
Oracle Linux
Managing Certificates and Public Key
Infrastructure

F24286-14
November 2023

Oracle Linux Managing Certificates and Public Key Infrastructure,

F24286-14

Copyright © 2022, 2023, Oracle and/or its affiliates.

Contents

 Preface

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About Public Key Infrastructure

What is Public Key Cryptography? 1-1

Automatic Certificate Management Environment (ACME) 1-3

2 Setting Up TLS/SSL with OpenSSL

Creating Key Pairs 2-1

Creating Certificate Signing Requests With OpenSSL 2-3

Signing Certificates With OpenSSL 2-5

Creating Self-Signed Certificates for Testing and Development 2-5

Creating a Private Certification Authority 2-6

Create the CA Root 2-6

Create an intermediary CA 2-13

Process CSRs and Sign Certificates 2-16

Manage a Certificate Revocation List 2-17

Configure and Run an OCSP Server 2-18

Debugging and Testing Certificates With OpenSSL 2-19

Examining Certificates 2-19

Check That a Private Key Matches a Certificate 2-19

Changing Key or Certificate Format 2-19

Check Certificate Consistency and Validity 2-20

Decrypting Keys and Adding or Removing Passphrases 2-20

Using OpenSSL to Test SSL/TLS Configured Services 2-20

Using OpenSSL for File Encryption and Validation 2-21

More information About OpenSSL 2-21

iii

3 Setting Up TLS/SSL with Other Tools

GnuTLS 3-1

NSS 3-2

Java 3-5

4 Managing System Certificates

Using the trust Command To Manage System Certificates 4-1

Manually Updating Trusted Certificates 4-2

iv

Preface

Oracle Linux: Managing Certificates and Public Key Infrastructure describes features in
Oracle Linux to manage certificates and public key infrastructure.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry

v

https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

standards evolve. Because of these technical constraints, our effort to remove
insensitive terms is ongoing and will take time and external cooperation.

Preface

vi

1
About Public Key Infrastructure

This chapter provides a brief overview of the public key cryptography and how it works,
including information about the public key infrastructure, which is used for the general
management of keys on Oracle Linux.

What is Public Key Cryptography?
Public key cryptography is an encryption technique that's used to enable secure
communications on an insecure public network and also to verify the identity of the entity on
the other end of a network connection. Public key cryptography works by establishing an
asymmetric pair keys. Data encrypted by one key is decrypted by the other key. One key is
kept private and the other key is made public. Someone decrypting the data using the public
key can be sure that the data was encrypted by someone who has access to the private key.
Similarly, someone encrypting data using the public key can be sure that the data can only be
decrypted by someone who has access to the private key.

Neither key on its own can establish the identity of the sender of the data. To achieve this, the
public key is typically signed as belonging to the owner of the private key. The signing
process is done by a trusted third party, known as a Certification Authority (CA). The creator
of the private and public key pair sends the public key to the CA in the form of a Certificate
Signing Request (CSR). The CA uses its own private key to sign a certificate, which contains
an encrypted version of the originator's public key, together with other information about the
entity (subject), the CA (issuer), the period of validity of the certificate, and the cryptographic
algorithms used. This certificate can be made public or provided to any client that need to
decrypt data that has been encrypted using the private key.

Clients that trust the CA can also trust the public key stored in the certificate. Decrypting the
certificate with the CA certificate yields the public key that can then be used to create a
secure communication channel that keeps the data confidential and which can be used to
establish the identity of the originator of data moving through the channel.

For the Internet, many public top-level or root CAs and intermediary CAs exist that are trusted
by a root CA to issue certificates on behalf of entities. An intermediary CA returns a certificate
chain, where each certificate in the chain authenticates the public key of the signer of the
previous certificate in the chain up to and including a root CA.

CA certificates are only used to establish the identity of a public key and the period for which
the public key is considered valid. When the certificate expires, data encrypted using the
public key can still be decrypted by the private key. This means that the private key must be
kept safe forever for communications to always be considered secure. A mechanism also
exists within public key cryptography that can be used to help mitigate against private key
compromises. This mechanism is known as Perfect Forward Secrecy (PFS) and uses a key
exchange algorithm to securely agree on a random and disposable session key that can be
used with a symmetric cipher to encrypt data. The advantage of this approach is that if the
session key is compromised, only the communications in that particular communication
session are exposed. Equally, if the private key is compromised, all the actual communication
sessions aren't automatically exposed either.

1-1

Another added benefit of PFS is that it simplifies the computationally expensive and
slow process of decrypting and validating each piece of information using the
asymmetric key pair and the CA certificate. In reality, the process of decrypting the
public key and validating it against the CA certificate and then using it to decrypt data
within a communication session is only done at the beginning of the session, until PFS
is established. The algorithm to create and share the random session key is typically
the Diffie-Hellman key exchange. The session key then uses a symmetric cipher to
perform more rapid encryption and decryption of data through the rest of the session.
The cipher most commonly used for this purpose is AES, which can take advantage of
hardware to make encryption and communication in ciphertext almost as fast as
communicating with plaintext.

The handling of the communication channel and the negotiation where the client and
server side switch from asymmetric to symmetric cryptography are all achieved using
the Transport Layer Security (TLS) or Secure Sockets Layer (SSL) cryptographic
protocols.

OpenSSL, GnuTLS, and Network Security Services (NSS) provide open source
implementations of the TLS and SSL protocols. You can also use the keytool
command provided with OpenJDK package to manage Java Keystores, often used by
Java-based applications. If a hierarchy of trust is confined to the organization's
intranet, you can use these implementations to generate a root certificate and set up a
CA for that domain. However, unless you install this self-signed root certificate on each
system in the organization, browsers, LDAP or IPA authentication, and other software
that use certificates would prompt the user about the potential untrusted relationship.

Note:

If you do use certificates for a domain that are validated by a root or
intermediary-level CA, you don't need to distribute a root certificate, as the
appropriate certificate is already present on each system.

Typically, TLS/SSL certificates expire after one year. Other certificates, including root
certificates that are distributed with web browsers and which are issued by root and
intermediary CAs, expire after a period of five to 10 years. To avoid having applications
display warnings about out-of-date certificates, plan to replace TLS/SSL certificates
before they expire. For root certificates, you would typically update the software before
the certificate expires.

If you request a signed certificate from a CA for which a root certificate or certificate
chain that authenticates the CA's public key doesn't already exist on the system,
obtain a trusted root certificate from the CA. To avoid a potential man-in-the-middle
attack, verify the authenticity of the root certificate before importing it. Check that the
certificate's fingerprint matches the fingerprint that's published by the CA.

About SSL and TLS

Both Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are
communications protocols that ensure secure connections and exchanges between
server and client systems. Both protocols provide encryption and authentication to
secure network communications. However, SSL is an older technology and has been
replaced by TLS. The cryptography used by TLS is more complex, advanced, robust,
and secure. Authentication with TLS is faster and alert messaging is improved.

Chapter 1
What is Public Key Cryptography?

1-2

Despite this change to the underlying protocol, the OpenSSL project retains its name and the
SSL terminology is often used interchangeably to describe TLS functionality. In the context of
secure communications, SSL is now understood as referring to the TLS protocol and TLS
certificates. Any references to SSL in this documentation are intended to be understood in
the context of TLS.

Automatic Certificate Management Environment (ACME)
Automatic Certificate Management Environment (ACME) is a protocol and framework that's
published by the IETF in RFC 8555 and which can be used for the signing and creation of
certificates where domain validation is required.

The protocol uses JSON formatted messages over HTTPS with a CA to handle validation of
domain ownership automatically by having the ACME client perform an action that can only
be done with control of the domain name. For example, the CA could either request the
provision of a DNS record, or could request a specific HTTP resource to be made available
on a web server at the domain name.

After the CA validates that the entity requesting a certificate has ownership of the domain, the
CA can sign the certificate that's sent to it by the ACME client. Typically, the client can
automatically install the certificate at a location that's usable by services running on the
system.

ACME lowers the cost and complexity associated with managing public key infrastructure.
Sometimes, obtaining signed certificates for systems within domains can be free, depending
on the selection of CA. For example, Let's Encrypt, the originator of the ACME protocol,
provides a free and open CA service. Other commercial CAs are starting to also offer free
ACME based certificates as well.

While the first version of the ACME protocol could be used to create only single domain
certificates, ACME v2 can be used for the creation and signing of certificates with wildcard
domains, such as *.example.com. Therefore, you can use a single certificate across all
subdomains. Note that ACME only validates domains. If you need certificates that require
more validations, you might need signed certificates from an established CA that offers
services beyond ACME.

