
Oracle Linux
KVM User's Guide

F29966-22
October 2023



Oracle Linux KVM User's Guide,

F29966-22

Copyright © 2020, 2023, Oracle and/or its affiliates.



Contents

 Preface

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vii

1   About Oracle Linux KVM

Description of the Oracle Linux KVM Feature 1-1

Guest Operating System Requirements 1-1

Linux Guest Operating Systems 1-1

Microsoft Windows Guest Operating Systems 1-2

Oracle Solaris Guest Operating System 1-3

System Requirements and Recommendations 1-3

About Virtualization Packages 1-4

2   Installing KVM User Space Packages

Configuring Yum Repositories and ULN Channels 2-1

Oracle Linux 7 2-1

Subscribing to ULN Channels 2-7

Enabling Yum Repositories 2-7

Oracle Linux 8 2-7

Subscribing to ULN Channels 2-9

Enabling Yum Repositories 2-9

Oracle Linux 9 2-9

Subscribing to ULN Channels 2-11

Enabling Yum Repositories 2-11

Installing Virtualization Packages 2-11

Installing Virtualization Packages During an Oracle Linux System Installation 2-11

Using the Installation Program to Install Virtualization Hosts 2-11

Using a Kickstart File to Install Virtualization Hosts 2-12

Installing Virtualization Packages on an Existing System 2-12

iii



Upgrading Virtualization Packages 2-13

Switching Application Streams on Oracle Linux 8 2-14

Switching to the Oracle KVM Stack 2-14

Switching to the Default KVM Stack 2-14

Validating the Host System 2-15

3   KVM Usage

Checking the Libvirt Daemon Status 3-1

Oracle Linux 7 and Oracle Linux 8 3-1

Oracle Linux 9 3-1

Working With Virtual Machines 3-2

Creating a New Virtual Machine 3-2

Starting and Stopping Virtual Machines 3-3

Starting a VM 3-3

Shutting Down a VM 3-3

Rebooting a VM 3-4

Suspending a VM 3-4

Resuming a Suspended VM 3-4

Forcefully Stopping a VM 3-4

Deleting a Virtual Machine 3-4

Configuring a Virtual Machine With Watchdog Device 3-5

Configuring a Virtual Machine With a Virtual Trusted Platform Module 3-7

Working With Storage for KVM Guests 3-9

Storage Pools 3-9

Creating a Storage Pool 3-10

Listing Storage Pools 3-10

Starting a Storage Pool 3-11

Stopping a Storage Pool 3-11

Removing a Storage Pool 3-11

Storage Volumes 3-11

Creating a New Storage Volume 3-12

Viewing Information About a Storage Volume 3-12

Cloning a Storage Volume 3-13

Deleting a Storage Volume 3-13

Resizing a Storage Volume 3-13

Managing Virtual Disks 3-13

Adding a Virtual Disk 3-13

Removing a Virtual Disk 3-14

Extending a Virtual Disk 3-14

Working With Memory and CPU Allocation 3-15

iv



Configuring Virtual CPU Count 3-15

Configuring Memory Allocation 3-16

Setting Up Networking for KVM Guests 3-17

Setting Up and Managing Virtual Networks 3-18

Adding or Removing a vNIC 3-19

Bridged and Direct vNICs 3-20

Interface Bonding for Bridged Networks 3-22

Cloning Virtual Machines 3-22

Preparing a Virtual Machine for Cloning 3-23

Cloning a Virtual Machine by Using the Virt-Clone Command 3-25

Cloning a Virtual Machine by Using Virtual Machine Manager 3-25

4   Known Issues for Oracle Linux KVM

Upgrading From QEMU 3.10 to Version 4.2.1 Can Prevent Existing KVM Guests From
Starting on Oracle Linux 7 4-1

Using vTPM With a Guest Fails on Oracle Linux 9 if FIPS Mode Is Enabled 4-1

Downgrading Application Streams Fail 4-2

v



Preface

Oracle Linux: KVM User's Guide provides information about how to install, configure,
and use the Oracle Linux KVM packages to run guest system on top of a bare metal
Oracle Linux system. This documentation provides information on using KVM on a
standalone platform in an unmanaged environment. Typical usage in this mode is for
development and testing purposes, although production level deployments are
supported. Oracle recommends that customers use Oracle Linux Virtualization
Manager for more complex deployments of a managed KVM infrastructure.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis,
or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands
within a paragraph, URLs, code in
examples, text that appears on the screen,
or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle
Accessibility Conformance Report at https://www.oracle.com/corporate/accessibility/
templates/t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit https://www.oracle.com/corporate/
accessibility/learning-support.html#support-tab.

Preface

vi

https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-user/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab


Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

vii



1
About Oracle Linux KVM

This chapter provides a high-level overview of the Kernel-based Virtual Machine (KVM)
feature on Oracle Linux, the user space tools that are available for installing and managing a
standalone instance of KVM, and the differences between KVM usage in this mode and
usage within a managed environment provided by Oracle Linux Virtualization Manager.

Description of the Oracle Linux KVM Feature
The KVM feature provides a set of modules that enable you to use the Oracle Linux kernel as
a hypervisor. KVM can be used on both x86_64 and aarch64 processor architectures and is
available on Oracle Linux 7, Oracle Linux 8, and Oracle Linux 9 systems using either Red Hat
Compatible Kernel (RHCK) or Unbreakable Enterprise Kernel (UEK).

By default, KVM is built into the kernel. KVM features are actively developed and might vary
depending on platform and kernel release. If you're using UEK, see the release notes for the
kernel release that you're using to obtain information about features and any known issues or
limitations that might apply. See Unbreakable Enterprise Kernel documentation for more
information.

For enterprise or clustered KVM deployments on Oracle Linux, consider using Oracle Linux
Virtualization Manager which is a server virtualization management platform. Through its
Administration or virtual machine (VM) portals, you can configure, monitor, and manage an
Oracle Linux KVM environment, including hosts, VMs, storage, networks, and users. Oracle
Linux Virtualization Manager also provides a REST API for managing Oracle Linux KVM
infrastructure, enabling you to integrate Oracle Linux Virtualization Manager with other
management systems or to automate repetitive tasks with scripts. Find out more at https://
docs.oracle.com/en/virtualization/oracle-linux-virtualization-manager/.

Guest Operating System Requirements
The following guest operating systems can be used when installed within a standalone
instance of KVM.

Linux Guest Operating Systems

Linux Operating System 32-bit Architecture 64-bit Architecture

Oracle Linux 6 Yes* Yes

Oracle Linux 7 N/A Yes

Oracle Linux 8 N/A Yes

Oracle Linux 9 N/A Yes

Red Hat Enterprise Linux 6 Yes* Yes

Red Hat Enterprise Linux 7 N/A Yes

Red Hat Enterprise Linux 8 N/A Yes

1-1

https://docs.oracle.com/en/operating-systems/uek/
https://docs.oracle.com/en/virtualization/oracle-linux-virtualization-manager/
https://docs.oracle.com/en/virtualization/oracle-linux-virtualization-manager/


Linux Operating System 32-bit Architecture 64-bit Architecture

Red Hat Enterprise Linux 9 N/A Yes

CentOS 6 Yes* Yes

CentOS 7 N/A Yes

SUSE Linux Enterprise Server
12

N/A Yes

SUSE Linux Enterprise Server
15

N/A Yes

Ubuntu 16.04 N/A Yes

Ubuntu 18.04 N/A Yes

Ubuntu 20.04 N/A Yes

Ubuntu 22.04 N/A Yes

Important:

* cloud-init is unavailable for 32-bit architectures.

You can download Oracle Linux ISO images and disk images from Oracle Software
Delivery Cloud: https://edelivery.oracle.com/linux.

Microsoft Windows Guest Operating Systems

Table 1-1    Microsoft Windows Supported Guest Operating Systems

Guest Operating System 64-bit 32-bit

Microsoft Windows Server
2022

Yes N/A

Microsoft Windows Server
2019

Yes N/A

Microsoft Windows Server
2016

Yes N/A

Microsoft Windows Server
2012 R2

Yes N/A

Microsoft Windows Server
2012

Yes N/A

Microsoft Windows 11 Yes Yes

Microsoft Windows 10 Yes Yes

Microsoft Windows 8.1 Yes Yes

Microsoft Windows 8 Yes Yes

Chapter 1
Guest Operating System Requirements

1-2

https://edelivery.oracle.com/linux


Caution:

Microsoft Windows 8 is no longer supported by Microsoft. See https://
docs.microsoft.com/en-us/lifecycle/products/windows-8 for more information.

Microsoft Windows 8.1 falls out of extended support by Microsoft in January 2023.
See https://docs.microsoft.com/en-us/lifecycle/products/windows-81 for more
information.

Note:

We recommend that you install the Oracle VirtIO Drivers for Microsoft Windows in
Windows VMs for improved performance for network and block (disk) devices and
to resolve common issues. The drivers are paravirtualized drivers for Microsoft
Windows guests running on Oracle Linux KVM hypervisors.

Testing of all Microsoft Windows guests on KVM is performed by using the Oracle VirtIO
Drivers for Microsoft Windows.

For instructions on how to obtain and install the drivers, see Oracle Linux: Oracle VirtIO
Drivers for Microsoft Windows for use with KVM.

Oracle Solaris Guest Operating System
Oracle Solaris 11.4 can be used as a guest operating system when installed within a
standalone instance of KVM.

Oracle Solaris 11.4.33 (Oracle Solaris 11.4 SRU 33) is the minimum version that provides
VirtIO driver support.

For best results, follow these recommendations:

• Use at least a two-core configuration for the Oracle Solaris VM.

• Use the most current QEMU system type (Custom Emulated Machine = pc-i440fx-4.2) for
the Oracle Solaris VM.

You can download Oracle Solaris ISO images and disk images from Oracle Software Delivery
Cloud: https://edelivery.oracle.com/.

System Requirements and Recommendations
Although most systems running Oracle Linux 7, Oracle Linux 8, or Oracle Linux 9 can use
KVM, some general hardware recommendations, requirements, and guidelines should be
followed to run a guest on a host system. Many of these depend on the kinds of applications
being run on the virtual machine (VM) and the amount of work they're expected to perform.

• Bare metal host

KVM can be used when it's run on a bare metal host. Nested virtualization scenarios
aren't supported for KVM.

• CPU

Chapter 1
System Requirements and Recommendations

1-3

https://docs.microsoft.com/en-us/lifecycle/products/windows-8
https://docs.microsoft.com/en-us/lifecycle/products/windows-8
https://docs.microsoft.com/en-us/lifecycle/products/windows-81
https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-virtio/
https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-virtio/
https://edelivery.oracle.com/


The host system CPU must have virtualization features Intel (VT-x) or AMD (AMD-
V) enabled. Arm (aarch64) CPUs can also be used. If virtualization features aren't
available, check that virtualization is enabled in the system firmware BIOS or
UEFI. As a rule of thumb, you can start with the following virtual CPU to host CPU
ratios (this ratio is of distinct CPU cores and assumes SMT is enabled):

– 1:1 to 2:1 can typically achieve good VM performance.

