
PeopleTools 8.60: PeopleCode
Language Reference

October 2022



PeopleTools 8.60: PeopleCode Language Reference
Copyright © 1988, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement
or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and
Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users
are "commercial computer software," "commercial computer software documentation," or "limited rights data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained
in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by
the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create a
risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation
and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as
set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit https://docs.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Contents

Preface: Preface...................................................................................................................................... xxiii
Understanding the PeopleSoft Online Help and PeopleBooks......................................................... xxiii

Hosted PeopleSoft Online Help..................................................................................................xxiii
Locally Installed Help.................................................................................................................xxiii
Downloadable PeopleBook PDF Files....................................................................................... xxiii
Common Help Documentation................................................................................................... xxiii
Field and Control Definitions..................................................................................................... xxiv
Typographical Conventions.........................................................................................................xxiv
ISO Country and Currency Codes.............................................................................................. xxiv
Region and Industry Identifiers....................................................................................................xxv
Translations and Embedded Help................................................................................................ xxv

Using and Managing the PeopleSoft Online Help............................................................................ xxvi
PeopleTools Related Links................................................................................................................ xxvi
Contact Us..........................................................................................................................................xxvi
Follow Us...........................................................................................................................................xxvi

Chapter 1: PeopleCode Built-in Functions and Language Constructs................................................ 29
Functions by Category..........................................................................................................................29

Analytic Calculation Engine.......................................................................................................... 29
APIs.................................................................................................................................................29
Application Classes........................................................................................................................ 29
Application Engine......................................................................................................................... 29
Application Logging.......................................................................................................................29
Arrays..............................................................................................................................................30
Attachment...................................................................................................................................... 30
Bulk.................................................................................................................................................30
Business Interlink........................................................................................................................... 30
Character Processing...................................................................................................................... 31
Charting...........................................................................................................................................31
ChartField........................................................................................................................................31
Classic Plus.....................................................................................................................................32
Component Buffer.......................................................................................................................... 32
Component Interface...................................................................................................................... 34
Conditional Navigation...................................................................................................................34
Conversion...................................................................................................................................... 35
Currency and Financial.................................................................................................................. 35
Current Date and Time...................................................................................................................35
Custom Display Formats................................................................................................................36
Database and Platform................................................................................................................... 36
Date and Time................................................................................................................................ 36
Debugging.......................................................................................................................................38
Defaults, Setting............................................................................................................................. 38
DirectTransfer................................................................................................................................. 38
Documents...................................................................................................................................... 39
Effective Date and Effective Sequence..........................................................................................39
Email............................................................................................................................................... 39
Environment....................................................................................................................................39

Copyright © 1988, 2022, Oracle and/or its affiliates. iii



Contents

Exceptions.......................................................................................................................................40
Executable Files, Running..............................................................................................................40
Files.................................................................................................................................................40
Financial..........................................................................................................................................40
Fluid Applications.......................................................................................................................... 41
Grids................................................................................................................................................43
Images............................................................................................................................................. 43
Integration Broker...........................................................................................................................43
Java................................................................................................................................................. 44
Language Constructs...................................................................................................................... 44
Language Preference and Locale................................................................................................... 45
Logical (Tests for Blank Values)................................................................................................... 45
Mail................................................................................................................................................. 45
Masking...........................................................................................................................................45
Math................................................................................................................................................ 46
Menu Appearance...........................................................................................................................47
Message Catalog.............................................................................................................................47
Message Classes (Integration Broker)........................................................................................... 47
Modal Windows and Secondary Pages..........................................................................................48
MultiChannel Framework...............................................................................................................48
Objects............................................................................................................................................ 49
Pages............................................................................................................................................... 49
Page Control Appearance...............................................................................................................49
Personalizations.............................................................................................................................. 50
Portal............................................................................................................................................... 50
Process Scheduler........................................................................................................................... 51
Remote Call.................................................................................................................................... 52
RowsetCache...................................................................................................................................52
Saving and Canceling.....................................................................................................................52
Scroll Select....................................................................................................................................52
Search Dialog................................................................................................................................. 52
SQL................................................................................................................................................. 53
SQL Date and Time....................................................................................................................... 54
SQL Shortcuts.................................................................................................................................54
String...............................................................................................................................................55
Subrecords.......................................................................................................................................56
Time Zone.......................................................................................................................................56
Trace Control.................................................................................................................................. 57
Transfers..........................................................................................................................................57
Type Checking................................................................................................................................57
User Information.............................................................................................................................58
User Security.................................................................................................................................. 58
Validation........................................................................................................................................ 59
Workflow........................................................................................................................................ 60
XML................................................................................................................................................60

PeopleCode Built-in Functions and Language Constructs: A..............................................................61
Abs.................................................................................................................................................. 61
AccruableDays................................................................................................................................ 62
AccrualFactor..................................................................................................................................63
Acos................................................................................................................................................ 64
ActiveRowCount.............................................................................................................................65

iv  Copyright © 1988, 2022, Oracle and/or its affiliates.



Contents

AddAttachment............................................................................................................................... 66
AddEmailAddress........................................................................................................................... 75
AddJavaScript................................................................................................................................. 76
AddKeyListItem..............................................................................................................................77
AddMetaTag....................................................................................................................................78
AddOnLoadScript........................................................................................................................... 79
AddStyleSheet.................................................................................................................................80
AddSystemPauseTimes...................................................................................................................80
AddToDate...................................................................................................................................... 82
AddToDateTime..............................................................................................................................84
AddToTime..................................................................................................................................... 85
Alias................................................................................................................................................ 86
All................................................................................................................................................... 86
AllOrNone.......................................................................................................................................87
AllowEmplIdChg............................................................................................................................88
Amortize..........................................................................................................................................89
And..................................................................................................................................................90
As.................................................................................................................................................... 90
Asin................................................................................................................................................. 91
Atan.................................................................................................................................................92

PeopleCode Built-in Functions and Language Constructs: B.............................................................. 92
BlackScholesCall............................................................................................................................ 93
BlackScholesPut..............................................................................................................................93
BootstrapYTMs...............................................................................................................................94
Break............................................................................................................................................... 95
BulkDeleteField.............................................................................................................................. 96
BulkInsertField................................................................................................................................99
BulkModifyPageFieldOrder..........................................................................................................102
BulkUpdateIndexes.......................................................................................................................104

PeopleCode Built-in Functions and Language Constructs: C............................................................ 106
CallAppEngine..............................................................................................................................106
CancelPubHeaderXmlDoc............................................................................................................ 109
CancelPubXmlDoc........................................................................................................................111
CancelSubXmlDoc........................................................................................................................112
ChangeEmailAddress....................................................................................................................113
Char...............................................................................................................................................114
CharType.......................................................................................................................................115
ChDir.............................................................................................................................................118
ChDrive.........................................................................................................................................119
CheckMenuItem............................................................................................................................119
ChunkText.....................................................................................................................................119
Clean............................................................................................................................................. 120
CleanAttachments......................................................................................................................... 121
ClearKeyList................................................................................................................................. 125
ClearSearchDefault....................................................................................................................... 125
ClearSearchEdit............................................................................................................................ 126
Code.............................................................................................................................................. 127
Codeb............................................................................................................................................ 128
CollectGarbage..............................................................................................................................128
CommitWork.................................................................................................................................129
CompareLikeFields.......................................................................................................................131

Copyright © 1988, 2022, Oracle and/or its affiliates. v



Contents

CompareStrings.............................................................................................................................133
CompareTextDiff.......................................................................................................................... 136
Component....................................................................................................................................139
ComponentChanged......................................................................................................................140
ConfigureClassicPlusComponent................................................................................................. 140
ConfigureClassicPlusForWC........................................................................................................ 141
ConnectorRequest......................................................................................................................... 142
ConnectorRequestURL................................................................................................................. 143
ContainsCharType.........................................................................................................................143
ContainsOnlyCharType.................................................................................................................146
Continue........................................................................................................................................148
ConvertChar..................................................................................................................................150
ConvertCurrency...........................................................................................................................154
ConvertDatetimeToBase............................................................................................................... 156
ConvertRate.................................................................................................................................. 158
ConvertTimeToBase..................................................................................................................... 159
CopyAttachments..........................................................................................................................160
CopyFields.................................................................................................................................... 167
CopyFromJavaArray.....................................................................................................................168
CopyRow...................................................................................................................................... 170
CopyToJavaArray......................................................................................................................... 171
Cos................................................................................................................................................ 172
Cot.................................................................................................................................................173
create............................................................................................................................................. 174
CreateAnalyticInstance................................................................................................................. 175
CreateArray...................................................................................................................................176
CreateArrayAny............................................................................................................................ 177
CreateArrayRept........................................................................................................................... 179
CreateBreadcrumb........................................................................................................................ 180
CreateDirectory.............................................................................................................................183
CreateDirecttransferObject().........................................................................................................185
CreateDocument............................................................................................................................185
CreateDocumentKey.....................................................................................................................187
CreateException............................................................................................................................ 187
CreateFieldDefn............................................................................................................................ 189
CreateJavaArray............................................................................................................................189
CreateJavaObject.......................................................................................................................... 190
CreateJsonBuilder......................................................................................................................... 192
CreateJsonParser........................................................................................................................... 192
CreateMCFIMInfo........................................................................................................................ 193
CreateMessage.............................................................................................................................. 193
CreateObject..................................................................................................................................194
CreateObjectArray........................................................................................................................ 197
CreateProcessRequest................................................................................................................... 198
CreateRecord.................................................................................................................................199
CreateRecordDefn.........................................................................................................................201
CreateRowset................................................................................................................................ 201
CreateRowsetCache...................................................................................................................... 204
CreateSearchRowset..................................................................................................................... 205
CreateSOAPDoc........................................................................................................................... 205
CreateSQL.....................................................................................................................................206

vi  Copyright © 1988, 2022, Oracle and/or its affiliates.



