
Oracle Linux 9
KVM User's Guide

G25090-01
May 2025

Oracle Linux 9 KVM User's Guide,

G25090-01

Copyright © 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License vi

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vii

1 Deployment Overview: Oracle Linux KVM

KVM Management: Deployment Options 1-1

KVM Guest: Operating Systems 1-3

Linux Guest Operating Systems 1-3

Microsoft Windows Guest Operating Systems 1-4

Oracle Solaris Guest Operating System 1-5

KVM Host: System Requirements 1-6

KVM Virtualization Packages: Recommended 1-7

KVM Repositories and Channels: Yum and ULN 1-10

2 Installation: Oracle Linux KVM

Enable Yum Repositories 2-1

Subscribe to ULN Channels 2-2

Install Virtualization Packages 2-3

Validate Host System 2-4

Switch KVM Stacks 2-4

Switch Default Stack to Oracle KVM Stack 2-5

Switch Oracle KVM Stack to Default Stack 2-6

3 Manage the Libvirtd Service

Types of libvirt Driver Daemons 3-2

iii

4 KVM Instances: Create and Manage

Create: KVM Instance 4-1

Virt-Install: Command Line Examples 4-4

Clone: Existing KVM Instance 4-5

Prepare KVM for Cloning: Using virt-sysprep 4-6

Prepare KVM for Cloning: Manually 4-7

Create a KVM Clone Using virt-clone Command 4-9

View: KVM Instances, Status, and Configuration 4-11

Connect to KVM: virsh Serial Console 4-12

Start, Shutdown, Reboot, or Remove KVM 4-14

KVM: Start Instance 4-14

KVM: Shut Down Instance 4-15

KVM: Suspend or Resume Instance 4-16

KVM: Reboot Instance 4-17

KVM: Remove KVM Instance 4-18

5 KVM Instances: Hardware Configuration

Add Watchdog Device to KVM Instance 5-1

Add vTPM Security to KVM Instance 5-4

KVM Network Configuration 5-5

Overview: Virtual Networking 5-6

Command Usage: Manage Virtual Network 5-7

Command Usage: Add or Remove vNIC 5-9

Bridged Networking: Setup 5-10

Setup Guidelines: Bridged Network 5-10

Create: Bridge Network Connection 5-12

Bonded Interfaces for Increased Throughput 5-13

PCIe Passthrough: Setup 5-14

Create: Direct PCIe Passthrough Connection 5-14

Setup Guidelines: SR-IOV PCIe Passthrough 5-16

Create: SR-IOV PCIe Passthrough Connection 5-17

KVM Storage Configuration 5-23

Storage Pools: Create and Manage 5-24

Creating a Storage Pool 5-24

Creating a Storage Pool from XML 5-26

Removing a Storage Pool 5-27

Storage Volumes: Create and Manage 5-27

Creating a Storage Volume 5-28

Creating a Storage Volume from XML 5-28

Cloning a Storage Volume 5-29

iv

Resizing a Storage Volume 5-29

Deleting a Storage Volume 5-30

Virtual Disks: Create and Manage 5-30

Attaching a Virtual Disk to an Existing VM 5-30

Attaching a Virtual Disk when Creating a VM 5-31

Detaching a Virtual Disk 5-31

Resizing a Virtual Disk 5-32

KVM Memory and CPU Allocation Configuration 5-33

Command Usage: Set Virtual CPU Count 5-33

Command Usage: Allocate Memory 5-34

6 KVM Known Issues

Downgrade Stream Conflict Error Messages 6-1

KVM Guest With vTPM Fails 6-1

v

Preface

Oracle Linux 9: KVM User's Guide provides information about how to install, configure, and
use the Oracle Linux KVM packages to run guest system on top of a bare metal Oracle Linux
system. This documentation provides information on using KVM on a standalone platform in an
unmanaged environment. Typical usage in this mode is for development and testing purposes,
although production level deployments are supported. Oracle recommends that customers use
Oracle Linux Virtualization Manager for more complex deployments of a managed KVM
infrastructure.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Preface

vi

https://docs.oracle.com/en/operating-systems/oracle-linux/9/kvm-user/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vii

1
Deployment Overview: Oracle Linux KVM

For a high-level overview of the Kernel-based Virtual Machine (KVM) deployment options,
operating requirements, and virtualization package descriptions, see these topics:

• KVM Management: Deployment Options

• KVM Guest: Operating Systems

• KVM Host: System Requirements

• KVM Virtualization Packages: Recommended

• KVM Repositories and Channels: Yum and ULN

KVM Management: Deployment Options
Oracle Linux offers the following KVM deployment management options:

Standalone KVM Hypervisor This KVM option provides a set of modules
that enable you to use the Oracle Linux kernel
as a hypervisor. KVM can be used on both
x86_64 and aarch64 processor architectures
and is available on Oracle Linux 9 systems
using either Red Hat Compatible Kernel
(RHCK) or Unbreakable Enterprise Kernel
(UEK).

By default, KVM is built into the kernel. KVM
features are actively developed and might
vary depending on platform and kernel
release. Information on how to use the KVM
hypervisor option is described in this guide.

Oracle UEK users have the options of using
either the default kernel version or an Oracle
kernel version for KVM deployment. Finally,
UEK users can choose to switch between the
KVM stacks as needed. For more details
about the virtualization packages available for
each Linux release, see KVM Repositories
and Channels: Yum and ULN. For details
about switching between KVM stacks, see
Switch KVM Stacks.

1-1

Note:

For UEK users,
also see the kernel
version release
notes to obtain
more information
about the KVM
features and any
known issues that
might apply. For
these type of
details, see the
Unbreakable
Enterprise Kernel
documentation.

Note:

As an alternative to
using the
command-line
interface to
manage KVM
instances on a
host, the Cockpit
web console
provides a
graphical interface
to interact with
KVM and
libvirtd. For
more details about
setting up VMs on
a system using the
Cockpit web
console interface,
see Oracle Linux:
Using the Cockpit
Web Console.

Managed KVM Server Virtualization This KVM option is for enterprise or clustered
KVM deployment environments on Oracle
Linux. For these KVM environments, consider
using Oracle Linux Virtualization Manager
which is a server virtualization management
platform.

Using Oracle Linux Virtualization Manager's
administration or virtual machine (VM) portals,

Chapter 1
KVM Management: Deployment Options

1-2

https://docs.oracle.com/en/operating-systems/uek/
https://docs.oracle.com/en/operating-systems/uek/
https://docs.oracle.com/en/operating-systems/uek/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/

you can configure, monitor, and manage an
Oracle Linux KVM environment, including
hosts, VMs, storage, networks, and users.
Oracle Linux Virtualization Manager also
provides a REST API for managing Oracle
Linux KVM infrastructure, enabling you to
integrate Oracle Linux Virtualization Manager
with other management systems or to
automate repetitive tasks with scripts.

For more details on how to use Oracle Linux
Virtualization Manager, see the Oracle Linux
Virtualization Manager Documentation at
https://docs.oracle.com/en/virtualization/
oracle-linux-virtualization-manager/.

KVM Guest: Operating Systems
When installing standalone instances of KVM, consider using one of the following guest
operating systems:

• Linux Guest Operating Systems

• Microsoft Windows Guest Operating Systems

• Oracle Solaris Guest Operating System

Linux Guest Operating Systems
The following Oracle Linux versions support the use of guest operating installations on KVM
instances.

Note:

Oracle Linux ISO images and disk images are available for download from Oracle
Software Delivery Cloud: https://edelivery.oracle.com/linux.

Table 1-1 Linux Guest Operating Systems

Linux Operating System 32-bit Architecture 64-bit Architecture

Oracle Linux 6 Yes* Yes

Oracle Linux 7 N/A Yes

Oracle Linux 8 N/A Yes

Oracle Linux 9 N/A Yes

Oracle Container Host for
Kubernetes

N/A Yes

Red Hat Enterprise Linux 6 Yes* Yes

Red Hat Enterprise Linux 7 N/A Yes

Red Hat Enterprise Linux 8 N/A Yes

Red Hat Enterprise Linux 9 N/A Yes

Chapter 1
KVM Guest: Operating Systems

1-3

https://docs.oracle.com/en/virtualization/oracle-linux-virtualization-manager/
https://docs.oracle.com/en/virtualization/oracle-linux-virtualization-manager/
https://edelivery.oracle.com/linux

Table 1-1 (Cont.) Linux Guest Operating Systems

Linux Operating System 32-bit Architecture 64-bit Architecture

CentOS 6 Yes* Yes

CentOS 7 N/A Yes

AlmaLinux OS 8 N/A Yes

AlmaLinux OS 9 N/A Yes

Rocky Linux 8 N/A Yes

Rocky Linux 9 N/A Yes

SUSE Linux Enterprise Server
12

N/A Yes

SUSE Linux Enterprise Server
15

N/A Yes

Ubuntu 16.04 N/A Yes

Ubuntu 18.04 N/A Yes

Ubuntu 20.04 N/A Yes

Ubuntu 22.04 N/A Yes

Table footnote:

• *cloud-init is unavailable for 32-bit architectures.

Microsoft Windows Guest Operating Systems
The following Microsoft Windows versions support the use of guest operating installations on
KVM instances.

Caution:

Microsoft Windows 8 is no longer supported by Microsoft. See https://
docs.microsoft.com/en-us/lifecycle/products/windows-8 for more information.

Microsoft Windows 8.1 falls out of extended support by Microsoft in January 2023.
See https://docs.microsoft.com/en-us/lifecycle/products/windows-81 for more
information.

Table 1-2 Microsoft Windows Supported Guest Operating Systems

Guest Operating System 64-bit 32-bit

Microsoft Windows Server
2022

Yes N/A

Microsoft Windows Server
2019

Yes N/A

Microsoft Windows Server
2016

Yes N/A

Microsoft Windows Server
2012 R2

Yes N/A

Chapter 1
KVM Guest: Operating Systems

1-4

https://docs.microsoft.com/en-us/lifecycle/products/windows-8
https://docs.microsoft.com/en-us/lifecycle/products/windows-8
https://docs.microsoft.com/en-us/lifecycle/products/windows-81

Table 1-2 (Cont.) Microsoft Windows Supported Guest Operating Systems

Guest Operating System 64-bit 32-bit

Microsoft Windows Server
2012

Yes N/A

Microsoft Windows 11 Yes Yes

Microsoft Windows 10 Yes Yes

Microsoft Windows 8.1 Yes Yes

Microsoft Windows 8 Yes Yes

VirtIO Driver Requirements

For improved performance with network and block (disk) devices, and to resolve common
issues, we recommend that you install the Oracle VirtIO Drivers for Microsoft Windows. These
drivers are para-virtualized drivers for Microsoft Windows guests running on Oracle Linux KVM
hypervisors.

Microsoft Windows guests on KVM have been tested by using the Oracle VirtIO Drivers for
Microsoft Windows. For instructions on how to obtain and install the drivers, see Oracle Linux:
Oracle VirtIO Drivers for Microsoft Windows for use with KVM.

Oracle Solaris Guest Operating System
The following Oracle Solaris version supports the use of guest operating system installations
on KVM instances.

Table 1-3 Oracle Solaris Guest Operating System

Oracle Solaris version 11.4 Oracle Solaris 11.4 can be used as a guest
operating system when installed within a
standalone instance of KVM.

Note:

Oracle Solaris
version 11.4.33
(Oracle Solaris 11.4
SRU 33) is the
minimum version
that includes
functionality for
VirtIO guest
support.

Oracle Solaris ISO images and disk images are
available for download from the Oracle
Software Delivery Cloud at https://
edelivery.oracle.com/.

Special Considerations:

Chapter 1
KVM Guest: Operating Systems

1-5

https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-virtio/
https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-virtio/
https://edelivery.oracle.com/
https://edelivery.oracle.com/

For best results when using Oracle Solaris as a guest operating system, follow these
recommendations:

• Use at least a two-core configuration for the Oracle Solaris VM.

• Use the most current QEMU system type (Custom Emulated Machine = pc-i440fx-4.2) for
the Oracle Solaris VM.

KVM Host: System Requirements
Many of the system requirements for KVM hosts can depend on the kinds of applications
running on the virtual machine (VM) and the amount of work they're expected to perform.

The following table describes the minimum system requirements and suggested guidelines for
deploying KVM hosts.

Bare metal host KVM can be used when it's run on a bare
metal host. Note that nested virtualization
scenarios aren't supported for KVM
deployments.

CPU The host system CPU must have virtualization
features for Intel (VT-x) or AMD (AMD-V)
enabled. Arm (aarch64) CPUs can also be
used. If virtualization features aren't available,
check that virtualization is enabled in the
system firmware BIOS or UEFI. As a rule of
thumb, you can start with the following virtual
CPU to host CPU ratios (this ratio is of distinct
CPU cores and assumes SMT is enabled):

• 1:1 to 2:1 can typically achieve good VM
performance.

• 3:1 may cause some VM performance
degradations.

• 4:1 or greater might cause significant VM
performance problems.

The ratio of virtual CPUs to host CPUs can be
calculated by running performance tests on
VM and host systems. Deciding on acceptable
performance depends on many factors such
as, for example:

• Tasks that VM systems perform.

• Volume of tasks to be processed.

• Preferred rate that these tasks need to be
processed.

Memory 3 GB reserved for the host is a good starting
point but memory requirements for the host
operating system scale with the amount of
physical memory available. For systems with
lots of available physical memory, increase the

Chapter 1
KVM Host: System Requirements

1-6

reserved memory for the host operating
system.

For example, on a system with 1 TB memory,
We recommend at least 20 GB available for
the host operating system.

If system work on a host and all VMs starts
exceeding the available physical RAM, the
performance impact is severe. However, if
VMs are typically idle, you might not need to
allocate as much RAM. Ensure you do
performance testing to ensure that
applications always have enough memory.

Storage The minimum disk space required for the host
operating system is typically 6 GB. Each VM
requires its own storage for the guest
operating system and for swap usage. Cater
to around 6 GB, at minimum, per VM that you
intend to create, but consider the purpose of
the VM and scale accordingly.

KVM Virtualization Packages: Recommended
To use virtualization, Oracle Linux virtualization packages must be installed on the system.
Several virtualization packages are available that enable you to work with Oracle Linux KVM.

For more details about Oracle Linux virtualization packages, see the following sections:

• Recommended Virtualization Packages

• Recommended Virtualization Package Groups

• Download Virtualization Packages

Recommended Virtualization Packages

The following individual packages are recommended for installation on virtualization host
systems.

Package Description

libvirt The libvirt package provides an interface to
KVM, and the libvirtd daemon for managing
guest VMs.

Chapter 1
KVM Virtualization Packages: Recommended

1-7

Package Description

Note:

The Cockpit web
console also
provides a
graphical interface
to interact with
KVM and libvirtd
to set up and
configure VMs on
a system. See
Oracle Linux:
Using the Cockpit
Web Console for
more information.

Install example:

sudo dnf install libvirt

qemu-kvm The qemu-kvm package installs the QEMU
emulator that performs hardware virtualization
so that guests can access host CPU and other
resources.
Install example:

sudo dnf install qemu-kvm

qemu-img The qemu-img package install provides
functionality that lets you create, convert, and
modify images offline. It supports all QEMU
image formats.
Warning: Never use qemu-img to modify
images in use by a running virtual machine or
any other process. By doing so, the image
might be destroyed.

Install example:

sudo dnf install qemu-img

virt-install The virt-install package provides
command line utilities for creating and
provisioning guest VMs.

