
Oracle® Database
SODA for PL/SQL Developer's Guide

Release 21
F16799-04
August 2021

Oracle Database SODA for PL/SQL Developer's Guide, Release 21

F16799-04

Copyright © 2018, 2021, Oracle and/or its affiliates.

Primary Author: Drew Adams

Contributors: Douglas McMahon, Maxim Orgiyan, Srikrishnan Suresh

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Diversity and Inclusion viii

Related Documents ix

Conventions ix

1 SODA for PL/SQL Prerequisites

2 SODA for PL/SQL Overview

3 Using SODA for PL/SQL

3.1 Getting Started with SODA for PL/SQL 3-3

3.2 Creating a Document Collection with SODA for PL/SQL 3-6

3.3 Opening an Existing Document Collection with SODA for PL/SQL 3-8

3.4 Checking Whether a Given Collection Exists with SODA for PL/SQL 3-8

3.5 Discovering Existing Collections with SODA for PL/SQL 3-9

3.6 Dropping a Document Collection with SODA for PL/SQL 3-10

3.7 Creating Documents with SODA for PL/SQL 3-11

3.8 Inserting Documents into Collections with SODA for PL/SQL 3-17

3.9 Saving Documents Into a Collection with SODA for PL/SQL 3-19

3.10 SODA for PLSQL Read and Write Operations 3-21

3.11 Finding Documents in Collections with SODA for PL/SQL 3-23

3.12 Replacing Documents in a Collection with SODA for PL/SQL 3-32

3.13 Removing Documents from a Collection with SODA for PL/SQL 3-35

3.14 Truncating a Collection (Removing All Documents) with SODA for PL/SQL 3-38

3.15 Indexing the Documents in a Collection with SODA for PL/SQL 3-38

3.16 Getting a Data Guide for a Collection with SODA for PL/SQL 3-42

3.17 Creating a View from a Data Guide with SODA for PL/SQL 3-45

iii

3.18 Handling Transactions with SODA for PL/SQL 3-46

4 SODA Collection Configuration Using Custom Metadata

4.1 Getting the Metadata of an Existing Collection 4-2

4.2 Creating a Collection That Has Custom Metadata 4-2

A Redefining a SODA Collection

Index

iv

List of Examples

3-1 Getting Started Run-Through 3-4

3-2 Sample Output for Getting Started Run-Through 3-5

3-3 Creating a Collection That Has the Default Metadata 3-7

3-4 Opening an Existing Document Collection 3-8

3-5 Checking for a Collection with a Given Name 3-9

3-6 Printing the Names of All Existing Collections 3-9

3-7 Dropping a Document Collection 3-11

3-8 Creating a Document with JSON Content 3-14

3-9 Creating a Document with Document Key and JSON Content 3-15

3-10 Inserting a Document into a Collection 3-18

3-11 Inserting a Document into a Collection and Getting the Result Document 3-18

3-12 Saving Documents Into a Collection with SODA for PL/SQL 3-20

3-13 Finding All Documents in a Collection Using SODA For PL/SQL 3-24

3-14 Finding the Unique Document That Has a Given Document Key Using SODA For PL/SQL 3-25

3-15 Finding Multiple Documents with Specified Document Keys Using SODA For PL/SQL 3-26

3-16 Finding Documents with a Filter Specification Using SODA For PL/SQL 3-26

3-17 Specifying Pagination Queries with Methods skip() and limit() Using SODA For PL/SQL 3-28

3-18 Specifying Document Version Using SODA For PL/SQL 3-28

3-19 Counting the Number of Documents Found 3-29

3-20 Retrieving the Documents of a Collection at a Time in the Past (Flashback) Using SODA For

PL/SQL 3-30

3-21 Using Full-Text Search To Find Documents in a Heterogeneous Collection Using SODA For

PL/SQL 3-30

3-22 Replacing a Document, Given Its Key, and Getting the Result Document Using SODA For

PL/SQL 3-32

3-23 Replacing a Particular Version of a Document Using SODA For PL/SQL 3-33

3-24 Locking a Document For Update (Replacement) Using SODA For PL/SQL 3-34

3-25 Removing a Document from a Collection Using a Document Key 3-36

3-26 Removing a Particular Version of a Document 3-36

3-27 Removing Documents from a Collection Using Document Keys 3-37

3-28 Removing JSON Documents from a Collection Using a Filter 3-37

3-29 Truncating a Collection 3-38

3-30 Creating a B-Tree Index for a JSON Field with SODA for PL/SQL 3-40

3-31 JSON Search Indexing with SODA for PL/SQL 3-40

3-32 Dropping an Index with SODA for PL/SQL 3-41

v

3-33 Getting an Index Specification with SODA for PL/SQL 3-41

3-34 Getting All Index Specifications For a Collection with SODA for PL/SQL 3-42

3-35 Creating a Data Guide Dynamically with SODA for PL/SQL 3-43

3-36 Creating a Data Guide Using a JSON Search Index with SODA for PL/SQL 3-44

3-37 Creating a Relational View from a JSON Data Guide with SODA for PL/SQL 3-45

3-38 Transaction Involving SODA Document Insertion and Replacement 3-47

4-1 Getting the Metadata of a Collection 4-2

4-2 Creating a Collection That Has Custom Metadata 4-3

vi

List of Tables

3-1 Getter Methods for Documents (SODA_DOCUMENT_T) 3-13

vii

Preface

This document describes how to use Simple Oracle Document Access (SODA) for C.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This document is intended for users of Simple Oracle Document Access (SODA) for
PL/SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documents
For more information, see these Oracle resources:

• https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/ for complete
information about SODA and its implementations

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for general
information about SODA

• Oracle as a Document Store for general information about using JSON data in Oracle
Database, including with SODA

• Oracle Database JSON Developer’s Guide for information about using SQL and PL/SQL
with JSON data stored in Oracle Database

To download free release notes, installation documentation, white papers, or other collateral,
please visit the Oracle Technology Network (OTN). You must register online before using
OTN; registration is free and can be done at OTN Registration.

If you already have a user name and password for OTN then you can go directly to the
documentation section of the OTN Web site at OTN Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

ix

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/

1
SODA for PL/SQL Prerequisites

SODA for PL/SQL is an integral part of Oracle Database, starting with Release 18c (18.1).
The database is the only prerequisite for using SODA for PL/SQL, but some features are
available only starting with particular database releases.

The following features were added to SODA for PL/SQL in Oracle Database Release 18.3.
You need that database release or later to use them:

• Data-type SODA_OPERATION_T

• Indexing

• JSON data guide

1-1

2
SODA for PL/SQL Overview

SODA for PL/SQL is a PL/SQL API that implements Simple Oracle Document Access
(SODA). You can use it with PL/SQL to perform create, read (retrieve), update, and delete
(CRUD) operations on documents of any kind, and you can use it to query JSON documents.

SODA is a set of NoSQL-style APIs that let you create and store collections of documents in
Oracle Database, retrieve them, and query them, without needing to know Structured Query
Language (SQL) or how the data in the documents is stored in the database.

Oracle Database supports storing and querying JSON data. To access this functionality, you
need structured query language (SQL) with special JSON SQL operators. SODA for PL/SQL
hides the complexities of SQL/JSON programming.

The remaining topics of this document describe various features of SODA for PL/SQL.

Note:

• This book provides information about using SODA with PL/SQL applications,
and it describes all SODA features currently available for use with PL/SQL. To
use SODA for PL/SQL you also need to understand SODA generally. For such
general information, please consult Oracle Database Introduction to Simple
Oracle Document Access (SODA). Some features described in that book are
not yet available with SODA for PL/SQL.

• This book does not provide general information about PL/SQL, including
reference information about the SODA for PL/SQL methods and constants. For
such information, please consult Oracle Database PL/SQL Language
Reference.

See Also:

Oracle Database JSON Developer’s Guide for information about using SQL and
PL/SQL with JSON data stored in Oracle Database

2-1

3
Using SODA for PL/SQL

How to access SODA for PL/SQL is described, as well as how to use it to perform create,
read (retrieve), update, and delete (CRUD) operations on collections.

(CRUD operations are also called “read and write operations” in this document.)

• Getting Started with SODA for PL/SQL
How to access SODA for PL/SQL is described, as well as how to use it to create a
database collection, insert a document into a collection, and retrieve a document from a
collection.

• Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.create_collection to create a document
collection with the default metadata.

• Opening an Existing Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.open_collection to open an existing document
collection.

• Checking Whether a Given Collection Exists with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.open_collection to check for the existence of
a given collection. It returns a SQL NULL value if a collection with the specified name does
not exist; otherwise, it returns the collection object.

• Discovering Existing Collections with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.list_collection_names to discover existing
collections.

• Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SODA.drop_collection to drop a document collection.

• Creating Documents with SODA for PL/SQL
You use a constructor for PL/SQL object type SODA_DOCUMENT_T to create SODA
documents.

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys
automatically, unless the collection is configured with client-assigned keys and the input
document provides the key.

• Saving Documents Into a Collection with SODA for PL/SQL
You can use SODA_DOCUMENT_T method save() or save_and_get() to save documents
into a collection, which means inserting them if they are new or updating them if they
already belong to the collection. (Such an operation is sometimes called "upserting".)

• SODA for PLSQL Read and Write Operations
A SODA_OPERATION_T instance is returned by method find() of SODA_COLLECTION_T. You
can chain together SODA_OPERATION_T methods, to specify read and write operations
against a collection.

• Finding Documents in Collections with SODA for PL/SQL
You can use SODA_OPERATION_T terminal method get_one() or get_cursor() to find
one or multiple documents in a collection, respectively. You can use terminal method

3-1

count() to count the documents in a collection. You can use nonterminal methods,
such as key(), keys(), and filter(), to specify conditions for a find operation.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method
replace_one() or replace_one_and_get() with nonterminal method key() to
uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() and filter(). You can use
nonterminal method acquire_lock() to lock a document for updating.

• Removing Documents from a Collection with SODA for PL/SQL
You can remove documents from a collection by chaining together
SODA_OPERATION_T method remove() with nonterminal method key(), keys(), or
filter() to identify documents to be removed. You can optionally make use of
additional nonterminal methods such as version().

• Truncating a Collection (Removing All Documents) with SODA for PL/SQL
You can use SODA_COLLECTION_T method truncate() to empty, or truncate, a
collection, which means remove all of its documents.

• Indexing the Documents in a Collection with SODA for PL/SQL
You index the documents in a SODA collection with SODA_COLLECTION_T method
create_index(). Its input parameter is a textual JSON index specification. This
can specify support for B-tree, spatial, full-text, and ad hoc indexing, and it can
specify support for a JSON data guide.

• Getting a Data Guide for a Collection with SODA for PL/SQL
You can use SODA_COLLECTION_T method get_data_guide() or terminal
SODA_OPERATION_T method get_data_guide() to obtain a data guide for a
collection. A data guide is a JSON document that summarizes the structural and
type information of the JSON documents in the collection. It records metadata
about the fields used in those documents.

• Creating a View from a Data Guide with SODA for PL/SQL
You can use SODA_COLLECTION_T method create_view_from_dg() to create a
database view with relational columns, whose names and values are taken from
the scalar JSON fields specified in the data guide. A data guide-enabled JSON
search index is not required for this; the data guide itself is passed to the method.

• Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a
SQL COMMIT statement. If you want to roll back changes, use a SQL ROLLBACK
statement.

Chapter 3

3-2

3.1 Getting Started with SODA for PL/SQL
How to access SODA for PL/SQL is described, as well as how to use it to create a database
collection, insert a document into a collection, and retrieve a document from a collection.

Note:

Don’t worry if not everything in this topic is clear to you on first reading. The
necessary concepts are developed in detail in other topics. This topic should give
you an idea of what is involved overall in using SODA.

Follow these steps to get started with SODA for PL/SQL:

1. Ensure that the prerequisites have been met for using SODA for PL/SQL. See SODA for
PL/SQL Prerequisites.

2. Identify the database schema (user account) used to store collections, and grant
database role SODA_APP to that schema:

GRANT SODA_APP TO schemaName;

3. Use PL/SQL code such as that in Example 3-1 to do the following:

a. Create and open a collection (an instance of PL/SQL object type
SODA_COLLECTION_T), using the default collection configuration (metadata).

b. Create a document with particular JSON content, as an instance of PL/SQL object
type SODA_DOCUMENT_T.

c. Insert the document into the collection.

d. Get the inserted document back. Its other components, besides the content, are
generated automatically.

e. Print the unique document key, which is one of the components generated
automatically.

f. Commit the document insertion.

g. Find the document in the collection, by providing its key.

h. Print some of the document components: key, content, creation timestamp, last-
modified timestamp, and version.

4. Drop the collection, cleaning up the database table that is used to store the collection and
its metadata:

SELECT DBMS_SODA.drop_collection('myCollectionName') AS drop_status FROM
DUAL;

Chapter 3
Getting Started with SODA for PL/SQL

3-3

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database
table. In addition to the documents that are stored in its table, a
collection has metadata, which is also persisted in Oracle Database.
Dropping the table underlying a collection does not also drop the
collection metadata.

Note:

• If a PL/SQL subprogram that you write invokes subprograms that are in
package DBMS_SODA, and if your subprogram has definer (owner) rights,
then your subprogram must be granted role SODA_APP. For example, this
code grants role SODA_APP to procedure my_soda_proc, which is owned
by database schema (user) my_db_schema:

GRANT SODA_APP TO PROCEDURE my_db_schema.my_soda_proc;

• DBMS_SODA subprograms run with invoker's right. They require the invoker
to have the necessary privileges. For example, procedure
create_collection needs privilege CREATE TABLE. (It is needed to
create the table that backs the collection.)

