
Oracle® Database
SODA for Java Developer's Guide

Release 1.1
E85826-05
December 2020

Oracle Database SODA for Java Developer's Guide, Release 1.1

E85826-05

Copyright © 2018, 2020, Oracle and/or its affiliates.

Primary Author: Drew Adams

Contributing Authors: Sheila Moore

Contributors: Douglas McMahon, Maxim Orgiyan, Josh Spiegel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Documents vii

Conventions viii

1 SODA for Java Prerequisites

2 SODA for Java Overview

3 Using SODA for Java

Getting Started with SODA for Java 3-1

Creating a Document Collection with SODA for Java 3-4

Opening an Existing Document Collection with SODA for Java 3-6

Checking Whether a Given Collection Exists with SODA for Java 3-7

Discovering Existing Collections with SODA for Java 3-7

Dropping a Document Collection with SODA for Java 3-7

Creating Documents with SODA for Java 3-8

Inserting Documents into Collections with SODA for Java 3-11

Saving Documents into Collections with SODA for Java 3-14

SODA for Java Read and Write Operations 3-15

Finding Documents in Collections with SODA for Java 3-18

Replacing Documents in a Collection with SODA for Java 3-21

Removing Documents from a Collection with SODA for Java 3-23

Indexing the Documents in a Collection with SODA for Java 3-24

Getting a Data Guide for a Collection 3-26

Handling Transactions with SODA for Java 3-26

iii

4 SODA Collection Metadata Caching

Enabling Collection Metadata Caching 4-1

Shared Collection Metadata Cache 4-2

Local Collection Metadata Cache 4-2

5 SODA Collection Configuration Using Custom Metadata

Getting the Metadata of an Existing Collection 5-1

Creating Custom Metadata for a Collection 5-2

SODA for Java Methods for Collection Metadata Components 5-3

A SODA for Java Core Interfaces

Index

iv

List of Examples

3-1 testSoda.java 3-2

3-2 Opening an Existing Document Collection 3-6

3-3 Printing the Names of All Existing Collections 3-7

3-4 Dropping a Document Collection 3-8

3-5 Creating a Document with JSON Content 3-10

3-6 Creating a Document with Document Key and JSON Content 3-10

3-7 Inserting a Document into a Collection 3-13

3-8 Inserting a Document into a Collection and Getting the Result Document 3-13

3-9 Saving a Document into a Collection 3-15

3-10 Finding All Documents in a Collection 3-18

3-11 Finding the Unique Document That Has a Given Document Key 3-19

3-12 Finding Multiple Documents with Specified Document Keys 3-19

3-13 Finding Documents with a Filter Specification 3-20

3-14 Specifying Pagination Queries with Methods skip() and limit() 3-20

3-15 Specifying Document Version 3-21

3-16 Finding Documents and Returning Only Their Headers 3-21

3-17 Counting the Number of Documents Found 3-21

3-18 Replacing a Document in a Collection and Getting the Result Document 3-22

3-19 Replacing a Particular Version of a Document 3-23

3-20 Removing a Document from a Collection Using a Document Key 3-23

3-21 Removing a Particular Version of a Document 3-23

3-22 Removing Documents from a Collection Using Document Keys 3-23

3-23 Removing JSON Documents from a Collection Using a Filter 3-24

3-24 Creating a B-Tree Index for a JSON Field with SODA for Java 3-25

3-25 JSON Search Indexing with SODA for Java 3-25

3-26 Dropping an Index with SODA for Java 3-26

3-27 Getting a Data Guide with SODA for Java 3-26

4-1 Enabling Collection Metadata Caching 4-2

5-1 Creating a Collection That Has Custom Metadata 5-3

v

List of Tables

3-1 OracleOperationBuilder Nonterminal Methods 3-16

3-2 OracleOperationBuilder Terminal Methods for Read Operations 3-17

3-3 OracleOperationBuilder Terminal Methods for Write Operations 3-17

5-1 Java Methods to Select Collection Metadata Components 5-3

A-1 SODA for Java Core Interfaces A-1

vi

Preface

This document explains how to use Simple Oracle Document Access (SODA) for
Java.

Audience
This document is intended for users of SODA for Java.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• SODA for Java on GitHub

• SODA for Java Releases

• SODA for Java Javadoc for detailed information about specific Java methods

• https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/ for
complete information about SODA and its implementations

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
general information about SODA

• Oracle as a Document Store for general information about using JSON data in
Oracle Database, including with SODA

• Oracle Database JSON Developer’s Guide for information about using SQL and
PL/SQL with JSON data stored in Oracle Database

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at OTN Registration.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://oracle.github.io/soda-for-java/
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/
http://www.oracle.com/technetwork/database/application-development/oracle-document-store/index.html

If you already have a user name and password for OTN then you can go directly to the
documentation section of the OTN Web site at OTN Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

1
SODA for Java Prerequisites

Before you can use SODA for Java you must configure your Java environment.

To use SODA for Java with Oracle Database:

• You must have one of the following Oracle Database releases installed:

– Oracle Database 12c Release 2 (12.2) or later (no patches required)

– Oracle Database 12c Release 1 (12.1.0.2) with Merge Label Request (MLR)
bundle patch 20885778 (patch 20885778 obsoletes patch 20080249)

Obtain this patch from My Oracle Support (My Oracle Support). Select
tab Patches & Updates. Search for the patch number, 20885778,
or access it directly at this URL: https://support.oracle.com/rs?
type=patch&id=20885778.

• You must have Java Runtime Environment 1.6 (JRE 1.6) or higher.

For information about the minimal versions of the driver and dependencies needed for
SODA for Java, see SODA Drivers in Oracle Database Introduction to Simple Oracle
Document Access (SODA).

1-1

https://support.oracle.com/rs?type=patch&id=20885778
https://support.oracle.com/rs?type=patch&id=20885778

2
SODA for Java Overview

SODA for Java is a Java API that implements Simple Oracle Document Access
(SODA). You can use it with Java to perform create, read (retrieve), update, and delete
(CRUD) operations on documents of any kind, and you can use it to query JSON
documents.

SODA is a set of NoSQL-style APIs that let you create and store collections of
documents in Oracle Database, retrieve them, and query them, without needing to
know Structured Query Language (SQL) or how the data in the documents is stored in
the database.

Oracle relational database management system (RDBMS) supports storing and
querying JSON data. To access this functionality, you need structured query language
(SQL) with special JSON SQL operators and Java Database Connectivity (JDBC).
SODA for Java hides the complexities of SQL/JSON programming.

The remaining topics of this document describe various features of SODA for Java.

Note:

This book provides information about using SODA with Java applications. To
use SODA for Java you also need to understand SODA generally. For such
general information, please consult Oracle Database Introduction to Simple
Oracle Document Access (SODA).

See Also:

• SODA for Java on GitHub

• SODA for Java Releases

• SODA for Java Javadoc for detailed information about specific Java
methods

• https://docs.oracle.com/en/database/oracle/simple-oracle-document-
access/ for complete information about SODA and its implementations

• Oracle Database JSON Developer’s Guide for information about using
SQL and PL/SQL with JSON data

2-1

http://oracle.github.io/soda-for-java/
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/

3
Using SODA for Java

How to access SODA for Java is described, as well as how to use it to perform create,
read (retrieve), update, and delete (CRUD) operations on collections.

(CRUD operations are also called “read and write operations” in this document.)

Getting Started with SODA for Java
How to access SODA for Java is described, as well as how to use it to create a
database collection, insert a document into a collection, and retrieve a document from
a collection.

Note:

Don’t worry if not everything in this topic is clear to you on first reading. The
necessary concepts are developed in detail in other topics. This topic should
give you an idea of what is involved overall in using SODA.

Follow these steps to get started with SODA for Java:

1. Ensure that all of the prerequisites have been met for using SODA for Java. See
SODA for Java Prerequisites.

2. Identify the database schema (user account) used to store collections, and grant
database role SODA_APP to that schema. (Replace placeholder user here by a real
account name.)

GRANT SODA_APP TO user;

3. Place all required jar files and file testSoda.java (which contains the text in
Example 3-1) into a directory.

4. In testSoda.java:

• Use a host name, port number, and service name that are appropriate for your
Oracle Database instance. (Replace placeholders host_name, port_number,
and service_name, respectively.)

• Use the name and password for the database schema (user account)
identified in step 2. (Replace placeholders user and password.)

