
Oracle Linux
DTrace Release Notes

F35833-12
June 2023

Oracle Linux DTrace Release Notes,

F35833-12

Copyright © 2021, 2023, Oracle and/or its affiliates.

Contents

 Preface

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About DTrace

DTrace v2.0 1-1

Example Usage 1-1

2 Changelog

2.0.0-1.13.1 (Jun 7th, 2023) 2-1

2.0.0-1.13 (May 26th, 2023) 2-1

2.0.0-1.12 (Feb 27th, 2023) 2-3

2.0.0-1.11 (Nov 9th, 2022) 2-4

2.0.0-1.10 (Apr 26th, 2022) 2-6

2.0.0-1.9 (Dec 8th, 2021) 2-8

2.0.0-1.8 (Oct 15th, 2021) 2-8

2.0.0-1.7 (Sep 9th, 2021) 2-9

2.0.0-1.6 (Jun 18th, 2021) 2-10

2.0.0-1.5.1 (Apr 12th, 2021) 2-12

2.0.0-1.4 (Dec 9th, 2020) 2-13

2.0.0-1.3 (Oct 2nd, 2020) 2-14

2.0.0-1.2 (Aug 6th, 2020) 2-15

2.0.0-1.0 (Apr 24th, 2020) 2-17

2.0.0 (Mar 10th, 2020) 2-18

1.2.1 (Feb 12th, 2019) 2-19

1.2.0 (Dec 13th, 2018) 2-19

1.1.1 (Oct 25th, 2018) 2-19

1.1.0 (Aug 10th, 2018) 2-19

1.0.4 (Aug 10th, 2018) 2-20

iii

1.0.3 (Jul 24th, 2018) 2-20

1.0.2 (May 10th, 2018) 2-20

1.0.1 (Apr 28th, 2018) 2-20

1.0.0 (Mar 27th, 2018) 2-21

0.6.2 (Sep 12th, 2017) 2-22

0.6.1 (Aug 7th, 2017) 2-23

0.6.0 (Apr 3rd, 2017) 2-24

0.5.4 (Nov 8th, 2016) 2-25

0.5.3 (May 25th, 2016) 2-26

0.5.2 (Feb 3rd, 2016) 2-26

0.5.1 (Nov 17th, 2015) 2-27

0.5.0 (Aug 10th, 2015) 2-27

0.4.6 (Jun 30th, 2015) 2-28

0.4.5 (Jun 17th, 2015) 2-29

0.4.4 (Mar 12th, 2015) 2-30

0.4.3 (May 1st, 2014) 2-31

0.4.2 (Dec 20th, 2013) 2-31

0.4.1 (Nov 6th, 2013) 2-32

0.4.0 (Sep 20th, 2013) 2-33

0.3.0 (Sep 14th, 2012) 2-35

0.2.5 (Mar 19th, 2012) 2-37

0.2.4 (Feb 15th, 2012) 2-37

0.2.3 (Feb 10th, 2012) 2-37

0.2.0 (Jan 25th, 2012) 2-37

0.1.0 (Oct 20th, 2011) 2-38

iv

Preface

Oracle Linux: DTrace Release Notes provides information about DTrace v2.0 releases for
Oracle Linux and Unbreakable Enterprise Kernel.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry

v

https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

standards evolve. Because of these technical constraints, our effort to remove
insensitive terms is ongoing and will take time and external cooperation.

Preface

vi

1
About DTrace

DTrace is a powerful dynamic tracing tool that's available in Oracle Linux for use with the
Unbreakable Enterprise Kernel (UEK). It has a rich feature set, supports most of the common
probe providers, and is available for x86_64 and aarch64 architectures. DTrace is developed
as an open source project available under the Universal Permissive License (UPL), Version
1.0. You can access source code and more information at https://github.com/oracle/dtrace-
utils.

DTrace v2.0
DTrace v2.0 is a reimplementation of DTrace that uses existing Linux kernel tracing facilities,
like eBPF, which didn't exist when DTrace was first ported to Linux. The new implementation
removes DTrace dependencies on specialized kernel patches.

DTrace v2.0 is available with UEK R6 and later. Previous versions of UEK continue to include
the original DTrace implementation.

DTrace V2.0 on Oracle Linux 8 and Oracle Linux 9 has been reimplemented as a user space
application. It no longer requires the libdtrace-ctf library to run on Oracle Linux 8 or Oracle
Linux 9. The functionality of that library is integrated into the Oracle Linux GNU toolchain.
Note that libdtrace-ctf is still required on Oracle Linux 7.

Functionality is being delivered as it becomes available, starting with a limited set of
capabilities (primarily framework functionality that doesn't offer many user visible features)
but ultimately reaching, and then exceeding, earlier support.

Example Usage
The following examples illustrate current functionality in DTrace v2.0 on UEK R6. Examples
assume that commands are run as root and /usr/sbin is in the PATH.

• Show DTrace version information:

dtrace -V
DTrace 2.0.0 [Pre-Release with limited functionality]
dtrace: Oracle D 2.0

• List probes:

dtrace -l
DTrace 2.0.0 [Pre-Release with limited functionality]
ID PROVIDER MODULE FUNCTION NAME
1 dtrace BEGIN
2 dtrace END
3 dtrace ERROR
4 fbt vmlinux trace_initcall_finish_cb entry
5 fbt vmlinux trace_initcall_finish_cb return
...

1-1

https://github.com/oracle/dtrace-utils
https://github.com/oracle/dtrace-utils

On this particular system, there were:

– 3 dtrace probes

– 87890 fbt probes (based on kprobes)

– 1262 sdt probes (based on Linux tracepoints)

– 666 syscall probes

• Example script that uses the -S option, to output the compiled D code as an eBPF
program, and that uses the -e option, to exit after compilation:

dtrace -Sen 'write:entry { trace(1) }'
DTrace 2.0.0 [Pre-Release with limited functionality]

Disassembly of ::write:entry

DIFO 0x46af600 returns D type (integer) (size 8) [record 16 bytes]
INS OFF OPCODE INSTRUCTION
000 000: 62 a 0 fef8 ffffffff stw [%fp-264], -1 ! = EPID
001 008: 62 a 0 fefc 00000000 stw [%fp-260], 0
002 016: 7a a 0 ff00 00000000 stdw [%fp-256], 0
003 024: 7a a 0 ff08 00000000 stdw [%fp-248], 0
004 032: 7a a 0 ff10 00000000 stdw [%f
[...]

• Example script:

dtrace -n '
syscall::write:*
{
 this->x = 3; /* clause-local variables */
 this->y = 8;
 trace(this->x * this->y);
 trace(&`max_pfn);
}'

In the above:

– Probe all write() system call probes at once using a wildcard;

– Probe with recording the address of a kernel identifier (max_pfn) and other
data items;

– Associate multiple probes with a single action.

– Clause-local variables are used.

– The trace() action is used to report output.

Chapter 1
DTrace v2.0

1-2

2
Changelog

The changelog provided here describes the major features and changes in each release and
also lists any known issues.

2.0.0-1.13.1 (Jun 7th, 2023)
Thirteenth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

Bugfixes:

• Upgrading DTrace using RPMs will now correctly restart dtprobed.

Testsuite changes:

• Some tests can leave orphaned tracing events registered with the kernel if the tests
timeout and the dtrace process is killed. Such probes will now be reported and cleaned
up after each test is run.

2.0.0-1.13 (May 26th, 2023)
Thirteenth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• Full support for is-enabled USDT probes.

• An error will be reported when a tracing script requires more space to store aggregation
data than is available per the aggsize option value.

• An error will be reported when a tracing script requires more space to store dynamic
variables than is available per the dynvarsize option value.

• Support for data drop counters for principal buffers, speculation buffers, aggregations,
and dynamic variables.

• The proc:::signal-clear probe has been implemented.

• The sched provider has been implemented for a limited set of probes (and with some
limitations). Available probes are: dequeue, enqueue, off-cpu, on-cpu (limited trigger
locations), surrender, tick, and wakeup. Note that the cpuinfo argument for dequeue and
enqueue (arg1) is NULL due to system limitations. Future releases will incrementally
expand this provider.

• The lockstat provider has been implemented. All lockstat probes are implemented, but
depending on the runtime kernel configuration, some probe may not trigger in all cases
(particularly for lock operations that are forced to be inlined). Also, kernels prior to 5.10.0
contain a bug that can cause kernel deadlock when a kretprobe is used on spinlock
functions. The lockstat provider is not enabled for such kernels for safety.

2-1

• True NULL strings are now supported.

• The uregs built-in variable is now supported on older kernels as well.

• New option 'linknommap' has been added as a workaround for elfutils bugs related
to mmap() usage.

Bugfixes:

• The error message issued by dtprobed to report incorrect helper data size was
reporting the expected and received values backwards.

• USDT probes in programs that live in different fs namespaces are now fully
supported.

• When multiple USDT probes were specified, only the first one would get provided
properly.

• Properly recognize all forms of the 'char' datatype as equivalent.

• Do not allow iregs to be increased beyond its default value (the number of BPF
registers).

• The uaddr handling has been fixed to not trigger a segmentation fault for pid 0.

• Tracepoint argument datatypes that are expressed by the kernel using symbolic
array size specifiers are now handled correctly.

• The established behaviour of DTrace when storing data in a speculation has been
to abort clause execution at any statement that would cause a speculation buffer
overflow. Code to perform overflow checks when storing data in a speculation are
now generated correctly.

• Some faults were not reporting the PC of the fault location.

• FBT probes are no longer provided for compiler-generated internal symbols. Such
symbols cannot be probed anyway.

• Multiple memory leaks were resolved.

• Integers loaded from an associative array are now promoted to 64 bits.

• Failure to allocate a dynamic variable now reports a dynamic variable drop
warning, and aborts the clause execution.

• DOF parser crash causes were fixed in dtprobed.

• USDT probes in non-PIE executables are now fully supported.

• Multiple programs providing their DOF to dtprobed simultaneously could cause
some of their probes to not get created.

• Support for shared libraries and executables with very large numbers of USDT
probes (500+) has been improved.

Internal changes:

• DOF_VERSION_3 has been added for the new-style USDT is-enabled probe
mechanism that is not compatible with the previous versions.

• Userspace probe scanning was reworked to resolve performance issues.

• The 'cpuinfo' BPF map can now support configurations where CPU ids are not
strictly sequential.

Chapter 2
2.0.0-1.13 (May 26th, 2023)

2-2

• The GCC BPF support in some gcc/binutils releases did not offer a way to express an
atomic add operation. As a workaround, the DTrace source code provides its own
atomic_add() construct.

• The handling of associative arrays and TLS variables has been consolidated because
they are both implemented using dynamic variables.