Chapter 1
KVM Virtualization Packages: Recommended

1-8

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/

Package Description

Install example:

sudo dnf install virt-install

virt-viewer The virt-viewer package provides a
graphical utility that can be loaded into a
desktop environment to access the graphical
console of a guest VM.
Install example:

sudo dnf install virt-viewer

For information about connecting to a KVM
graphical interface by opening it in Virt Viewer,
see the virt-viewer(1) manual page.

Recommended Virtualization Package Groups

Virtualization packages can also be installed from package groups. Group packages contain
the minimum set of packages that are required for a virtualization host.

Package Group Description

"Virtualization Hypervisor" Contains the minimum set of packages that
are required for a virtualization host.

"Virtualization Tools" Contains tools for managing virtual images
offline.

"Virtualization Host" Contains "Virtualization Hypervisor" and
"Virtualization Tools"

"Virtualization Client" The "Virtualization Client" package
group is available for install on GUI
environment Oracle Linux systems.

The command syntax to install a group package is as follows:

sudo dnf group install "Group Package Name"

The command syntax to display the details of what a group package installs is as follows:

sudo dnf group info "Group Package Name"

For instructions on how to install virtualization on Oracle Linux, see Install Virtualization
Packages.

Download Virtualization Packages

Virtualization packages are available for download from the Oracle Linux yum server or from
the Unbreakable Linux Network (ULN). The virtualization packages are available from various
upstream projects, including:

Chapter 1
KVM Virtualization Packages: Recommended

1-9

• https://www.linux-kvm.org/page/Main_Page

• https://libvirt.org/

• https://www.qemu.org/

KVM Repositories and Channels: Yum and ULN
The following table provides a list of Oracle Linux 9 yum repositories and ULN channels that
you can use for KVM deployment.

For more information about how Oracle manages software package distribution, see Oracle
Linux: Managing Software on Oracle Linux.

Note:

Unlike Oracle Linux 8, the packages for Oracle Linux 9 aren't released as part of a
DNF module.

Table 1-4 Oracle Linux 9: Repository Files and Channel Names

Yum Repositories ULN Channels KVM Stack Virtualization Package

ol9_appstream ol9_x86_64_appstrea
m
ol9_aarch64_appstre
am

Default KVM Stack • Fully supported
across all Oracle
Linux kernels.

• Offer maximum
compatibility with
RHCK and Red Hat
Enterprise Linux.

ol9_kvm_utils ol9_x86_64_kvm_util
s
ol9_aarch64_kvm_uti
ls

Oracle KVM Stack • Offer newer KVM
features and
functionality
available in
upstream
packages.

• Engineered to
work with KVM
features that are
enabled in the
latest releases of
UEK. If you install
these packages,
you must also
install the latest
version of either
UEK R7.

Note: You must
remove all existing
virtualization packages
before enabling this
channel or repository.

Special Considerations

• Default KVM Stack – Because the Application Stream repository or channel is a system
software requirement on Oracle Linux, it's enabled by default on Oracle all Linux 9

Chapter 1
KVM Repositories and Channels: Yum and ULN

1-10

https://www.linux-kvm.org/page/Main_Page
https://libvirt.org/
https://www.qemu.org/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

systems. Therefore the Default KVM Stack can be installed without changing any
repository or channel configuration.

• Oracle KVM Stack – For ULN users, subscribe to the virtualization ULN channels after
registering the Oracle Linux system with ULN and then install virtualization packages. For
yum repository users enable the yum repository and then install virtualization packages.
For more details, see Enable Yum Repositories or Subscribe to ULN Channels.

Note:

If the system is running UEK, you can choose to switch between stacks. For
more details, see Switch KVM Stacks.

Chapter 1
KVM Repositories and Channels: Yum and ULN

1-11

2
Installation: Oracle Linux KVM

The process to install the KVM user space packages on Oracle Linux involves these steps:

1. Enable the yum repositories or subscribe to the ULN channels.

Important:

This step is only required when using the Oracle KVM Stack. The Default KVM
Stack is available in the standard core system repositories.

For more details on which sources include the Default KVM Stack or the Oracle KVM
Stack, see KVM Repositories and Channels: Yum and ULN.

For details on how to enable a repository or subscribe to a ULN channel, see Enable Yum
Repositories or Subscribe to ULN Channels.

2. Install the virtualization packages on an existing system running Oracle Linux.
For more details, see Install Virtualization Packages.

3. (Optional - UEK system users only) Switch the KVM stack between the Default KVM Stack
and the Oracle KVM Stack.
For more details, see Switch KVM Stacks.

Enable Yum Repositories
If the system isn't subscribed to ULN and you want to use the Oracle KVM Stack, the
ol9_kvm_utils yum repository must be enabled before installing the virtualization packages.

Note:

The Default KVM Stack is available in the core system repositories and can be
installed without enabling any other repositories. If the Oracle KVM Stack is already
installed and you intend to switch KVM stacks, see Switch KVM Stacks for more
details.

What Do You Need?

• Ensure that the system meets the virtualization package requirements, see KVM Host:
System Requirements and KVM Repositories and Channels: Yum and ULN.

• Ensure that the required version of Oracle Linux 9 is installed to use the KVM features
provided by the yum repository. For more details about the virtualization package
requirements, see KVM Virtualization Packages: Recommended.

• Ensure that UEK R7 is installed and running on the system.

• Administrator privileges.

Steps

2-1

1. Install or update the release package:

sudo dnf install -y oraclelinux-release-el9

2. Enable the Oracle Linux 9 yum repositories, by running the dnf config-manager
command:

sudo dnf config-manager --enable ol9_kvm_utils

3. Proceed to the topic for installing the virtualization packages (Install Virtualization
Packages).

Subscribe to ULN Channels
If a system is subscribed to ULN and you want to install the Oracle KVM Stack, you must
subscribe to the ol9_<arch>_kvm_utils ULN channel before installing the virtualization
packages.

Note:

A ULN channel subscription isn't required when installing the Default KVM Stack. The
Default KVM Stack is available in the standard ULN channels on an Oracle Linux 9
system.

What Do You Need?

• A registered ULN Oracle Linux 9 server. For details on how to register an Oracle server
with ULN, see Oracle Linux: Managing Software on Oracle Linux.

• Ensure that the system meets the virtualization package requirements for the KVM
application stream module that you're installing. See KVM Repositories and Channels:
Yum and ULN.

• Ensure that UEK R7 is installed and running on the system.

• ULN username and password.

Steps

To subscribe to ULN channels, follow these steps:

1. Sign in to https://linux.oracle.com with your ULN username and password.

2. On the Systems tab, from the list of registered systems, select the link name for the
specified system.

3. On the System Details page, select Manage Subscriptions.

4. On the System Summary page, select the required ol9_<arch>_kvm_utils channel from
the Available Channels list, then click the right-arrow to move selected channels to the
Subscribed Channels list.

5. Click Save Subscriptions.

Chapter 2
Subscribe to ULN Channels

2-2

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://linux.oracle.com

Install Virtualization Packages
The following information describes how to install the virtualization packages on an Oracle
Linux 9 system.

What Do You Need?

• User credentials with administrator privileges.

• To install the Oracle KVM Stack, the following requirements must be met:

– Yum repository must be enabled or the ULN channel must be subscribed. See Enable
Yum Repositories or Subscribe to ULN Channels for instructions.

Note:

To install the Default KVM Stack, you don't need to enable any repositories
or subscribe to any other ULN channels.

– The host system must be running the latest UEK R7.

Steps

Follow these steps to install the virtualization packages on an Oracle Linux 9 system.

1. Log in to the Oracle Linux 9 system.

2. Ensure that the latest packages are installed on the system:

sudo dnf update

3. Install the latest available base virtualization packages and other utilities:

• To install the Default KVM Stack:

sudo dnf group install "Virtualization Host"
sudo dnf install qemu-kvm virt-install virt-viewer

• To install the Oracle KVM Stack, first remove any existing virtualization packages and
then install the packages as usual:

sudo dnf remove libvirt qemu-kvm edk2
sudo dnf group install "Virtualization Host"
sudo dnf install qemu-kvm virt-install virt-viewer

4. (Recommended) Reboot the system to ensure that the virtualization packages and utilities
were updated.

Note:

After performing a system update, reboot the system to ensure that the system
restarts with the latest packages.

5. Start, enable, or check the service of the libvirtd service. See Manage the Libvirtd
Service for instructions.

Chapter 2
Install Virtualization Packages

2-3

Note:

Before you can create and manage KVM instances, the libvirtd service must be
started and enabled.

6. Verify that the system can act as act as a virtual host. See Validate Host System

7. After verifying that the system can act as a virtual host, you can proceed to KVM
Instances: Create and Manage.

Validate Host System
The libvirt package provides a validation utility that checks whether a system can function
correctly as a virtualization host. The utility can check for several virtualization capabilities, but
KVM functionality is covered by testing the qemu virtualization type.

• Run the virt-host-validate qemu command to validate the host system:

sudo virt-host-validate qemu

If all checks return a PASS value, the system can host guest VMs. If any of the tests fail, a
reason is provided and information is displayed on how to resolve the issue, if such an
option is available.

Note:

If the following message is displayed, the system isn't capable of functioning as a
KVM host:

QEMU: Checking for hardware virtualization: FAIL (Only emulated
CPUs are
 available, performance will be significantly limited)

If you try to create or start a VM on a host where this message is displayed, the
action is likely to fail.

Switch KVM Stacks
You can switch from one KVM stack to another KVM stack, if required.

The KVM stacks define the versions of user space packages that you can use to manage
virtual machines on Oracle Linux. To take advantage of newer functionality available in more
recent user space packages, you must install UEK.

The Default KVM Stack is compatible with both RHCK and UEK. The Default KVM Stack is
available from the standard Oracle Linux package repositories or ULN channels. If you require
RHCK, you can only use the Default KVM Stack.

The Oracle KVM Stack, which includes more KVM features than the default stack, requires
UEK to be running on the host system and that the system is subscribed to the appropriate
yum repositories or ULN channels.

Chapter 2
Validate Host System

2-4

Switching the KVM stack on an Oracle Linux system involves removing one version of the
KVM stack and then replacing it with another version of the KVM stack.

Caution:

Guests instances that were created by using one KVM stack might not be compatible
and might not start after switching to another KVM stack.

For instructions on how to switch KVM stacks on Oracle Linux 9 systems with UEK, see these
topics:

• Switch Default Stack to Oracle KVM Stack

• Switch Oracle KVM Stack to Default Stack

Note:

For details about the KVM stacks included in virtualization packages from a yum
repository or ULN channel, see KVM Repositories and Channels: Yum and ULN.

Switch Default Stack to Oracle KVM Stack
The following information describes how Oracle Linux 9 users can switch from the Default KVM
Stack to the Oracle KVM Stack.

Caution:

Guests instances that were created by using the default KVM stack might not be
compatible and might not start after switching to the Oracle KVM stack.

What Do You Need?

• Oracle Linux 9 system with the Default KVM Stack packages installed.

• The host system must be running the latest UEK R7.

• Administrator privileges.

Follow these steps to switch from the Default KVM stack to the Oracle KVM Stack.

1. Remove any packages from the existing Default KVM Stack, for example:

sudo dnf remove libvirt* qemu* virt-install

2. Enable the ol9_kvm_utils yum repository or ol9_<arch>_kvm_utils ULN channel.

See Enable Yum Repositories or Subscribe to ULN Channels as appropriate.

3. Install the required virtualization packages from the ol9_virt_utils yum repository or
ol9_<arch>_virt_utils ULN channel:

sudo dnf install libvirt qemu-kvm virt-install

Chapter 2
Switch KVM Stacks

2-5

Switch Oracle KVM Stack to Default Stack
The following information describes how Oracle Linux 9 users can switch from the Oracle KVM
stack to the Default KVM Stack.

Caution:

Guest instances that were created by using the Oracle KVM Stack might not be
compatible and might not start after switching to the Default KVM Stack.

What Do You Need?

• Oracle Linux 9 system with the Oracle KVM stack packages installed.

• Administrator privileges.

Steps

Follow these steps to switch from the Oracle KVM Stack to the default KVM Stack.

1. Remove any packages from the existing Oracle KVM Stack, for example:

sudo dnf remove libvirt* qemu* virt-install

2. Disable the ol9_virt_utils yum repository or ol9_<arch>_virt_utils ULN channel.

3. Install the required virtualization packages from the ol9_appstream yum repository or
ol9_<arch>_appstream ULN channel. For example:

sudo dnf install libvirt qemu-kvm virt-install

Chapter 2
Switch KVM Stacks

2-6

3
Manage the Libvirtd Service

The following information describes how to start, enable, and check the status of the libvirt
service.
What Do You Need?

• Virtualization packages installed on host system. See Install Virtualization Packages for
details.

• Understanding of libvirt driver daemons as of Oracle Linux 9.
For details, see Types of libvirt Driver Daemons

• Administrator privileges.

Steps

Follow these steps to start and enable the libvirtd service:

1. To start the libvirtd service with full virtualization functionality, run:

for drv in qemu network nodedev nwfilter secret storage interface;
 do
 sudo systemctl enable virt${drv}d.service
 sudo systemctl enable virt${drv}d{,-ro,-admin}.socket;
 sudo systemctl start virt${drv}d{,-ro,-admin}.socket;
 done

You don't need to start the service for each daemon, as the service is automatically started
when the first socket is established.

Note:

For legacy systems, the libvirtd socket is available for use to manage remote
virtual guest connections.

• Enable the virtproxyd daemon to let remote hosts connect to guests.

If connections from remote hosts are needed, the virtproxyd daemon must be
enabled and started:

sudo systemctl enable virtproxyd.service
sudo systemctl enable virtproxyd-tls.socket
sudo systemctl start virtproxyd-tls.socket

2. To check the status of the libvirtd service, type:

sudo systemctl list-units --type=socket virt*

The output identifies all enabled units and their current status.

3-1

Types of libvirt Driver Daemons
Oracle Linux 9 provides functionality for two different types of libvirt driver daemons:
Modular and Monolithic. The granularity in which you can configure individual virtualization
drivers depends on which libvirt daemon you use. For example:

• Modular libvirt - Oracle Linux 9 Fresh Install
Modular libvirt, which is newly introduced in Oracle Linux 9, provides a specific daemon
for each hypervisor driver. These include:

– virtqemud: is the QEMU management daemon, for running virtual machines on KVM.

– virtnetworkd: is the virtual network management daemon.

– virtnodedevd: is the host physical device management daemon.

– virtnwfilterd: is the host firewall management daemon.

– virtsecretd: is the host secret management daemon.

– virtstoraged: is the host storage management daemon.

– virtinterfaced: is the host Network Interface Card (NIC) management daemon.

– virtproxyd is a virtualization proxy daemon that lets remote clients to securely access
the libvirt APIs.

The name of the daemon reflects the name of the host driver, for example: virt [DRIVER]d.
Each driver daemon has a separate configuration file that resides in libvirt directory. For
example, the configuration file path for QEMU management driver daemon is /etc/
libvirt/virtqemud.conf.

Modular driver daemons provide better options for fine-tuning and managing the libvirt
system resources. When you perform a fresh install of Oracle Linux 9, the libvirt
modular virtualization driver daemons are configured by default.

Note:

When the virt$[DRIVER]d daemon is managed by systemd other features are
also available, most notably socket activation. For more information about the
use of modular sockets and systemd integration, see https://libvirt.org/
daemons.html#modular-sockets.

• Monolithic libvirt - Update to Oracle Linux 9

By default, the traditional monolithic daemon, known as libvirtd is configured when you
update from Oracle Linux 8 to Oracle Linux 9. The libvirtd daemon controls a wide
variety of virtualization drivers by using a single configuration file (/etc/libvirt/
libvirtd.conf). In some instances, system resources might be used inefficiently when
using the libvirtd centralized configuration. Therefore, we recommend that Oracle Linux
9 users switch to the modular libvirt driver daemons. For instructions, see https://
libvirt.org/daemons.html#switching-to-modular-daemons.