Contents

CreateWSDLMessage...................................................................................................................208
CreateXmlDoc.............................................................................................................................. 208
CreateXmlDocFactory.................................................................................................................. 209
CropImage.....................................................................................................................................210
CubicSpline...................................................................................................................................211
CurrEffDt...................................................................................................................................... 214
CurrEffRowNum...........................................................................................................................215
CurrEffSeq.................................................................................................................................... 215
CurrentLevelNumber.................................................................................................................... 216
CurrentRowNumber......................................................................................................................217

PeopleCode Built-in Functions and Language Constructs: D............................................................218
Date............................................................................................................................................... 218
Date3............................................................................................................................................. 219
DatePart.........................................................................................................................................220
DateTime6.....................................................................................................................................220
DateTimeToHTTP.........................................................................................................................221
DateTimeToISO............................................................................................................................ 222
DateTimeToLocalizedString......................................................................................................... 224
DateTimeToTimeZone.................................................................................................................. 226
DateTimeToUserFormat................................................................................................................228
DateTimeValue..............................................................................................................................229
DateValue...................................................................................................................................... 231
Day................................................................................................................................................232
Days.............................................................................................................................................. 233
Days360........................................................................................................................................ 233
Days365........................................................................................................................................ 234
DBCSTrim.................................................................................................................................... 235
DBPatternMatch............................................................................................................................235
DeChunkText................................................................................................................................ 236
Declare Function...........................................................................................................................238
Decrypt..........................................................................................................................................241
DecryptStr..................................................................................................................................... 242
Degrees......................................................................................................................................... 243
DeleteAttachment..........................................................................................................................244
DeleteEmailAddress......................................................................................................................248
DeleteFieldDefn............................................................................................................................ 249
DeleteImage.................................................................................................................................. 250
DeleteRecord.................................................................................................................................251
DeleteRecordDefn.........................................................................................................................252
DeleteRow.....................................................................................................................................253
DeleteSQL.....................................................................................................................................255
DeleteSystemPauseTimes............................................................................................................. 256
DeQueue....................................................................................................................................... 258
DetachAttachment.........................................................................................................................260
DisableMenuItem..........................................................................................................................265
DiscardRow...................................................................................................................................266
DoCancel.......................................................................................................................................268
DoesTableExist............................................................................................................................. 268
DoModal....................................................................................................................................... 269
DoModalComponent.....................................................................................................................272
DoModalComponentPopup.......................................................................................................... 276

Copyright © 1988, 2022, Oracle and/or its affiliates. vii



Contents

DoModalPanelGroup.................................................................................................................... 280
DoModalPopup............................................................................................................................. 281
DoModalX.................................................................................................................................... 284
DoModalXComponent..................................................................................................................287
DoSave..........................................................................................................................................291
DoSaveNow.................................................................................................................................. 292
DownloadToExcel.........................................................................................................................293

PeopleCode Built-in Functions and Language Constructs: E............................................................ 295
Else................................................................................................................................................295
EnableMenuItem...........................................................................................................................295
EncodeSearchCode....................................................................................................................... 296
EncodeURL...................................................................................................................................297
EncodeURLForQueryString......................................................................................................... 299
Encrypt..........................................................................................................................................301
EncryptStr..................................................................................................................................... 302
EncryptNodePswd.........................................................................................................................303
End-Evaluate.................................................................................................................................304
End-For......................................................................................................................................... 304
End-Function.................................................................................................................................304
End-If............................................................................................................................................ 304
EndMessage.................................................................................................................................. 304
EndModal......................................................................................................................................306
EndModalComponent................................................................................................................... 307
End-While..................................................................................................................................... 308
EnQueue........................................................................................................................................308
Error.............................................................................................................................................. 312
EscapeHTML................................................................................................................................ 314
EscapeJavascriptString..................................................................................................................315
EscapeWML..................................................................................................................................316
Evaluate.........................................................................................................................................317
Exact............................................................................................................................................. 318
Exec...............................................................................................................................................319
ExecuteRolePeopleCode...............................................................................................................323
ExecuteRoleQuery........................................................................................................................ 324
ExecuteRoleWorkflowQuery........................................................................................................ 325
ExecuteSearchSavePC.................................................................................................................. 325
Exit................................................................................................................................................326
Exp................................................................................................................................................ 327
ExpandBindVar............................................................................................................................. 327
ExpandEnvVar.............................................................................................................................. 328
ExpandSqlBinds............................................................................................................................329

PeopleCode Built-in Functions and Language Constructs: F.............................................................330
Fact................................................................................................................................................331
FetchSQL...................................................................................................................................... 331
FetchValue.....................................................................................................................................333
FieldChanged................................................................................................................................ 334
FileExists.......................................................................................................................................336
Find............................................................................................................................................... 338
Findb............................................................................................................................................. 339
FindCodeSetValues....................................................................................................................... 339
FindFiles....................................................................................................................................... 340

viii  Copyright © 1988, 2022, Oracle and/or its affiliates.



Contents

FlushBulkInserts........................................................................................................................... 342
For................................................................................................................................................. 343
FormatDateTime........................................................................................................................... 344
Forward......................................................................................................................................... 345
Function........................................................................................................................................ 347

PeopleCode Built-in Functions and Language Constructs: G............................................................349
GenABNNodeURL.......................................................................................................................349
GenDynABNElement................................................................................................................... 350
GenSecureKey.............................................................................................................................. 353
GenerateActGuideContentUrl.......................................................................................................353
GenerateActGuidePortalUrl..........................................................................................................355
GenerateActGuideRelativeUrl...................................................................................................... 356
GenerateComponentContentRelURL........................................................................................... 357
GenerateComponentContentURL.................................................................................................360
GenerateComponentPortalRelURL.............................................................................................. 363
GenerateComponentPortalURL.................................................................................................... 365
GenerateComponentRelativeURL................................................................................................ 368
GenerateExternalPortalURL......................................................................................................... 370
GenerateExternalRelativeURL..................................................................................................... 371
GenerateHomepagePortalURL..................................................................................................... 372
GenerateHomepageRelativeURL..................................................................................................374
GenerateQueryContentURL..........................................................................................................375
GenerateQueryPortalURL.............................................................................................................377
GenerateQueryRelativeURL.........................................................................................................378
GenerateScriptContentRelURL.................................................................................................... 380
GenerateScriptContentURL.......................................................................................................... 382
GenerateScriptPortalRelURL........................................................................................................384
GenerateScriptPortalURL............................................................................................................. 385
GenerateScriptRelativeURL......................................................................................................... 387
GenerateTree................................................................................................................................. 389
GenerateWorklistPortalURL......................................................................................................... 390
GenerateWorklistRelativeURL..................................................................................................... 391
GenHTMLMenu........................................................................................................................... 392
GenToken...................................................................................................................................... 394
GetABNChartRowSet...................................................................................................................394
GetABNInitialNode...................................................................................................................... 395
GetABNNode................................................................................................................................395
GetABNRelActnRowSet.............................................................................................................. 396
GetABNReqParameters................................................................................................................ 396
GetABNTreeEffdt......................................................................................................................... 397
GetABNTreeName........................................................................................................................398
GetABNTreeSetid......................................................................................................................... 399
GetABNTreeUserKey................................................................................................................... 399
GetAddSearchRecName............................................................................................................... 400
GetAESection................................................................................................................................400
GetAnalyticGrid............................................................................................................................402
GetAnalyticInstance......................................................................................................................403
GetArchPubHeaderXmlDoc......................................................................................................... 403
GetArchPubXmlDoc.....................................................................................................................404
GetArchSubXmlDoc.....................................................................................................................404
GetAttachment.............................................................................................................................. 404

Copyright © 1988, 2022, Oracle and/or its affiliates. ix



Contents

GetAttachmentURL...................................................................................................................... 411
GetBiDoc...................................................................................................................................... 417
GetBreadcrumbs............................................................................................................................418
GetCalendarDate...........................................................................................................................420
GetChart........................................................................................................................................422
GetChartURL................................................................................................................................ 423
GetComponentTitle.......................................................................................................................424
GetCwd......................................................................................................................................... 425
GetDefinitionAccess..................................................................................................................... 425
GetDialGauge................................................................................................................................428
GetEnv.......................................................................................................................................... 428
GetField.........................................................................................................................................429
GetFieldDefn.................................................................................................................................430
GetFile...........................................................................................................................................431
GetGanttChart............................................................................................................................... 436
GetGaugeThreshold...................................................................................................................... 437
GetGrid......................................................................................................................................... 437
GetHTMLText...............................................................................................................................439
GetImageExtents...........................................................................................................................440
GetInterlink................................................................................................................................... 441
GetJavaClass................................................................................................................................. 443
GetLEDGauge...............................................................................................................................444
GetLevel0......................................................................................................................................445
GetMethodNames......................................................................................................................... 446
GetMessage...................................................................................................................................447
GetMessageInstance......................................................................................................................448
GetMessageXmlDoc..................................................................................................................... 448
GetNextNumber............................................................................................................................ 449
GetNextNumberWithGaps............................................................................................................452
GetNextNumberWithGapsCommit...............................................................................................454
GetNextProcessInstance................................................................................................................456
GetNRXmlDoc..............................................................................................................................456
GetOrgChart..................................................................................................................................457
GetPage......................................................................................................................................... 458
GetPageField.................................................................................................................................459
GetPagePrefix............................................................................................................................... 460
GetPageTitle..................................................................................................................................461
GetPageType................................................................................................................................. 462
GetPanelControlStyle....................................................................................................................464
GetProgramFunctionInfo.............................................................................................................. 464
GetPubContractInstance................................................................................................................470
GetPubHeaderXmlDoc................................................................................................................. 470
GetPubXmlDoc.............................................................................................................................471
GetRatingBoxChart.......................................................................................................................473
GetRatingGauge............................................................................................................................473
GetRatingGaugeState....................................................................................................................474
GetRecord..................................................................................................................................... 475
GetRecordDefn............................................................................................................................. 476
GetReferenceArea.........................................................................................................................477
GetReferenceLine......................................................................................................................... 477
GetRelField................................................................................................................................... 478

x  Copyright © 1988, 2022, Oracle and/or its affiliates.