If you need to create and issue certificates across an infrastructure to use TLS/SSL protected
services, consider using a CA that supports ACME and using an ACME client. ACME can
automatically generate the key pairs and CSR, submit the CSR to a CA for validation,
perform any validation steps for the CA, and obtain the signed certificate and store it
somewhere that's accessible to services and applications. Many clients automatically set
periodic cron tasks to check for certificate expiry and to automatically request a new
certificate before the current certificate expires.

Chapter 1
Automatic Certificate Management Environment (ACME)

1-3

https://tools.ietf.org/html/rfc8555
https://letsencrypt.org/

2
Setting Up TLS/SSL with OpenSSL

This chapter describes the OpenSSL tools that are available in Oracle Linux and how to use
them to create Certificate Signing Requests (CSRs), self-signed certificates, and privately
owned CA certificates. Also covered in this chapter are instructions on how to use the
OpenSSL tools to validate and test certificates that are configured for a protocol to confirm
that services are configured correctly.

Features of the openssl Command

With the openssl command, which is included in the openssl package, you can perform a
wide range of cryptography functions from the OpenSSL library, including the following:

• Create and managing pairs of private and public keys.

• Perform public key cryptographic operations.

• Create self-signed certificates.

• Create certificate signing requests (CSRs).

• Create certificate revocation lists (CRLs).

• Convert certificate files between various formats.

• Calculate message digests.

• Encrypt and decrypt files.

• Test client-side and server-side TLS/SSL with HTTP and SMTP servers.

• Verify, encrypt, and sign S/MIME email.

• Generate and test prime numbers and generate pseudo random data.

Creating Key Pairs
As a first step to use any form of public key cryptography, create a public/private key pair. You
can then use the private key to create a Certificate Signing Request (CSR) that contains the
associated a public key. The CSR can be used to obtain a signed certificate from a CA.
Typically, the steps to create a key pair and a CSR or a self-signed certificate, are performed
as a single-step operation when using OpenSSL to generate these files.

In the following instructions and example, the creation of a key pair is treated as an atomic
operation so that the process can be described and elements can be called out for better
understanding. Usually, this step is incorporated into other commands for efficiency.

The following are the main elements that you need to consider when creating a key pair:

• Algorithm

OpenSSL provides the use of RSA and ECDSA key algorithms, with RSA keys being the
most widely used. While DSA keys can be created, these must not be used unless
required. ECDSA is a modern variant that provides much smaller and efficient key sizes
than both RSA or DSA, along with corresponding security. ECDSA might be a good

2-1

choice for performance. However, be aware that some environments might not
recognize ECDSA keys.

• Key Size

The key size checks the complexity of the key for the algorithm, which is specified
in bits. Bigger-sized keys are more secure because they're more complex and
harder to decipher. Bigger-sized keys also come with a performance hit, because
each decryption bit requires more memory and processing to complete. Therefore,
selecting a key size is a balance between security and performance. Key sizes are
complex, in that they relate to the algorithms and ciphers that are being used. In
general, when creating RSA keys, a key size is 2048 bits, while ECDSA keys
provide similar security using a key size of 256 bits.

• Passphrase

When creating a key that's encrypted and protected with a cipher, you're prompted
for a passphrase that can be used to validate that you can use the key. Encrypting
a key with a passphrase is optional but recommended. Using a passphrase with a
key can be problematic when TLS is enabled for a system service, as the service
can't be automatically restarted without user intervention. Often, where certificates
are issued for services; for convenience, they're created without passphrases. If a
private key is created without a passphrase, be aware that anyone who gains
access to the private key file can emulate services to perform man-in-the-middle
type snooping. When a key is protected with a passphrase, you can select a
cipher algorithm to use to encrypt the contents of the private key. Many ciphers are
available for this purpose. To obtain a complete list of ciphers, use the openssl
list-cipher-commands command. The AES cipher is commonly used for this
purpose and is typically specified with a key size of 128 or 256 (aes128 or aes256).

To generate an RSA key, use the openssl genrsa command, for example:

sudo openssl genrsa -out private.key 2048

Generating RSA private key, 2048 bit long modulus
...
..
...+++
................................+++
e is 65537 (0x10001)

This command generates an unencrypted key in the local directory, named private.key.
The contents of the key look similar to the following example:

cat private.key

-----BEGIN RSA PRIVATE KEY-----
...[certificate text]
-----END RSA PRIVATE KEY-----

Note that even though the file is called private.key and the file contains some text that
suggests that this is only the private key, the public key is also embedded within this
file. So the single file represents the complete key pair. Thus, obtaining a copy of the
public key is easier because the key is stored on the same file as the private key.

To create an encrypted key with a passphrase, run the same command but specify a
cipher to use to encrypt the key with, for example:

sudo openssl genrsa -aes256 -out private.key 2048

Chapter 2
Creating Key Pairs

2-2

Generating RSA private key, 2048 bit long modulus
............+++
...+++
e is 65537 (0x10001)
Enter pass phrase for private.key:
Verifying - Enter pass phrase for private.key:

In the previous example, the AES cipher is used with a 256 bit key. The command prompts
you to enter a passphrase and verify it. The contents of the key file indicate that the key is
encrypted, as shown in the following example:

cat private.key

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-256-CBC,2417E359B45960CD107A390748945752

key-content
-----END RSA PRIVATE KEY-----

If you create an encrypted key file and then decide that you would prefer a file that's not
encrypted or doesn't require a passphrase, you can decrypt it by running the following
command:

sudo openssl rsa -in private.key -out unencrypted.key

Enter pass phrase for private.key:
writing RSA key

You're prompted for the passphrase on the encrypted key, which is stored in private.key, and
the unencrypted version of the same key is written to the file unencrypted.key.

All OpenSSL keys are generated in Privacy Enhanced Mail (PEM) format, which is a plain
text format that encapsulates the content of the key as a base64 encoded string. Certificates
can be encoded by using several different formatting conventions. For more information
about changing the format of a certificate, see Changing Key or Certificate Format.

You can view the contents of a private key as follows:

sudo openssl rsa -text -in private.key

Notably, a private key also contains its public key counterpart. This public key component is
used when submitting a CSR or when creating a self-signed certificate. The public key
component can be viewed by using the following command:

sudo openssl rsa -pubout -in private.key

Creating Certificate Signing Requests With OpenSSL
A private key can be used to create a Certificate Signing Request (CSR). A public and private
key can be used to encrypt communications. However, a client must still validate the public
certificate presented for use with encrypted communication as coming from an expected and
trusted source. Without some way to validate the public key, the client can easily succumb to
man-in-the-middle style attacks that would render encryption futile.

To solve this problem, public key infrastructure typically involves third parties, called
Certification Authorities (CAs), that can sign a certificate as authentic for a particular public

Chapter 2
Creating Certificate Signing Requests With OpenSSL

2-3

key. If the client has a copy of the CA certificate, the client can validate a certificate for
a domain, based on the signature in the certificate. Most systems are installed with
some trusted CA certificates by default. To check the CA certificates that are trusted by
the system, use the following command:

sudo openssl version -d

By default, this directory is /etc/pki/tls and the /etc/pki/tls/certs subdirectory
contains all the trusted certificates.

To obtain a signed certificate from a CA, a CSR must be generated using the public
key component within its associated private key. The CSR is then presented to the CA
which can validate the information in the request and use this information to generate
a valid and signed public certificate. The CSR is associated with a domain name for
the host or hosts on which the certificate is be used. The CA uses this information to
create a certificate with a specified expiry date.

The following example shows the command syntax for interactively creating a CSR
from a private key:

sudo openssl req -new -key private.key -out domain.example.com.csr

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:GB
State or Province Name (full name) []:.
Locality Name (eg, city) [Default City]:London
Organization Name (eg, company) [Default Company Ltd]:Example Ltd
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:domain.example.com
Email Address []:webmaster@example.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Note that the default values can be configured in the /etc/pki/tls/openssl.cnf file.
The Common Name is the most important value in the CSR. This value associates the
certificate request with the hostname and domain name for the host on which the
certificate is to be used. Note that if a client connects to a host that's issued a
certificate for a different domain, the certificate is invalid.

You can generate a CSR and private key at the same time. With the following
command, you can specify values for the different fields in the CSR on the command
line:

sudo openssl req -new -nodes '/CN=domain.example.com/O=Example Ltd/C=GB/
L=London' \
 -newkey rsa:1024 -keyout private.key -out domain.example.com.csr

You can view the information contained in a CSR as follows:

sudo openssl req -in domain.example.com.csr -noout -text

Chapter 2
Creating Certificate Signing Requests With OpenSSL

2-4

After you have a CSR, you can submit it to a CA. The CA uses the CSR to generate a signed
certificate and then returns the certificate with a certificate chain that can be used to validate
the certificate.