In general, such privileges can be granted to the invoker either directly or
through a database role. However, when a subprogram that is created
with definer's rights invokes a DBMS_SODA subprogram, the relevant
privileges must be granted directly, not through a role, to the user who
defined that definer's-rights subprogram.

See Also:

Predefined Roles in an Oracle Database Installation in Oracle Database
Security Guide for information about role SODA_APP

Example 3-1 Getting Started Run-Through

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 foundDocument SODA_DOCUMENT_T;
 result_document SODA_DOCUMENT_T;
 docKey VARCHAR2(100);
 status NUMBER;
BEGIN
 -- Create a collection.
 collection := DBMS_SODA.create_collection('myCollectionName');

Chapter 3
Getting Started with SODA for PL/SQL

3-4

 -- The default collection has BLOB content, so create a BLOB-based
document.
 document := SODA_DOCUMENT_T(
 b_content => utl_raw.cast_to_raw('{"name" :
"Alexander"}'));

 -- Insert the document and get it back.
 result_document := collection.insert_one_and_get(document);

 -- The result document has auto-generated components, such as key and
version,
 -- in addition to the content. Print the auto-generated document key.
 docKey := result_document.get_key;
 DBMS_OUTPUT.put_line('Auto-generated key is ' || docKey);

 -- Commit the insert
 COMMIT;

 -- Find the document in the collection by its key
 foundDocument := collection.find_one(docKey);

 -- Get and print some document components: key, content, etc.
 DBMS_OUTPUT.put_line('Document components:');
 DBMS_OUTPUT.put_line(' Key: ' || foundDocument.get_key);
 DBMS_OUTPUT.put_line(' Content: '
 ||
utl_raw.cast_to_varchar2(foundDocument.get_blob));
 DBMS_OUTPUT.put_line(' Creation timestamp: ' ||
foundDocument.get_created_on);
 DBMS_OUTPUT.put_line(' Last-modified timestamp: '
 || foundDocument.get_last_modified);
 DBMS_OUTPUT.put_line(' Version: ' || foundDocument.get_version);
END;
/

Example 3-2 Sample Output for Getting Started Run-Through

Example 3-1 results in output similar to this. The values of the auto-generated components
will differ in any actual execution.

Auto-generated key is 96F35328CD3B4F96BF3CD01BCE9EBDF5
Document components:
 Key: 96F35328CD3B4F96BF3CD01BCE9EBDF5
 Content: {"name" : "Alexander"}
 Creation timestamp: 2017-09-19T01:05:06.160289Z
 Last-modified timestamp: 2017-09-19T01:05:06.160289Z
 Version: FD69FB6ACE73FA735EC7922CA4A02DDE0690462583F9EA2AF754D7E342B3EE78

Chapter 3
Getting Started with SODA for PL/SQL

3-5

3.2 Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.create_collection to create a document
collection with the default metadata.

Example 3-3 uses PL/SQL function DBMS_SODA.create_collection to create a
collection that has the default metadata.

The default collection metadata has the following characteristics.

• Each document in the collection has these document components:

– Key

– Content

– Creation timestamp

– Last-modified timestamp

– Version

• The collection can store only JSON documents.

• Document keys are automatically generated for documents that you add to the
collection.

The default collection configuration is recommended in most cases, but collections are
highly configurable. When you create a collection you can specify things such as the
following:

• Storage details, such as the name of the table that stores the collection and the
names and data types of its columns.

• The presence or absence of columns for creation timestamp, last-modified
timestamp, and version.

• Whether the collection can store only JSON documents.

• Methods of document key generation, and whether document keys are client-
assigned or generated automatically.

• Methods of version generation.

This configurability also lets you map a new collection to an existing database table.

To configure a collection in a nondefault way, supply custom collection metadata,
expressed in JSON, as the second argument to DBMS_SODA.create_collection.

If you do not care about the details of collection configuration then pass only the
collection name to DBMS_SODA.create_collection — no second argument. That
creates a collection with the default configuration.

If a collection with the same name already exists then it is simply opened and its
handle is returned. If custom metadata is provided and it does not match the metadata
of the existing collection then the collection is not opened and an error is raised. (To
match, all metadata fields must have the same values.)

Chapter 3
Creating a Document Collection with SODA for PL/SQL

3-6

Note:

Unless otherwise stated, the remainder of this documentation assumes that a
collection has the default configuration.

See Also:

• Default Naming of a Collection Table in Oracle Database Introduction to Simple
Oracle Document Access (SODA) for information about the default naming of a
collection table

• CREATE_COLLECTION Function in Oracle Database PL/SQL Packages and
Types Reference for information about PL/SQL function
DBMS_SODA.create_collection

Example 3-3 Creating a Collection That Has the Default Metadata

This example creates collection myCollectionName with the default metadata.

DECLARE
 collection SODA_Collection_T;
BEGIN
 collection := DBMS_SODA.create_collection('myCollectionName');
END;
/

Related Topics

• Getting the Metadata of an Existing Collection
You use SODA_COLLECTION_T method get_metadata() to get all of the metadata for a
collection, as a JSON document.

• Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata, as
JSON data, to PL/SQL function DBMS_SODA.create_collection.

• Checking Whether a Given Collection Exists with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.open_collection to check for the existence of
a given collection. It returns a SQL NULL value if a collection with the specified name does
not exist; otherwise, it returns the collection object.

Chapter 3
Creating a Document Collection with SODA for PL/SQL

3-7

3.3 Opening an Existing Document Collection with SODA for
PL/SQL

You can use PL/SQL function DBMS_SODA.open_collection to open an existing
document collection.

See Also:

OPEN_COLLECTION Function in Oracle Database PL/SQL Packages and
Types Reference for information about PL/SQL function
DBMS_SODA.open_collection

Example 3-4 Opening an Existing Document Collection

This example uses PL/SQL function DBMS_SODA.open_collection to open the
collection named myCollectionName and returns a SODA_COLLECTION_T instance that
represents this collection. If the value returned is NULL then there is no existing
collection named myCollectionName.

DECLARE
 collection SODA_COLLECTION_T;
BEGIN
 collection := DBMS_SODA.open_collection('myCollectionName');
END;
/

3.4 Checking Whether a Given Collection Exists with SODA
for PL/SQL

You can use PL/SQL function DBMS_SODA.open_collection to check for the existence
of a given collection. It returns a SQL NULL value if a collection with the specified name
does not exist; otherwise, it returns the collection object.

See Also:

OPEN_COLLECTION Function in Oracle Database PL/SQL Packages and
Types Reference for information about PL/SQL function
DBMS_SODA.open_collection

Chapter 3
Opening an Existing Document Collection with SODA for PL/SQL

3-8

Example 3-5 Checking for a Collection with a Given Name

This example uses DBMS_SODA.open_collection to try to open an existing collection named
myCollectionName. It prints a message if no such collection exists.

DECLARE
 collection SODA_COLLECTION_T;
BEGIN
 collection := DBMS_SODA.open_collection('myCollectionName');
 IF collection IS NULL THEN
 DBMS_OUTPUT.put_line('Collection does not exist');
 END IF;
END;
/

Related Topics

• Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.create_collection to create a document
collection with the default metadata.

3.5 Discovering Existing Collections with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.list_collection_names to discover existing
collections.

See Also:

LIST_COLLECTION_NAMES Function in Oracle Database PL/SQL Packages and
Types Reference for information about PL/SQL function
DBMS_SODA.list_collection_names

Example 3-6 Printing the Names of All Existing Collections

This example uses PL/SQL function DBMS_SODA.list_collection_names to obtain a list of the
collection names. It then iterates over that list, printing out the names.

DECLARE
 coll_list SODA_COLLNAME_LIST_T;
BEGIN
 coll_list := DBMS_SODA.list_collection_names;
 DBMS_OUTPUT.put_line('Number of collections: ' ||
to_char(coll_list.count));
 DBMS_OUTPUT.put_line('Collection List: ');
 IF (coll_list.count > 0) THEN
 -- Loop over the collection name list
 FOR i IN
 coll_list.first .. coll_list.last
 LOOP
 DBMS_OUTPUT.put_line(coll_list(i));
 END LOOP;
 ELSE

Chapter 3
Discovering Existing Collections with SODA for PL/SQL

3-9

 DBMS_OUTPUT.put_line('No collections found');
 END IF;
END;
/

3.6 Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SODA.drop_collection to drop a document collection.

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database table. In
addition to the documents that are stored in its table, a collection has
metadata, which is also persisted in Oracle Database. Dropping the table
underlying a collection does not also drop the collection metadata.

Note:

Day-to-day use of a typical application that makes use of SODA does not
require that you drop and re-create collections. But if you need to do that for
any reason then this guideline applies.

Do not drop a collection and then re-create it with different metadata if there
is any application running that uses the collection in any way. Shut down any
such applications before re-creating the collection, so that all live SODA
objects are released.

There is no problem just dropping a collection. Any read or write operation on
a dropped collection raises an error. And there is no problem dropping a
collection and then re-creating it with the same metadata. But if you re-create
a collection with different metadata, and if there are any live applications
using SODA objects, then there is a risk that a stale collection is accessed,
and no error is raised in this case.

Note:

Commit all writes to a collection before using DBMS_SODA.drop_collection.
For the drop to succeed, all uncommitted writes to the collection must first be
either committed or rolled back — you must explicitly use SQL COMMIT or
ROLLBACK. Otherwise, an exception is raised.

Chapter 3
Dropping a Document Collection with SODA for PL/SQL

3-10

See Also:

DROP_COLLECTION Function in Oracle Database PL/SQL Packages and Types
Reference for information about PL/SQL function DBMS_SODA.drop_collection

Example 3-7 Dropping a Document Collection

This example uses PL/SQL function DBMS_SODA.drop_collection to drop collection
myCollectionName.

If the collection cannot be dropped because of uncommitted write operations then an
exception is thrown. If the collection is dropped successfully, the returned status is 1;
otherwise, the status is 0. In particular, if a collection with the specified name does not exist,
the returned status is 0 — no exception is thrown.

DECLARE
 status NUMBER := 0;
BEGIN
 status := DBMS_SODA.drop_collection('myCollectionName');
END;
/

Related Topics

• Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write operations,
or groups of them, as a transaction. To commit a transaction, use a SQL COMMIT
statement. If you want to roll back changes, use a SQL ROLLBACK statement.

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys
automatically, unless the collection is configured with client-assigned keys and the input
document provides the key.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method replace_one() or
replace_one_and_get() with nonterminal method key() to uniquely identify a document
to be replaced. You can optionally make use of additional nonterminal methods such as
version() and filter(). You can use nonterminal method acquire_lock() to lock a
document for updating.

3.7 Creating Documents with SODA for PL/SQL
You use a constructor for PL/SQL object type SODA_DOCUMENT_T to create SODA documents.

SODA for PL/SQL represents a document using an instance of PL/SQL object type
SODA_DOCUMENT_T. This object is a carrier of document content and other document
components, such as the document key.

Chapter 3
Creating Documents with SODA for PL/SQL

3-11

Here is an example of the content of a JSON document:

{ "name" : "Alexander",
 "address" : "1234 Main Street",
 "city" : "Anytown",
 "state" : "CA",
 "zip" : "12345"
}

A document has these components:

• Key

• Content

• Creation time stamp

• Last-modified time stamp

• Version

• Media type ("application/json" for JSON documents)

You create a document by invoking one of the SODA_DOCUMENT_T constructors. The
constructors differ according to the content type of the documents they create: JSON,
VARCHAR2, CLOB, or BLOB. Documents with content of data type JSON can be created
only if database initialization parameter compatible is at least 20.

In general, you can write a document of a given content type only to a collection
whose content column has been defined for documents of that type. For example, you
can write (insert or replace) only a document with content type VARCHAR2 to a collection
whose contentColumn has a sqlType value of VARCHAR2.

The only exception to this is that you can write a document of type BLOB to a collection
with a JSON type content column. (The default content type for a collection is JSON if
database initialization parameter compatible is at least 20; otherwise, it is BLOB.)

There are different ways to invoke a document constructor:

• You can provide the document key, as the first argument.

In a collection, each document must have a key. You must provide the key when
you create the document only if you expect to insert the document into a collection
that does not automatically generate keys for inserted documents. By default,
collections are configured to automatically generate document keys.

• You must provide the document content. If you also provide the document key
then the content is the second argument to the constructor.

If you provide only the content then you must specify both the formal and actual
content parameters, separated by the association arrow (=>): j_content =>
actual, v_content => actual, c_content => actual, or b_content => actual,
for content of type JSON, VARCHAR2, CLOB, or BLOB, respectively.

• You can provide the document media type, which defaults to "application/json".
Unless the content type is JSON or you provide all of the parameters (key, content,
and media type) you must specify both the formal and actual media-type
parameters, , separated by the association arrow (=>): media_type => actual. If
the content type is JSON then the media type is always "application/json" — you

Chapter 3
Creating Documents with SODA for PL/SQL

3-12

need not specify it as such, and you cannot specify it as something other than
"application/json" without raising an error.

Parameters that you do not provide explicitly default to NULL.

Providing only the content parameter can be useful for creating documents that you insert
into a collection that automatically generates document keys. Providing only the key and
content can be useful for creating documents that you insert into a collection that has client-
assigned keys. Providing (the content and) the media type can be useful for creating non-
JSON documents (using a media type other than "application/json").

However you invoke a SODA_DOCUMENT_T constructor, doing so sets the components that you
provide (the content, possibly the key, and possibly the media type) to the values you provide
for them. And it sets the values of the creation time stamp, last-modified time stamp, and
version to a SQL NULL value.

Object type SODA_DOCUMENT_T provides getter methods (also known as getters), which each
retrieve a particular component from a document. (Getter get_data_type() actually returns
information about the content component, rather than the component itself.)