– 3:1 may cause some VM performance degradations.

– 4:1 or greater might cause significant VM performance problems.

The ratio of virtual CPUs to host CPUs can be calculated by running performance
tests on VM and host systems. Deciding on acceptable performance depends on
many factors such as, for example:

– Tasks that VM systems perform.

– Volume of tasks to be processed.

– Preferred rate that these tasks need to be processed.

• Memory

3 GB reserved for the host is a good starting point but memory requirements for
the host operating system scale with the amount of physical memory available. For
systems with lots of available physical memory, increase the reserved memory for
the host operating system. For example, on a system with 1 TB memory, We
recommend at least 20 GB available for the host operating system. If system work
on a host and all VMs start exceeding the available physical RAM the performance
impact is severe. However, if VMs are typically idle, you might not need to allocate
as much RAM. Ensure you do performance testing to ensure that applications
always have enough memory.

• Storage

The minimum disk space, usually 6 GB, required for the host operating system
should be met. Each VM requires its own storage for the guest operating system
and for swap usage. Cater to around 6 GB, at minimum, per VM that you intend to
create, but consider the purpose of the VM and scale accordingly.

About Virtualization Packages
Oracle Linux provides several virtualization packages that enable you work with KVM.
You can install virtualization packages from the Oracle Linux yum server or from the
Unbreakable Linux Network (ULN). Packages are provided from various upstream
projects, including:

• https://www.linux-kvm.org/page/Main_Page

• https://libvirt.org/

• https://www.qemu.org/

The following packages are usually required for a virtualization host:

• libvirt: This package provides an interface to KVM, and the libvirtd daemon
for managing guest VMs.

• qemu-kvm: This package installs the QEMU emulator that performs hardware
virtualization so that guests can access host CPU and other resources.

Chapter 1
About Virtualization Packages

1-4

https://www.linux-kvm.org/page/Main_Page
https://libvirt.org/
https://www.qemu.org/


• virt-install: This package provides command line utilities for creating and provisioning
guest VMs.

• virt-viewer: This package provides a graphical utility that can be loaded into a desktop
environment to access the graphical console of a guest VM.

Instead of installing virtualization packages individually, you can install virtualization package
groups.

The Virtualization Host package group contains the minimum set of packages that are
required for a virtualization host. If the Oracle Linux system includes a GUI environment, you
can also choose to install the Virtualization Client package group.

Note that the Cockpit web console also provides a graphical interface to interact with KVM
and libvirtd to set up and configure VMs on a system. See Oracle Linux: Using the Cockpit
Web Console for more information.

Chapter 1
About Virtualization Packages

1-5

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/


2
Installing KVM User Space Packages

This chapter describes how to configure the appropriate ULN channels or yum repositories
and how to install user space tools to manage a standalone instance of KVM. A final check is
performed to validate whether the system can host guest VMs.

Configuring Yum Repositories and ULN Channels
Virtualization packages and their dependencies are available in various locations on the
Oracle Linux yum server and on the Unbreakable Linux Network (ULN), depending on Oracle
Linux release, the system architecture, and use case, or support requirements.

Oracle Linux 7
Due to the availability of several very different kernel versions and the requirement for more
recent versions of user space tools that may break compatibility with RHCK, there are several
different yum repositories and ULN channels across the different supported architectures for
Oracle Linux 7. Packages in the different channels have different use cases and different
levels of support. This section describes the available yum repositories and ULN channels for
each architecture.

Repositories and Channels That Are Available for x86_64 Platforms

Yum Repositories ULN Channels Description

ol7_latest ol7_x86_64_latest The virtualization packages
that are provided in this
repository or ULN channel
maximize compatibility with
RHCK and with Red Hat
Enterprise Linux. Packages
from this repository or ULN
channel are fully supported
for all kernels.

2-1



Yum Repositories ULN Channels Description

ol7_kvm_utils ol7_x86_64_kvm_utils The virtualization packages
that are provided in this
repository or ULN channel
take advantage of newer
features and functionality
available in upstream
packages. These packages are
also engineered to work with
KVM features that are enabled
in the latest releases of UEK. If
you install these packages, you
must also install the latest
version of either UEK R4 or
UEK R5.

No

te:

Th
e
ol
7_
kv
m_
ut
il
s
an
d
ol
7_
x8
6_
64
_k
vm
_u
ti
ls
cha
nn
els
dis
tri
but
e
64-
bit
pac
kag
es

Chapter 2
Configuring Yum Repositories and ULN Channels

2-2



Yum Repositories ULN Channels Description

onl
y.
If
yo
u
ma
nu
all
y
ins
tall
ed
an
y
32-
bit
pac
kag
es,
for
exa
mp
le,
li
bv
ir
t-
cl
ie
nt,
yu
m
up
dat
es
fro
m
the
se
cha
nn
els
wil
l
fail
. To
use
the
ol
7_
kv
m_
ut

Chapter 2
Configuring Yum Repositories and ULN Channels

2-3



Yum Repositories ULN Channels Description

il
s
an
d
ol
7_
x8
6_
64
_k
vm
_u
ti
ls
cha
nn
els,
yo
u
mu
st
firs
t
re
mo
ve
an
y
32-
bit
ver
sio
ns
of
the
pac
kag
es
dis
tri
but
ed
by
the
se
cha
nn
els
tha
t
are
ins
tall

Chapter 2
Configuring Yum Repositories and ULN Channels

2-4



Yum Repositories ULN Channels Description

ed
on
yo
ur
sys
te
m.

You may choose to configure
on-premises virtualization the
same way that you configure
systems on Oracle Cloud
Infrastructure or other Oracle
products that use KVM. Oracle
Linux provides specific
virtualization packages in this
channel to assist with the
configuration.
Packages in this channel are
delivered with limited
support. Limited support
coverage is only available for
packages that are tested on
Oracle Linux 7 with UEK. The
following are the limitations
and requirements:
• A minimum of Oracle

Linux 7.4 is required.
• A minimum of

Unbreakable Enterprise
Kernel Release 4 is
required.

• Guest operating systems,
as supported on Oracle
Cloud Infrastructure and
described at https://
docs.oracle.com/iaas/
Content/Compute/
References/images.htm.

• KVM guests boot by using
iSCSI, VirtIO, VirtIO-SCSI
or IDE device emulation.

Chapter 2
Configuring Yum Repositories and ULN Channels

2-5

https://docs.oracle.com/iaas/Content/Compute/References/images.htm
https://docs.oracle.com/iaas/Content/Compute/References/images.htm
https://docs.oracle.com/iaas/Content/Compute/References/images.htm
https://docs.oracle.com/iaas/Content/Compute/References/images.htm


Yum Repositories ULN Channels Description

ol7_developer
ol7_developer_kvm_utils

ol7_x86_64_developer
ol7_x86_64_developer_kvm_
utils

The virtualization packages
that are provided in these
repositories or ULN channels
take advantage of newer
features and functionality that
is available upstream, but are
unsupported and are made
available for developer use
only.
If you are using the Oracle
Linux yum server, you can
configure these repositories by
installing the oraclelinux-
developer-release-el7
package and then enabling
these repositories by editing
the repository files or by using
yum-config-manager.

Repositories and Channels That Are Available for aarch64 Platforms

Yum Repositories ULN Channels Description

ol7_latest ol7_aarch64_latest The virtualization packages
that are provided in this
repository or ULN channel
include the latest
virtualization packages,
which are available and
fully supported on
Unbreakable Enterprise
Kernel Release 5.

ol7_developer ol7_aarch64_developer The virtualization packages
that are provided in this
repository or ULN channel
take advantage of newer
features and functionality,
which are available
upstream, but are
unsupported and are made
available for developer use
only.

Chapter 2
Configuring Yum Repositories and ULN Channels

2-6



Caution:

Virtualization packages may also be available in the ol7_developer_EPEL yum
repository or the ol7_arch_developer_EPEL ULN channel. These packages are
unsupported and contain features that might never be tested on Oracle Linux and
may conflict with virtualization packages from other channels. If you intend to use
packages from any of the repositories or channels that are previously listed, first
uninstall any virtualization packages that installed from this repository. You can also
disable this repository or channel or set exclusions to prevent virtualization
packages from being installed from this repository.

Depending on your use case and support requirements, you must enable the repository or
ULN channel that you require before installing the virtualization packages from that repository
or ULN channel.

Subscribing to ULN Channels
If you're using ULN, follow these steps to ensure that the system is registered with ULN and
that the appropriate channel is enabled:

1. Sign in to https://linux.oracle.com with your ULN username and password.

2. On the Systems tab, from the list of registered systems, select the link name for the
specified system.

3. On the System Details page, select Manage Subscriptions.

4. On the System Summary page, from the list of available channels, select each of the
required channels, then click the right arrow to move each channel to the list of
subscribed channels.

5. Click Save Subscriptions.

Enabling Yum Repositories
If you're using the Oracle Linux yum server, you can either edit the repository configuration
files in /etc/yum.repos.d/ directly; or, if you have the yum-utils package installed, you can
use the yum-config-manager command, for example:

sudo yum-config-manager --enable ol7_kvm_utils ol7_UEKR6

To prevent yum from installing the package versions from a particular repository, you can set
an exclude option on these packages for that repository. For example, to prevent yum from
installing the virtualization packages in the ol7_developer_EPEL repository, use the following
command:

sudo yum-config-manager --setopt="ol7_developer_EPEL.exclude=libvirt* qemu*" --save

Oracle Linux 8
The number of options available on Oracle Linux 8 are significantly reduced as the available
kernels are newer and there are less options from which to choose.

Repositories and Channels That Are Available for Oracle Linux 8

Chapter 2
Configuring Yum Repositories and ULN Channels

2-7

https://linux.oracle.com


Yum Repositories ULN Channels Description

ol8_appstream ol8_x86_64_appstream
ol8_aarch64_appstream

The virtualization packages
that are provided in this
repository or ULN channel
maximize compatibility
with RHCK and with Red
Hat Enterprise Linux.
Packages from this
repository or ULN channel
are fully supported for all
kernels.
Packages released in this
repository or ULN channel
are released as part of the
default DNF module: virt

ol8_kvm_appstream ol8_x86_64_kvm_appstrea
m
ol8_aarch64_kvm_appstre
am

The virtualization packages
that are provided in this
repository or ULN channel
take advantage of newer
features and functionality
available in upstream
packages. These packages
are also engineered to work
with KVM features that are
enabled in the latest
releases of UEK. If you
install these packages, you
must also install the latest
version of UEK R6 to use
these features.
The Oracle KVM stack
packages released in this
repository or ULN channel
are available as a separate
DNF module streams:
virt:kvm_utils and
virt:kvm_utils2.

Additionally, some
associated non-modular
packages, such as virt-
manager, edk2, swtpm and
libtpms are available
within this repository or
channel. Packages that are
included here are either not
available in the standard
AppStream repository or
are available at a more
recent version to take
advantage of newer
functionality.
See Switching Application
Streams on Oracle Linux 8 for
more information.

Chapter 2
Configuring Yum Repositories and ULN Channels

2-8



Because the Application Stream repository or channel is required for system software on
Oracle Linux 8, it's enabled by default on any Oracle Linux 8 system.