For general information about the usage of libvirt daemons, see https://libvirt.org/
daemons.html.

Chapter 3
Types of libvirt Driver Daemons

3-2

https://libvirt.org/daemons.html#modular-sockets
https://libvirt.org/daemons.html#modular-sockets
https://libvirt.org/daemons.html#switching-to-modular-daemons
https://libvirt.org/daemons.html#switching-to-modular-daemons
https://libvirt.org/daemons.html
https://libvirt.org/daemons.html

4
KVM Instances: Create and Manage

To create and manage KVM instances from the CLI, see the following topics.

• KVM Instances: Hardware Configuration

• Add Watchdog Device to KVM Instance

• Add vTPM Security to KVM Instance

• KVM Memory and CPU Allocation Configuration

• KVM Storage Configuration

• Overview: Virtual Networking

Note:

To create and manage KVM instances using a graphical user interface (GUI), see the
Virtual Machines Management Tasks topics in the Oracle Linux: Using the Cockpit
Web Console. Additionally, you can choose to manage a virtual machine environment
by using the Oracle VM Manager. For more details about using the VM Manager, see
Oracle Linux Virtualization Manager documentation.

Create: KVM Instance
The following information describes how to create a virtual machine using the virt-install
utility.

What Do You Need?

• The following system requirements must be met:

– Virtualization packages are installed on the host system. See Install Virtualization
Packages for more details.

– A minimum of one virtual storage pool must exist to create a virtual machine. Note that
a virtualization storage pool is automatically provided in the /var/lib/libvirt/images
directory. See Storage Pools: Create and Manage for more details.

– A compatible guest OS is required to create a virtual machine. See KVM Guest:
Operating Systems for more details.

– All minimum host system hardware requirements must be met to create, run, and
manage KVM instances. See KVM Host: System Requirements for more details.

– The libvirt services must be started and enabled. See Manage the Libvirtd Service
for more details.

• Administrator privileges.

Steps

Using the CLI, follow these steps to create a virtual machine.

4-1

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/virtualization/oracle-linux-virtualization-manager/

1. To create a virtual machine, use the virt-install command and its options to define the
resources required. For example:

Virtual Machine Creation: Options

 virt-install \
 --name [unique-virtual-machine-name] \
 --memory [allocated-MiB-memory-size] \
 --vcpus [integer-vcpus-value-for-guest] \
 --location [installation-source-path] \
 --disk [type-and-size] \
 --os-variant [os-verison] \
 --network [default] \
 --graphics [none]

Note:

For a complete list of virt-install options, see the virt-install(1) manual
page. Or, for a quick list of virt-install options, type: virt-install --
help.

Where:

--name [unique-virtual-machine-name] Mandatory Option:
Provide a unique name to the virtual
machine. The assigned name is registered
as a domain within libvirt.

--memory [allocated-MiB-memory-size] Mandatory Option:
Identify the amount of memory to be
allocated to the guest, in MiB.

--vcpus [integer-vcpus-value-for-
guest]

Mandatory Option:
Identify the number of virtual CPUs
available for use by guest OS.

--disk [type-and-size] Mandatory Option:
Identify the appropriate values for disk type
and size, for example:

• Disk hardware size:

--disk size=[capacity size in
gigabytes]

• Disk storage pool path

--disk /storage-pool-path/volume-
path,size=#

Chapter 4
Create: KVM Instance

4-2

• Disk image media file path

--disk=/iso-images/ol8-
dvd.iso,device=cdrom

Special considerations:

• If a path isn't specified the disk image is
automatically created as a qcow file
format.

• If virt-install is run as root, the
disk image is created in /var/lib/
libvirt/images/ and is named using
the name specified for the VM at install.

• If virt-install is run as an ordinary
user, the disk image is created
in $HOME/.local/share/libvirt/
images/

--location [installation-source-path] Mandatory Option
Identify the OS installation source location,
for example:

• ISO file

• an expanded installation resource
hosted at a local path

• an expanded installation resource
hosted remotely on an HTTP or NFS
server.

Note:

For a list other source installation
options, see the virt-install
(1)– Linux manual page.

--os-variant [os-version] The os-variant option is optional. You can
use this option to optimize the performance
of the guest configuration.

To obtain valid --os-variant values, type:
osinfo-query os

--network [default] The network option is optional. When the --
network option isn't specified, or when the
--network default option is specified, the
guest will connect to the default network.

For other network configuration options, see
the virt-install (1) – Linux manual
page.

Chapter 4
Create: KVM Instance

4-3

--graphics [none] The graphics option is optional.

This option lets you specify the display type
used for interactive guest installation.

Note that when –-graphics none is
specified, a text-only installation display is
available.

To display a graphical console for a guest
installation, you can use the virt-viewer
tool. For more information about configuring
the virt-viewer, see the virt-viewer(1) --
Linux manual page.

Based on the virt-install options specified, the virtual machine is created and the guest
OS is automatically installed.

Virtual Machine Creation Examples: See Virt-Install: Command Line Examples

2. After creating the virtual machine, you can:

a. Start the virtual machine.

For details, see KVM: Start Instance.

b. Connect to the virtual machine.

Virt-Install: Command Line Examples
The following information provides command-line examples for using virt-install to create
virtual machine instances with a guest OS.

Guest OS: Oracle Linux 9

• Scenario: ISO image - text-mode only install.

virt-install \
 --name ol9-guest-demo --memory 16384 --vcpus 16 --disk size=280 \
 --os-variant ol9.0 --location ol9.iso \
 --graphics none --extra-args='console=ttyS0'

Description: Creates a KVM instance named ol9-guest-demo using an ol9.iso image file
in text-only mode, without graphics. It connects the guest console to the serial console.
The VM has 16384 MiB of memory, 16 vCPUs, and 280 GiB disk. Note that this guest
installation example might be useful when connecting to a host over a slow network link.

• Scenario: URL installation tree path - automated Kickstart install.

virt-install \
 --graphics vnc \
 --name ol9-guest-demo1 --memory 2048 --vcpus 2 --disk size=160 \
 --os-variant ol9.0 --location http://example.com/OS-install \
 --initrd-inject /home/uniquename/ks.cfg --extra-args="inst.ks=file:/
ks.cfg console=tty0 console=ttyS0,115200n8"

Description: Creates a VM named ol9-guest-demo1 that installs from the http://
example.com/OS-install URL. Note for the installation to start successfully, the URL

Chapter 4
Create: KVM Instance

4-4

must contain a working OS installation tree. The OS is automatically configured by the
referenced kickstart file (/home/uniquename/ks.cfg). Finally, the VM is allocated with
2048 MiB of RAM, 2 vCPUs, and a 160 GiB qcow2 virtual disk.

Additions for ARM 64 host-based scenarios:

%packages
-kernel
kernel-64k
%end

These lines ensure that the kickstart file, depicted in the ol9-guest-demo1 scenario, installs
the kernel-64k package.

Guest OS: Oracle Linux 8

• Scenario: ISO image - live CD

virt-install \
 --name ol8-guest-demo --memory 4096 --vcpus 4 \
 --disk none --livecd --os-variant ol8.0 \
 --cdrom /home/uniquename/Downloads/ol8.iso

Description: Creates a VM named ol8-guest-demo by using /home/uniquename/
Downloads/ol8.iso image to run a Oracle Linux 8 OS from a live CD. No disk space is
assigned to this VM, so any changes made during the session aren't preserved. The VM is
allocated with 4096 MiB of RAM and 4 vCPUs.

Guest OS: Oracle Linux 7

• Scenario: Import disk image - qcow file format

virt-install \
 --name ol7-guest-demo --memory 2048 --vcpus 2 \
 --os-variant ol7.0 --import \
 --disk /home/uniquename/backup/disk.qcow2

Description: Creates a VM named ol7-guest-demo that connects to an existing disk image
(/home/uniquename/backup/disk.qcow2). The VM is allocated with 2048 MiB of
RAM and 2 vCPUs. Note that the os-variant option is highly recommended when
importing a disk image. In cases when the os-variant option isn't specified, the
performance of the created VM might be negatively affected.

Clone: Existing KVM Instance
System administrators can easily create a KVM instance by cloning the configuration of an
existing KVM instance. Depending on the use of the clone, system administrators can either
prepare the source KVM configuration before cloning it, or simply create a KVM clone with the
identical configuration as the source KVM instance.

Chapter 4
Clone: Existing KVM Instance

4-5

Note:

When creating multiple clones from a single KVM instance, we recommend preparing
the source configuration before cloning it. Preparing the source configuration lets you
examine the configuration and remove unique parameters that would not apply to the
clone configuration and cause the clone to possibly fail or not work correctly.

For instructions on how to prepare a KVM instance for cloning or create a KVM clone, see
these topics:

• Prepare KVM for Cloning: Using virt-sysprep
• Prepare KVM for Cloning: Manually

• Create a KVM Clone Using virt-clone Command

Note:

In addition to using the CLI to create KVM clones, you can use the Cockpit web
console to clone KVM instances. For details, see Cloning VMs in Oracle Linux: Using
the Cockpit Web Console.

Prepare KVM for Cloning: Using virt-sysprep
The following information describes how to use the system preparation scripting tool (virt-
sysprep) to prepare a source KVM disk configuration for cloning.

Note:

The virt-sysprep tool helps you to prepare a KVM configuration for cloning by
removing SSH host keys, persistent network configurations, and user accounts on
the disk image. It also lets you add SSH keys, users, or logos. For more details about
virt-sysprep, see https://libguestfs.org/virt-sysprep.1.html.

What Do You Need?

• All important data on the source KVM is backed up.
Note that virt-sysprep changes the disk image in place without making a copy of it. To
keep the configuration of the source KVM intact, create a clone. For details, see Create a
KVM Clone Using virt-clone Command.

• The system preparation tool (virt-sysprep) must installed on the host. The tool is
included in the guestfs-tools package.

sudo dnf install guestfs-tools

• The source KVM must be shut down.

• The location of the source KVM disk image is required. Also, you must be the disk image
owner and have disk write permissions.

Chapter 4
Clone: Existing KVM Instance

4-6

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://libguestfs.org/virt-sysprep.1.html

Follow these steps to use the virt-sysprep tool to prepare a source KVM disk image
configuration for cloning.

1. Log in as the root owner of the KVM disk image, for example:

whoami
root

2. To prepare the source KVM disk image for cloning, use the following virt-sysprep command
syntax.

virt-sysprep -a [/var/lib/libvirt/images/a-replace me -my-kvm.qcow2]
[0.0] Examining the guest ...
[7.3] Performing "abrt-data" ...
[7.3] Performing "backup-files" ...
[9.6] Performing "bash-history" ...
[9.6] Performing "blkid-tab" ...
[...]

Where:

• [/var/lib/libvirt/images/replace me-my-kvm.qcow2] replace with the source KVM disk
image path.

3. Use the virt-sysprep tool to inspect the prepared disk image. For a list of available
options, type: virt-sysprep --help
For more details, see the virt-sysprep(1) Linux manual page.

4. After preparing the disk image for cloning, proceed with using the prepared KVM disk
configuration to create a clone.

For details, see Create a KVM Clone Using virt-clone Command.

Note:

On the first boot of the clone, we recommend that you change the hostname.

Prepare KVM for Cloning: Manually
The following information describes how to manually prepare a source KVM configuration for
cloning.
What Do You Need?

• All important data on the source KVM is backed up.
To keep the configuration of the source KVM intact, create a clone. For details, see Create
a KVM Clone Using virt-clone Command

• The location of the source KVM disk image is required. Also, you must be the disk image
owner and have disk write permissions.

• The source KVM must be shut down.

• Administrator privileges.

Follow these steps to manually prepare a source KVM configuration for cloning.

1. Configure the source KVM as required, for example:

Chapter 4
Clone: Existing KVM Instance

4-7

• Install any required software for clone.

• Configure any required properties that are considered non-unique for the operating
system or system applications.

2. Remove the network configuration, as follows:

a. To remove any persistent udev rules, type:

rm -f /etc/udev/rules.d/70-persistent-net.rules

Note:

If you don't remove the udev rules, the name of the first NIC might be
eth1instead of eth0.

b. (Guests running Oracle Linux 9 or later) Remove any hardware addresses from
NetworkManager connection profiles.

Check for connection profiles in the following locations:

• /etc/NetworkManager/system-connections
• /run/NetworkManager/system-connections
• /usr/lib/NetworkManager/system-connections

c. (Guests running Oracle Linux 8 or earlier) Change /etc/sysconfig/network-scripts/
ifcfg-eth[x] to remove the HWADDR and static lines and any other unique or non-
desired settings, such as UUID.

For example:

DEVICE=eth[x]
BOOTPROTO=none
ONBOOT=yes
#NETWORK=10.0.1.0 <- REMOVE
#NETMASK=255.255.255.0 <- REMOVE
#IPADDR=10.0.1.20 <- REMOVE
#HWADDR=xx:xx:xx:xx:xx <- REMOVE
#USERCTL=no <- REMOVE

After modification, the file must not include a HWADDR entry or any unique information,
and at a minimum include the following lines:

DEVICE=eth[x]
ONBOOT=yes

Important:

You must remove the HWADDR entry because if its address doesn't match the
new guest's MAC address, the ifcfg is ignored.

d. (Guests running Oracle Linux 8 or earlier) If the following files exist, ensure they have
the same content:

Chapter 4
Clone: Existing KVM Instance

4-8

• /etc/sysconfig/networking/profiles/default/ifcfg-eth[x]
• /etc/sysconfig/networking/devices/ifcfg-eth[x]

Note:

If NetworkManager was used or any special settings with the KVM, ensure
that all unique information is removed from the ifcfg scripts.

3. Remove ULN registration details.

For example, if the KVM guest from which you want to create a clone is registered with
ULN, you must unregister it. For more information, see the applicable reference:

• Oracle Linux 7: Oracle Linux: Unbreakable Linux Network User's Guide for Oracle
Linux 6 and Oracle Linux 7

• Oracle Linux 8 and Oracle Linux 9: Oracle Linux: Managing Software on Oracle Linux

4. Remove sshd public/private key pairs.

For example, type:

rm -rf /etc/ssh/ssh_host_[name]

5. Remove any other application-specific identifiers or configurations that might cause
conflicts if running on multiple machines.

6. Configure the relevant setup configuration wizard to run at first boot.

Examples:

• For Oracle Linux 7, enable the first boot and initial-setup wizard:

sed -ie 's/RUN_FIRSTBOOT=NO/RUN_FIRSTBOOT=YES/' /etc/sysconfig/firstboot
systemctl enable firstboot-graphical
systemctl enable initial-setup-graphical

• For Oracle Linux 8 and 9, remove the gnome-initial-setup-done file to configure the
KVM to run the configuration wizard on the next boot:

rm ~/.config/gnome-initial-setup-done

7. After addressing all required modifications, proceed to using the prepared KVM
configuration to create a clone.

For details, see Create a KVM Clone Using virt-clone Command.

Note:

On the first boot of the clone we recommend that you change the hostname.

Create a KVM Clone Using virt-clone Command
The following information describes how to clone a source KVM instance using the virt-clone
command.

Chapter 4
Clone: Existing KVM Instance

4-9

https://docs.oracle.com/en/operating-systems/oracle-linux/uln-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/uln-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

What Do You Need?

• Root privileges.

• Source KVM is shut down.

• Sufficent disk space to store the cloned disk images.

• (Optional) Prepared source KVM configuration for cloning.
See Prepare KVM for Cloning: Using virt-sysprep or Create a KVM Clone Using virt-
clone Command.