Contents

GetRow......................................................................................................................................... 479
GetRowset.....................................................................................................................................480
GetRowsetCache...........................................................................................................................481
GetRTISwitchThreshold............................................................................................................... 482
GetSearchRecordName.................................................................................................................483
GetSelectedTreeNode................................................................................................................... 484
GetSeries....................................................................................................................................... 484
GetSession.....................................................................................................................................485
GetSetId........................................................................................................................................ 485
GetSparkChart...............................................................................................................................487
GetSparkChartItem....................................................................................................................... 488
GetSQL......................................................................................................................................... 488
GetStatusMeterGauge................................................................................................................... 490
GetStoredFormat...........................................................................................................................491
GetSubContractInstance................................................................................................................492
GetSubXmlDoc.............................................................................................................................492
GetSyncLogData...........................................................................................................................494
GetTempFile..................................................................................................................................495
GetThreshold.................................................................................................................................499
GetTimeLine................................................................................................................................. 499
GetToolTip.................................................................................................................................... 500
GetTreeNodeParent.......................................................................................................................500
GetTreeNodeRecordName............................................................................................................501
GetTreeNodeValue........................................................................................................................501
GetURL.........................................................................................................................................501
GetUserOption.............................................................................................................................. 503
GetWLFieldValue......................................................................................................................... 503
Global............................................................................................................................................504
Gray...............................................................................................................................................505
GrayMenuItem.............................................................................................................................. 507
GroupletRequestSource................................................................................................................ 507

PeopleCode Built-in Functions and Language Constructs: H............................................................508
Hash.............................................................................................................................................. 508
HashSHA256................................................................................................................................ 509
HashWithSalt................................................................................................................................ 510
HermiteCubic................................................................................................................................ 512
Hide...............................................................................................................................................513
HideMenuItem.............................................................................................................................. 514
HideRow....................................................................................................................................... 515
HideScroll..................................................................................................................................... 517
HistVolatility................................................................................................................................. 518
Hour.............................................................................................................................................. 519

PeopleCode Built-in Functions and Language Constructs: I............................................................. 520
IBPurgeDomainStatus...................................................................................................................520
IBPurgeNodesDown..................................................................................................................... 520
Idiv................................................................................................................................................ 521
If....................................................................................................................................................521
InboundPublishXmlDoc............................................................................................................... 522
InitChat......................................................................................................................................... 523
InsertImage....................................................................................................................................527
InsertRow......................................................................................................................................529

Copyright © 1988, 2022, Oracle and/or its affiliates. xi



Contents

Int.................................................................................................................................................. 531
Integer........................................................................................................................................... 532
IsAddEnabled................................................................................................................................533
IsAddMode................................................................................................................................... 533
IsAGComponent........................................................................................................................... 534
IsAGRequest................................................................................................................................. 534
IsAlpha..........................................................................................................................................535
IsAlphaNumeric............................................................................................................................ 536
IsBackEnabled.............................................................................................................................. 537
IsClassicPlusMode........................................................................................................................ 537
IsDate............................................................................................................................................ 538
IsDateTime....................................................................................................................................539
IsDaylightSavings......................................................................................................................... 540
IsDigits..........................................................................................................................................541
IsFluidMode..................................................................................................................................542
IsFluidNotifyEnabled....................................................................................................................543
IsFluidSearchStart.........................................................................................................................543
IsGroupletInteractive.................................................................................................................... 544
IsGroupletRequest.........................................................................................................................545
IsHidden........................................................................................................................................546
IsHomeEnabled.............................................................................................................................547
IsIScriptAuthorized.......................................................................................................................547
IsLogoutEnabled........................................................................................................................... 548
IsMDAJAXTrf.............................................................................................................................. 549
IsMDComponent...........................................................................................................................549
IsMDGuided................................................................................................................................. 550
IsMDListPopup.............................................................................................................................551
IsMDListSlideout..........................................................................................................................551
IsMDNonOptimized......................................................................................................................552
IsMDRequest................................................................................................................................ 553
IsMDSearchEnabled..................................................................................................................... 553
IsMenuItemAuthorized................................................................................................................. 554
IsMessageActive........................................................................................................................... 555
IsModal......................................................................................................................................... 556
IsModalComponent.......................................................................................................................557
IsModalPanelGroup...................................................................................................................... 558
IsModeless.................................................................................................................................... 559
IsNavBarEnabled.......................................................................................................................... 559
IsNewWindowEnabled................................................................................................................. 560
IsNextInListEnabled..................................................................................................................... 561
IsNotificationEnabled................................................................................................................... 562
IsNotifyEnabled............................................................................................................................ 562
IsNumber.......................................................................................................................................563
IsOperatorInClass..........................................................................................................................564
ISOToDate.................................................................................................................................... 564
ISOToDateTime............................................................................................................................ 565
IsPIIandSensitiveForUser............................................................................................................. 567
IsPinEnabled................................................................................................................................. 568
IsPrevInListEnabled......................................................................................................................568
IsRecFieldPII................................................................................................................................ 569
IsRecFieldSensitive.......................................................................................................................570

xii  Copyright © 1988, 2022, Oracle and/or its affiliates.



Contents

IsReturnToListEnabled................................................................................................................. 571
IsSaveEnabled...............................................................................................................................572
IsSearchDialog.............................................................................................................................. 572
IsSearchEnabled............................................................................................................................573
IsSingleComponentAG................................................................................................................. 574
IsSingleUnitOfWork..................................................................................................................... 574
IsSmallFFOptimized..................................................................................................................... 575
IsStandardSearchEnabled..............................................................................................................576
IsTime........................................................................................................................................... 576
IsUserInPermissionList.................................................................................................................577
IsUserInRole................................................................................................................................. 578
IsUserNumber............................................................................................................................... 579

PeopleCode Built-in Functions and Language Constructs: J-L..........................................................580
Left................................................................................................................................................580
Len................................................................................................................................................ 581
Lenb.............................................................................................................................................. 581
LinearInterp...................................................................................................................................581
Ln.................................................................................................................................................. 582
LoadABN......................................................................................................................................583
Local............................................................................................................................................. 584
LogObjectUse............................................................................................................................... 585
Log10............................................................................................................................................ 587
Lower............................................................................................................................................ 587
LTrim.............................................................................................................................................588

PeopleCode Built-in Functions and Language Constructs: M........................................................... 588
MAddAttachment..........................................................................................................................588
MarkPrimaryEmailAddress.......................................................................................................... 599
MarkWLItemWorked....................................................................................................................600
Max............................................................................................................................................... 601
MCFBroadcast.............................................................................................................................. 601
MessageBox..................................................................................................................................603
Min................................................................................................................................................609
Minute........................................................................................................................................... 610
Mod............................................................................................................................................... 611
Month............................................................................................................................................611
MsgGet..........................................................................................................................................612
MsgGetExplainText...................................................................................................................... 613
MsgGetText...................................................................................................................................614

PeopleCode Built-in Functions and Language Constructs: N............................................................615
NextEffDt......................................................................................................................................615
NextRelEffDt................................................................................................................................ 616
NodeDelete....................................................................................................................................617
NodeRename.................................................................................................................................618
NodeSaveAs..................................................................................................................................619
NodeTranDelete............................................................................................................................ 620
None..............................................................................................................................................621
Not.................................................................................................................................................622
NotifyQ......................................................................................................................................... 622
NumberToDisplayString............................................................................................................... 623
NumberToString............................................................................................................................626

PeopleCode Built-in Functions and Language Constructs: O............................................................630

Copyright © 1988, 2022, Oracle and/or its affiliates. xiii



Contents

ObjectDoMethod...........................................................................................................................630
ObjectDoMethodArray................................................................................................................. 631
ObjectGetProperty........................................................................................................................ 632
ObjectSetProperty......................................................................................................................... 634
OnlyOne........................................................................................................................................635
OnlyOneOrNone........................................................................................................................... 636
Or.................................................................................................................................................. 637
OverrideCNAVDisplayMode........................................................................................................637
OverrideConditionalNav...............................................................................................................639

PeopleCode Built-in Functions and Language Constructs: P-Q........................................................ 642
PanelGroupChanged..................................................................................................................... 642
PingNode.......................................................................................................................................642
PreloadCache................................................................................................................................ 643
PriorEffDt......................................................................................................................................645
PriorRelEffDt................................................................................................................................ 646
PriorValue..................................................................................................................................... 646
Product.......................................................................................................................................... 647
Prompt...........................................................................................................................................648
Proper............................................................................................................................................650
PublishXmlDoc.............................................................................................................................650
PutAttachment...............................................................................................................................651
Quote.............................................................................................................................................658

PeopleCode Built-in Functions and Language Constructs: R............................................................ 659
Radians..........................................................................................................................................659
Rand.............................................................................................................................................. 660
RecordChanged.............................................................................................................................660
RecordDeleted...............................................................................................................................662
RecordNew....................................................................................................................................665
RefreshTree................................................................................................................................... 666
RelNodeTranDelete.......................................................................................................................667
RemoteCall....................................................................................................................................668
RemoveDirectory.......................................................................................................................... 671
RenameDBField............................................................................................................................673
RenamePage..................................................................................................................................675
RenameRecord.............................................................................................................................. 676
Repeat............................................................................................................................................677
Replace..........................................................................................................................................678
Rept............................................................................................................................................... 679
ResizeImage.................................................................................................................................. 679
ReSubmitPubHeaderXmlDoc....................................................................................................... 684
ReSubmitPubXmlDoc...................................................................................................................685
ReSubmitSubXmlDoc...................................................................................................................686
Return............................................................................................................................................688
Returns.......................................................................................................................................... 688
ReturnToServer............................................................................................................................. 689
ReValidateNRXmlDoc..................................................................................................................691
RevalidatePassword...................................................................................................................... 691
Right..............................................................................................................................................693
Round............................................................................................................................................694
RoundCurrency............................................................................................................................. 695
RowFlush...................................................................................................................................... 695

xiv  Copyright © 1988, 2022, Oracle and/or its affiliates.