5. Use the cd command to go to the directory that contains the jar files and file
testSoda.java.

6. Execute these commands:

javac -classpath "*" testSoda.java
java -classpath "*:." testSoda

3-1

Instead of the second of these commands, you can optionally use the following
command. It has the additional effect of dropping the collection, cleaning up the
database table that is used to store the collection and its metadata.

java -classpath "*:." testSoda drop

Using argument drop here has the effect of invoking method drop(), which is the
proper way to drop a collection.

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database
table. In addition to the documents that are stored in its table, a
collection has metadata, which is also persisted in Oracle Database.
Dropping the table underlying a collection does not also drop the
collection metadata.

To work with SODA for Java you must first open a JDBC connection. This is illustrated
in Example 3-1. For details of how to open a JDBC connection, see Oracle Database
JDBC Developer’s Guide.

Example 3-1 testSoda.java

In this example, replace placeholders host_name, port_number, service_name, user,
and password by a host name, port number, service name, database schema (user)
name, and password appropriate for your database instance.

import java.sql.Connection;
import java.sql.DriverManager;

import oracle.soda.rdbms.OracleRDBMSClient;

import oracle.soda.OracleDatabase;
import oracle.soda.OracleCursor;
import oracle.soda.OracleCollection;
import oracle.soda.OracleDocument;
import oracle.soda.OracleException;

import java.util.Properties;

public class testSoda
{
 public static void main(String[] arg)
 {
 // Set the JDBC connection string, using information appropriate for your Oracle Database instance.
 // (Be sure to replace placeholders host_name, port_number, and service_name in the string.)
 String url = "jdbc:oracle:thin:@//host_name:port_number/service_name";

 // Set properties user and password.
 // (Be sure to replace placeholders user and password with appropriate string values.)
 Properties props = new Properties();
 props.setProperty("user", user);
 props.setProperty("password", password);

 Connection conn = null;

 try
 {

Chapter 3
Getting Started with SODA for Java

3-2

 // Get a JDBC connection to an Oracle instance.
 conn = DriverManager.getConnection(url, props);

 // Enable JDBC implicit statement caching
 conn.setImplicitCachingEnabled(true);
 conn.setStatementCacheSize(50);

 // Get an OracleRDBMSClient - starting point of SODA for Java application.
 OracleRDBMSClient cl = new OracleRDBMSClient();

 // Get a database.
 OracleDatabase db = cl.getDatabase(conn);

 // Create a collection with the name "MyJSONCollection".
 // This creates a database table, also named "MyJSONCollection", to store the collection.
 OracleCollection col = db.admin().createCollection("MyJSONCollection");

 // Create a JSON document.
 OracleDocument doc =
 db.createDocumentFromString("{ \"name\" : \"Alexander\" }");

 // Insert the document into a collection.
 col.insert(doc);

 // Find all documents in the collection.
 OracleCursor c = null;

 try
 {
 c = col.find().getCursor();
 OracleDocument resultDoc;

 while (c.hasNext())
 {
 // Get the next document.
 resultDoc = c.next();

 // Print document components
 System.out.println ("Key: " + resultDoc.getKey());
 System.out.println ("Content: " + resultDoc.getContentAsString());
 System.out.println ("Version: " + resultDoc.getVersion());
 System.out.println ("Last modified: " + resultDoc.getLastModified());
 System.out.println ("Created on: " + resultDoc.getCreatedOn());
 System.out.println ("Media: " + resultDoc.getMediaType());
 System.out.println ("\n");
 }
 }
 finally
 {
 // IMPORTANT: YOU MUST CLOSE THE CURSOR TO RELEASE RESOURCES.
 if (c != null) c.close();
 }

 // Drop the collection, deleting the table underlying it and the collection metadata.
 if (arg.length > 0 && arg[0].equals("drop")) {
 col.admin().drop();
 System.out.println ("\nCollection dropped");
 }
 }
 // SODA for Java throws a checked OracleException
 catch (OracleException e) { e.printStackTrace(); }
 catch (Exception e) { e.printStackTrace(); }
 finally
 {
 try { if (conn != null) conn.close(); }
 catch (Exception e) { }
 }

Chapter 3
Getting Started with SODA for Java

3-3

 }
}

Creating a Document Collection with SODA for Java
How to use SODA for Java to create a new document collection is explained.

In your Java application, first create an OracleRDBMSClient object, which is the
starting point for any Java application working with SODA for Java:

OracleRDBMSClient myClient = new OracleRDBMSClient();

Caution:

An OracleRDBMSClient object is thread-safe. Other SODA for Java
interfaces are not thread-safe, however — do not share them among multiple
threads.

Next, pass the JDBC connection (jdbcConnection, here) to method
OracleClient.getDatabase(), to obtain an OracleDatabase object (db, here):

OracleDatabase db = myClient.getDatabase(jdbcConnection);

Note:

Oracle recommends that you enable implicit statement caching for the JDBC
connection that you pass to SODA. This can improve the performance of
read and write operations. The underlying implementation of read and write
operations generates JDBC prepared statements.

If you do not enable implicit caching then each time a read or write operation
is created a new JDBC prepared statement is constructed. With implicit
caching enabled, a new JDBC prepared statement is created only if it is not
already in the cache.

See also: Oracle Database JDBC Developer’s Guide and Oracle Universal
Connection Pool Developer’s Guide

Collection creation methods are available on interface OracleDatabaseAdmin. To
access this interface, invoke method admin() on an OracleDatabase object (db, here):

OracleDatabaseAdmin dbAdmin = db.admin();

Chapter 3
Creating a Document Collection with SODA for Java

3-4

You can then create a collection — an OracleCollection object (col, here), by
invoking method createCollection() on the object returned from admin(), passing
it the collection name (myCollection, here) as a string:

OracleCollection col = dbAdmin.createCollection("myCollection");

Method createCollection() without a metadata argument creates the following in
Oracle Database:

• Persistent default collection metadata.

• A table for storing the collection, in the schema with which the input JDBC
connection is configured.

Note:

If the table name used by method createCollection() names an
existing table in the schema with which the JDBC connection is
configured, then the method tries to map that table to the collection. This
behavior includes the default case, where the table name is derived from
the collection name.

The default collection metadata has the following characteristics.

• Each document in the collection has these document components:

– Key

– Content

– Creation timestamp

– Last-modified timestamp

– Version

• The collection can store only JSON documents.

• Document keys are automatically generated for documents that you add to the
collection.

The default collection configuration is recommended in most cases, but collections are
highly configurable. When you create a collection you can specify things such as the
following:

• Storage details, such as the name of the table that stores the collection and the
names and data types of its columns.

• The presence or absence of columns for creation timestamp, last-modified
timestamp, and version.

• Whether the collection can store only JSON documents.

• Methods of document key generation, and whether document keys are client-
assigned or generated automatically.

• Methods of version generation.

This configurability also lets you map a new collection to an existing table.

Chapter 3
Creating a Document Collection with SODA for Java

3-5

To configure a collection in a nondefault way, create a JSON OracleDocument instance
of custom collection metadata (collectionMetadata, here) and pass it, along with the
collection-name string (myCollection, here) to method createCollection():

OracleCollection col2 = dbAdmin.createCollection("myCollection",
collectionMetadata);

To build and generate this OracleDocument instance easily, you can use
OracleRDBMSMetadataBuilder.

If you do not care about the details of collection storage and configuration, then use
method createCollection(myCollection), as in Example 3-2.

You can search or change a collection only if it is open. A newly created collection is
open for the life of your session.

When invoking a createCollection() method, if a collection with the same name
already exists then it is simply opened and its object is returned. If custom metadata
is passed to the method and it does not match that of the existing collection then the
collection is not opened and an error is raised. (To match, all metadata fields must
have the same values.)

Note:

Unless otherwise stated, the remainder of this documentation assumes that
a collection has the default configuration.

See Also:

Oracle Database Introduction to Simple Oracle Document Access (SODA)
for information about the default naming of a collection table

Opening an Existing Document Collection with SODA for
Java

You can use OracleDatabase method openCollection() to open an existing
document collection or to test whether a given name names an existing collection.

Example 3-2 Opening an Existing Document Collection

This example opens the collection named myCollectionName and returns the
OracleCollection object that represents this collection. If the value returned is null
then there is no existing collection named myCollectionName.