Steps

Follow these steps to clone an existing KVM instance:

1. Perform one of the following:

• To clone a source KVM with its original configuration, use the following virt-clone
command syntax:

virt-clone --orginal kvm-name --auto-clone

For example, if you typed:

virt-clone --orginal My_KVM --auto-clone

Output similar to the following appears:

virt-clone --original My_KVM --auto-clone
Allocating 'My_KVM-clone.qcow2' | 55.0 GB
00:02:37

Clone 'My_KVM-clone' created successfully.

In this example, the virt-clone command copies the source My-KVM configuration
and creates: (1) a clone KVM guest named My_KVM-clone, and (2) a clone disk
image named My_KVM-clone.qcow2
-OR-

• To clone a source KVM using the virt-clone command with other options, type the
following command to view the available configuration options:

virt-clone --help

For more examples of how to use the virt-clone command, see the virt-clone(1)
Linux man page.

2. Verify that the cloned KVM instance is working, for example:

• Confirm that the clone has been added to the list of KVMs on the host:

virsh list --all
Id Name State

- My_KVM shut off
- My_KVM-clone shut off

Chapter 4
Clone: Existing KVM Instance

4-10

• Start the clone and observe if it boots up:

virsh start My_KVM-clone
Domain 'My_KVM-clone' started

View: KVM Instances, Status, and Configuration
The following information describes how to use the virsh command to obtain a list of KVM
instances available on a host, along with their status (running, paused, and so on). It also
describes how to view and edit the XML configuration of a specific KVM instance.
What Do You Need?

• Root privileges on host system.

• Existing KVM instance on a host system.

Steps

Follow theses steps to: 1) view KVM instances and their status on a host, and 2) view basic
and detailed configuration information about a specific KVM instance.

1. To list all virtual machines on a local host system, type:

virsh list --all

Example output:

 Id Name State
--
 1 My_KVM_Guest running

Where:

• KVM ID or Name: The unique ID and name assigned to the KVM instance.

• State: The operating status of the KVM instance. Possible status states that might
appear include:

– Running – The KVM instance is considered operational and working.

– Paused – Execution of the KVM instance has been paused until it's resumed.

– Shut off or Shutdown – The KVM instance is powered off.

– Saved – The saved state is similar to the paused state, however the KVM
instance's configuration is saved to persistent storage.

For more details on how to manage the state of a KVM instance, see Start, Shutdown,
Reboot, or Remove KVM.

2. To view basic details about a specific KVM instance, type:

sudo virsh dominfo My_KVM_Guest

Chapter 4
View: KVM Instances, Status, and Configuration

4-11

Example output:

Id: 1
Name: My_KVM_Guest
UUID: c321630AA-2f5e-665c-8949-75b7d99999e1
OS Type: hvm
State: running
CPU(s): 2
CPU time: 188.3s
Max memory: 4188304 KiB
Used memory: 4188304 KiB
Persistent: yes
Autostart: disable
Managed save: no
Security model: selinux
Security DOI: 0
Security label: system_u:system_r:svirt_t:s0:###,### (enforcing)

3. To view the complete XML configuration associated with a KVM instance, use the virsh
dumpxml command. For example:

sudo virsh dumpxml My_KVM_Guest

The virsh dumpxml command output returns the guest KVM XML configuration file, which
can be viewed, saved, changed, or used in other ways.

4. To edit the XML configuration file associated with a KVM guest, use the virsh edit
command. For example:

sudo virsh edit My_KVM_Guest_Name

Connect to KVM: virsh Serial Console
You can access a KVM instance directly using a serial console interface.
The following information describes how to establish a serial console connection to a KVM
instance by using the virsh console command.

Note:

A serial console connection to a KVM instance might be useful when a the instance
isn't configured with a GUI display, or if the instance lacks a network configuration,
preventing SSH access.

What Do you Need?

• Administrator privileges

• Name of the KVM instance.

• The KVM instance is configured for serial console use. For example:

Chapter 4
Connect to KVM: virsh Serial Console

4-12

– KVM serial console device defined – Ensure that a serial console device is defined on
KVM. For example:

sudo virsh ttyconsole kvm_name

If output is shown, a serial console device is defined. Otherwise, define a serial
console in the KVM XML configuration. One method you can use is virsh edit. For
example, run:

sudo virsh edit

Within the <devices> tag, add the following text to the XML. For example:

<devices>
 <console type='pty'/>
</devices>

See Domain XML format for more information.

– KVM kernel console option enabled – Ensure that console=ttyS0 kernel option is
enabled on KVM. If this option isn't configured, the virsh console connection to the
serial console will be unresponsive.
To verify the console=ttyS0 kernel option is configured on the KVM, use the cat /
proc/cmdline command. The output configuration must include console=[console-
name]. If the output doesn't include a console configuration, you must enable the
console=ttyS0 kernel option.

To enable the console=ttyS0 kernel option, (1) type:

sudo grubby --update-kernel=ALL --args="console=ttyS0"

(2) Ensure that the changes were applied, type:

sudo grub2-editenv - unset kernelopts

(3) Reboot the KVM instance.

Steps

Follow these steps to directly connect to the KVM serial console.

• On the host system, use the virsh console command to open up a KVM session in a
serial console. For example:

sudo virsh console testguest

Where testguest is the name of the KVM guest.
You can interact with the virsh serial console in the same way as you would with the CLI.

Chapter 4
Connect to KVM: virsh Serial Console

4-13

https://libvirt.org/formatdomain.html

Note:

If the connection failed and the guest serial console is unresponsive, you can exit
the connection by pressing: Ctrl key and the] right square bracket key.

Start, Shutdown, Reboot, or Remove KVM
When using the CLI, you can use the following methods to start, shutdown, reboot, or remove
a KVM instance:

• KVM: Start Instance

• KVM: Shut Down Instance

• KVM: Suspend or Resume Instance

• KVM: Reboot Instance

• KVM: Remove KVM Instance

KVM: Start Instance
The following information describes how to start a KVM instance that's shut down on a local or
remote host using the virsh start command.
What Do You Need?

• Administrator privileges.

• Name of the inactive KVM instance.

• For remote KVM instances, the following is required to complete the remote example
shown in Step 1.

– The host IP address where the inactive KVM instance resides.

– Root privileges to the host.

– SSH connection protocol port enabled.

– The qemu-kvm virtualization package is installed. For details about virtualization
packages, see KVM Virtualization Packages: Recommended.

Steps

Follow these steps to start an inactive KVM on a host system using the virsh start
command:

• Perform one of the following:

• For local KVM, use the virsh start command as follows:

sudo virsh start KVM_Guest_Name

Example output:

Domain 'KVM_guest_name' started

Chapter 4
Start, Shutdown, Reboot, or Remove KVM

4-14

• For remote KVM, use the virsh start command and the SSH connection protocol as
follows:

sudo virsh -c qemu+ssh://root@host_ip_address/system start
Remote_KVM_guest_name

Example output:

root@host_ip-address's password:

Domain 'remote_KVM_guest_name' started

KVM: Shut Down Instance
The following information describes how to shut down an active KVM instance on a local or
remote host using the virsh shutdown command. It also describes how to force an
unresponsive KVM instance on a host to shut down using the virsh destroy command.

Note:

The virsh destroy command doesn't delete or remove the KVM configuration or its
disk images. It only forces the running KVM instance to shut down, similarly to pulling
the power cord on a physical machine. However, in unique cases, the virsh destroy
command might cause corruption to the KVM file system, so using this command is
only recommended when all other shutdown methods have failed.

What Do You Need?

• Administrator privileges.

• Name of the active or unresponsive KVM instance.

• For remote KVM instances, the following is required to complete the remote example
shown in Step 1.

– The host IP address where the KVM instance resides.

– Root privileges to the host.

– SSH connection protocol port enabled.

– The qemu-kvm virtualization package is installed. For details about virtualization
packages, see KVM Virtualization Packages: Recommended.

Steps

Follow these steps to shut down a KVM instance on a host system using either the virt
shutdown command or the virt destroy command.

• Perform one of the following:

• Graceful KVM Shutdown – Perform either of the following:

– For a local KVM, use the virt shutdown command as follows:

sudo virsh shutdown KVM_Guest_Name

Chapter 4
Start, Shutdown, Reboot, or Remove KVM

4-15

Example output:

Domain 'KVM_guest_name' is being shutdown

– For a remote KVM, use the virt shutdown command and the SSH connection
protocol as follows:

sudo virsh -c qemu+ssh://root@host_ip_address/system shutdown
Remote_KVM_guest_name

Example output:

root@host_ip-address's password:

Domain 'remote_KVM_guest_name'is being shutdown

• Forceful KVM Shutdown – Use the virt destroy command on an unresponsive
KVM instance as follows:

sudo virsh destroy KVM_Guest_Name

Example output:

Domain 'KVM_guest_name' destroyed

KVM: Suspend or Resume Instance
The following information describes how to suspend an active KVM instance on a local or
remote host using the virsh suspend command. It also describes how to resume a suspended
KVM instance on a host using the virsh resume command.
What Do You Need?

• Administrator privileges.

• Name of the active or suspended KVM instance.

• For remote KVM instances, the following is required to complete the remote example
shown in Step 1.

– The host IP address where the KVM instance resides.

– Root privileges to the host.

– SSH connection protocol port enabled.

– The qemu-kvm virtualization package is installed. For details about virtualization
packages, see KVM Virtualization Packages: Recommended.

Steps

Follow these steps to suspend or resume a KVM instance on a host system.

• Perform one of the following:

• Suspend KVM – Perform either of the following:

Chapter 4
Start, Shutdown, Reboot, or Remove KVM

4-16

– For a local KVM, use the virsh suspend command as follows:

sudo virsh suspend KVM_Guest_Name

Example output:

Domain 'KVM_guest_name' suspended

– For a remote KVM, use the virsh suspend command and the SSH connection
protocol as follows:

sudo virsh -c qemu+ssh://root@host_ip_address/system suspend
Remote_KVM_guest_name

Example output:

root@host_ip-address's password:

Domain 'remote_KVM_guest_name' suspended

• Resume KVM – Use the virsh resume command on a suspended KVM instance as
follows:

sudo virsh resume KVM_Guest_Name

Example output:

Domain 'KVM_guest_name' resumed

KVM: Reboot Instance
The following information describes how to reboot a KVM instance on a local host using the
virsh reboot command.

Note:

Rebooting a KVM can be helpful with various problems and might even be necessary
to complete some configurations.

What Do You Need?

• Administrator privileges.

• Name of the KVM instance.

Steps

Follow these steps to reboot a KVM instance on a host system.

• Type:

sudo virsh reboot My_KVM_Guest[--mode method]

Chapter 4
Start, Shutdown, Reboot, or Remove KVM

4-17

Where:

• [--mode method] is optional. The mode method option lets you specify an alternative
shutdown method such as acpi or agent.

Example output:

Domain My-KVM_Guest is being rebooted

KVM: Remove KVM Instance
The following information describes how to remove a KVM instance on a host system using the
virsh undefine command. It also describes how to optionally remove the storage artifacts
associated with a KVM instance.
What Do You Need?

• Administrator privileges.

• KVM information and actions required:

– KVM instance name.

– KVM storage is not in use by other KVMs.

– Removal of any KVM snapshots. To remove snapshots associated with KVM instance,
use the virsh snapshot-delete.

– KVM storage file path. To identify the storage file path associated with a KVM instance,
use the virsh dumpxml command. For example:

 sudo virsh dumpxml --domain My_KVMGuest_Name | grep 'source file'

Example output:

<source file='/home/testuser/.local/share/libvirt/images/
My_KVMGuest_Name-1.qcow2'/>

– KVM instance is shutdown. For details, see KVM: Shut Down Instance

– (Optional) Back up all important data on KVM instance. If required, see Clone: Existing
KVM Instance.

Steps

Follow these steps to remove a KVM instance from a host system.

1. To delete the KVM instance, type:

sudo virsh undefine My_KVMGuest_Name

The virsh undefine command removes all configuration information about the KVM
instance from libvirt. Note that the associated KVM storage artifacts such as virtual disks
remain intact.

2. (Optional) To delete the storage artifacts such as virtual disks associated with the KVM
instance (removed in Step 1), use the rm command followed by the storage path.

Chapter 4
Start, Shutdown, Reboot, or Remove KVM

4-18

For example:

sudo rm /home/testuser/.local/share/libvirt/images/
My_KVMGuest_Name-1.qcow2

Chapter 4
Start, Shutdown, Reboot, or Remove KVM

4-19

5
KVM Instances: Hardware Configuration

Using the CLI, system administrators can add, remove, or change any of the following
hardware configuration settings as required.

• Add Watchdog Device to KVM Instance

• Add vTPM Security to KVM Instance

• Overview: Virtual Networking

• KVM Storage Configuration

• KVM Memory and CPU Allocation Configuration

Add Watchdog Device to KVM Instance
Watchdog is an Oracle Linux service that runs in the background to monitor host availability
and processes and reports back to the kernel.

The following information describes how to install the watchdog software package and enable
its service. It also includes information about how to configure the watchdog daemon
configuration file, and how to add watchdog settings to the XML configuration file for a KVM
instance.

Note:

Watchdog device configurations aren't supported on Arm-based KVMs. Arm-based
KVMs are cloud-native virtual machines that operate on Arm-based processors.

What Do You Need?

• Administrator privileges.

• Existing KVM instance on host system.
For details, see Create: KVM Instance.

Steps

Follow these steps to install and enable watchdog, update the watchdog daemon configuration
as needed, and update the guest OS configuration file to include watchdog settings.

1. Install the Watchdog software package and enable the watchdog service on the guest OS.

Example command syntax:

sudo dnf install watchdog
sudo systemctl enable --now watchdog.service

5-1

Note:

The latest version of libvirt (9.x or later) includes a number of Watchdog
enhancements and bug fixes over the earlier versions of libvirt.

The Watchdog service immediately starts and runs in the background.

2. Configure the watchdog service as needed for the guest OS.

The watchdog.conf file includes all Watchdog configuration properties. For more details,
see the watchdog.conf(5) Linux manual page.

3. Shut down the KVM instance.

For details, see KVM: Shut Down Instance.

4. Add watchdog settings to the guest OS XML configuration file.

a. Use the virsh edit command to edit the guest OS XML configuration.

For example:

virsh edit My_KVMGuest_Name

Note:

The virsh edit command opens the XML file in the text editor specified by
the $EDITOR shell parameter. The vi editor is set by default.

b. Update the guest OS XML configuration file to include the required watchdog device
settings.

For example:

<devices>
 ...
 </input>
 <input type='mouse' bus='ps2'/>
 <input type='keyboard' bus='ps2'/>
 <watchdog model='i6300esb' action='poweroff'/>
 <graphics type='vnc' port='-1' autoport='yes'>
 <listen type='address'/>
 </graphics>
 ...
</devices

Where:

• model – Specifies the emulated watchdog device driver. Valid property values are
specific to the KVM machine type, for example:

Model Values Description

i6300esb The recommended device, which
emulates an Intel 6300ESB.

Chapter 5
Add Watchdog Device to KVM Instance

5-2

Model Values Description

ib700 Emulates an ISA iBase IB700, and is only
compatible with the i440fx/pc machine
type.

Note:

This device doesn't work with
the q35 machine type.

• action – (Optional) Describes the action taken when the watchdog timer expires.

Action Value Description

reset (Default option) Forcefully resets the
guest VM.

shutdown (Not recommended)
Gracefully powers off the guest OS.