Testsuite changes:

• The testsuite can now specify kernel modules that are needed for tests.

• A test has been added to verify whether libctf bug #30264 is present on the system. The
libctf bug breaks offsetof() for members of unnamed structs and unions at non-zero
offsets.

• A test has been added to test multiple simultaneous dtrace instances tracing multiple
processes,

• Various tests using tick-* probes without actually requiring them have been reworked
using non-timer based probes for efficiency and stability.

• Test have been added for many dtrace options.

• The testsuite can now support interpreter-style executable .d files using #!dtrace (the
actual pathname for dtrace will be substituted during test execution).

Known problems:

• Programs and shared libraries that make use of is-enabled USDT probes and were built
using a previous version of dtrace will need to be rebuilt for is-enabled probes to work.

2.0.0-1.12 (Feb 27th, 2023)
Twelfth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The bcopy() subroutine no longer enforces that its first argument (source address) can't
be an alloca()'d memory region. While this restriction is documented, it was never
enforced in DTrace and the restriction has no practical reason.

• The clear() and tracemem() actions have been implemented.

• The switchrate and aggrate options have been implemented.

• The cpc and proc providers have been implemented.

• The copyout() and copyoutstr() subroutines have been implemented.

• The uregs[] built-in variable has been implemented.

Bugfixes:

• The maximum strtab size has been increased to SSIZE_MAX.

• Probe argument information is only be retrieved once per probe.

• Handling string values in alloca()'d memory has been fixed.

Chapter 2
2.0.0-1.12 (Feb 27th, 2023)

2-3

• The basename(), dirname(), strchr(), strrchr(), inet_ntoa() subroutines have
been updated to fully support using arbitrary address pointers.

• The return value of copyin() is now a valid offset into scratchmem (native
representation of a pointer to alloca()'d memory).

• The arg0 and arg1 probe arguments for profile-* and tick-* probes have been
corrected. (The arg2 argument is still unimplemented.)

• The evaluation order of arguments to bcopy() has been corrected.

• Runtime bounds checking has been implemented for scalar array access.

Internal changes:

• Selection of the correct arch-dependent asm include hierarchy for building the
precompiled BPF function library has been corrected.

• A few potentially unsafe calls to printf-style functions have been fixed.

• The manpage for dtrace has been moved to section 8 (System Management
Commands).

• The error handling mechanism between libdtrace and consumer front-ends has
been amended to allow error reporting for non-probing related issues.

• The copyinstr() subroutine has been updated to use the temporary string
mechanism.

• The tracking of pointers to alloca()'d memory and pointer to DTrace managed
memory has been improved, and explicit tests for it have been added to the
testsuite.

• The code generator uses indirect load instructions for pointers to alloca()'d and
DTrace managed memory for efficiency and to enable the BPF verifier to perform
access checks.

Testsuite changes:

• The copyin*() tests are now more robust with the use of a distinct trigger.

• Various tests have been moved from XFAIL to PASS status to reflect the
implementation of new features and because some bug fixes.

• Various tests were improved.

• Various new tests were added.

Known problems:

• The uregs[] built-in variable isn't supported on kernels before 5.15.

2.0.0-1.11 (Nov 9th, 2022)
Eleventh errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The args[] built-in variable has been implemented.

Chapter 2
2.0.0-1.11 (Nov 9th, 2022)

2-4

• Support loading scalars from kernel space addresses.

• The copyin(), copyinto(), and copyinstr() subroutines have been implemented.

• A -xlockmem option has been added to adjust the kernel locked-memory limit. When
loading BPF maps or programs fails in a way that might indicate that the locked-memory
limit is too low, an error message is printed to suggests using this new option.

• Support for aggregations indexed by a key (tuple) has been added.

• Disassembler annotations have been added for aggregation variables.

• The setopt() action has been implemented. A limited number of options is currently
supported.

• The pid provider has been changed to ignore compiler-generated internal function
names.

• The USDT provider has been implemented for basic use cases. Regular, non-is-enabled
probes are supported for executables that are referenced explicitly (by pid) in the probe
script. Argument mapping and wildcard probe specifications are not supported yet.

New dependencies:

• The USDT provider support depends on the availability of libfuse version 2 or 3. At build
time, preference is given to libfuse 3 if available. The build process supports forcing
building against libfuse 2 by passing 'libfuse2=yes' to the make command.

Upgrading:

• The USDT implementation depends on an always-running daemon (dtprobed): the
corresponding systemd dtprobed.service is automatically started in relatively early boot in
non-rescue scenarios, but when DTrace is first installed, or if it is upgraded from a
version before the daemon existed (before 2.0.0-1.11), any probes in programs that were
already running before that point will not appear in DTrace's list of available probes until
such programs are restarted.

Bugfixes:

• Arguments of sdt-provider probes are now correctly populated using the tracepoint data.

• Argument handling for dtrace:::, fbt:::return, pid:::, and syscall:::return probes has been
cleaned up.

• The dtrace utility is now able to handle multiple args after --.

• The -xcpp, -xctfpath, and -xverbose options have been fixed.

• Some bugs with typecasting and internal integer storage have been fixed.

• The libproc search of rtld_global has been improved for glibc changes.

• In procfs.d, projid_t was renamed to resolve a conflict with the kernel.

• In the parser, support has been added for slices of typedefs.

• String comparison involving non-DTrace pointers has been fixed.

• The value of the execname built-in variable is now correctly recognized as a non-DTrace
pointer.

Chapter 2
2.0.0-1.11 (Nov 9th, 2022)

2-5

Internal changes:

• The code generator is able to adapt to BPF-helper-function availability differences
between runtime kernels.

• Read-only blocks of zeros for initializing BPF maps have been consolidated.

• Tuples are now constructed with their component values at predictable offsets
based on their datatype rather than their value..

• Support for the BPF dt_bpf_map_next_key() helper to iterate over the keys in a
BPF map has been added.

• Support for multiple copies of aggregation data (DT_AGG_NUM_COPIES) is no
longer needed and has been removed.

• Support for creating a map (array or hash) of maps has been added, including
functions to perform lookups and updates of inner maps.

• The storage of aggregation data has been modified to make use of an array of
BPF hash maps, indexed by CPU id. As a result, aggregation data for each CPU is
stored in its own BPF hash map and can be modified without affecting the data for
other CPUs.

• Error reporting for BPF program load, map creation, CTF, and dlib load has been
cleaned up.

• Some code has been refactored and some obsolete code removed.

Testsuite changes:

• Add support for '-e' in test options.

• Tests that are expected to fail have improved xfail messages.

• Support has been added for more stringent, @@nosort checking.

• Problems with "unstable" tests are report as XFAIL.

• Tests that fire many times (historically using tick-n) are more robust.

• Various tests have been moved from XFAIL to PASS status to reflect the
implementation of new features and in view of some bug fixes.

• Various tests were improved.

Known problems:

• On some aarch64 systems the copyin(), copyinstr(), and copyinto() subroutines
may report a fault due to limitations in the BPF implementation at the kernel level.
This problem seems to be related to specific CPU features.

2.0.0-1.10 (Apr 26th, 2022)
Tenth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The trace() action supports array, struct, and union values.

• The execname built-in variables is now implemented.

Chapter 2
2.0.0-1.10 (Apr 26th, 2022)

2-6

• The inet_ntoa() subroutine has been implemented.

• The progenyof() subroutine has been implemented.

• The getmajor() and getminor() subroutines have been implemented.

• The mutex_owned(), mutex_owner(), mutex_type_adaptive(), mutex_type_spin(),
rw_read_held(), rw_write_held(), and rw_iswriter() have been implemented.

• The alloca() and bcopy() subroutines have been implemented.

• Associative arrays have been implemented. They are supported for both global and TLS
variables.

• Disassembler annotations have been added for associative arrays, register spills, and
string constants.

• The translators have been updated to support up to kernel series 5.16.

• Faults will now report the PC (program counter) where the fault is reported.

Bugfixes:

• Register allocation leaks were fixed.

• NULL pointer verification has been optimized to avoid checking the same pointer more
than once.

• NULL pointers handling in ternary conditionals are now supported.

• Casting of pointers to integers has been fixed.

• Negative (immediate) values in signed conditionals are now printed correctly.

• Disassembler annotations for TLS variables have been corrected.

• The DIFO strtab handling has been reworked to fix multiple bugs.

Internal changes:

• The strlen() subroutine is now implemented using the bpf_probe_read_str() BPF helper.

• Strings are no longer stored using a length prefix.

• BPF functions that are implemented in C or assembly code are no longer statically listed
in the DTrace source code. Their existence is determined at runtime when the dlibs are
loaded.

• All load-time constants are now handled by the relocation mechanism.

• New function dt_dis_insn() can be used by developers to disassemble a single
instruction..

• The implementation of pre and post arithmetic has been optimized.

• Relocation support for the 'add immediate' instructions has been added.

• The substr() subroutine has been optimized to reduce register pressure.

Testsuite changes:

• Various tests have been moved from XFAIL to PASS status in response to the
implementation of new features and in view of some bug fixes.

• Various tests were improved.

Chapter 2
2.0.0-1.10 (Apr 26th, 2022)

2-7

2.0.0-1.9 (Dec 8th, 2021)
Ninth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The rand() subroutine has been implemented.

• The ftruncate() subroutine has been implemented.

• The basename() and dirname() subroutines have been implemented.

• Thread-local storage (TLS) variables have been implemented. For now, only non-
indexed variables are supported.

• The strtok() subroutine has been implemented.

Obsolete features:

• The ctf_module_dump tool has been removed. It is no longer needed.

Bugfixes:

• The substr() and strjoin() subroutines now correctly store the result string length in
the string length prefix.

Internal changes:

• The temporary string (tstring) support in the code generator has been improved to
provide better development level diagnostics.

• The lifecycle handling of temporary strings has been updated to handle
assignments and ternary expressions correctly.

• The substr() and strjoin() subroutines have been reworked to provide a much more
optimized implementation.

• More efficient code is new generated for storing a string value in the trace output
buffer.

• Improvements were made to the generic hashtable (htab) in libdtrace,

Testsuite changes:

• A results post-processor was added to various tests to work around CTF error
message differences between libdtrace-ctf and libctf.

Known problems:

• Complex nested expressions may cause the code generator to run our of usable
registers. This is a known problem with the register lifecycle tracking.

2.0.0-1.8 (Oct 15th, 2021)
Eighth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

Chapter 2
2.0.0-1.9 (Dec 8th, 2021)

2-8

New features:

• The htonl(), htonll(), htons(), ntohl(), ntohll(), and ntohs() subroutines have been
implemented.

• String comparison has been implemented.