Table 3-1 Getter Methods for Documents (SODA_DOCUMENT_T)

Getter Method Description

get_created_on() Get the creation time stamp for the document, as
a VARCHAR2 value.

get_key() Get the unique key for the document, as a
VARCHAR2 value.

get_last_modified() Get the last-modified time stamp for the document,
as a VARCHAR2 value.

get_media_type() Get the media type for the document, as a
VARCHAR2 value.

get_version() Get the document version, as a VARCHAR2 value.

get_json() Get the document content, as a JSON value.

The document content must be JSON data, or else
an error is raised.

get_blob() Get the document content, as a BLOB value.

The document content must be BLOB data, or else
an error is raised.

get_clob() Get the document content, as a CLOB value.

The document content must be CLOB data, or else
an error is raised.

get_varchar2() Get the document content, as a VARCHAR2 value.

The document content must be VARCHAR2 data, or
else an error is raised.

get_data_type() Get the data type of the document content, as a
PLS_INTEGER value. The value is
DBMS_SODA.DOC_VARCHAR2 for VARCHAR2
content, DBMS_SODA.DOC_BLOB for BLOB content,
and DBMS_SODA.DOC_CLOB for CLOB content.

Immediately after you create a document, the getter methods return these values:

Chapter 3
Creating Documents with SODA for PL/SQL

3-13

• Values provided to the constructor

• "application/json", for method get_media_type(), if the media type was not
provided

• NULL for other components

Each content storage data type has an associated content-component getter method.
You must use the getter method that is appropriate to each content storage type:
get_json() for JSON type storage, get_varchar2() for VARCHAR2 storage, get_clob()
for CLOB storage, and get_blob() for BLOB storage. Otherwise, an error is raised.

Example 3-8 creates a SODA_DOCUMENT_T instance, providing only content. The media
type defaults to "application/json", and the other document components default to
NULL.

Example 3-9 creates a SODA_DOCUMENT_T instance, providing the document key and
content. The media type defaults to "application/json", and the other document
components default to NULL.

See Also:

• Overview of SODA Documents in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for an overview of SODA
documents

• SODA Restrictions (Reference) in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for restrictions that apply for
SODA documents

• SODA_COLLECTION_T Type in Oracle Database PL/SQL Packages
and Types Reference for information about object type SODA_DOCUMENT_T
constructors and getter methods

Example 3-8 Creating a Document with JSON Content

This example uses SODA_DOCUMENT_T constructors to create three documents, one of
each content type. The example provides only the document content (which is the
same for each).

The content parameter is different in each case; it specifies the SQL data type to use
to store the content. The first document creation here uses content parameter
j_content, which specifies JSON type content; the second uses v_content, which
specifies VARCHAR2 content; the third uses parameter c_content, which specifies CLOB
content; the fourth uses parameter b_content, which specifies BLOB content.

Note that for the document of data type JSON, the literal VARCHAR2 string input is
wrapped in the JSON constructor. And to print the document content it is serialized to
text using Oracle SQL function json_serialize.

After creating each document, the example uses getter methods to get the document
content. Note that the getter method that is appropriate for each content storage type
is used: get_json() for JSON content, and so on.

If database initialization parameter compatible is at least 20, then the document with
content type JSON is appropriate for writing to the collection created in Example 3-3,

Chapter 3
Creating Documents with SODA for PL/SQL

3-14

because that collection has the default metadata. If compatible is less than 20 then the
document with content type BLOB is appropriate for writing to that collection.

The default metadata indicates JSON document content (only JSON type content is accepted)
in the first case and BLOB content in the second case (only BLOB type content is accepted).
Trying to insert JSON data of the wrong content type into a collection raises an error.

However, as an exception, you can insert a BLOB JSON document into a JSON type collection.
Other than this exception, only a document of the same SQL type can be inserted into a
collection. For example, only a VARCHAR2 JSON document can be inserted into a collection
whose content column is of type VARCHAR2.

DECLARE
 j_doc SODA_DOCUMENT_T;
 v_doc SODA_DOCUMENT_T;
 b_doc SODA_DOCUMENT_T;
 c_doc SODA_DOCUMENT_T;
BEGIN
 -- Create JSON type document
 j_doc := SODA_DOCUMENT_T(j_content => JSON('{"name" : "Alexander"}'));
 DBMS_OUTPUT.put_line('JSON type doc content: ' ||
JSON_SERIALIZE(j_doc.get_json));

 -- Create VARCHAR2 document
 v_doc := SODA_DOCUMENT_T(v_content => '{"name" : "Alexander"}');
 DBMS_OUTPUT.put_line('VARCHAR2 doc content: ' || v_doc.get_varchar2);

 -- Create BLOB document
 b_doc := SODA_DOCUMENT_T(
 b_content => utl_raw.cast_to_raw('{"name" : "Alexander"}'));
 DBMS_OUTPUT.put_line('BLOB doc content: ' ||
 utl_raw.cast_to_varchar2(b_doc.get_blob));

 -- Create CLOB document
 c_doc := SODA_DOCUMENT_T(c_content => '{"name" : "Alexander"}');
 DBMS_OUTPUT.put_line('CLOB doc content: ' || c_doc.get_clob);
END;
/

Example 3-9 Creating a Document with Document Key and JSON Content

This example is similar to Example 3-8, but it provides the document key (myKey) as well as
the document content.

DECLARE
 j_doc SODA_DOCUMENT_T;
 v_doc SODA_DOCUMENT_T;
 b_doc SODA_DOCUMENT_T;
 c_doc SODA_DOCUMENT_T;
BEGIN

 -- Create JSON type document
 j_doc := SODA_DOCUMENT_T('myKey' , j_content => JSON('{"name" :
"Alexander"}'));
 DBMS_OUTPUT.put_line('JSON type doc key: ' || j_doc.get_key);

Chapter 3
Creating Documents with SODA for PL/SQL

3-15

 DBMS_OUTPUT.put_line('JSON doc content: ' ||
JSON_SERIALIZE(j_doc.get_json));

 -- Create VARCHAR2 document
 v_doc := SODA_DOCUMENT_T('myKey' , v_content => '{"name" :
"Alexander"}');
 DBMS_OUTPUT.put_line('VARCHAR2 doc key: ' || v_doc.get_key);
 DBMS_OUTPUT.put_line('VARCHAR2 doc content: ' ||
v_doc.get_varchar2);

 -- Create BLOB document
 b_doc := SODA_DOCUMENT_T('myKey' ,
 b_content =>
utl_raw.cast_to_raw('{"name" : "Alexander"}'));
 DBMS_OUTPUT.put_line('BLOB doc key: ' || b_doc.get_key);
 DBMS_OUTPUT.put_line('BLOB doc content: ' ||
 utl_raw.cast_to_varchar2(b_doc.get_blob));

 -- Create CLOB document
 c_doc := SODA_DOCUMENT_T('myKey' , c_content => '{"name" :
"Alexander"}');
 DBMS_OUTPUT.put_line('CLOB doc key: ' || c_doc.get_key);
 DBMS_OUTPUT.put_line('CLOB doc content: ' || c_doc.get_clob);
END;
/

Related Topics

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method
(member function) insert_one() or insert_one_and_get(). These methods
create document keys automatically, unless the collection is configured with client-
assigned keys and the input document provides the key.

• Finding Documents in Collections with SODA for PL/SQL
You can use SODA_OPERATION_T terminal method get_one() or get_cursor() to
find one or multiple documents in a collection, respectively. You can use terminal
method count() to count the documents in a collection. You can use nonterminal
methods, such as key(), keys(), and filter(), to specify conditions for a find
operation.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method
replace_one() or replace_one_and_get() with nonterminal method key() to
uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() and filter(). You can use
nonterminal method acquire_lock() to lock a document for updating.

• Removing Documents from a Collection with SODA for PL/SQL
You can remove documents from a collection by chaining together
SODA_OPERATION_T method remove() with nonterminal method key(), keys(), or
filter() to identify documents to be removed. You can optionally make use of
additional nonterminal methods such as version().

Chapter 3
Creating Documents with SODA for PL/SQL

3-16

3.8 Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys
automatically, unless the collection is configured with client-assigned keys and the input
document provides the key.

Both method insert_one() and method insert_one_and_get() insert a document into a
collection and automatically set the values of the creation time stamp, last-modified time
stamp, and version (if the collection is configured to include these components and to
generate the version automatically, as is the case by default).

When you insert a document, any document components that currently have NULL values (as
a result of creating the document without providing those component values) are updated to
have appropriate, automatically generated values. Thereafter, other SODA operations on a
document can automatically update the last-modified timestamp and version components.

In addition to inserting the document, insert_one_and_get returns a result document, which
contains the generated document components, such as the key, and which does not contain
the content of the inserted document.

Note:

If the collection is configured with client-assigned document keys (which is not the
default case), and the input document provides a key that identifies an existing
document in the collection, then these methods throw an exception.

Method insert_one_and_get() accepts an optional second argument, hint, whose value is
passed as a hint to the SQL code that underlies SODA. The VARCHAR2 value for the argument
uses the SQL hint syntax (that is, the hint text, without the enclosing SQL comment syntax /
+.../). Use only hint MONITOR (turn on monitoring) or NO_MONITOR (turn off monitoring).

(You can use this to pass any SQL hints, but MONITOR and NO_MONITOR are the useful ones for
SODA, and an inappropriate hint can cause the optimizer to produce a suboptimal query
plan.)

Chapter 3
Inserting Documents into Collections with SODA for PL/SQL

3-17

See Also:

• INSERT_ONE Function in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_COLLECTION_T method
insert_one()

• SODA_COLLECTION_T Type in Oracle Database PL/SQL Packages
and Types Reference for information about SODA_COLLECTION_T method
insert_one_and_get()

• SODA_DOCUMENT_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_DOCUMENT_T getter methods

• Monitoring Database Operations in Oracle Database SQL Tuning Guide
for complete information about monitoring database operations

• MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning
Guide for information about the syntax and behavior of SQL hints
MONITOR and NO_MONITOR

Example 3-10 Inserting a Document into a Collection

This example creates a document and inserts it into a collection using
SODA_COLLECTION_T method insert_one() .

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 status NUMBER;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');
 document :=
 SODA_DOCUMENT_T(
 b_content => utl_raw.cast_to_raw('{"name" : "Alexander"}'));

 -- Insert a document
 status := collection.insert_one(document);
END;
/

Example 3-11 Inserting a Document into a Collection and Getting the Result
Document

This example creates a document and inserts it into a collection using method
insert_one_and_get(). It then gets (and prints) each of the generated components
from the result document (which contains them). To obtain the components it uses
SODA_DOCUMENT_T methods get_key(), get_created_on(), get_last_modified(), and
get_version().

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 ins_doc SODA_DOCUMENT_T;

Chapter 3
Inserting Documents into Collections with SODA for PL/SQL

3-18

BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');
 document :=
 SODA_DOCUMENT_T(
 b_content => utl_raw.cast_to_raw('{"name" : "Alexander"}'));
 ins_doc := collection.insert_one_and_get(document);

 -- Insert the document and get its components
 IF ins_doc IS NOT NULL THEN
 DBMS_OUTPUT.put_line('Inserted document components:');
 DBMS_OUTPUT.put_line('Key: ' || ins_doc.get_key);
 DBMS_OUTPUT.put_line('Creation timestamp: '
 || ins_doc.get_created_on);
 DBMS_OUTPUT.put_line('Last modified timestamp: '
 || ins_doc.get_last_modified);
 DBMS_OUTPUT.put_line('Version: ' || ins_doc.get_version);
 END IF;
END;
/

Related Topics

• Saving Documents Into a Collection with SODA for PL/SQL
You can use SODA_DOCUMENT_T method save() or save_and_get() to save documents
into a collection, which means inserting them if they are new or updating them if they
already belong to the collection. (Such an operation is sometimes called "upserting".)

Related Topics

• Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write operations,
or groups of them, as a transaction. To commit a transaction, use a SQL COMMIT
statement. If you want to roll back changes, use a SQL ROLLBACK statement.

• Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SODA.drop_collection to drop a document collection.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method replace_one() or
replace_one_and_get() with nonterminal method key() to uniquely identify a document
to be replaced. You can optionally make use of additional nonterminal methods such as
version() and filter(). You can use nonterminal method acquire_lock() to lock a
document for updating.

3.9 Saving Documents Into a Collection with SODA for PL/SQL
You can use SODA_DOCUMENT_T method save() or save_and_get() to save documents into a
collection, which means inserting them if they are new or updating them if they already
belong to the collection. (Such an operation is sometimes called "upserting".)

Method save_and_get() is equivalent to insert(), and save_and_get() is equivalent to
insert_one_and_get(), with this difference: If client-assigned keys are used, and if the
document with the specified key already belongs to the collection, that document is replaced
with the input document.

Chapter 3
Saving Documents Into a Collection with SODA for PL/SQL

3-19

When inserting, these methods create the key automatically, unless the collection is
configured with client-assigned keys and the key is provided in the input document.

Method save_and_get() accepts an optional second argument, hint, whose value is
passed as a hint to the SQL code that underlies SODA. The VARCHAR2 value for the
argument uses the SQL hint syntax (that is, the hint text, without the enclosing SQL
comment syntax /*+...*/). Use only hint MONITOR (turn on monitoring) or NO_MONITOR
(turn off monitoring).

(You can use this to pass any SQL hints, but MONITOR and NO_MONITOR are the useful
ones for SODA, and an inappropriate hint can cause the optimizer to produce a
suboptimal query plan.)