Important:

The shutdown action requires
that the guest is responsive to
ACPI signals. In cases where
the watchdog timer expired,
the guests are typically unable
to respond to ACPI signals.
Therefore assigning a
'shutdown' action isn't
recommended.

poweroff Forcefully powers off the guest VM.
pause Suspends the execution of the guest OS.
none Does nothing.
dump Automatically creates a dump file

containing the core of the guest virtual
machine so that it can be analyzed.

Note:

To configure the directory to
save the dump file, set the
auto_dump_path in file /etc/
libvirt/qemu.conf.

inject-nmi Injects a non-maskable interrupt to the
guest OS.

c. Save the guest OS XML configuration changes.

5. Start the KVM instance.

Chapter 5
Add Watchdog Device to KVM Instance

5-3

For details, see KVM: Start Instance.
The Watchdog service starts and runs immediately after a power reset.

Add vTPM Security to KVM Instance
The following provides information about the use of Virtual Trusted Platform Module (vTPM)
security. It also includes configuration information for enabling vTPM security on a KVM
instance.
About vTPM Security

A virtual Trusted Platform Module (vTPM) is a software-based representation of a physical
Trusted Platform Module 2.0 chip. A vTPM acts as any other virtual device and provides
security-related functions such as random number generation, attestation, and key generation.
When added to a KVM instance, vTPM enables the guest OS to create and store keys that are
private and not exposed to other guests. If a KVM instance is compromised and vTPM is
enabled, the risk of its secrets being compromised is reduced because the keys are only
usable to the KVM's guest OS for encryption or signing.

You can add a vTPM to an existing Oracle Linux 9 KVM. When you enable vTPM, the KVM
files are encrypted but not the disks. Although, you can choose to add encryption explicitly for
the KVM and its disks.

What Do You Need?

• Administrator privileges.

• Existing KVM instance on host system.
For details, see Create: KVM Instance.

Steps

Follow these steps to install the vTPM software package and edit the guest OS configuration
file to include vTPM security properties.

1. Install the vTPM software packages.

sudo dnf install swtpm libtpms swtpm-tools

2. Shut down the KVM instance.

For details, see KVM: Shut Down Instance.

3. Perform these steps to add the vTPM settings to the guest OS XML configuration file:

a. Use the virsh edit command to edit the guest OS XML configuration.

For example:

virsh edit My_KVMGuest_Name

Note:

The virsh edit command opens the XML file in the text editor specified by
the $EDITOR shell parameter. The vi editor is set by default.

b. Update the guest OS XML configuration file to include the vTPM security properties.

Chapter 5
Add vTPM Security to KVM Instance

5-4

For example:

<devices>
 ...
 </input>
 <input type='mouse' bus='ps2'/>
 <input type='keyboard' bus='ps2'/>
 <tpm model='tpm-crb'>
 <backend type='emulator' version='2.0'/>
 </tpm>
 <graphics type='vnc' port='-1' autoport='yes'>
 <listen type='address'/>
 </graphics>
 ...
</devices>

Where:

• model='tpm-crb' – sets the TPM model type as Command-Response Buffer (CRB).

Note:

The tpm-crb option is available only when you specify version='2.0'.

• type='emulator' – sets the device type as emulator.

• version='2.0' – sets the tpm version as 2.0.

Note:

When creating a KVM instance for the first time on Oracle Linux 9, you can
also use the virt-install command --tpm option to specify the TPM
emulated device information at installation time. For example:

virt-install --name MY_KVMGuest_ol8-tpm2 --memory 2048 --vcpus
2 \
--disk path=/systest/images/My_KVMGuest_ol8-tpm2.qcow2,size=20
\
--location /systest/iso/ol8.iso --os-variant ol8 \
--network network=default --graphics vnc,listen=0.0.0.0 --tpm
emulator,model=tpm-crb,version=2.0

c. Save the guest OS XML configuration changes.

4. Start the KVM instance.

For details, see KVM: Start Instance.

KVM Network Configuration
To configure and manage KVM virtual networks, see these topics:

• Overview: Virtual Networking

Chapter 5
KVM Network Configuration

5-5

• Command Usage: Manage Virtual Network

• Command Usage: Add or Remove vNIC

• Bridged Networking: Setup

• PCIe Passthrough: Setup

Overview: Virtual Networking
Networking within a KVM environment is achieved by creating virtual Network Interface Cards
(vNICs) on the KVM guest. vNICS are mapped to the host system's own network infrastructure
in any of the following ways:

• Connecting to the virtual network running on the host.

• Directly using a physical interface on the host.

• Using Single Root I/O Virtualization (SR-IOV) capabilities on a PCIe device.

• Using a network bridge that enables a vNIC to share a physical network interface on the
host.

vNICs are often defined when the KVM is first created, however the libvirt API can be used to
add or remove vNICS as required, and because it can handle hot plugging, these actions can
be performed on a running virtual machine without significant interruption.

Virtual Network Types:

A brief summary of the different types of virtual networks you can set up within a KVM
environment are as follows:

• Default Virtual Networking With NAT – KVM networking can be complex because it
involves: (1) physical components directly configured on the host system, (2) KVM
configuration within libvirt, and (3) network configuration within the running guest OS.
Therefore for many development and testing environments, it's often enough to configure
vNICs to use the virtual network provided by libvirt. By default, the libvirt virtual
network uses Network Address Translation (NAT) to enable KVM guests to gain access to
external network resources. This approach is considered easier to configure and often
facilitates similar network access already configured on the host system.

• Bridged Network and Mapped Virtual Interfaces – In cases where VMs might need to
belong to specific subnetworks, a bridged network can be used. Network bridges use
virtual interfaces that are mapped to and share a physical interface on the host. In this
approach, network traffic from a KVM behaves as if it's coming from an independent
system on the same physical network as the host system. Depending on the tools used,
some manual changes to the host network configuration might be required before
configuring it for KVM use.

• Host Physical Network Interface – Networking for VMs can also be configured to directly
use a physical interface on the host system. This configuration can provide network
behavior similar to using a bridged network interface in that the vNIC behaves as if it's
connected to the physical network directly. Direct connections tend to use the macvtap
driver to extend physical network interfaces to provide a range of functionality that can also
provide a virtual bridge that behaves similarly to a bridged network but is considered easier
to configure and maintain and more likely to offer improved performance.

• Direct and Shared PCIe Passthrough – Another KVM networking method is configuring
PCIe passthrough where a PCIe interface supports the KVM network functionality. When
using this method, administrators can choose to configure direct or shared PCIe
passthrough networking. Direct PCIe passthrough allocates exclusive use of a PCIe device
on the host system to a single KVM guest. Shared PCIe passthrough allocates shared use

Chapter 5
KVM Network Configuration

5-6

of an SR-IOV (Single Root I/O Virtualization) capable PCIe device to multiple KVM guests.
Both of these configuration methods require some hardware set up and configuration on
the host system before attaching the PCIe device to a KVM guest(s) for network use.

KVM Tools for Configuring Virtual Network

In cases where network configurations are likely to be more complex, we recommend using
Oracle Linux Virtualization Manager. The fundamental purpose of the CLI networking
configurations and operations described in this guide is to facilitate the most basic KVM
network deployment scenarios.

For details about Oracle Linux Virtualization Manager for more complex network
configurations, see Oracle Linux Virtualization Manager documentation.

Command Usage: Manage Virtual Network
To manage virtual networks in a KVM environment, use the virsh net-* command. For
example:

• virsh net-list --all – List all virtual networks configured on a host system.

virsh net-list --all

Output example:

 Name State Autostart Persistent
--
 default active yes yes

• virsh net-info – Display information about a network.

virsh net-info default

Output example:

Name: default
UUID: 16318035-eed4-45b6-99f8-02f1ed0661d9
Active: yes
Persistent: yes
Autostart: yes
Bridge: virbr0

Where:

– Name = assigned network name.

– UUID = assigned network identifier.

– virbr0 = virtual network bridge.

Chapter 5
KVM Network Configuration

5-7

https://docs.oracle.com/en/virtualization/oracle-linux-virtualization-manager/

Note:

virbr0 should not be confused with traditional bridge networking. In this
case, the virtual bridge isn't connected to a physical interface. The virtual
network bridge relies on NAT and IP forwarding to connect VMs to the
physical network.

• virsh net-dumpxml – View the full configuration of a network.

virsh net-dumpxml default

Output example:

<network>
 <name>default</name>
 <uuid>16318035-eed4-45b6-99f8-02f1ed0661d9</uuid>
 <forward mode='nat'>
 <nat>
 <port start='1024' end='65535'/>
 </nat>
 </forward>
 <bridge name='virbr0' stp='on' delay='0'/>
 <mac address='52:54:00:82:75:1d'/>
 <ip address='192.168.122.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.122.2' end='192.168.122.254'/>
 </dhcp>
 </ip>
</network>

In this example, the virtual network uses a network bridge, called virbr0, not to be
confused with traditional bridged networking. The virtual bridge isn't connected to a
physical interface and relies on NAT and IP forwarding to connect VMs to the physical
network beyond. libvirt also handles IP address assignment for VMs using DHCP. The
default network is typically in the range 192.168.122.1/24.

• virsh net-start – Start an inactive, previously defined virtual network.

 sudo virsh net-start [--network] <network-identifier>

Where: network-identifier stands for either network name or network UUID

• virsh net-destroy – Stop an active network and deallocate all resources used by it. For
example, stopping appropriate dnsmasq process, releasing the bridge.

sudo virsh net-destroy [--network] <network-identifier>

For a more complete list of libvirt's network management commands, see the section 'Basic
Command-line Usage for Virtual Networks' on the libvirt Virtual Networking site (https://
wiki.libvirt.org/VirtualNetworking.html#virsh-xml-commands).

Chapter 5
KVM Network Configuration

5-8

https://wiki.libvirt.org/VirtualNetworking.html#virsh-xml-commands
https://wiki.libvirt.org/VirtualNetworking.html#virsh-xml-commands

Command Usage: Add or Remove vNIC
You can use the virsh attach-interface command to add a new vNIC to an existing
KVM. This command can be used to create a vNIC on a KVM that uses any of the networking
types available in KVM.

virsh attach-interface --domain guest --type network --source default --config

You must specify the following parameters with this command:

• --domain – The KVM name, ID, or UUID.

• --type – The type of networking that the vNIC uses.
Available options include:

– network for a libvirt virtual network using NAT

– bridge for a bridge device on the host

– direct for a direct mapping to one of the host's network interfaces or bridges

– hostdev for a passthrough connection using a PCI device on the host.

• --source – The source to be used for the network type specified.
These values vary depending on the type:

– For a network, specify the name of the virtual network.

– For a bridge, specify the name of the bridge device.

– For a direct connection, specify the name of the host's interface or bridge.

– For a hostdev connection, specify the PCI address of the host's interface formatted as
domain:bus:slot.function.

• --config – Changes the stored XML configuration for the guest VM and takes effect when
the guest is started.

• --live – The guest VM must be running and the change takes place immediately, thus hot
plugging the vNIC.

• --current – Affects the current guest VM.

More options are available to further customize the interface, such as setting the MAC address
or configuring the target macvtap device when using some other network types. You can also
use --model option to change the model of network interface that's presented to the VM. By
default, the virtio model is used, but other models, such as e1000 or rtl8139 are available,
Run virsh help attach-interface for more information, or see the virsh(1) manual
page.

Remove a vNIC from a VM using the virsh detach-interface command. For example:

virsh detach-interface --domain guest --type network --mac 52:54:00:41:6a:65
--config

The domain or VM name and type are required parameters. If the VM has more than one vNIC
attached, you must specify the mac parameter to provide the MAC address of the vNIC that you

Chapter 5
KVM Network Configuration

5-9

want to remove. You can obtain this value by listing the vNICs that are attached to a VM. For
example, you can run:

virsh domiflist guest

Output similar to the following is displayed:

Interface Type Source Model MAC

vnet0 network default virtio 52:54:00:8c:d2:44
vnet1 network default virtio 52:54:00:41:6a:65

Bridged Networking: Setup
Using the CLI, administrators can set up a KVM bridged network with direct Virtual Network
Interface Cards (vNICs). For more details, see these topics:

• Setup Guidelines: Bridged Network

• Create: Bridge Network Connection

• Bonded Interfaces for Increased Throughput

Setup Guidelines: Bridged Network
Traditional network bridging using Linux bridges is configurable by using the virsh iface-
bridge command. With this command, administrators can create a bridge on a host system
and add a physical interface to it. For example, the following command syntax creates a bridge
named vmbridge1 with the Ethernet port named enp0s31f6:

virsh iface-bridge vmbridge1 enp0s31f6

After establishing a bridged network interface, administrators can then attach it to a VM by
using the virsh attach-interface command.

Traditional Linux Bridge Networking Complexities
Consider the following when using traditional Linux bridged networking for KVM guests:

• Setting up a software bridge on a wireless interface is considered complex because of the
number of addresses available in 802.11 frames.

• The complexity of the code to handle software bridges can result in reduced throughput,
increased latency, and additional configuration complexity.

Bridge Networking Advantages Using MacVTap Driver
The main advantage of a bridged network is that it lets the host system communicate across
the network stack directly with any guests configured to use bridged networking.

Most of the issues related to using traditional Linux bridges can be easily overcome by using
the macvtap driver which simplifies virtualized bridge networking. For most bridged network
configurations in KVM, this is the preferred approach because it offers better performance and
it's easier to configure. The macvtap driver is used when the network type in the KVM XML
configuration file is set to direct. For example:

<interface type="direct">
 <mac address="#:##:##:##:#:##"/>

Chapter 5
KVM Network Configuration

5-10

 <source dev="kvm-host-network-interface- name" mode="bridge"/>
 <model type="virtio"/>
 <driver name="vhost"/>
</interface>

Where:

• mac address="#:##:##:##:#:##" – The MAC address field is optional. If it is omitted,
the libvirt daemon will generate a unique address.

• interface type="direct" – Used for MacVTap. Specifies a direct mapping to an
existing KVM host device.

• source dev="kvm-host-device" mode="bridge" – Specifies the KVM host
network interface name that will be used by the KVM guest's MacVTap interface. The
mode keyword defines which MacVTap mode is used.

MacVTAP Driver Modes
The macvtap driver creates endpoint devices that follow the tun/tap ioctl interface model to
extend an existing network interface so that KVM can use it to connect to the physical network
interface directly to support different network functions. These functions can be controlled by
setting a different mode for the interface. The following modes are available:

• vepa (Virtual Ethernet Port Aggregator) is the default mode and forces all data from a vNIC
out of the physical interface to a network switch. If the switch supports a hairpin mode,
different vNICs connected to the same physical interface can communicate through the
switch. Many switches today don't support a hairpin mode, which means that virtual
machines with direct connection interfaces running in VEPA mode are unable to
communicate, but can connect to the external network by using the switch.

• bridge mode connects all vNICs directly to each other so that traffic between the virtual
machines on same physical interface isn't sent to the switch but sent directly. The bridge
mode option is the most useful for switches that don't support a hairpin mode, and when
you need maximum performance for communications between VMs. Note the bridge
mode, unlike a traditional software bridge, the host is unable to use this interface to
communicate directly with the KVM.

• private mode behaves like a VEPA mode vNIC in the absence of a switch supporting a
hairpin mode option. However, even if the switch does support the hairpin mode, two VMs
connected to the same physical interface are unable to communicate with each other. This
option supports limited use cases.

• passthrough mode attaches a physical interface device or an SR-IOV Virtual Function (VF)
directly to the vNIC without losing the migration capability. All packets are sent directly to
the configured network device. A one-to-one mapping exists between network devices and
VMs when configured in passthrough mode because a network device can't be shared
between VMs in this configuration.