OracleCollection col = db.openCollection("myCollectionName");

Chapter 3
Opening an Existing Document Collection with SODA for Java

3-6

Checking Whether a Given Collection Exists with SODA for
Java

You can use OracleDatabase method openCollection() to check for the existence of
a given collection. It returns null if the collection argument does not name an existing
collection; otherwise, it opens the collection having that name.

In Example 3-2, if myCollectionName does not name an existing collection then ocol is
assigned the value null.

Discovering Existing Collections with SODA for Java
You can use OracleDatabaseAdmin method getCollectionNames() to discover
existing collections.

Example 3-3 Printing the Names of All Existing Collections

This example prints the names of all existing collections. It uses method
getCollectionNames() with the simplest signature, which accepts no arguments.

List<String> names = db.admin().getCollectionNames();

for (String name : names)
 System.out.println ("Collection name: " + name);

Dropping a Document Collection with SODA for Java
You use OracleCollectionAdmin method drop() to drop a document collection.

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database table.
In addition to the documents that are stored in its table, a collection has
metadata, which is also persisted in Oracle Database. Dropping the table
underlying a collection does not also drop the collection metadata.

Chapter 3
Checking Whether a Given Collection Exists with SODA for Java

3-7

Note:

Day-to-day use of a typical application that makes use of SODA does not
require that you drop and re-create collections. But if you need to do that for
any reason then this guideline applies.

Do not drop a collection and then re-create it with different metadata if there
is any application running that uses the collection in any way. Shut down
any such applications before re-creating the collection, so that all live SODA
objects are released.

There is no problem just dropping a collection. Any read or write operation
on a dropped collection raises an error. And there is no problem dropping a
collection and then re-creating it with the same metadata. But if you re-create
a collection with different metadata, and if there are any live applications
using SODA objects, then there is a risk that a stale collection is accessed,
and no error is raised in this case.

In SODA implementations that allow collection metadata caching, such as
SODA for Java, this risk is increased if such caching is enabled. In that case,
a (shared or local) cache can return an entry for a stale collection object
even if the collection has been dropped.

Note:

Commit all writes to a collection before using method drop(). For drop()
to succeed, all uncommitted writes to the collection must first be committed.
Otherwise, an exception is raised.

Example 3-4 Dropping a Document Collection

This example drops collection col.

col.admin().drop();

Creating Documents with SODA for Java
Creation of documents by SODA for Java is described.

SODA for Java represents a document using Java interface OracleDocument. This
interface is designed primarily to represent JSON documents, but it also supports
other content types. An OracleDocument object is a carrier of document content and
other document components, such as the document key.

To create JSON content for an OracleDocument instance, you can use your favorite
package — for example, JSR353, the Java API for JSON processing.

Here is an example of a simple JSON document:

{ "name" : "Alexander",
 "address" : "1234 Main Street",

Chapter 3
Creating Documents with SODA for Java

3-8

 "city" : "Anytown",
 "state" : "CA",
 "zip" : "12345"
}

Note:

In SODA, JSON content must conform to RFC 4627. In addition, in SODA
for Java, the encoding of JSON content must be either UTF-8 or UTF-16 (big
endian (BE) or little endian (LE)). Although RFC 4627 also allows UTF-32
(BE and LE) encodings, SODA for Java does not support them.

To create an OracleDocument instance from content that is represented as a byte array
or a String instance, use the following methods (which OracleDatabase inherits from
OracleDocumentFactory), respectively:

• createDocumentFromByteArray()

• createDocumentFromString()

A document has these components:

• Key

• Content

• Creation time stamp

• Last-modified time stamp

• Version

• Media type ("application/json" for JSON documents)

When you create a document by invoking method createDocumentFromString() or
createDocumentFromByteArray():

• You might need to provide the document key as a method argument.

In a collection, each document must have a key. You must provide the key when
you create the document only if you expect to insert the document into a collection
that does not automatically generate keys for inserted documents. By default,
collections are configured to automatically generate document keys.

• You can provide the document content as a method argument (the content
parameter is required, but its value can be null).

• The method sets the values of the creation time stamp, last-modified time stamp,
and version to null.

Methods createDocumentFromString() and createDocumentFromByteArray() each
have multiple variants:

• The simplest variant accepts only document content. The media type defaults
to "application/json", and the other components default to null. This variant
is useful for creating documents for insertion into collections that automatically
generate document keys.

Chapter 3
Creating Documents with SODA for Java

3-9

• Another variant accepts both document key and document content. The media
type defaults to "application/json", and the other components default to null.
This variant is useful for creating documents for insertion into collections that have
client-assigned document keys.

• The most flexible (and most verbose) variant accepts key, content, and content
type. Because it lets you specify content type, this variant is useful for creating
non-JSON documents.

Example 3-5 creates an OracleDocument instance with content only. The media type
defaults to "application/json", and the other document components default to null.

Example 3-6 creates an OracleDocument instance with document key and content.
The media type defaults to "application/json", and the other document components
default to null.

You write documents to collections using SODA for Java write operations, and you
read documents from collections using SODA for Java read operations.

See Also:

• OracleDocumentFactory Javadoc for more
information about methodscreateDocumentFromString() and
createDocumentFromByteArray()

• OracleDocument Javadoc for information about getter methods, which
you use to access document components

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an overview of SODA documents

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for restrictions that apply for SODA documents

Example 3-5 Creating a Document with JSON Content

OracleDocument doc =
 odb.createDocumentFromString("{ \"name\" : \"Alexander\"}");

// Get the content
String content = doc.getContentAsString();

// Get the content type (it is "application/json")
String contentType = doc.getContentType();

Example 3-6 Creating a Document with Document Key and JSON Content

OracleDocument doc
 = odb.createDocumentFromString("myKey", "{ \"name\" :
\"Alexander\"}");

Chapter 3
Creating Documents with SODA for Java

3-10

Related Topics

• Inserting Documents into Collections with SODA for Java
To insert a document into a collection, you invoke OracleCollection method
insert(OracleDocument) or insertAndGet(OracleDocument). These methods
create document keys automatically, unless the collection is configured with client-
assigned keys and the input document provides the key.

• Saving Documents into Collections with SODA for Java
You use OracleCollection methods save(OracleDocument) and
saveAndGet(OracleDocument) to save documents into collections.

• Finding Documents in Collections with SODA for Java
To find documents in a collection, you invoke OracleCollection method find(),
which returns an OracleOperationBuilder object that represents a query that
finds all documents in the collection.

• Replacing Documents in a Collection with SODA for Java
To replace the content of one document in a collection with the
content of another, you chain together OracleOperationBuilder method
key(String) with either method replaceOne(OracleDocument) or method
replaceOneAndGet(OracleDocument). Method replaceOne(OracleDocument) only
replaces the document. Method replaceOneAndGet(OracleDocument) also returns
a result document, which contains all document components except the content.

• Removing Documents from a Collection with SODA for Java
To remove a document from a collection, you chain together (1) OracleCollection
method find() with these OracleOperationBuilder methods: (2) key(),
keyLike(), keys(), or filter(); (3) version() (optional); and (4) remove().
Examples are provided.

Inserting Documents into Collections with SODA for Java
To insert a document into a collection, you invoke OracleCollection method
insert(OracleDocument) or insertAndGet(OracleDocument). These methods create
document keys automatically, unless the collection is configured with client-assigned
keys and the input document provides the key.

Method insert(OracleDocument) only inserts the document into the collection.
Method insertAndGet(OracleDocument) also returns a result document, which
contains the document key and any other generated document components (except
the content).

Both methods automatically set the values of the creation time stamp, last-modified
time stamp, and version (if the collection is configured to include these components
and to generate the version automatically, as is the case by default).

Chapter 3
Inserting Documents into Collections with SODA for Java

3-11

Note:

If the collection is configured with client-assigned document keys (which is
not the default case), and the input document provides a key that identifies
an existing document in the collection, then these methods throw an
exception. If you want the input document to replace the existing document
instead of causing an exception, see Saving Documents into Collections with
SODA for Java.

Example 3-7 creates a document and inserts it into a collection using method
insert().

Example 3-8 creates a document, inserts it into a collection using method
insertAndGet(), and then gets each of the generated components from the result
document (which contains them).

To efficiently insert a large number of documents into a collection,
invoke OracleCollection method insert(Iterator<OracleDocument>) or
insertAndGet(Iterator<OracleDocument>). These methods are analogous to
insert(OracleDocument) and insertAndGet(OracleDocument), but instead of
handling a single document, they handle multiple documents. Parameter
Iterator<oracleDocument> is an iterator over multiple input documents.