Signing Certificates With OpenSSL
For environments where you don't have control over client systems, always use a recognized,
independent CA to sign certificates. Operating system and software vendors negotiate with
independent CAs to include CA validation certificates, along with the software that they
distribute. Obtaining validation certificates from major CA providers means that most users
don't have to manage their own trusted CA certificate list. Any browser visiting a website over
HTTPS can validate the site's public certificate by matching the CA signature to the CA
certificates that it has in its own store.

If you have control over client systems, you can either provide the clients with the self-signed
certificate, directly; or, you can set up private CA certificate to sign all the certificates that are
used within the organization and then distribute the CA certificate to clients. Using the second
approach validates all certificates that are signed within the organization, which results in
tighter control over the security of the certificates within the organization, which can result in
lower infrastructure costs.

Creating Self-Signed Certificates for Testing and Development
Self-signed certificates are often created for development and testing purposes. Because
these certificates are not validated by trusted CAs, trust for these certificates need to be
configured manually. If the private key is compromised it can't be revoked but must be
manually removed from trust allow list. Never use these certificates in production
environments. A CA-signed certificate is always preferable to a self-signed certificate.
However, using self-signed certificates can be less costly and useful for testing and
development, without the hassle of managing private CA or obtaining CA-signed certificates
for every test platform.

With the openssl command, you can generate self-signed certificates that can be used
immediately. This command creates a CSR for the private key and then generates an X.509
certificate directly from the CSR, signing the certificate with itself.

For this reason, the command is similar to the command that you would run to create a
private key and CSR, with the exception that you must also specify the period of validity. As a
good practice, only generate a self-signed certificate for the duration needed for testing
purposes. This way, if the private key is compromised, the validity period is limited, and a new
certificate can be generated when the old certificate expires.

For example, you would use the following command to create a self-signed X.509 certificate
that's valid for 30 days.

sudo openssl req -new -x509 -days 30 -nodes -newkey rsa:2048 -keyout private.key \
 -out public.cert -subj '/C=US/ST=Ca/L=Sunnydale/CN=www.example.com'

The generated private.key file contains the private key and the public.cert file contains the
self-signed certificate. Typically, you name these files with the same value as the Common
Name so that you can track which certificates and keys apply to which host and domain
name.

Note that you can set the -newkey value to suit custom algorithm and key size requirements.
In this example, the algorithm is set to RSA and the key size is set at 2048 bits.

Chapter 2
Signing Certificates With OpenSSL

2-5

You can copy the self-signed certificate file to the trusted certificate store for any client
system and the client system validates the certificate as a match whenever it makes a
connection to the host that serves it.

You can also use the keytool command to generate self-signed certificates, but this
command's primary purpose is to install and manage JSSE (Java Secure Socket
Extension) digital certificates for use with Java applications. See Java for more
information.

Creating a Private Certification Authority
By creating a private Certification Authority (CA), you can process CSRs for all the
certificates within the organization. You're also capable of managing the Certificate
Revocation List (CRL), which client systems can use to detect whether a certificate is
still valid or if it has been revoked.

This approach is better than using self-signed certificates because you can control
revocation. However, the CA certificate must still be distributed to all the client systems
that need to validate public certificates within the organization.

Create the CA Root
The CA Root is the fundamental certificate for a CA and is not usually used to sign
server or client certificates. The CA Root is usually used to sign one or more
intermediary certificates to grant them power to sign other certificates. This model
means that if a CA Intermediary private key is compromised, the CA Intermediary can
be added to a certificate revocation list and all of the certificates that are signed by the
Intermediary are automatically invalidated.

This model helps to protect the integrity of the entire public key infrastructure. Without
a CA Root, there is no public key infrastructure, as the CA Root is used to create the
chain of trust that is used to validate all certificates in the hierarchy. The CA Root
should generally be created and maintained on a system that is completely isolated,
ideally with minimal or no network access and no direct access to the Internet. The
security measures that are implemented around the CA Root are critical to the security
of the entire public key infrastructure. If the CA Root private key is compromised, every
certificate that is ever signed by the entire chain may be compromised as well.

To create a CA Root for your organization, you must create a root key pair according
to a defined configuration that OpenSSL can use to manage the CA configuration and
the database of metadata for certificates that it issues.

There are several steps that you need to take to create the CA Root, which are
described in the following procedures and examples.

Create a CA Directory Structure
All of the certificates and metadata that are managed by the CA Root are stored in a
specific directory structure and within some preconfigured files. You should create the
structure according to your own requirements, but follow these general steps:

1. Create a directory to store all of the CA-related data:

sudo mkdir /root/ca

Chapter 2
Signing Certificates With OpenSSL

2-6

You can store this directory anywhere on the system. However, keep in mind that it
contains very sensitive data, so ensure that it is located somewhere with very restricted
access.

2. Change to the CA directory to perform all of the subsequent steps in this procedure:

sudo cd /root/ca

3. Create directories to contain the following for your system: CA certificates, CA database
content, Certificate Revocation List, all newly issued certificates, and your private keys:

sudo mkdir certs db crl newcerts private
4. Protect your private keys to ensure that access to the directory where these are stored is

limited to the current user:

sudo chmod 700 private
5. Create the files that will be used for your CA database:

sudo touch db/index.txt
sudo openssl rand -hex 16 > db/serial
sudo echo 1001 |sudo tee db/crlnumber

Create a CA Root Configuration File
The CA Root configuration should be created and stored in the directory where all of the CA
related content is stored. For example, you would create a file in /root/ca/ca-root.conf
and populate it with the following content:

[default]
name = root-ca
domain_suffix = example.com
aia_url = http://$name.$domain_suffix/$name.crt
crl_url = http://$name.$domain_suffix/$name.crl
ocsp_url = http://ocsp.$name.$domain_suffix:9080
default_ca = ca_default
name_opt = utf8,esc_ctrl,multiline,lname,align

[ca_dn]
countryName = "AU"
organizationName = "Example Org"
commonName = "Root CA"

[ca_default]
home = .
database = $home/db/index.txt
serial = $home/db/serial
crlnumber = $home/db/crlnumber
certificate = $home/$name.crt
private_key = $home/private/$name.key
RANDFILE = $home/private/random
new_certs_dir = $home/certs
unique_subject = no
copy_extensions = none
default_days = 3650
default_crl_days = 30
default_md = sha256
policy = policy_strict

[policy_strict]
The root CA should only sign intermediary certificates that match.

Chapter 2
Signing Certificates With OpenSSL

2-7

See the POLICY FORMAT section of `man ca`.
countryName = match
stateOrProvinceName = optional
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[policy_loose]
Allow the intermediary CA to sign a more diverse range of certificates.
See the POLICY FORMAT section of the `ca` manual page.
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
Standard Req options
default_bits = 4096
encrypt_key = yes
default_md = sha256
utf8 = yes
string_mask = utf8only
prompt = no
distinguished_name = ca_dn
req_extensions = ca_ext

[ca_ext]
Extensions for a the CA root (`man x509v3_config`).
basicConstraints = critical,CA:true
keyUsage = critical,keyCertSign,cRLSign
subjectKeyIdentifier = hash

[intermediary_ext]
Extensions for an intermediary CA.
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer
basicConstraints = critical, CA:true, pathlen:0
keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[server_ext]
Extensions for server certificates.
basicConstraints = CA:FALSE
nsCertType = server
nsComment = "OpenSSL Generated Server Certificate"
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer:always
keyUsage = critical, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth

[client_ext]
Extensions for client certificates.
basicConstraints = CA:FALSE
nsCertType = client, email
nsComment = "OpenSSL Generated Client Certificate"
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer
keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment

Chapter 2
Signing Certificates With OpenSSL

2-8

extendedKeyUsage = clientAuth, emailProtection

[crl_ext]
Extension for CRLs.
authorityKeyIdentifier=keyid:always

[ocsp]
Extension for OCSP signing certificates.
basicConstraints = CA:FALSE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer
keyUsage = critical, digitalSignature
extendedKeyUsage = critical, OCSPSigning

The previous example shows a configuration that contains many optional entries that can
help when performing different operations with OpenSSL. Most importantly, the configuration
defines the extensions that can be applied to different certificate types to validate the types of
operations the are valid for the certificate. This configuration also defines different policies
that can be applied when signing certificates. For instance, you can use a strict policy to
ensure that a particular metadata is specified; and, that it matches the CA values within a
CSR, if the certificate is to be signed. This policy is important for generating intermediary CA
certificates. A less restrictive policy can be applied for other certificates that are signed, either
by the CA Root or any intermediary.