Note:

The virsh attach-interface command doesn't provide an option for you to specify
the different modes available when attaching a direct type interface that uses the
macvtap driver and defaults to vepa mode. The graphical virt-manager utility makes
setting up bridged networks using macvtap easier and provides options for each
different mode.

Chapter 5
KVM Network Configuration

5-11

Create: Bridge Network Connection
The following information describes how to create and attach a virtual bridged network
interface to a KVM guest using the MacVTap driver.
What Do You Need?

• Root privileges.

• An existing KVM guest on the host system.

• To use Ethernet devices as ports of the bridge, the physical or virtual Ethernet devices
must be installed on the host system.

Steps

Follow these steps to configure a bridge network using the macvtap driver on an existing host
KVM instance.

1. Create a bridge device and attach it to the physical network device interface on the host
using the virsh iface-bridge command.

Example:

sudo virsh iface-bridge [bridge_name] [enp0s31f6]

Where:

• bridge_name – The name assigned to the bridge.

• enp0s31f6 – The physical interface the Ethernet port name used in this example.

2. Attach the bridge interface to the KVM instance using the virsh attach-interface
command.

Example:

sudo virsh attach-interface --domain My_KVM_Guest_Name --type direct --
source wlp4s0 --config

Where:

• My_KVM_Guest_Name – The name of the KVM instance.

• wlp4s0 --config – The source interface name used in this example.

For more details about using the virsh-attach command, see Command Usage: Add or
Remove vNIC.

3. Shut down the KVM instance. For details, see KVM: Shut Down Instance

4. Edit the KVM XML configuration to set the source interface mode to bridge. For example:

a. Use virsh edit to edit the file:

sudo virsh edit [My_KVM_Guest_Name]

Chapter 5
KVM Network Configuration

5-12

Note:

The virsh edit command opens the XML file in the text editor specified by
the $EDITOR shell parameter. The vi editor is set by default.

b. Set the source interface mode to bridge.

Note:

The source interface mode is set, by default, to vepa.

For more details about how to set the source interface mode to bridge, see the
macvtap driver example in Setup Guidelines: Bridged Network.

5. Save the KVM XML configuration changes.

6. Inform the libvirt daemon of the KVM XML configuration changes by using the virsh
undefine and virsh define commands.

Example:

sudo virsh undefine [My_KVM_Guest_Name]
sudo virsh define [My_KVM_Guest_Name-libvirt-xml-file]

The virsh undefine command removes the existing KVM configuration and the virsh
define replaces it with the updated configuration in the XML file.

7. Start the KVM instance. For details, see KVM: Start Instance.

The direct network interface is attached in bridge mode and starts automatically when
starting the KVM instance.

Bonded Interfaces for Increased Throughput
The use of bonded interfaces for increased network throughput is common when hosts might
run several concurrent VMs that are providing multiple services at the same time. In this case,
where a single physical interface might have provided enough bandwidth for applications
hosted on a physical server, the increase in network traffic when running multiple VMs can
have a negative impact on network performance when a single physical interface is shared. By
using bonded interfaces, the KVM network throughput can significantly increase, thereby
enabling you to take advantage of the high availability features available with network bonding.

Because the physical network interfaces that a VM might use are on the host and not on the
VM, setting up any form of bonded networking for greater throughput or for high availability,
must be configured on the host system. This process involves configuring network bonds on
the host, and then attaching a virtual network interface such as a network bridge directly to the
bonded network on the host.

To achieve high availability networking for any VMs, you must first configure a network bond on
the host system. For details on how to set up network bonding, see Working With Network
Bonding in Oracle Linux 9: Setting Up Networking.

After the bond is configured, you can then configure the virtual machine network to use the
bonded interface when you configure a network bridge. This can be done by either using: (1)
the bridge mode for the interface type, or (2) a direct interface configured to use the

Chapter 5
KVM Network Configuration

5-13

https://docs.oracle.com/en/operating-systems/oracle-linux/9/network/

macvtap driver's bridge mode. Note that the bonded interface can be used instead of a
physical network interface when configuring the virtual network interface.

PCIe Passthrough: Setup
This section describes the following methods for configuring PCIe passthrough to KVM guests:

• Direct PCIe Passthrough to KVM Guest Using libvirt. Use this method to allocate
exclusive use of a PCIe device on a host system to a single KVM guest. This method uses
libvirt device assignment to configure a direct I/O path to a single KVM guest.

Note:

Using direct PCIe passthrough can result in increased consumption of host
system CPU resources and, thereby, decrease the overall performance of the
host system.

For more information about configuring PCIe passthrough using this method, see Create:
Direct PCIe Passthrough Connection.

• Shared PCIe Passthrough to KVM Guests Using SR-IOV. Use this method to allocate
shared use of SR-IOV (Single Root I/O Virtualization) capable PCIe devices to multiple
KVM guests. This method uses SR-IOV device assignment to configure a PCIe resource to
be shared amongst several KVM guests. SR-IOV device assignment is beneficial in
workloads with high packet rates or low latency requirements. For more information about
SR-IOV PCIe passthrough, see the following topics:

– Setup Guidelines: SR-IOV PCIe Passthrough

– Create: SR-IOV PCIe Passthrough Connection

– SR-IOV Enabled PCIe Devices

Create: Direct PCIe Passthrough Connection
The following information describes how to create a direct PCIe connection to a single KVM
guest.

Exclusive PCIe Device Control

KVM guests can be configured to directly access the PCIe devices available on the host
system and to have exclusive control over their capabilities. Use the virsh command to
assign host PCIe devices to KVM guests. Note that after a PCIe device is assigned to a guest,
the guest has exclusive access to the device and it's no longer available for use by the host or
other guests on the system.

Note:

The following procedure doesn't cover the configuration of enabling passthrough of
SR-IOV Ethernet virtual devices. For instructions on how to configure passthrough for
SR-IOV capable PCIe devices, see Create: SR-IOV PCIe Passthrough Connection.

Steps

Follow these steps to directly assign a host PCIe device to a KVM guest:

Chapter 5
KVM Network Configuration

5-14

1. Shut down the KVM guest.

sudo virsh shutdown GuestName

2. To identify the host attached PCIe devices and their assigned IDs, use the lspci
command as follows:

lspci -D|awk '{gsub("[:\\.]","_",$0); sub("^","pci_",$0); print;}'

Where:

• lspci lists all PCIe devices.

• -D option lists the PCIe domain numbers for each device.

• awk is a scripting language that manipulates the device IDs into a format usable by the
virsh command.

For example, the output might look as follows:

pci_0000_00_00_0 Host bridge_ Intel Corporation 11th Gen Core Processor
Host Bridge/DRAM Registers (rev 01)
pci_0000_00_02_0 VGA compatible controller_ Intel Corporation TigerLake-LP
GT2 [Iris Xe Graphics] (rev 01)
pci_0000_00_04_0 Signal processing controller_ Intel Corporation TigerLake-
LP Dynamic Tuning Processor Participant (rev 01)
pci_0000_00_06_0 PCI bridge_ Intel Corporation 11th Gen Core Processor PCI
Express Controller (rev 01)
pci_0000_00_07_0 PCI bridge_ Intel Corporation Tiger Lake-LP Thunderbolt 4
PCI Express Root Port #0 (rev 01)
...

3. Select the device that you want to configure for passthrough and create a variable
containing the device ID. For example:

pci_dev="pci_0000_00_07_0"

4. Use the virsh nodedev-dumpxml command to calculate the PCIe device domain, bus, slot,
and function parameters into usable variables. For example:

domain=$(virsh nodedev-dumpxml $pci_dev --xpath '//domain/text()')
bus=$(virsh nodedev-dumpxml $pci_dev --xpath '//bus/text()')
slot=$(virsh nodedev-dumpxml $pci_dev --xpath '//slot/text()')
function=$(virsh nodedev-dumpxml $pci_dev --xpath '//function/text()')

5. To identify the device source domain address required for passthrough, use the print
function to convert the PCIe domain, bus, slot, and function variables to hexadecimal
values.

For example:

printf "<address domain='0x%x' bus='0x%x' slot='0x%x' function='0x%x'/
>\n" $domain $bus $slot $function

6. Assign the PCIe device to a KVM guest.

Chapter 5
KVM Network Configuration

5-15

Run virsh edit, specify the KVM guest name, and add the PCIe device domain address
in the <source> section.
For example:

virsh edit GuestName
<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address domain='0x0' bus='0x0' slot='0x14' function='0x3'/>
 </source>
</hostdev>

Note:

managed and unmanagedlibvirt recognizes two management modes for
handling PCIe devices: managed='yes' (default) or managed='no". When the
mode is set to managed='yes', libvirt handles the unbinding of the device
from the existing driver, resetting the device, and then binding it to the vfio-pci
driver before starting the domain. In cases when the domain is stopped or the
device is removed from the domain, libvirt unbinds it from the vfio-pci
driver and rebinds it to the original driver. When the mode is set to
managed='no', you must manually detach the PCIe device from the host and
then manually attach it to the vfio-pci driver.
For example, to detach:

sudo virsh nodedev-dettach pci_0000_device_ID_#

To reattach:

sudo virsh nodedev-reattach pci_0000_device_ID_#

Alternatively, you can use Cockpit to attach and remove host devices. For more
details, see Add or Remove VM Host Devices in the Oracle Linux: Using the
Cockpit Web Console guide.

7. On the host system, enable guest management for virtual PCIe pass-through.

sudo setsebool -P virt_use_sysfs 1

8. Start the KVM guest.

sudo virsh start GuestName

The PCIe device is successfully assigned to the KVM guest and the guest OS now has
exclusive control over its capabilities.

Setup Guidelines: SR-IOV PCIe Passthrough
The Single Root I/O Virtualization (SR-IOV) specification is a standard for device assignment
that can share a single PCIe resource among multiple KVM guests. SR-IOV provides the ability
to partition a physical PCIe resource into virtual PCIe functions that can be discovered,
managed, and configured as normal PCIe devices.

Chapter 5
KVM Network Configuration

5-16

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/index.html#Oracle-Linux
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/index.html#Oracle-Linux

Passthrough configuration of PCIe devices using SR-IOV involves these functions:

• Physical Functions (PF) The physical function (PF) refers to the physical PCIe adapter
device. Each physical PCIe adapter can have up to eight functions (although the most
common case is one function). Each function has a full configuration space and is seen by
software as a separate PCIe device. When the configuration space of a PCIe function
includes SR-IOV support, then that function is considered an SR-IOV physical function.
SR-IOV physical functions enable you to manage and configure SR-IOV settings for
enabling virtualization and exposing virtual functions (VFs).

• Virtual Function (VF). The virtual function (VF) refers to a virtualized instance of the PCIe
device. Each VF is designed to move data in and out. VFs are derived from the physical
function (PF). For example, each VF is attached to an underlying PF and each PF can
have from zero (0) to one (1) or more VFs. VFs have a reduced configuration space
because they inherit most of their settings from the PF.

SR-IOV Advantages
Some key benefits for using SR-IOV for PCIe passthrough include:

• Optimized performance and capacity by enabling efficient sharing of PCIe resources.

• Reduced hardware costs through the creation of hundreds of VFs associated with a single
PF.

• Dynamic control by the PF through registers designed to turn on the SR-IOV capability,
eliminating the need for time-intensive integration.

• Increased performance through direct access to hardware from the virtual guest
environment.

Create: SR-IOV PCIe Passthrough Connection
The following information describes how to create a SR-IOV PCIe passthrough connection for
KVM guests.

SR-IOV Advantages and Capabilities
Single Root I/O Virtualization (SR-IOV) further extends Oracle Linux ability to operate as a high
performance virtualization solution. With SR-IOV, Oracle Linux can assign virtual resources
from PCI devices that have SR-IOV capabilities. These virtual resources known as virtual
functions (VFs) appear as new assignable PCIe devices to KVM guests.

SR-IOV provides the same capabilities of assigning a physical PCI device to a guest. However,
key benefits for using SR-IOV include optimization of I/O performance (as the guest OS
interacts directly with device hardware), and the reduction of hardware costs (elimination for
the need to manage a large system configuration of peripheral devices).

Steps

To configure SR-IOV PCIe passthrough to KVM guests, follow these steps:

1. Verify if the Intel VT-d or AMD IOMMU options are enabled in the system firmware at the
BIOS/UEFI level. For more details, see the applicable Oracle server model documentation.

2. Verify if the Intel VT-d or AMD IOMMU options are activated in the kernel. If these kernel
options haven't been enabled, perform the following.

• For Intel virtualization, add the intel_iommu=on and iommu=pt parameters to the
end of the GRUB_CMDLINX_LINUX line, within the quotes, in the /etc/default/
grub.cfg file.

Chapter 5
KVM Network Configuration

5-17

Note:

A symlink exists between /etc/sysconfig/grub and /etc/default/
grub, therefore, you could alternatively choose to configure the /etc/
sysconfig/grub.cfg file.

• For AMD virtualization, add the intel_iommu=on and iommu=pt parameters to the end
of the GRUB_CMDLINX_LINUX line, within the quotes, in the /etc/default/grub.cfg file.
Regenerate grub.cfg file and then reboot the system for the changes to take affect.

grub2-mkconfig -o /etc/grub.cfg

3. Use the lspci command to verify if an SR-IOV capable PCIe device is detected on the
host system. For example:

lspci -D|awk '{gsub("[:\\.]","_",$0); sub("^","pci_",$0); print;}'

Where:

• lspci lists all PCIe devices.

• -D option lists the PCIe domain numbers for each device.

• awk is a scripting language that manipulates the device IDs into a format usable by the
virsh command.

For example, the output might look as follows:

pci_0000_00_00_0 Host bridge_ Intel Corporation 11th Gen Core Processor
Host Bridge/DRAM Registers (rev 01)
pci_0000_00_02_0 VGA compatible controller_ Intel Corporation TigerLake-LP
GT2 [Iris Xe Graphics] (rev 01)
pci_0000_00_04_0 Signal processing controller_ Intel Corporation TigerLake-
LP Dynamic Tuning Processor Participant (rev 01)
pci_0000_00_06_0 PCI bridge_ Intel Corporation 11th Gen Core Processor PCI
Express Controller (rev 01)
pci_0000_00_07_0 PCI bridge_ Intel Corporation Tiger Lake-LP Thunderbolt 4
PCI Express Root Port #0 (rev 01)
...

Note:

For a list of SR-IOV compatible PCIe devices, see SR-IOV Enabled PCIe
Devices .

4. Load the device driver kernel module.

If an SR-IOV PCIe device is detected, the driver kernel module automatically loads.

If required, you can pass parameters to the module using the modprobe command. The
following example output shows the igb driver for an 82576 network interface card.

sudo modprobe igb [<option>=<VAL1>,<VAL2>,]
sudo lsmod |grep igb

Chapter 5
KVM Network Configuration

5-18

igb 82576 0
dca 6708 1 igb

5. Activate the virtual functions (VFs) by performing the following:

• To set the maximum VFs offered by a kernel driver, perform the following:

a. To set the maximum VFs offered by a kernel driver, you must first remove the
device driver kernel module. For example:

sudo modprobe -r drivername

In the previous example in Step 4, igb is name of the driver. To find the device
driver name, use the ethtool command. For example:

ethtool -i em1 | grep ^driver

b. Start the module with max_vfs set to 7 (or up to the maximum number allowed).
For example:

sudo modprobe drivername max_vfs=7

c. Make the VFs persistent at boot.
Add the line options drivername max_vfs=7 to any file in /etc/modprobe.d,
for example:

sudo echo "options drivername max_vfs=7" >>/etc/modprobe.d/igb.conf

• To allocate the required amount of VFs to create, issue the following:

echo N > /sys/bus/pci/devices/${PF_DEV}/sriov_numvfs

Where:

– N is the number of VFs that you want the kernel driver to create.