Method insertAndGet(Iterator<OracleDocument>) returns a list of result documents
— one OracleDocument instance for each input document. Each such result document
contains the document key and any other generated document components (except
the content). The order of the result documents corresponds to the order of input
documents, allowing correlation of result and input documents.

There is a variant of method insertAndGet() that accepts an optional second
argument, options, whose value is a Java Map.

You can use argument options to provide a SQL hint, to turn real-time SQL monitoring
of queries on and off. Use method put() to add key "hint" with value "MONITOR" to
the map argument. The hint is passed down to the SQL code that underlies SODA.

The string value for key "hint" uses the SQL hint syntax (that is, the hint text,
without the enclosing SQL comment syntax /*+...*/). Use only hint MONITOR (turn on
monitoring) or NO_MONITOR (turn off monitoring).

(You can use this to pass any SQL hints, but MONITOR and NO_MONITOR are the useful
ones for SODA, and an inappropriate hint can cause the optimizer to produce a
suboptimal query plan.)

Chapter 3
Inserting Documents into Collections with SODA for Java

3-12

See Also:

• OracleCollection Javadoc for more information about the insertion
methods:

– insert(OracleDocument)

– insert(Iterator<OracleDocument>)

– insertAndGet(OracleDocument)

– insertAndGet(OracleDocument document, Map<String, ?>
options)

– insertAndGet(Iterator<OracleDocument>)

– insertAndGet(Iterator<OracleDocument> documents,
Map<String, ?> options)

• Monitoring Database Operations in Oracle Database SQL Tuning Guide
for complete information about monitoring database operations

• MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning
Guide for information about the syntax and behavior of SQL hints
MONITOR and NO_MONITOR

Example 3-7 Inserting a Document into a Collection

OracleDocument doc =
 db.createDocumentFromString("{ \"name\" : \"Alexander\"}");

col.insert(doc);

Example 3-8 Inserting a Document into a Collection and Getting the Result
Document

OracleDocument doc =
 db.createDocumentFromString("{ \"name\" : \"Alexander\"}");

OracleDocument insertedDoc = col.insertAndGet(doc);

// Get the generated document key
String key = insertedDoc.getKey();

// Get the generated creation timestamp
String createdOn = insertedDoc.getCreatedOn();

// Get the generated last-modified timestamp
String lastModified = insertedDoc.getLastModified();

// Get the generated version
String version = insertedDoc.getVersion();

Chapter 3
Inserting Documents into Collections with SODA for Java

3-13

Saving Documents into Collections with SODA for Java
You use OracleCollection methods save(OracleDocument) and
saveAndGet(OracleDocument) to save documents into collections.

These methods are similar to methods insert(OracleDocument) and
insertAndGet(OracleDocument) except that, if the collection is configured with client-
assigned document keys, and the input document provides a key that already
identifies a document in the collection, then the input document replaces the existing
document. (Methods insert(OracleDocument) and insertAndGet(OracleDocument)
throw an exception in that case.)

Note:

By default, collections are configured with automatically generated
document keys. Therefore, for a default collection, methods
save(OracleDocument) and saveAndGet(OracleDocument) are equivalent
to methods insert(OracleDocument) and insertAndGet(OracleDocument),
respectively.

There is a variant of method saveAndGet() that accepts an optional second argument,
options, whose value is a Java Map.

You can use argument options to provide a SQL hint, to turn real-time SQL monitoring
of queries on and off. Use method put() to add key "hint" with value "MONITOR" to
the map argument. The hint is passed down to the SQL code that underlies SODA.

The string value for key "hint" uses the SQL hint syntax (that is, the hint text,
without the enclosing SQL comment syntax /*+...*/). Use only hint MONITOR (turn on
monitoring) or NO_MONITOR (turn off monitoring).

(You can use this to pass any SQL hints, but MONITOR and NO_MONITOR are the useful
ones for SODA, and an inappropriate hint can cause the optimizer to produce a
suboptimal query plan.)

See Also:

• OracleCollection Javadoc for more information about
methods save(OracleDocument), saveAndGet(OracleDocument), and
saveAndGet(OracleDocument document, Map<String, ?> options)

• Monitoring Database Operations in Oracle Database SQL Tuning Guide
for complete information about monitoring database operations

• MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning
Guide for information about the syntax and behavior of SQL hints
MONITOR and NO_MONITOR

Chapter 3
Saving Documents into Collections with SODA for Java

3-14

Example 3-9 Saving a Document into a Collection

This example saves a document into a collection that is configured with client-
assigned document keys, using method saveAndGet(). It then gets the key and
the generated document components (except the content) from the result document
(which contains them).

OracleRDBMSClient cl = new OracleRDBMSClient();
OracleDatabase db = ...

// Configures the collection with client-assigned document keys
OracleDocument collMeta =

cl.createMetadataBuilder().keyColumnAssignmentMethod("client").build();
OracleCollection clientKeysColl = db.createCollection("collectionName",
 collMeta);

// For a collection configured with client-assigned document keys,
// you must provide the key for the input document.
OracleDocument cKeyDoc =
 db.createDocumentFromString("myKey", "{ \"name\" : \"Alexander\"}");

// If key "myKey" already identifies a document in the collection
// then cKeyDoc replaces the existing doc.
OracleDocument savedDoc = clientKeysColl.saveAndGet(cKeyDoc);

// Get document key ("myKey")
String key = savedDoc.getKey();

// Get the generated creation timestamp
String createdOn = savedDoc.getCreatedOn();

// Get the generated last-modified timestamp
String lastModified = savedDoc.getLastModified();

// Get the generated version
String version = savedDoc.getVersion();

SODA for Java Read and Write Operations
The primary way you specify read and write operations (other than insert and save) is
to chain together OracleOperationBuilder methods.

OracleOperationBuilder provides the following nonterminal methods, which you
can chain together to specify a read or write operation: key(), keyLike(), keys(),
filter(), version(), skip(), limit(), and headerOnly().

These are called nonterminal methods because they return the same
OracleOperationBuilder object on which they are invoked, which allows them to be
chained together. Nonterminal methods let you specify parts of an operation; they do
not create or execute an operation.

OracleOperationBuilder also provides terminal methods. A terminal method always
appears at the end of a method chain, and it creates and executes the operation.

Chapter 3
SODA for Java Read and Write Operations

3-15

The terminal methods for read operations are getCursor(), getOne(), and count().
The terminal methods for write operations are replaceOne(), replaceOneAndGet(),
and remove().

Note:

If you use OracleCursor method next() or OracleOperationBuilder
method getOne(), and if the underlying document is larger than 2 gigabytes,
then an exception is thrown.

Unless the Javadoc documentation for a method states otherwise, you can chain
together any nonterminal methods, and you can end the chain with any terminal
method. However, not all combinations make sense. For example, it does not make
sense to chain method version() together with a method that does not uniquely
identify the document, such as keys().

Table 3-1 briefly describes OracleOperationBuilder nonterminal methods for building
operations against a collection.

Table 3-1 OracleOperationBuilder Nonterminal Methods

Method Description

key() Find a document that has the specified document key.

keyLike() (Supported only for collections with client-assigned keys and a key
column of data type VARCHAR2.)

Find documents that have keys matching a given pattern.

The first parameter is the pattern, which can contain the wildcards _
(underscore), which matches any single character, and % (percent), which
matches zero or more characters.

If the second parameter is non-null then it is a character that, when it
immediately precedes either _ or %, escapes that character so that it
is matched literally and not as a wildcard. For example, if the pattern
is mykey!_1 and the second parameter is the character ! then the
underscore is matched literally — the only match is the name mykey_1.

keys() Find documents that have the specified document keys. The maximum
number of keys passed as argument must not exceed 1000, or else a
runtime error is raised.

filter() Find documents that match a filter specification (a query-by-example
expressed in JSON).

version() Find documents that have the specified version. This is typically used with
key(). For example: find().key("key1").version("version1").

headerOnly() Exclude document content from the result.

skip() Skip the specified number of documents in the result.

limit() Limit the number of documents in the result to the specified number.

Chapter 3
SODA for Java Read and Write Operations

3-16

Table 3-1 (Cont.) OracleOperationBuilder Nonterminal Methods

Method Description

hint() Provide a SQL tuning hint, to turn real-time SQL monitoring of queries
on and off. The argument is a string with the SQL hint syntax. Use this
only with argument "MONITOR" (turn on monitoring) or "NO_MONITOR"
(turn off monitoring). The hint is simply passed down to the SQL code that
underlies SODA.