Contents

RowScrollSelect............................................................................................................................697
RowScrollSelectNew.................................................................................................................... 699
RTrim............................................................................................................................................ 701

PeopleCode Built-in Functions and Language Constructs: S.............................................................701
SamRefreshView...........................................................................................................................702
ScanFile.........................................................................................................................................703
ScheduleProcess............................................................................................................................704
ScrollFlush.................................................................................................................................... 704
ScrollSelect................................................................................................................................... 705
ScrollSelectNew............................................................................................................................708
Second...........................................................................................................................................710
SecureRandomGen........................................................................................................................710
SendMail....................................................................................................................................... 711
SetAddMode................................................................................................................................. 713
SetAuthenticationResult................................................................................................................714
SetChannelStatus.......................................................................................................................... 716
SetComponentChanged.................................................................................................................717
SetControlValue............................................................................................................................ 718
SetCursorPos.................................................................................................................................720
SetDBFieldAuxFlag......................................................................................................................722
SetDBFieldCharDefn.................................................................................................................... 723
SetDBFieldFormat........................................................................................................................ 725
SetDBFieldFormatLength.............................................................................................................727
SetDBFieldLabel...........................................................................................................................728
SetDBFieldLength........................................................................................................................ 730
SetDBFieldNotUsed......................................................................................................................731
SetDefault......................................................................................................................................733
SetDefaultAll................................................................................................................................ 734
SetDefaultNext..............................................................................................................................735
SetDefaultNextRel........................................................................................................................ 735
SetDefaultPrior..............................................................................................................................736
SetDefaultPriorRel........................................................................................................................ 736
SetDisplayFormat..........................................................................................................................737
SetFacetNamesToRemove............................................................................................................ 738
SetLabel........................................................................................................................................ 739
SetLanguage..................................................................................................................................740
SetMDAJAXTrf............................................................................................................................741
SetMDGuided............................................................................................................................... 742
SetMDListPopup...........................................................................................................................743
SetMDListSlideout........................................................................................................................743
SetMessageStatus..........................................................................................................................744
SetNextPanel.................................................................................................................................745
SetNextPage.................................................................................................................................. 745
SetPageFieldPageFieldName........................................................................................................ 746
SetPanelControlStyle.................................................................................................................... 748
SetPasswordExpired......................................................................................................................749
SetPostReport................................................................................................................................749
SetRecFieldEditTable....................................................................................................................750
SetRecFieldKey............................................................................................................................ 752
SetReEdit...................................................................................................................................... 753
SetRemovelistView.......................................................................................................................754

Copyright © 1988, 2022, Oracle and/or its affiliates. xv



Contents

SetSaveWarningFilter................................................................................................................... 755
SetSearchDefault...........................................................................................................................756
SetSearchDialogBehavior............................................................................................................. 757
SetSearchEdit................................................................................................................................ 758
SetTempTableInstance.................................................................................................................. 759
SetThemeId................................................................................................................................... 760
SetTracePC....................................................................................................................................761
SetTraceSQL................................................................................................................................. 764
SetTransferAttributes.................................................................................................................... 767
SetupScheduleDefnItem................................................................................................................769
SetUserOption...............................................................................................................................770
ShareAttachment...........................................................................................................................771
ShouldSuppressCREF...................................................................................................................774
Sign............................................................................................................................................... 774
Sin................................................................................................................................................. 775
SinglePaymentPV......................................................................................................................... 776
SortScroll...................................................................................................................................... 776
Split............................................................................................................................................... 778
SQLExec....................................................................................................................................... 779
Sqrt................................................................................................................................................785
StartWork...................................................................................................................................... 785
Step............................................................................................................................................... 787
StopFetching................................................................................................................................. 787
StoreSQL.......................................................................................................................................789
String.............................................................................................................................................790
StripOffHTMLTags.......................................................................................................................791
Substitute.......................................................................................................................................793
Substring....................................................................................................................................... 794
Substringb..................................................................................................................................... 795
SwitchUser....................................................................................................................................795
SyncRequestXmlDoc.................................................................................................................... 797

PeopleCode Built-in Functions and Language Constructs: T............................................................ 798
Tan.................................................................................................................................................798
Then.............................................................................................................................................. 799
throw............................................................................................................................................. 799
Time.............................................................................................................................................. 800
Time3............................................................................................................................................ 801
TimePart........................................................................................................................................802
TimeToTimeZone..........................................................................................................................802
TimeValue..................................................................................................................................... 804
TimeZoneOffset............................................................................................................................ 804
To.................................................................................................................................................. 806
TotalRowCount............................................................................................................................. 806
Transfer......................................................................................................................................... 807
TransferExact................................................................................................................................ 811
TransferExactTop..........................................................................................................................815
TransferModeless..........................................................................................................................819
TransferNode.................................................................................................................................822
TransferPanel................................................................................................................................ 824
TransferPage................................................................................................................................. 824
TransferPortal................................................................................................................................826

xvi  Copyright © 1988, 2022, Oracle and/or its affiliates.



Contents

TransferTop................................................................................................................................... 828
Transform......................................................................................................................................831
TransformEx................................................................................................................................. 832
TransformExCache....................................................................................................................... 834
TreeDetailInNode..........................................................................................................................835
TriggerBusinessEvent................................................................................................................... 836
Truncate.........................................................................................................................................837
try.................................................................................................................................................. 838
TurnOffRTI................................................................................................................................... 839

PeopleCode Built-in Functions and Language Constructs: U............................................................840
UIDisplayMode.............................................................................................................................840
UnCheckMenuItem.......................................................................................................................842
Unencode...................................................................................................................................... 842
UnGray..........................................................................................................................................843
UnHide..........................................................................................................................................845
UnhideRow................................................................................................................................... 846
UnhideScroll................................................................................................................................. 847
UniformSeriesPV..........................................................................................................................849
UnshareAttachment.......................................................................................................................849
Until.............................................................................................................................................. 851
UpdateSysVersion......................................................................................................................... 851
UpdateValue.................................................................................................................................. 852
UpdateXmlDoc............................................................................................................................. 853
Upper.............................................................................................................................................854

PeopleCode Built-in Functions and Language Constructs: V............................................................855
Value............................................................................................................................................. 855
ValueUser......................................................................................................................................856
VerifyHash.................................................................................................................................... 857
VerifyOprPassword....................................................................................................................... 858
ViewAttachment............................................................................................................................859
ViewContentURL..........................................................................................................................865
ViewContentURLClassic.............................................................................................................. 866
ViewContentURLFluid................................................................................................................. 867
ViewContentURLModeless.......................................................................................................... 868
ViewURL...................................................................................................................................... 870
ViewURLModeless.......................................................................................................................871
ViewURLTop................................................................................................................................ 873

PeopleCode Built-in Functions and Language Constructs: W-Z....................................................... 874
Warning.........................................................................................................................................874
Weekday........................................................................................................................................876
When............................................................................................................................................. 877
When-Other...................................................................................................................................877
While.............................................................................................................................................877
WinEscape.....................................................................................................................................878
WinExec........................................................................................................................................878
WinMessage..................................................................................................................................878
WriteToLog................................................................................................................................... 883
Year............................................................................................................................................... 885

Directive PeopleCode Functions and Constructs............................................................................... 885
#Else..............................................................................................................................................886
#End-If.......................................................................................................................................... 886

Copyright © 1988, 2022, Oracle and/or its affiliates. xvii



Contents

#If..................................................................................................................................................886
#Then............................................................................................................................................ 887
#ToolsRel...................................................................................................................................... 888

Chapter 2: Meta-SQL Elements.............................................................................................................889
Understanding Meta-SQL................................................................................................................... 889

Meta-SQL Use..............................................................................................................................889
Meta-SQL Element Types............................................................................................................ 889
Parameter Markers........................................................................................................................890

Date Considerations............................................................................................................................ 890
Basic Date Meta-SQL Guidelines................................................................................................890
Date, DateTime, and Time Wrappers with Application Engine Programs.................................. 890
Date, DateTime, and Time Out Wrappers for SQL Views and Dynamic Views......................... 891
{DateTimein-prefix} in SQR....................................................................................................... 891

Meta-SQL Placement Considerations.................................................................................................891
Meta-SQL Reference.......................................................................................................................... 897

%Abs.............................................................................................................................................897
%BINARYSORT.......................................................................................................................... 897
%Cast............................................................................................................................................ 898
%COALESCE...............................................................................................................................899
%Concat........................................................................................................................................900
%CurrentDateIn............................................................................................................................ 901
%CurrentDateOut..........................................................................................................................901
%CurrentDateTimeIn....................................................................................................................901
%CurrentDateTimeOut................................................................................................................. 901
%CurrentTimeIn........................................................................................................................... 901
%CurrentTimeOut.........................................................................................................................902
%DatabaseRelease........................................................................................................................ 902
%DateAdd.....................................................................................................................................903
%DateDiff..................................................................................................................................... 903
%DateIn........................................................................................................................................ 903
%DateNull.....................................................................................................................................904
%DateOut......................................................................................................................................904
%DatePart..................................................................................................................................... 905
%DateTimeDiff.............................................................................................................................905
%DateTimeDiffExtended..............................................................................................................906
%DateTimeIn................................................................................................................................ 907
%DateTimeNull............................................................................................................................ 907
%DateTimeOut............................................................................................................................. 908
%DecDiv.......................................................................................................................................909
%DecMult..................................................................................................................................... 909
%DTTM........................................................................................................................................910
%EffDtCheck................................................................................................................................ 911
%FirstRows...................................................................................................................................912
%InsertSelect................................................................................................................................ 914
%InsertSelectWithLongs...............................................................................................................916
%InsertValues................................................................................................................................918
%Join.............................................................................................................................................919
%KeyEqual................................................................................................................................... 921
%KeyEqualNoEffDt..................................................................................................................... 922
%Like............................................................................................................................................923
%LikeExact...................................................................................................................................925

xviii  Copyright © 1988, 2022, Oracle and/or its affiliates.