– ${PF_DEV} is the PCI bus/device/function ID for the physical device. For example:
“0000:02:00.0” (as shown in the example output of Step 3.)

6. Use the lspci | grep command to list the newly added VFs.

For example, the following output lists VFs associated with the 82576 Network Controller.

sudo lspci | grep 82576
0b:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection (rev 01)
0b:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network
Connection(rev 01)
0b:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:10.3 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:10.4 Ethernet controller: Intel Corporation 82576 Virtual Function (rev

Chapter 5
KVM Network Configuration

5-19

01)
0b:10.5 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:10.6 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:10.7 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:11.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:11.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:11.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:11.3 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:11.4 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
0b:11.5 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)

The physical functions (PFs) correspond to 0b:00.0 and 0b:00.1 entries. Where all the
VFs appear as a Virtual Function entry in the description.

7. Verify libvirt can detect the SR-IOV device by using the virsh nodedev-list |
grep command.

For the Intel 82576 network device example, the filtered output appears as follows:

virsh nodedev-list | grep 0b
pci_0000_0b_00_0
pci_0000_0b_00_1
pci_0000_0b_10_0
pci_0000_0b_10_1
pci_0000_0b_10_2
pci_0000_0b_10_3
pci_0000_0b_10_4
pci_0000_0b_10_5
pci_0000_0b_10_6
pci_0000_0b_11_7
pci_0000_0b_11_1
pci_0000_0b_11_2
pci_0000_0b_11_3
pci_0000_0b_11_4
pci_0000_0b_11_5

Note that libvirt uses a similar notation to the lspci output. Punctuation characters,
for example, such as a semicolon (;) and a period (.), appear in lspci output as
underscores (_).

8. Use virsh nodedev-dumpxml command to review the SR-IOV physical and virtual
functions device details.

Chapter 5
KVM Network Configuration

5-20

For example, advanced output shows details associated with the pci_0000_0b_00_0
physical function and its first corresponding virtual function (pci_0000_0b_10_0_),

sudo virsh nodedev-dumpxml pci_0000_0b_00_0
<device>
 <name>pci_0000_0b_00_0</name>
 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igb</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>11</bus>
 <slot>0</slot>
 <function>0</function>
 <product id='0x10c9'>82576 Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 </capability>
</device>

sudo virsh nodedev-dumpxml pci_0000_0b_10_0
<device>
 <name>pci_0000_0b_10_0</name>
 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igbvf</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>11</bus>
 <slot>16</slot>
 <function>0</function>
 <product id='0x10ca'>82576 Virtual Function</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 </capability>
</device>

Note the bus, slot and function parameters of the VF. These parameters are required
in the next step to assign a VF to a KVM guest.

Copy these VF parameters into a temporary XML file, such as /tmp/new-interface.xml
for example:

<interface type='hostdev' managed='yes'>
 <source>
 <address type='pci' domain='0' bus='11' slot='16' function='0'/>
 </source>
 </interface>

Chapter 5
KVM Network Configuration

5-21

Note:

• A MAC address is automatically generated if one isn't specified.

• The <virtualport> element is only used when connecting to an
802.11Qbh hardware switch.

• The <vlan> element transparently assigns a guest with a VLAN tagged 42.
When the KVM guest starts, it sees a network device of the type provided by
the physical adapter, with the configured MAC address. This MAC address
remains unchanged across host and guest reboots.

The following <interface> example shows the syntax for the following
optional elements: <mac address>, <virtualport>, and <vlan>. In
practice, use either the <vlan> or <virtualport> element, but not both
simultaneously as shown in the following example:

...
 <devices>
 ...
 <interface type='hostdev' managed='yes'>
 <source><address type='pci' domain='0' bus='11' slot='16'
function='0'/>
 </source><mac address='52:54:00:6d:90:02'><vlan><tag id='42'/>
 </vlan><virtualport type='802.1Qbh'>
 <parameters profileid='finance'/>
 </virtualport></interface>
 ...
 </devices>

9. Using the new-interface.xml file created in the previous step, and the virsh
attach-device command, assign a VF of a SR-IOV PCIe device to a KVM guest.

For example:

virsh attach-device MyGuestName /tmp/new-interface.xml --config

The --config option ensures that the new VF is available after future restarts of KVM
guest.

SR-IOV Enabled PCIe Devices

Note:

Because of the continuous development of new SR-IOV PCIe devices and the Linux
kernel, other SR-IOV capable PCIe devices might be available over time and aren't
captured in the following table.

Chapter 5
KVM Network Configuration

5-22

Table 5-1 PCIe Devices and Drivers

Device Name Device Driver

Intel 82599ES 10 Gigabit Ethernet Controller Intel xgbe Linux Base Drivers for Intel(R)
Ethernet Network Connections
For a list of the latest xgbedrivers, see http://
e1000.sourceforge.net or http://
downloadcenter.intel.com

Intel Ethernet Controller XL710 Series
Intel Ethernet Network Adapter XXV710

Intel i40e Linux Base Drivers for Intel(R)
Ethernet Network Connections
For a list of the latest i40edrivers, see http://
e1000.sourceforge.net or http://
downloadcenter.intel.com

NVIDA (Mellanox) ConnectX-5, ConnectX-6 DX,
and ConnectX-7

NVIDA (Mellanox) mlx5_core Driver

Intel 82576 Gigabit Ethernet Controller Intel igb Linux* Base Drivers for Intel(R)
Ethernet Network Connections
For a list of the latest xgbedrivers, see http://
e1000.sourceforge.net or http://
downloadcenter.intel.com

Broadcom NetXtreme II BCM57810 Broadcom bnx2x Linux Base Drivers for
Broadcom NetXtreme II Network Connections

Ethernet Controller E810-C for QSFP Oracle Linux base driver packages available
for Intel(R) Ethernet Network Connections

SFC9220 10/40G Ethernet Controller sfc Linux base Driver

FastLinQ QL41000 Series 10/25/40/50GbE
Controller

qede Poll Mode Driver for FastLinQ Ethernet
Network Connections

KVM Storage Configuration
Libvirt handles various different storage mechanisms that you can configure for use by KVMs.
These mechanisms are organized into different pools or units. By default, libvirt uses directory-
based storage pools for the creation of new disks, but pools can be configured for different
storage types including physical disk, NFS, and iSCSI.

Depending on the storage pool type that's configured, different storage volumes can be made
available to any KVMs to be used as block devices. Sometimes, such as when using iSCSI
pools, volumes don't need to be defined as the LUNs for the iSCSI target are automatically
presented to the KVM.

Note that you don't need to define different storage pools and volumes to use libvirt with KVM.
These tools help you to manage how storage is used and consumed by KVMs as they need it.
You can use the default directory-based storage and take advantage of manually mounted
storage at the default locations.

We recommend using Oracle Linux Virtualization Manager to easily manage and configure
complex storage requirements for KVM environments. Alternatively, you can use Cockpit to
manage KVM storage. For more details, see Storage Management Tasks in Oracle Linux:
Using the Cockpit Web Console.

For more details on how to use the command line to manage storage configurations for KVM
use, see these topics:

Chapter 5
KVM Storage Configuration

5-23

http://e1000.sourceforge.net
http://e1000.sourceforge.net
http://downloadcenter.intel.com
http://downloadcenter.intel.com
http://e1000.sourceforge.net
http://e1000.sourceforge.net
http://downloadcenter.intel.com
http://downloadcenter.intel.com
http://e1000.sourceforge.net
http://e1000.sourceforge.net
http://downloadcenter.intel.com
http://downloadcenter.intel.com
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/

• Storage Pools: Create and Manage

• Storage Volumes: Create and Manage

• Virtual Disks: Create and Manage

Storage Pools: Create and Manage
Storage pools provide logical groupings of storage types that are available to host the volumes
that can be used as virtual disks by a set of VMs. A wide variety of different storage types are
provided. Local storage can be used in the form of directory based storage pools, file system
storage, and disk based storage. Other storage types such as NFS and iSCSI provide
standard network based storage, while the RBD type provides distributed storage. More
information is provided at https://libvirt.org/storage.html.

Storage pools help abstract underlying storage resources from the VM configurations. This
abstraction is useful if you suspect that resources such as virtual disks might change physical
location or media type. Abstraction becomes even more important when using network based
storage because target paths, DNS, or IP addressing might change over time. By abstracting
this configuration information, you can manage resources in a consolidated way without
needing to update multiple KVM instances.

You can create transient storage pools that are available until the host reboots, or you can
define persistent storage pools that are restored after a reboot.

Transient storage pools are started automatically as soon as they're created and the volumes
that are within them are made available to VMs immediately, however any configuration
information about a transient storage pool is lost after the pool is stopped, the host reboots, or
if the libvirtd service is restarted. The storage itself is unaffected, but VMs configured to use
resources in a transient storage pool lose access to these resources. Transient storage pools
are created using the virsh pool-create command.

For most use cases, consider creating persistent storage pools. Persistent storage pools are
defined as a configuration entry that's stored within /etc/libvirt. Persistent storage pools
can be stopped and started and can be configured to start when the host system boots. Libvirt
can take care of automatically mounting and enabling access to network based resources
when persistent storage is configured. Persistent storage pools are created using the virsh
pool-define command, and usually need to be started after they have been created before
you can use them.

For more details on how to use the command line to create and manage storage pools for
KVM use, see these topics:

• Creating a Storage Pool

• Creating a Storage Pool from XML

• Removing a Storage Pool

Creating a Storage Pool
Use the virsh tool to create a persistent storage pool.

1. Define the pool.

virsh pool-define-as pool_name type

Where:

• pool_name – The name you assign to the pool.

Chapter 5
KVM Storage Configuration

5-24

https://libvirt.org/storage.html

• type – The storage type the pool uses.

See libvirt documentation for details about the storage types you can specify:

• Storage pool and volume XML format

• Storage Management

The following table provides examples of different pool types you can define:

Command Configuration Details

virsh pool-define-as pool_name dir \
--target /share/storage_pool

Creates a pool with the name pool_name for a
directory that's at /share/storage_pool on the
host system.

virsh pool-define-as pool_name fs \
--source-dev /dev/sdc1 \
--target /share/storage_mount

Creates file system based storage, that
mounts a formatted block device, /dev/sdc1,
at the mount point /share/storage_mount.

virsh pool-define-as pool_name
netfs \
--source-path /ISO \
--source-host nfs.example.com \
--target /share/storage_nfs

Creates an NFS share as a storage pool.

2. Confirm the pool was defined.

virsh pool-info pool_name

You can also view a list of all pools on the system.

virsh pool-list --all

3. If the target path doesn't exist, build the directory.

virsh pool-build pool_name

4. Start the pool.

virsh pool-start pool_name

5. Configure the pool to start automatically when the system boots.

virsh pool-autostart pool_name

After you create a pool, you can create a storage volume within the pool. See Creating a
Storage Volume for more information.

Chapter 5
KVM Storage Configuration

5-25

https://libvirt.org/formatstorage.html
https://libvirt.org/storage.html

You can also indicate which pool to use when you create a VM using virt-install. Include
the --disk argument and the pool and size sub options. For example:

virt-install
...
--disk pool=pool_name, size=80

Creating a Storage Pool from XML
Use the virsh tool to load a storage pool configuration from an XML file and create the pool.

1. Create an XML file with definitions for the storage pool.

For more information on the XML format for a storage pool definition, see Storage pool and
volume XML format.

For example, you could create a storage pool for an iSCSI volume by creating an XML file
named pool_definition.xml with the following content:

<pool type='iscsi'>
 <name>pool_name</name>
 <source>
 <host name='192.0.2.1'/>
 <device path='iqn.2024-12.com.mycompany:my-iscsi-host'/>
 </source>
 <target>
 <path>/dev/disk/by-path</path>
 </target>
</pool>

The previous example assumes that an iSCSI server is already configured and running on
a host with IP address 192.0.2.1 and that the iSCSI Qualified Name (IQN) is
iqn.2024-12.com.mycompany:my-iscsi-host.

2. Run virsh pool-define to load the configuration information from the XML file into libvirt.

For example, to load the pool_definition.xml file from the previous step, run:

virsh pool-define pool_definition.xml

3. Confirm the pool was defined.

virsh pool-info pool_name

You can also view a list of all pools on the system.

virsh pool-list --all

4. If the target path doesn't exist, build the directory.

virsh pool-build pool_name

5. Start the pool.

virsh pool-start pool_name

Chapter 5
KVM Storage Configuration

5-26

https://libvirt.org/formatstorage.html#StoragePool
https://libvirt.org/formatstorage.html#StoragePool

6. Configure the pool to start automatically when the system boots.

virsh pool-autostart pool_name

Removing a Storage Pool
Use the virsh tool to stop and remove a persistent storage pool.

1. Stop the storage pool.

virsh pool-destroy pool_name

2. Delete the directory of the storage pool.

Note:

The directory must be empty for this command to delete the directory.

virsh pool-delete pool_name

3. Remove the storage pool definition from the system.

virsh pool-undefine pool_name

4. Confirm the removal of the storage pool.

virsh pool-list --all

Storage Volumes: Create and Manage
Storage volumes are created within a storage pool and represent the virtual disks that can be
loaded as block devices within one or more VMs. Some storage pool types don't need storage
volumes to be created individually as the storage mechanism might present these to VMs as
block devices already. For example, iSCSI storage pools present the individual logical unit
numbers (LUNs) for an iSCSI target as separate block devices.

Sometimes, such as when using directory or file system based storage pools, storage volumes
are individually created for use as virtual disks. In these cases, several disk image formats can
be used although some formats, such as qcow2, might require extra tools such as qemu-img
for creation.

For disk based pools, standard partition type labels are used to represent individual volumes;
while for pools based on the logical volume manager, the volumes themselves are presented
individually within the pool.

Storage volumes can be sparsely allocated when they're created by setting the allocation value
for the initial size of the volume to a value lower than the capacity of the volume. The allocation
indicates the initial or current physical size of the volume, while the capacity indicates the size
of the virtual disk as it's presented to the KVM. Sparse allocation is often used to over-
subscribe physical disk space where KVMs might eventually require more disk space than is
initially available. For a non-sparsely allocated volume, the allocation matches or exceeds the
capacity of the volume. Exceeding the capacity of the disk provides space for metadata, if
required.

Chapter 5
KVM Storage Configuration

5-27

You can use the --pool option if you have volumes with matching names in different pools on
the same system and you need to specify the pool to use for any virsh volume operation.
This practice is replicated across subsequent examples.

For more details on how to use the command line to create and manage storage volumes for
KVM use, see these topics:

• Creating a Storage Volume

• Creating a Storage Volume from XML

• Cloning a Storage Volume

• Resizing a Storage Volume

• Deleting a Storage Volume

Creating a Storage Volume
Depending on the storage pool type, you can create a storage volume using the virsh vol-
create-as command.

1. Run virsh vol-create-as and include the pool, volume name, and capacity as
required arguments.

For example:

virsh vol-create-as \
--pool pool_name \
--name volume_name \
--capacity 10G

Many of the available options, such as the allocation or format have default values set, so
you can typically only specify the name of the storage pool where the volume should be
created, the name of the volume and the capacity that you require.

2. Verify the creation of the storage volume.

virsh vol-info --pool pool_name volume_name

Output similar to the following is displayed:

Name: volume_name
Type: file
Capacity: 9.31 GiB
Allocation: 8.00 GiB

Creating a Storage Volume from XML
Depending on the storage pool type, you can create a storage volume from an XML file using
the virsh vol-create command. This command expects you to provide an XML file
representation of the volume parameters.