If you intend to use the virt:kvm_utils2 application stream for improved functionality and
integration with newer features released within UEK, you must subscribe to the
ol8_kvm_appstream yum repository or ol8_base_arch_kvm_utils ULN channel. Note that the
virt:kvm_utils application stream is now a legacy stream on Oracle Linux 8.

Subscribing to ULN Channels
If you're using ULN, follow these steps to ensure that the system is registered with ULN and
that the appropriate channel is enabled:

1. Sign in to https://linux.oracle.com with your ULN username and password.

2. On the Systems tab, from the list of registered systems, select the link name for the
specified system.

3. On the System Details page, select Manage Subscriptions.

4. On the System Summary page, from the list of available channels, select each of the
required channels, then click the right arrow to move each channel to the list of
subscribed channels.

5. Click Save Subscriptions.

Enabling Yum Repositories
If you're using the Oracle Linux yum server, ensure that you have installed the most recent
version of the oraclelinux-release-el8 package and enable the required repositories. For
example:

sudo dnf install -y oraclelinux-release-el8
sudo dnf config-manager --enable ol8_appstream ol8_kvm_appstream

Oracle Linux 9
The number of options available on Oracle Linux 9 are significantly reduced as the available
kernels are newer and there are less options from which to choose. Note also that unlike
Oracle Linux 8, the packages for Oracle Linux 9 aren't released as part of a DNF module.

Repositories and Channels That Are Available for Oracle Linux 9

Yum Repositories ULN Channels Description

ol9_appstream ol9_x86_64_appstream
ol9_aarch64_appstream

The virtualization packages
that are provided in this
repository or ULN channel
maximize compatibility with
RHCK and with Red Hat
Enterprise Linux. Packages
from this repository or ULN
channel are fully supported
for all kernels.

Chapter 2
Configuring Yum Repositories and ULN Channels

2-9

https://linux.oracle.com


Yum Repositories ULN Channels Description

ol9_kvm_utils ol9_x86_64_kvm_utils
ol9_aarch64_kvm_utils

The virtualization packages
that are provided in this
repository or ULN channel
take advantage of newer
features and functionality
available in upstream
packages. These packages are
also engineered to work with
KVM features that are enabled
in the latest releases of UEK. If
you install these packages, you
must also install the latest
version of either UEK R7.

No

te:

Yo
u
mu
st
re
mo
ve
all
exi
sti
ng
vir
tua
liza
tio
n
pac
kag
es
bef
ore
en
abl
ing
thi
s
cha
nn
el
or
rep
osit
ory
.

Chapter 2
Configuring Yum Repositories and ULN Channels

2-10



Because the Application Stream repository or channel is required for system software on
Oracle Linux 9, it's enabled by default on any Oracle Linux 9 system.

Subscribing to ULN Channels
If you're using ULN, follow these steps to ensure that the system is registered with ULN and
that the appropriate channel is enabled:

1. Sign in to https://linux.oracle.com with your ULN username and password.

2. On the Systems tab, from the list of registered systems, select the link name for the
specified system.

3. On the System Details page, select Manage Subscriptions.

4. On the System Summary page, from the list of available channels, select each of the
required channels, then click the right arrow to move each channel to the list of
subscribed channels.

5. Click Save Subscriptions.

Enabling Yum Repositories
If you're using the Oracle Linux yum server, ensure that you have installed the most recent
version of the oraclelinux-release-el9 package and enable the required repositories. For
example:

sudo dnf install -y oraclelinux-release-el9
sudo dnf config-manager --enable ol9_kvm_utils ol9_UEKR7

Installing Virtualization Packages
Virtualization packages provide an interface to the KVM hypervisor, and user-space tools.

Installing Virtualization Packages During an Oracle Linux System
Installation

You can use the following procedures to install virtualization packages during system
installation. The Anaconda installation program can be used to install a single virtualization
host. You can use a kickstart file to install virtualization hosts over the network.

Note that installation of virtualization software during system install on Oracle Linux 8 defaults
to a KVM stack most compatible with RHCK. To use an alternate KVM stack you might need
to perform steps to add other yum or dnf configuration and if you're running Oracle Linux 8
you might need to select an alternate application stream for the installation.

Using the Installation Program to Install Virtualization Hosts
The following steps describe how to install a virtualization host with the Oracle Linux
graphical installation program:

1. Boot the Oracle Linux installation media and proceed to the Software Selection screen.

2. Select one of the following virtualization host types:

• Minimum Virtualization Host

Chapter 2
Installing Virtualization Packages

2-11

https://linux.oracle.com


(Available on Oracle Linux 7, Oracle Linux 8, and Oracle Linux 9)

a. Select Virtualization Host in the Base Environment section.

b. Select Virtualization Host in the Add-ons for Selected Environment
section.

• Virtualization Host with GUI

(Not available on Oracle Linux 8)

a. Select Server with GUI in the Base Environment section.

b. Select the following package groups in the Add-ons for Selected
Environment section:

– Virtualization Client

– Virtualization Hypervisor

– Virtualization Tools

3. Follow the prompts to complete the installation.

Using a Kickstart File to Install Virtualization Hosts
You can install virtualization hosts by specifying individual packages or package
groups in the %packages section of a kickstart file.

Specify virtualization packages individually, as in the following example:

%packages
libvirt
qemu-kvm
virt-install

Specify the appropriate package groups for the installation type in the %packages
section of the kickstart file by using the @GroupID format:

Minimum Virtualization Host
%packages
@virtualization-hypervisor
@virtualization-tools
# The following group is optional. Uncomment line to include...:
#@virtualization-platform

Virtualization Host with GUI
%packages
@virtualization-hypervisor
@virtualization-client
@virtualization-platform
@virtualization-tools

Installing Virtualization Packages on an Existing System
1. Log into the target Oracle Linux system with a user that has administrative

privileges.

2. Ensure that the system has the appropriate yum repository or ULN channel
enabled for the virtualization package versions that you want to install. See 
Configuring Yum Repositories and ULN Channels for more information.

Chapter 2
Installing Virtualization Packages

2-12



Note:

If the target host system is running Oracle Linux 9 and you intend to use the
virtualization packages available in ol9_kvm_utils. You must first remove any
existing virtualization packages that might already be installed:

a. Run the following command to remove packages:

sudo dnf remove libvirt qemu-kvm edk2
b. Enable the ol9_kvm_utils and ol9_UEKR7 repositories:

sudo dnf config-manager --enable ol9_kvm_utils ol9_UEKR7

3. Update the system so that it has the most recent packages available.

• If you're using Oracle Linux 7, run the yum update command.

• If you're using Oracle Linux 8 or Oracle Linux 9, run the dnf update command.

4. Install virtualization packages on the system.

• If you're using Oracle Linux 7 run the following commands to install the base
virtualization packages and other utilities:

sudo yum groupinstall "Virtualization Host"
sudo yum install qemu-kvm virt-install virt-viewer

• If you're using Oracle Linux 8 run the following commands to install the base
virtualization packages and other utilities:

sudo dnf module install virt
sudo dnf install virt-install virt-viewer

See also Switching Application Streams on Oracle Linux 8.

• If you're using Oracle Linux 9 run the following commands to install the base
virtualization packages and other utilities:

sudo dnf group install "Virtualization Host"
sudo dnf install qemu-kvm virt-install virt-viewer

More steps are required to start virtualization services on Oracle Linux 9 after
installation. For more details, see Validating the Host System.

Upgrading Virtualization Packages
Virtualization packages are updated by using the standard yum update or dnf update
command. Note that to change the versions of the virtualization packages to match the
versions that are shipped in a particular yum repository or ULN channel, you might need to
specify the channel or repository from or to which you're installing packages. For example,
you would update to the latest available virtualization packages that are available in the
ol7_kvm_utils repository as follows:

sudo yum --disablerepo="*" --enablerepo="ol7_kvm_utils" update

To downgrade packages to a version in an alternate repository or channel, you must first
remove the existing packages before installing the packages from the alternate repository.
For example, to downgrade from the virtualization packages in the ol7_kvm_utils repository
to the version of the same packages in the ol7_latest repository:

Chapter 2
Installing Virtualization Packages

2-13



sudo yum remove libvirt* qemu* virt-install
sudo yum --disablerepo="*" --enablerepo="ol7_latest" install libvirt qemu-kvm 
virt-install

Switching Application Streams on Oracle Linux 8
Virtualization packages on Oracle Linux 8 are released as a DNF module: virt. The
default stream in the module contains packages that can work with both RHCK and
UEK. Alternate versions of the packages that can take advantage of features that are
only in UEK are available within a separate application stream, virt:kvm_utils2,
that's provided along with some newer versions of non-modular packages within the
ol8_kvm_appstream repository.

For more information about DNF modules and application streams, see Oracle Linux:
Managing Software on Oracle Linux.

Switching to the Oracle KVM Stack
On an existing Oracle Linux 8 system, you can switch from the default KVM stack to
the Oracle KVM stack in the virt:kvm_utils2 stream by performing the following
steps:

1. Remove any packages from the existing default virt stream:

sudo dnf module remove virt -y --all
2. Reset the virt module state so that it's neither enabled nor disabled:

sudo dnf module reset virt -y
3. Enable the virt:kvm_utils2 module and stream:

sudo dnf module enable virt:kvm_utils2 -y
4. Perform any necessary package upgrade or downgrade operations to handle

dependencies for the enabled module and stream:

sudo dnf --allowerasing distro-sync
5. Install the base packages from the virt:kvm_utils2 stream:

sudo dnf module install virt:kvm_utils2 -y

Caution:

Pre-existing guests that were created by using the default KVM stack might
not be compatible and might not start using the Oracle KVM stack.

Note that although you can switch to the Oracle KVM stack and install the packages
while using RHCK, the stack isn't compatible. You must be running a current version of
UEK to use this software.

Switching to the Default KVM Stack
On an existing Oracle Linux 8 system, you can switch from the Oracle KVM stack to
the default KVM stack by performing the following steps:

Chapter 2
Installing Virtualization Packages

2-14

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/


1. Remove any packages from the existing Oracle virt:kvm_utils or virt:kvm_utils2
streams:

sudo dnf module remove virt:kvm_utils -y --all
sudo dnf module remove virt:kvm_utils2 -y --all

2. Reset the virt module state so that it's neither enabled nor disabled:

sudo dnf module reset virt -y
3. Enable the virt module and stream:

sudo dnf module enable virt -y
4. Perform any necessary package upgrade or downgrade operations to handle

dependencies for the enabled module and stream:

sudo dnf --allowerasing distro-sync
5. Install the base packages from the virt stream:

sudo dnf module install virt -y

Caution:

Pre-existing guests that were created by using the Oracle KVM stack aren't
compatible and might not start using the default KVM stack.

Validating the Host System
The libvirt package provides a validation utility that checks whether a system can function
correctly as a virtualization host. The utility can check for several virtualization functionalities,
but KVM functionality is covered by testing the qemu virtualization type.

