
Oracle Linux 9
Managing Storage Devices

F58078-03
March 2023

Oracle Linux 9 Managing Storage Devices,

F58078-03

Copyright © 2022, 2023, Oracle and/or its affiliates.

Contents

 Preface

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 Using Disk Partitions

Disk Partitions in Oracle Linux 1-1

Partitioning Disks by Using fdisk 1-2

Displaying the Partition Table 1-3

Creating Partitions 1-4

Partitioning Disks by Using parted 1-5

Creating Partitions 1-6

Customizing Labels 1-7

Automatic Device Mappings for Partitions and File Systems 1-8

Listing Device Mapping Information 1-9

Manually Mapping Partition Tables to Devices 1-10

Creating Device Mappings by Using kpartx 1-11

Listing Partition Mappings For a Device by Using kpartx 1-11

Removing Partition Mappings by Using kpartx 1-11

2 Implementing Swap Spaces

Creating a Swap File 2-1

Creating a Swap Partition 2-2

Viewing Swap Space Usage 2-2

Removing a Swap File or Swap Partition 2-3

3 Recommendations for Solid State Drives

iii

4 Working With Logical Volume Manager

Initializing and Managing Physical Volumes 4-1

Creating and Managing Volume Groups 4-2

Creating and Managing Logical Volumes 4-3

Creating Logical Volume Snapshots 4-3

Using Thinly-Provisioned Logical Volumes 4-4

Configuring and Managing Thinly-Provisioned Logical Volumes 4-4

Using snapper With Thinly-Provisioned Logical Volumes 4-5

5 Working With Software RAID

Software RAID Levels 5-1

Creating Software RAID Devices 5-2

6 Using Encrypted Block Devices

About Encrypted Block Devices 6-1

Creating Encrypted Volumes 6-1

7 Working With Linux I-O Storage

About iSCSI Devices 7-1

Configuring an iSCSI Target 7-2

Restoring a Saved Configuration for an iSCSI target 7-5

Configuring an iSCSI Initiator 7-6

Updating the Discovery Database 7-8

8 Using Multipathing for Efficient Storage

Device Multipathing Sample Setup 8-1

Configuring Multipathing 8-3

Working With the Multipathing Configuration File 8-4

iv

Preface

Oracle Linux 9: Managing Storage Devices provides information about storage device
management, as well as instructions on how to configure and manage disk partitions, swap
space, logical volumes, software RAID, block device encryption, iSCSI storage, and
multipathing.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing

v

https://docs.oracle.com/en/operating-systems/oracle-linux/9/stordev/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

technologies and the need to ensure continuity of service as Oracle's offerings and
industry standards evolve. Because of these technical constraints, our effort to remove
insensitive terms is ongoing and will take time and external cooperation.

Preface

vi

1
Using Disk Partitions

All storage devices, from hard disks to solid state drives to SD cards, must be partitioned to
become usable. A device must have at least one partition, although you can create multiple
partitions on any device.

Partitioning divides a disk drive into one or more reserved areas called partitions. Information
about these partitions are stored in the partition table on the disk drive. The operating system
treats each partition as a separate disk that can contain a file system.

You create additional partitions to simplify backups, enhance system security, and meet other
needs, such as setting up development sandboxes and test areas. You can add partitions to
store data that frequently changes, such as user home directories, databases, and log file
directories.

Disk Partitions in Oracle Linux
Oracle Linux requires one partition for the root file system. Additionally, two other partitions
are typically reserved for swap space and the boot file system. On x86 and x86_64 systems,
the system BIOS can access only the first 1024 cylinders of the disk at boot time. Configuring
a separate boot partition in this region on the disk enables the GRUB bootloader to access
the kernel image and other files that are required to boot the system.

For hard disks with a master boot record (MBR), the partitioning scheme supports up to 4
primary partitions. In turn, a primary partition can further be divided into up to 11 logical
partitions. The primary partition that contains the logical partitions is known as an extended
partition. The MBR scheme supports disks up to 2 TB in size.

On hard disks with a GUID Partition Table (GPT), you can configure up to 128 partitions. The
GPT partition scheme does not use the concept of extended or logical partitions. If your disk's
size is larger than 2 TB, you should use GPT to configure the device's partitions.

Note:

When partitioning a block storage device, align primary and logical partitions on
one-megabyte (1048576 bytes) boundaries. If partitions, file system blocks, or RAID
stripes are incorrectly aligned and overlap the boundaries of the underlying
storage's sectors or pages, the device controller has to modify twice as many
sectors or pages than if correct alignment is used. This recommendation applies to
most block storage devices, including hard disk drives, solid state drives (SSDs),
LUNs on storage arrays, and host RAID adapters.

1-1

Partitioning Disks by Using fdisk
To create and manage hard disks that use MBRs, you use the fdisk command.
Alternatively, you can use the cfdisk utility, which is a text-based, graphical version
of fdisk.

Before running fdisk, complete the following requirements first:

• Unmount any mounted partition on the disk.

• Disable any partition that is being used as swap space by using the swapoff
command.

• Backup the data on the disk to be configured.

fdisk can be used either interactively or directly with command-line options and
arguments.

Note:

The two modes can differ in the options they support to perform specific
actions. To list supported options while in interactive mode, enter m at the
mode's prompt. For supported options in the command line mode, type:

fdisk -h

To run the fdisk command interactively, specify only the name of the disk device as
an argument, for example:

sudo fdisk /dev/sda

Welcome to fdisk (util-linux 2.32.1)
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help):

The following commands are useful for managing partitions:

p
Displays the current partition table.

n
Initiates the process for creating new partitions.

t
Changes the partition type.

Chapter 1
Partitioning Disks by Using fdisk

1-2

Tip:

To list all the supported partition types, enter l.

w
Commits changes you made to the partition table, then exits the interactive session.

q
Disregards any configuration changes you made and exits the session.

m
Displays all the supported commands in the interactive mode.

For more information, see the cfdisk(8) and fdisk(8) manual pages.

Displaying the Partition Table
To display the partition table, enter p at the fdisk prompt, for example:

Command (m for help): p

Disk /dev/sda: 36.5 GiB, 39191576576 bytes, 76546048 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x67fb0c7a

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 1026047 1024000 500M 83 Linux
/dev/sda2 1026048 76546047 75520000 36G 8e Linux LVM

Command (m for help):

The output contains device information summary such as disk size and disklabel type, as well
as partition details. The partition details are specified under the following field names:

Device
Lists the current partitions on the device.

Boot
Identifies the boot partition with an asterisk (*). This partition contains the files that the
GRUB bootloader needs to boot the system. Only one partition can be bootable.

Start and End
Lists the start and end offsets in sectors that mark a sector's boundaries. All partitions are
aligned on one-megabyte boundaries.

Sectors
Displays sector sizes.

Size
Displays partition sizes.

Chapter 1
Partitioning Disks by Using fdisk

1-3

Id and Type
Indicates a representative number and its corresponding representative number.
Oracle Linux typically supports the following types:

5 Extended
An extended partition that can contain up to four logical partitions.

82 Linux swap
Swap space partition.

83 Linux
Linux partition for a file system that is not managed by LVM. This is the default
partition type.

8e Linux LVM
Linux partition that is managed by LVM.

Creating Partitions
The following example demonstrates how to use the different fdisk interactive
commands to partition a disk. Specifically, 2 partitions are created on /dev/sdb. The
first partition is assigned 2 GB while the second partition uses all the remaining disk
space.

sudo fdisk /dev/sdb

The command runs a menu-based system where you must select the appropriate
responses to configure the partition. Example inputs are displayed in the following
interactive session:

...
Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-32767999, default 2048): <Enter>
Last sector, +sectors or +size{K,M,G,T,P} (2048-32767999, default 32767999): +2G

Created a new partition 1 of type 'Linux' and of size 2 GiB.

Command (m for help): n
Partition type
 p primary (1 primary, 0 extended, 3 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (2-4, default 2): 2
First sector (4196352-32767999, default 4196352): <Enter>
Last sector, +sectors or +size{K,M,G,T,P} (4196352-32767999, default 32767999):
<Enter>

Created a new partition 2 of type 'Linux' and of size 13.6 GiB.

Command (m for help): p
Disk /dev/sdb: 15.6 GiB, 16777216000 bytes, 32768000 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

Chapter 1
Partitioning Disks by Using fdisk

1-4

I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x460247f0

Device Boot Start End Sectors Size Id Type
/dev/sdb1 2048 4196351 4194304 2G 83 Linux
/dev/sdb2 4196352 32767999 28571648 13.6G 83 Linux

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

Partitioning Disks by Using parted
To create and manage hard disks that use GPTs, you use the parted command. The
command enables you to perform typical partition operations as fdisk. However, with its
support for a larger set of commands as well as more disk label types including GPT disks,
parted is more advanced.