1. Create an XML file where you define the storage volume.

Chapter 5
KVM Storage Configuration

5-28

The XML for a volume might depend on the pool type and the volume that's being created,
but in the case of a sparsely allocated 10 GB image in qcow2 format, the XML might look
similar to the following:

<volume>
 <name>volume1</name>
 <allocation>0</allocation>
 <capacity unit="G">10</capacity>
 <target>
 <path>/home/testuser/.local/share/libvirt/images/volume1.qcow2</
path>
 <permissions>
 <owner>107</owner>
 <group>107</group>
 <mode>0744</mode>
 <label>virt_image_t</label>
 </permissions>
 </target>
</volume>

For more information, see Storage pool and volume XML format in the libvirt
documentation.

2. Run virsh vol-create and include the pool and source XML file as required arguments.

For example, to create a volume in storage pool named pooldir with an XML file named
volume1.xml, run the following command:

virsh vol-create pooldir volume1.xml

Cloning a Storage Volume
You can clone a storage volume using the virsh vol-clone command.

1. Run the virsh vol-clone command and include the name of the original volume and
the name of the cloned volume as required arguments.

For example:

virsh vol-clone --pool pool_name volume1 volume1-clone

The clone is created in the same storage pool with identical parameters.

2. Verify the creation of the cloned volume.

virsh vol-list --pool pool_name --details

Resizing a Storage Volume
If a storage volume isn't being used by a VM, you can resize it by using the virsh vol-resize
command.

• Run the virsh vol-resize command and provide the volume and capacity as required
arguments.

Chapter 5
KVM Storage Configuration

5-29

https://libvirt.org/formatstorage.html

For example:

virsh vol-resize --pool pool_name volume1 15G

Caution:

Reducing the size of an existing volume can risk destroying data. However, if you
need to resize a volume to reduce it, you must specify the --shrink option with
the new size value.

Deleting a Storage Volume
You can delete a storage volume by running the virsh vol-delete command.

• Run virsh vol-delete and provide the volume name as a required argument.

For example, to delete the volume named volume1 in the storage pool named pool_name,
run the following command:

virsh vol-delete volume1 --pool pool_name

Virtual Disks: Create and Manage
Virtual disks are typically attached to VMs as block devices based on disk images stored at a
given path. Virtual disks can be defined for a VM when it's created, or can be added to an
existing VM.

Note:

Command line tools available for managing virtual disks aren't completely consistent
in terms of their handling of storage volumes and storage pools.

For more details about how to create and manage virtual disks for KVM use, see these topics:

• Attaching a Virtual Disk to an Existing VM

• Attaching a Virtual Disk when Creating a VM

• Detaching a Virtual Disk

• Resizing a Virtual Disk

Attaching a Virtual Disk to an Existing VM
You can use the virsh attach-disk command to attach a disk image to an existing VM.
Command line tools to attach a volume to an existing VM are limited and GUI tools like
cockpit are better suited for this operation. If you expect that you might need to work with
volumes a lot, consider using Oracle Linux Virtualization Manager.

1. If the disk image is a volume, obtain its path by running the virsh vol-list command.

virsh vol-list storage_pool_1

Chapter 5
KVM Storage Configuration

5-30

Output similar to the following is displayed:

 Name Path
--
 volume1 /share/disk-images/volume1.qcow2

2. Attach the disk image within the existing VM configuration so that it is persistent and
attaches itself on each subsequent restart of the VM:

virsh attach-disk --config \
--domain guest_name \
--source /share/disk-images/volume1.qcow2 \
--target sdb1

This command requires that you provide the path to the disk image when you attach it to
the VM.

You can use the following options:

• --live – temporarily attach a disk image to a running VM.

• --persistent – attach a disk image to a running VM and also update its configuration
so that the disk is attached on each subsequent restart.

Attaching a Virtual Disk when Creating a VM
You can attach a storage volume to a VM as a virtual disk when the VM is created. The virt-
install command enables you to specify the volume or storage pool directly for any use of
the --disk option.

• Create a VM using virt-install and include the required --disk argument.

To use an existing volume when creating a VM, include the vol option. For example:

virt-install \
--name guest \
--disk vol=storage_pool/volume1.qcow2
...

To create a virtual disk as a volume within an existing storage pool automatically at install,
include the pool option. In this case, the size option is also required. For example:

virt-install \
--name guest \
--disk pool=storage_pool,size=10
...

Detaching a Virtual Disk
You can remove a virtual disk from a VM by using the virsh detach-disk command.

Chapter 5
KVM Storage Configuration

5-31

Caution:

Before you detach a disk from a running VM, ensure that you perform the appropriate
actions within the guest OS to offline the disk correctly first. Otherwise, you might
corrupt the file system. For example, unmount the disk in the guest OS so that it
performs any sync operations that might still be remaining before you detach the
disk.

1. Display a list of the block devices attached to a guest to identify the disk target.

virsh domblklist guest_name

2. Detach the virtual disk.

virsh detach-disk --config guest_name target_name

You can use the following options:

• --live – temporarily detach a disk image from a running KVM.

• --persistent – detach a disk image from a running KVM and also update its
configuration so that the disk is permanently detached from the KVM on subsequent
restarts.

Detaching a virtual disk from the VM doesn't delete the disk image file or volume from the
host system. If you need to delete a virtual disk, you can either manually delete the source
image file or delete the volume from the host.

For example, to remove the disk at the target sdb1 from the configuration for the KVM
named guest1, you could run:

virsh detach-disk --config guest1 sdb1

Resizing a Virtual Disk
You can resize a virtual disk image while a VM is running by using the virsh blockresize
command.

1. Check the current size of all block devices attached to the VM.

virsh domblkinfo guest_name --all --human

2. Find the path to the disk image and note the location.

virsh domblklist guest_name --details

3. Run virsh blockresize and include the guest name, path to the disk, and intended
size as required arguments.

For example, to increase the size of the disk image at the source location /share/disk-
images/volume1.qcow2 on the running VM named guest1 to 20 GB, run:

virsh blockresize guest_name /share/disk-images/volume1.qcow2 20GB

Chapter 5
KVM Storage Configuration

5-32

The value you provide for size is a scaled integer which defaults to KiB if you omit a suffix.

The virsh blockresize command enables you to scale up a disk on a live VM, but it
doesn't guarantee that the VM can immediately identify that the additional disk resource is
available. For some guest operating systems, restarting the VM might be required before
the guest can identify the additional resources available.

Individual partitions and file systems on the block device aren't scaled using this command.
You need to perform these operations manually from within the guest, as required.

4. Verify that resizing has worked as expected by checking the block device information of the
VM again.

virsh domblkinfo guest_name --all --human

KVM Memory and CPU Allocation Configuration
You can configure how many virtual CPUs (vCPUs) are active, and how much memory is
available for each KVM instance. These hardware configuration changes can be made on a
running KVM by hot plugging or hot unplugging; and the changes can be stored in the KVM's
XML configuration file. Note that some changes can be limited by the KVM host, the hypervisor
manufacturer, or by the original KVM configuration.

For more details on how to use the command line to configure memory and CPU allocation for
KVM use, see these topics:

• Command Usage: Set Virtual CPU Count

• Command Usage: Allocate Memory

Command Usage: Set Virtual CPU Count
Optimizing vCPUs can impact the resource efficiency of any VMs. One way to optimize is to
adjust how many vCPUs are assigned to a KVM instance. Hot plugging or hot unplugging
vCPUs is when you configure vCPU count on a running KVM.

You can change the number of vCPUs that are active in a guest KVM using the virsh
setvcpus command. By default, virsh setvcpus works on running guest KVMs. To
change the number of vCPUs for a stopped KVM, add the --config option.

For example:

virsh setvcpus domain-name, id, or uuid count-value {--config | --live | --
current} --guest

Where:

• setvcpus: Sets the state of individual vCPUs using the hot(un)plug mechanism.

Note:

The count value entered can't exceed the number of CPUs assigned to a KVM
guest. Also, the allowable count value for vCPUs can vary depending on the
following factors: host logical CPUs, hypervisor manufacturer, KVM guest OS,
and so on.

Chapter 5
KVM Memory and CPU Allocation Configuration

5-33

• domain-name: A string value representing the KVM name, ID, or UUID.

• count-value: A number value representing the number of vCPUs.

• --maximum: Controls the maximum number of vCPUs that can be hot plugged the next
time the guest KVM is booted. This option can only be used with the --config option.

• --config: Changes the stored XML configuration for the guest KVM and takes effect
when the guest is started.

– --live: The guest KVM must be running and the change takes place immediately, thus
hot plugging a vCPU.

– --current: Affects the current guest KVM.

• --guest: Sets the vCPU count directly in the running guest.

You can use the --config and --live options together if permitted by the hypervisor. If you
don't specify --config, --live, or --current, the --live option is assumed. If you don't select
an option and the guest KVM isn't running, the command fails. Furthermore, if no options are
specified, it's up to the hypervisor whether the --config option is also assumed; and the
hypervisor determines whether the XML configuration is adjusted to make the change
persistent.

Command Usage: Allocate Memory
To improve the performance of a KVM, you can assign additional host RAM to a KVM instance.
You can also decrease the amount of allocated memory to free up the resource for other KVMs
or tasks. Hot plugging or hot unplugging memory is when you configure memory size on a
running KVM.

You use the virsh setmem command to change the available memory for a KVM. To change
the maximum memory that can be allocated, use the virsh setmaxmem command.

To change a KVM's memory allocation, run:

virsh setmem domain-name, id, or uuid --kilobytes size

You must specify the size as a scaled integer in kibibytes and the new value can't exceed the
amount you specified for the KVM. Values lower than 64 MB are unlikely to work with most
KVM guest operating systems. A higher maximum memory value doesn't affect active KVMs. If
the new value is lower than the available memory, it shrinks memory usage possibly causing
the KVM to crash.

Use following command options to allocate memory to a KVM instance:

• domain

A string value representing the KVM name, ID, or UUID.

• size

A number value representing the new memory size, as a scaled integer. The default unit is
KiB, but you can select from other valid memory units:

– b or bytes for bytes

– KB for kilobytes (103 or blocks of 1,000 bytes)

– k or KiB for kibibytes (210 or blocks of 1024 bytes)

– MB for megabytes (106 or blocks of 1,000,000 bytes)

Chapter 5
KVM Memory and CPU Allocation Configuration

5-34

– M or MiB for mebibytes (220 or blocks of 1,048,576 bytes)

– GB for gigabytes (109 or blocks of 1,000,000,000 bytes)

– G or GiB for gibibytes (230 or blocks of 1,073,741,824 bytes)

– TB for terabytes (1012 or blocks of 1,000,000,000,000 bytes)

– T or TiB for tebibytes (240 or blocks of 1,099,511,627,776 bytes)

• --config
Changes the stored XML configuration for the guest KVM and takes effect when the guest
is started.

• --live
The guest KVM must be running and the change takes place immediately, thus hot
plugging memory.

• --current
Affects the memory on the current guest KVM.

To set the maximum memory that can be allocated to a KVM, run:

virsh setmaxmem domain-name_id_or_uuid size --current

You must specify the size as a scaled integer in kibibytes unless you also specify a supported
memory unit, which are the same as for the virsh setmem command.

All other options for virsh setmaxmem are the same as for virsh setmem with one caveat.
If you specify the --live option be aware that not all hypervisors support live changes to the
maximum memory limit.

Chapter 5
KVM Memory and CPU Allocation Configuration

5-35

6
KVM Known Issues

The following topics describe known issues for Oracle Linux KVM. Note that when a
workaround is available that information is also provided.

• Downgrade Stream Conflict Error Messages

• KVM Guest With vTPM Fails

Downgrade Stream Conflict Error Messages
Known Issue: Package conflict errors appear when downgrading virt:kvm_utils2 to a
previous application stream version.
Description:

Beginning with version 20744+e9607200 of the virt:kvm_utils2 application stream, new
packages were added. If you try to downgrade to a previous version of the virt:kvm_utils2
application stream that does not contain the additional packages, the downgrade process fails
with several package conflict error messages. This issue is the result of a limitation in DNF for
handling dependencies in application streams.

Workaround:
To resolve this issue, you must remove the existing packages, reset the virt:kvm_utils2
application stream, enable the older version of the virt:kvm_utils2 application stream and
then reinstall the packages. See Switch Default Stack to Oracle KVM Stack for steps to
remove existing packages, resetting the application stream and then installing packages.

(Bug ID 34623368)

KVM Guest With vTPM Fails
Known Issue: KVM guests configured with vTPM can fail on Oracle Linux 9 when FIPS mode
is enabled.
Description:

When FIPS mode is enabled on an Oracle Linux 9 host and a KVM is configured to use vTPM,
the guest OS can fail to install or the KVM is unable to launch.

Workaround:
The current workaround is to disable FIPS mode if you need to run KVM guests with vTPM.

(Bug 34290427)

6-1

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Deployment Overview: Oracle Linux KVM
	KVM Management: Deployment Options
	KVM Guest: Operating Systems
	Linux Guest Operating Systems
	Microsoft Windows Guest Operating Systems
	Oracle Solaris Guest Operating System

	KVM Host: System Requirements
	KVM Virtualization Packages: Recommended
	KVM Repositories and Channels: Yum and ULN

	2 Installation: Oracle Linux KVM
	Enable Yum Repositories
	Subscribe to ULN Channels
	Install Virtualization Packages
	Validate Host System
	Switch KVM Stacks
	Switch Default Stack to Oracle KVM Stack
	Switch Oracle KVM Stack to Default Stack

	3 Manage the Libvirtd Service
	Types of libvirt Driver Daemons

	4 KVM Instances: Create and Manage
	Create: KVM Instance
	Virt-Install: Command Line Examples

	Clone: Existing KVM Instance
	Prepare KVM for Cloning: Using virt-sysprep
	Prepare KVM for Cloning: Manually
	Create a KVM Clone Using virt-clone Command

	View: KVM Instances, Status, and Configuration
	Connect to KVM: virsh Serial Console
	Start, Shutdown, Reboot, or Remove KVM
	KVM: Start Instance
	KVM: Shut Down Instance
	KVM: Suspend or Resume Instance
	KVM: Reboot Instance
	KVM: Remove KVM Instance

	5 KVM Instances: Hardware Configuration
	Add Watchdog Device to KVM Instance
	Add vTPM Security to KVM Instance
	KVM Network Configuration
	Overview: Virtual Networking
	Command Usage: Manage Virtual Network
	Command Usage: Add or Remove vNIC
	Bridged Networking: Setup
	Setup Guidelines: Bridged Network
	Create: Bridge Network Connection
	Bonded Interfaces for Increased Throughput

	PCIe Passthrough: Setup
	Create: Direct PCIe Passthrough Connection
	Setup Guidelines: SR-IOV PCIe Passthrough
	Create: SR-IOV PCIe Passthrough Connection
	SR-IOV Enabled PCIe Devices

	KVM Storage Configuration
	Storage Pools: Create and Manage
	Creating a Storage Pool
	Creating a Storage Pool from XML
	Removing a Storage Pool

	Storage Volumes: Create and Manage
	Creating a Storage Volume
	Creating a Storage Volume from XML
	Cloning a Storage Volume
	Resizing a Storage Volume
	Deleting a Storage Volume

	Virtual Disks: Create and Manage
	Attaching a Virtual Disk to an Existing VM
	Attaching a Virtual Disk when Creating a VM
	Detaching a Virtual Disk
	Resizing a Virtual Disk

	KVM Memory and CPU Allocation Configuration
	Command Usage: Set Virtual CPU Count
	Command Usage: Allocate Memory

	6 KVM Known Issues
	Downgrade Stream Conflict Error Messages
	KVM Guest With vTPM Fails