To test whether a system can act as a KVM host, run the following command:

sudo virt-host-validate qemu

If all checks return a PASS value, the system can host guest VMs. If any of the tests fail, a
reason is provided and information is displayed on how to resolve the issue, if such an option
is available.

Note:

If the following message is displayed, the system isn't capable of functioning as a
KVM host:

QEMU: Checking for hardware virtualization: FAIL (Only emulated CPUs are
      available, performance will be significantly limited)

If you try to create or start a VM on a host where this message is displayed, the
action is likely to fail.

Chapter 2
Validating the Host System

2-15



3
KVM Usage

Several tools exist for administering the libvirt interface with KVM. Usually, various different
tools can perform the same operation. This document focuses on the tools that you can use
from the command line. However, if you're using a desktop environment, you might consider
using a graphical user interface (GUI), such as the VM Manager, to create and manage VMs.
For more information about VM Manager, see https://virt-manager.org/.

The Cockpit web console also provides a graphical interface to interact with KVM and
libvirtd to set up and configure VMs on a system. See Oracle Linux: Using the Cockpit
Web Console for more information.

Checking the Libvirt Daemon Status
The libvirt daemon runs as a monolithic systemd service in Oracle Linux 7 and Oracle
Linux 8. In Oracle Linux 9, the service is broken into multiple functional service sockets for
more atomic control and logging for each virtualization component.

Oracle Linux 7 and Oracle Linux 8
To check the status of the libvirt daemon, run the following command on the virtualization
host:

sudo systemctl status libvirtd

The output indicates whether the libvirtd daemon is running, as shown in the following
example output:

 * libvirtd.service - Virtualization daemon
   Loaded: loaded (/usr/lib/systemd/system/libvirtd.service; enabled; vendor preset: 
enabled)
   Active: active (running) since time_stamp; xh ago

If the daemon isn't running, start it by running the following command:

sudo systemctl start libvirtd

After you verify that the libvirtd service is running, you can start provisioning guest
systems.

Oracle Linux 9
Individual libvirt functional components or drivers are modularized into separate daemons
that are exposed using three systemd sockets for each driver.

The following systemd daemons are defined for individual drivers within libvirt for KVM:

• virtqemud: is the QEMU management daemon, for running virtual machines on KVM.

• virtnetworkd: is the virtual network management daemon.

3-1

https://virt-manager.org/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/


• virtnodedevd: is the host physical device management daemon.

• virtnwfilterd: is the host firewall management daemon.

• virtsecretd: is the host secret management daemon.

• virtstoraged: is the host storage management daemon.

• virtinterfaced: is the host Network Interface Card (NIC) management daemon.

All the virtualization daemons must be running to expose the full virtualization
functionality available in libvirt. A single service and three UNIX sockets are
available for each daemon to expose different levels of access to the daemon. To
enable all access levels and to start all daemons, run:

for drv in qemu network nodedev nwfilter secret storage interface; 
  do
   sudo systemctl enable virt${drv}d.service
   sudo systemctl enable virt${drv}d{,-ro,-admin}.socket;
   sudo systemctl start virt${drv}d{,-ro,-admin}.socket; 
done

You don't need to start the service for each daemon, as the service is automatically
started when the first socket is established.

To see the a list of all the sockets started and their current status, run:

sudo systemctl list-units --type=socket virt*

More information on the modularization of the systemd libvirt daemon is available at 
https://libvirt.org/daemons.html

Working With Virtual Machines
A basic VM can be created without any complex storage, networking, CPU, or memory
requirements. You can create a VM directly on the command line and you can start,
stop, and remove it in the same way.

Creating a New Virtual Machine
The virt-install command is the most commonly used command line tool for
creating and setting up new VMs. This utility has many options to enable you to
customize a VM and control how it's created. For complete documentation on this tool,
view the virt-install(1) manual page; or, for a quick list of options, you can run the
virt-install --help command.

The following example, illustrates the creation of a basic VM and assumes that virt-
viewer is installed and available to load the installer in a graphical environment:

virt-install --name guest-ol8 --memory 2048 --vcpus 2 \
--disk size=8 --location OracleLinux-R8.iso --os-variant ol8.0

The following are detailed descriptions of each of the options that are specified in the
example:

• --name is used to specify a name for the VM. This name is registered as a domain
within libvirt.

• --memory is used to specify the RAM available to the VM and is specified in MB.

Chapter 3
Working With Virtual Machines

3-2

https://libvirt.org/daemons.html


• --vcpus is used to specify the number of virtual CPUs (vCPUs) that should be available
to the VM.

• --disk is used to specify hard disk parameters. In this case, only the size is specified in
GB. If a path isn't specified the disk image is created as a qcow file automatically. If
virt-install is run as root, the disk image is created in /var/lib/libvirt/images/
and is named using the name specified for the VM at install. If virt-install is run as
an ordinary user, the disk image is created in $HOME/.local/share/libvirt/images/.

• --location is used to provide the path to the installation media. The location can be an
ISO file, or an expanded installation resource hosted at a local path or remotely on an
HTTP or NFS server.

• --os-variant is an optional specification but provides some default parameters for each
VM that can help improve performance for a specific operating system or distribution. For
a complete list of options available, run osinfo-query os.

When you run the command, the VM is created and automatically starts to boot using the
install media specified in the location parameter. If you have the virt-viewer package
installed and the command is run in a terminal within a desktop environment, the graphical
console opens automatically and you can proceed with the guest operating system
installation within the console.

Starting and Stopping Virtual Machines
After a VM is created within KVM, it's registered as a domain within libvirt and you can
manage it by using the virsh command. To obtain a complete list of all registered domains
and their status, run the following command:

virsh list --all

Output similar to the following is displayed:

 Id    Name                           State
----------------------------------------------------
 1     guest-ol8                      running

Use the virsh help command to view available options and syntax. For example, to find
out more about the options available to listings of VMs, run virsh help list. This
command shows options to view listings of VMs that are stopped or paused or that are active.

Starting a VM
To start a VM, run the following command:

virsh start guest-ol8

Output similar to the following is displayed:

Domain guest-ol8 started

Shutting Down a VM
To gracefully shut down a VM, run the following command:

virsh shutdown guest-ol8

Chapter 3
Working With Virtual Machines

3-3



Output similar to the following is displayed:

Domain guest-ol8 is being shutdown

Rebooting a VM
To reboot a VM, run the following command:

virsh reboot guest-ol8

Output similar to the following is displayed:

Domain guest-ol8 is being rebooted

Suspending a VM
To suspend a VM, run the following command:

virsh suspend guest-ol8  

Output similar to the following is displayed:

Domain guest-ol8 suspended

Resuming a Suspended VM
To resume a suspended VM, run the following command:

virsh resume guest-ol8 

Output similar to the following is displayed:

Domain guest-ol8 resumed

Forcefully Stopping a VM
To forcefully stop a VM, run the following command:

virsh destroy guest-ol8

Output similar to the following is displayed:

Domain guest-ol8 destroyed

Deleting a Virtual Machine
The following steps can be followed to remove a VM from a system:

1. Obtain information about the location of the VM by running the following command
to dump information about the VM and check for the source files:

virsh dumpxml --domain guest-ol8 | grep 'source file'

The command returns output similar to the following:

<source file='/home/testuser/.local/share/libvirt/images/guest-ol8-1.qcow2'/>

This step is helpful if you're unsure of the path where the disk for the VM is
located.

Chapter 3
Working With Virtual Machines

3-4



2. Shut down the VM, if possible, by running the following command:

virsh shutdown guest-ol8                        

If the VM can't be shut down gracefully you can force it to stop by running:

virsh destroy guest-ol8                        
3. To delete the VM, run:

virsh undefine guest-ol8                        

This step removes all configuration information about the VM from libvirt. Storage
artifacts such as virtual disks remain intact. If you also need to remove these, you can
delete them manually from their location returned in the first step in this procedure, for
example:

rm /home/testuser/.local/share/libvirt/images/guest-
ol8-1.qcow2                        

Note:

You can't delete a VM if it has snapshots. Remove any snapshots using the virsh
snapshot-delete command before trying to remove a VM that has any
snapshots defined.

Configuring a Virtual Machine With Watchdog Device
A virtual hardware Watchdog device configuration on a VM works with the guest OS to
automatically trigger an action if the guest OS freezes or crashes. The watchdog software
package must be installed on the guest VM and the service must be enabled. See
Configuring the Watchdog Service in Oracle Linux 8: Managing Core System Configuration or
in Oracle Linux 9: Managing Core System Configuration for more information.

Note:

Arm-based VMs do not support Watchdog device configurations.

To configure a virtual hardware Watchdog device on a guest Oracle Linux 8 or Oracle Linux 9
KVM VM, follow these steps:

1. Ensure that Watchdog is installed and the service is enabled on the guest OS.

Note:

sudo dnf install watchdog
sudo systemctl enable --now watchdog.service

Chapter 3
Configuring a Virtual Machine With Watchdog Device

3-5

https://docs.oracle.com/en/operating-systems/oracle-linux/8/osmanage/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/osmanage/


Note:

The latest version of libvirt (9.x or later) includes a number of Watchdog
enhancements and bug fixes over the earlier versions of libvirt.

2. Ensure that the Watchdog daemon is properly configured on the guest OS before
adding the Watchdog device to the KVM VM configuration file.
For details on how to configure the Watchdog daemon, see the watchdog.conf(5)
manual page.

3. Shut down the KVM VM.

4. Edit the KVM VM configuration to include watchdog settings. You can either
change the KVM VM XML directly, or you can use the virsh edit command to
edit the XML and get validation for the changes:

• Use the virsh edit command to update the configuration for the VM:

virsh edit guest-ol8                           
• Change the KVM VM's XML to include the watchdog device, as shown in the

watchdog section in the following example:

<devices>
     ...
     </input>
     <input type='mouse' bus='ps2'/>
     <input type='keyboard' bus='ps2'/>
     <watchdog model='i6300esb' action='poweroff'/>
     <graphics type='vnc' port='-1' autoport='yes'>
       <listen type='address'/>
     </graphics>
     ...
</devices

The following values are available for the model and action attributes that you
can configure for the Watchdog device:

– model = The required model attribute specifies which watchdog device
driver is emulated. Note that the valid values are specific to the VM
machine type.

Model Attribute Description

i6300esb The recommended device, which
emulates an Intel 6300ESB.

ib700 Emulates an ISA iBase IB700, and is
only compatible with the i440fx/pc
machine type.

Note:

This device doesn't work
with the q35 machine type.

Chapter 3
Configuring a Virtual Machine With Watchdog Device

3-6



– action = The optional action attribute describes which action to take when the
watchdog expires.

Action Attribute Description

reset Default action that forcefully resets the
guest VM.

shutdown Gracefully powers down the guest VM
(not recommended).

Note:

The shutdown action requires
that the guest is responsive to
ACPI signals. In the sort of
situations where the
watchdog has expired, guests
are usually unable to respond
to ACPI signals. Therefore
using 'shutdown' is not
recommended.

poweroff Forcefully powers off the guest VM.
pause Pauses the execution of the guest VM.
none Does nothing.
dump Automatically dumps the guest VM.