Before running parted, complete the following requirements first:

• Unmount any mounted partition on the disk.

• Disable any partition that is being used as swap space by using the swapoff command.

• Backup the data on the disk to be configured.

You can use parted either interactively or directly with command line arguments. To run
parted interactively, specify only the name of the disk device as an argument, for example:

sudo parted /dev/sdb

GNU Parted 3.2
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted)

The following commands are useful for managing partitions:

print
Displays the current partition table.

mklabel
Creates a partition type according to the label you choose.

mkpart
Initiates the process for creating new partitions.

quit
Exits the session.

Chapter 1
Partitioning Disks by Using parted

1-5

Note:

In interactive sessions, changes are committed to disk immediately. Unlike
fdisk, the parted utility does not have an option for quitting without
saving changes.

help
Displays all the supported commands in the interactive mode.

Creating Partitions
The following example demonstrates how to use the different parted commands to
create 2 disk partitions. The first partition is assigned 2 GB while the second partition
uses all the remaining disk space.

sudo parted /dev/sdb

The command runs a menu-based system where you must select the appropriate
responses to configure the partition. Example inputs are displayed in the following
interactive session:

GNU Parted 3.2
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 16.8GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags

(parted) mkpart
Partition type? primary/extended? primary
File system type? [ext2]? <Enter>
Start? 1
End? 2GB
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 16.8GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
 1 1049kB 2000MB 1999MB primary ext2 lba

(parted) mkpart
Partition type? primary/extended? primary
File system type? [ext2]? <Enter>
Start? 2001
End? -0
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 16.8GB

Chapter 1
Partitioning Disks by Using parted

1-6

Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
 1 1049kB 2000MB 1999MB primary ext2 lba
 2 2001MB 16.8GB 14.8GB primary ext2 lba

(parted) quit

Note:

Unless you specify otherwise, the size for the Start and End offsets is in
megabytes. To use another unit of measure, type the value and the unit together, for
example, 2GB. To assign all remaining disk space to the partition, enter -0 for the
End offset as shown in the example.

Customizing Labels
By default, parted creates msdos-labeled partitions. When partitioning with this label, you
are also prompted for the partition type. Partition types can be primary, extended, or
logical.

If you want to use a different label, you would need to specify that label first with the
mklabel command before creating the partition. Depending on the label, you would be
prompted during the partitioning process for additional information, such as the partition
name, as shown in the following example:

sudo parted /dev/sdb

The command runs a menu-based system where you must select the appropriate responses
to configure the partition. Example inputs are displayed in the following interactive session:

GNU Parted 3.2
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) mklabel
New disk label type? gpt
Warning: The existing disk label on /dev/sdb will be destroyed and all data on
this disk will be lost. Do you want to continue?
Yes/No? yes
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 16.8GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:

Number Start End Size File system Name Flags

(parted) mkpart
Partition name? []? Example
File system type? [ext2]? linux-swap
Start? 1

Chapter 1
Partitioning Disks by Using parted

1-7

End? 2GB
(parted) print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 16.8GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:

Number Start End Size File system Name Flags
 1 1049kB 2000MB 1999MB linux-swap(v1) Example

(parted) quit

To know which types of file systems and labels are supported by parted, consult the
GNU Parted User Manual at https://www.gnu.org/software/parted/manual/, or enter
info parted to view the online user manual. For additional information, see the
parted(8) manual page.

Automatic Device Mappings for Partitions and File Systems
Device mappings are handled automatically on Oracle Linux, by the kernel and the
udev service. In the case of disk devices, the kernel automatically creates device
mappings for disks and their partitions using a non-persistent naming scheme in the
form of /dev/sdxy, for example /dev/sda1. A problem with this approach is that the
device naming scheme is dependent on the order in which devices are detected,
which means that device names can change easily. Typically, device names change
when there are changes to the boot process or when storage devices or their related
controllers fail.

Avoid using the non-persistent disk or partition names when configuring mount points
in /etc/fstab.

Udev is a subsystem that works with the kernel to monitor hardware or device changes
and manages events related to changes. Storage devices, partitions and file systems
are all allocated unique identifiers that the udev subsystem is capable of reading and
using to automatically configure device mappings that you can use to safely identify
the device or partition that you intend to work with. Device mappings for storage
devices managed by udev are located in /dev/disks and you are able to identify a
device by a variety of identifiers including the unique partition UUID, file system UUID
or the partition label.

When configuring mount points in /etc/fstab it is preferable to use the file system
UUID or the partition label (if this is set), for example:

UUID=8980b45b-a2ce-4df6-93d8-d1e72f3664a0 /boot xfs defaults 0 0
LABEL=home /home xfs defaults 0 0

Note that since file systems are capable of spanning multiple devices, it is usually
preferable to define mount points against the file system UUID rather than a partition
UUID or label. File system UUIDs are assigned when the file system is created and is
stored as part of the file system itself. If you copy the file system to a different device, it
retains the same file system UUID. However, if you reformat a device, using the mkfs
command, the device loses the file system UUID and a new UUID is generated.

Chapter 1
Automatic Device Mappings for Partitions and File Systems

1-8

https://www.gnu.org/software/parted/manual/

Listing Device Mapping Information
You can use the lsblk command to list device information for any block device attached to
the system:

Tip:

Use the -o +UUID option to display the UUIDs for each device and partition listed,
or use the -f option to get a display of important file system information.

lsblk -f

Output may display as follows, indicating a tree of file system mappings:

NAME FSTYPE FSVER LABEL UUID
FSAVAIL FSUSE% MOUNTPOINTS
sda

├─sda1 vfat FAT16 DDD4-C455
94.5M 5% /boot/efi
├─sda2 xfs 8980b45b-a2ce-4df6-93d8-
d1e72f3664a0 1.5G 26% /boot
└─sda3 LVM2_member LVM2 001 LzsEPR-Mnbk-kQZY-eV3n-9u1T-lFXZ-
x7ANgD
 ├─ocivolume-root xfs 26029274-0a04-4dc5-b794-2576b9a16884
28.6G 25% /
 └─ocivolume-oled xfs 3cbc8301-6f0e-4947-bbe6-
f3669b9e6985 9.9G 1% /var/oled

You can also use the udevadm info command to obtain information about any udev
mappings on the system. For example:

sudo udevadm info /dev/sda3

Output may display as follows, indicating all of the device links that udev has created for the
device and any other information that udev has on the device:

P: /devices/pci0000:00/0000:00:04.0/virtio1/host2/target2:0:0/2:0:0:1/block/sda/sda3
N: sda3
L: 0
S: disk/by-partuuid/18b918a1-16ca-4a07-91c6-455c6dc59fac
S: oracleoci/oraclevda3
S: disk/by-id/wwn-0x60170f5736a64bd7accb6a5e66fe70ee-part3
S: disk/by-path/pci-0000:00:04.0-scsi-0:0:0:1-part3
S: disk/by-id/scsi-360170f5736a64bd7accb6a5e66fe70ee-part3
S: disk/by-id/lvm-pv-uuid-LzsEPR-Mnbk-kQZY-eV3n-9u1T-lFXZ-x7ANgD
E: DEVPATH=/devices/pci0000:00/0000:00:04.0/virtio1/host2/target2:0:0/2:0:0:1/
block/sda/sda3
E: DEVNAME=/dev/sda3
E: DEVTYPE=partition
E: DISKSEQ=9
E: PARTN=3
E: MAJOR=8
E: MINOR=3
E: SUBSYSTEM=block
E: USEC_INITIALIZED=20248855
E: ID_SCSI=1