• The strchr(), strrchr(), index(), rindex(), strstr(), and lltostr() subroutines have been
implemented.

• Support has been added to be able to resolve symbols in compressed kernel modules.

• Speculative tracing has been implemented. Full support for the speculate(), commit(),
and discard() actions is available, as is support for the speculaton() subroutine.

• It is now possible to run dtrace under valgrind.

Bugfixes:

• Symbol resolution for loadable modules was broken. This has been corrected.

Internal changes:

• Support has been added for the endianness conversion BPF instruction.

• All uses of perf_event_open() now specify the PERF_FLAG_FD_CLOEXEC flag.

Known problems:

• String sizes greater than 128 characters may pose problems with some string operations
due to BPF verifier limitations.

2.0.0-1.7 (Sep 9th, 2021)
Seventh errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• Argumsnts passed for SDT probes can now be retrieved using the arg0 through arg9
builtin variables.

• A -xbpflog option has been added to request the BPF verifier log to be generated and
displayed regardles sf the outcome of trying to load BPF programs. The option can also
be set with a D option pragma.

• The strjoin() subroutine has been implemented.

• The substr() subroutine has been implemented.

Bugfixes:

• Trampoline generation has been corrected to ensure that the correct probe context is set
during code generation.

• The type alignment handling code used to determine the alilgnment size for a given
datatype was treating enums as integers, which is incorrect. Proper alignment
determination is now done, avoiding libctf-related failures.

Chapter 2
2.0.0-1.7 (Sep 9th, 2021)

2-9

• The handling of ERROR probe invocations within the BEGIN probe execution has
been fixed.

• The size of string data in the trace output buffer has been corrected to acocunt for
the 2-byte length prefix and the terminating NUL byte.

• The data size for value copy operations has been corrected. It was determined
solely on the data size of the source data, even if the destination was smaller. It
now uses the lesser of the two sizes.

Internal changes:

• Provider implemenations now use standard functions to clear oe copy the CPU
register state at the time a probe fires.

• New macros set_upper_bound() and set_lower_bound() are available for use in C-
to-BPF source code. They are used to provide hints about value and range
boundaries for the BPF verifier.

• Precopiled BPF code can now use the STRSZ BPF symbol to represent the
maximum string size.

• The precompiled dt_memcpy() function has been replaced with a call to the
bpf_probe_read() BPF helper function.

• Support has been added for the compilation of BPF assembler source files (.S)
into object files (.o). This feature makes uses of the GCC BPF cross compiler.

• The generic scratch memory area is now accessible through a pointer to its base
address. This pointer can be found in dctx->mem. The stack trace implementation
has been updated to make use of this area. This scratch memory area is also
used to provide temporary string space to be used in string manipulation functions.

• The length prefix for strings has been changed from a variable-length integer to a
2-byte fixed width integer. This was made necessay due to BPF verifier limitations.
This is an interim solution while a more permanent reworking of the string handling
code is dveloped.

2.0.0-1.6 (Jun 18th, 2021)
Sixth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• Instruction offsets are printed as 4 digit values to accommodate the larger size of
BPF programs used to implement probe programs.

• String constants can be used as values in D clauses, and variables can hold string
values. Built-in variables that hold string data can be assigned to variables and
they can be used as values in expressions and as action arguments.

• The trace() action supports strings.

• The strlen() subroutine has been implemented.

• The following built-in variables are now supported: probeprov, probemod,
probefunc, probename, caller, stackdepth, ucaller, ustackdepth, errno, and
walltimestamp.

Chapter 2
2.0.0-1.6 (Jun 18th, 2021)

2-10

• The following actions have been implemented: stack(), ustack(), umod(), usym(), and
uaddr().

Bugfixes:

• The storage size was not always set correctly for global and local variables causing data
corruption. When variables are not declared explicitly, their datatype may not be known
until their first use. The storage size is now always set based on the explicit or discovered
datatype of the variable.

• Built-in variables are implemented as global variables within a specific variable ID range.
Their value is not stored in the global variable storage area and they therefore do not
have a storage offset. The variable listing in the disassembly output was printing -1 as
offset. The offset will no longer be printed for built-in variables.

• A memory leak related to the ERROR probe has been fixed.

• Relocations of 64-bit data items were being truncated to the lower 32 bits. This has been
fixed.

• Storing data in an aggregation was considered a data recording action. This resulted in
probe firings being reported by the consumer for clauses that do not actually store data in
the probe output buffer. This behaviour was not intended. Aggregation data generation is
no longer a data recording action.

Internal changes:

• Global and local variables are now stored more efficiently by taking into account their size
and alignment requirements.

• Probe descriptions (id, provider name, module name, function name, and probe name)
are now stored in the 'probes' BPF map. The values are offsets into the string constant
table.

• The string constant table is loaded into the 'strtab' BPF map as the value of the singleton
element with key 0.

• String hash value calculations have been unified into a single function that is called from
all code that needs it.

• Variable length integer support has been added. It will primarily be used to store the
length of strings inline with the character stream.

• The memory copy function (implemented as pre-compiled C code, compiled to BPF) has
been optimized and has been made more robust.

Testsuite changes:

• Various tests have been moved from XFAIL to to PASS status in response to the
implementation of new features and in view of some bug fixes.

• Various tests were improved.

Known problems:

• The assignment of values of a datatype that is larger than 256 bytes does not currently
work due to limitations in the memory copy implementation.

• While the DTrace option to set a specific maximum string size is accepted by the
command line tool, settings beyond 256 bytes do not work correctly.

Chapter 2
2.0.0-1.6 (Jun 18th, 2021)

2-11

• The -Z option (allowing clauses that do not match any available probe) does not
allow for registering a clause to be enabled at a later time when the probe
becomes available.

2.0.0-1.5.1 (Apr 12th, 2021)
Fifth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The pid provider has been implemented, enabling function boundary tracing at the
userspace level (in shared libraries and executables). Future development will
augment the functionality provided here with arbitrary instruction tracing at the
userspace level.

• The ERROR probe (dtrace provider) is implemented. Some error conditions such
as division by zero or NULL pointer dereferencing are explicitly checked in the
BPF program because they constitute fatal failures in BPF program execution.

• Normalization aggregation actions have been implemented: normalize(), and
denormalize().

• Support has been added for global and local variables of size greater than 8 bytes
and accessing variables by reference, including allowing struct assignment
statements, for sizes up to 256 bytes. Future work will allow larger value sizes.

• A -xbpflogsize=N option has been added to specify the maximum size of the BPF
verifier output log. This log is generated when a BPF program cannot to be loaded
into the kernel. The option can also be set with a D option pragma.

• The -xdisasm=N support for the -S option has been improved. The list of available
disassembly listings has been updated. The value of <N> is the sum of any
number of the following available listings:

– 1 = After compilation and assembly of a clause function.

– 2 = After constructing a probe program.

– 4 = After linking dependencies into a probe program.

– 8 = After all processing, prior to loading a probe program.

Packaging changes:

• Sample scripts have been added for building DTrace on Ubuntu.

Bugfixes:

• Various aggregations bug fixes: resetting aggregations, formatted printa(), not
printing aggregations with no data (using per-aggregation latches), etc.

• Bit-field operations have been fixed in a manner that preserves legacy behavior
(aligning each bit field to the size of the next largest integer type).

Internal changes:

• The implementation of kernel tracepoint based providers has been reworked for
greater consistency and to accommodate the needs of the new pid provider

Chapter 2
2.0.0-1.5.1 (Apr 12th, 2021)

2-12

implementation. The pid provider also provides a sample for implementing providers that
expose probes that do not map one-to-one to kernel probes.

• There is now a mechanism to turn off dual-copy aggregation code. We anticipate using
that mechanism when we migrate to newer kernels, but for the time being it is simply
using up excessive BPF map space.

• The eventfd mechanism is used as a replacement for the condition variable that used to
signal that one or more processes terminated. This means that process termination
notifications are processed together with trace buffer data notifications. The
dtrace_sleep() function has been deprecated.

• The source code was refactored for greater stylistic consistency, and a style guide
(CODING-STYLE) was added.

• A standard implementation for *_add and _del htab functions was introduced.

• Jump-target relocation for generated BPF code was fixed to handle unlabeled BPF_NOP
instructions.

• Handle translators with definitions that vary in more than two kernel releases.

• The get_gvar() and set_gvar() pre-compiled BPF functions have been removed.

Testsuite changes:

• New tests have been added or XFAIL annotations revised for new features.

• A probe to test/unittest/pragma/*libdep* tests has been added to eliminate their reliance
on undefined behavior with regards to what library dependencies mean in the absence of
any probes.

• There are improvements in aggregation tests.

• Some disassembly tests have been added.

Known problems:

• Some architecture (like aarch64) set aside a hardcoded amount of memory for JIT
compiled BPF programs. Each program or sub-program takes up a whole number of
pages in memory. If the kernel has been configured with a large pagesize (16k or even
64k), the reserved amount of memory may not be sufficient to support a larger amount of
probes to be used at the same time.

Note that the reserved memory is system-wide so concurrent DTrace tracing sessions will
consume memory from the same limited pool of pages.

There is no known workaround for this at the current time.

2.0.0-1.4 (Dec 9th, 2020)
Fourth errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• Aggregations have been implemented. For now, only non-indexed aggregations are
supported, e.g. @, @a, @foo, but not @[1], @a["foo"].

• All aggregation functions have been implemented: avg(), count(), llquantize(), lquantize(),
max(), min(), quantize(), stddev(), and sum().

Chapter 2
2.0.0-1.4 (Dec 9th, 2020)

2-13

• Argument checking for aggregation functions has been improved.

• The printa() action has been implemented for standard aggregations.

Bugfixes:

• Bitwise negation has been corrected.

• Reporting for quantize() has been corrected. No data was being reported when all
values mapped to the last bin.

• END clauses are now executed correctly when the consumer triggers tracing to
stop.

Internal changes:

• Aggregations now accumulate data in per-CPU kernel buffers (in a BPF map) and
the consumer retrieves a snapshot of all CPU buffers as needed. This means that
the only aggregation happening at the consumer level constitutes aggregating the
values across all CPUs.

• Macros have been added to support manual generation of BPF code. Each BPF
instruction used to take two C statements: the instruction was defined and then
appended to a list. Use of the new macros eliminates hundreds of such lines and
makes the C code look much more like the BPF it is generating.

• Restore the error message "%s %s() may not be called from a D expression (D
program context required)", which had been disabled during development.

• Remove the obsolete dt_bpf_builtins.h header file.

• Replace dtrace_aggvarid_t by dtrace_aggid_t and DTRACEAGG_* with
DT_AGG_*.