Note:

The directory to save dump
files can be configured by
auto_dump_path in
file /etc/libvirt/
qemu.conf.

inject-nmi Injects a non-maskable interrupt to the
guest VM.

5. Save the XML file and restart the VM.

Configuring a Virtual Machine With a Virtual Trusted Platform
Module

A virtual Trusted Platform Module (vTPM) is a software-based representation of a physical
Trusted Platform Module 2.0 chip. A vTPM acts as any other virtual device and provides
security-related functions such as random number generation, attestation, key generation.
When added to a VM, a vTPM enables the guest operating system to create and store keys
that are private and not exposed to the guest operating system. If a VM is compromised and
vTPM is enabled, the risk of its secrets being compromised is reduced because the keys can
be used only by the guest operating system for encryption or signing.

Chapter 3
Configuring a Virtual Machine With a Virtual Trusted Platform Module

3-7



You can add a vTPM to an existing Oracle Linux 7, Oracle Linux 8, or Oracle Linux 9
KVM VM. When you configure a vTPM, the VM files are encrypted but not the disks.
Although, you can choose to add encryption explicitly for the VM and its disks.

Note:

Virtual Trusted Platform Module is available on Oracle Linux 7, Oracle Linux
8, and Oracle Linux 9 KVM guests, but not on QEMU.

To provide a vTPM to an existing Oracle Linux 7, Oracle Linux 8, or Oracle Linux 9
KVM VM:

1. Install the vTPM packages:

yum -y install swtpm libtpms swtpm-tools
2. Shut down the KVM VM.

3. Edit the KVM VM configuration to include TPM settings. You can either change the
KVM VM XML directly, or you can use the virsh edit command to edit the XML
and get validation for the changes:

• Use the virsh edit command to update the configuration for the VM:

virsh edit guest-ol8                           
• Change the KVM VM's XML to include the TPM, as shown in the tpm section

in the following example:

<devices>
     ...
     </input>
     <input type='mouse' bus='ps2'/>
     <input type='keyboard' bus='ps2'/>
     <tpm model='tpm-crb'>
       <backend type='emulator' version='2.0'/>
     </tpm>
     <graphics type='vnc' port='-1' autoport='yes'>
       <listen type='address'/>
     </graphics>
     ...
</devices>

Note that if you're creating a new VM, the virt-install command on Oracle
Linux 8 and Oracle Linux 9 also provides a --tpm option that enables you to
specify the vTPM information at installation time, for example:

virt-install --name guest-ol8-tpm2 --memory 2048 --vcpus 2 \
--disk path=/systest/images/guest-ol8-tpm2.qcow2,size=20 \
--location /systest/iso/ol8.iso --os-variant ol8 \
--network network=default --graphics vnc,listen=0.0.0.0 --tpm
emulator,model=tpm-crb,version=2.0

If you're using Oracle Linux 7, the virt-install command doesn't provide this
option, but you can manually edit the configuration after the VM is created.

4. Start the KVM VM.

Chapter 3
Configuring a Virtual Machine With a Virtual Trusted Platform Module

3-8



Working With Storage for KVM Guests
Libvirt handles various different storage mechanisms that you can configure for use by VMs.
These mechanisms are organized into different pools or units. By default, libvirt uses
directory-based storage pools for the creation of new disks, but pools can be configured for
different storage types including physical disk, NFS, and iSCSI.

Depending on the storage pool type that's configured, different storage volumes can be made
available to any VMs to be used as block devices. Sometimes, such as when using iSCSI
pools, volumes don't need to be defined as the LUNs for the iSCSI target are automatically
presented to the VM.

Note that you don't need to define different storage pools and volumes to use libvirt with
KVM. These tools help you to manage how storage is used and consumed by VMs as they
need it. You can use the default directory-based storage and take advantage of manually
mounted storage at the default locations.

We recommend using Oracle Linux Virtualization Manager to easily manage and configure
complex storage requirements for KVM environments.

Storage Pools
Storage pools provide logical groupings of storage types that are available to host the
volumes that can be used as virtual disks by a set of VMs. A wide variety of different storage
types are provided. Local storage can be used in the form of directory based storage pools,
file system storage, and disk based storage. Other storage types such as NFS and iSCSI
provide standard network based storage, while RBD and Gluster types provide distributed
storage mechanisms. More information is provided at https://libvirt.org/storage.html.

Storage pools help abstract underlying storage resources from the VM configurations. This
abstraction is useful if you suspect that resources such as virtual disks might change physical
location or media type. Abstraction becomes even more important when using network based
storage because target paths, DNS, or IP addressing might change over time. By abstracting
this configuration information, you can manage resources in a consolidated way without
needing to update multiple VM configurations.

You can create transient storage pools that are available until the host reboots, or you can
define persistent storage pools that are restored after a reboot.

Transient storage pools are started automatically as soon as they're created and the volumes
that are within them are made available to VMs immediately, however any configuration
information about a transient storage pool is lost after the pool is stopped, the host reboots,
or if the libvirtd service is restarted. The storage itself is unaffected, but VMs configured to
use resources in a transient storage pool lose access to these resources. Transient storage
pools are created using the virsh pool-create command.

For most use cases, consider creating persistent storage pools. Persistent storage pools are
defined as a configuration entry that's stored within /etc/libvirt. Persistent storage pools
can be stopped and started and can be configured to start when the host system boots.
Libvirt can take care of automatically mounting and enabling access to network based
resources when persistent storage is configured. Persistent storage pools are created using
the virsh pool-define command, and usually need to be started after they have been
created before you can use them.

Chapter 3
Working With Storage for KVM Guests

3-9

https://libvirt.org/storage.html


Creating a Storage Pool
To create a directory-based storage pool, virsh pool-define-as command with
the dir subcommand. For example, you can create a pool with the name pool_dir for a
directory that's at /share/storage_pool on the host system:

virsh pool-define-as pool_dir dir --target /share/storage_pool                  

You can create other storage pool types by using the same virsh pool-define-as
command. The options that you use with this command depend on the storage type
that you select when you create a storage pool. For example, to create file system
based storage, that mounts a formatted block device, /dev/sdc1, at the mount point /
share/storage_mount, you can run:

virsh pool-create-as pool_fs fs --source-dev /dev/sdc1 --target /share/
storage_mount

Similarly, you can add an NFS share as a storage pool, for example:

virsh pool-create-as pool_nfs netfs --source-path /ISO --source-host 
nfs.example.com \
--target /share/storage_nfs

You can also create an XML file representation of the storage pool configuration and
load the configuration information from file using the virsh pool-define command.
For example, you could create a storage pool for a Gluster volume by creating an XML
file named gluster_pool.xml with the following content:

<pool type='gluster'>
  <name>pool_gluster</name>
  <source>
    <host name='192.0.2.1'/>
    <dir path='/'/>
    <name>gluster-vol1</name>
  </source>
</pool>

The previous example assumes that a Gluster server is already configured and
running on a host with IP address 192.0.2.1 and that a volume named gluster-vol1 is
exported. Note that the glusterfs-fuse package must be installed on the host and
verify that you can mount the Gluster volume before trying to use it with libvirt.

Run the following command to load the configuration information from the
gluster_pool.xml file into libvirt:

virsh pool-define gluster_pool.xml

Note that we recommend using Oracle Linux Virtualization Manager when attempting
to use complex network based storage such as Gluster.

For more information on the XML format for a storage pool definition, see https://
libvirt.org/formatstorage.html#StoragePool.

Listing Storage Pools
You can list all the defined storage pools by using the virsh pool-list command, for
example:

Chapter 3
Working With Storage for KVM Guests

3-10

https://libvirt.org/formatstorage.html#StoragePool
https://libvirt.org/formatstorage.html#StoragePool


virsh pool-list --all

Use this command after you create a storage pool to verify that it the storage pool is
available.

Starting a Storage Pool
To start a storage pool and make it accessible to any VMs, use the virsh pool-start
command, for example:

virsh pool-start pool_dir                  

If you require the storage pool to also start at boot, run:

virsh pool-autostart pool_dir                  

Stopping a Storage Pool
To stop a storage pool use the virsh pool-destroy command, for example:

virsh pool-destroy pool_dir                  

Removing a Storage Pool
To remove the storage pool configuration completely use the virsh pool-undefine
command, for example:

virsh pool-undefine pool_dir                  

Storage Volumes
Storage volumes are created within a storage pool and represent the virtual disks that can be
loaded as block devices within one or more VMs. Some storage pool types don't need
storage volumes to be created individually as the storage mechanism might present these to
as block devices already. For example, iSCSI storage pools present the individual logical unit
numbers (LUNs) for an iSCSI target as separate block devices.

Sometimes, such as when using directory or file system based storage pools, storage
volumes are individually created for use as virtual disks. In these cases, several disk image
formats can be used although some formats, such as qcow2, might require extra tools such as
qemu-img for creation.

For disk based pools, standard partition type labels are used to represent individual volumes;
while for pools based on the logical volume manager, the volumes themselves are presented
individually within the pool.

Note that storage volumes can be sparsely allocated when they're created by setting the
allocation value for the initial size of the volume to a value lower than the capacity of the
volume. The allocation indicates the initial or current physical size of the volume, while the
capacity indicates the size of the virtual disk as it is presented to the VM. Sparse allocation is
often used to over-subscribe physical disk space where VMs might eventually require more
disk space than is initially available. For a non-sparsely allocated volume, the allocation
matches or exceeds the capacity of the volume. Exceeding the capacity of the disk provides
space for metadata, if required.

Chapter 3
Working With Storage for KVM Guests

3-11



Note that you can use the --pool option if you have volumes with matching names in
different pools on the same system and you need to specify the pool to use for any
virsh volume operation. This practice is replicated across subsequent examples.

Creating a New Storage Volume
Depending on the storage pool type, you can create new storage volumes using the
virsh vol-create command. This command expects you to provide an XML file
representation of the volume parameters. For example, to create a volume in storage
pool named pooldir you could create an XML file, volume1.xml with the required
parameters and run:

virsh vol-create pooldir volume1.xml

The XML for a volume might depend on the pool type and the volume that's being
created, but in the case of a sparsely allocated 10 GB image in qcow2 format, the XML
might look similar to the following:

<volume>
    <name>volume1</name>
    <allocation>0</allocation>
    <capacity unit="G">10</capacity>
    <target>
        <path>/home/testuser/.local/share/libvirt/images/volume1.qcow2</path>
        <permissions>
            <owner>107</owner>
            <group>107</group>
                    <mode>0744</mode>
                    <label>virt_image_t</label>
              </permissions>
        </target>
</volume>

For more information, see https://libvirt.org/formatstorage.html#StorageVol.