The following are descriptions of the various sections within this configuration file:

• [default]

The default section defines some basic configuration information such as URLs where
information such as the root certificate and the published revocation list for this CA might
be published. Note that the name and domain_suffix entries here are used as variables
to help construct some of these URLs and are also used to name and reference key files
and certificates. You may wish to use the system hostname and the system domain for
these values. This configuration entry also references the location of the default CA
configuration entry at ca_default.

• [ca_dn]

This section defines some default values for certificates that are generated for this CA's
distinguished name. These values are written into the CSR and the self-signed certificate
that is generated from it for the CA Root certificate.

• [ca_default]

This section provides the configuration that controls the entire CA. This information
provided maps the directories that were created for this CA to the configuration so that
OpenSSL can correctly update files and store certificates and keys in the correct places.
This section also defines some default values such as how many days a certificate is
valid for and how many days the certificate revocation list is valid. Because this
configuration is for a root CA, the number of days that the certificate is valid for can be
set to 10 years, since a change to the root CA would mean that all of subsequent
certificates in the infrastructure would also need to be re-issued. You can view all of the
configuration file options in the CA(1) manual pages.

• [policy_strict]

This section describes a strict policy that should be followed when signing some
certificates, such as the intermediary CA certificates. The policy defines rules around the
metadata within the certificate. For instance, there are rules that the country name and

Chapter 2
Signing Certificates With OpenSSL

2-9

organizational name match the CA certificate. Other fields are optional, but a
common name must be supplied.

• [policy_loose]

This section is used for other certificates that are signed by this CA and its
intermediaries, where a less restrictive policy is allowed. This policy entry allows
the majority of fields to be optional and only requires that the common name is
supplied.

• [req]

This section is used one time to create the CA certificate request and defines the
default options to use when the certificate request is generated, for example, a key
length of 4096 bits for the root CA. There is also an option that points to the CA
distinguished name that references the ca_dn section of this configuration file for
obtaining the default values to use within the certificate request.

• [ca_ext]

This extensions section defines those operations for which a certificate is valid.
For the root CA, this certificate must be valid in order to sign all of the intermediary
CA certificates and essentially has full rights. For more information about
extensions, see the X509V3_CONFIG(5) manual page.

• [intermediary_ext]

This section is separate extension configuration for certificates that are signed as
intermediary CAs. This certificate has the same rights as the root CA, but is unable
to sign certificates for further intermediary CAs, controlled with the pathlen:0
within the certificate's basicConstraints option.

• [server_ext]

This section includes typical extension options for server-side certificates, which
are usually used for services like HTTPS and server-side mail services, and so on.
These certificates are issued for validation and encryption purposes; they do not
have signing rights. The configuration entry can be referenced when signing a
certificate for this purpose.

• [client_ext]

This section includes client-side certificates, which are often used for remote
authentication, where a user may provide a certificate to validate and authenticate
access to a system. These certificates also have specific extensions that control
usage. This configuration entry can be used when signing a certificate for client
side certificates to ensure that the correct extensions are applied to the certificate.

• [crl_ext]

This extension is automatically applied when creating a CRL, but this extension is
provided for completeness. See Manage a Certificate Revocation List

• [ocsp]

The Online Certificate Status Protocol (OCSP) is an alternative approach to CRLs.
An OCSP server can be set up to handle requests by client software to obtain the
status of a certificate from a resource that is referenced in a signed certificate.
Special extensions exist for this purpose. The OCSP(1) manual page can provide
more information. See also Configure and Run an OCSP Server.

Chapter 2
Signing Certificates With OpenSSL

2-10

Create and Verify the CA Root Key Pair
Create a private key and a certificate signing request for the CA root using the configuration
values that you have specified in the ca-root.conf file and save the private key to private/
root-ca.key. Since this is the most valuable key in your entire infrastructure, ensure that you
use a lengthy and suitable passphrase to protect it.

sudo openssl req -new -config ca-root.conf -out root-ca.csr -keyout private/root-ca.key

Now, create a self-signed certificate by using the CSR and the ca-root.conf file. Take care
to specify that the certificate must use the extensions defined in the ca_ext portion of the
configuration.

sudo openssl ca -selfsign -config ca-root.conf -in root-ca.csr -out root-ca.crt -
extensions ca_ext

Using configuration from ca-root.conf
Enter pass phrase for ./private/root-ca.key:
Check that the request matches the signature
Signature ok
Certificate Details:
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 8f:75:11:1a:8e:33:b2:d1:09:a8:bf:07:9c:67:c8:3e
 Issuer:
 countryName = AU
 organizationName = Example Org
 commonName = Root CA
 Validity
 Not Before: Oct 29 12:23:04 2019 GMT
 Not After : Oct 26 12:23:04 2029 GMT
 Subject:
 countryName = AU
 organizationName = Example Org
 commonName = Root CA
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public-Key: (4096 bit)
 Modulus:
 00:b9:41:d6:10:36:d4:12:d3:5d:52:29:60:fc:e0:
 90:34:f6:fb:3e:99:10:33:a1:1d:54:77:3c:11:37:
 2d:78:c3:3c:3f:40:69:37:fc:de:59:20:c1:1c:07:
 83:f7:ae:2b:19:03:a7:e8:c6:d6:88:03:b4:ec:60:
 36:3d:f6:da:59:58:cc:18:18:3e:43:c9:79:11:5b:
 cf:9e:15:a7:29:fe:dc:4f:7b:0b:93:f0:9a:2b:97:
 0f:ab:3e:38:7c:e7:c7:d3:5e:34:e2:40:d0:fd:f2:
 e4:5e:2c:8a:8e:11:83:de:6b:c4:5c:b8:ec:4b:9c:
 d2:3f:06:3d:53:a6:4b:a6:e3:c6:f6:24:a2:8c:fb:
 bf:9e:19:d7:60:4b:c5:b6:48:e4:5d:60:4f:2c:47:
 ca:4a:31:79:bc:7b:5a:25:90:fc:d2:44:a1:79:73:
 2e:e1:88:a0:73:1f:82:d3:63:3e:67:94:20:f8:be:
 21:9b:c3:14:4d:3e:9b:19:33:be:9b:cb:e5:54:9f:
 a7:3f:05:d1:64:56:5f:43:62:65:5b:89:f4:f1:e3:
 24:e8:1c:d5:03:36:86:ce:9e:76:c7:52:dc:88:f5:
 d9:87:62:00:82:4d:14:de:a3:60:21:54:12:83:da:
 8e:8e:5f:63:c3:93:5a:e2:b9:60:16:74:06:c7:46:
 49:6d:c2:7e:6c:3a:50:3b:bf:c5:d6:20:65:bd:21:

Chapter 2
Signing Certificates With OpenSSL

2-11

 a9:ad:b2:1c:4c:13:bf:fd:b8:e1:04:b8:46:c9:6c:
 29:db:f3:a6:50:3d:2b:9b:83:49:bb:61:c2:8e:94:
 08:52:84:f2:6d:33:4b:1f:e0:90:ea:a8:ec:d6:ff:
 97:b8:3d:74:9a:64:d0:f7:22:7d:22:fc:93:47:68:
 54:63:7c:10:0a:82:2f:84:3f:56:28:cf:8a:03:76:
 77:b9:db:af:02:6d:b9:36:7e:63:da:f5:d2:a5:6d:
 54:86:e1:be:f0:e1:54:13:dd:63:0a:53:8e:55:24:
 90:40:af:f6:38:47:d3:00:0c:ba:66:6a:cc:4b:df:
 28:fe:02:74:eb:28:15:11:ca:da:a7:86:0f:1f:bd:
 c4:ac:b9:b1:c7:cc:2a:2a:db:6e:fd:e6:8e:7b:02:
 17:5e:a7:7d:08:53:e2:a4:69:ca:6b:1f:f1:74:5b:
 ac:86:2a:f2:b0:80:ea:b7:30:c5:14:c8:12:1e:66:
 5e:2f:f5:d5:a8:09:39:b4:23:25:fc:ca:35:d5:c0:
 73:79:a0:8a:12:25:27:ee:f5:ce:9a:97:c0:27:31:
 ac:21:98:8f:34:25:a5:7a:42:5c:a0:a1:5d:64:39:
 aa:6a:5e:54:50:5e:ad:c4:fe:c7:93:b1:c0:f7:c9:
 91:43:93
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 X509v3 Subject Key Identifier:
 3C:D9:C3:56:BD:C0:45:83:C8:2B:C7:0F:96:30:CF:2A:55:23:B5:9D
Certificate is to be certified until Oct 26 12:23:04 2029 GMT (3650 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

You are prompted for your private key passphrase to continue. After being shown the
values of the certificate, you are prompted to sign the certificate. After signing the
certificate, you can commit it to your CA database. The database files are updated to
track this certificate within your public key infrastructure.