Compilation fixes:

• Pre-compiled BPF functions are now correctly loaded even if they have no
relocations.

Testsuite changes:

• Comments, typos, and naming have been cleaned up.

• New tests have been added or XFAIL annotations revised for new features.

2.0.0-1.3 (Oct 2nd, 2020)
Third errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• The freopen() action has been implemented for numeric values.

• The system() action has been implemented for numeric values.

• Two additional built-in variables are now available: id and ppid.

• Annotations in the DTrace disassembler have been improved for readability.

Chapter 2
2.0.0-1.3 (Oct 2nd, 2020)

2-14

Bugfixes:

• The BEGIN and END probe semantics have been corrected to match the documented
behaviour. BEGIN will always be the first probe executed, and END will always be the
last probe executed. Corrections have also been made to the exit() action in terms of how
it interacts with the BEGIN and END probe, and the trace data consumer.

• The behaviour of the default action vs non-data producing actions has been corrected.

• The implementation of the signed divide and modulo operations has been corrected in
view of BPF not providing instructions for them.

• The code generated for post-decrement expressions has been corrected.

• A bug fix for a theoretical buffer overflow issue was merged from the 1.2 version of
DTrace because the same code exists in this version.

Internal changes:

• Type casting has been optimized to only perform shift operations when needed. The
implementation has also been improved to not require an extra register.

Compilation fixes:

• The procfs.d D library makes use of datatypes that are defined in the sched.d D library,
but it was missing an explicit dependency on sched.d.

• The yylineno variable was declared in two places, causing a conflict with newer
compilers. The primary declaration is now in dt_lex.c and dt_cc.c now has an extern
declaration for the variable.

• Distributions place architecture specific include files in different locations. The build
system will try different known locations, using the first one that seems valid.

• Some newer compilers do not accept 'const' for the r_debug_offsets and
link_map_offsets arrays in the source code generated by mkoffsets.sh.

• Various changes were applied to the source code to resolve compiler warnings that were
triggered during compilation.

Testsuite changes:

• A bug fix for the bogus-ioctl testsuite trigger executable was merged from the 1.2 version
of DTrace because the same improper use of the open() library function occurs in this
version.

• Some testsuite scripts were using local variables (this->n) in places where thread-local
variables (self->n) were needed.

• Various testsuite cases have been updated to be more robust.

2.0.0-1.2 (Aug 6th, 2020)
Second errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

Chapter 2
2.0.0-1.2 (Aug 6th, 2020)

2-15

New features:

• The profile provider has been implemented. Both profile-n and tick-n probes are
supported, for probes with default fire rates and user-specified rates/intervals.

• The trace() action has been updated to provide more consistent output based on
the datatype of its argument (signed vs unsigned, and width).

• The printf() action has been implemented for numeric values.

• The raise() action has been implemented.

• Clauses can now be specified with one or more probe specifications, and each
probe specification can contain wildcards.

• Listing probes based on wildcard probe specifications has been implemented.

• It is now possible to specify the same probe for multiple clauses.

• Various built-in variables are available: arg0 through arg9 (for probes that provide
arguments), curcpu curthread, epid, gid, pid, tid, uid, and timestamp.

• Expected test outcomes are continually being updated to reflect increasing
functionality.

• The locked-memory limit is raised automatically if it is too small, since BPF has
relied on a higher limit.

Bugfixes:

• Various memory management issues such as memory leak and unsafe memory
access operations were fixed.

• A register allocation leak in predicate handling was fixed.

• The 'timestamp' built-in variable should yield the same value every time it is used
within a specific clause. The cached value should not leak into the next clause
execution.

• Interrupting dtrace using Ctrl-C or sending a signal could leave uprobes and/or
kprobes behind. We now ensure that the interrupt handler is set up early enough
to be able to provide proper cleanup.

• There were cases where integer values between INT32_MAX and UINT32_MAX
were not processed correctly.

• The fallback support for /proc/kallsyms did not handle the lack of symbol sizes
correctly, making it impossible to map an address to a kernel symbol.

• int8_t is now always signed, even on platforms where char is unsigned.

Internal changes:

• The optional predicate for a clause is now compiled as an inline conditional at the
beginning of the clause execution.

• The machine state used during clause execution was allocated on the stack in
previous releases. This worked fine when BPF code was executed using the
kernel interpreter, but when the JIT BPF engine was used it would result in stack
overruns. Now, the machine state is stores in a BPF map value to free up stack
space.

• The creation of uprobes and kprobes as underlying probing mechanism has been
deferred until tracing is actually about to start. This means that listing probes (-l)

Chapter 2
2.0.0-1.2 (Aug 6th, 2020)

2-16

no longer results in uprobes and/or kprobes being created on the system without being
used.

• A significant (but largely invisible) change has been implemented in the D compiler and
runtime environment. The compilation of a clause will now merely generate a BPF
function. When probe execution is being set up, all probes that are to be part of the
tracing session are collected and for each probe a list of associated clauses is created.
Finally, when tracing is to commence, a trampoline BPF program is assembled for each
probe. Each of the trampoline BPF programs will include calls to the clauses associated
with the probe. When the final program for each probe is linked, references to compiled
clauses and precompiled BPF utility functions are resolved. At this point, the BPF
program for each probe is loaded into the kernel and attached to its probe.

2.0.0-1.0 (Apr 24th, 2020)
First errata of the standalone userspace implementation.

This is a pre-release with limited functionality.

New features:

• BEGIN and END probes are functional. They are implemented using uprobes on trigger
functions in libdtrace. The current implementation does not yet satisfy all documented
semantics for these special probes. E.g. It is possible for a probe to be reported prior to
the BEGIN probe.

• The exit(n) action has been implemented. It terminates probing and will result in dtrace
reporting the given return value <n> as its return code.

• The flow-indent option -F has been implemented. Some of the heuristics present in
DTrace 1.x are not available in this version - further code analysis is ongoing to
determine whether they are necessary.

New options:

• -xdisasm=n: Specify which disassembler listings to generate when the -S option is
supplied. The value for <n> is the sum of any of the following:

– 1 = After compilation and assembly of a program.

– 2 = After linking in precompiled BPF functions (dependencies).

– 4 = After final relocation processing (final program).

Bugfixes:

• Various memory management issues such as memory leak and unsafe memory access
operations were fixed.

• Using local variables in D clauses could cause the compiler to generate instruction
sequences where a load instruction for a local variable occurred before a store took place
to that variable. The BPF verifier rejects such sequences. We now ensure that we do not
load from stack locations that were never initialized.

• The code generated for the post-increment operation resulted in the new value to be
used as value of the expression. The value of the expression is now the old value.

• Various issues were resolved concerning register use in the compiler. We are now using
proper register spilling techniques to free up a sufficient amount of general purpose
registers.

Chapter 2
2.0.0-1.0 (Apr 24th, 2020)

2-17

• FBT return probes were not created correctly if an entry probe also existed for the
same function. Both were getting attached to the same probe (either entry or
return, depending on which was created first).

Internal changes:

• Various helper functions have been implemented in C code that is compiled to
BPF code using the GCC BPF cross compiler. These are available as an ELF
object for linking with the dynamically generated code that the DTrace compiler
produces. When D code has been compiled into BPF code, we resolve any
references to precompiled BPF functions against this ELF object and add any
functions used (and their dependencies) to the compiled program.

• Various tests in the testsuite make use of the -xerrtags and -xdroptags options in
dtrace to include specific error and drop tags in the error output. The testsuite
engine did not enforce validation of these tags. Tests that specify a tag in their
name err.<tag>.* and drp.<tag>.*) will now trigger validation that the specified tag
is mentioned in the error output that dtrace produces.

• Dynamically created system level probes (kprobes and uprobes are now grouped
under a tracepoint group named dt_<pid>_<prv>[_<prb>] where <pid> is the PID
of the dtrace process, <prv> the name of the probe provider, and <prb> the probe
name. The _<prb> optional suffix is used for FBT probes to separate entry probes
from return probes.

2.0.0 (Mar 10th, 2020)
First release of the standalone userspace implementation.

This is a pre-release with limited functionality.

Working components:

• The entire D language, with the exception of aggregations. Valid D clauses are
compiled into equivalent BPF programs.

• The vast majority of the DTrace core functionality has been implemented,
providing a nearly complete compiler implementation (including predicates),
provider API, probe management, and Linux tracing integration.

• Support for pre-compiled BPF function libraries has been added. This is used to
implement various D language constructs (global and TLS variable access, string
manipulation, ...) and D subroutines. This feature makes use of the BPF support in
GCC and binutils as cross compilation tools. The BPF functions are compiled at
DTrace build time, so there is no runtime dependency on the cross compilation
tools.

• Support has been added for reporting BPF verifier output. When compiled D
scripts are loaded as BPF program into the kernel, the BPF verifier performs a
static code analysis to ensure safety of the program. When this analysis fails,
output is generated and DTrace will report this output to the user.

• Function Boundary Tracing (FBT) probes with functions grouped by module
(regardless of whether the module is compiled in or loadable) if the kernel provides
this information in /proc/kallsyms (or /proc/kallmodsyms).

• Syscall entry and return probes (systrace provider), with support for typed probe
arguments.

Chapter 2
2.0.0 (Mar 10th, 2020)

2-18

• Statically Defined Tracing (SDT) probes based on Linux tracepoints, with support for
typed probe arguments.

• The trace data buffer management code has been reworked to work with the perf event
ring buffers that are used by BPF to record tracing data.

• The DTrace testsuite has been updated to reflect what tests are expected to pass with
the current state of development for DTrace v2. Various tests were also improved to be
more robust and to be more focused on what they are meant to be testing.

1.2.1 (Feb 12th, 2019)
Bugfixes:

• Fix a bug causing DTrace to fail to terminate if a process was grabbed using -c, then died
while traced with ustack(), usym() or umod() or by the pid or usdt providers.

Compilation fixes:

• Compile on glibc 2.28, which moves makedev() out of <sys/types.h>.

• Improvements to the testsuite in the presence of recent versions of GNU Awk.

1.2.0 (Dec 13th, 2018)
New features:

• New action pcap(struct sk_buff *, proto) where proto is one of the PCAP_* constants
from /usr/lib64/dtrace/*/pcap.d. If tshark is installed, this produces formatted packet
traces; if it is not, raw memory dumps are produced, as with tracemem(). If freopen() is
used to redirect DTrace output to a file, the raw packets are written there.

• Translator changes for the 4.19 kernel (also works with 4.20pre up to -6).

Bugfixes:

• Fix a variety of small memory leaks.

• Improvements to the testsuite.

Build-time:

• Improve the generation of signal.d: work better with newer glibc versions.

1.1.1 (Oct 25th, 2018)
Only testsuite changes.