You can use the virsh vol-create-as command to create a volume by passing
command line arguments to it. Many of the available options, such as the allocation or
format have default values set, so you can typically only specify the name of the
storage pool where the volume should be created, the name of the volume and the
capacity that you require, for example:

virsh vol-create-as --pool pooldir --name volume1 --capacity 10G

Viewing Information About a Storage Volume
Use the virsh vol-info command to view information about a volume to determine
its type, capacity, and allocation, for example:

virsh vol-info --pool pooldir volume1

Output similar to the following is displayed:

Name:           volume1
Type:           file
Capacity:       9.31 GiB
Allocation:     8.00 GiB

Chapter 3
Working With Storage for KVM Guests

3-12

https://libvirt.org/formatstorage.html#StorageVol


Cloning a Storage Volume
You can clone a storage volume using the virsh vol-clone command. This command
takes the name of the original volume and the name of the cloned volume as a parameter
and the clone is created in the same storage pool with identical parameters. For example:

virsh vol-clone --pool pooldir volume1 volume1-clone

Deleting a Storage Volume
You can delete a storage volume by running the virsh vol-delete command. For
example, to delete the volume named volume1 in the storage pool named pooldir, run the
following command:

virsh vol-delete volume1 --pool pooldir

Resizing a Storage Volume
If a storage volume isn't being used by a VM, you can resize it by using the virsh vol-
resize command. For example:

virsh vol-resize --pool pooldir volume1 15G

We don't advise reducing the size of an existing volume, as doing so can risk destroying data.
However, if you need to resize a volume to reduce it, you must specify the --shrink option
with the new size value.

Managing Virtual Disks
Virtual disks are attached to VMs, usually as block devices based on disk images stored at
some or other path. Virtual disks can be defined for a VM when it's created, or can be added
to an existing VM. The command line tools available for managing virtual disks aren't
completely consistent in terms of their handling of storage volumes and storage pools.

Adding a Virtual Disk
Storage volumes can be attached to a VM as a virtual disk when the VM is created. The
virt-install command enables you to specify the volume or storage pool directly for any
use of the --disk option. For example, to use an existing volume when creating a VM, using
virt-install, specify the disk as follows:

virt-install --name guest --disk vol=storage_pool1/volume1.qcow2
...

You can equally use virt-install to create a virtual disk as a volume within an existing
storage pool automatically at install. For example, to create a disk image as a volume within
the storage pool named storage_pool1:

virt-install --name guest --disk pool=storage_pool1 size=10
...

Tools to attach a volume to an existing VM are limited and it's generally recommended that
you use a GUI tool like virt-manager or cockpit to assist with this operation. If you
expect that you might need to work with volumes a lot, consider using Oracle Linux
Virtualization Manager.

Chapter 3
Working With Storage for KVM Guests

3-13



You can use the virsh attach-disk command to attach a disk image to an
existing VM. This command requires that you provide the path to the disk image when
you attach it to the VM. If the disk image is a volume, you can obtain it's correct path
by running the virsh vol-list command first.

virsh vol-list storage_pool_1

Output similar to the following is displayed:

 Name            Path                                    
--------------------------------------------------------------------
 volume1         /share/disk-images/volume1.qcow2

Attach the disk image within the existing VM configuration so that it is persistent and
attaches itself on each subsequent restart of the VM:

virsh attach-disk --config --domain guest1 \
 --source /share/disk-images/volume1.qcow2 --target sdb1

Note that you can use the --live option with this command to temporarily attach a
disk image to a running VM; or you can use the --persistent option to attach a disk
image to a running VM and also update it's configuration so that the disk is attached
on each subsequent restart.

Removing a Virtual Disk
You can remove a virtual disk from a VM by using the virsh detach-disk
command. For example, to remove the disk at the target sdb1 from the configuration
for the VM named guest1, you could run:

virsh detach-disk --config guest1 sdb1

Note that you can use the --live option with this command to temporarily detach a
disk image from a running VM; or you can use the --persistent option to detach a
disk image from a running VM and also update it's configuration so that the disk is
permanently detached from the VM on subsequent restarts. If you detach a disk from a
running VM, ensure that you perform the appropriate actions within the guest OS to
offline the disk correctly first. For example, unmount the disk in the guest OS so that it
performs any sync operations that might still be remaining before you detach the disk,
or you might corrupt the file system.

Where disks are attached as block devices within a guest VM, you can obtain a listing
of the block devices attached to a guest so that you can identify the disk target that's
associated with a particular source image file, by running the virsh domblklist
command, for example:

virsh domblklist guest1

Detaching a virtual disk from the VM does note delete the disk image file or volume
from the host system. If you need to delete a virtual disk, you can either manually
delete the source image file or delete the volume from the host.

Extending a Virtual Disk
You can extend a virtual disk image by using the virsh blockresize command
while the VM is running. For example, to increase the size of the disk image at the

Chapter 3
Working With Storage for KVM Guests

3-14



source location /share/disk-images/volume1.qcow2 on the running VM named guest1 to 20
GB, run:

virsh blockresize guest1 /share/disk-images/volume1.qcow2 20GB

You can verify that the resize has worked by checking the block device information for the
running VM, using the virsh domblkinfo command. For example to list all block devices
attached to guest1 in human readable format:

virsh domblkinfo guest1 --all --human

The virsh blockresize command enables you to scale up a disk on a live VM, but it
doesn't guarantee that the VM can immediately identify that the additional disk resource is
available. For some guest operating systems, restarting the VM might be required before the
guest can identify the additional resources available.

Individual partitions and file systems on the block device aren't scaled using this command.
You need to perform these operations manually from withing the guest, as required.

Working With Memory and CPU Allocation
You can configure how many virtual CPUs (vCPUs) are active, and how much memory is
available for a particular VM. These configuration changes can be made on a running VM by
hot plugging or hot unplugging; or, the changes can be stored in the VM's XML configuration
file. Note that changes can be limited by the VM host, the hypervisor, or by the original VM
description.

Configuring Virtual CPU Count
Optimizing vCPUs can impact the resource efficiency of any VMs. One way to optimize is to
adjust how many vCPUs are assigned to a VM. Hot plugging or hot unplugging vCPUs is
when you configure vCPU count on a running VM.

You can change the number of vCPUs that are active in a guest VM using the virsh
setvcpus command. By default, virsh setvcpus works on running guest VMs. To
change the number of vCPUs for a stopped VM, add the --config option.

For example, run the following command to set the number of vCPUs on a running VM:

virsh setvcpus domain-name, id, or uuid count-value --live

Note that the count value can't exceed the number of CPUs assigned to the guest VM. The
count value also might be limited by the host, hypervisor, or from the original description of
the guest VM.

The following command options are available:

• domain

A string value representing the VM name, ID, or UUID.

• count

A number value representing the number of vCPUs.

• --maximum

Chapter 3
Working With Memory and CPU Allocation

3-15



Controls the maximum number of vCPUs that can be hot plugged the next time the
guest VM is booted. This option can only be used with the --config option.

• --config
Changes the stored XML configuration for the guest VM and takes effect when the
guest is started.

• --live
The guest VM must be running and the change takes place immediately, thus hot
plugging a vCPU.

• --current
Affects the current guest VM.

• --guest
Modifies the CPU state in the current guest VM.

• --hotpluggable
Configures the vCPUs so they can be hot unplugged.

You can use the --config and --live options together if permitted by the hypervisor.
If you don't specify --config, --live, or --current, the --live option is assumed. If
you don't select an option and the guest VM isn't running, the command fails.
Furthermore, if no options are specified, it's up to the hypervisor whether the --config
option is also assumed; and the hypervisor determines whether the XML configuration
is adjusted to make the change persistent.

Configuring Memory Allocation
To improve the performance of a VM, you can assign additional host RAM to the VM.
You can also decrease the amount of allocated memory to free up the resource for
other VMs or tasks. Hot plugging or hot unplugging memory is when you configure
memory size on a running VM.

You use the virsh setmem command to change the available memory for a VM. To
change the maximum memory that can be allocated, use the virsh setmaxmem
command.

To change a VM's memory allocation, run:

virsh setmem domain-name, id, or uuid --kilobytes size

You must specify the size as a scaled integer in kibibytes and the new value can't
exceed the amount you specified for the VM. Values lower than 64 MB are unlikely to
work with most VM operating systems. A higher maximum memory value doesn't
affect active VMs. If the new value is lower than the available memory, it shrinks
possibly causing the VM to crash.

The following command options are available:

• domain

A string value representing the VM name, ID, or UUID.

• size

A number value representing the new memory size, as a scaled integer. The
default unit is KiB, but you can select from other valid memory units:

Chapter 3
Working With Memory and CPU Allocation

3-16



– b or bytes for bytes

– KB for kilobytes (103 or blocks of 1,000 bytes)

– k or KiB for kibibytes (210 or blocks of 1024 bytes)

– MB for megabytes (106 or blocks of 1,000,000 bytes)

– M or MiB for mebibytes (220 or blocks of 1,048,576 bytes)

– GB for gigabytes (109 or blocks of 1,000,000,000 bytes)

– G or GiB for gibibytes (230 or blocks of 1,073,741,824 bytes)

– TB for terabytes (1012 or blocks of 1,000,000,000,000 bytes)

– T or TiB for tebibytes (240 or blocks of 1,099,511,627,776 bytes)

• --config
Changes the stored XML configuration for the guest VM and takes effect when the guest
is started.

• --live
The guest VM must be running and the change takes place immediately, thus hot
plugging memory.

• --current
Affects the memory on the current guest VM.

To set the maximum memory that can be allocated to a VM, run:

virsh setmaxmem domain-name_id_or_uuid size --current

You must specify the size as a scaled integer in kibibytes unless you also specify a
supported memory unit, which are the same as for the virsh setmem command.

All other options for virsh setmaxmem are the same as for virsh setmem with one
caveat. If you specify the --live option be aware that not all hypervisors permit live changes
of the maximum memory limit.

Setting Up Networking for KVM Guests
KVM provides tools to add or remove vNICs of different types and to help configure complex
networking architectures. Networking in KVM is achieved by creating virtual Network
Interface Cards (vNICs) on the guest VM. vNICS are mapped to the host system's own
network infrastructure, by connecting to a virtual network running on the host itself; by directly
using a physical interface on the host; using Single Root I/O Virtualization (SR-IOV)
capabilities on a PCIe device; or by using a network bridge that enables the vNIC to share a
physical network interface on the host.

vNICs are often defined when the VM is first created, however the libvirt API can be used to
add or remove vNICS, as required, and also handles hot plugging to enable you to perform
these actions on a running VM to avoid downtime.

Networking with KVM can be complex as it can involve components that are configured
directly on the host itself, configuration for the VM within libvirt and also configuration for
the network within the running guest operating system. Therefore for many development and
testing environments, it's often enough to configure each vNIC to use the virtual networking
provided by libvirt. This driver is used to create a virtual network that uses Network
Address Translation (NAT) to enable VMs to gain access to external resources. This

Chapter 3
Setting Up Networking for KVM Guests

3-17



approach is simple to configure and often facilitates similar network access already
configured on the host system.

Where VMs might need to belong to specific subnetworks, a bridged network can be
used. Network bridges use virtual interfaces that are mapped to and share a physical
interface on the host. In this configuration, network traffic from a VM behaves as if it's
coming from an independent system on the same physical network as the host
system. Depending on the tools used, some manual changes to the host network
configuration might be required before it can be set up for a VM.