See Also:

• Monitoring Database Operations in Oracle Database SQL Tuning Guide
for complete information about monitoring database operations

• MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning
Guide for information about the syntax and behavior of SQL hints
MONITOR and NO_MONITOR

Example 3-12 Saving Documents Into a Collection with SODA for PL/SQL

This example creates a collection and two documents, and saves the documents to
the collection using method save(), inserting them. The example then changes the
content of the documents and saves them again, which replaces the existing
documents.

DECLARE
 coll SODA_COLLECTION_T;
 md VARCHAR2(4000);
 doca SODA_DOCUMENT_T;
 docb SODA_DOCUMENT_T;
 n NUMBER;
BEGIN
 -- Create a collection and print its metadata
 md := '{"keyColumn":{"assignmentMethod":"CLIENT"}}';
 coll := DBMS_SODA.create_collection('SODAPLS_SAVE01', md);
 DBMS_OUTPUT.put_line('Coll: ' ||
 json_query(coll.get_metadata, '$' pretty));

 -- Create two documents.
 doca := SODA_DOCUMENT_T('a', b_content =>
 utl_raw.cast_to_raw('{"a" : "value A" }'));
 docb := SODA_DOCUMENT_T('b', b_content =>
 utl_raw.cast_to_raw('{"b" : "value B" }'));

 -- Save the documents. They are new, so this inserts them.
 n := coll.save(doca);
 DBMS_OUTPUT.put_line('Status: ' || n);
 n := coll.save(docb);
 DBMS_OUTPUT.put_line('Status: ' || n);

Chapter 3
Saving Documents Into a Collection with SODA for PL/SQL

3-20

 -- Rewrite the content of the documents
 doca := SODA_DOCUMENT_T('a', b_content =>
 utl_raw.cast_to_raw('{"a" : "new value A" }'));
 docb := SODA_DOCUMENT_T('b', b_content =>
 utl_raw.cast_to_raw('{"b" : "new value B" }'));

 -- Save the existing documents, replacing them.
 n := coll.save(doca);
 DBMS_OUTPUT.put_line('Status: ' || n);
 n := coll.save(docb);
 DBMS_OUTPUT.put_line('Status: ' || n);
END;
/

Related Topics

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys
automatically, unless the collection is configured with client-assigned keys and the input
document provides the key.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method replace_one() or
replace_one_and_get() with nonterminal method key() to uniquely identify a document
to be replaced. You can optionally make use of additional nonterminal methods such as
version() and filter(). You can use nonterminal method acquire_lock() to lock a
document for updating.

3.10 SODA for PLSQL Read and Write Operations
A SODA_OPERATION_T instance is returned by method find() of SODA_COLLECTION_T. You can
chain together SODA_OPERATION_T methods, to specify read and write operations against a
collection.

Note:

Data type SODA_OPERATION_T was added to SODA for PL/SQL in Oracle Database
18.3. You need that database release or later to use it.

You typically use SODA_OPERATION_T to specify all SODA read operations, and all write
operations other than document insertions and saves into a collection. You chain together
SODA_OPERATION_T nonterminal methods to narrow the scope or otherwise condition or qualify
a read or write operation.

Nonterminal methods return the same SODA_OPERATION_T instance on which they are
invoked, which allows you to chain them together. The nonterminal methods are these:

• acquire_lock() — Lock documents (pessimistic locking).

• as_of_scn() — Access documents as of a given System Change Number (SCN). This
uses Oracle Flashback Query: SELECT AS OF.

Chapter 3
SODA for PLSQL Read and Write Operations

3-21

• as_of_timestamp() — Access documents as of a given date and time. This uses
Oracle Flashback Query: SELECT AS OF.

• filter() — Filter documents using a query-by-example (QBE, also called a filter
specification).

• hint() — Provide a hint, to turn real-time SQL monitoring of queries on and off.

The VARCHAR2 value for the argument uses the SQL hint syntax (that is, the hint
text, without the enclosing SQL comment syntax /*+...*/). Use only hint MONITOR
(turn on monitoring) or NO_MONITOR (turn off monitoring). The hint is simply passed
down to the SQL code that underlies SODA.

(You can use this to pass any SQL hints, but MONITOR and NO_MONITOR are the
useful ones for SODA, and an inappropriate hint can cause the optimizer to
produce a suboptimal query plan.)

• key() — Specify a particular document by its unique key.

• keys() — Specify particular documents by their unique keys.

The maximum number of keys passed as argument must not exceed 1000, or else
a runtime error is raised.

• limit() — Limit how many documents a read operation can return.

• skip() — Specify how many documents to skip when reading, before returning
others.

• version() — Specify a particular version of a specified document.

A SODA_OPERATION_T terminal method at the end of the chain carries out the actual
read or write operation. The terminal methods for read operations are these.

• count() — Count the documents found by the read operation.

• get_cursor() — Retrieve multiple documents. (Get a cursor over read operation
results.)

• get_data_guide() — Obtain a data guide for the documents found by the read
operation.

• get_one() — Retrieve a single document.

The terminal methods for write operations are these:

• remove() — Remove documents from a collection.

• replace_one() — Replace one document in a collection.

• replace_one_and_get() — Replace one document and return the new (result)
document.

Unless documentation states otherwise, you can chain together any nonterminal
methods, and you can end the chain with any terminal method. However, not all
combinations make sense. For example, it does not make sense to chain method
version() together with methods that do not uniquely identify the document, such as
keys().

Related Topics

• Finding Documents in Collections with SODA for PL/SQL
You can use SODA_OPERATION_T terminal method get_one() or get_cursor() to
find one or multiple documents in a collection, respectively. You can use terminal

Chapter 3
SODA for PLSQL Read and Write Operations

3-22

method count() to count the documents in a collection. You can use nonterminal
methods, such as key(), keys(), and filter(), to specify conditions for a find operation.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method replace_one() or
replace_one_and_get() with nonterminal method key() to uniquely identify a document
to be replaced. You can optionally make use of additional nonterminal methods such as
version() and filter(). You can use nonterminal method acquire_lock() to lock a
document for updating.

• Removing Documents from a Collection with SODA for PL/SQL
You can remove documents from a collection by chaining together SODA_OPERATION_T
method remove() with nonterminal method key(), keys(), or filter() to identify
documents to be removed. You can optionally make use of additional nonterminal
methods such as version().

See Also:

• Using Oracle Flashback Query (SELECT AS OF) in Oracle Database SQL
Language Reference for information about Oracle Flashback Query

• SODA_OPERATION_T Type in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_OPERATION_T, including each of its
methods

• Monitoring Database Operations in Oracle Database SQL Tuning Guide for
complete information about monitoring database operations

• MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning Guide for
information about the syntax and behavior of SQL hints MONITOR and
NO_MONITOR

• SODA Restrictions (Reference) in Oracle Database Introduction to Simple
Oracle Document Access (SODA) for information about SODA restrictions

3.11 Finding Documents in Collections with SODA for PL/SQL
You can use SODA_OPERATION_T terminal method get_one() or get_cursor() to find one
or multiple documents in a collection, respectively. You can use terminal method count() to
count the documents in a collection. You can use nonterminal methods, such as key(),
keys(), and filter(), to specify conditions for a find operation.

You can use nonterminal SODA_OPERATION_T method hint() to provide a SQL hint to turn
SQL monitoring on or off. You can use nonterminal methods as_of_scn() and
as_of_timestamp() to access documents as of a given system change number (SCN) or a
given date and time.

Note:

Data type SODA_OPERATION_T was added to SODA for PL/SQL in Oracle Database
18.3. You need that database release or later to use it.

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-23

See Also:

• FIND Function in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_COLLECTION_T method find()

• SODA_OPERATION_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about data type SODA_OPERATION_T and
its methods

• SODA_DOCUMENT_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_DOCUMENT_T getter methods

• JSON_QUERY in Oracle Database SQL Language Reference for
information about SQL/JSON function json_query

• Monitoring Database Operations in Oracle Database SQL Tuning Guide
for complete information about monitoring database operations

• MONITOR and NO_MONITOR Hints in Oracle Database SQL Tuning
Guide for information about the syntax and behavior of SQL hints
MONITOR and NO_MONITOR

Example 3-13 Finding All Documents in a Collection Using SODA For PL/SQL

This example uses SODA_COLLECTION_T method find() and SODA_OPERATION_T
method getCursor() to obtain a cursor for a query result list that contains each
document in a collection. It then uses the cursor in a WHILE statement to get and print
the content of each document in the result list, as a string. Finally, it closes the cursor.

It uses SODA_DOCUMENT_T methods get_key(), get_blob(), get_created_on(),
get_last_modified(), and get_version(), to get the document components, which it
prints. It passes the document content to SQL/JSON function json_query to pretty-
print (using keyword PRETTY).

Note:

To avoid resource leaks, close any cursor that you no longer need.

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 cur SODA_CURSOR_T;
 status BOOLEAN;
BEGIN
 -- Open the collection to be queried
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Open the cursor to fetch the documents.
 cur := collection.find().get_cursor();

 -- Loop through the cursor
 WHILE cur.has_next

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-24

 LOOP
 document := cur.next;
 IF document IS NOT NULL THEN
 DBMS_OUTPUT.put_line('Document components:');
 DBMS_OUTPUT.put_line('Key: ' || document.get_key);
 DBMS_OUTPUT.put_line('Content: '
 || json_query(document.get_blob, '$' PRETTY));
 DBMS_OUTPUT.put_line('Creation timestamp: '
 || document.get_created_on);
 DBMS_OUTPUT.put_line('Last modified timestamp: '
 || document.get_last_modified);
 DBMS_OUTPUT.put_line('Version: ' || document.get_version);
 END IF;
 END LOOP;

 -- IMPORTANT: You must close the cursor, to release resources.
 status := cur.close;
END;
/

Example 3-14 Finding the Unique Document That Has a Given Document Key Using
SODA For PL/SQL

This example uses SODA_COLLECTION_T methods find(), key(), and get_one() to find the
unique document whose key is "key1".

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Find a document using a key
 document := collection.find().key('key1').get_one;

 IF document IS NOT NULL THEN
 DBMS_OUTPUT.put_line('Document components:');
 DBMS_OUTPUT.put_line('Key: ' || document.get_key);
 DBMS_OUTPUT.put_line('Content: '
 || JSON_QUERY(document.get_blob, '$' PRETTY));
 DBMS_OUTPUT.put_line('Creation timestamp: '
 || document.get_created_on);
 DBMS_OUTPUT.put_line('Last modified timestamp: '
 || document.get_last_modified);
 DBMS_OUTPUT.put_line('Version: ' || document.get_version);
 END IF;
END;
/

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-25

Example 3-15 Finding Multiple Documents with Specified Document Keys
Using SODA For PL/SQL

This example defines key list myKeys, with (string) keys "key1", "key2", and "key3". It
then finds the documents that have those keys, and it prints their components.
SODA_COLLECTION_T method keys() specifies the documents with the given keys.

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 cur SODA_CURSOR_T;
 status BOOLEAN;
 myKeys SODA_KEY_LIST_T;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Set the keys list
 myKeys := SODA_KEY_LIST_T('key1', 'key2', 'key3');

 -- Find documents using keys
 cur := collection.find().keys(myKeys).get_cursor;

 -- Loop through the cursor
 WHILE cur.has_next
 LOOP
 document := cur.next;
 IF document IS NOT NULL THEN
 DBMS_OUTPUT.put_line('Document components:');
 DBMS_OUTPUT.put_line('Key: ' || document.get_key);
 DBMS_OUTPUT.put_line('Content: '
 || json_query(document.get_blob, '$' PRETTY));
 DBMS_OUTPUT.put_line('Creation timestamp: '
 || document.get_created_on);
 DBMS_OUTPUT.put_line('Last modified timestamp: '
 || document.get_last_modified);
 DBMS_OUTPUT.put_line('Version: ' || document.get_version);
 END IF;
 END LOOP;
 status := cur.close;
END;
/

Example 3-16 Finding Documents with a Filter Specification Using SODA For
PL/SQL

SODA_OPERATION_T method filter() provides a powerful way to filter JSON
documents in a collection. Its parameter is a JSON query-by-example (QBE, also
called a filter specification).

The syntax of filter specifications is an expressive pattern-matching language for
JSON documents. This example uses only a very simple QBE, just to indicate how you
make use of one in SODA for PL/SQL.

This example does the following:

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-26

1. Creates a filter specification that looks for all JSON documents whose name field has
value "Alexander".

2. Uses the filter specification to find the matching documents.

3. Prints the components of each document.

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 cur SODA_CURSOR_T;
 status BOOLEAN;
 qbe VARCHAR2(128);
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Define the filter specification (QBE)
 qbe := '{"name" : "alexander"}';

 -- Open a cursor for the filtered documents
 cur := collection.find().filter(qbe).get_cursor;

 -- Loop through the cursor
 WHILE cur.has_next
 LOOP
 document := cur.next;
 IF document IS NOT NULL THEN
 DBMS_OUTPUT.put_line('Document components:');
 DBMS_OUTPUT.put_line('Key: ' || document.get_key);
 DBMS_OUTPUT.put_line('Content: '
 || JSON_QUERY(document.get_blob, '$' PRETTY));
 DBMS_OUTPUT.put_line('Creation timestamp: '
 || document.get_created_on);
 DBMS_OUTPUT.put_line('Last modified timestamp: '
 || document.get_last_modified);
 DBMS_OUTPUT.put_line('Version: ' || document.get_version);
 END IF;
 END LOOP;
 status := cur.close;
END;
/

See Also:

• Overview of SODA Filter Specifications (QBEs) in Oracle Database Introduction
to Simple Oracle Document Access (SODA) for an introduction to SODA filter
specifications

• SODA Filter Specifications (Reference) in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for reference information about
SODA filter specifications

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-27

Example 3-17 Specifying Pagination Queries with Methods skip() and limit() Using SODA For
PL/SQL

This example uses SODA_OPERATION_T methods filter(), skip() and limit() in a
pagination query.