Chapter 1
Automatic Device Mappings for Partitions and File Systems

1-9

E: ID_VENDOR=ORACLE
E: ID_VENDOR_ENC=ORACLE\x20\x20
E: ID_MODEL=BlockVolume
E: ID_MODEL_ENC=BlockVolume\x20\x20\x20\x20\x20
E: ID_REVISION=1.0
E: ID_TYPE=disk
E: ID_SERIAL=360170f5736a64bd7accb6a5e66fe70ee
E: ID_SERIAL_SHORT=60170f5736a64bd7accb6a5e66fe70ee
E: ID_WWN=0x60170f5736a64bd7
E: ID_WWN_VENDOR_EXTENSION=0xaccb6a5e66fe70ee
E: ID_WWN_WITH_EXTENSION=0x60170f5736a64bd7accb6a5e66fe70ee
E: ID_BUS=scsi
E: ID_PATH=pci-0000:00:04.0-scsi-0:0:0:1
E: ID_PATH_TAG=pci-0000_00_04_0-scsi-0_0_0_1
E: ID_PART_TABLE_UUID=a0b1f7d8-e84b-461f-a016-c3fcfed369c3
E: ID_PART_TABLE_TYPE=gpt
E: ID_SCSI_INQUIRY=1
E: ID_FS_UUID=LzsEPR-Mnbk-kQZY-eV3n-9u1T-lFXZ-x7ANgD
E: ID_FS_UUID_ENC=LzsEPR-Mnbk-kQZY-eV3n-9u1T-lFXZ-x7ANgD
E: ID_FS_VERSION=LVM2 001
E: ID_FS_TYPE=LVM2_member
E: ID_FS_USAGE=raid
E: ID_PART_ENTRY_SCHEME=gpt
E: ID_PART_ENTRY_UUID=18b918a1-16ca-4a07-91c6-455c6dc59fac
E: ID_PART_ENTRY_TYPE=e6d6d379-f507-44c2-a23c-238f2a3df928
E: ID_PART_ENTRY_NUMBER=3
E: ID_PART_ENTRY_OFFSET=4401152
E: ID_PART_ENTRY_SIZE=100456415
E: ID_PART_ENTRY_DISK=8:0
E: SCSI_TPGS=0
E: SCSI_TYPE=disk
E: SCSI_VENDOR=ORACLE
E: SCSI_VENDOR_ENC=ORACLE\x20\x20
E: SCSI_MODEL=BlockVolume
E: SCSI_MODEL_ENC=BlockVolume\x20\x20\x20\x20\x20
E: SCSI_REVISION=1.0
E: SCSI_IDENT_LUN_NAA_REGEXT=60170f5736a64bd7accb6a5e66fe70ee
E: UDISKS_IGNORE=1
E: DEVLINKS=/dev/disk/by-partuuid/18b918a1-16ca-4a07-91c6-455c6dc59fac
 /dev/oracleoci/oraclevda3
 /dev/disk/by-id/wwn-0x60170f5736a64bd7accb6a5e66fe70ee-part3
 /dev/disk/by-path/pci-0000:00:04.0-scsi-0:0:0:1-part3
 /dev/disk/by-id/scsi-360170f5736a64bd7accb6a5e66fe70ee-part3
 /dev/disk/by-id/lvm-pv-uuid-LzsEPR-Mnbk-kQZY-eV3n-9u1T-lFXZ-x7ANgD
E: TAGS=:systemd:
E: CURRENT_TAGS=:systemd:

Manually Mapping Partition Tables to Devices
The kpartx utility maps to device files the partitions of any block device or file that
contains a partition table. The command reads the partition table, creates device files
for the partitions, and stores the device files in /dev/mapper. Each device file
represents a disk volume or a disk partition on a device or within an image file.

For more information, see the kpartx(8) manual page.

Chapter 1
Manually Mapping Partition Tables to Devices

1-10

Creating Device Mappings by Using kpartx
The -a option creates the device mappings. The following example uses the disk partitions
that were created in Creating Partitions as basis for creating the mapping. The example
begins by showing the partition table:

1. Display the partition table.

sudo fdisk -l /dev/sdb

...
Device Boot Start End Sectors Size Id Type
/dev/sdb1 2048 3907583 3905536 1.9G 83 Linux
/dev/sdb2 3907584 32767999 28860416 13.8G 83 Linux

2. Map the partitions.

sudo kpartx -av /dev/sdb

add map sdb1 (253:2): 0 3905536 linear 8:16 2048
add map sdb2 (253:3): 0 28860416 linear 8:16 3907584

3. Display /dev/mapper contents.

ls /dev/mapper

control sdb1 sdb2 vg_main-lv_root vg_main-lv_swap

Listing Partition Mappings For a Device by Using kpartx
To list the partitions in the device, use the -l option.

In the following example, the first column of the output identifies the device files in /dev/
mapper.

sudo kpartx -l /dev/sdb

sdb1 : 0 3905536 /dev/sdb 2048
sdb2 : 0 28860416 /dev/sdb 3907584

The kpartx command also works with image files such as an installation image. For
example, for an image file system.img, you can do the following:

sudo kpartx -a system.img

sudo kpartx -l system.img

loop0p1 : 0 204800 /dev/loop0 2048
loop0p2 : 0 12288000 /dev/loop0 206848
loop0p3 : 0 4096000 /dev/loop0 212494848
loop0p4 : 0 2 /dev/loop0 16590848

The output of the previous command shows that the drive image contains four partitions.

Removing Partition Mappings by Using kpartx
If a partition is not in use you can remove the device mapping for the partition by using the -d
option:

Chapter 1
Manually Mapping Partition Tables to Devices

1-11

sudo kpartx -d system.img
ls /dev/mapper

control

Chapter 1
Manually Mapping Partition Tables to Devices

1-12

2
Implementing Swap Spaces

Swap spaces are a way by which the operating system manages resources in the system to
ensure efficient performance.

Oracle Linux uses swap space if your system does not have enough physical memory for
ongoing processes. When available memory is low, the operating system writes inactive
pages to swap space on the disk, and thus free up physical memory.

However, swap space is not an effective solution to memory shortage. Swap space is located
on disk drives, which have much slower access times than physical memory. Writing to swap
space effectively degrades system performance. If your system often resorts to swapping,
you should add more physical memory, not more swap space.

Swap space can be either in a swap file or on a separate swap partition. A dedicated swap
partition is faster, but changing the size of a swap file is easier. If you know how much swap
space your system requires, configure a swap partition. Otherwise, start with a swap file and
create a swap partition later when you know what your system requires.

Creating a Swap File
1. Use the dd command to create a file of the required size, for example, one million 1KB

blocks.

sudo dd if=/dev/zero of=/swapfile bs=1024 count=1000000

1000000+0 records in
1000000+0 records out
1024000000 bytes (1.0 GB, 977 MiB) copied, 6.10298 s, 168 MB/s

2. Initialize the file as a swap file.

sudo mkswap /swapfile

mkswap: /swapfile: insecure permissions 0644, 0600 suggested.
Setting up swapspace version 1, size = 976.6 MiB (1023995904 bytes)
no label, UUID=43964855-e81f-414c-a61c-370408085ba4

3. Change the permissions on the file so that it is not world readable.

sudo chmod 0600 /swapfile
4. Add an entry to the /etc/fstab file so that the system uses the swap file at system

reboots, for example:

/swapfile swap swap defaults 0 0
5. Regenerate the mount units and register the new configuration in /etc/fstab.

sudo systemctl daemon-reload
6. Activate the swap file.

sudo swapon /swapfile

2-1

7. (Optional) Test whether the new swap file was successfully created by inspecting
the active swap space:

cat /proc/swaps

sudo free -h

Creating a Swap Partition
1. Create the swap partition by using either fdisk or parted.

• If using fdisk, create the partition as discussed in Creating Partitions. Then
use t to change the partition type from the default to 82 Linux swap / So.

• If using parted, specify linux-swap at the File system type? prompt as
shown in Partitioning Disks by Using parted.

2. Initialize the partition as a swap partition.

For example, if the partition is /dev/sda2, use the following command:

sudo mkswap /dev/sda2
3. Enable swapping to the swap partition.

sudo swapon /dev/sda2
4. Add an entry to /etc/fstab for the swap partition so that the system uses it

following the next reboot, for example:

/dev/sda2 swap swap defaults 0 0

Viewing Swap Space Usage
To view a system's usage of swap space, examine the contents of /proc/swaps:

cat /proc/swaps

Filename Type Size Used Priority
/dev/sda2 partition 4128760 388 -1
/swapfile file 999992 0 -2

In this example, the system is using both a 4GB swap partition on /dev/sda2 and a
1GB swap file, /swapfile. The Priority column shows that the operating system to
write to the swap partition rather than to the swap file.

You can also view /proc/meminfo or use utilities such as free, top, and vmstat to
view swap space usage, for example:

grep Swap /proc/meminfo

SwapCached: 248 kB
SwapTotal: 5128752 kB
SwapFree: 5128364 kB

sudo free | grep Swap

Swap: 5128752 388 5128364

Chapter 2
Creating a Swap Partition

2-2

Removing a Swap File or Swap Partition
To remove a swap file or swap partition from use:

1. Disable swapping to the swap file or swap partition, for example:

sudo swapoff /swapfile
2. Remove the entry for the swap file or swap partition from /etc/fstab.

3. Optionally, remove the swap file or swap partition if you no longer need it.

Chapter 2
Removing a Swap File or Swap Partition

2-3

3
Recommendations for Solid State Drives

Just like other storage devices, solid state drives (SSDs) require their partitions to be on 1
MB boundaries.

For btrfs and ext4 file systems on SSDs, specifying the discard option with mount sends
discard (TRIM) commands to an underlying SSD whenever blocks are freed. This option can
extend the working life of the device. However, the option also has a negative impact on
performance, even for SSDs that support queued discards.

Instead, use the fstrim command to discard empty and unused blocks, especially before
reinstalling the operating system or before creating a new file system on an SSD. Schedule
fstrim to run when impact on system performance is minimal. You can also apply fstrim
to a specific range of blocks rather than the whole file system.