1.1.0 (Aug 10th, 2018)
New features:

• Translator changes for the 4.15 kernel. (Kernels up to 4.18 work too.)

Chapter 2
1.2.1 (Feb 12th, 2019)

2-19

New options:

• -xctfpath: Specify the name of a CTF archive to use with the running kernel, for
when it cannot be found in the usual place under $(-xmodpath)/kernel/vmlinux.ctfa.

Bugfixes:

• Fix a variety of small memory leaks and use-of-uninitialized-data bugs.

• Clean up compiler warnings.

Library interface changes:

• Add more DTRACE_PROBE definitions to sdt.h, for SystemTap compatibility.

1.0.4 (Aug 10th, 2018)
Bugfixes:

• No longer crash when attempting to trace ourselves.

• More fixes for crashes of both DTrace and the traced process when DTrace
terminates at the wrong instant.

1.0.3 (Jul 24th, 2018)
Bugfixes:

• No longer crash or deadlock when -c/-p processes terminate at the wrong time.

• No longer deadlock when -c/-p processes create new threads.

• Stop the disassembler coredumping.

1.0.2 (May 10th, 2018)
Bugfixes:

• Mark an erroneously-failing test on ARM as passing.

1.0.1 (Apr 28th, 2018)
New features:

• Both USDT and pid providers are supported on ARM64.

Bugfixes:

• The -c option works on ARM64 now, as does the -x evaltime option.

• Improvements to the testsuite and testsuite runner.

Chapter 2
1.0.4 (Aug 10th, 2018)

2-20

1.0.0 (Mar 27th, 2018)
New architectures:

• ARM64 support.

New features:

• Compile-time array bounds checking. Dereferencing arrays beyond their declared bound
is now a compile-time error. To dereference an array regardless, use casts, e.g. ((char
*)curlwpsinfo->pr_name)[32].

• Translator support for kernels 4.12 -- 4.14.

• Added initial pid provider support for userspace tracing.

• Redesigned build system now allows change in translators in 4.14.y versions of kernels.
When porting to the new kernel, it is no longer required to add the new kernel version to
the list of define_for_kernel macros (unless a change is truly required).

Bugfixes:

• Addresses are normalized properly by mod(), so use of mod() in aggregates works better
now.

• DTrace will no longer consider symbols in built-in modules or the core kernel to be in the
wrong module: its idea of symbol addresses, sizes, and their mapping to names is better
in general, particularly with respect to symbols that overlap, symbols whose names are
duplicates, and weak symbols.

• An interface problem has been fixed that can cause DTrace consumers to dereference
freed memory when victim processes grabbed via ustack(), umod(), usym() or dtrace -c
or -p exec(). This requires changes to certain users of libdtrace, and relinking: see
"Library interface changes" below.

• The ip provider's ipv6_tclass and ipv6_flow fields were wrong on little- endian machines.

• Fix rare assertion failures at exit.

• dtrace -S now disassembles all actions in statements containing more than one, rather
than disassembling only the first.

• A new symbol at address zero introduced by the KPTI changes is eliminated from symbol
resolution.

• Improvements to the testsuite and testsuite runner.

Library interface changes:

• The dtrace_proc_*() functions have changed the type they take to an opaque handle,
struct dtrace_proc. There is a new function dtrace_proc_getpid() to get the PID from this
opaque handle. dtrace_proc_grab() has been renamed to dtrace_proc_grab_pid(). See
INCOMPATIBILITIES.

The library soname has been bumped to libdtrace.so.1 correspondingly. All consumers
must relink, but consumers not using the dtrace_proc_*() APIs need no code changes. All
places where code changes are needed elicit a compile-time error, so it should be easy
to see what needs changing.

Chapter 2
1.0.0 (Mar 27th, 2018)

2-21

Testsuite changes:

• Tagging added via a new @@tag in test files: testing with specific tags can be
requested via TEST_TAGS='a !b' in the environment and --tag/--no-tag arguments
to runtest.sh. The intersection of all tags is run, so in the example above, only
tests tagged with 'a' and not tagged with 'b' would be run. You can specify tags that
apply by default in the test/tags.default file, and tags that apply on only one
architecture in test/tags.$arch.default.

0.6.2 (Sep 12th, 2017)
Packaging changes:

• The DTrace headers in /usr/include/linux/dtrace were formerly provided by the
dtrace-modules-shared-headers package. They are now pulled in from the kernel-
uek-devel package in /usr/src/kernels at dtrace-utils package build time and
shipped out into the dtrace-utils-devel package.

• libdtrace-ctf 0.7 or above is now required.

• CTF type information can now be provided in an archive located at /lib/modules/$
(uname -r)/kernel/vmlinux.ctfa, cutting startup time when all types referenced are
found in the kernel tree rather than in out-of-tree modules.

New features:

• A new llquantize() aggregation, providing log/linear results. Syntax:
llquantize(expression, log base, lower exponent, upper exponent, step,
[increment])

• The tracemem() action has gained a third argument, the number of bytes to trace:
unlike the second argument, which must be a constant, the third argument can be
an arbitrary D expression, which can be used to limit a larger second argument to
a suitable value. This brings it into parity with tracemem() on Solaris.

• The lockstat provider is implemented.

Bugfixes:

• dtrace_sync() is drastically faster: setup and teardown of large numbers of probes
without latency problems and watchdog timer firings is now much more practical.

• The error message given when D argument counts were wrong was itself often
wrong or confusing.

• Fixed a segfault at shutdown time if grabbed processes die at precisely the wrong
time.

• Structure and union members in the kernel with the same name as D keywords
can now be referenced: mostly, this means you can get at members named 'self'.

• lquantize() no longer truncates its value to 32 bits.

• dtrace_update() now merges module address ranges better.

• Fix some places where sleeping inside RCU read critical sections or atomic
context could happen (module provide, profile/tick providers, and more general
probe and state setup/teardown code).

Chapter 2
0.6.2 (Sep 12th, 2017)

2-22

• After one release without it, the walltimestamp variable reports useful values again.

• One place where failure to allocate memory (for ECBs) could crash the kernel has been
fixed.

Build-time:

• A new 'make ctf' target in the kernel tree, for generating the vmlinux.ctfa archive
mentioned above: it is no longer linked into in-tree modules. The old
CONFIG_DT_DISABLE_CTF option is thus removed, as is the ctf.ko module.

• You can no longer build CTF as root.

• Kernel CTF type generation now understands the DWARF generated by GCC 6; one
more problem with representation of bitfields is fixed; and one sort of painfully manually-
maintained type-related blocklist is now automated away.

• Some unused variable warnings in the io provider are squashed.

0.6.1 (Aug 7th, 2017)
Licensing changes:

• Userspace is now licensed under the Universal Permissive License (UPL) v1.0. The
kernel module is now GPLv2, and is shipped in the same package as other in-tree kernel
modules.

/usr/lib64/dtrace/load_dtrace_modules no longer tries to yum install anything (but will still
modprobe modules listed in /etc/dtrace-modules).

New features:

• A new link_ntop() subroutine is provided, which is like inet_ntop() except it returns a
human-readable string describing the link-layer address. Ethernet and InfiniBand are
currently supported.

• A default set of modules is now provided in /etc/dtrace-modules. The file was supported
since 0.4.5, but no /etc/dtrace-modules was shipped by default.

• The TCP and UDP providers are implemented, with associated translators.

• The IO provider has been completely rewritten and is dramatically improved, with support
for most local filesystems and explicit support for XFS and NFS.

Bugfixes:

• Do not require sdt.ko to be loaded before allowing the use of the 'cpu' variable.

• Passing an object file through dtrace -G no longer corrupts it on SPARC64, echoing a
similar bugfix made to x86 long ago.

• Improve tracking of process state on SPARC64 a bit.

• Bitfields in kernel types are now better-supported, though some bitfields still do not work,
notably those crossing machine word boundaries.

• dtrace_print_lquantize() no longer normalizes the name of the lowest bucket, only the
bucket contents (as intended).

• jstack() was fetching data from the wrong offset, leading to garbage output at the start of
the stack dump.

Chapter 2
0.6.1 (Aug 7th, 2017)

2-23

• Reading of unaligned data from high addresses in traced processes was failing. In
practice only SPARC has any data at addresses high enough to cause this, and
most of the accesses done are aligned: but the machinery that adjusts to changes
in glibc's internal data structures was broken, leading to failures to look up symbols
after certain glibc upgrades.

• dtrace -C and -G now search for cpp and ld along the PATH rather than defaulting
to /usr/bin/cpp and /usr/bin/ld, fixing failures with compilers in non-default
locations, like the Software Collections devtoolset packages.

• dtrace-utils-devel now requires elfutils-libelf-devel. (This dependency was always
present in practice but was mistakenly omitted until now.)

0.6.0 (Apr 3rd, 2017)
Kernel release:

4.1.12-97.el6uek

New features:

• Function boundary tracing (FBT) is supported for entry probes to most functions in
the core kernel. The current implementation does not support retrieval of function
arguments or return probes (except for some limited support on x86_64). These
features are currently under development.

• The ip provider is implemented, supporting ip:::send, ip:::receive, ip:::drop-in and
ip:::drop-out, with parameters compatible with other implementations and
appropriate translators. IPv4 and IPv6 are both supported.

• Userspace tracepoints (USDT) now work on SPARC for both 64- and 32-bit
processes.

• The types and translators used by SDT probes are now acquired from the
DTRACE_PROBE macros in the kernel source. New probe argument types and
translations are picked up automatically without needing to change the module at
all. perf-event probe argument types are acquired in the same way.

• The DTRACE_PROBEn() macros used for SDT probes have been supplanted by
a new DTRACE_PROBE() macro which works exactly the same except that you
don't need to count the arguments any more and misuses (args with no types, etc)
are diagnosed even when CONFIG_DTRACE is disabled. Much the same has
been done for USDT, except that the old numbered USDT macros remain
available for code that must be compiled with compilers that don't support
__VA_ARGS__ comma elision (such as GCC when in c89/strict-ANSI mode). This
involves a new, installed, internal header, /usr/include/sys/sdt_internal.h.

• is-enabled probes are now supported for SDT: these are expressions which
always return false unless the specified probe is enabled, generally used directly
in if statements, and can be used to suppress collection of expensive data only
needed for probes until the probes that use them are enabled:

if (DTRACE_PROBE_ENABLED(probename)) /* expensive stuff */

Per-provider wrappers for DTRACE_PROBE_ENABLED() can be used, as with
DTRACE_PROBE() itself.