(You can use this to pass any SQL hints, but MONITOR and NO_MONITOR
are the useful ones for SODA, and an inappropriate hint can cause the
optimizer to produce a suboptimal query plan.)

See Also:

• Monitoring Database Operations in
Oracle Database SQL Tuning Guide for
complete information about monitoring
database operations

• MONITOR and NO_MONITOR Hints in
Oracle Database SQL Tuning Guide
for information about the syntax and
behavior of SQL hints MONITOR and
NO_MONITOR

Table 3-2 briefly describes OracleOperationBuilder terminal methods for creating
and executing read operations against a collection.

Table 3-2 OracleOperationBuilder Terminal Methods for Read Operations

Method Description

getOne() Create and execute an operation that returns at most one document — for
example, an operation that includes an invocation of nonterminal method
key().

getCursor() Get a cursor over read operation results.

count() Count the number of documents found by the operation.

Table 3-3 briefly describes OracleOperationBuilder terminal methods for executing
write operations against a collection.

Table 3-3 OracleOperationBuilder Terminal Methods for Write Operations

Method Description

replaceOne() Replace one document.

replaceOneAndGet() Replace one document and return the result document.

remove() Remove documents from a collection.

Chapter 3
SODA for Java Read and Write Operations

3-17

See Also:

• The SODA for Java Javadoc for complete information about
OracleOperationBuilder methods

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for information about SODA restrictions

Finding Documents in Collections with SODA for Java
To find documents in a collection, you invoke OracleCollection method find(),
which returns an OracleOperationBuilder object that represents a query that finds
all documents in the collection.

To execute the query, obtain a cursor for its results by invoking
OracleOperationBuilder method getCursor(). Then use the cursor to visit each
document in the result list. To determine whether the result list has a next document,
and to obtain the next document, invoke OracleCursor methods hasNext() and
next(), respectively. This is illustrated by Example 3-10 and other examples here.

However, you typically do not work directly with the OracleOperationBuilder object.
Instead, you chain together some of its methods, to specify various find operations.
This is illustrated in the other examples here, which find documents by their keys or
using query-by-example (QBE) filter specifications.

Note:

Examples here that use method getContentAsString() assume that all
documents in the collection are JSON documents. If they are not, this
method throws an exception.

Example 3-10 Finding All Documents in a Collection

This example first obtains a cursor for a query result list that contains each document
in a collection. It then uses the cursor in a while statement to get and print the content
of each document in the result list, as a string. Finally, it closes the cursor.

Note:

To avoid resource leaks, close any cursor that you no longer need.

OracleCursor c = col.find().getCursor();

while (c.hasNext()) {
 OracleDocument resultDoc = c.next();
 System.out.println("Document content: " +

Chapter 3
Finding Documents in Collections with SODA for Java

3-18

 resultDoc.getContentAsString());
}

// IMPORTANT: You must close the cursor to release resources!
c.close;

Example 3-11 Finding the Unique Document That Has a Given Document Key

This example chains together OracleOperationBuilder methods to specify an
operation that finds the unique document whose key is "key1". It uses nonterminal
method key() to specify the document. It then uses terminal method getOne() to
execute the read operation and return the document (or null if no such document is
found).

OracleDocument doc = col.find().key("key1").getOne();

Example 3-12 Finding Multiple Documents with Specified Document Keys

This example defines HashSet myKeys, with (string) keys "key1", "key2", and "key3".
It then finds the documents that have those keys, and it prints the key and content of
each of those documents.

Nonterminal method keys() specifies the documents with the given keys. Terminal
method getCursor() executes the read operation and returns a cursor over the result
documents.

Note:

The maximum number of keys in the set supplied to method keys() must not
exceed 1000, or else a runtime error is raised.

Set<String> myKeys = new HashSet<String>();
myKeys.put("key1");
myKeys.put("key2");
myKeys.put("key3");

OracleCursor c = col.find().keys(myKeys).getCursor();

while (c.hasNext()) {
 OracleDocument resultDoc = c.next();

 // Print the document key and document content
 System.out.println ("Document key: " + resultDoc.getKey() + "\n" +
 " document content: " +
resultDoc.getContentAsString());
}

c.close();

Chapter 3
Finding Documents in Collections with SODA for Java

3-19

Example 3-13 Finding Documents with a Filter Specification

Nonterminal method filter() provides a powerful way to filter JSON documents in
a collection. Its OracleDocument parameter is a JSON query-by-example (QBE, also
called a filter specification).

The syntax of filter specifications is an expressive pattern-matching language for
JSON documents. This example uses only a very simple QBE, just to indicate how
you make use of one in SODA for Java.

This example does the following:

1. Creates a filter specification that looks for all JSON documents whose name field
has value "Alexander".

2. Uses the filter specification to find the matching documents.

3. Prints the key and content of each document.

// Create the filter specification
OracleDocument filterSpec =
 db.createDocumentFromString("{ \"name\" : \"Alexander\"}");

OracleCursor c = col.find().filter(filterSpec).getCursor();

while (c.hasNext()) {
 OracleDocument resultDoc = c.next();

 // Print the document key and document content
 System.out.println ("Document key: " + resultDoc.getKey() + "\n" +
 " document content: " + resultDoc.getContent());
}

c.close();

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an introduction to SODA filter specifications

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for reference information about SODA filter specifications

Example 3-14 Specifying Pagination Queries with Methods skip() and limit()

This example uses nonterminal methods skip() and limit() in a pagination query.
(Filter specification filterSpec is from Example 3-13.)

// Find all documents matching the filterSpec, skip the first 1000,
// and limit the number of returned documents to 100.
OracleCursor c =
 col.find().filter(filterSpec).skip(1000).limit(100).getCursor();

while (c.hasNext()) {

Chapter 3
Finding Documents in Collections with SODA for Java

3-20

 OracleDocument resultDoc = c.next();

 // Print the document key and document content
 System.out.println ("Document key: " + resultDoc.getKey() + "\n" +
 " document content: " + resultDoc.getContent());
}

c.close();

Example 3-15 Specifying Document Version

This example uses nonterminal method version() to specify the document version.
This is useful for implementing optimistic locking, when used with the terminal
methods for write operations.

You typically use version() together with method key(), which specifies the
document. You can also use version() with methods keyLike() and filter(),
provided they identify at most one document.

// Find a document with key "key1" and version "version1".
OracleDocument doc =
col.find().key("key1").version("version1").getOne();

Example 3-16 Finding Documents and Returning Only Their Headers

This example finds all documents with the specified document keys and returns
only their headers. (The keys are those in HashSet myKeys, which is defined in
Example 3-12.) Nonterminal method headerOnly() specifies the return of document
headers only. A document header has all the document components except the
content.

// Find all documents matching the keys in HashSet myKeys.
// For each document, return all document components except the content.
OracleCursor c = col.find().keys(myKeys).headerOnly().getCursor();

Example 3-17 Counting the Number of Documents Found

This example uses terminal method count() to get a count of all of the documents in
the collection. It then gets a count of all of the documents that are returned by the filter
specification filterSpec from Example 3-13.

// Get a count of all documents in the collection
int numDocs = col.find().count();

// Get a count of all documents in the collection that match a filter
spec
numDocs = col.find().filter(filterSpec).count();

Replacing Documents in a Collection with SODA for Java
To replace the content of one document in a collection with the content of another,
you chain together OracleOperationBuilder method key(String) with either method
replaceOne(OracleDocument) or method replaceOneAndGet(OracleDocument).

Chapter 3
Replacing Documents in a Collection with SODA for Java

3-21

Method replaceOne(OracleDocument) only replaces the document. Method
replaceOneAndGet(OracleDocument) also returns a result document, which contains
all document components except the content.

Both replaceOne(OracleDocument) and replaceOneAndGet(OracleDocument) update
the values of the last-modified timestamp and the version. Replacement does not
change the document key or the creation timestamp.

Note:

Some version-generation methods, including the default method, generate
hash values of the document content. In such a case, if the document
content does not change then neither does the version. For more information
about version-generation methods, see SODA Collection Configuration
Using Custom Metadata.

See Also:

OracleOperationBuilder Javadoc for more information about replaceOne()
and replaceOneAndGet()

Example 3-18 Replacing a Document in a Collection and Getting the Result
Document

This example replaces a document in a collection, gets the result document, and gets
the generated components from the result document.