Note:

Using a minimal journal size of 1024 file-system blocks for ext4 on an SSD
improves performance. However, journaling also improves the robustness of the file
system, and therefore should not be completely disabled.

Btrfs automatically enables SSD optimization for a device if the value of /sys/block/device/
queue/rotational is 0, such as in the case of Xen Virtual Devices (XVD). If btrfs does not
detect a device as being an SSD, enable SSD optimization by specifying the ssd option to
mount. Note, however, that setting the ssd option does not imply that discard is also set.

To disable SSD optimization, specify the nossd option to mount.

If you configure swap files or partitions on an SSD, reduce the tendency of the kernel to
perform anticipatory writes to swap, which is controlled by the value of the vm.swappiness
kernel parameter and displayed as /proc/sys/vm/swappiness. The value of vm.swappiness
can be in the range 0 to 100, where a higher value implies a greater propensity to write to
swap. The default value is 60. The suggested value when swap has been configured on SSD
is 1. Use the following commands to change the value:

echo "vm.swappiness = 1" >> /etc/sysctl.conf

sudo sysctl -p

...
vm.swappiness = 1

For additional swap-related information in connection with the btrfs file system, see Creating
Swap Files on a Btrfs File System in Oracle Linux 9: Managing Local File Systems.

3-1

https://docs.oracle.com/en/operating-systems/oracle-linux/9/fsadmin/

4
Working With Logical Volume Manager

Logical Volume Manager (LVM) enables you to manage multiple physical volumes and
configure mirroring and striping of logical volumes. Through its use of the device mapper
(DM) to create an abstraction layer, LVM provides you the capability to by which you can
configure physical and logical volumes. With LVM, you obtain data redundancy as well
increased I/O performance.

In LVM, you first create volume groups from physical volumes. Physical volumes are storage
devices such as disk array LUNs, software or hardware RAID devices, hard drives, and disk
partitions. Over these physical volumes, you create volume groups. In turn, you configure
logical volumes in a volume group. Logical volumes become the foundation for configuring
software RAID, encryption, and other storage features.

You create file systems on logical volumes and mount the logical volume devices in the same
way as you would a physical device. If a file system on a logical volume becomes full with
data, you can increase the volume's capacity by using free space in the volume group. You
can then grow the file system, if the file system supports that capability. Physical storage
devices can be added to a volume group to further increase its capacity.

LVM is non-disruptive and transparent to users. Thus, management tasks such as increasing
logical volume sizes, changing their layouts dynamically, or reconfiguring physical volumes do
not require any system downt time.

Before setting up logical volumes on the system, complete the following requirements:

• Backup the data on the devices designated for the physical volume.

• Unmount those devices. Creating physical volumes fails on mounted devices.

Configuring logical volumes with LVM involves the following tasks which you
performsequentially.

1. Creating physical volumes from selected storage devices.

2. Creating a volume group from physical volumes.

3. Configuring logical volumes over the volume group.

4. As needed, creating snapshots of logical volumes.

Initializing and Managing Physical Volumes
The following example sets up /dev/sdb, /dev/sdc, /dev/sdd, and /dev/sde as physical
volumes:

sudo pvcreate -v /dev/sd[bcde]

Set up physical volume for “/dev/sdb” with 6313482 available
sectors
Zeroing start of device /dev/sdb
Physical volume “/dev/sdb” successfully created
...

4-1

To display information about physical volumes, use the pvdisplay, pvs, and pvscan
commands.

To remove a physical volume from the control of LVM, use the pvremove command:

sudo pvremove device

Other commands that are available for managing physical volumes include pvchange,
pvck, pvmove, and pvresize.

For more information, see the lvm(8), pvcreate(8), and other LVM manual pages.

Creating and Managing Volume Groups
The following example creates the volume group myvg from the newly created physical
volumes:

sudo vgcreate -v myvg /dev/sd[bcde]

The following output is displayed:

Wiping cache of LVM-capable devices
Adding physical volume ‘/dev/sdb’ to volume group ‘myvg’
Adding physical volume ‘/dev/sdc’ to volume group ‘myvg’
Adding physical volume ‘/dev/sdd’ to volume group ‘myvg’
Adding physical volume ‘/dev/sde’ to volume group ‘myvg’
Archiving volume group “myvg” metadata (seqno 0).
Creating volume group backup “/etc/lvm/backup/myvg” (seqno 1).
Volume group “myvg” successfully created

LVM divides the storage space within a volume group into physical extents An extent,
with a default size of 4 MB, is the smallest unit that LVM uses when allocating storage
to logical volumes.

The allocation policy determines how LVM allocates extents from either a volume
group or a logical volume. The default allocation policy for a volume group is normal,
whose rules include, for example, not placing parallel stripes on the same physical
volume. For a logical volume, the default allocation policy is inherit, which means
that the logical volume uses the same policy as the volume group. Other allocation
policies are anywhere, contiguous and cling, and cling_by_tags.

To change allocation policies, use the lvchange or vgchange commands. As an
alternative, set the allocation policy of your choice directly when creating a volume
group or logical volume.

The vgextend and vgreduce commands respectively adds physical volumes to a
volume group or removes them. The commands enable you to manipulate the size of
the volume group.

sudo vgextend | vgreduce [options] vol_group physical_vol

To display information about volume groups, use the vgdisplay, vgs, and vgscan
commands.

To remove a volume group from LVM, use the vgremove command:

sudo vgremove vol_group

Chapter 4
Creating and Managing Volume Groups

4-2

The command warns you if logical volumes exist in the group and prompts for confirmation.

Other commands that are available for managing volume groups include vgchange, vgck,
vgexport, vgimport, vgmerge, vgrename, and vgsplit.

For more information, see the lvm(8), vgcreate(8), and other LVM manual pages.

Creating and Managing Logical Volumes
This example creates the logical volume mylv of size 2 GB in the volume group myvg:

sudo lvcreate -v --size 2g --name mylv myvg

The following output is displayed:

Archiving volume group “myvg” metadata (seqno 1).
Creating logical volume mylv
Create volume group backup “/etc/lvm/backup/myvg” (seqno 2).
Activating logical volume myvg/mylv.
...
Logical volume "mylv" created.

lvcreate uses the device mapper to create a block device file entry under /dev for each
logical volume. The command also uses udev to set up symbolic links to this device file
from /dev/mapper and /dev/ volume_group. For example, the device that corresponds to the
logical volume mylv in the volume group myvg might be /dev/dm-3, to which /dev/mapper/
myvg-mylv and /dev/myvg/mylv are symbolically linked.

In commands or scripts, always refer to the devices in /dev/mapper or /dev/ volume_group,
rather than to /dev/dm-*. Those names are persistent and are created automatically by the
device mapper early in the boot process. In contrast, the /dev/dm-* devices are not
guaranteed to be persistent across reboots.

You manage and use a logical volume as you would a physical storage device, such as
configuring a logical volume as a file system, a swap partition, an Automatic Storage
Management (ASM) disk, or a raw device.

To display information about logical volumes, use the lvdisplay, lvs, and lvscan
commands.

To remove a logical volume from a volume group, use the lvremove command:

sudo lvremove vol_group/logical_vol

Other commands that are available for managing logical volumes include lvchange,
lvconvert, lvmdiskscan, lvmsadc, lvmsar, lvrename, and lvresize.

For more information, see the lvm(8), lvcreate(8), and other LVM manual pages.

Creating Logical Volume Snapshots
To create a snapshot of an existing logical volume, use lvcreate --snapshot, for
example:

sudo lvcreate --size 500m --snapshot --name mylv-snapshot myvg/mylv

Logical volume “mylv-snapshot” created

Chapter 4
Creating and Managing Logical Volumes

4-3

You can mount and modify the contents of the snapshot independently of the original
volume. Or, you can preserve the snapshot as a record of the state of the original
volume at the time that the snapshot was taken.

The snapshot usually occupies less space than the original volume, depending on how
much the contents of the volumes diverge over time. In the example, assume that the
snapshot only requires one quarter of the space of the original volume. To calculate
how much data is allocated to the snapshot, do the following:

1. Issue the lvs command.

2. From the command output, check the value under the Snap% column.

A value approaching 100% indicates that the snapshot is low on storage space.

3. Use lvresize to either grow the snapshot or reduce its size to save storage
space.

To merge a snapshot with its original volume, use the lvconvert --merge
command.

To remove a logical volume snapshot from a volume group, use the lvremove
command as you would for a logical volume, for example:

sudo lvremove myvg/mlv-snapshot

For more information, see the lvcreate(8) and lvremove (8) manual pages.