• dtrace consumers (including dtrace(1)) can now grab themselves via -p, though
symbol resolution is degraded when they do so because they cannot stop
themselves. (Previously, such grabs were suppressed but the code to do so was

Chapter 2
0.6.0 (Apr 3rd, 2017)

2-24

buggy and caused dtrace not to terminate if dtrace was asked to do a self-grab in
conjunction with a -c of some other process, even once the other process had
terminated.)

• D translators for the ip provider are now available.

Bugfixes:

• Due to a logic error in preemption handling, it was possible that code was being executed
under the assumption that preemption was disabled when in fact it was not.

• Probe processing (probe context) is not re-entrant, yet probes firing as a result of
processing another probe would cause re-entry into the processing core, with often
horrible effects. The processing core has been modified to block any re-entry attempt
except for ERROR probe processing. That is a deliberate (and acceptable) exception in
the DTrace design.

• The fast path implementation for obtaining the value of the D 'caller' variable for sparc64
has been corrected.

• The implementation of the D 'stack' action has been made more robust, making sure that
memory access faults are not fatal.

• The implementation of the D 'ustack' action has been reworked completely to improve
stability and accuracy.

• The number of stack frames to skip has been adjusted to changes in the implementation
of various providers, ensuring that DTrace related frames are skipped as they should.
This makes the D 'stack' action and the D 'caller' variable values correct.

• The implementation of the D 'stackdepth' variable could cause memory writes beyond the
end of the DTrace probe scratch buffer.

• Numerous dtrace -c/-p and USDT fixes on SPARC systems, with symptoms varying from
a hanging dtrace and child process to a dtrace that runs out of file descriptors.

• Fix memory and fd leaks when a process monitored with -c or -p exec()s frequently.

Changes to user-visible internals:

• DTrace now uses /proc/$pid/map_files, where available.

• The implementation of the D 'ustack' action has been moved into the kernel proper. This
change was motivated by the need to access page table structures directly using a lock-
free mechanism.

• Probe processing will be bypassed when the system is entering panic mode, This
ensures that DTrace will not cause panic related output to be disrupted.

• dtrace -S now dumps the offset of DIF as well as the instruction counter, allowing you to
more easily match up DIF disassembly with errors from the kernel.

• Predicate DIF is disassembled in dtrace -S output.

0.5.4 (Nov 8th, 2016)
Workarounds:

• Work around a bug in elfutils causing massive corruption of object files when dtrace -G is
used.

Chapter 2
0.5.4 (Nov 8th, 2016)

2-25

0.5.3 (May 25th, 2016)
Kernel release:

4.1.12-43.el6uek

New features:

• It is now possible to have perf-events presented as DTrace SDT probes. This
feature is turned on by default in the kernel. The probes will appear with the same
names as the perf-events and are grouped under the new 'perf' SDT provider.

In its current implementation, the perf-events DTrace probes do not offer argument
type information as is seen with standard DTrace SDT probes.

Bugfixes:

• On sparc64, it was possible to crash the system by unloading and reloading the
sdt DTrace multi-provider module due to the handling of memory that is set aside
for SDT probe trampolines. This bug has been fixed.

Crash fixes:

• When dtrace(1) exited at the same instant as a process it had grabbed (e.g. for
ustack()) terminated, it could deadlock or crash with an assertion failure or a
segmentation fault.

0.5.2 (Feb 3rd, 2016)
Kernel release:

4.1.12-33.el6uek

Crash fixes:

• Programs containing USDT probes can crash at startup or dlopen() time if shared
libraries are mapped into the top half of the address space. This never happens on
x86-64 but is common on SPARC64: dtrace -G should be rerun on programs on
such platforms that contain USDT probes, to link in the fixed ELF constructor.

Performance improvements:

• dtrace(1) no longer wastes time in a CPU-heavy busywaiting loop: previously, the
sleeping code was mistakenly picking a time in the past to sleep to roughly half the
time

Bugfixes:

• dtrace -c and -p now work on SPARC64.

• When both entry and return probes were enabled for a system call, upon disabling
the first, the function pointer in the system call table got reset to its default value
even though the 2nd probe might still be active. This could cause race conditions
in the state of the system call probing.

Chapter 2
0.5.3 (May 25th, 2016)

2-26

• Access to the SPARC64 R_L7 register was consistently failing due to an off-by-one bug.

• It was possible to read past the beginning of the stack for a user process. The
mechanism for reading stack slots also got updated to increase efficiency, consistency
and reliability across architectures.

• While reading the stack of a userspace process, the stack bias was not being applied for
architectures that need it, causing an abundance of essentially invalid values to pollute
the result.

0.5.1 (Nov 17th, 2015)
Kernel release:

4.1.12-24.el6uek

Bugfixes:

• When copyout() or copyoutstr() is used in a D script, safety checks are now enforced to
protect against unprivileged memory accesses.

• The DTrace modules package no longer prevents automated kernel RPM removal when
the install limit is reached.

• It is now possible to access the envp and argv arrays in the psinfo for a task using
copyin(). This is the convention across DTrace-capable systems.

Performance improvements:

• dtrace(1) and libdtrace(1) startup speed is improved, both by avoiding a filesystem walk
by using the modules.order file to locate available kernel modules, and by avoiding
loading all kernel modules to resolve possible types when unqualified probe names that
cannot possibly be C identifiers are seen (like 'tick-1sec'). When the disk cache is cold
these changes speed up startup by on the order of 2x.

Changes to user-visible internals:

• The DTRACE_DEBUG debugging option could intermingle debugging output in limited
ways when multiple threads were emitting debugging at once.

0.5.0 (Aug 10th, 2015)
Kernel release:

4.1.4-4.el6uek

New architectures:

• Linux on SPARC64 is supported with the following providers: dtrace, profile, syscall, and
SDT. Userspace tracing doesn't work yet.

• The uid / gid handling has been updated to accommodate namespace support at the
kernel level (kuid and kgid). All uid / gid values reported by D subroutines (or obtained
from structures) are evaluated based on the initial user namespace.

Chapter 2
0.5.1 (Nov 17th, 2015)

2-27

New options:

• -xuseruid: On non-systemd systems (such as OL6), specify the user ID of the first
non-system user. (The default will normally be appropriate.) Processes with uids
below this, and which appear to truly be daemons, are only ptrace()d if explicitly
specified via dtrace -p or -c.

• -xsysslice: On systemd systems (such as OL7), specify the name of the system
slice. (The default will almost always be appropriate.) Processes in this slice or the
root slice are considered crucial system daemons and only ptrace()d if explicitly
specified, as above.

The systemd/non-systemd determination is made dynamically, so you can switch
init systems freely and everything should still work.

Changes to user-visible internals:

• Translator support for the UEK4 4.1 kernel.

• Accessing kernel memory under NOFAULT protection now implies NOPF (no page
fault) as well. Previously, NOPF was an option that could be set in addition to
NOFAULT.

• Debugging output has been improved (to be enabled at compile time).

• The datatype formerly known as sdt_instr_t has been renamed asm_instr_t. The
rationale behind this change is that it will be used in code beyond the SDT
provider and therefore a more generic name is appropriate.

Bugfixes:

• Symbol resolution in non-ptraceable processes is improved.

• dtrace -p with an invalid PID now produces a sensible error message.

0.4.6 (Jun 30th, 2015)
New dependencies:

• dtrace-utils-devel now always pulls in the corresponding version of dtrace-utils,
rather than being satisfied with whatever version is installed. [Introduced in DTrace
0.3.0.]

• The DTrace kernel header package was renamed dtrace-modules-shared-headers
in dtrace-modules 0.4.4; dtrace-utils now follows this renaming.

New options:

• dtrace -vV now reports information on the released version of dtrace, as well as
the internal version-control ID of dtrace(1) and libdtrace(1). (The last two should
always be the same unless the installation is faulty.)

Bugfixes:

• Processes that receive SIGTRAP in normal operation now work even when being
dtraced for a ustack(), etc. Previously, the SIGTRAP would be ignored. [Introduced
-- intentionally -- in DTrace 0.4.5, though this case would have misbehaved in
other ways since 0.4.0.]

Chapter 2
0.4.6 (Jun 30th, 2015)

2-28

• DTrace no longer loses track of processes that exec() while DTrace is looking at their
dynamic linker state.

• DTrace no longer leaves breakpoints lying around in fork()ed processes, but properly
detaches from them and removes its breakpoints.

• DTrace no longer considers that it knows the state of the symbol table of processes it has
since stopped monitoring.

• DTrace no longer crashes multithreaded processes that do dlopen() / dlclose(). [All
introduced in DTrace 0.4.0.]

Library interface changes:

• Including <dtrace.h> used to fail because of the absence of a Solaris-specific header we
did not ship. That header is no longer called for.

Changes to user-visible internals:

• DTrace now loads D libraries (with translators, etc) from directories with a name that
depends upon the running kernel, so can support multiple kernels with the same
userspace package.

Known problems:

• Multithreaded processes under u{stack,sym,addr,mod}() which do dlopen() in threads
other than the first may not have accurate symbol resolution for symbols introduced by
such dlopen()s.

0.4.5 (Jun 17th, 2015)
Kernel release:

3.8.13-87.el6uek

New features:

• Provider modules are now automatically loaded from /etc/dtrace-modules when DTrace
initializes for the first time, at the same time as dtrace.ko. (Providers that do not come
from the dtrace-modules package are not automatically 'yum install'ed.)

• It is now possible to use USDT probes in 32-bit applications on 64-bit hosts.

Bugfixes:

• Fixed a (minor) memory leak problem with the help tracing facility in DTrace. Upon
loading the dtrace.ko module, a buffer (by default 64K) was being allocated, and it was
never released.

• Stack backtraces are more accurate as a result of various fixes to adjust the number of
frames to skip for specific probes.

• Datatypes have been adjusted to be more carefully specified after a detailed audit in
preparation for supporting architectures other than x86_64.

• The stack depth was being determined by requesting a backtrace to be written into a
temporary buffer that was being allocated (vmalloc), which posed significant problems
when probes were executing in a context that does not support memory allocations. The
buffer is now obtained from the scratch area of memory that DTrace provides for probe
processing.

Chapter 2
0.4.5 (Jun 17th, 2015)

2-29

• It was possible to cause a system crash by passing an invalid pointer to d_path().
Due to its implementation, it is not possible to depend on safe memory accesses
to avoid this. Instead, the pointer passed as argument must be validated prior to
calling d_path() in the kernel.

• Fix intermittent dtrace crash on failure of initial grabs or creations of processes (via
dtrace -p or -c, or via ustack(), usym(), uaddr(), or umod()).

• Fix dtrace -S DIF subr names. [Introduced in DTrace 0.4.0.]