Contents

%Mod............................................................................................................................................927
%NoUppercase..............................................................................................................................928
%NumToChar............................................................................................................................... 929
%OldKeyEqual............................................................................................................................. 929
%OPRCLAUSE............................................................................................................................930
%Round.........................................................................................................................................930
%SelectByRowNum..................................................................................................................... 931
%SelectDummyTable....................................................................................................................932
%SQL............................................................................................................................................933
%SqlHint.......................................................................................................................................935
%Substring....................................................................................................................................937
%SUBREC....................................................................................................................................938
%Table.......................................................................................................................................... 938
%Test.............................................................................................................................................939
%TextIn.........................................................................................................................................940
%TimeAdd.................................................................................................................................... 941
%TimeIn........................................................................................................................................942
%TimeNull....................................................................................................................................942
%TimeOut..................................................................................................................................... 943
%TimePart.....................................................................................................................................943
%TrimSubstr................................................................................................................................. 944
%Truncate..................................................................................................................................... 945
%TruncateTable............................................................................................................................ 945
%UpdatePairs................................................................................................................................946
%Upper......................................................................................................................................... 948
%UuidGen.....................................................................................................................................948
%UuidGenBase64.........................................................................................................................949

Meta-SQL Shortcuts............................................................................................................................949
%Delete.........................................................................................................................................949
%Insert.......................................................................................................................................... 949
%SelectAll.................................................................................................................................... 950
%SelectDistinct.............................................................................................................................950
%SelectByKey.............................................................................................................................. 951
%SelectByKeyEffDt..................................................................................................................... 951
%Update........................................................................................................................................951

Chapter 3: System Variables...................................................................................................................953
Understanding System Variables........................................................................................................ 953
System Variables Reference................................................................................................................953

%AECallerApplId.........................................................................................................................953
%AEExitReturnCode.................................................................................................................... 953
%AllowNotification...................................................................................................................... 954
%AllowRecipientLookup..............................................................................................................954
%ApplicationLogFence................................................................................................................ 955
%AppService_HTTP_DELETE................................................................................................... 955
%AppService_HTTP_GET...........................................................................................................956
%AppService_HTTP_PATCH...................................................................................................... 956
%AppService_HTTP_POST.........................................................................................................956
%AppService_HTTP_PUT...........................................................................................................956
%AsOfDate................................................................................................................................... 957
%AuthenticationToken..................................................................................................................957
%BPName.....................................................................................................................................957

Copyright © 1988, 2022, Oracle and/or its affiliates. xix



Contents

%ClientDate.................................................................................................................................. 957
%ClientTimeZone......................................................................................................................... 958
%Component.................................................................................................................................958
%CompIntfcName........................................................................................................................ 958
%ContentID.................................................................................................................................. 958
%ContentType...............................................................................................................................959
%Copyright................................................................................................................................... 960
%Currency.................................................................................................................................... 960
%Date............................................................................................................................................960
%DateTime................................................................................................................................... 960
%DbName.....................................................................................................................................960
%DbServerName.......................................................................................................................... 961
%DbType...................................................................................................................................... 961
%EmailAddress.............................................................................................................................961
%EmployeeId................................................................................................................................961
%ExternalAuthInfo....................................................................................................................... 962
%FilePath......................................................................................................................................962
%HPTabName...............................................................................................................................962
%IB_JSON....................................................................................................................................962
%IB_XML.................................................................................................................................... 962
%Import........................................................................................................................................ 963
%IntBroker....................................................................................................................................963
%IsMultiLanguageEnabled...........................................................................................................963
%Language....................................................................................................................................963
%Language_Base..........................................................................................................................963
%Language_Data.......................................................................................................................... 964
%Language_User.......................................................................................................................... 964
%LocalNode..................................................................................................................................964
%Market........................................................................................................................................965
%MaxMessageSize....................................................................................................................... 966
%MaxNbrSegments...................................................................................................................... 966
%Menu..........................................................................................................................................966
%Mode..........................................................................................................................................966
%NavigatorHomePermissionList..................................................................................................967
%Node...........................................................................................................................................967
%OperatorClass............................................................................................................................ 967
%OperatorId..................................................................................................................................967
%OperatorRowLevelSecurityClass.............................................................................................. 968
%OutDestFormat.......................................................................................................................... 968
%OutDestType.............................................................................................................................. 968
%Page........................................................................................................................................... 969
%Panel.......................................................................................................................................... 969
%PanelGroup................................................................................................................................ 969
%PasswordExpired....................................................................................................................... 969
%PerfTime.................................................................................................................................... 970
%PermissionLists..........................................................................................................................971
%PID.............................................................................................................................................971
%Portal..........................................................................................................................................971
%PrevComponent......................................................................................................................... 971
%PrimaryPermissionList.............................................................................................................. 972
%ProcessProfilePermissionList.................................................................................................... 972

xx  Copyright © 1988, 2022, Oracle and/or its affiliates.



Contents

%PSAuthResult.............................................................................................................................972
%Recipient_Mail.......................................................................................................................... 972
%Recipient_OPRID...................................................................................................................... 972
%Recipient_Phone........................................................................................................................ 973
%Recipient_Role.......................................................................................................................... 973
%Request...................................................................................................................................... 973
%Response....................................................................................................................................973
%ResultDocument........................................................................................................................ 974
%Roles.......................................................................................................................................... 974
%RowSecurityPermissionList...................................................................................................... 974
%RunningInPortal.........................................................................................................................974
%ServerTimeZone........................................................................................................................ 975
%Session....................................................................................................................................... 975
%SignonUserId............................................................................................................................. 975
%SignOnUserPswd.......................................................................................................................975
%SMTPBlackberryReplyTo......................................................................................................... 975
%SMTPGuaranteed...................................................................................................................... 976
%SMTPSender..............................................................................................................................976
%SQLRows...................................................................................................................................977
%Super..........................................................................................................................................977
%This............................................................................................................................................ 977
%Time........................................................................................................................................... 978
%ToolsRelease.............................................................................................................................. 979
%TransformData........................................................................................................................... 979
%UserDescription......................................................................................................................... 979
%UserId........................................................................................................................................ 979
%WLInstanceID............................................................................................................................979
%WLName....................................................................................................................................980

Chapter 4: Meta-HTML..........................................................................................................................981
Understanding Meta-HTML............................................................................................................... 981

Meta-HTML Placement Considerations.......................................................................................981
Meta-HTML Variables................................................................................................................. 984
Meta-HTML Functions.................................................................................................................984
Comments in HTML.................................................................................................................... 984
Considerations When Using Find Definition References............................................................ 985

Meta-HTML Reference.......................................................................................................................985
%AlignEnd....................................................................................................................................985
%AlignStart...................................................................................................................................985
%Appserver...................................................................................................................................986
%AppsRel..................................................................................................................................... 986
%Browser......................................................................................................................................986
%BrowserPlatform........................................................................................................................986
%BrowserVersion......................................................................................................................... 986
%Cols............................................................................................................................................986
%Component.................................................................................................................................987
%BB..............................................................................................................................................987
%BP.............................................................................................................................................. 988
%BV..............................................................................................................................................988
%ContentReference...................................................................................................................... 989
%Copyright................................................................................................................................... 990
%DBName.................................................................................................................................... 990

Copyright © 1988, 2022, Oracle and/or its affiliates. xxi



Contents

%DBType......................................................................................................................................990
%Direction.................................................................................................................................... 990
%Encode....................................................................................................................................... 991
%ExplainMessage.........................................................................................................................991
%FORMFACTOREXTRALARGE..............................................................................................992
%FORMFACTORLARGE........................................................................................................... 993
%FORMFACTORMEDIUM........................................................................................................993
%FORMFACTORSMALL........................................................................................................... 993
%Formname..................................................................................................................................993
%HtmlContent.............................................................................................................................. 994
%Image......................................................................................................................................... 994
%JavaScript...................................................................................................................................995
%LabelTag.................................................................................................................................... 995
%LanguageISO............................................................................................................................. 995
%Menu..........................................................................................................................................996
%Message..................................................................................................................................... 996
%Page........................................................................................................................................... 997
%ServicePack................................................................................................................................997
%StyleSheet.................................................................................................................................. 997
%SubmitScriptName.....................................................................................................................998
%tabindex..................................................................................................................................... 998
%ToolsRel.....................................................................................................................................999
%URL........................................................................................................................................... 999
%UserId...................................................................................................................................... 1000

Chapter 5: Viewing Trees From Application Pages........................................................................... 1001
Understanding View Trees................................................................................................................1001
Invoking View Trees From Application Pages................................................................................ 1004

Example of Method A: Viewing Trees Without Multi-Node Selection.....................................1006
Example of Method B: Viewing Trees With Multi-Node Selection.......................................... 1007

xxii  Copyright © 1988, 2022, Oracle and/or its affiliates.



Preface

Understanding the PeopleSoft Online Help and PeopleBooks

The PeopleSoft Online Help is a website that enables you to view all help content for PeopleSoft
applications and PeopleTools. The help provides standard navigation and full-text searching, as well as
context-sensitive online help for PeopleSoft users.

Hosted PeopleSoft Online Help
You can access the hosted PeopleSoft Online Help on the Oracle Help Center. The hosted PeopleSoft
Online Help is updated on a regular schedule, ensuring that you have access to the most current
documentation. This reduces the need to view separate documentation posts for application maintenance
on My Oracle Support. The hosted PeopleSoft Online Help is available in English only.

To configure the context-sensitive help for your PeopleSoft applications to use the Oracle Help Center,
see Configuring Context-Sensitive Help Using the Hosted Online Help Website.