Using Thinly-Provisioned Logical Volumes
Thinly-provisioned logical volumes have virtual sizes that are typically greater than the
physical storage on which you create them. You create thinly-provisioned logical
volumes from storage that you have assigned to a special type of logical volume called
a thin pool. LVM assigns storage on demand from a thin pool to a thinly-provisioned
logical volume as required by the applications that access the volume. You need to
use the lvs command to monitor the usage of the thin pool so that you can increase
its size if its available storage is in danger of being exhausted.

Configuring and Managing Thinly-Provisioned Logical Volumes
Creating thinly-provisioned logical volumes involves two steps:

1. Create a thin pool.

sudo lvcreate --size size --thin vol_group/pool_name
2. Create a thinly-provisioned logical volume.

sudo lvcreate --virtualsize size --thin vol_group/thin_pool_name --name
logical_vol

In the following example, the thin pool mytp of size 1 GB is first created from the
volume group myvg:

sudo lvcreate --size 1g --thin myvg/mytp
Logical volume "mytp" created

Then, the thinly-provisioned logical volume mytv is created with a virtual size of 2 GB:

Chapter 4
Using Thinly-Provisioned Logical Volumes

4-4

sudo lvcreate --virtualsize 2g --thin myvg/mytp --name mytv
Logical volume "mytv" created

Note that the size of mytp is less than that of mytv.

To create a snapshot of mytv, do not specify the size of the snapshot. Otherwise, its storage
would not be provisioned from mytp, for example:

sudo lvcreate --snapshot --name mytv-snapshot myvg/mytv
Logical volume “mytv-snapshot” created

If the volume group has sufficient space, use the lvresize command as needed to increase
the size of a thin pool, for example:

sudo lvresize -L+1G myvg/mytp
Extending logical volume mytp to 2 GiB
Logical volume mytp successfully resized

For more information, see the lvcreate(8) and lvresize(8) manual pages.

Using snapper With Thinly-Provisioned Logical Volumes
The snapper utility is another tool for creating and maintaining thin snapshots of thinly-
provisioned logical volumes.

To set up the snapper configuration for an existing mounted volume:

sudo snapper -c config_name create-config -f "lvm(fs_type)" fs_name

config_name
Name of the configuration

fs_type
File system type (ext4 or xfs)

fs_name
Path of the file system.

The command adds an entry for config_name to /etc/sysconfig/snapper, creates the
configuration file /etc/snapper/configs/config_name , and sets up a .snapshots
subdirectory for the snapshots.

By default, snapper sets up a cron.hourly job to create snapshots in the .snapshot
subdirectory of the volume and a cron.daily job to clean up old snapshots. You can edit the
configuration file to disable or change this behavior. For more information, see the snapper-
configs(5) manual page.

With snapper, you can create 3 types of snapshots:

post
A post snapshot records the state of a volume after a modification. A post snapshot should
always be paired with a pre snapshot that you take immediately before you make the
modification.

Chapter 4
Using Thinly-Provisioned Logical Volumes

4-5

pre
A pre snapshot records the state of a volume immediatelybefore a modification. A pre
snapshot should always be paired with a post snapshot that you take immediately
after you have completed the modification.

single
A single snapshot records the state of a volume but does not have any association
with other snapshots of the volume.

For example, the following commands create a pre snapshot and a post snapshots of
a volume:

sudo snapper -c config_name create -t pre -p N

... Modify the volume's contents ...

sudo snapper -c config_name create -t post --pre-num N -p N'

The -p option causes snapper to display the number of the snapshot so that you can
reference it when you create the post snapshot or when you compare the contents of
the pre and post snapshots.

To display the files and directories that have been added, removed, or modified
between the pre and post snapshots, use the status subcommand:

sudo snapper -c config_name status N

To display the differences between the contents of the files in the pre and post
snapshots, use the diff subcommand:

sudo snapper -c config_name diff .. N'

To list the snapshots that exist for a volume:

sudo snapper -c config_name list

To delete a snapshot, specify its number to the delete subcommand:

sudo snapper -c config_name delete N''

To undo the changes in the volume from post snapshot N' to pre snapshot N:

sudo snapper -c config_name undochange N .. N'

For more information, see the snapper(8) manual page.

Chapter 4
Using Thinly-Provisioned Logical Volumes

4-6

5
Working With Software RAID

The Redundant Array of Independent Disks (RAID) feature provides the capability to spread
data across multiple drives to increase capacity, implement data redundancy, and increase
performance. RAID is implemented either in hardware through intelligent disk storage that
exports the RAID volumes as LUNs, or in software by the operating system. The Oracle Linux
kernel uses the multidisk (MD) driver to support software RAID to create virtual devices from
two or more physical storage devices. MD enables you to organize disk drives into RAID
devices and implement different RAID levels.

Software RAID Levels
The following software RAID levels are commonly implemented with Oracle Linux:

Linear RAID (spanning)
Combines drives as a larger virtual drive. This level provides no data redundancy nor
performance benefit. Resilience decreases because the failure of a single drive renders the
array unusable.

RAID-0 (striping)
Increases performance but does not provide data redundancy. Data is broken down into
units (stripes) and written to all the drives in the array. Resilience decreases because the
failure of a single drive renders the array unusable.

RAID-5 (striping with distributed parity)
Increases read performance by using striping and provides data redundancy. The parity is
distributed across all the drives in an array, but it does not take up as much space as a
complete mirror. Write performance is reduced to some extent as a consequence of the
needto calculate parity information and to write the information in addition to the data. If one
disk in the array fails, the parity information is used to reconstruct data to satisfy I/O
requests. In this mode, read performance and resilience are degraded until you replace the
failed drive andrepopulate the new drive with data and parity information. RAID-5
isintermediate in expense between RAID-0 and RAID-1.

RAID-6 (Striping with double distributed parity)
A more resilient variant of RAID-5 that can recover from the loss of two drives in an array.
RAID-6 is used when data redundancy and resilience are important, but performance is not.
RAID-6 is intermediate in expense between RAID-5 and RAID-1.

RAID-1 (mirroring)
Provides data redundancy and resilience by writing identical data to each drive in the array. If
one drive fails, a mirror can satisfy I/O requests. Mirroring is an expensive solution because
the same information is written to all of the disks in the array.

RAID 0+1 (mirroring of striped disks)
Combines RAID-0 and RAID-1 by mirroring a striped array to provide both increased
performance and data redundancy. Failure of a single disk causes one of the mirrors to be
unusable until you replace the disk and repopulate it with data. Resilience is degraded while

5-1

only a single mirror remains available. RAID 0+1 is usually as expensive as or slightly
more expensive than RAID-1.

RAID 1+0 (striping of mirrored disks or RAID-10)
Combines RAID-0 and RAID-1 by striping a mirrored array to provide both increased
performance and data redundancy. Failure of a single disk causes part of one mirror
to be unusable until you replace the disk and repopulate it with data. Resilience is
degraded while only a single mirror retains a complete copy of the data. RAID 1+0 is
usually as expensive as or slightly more expensive than RAID-1.

Creating Software RAID Devices
1. Run the mdadm command to create the MD RAID device as follows:

sudo mdadm --create md_device --level=RAID_level [options] --raid-
devices=Ndevices

md_device
Name of the RAID device, for example, /dev/md0.

RAID_level
Level number of the RAID to create, for example, 5 for a RAID-5 configuration.

--raid-devices=N
Number of devices to become part of the RAID configuration.

devices
Devices to be configured as RAID, for example, /dev/sd[bcd] for 3 devices for
the RAID configuration.

The devices you list must total to the number you specified for --raid-devices.

This example creates a RAID-5 device /dev/md1 from /dev/sdb, /dev/sdc, and
dev/sdd:

sudo mdadm --create /dev/md1 --level=5 -raid-devices=3 /dev/sd[bcd]

The previous example creates a RAID-5 device /dev/md1 out of 4 devices. One
device is configured as a spare for expansion, reconfiguration, or replacement of
failed drives:

sudo mdadm --create /dev/md1 --level=5 -raid-devices=3 --spare-
devices=1 /dev/sd[bcde]

2. (Optional) Add the RAID configuration to /etc/mdadm.conf:

sudo mdadm --examine --scan >> /etc/mdadm.conf

Based on the configuration file, mdadm assembles the arrays at boot time.

For example, the following entries define the devices and arrays that correspond
to /dev/md0 and /dev/md1:

DEVICE /dev/sd[c-g]
ARRAY /dev/md0 devices=/dev/sdf,/dev/sdg
ARRAY /dev/md1 spares=1 devices=/dev/sdb,/dev/sdc,/dev/sdd,/dev/sde

Chapter 5
Creating Software RAID Devices

5-2

For more examples, see the sample configuration file /usr/share/doc/mdadm-3.2.1/
mdadm.conf-example.

An MD RAID device is used in the same way as any physical storage device. For example,
the RAID device can be configured as an LVM physical volume, a file system, a swap
partition, an Automatic Storage Management (ASM) disk, or a raw device.