• DTrace can now reliably monitor processes that undergo exec() and processes
that are hit by stopping signals and later resumed. (Previously, it would sometimes
lose track of the victim process, sometimes kill it with a SIGTRAP, and sometimes
crash itself.) Numerous other subtle bugs and deadlocks in this area have been
fixed as a side-effect.

• Fix a sign-extension bug in breakpoint-instruction poking which could cause the
monitored process to crash. [Introduced in DTrace 0.4.0.]

• DTrace is now more resilient against changes to glibc: many places where non-
ABI-guaranteed internals of glibc are relied upon now dynamically search for the
correct field offsets, so are resilient against new fields appearing in glibc's internal
structures, and against fields changing size.

Library interface changes:

• The dtrace_proc_*() functions have changed the type they take (it is now a small
structure passed by value). See INCOMPATIBILITIES.

There are still no binary-compatibility guarantees for libdtrace consumers.

Changes to user-visible internals:

• The code has been restructured to facilitate supporting architectures other than
x86_64 in future releases.

• The d_path() D subroutine requires its argument to be a pointer to a path struct
that corresponds to a file that is known to the current task (see bugfixes below).

Known problems:

• Processes under u{stack,sym,addr,mod}() cannot receive SIGTRAP.

• Multithreaded processes under u{stack,sym,addr,mod}() which do dlopen() in
threads other than the first may crash.

0.4.4 (Mar 12th, 2015)
Kernel release:

3.8.13-69.el6uek

New options:

• -xcppargs: Additional arguments to pass to the preprocessor when run over D
scripts by DTrace.

Chapter 2
0.4.4 (Mar 12th, 2015)

2-30

Bugfixes:

• The DOF ELF object generated by dtrace -G no longer requires an executable stack.

• Renamed the dtrace-modules-headers package to dtrace-modules-shared-headers to
work around problems in Yum where a symbol has had both versioned and unversioned
provides over time.

0.4.3 (May 1st, 2014)
Kernel release:

3.8.13-33.el6uek

New features:

• Timer based profile-* probes (profile provider). These probes use the omni-present cyclic
support in the UEK3 kernel (3.8.13-32 and later) to fire probes at a specific frequency/
interval on every active CPU.

Bugfixes:

• Several memory-allocation, underrun and overrun bugs in process handling were fixed.
With sufficient ingenuity these may be exploitable by local users who can craft and run
unusual ELF executables and arrange for dtrace to attach to them.

• The pid and ppid variables were being reported based on the kernel task PID, which is
not the same as the userspace concept of a PID (for threaded applications). We now
pass (more correctly) the thread group id (tgid).

• Since userspace doesn't know about thread kernel level) pids, we are now also passing
the tgid in the result of ustack, usym, etc... We pass the tgid in the first slot, and the
(kernel) pid in the second slot.

• Major reworking of the dtrace_getufpstack() implementation to handle locking, stack
detection, and potential page fault while accessing the stack of a task.

Known problems:

• As a result of earlier code changes to ensure that all memory allocation requests are
checked for failures, the test for auto-resize behaviour of the principal buffer allocations
results in the dtrace utility aborting processing rather than continuing operation with the
reduced buffer size. This is overall a non-harmful regression that will be addressed in a
future release.

0.4.2 (Dec 20th, 2013)
Kernel release:

3.8.13-22.el6uek

New features:

• SDT probe points in kernel modules are now supported.

• The 'vtimestamp' D variable has been implemented.

Chapter 2
0.4.3 (May 1st, 2014)

2-31

Bugfixes:

• Kill -9'ing a running dtrace will no longer leave breakpoints outstanding in
processes with no controlling terminal that were grabbed as a side effect of
ustack(), usym(), uaddr() or umod); as a side effect, symbol resolution will be less
accurate for such processes. Grabbing a process with no controlling terminal via
dtrace -p restores full symbol resolution accuracy for these processes, at the cost
of dropping breakpoints in them again. Processes with a controlling terminal are
still treated as in prior releases.

• ustack(), usym(), uaddr() and umod() of multithreaded processes no longer
crashes the system, oopses the kernel, hangs the process being probed, crashes
dtrace(1) itself, or runs dtrace or the system as a whole out of filehandles.

• Interrupting dtrace with a SIGINT while monitored processes are dying
simultaneously now consistently stops it rather than hanging forever.

• dtrace's symbol-resolution paths are armoured against various problems which
could occur when processes died while lookups were underway.

• pid and ppid are now correctly derived for multithreaded processes, pointing to the
POSIX pid and parent respectively rather than the thread and thread group leader.

• Resolving kernel symbols located at the start of modules will no longer cause
dtrace userspace to dereference uninitialized memory as a pointer.

0.4.1 (Nov 6th, 2013)
Kernel release:

3.8.13-16.2.1.el6uek

New features:

• DTrace now automatically modprobes for dtrace.ko if needed, and yum installs it if
it is not found on the system. Provider modules are not automatically modprobed,
but running (for example) dtrace -l is now a good way to make sure that the
modules are present on the system so you can modprobe them.

• It is no longer permissible to have non-unique provider names within the context of
a userspace process. I.e. it is not permissible for the main executable and a
loaded shared library, or two loaded shared libraries, to list the same provider
name in their DOF sections.

• A new cyclic implementation has been included in the UEK3 kernel, replacing the
more error prone former version. The modules code has been updated to use that
new implementation.

• New development tools showUSDT (for dumping of DOF sections) and
ctf_module_dump (for dumping of CTF in kernel modules). (The former tool is an
example only, and is installed in the documentation directory.)

Bugfixes:

• A lexer bug was fixed which caused spurious errors if D scripts contained a
pragma or comment at intervals of 8192 characters, and prevented the use of
scripts >16KiB entirely. [Introduced in the original Linux port]

• A variety of memory leaks and uninitialized memory reads are fixed.

Chapter 2
0.4.1 (Nov 6th, 2013)

2-32

• A bug whereby breakpoints could be left outstanding in a process if dtrace was
interrupted with an ordinary SIGINT at just the wrong instant is fixed. [Introduced in
DTrace 0.4.0.]

• The visibility of .SUNW_dof sections was wrong. [Introduced in DTrace 0.4.0.]

• Fix devinfo_t's dev_statname and dev_pathname for cases where the device does not
have partitions. [Introduced in DTrace 0.4.0.]

• drti.o, which contributes a constructor to programs and shared libraries that contain DOF,
now has lower overhead when DTrace is not running, emits its errors to stdout, not stderr,
and opens its files with O_CLOEXEC. [Introduced in DTrace 0.4.0.]

• Lock ordering problems that were inherited from the original code are fixed.

• Userspace stack memory accesses are now performed in a safe manner.

• A race condition between speculative tracing buffer cleaning and destroying consumer
state has been resolved.

• A memory leak related to consumer state has been fixed.

• A provider reference counter calculation problem was resolved.

• The 'errno' D variable now holds the correct value during syscall:::return probe action
execution, i.e. 0 if the syscall completed without an error, and a valid error code if the
syscall failed.

0.4.0 (Sep 20th, 2013)
Kernel release:

3.8.13-16.el6uek

New features:

• Support for meta-providers, such as fasttrap (used for userspace tracing). A meta-
provider implements a framework to instantiate providers dynamically (on demand).

• Userspace Statically Defined Tracing (USDT) provides support for SDT-alike probes in
userspace executable and libraries. Two types of probes are available: regular SDT-alike
probes, and is-enabled probes. A new header file (sys/sdt.h) is installed in support of
USDT.

• The fasttrap provider has been implemented, although it is currently only supporting
USDT probes.

• Symbol lookup now works: stack() and ustack() now print symbols, as does &. ustack()
can look up symbols in libraries loaded with dlopen() and dlmopen() as well as via
DT_NEEDED. Symbol lookup of global symbols in userspace processes respects symbol
interposition and all other symbol-ordering trickery. Some of the machinery involved in
this only works with programs running against specific versions of the GNU C Library. (It
will always work with the version of glibc shipped with OEL, and falls back to a simpler
approach which does not support symbol interposition or dlmopen() if it appears an
incompatible glibc is in use).

This depends on new machinery in the kernel, notably waitfd()s and
PTRACE_GETMAPFD, so will not work with earlier DTrace kernels.

• -xevaltime={preinit, postinit, main} now work, with a few caveats:

– postinit (the default) is equivalent to main.

Chapter 2
0.4.0 (Sep 20th, 2013)

2-33

– On statically linked binaries, preinit is equivalent to exec, and may not skip
ld.so initialization (which can happen after main() on such binaries).

– On stripped, statically linked binaries, postinit and main are equivalent to
preinit, because we cannot look up the 'main' symbol when there is no symbol
table.

• DTrace options can now be set from environment variables named
DTRACE_OPT_*. Example:

export DTRACE_OPT_INCDIR=/usr/lib64/dtrace:/usr/include/sys

Changes to user-visible internals:

• The ELF section in which CTF data is stored has changed from .dtrace_ctf to .ctf.

• The storage representation of internal kernel symbols is improved, saving DTrace
memory usage at startup by a megabyte or so.

• The libdtrace public API header now names its arguments. A few other libdtrace
functions have changed prototype: see INCOMPATIBILITIES.

• Two undocumented libproc environment variables from Solaris are removed,
because the code whose behaviour they adjusted no longer exists:
_LIBPROC_INCORE_ELF and _LIBPROC_NO_QSORT.

• New low-overhead debugging machinery. Exporting DTRACE_DEBUG=signal in
the environment will emit debugging output only when DTrace is hit by a
SIGUSR1, avoiding all printf() locking overhead until then. This uses a ring buffer
to stop debugging output, by default 100Mb in size, changeable via the
DTRACE_DEBUG_BUF_SIZE variable (which takes a size in megabytes).

• What was previously defined as a meta-provider (see 0.2.0 below) is in fact better
defined as a multi-provider, i.e. a provider framework that handles multiple
providers that essentially share (the majority of) a single implementation, such as
SDT where probes are grouped together into providers even though they are all
provided by the same provider (sdt).

• The DTrace header files in the kernel proper, the kernel modules, and the
userspace utility have been restructured to avoid duplication and to offer a more
consistent and clean design. This also offers better support for custom consumers
or other DTrace-related utilities.

• The systrace provider has been updated to account for changes in the Linux
kernel (between 2.6.39 and 3.8.13).

Bugfixes:

• It is now possible to get the correct value for the ERR registers.

• The ustack() and jstack() actions were not passing the PID correctly as the first
element in the result array.

• The ustack() action implementation has been replaced.

• Several obscure locking problems have been resolved.

• Correct handling of arg5 through arg9.

• The -h and -G command-line options work.

• Negative values passed to DTrace options that take only positive integers are
correctly diagnosed as errors again.