OracleDocument newDoc = ...
OracleDocument resultDoc =
col.find().key("k1").replaceOneAndGet(newDoc);

if (resultDoc != null)
{
 // Get the generated document key (unchanged by replacement operation)
 String key = resultDoc.getKey();

 // Get the generated version
 String version = resultDoc.getVersion();

 // Get the generated last-modified timestamp
 String lastModified = resultDoc.getLastModified();

 // Get the creation timestamp (unchanged by replacement operation)
 String createdOn = resultDoc.getCreatedOn();
}

Chapter 3
Replacing Documents in a Collection with SODA for Java

3-22

Example 3-19 Replacing a Particular Version of a Document

To implement optimistic locking when replacing a document, you can chain together
methods key() and version(), as in this example.

OracleDocument resultDoc =
 col.find().key("k1").version("v1").replaceOneAndGet(newDoc);

Removing Documents from a Collection with SODA for Java
To remove a document from a collection, you chain together (1) OracleCollection
method find() with these OracleOperationBuilder methods: (2) key(), keyLike(),
keys(), or filter(); (3) version() (optional); and (4) remove(). Examples are
provided.

See Also:

OracleOperationBuilder Javadoc for more information about key(),
keys(), filter(), version(), and remove()

Example 3-20 Removing a Document from a Collection Using a Document Key

This example removes the document whose document key is "k1". The number of
documents removed is returned.

// Count is 1, if the document with key "k1" is found in the collection.
// Count is 0, otherwise.
int count = col.find().key("k1").remove();

Example 3-21 Removing a Particular Version of a Document

This example implements optimistic locking when removing a document, by specifying
the version of the document, as well as its key.

col.find().key("k1").version("v1").remove();

Example 3-22 Removing Documents from a Collection Using Document Keys

This example removes the documents whose keys are "k1" and "k2".

Set<String> myKeys = new HashSet<String>();
myKeys.add("k1");
myKeys.add("k2");

// Count is 2 if two documents with keys "k1" and "k2"
// were found in the collection.
int count = col.find().keys(myKeys).remove();

Chapter 3
Removing Documents from a Collection with SODA for Java

3-23

Example 3-23 Removing JSON Documents from a Collection Using a Filter

This example uses a filter to remove the JSON documents whose greeting field has
value "hello". It then prints the number of documents removed.

OracleDocument filterSpec =
 db.createDocumentFromString("{ \"greeting\" : \"hello\" }");

int count = col.find().filter(filterSpec).remove();

// Print the number of documents removed
System.out.println ("Removed " + count + " documents"):

Indexing the Documents in a Collection with SODA for Java
You index the documents in a SODA collection with OracleCollectionAdmin method
createIndex(). Its OracleDocument parameter is a textual JSON index specification.
This can specify B-tree, spatial, full-text, or ad hoc indexing, and it can specify support
for a JSON data guide.

Note:

To create any kind of index using SODA you need Oracle Database Release
12c (12.2.0.1) or later. But to create a B-tree index for a DATE or TIMESTAMP
value you need Oracle Database Release 18c (18.1) or later.

You drop an index on a SODA collection with method dropIndex().

A JSON search index is used for full-text and ad hoc structural queries, and for
persistent recording and automatic updating of JSON data-guide information.

An Oracle Spatial and Graph index is used for GeoJSON (spatial) data. A JSON
search index is used for full-text searching and for persisting data-guide information.

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an overview of using SODA indexing

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for information about SODA index specifications

• Oracle Database JSON Developer’s Guide for information about JSON
search indexes

• Oracle Database JSON Developer’s Guide for information about
persistent data-guide information as part of a JSON search index

• Oracle Database JSON Developer’s Guide for information about spatial
indexing of GeoJSON data.

Chapter 3
Indexing the Documents in a Collection with SODA for Java

3-24

Example 3-24 Creating a B-Tree Index for a JSON Field with SODA for Java

This example creates a B-tree non-unique index for numeric field address.zip of the
JSON documents in collection myCollection.

OracleDocument indexSpec =
 db.createDocumentFromString(
 "{\"name\" : \"ZIPCODE_IDX\",
 \"fields\" :
 [{\"path\" : \"address.zip\",
 \"datatype\" : \"number\",
 \"order\" : \"asc\"}]}");
col.admin().createIndex(indexSpec);

This is the same index specification, pretty-printed for legibility:

{"name" : "ZIPCODE_IDX",
 "fields" : [{"path" : "address.zip",
 "datatype" : "number",
 "order" : "asc"}]}

Example 3-25 JSON Search Indexing with SODA for Java

This example indexes the documents in collection myCollection for ad hoc queries
and full-text search (queries using QBE operator $contains), and it automatically
accumulates and updates data-guide information about your JSON documents
(aggregate structural and type information). The index specification has only field name
(no field fields).

OracleDocument indexSpec = db.createDocumentFromString(
 "{\"name\" : \"SEARCH_AND_DATA_GUIDE_IDX\"}");
col.admin().createIndex(indexSpec);

The simple index specification it uses is equivalent to this one, which makes explicit
the default values:

{"name" : "SEARCH_AND_DATA_GUIDE_IDX",
 "dataguide" : "on",
 "search_on" : "text_value"}

If you instead wanted only ad hoc (search) indexing then you would explicitly specify a
value of "off" for field dataguide. If you instead wanted only data-guide support then
you would explicitly specify a value of "none" for field search_on.

Note:

To create a data guide-enabled JSON search index, or to data guide-enable
an existing JSON search index, you need database privilege CTXAPP and
Oracle Database Release 12c (12.2.0.1) or later.

Chapter 3
Indexing the Documents in a Collection with SODA for Java

3-25

Example 3-26 Dropping an Index with SODA for Java

To drop an index on a SODA collection, just pass the index name to
OracleCollectionAdmin method dropIndex(). This example drops index myIndex.

col.admin().dropIndex("myIndex");

Getting a Data Guide for a Collection
You use OracleCollectionAdmin method getDataGuide() to get a data guide for a
collection. A data guide is a JSON document that summarizes the structural and type
information of the JSON documents in the collection. It records metadata about the
fields used in those documents.

Before you can obtain a data guide for your collection you must create a data guide-
enabled JSON search index on it. Example 3-25 shows how to do that.

Example 3-27 Getting a Data Guide with SODA for Java

This example gets a data guide using OracleCollectionAdmin method
getDataGuide().

OracleDocument dataGuide = col.admin().getDataGuide();

This returns a document whose content is a JSON data guide. To obtain this content
as a string value, you can use OracleDocument method getContentAsString().

System.out.println("Dataguide " + dataGuide.getContentAsString());

Handling Transactions with SODA for Java
You can cause SODA for Java to treat individual read and write operations, or groups
of them, as a single transaction.

The JDBC connection that you pass to method OracleClient.getDatabase() has
auto-commit mode either on or off.

If auto-commit mode is on, then each SODA for Java read operation and write
operation is treated as a single transaction. If the operation succeeds, then the
transaction automatically commits. If the operation fails, then an OracleException or
RuntimeException is thrown, and the transaction automatically rolls back. SODA for
Java itself throws only checked exceptions (OracleException and exceptions derived
from OracleException). However, SODA for Java is built upon JDBC, which can throw
a RuntimeException that SODA for Java passes through.

If auto-commit mode is off, then you can combine multiple SODA for Java read and
write operations into one transaction. If the transaction succeeds, then your application
must explicitly commit it, by calling method commit() on the JDBC connection. If
the transaction fails, then an OracleException or RuntimeException, is thrown. Your
application must handle the exception and explicitly roll back the transaction, by
invoking method rollback() on the JDBC connection. (RuntimeException can be
thrown only by JDBC, as mentioned in the preceding paragraph.)

Chapter 3
Getting a Data Guide for a Collection

3-26

Caution:

If auto-commit mode is off, an uncommitted operation raises an error, and
you do not explicitly roll back the transaction, the incomplete transaction
might leave the relevant data in an inconsistent state (uncommitted, partial
results).

To facilitate transactional programming, SODA for Java supports optimistic locking:
checking, before writing data back, that the data has not been modified (by another
transaction) since it was read. With SODA for Java, you do this using replacement
or removal by key and version, that is, checking the version value.Example 3-19
illustrates this for replacing a document, and Example 3-21 illustrates it for removing
a document. Optimistic locking is especially useful in contexts where there is low data
contention.