To check the status of the MD RAID devices, view /proc/mdstat:

cat /proc/mdstat

Personalities : [raid1]
mdo : active raid1 sdg[1] sdf[0]

To display a summary or detailed information about MD RAID devices, use the --query or
--detail option, respectively, with mdadm.

For more information, see the md(4), mdadm(8), and mdadm.conf(5) manual pages.

Chapter 5
Creating Software RAID Devices

5-3

6
Using Encrypted Block Devices

When you install Oracle Linux, you have the option to configure encryption on system
volumes except the boot partition. If you want to protect the bootable partition itself, consider
using any password protection mechanism that is built into the BIOS or setting up a GRUB
password.

About Encrypted Block Devices
The device mapper supports the encryption of block devices through the dm-crypt device
driver. Data on these devices are accessible at boot time only with proper credentials. dm-
crypt encrypts disk partitions, RAID volumes, and LVM physical volumes, regardless of their
contents.

Creating Encrypted Volumes
The cryptsetup utility sets up Linux Unified Key Setup (LUKS) encryption on the device
and to manage authentication.

LUKS is an encryption specification that implements a platform independent and standard on-
disk format. The standard ensures interoperability and compatibility among different
distributions and programs. The implementation also includes tools that would simplify the
administration of the encrypted disks. If used, this feature requires a passphrase at boot time.
The correct passphrase then unlocks the encryption key to enable volume decryption.

For more information about LUKS, refer to https://gitlab.com/cryptsetup/cryptsetup/blob/
master/README.md.

To encrypt volumes with LUKS, follow these steps:

1. Initialize a LUKS partition on the device and set up the initial key, for example:

sudo cryptsetup luksFormat /dev/sdd

The following warning is displayed:

WARNING!
========
This will overwrite data on /dev/sdd irrevocably.
Are you sure? (Type uppercase yes): YES
Enter LUKS passphrase: passphrase
Verify passphrase: passphrase

2. Open the device and create the device mapping, for example:

sudo cryptsetup luksOpen /dev/sdd cryptfs

You are prompted to enter the passphrase:

Enter passphrase for /dev/sdd: passphrase

The encrypted volume is accessible as /dev/mapper/cryptfs.

6-1

https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md

3. Create an entry for the encrypted volume in /etc/crypttab, for example:

<target name> <source device> <key file> <options>
cryptfs /dev/sdd none luks

This entry causes the operating system to prompt you for the passphrase at boot
time.

You use an encrypted volume in the same way as you would a physical storage
device, for example, as an LVM physical volume, file system, swap partition, Automatic
Storage Management (ASM) disk, or raw device. For example, to mount the encrypted
volume automatically, you would create an entry in the /etc/fstab to mount the
mapped device (/dev/mapper/cryptfs), not the physical device (/dev/sdd).

To verify the status of an encrypted volume:

sudo cryptsetup status cryptfs

The following output is displayed:

/dev/mapper/cryptfs is active.
type: LUKS1
cipher: aes-cbs-essiv:sha256
keysize: 256 bits
device: /dev/xvdd1
offset: 4096 sectors
size: 6309386 sectors
mode: read/write

To remove the device mapping:

1. Unmount any existing file system in the encrypted volume.

2. Remove the mapped device from /dev/mapper.

For example, for the encrypted volume cryptfs, use the following command:

sudo cryptsetup luksClose /dev/mapper/cryptfs
For more information, see the cryptsetup(8) and crypttab(5) manual pages.

Chapter 6
Creating Encrypted Volumes

6-2

7
Working With Linux I-O Storage

Oracle Linux uses the Linux-IO Target (LIO) to provide the block-storage SCSI target for
FCoE, iSCSI, and Mellanox InfiniBand (iSER and SRP). You manage LIO by using the
targetcli shell provided in the targetcli package. Note that Mellanox InfiniBand is only
supported with UEK. You can install the targetcli package by running:

sudo dnf install -y targetcli

Fibre Channel over Ethernet (FCoE) encapsulates Fibre Channel packets in Ethernet frames,
which enables them to be sent over Ethernet networks. To configure FCoE storage, you need
to install the fcoe-utils package that includes both the fcoemon service and the fcoeadm
command. You can install the fcoe-utils package by running:

sudo dnf install -y fcoe-utils

About iSCSI Devices
The Internet Small Computer System Interface (iSCSI) is an IP-based standard for
connecting storage devices. iSCSI encapsulates SCSI commands in IP network packets to
support data transfer over long distances and sharing of storage by client systems. iSCSI
uses the existing IP infrastructure and does not require the purchase and installation of fiber-
optic cabling and interface adapters that are needed to implement Fibre Channel (FC)
storage area networks.

A client system (iSCSI initiator) accesses the storage server (iSCSI target) over an IP
network. To an iSCSI initiator, the storage appears to be locally attached.

An iSCSI target is typically a dedicated, network-connected storage device but it can also be
a general-purpose computer.

Figure 7-1 shows a simple network where several iSCSI initiators are able to access the
shared storage that is attached to an iSCSI target.

7-1

Figure 7-1 iSCSI Initiators and an iSCSI Target Connected via an IP-based
Network

A hardware-based iSCSI initiator uses a dedicated iSCSI HBA. Oracle Linux supports
iSCSI initiator functionality in software. The kernel-resident device driver uses the
existing network interface card (NIC) and network stack to emulate a hardware iSCSI
initiator. The iSCSI initiator functionality is not available at the level of the system
BIOS. Thus, you cannot boot an Oracle Linux system from iSCSI storage.

To improve performance, some network cards implement TCP/IP Offload Engines
(TOE) that can create a TCP frame for the iSCSI packet in hardware. Oracle Linux
does not support TOE, although suitable drivers may be available directly from some
card vendors.

For more information about LIO, see http://linux-iscsi.org/wiki/Main_Page.

Configuring an iSCSI Target
The following procedure describes how to set up a basic iSCSI target on an Oracle
Linux system by using block storage backends. Note that you can use other storage
backend types to set up an iSCSI target.

In the example, the targetcli command saves the current configuration to /etc/
target/saveconfig.json. See the targetcli(8) manual page for additional
information.

1. Run the targetcli interactive shell:

sudo targetcli

targetcli shell version 2.1.53
Copyright 2011-2013 by Datera, Inc and others.
For help on commands, type 'help'.

2. (Optional) Use the ls command to list the object hierarchy, which is initially empty:

ls

o- / ...
[...]
 o- backstores ..

Chapter 7
Configuring an iSCSI Target

7-2

https://linux-iscsi.org/wiki/Targetcli

[...]
 | o- block .. [Storage Objects: 0]
 | o- fileio ... [Storage Objects: 0]
 | o- pscsi .. [Storage Objects: 0]
 | o- ramdisk .. [Storage Objects: 0]
 o- iscsi .. [Targets: 0]
 o- loopback ... [Targets: 0]

3. Change to the /backstores/block directory and create a block storage object for the
disk partitions that you want to provide as LUNs, for example:

cd /backstores/block
/backstores/block> create name=LUN_0 dev=/dev/sdb
Created block storage object LUN_0 using /dev/sdb.
/backstores/block> create name=LUN_1 dev=/dev/sdc
Created block storage object LUN_1 using /dev/sdc.

The names that you assign to the storage objects are arbitrary.

Note:

The device path varies based on the Oracle Linux instance's disk configuration.

4. Change to the /iscsi directory and create an iSCSI target:

cd /iscsi
/iscsi> create
Created target iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344.
Created TPG 1.

5. (Optional): List the target portal group (TPG) hierarchy, which is initially empty:

/iscsi> ls

o- iscsi .. [Targets: 1]
 o- iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344 [TPGs: 1]
 o- tpg1 ... [no-gen-acls, no-auth]
 o- acls .. [ACLs: 0]
 o- luns .. [LUNs: 0]
 o- portals .. [Portals: 0]

6. Change to the luns subdirectory of the TPG directory hierarchy and add the LUNs to the
target portal group:

/iscsi> cd iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344/tpg1/luns
/iscsi/iqn.20...344/tpg1/luns> create /backstores/block/LUN_0
Created LUN 0.
/iscsi/iqn.20...344/tpg1/luns> create /backstores/block/LUN_1
Created LUN 1.

7. Change to the portals subdirectory of the TPG directory hierarchy and specify the IP
address and TCP port of the iSCSI endpoint:

/iscsi/iqn.20...344/tpg1/luns> cd ../portals
/iscsi/iqn.20.../tpg1/portals> create 10.150.30.72 3260
Using default IP port 3260
Created network portal 10.150.30.72:3260.

The default TCP port number is 3260.