Networking for VMs can also be configured to directly use a physical interface on the
host system. This configuration can provide network behavior similar to using a
bridged network interface in that the vNIC behaves as if it's connected to the physical
network directly. Direct connections tend to use the macvtap driver to extend physical
network interfaces to provide a range of functionality that can also provide a virtual
bridge that behaves similarly to a bridged network but which is easier to configure and
maintain and which offers improved performance.

KVM can use SR-IOV for passthrough networking where a PCIe interface has this
functionality. The SR-IOV hardware must be set up and configured on the host system
before you can attach the device to a VM and configure the network to use this device.

Where network configuration is likely to be complex, we recommend using Oracle
Linux Virtualization Manager. Simple networking configurations and operations are
described here to facilitate most basic deployment scenarios.

Setting Up and Managing Virtual Networks
If you're considering using virtual networking with NAT for VM networking
requirements, you can use the default virtual network that's set up by libvirt for VMs or
you can create and manage different virtual networks within KVM to group VMs on
their own subnetworks.

Use the following command to list all virtual networks that are configured on the host:

virsh net-list --all

Output similar to the following is displayed:

 Name                 State      Autostart     Persistent
----------------------------------------------------------
 default              active     yes           yes      

You can find out more about a network using the virsh net-info command. For
example, to find out about the default network, run:

virsh net-info default

Output similar to the following is displayed:

Name:           default
UUID:           16318035-eed4-45b6-99f8-02f1ed0661d9
Active:         yes
Persistent:     yes
Autostart:      yes
Bridge:         virbr0

Note that the virtual network uses a network bridge, called virbr0, not to be confused
with traditional bridged networking. The virtual bridge isn't connected to a physical

Chapter 3
Setting Up Networking for KVM Guests

3-18



interface and relies on NAT and IP forwarding to connect VMs to the physical network
beyond. Libvirt also handles IP address assignment for VMs using DHCP. The default
network is typically in the range 192.168.122.1/24. To see the full configuration information
about a network, use the virsh net-dumpxml command:

virsh net-dumpxml default

Output similar to the following is displayed:

<network>
  <name>default</name>
  <uuid>16318035-eed4-45b6-99f8-02f1ed0661d9</uuid>
  <forward mode='nat'>
    <nat>
      <port start='1024' end='65535'/>
    </nat>
  </forward>
  <bridge name='virbr0' stp='on' delay='0'/>
  <mac address='52:54:00:82:75:1d'/>
  <ip address='192.168.122.1' netmask='255.255.255.0'>
    <dhcp>
      <range start='192.168.122.2' end='192.168.122.254'/>
    </dhcp>
  </ip>
</network>

Adding or Removing a vNIC
You can use the virsh attach-interface command to add a new vNIC to an existing
VM. This command can be used to create a vNIC on a VM that uses any of the networking
types available in KVM.

virsh attach-interface --domain guest --type network --source default --config

You must specify the following parameters with this command:

• --domain
The VM name, ID, or UUID.

• --type
The type of networking that the vNIC uses. Available options include:

– network for a libvirt virtual network using NAT

– bridge for a bridge device on the host

– direct for a direct mapping to one of the host's network interfaces or bridges

– hostdev for a passthrough connection using a PCI device on the host.

• --source
The source to be used for the network type specified. These vary depending on the type:

– for a network, specify the name of the virtual network

– for a bridge specify the name of the bridge device

– for a direct connection specify the name of the host's interface or bridge

– for a hostdev connection specify the PCI address of the host's interface formatted as
domain:bus:slot.function.

Chapter 3
Setting Up Networking for KVM Guests

3-19



• --config
Changes the stored XML configuration for the guest VM and takes effect when the
guest is started.

• --live
The guest VM must be running and the change takes place immediately, thus hot
plugging the vNIC.

• --current
Affects the current guest VM.

More options are available to further customize the interface, such as setting the MAC
address or configuring the target macvtap device when using some other network
types. You can also use --model option to change the model of network interface that's
presented to the VM. By default, the virtio model is used, but other models, such as
e1000 or rtl8139 are available, Run virsh help attach-interface for more
information, or see the virsh(1) manual page.

Remove a vNIC from a VM using the virsh detach-interface command, for
example:

virsh detach-interface --domain guest --type network --mac 52:54:00:41:6a:65 --
config

Note that the domain or VM name and type are required parameters. If the VM has
more than one vNIC attached, you must specify the mac parameter to provide the MAC
address of the vNIC that you want to remove. You can obtain this value by listing the
vNICs that are attached to a VM. For example, you can run:

virsh domiflist guest

Output similar to the following is displayed:

Interface  Type       Source     Model       MAC
-------------------------------------------------------
vnet0      network    default    virtio      52:54:00:8c:d2:44
vnet1      network    default    virtio      52:54:00:41:6a:65

Bridged and Direct vNICs
Bridged vNICs enable a VM's network to act independently to the host's network
configuration by sharing the same physical network interface to connect to the existing
network infrastructure. This configuration can reduce complexity and is easy to
manage.

Traditional network bridging using linux bridges is available using the bridge type
when attaching an interface. The virsh iface-bridge command can be used to create a
bridge on the host system and add a physical interface to it. For example, to create a
bridge named vmbridge1 with the Ethernet port named enp0s31f6 attached, you can
run:

virsh iface-bridge vmbridge1 enp0s31f6

After the bridge is created, you can attach it by using the virsh attach-
interface command as described in Adding or Removing a vNIC.

Note that when using traditional linux bridged networking for KVM guests:

Chapter 3
Setting Up Networking for KVM Guests

3-20



• It's not simple to set up a bridge on a wireless interface because of the number of
addresses available in 802.11 frames.

• The complexity of the code to handle software bridges can result in reduced throughput,
increased latency and additional configuration complexity.

The main advantage that this approach offers, is that it allows the host system to
communicate across the network stack directly with any guests configured to use bridged
networking.

Most of the issues related to using traditional linux bridges can be easily overcome by using
the macvtap driver which simplifies virtualized bridge network. For most bridged network
configurations in KVM, this is the preferred approach because it offers better performance
and it's easier to configure. The macvtap driver is used when the network type is set to
direct.

The macvtap driver creates endpoint devices that follow the tun/tap ioctl interface model to
extend an existing network interface so that KVM can use it to connect to the physical
network interface directly to support different network functions. These functions can be
controlled by setting a different mode for the interface. The following modes are available:

• vepa (Virtual Ethernet Port Aggregator) is the default mode and forces all data from a
vNIC out of the physical interface to a network switch. If the switch supports hairpin
mode, different vNICs connected to the same physical interface are able to communicate
via the switch. Many switches currently do not support hairpin mode, which means that
VMs with direct connection interfaces running in VEPA mode are unable to communicate,
but can connect to the external network by using the switch.

• bridge mode connects all vNICS directly to each other so that traffic between VMs using
the same physical interface isn't sent out to the switch and is facilitated directly. This
mode is the most useful option when using switches that don't support hairpin mode, and
when you need maximum performance for communications between VMs. Note that
when configured in this mode, unlike a traditional software bridge, the host is unable to
use this interface to communicate directly with the VM.

• private mode behaves a VEPA mode vNIC in the absence of a switch supporting hairpin
mode. However, even if the switch does support hairpin mode, two VMs connected to the
same physical interface are unable to communicate with each other. This option has
limited use cases.

• passthrough mode attaches a physical interface device or an SR-IOV Virtual Function
(VF) directly to the vNIC without losing the migration capability. All packets are sent
directly to the configured network device. A one-to-one mapping exists between network
devices and VMs when configured in passthrough mode because a network device can't
be shared between VMs in this configuration.

The virsh attach-interface command doesn't provide an option for you to specify the
different modes available when attaching a direct type interface that uses the macvtap driver
and defaults to vepa mode . The graphical virt-manager utility makes setting up bridged
networks using macvtap easier and provides options for each different mode.

Nonetheless, it's not difficult to change the configuration of a VM by editing the XML definition
for it directly. The following steps can be followed to configure a bridged network using the
macvtap driver on an existing VM:

1. Attach a direct type interface to the VM using the virsh attach-interface
command and specify the source for the physical interface to use for the bridge. In this
example, the VM is called guest1 and the physical network interface on the host is a
wireless interface called wlp4s0:

Chapter 3
Setting Up Networking for KVM Guests

3-21



virsh attach-interface --domain guest1 --type direct --source wlp4s0 --config
2. Dump the XML for the VM configuration and copy it to a file that you can edit:

virsh dumpxml guest1 > /tmp/guest1.xml
3. Edit the XML for the VM to change the vepa mode interface to use bridged mode.

If many interfaces are connected to the VM, or you want to review changes, you
can do this in a text editor. If you're happy to make this change globally, run:

sed -i "s/mode='vepa'/mode='bridge'/g" /tmp/guest1.xml
4. Remove the existing configuration for this VM and replace it with the changed

configuration in the XML file:

virsh undefine guest1
virsh define /tmp/guest1.xml

5. Restart the VM for the changes to take affect. The direct interface is attached in
bridge mode and is persistent and automatically started when the VM boots.

Interface Bonding for Bridged Networks
The use of bonded interfaces for higher throughput is common where hosts might run
several concurrent VMs that are providing multiple services at the same time. Where a
single physical interface might have provided enough bandwidth for applications
hosted on a physical server, the increase in network traffic when running multiple VMs
can have a negative impact on network performance where a single physical interface
is shared. By using bonded interfaces, the throughput capability for VMs can be
increased significantly and you can also take advantage of the high availability
features that come with a network bond.

Because the physical network interfaces that a VM might use are on the host and not
on the VM, setting up any form of bonded networking for greater throughput or for high
availability, must be configured on the host system, itself. This approach enables you
to configure network bonds on the host and then to attach a virtual network interface,
using a network bridge, directly to the bonded network on the host.

Network bonding of physical interfaces for Oracle Linux 7 is described in Oracle Linux
7: Setting Up Networking. For Oracle Linux 8, see Oracle Linux 8: Setting Up
Networking. To achieve HA networking for any VMs, configure a network bond on the
host system first.

When the bond is configured, configure the VM networks to use the bonded interface
when you create a network bridge. You can do this by using either the bridge type
interface or using a direct interface configured to use the macvtap driver's bridge
mode. The bond interface can be used instead of a physical network interface when
configuring a virtual network interface.

Cloning Virtual Machines
You can use two types of VM instances to create copies of VMs:

• Clone

A clone is an instance of a single VM. You can use a clone to set up a network of
identical VMs which you can optionally distribute to other destinations.

• Template

Chapter 3
Cloning Virtual Machines

3-22

https://docs.oracle.com/en/operating-systems/oracle-linux/7/network/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/network/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/network/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/network/


A template is an instance of a VM that you can use as the cloning source. You can use a
template to create multiple clones and optionally make modifications to each clone.

The difference between clones and templates is how they're used. For the created clone to
work properly, ensure that you remove information and change configurations unique to the
VM that's being cloned before cloning. This information and configurations differs based on
how you use the clones, for example:

• anything assigned to the VM such as the number of Network Interface Cards (NICs) and
their MAC addresses.

• anything configured within the VM such as SSH keys.

• anything configured by an application installed on the VM such as activation codes and
registration information.