You can view the db/index.txt file to see the CA root certificate entry:

sudo cat db/index.txt

V 291026122304Z 8F75111A8E33B2D109A8BF079C67C83E unknown /C=AU/
O=Example Org/CN=Root CA

The values that are displayed on each line within the database index include:

1. Status (V for valid, R for revoked, E for expired).

2. Expiry date in YYMMDDHHMMSSZ format.

3. Revocation date or empty if not revoked (in this example output, the field is
empty).

4. Hexadecimal serial number.

5. File location or unknown, if not known.

6. Distinguished name.

Chapter 2
Signing Certificates With OpenSSL

2-12

Create an intermediary CA
The next step in creating your infrastructure is to create an intermediary CA that can process
all of your server and client certificates. This is important because if the intermediary CA
private key is compromised, the root CA can revoke its certificate and invalidate any other
certificate that has been issued by that intermediary.

The intermediary CA should ideally be hosted on an alternate server with wider access as it
will be used to handle the majority of your certificate requests. The intermediary CA is an
exact model of the root CA, with the exception that its own certificate is signed by the root CA
and is configured with the appropriate extensions to process signing requests.

Create A CA Directory Structure
On the intermediary CA host, perform the same operations that you performed to create the
root CA directory structure, but name the parent directory appropriately so that it is clear that
the configuration is for an intermediary, for example:

sudo mkdir /root/ca-intermediary
sudo cd /root/ca-intermediary/
sudo mkdir certs db crl newcerts private
sudo chmod 700 private
sudo touch db/index.txt
sudo openssl rand -hex 16 > db/serial
sudo echo 1001 |sudo tee db/crlnumber

Create the intermediary CA Configuration
The intermediary CA configuration is almost identical to the configuration that you created for
the CA root, with a few modifications that make it specific to the intermediary. Modifications
are indicated in bold text in the following example:

[default]
name =
 sub-ca

domain_suffix = example.com
aia_url = http://$name.$domain_suffix/$name.crt
crl_url = http://$name.$domain_suffix/$name.crl
ocsp_url = http://ocsp.$name.$domain_suffix:9080
default_ca = ca_default
name_opt = utf8,esc_ctrl,multiline,lname,align

[ca_dn]
countryName = "AU"
organizationName = "Example Org"
commonName = "
 Intermediary CA
 "

[ca_default]
home = .
database = $home/db/index.txt
serial = $home/db/serial
crlnumber = $home/db/crlnumber
certificate = $home/$name.crt

Chapter 2
Signing Certificates With OpenSSL

2-13

private_key = $home/private/$name.key
RANDFILE = $home/private/random
new_certs_dir = $home/certs
unique_subject = no
copy_extensions = none
default_days = 3650
default_crl_days = 30
default_md = sha256
policy = policy_strict

[policy_strict]
The root CA should only sign intermediary certificates that match.
See the POLICY FORMAT section of `man ca`.
countryName = match
stateOrProvinceName = optional
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[policy_loose]
Allow the intermediary CA to sign a more diverse range of certificates.
See the POLICY FORMAT section of the `ca` manual page.
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
Standard Req options
default_bits = 4096
encrypt_key = yes
default_md = sha256
utf8 = yes
string_mask = utf8only
prompt = no
distinguished_name = ca_dn
req_extensions = intermediary_ext

[ca_ext]
Extensions for a the CA root (`man x509v3_config`).
basicConstraints = critical,CA:true
keyUsage = critical,keyCertSign,cRLSign
subjectKeyIdentifier = hash

[intermediary_ext]
Extensions for an intermediary CA.
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer
basicConstraints = critical, CA:true, pathlen:0
keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[server_ext]
Extensions for server certificates.
basicConstraints = CA:FALSE
nsCertType = server
nsComment = "OpenSSL Generated Server Certificate"
subjectKeyIdentifier = hash

Chapter 2
Signing Certificates With OpenSSL

2-14

authorityKeyIdentifier = keyid,issuer:always
keyUsage = critical, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth

[client_ext]
Extensions for client certificates.
basicConstraints = CA:FALSE
nsCertType = client, email
nsComment = "OpenSSL Generated Client Certificate"
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer
keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth, emailProtection

[crl_ext]
Extension for CRLs.
authorityKeyIdentifier=keyid:always

[ocsp]
Extension for OCSP signing certificates.
basicConstraints = CA:FALSE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer
keyUsage = critical, digitalSignature
extendedKeyUsage = critical, OCSPSigning

Note that in the intermediary_ext section, a line has been commented out because the
intermediary will not issue any further intermediary certificates. The intermediary is unaware
of the certificate issuer until the certificate is signed. If you attempt to create the CSR while
this line is still included in the configuration, it fails because it cannot determine which
certificate issuer to include this metadata in the CSR.

Save the configuration file as intermediary.conf.

Create a CSR for the intermediary CA
Create a CSR for the intermediary certificate:

sudo openssl req -new -config intermediary.conf -out sub-ca.csr -keyout private/sub-
ca.key

This certificate is also a signing certificate, so it is important to protect it with a passphrase to
help prevent its unauthorized use and maintain the security of your infrastructure. Enter the
passphrase when prompted.

Create a signed certificate for the intermediary CA
Copy the sub-ca.csr that you generated in the previous step to the /root/ca directory on the
system where your root CA is hosted. On the root CA host, run the following commands to
generate a signed certificate from the CSR and apply the intermediary signing extension:

sudo cd /root/ca
sudo openssl ca -config ca-root.conf -in sub-ca.csr -out newcerts/sub-ca.crt \
-extensions intermediary_ext

You are prompted for the root CA passphrase, then presented with the certificate content and
prompted to sign it. Check that the certificate contents make sense before you sign it. You
can see that the certificate is issued by the Root CA and contains the Intermediary CA in the
Subject. You can also see that the correct extensions are applied to the certificate.

Chapter 2
Signing Certificates With OpenSSL

2-15

After the certificate is signed, you are prompted to update the database.

The newly signed certificate is created as newcerts/sub-ca.crt.

Create a certificate chain file
Because no systems are aware of the root CA certificate, you should create a
certificate chain that includes the public certificate for the root CA with the newly
created intermediary CA certificate. In this way, hosts only need a copy of the chained
certificate to validate any certificates that are issued by the intermediary CA. To create
the certificate chain, simply join the two public certificates by running the following
command on the root CA host:

sudo cat root-ca.crt newcerts/sub-ca.crt > newcerts/chained-sub-ca.crt
sudo chmod 444 newcerts/chained-sub-ca.crt

Copy the newcerts/sub-ca.crt and newcerts/chained-sub-ca.crt certificate back to
the /root/ca-intermediary/ directory on the intermediary CA host. You can now use
this certificate to process server and client CSRs and to generate CRLs.

When you return a signed certificate for any given CSR, include the chained-sub-
ca.crt certificate so that it can be installed on the host where the certificate will be
used and distributed to any client that needs to validate the signed certificate.

Process CSRs and Sign Certificates
As systems generate CSRs using the process that is described in Creating Certificate
Signing Requests With OpenSSL, they must submit them to a CA to be signed.

All subsequent CSR processing for server and client-side certificates should be
performed by an intermediary CA that is configured within your environment or by an
external third party CA.

To process a CSR, copy it to the /root/ca-intermediary directory on your intermediary
CA host and then use the openssl ca command to sign it with the appropriate
extension configuration.

For example, to sign a server-side certificate for a CSR named
www.example.com.csr , run the following command:

sudo openssl ca -config intermediary.conf -extensions server_ext -days 375 \
-in www.example.com.csr -out newcerts/www.example.com.crt

Note that we specify the number of days for which the certificate is valid. For a server-
side certificate, the number of days should be limited to a value significantly lower than
a CA certificate's validity. It is important to select the correct extensions to apply to the
certificate. These extensions map to definitions that are within your configuration file.

You are prompted for the intermediary CA key passphrase and then prompted to sign
the certificate and update the database.

You should return the certificate, along with the chained CA certificate, so that these
can be distributed to validate the certificate.

