRIVER_ODBC_VER;
SQL_DRIVER_ODBC_VER = 02.50

Command> sqlgetinfo SQL_ODBC_API_CONFORMANCE;
SQL_ODBC_API_CONFORMANCE = 1 (SQL_OAC_LEVEL1)

sqlstatistics
Syntax

sqlstatistics [[owner_name_pattern.]table_name_pattern]

Description

Prints results of an ODBC call to SQLStatistics.

Example

Command> sqlstatistics dual;

Chapter 3
sqlcolumns

3-29

 TABLE_QUALIFIER: <NULL>
 TABLE_OWNER: SYS
 TABLE_NAME: DUAL
 NON_UNIQUE: <NULL>
 INDEX_QUALIFIER: <NULL>
 INDEX_NAME: <NULL>
 TYPE: 0
 SEQ_IN_INDEX: <NULL>
 COLUMN_NAME: <NULL>
 COLLATION: <NULL>
 CARDINALITY: 1
 PAGES: <NULL>
 FILTER_CONDITION: <NULL>
 TT_INDEX_USAGE: <NULL>

1 row found.

sqltables
Syntax

sqltables[[owner_name_pattern.]table_name_pattern]

Description

Prints results of a call to SQLTables. The pattern is a string containing an underscore (_) to
match any single character or a percent sign (%) to match zero or more characters.

Examples

Command> sqltables;
< <NULL>, SYS, ACCESS$, SYSTEM TABLE, >
< <NULL>, SYS, ARGUMENT$, SYSTEM TABLE, >
< <NULL>, SYS, CACHE_GROUP, SYSTEM TABLE, >
< <NULL>, SYS, CACHE_GROUP_INTERVAL_STATS, SYSTEM TABLE, >
< <NULL>, SYS, CACHE_GROUP_STATS, SYSTEM TABLE, >
< <NULL>, SYS, COLUMNS, SYSTEM TABLE, >
< <NULL>, SYS, COLUMN_HISTORY, SYSTEM TABLE, >
< <NULL>, SYS, COL_STATS, SYSTEM TABLE, >
< <NULL>, SYS, DEADLOCKCYCLES, SYSTEM TABLE, >
< <NULL>, SYS, DEADLOCKS, SYSTEM TABLE, >
< <NULL>, SYS, DEPENDENCY$, SYSTEM TABLE, >
< <NULL>, SYS, DIR$, SYSTEM TABLE, >
….….….….….….….….….….
331 rows found.

Command> sqltables SCOTT.T1;
0 rows found.

Command> sqltables SYS.DUAL;
< <NULL>, SYS, DUAL, SYSTEM TABLE, >
1 row found.

statsclear
Syntax

statsclear [[<owner_name>.]<table_name>]

Chapter 3
sqltables

3-30

Description

Clears statistics for the specified table (or all tables if no table is specified).

Examples

Command> statsclear;
Command> statsclear SCOTT.T1;

statsestimate
Syntax

statsestimate [[owner_name.]table_name] {n rows | p percent}

Description

Estimates statistics for specified table (or all tables if no table is specified).

If you estimate statistics with an empty table list, statistics on system tables are updated also, if
you have privileges to update the system tables.

Examples

Command> statsestimate SCOTT.T1 1000 ROWS;

statsupdate
Syntax

statsupdate [[owner_name_pattern.] table_name_pattern]

Description

Updates statistics for the specified table (or all tables if no table is specified).

If tblName is an empty string, statistics are estimated for all the current user's tables in the
database.

Examples

Command> statsupdate;

tablesize
Syntax

tablesize [[owner_name_pattern.] table_name_pattern]]

Description

For each table that matches the pattern, lists the contents of the ALL_TAB_SIZES view.

Call the TimesTen built-in ttComputeTabSizes(<owner>.<tblname>) to update table sizing
information in SYS.ALL_TAB_SIZES.

Command Aliases: tablesizes, tblsizes

Chapter 3
statsestimate

3-31

Example

Command> tblsize SYS.TAB%;

use
Syntax

use [conn_id]

Description

Displays the list of current connections and their IDs. If connid is specified, switches to the
given connection ID.

To use the name of the first connection, you can specify con0 for the conn_id, rather than
specifying the full original connection name. You cannot explicitly name a connection con0. If
the first connection is disconnected, con0 refers to the connection none.

If use fails to locate the connection id, the current connection is set to the reserved connection
named "none."

See the connect command.

Examples

Command> use;
* Connection sampledb: DSN=sampledb
Command> use con0;
sampledb: Command>

variable
Syntax

variable [variable_name [data_type] [:= value]]

The syntax for binding multiple values to an array using the variable command is as follows:

variable array_name
'[' array_size ']'
 data_type(n):=
'[' value1, ... valuex ']'

Description

Declares a bind variable that can be referenced in a statement or displays the definition of the
variable if the type is missing. Type can be one of the following: (n), NUMBER, CHAR(n),
NCHAR(n), VARCHAR2(n), NVARCHAR2(n), BLOB, CLOB, NCLOB, or REFCURSOR. If only (n) is
supplied, it is assumed to be VARCHAR2 (n).

Assigns a value to a single variable or multiple values if the data type is an array. You can
assign a value later with the setvariable command.