You must remove some information and configurations from within the VM. Other information
and configurations must be removed from the VM using the virtualization environment.

Preparing a Virtual Machine for Cloning
Before cloning a VM, you must prepare it by running the virt-sysprep utility on its disk
image or by completing the following steps.

Note:

For more information on how to use the virt-sysprep utility to prepare a VM and
understand the available options, see https://libguestfs.org/virt-sysprep.1.html.

1. Build the VM that you want to use for the clone or template.

a. Install any needed software.

b. Configure any non-unique operating system and application settings.

2. Remove any persistent or unique network configuration details.

a. Run the following command to remove any persistent udev rules:

rm -f /etc/udev/rules.d/70-persistent-net.rules

Note:

If you don't remove the udev rules, the name of the first NIC might be
eth1instead of eth0.

b. Change /etc/sysconfig/network-scripts/ifcfg-eth[x] to remove the HWADDR and
static lines and any other unique or non-desired settings, such as UUID, for example:

DEVICE=eth[x]
BOOTPROTO=none
ONBOOT=yes
#NETWORK=10.0.1.0       <- REMOVE
#NETMASK=255.255.255.0  <- REMOVE
#IPADDR=10.0.1.20       <- REMOVE

Chapter 3
Cloning Virtual Machines

3-23

https://libguestfs.org/virt-sysprep.1.html


#HWADDR=xx:xx:xx:xx:xx  <- REMOVE
#USERCTL=no             <- REMOVE

After modification, the file mustn't include a HWADDR entry or any unique
information, and at a minimum include the following lines:

DEVICE=eth[x]
ONBOOT=yes

Important:

You must remove the HWADDR entry because if its address doesn't
match the new guest's MAC address, the ifcfg is ignored.

c. If you have /etc/sysconfig/networking/profiles/default/ifcfg-eth[x]
and /etc/sysconfig/networking/devices/ifcfg-eth[x] files, ensure they
have the same content as the /etc/sysconfig/network-scripts/ifcfg-
eth[x] file.

Note:

Ensure that any other unique information is removed from the ifcfg
files.

3. If the guest VM from which you want to create a clone is registered with ULN, you
must de-register it. For more information, see the Oracle Linux: Unbreakable Linux
Network User's Guide for Oracle Linux 6 and Oracle Linux 7.

4. Run the following command to remove any sshd public/private key pairs:

rm -rf /etc/ssh/ssh_host_*

Note:

Removing ssh keys prevents problems with ssh clients not trusting these
hosts.

5. Remove any other application-specific identifiers or configurations that might
cause conflicts if running on multiple machines.

6. Configure the VM to run the relevant configuration wizards the next time it boots.

• For Oracle Linux 6 and below, run the following command to create an empty
file on the root file system called .unconfigured:

touch /.unconfigured
• For Oracle Linux 7, run the following commands to enable the first boot and

initial-setup wizards:

sed -ie 's/RUN_FIRSTBOOT=NO/RUN_FIRSTBOOT=YES/' /etc/sysconfig/firstboot
systemctl enable firstboot-graphical
systemctl enable initial-setup-graphical

Chapter 3
Cloning Virtual Machines

3-24

https://docs.oracle.com/en/operating-systems/oracle-linux/uln-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/uln-user/


Note:

The wizards that run on the next boot depend on the configurations that
have been removed from the VM. Also, on the first boot of the clone we
recommend that you change the hostname.

Important:

Before proceeding with cloning, shut down the VM. You can clone a VM using
virt-clone or virt-manager.

Cloning a Virtual Machine by Using the Virt-Clone Command
You can use virt-clone to clone VMs from the command line; however, you need root
privileges for virt-clone to complete successfully. The virt-clone command provides
several options that can be passed on the command line, which include general, storage
configuration, networking configuration, and other miscellaneous options. Only the --
original is required.

Run virt-clone --help to see a complete list of options, or see the virt-clone(1)
manual page.

Run the following command to clone a VM on the default connection, automatically
generating a new name and disk clone path:

virt-clone --original vm-name --auto-clone

Run the following command to clone a VM with multiple disks:

virt-clone --connect qemu:///system --original vm-name --name vm-clone-name \
--file /var/lib/libvirt/images/vm-clone-name.img --file /var/lib/libvirt/images/vm-
clone-data.img

Cloning a Virtual Machine by Using Virtual Machine Manager
Complete the following steps to clone a guest VM using VM Manager.

1. Start VM Manager in one of the following ways:

• Open VM Manager from the System Tools menu.

• Run the virt-manager command as root.

2. From the list of guest VMs, right-click the guest VM you want to clone and click Clone.

The Clone VM window opens.

3. In the Name field, change the name of the clone or accept the default name.

4. To change the Networking information, click Details. Then, enter a new MAC address
for the clone and click OK.

5. For each disk in the cloned guest VM, select one of the following options:

• Clone this disk - The disk is cloned for the cloned guest VM.

Chapter 3
Cloning Virtual Machines

3-25



• Share disk with guest-virtual-machine-name - The disk is shared by the
guest VM to be cloned and its clone.

• Details - Opens the Change storage path window to select a new path for
the disk.

6. Click Clone.

Chapter 3
Cloning Virtual Machines

3-26



4
Known Issues for Oracle Linux KVM

This chapter provides information about known issues for Oracle Linux KVM. If a workaround
is available, that information is also provided.

Upgrading From QEMU 3.10 to Version 4.2.1 Can Prevent
Existing KVM Guests From Starting on Oracle Linux 7

Attempting to upgrade a KVM host from QEMU version 3.10 to version 4.2.1 results in a
libvirt server error that can prevent existing KVM guests from starting on an Oracle Linux 7
host.

An error similar to the following is displayed:

Upgrade qemu-3.1.0-7.el7.x86_64 to qemu-4.2.1-4.el7.x86_64, kvm can not be
started, got below libvirt service error:

Dec 21 15:10:48 ca-ex05db01.us.oracle.com libvirtd[23588]: Unable to read
from monitor: Connection reset by peer
Dec 21 15:10:48 ca-ex05db01.us.oracle.com libvirtd[23588]: internal error:
qemu unexpectedly closed the monitor: 2020-12-21T23:10:48.306929Z
qemu-system-x86_64: We need to set caching-mode=on for intel-iommu to enable
device assignment with IOMMU protection.
Dec 21 15:10:52 ca-ex05db01.us.oracle.com libvirtd[23588]: internal error:
Failed to autostart VM 'ca-ex05db01vm01.us.oracle.com': internal error: qemu
unexpectedly closed the monitor: 2020-12-21T23:10:48.306929Z
qemu-system-x86_64: We need to set caching-mode=on for intel-iommu to enable
device assignment with IOMMU protection.
Dec 21 15:10:52 ca-ex05db01.us.oracle.com libvirtd[23588]: nl_recv returned
with error: No buffer space available

To work around this issue so that KVM guests can run the updated qemu version, edit the
XML file of each KVM guest, adding the caching_mode='on' parameter to the iommu section
for each driver sub-element, as shown in the following example:

<iommu model='intel'>
      <driver aw_bits='48' caching_mode='on'/>
    </iommu>

(Bug ID 32312933)

Using vTPM With a Guest Fails on Oracle Linux 9 if FIPS Mode
Is Enabled

If FIPS mode is enabled on an Oracle Linux 9 host and a VM is configured to use vTPM, the
guest operating system fails to install or the VM is unable to launch. The current workaround
is to disable FIPS mode if you need to run guests with vTPM.

(Bug 34290427)

4-1



Downgrading Application Streams Fail
The virt:kvm_utils2 application stream is updated with additional packages. If you
try to downgrade to a previous version of the virt:kvm_utils2 application stream, the
downgrade process fails with several package conflict error messages. This issue is
the result of a limitation in DNF for handling dependencies in application streams.

To resolve this issue, you must remove the existing packages, reset the
virt:kvm_utils2 application stream, enable the older version of the virt:kvm_utils2
application stream and then reinstall the packages. See Switching to the Oracle KVM
Stack for steps to remove existing packages, resetting the application stream and then
installing packages.

(Bug ID 34623368)

Chapter 4
Downgrading Application Streams Fail

4-2


	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Oracle Linux KVM
	Description of the Oracle Linux KVM Feature
	Guest Operating System Requirements
	Linux Guest Operating Systems
	Microsoft Windows Guest Operating Systems
	Oracle Solaris Guest Operating System

	System Requirements and Recommendations
	About Virtualization Packages

	2 Installing KVM User Space Packages
	Configuring Yum Repositories and ULN Channels
	Oracle Linux 7
	Subscribing to ULN Channels
	Enabling Yum Repositories

	Oracle Linux 8
	Subscribing to ULN Channels
	Enabling Yum Repositories

	Oracle Linux 9
	Subscribing to ULN Channels
	Enabling Yum Repositories


	Installing Virtualization Packages
	Installing Virtualization Packages During an Oracle Linux System Installation
	Using the Installation Program to Install Virtualization Hosts
	Using a Kickstart File to Install Virtualization Hosts

	Installing Virtualization Packages on an Existing System
	Upgrading Virtualization Packages
	Switching Application Streams on Oracle Linux 8
	Switching to the Oracle KVM Stack
	Switching to the Default KVM Stack


	Validating the Host System

	3 KVM Usage
	Checking the Libvirt Daemon Status
	Oracle Linux 7 and Oracle Linux 8
	Oracle Linux 9

	Working With Virtual Machines
	Creating a New Virtual Machine
	Starting and Stopping Virtual Machines
	Starting a VM
	Shutting Down a VM
	Rebooting a VM
	Suspending a VM
	Resuming a Suspended VM
	Forcefully Stopping a VM

	Deleting a Virtual Machine

	Configuring a Virtual Machine With Watchdog Device
	Configuring a Virtual Machine With a Virtual Trusted Platform Module
	Working With Storage for KVM Guests
	Storage Pools
	Creating a Storage Pool
	Listing Storage Pools
	Starting a Storage Pool
	Stopping a Storage Pool
	Removing a Storage Pool

	Storage Volumes
	Creating a New Storage Volume
	Viewing Information About a Storage Volume
	Cloning a Storage Volume
	Deleting a Storage Volume
	Resizing a Storage Volume

	Managing Virtual Disks
	Adding a Virtual Disk
	Removing a Virtual Disk
	Extending a Virtual Disk


	Working With Memory and CPU Allocation
	Configuring Virtual CPU Count
	Configuring Memory Allocation

	Setting Up Networking for KVM Guests
	Setting Up and Managing Virtual Networks
	Adding or Removing a vNIC
	Bridged and Direct vNICs
	Interface Bonding for Bridged Networks

	Cloning Virtual Machines
	Preparing a Virtual Machine for Cloning
	Cloning a Virtual Machine by Using the Virt-Clone Command
	Cloning a Virtual Machine by Using Virtual Machine Manager


	4 Known Issues for Oracle Linux KVM
	Upgrading From QEMU 3.10 to Version 4.2.1 Can Prevent Existing KVM Guests From Starting on Oracle Linux 7
	Using vTPM With a Guest Fails on Oracle Linux 9 if FIPS Mode Is Enabled
	Downgrading Application Streams Fail