Chapter 2
Signing Certificates With OpenSSL

2-16

Manage a Certificate Revocation List
The certificate revocation list is used to identify certificates that have been issued by a
signing CA and revoked. The list also tracks the reason that a certificate was revoked.

Generate the CRL
On each CA host, you should create an empty CRL that can be updated as you need to
revoke certificates. For example, on an intermediary CA, you would use the following
command:

sudo cd /root/ca-intermediary
sudo openssl ca -config intermediary.conf -gencrl -out crl/sub-ca.crl

Note that the CRL should be published to the URL that is defined in your configuration file to
keep track of certificates that are revoked by the CA. You should configure a web service to
serve the sub-ca.crl, if possible.

You can check the contents of a CRL as follows:

sudo openssl crl -in crl/sub-ca.crl -noout -text

If the CRL was just created, it is empty. A new CRL should be created periodically, based on
the configuration value that is set in the CA configuration file for default_crl_days. By
default, it is set for every 30 days.

Revoke a certificate
Every signed certificate contains the serial number that is issued by the signing CA. You can
view this serial number within a certificate as follows:

sudo openssl x509 -serial -noout -in server.crt

This serial number identifies the certificate within the CA signing database and can also be
used to identify the certificate stored by the CA that signed it so that the CA can revoke it.

On the CA where the certificate was issued, you can find the certificate with the matching
serial number in the certs directory. For example, on an intermediary host, for a certificate
with serial number 8F75111A8E33B2D109A8BF079C67C83F, it would be as follows:

sudo cd /root/ca-intermediary
sudo ls certs/8F75111A8E33B2D109A8BF079C67C83F*

certs/8F75111A8E33B2D109A8BF079C67C83F.pem

You can also check the details for the certificate in the CA database:

sudo grep 8F75111A8E33B2D109A8BF079C67C83F db/index.txt

To revoke this certificate, the signing CA must issue the following command:

sudo openssl ca -config intermediary.conf -revoke certs/
8F75111A8E33B2D109A8BF079C67C83F.pem \
-crl_reason keyCompromise

Chapter 2
Signing Certificates With OpenSSL

2-17

Note that you should specify the reason for revoking the certificate, as this reason is
used in the certificate revocation list. Options include the following: unspecified,
keyCompromise, CACompromise, affiliationChanged, superseded,
cessationOfOperation, certificateHold, and removeFromCRL. For more information,
see the CA(1) manual page.

When a certificate is revoked, the CA database is updated to reflect this change and
the status is set to R for the certificate that is listed in the db/index.txt file.

The database file is used to generate the CRL each time it is created. It is good
practice generating a new CRL as soon as you revoke a certificate. In this way, this list
is kept up to date. See Generate the CRL for more information.

Configure and Run an OCSP Server
The Online Certificate Status Protocol (OCSP) provides an alternative to CRLs and
includes its own publishing mechanism. OpenSSL includes an option to run as an
OCSP server that can respond to OCSP queries.

Note that OCSP is preferred over CRLs. Usually, it is a good idea to make sure that an
OCSP server is running for your CA, particularly if the OCSP URL appears in your
configuration, as this URL is included in each certificate that is signed by the CA. Any
client software can confirm the revocation status of a certificate by querying the OCSP
server.

For any CA, create a key and CSR for the OCSP server:

sudo openssl req -new -newkey rsa:2048 -subj "/C=AU/O=Example Org/CN=OCSP
Responder" \
-keyout private/ocsp.key -out ocsp.csr

Create a signed certificate from the ocsp.csr CSR file:

sudo openssl ca -config intermediary.conf -extensions ocsp -days 187 -in
ocsp.csr \
-out newcerts/ocsp.crt

Because the OCSP certificate is responsible for handling revocation, it cannot be
revoked. Therefore, it is a good practice to set the validity period on the certificate to a
manageable, but relatively short period. In this example, the validity period has been
set to 187 days, which means that it needs to be refreshed every 6 months.

To run an OCSP server on the current CA, you can use the tool provided within
OpenSSL. For example, you could use the following command:

sudo openssl ocsp -port 9080 -index db/index.txt -rsigner newcerts/ocsp.crt \
-rkey private/ocsp.key -CA sub-ca.crt -text

Note that the command specifies the CA db/index.txt file directly, which means that
as certificates are revoked, the OCSP server becomes aware of them automatically.
When you run the command, you are prompted for the OCSP key passphrase. The
server continues to run until you kill the process or escape by using a control
sequence such as Ctrl-C.

You can test the service by checking the ocsp.crt file. Use the openssl command as
follow to run an OCSP query:

sudo openssl ocsp -issuer sub-ca.crt -CAfile chained-sub-ca.crt -cert newcerts/
ocsp.crt \

Chapter 2
Signing Certificates With OpenSSL

2-18

-url http://127.0.0.1:9080

Response verify OK
newcerts/ocsp.crt: good
 This Update: Oct 30 15:48:11 2019 GMT

The response in the previous example indicates whether the verification has succeeded and
provides a status of good if the certificate has not been revoked. A status of revoked is
returned if it has been revoked.

Debugging and Testing Certificates With OpenSSL
The following are some examples that show how you can use OpenSSL commands to work
with existing certificates to debug and test the infrastructure. The examples provided here
aren't comprehensive and are intended to supplement the existing OpenSSL manual pages.

Examining Certificates
Display the information contained in an X.509 certificate.

sudo openssl x509 -text -noout -in server.crt

Display the SHA1 fingerprint of a certificate.

sudo openssl x509 -sha1 -noout -fingerprint -in server.crt

Display the serial number of a signed certificate:

sudo openssl x509 -serial -noout -in server.crt

Check That a Private Key Matches a Certificate
The modulus and the public exponent parts of the key and the certificate must match. These
values are usually long and difficult to check. The easiest way to compare the modulus in the
key and certificate is to create an MD5 hash of each and compare those instead, for
example:

sudo openssl x509 -noout -modulus -in server.crt | openssl md5
sudo openssl rsa -noout -modulus -in server.key | openssl md5

You can equally check the modulus in a CSR to see if it matches a key or certificate as
follows:

sudo openssl req -noout -modulus -in server.csr | openssl md5

Changing Key or Certificate Format
Convert a root certificate to a form that can be published on a website for downloading by a
browser:

sudo openssl x509 -in cert.pem -out rootcert.crt

Convert a base64 encoded certificate (also referred to as PEM or RFC 1421) to binary DER
format:

sudo openssl x509 -in cert.pem -outform der -out certificate.der

Chapter 2
Debugging and Testing Certificates With OpenSSL

2-19

Convert the base64 encoded certificates for an entity and its CA to a single PKCS7
format certificate:

sudo openssl crl2pkcs7 -nocrl -certfile entCert.cer -certfile CACert.cer -out
certificate.p7b

Check Certificate Consistency and Validity
Verify a certificate including the signing authority, signing chain, and period of validity:

sudo openssl verify cert.pem

Decrypting Keys and Adding or Removing Passphrases
If you create an encrypted key file and decide that the file isn't encrypted or doesn't
require a passphrase, you can decrypt it by using the following command:

sudo openssl rsa -in private.key -out unencrypted.key

Enter pass phrase for private.key:
writing RSA key

You're prompted for the passphrase on the encrypted key, which is stored in
private.key, and the unencrypted version of the same key is written to the
unencrypted.key file.

To encrypt an unencrypted key and add a passphrase to protect it, run the following
command:

sudo openssl rsa -aes256 -in unencrypted.key -out private.key

In the previous example, the AES cipher is used with a 256 bit key. The command
prompts you to enter a passphrase and to verify it. The new encrypted key file is
written to private.key.

You can add or remove a passphrase from the private key at any time without affecting
its public key counterpart. Adding a passphrase protects the private key from use by
an unauthorized or malicious user, but comes with an added inconvenience, in that
services that use the private key always require manual intervention to start or restart.
If you remove the passphrase from a key, ensure that it's stored with strict permissions
and that it's not copied to systems that don't require it.

Using OpenSSL to Test SSL/TLS Configured Services
Test a self-signed certificate by configuring a server that listens on port 443:

sudo openssl s_server -accept 443 -cert cert.pem -key prikey.pem -www

Test the client side of a connection. This command returns information about the
connection including the certificate by which you can directly input HTTP commands:

sudo openssl s_client -connect server:443 -CAfile cert.pem

Extract a certificate from a server as follows:

sudo echo | openssl s_client -connect server:443 2>/dev/null | \
sed -ne '/BEGIN CERT/,/END CERT/p' |sudo tee svrcert.pem

Chapter 2
Debugging and Testing Certificates With OpenSSL

2-20

Using OpenSSL for File Encryption and Validation
You can also use OpenSSL to encrypt or decrypt any file type and to create digests that can
be signed and used to validate the contents and the origin of a file. The following are some
examples of how you might use the openssl command.