Locally Installed Help
If you’re setting up an on-premise PeopleSoft environment, and your organization has firewall restrictions
that prevent you from using the hosted PeopleSoft Online Help, you can install the online help locally.
See Configuring Context-Sensitive Help Using a Locally Installed Online Help Website.

Downloadable PeopleBook PDF Files
You can access downloadable PDF versions of the help content in the traditional PeopleBook format on
the Oracle Help Center. The content in the PeopleBook PDFs is the same as the content in the PeopleSoft
Online Help, but it has a different structure and it does not include the interactive navigation features that
are available in the online help.

Common Help Documentation
Common help documentation contains information that applies to multiple applications. The two main
types of common help are:

• Application Fundamentals

• Using PeopleSoft Applications

Most product families provide a set of application fundamentals help topics that discuss essential
information about the setup and design of your system. This information applies to many or all
applications in the PeopleSoft product family. Whether you are implementing a single application, some
combination of applications within the product family, or the entire product family, you should be familiar
with the contents of the appropriate application fundamentals help. They provide the starting points for
fundamental implementation tasks.

Copyright © 1988, 2022, Oracle and/or its affiliates. xxiii

https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_HOSTED
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_LOCAL
https://docs.oracle.com/en/applications/peoplesoft/index.html


Preface

In addition, the PeopleTools: Applications User's Guide introduces you to the various elements of the
PeopleSoft Pure Internet Architecture. It also explains how to use the navigational hierarchy, components,
and pages to perform basic functions as you navigate through the system. While your application or
implementation may differ, the topics in this user’s guide provide general information about using
PeopleSoft applications.

Field and Control Definitions
PeopleSoft documentation includes definitions for most fields and controls that appear on application
pages. These definitions describe how to use a field or control, where populated values come from, the
effects of selecting certain values, and so on. If a field or control is not defined, then it either requires
no additional explanation or is documented in a common elements section earlier in the documentation.
For example, the Date field rarely requires additional explanation and may not be defined in the
documentation for some pages.

Typographical Conventions
The following table describes the typographical conventions that are used in the online help.

Typographical Convention Description

Key+Key Indicates a key combination action. For example, a plus sign 
(+) between keys means that you must hold down the first key
while you press the second key. For Alt+W, hold down the Alt
key while you press the W key.

. . . (ellipses) Indicate that the preceding item or series can be repeated any
number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode syntax.
 Options are separated by a pipe ( | ).

[ ] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
 an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

⇒ This continuation character has been inserted at the end of a
line of code that has been wrapped at the page margin. The
code should be viewed or entered as a single, continuous line
of code without the continuation character.

ISO Country and Currency Codes
PeopleSoft Online Help topics use International Organization for Standardization (ISO) country and
currency codes to identify country-specific information and monetary amounts.

xxiv  Copyright © 1988, 2022, Oracle and/or its affiliates.



Preface

ISO country codes may appear as country identifiers, and ISO currency codes may appear as currency
identifiers in your PeopleSoft documentation. Reference to an ISO country code in your documentation
does not imply that your application includes every ISO country code. The following example is a
country-specific heading: "(FRA) Hiring an Employee."

The PeopleSoft Currency Code table (CURRENCY_CD_TBL) contains sample currency code data. The
Currency Code table is based on ISO Standard 4217, "Codes for the representation of currencies," and
also relies on ISO country codes in the Country table (COUNTRY_TBL). The navigation to the pages
where you maintain currency code and country information depends on which PeopleSoft applications
you are using. To access the pages for maintaining the Currency Code and Country tables, consult the
online help for your applications for more information.

Region and Industry Identifiers
Information that applies only to a specific region or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a region-specific heading: "(Latin America) Setting Up Depreciation"

Region Identifiers

Regions are identified by the region name. The following region identifiers may appear in the PeopleSoft
Online Help:

• Asia Pacific

• Europe

• Latin America

• North America

Industry Identifiers

Industries are identified by the industry name or by an abbreviation for that industry. The following
industry identifiers may appear in the PeopleSoft Online Help:

• USF (U.S. Federal)

• E&G (Education and Government)

Translations and Embedded Help
PeopleSoft 9.2 software applications include translated embedded help. With the 9.2 release, PeopleSoft
aligns with the other Oracle applications by focusing our translation efforts on embedded help. We
are not planning to translate our traditional online help and PeopleBooks documentation. Instead we
offer very direct translated help at crucial spots within our application through our embedded help
widgets. Additionally, we have a one-to-one mapping of application and help translations, meaning that
the software and embedded help translation footprint is identical—something we were never able to
accomplish in the past.

Copyright © 1988, 2022, Oracle and/or its affiliates. xxv



Preface

Using and Managing the PeopleSoft Online Help

Select About This Help in the left navigation panel on any page in the PeopleSoft Online Help to see
information on the following topics:

• Using the PeopleSoft Online Help.

• Managing hosted Online Help.

• Managing locally installed PeopleSoft Online Help.

PeopleTools Related Links

PeopleTools 8.60 Home Page

PeopleSoft Search and Kibana Analytics Home Page

"PeopleTools Product/Feature PeopleBook Index" (Getting Started with PeopleTools)

PeopleSoft Online Help

PeopleSoft Information Portal

PeopleSoft Spotlight Series

PeopleSoft Training and Certification | Oracle University

My Oracle Support

Oracle Help Center

Contact Us

Send your suggestions to psoft-infodev_us@oracle.com.

Please include the applications update image or PeopleTools release that you’re using.

Follow Us

Icon Link

YouTube

xxvi  Copyright © 1988, 2022, Oracle and/or its affiliates.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2884844.2
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2205540.2
https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/spotlight.html
https://docs.oracle.com/pls/topic/lookup?ctx=psft_hosted&id=ou
https://support.oracle.com/CSP/ui/flash.html
https://docs.oracle.com/en/
mailto:PSOFT-INFODEV_US@ORACLE.COM
http://www.youtube.com/user/PSFTOracle


Preface

Icon Link

Twitter@PeopleSoft_Info.

PeopleSoft Blogs

LinkedIn

Copyright © 1988, 2022, Oracle and/or its affiliates. xxvii

https://twitter.com/PeopleSoft_Info
https://blogs.oracle.com/peoplesoft
https://www.linkedin.com/groups/4530781/?home=&gid=4530781&trk=anet_ug_hm




Chapter 1

PeopleCode Built-in Functions and
Language Constructs

Functions by Category

The following topics subdivide the PeopleCode built-in functions by functional category and provide
links from within each category to the reference entries.

Analytic Calculation Engine
CreateAnalyticInstance

GetAnalyticInstance

GetAnalyticGrid

APIs
CreateObject

GetSession

%Session

Application Classes
CollectGarbage

create

Application Engine
CallAppEngine

CommitWork

GetAESection

Application Logging
WriteToLog

%ApplicationLogFence

Copyright © 1988, 2022, Oracle and/or its affiliates. 29



PeopleCode Built-in Functions and Language Constructs Chapter 1

Arrays
CopyFromJavaArray

CopyToJavaArray

CreateArray

CreateArrayAny

CreateArrayRept

Split

Attachment
AddAttachment

CleanAttachments

CopyAttachments

DeleteAttachment

DetachAttachment

GetAttachment

MAddAttachment

PutAttachment

ShareAttachment

UnshareAttachment

ViewAttachment

Bulk
BulkDeleteField

BulkInsertField

BulkModifyPageFieldOrder

BulkUpdateIndexes

Business Interlink
GetBiDoc

GetInterlink

30  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Character Processing
CharType

ContainsCharType

ContainsOnlyCharType

ConvertChar

DBCSTrim

Charting
CreateObject

GetChart

GetChartURL

GetDialGauge

GetGanttChart

GetLEDGauge

GetOrgChart

GetRatingBoxChart

GetRatingGauge

GetRatingGaugeState

GetReferenceArea

GetReferenceLine

GetSeries

GetSparkChart

GetSparkChartItem

GetStatusMeterGauge

GetThreshold

GetTimeLine

GetToolTip

ChartField
RenameDBField

Copyright © 1988, 2022, Oracle and/or its affiliates. 31



PeopleCode Built-in Functions and Language Constructs Chapter 1

RenamePage

RenameRecord

SetDBFieldAuxFlag

SetDBFieldCharDefn

SetDBFieldFormat

SetDBFieldFormatLength

SetDBFieldLabel

SetDBFieldLength

SetDBFieldNotUsed

SetPageFieldPageFieldName

SetRecFieldEditTable

SetRecFieldKey

Classic Plus
ConfigureClassicPlusComponent

ConfigureClassicPlusForWC

IsClassicPlusMode

Component Buffer
ActiveRowCount

AddKeyListItem

ClearKeyList

CreateRecord

CreateRowset

CompareLikeFields

ComponentChanged

CopyFields

CopyRow

CurrentLevelNumber

CurrentRowNumber

32  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

DeleteRecord

DeleteRow

DiscardRow

ExpandBindVar

ExpandEnvVar

ExpandSqlBinds

FetchValue

FieldChanged

FlushBulkInserts

GetField

GetLevel0

GetNextNumber

GetNextNumberWithGaps

GetNextNumberWithGapsCommit

GetRecord

GetRelField

GetRow

GetRowset

GetSetId

InsertRow

IsDate

PriorValue

RecordChanged

RecordDeleted

RecordNew

RowFlush

SetComponentChanged

SetDefault

SetDefaultAll

Copyright © 1988, 2022, Oracle and/or its affiliates. 33



PeopleCode Built-in Functions and Language Constructs Chapter 1

SetTempTableInstance

StopFetching

TotalRowCount

TreeDetailInNode

UpdateSysVersion

UpdateValue

ViewContentURL

%BINARYSORT

%Component

%Menu

%Mode

%OperatorClass

%Table

%TruncateTable

Component Interface
GetMethodNames

GetProgramFunctionInfo

GetSession

StartWork

%CompIntfcName

Conditional Navigation
GenerateComponentContentRelURL

GenerateComponentContentURL

GenerateComponentPortalRelURL

GenerateComponentPortalURL

GenerateComponentRelativeURL

GenerateHomepagePortalURL

GenerateHomepageRelativeURL

34  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GetURL

OverrideCNAVDisplayMode

ShouldSuppressCREF

Transfer

ViewURL

UIDisplayMode

Conversion
Char

Code

ConvertChar

NumberToString

String

Value

Currency and Financial
Amortize

BlackScholesPut

ConvertCurrency

RoundCurrency

SinglePaymentPV

UniformSeriesPV

%Currency

Current Date and Time
%CurrentDateIn

%CurrentDateOut

%CurrentDateTimeIn

%CurrentDateTimeOut

%CurrentTimeIn

%CurrentTimeOut

Copyright © 1988, 2022, Oracle and/or its affiliates. 35



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
Date and Time
SQL Date and Time