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 cur SODA_Cursor_T;
 status BOOLEAN;
 qbe VARCHAR2(128);
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Define the filter
 qbe := '{"name" : "Alexander"}';

 -- Find all documents that match the QBE, skip over the first 1000
 -- of them, limit the number of returned documents to 100
 cur := collection.find().filter(qbe).skip(1000).limit(100).get_cursor;

 -- Loop through the cursor
 WHILE cur.has_next
 LOOP
 document := cur.next;
 IF document IS NOT NULL THEN
 DBMS_OUTPUT.put_line('Document components:');
 DBMS_OUTPUT.put_line('Key: ' || document.get_key);
 DBMS_OUTPUT.put_line('Content: ' ||
 JSON_QUERY(document.get_blob, '$' PRETTY));
 DBMS_OUTPUT.put_line('Creation timestamp: ' ||
 document.get_created_on);
 DBMS_OUTPUT.put_line('Last modified timestamp: ' ||
 document.get_last_modified);
 DBMS_OUTPUT.put_line('Version: ' || document.get_version);
 END IF;
 END LOOP;
 status := cur.close;
END;
/

Example 3-18 Specifying Document Version Using SODA For PL/SQL

This example uses SODA_OPERATION_T method version() to specify the document
version. This is useful for implementing optimistic locking, when used with the terminal
methods for write operations.

You typically use version() together with method key(), which specifies the
document. You can also use version() with methods keyLike() and filter(),
provided they identify at most one document.

DECLARE
 collection SODA_COLLECTION_T;

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-28

 document SODA_DOCUMENT_T;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Find a particular version of the document that has a given key
 document := collection.find().key('key1').version('version1').get_one;

 IF document IS NOT NULL THEN
 DBMS_OUTPUT.put_line('Document components:');
 DBMS_OUTPUT.put_line('Key: ' || document.get_key);
 DBMS_OUTPUT.put_line('Content: ' ||
 JSON_QUERY(document.get_blob, '$' PRETTY));
 DBMS_OUTPUT.put_line('Creation timestamp: '
 || document.get_created_on);
 DBMS_OUTPUT.put_line('Last modified timestamp: '
 || document.get_last_modified);
 DBMS_OUTPUT.put_line('Version: ' || document.get_version);
 END IF;
END;
/

Example 3-19 Counting the Number of Documents Found

This example uses SODA_OPERATION_T method count() to get a count of all of the documents
in the collection. It then gets a count of all of the documents that are returned by a filter
specification (QBE).

DECLARE
 collection SODA_COLLECTION_T;
 num_docs NUMBER;
 qbe VARCHAR2(128);
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Count of all documents in the collection
 num_docs := collection.find().count;
 DBMS_OUTPUT.put_line('Count (all): ' || num_docs);

 -- Set the filter
 qbe := '{"name" : "Alexander"}';

 -- Count of all documents in the collection that match
 -- a filter spec
 num_docs := collection.find().filter(qbe).count;
 DBMS_OUTPUT.put_line('Count (filtered): ' || num_docs);
/

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-29

Example 3-20 Retrieving the Documents of a Collection at a Time in the Past
(Flashback) Using SODA For PL/SQL

This code uses SODA_OPERATION_T method as_of_timestamp() to open a cursor for
the documents that were in collection myCollectionName on April 27th, 2021 at UTC
time 5:00, that is, the time represented by ISO 8601 date-time string
2021-04-27T05:00:00Z.

DECLARE
 coll SODA_COLLECTION_T;
 cur SODA_CURSOR_T;
 b BOOLEAN;
BEGIN
 -- Open the collection to be queried
 coll := DBMS_SODA.open_collection('myCollectionName');

 -- Specify SCN to retrieve documents as it existed then
 cur := coll.find().as_of_timestamp('2021-04-27T05:00:00Z').get_cursor;
 b := cur.close;
END;
/

Similarly, this code uses SODA_OPERATION_T method as_of_scn() to access the
documents present at a particular time using an Oracle Database system change
number (SCN), which is a logical, internal time stamp.

DECLARE
 coll SODA_COLLECTION_T;
 cur SODA_CURSOR_T;
 b BOOLEAN;
BEGIN
 -- Open the collection to be queried
 coll := DBMS_SODA.open_collection('myCollectionName');

 -- Specify SCN to retrieve documents as it existed then
 cur := coll.find().as_of_scn(2068287).get_cursor;
 b := cur.close;
END;
/

Example 3-21 Using Full-Text Search To Find Documents in a Heterogeneous
Collection Using SODA For PL/SQL

This example uses QBE operator $textContains to perform a full-text search of a
heterogeneous collection, which is one that has the media type column. For example,
Microsoft Word, Portable Document Format (PDF), and plain-text documents can all
be searched using $textContains.

(You use QBE operator $contains, not $textContains, to perform full-text search of a
collection of JSON documents.)

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-30

The search pattern in this example is Rogers, which means search for that literal text
anywhere in a document of collection myTextCollection.

DECLARE
 coll SODA_COLLECTION_T;
 cur SODA_CURSOR_T;
 qbe VARCHAR2(100);
 b BOOLEAN;
BEGIN
 -- Open the collection to be queried
 coll := DBMS_SODA.open_collection('myTextCollection');

 -- Use $textContains operator to specify the subtring
 qbe := '{"$textContains" : "Rogers"}';
 cur := coll.find().filter(qbe).get_cursor;
 b := cur.close;
END;
/

The syntax of the search-pattern value for $textContains is the same as that for SQL
function contains, and the resulting behavior is the same. This means, for instance, that you
can query for text that is near some other text, or query use fuzzy pattern-matching. (If the
search-pattern argument contains a character or a word that is reserved with respect to
Oracle Text search then you must escape that character or word.)

In order to use operator $textContains to search a collection, you must first have defined an
Oracle Text search index on the content column of the collection, using SQL. This SQL code
does that; it creates index mySearchIndex on content column myContentColumn of collection
myTextCollection.

CREATE SEARCH INDEX mySearchIndex ON
 myTextCollection(myContentColumn)

Related Topics

• SODA for PLSQL Read and Write Operations
A SODA_OPERATION_T instance is returned by method find() of SODA_COLLECTION_T. You
can chain together SODA_OPERATION_T methods, to specify read and write operations
against a collection.

See Also:

• Overview of SODA Document Collections in Oracle Database Introduction to
Simple Oracle Document Access (SODA)

• Media Type Column Name in Oracle Database Introduction to Simple Oracle
Document Access (SODA)

• CREATE SEARCH INDEX in Oracle Text Reference

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-31

3.12 Replacing Documents in a Collection with SODA for
PL/SQL

You can chain together SODA_OPERATION_T replace-operation method replace_one()
or replace_one_and_get() with nonterminal method key() to uniquely identify a
document to be replaced. You can optionally make use of additional nonterminal
methods such as version() and filter(). You can use nonterminal method
acquire_lock() to lock a document for updating.

Note:

Data type SODA_OPERATION_T was added to SODA for PL/SQL in Oracle
Database 18.3. You need that database release or later to use it.

In addition to replacing the content, methods replace_one() and
replace_one_and_get() update the values of the last-modified timestamp and the
version. Replacement does not change the document key or the creation timestamp.

See Also:

• FIND Function in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_COLLECTION_T method find()

• SODA_OPERATION_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about data type SODA_OPERATION_T and
its methods

• REPLACE_ONE Function in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_OPERATION_T method
replace_one()

• REPLACE_ONE_AND_GET Function in Oracle Database PL/SQL
Packages and Types Reference for information about SODA_OPERATION_T
method replace_one_and_get()

• ACQUIRE_LOCK Function in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_OPERATION_T method
acquire_lock()

• SODA_DOCUMENT_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_DOCUMENT_T getter methods

Example 3-22 Replacing a Document, Given Its Key, and Getting the Result Document Using
SODA For PL/SQL

This example replaces a document in a collection, given its key. It then gets (and
prints) the key and the generated components from the result document. To obtain the

Chapter 3
Replacing Documents in a Collection with SODA for PL/SQL

3-32

components it uses SODA_DOCUMENT_T methods get_key(), get_created_on(),
get_last_modified(), and get_version().

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 new_doc SODA_DOCUMENT_T;
BEGIN
 collection := DBMS_SODA.open_collection('myCollectionName');
 document := SODA_DOCUMENT_T(
 b_content => utl_raw.cast_to_raw('{"name" : "Sriky"}'));
 new_doc := collection.find().key('key1').replace_one_and_get(document);

 IF new_doc IS NOT NULL THEN
 DBMS_OUTPUT.put_line('Document components:');
 DBMS_OUTPUT.put_line('Key: ' || new_doc.get_key);
 DBMS_OUTPUT.put_line('Creation timestamp: ' || new_doc.get_created_on);
 DBMS_OUTPUT.put_line('Last modified timestamp: ' ||
 new_doc.get_last_modified);
 DBMS_OUTPUT.put_line('Version: ' || new_doc.get_version);
 END IF;
END;
/

Example 3-23 Replacing a Particular Version of a Document Using SODA For PL/SQL

To implement optimistic locking when replacing a document, you can chain together
methods key() and version(), as in this example. The write operation
(replace_one_and_get) optimistically tries to modify the latest version known (version1,
here).

If the write were to fail (returning NULL) because some other transaction modified the
document since we last read it, then we would need to repeatedly try again until writing
succeeds: reread the document, get its new version, and specify that version in a new write
attempt. This example shows only a single write attempt.

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 new_doc SODA_DOCUMENT_T;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Replace content of version 'version1' of the document that has key 'key1'
 new_doc := SODA_DOCUMENT_T(
 b_content => utl_raw.cast_to_raw('{"name" : "Sriky"}'));
 document :=
collection.find().key('key1').version('version1').replace_one_and_get(new_doc);

 IF document IS NOT NULL THEN
 DBMS_OUTPUT.put_line('Document components:');
 DBMS_OUTPUT.put_line('Key: ' || document.get_key);
 DBMS_OUTPUT.put_line('Content: ' ||
 JSON_QUERY(document.get_blob, '$' PRETTY));

Chapter 3
Replacing Documents in a Collection with SODA for PL/SQL

3-33

 DBMS_OUTPUT.put_line('Creation timestamp: ' || document.get_created_on);
 DBMS_OUTPUT.put_line('Last modified timestamp: ' ||
 document.get_last_modified);
 DBMS_OUTPUT.put_line('Version: ' || document.get_version);
 END IF;
END;
/

Example 3-24 Locking a Document For Update (Replacement) Using SODA For
PL/SQL

This example uses nonterminal method acquire_lock() to lock a document while
replacing it. The document is selected by its key. Method acquire_lock() provides
pessimistic locking, which prevents other users from interfering with the update
operation. A commit or a rollback releases the lock. The example rolls back the
transaction for the operation if any error was raised.

DECLARE
 coll SODA_COLLECTION_T;
 doc1 SODA_DOCUMENT_T;
 doc2 SODA_DOCUMENT_T;
 k VARCHAR2(255) := 'key-0';
 n NUMBER;
BEGIN
 coll := DBMS_SODA.open_collection('myCollectionName');

 -- Get the document with a lock, using its key.
 doc1 := coll.find().key(k).acquire_lock().get_One;

 -- Construct a new, replacement document.
 doc2 := SODA_DOCUMENT_T(
 key => k,
 b_content => utl_raw.cast_to_raw('{"name" : "Scott", "age" : 35}'));

 -- Replace the document, specifying its key.
 n := coll.replace_one(k, doc2);

 -- Commit the transaction, releasing the lock.
 COMMIT;
 DBMS_OUTPUT.put_line('Transaction is committed');

-- Catch exceptions and roll back if an error was raised.
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line (SQLERRM);
 ROLLBACK;
 DBMS_OUTPUT.put_line('Transaction has been rolled back');
END;
/

Chapter 3
Replacing Documents in a Collection with SODA for PL/SQL

3-34

Related Topics

• SODA for PLSQL Read and Write Operations
A SODA_OPERATION_T instance is returned by method find() of SODA_COLLECTION_T. You
can chain together SODA_OPERATION_T methods, to specify read and write operations
against a collection.

• Saving Documents Into a Collection with SODA for PL/SQL
You can use SODA_DOCUMENT_T method save() or save_and_get() to save documents
into a collection, which means inserting them if they are new or updating them if they
already belong to the collection. (Such an operation is sometimes called "upserting".)

• Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write operations,
or groups of them, as a transaction. To commit a transaction, use a SQL COMMIT
statement. If you want to roll back changes, use a SQL ROLLBACK statement.

Related Topics

• Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write operations,
or groups of them, as a transaction. To commit a transaction, use a SQL COMMIT
statement. If you want to roll back changes, use a SQL ROLLBACK statement.

• Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SODA.drop_collection to drop a document collection.

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys
automatically, unless the collection is configured with client-assigned keys and the input
document provides the key.

3.13 Removing Documents from a Collection with SODA for
PL/SQL

You can remove documents from a collection by chaining together SODA_OPERATION_T method
remove() with nonterminal method key(), keys(), or filter() to identify documents to be
removed. You can optionally make use of additional nonterminal methods such as version().

Note:

Data type SODA_OPERATION_T was added to SODA for PL/SQL in Oracle Database
18.3. You need that database release or later to use it.

Chapter 3
Removing Documents from a Collection with SODA for PL/SQL

3-35

See Also:

• FIND Function in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_COLLECTION_T method find()

• SODA_OPERATION_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about data type SODA_OPERATION_T and
its methods

• REMOVE Function in Oracle Database PL/SQL Packages and Types
Reference for information about SODA_OPERATION_T method remove()

• REMOVE_ONE Function in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_COLLECTION_T method
remove_one()

• SODA_DOCUMENT_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_DOCUMENT_T getter methods

Example 3-25 Removing a Document from a Collection Using a Document Key

This example removes the document whose document key is "key1". The removal
status (1 if the document was removed; 0 if not) is returned and printed.