Chapter 3
Handling Transactions with SODA for Java

3-27

4
SODA Collection Metadata Caching

SODA collection metadata is stored persistently in the database, just like collection
data. It is fetched transparently when needed, to perform collection operations.
Fetching metadata from the database carries a performance cost. You can cache
collection metadata in clients, to improve performance by avoiding database access to
retrieve the metadata.

These are the main use cases for collection metadata caching:

• Listing the existing collections, then opening one or more of the collections listed.

• Creating a collection, then opening it.

• Reopening a collection.

In all of these cases, cached metadata can be used to open the collection.

A collection metadata cache can be shared by all of the OracleDatabase objects that
are obtained from a given OracleRDBMSClient object, or it can be local to a single
OracleDatabase object. Both kinds of caching are disabled by default.

If both local and shared caches are enabled for the same OracleDatabase object,
entry lookup proceeds as follows:

1. The local cache is checked for an entry pertaining to a given collection used by the
database object.

2. If not found in the local cache, the shared cache is checked for an entry for the
collection.

3. If an entry for the collection is found in neither cache then the database is
accessed to try to obtain the its metadata.

Enabling Collection Metadata Caching
Collection metadata caching is disabled by default. You can use constructor
OracleRDBMSClient(Properties props) to enable shared or local collection metadata
caching.

Parameter props here is a Properties instance that you initialize with one or both of
the following properties:

• Property oracle.soda.sharedMetadataCache with value "true": enable the
shared cache

• Property oracle.soda.localMetadataCache with value "true": enable the local
cache

Example 4-1 illustrates this; it enables both shared and local caching.

4-1

Example 4-1 Enabling Collection Metadata Caching

Properties props = new Properties();
props.put("oracle.soda.sharedMetadataCache", "true");
props.put("oracle.soda.localMetadataCache", "true");
OracleRDBMSClient cl = new OracleRDBMSClient(props);

Shared Collection Metadata Cache
Each SODA client (OracleRDBMSClient object) is optionally associated with a
collection metadata cache that records metadata for all collections (OracleCollection
objects) that are created for all OracleDatabase objects created from that client. The
cache is released when its associated client is released.

The number of entries in a shared cache is limited to 10,000 entries (100 database
schemas times 100 collections per schema). A shared cache uses a least-recently-
used (LRU) replacement policy: the least recently used entry is replaced by the
addition of a new entry, when the cache is full (it has 10,000 entries).

A shared metadata cache requires locking to avoid access conflict, which can affect
performance negatively because it limits concurrency.

Local Collection Metadata Cache
Each OracleDatabase object is optionally associated with a local collection
metadata cache. It records metadata only for collections that are created for that
OracleDatabase object. A local cache is released when its associated OracleDatabase
object is released.

There is no limit on the number of entries for a local cache — entries are never evicted.
The number of entries continues to grow as new collections are created for the given
database object.

The lack of an eviction policy for local metadata caches means that cached collection
metadata is always available; once cached, the database need never be accessed to
obtain it.

With local caching, because there is no sharing, using different database objects to
access the same collection can result in more round trips and more data replication
than is the case for shared caching.

Unlike a shared metadata cache, a local cache requires no locking.

Caution:

Because the number of entries in the local cache is unbounded, Oracle does
not recommend using the local cache if a particular Oracle Database object
is used to create a large number of collections, as it could result in running
out of memory.

Chapter 4
Shared Collection Metadata Cache

4-2

5
SODA Collection Configuration Using
Custom Metadata

SODA collections are highly configurable. You can customize collection metadata, to
obtain different behavior from that provided by default.

Note:

You can customize collection metadata to obtain different behavior from
that provided by default. However, changing some components requires
familiarity with Oracle Database concepts, such as SQL data types. Oracle
recommends that you do not change such components unless you have
a compelling reason. Because SODA collections are implemented on
top of Oracle Database tables (or views), many collection configuration
components are related to the underlying table configuration.

For example, if you change the content column type from the default value
to VARCHAR2, then you must understand the implications: content size for
VARCHAR2 is limited to 32K bytes, character-set conversion can take place,
and so on.

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for general information about SODA document collections and
their metadata

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for reference information about collection metadata components

Getting the Metadata of an Existing Collection
OracleCollectionAdmin method getMetadata() returns all of the metadata for a
collection, as a JSON document.

collectionName.admin().getMetadata();

5-1

See Also:

Default Collection Metadata example in Oracle Database Introduction to
Simple Oracle Document Access (SODA)

Creating Custom Metadata for a Collection
Collection metadata is represented as a JSON OracleDocument instance. You can
create such an instance directly, but Oracle recommends that you instead use
OracleRDBMSMetadataBuilder, which you obtain by invoking OracleRDBMSClient
method createMetadataBuilder().

Two methods for creating collections are available on interface OracleDatabaseAdmin
(accessed by invoking method admin() on an OracleDatabase object):

createCollection(String collectionName);
createCollection(String collectionName, OracleDocument
collectionMetadata);

The first method, which accepts only one argument, creates a collection with the
default metadata. The default metadata specifies database schema name, table name
(for the table storing the collection), five table columns (key, content, version, last-
modified timestamp, and creation timestamp), and the details of these table columns.
Each table column is represented by a field with a JSON object as value. That object
contains additional details about the column—name, SQL type, and so on.

The default metadata for a collection is presented in Default Collection Metadata in
Oracle Database Introduction to Simple Oracle Document Access (SODA).

The second method, which accepts two arguments, lets you provide custom collection
metadata in the form of a JSON OracleDocument object.

When invoking a createCollection() method, if a collection with the same name
already exists then it is simply opened and its object is returned. If custom metadata
is passed to the method and it does not match that of the existing collection then the
collection is not opened and an error is raised. (To match, all metadata fields must
have the same values.)

Method createMetadataBuilder() returns an OracleRDBMSMetadataBuilder instance
that is preloaded with the default collection metadata. You can modify this preloaded
metadata by calling OracleRDBMSMetadataBuilder methods that create custom
metadata.

These methods correspond to different collection metadata components. You can
customize these components by invoking builder methods in a chained manner. At the
end of the chain, you invoke method build() to create collection metadata as a JSON
OracleDocument object.

Example 5-1 illustrates this; it uses OracleRDBMSMetadataBuilder to create a
collection that has custom metadata: a media type column. A media type column lets
you store documents that are other than just JSON data, for example images and PDF
documents.

Chapter 5
Creating Custom Metadata for a Collection

5-2

The example first uses method createMetadataBuilder() to create a metadata
builder object. It then invokes builder methods on that object to define the specific
metadata to use, and it invokes build() to create a collectionMetadata object with
that metadata. Finally, it creates a new collection that has this metadata.

In this case, the metadata that is specified, and the methods that define it, are as
follows:

Method Metadata

mediaTypeColumnName() The media type column is to be named
MY_MEDIA_TYPE_COLUMN. By default, there is no media type
column.

When invoking a createCollection() method, if a collection with the same name
already exists then it is simply opened and its object is returned. If custom metadata
is passed to the method and it does not match that of the existing collection then the
collection is not opened and an error is raised. (To match, all metadata fields must
have the same values.)

Example 5-1 Creating a Collection That Has Custom Metadata

OracleRDBMSClient cl = new OracleRDBMSClient();
OracleRDBMSMetadataBuilder b = cl.createMetadataBuilder();
OracleDatabase db = cl.getDatabase(jdbcConnection);

// Create custom metadata
OracleDocument collectionMetadata =
 b.mediaTypeColumnName("MY_MEDIA_TYPE_COLUMN").
 build();

// Create a new collection with the specified custom metadata
db.admin().createCollection("collectionName", collectionMetadata);

SODA for Java Methods for Collection Metadata
Components

The OracleRDBMSMetadataBuilder methods for selecting collection metadata
components are described.

The OracleRDBMSMetadataBuilder methods for selecting collection metadata
components have names similar to the components they select.