Custom Display Formats
GetStoredFormat

SetDisplayFormat

Database and Platform
%DbName

%DbType

Date and Time
AddToDate

AddToDateTime

AddToTime

ConvertDatetimeToBase

Date

Date3

DatePart

DateTime6

DateTimeToHTTP

DateTimeToISO

DateTimeToLocalizedString

DateTimeToTimeZone

DateTimeToUserFormat

DateTimeValue

DateValue

Day

Days

Days360

Days365

36  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

FormatDateTime

GetCalendarDate

Hour

IsDaylightSavings

ISOToDate

ISOToDateTime

Minute

Month

Second

Time

Time3

TimePart

TimeToTimeZone

TimeValue

TimeZoneOffset

Weekday

IsDate

Year

%AsOfDate

%ClientDate

%ClientTimeZone

%Date

%DateAdd

%DateDiff

%DateTime

%DateTimeDiff

%DateTimeIn

%DateTimeOut

%DTTM

Copyright © 1988, 2022, Oracle and/or its affiliates. 37



PeopleCode Built-in Functions and Language Constructs Chapter 1

%PerfTime

%PermissionLists

%ServerTimeZone

%Time

%TextIn

Related Links
Current Date and Time
SQL Date and Time

Debugging
CreateException

SetTracePC

SetTraceSQL

throw

%Test

try

WinMessage

WriteToLog

%ApplicationLogFence

Defaults, Setting
SetDefault

SetDefaultAll

SetDefaultNext

SetDefaultNextRel

SetDefaultPrior

SetDefaultPriorRel

DirectTransfer
CreateDirecttransferObject()

38  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Documents
CreateDocument

CreateDocumentKey

Effective Date and Effective Sequence
CurrEffDt

CurrEffRowNum

CurrEffSeq

NextEffDt

NextRelEffDt

PriorEffDt

PriorRelEffDt

SetDefaultNext

SetDefaultNextRel

SetDefaultPrior

SetDefaultPriorRel

%EffDtCheck

Email
AddEmailAddress

ChangeEmailAddress

DeleteEmailAddress

MarkPrimaryEmailAddress

Environment
ExpandEnvVar

GetCwd

GetEnv

%PID

Copyright © 1988, 2022, Oracle and/or its affiliates. 39



PeopleCode Built-in Functions and Language Constructs Chapter 1

Exceptions
CreateException

throw

try

Executable Files, Running
Exec

WinExec

Objects

Files
CreateDirectory

FileExists

FindFiles

GetFile

GetTempFile

RemoveDirectory

%FilePath

Related Links
Attachment
Images

Financial
AccruableDays

AccrualFactor

BlackScholesCall

BlackScholesPut

BootstrapYTMs

ConvertRate

CubicSpline

HermiteCubic

40  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

HistVolatility

LinearInterp

Fluid Applications
AddJavaScript

AddMetaTag

AddOnLoadScript

AddStyleSheet

CreateSearchRowset

DoModalComponentPopup

DoModalPopup

ExecuteSearchSavePC

GetAddSearchRecName

GetComponentTitle

GetPagePrefix

GetPageTitle

GetPageType

GetPanelControlStyle

GetSearchRecordName

GroupletRequestSource

IsAddEnabled

IsAddMode

IsAGComponent

IsAGRequest

IsBackEnabled

IsFluidMode

IsFluidSearchStart

IsGroupletInteractive

IsGroupletRequest

IsHomeEnabled

Copyright © 1988, 2022, Oracle and/or its affiliates. 41



PeopleCode Built-in Functions and Language Constructs Chapter 1

IsIScriptAuthorized

IsLogoutEnabled

IsMDAJAXTrf

IsMDComponent

IsMDGuided

IsMDListPopup

IsMDListSlideout

IsMDNonOptimized

IsMDRequest

IsMDSearchEnabled

IsModeless

IsNavBarEnabled

IsNextInListEnabled

IsNotificationEnabled

IsPinEnabled

IsPrevInListEnabled

IsSaveEnabled

IsSearchEnabled

IsSingleComponentAG

IsSingleUnitOfWork

IsSmallFFOptimized

IsStandardSearchEnabled

SetAddMode

SetMDAJAXTrf

SetMDGuided

SetMDListPopup

SetMDListSlideout

SetPanelControlStyle

SetThemeId

42  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

SetTransferAttributes

Related Links
Modal Windows and Secondary Pages
Transfers

Grids
GetGrid

Images
CropImage

DeleteImage

GetImageExtents

InsertImage

ResizeImage

Related Links
Attachment
Files

Integration Broker
IBPurgeDomainStatus

IBPurgeNodesDown

ConnectorRequest

ConnectorRequestURL

CreateWSDLMessage

EncryptNodePswd

FindCodeSetValues

NodeDelete

NodeRename

NodeSaveAs

NodeTranDelete

PingNode

RelNodeTranDelete

Copyright © 1988, 2022, Oracle and/or its affiliates. 43



PeopleCode Built-in Functions and Language Constructs Chapter 1

SetChannelStatus

SetMessageStatus

Transform

TransformEx

TransformExCache

%IntBroker

%MaxNbrSegments

%TransformData

Related Links
Message Classes (Integration Broker)