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 status NUMBER;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Remove document that has key 'key1'
 status := collection.find().key('key1').remove;

 -- Count is 1 if document was found
 IF status = 1 THEN
 DBMS_OUTPUT.put_line('Document was removed!');
 END IF;
END;
/

Example 3-26 Removing a Particular Version of a Document

To implement optimistic locking when removing a document, you can chain together
methods key() and version(), as in this example.

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 status NUMBER;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

Chapter 3
Removing Documents from a Collection with SODA for PL/SQL

3-36

 -- Remove version 'version1' of the document that has key 'key1'.
 status := collection.find().key('key1').version('version1').remove;

 -- Count is 1, if specified version of document with key 'key1' is found
 IF status = 1 THEN
 DBMS_OUTPUT.put_line('Document was removed!');
 END IF;
END;
/

Example 3-27 Removing Documents from a Collection Using Document Keys

This example removes the documents whose keys are key1, key2, and key3.

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 cur SODA_CURSOR_T;
 num_docs NUMBER;
 myKeys SODA_KEY_LIST_T;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Define the keys list
 myKeys := SODA_KEY_LIST_T('key1','key2','key3');

 -- Remove documents using keys
 num_docs := collection.find().keys(myKeys).remove;

 DBMS_OUTPUT.put_line('Number of documents removed: ' || num_docs);
END;
/

Example 3-28 Removing JSON Documents from a Collection Using a Filter

This example uses a filter to remove the JSON documents whose greeting field has value
"hello". It then prints the number of documents removed.

DECLARE
 collection SODA_COLLECTION_T;
 num_docs NUMBER;
 qbe VARCHAR2(128);
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Define the filter specification
 qbe := '{ "greeting" : "hello" }';

 -- Get a count of all documents in the collection that match the QBE
 num_docs := collection.find().filter(qbe).remove;
 DBMS_OUTPUT.put_line('Number of documents removed: ' || num_docs);

Chapter 3
Removing Documents from a Collection with SODA for PL/SQL

3-37

END;
/

Related Topics

• SODA for PLSQL Read and Write Operations
A SODA_OPERATION_T instance is returned by method find() of
SODA_COLLECTION_T. You can chain together SODA_OPERATION_T methods, to
specify read and write operations against a collection.

3.14 Truncating a Collection (Removing All Documents) with
SODA for PL/SQL

You can use SODA_COLLECTION_T method truncate() to empty, or truncate, a
collection, which means remove all of its documents.

Example 3-29 Truncating a Collection

This example uses SODA_COLLECTION_T method truncate() to remove all documents
from collection.

DECLARE
 collection SODA_COLLECTION_T;
 document SODA_DOCUMENT_T;
 status NUMBER;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Truncate the collection
 status := collection.truncate;

 -- Count is 1 if document was found
 IF status = 1 THEN
 DBMS_OUTPUT.put_line('Collection was truncated!');
 END IF;
END;

3.15 Indexing the Documents in a Collection with SODA for
PL/SQL

You index the documents in a SODA collection with SODA_COLLECTION_T method
create_index(). Its input parameter is a textual JSON index specification. This can

Chapter 3
Truncating a Collection (Removing All Documents) with SODA for PL/SQL

3-38

specify support for B-tree, spatial, full-text, and ad hoc indexing, and it can specify support for
a JSON data guide.

Note:

SODA for PL/SQL support for indexing was added in Oracle Database 18.3. You
need that database release or later to use this SODA feature.

A JSON search index is used for full-text and ad hoc structural queries, and for persistent
recording and automatic updating of JSON data-guide information.

An Oracle Spatial and Graph index is used for GeoJSON (spatial) data.

You can drop an index on a SODA collection with SODA_COLLECTION_T method drop_Index().

You can obtain an index specification or all index specifications for a collection, using
SODA_COLLECTION_T method get_index() or list_indexes(), respectively. The value
returned by method list_indexes() is an instance of data type SODA_INDEX_LIST_T, which is
a PL/SQL collection of VARCHAR2 index specifications.

For method get_index() you provide the index name, and optionally the relevant database
schema name, as arguments. (The values used for the schema and index names are
identifiers in the data dictionary. In particular, they must follow the same letter case, so if they
were created in SQL without using any double quotation marks then they must be
uppercase.)

See Also:

• Overview of SODA Indexing in Oracle Database Introduction to Simple Oracle
Document Access (SODA) for an overview of using SODA indexing

• SODA Index Specifications (Reference) in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for information about SODA index
specifications

• JSON Search Index for Ad Hoc Queries and Full-Text Search in Oracle
Database JSON Developer’s Guide for information about JSON search indexes

• Persistent Data-Guide Information: Part of a JSON Search Index in Oracle
Database JSON Developer’s Guide for information about persistent data-guide
information as part of a JSON search index

• Using GeoJSON Geographic Data in Oracle Database JSON Developer’s
Guide for information about spatial indexing of GeoJSON data

• Database Object Naming Rules in Oracle Database SQL Language Reference
for information about database identifier syntax

Chapter 3
Indexing the Documents in a Collection with SODA for PL/SQL

3-39

Example 3-30 Creating a B-Tree Index for a JSON Field with SODA for PL/SQL

This example creates a B-tree non-unique index for numeric field address.zip of the
JSON documents in collection myCollectionName.

DECLARE
 collection SODA_COLLECTION_T;
 spec VARCHAR2(700);
 status NUMBER;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Define the index specification
 spec := '{"name" : "ZIPCODE_IDX",
 "fields" : [{"path" : "address.zip",
 "datatype" : "number",
 "order" : "asc"}]}';
 -- Create the index
 status := collection.create_index(spec);
 DBMS_OUTPUT.put_Line('Status: ' || status);
END;
/

Example 3-31 JSON Search Indexing with SODA for PL/SQL

This example indexes the documents in collection myCollectionName for ad hoc
queries and full-text search (queries using QBE operator $contains), and it
automatically accumulates and updates data-guide information about your JSON
documents (aggregate structural and type information). The index specification has
only field name (no field fields).

DECLARE
 collection SODA_COLLECTION_T;
 spec VARCHAR2(700);
 status NUMBER;
BEGIN
 -- Open the collection
 collection := DBMS_SODA.open_collection('myCollectionName');

 -- Define the index specification
 indexSpec := '{"name" : "SEARCH_AND_DATA_GUIDE_IDX"}';

 -- Create the index
 status := collection.create_index(indexSpec);
 DBMS_OUTPUT.put_Line('Status: ' || status);
END;
/

Chapter 3
Indexing the Documents in a Collection with SODA for PL/SQL

3-40

The simple index specification it uses is equivalent to this one, which makes explicit the
default values:

{"name" : "SEARCH_AND_DATA_GUIDE_IDX",
 "dataguide" : "on",
 "search_on" : "text_value"}

If you instead wanted only ad hoc (search) indexing then you would explicitly specify a value
of "off" for field dataguide. If you instead wanted only data-guide support then you would
explicitly specify a value of "none" for field search_on.

Note:

To create a data guide-enabled JSON search index, or to data guide-enable an
existing JSON search index, you need database privilege CTXAPP and Oracle
Database Release 12c (12.2.0.1) or later.

Example 3-32 Dropping an Index with SODA for PL/SQL

This example uses SODA_COLLECTION_T method drop_index() to drop index myIndex on
collection myCollectionName.

DECLARE
 coll SODA_COLLECTION_T;
 status NUMBER;
BEGIN
 -- Open the collection
 coll := dbms_soda.open_Collection('myCollectionName');

 -- Drop the index using name
 status := coll.drop_index('myIndex');
 DBMS_OUTPUT.put_Line('Status: ' || status);
END;
/

Example 3-33 Getting an Index Specification with SODA for PL/SQL

This example uses method get_index() to get the specification used to define the index
named ZIPCODE_IDX in database schema (user name) MY_SCHEMA for the documents in
collection myCollectionName. Each of these names must be written just as it appears in the
data dictionary.

DECLARE
 spec VARCHAR2(1000);
 coll SODA_Collection_T;
BEGIN
 coll := DBMS_SODA.open_collection('myCollectionName');
 spec := coll.get_index('ZIPCODE_IDX', 'MY_SCHEMA');
 DBMS_OUTPUT.put_line(json_query(spec, '$' pretty));
END;
/

Chapter 3
Indexing the Documents in a Collection with SODA for PL/SQL

3-41

Example 3-34 Getting All Index Specifications For a Collection with SODA for
PL/SQL

This example uses method list_indexes() to retrieve, in variable idx, all index
specifications defined for the documents in collection myCollectionName. It then prints
them, along with their count (obtained using method count for data type
SODA_INDEX_LIST_T).

DECLARE
 coll SODA_COLLECTION_T;
 idx SODA_INDEX_LIST_T;
BEGIN
 coll := DBMS_SODA.open_collection('myCollectionName');
 idx := coll.list_indexes;
 DBMS_OUTPUT.put_line('Number of indexes: ' || idx.COUNT);

 if (idx.COUNT <> 0) then
 for i in idx.FIRST..idx.LAST
 loop
 DBMS_OUTPUT.put_line('Index ' || i || ': ');
 DBMS_OUTPUT.put_line(json_query(idx(i), '$' pretty));
 end loop;
 else
 DBMS_OUTPUT.put_line('No indexes defined on this collection');
 end if;
END;
/

3.16 Getting a Data Guide for a Collection with SODA for
PL/SQL

You can use SODA_COLLECTION_T method get_data_guide() or terminal
SODA_OPERATION_T method get_data_guide() to obtain a data guide for a collection. A
data guide is a JSON document that summarizes the structural and type information
of the JSON documents in the collection. It records metadata about the fields used in
those documents.

Note:

SODA for PL/SQL support for JSON data guide was added in Oracle
Database 18.3. You need that database release or later to use this SODA
feature.

There are two alternative ways to create a data guide for a collection, using two
different methods named get_data_guide():

• Use terminal SODA_OPERATION_T method get_data_guide() together with
operation sample() or a query-by-example (QBE) filter() operation. This
creates a data guide dynamically from scratch, for only the documents selected by

Chapter 3
Getting a Data Guide for a Collection with SODA for PL/SQL

3-42

your query. You can thus limit the set of documents on which the data guide is based.
Example 3-35 illustrates this.

(This method corresponds to using SQL function json_dataguide.)

• Use SODA_COLLECTION_T method get_data_guide(). This always creates a data guide
based on all documents in the collection. Example 3-36 illustrates this.

This method makes use of persistent data-guide information that is stored as part of a
JSON search index, so before you can use this method you must first create a data
guide-enabled JSON search index on the collection. Example 3-31 shows how to do that.
The data-guide information in the index is persistent, and is updated automatically as
new JSON content is added.

(This method corresponds to using PL/SQL function get_index_dataguide.)

The index-based SODA_COLLECTION_T method incurs an ongoing cost of updating relevant
data persistently: document writes (creation and updating) entail index updates. But because
data-guide information is readily available in the index, it need not be gathered from scratch
when generating the data-guide document.

Because the SODA_OPERATION_T method starts from scratch each time, a typical use of it
involves applying the method to only a random sample of documents or to only the
documents that satisfy some filter (QBE). You can use SODA_OPERATION_T method sample()
to obtain a random sample, as shown in Example 3-35.

See Also:

• JSON Data Guide in Oracle Database JSON Developer’s Guide

• GET_DATA_GUIDE Function for type SODA_OPERATION_T in Oracle Database
PL/SQL Packages and Types Reference

• GET_DATA_GUIDE Function for type SODA_COLLECTION_T in Oracle Database
PL/SQL Packages and Types Reference

• SELECT statement, sample_clause, in Oracle Database SQL Language
Reference for information about using SQL to select a sample of data

Example 3-35 Creating a Data Guide Dynamically with SODA for PL/SQL

This example uses SODA_OPERATION_T terminal method get_data_guide(), together with
nonterminal operation sample()1, to obtain a data guide for a random sample of documents
in collection MyCollectionName. The percent chance for any given document to be included in
the sample is 40% (argument value 40).

The example pretty-prints the content of the data-guide document in the flat format. Finally, it
frees the temporary LOB used for the data-guide document.

You use operation sample() only for read operations — it is ignored for write operations.
Creating a dynamic data guide is a typical use case for sample(). You can also use it with
SODA_OPERATION_T terminal method get_cursor().

1 Operation sample() corresponds to the sample_clause of a SQL SELECT statement.

Chapter 3
Getting a Data Guide for a Collection with SODA for PL/SQL

3-43

Another common way to limit the documents represented by a dynamically created
data guide, besides using a random sample, is to use a query-by-example (QBE)
filter() operation in place of operation sample().

DECLARE
 coll SODA_COLLECTION_T;
 qbe VARCHAR2(100);
 dataguide CLOB;
 dgflag PLS_INTEGER;
 dgformat PLS_INTEGER;
BEGIN
 -- Open the collection.
 coll := DBMS_SODA.open_Collection('myCollectionName');

 dgflag := DBMS_SODA.DATAGUIDE_PRETTY;
 dgformat := DBMS_SODA.DATAGUIDE_FORMAT_FLAT;

 -- Get dynamic data guide for the collection.
 dataguide := coll.find().sample(40).get_data_guide(flag => dgflag,
 format =>
dgformat);
 DBMS_OUTPUT.put_line(dataguide);

 -- Important: Free the temporary LOB.
 IF DBMS_LOB.isTemporary(dataguide) = 1
 THEN
 DBMS_LOB.freeTemporary(dataguide);
 end if;
END;
/

See Also:

• Data-Guide Formats and Ways of Creating a Data Guide in Oracle
Database JSON Developer’s Guide for information about flat and
hierarchical data-guide formats

• A Flat Data Guide For Purchase-Order Documents in Oracle Database
JSON Developer’s Guide for an example of a pretty-printed flat-format
data guide

• SELECT statement, sample_clause, in Oracle Database SQL Language
Reference

Example 3-36 Creating a Data Guide Using a JSON Search Index with SODA for
PL/SQL

This example uses SODA_COLLECTION_T method get_data_guide() to obtain a data
guide for all documents in collection MyCollectionName. To use this method, a data
guide-enabled JSON search index must be defined on the collection.