Table 5-1 Java Methods to Select Collection Metadata Components

Component Method

Schema schemaName()

Table or View tableName() or viewName()

Key Column Name keyColumnName()

Key Column Type keyColumnType()

Key Column Max Length keyColumnMaxLength()

Chapter 5
SODA for Java Methods for Collection Metadata Components

5-3

Table 5-1 (Cont.) Java Methods to Select Collection Metadata Components

Component Method

Key Column Assignment Method keyColumnAssignmentMethod()

Key Column Sequence Name keyColumnSequenceName()

Content Column Name contentColumnName()

Content Column Type contentColumnType()

Content Column Max Length contentColumnMaxLength()

Content Column JSON Validation contentColumnValidation()

Content Column SecureFiles LOB
Compression

contentColumnCompress()

Content Column SecureFiles LOB Cache contentColumnCache()

Content Column SecureFiles LOB
Encryption

contentColumnEncrypt()

Version Column Name versionColumnName()

Version Column Generation Method versionColumnMethod()

Last-Modified Time Stamp Column Name lastModifiedColumnName()

Last-Modified Column Index Name lastModifiedColumnIndex()

Creation Time Stamp Column Name creationTimeColumnName()

Media Type Column Name mediaTypeColumnName()

Read Only readOnly()

See Also:

• OracleRDBMSMetadataBuilder methods Javadoc for more information
about collection metadata components

• Oracle Database Introduction to Simple Oracle Document Access
(SODA)

Note:

The identifiers used for collection metadata components (schema name,
table name, view name, database sequence name, and column names)
must be valid Oracle quoted identifiers. Some characters and words that are
allowed in Oracle quoted identifiers are strongly discouraged. For details,
see Oracle Database SQL Language Reference.

1 Reminder: letter case is significant for a quoted SQL identifier; it is interpreted case-sensitively.

Chapter 5
SODA for Java Methods for Collection Metadata Components

5-4

A
SODA for Java Core Interfaces

The SODA for Java core interfaces are described.

Table A-1 lists and briefly describes these interfaces. For complete information about
them, see the SODA Javadoc.

Table A-1 SODA for Java Core Interfaces

Interface Description

OracleClient SODA for Java entry point (client)

OracleDocument Document

Content is typically JSON; possibly a MIME type (for
example, image, audio, or video)

Provides methods that get document content and
metadata.

OracleDatabase Database of collections of documents

Provides methods that access OracleDatabaseAdmin
and open existing collections.

Inherits methods that create documents suitable for
insertion into collections.

Obtained by invoking OracleClient.getDatabase().

OracleDatabaseAdmin Provides methods that create collections and get their
metadata.

Obtained by invoking OracleDatabase.admin().

OracleCollection Collection of documents

Provides methods that
access OracleOperationBuilder and
OracleCollectionAdmin and insert and save collection
documents.

Obtained by invoking
OracleDatabase.admin().createCollection()
or, if it already exists,
OracleDatabase.openCollection().

OracleCollectionAdmin Provides methods that index and drop collections and get
their metadata.

Obtained by invoking OracleDatabase.admin().

A-1

Table A-1 (Cont.) SODA for Java Core Interfaces

Interface Description

OracleOperationBuilder Builder and executor of read and write operations on a
collection.

Provides nonterminal methods for building operations (for
example, skip() and limit()) and terminal methods
for executing operations (for example, getCursor(),
count(), and remove()).

Obtained by invoking OracleCollection.find(),
which returns an OracleOperationBuilder object that
represents a query that finds all documents in the
collection.

OracleCursor Cursor for result list of query that
OracleCollection.find() returns

next() method returns the next document from the
query result list.

Obtained by invoking
OracleOperationBuilder.getCursor().

Appendix A

A-2

Index

A
auto-commit mode, transaction handling, 3-26

C
collection configuration, 5-1, 5-3
collection metadata

components of, 5-3
creating custom, 5-2
custom, 5-1
getting, 5-1

collections
creating, 3-4

with custom metadata, 5-2
dropping, 3-7
opening, 3-6

during creation, 3-4
committing operations (transactions), 3-26
creating a collection, 3-4

with custom metadata, 5-2
creating documents, 3-8

D
data guide for a collection, getting, 3-26
deleting a collection

See dropping a collection
deleting documents from a collection

See removing documents from a collection
documents

creating, 3-8
finding in collections, 3-18
inserting into collections, 3-11
removing from a collection, 3-23
replacing in collections, 3-21
saving into collections, 3-14

dropping a collection, 3-7

F
finding documents in collections, 3-18

H
handling transactions, 3-26

I
indexing documents in a collection, 3-24
insert() method, OracleCollection, 3-11
insertAndGet() method, OracleCollection, 3-11
inserting documents into collections, 3-11
installing SODA for Java, 1-1

J
JAR files needed for SODA for Java, 1-1
Java Runtime Environment needed for SODA for

Java, 1-1

M
metadata of collections

creating custom, 5-2
getting, 5-1

metadata, custom, 5-1
methods

build(), 5-2
contentColumnCache(), 5-3
contentColumnCompress(), 5-3
contentColumnEncrypt(), 5-3
contentColumnMaxLength(), 5-3
contentColumnName(), 5-3
contentColumnType(), 5-3
count(), 3-15, 3-18
createCollection(), 3-4, 5-2
createDocumentFromByteArray(), 3-8
createDocumentFromString(), 3-8
createIndex(), 3-24
createMetadataBuilder(), 5-2
creationTimeColumnName(), 5-2, 5-3
drop(), 3-7
dropIndex(), 3-24
filter(), 3-15, 3-18
find(), 3-18
for SODA core interfaces, A-1

Index-1

methods (continued)
getCollectionNames(), 3-7
getContentAsString, 3-26
getCursor(), 3-15, 3-18
getDatabase()

auto-commit mode, 3-26
getDataGuide, 3-26
getMetadata(), 5-1
getOne(), 3-15, 3-18
hasNext(), 3-18
headerOnly(), 3-15, 3-18
hint(), 3-15
insert(), 3-11
insertAndGet(), 3-11
key(), 3-15, 3-18
keyColumnAssignmentMethod(), 5-3
keyColumnMaxLength(), 5-3
keyColumnName(), 5-3
keyColumnSequenceName(), 5-3
keyColumnType(), 5-3
keyLike(), 3-15
keys(), 3-15, 3-18
lastModifiedColumnIndex(), 5-3
lastModifiedColumnName(), 5-3
limit(), 3-15, 3-18
mediaTypeColumnName(), 5-2, 5-3
openCollection(), 3-6, 3-7
read and write, 3-15
readOnly(), 5-3
remove(), 3-15, 3-23
replaceOne(), 3-15, 3-21
replaceOneAndGet(), 3-15, 3-21
save(), 3-14
saveAndGet(), 3-14
schemaName(), 5-3
skip(), 3-15, 3-18
tableName(), 5-3
terminal and nonterminal,

OracleOperationBuilder, 3-15
version(), 3-15, 3-18
versionColumnMethod(), 5-3
versionColumnName(), 5-3
viewName(), 5-3

N
nonterminal method

definition, 3-18
nonterminal OracleOperationBuilder methods,

3-15

O
opening a collection

during creation, 3-4
opening existing collections, 3-6
OracleOperationBuilder methods, 3-15

P
prerequisites for using SODA for Java, 1-1

R
read methods, 3-15
removing documents from a collection, 3-23
replacing documents in collections, 3-21

S
save() method, Oracle Collection, 3-14
saveAndGet() method, Oracle Collection, 3-14
saving documents into collections, 3-14
SODA core interfaces, A-1

T
terminal method

definition, 3-18
terminal OracleOperationBuilder methods, 3-15
transaction handling, 3-26

W
write methods, 3-15

Index

Index-2

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 SODA for Java Prerequisites
	2 SODA for Java Overview
	3 Using SODA for Java
	Getting Started with SODA for Java
	Creating a Document Collection with SODA for Java
	Opening an Existing Document Collection with SODA for Java
	Checking Whether a Given Collection Exists with SODA for Java
	Discovering Existing Collections with SODA for Java
	Dropping a Document Collection with SODA for Java
	Creating Documents with SODA for Java
	Inserting Documents into Collections with SODA for Java
	Saving Documents into Collections with SODA for Java
	SODA for Java Read and Write Operations
	Finding Documents in Collections with SODA for Java
	Replacing Documents in a Collection with SODA for Java
	Removing Documents from a Collection with SODA for Java
	Indexing the Documents in a Collection with SODA for Java
	Getting a Data Guide for a Collection
	Handling Transactions with SODA for Java

	4 SODA Collection Metadata Caching
	Enabling Collection Metadata Caching
	Shared Collection Metadata Cache
	Local Collection Metadata Cache

	5 SODA Collection Configuration Using Custom Metadata
	Getting the Metadata of an Existing Collection
	Creating Custom Metadata for a Collection
	SODA for Java Methods for Collection Metadata Components

	A SODA for Java Core Interfaces
	Index