Chapter 7
Configuring an iSCSI Target

7-3

Note:

An existing default portal would cause the portal creation to fail and a
message similar to the following is generated:

Could not create NetworkPortal in configFS

To resolve the issue, delete the default portal, then create the new portal
again, for example:

/iscsi/iqn.20.../tpg1/portals> delete 0.0.0.0 ip_port=3260

8. Enable TCP port 3260 either by adding the port or adding the iSCSI target:

• Add the port:

sudo firewall-cmd --permanent --add-port=3260/tcp
• Add the target:

sudo firewall-cmd --permanent --add-service \
iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344

9. List the object hierarchy, which now shows the configured block storage objects
and TPG:

/iscsi/iqn.20.../tpg1/portals> ls /

o- / ...
[...]
 o- backstores ..
[...]
 | o- block .. [Storage
Objects: 1]
 | | o- LUN_0 [/dev/sdb (10.0GiB) write-thru
activated]
 | | o- LUN_1 [/dev/sdc (10.0GiB) write-thru
activated]
 | o- fileio ... [Storage
Objects: 0]
 | o- pscsi .. [Storage
Objects: 0]
 | o- ramdisk .. [Storage
Objects: 0]
 o- iscsi ..
[Targets: 1]
 | o- iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344
[TPGs: 1]
 | o- tpg1 ... [no-gen-acls, no-
auth]
 | o- acls ..
[ACLs: 0]
 | o- luns ..
[LUNs: 1]
 | | o- lun0 [block/LUN_0 (/dev/
sdb)]
 | | o- lun1 [block/LUN_1 (/dev/
sdc)]
 | o- portals ..
[Portals: 1]

Chapter 7
Configuring an iSCSI Target

7-4

 | o- 10.150.30.72:3260 .. [OK]
 o- loopback ... [Targets: 0]

10. Configure the access rights for logins by initiators.

For example, to configure a demonstration mode that does not require authentication,
change to the TGP directory and set the attributes as shown in the following example:

/iscsi/iqn.20.../tpg1/portals> cd ..
/iscsi/iqn.20...14f87344/tpg1> set attribute authentication=0
demo_mode_write_protect=0
 generate_node_acls=1 cache_dynamic_acls=1
Parameter authentication is now '0'.
Parameter demo_mode_write_protect is now '0'.
Parameter generate_node_acls is now '1'.
Parameter cache_dynamic_acls is now '1'.

Caution:

The demonstration mode is inherently insecure. For information about
configuring secure authentication modes, see http://linux-iscsi.org/wiki/
ISCSI#Define_access_rights.

11. Change to the root (/) directory and save the configuration.

This step ensures that the changes persist across system reboots. Omitting the step
might result in an empty configuration.

/iscsi/iqn.20...14f87344/tpg1> cd /
/> saveconfig
Last 10 configs saved in /etc/target/backup.
Configuration saved to /etc/target/saveconfig.json

12. Enable the target service.

sudo systemctl enable target.service

Restoring a Saved Configuration for an iSCSI target
To restore a saved configuration for an iSCSI target, start the targetcli interactive shell
and then run the following command:

sudo targetcli

targetcli shell version 2.1.fb46
Copyright 2011-2013 by Datera, Inc and others.
For help on commands, type 'help'.
/> restoreconfig /etc/target/saveconfig.json

The /etc/target/saveconfig.json file stores the most recently saved configuration.

As an alternative, run the following command to restore saved configurations from previous
versions:

/> restoreconfig /etc/target/backup/saveconfig-20180516-18:53:29.json

Chapter 7
Restoring a Saved Configuration for an iSCSI target

7-5

https://linux-iscsi.org/wiki/ISCSI#Define_access_rights
https://linux-iscsi.org/wiki/ISCSI#Define_access_rights

Configuring an iSCSI Initiator
1. Install the iscsi-initiator-utils package:

sudo dnf install iscsi-initiator-utils
2. Use a discovery method, such as SendTargets or the Internet Storage Name

Service (iSNS), to discover the iSCSI targets at the specified IP address.

For example, you would use SendTargets as follows:

sudo iscsiadm -m discovery -t sendtargets -p 10.150.30.72

The following output is displayed:

10.150.30.72:3260,1 iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344

This command also starts the iscsid service if it is not already running.

Note:

Before running the discovery process, ensure that the firewall is
configured to allow communication with an iSCSI target and that ICMP
traffic is permitted.

3. Display information about the targets that are now stored in the discovery
database.

sudo iscsiadm -m discoverydb -t st -p 10.150.30.72

BEGIN RECORD 6.2.0.873-14
discovery.startup = manual
discovery.type = sendtargets
discovery.sendtargets.address = 10.150.30.72
discovery.sendtargets.port = 3260
discovery.sendtargets.auth.authmethod = None
discovery.sendtargets.auth.username = <empty>
discovery.sendtargets.auth.password = <empty>
discovery.sendtargets.auth.username_in = <empty>
discovery.sendtargets.auth.password_in = <empty>
discovery.sendtargets.timeo.login_timeout = 15
discovery.sendtargets.use_discoveryd = No
discovery.sendtargets.discoveryd_poll_inval = 30
discovery.sendtargets.reopen_max = 5
discovery.sendtargets.timeo.auth_timeout = 45
discovery.sendtargets.timeo.active_timeout = 30
discovery.sendtargets.iscsi.MaxRecvDataSegmentLength = 32768
END RECORD

4. Establish a session and log in to a specific target:

sudo iscsiadm -m node -T iqn.2013-01.com.mydom.host01.x8664:sn.ef8e14f87344 \
-p 10.150.30.72:3260 -l

Login to [iface: default, target: iqn.2003-01.org.linux-
iscsi.localhost.x8664:
sn.ef8e14f87344, portal: 10.150.30.72,3260] successful.

Chapter 7
Configuring an iSCSI Initiator

7-6

5. Verify that the session is active and display the available LUNs:

sudo iscsiadm -m session -P 3

The following output is displayed:

iSCSI Transport Class version 2.0-870
version 6.2.0.873-14
Target: iqn.2003-01.com.mydom.host01.x8664:sn.ef8e14f87344 (non-flash)
 Current Portal: 10.0.0.2:3260,1
 Persistent Portal: 10.0.0.2:3260,1

 Interface:

 Iface Name: default
 Iface Transport: tcp
 Iface Initiatorname: iqn.1994-05.com.mydom:ed7021225d52
 Iface IPaddress: 10.0.0.2
 Iface HWaddress: <empty>
 Iface Netdev: <empty>
 SID: 5
 iSCSI Connection State: LOGGED IN
 iSCSI Session State: LOGGED_IN
 Internal iscsid Session State: NO CHANGE
.
.
.

 Attached SCSI devices:

 Host Number: 8 State: running
 scsi8 Channel 00 Id 0 Lun: 0
 Attached scsi disk sdb State: running
 scsi8 Channel 00 Id 0 Lun: 1
 Attached scsi disk sdc State: running

The LUNs are represented as SCSI block devices (sd*) in the local /dev directory, for
example:

sudo fdisk -l | grep /dev/sd[bc]

Disk /dev/sdb: 10.7 GB, 10737418240 bytes, 20971520 sectors
Disk /dev/sdc: 10.7 GB, 10737418240 bytes, 20971520 sectors

To distinguish between target LUNs, examine the paths under /dev/disk/by-path, which is
displayed by using the following command:

ls -l /dev/disk/by-path/

lrwxrwxrwx 1 root root 9 May 15 21:05
 ip-10.150.30.72:3260-iscsi-iqn.2013-01.com.mydom.host01.x8664:
 sn.ef8e14f87344-lun-0 -> ../../sdb
lrwxrwxrwx 1 root root 9 May 15 21:05
 ip-10.150.30.72:3260-iscsi-iqn.2013-01.com.mydom.host01.x8664:
 sn.ef8e14f87344-lun-1 -> ../../sdc

You can view the initialization messages for the LUNs in the /var/log/messages file, for
example:

grep sdb /var/log/messages

Chapter 7
Configuring an iSCSI Initiator

7-7

...
May 18 14:19:36 localhost kernel: [12079.963376] sd 8:0:0:0: [sdb] Attached SCSI
disk
...

You configure and use a LUN in the same way that you would any other physical
storage device, for example, as an LVM physical volume, a file system, a swap
partition, an Automatic Storage Management (ASM) disk, or a raw device.

When creating mount entries for iSCSI LUNs in /etc/fstab, specify the _netdev
option, for example:

UUID=084591f8-6b8b-c857-f002-ecf8a3b387f3 /iscsi_mount_point ext4
_netdev 0 0

This option indicates that the file system resides on a device that requires network
access, and prevents the system from attempting to mount the file system until the
network has been enabled.

Note:

When adding iSCSI LUN entries to /etc/fstab, refer to the LUN by using
UUID= UUID rather than the device path. A device path can change after re-
connecting the storage or rebooting the system. To display the UUID of a
block device, the blkid command.