Chapter 3
Getting a Data Guide for a Collection with SODA for PL/SQL

3-44

The example uses SQL/JSON function json_query to pretty-print the content of the data-
guide document. Finally, it frees the temporary LOB used for the data-guide document.

DECLARE
 collection SODA_COLLECTION_T;
 dataguide CLOB;
BEGIN
 -- Open the collection.
 collection := DBMS_SODA.open_Collection('myCollectionName');

 -- Get the data guide for the collection.
 dataguide := collection.get_data_guide;
 DBMS_OUTPUT.put_line(json_query(dataguide, '$' pretty));

 -- Important: Free the temporary LOB.
 IF DBMS_LOB.isTemporary(dataguide) = 1
 THEN
 DBMS_LOB.freeTemporary(dataguide);
 end if;
END;
/

Related Topics

• Creating a View from a Data Guide with SODA for PL/SQL
You can use SODA_COLLECTION_T method create_view_from_dg() to create a database
view with relational columns, whose names and values are taken from the scalar JSON
fields specified in the data guide. A data guide-enabled JSON search index is not
required for this; the data guide itself is passed to the method.

3.17 Creating a View from a Data Guide with SODA for PL/SQL
You can use SODA_COLLECTION_T method create_view_from_dg() to create a database view
with relational columns, whose names and values are taken from the scalar JSON fields
specified in the data guide. A data guide-enabled JSON search index is not required for this;
the data guide itself is passed to the method.

Example 3-37 Creating a Relational View from a JSON Data Guide with SODA for
PL/SQL

This example, like Example 3-36, gets and pretty-prints a JSON data guide for a collection. It
then uses create_view_from_dg() to create a relational view with columns that are based on
the scalar JSON fields in the data guide. Finally, it frees the temporary LOB used for the data-
guide document.

DECLARE
 coll SODA_COLLECTION_T;
 dg CLOB;
 n NUMBER;
BEGIN
 -- Open a collection
 coll := DBMS_SODA.open_collection('myCollectionName');

 -- Get and print the data guide for the collection

Chapter 3
Creating a View from a Data Guide with SODA for PL/SQL

3-45

 dg := coll.get_data_guide;
 DBMS_OUTPUT.put_line(json_query(dg, '$' pretty));

 -- Create view from data guide
 n = coll.create_view_from_dg('MY_VIEW_FROM_DG', dg);

 -- Free the temporary LOB containing the data guide
 if DBMS_LOB.isTemporary(dg) = 1
 then
 DBMS_LOB.freeTemporary(dg);
 end if;
END;

Related Topics

• Getting a Data Guide for a Collection with SODA for PL/SQL
You can use SODA_COLLECTION_T method get_data_guide() or terminal
SODA_OPERATION_T method get_data_guide() to obtain a data guide for a
collection. A data guide is a JSON document that summarizes the structural and
type information of the JSON documents in the collection. It records metadata
about the fields used in those documents.

3.18 Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a SQL
COMMIT statement. If you want to roll back changes, use a SQL ROLLBACK statement.

SODA operations DBMS_SODA.create_collection and DBMS_SODA.drop_collection
do not automatically commit before or after they perform their action. This differs from
the behavior of SQL DDL statements, which commit both before and after performing
their action.

One consequence of this is that, before a SODA collection can be dropped, any
outstanding write operations to it must be explicitly committed or rolled back — you
must explicitly use SQL COMMIT or ROLLBACK. This is because
DBMS_SODA.drop_collection does not itself issue commit before it performs its action.
In this, the behavior of DBMS_SODA.drop_collection differs from that of a SQL DROP
TABLE statement.

See Also:

• COMMIT in Oracle Database SQL Language Reference for information
about the SQL COMMIT statement

• ROLLBACK in Oracle Database SQL Language Reference for
information about the SQL ROLLBACK statement

• SODA_COLLECTION_T Type in Oracle Database PL/SQL Packages
and Types Reference for information about SODA_COLLECTION_T method
insert_one()

Chapter 3
Handling Transactions with SODA for PL/SQL

3-46

Example 3-38 Transaction Involving SODA Document Insertion and Replacement

This example shows the use of SQL COMMIT and ROLLBACK statements in an anonymous
PL/SQL block. It opens a SODA collection, inserts a document, and then replaces its content.
The combination of the document insertion and document content replacement operations is
atomic: a single transaction.

DECLARE
 collection SODA_COLLECTION_T;
 status NUMBER;
BEGIN
 collection := DBMS_SODA.open_collection('myCollectionName');
 status := collection.insert_one(
 SODA_Document_T(
 b_content => utl_raw.cast_to_raw('{"a":"aval", "b":"bval",
"c":"cval"}')));
 status := collection.replace_one(
 'key1',
 SODA_DOCUMENT_T(
 b_content => utl_raw.cast_to_raw('{"x":"xval",
"y":"yval"}')));
 -- Commit the transaction
 COMMIT;
 DBMS_OUTPUT.put_line('Transaction is committed');
-- Catch exceptions and roll back if an error is raised
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.put_line (SQLERRM);
 ROLLBACK;
 DBMS_OUTPUT.put_line('Transaction has been rolled back');
END;
/

Related Topics

• Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SODA.drop_collection to drop a document collection.

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method (member
function) insert_one() or insert_one_and_get(). These methods create document keys
automatically, unless the collection is configured with client-assigned keys and the input
document provides the key.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method replace_one() or
replace_one_and_get() with nonterminal method key() to uniquely identify a document
to be replaced. You can optionally make use of additional nonterminal methods such as
version() and filter(). You can use nonterminal method acquire_lock() to lock a
document for updating.

Chapter 3
Handling Transactions with SODA for PL/SQL

3-47

4
SODA Collection Configuration Using Custom
Metadata

SODA collections are highly configurable. You can customize collection metadata, to obtain
different behavior from that provided by default.

Note:

You can customize collection metadata to obtain different behavior from that
provided by default. However, changing some components requires familiarity with
Oracle Database concepts, such as SQL data types. Oracle recommends that you
do not change such components unless you have a compelling reason. Because
SODA collections are implemented on top of Oracle Database tables (or views),
many collection configuration components are related to the underlying table
configuration.

For example, if you change the content column type from the default value to
VARCHAR2, then you must understand the implications: content size for VARCHAR2 is
limited to 32K bytes, character-set conversion can take place, and so on.

• Getting the Metadata of an Existing Collection
You use SODA_COLLECTION_T method get_metadata() to get all of the metadata for a
collection, as a JSON document.

• Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata, as
JSON data, to PL/SQL function DBMS_SODA.create_collection.

See Also:

• Overview of SODA Document Collections in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for general information about SODA
document collections and their metadata

• SODA Collection Metadata Components (Reference) in Oracle Database
Introduction to Simple Oracle Document Access (SODA) for reference
information about collection metadata components

4-1

4.1 Getting the Metadata of an Existing Collection
You use SODA_COLLECTION_T method get_metadata() to get all of the metadata for a
collection, as a JSON document.

See Also:

• GET_METADATA Function in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_COLLECTION_T method
get_metadata()

• JSON_QUERY in Oracle Database SQL Language Reference for
information about SQL/JSON function json_query

Example 4-1 Getting the Metadata of a Collection

This example shows the result of invoking SODA_COLLECTION_T method
get_metadata() on the collection with the default configuration that was created using
Example 3-3. (It also uses SQL/JSON function json_query, with keyword PRETTY, to
pretty-print the JSON data obtained.)

DECLARE
 collection SODA_COLLECTION_T;
BEGIN
 collection := DBMS_SODA.open_collection('myCollectionName');
 IF collection IS NULL THEN
 DBMS_OUTPUT.put_line('Collection does not exist');
 ELSE
 DBMS_OUTPUT.put_line('Metadata: '
 || json_query(collection.get_metadata, '$'
PRETTY));
 END IF;
END;
/

The default metadata for a collection is presented in Default Collection Metadata in
Oracle Database Introduction to Simple Oracle Document Access (SODA).

4.2 Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata, as
JSON data, to PL/SQL function DBMS_SODA.create_collection.

The optional second argument to PL/SQL function DBMS_SODA.create_collection is a
SODA collection specification. It is JSON data that specifies the metadata for the
new collection.

If a collection with the same name already exists then it is simply opened and its
handle is returned. If the custom metadata provided does not match the metadata of

Chapter 4
Getting the Metadata of an Existing Collection

4-2

the existing collection then the collection is not opened and an error is raised. (To match, all
metadata fields must have the same values.)

See Also:

• CREATE_COLLECTION Function in Oracle Database PL/SQL Packages and
Types Reference for information about PL/SQL function
DBMS_SODA.create_collection

• SODA_COLLECTION_T Type in Oracle Database PL/SQL Packages and
Types Reference for information about SODA_COLLECTION_T method
get_metadata()

• JSON_QUERY in Oracle Database SQL Language Reference for information
about SQL/JSON function json_query

Example 4-2 Creating a Collection That Has Custom Metadata

This example creates a collection with the default metadata, except that the key assignment
method is set to CLIENT.

The example uses SODA_COLLECTION_T method get_metadata() to get the complete
metadata from the newly created collection, which it passes to SQL/JSON function
json_query to pretty-print (using keyword PRETTY).

DECLARE
 collection SODA_COLLECTION_T;
 metadata VARCHAR2(4000) :=
 '{"keyColumn" : {"name" : "ID", "assignmentMethod" : "CLIENT" },
 "contentColumn" : {"name" : "JSON_DOCUMENT"},
 "versionColumn" : {"name" : "VERSION"},
 "lastModifiedColumn" : {"name" : "LAST_MODIFIED"},
 "creationTimeColumn" : {"name" : "CREATED_ON"}}';
BEGIN
 collection := DBMS_SODA.create_collection('myCustomCollection',
 metadata);
 DBMS_OUTPUT.put_line('Collection specification: ' ||
 json_query(collection.get_metadata, '$' PRETTY));
END;
/

This is the pretty-printed output. The values of any fields for keyColumn and contentColumn
that are not specified in the collection specification, are defaulted. The values of fields other
than those provided in the collection specification (that is, other than keyColumn and
contentColumn) are also defaulted. The value of field tableName is defaulted from the
collection name. The value of field schemaName is the database schema (user) that was
current when the collection was created.

Collection specification: {
 "schemaName" : "mySchemaName",
 "tableName" : "myCustomCollection",
 "keyColumn" :
 {

Chapter 4
Creating a Collection That Has Custom Metadata

4-3

 "name" : "ID",
 "sqlType" : "VARCHAR2",
 "maxLength" : 255,
 "assignmentMethod" : "CLIENT"
 },
 "contentColumn" :
 {
 "name" : "JSON_DOCUMENT",
 "sqlType" : "BLOB",
 "compress" : "NONE",
 "cache" : true,
 "encrypt" : "NONE",
 "validation" : "STANDARD"
 },
 "lastModifiedColumn" :
 {
 "name" : "LAST_MODIFIED"
 },
 "versionColumn" :
 {
 "name" : "VERSION",
 "method" : "UUID"
 },
 "creationTimeColumn" :
 {
 "name" : "CREATED_ON"
 },
 "readOnly" : false
}

Related Topics

• Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.create_collection to create a
document collection with the default metadata.

Chapter 4
Creating a Collection That Has Custom Metadata

4-4

A
Redefining a SODA Collection

You can use online redefinition to change the metadata or other properties of an existing
collection. In particular, after upgrading so that database initialization parameter compatible
is at least 20, you can migrate a collection to reflect the new default metadata.

The default collection metadata for a database with compatible initialization parameter at
least 20 has "JSON" as the value of metadata field contentColumn.sqlType. And it has
"UUID" as the value of metadata field versionColumn.method. If your compatible setting is 20
or greater then Oracle recommends that you use online redefinition to change the metadata
of an existing collection so that it uses these values.

Online redefinition for a SODA collection is similar to online redefinition for a database table.
The PL/SQL procedures used (in package DBMS_SODA) for a collection are analogous to their
counterparts for a table in package DMBS_REDEFINITION.

Starting with the collection to be redefined, you apply SODA online-redefinition procedures,
one by one. At each step, you can use subprogram DBMS_SODA.abort_redef_collection to
abort the migration process if an error is raised.

As an example, the steps presented here migrate collection MyCollection so that its
metadata reflects that of the default metadata for a database with initialization parameter
compatible 20 or greater.

The following code creates the initial collection to be migrated, which uses textual JSON data
stored as BLOB content. The default metadata for a database with parameter compatible less
than 20 is specified here explicitly, for illustration purposes. In particular,
contentColumn.sqlType is "BLOB", and versionColumn.method is "SHA256".

v_original_collection := 'MyCollection';
v_original_metadata :=
 '{"keyColumn": {"name": "ID",
 "sqlType": "VARCHAR2",
 "maxLength": 255,
 "assignmentMethod": "UUID"},
 "contentColumn": {"name": "JSON_DOCUMENT",
 "sqlType": "BLOB",
 "compress": "NONE",
 "cache": true,
 "encrypt": "NONE",
 "validation": "STANDARD"},
 "versionColumn": {"name": "VERSION",
 "method": "SHA256"},
 "lastModifiedColumn": {"name": "LAST_MODIFIED"},
 "creationTimeColumn": {"name": "CREATED_ON"},
 "readOnly": false}';

DBMS_SODA.create_collection(v_original_collection,
 v_original_metadata);

A-1

The steps below change fields contentColumn.sqlType and versionColumn.method.
The other metadata fields are left unchanged, except that fields that no longer apply
have been removed: compress, cache, encrypt, and validation. (Those fields do not
apply to document content stored as JSON data type.)