Encrypt a file by using Blowfish:

sudo openssl enc -blowfish -salt -in file -out file.enc

Decrypt a Blowfish-encrypted file:

sudo openssl enc -d -blowfish -in file.enc -out file.dec

Create an SHA1 digest of a file:

sudo openssl dgst -sha1 file

Sign the SHA1 digest of a file using the private key stored in the file prikey.pem:

sudo openssl dgst -sha1 -sign prikey.pem -out file.sha1 file

Verify the signed digest for a file using the public key stored in the file pubkey.pem:

sudo openssl dgst -sha1 -verify pubkey.pem -signature file.sha1 file

More information About OpenSSL
For more information about OpenSSL, see the openssl(1), ciphers(1), dgst(1), enc(1),
req(1), s_client(1), s_server(1), verify(1), and x509(1) manual pages.

Chapter 2
Using OpenSSL for File Encryption and Validation

2-21

3
Setting Up TLS/SSL with Other Tools

This chapter describes some other tools available for setting up TLS/SSL that you may
consider.

There are various reasons to choose one tool over another. For example, some tools are
more light weight than others, or some are targeted to specific environments, such as the
keytool for Java. Some not only cover certificates infrastructure management but also include
other features, APIs, and libraries for developing applications that enable various other
secure network protocols and security standards. Although this book does not provide details
about such features, you can find more information about them in corresponding manual
pages and documentation from opensource projects.

GnuTLS
This chapter describes the certtool GnuTLS certificate tool that is available in Oracle Linux
and how to use it to create certificate signing requests, self-signed certificates, and privately
owned CA certificates. GnuTLS is a library implementing the SSL, TLS and DTLS protocols
and technologies around them for the purpose of securing communications. It includes an
application programming interface (API) written in C language to access the secure
communications protocols and additional APIs to parse and write structures such as X.509,
PKCS #12, and OpenPGP.

To use certtool, install the gnutls-utils package avaiable from the Application Stream
repository.

sudo dnf install gnutls-utils

Note:

If you are using Oracle Linux 7, you can install the package from the ol7_latest
yum repository by using yum instead of dnf.

The following examples show how to use the certtool command to create certificate
signing requests, self-signed certificates, and privately owned CA certificates.

• To generate a private key, do the following.

sudo certtool --generate-privkey --outfile private_key_file

In the previous example, private_key_file is the name of the private key file.

• To generate a CSR, do the following:

sudo certtool --generate-request --load-privkey private_key_file --outfile csr_file

In the previous example, csr_file is the name of the CSR file.

3-1

• To generate a self-signed certificate, do the following:

sudo certtool --generate-self-signed --load-privkey
private_key_file --outfile self_signed_certificate_file

For more information, see the certtool(1) manual page and the GnuTLS open
source project at https://www.gnutls.org/.

NSS
This chapter describes the certutil Network Security Service (NSS) certificate tool
that is available in Oracle Linux and how to use it to create Certificate Signing
Requests (CSRs), self-signed certificates, and privately owned CA certificates with
NSS database files which store certificates and private keys for applications.

NSS is a set of libraries designed to support cross-platform development of security-
enabled client and server applications. Applications built with NSS can support SSL v2
and v3, TLS, PKCS #5, PKCS #7, PKCS #11, PKCS #12, S/MIME, X.509 v3
certificates, and other security standards.

Before you can use certutil to manage certificates, CSRs, and keys, you must
have access to the NSS database files. You can use the legacy security databases
files (cert8.db for certificates, key3.db for keys, and secmod.db for PKCS #11 module
information) or the new SQLite databases files (cert9.db for certificates, key4.db for
keys, and pkcs11.txt for PKCS #11 modules). This section provides examples from the
new database files.

You can also use the related pk12util command to export and import certificates
and keys from a PKCS #12 file to an NSS database or the reverse.

To use certutil and pk12util, install the nss-tools package avaiable from the
Application Stream repository.

sudo dnf install nss-tools

Note:

If you are using Oracle Linux 7, you can install the package from the
ol7_latest yum repository by using yum instead of dnf.

The following examples show how to use the certutil and and pk12util
commands.

• To create an NSS database, do the following:

certutil -N -d database_directory

In the previous example, database_directory is the home directory where you
want to create the the cert9.db, key4.db, and pkcs11.txt NSS database files. For

Chapter 3
NSS

3-2

https://www.gnutls.org/

example the following creates the database in a folder called nssdb in the home directory
of the terminal's user account:

certutil -N -d ~/nssdb

• To generate a self-signed certificate, do the following:

certutil -d database_directory -S -s subject -n nickname -x -t trust_args
-o file

In the previous example,

– -S Indicates that you want to create an individual certificate and add it to a certificate
database.

– -s Indicates that you want to specify a distinguished name where subject uses the
distinguished name format defined in https://www.rfc-editor.org/rfc/rfc1485.html.

– -n Indicates that you want to specify a nickname where nickname is the nickname for
the entity you are creating.

– -x Indicates you want to generate the signature for a certificate being created or
added to a database, rather than obtaining a signature from a separate CA.

– -t Indicates you want to add trust arguments where trust_args are the trust attributes
that you want to apply to the certificate. There are three available trust categories for
each certificate, expressed in the order SSL, email, object signing for each trust
setting. In each category position, use none, any, or all of the attribute codes. Valid
codes are:

* p - Valid peer

* P - Trusted peer (includes p)

* c - Valid CA

* C - Trusted CA (includes c)

* T - Trusted CA for client authentication (ssl server only)

For example, the following creates a self-signed certificate for the www1.example.com
common name with the example_test nickname. The trust attributes are C (Trusted CA)
for each category.

certutil -d ~/nssdb/ -S -s 'CN=www1.example.com, O=Example Organization,
L=Ottawa, C=CA' -n example_test -x -t C,C,C

• To add existing certificates or certificates generated elsewhere, do the following:

certutil -A -n nickname -t trust_args -d database_directory -i input-file

In the previous example,

– -A Indicates that you want to add a certificate to a certificate database.

– -i Indicates that you want to provide an input file, such as a certificate file, for
example, a PEM file.

Chapter 3
NSS

3-3

https://www.rfc-editor.org/rfc/rfc1485.html

For example,

certutil -A -n "CN=My SSL Certificate" -t C,C,C -d ~/nssdb/ -i ~/
tls-ca-bundle.pem

• To get list of all certificates, do the following:

certutil -L -d database_directory

For example,

certutil -L -d ~/nssdb/

Certificate Nickname Trust
Attributes
 SSL,S/
MIME,JAR/XPI

example_test
Cu,Cu,Cu
CN=My SSL Certificate C,C,C

When listing certificates, the trust tags may include the u flag indicating that a
private key is associated with the certificate.

• To delete a certificate from your database, do the following:

certutil -D -d database_directory -n nickname

In the previous example, -D indicates that you want to delete a specific certificate
from your database.

• To get a list of all keys, do the following:

certutil certutil -K -d database_directory

For example,

certutil -K -d ~/nssdb/
certutil: Checking token "NSS Certificate DB" in slot "NSS User
Private Key and Certificate Services"
Enter Password or Pin for "NSS Certificate DB":
< 0> rsa 35f4555f329c1490b3570c9d36e1ec56f2329f08 NSS
Certificate DB:example_test
< 1> rsa 303936d20b3522e9293b75db3dc48f77c1871767 NSS
Certificate DB:example_test2

Chapter 3
NSS

3-4

• To show a public key in PEM format, do the following:

certutil -L -d database_directory -a -n nickname

For example,

certutil -L -d ~/nssdb/ -a -n example_test
-----BEGIN CERTIFICATE-----
...[certificate text]
-----END CERTIFICATE-----

• To export a certificate and key into a single PKCS #12 file, do the following:

pk12util -o certs.p12 -n example_test -d sql:database_directory

• To modify a certificate, use the -M option. For example, the following changes the trust
arguments from C, C, C, to P,P,P for the example_test certificate:

$ certutil -d database_directory -M -t "P,P,P" -n example_test

For more information, see the certutil(1) and pk12util(1) manual pages and the NSS
open source project at https://firefox-source-docs.mozilla.org/security/nss/index.html.