Any discovered LUNs remain available across reboots provided that the
target continues to serve those LUNs and you do not log the system off the
target.

For more information, see the iscsiadm(8) and iscsid(8) manual pages.

Updating the Discovery Database
If the LUNs that are available on an iSCSI target change, use the iscsiadm
command on an iSCSI initiator to update the entries in its discovery database. The
following example assumes that the target supports the SendTargets discovery
method

To add new records that are not currently in the database:

sudo iscsiadm --mode discoverydb -type st -p 10.150.30.72 -o new --discover

To update existing records in the database:

sudo iscsiadm -m discoverydb -t st -p 10.150.30.72 -o update --discover

To delete records from the database that are no longer supported by the target:

sudo iscsiadm -m discoverydb -t st -p 10.150.30.72 -o delete --discover

For more information, see the iscsiadm(8) manual page.

Chapter 7
Updating the Discovery Database

7-8

8
Using Multipathing for Efficient Storage

Multiple paths to storage devices provide connection redundancy, failover capability, load
balancing, and improved performance. Device-Mapper Multipath (DM-Multipath) is a
multipathing tool that enables you to represent multiple I/O paths between a server and a
storage device as a single path.

Device Multipathing Sample Setup
You would typically configure multipathing on a system that can access storage on a Fibre
Channel-based storage area network (SAN), or on an iSCSI initiator if redundant network
connections exist between the initiator and the target.

Figure 8-1 shows a simple DM-Multipath configuration where two I/O paths are configured
between a server and a disk on a SAN-attached storage array:

• Between host bus adapter hba1 on the server and controller ctrl1 on the storage array.

• Between host bus adapter hba2 on the server and controller ctrl2 on the storage array.

8-1

Figure 8-1 DM-Multipath Mapping of Two Paths to a Disk over a SAN

Without DM-Multipath, the system treats each path as being separate even though
both paths connect to the same storage device. DM-Multipath creates a single
multipath device, /dev/mapper/mpathN , that subsumes the underlying
devices, /dev/sdc and /dev/sdf.

The multipathing service (multipathd) handles I/O from and to a multipathed device in
one of the following ways:

Active/Active
I/O is distributed across all available paths, either by round-robin assignment or
dynamic load-balancing.

Active/Passive (standby failover)
I/O uses only one path. If the active path fails, DM-Multipath switches I/O to a standby
path. This is the default configuration.

Chapter 8
Device Multipathing Sample Setup

8-2

Note:

DM-Multipath can provide failover in the case of path failure, such as in a SAN
fabric. Disk media failure must be handled by using either a software or hardware
RAID solution.

The naming of multipath devices is managed by multipathing's user_friendly_names
property in the multipath.conf file. If set to no, then the devices are named based on their
World Wide Identifiers (WWIDs), that is, /dev/mapper/WWID . WWIDs are unique to their
respective devices.

If the property is set to yes, the devices are mapped as /dev/mapper/mpathN , where N is the
multipath group number. In addition, you can use the alias attribute to assign meaningful
names to the devices. See Working With the Multipathing Configuration File.

To check the status of user_friendly_names as well as other DM-multipath settings, issue
the mpathconf command, for example:

sudo mpathconf

Information similar to the following is displayed:

multipath is enabled
find_multipaths is enabled
user_friendly_names is enabled
dm_multipath modules is loaded
multipathd is running

Alternatively, you can view the settings in /etc/multipath.conf.

You can use the multipath device in /dev/mapper to reference the storage in the same way as
you would any other physical storage device. For example, you can configure it as an LVM
physical volume, file system, swap partition, Automatic Storage Management (ASM) disk, or
raw device.

Configuring Multipathing
1. Install the device-mapper-multipath package.

sudo dnf install device-mapper-multipath
2. Initiate the basic configuration settings of the multipathing feature.

sudo mpathconf --enable --with_multipathd y

This command also creates the /etc/multipath.conf file.

3. (Optional) To know the status of multipathing, type:

sudo mpathconf
4. Edit /etc/multipath.conf as required.

For details, see Working With the Multipathing Configuration File.

To display the current multipath configuration, run multipath -ll:

sudo multipath -ll

Chapter 8
Configuring Multipathing

8-3

The command displays output similar to the following, when multipath is configured
properly:

mpath1(360000970000292602744533030303730) dm-0 SUN,(StorEdge 3510|T4
size=20G features=‘0’ hwhandler=‘0’ wp=rw
|-+- policy=‘round-robin 0’ prio=1 status=active
| ‘- 5:0:0:2 sdb 8:16 active ready running
‘-+- policy=‘round-robin 0’ prio=1 status=active
 ‘- 5:0:0:3 sdc 8:32 active ready running

The sample output shows that /dev/mapper/mpath1 subsumes two paths (/dev/sdb
and /dev/sdc) to 20 GB of storage in an active/active configuration using round-robin
I/O path selection. The WWID that identifies the storage is
360000970000292602744533030303730 and the name of the multipath device under
sysfs is dm-0.

For more information, see the mpathconf(8), multipath(8), multipathd(8),
multipath.conf(5), and scsi_id(8) manual pages.

Working With the Multipathing Configuration File
Through the /etc/multipath.conf file, you can add a combination of definitions that
customizes multipathing according to your system environment setup. You can obtain
a commented example configuration from /usr/share/doc/device-mapper-
multipath/multipath.conf.

The /etc/multipath.conf file is divided into the following typical sections:

defaults
Defines default multipath settings, which can be overridden by settings in the devices
section. In turn, definitions in the devices section can be overridden by settings in the
multipaths section.

blacklist
Defines devices that are excluded from multipath topology discovery. Excluded
devices cannot be subsumed by a multipath device.
The example shows different ways that you can use to exclude devices: by WWID
(wwid) and by device name (devnode).

blacklist_exceptions
Defines devices that are included in multipath topology discovery, even if the devices
are implicitly or explicitly listed in the blacklist section.

multipaths
Defines settings for a multipath device that is identified by its WWID.
The alias attribute specifies the name of the multipath device as it will appear
in /dev/mapper instead of a name based on either the WWID or the multipath group
number.

devices
Defines settings for individual types of storage controller. Each controller type is
identified by the vendor, product, and optional revision settings, which must match
the information in sysfs for the device.

Chapter 8
Working With the Multipathing Configuration File

8-4

To add a storage device that DM-Multipath does not list as being supported, obtain the
vendor, product, and revision information from the vendor, model, and rev files under /sys/
block/device_name/device.

The following entries in /etc/multipath.conf would be appropriate for setting up active/
passive multipathing to an iSCSI LUN with the specified WWID.

defaults {
 user_friendly_names yes
 uid_attribute ID_SERIAL
}

multipaths {
 multipath {
 wwid 360000970000292602744533030303730
 }
}

In this standby failover configuration, I/O continues through a remaining active network
interface if a network interface fails on the iSCSI initiator.

Note:

If you edit /etc/multipath.conf, restart the multipathd service to make it re-read
the file:

sudo systemctl restart multipathd

For more information about configuring entries in /etc/multipath.conf, refer to the
multipath.conf(5) manual page.

Chapter 8
Working With the Multipathing Configuration File

8-5

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Using Disk Partitions
	Disk Partitions in Oracle Linux
	Partitioning Disks by Using fdisk
	Displaying the Partition Table
	Creating Partitions

	Partitioning Disks by Using parted
	Creating Partitions
	Customizing Labels

	Automatic Device Mappings for Partitions and File Systems
	Listing Device Mapping Information

	Manually Mapping Partition Tables to Devices
	Creating Device Mappings by Using kpartx
	Listing Partition Mappings For a Device by Using kpartx
	Removing Partition Mappings by Using kpartx

	2 Implementing Swap Spaces
	Creating a Swap File
	Creating a Swap Partition
	Viewing Swap Space Usage
	Removing a Swap File or Swap Partition

	3 Recommendations for Solid State Drives
	4 Working With Logical Volume Manager
	Initializing and Managing Physical Volumes
	Creating and Managing Volume Groups
	Creating and Managing Logical Volumes
	Creating Logical Volume Snapshots
	Using Thinly-Provisioned Logical Volumes
	Configuring and Managing Thinly-Provisioned Logical Volumes
	Using snapper With Thinly-Provisioned Logical Volumes

	5 Working With Software RAID
	Software RAID Levels
	Creating Software RAID Devices

	6 Using Encrypted Block Devices
	About Encrypted Block Devices
	Creating Encrypted Volumes

	7 Working With Linux I-O Storage
	About iSCSI Devices
	Configuring an iSCSI Target
	Restoring a Saved Configuration for an iSCSI target
	Configuring an iSCSI Initiator
	Updating the Discovery Database

	8 Using Multipathing for Efficient Storage
	Device Multipathing Sample Setup
	Configuring Multipathing
	Working With the Multipathing Configuration File