To perform online redefinition for a collection, you need the following database
privileges:

• Privilege EXECUTE for PL/SQL package DBMS_REDEFINITION

• System privilege CREATE MATERIALIZED VIEW

• System privilege CREATE TABLE or, if the collection is backed by a table in a
database schema different from the current one, CREATE ANY TABLE

See Also:

Summary of SODA Online Redefinition Subprograms in Oracle Database
PL/SQL Packages and Types Reference

1. Use subprogram can_redef_collection, to check whether the collection is
eligible for online redefinition. An error is raised if it is not eligible.

DECLARE
 v_original_collection_name NVARCHAR2(2000);
BEGIN
 v_original_collection := 'MyCollection';
 DBMS_SODA.can_redef_collection(v_original_collection);
END;

2. Use subprogram create_interim_collection, to create an interim collection to
which data is copied while the original collection continues to handle production
workload of SODA operations.

DECLARE
 v_original_collection_name NVARCHAR2(2000);
 v_interim_collection_name NVARCHAR2(2000);
BEGIN
 v_original_collection := 'MyCollection';
 v_interim_collection := 'MyCollection_int';
 v_metadata := '{"contentColumn": {"sqlType": "JSON"},
 "versionColumn": {"method": "UUID"}}}';

 DBMS_SODA.create_interim_collection(v_original_collection,
 v_interim_collection,
 v_metadata);
END;

Argument v_metadata specifies the metadata to change. You need not specify any
metadata that remains unchanged.

Appendix A

A-2

The metadata for the interim collection (argument v_metadata) can include a tableName
value that differs from that of the original collection, to specify the name of the table to
which the interim collection is mapped.

If this table already exists then a mapped interim collection will be created on top of it. In
this case, the table must not have any dependents (indexes, constraints, or triggers), or
else an error is raised. Such dependents are instead taken (copied) from the original
collection, in Step 4

3. Use subprogram start_redef_collection, to start the process of collection redefinition.

DECLARE
 v_original_collection_name NVARCHAR2(2000);
 v_interim_collection_name NVARCHAR2(2000);
BEGIN
 v_original_collection := 'MyCollection';
 v_interim_collection := 'MyCollection_int';

 DBMS_SODA.start_redef_collection(v_original_collection,
 v_interim_collection);
END;

If your original collection has Virtual Private Database (VPD) policies then copy them to
the interim collection before using start_redef_collection. And in that case use
start_redef_collection(v_original_collection, v_interim_collection,
DBMS_REDEFINITION.cons_vpd_manual), to indicate that the VPD policies have been
copied manually.

4. Use subprogram copy_collection_dependents, to copy everything that depends on the
original collection to the interim collection. This includes all constraints and indexes
(including indexes defined automatically by SODA).

DECLARE
 v_original_collection_name NVARCHAR2(2000);
 v_interim_collection_name NVARCHAR2(2000);
 v_metadata VARCHAR2(2000);
 v_num_errors NUMBER;
BEGIN
 v_original_collection := 'MyCollection';
 v_interim_collection := 'MyCollection_int';

 DBMS_SODA.copy_collection_dependents(v_original_collection,
 v_interim_collection,
 num_errors => v_num_errors);
END;

The value, v_num_errors, of output parameter num_errors indicates how many errors
were raised.

Even if the collection to be modified has no user-defined dependents, such as indexes on
JSON content, it necessarily has some internal SODA-defined dependents, which must
be copied to the interim collection.

5. Use subprogram sync_interim_collection, to synchronize the data in the interim
collection to that of the original collection, to minimize downtime during the last step (Step

Appendix A

A-3

7). Do this if a large number of DML operations are performed on the original
collection while you are performing online redefinition with the interim collection.

Subprogram sync_interim_collection checks for all dependents required for a
SODA collection. An error is raised if they are not all present.

DECLARE
 v_original_collection_name NVARCHAR2(2000);
 v_interim_collection_name NVARCHAR2(2000);
BEGIN
 v_original_collection := 'MyCollection';
 v_interim_collection := 'MyCollection_int';

 DBMS_SODA.sync_interim_collection(v_original_collection,
 v_interim_collection);
END;

6. Caution:

This step is important. The effect of Step 7 cannot be undone.

Optional: Check that the interim collection works as expected. If it does not, use
subprogram DBMS_SODA.abort_redef_collection to revert the changes, as
follows:

DECLARE
 v_original_collection_name NVARCHAR2(2000);
 v_interim_collection_name NVARCHAR2(2000);
BEGIN
 v_original_collection := 'MyCollectionName';
 v_interim_collection := 'MyCollectionName_int';

 DBMS_SODA.abort_redef_collection(v_original_collection,
 v_interim_collection);
END;

7. Use subprogram finish_redef_table to finish the redefinition process, swapping
the names of the original collection and the interim collection.

The effect of this step cannot be undone (unless it raises an error instead of
committing).

Both collections are locked for part of the duration of finish_redef_table. The
interim collection is synchronized to the original collection during this step. This
includes performing any DML that has taken place on the original collection since
the last use of sync_interim_collection (or since start_redef_collection, if
you have not used sync_interim_collection).

The subprogram checks for all dependents required for a SODA collection. An
error is raised if they are not all present.

DECLARE
 v_original_collection_name NVARCHAR2(2000);
 v_interim_collection_name NVARCHAR2(2000);

Appendix A

A-4

BEGIN
 v_original_collection := 'MyCollection';
 v_interim_collection := 'MyCollection_int';

 DBMS_SODA.finish_redef_collection(v_original_collection,
 v_interim_collection;
END;

Appendix A

A-5

Index

A
acquire_lock() SODA_OPERATION_T method,

3-32
as_of_scn() SODA_OPERATION_T method,

3-23
as_of_timestamp() SODA_OPERATION_T

method, 3-23

C
chaining together SODA_OPERATION_T

methods, 3-21
collection

redefining, A-1
collection configuration, 4-1
collection metadata

custom, 4-1, 4-2
getting, 4-2

collections
checking existence, 3-8
creating, 3-6

with custom metadata, 4-2
discovering, 3-9
dropping, 3-10
heterogeneous, full-text searching, 3-23
opening, 3-8

during creation, 3-6
truncating, 3-38

committing a transaction, 3-46
components of SODA documents, 3-11
count() SODA_OPERATION_T method, 3-23
create_collection function

transaction handling, 3-46
create_index() SODA_COLLECTION_T method,

3-38
creating collections, 3-6

with custom metadata, 4-2
creating documents, 3-11

D
data guide

creating relational view from, 3-45
getting for a collection, 3-42

database role SODA_APP, 3-3
DBMS_SODA package subprograms

create_collection
example, 3-6
transaction handling, 3-46

drop_collection
example, 3-10
transaction handling, 3-46

list_collection_names
example, 3-9

open_collection
example, 3-8

DBMS_SODA.DOC_BLOB constant, 3-11
DBMS_SODA.DOC_CLOB constant, 3-11
DBMS_SODA.DOC_VARCHAR2 constant, 3-11
deleting collections

See dropping collections
deleting documents from collections

See removing documents from collections
discovering collections

checking existence, 3-8
listing, 3-9

documents
components, 3-11
creating, 3-11
finding in collections, 3-23
inserting into collections, 3-17
metadata, 3-11
removing from collections, 3-35
replacing in collections, 3-32

drop_collection function
example, 3-10
transaction handling, 3-46

drop_index() SODA_COLLECTION_T method,
3-38

dropping collections, 3-10

E
emptying a collection, 3-38
existing collection, checking for, 3-8

F
filter() SODA_OPERATION_T method, 3-23

Index-1

find() SODA_COLLECTION_T method, 3-23
finding documents in collections, 3-23
flashback querying of collection data, 3-23
full-text search of non-JSON documents, 3-23

G
get_blob() SODA_DOCUMENT_T method, 3-11
get_clob() SODA_DOCUMENT_T method, 3-11
get_created_on() SODA_DOCUMENT_T

method, 3-11
get_cursor() SODA_OPERATION_T method,

3-23
get_data_guide() SODA_COLLECTION_T

method, 3-42
get_data_guide() SODA_OPERATION_T

method, 3-42
get_data_type() SODA_DOCUMENT_T method,

3-11
get_index() SODA_COLLECTION_T method,

3-38
get_key() SODA_DOCUMENT_T method, 3-11
get_last_modified() SODA_DOCUMENT_T

method, 3-11
get_media_type() SODA_DOCUMENT_T

method, 3-11
get_metadata() SODA_COLLECTION_T method,

4-2
get_one() SODA_OPERATION_T method, 3-23
get_varchar2() SODA_DOCUMENT_T method,

3-11
get_version() SODA_DOCUMENT_T method,

3-11
getter methods, document, 3-11
getting collection metadata, 4-2
getting document components, 3-11

H
handling transactions, 3-46
heterogeneous collection, full-text search, 3-23
hint

SQL monitoring, 3-17, 3-19, 3-23
hint() SODA_OPERATION_T method, 3-23

I
indexes, getting, 3-38
indexing a collection, 3-38
insert_one_and_get() SODA_COLLECTION_T

method, 3-17
insert_one() SODA_COLLECTION_T method,

3-17
inserting documents into collections, 3-17

J
JSON data guide

creating relational view from, 3-45
getting for a collection, 3-42

L
list_collection_names function

example, 3-9
list_indexes() SODA_COLLECTION_T method,

3-38
listing collections, 3-9
locking documents

pessimistic, 3-32

M
metadata of collections

getting, 4-2
metadata of documents

getting, 3-11
metadata, custom, 4-1, 4-2
MONITOR SQL hint, 3-17, 3-19, 3-23

N
nonterminal SODA methods, definition, 3-21

O
open_collection function

example, 3-8
opening collections, 3-8

during creation, 3-6

P
prerequisites for using SODA for PL/SQL, 1-1

R
read and write operations, 3-21
redefining a collection, A-1
redefining collection metadata, A-1
relational view, created from collection data

guide, 3-45
remove() SODA_OPERATION_T method, 3-35
removing all documents from a collection, 3-38
removing documents from collections, 3-35
replace_one_and_get() SODA_OPERATION_T

method, 3-32
replace_one() SODA_OPERATION_T method,

3-32

Index

Index-2

replacing documents in collections, 3-32
role SODA_APP, 3-3
rolling back a transaction, 3-46

S
sample() SODA_OPERATION_T method, 3-42
SODA_APP database role, 3-3
SODA_COLLECTION_T methods

create_index(), 3-38
drop_index(), 3-38
find(), 3-23
get_data_guide(), 3-42
get_index(), 3-38
get_metadata(), 4-2
insert_one_and_get(), 3-17
insert_one(), 3-17
list_indexes(), 3-38

SODA_DOCUMENT_T methods
get_blob(), 3-11
get_clob(), 3-11
get_created_on(), 3-11
get_data_type(), 3-11
get_key(), 3-11
get_last_modified(), 3-11
get_media_type(), 3-11
get_varchar2(), 3-11
get_version(), 3-11

SODA_DOCUMENT_T object type and
constructors, 3-11

SODA_OPERATION_T methods, 3-21
acquire_lock(), 3-32
as_of_scn(), 3-23
as_of_timestamp(), 3-23
count(), 3-23
filter(), 3-23
get_cursor(), 3-23
get_data_guide(), 3-42
get_one(), 3-23
hint(), 3-23
remove(), 3-35
replace_one_and_get(), 3-32
replace_one(), 3-32
sample(), 3-42

T
terminal SODA methods, definition, 3-21
transaction handling, 3-46
truncating a collection, 3-38

V
view, created from collection data guide, 3-45

W
write and read operations, 3-21

Index

Index-3

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 SODA for PL/SQL Prerequisites
	2 SODA for PL/SQL Overview
	3 Using SODA for PL/SQL
	3.1 Getting Started with SODA for PL/SQL
	3.2 Creating a Document Collection with SODA for PL/SQL
	3.3 Opening an Existing Document Collection with SODA for PL/SQL
	3.4 Checking Whether a Given Collection Exists with SODA for PL/SQL
	3.5 Discovering Existing Collections with SODA for PL/SQL
	3.6 Dropping a Document Collection with SODA for PL/SQL
	3.7 Creating Documents with SODA for PL/SQL
	3.8 Inserting Documents into Collections with SODA for PL/SQL
	3.9 Saving Documents Into a Collection with SODA for PL/SQL
	3.10 SODA for PLSQL Read and Write Operations
	3.11 Finding Documents in Collections with SODA for PL/SQL
	3.12 Replacing Documents in a Collection with SODA for PL/SQL
	3.13 Removing Documents from a Collection with SODA for PL/SQL
	3.14 Truncating a Collection (Removing All Documents) with SODA for PL/SQL
	3.15 Indexing the Documents in a Collection with SODA for PL/SQL
	3.16 Getting a Data Guide for a Collection with SODA for PL/SQL
	3.17 Creating a View from a Data Guide with SODA for PL/SQL
	3.18 Handling Transactions with SODA for PL/SQL

	4 SODA Collection Configuration Using Custom Metadata
	4.1 Getting the Metadata of an Existing Collection
	4.2 Creating a Collection That Has Custom Metadata

	A Redefining a SODA Collection
	Index