Java
Most Java applications use the keystore that's supplied with JDK to store cryptographic keys,
X.509 certificate chain information, and trusted certificates. The default JDK keystore in
Oracle Linux is the /etc/pki/java/cacerts file. You can use the keytool command to
generate, install and manage certificates in the Java keystore.

The following examples show how you might use the keytool command.

• List the contents of the keystore, /etc/pki/java/cacerts:

sudo keytool -list [-v] -keystore /etc/pki/java/cacerts

The default keystore password is changeit. Oracle strongly recommends that you
change the password as soon as possible. If specified, the verbose option -v displays
detailed information.

• Change the password for a keystore, for example, /etc/pki/java/cacerts:

sudo keytool -storepasswd -keystore /etc/pki/java/cacerts
• Create a keystore (keystore.jks) to achieve the following:

– Manage public and private key pairs and certificates from entities that you trust.

– Generate a public and private key pair by using the RSA algorithm and a key length
of 3072 bits.

– Create a self-signed certificate that includes the public key and the specified
distinguished name information.

Chapter 3
Java

3-5

https://firefox-source-docs.mozilla.org/security/nss/index.html

sudo keytool -genkeypair -alias mycert -keyalg RSA -keysize 3072 \
-dname "CN=www.unserdom.com, OU=Eng, O=Unser Dom Corp, C=US, ST=Ca,
L=Sunnydale" \
-alias engineering -keypass pkpassword -keystore keystore.jks \
-storepass storepassword -validity 100

In the command, pkpassword is the private key password and storepassword is
the keystore password. In this example, the certificate is valid for 100 days and is
associated with the private key in a keystore entry that has the alias engineering.

• Print the contents of a certificate file in a human-readable form:

sudo keytool -printcert [-v] -file cert.cer

If specified, the verbose option -v displays detailed information.

• Generate a CSR in the file carequest.csr for submission to a CA:

sudo keytool -certreq -file carequest.csr

The CA signs and returns a certificate or a certificate chain that authenticates your
public key.

• Import the root certificate or certificate chain for the CA from the ACME.cer file into
the keystore.jks keystore and assign it the alias acmeca:

sudo keytool -importcert -alias acmeca [-trustcacerts] -file ACME.cer \
-keystore keystore.jks -storepass storepassword

If specified, the -trustcacerts option instructs keytool to add the certificate
only if it can validate the chain of trust against the existing root CA certificates in
the cacerts keystore. Alternatively, you can use the keytool -printcert
command to check that the certificate's fingerprint matches the fingerprint that the
CA publishes.

• Import the signed certificate for the organization after you have received it from the
CA:

sudo keytool -importcert -v -trustcacerts -alias acmeca -file ACMEdom.cer \
-keystore keystore.jks -storepass storepassword

In this example, the file containing the certificate is ACMEdom.cer. The -alias
option specifies the entry for the first entity in the CA's root certificate chain. The
signed certificate is added to the front of the chain and becomes the entity that's
addressed by the alias name.

• Delete the certificate with the alias aliasname from the keystore.jks keystore:

sudo keytool -delete -alias aliasname -keystore keystore.jks -storepass
storepassword

• Export the certificate with the alias aliasname as a binary PKCS7 format file, which
includes the supporting certificate chain as well as the issued certificate:

sudo keytool -exportcert -noprompt -alias aliasname -file output.p7b \
-keystore keystore.jks -storepass storepassword

• Export the certificate with the alias aliasname as a base64 encoded text file (also
referred to as PEM or RFC 1421).

Chapter 3
Java

3-6

sudo keytool -exportcert -noprompt -rfc -alias aliasname -file output.pem \
-keystore keystore.jks -storepass storepassword

For a certificate chain, the file includes only the first certificate in the chain, which
authenticates the public key of the aliased entity.

For more information, see the keytool(1) manual page.

Chapter 3
Java

3-7

4
Managing System Certificates

Oracle Linux stores certificates that are trusted at a system-wide level within
the /etc/pki/ca-trust/ and /usr/share/pki/ca-trust-source/ directories. Typically, the
CA certificates of major third-party CAs are included within the system-wide trust store to
enable applications to work correctly. By storing trusted certificates in a central location, a
wide range of applications can use these trusted certificates to validate and authenticate
certificate chains. For example, when an application needs to validate a certificate, it uses the
certificates within the system-wide trust to confirm whether the certificate either matches a
trusted certificate, or is signed by one.

A certificate, such as a CA certificate, that's stored on a system as a trusted certificate is
often referred to as a trust anchor. This distinguishes the certificate from one for which trust is
derived, typically by walking through a certificate chain until a trust anchor is found. You can
add any public certificate to the system trust as a trust anchor so that it can be validated
immediately.

Commonly trusted third-party CA certificates are selected by the Mozilla Foundation and are
included in the ca-certificates package. These certificates are installed into the system
trust store as anchors for general use.

Using the trust Command To Manage System Certificates
The trust command can simplify system certificate management. This command is
available in the p11-kit-trust package and is installed by default on most Oracle Linux
systems.

See the trust(1) manual page for more information.

Listing Certificates in the System Trust

To list certificates that are currently trusted, run:

trust list

Output similar to the following is displayed:

pkcs11:id=%37%7F%3E%3E%99%71%60%CA%24%D4%91%13%79%D0%74%29%B4%A8%24%D8;type=cert
 type: certificate
 label: A-CERT ADVANCED
 trust: anchor
 category: authority

pkcs11:id=%4B%3C%8C%1D%85%E9%6F%AD;type=cert
 type: certificate
 label: A-Trust-Qual-01
 trust: anchor
 category: authority
...

Note that each certificate in the system trust is allocated a pkcs11:id value that can be used
to identify a particular certificate for other trust operations.

4-1

Adding a Certificate as a Trust Anchor

To add a certificate to the system trust anchors, run:

sudo trust anchor /path/to/public.cert

Substitute /path/to/public.cert with the path to the certificate file that you wish to add to
the system trust.

When you run this command, the certificate is added to the /etc/pki/ca-trust/
source/ directory and the system trust is refreshed. The certificate is immediately
trusted as an anchor.

Typically, you only add certificates from providers that you trust and which aren't
already available in the system trust. You can also add self-signed certificates that you
might generate for demonstration purposes or for particular internal or developer
tooling.

Removing a Certificate From the System Trust Anchors

To remove a certificate from the system trust anchors, run:

sudo trust anchor --remove pkcs11:id=<ID>

Use the matching pkcs11:id value to provide the <ID> of the certificate that you want
to remove. Alternately, if you have a copy of the certificate available, run:

sudo trust anchor --remove /path/to/public.cert

The system trust store is updated immediately.

Manually Updating Trusted Certificates
You can manually add a certificate to the system trust store by copying the certificate
to either the /usr/share/pki/ca-trust-source/anchors/ or /etc/pki/ca-trust/
source/anchors/ directories. This operation doesn't have immediate effect and you
must run the update-ca-trust command to refresh the system trust store after you
make manual updates to these directories.

For example:

sudo cp /path/to/public.cert /etc/pki/ca-trust/source/anchors
sudo update-ca-trust

See the update-ca-trust(8) manual page for more information.

Chapter 4
Manually Updating Trusted Certificates

4-2

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Public Key Infrastructure
	What is Public Key Cryptography?
	Automatic Certificate Management Environment (ACME)

	2 Setting Up TLS/SSL with OpenSSL
	Creating Key Pairs
	Creating Certificate Signing Requests With OpenSSL
	Signing Certificates With OpenSSL
	Creating Self-Signed Certificates for Testing and Development
	Creating a Private Certification Authority
	Create the CA Root
	Create a CA Directory Structure
	Create a CA Root Configuration File
	Create and Verify the CA Root Key Pair

	Create an intermediary CA
	Create A CA Directory Structure
	Create the intermediary CA Configuration
	Create a CSR for the intermediary CA
	Create a signed certificate for the intermediary CA
	Create a certificate chain file

	Process CSRs and Sign Certificates
	Manage a Certificate Revocation List
	Generate the CRL
	Revoke a certificate

	Configure and Run an OCSP Server

	Debugging and Testing Certificates With OpenSSL
	Examining Certificates
	Check That a Private Key Matches a Certificate
	Changing Key or Certificate Format
	Check Certificate Consistency and Validity
	Decrypting Keys and Adding or Removing Passphrases
	Using OpenSSL to Test SSL/TLS Configured Services

	Using OpenSSL for File Encryption and Validation
	More information About OpenSSL

	3 Setting Up TLS/SSL with Other Tools
	GnuTLS
	NSS
	Java

	4 Managing System Certificates
	Using the trust Command To Manage System Certificates
	Manually Updating Trusted Certificates