For more information, see Declaring and Setting Bind Variables in Oracle TimesTen In-Memory
Database Operations Guide.

Chapter 3
use

3-32

Examples

Command> variable a varchar2(30);
Command> var arr[5] number := [1,2, 3];

version
Syntax

version

Description

Reports the TimesTen version information.

Examples

Command> version;
TimesTen Release 22.1.1.18.0

waitfor
Syntax

waitfor expected_result timeoutseconds sqlstatement

Description

Runs the given statement once a second until the query returns the expected result or a
timeout occurs. The query must have only one column and must return exactly one row. Any
errors in the query terminate the loop.

Note:

At verbosity level 4, you can retrieve the result values that it is using to compare
against in order to diagnose why the matching of the value is not successful.

Examples

Command> waitfor X 10 select * from dual;

Command> verbosity 4;
The command succeeded.

Command> waitfor X 10 select * from dual;
Value is 'X'
The command succeeded.

waitforresult
Syntax

waitforresult expected_result timeoutseconds searchrow searchcol sqlstatement

Chapter 3
version

3-33

Description

Similar to the waitfor command, except that the result can have one or more columns. Also,
the result can return 0 rows.

Runs the given statement once a second until the query returns the expected result or a
timeout occurs. The searchrow and searchcol arguments indicate the ordinal position (1..N)
of which row or column should be considered. Use '*' in searchrow or searchcol to indicate
any row or column of the result set could have the expected value. See the waitfor command.

Examples

Command> waitforresult 1 5 * * select * from dual;
Waitforresult: Time expired.
The command failed.

At verbosity level 4, you can retrieve the result values that it is using to compare against in
order to diagnose why the matching of the value is not successful.

Command> verbosity 4;
The command succeeded.

Command> waitforresult 1 5 * * select * from dual;
Value is 'X'
Value is 'X'
Value is 'X'
Value is 'X'
Value is 'X'
Waitforresult: Time expired.
The command failed.

whenever sqlerror
Syntax

whenever sqlerror

Description

Provide direction on how to handle errors when in ttIsql. For more details, see Syntax for the
WHENEVER SQLERROR command.

Examples

Command> whenever sqlerror exit 1;
Command> whenever sqlerror execute "call ttrepstateget();";

xlabookmarkdelete
Syntax

xlabookmarkdelete id

Description

Deletes a persistent XLA bookmark.

Chapter 3
whenever sqlerror

3-34

If a bookmark that is to be deleted is not specified then the status of all current XLA bookmarks
is reported.

See ttXlaDeleteBookmark in Oracle TimesTen In-Memory Database C Developer's Guide.

Requires ADMIN privilege or object ownership.

Examples

Command> xlabookmarkdelete;
XLA Bookmark: mybookmark
 Read Log File: 0
 Read Offset: 268288
 Purge Log File: 0
 Purge Offset: 268288
 PID: 2004
 In Use: No
1 bookmark found.

Command> xladeletebookmark mybookmark;

Command> xlabookmarkdelete;
0 bookmarks found.

Chapter 3
xlabookmarkdelete

3-35

	Contents
	About This Content
	1 Get Started with ttIsql
	About ttIsql
	Starting ttIsql
	Customizing the ttIsql Command Prompt
	Command Shortcuts

	2 Use ttIsql
	About Using ttIsql in Interactive or Batch Mode
	Help Commands
	View and Set Attributes
	Use, Declare, Set Variables and Parameters
	Declaring and Setting Bind Variables
	Automatically Creating Bind Variables for Retrieved Columns
	Parameters

	Run SQL Statements
	Prepare a SQL Statement for Subsequent Runs
	Manage Transactions

	Display Database Structures
	describe Command
	cachegroups Command
	repschemes Command
	dssize Command
	tablesize Command
	monitor Command

	List Database Objects by Object Type
	View and Change Query Optimizer Plans
	Use the showplan Command
	View Commands and Explain Plans from the SQL Command Cache
	View Commands in the SQL Command Cache
	Display Query Plan for Statement in SQL Command Cache

	Create and Run PL/SQL Blocks Within ttIsql
	Pass Data From PL/SQL Using OUT Parameters Within ttIsql

	Manage ODBC Functions
	Canceling ODBC Functions
	Timing ODBC Function Calls

	'editline' Feature for Linux and UNIX Only
	Emacs Binding
	vi Binding

	3 ttIsql Command Reference
	accept
	allfunctions
	allindexes
	allpackages
	allprocedures
	allsequences
	allsynonyms
	alltables
	allviews
	builtins
	bye
	cachegroups
	cachesqlget
	cd
	clearhistory
	clienttimeout
	close
	cmdcache
	commit
	commitdurable
	compare
	connect
	createandloadfromoraquery
	define
	describe
	dssize
	e:
	edit
	exec
	execandfetch
	explain
	fetchall
	fetchnext
	fetchone
	free
	grid
	help
	history
	host
	if-then-else
	monitor
	remark
	retryconnect
	rpad
	run
	savehistory
	setjoinorder
	setuseindex
	setvariable
	showjoinorder
	sleep
	sqlcolumns
	sqlgetinfo
	sqlstatistics
	sqltables
	statsclear
	statsestimate
	statsupdate
	tablesize
	use
	variable
	version
	waitfor
	waitforresult
	whenever sqlerror
	xlabookmarkdelete