Chapter 2
0.4.0 (Sep 20th, 2013)

2-34

Known problems:

• Presently, kill -9'ing a running dtrace can leave breakpoints outstanding in other
processes, which may sooner or later kill them. This will be fixed in due course (by
avoiding the use of breakpoints in more cases).

0.3.0 (Sep 14th, 2012)
Kernel release:

2.6.39-201.0.1.el6uek

New features:

• CTF support. This exposes all kernel types declared at the global scope to DTrace scripts
(even those private to single files). All global kernel variables not declared static are also
available to the ` operator as external variables.

The module for kernel-wide symbols is known as vmlinux, but genunix can still be used
as a name for it to aid script portability.

Kernel modules from a compatible kernel must be visible to DTrace for this feature to
work, as must the kernel-provided file /proc/kallmodsyms. DTrace will work with no kernel
modules, with no visible /proc, or with a kernel whose modules do not contain type
information, but no kernel types or variables will be available. (See -xprocfspath and -
xmodpath below.)

• The curcpu builtin variable has been implemented as a DIF builtin variable on Linux,
providing a pointer to the CPU info structure for the CPU that is currently active.

• A new DIF subroutine has been implemented: d_path(). This subroutine takes a pointer
to a path structure as argument, and returns a string representing the full pathname for
that path.

• The raise() action has been implemented. This action allows a D script to raise a signal in
the current task.

• The io provider probes has been implemented. It provides the following SDT probes:
start, wait-start, wait-done, and done.

• The proc provider has been implemented. It provides the following SDT probes: create,
exec, exec-failure, exit, lwp-create, lwp-exit, lwp-start, signal-clear, signal-discard, signal-
handle, signal-send, start.

• The sched provider has been implemented. It provides the following SDT probes:
change-pri, dequeue, enqueue, off-cpu, on-cpu, preempt, remain-cpu, sleep, surrender,
tick, wakeup.

• Argument mappings have been provided for io, proc, and sched provider probes. This
information is used by userspace consumers.

New dependencies:

• DTrace now depends on libdtrace-ctf, a modified, GPLed port of the Solaris libctf type-
storage library. Despite its name it cannot read Solaris CTF files: the file formats are
incompatible.

Chapter 2
0.3.0 (Sep 14th, 2012)

2-35

New options:

• -xprocfspath: if set, specifies the path to /proc. May be useful in chroots, though
glibc and other things may break if /proc is moved to another location.

• -xmodpath: if set, specifies the path to kernel modules, rather than looking in /lib/
modules/$(uname -r).

Options removed:

• The undocumented -xlinkmode=primary option is removed: it never worked in
DTrace for Linux in any case.

Bugfixes:

• The -c and -p command-line options work.

• Lexer bugs causing aggressive and unnecessary reading of modules are fixed. As
a result, when used with typo-free scripts, DTrace now starts much faster than
ever it did on Solaris (often taking half the time or less). You may find a few error
messages have changed error text (though not error tag) as a result of this bugfix
and the following one.

• The SDT provider now describes its argument types to DTrace userspace.

• The types of many DTrace actions and variables are fixed to correspond to the
Linux reality.

• The set of available error numbers in errno.d is more complete.

• DTrace libraries are installed to /usr/lib64 now, not /usr/lib.

• Users of dtrace -C can now include <sys/dtrace.h> without incident.

• Various DIF builtin variables that were providing a hardcoded value based on the
init task whenever a probe was executing in interrupt context are now providing
the actual value from the current task. In Linux, there is always a valid task
structure available as 'current'.

• The numbering of the registers for the x86_64 architecture has been updated to
match the order of registers pushed onto the stack.

• It is now possible to get the correct value for the DS, ES, FS, and GS registers.

• SDT probes are now correctly cleaned up when the SDT meta-provider module is
unloaded from the system.

• The rw_read_held() DIF subroutine will now verify whether it can safely access the
passed in argument based on the correct argument datatype.

Changes to user-visible internals:

• A new file /proc/kallmodsyms now exists, like /proc/kallsyms but giving object sizes
and listing the module each kernel object would be part of were it built as a
module, even if it is currently built in.

• A new module dtrace_ctf.ko is pulled in whenever dtrace.ko is loaded. It is a
container for type information.

• The undocumented -B buffer-inspection command-line option no longer crashes
DTrace.

Chapter 2
0.3.0 (Sep 14th, 2012)

2-36

• The invalid operand trap logic previously provided to support SDT probes has been made
more generic to support any probes that wish to utilize this facility.

• The DTrace core module now depends on the core kernel CTF data-module, to ensure
that when DTrace modules are loaded on the system, CTF data for the kernel will be
available also.

0.2.5 (Mar 19th, 2012)
Userspace release only.

New features:

• libdtrace is now a shared library, just as on OpenSolaris, with a very similar API. No API
or ABI compatibility guarantees are made regarding this library, at present.

0.2.4 (Feb 15th, 2012)
Kernel release:

2.6.39-101.0.1.el6uek

Bugfixes:

• Provider modules now use a reference counter to determine whether any of their probes
are currently enabled. Whenever the reference counter has a value greater than zero, the
provider module is referenced to ensure that it cannot be unloaded. Once the counter
drops down to zero, the reference on the module is released. This prevents providers
from being unloaded while some of their probes are still in use (which would typically lead
to a kernel panic).

0.2.3 (Feb 10th, 2012)
Kernel release:

2.6.39-101.0.1.el6uek

Internal changes:

• The DTrace core has been updated to support 28 DTrace option settings, to account for
the 'quietresize' option that was added to the userspace dtrace consumer utility.

Bugfixes:

• Various assertions in the DTrace core implementation incorrectly used mutex_is_locked()
where the test was meant to determine whether the current task holds the mutex. This
has been corrected.

0.2.0 (Jan 25th, 2012)
Kernel release:

2.6.39-101.0.1.el6uek

Chapter 2
0.2.5 (Mar 19th, 2012)

2-37

This release brings DTrace for Linux to the 2.6.39 kernel, as an upgrade from the
previous release based on 2.6.32.

New features:

• The DTrace core and provider API now support meta-providers, a framework that
provides multiple providers using a common implementation.

• The Statically Defined Tracing (SDT) provider is implemented, providing in-kernel
static probes. Some of the proc provider is implemented using this facility.

Bugfixes:

• Syscall tracing of stub-based syscalls (such as fork, clone, exit, and sigreturn) now
works.

• Invalid memory accesses inside D scripts no longer cause oopses or panics.

• Memory exhaustion inside D scripts no longer emits spurious oopses.

• Several crash fixes.

• Fixes to arithmetic inside aggregations, fixing quantize().

• Improvements to the installed headers.

Internal changes:

• The minimal cyclic implementation has been removed from the DTrace modules
because it is now provided by an equivalent GPL implementation in the core
kernel.

• CPU core information is now maintained at the core kernel level.

• Kernel and module code can now perform safe memory accesses by setting a flag
in the CPU core information structure. If a memory access results in a Page Fault
or General Protection Fault, the failure will be noted as a CPU fault, and execution
will continue rather than causing a kernel panic.

• Functionality that depends on walking the stack (determining stack depth, or
collecting a backtrace) is now provided by a GPL implementation in the core
kernel.

• In the interest of consistency, a pseudo kernel module structure is created at the
core kernel level, representing the main kernel image. This module structure
makes it possible to represent all kernel-level objects equally. This structure
provides a list of SDT probe locations in the core kernel.

0.1.0 (Oct 20th, 2011)
First release.

Working components:

• the entire D language, with the exception of parts that depend on symbol lookup or
CTF

• The vast majority of the DTrace core functionality has been implemented,
providing a nearly complete DIF/DOF implementation (including predicates,
aggregates, and speculative tracing support), provider API, ioctl interface for
userspace consumers, and direct probe invocation.

Chapter 2
0.1.0 (Oct 20th, 2011)

2-38

• BEGIN, END, and ERROR probes (dtrace provider).

• Syscall entry and return probes (systrace provider), with the exception of the clone probe,
which is disabled

• the profile provider (timer-based tick-* probes, no arbitrary-precision profile timers).

• kernel stack tracebacks, but ustack() prints addresses only, no symbols

Major components not yet present include all the other providers, including sdt usdt.

Chapter 2
0.1.0 (Oct 20th, 2011)

2-39

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About DTrace
	DTrace v2.0
	Example Usage

	2 Changelog
	2.0.0-1.13.1 (Jun 7th, 2023)
	2.0.0-1.13 (May 26th, 2023)
	2.0.0-1.12 (Feb 27th, 2023)
	2.0.0-1.11 (Nov 9th, 2022)
	2.0.0-1.10 (Apr 26th, 2022)
	2.0.0-1.9 (Dec 8th, 2021)
	2.0.0-1.8 (Oct 15th, 2021)
	2.0.0-1.7 (Sep 9th, 2021)
	2.0.0-1.6 (Jun 18th, 2021)
	2.0.0-1.5.1 (Apr 12th, 2021)
	2.0.0-1.4 (Dec 9th, 2020)
	2.0.0-1.3 (Oct 2nd, 2020)
	2.0.0-1.2 (Aug 6th, 2020)
	2.0.0-1.0 (Apr 24th, 2020)
	2.0.0 (Mar 10th, 2020)
	1.2.1 (Feb 12th, 2019)
	1.2.0 (Dec 13th, 2018)
	1.1.1 (Oct 25th, 2018)
	1.1.0 (Aug 10th, 2018)
	1.0.4 (Aug 10th, 2018)
	1.0.3 (Jul 24th, 2018)
	1.0.2 (May 10th, 2018)
	1.0.1 (Apr 28th, 2018)
	1.0.0 (Mar 27th, 2018)
	0.6.2 (Sep 12th, 2017)
	0.6.1 (Aug 7th, 2017)
	0.6.0 (Apr 3rd, 2017)
	0.5.4 (Nov 8th, 2016)
	0.5.3 (May 25th, 2016)
	0.5.2 (Feb 3rd, 2016)
	0.5.1 (Nov 17th, 2015)
	0.5.0 (Aug 10th, 2015)
	0.4.6 (Jun 30th, 2015)
	0.4.5 (Jun 17th, 2015)
	0.4.4 (Mar 12th, 2015)
	0.4.3 (May 1st, 2014)
	0.4.2 (Dec 20th, 2013)
	0.4.1 (Nov 6th, 2013)
	0.4.0 (Sep 20th, 2013)
	0.3.0 (Sep 14th, 2012)
	0.2.5 (Mar 19th, 2012)
	0.2.4 (Feb 15th, 2012)
	0.2.3 (Feb 10th, 2012)
	0.2.0 (Jan 25th, 2012)
	0.1.0 (Oct 20th, 2011)