Java
CopyFromJavaArray

CopyToJavaArray

CreateJavaArray

CreateJavaObject

GetJavaClass

Language Constructs
Break

Component

Continue

Declare Function

Evaluate

Exit

For

Function

Global

If

Local

44  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Repeat

Return

throw

try

While

Language Preference and Locale
SetLanguage

%IsMultiLanguageEnabled

%Language

%Language_Base

%Language_Data

%Language_User

%Market

Logical (Tests for Blank Values)
All

AllOrNone

None

OnlyOne

OnlyOneOrNone

Mail
SendMail

%EmailAddress

Masking
IsRecFieldPII

IsRecFieldSensitive

IsPIIandSensitiveForUser

SetFacetNamesToRemoveSetRemovelistView

Copyright © 1988, 2022, Oracle and/or its affiliates. 45



PeopleCode Built-in Functions and Language Constructs Chapter 1

Math
Abs

Acos

Asin

Atan

Cos

Cot

Degrees

Exp

Fact

Idiv

Int

Integer

Ln

Log10

Max

Min

Mod

Product

Radians

Rand

Round

Sign

Sin

Sqrt

Tan

Truncate

%Abs

%DecDiv

46  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

%DecMult

%Round

%Truncate

Menu Appearance
CheckMenuItem

DisableMenuItem

EnableMenuItem

HideMenuItem

UnCheckMenuItem

Message Catalog
EndMessage

Error

MessageBox

MsgGet

MsgGetExplainText

MsgGetText

Quote

Warning

WinMessage

Message Classes (Integration Broker)
AddSystemPauseTimes

CreateMessage

CreateWSDLMessage

DeleteSystemPauseTimes

GetMessage

GetSyncLogData

IsMessageActive

PingNode

Copyright © 1988, 2022, Oracle and/or its affiliates. 47



PeopleCode Built-in Functions and Language Constructs Chapter 1

ReturnToServer

SetChannelStatus

SetMessageStatus

%MaxMessageSize

%MaxNbrSegments

Related Links
Integration Broker
XML

Modal Windows and Secondary Pages
DoModal

DoModalComponent

DoModalComponentPopup

DoModalPopup

DoModalX

DoModalXComponent

EndModal

EndModalComponent

IsModal

IsModalComponent

TransferModeless

ViewContentURLModeless

ViewURLModeless

Related Links
Transfers
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

MultiChannel Framework
CreateMCFIMInfo

DeQueue

EnQueue

48  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Forward

InitChat

MCFBroadcast

NotifyQ

Objects
create

CreateObject

CreateObjectArray

ObjectDoMethod

ObjectDoMethodArray

ObjectGetProperty

ObjectSetProperty

Pages
GetPage

Page Control Appearance
GetImageExtents

Gray

Hide

HideRow

HideScroll

IsHidden

SetCursorPos

SetLabel

UnGray

UnHide

UnhideRow

UnhideScroll

Copyright © 1988, 2022, Oracle and/or its affiliates. 49



PeopleCode Built-in Functions and Language Constructs Chapter 1

Personalizations
GetUserOption

SetUserOption

Portal
CreateBreadcrumb

CreateSOAPDoc

EncodeURL

EncodeURLForQueryString

EscapeHTML

EscapeJavascriptString

EscapeWML

GenerateActGuideContentUrl

GenerateActGuidePortalUrl

GenerateActGuideRelativeUrl

GenerateComponentContentRelURL

GenerateComponentContentURL

GenerateComponentPortalRelURL

GenerateComponentPortalURL

GenerateComponentRelativeURL

GenerateExternalPortalURL

GenerateExternalRelativeURL

GenerateHomepagePortalURL

GenerateHomepageRelativeURL

GenerateQueryContentURL

GenerateQueryPortalURL

GenerateQueryRelativeURL

GenerateScriptContentRelURL

GenerateScriptContentURL

GenerateScriptPortalRelURL

50  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GenerateScriptPortalURL

GenerateScriptRelativeURL

GenerateTree

GenerateWorklistPortalURL

GenerateWorklistRelativeURL

GetBreadcrumbs

GetChartURL

GetHTMLText

GetMethodNames

GetURL

Unencode

ViewContentURL

ViewContentURLClassic

ViewContentURLFluid

ViewURL

ViewURLTop

%ContentID

%ContentType

%EmailAddress

%HPTabName

%LocalNode

%Node

%Portal

%Request

%Response

%RunningInPortal

Process Scheduler
CreateProcessRequest

GetNextProcessInstance

Copyright © 1988, 2022, Oracle and/or its affiliates. 51



PeopleCode Built-in Functions and Language Constructs Chapter 1

SetPostReport

SetupScheduleDefnItem

%OutDestFormat

%OutDestType

Remote Call
DoSaveNow

RemoteCall

RowsetCache
CreateRowsetCache

GetRowsetCache

Saving and Canceling
DoCancel

DoSave

DoSaveNow

WinEscape

Scroll Select
RowFlush

RowScrollSelect

RowScrollSelectNew

ScrollFlush

ScrollSelect

ScrollSelectNew

SortScroll

Search Dialog
ClearSearchDefault

ClearSearchEdit

IsSearchDialog

52  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

SetSearchDefault

SetSearchDialogBehavior

SetSearchEdit

%Mode

SQL
CreateSQL

DeleteSQL

ExpandBindVar

ExpandSqlBinds

FetchSQL

FlushBulkInserts

GetSQL

SQLExec

StoreSQL

%FirstRows

%InsertSelect

%InsertValues

%Join

%KeyEqual

%KeyEqualNoEffDt

%Like

%LikeExact

%NoUppercase

%OldKeyEqual

%SelectDummyTable

%SignonUserId

%SQL

%SQLRows

%Table

Copyright © 1988, 2022, Oracle and/or its affiliates. 53



PeopleCode Built-in Functions and Language Constructs Chapter 1

%UpdatePairs

Related Links
Component Buffer
Scroll Select

SQL Date and Time
%DateAdd

%DateDiff

%DatePart

%DateNull

%DateIn

%DateTimeNull

%DateOut

%DateTimeDiff

%DateTimeIn

%DateTimeOut

%DTTM

%TimeAdd

%TextIn

%TimeIn

%TimeNull

%TimePart

%TimeOut

Related Links
Current Date and Time
Date and Time

SQL Shortcuts
%Delete

%Insert

%SelectAll

54  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

%SelectDistinct

%SelectByKey

%SelectByKeyEffDt

%Update

String
Clean

ChunkText

%COALESCE

Code

CompareStrings

CompareTextDiff

%Concat

DBCSTrim

DBPatternMatch

DeChunkText

Exact

ExpandBindVar

ExpandEnvVar

Find

GetHTMLText

IsAlpha

IsAlphaNumeric

IsDigits

Left

Len

Lower

LTrim

NumberToDisplayString

NumberToString

Copyright © 1988, 2022, Oracle and/or its affiliates. 55



PeopleCode Built-in Functions and Language Constructs Chapter 1

Proper

Quote

Replace

Rept

Right

RTrim

String

Substitute

Substring

Upper

%Abs

%NumToChar

%Substring

%TrimSubstr

%Upper

Subrecords
%SUBREC

Time Zone
ConvertDatetimeToBase

ConvertTimeToBase

DateTimeToHTTP

DateTimeToISO

DateTimeToLocalizedString

DateTimeToTimeZone

DateTimeToUserFormat

FormatDateTime

IsDaylightSavings

TimeToTimeZone

56  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

TimeZoneOffset

%ClientTimeZone

%ServerTimeZone

Trace Control
SetTracePC

SetTraceSQL

Transfers
AddKeyListItem

ClearKeyList

SetNextPage

Transfer

TransferExact

TransferExactTop

TransferNode

TransferPage

TransferPortal

TransferTop

ViewContentURL

ViewContentURLClassic

ViewContentURLFluid

ViewURL

ViewURLTop

Related Links
Modal Windows and Secondary Pages
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

Type Checking
IsUserNumber

ValueUser

Copyright © 1988, 2022, Oracle and/or its affiliates. 57



PeopleCode Built-in Functions and Language Constructs Chapter 1

IsAlpha

IsAlphaNumeric

IsDate

IsDateTime

IsDigits

IsNumber

IsTime

Max

Min

NumberToString

User Information
%EmailAddress

%EmployeeId

%UserDescription

%UserId

User Security
AllowEmplIdChg

Decrypt

DecryptStr

Encrypt

EncryptStr

ExecuteRolePeopleCode

ExecuteRoleQuery

ExecuteRoleWorkflowQuery

GetDefinitionAccess

Hash

HashWithSalt

IsMenuItemAuthorized

58  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

IsUserInPermissionList

IsUserInRole

RevalidatePassword

SecureRandomGen

SetAuthenticationResult

SetPasswordExpired

SwitchUser

VerifyHash

VerifyOprPassword

%AuthenticationToken

%EmployeeId

%ExternalAuthInfo

%NavigatorHomePermissionList

%PasswordExpired

%PermissionLists

%PrimaryPermissionList

%ProcessProfilePermissionList

%PSAuthResult

%ResultDocument

%Roles

%RowSecurityPermissionList

%SignonUserId

%SignOnUserPswd

%UserId

Validation
Error

IsMenuItemAuthorized

RevalidatePassword

SetCursorPos

Copyright © 1988, 2022, Oracle and/or its affiliates. 59



PeopleCode Built-in Functions and Language Constructs Chapter 1

SetReEdit

Warning

Workflow
GenerateActGuideContentUrl

GenerateActGuidePortalUrl

GenerateActGuideRelativeUrl

GetWLFieldValue

MarkWLItemWorked

TriggerBusinessEvent

%AllowNotification

%AllowRecipientLookup

%BPName

%SMTPBlackberryReplyTo

%SMTPGuaranteed

%SMTPSender

%WLInstanceID

%WLName

XML
CancelPubHeaderXmlDoc

CancelPubXmlDoc

CancelSubXmlDoc

CreateSOAPDoc

CreateXmlDoc

GetArchPubHeaderXmlDoc

GetArchPubXmlDoc

GetArchSubXmlDoc

GetMessageXmlDoc

GetNRXmlDoc

60  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GetPubHeaderXmlDoc

GetPubXmlDoc

GetSubXmlDoc

GetSyncLogData

InboundPublishXmlDoc

PublishXmlDoc

ReSubmitPubHeaderXmlDoc

ReSubmitPubXmlDoc

ReSubmitSubXmlDoc

ReValidateNRXmlDoc

SyncRequestXmlDoc

Transform

UpdateXmlDoc

Related Links
Files
Images

PeopleCode Built-in Functions and Language Constructs: A

The PeopleCode built-In functions and language constructs beginning with the letter A are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

Abs

Syntax

Abs(x)

Description

Use the Abs function to return a decimal value equal to the absolute value of a number x.

Copyright © 1988, 2022, Oracle and/or its affiliates. 61



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

x Specify the number you want the decimal value for.

Example

The example returns the absolute value of the difference between &NUM_1 and &NUM_2:

&RESULT = Abs(&NUM_1 - &NUM_2);

Related Links
Sign
%Abs

AccruableDays

Syntax

AccruableDays(StartDate, EndDate, Accrual_Conv)

Description

Use the AccruableDays function to return the number of days during which interest can accrue in a given
range of time according to the Accrual_Conv parameter.

Parameters

Parameter Description

StartDate The beginning of the time period for determining the accrual.
 This parameter takes a date value.

EndDate The end of the time period for determining the accrual. This
parameter takes a date value.

Accrual_Conv The accrual convention. This parameter takes either a number
or a constant value. Values for this parameter are:

Numeric Value Constant Value Description

0 %Accrual_30DPM 30/360: all months 30 days long
according to NASD rules for date
truncation

62  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

1 %Accrual_30DPME 30E/360: all months 30 days long
according to European rules for date
truncation

2 N/A 30N/360: all months but February are 30
days long according to SIA rules

3 %Accrual_Fixed360 Act/360: months have variable number
of days, but years have fixed 360 days

4 %Accrual_Fixed365 Act/365: months have variable number
of days, buy years have fixed 365 days

5 %Accrual_ActualDPY Act/Act: months and years have a
variable number of days

Returns

An integer representing a number of days.

Related Links
AccrualFactor

AccrualFactor

Syntax

AccrualFactor(StartDate, EndDate, Accrual_Conv)

Description

Use the AccrualFactor function to compute a factor that's equal to the number of years of interest accrued
during a date range, according to Accrual_Conv parameter.

Parameters

Parameter Description

StartDate The beginning of the time period for determining the accrual.
 This parameter takes a date value.

EndDate The end of the time period for determining the accrual. This
parameter takes a date value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 63



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

Accrual_Conv The accrual convention. This parameter takes either a number
or constant value. Values for this parameter are:

Numeric Value Constant Value Description

0 %Accrual_30DPM 30/360: all months 30 days long
according to NASD rules for date
truncation

1 %Accrual_30DPME 30E/360: all months 30 days long
according to European rules for date
truncation

2 N/A 30N/360: all months but February are 30
days long according to SIA rules

3 %Accrual_Fixed360 Act/360: months have variable number
of days, but years have fixed 360 days

4 %Accrual_Fixed365 Act/365: months have variable number
of days, buy years have fixed 365 days

5 %Accrual_ActualDPY Act/Act: months and years have a
variable number of days

Returns

A floating point number representing a number of years.

Related Links
AccruableDays

Acos

Syntax

Acos(value)

Description

Use the Acos function to calculate the arccosine of the given value, that is, the size of the angle whose
cosine is that value.

64  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

value Any real number between -1.00 and 1.00 inclusive, the range
of valid cosine values. If the input value is outside this range,
an error message appears at runtime ("Decimal arithmetic error
occurred. (2,110)"). Adjust your code to provide a valid input
value.

Returns

A value in radians between 0 and pi.

Example

The following example returns the size in radians of the angle whose cosine is 0.5:

&MY_ANGLE = Acos(0.5);

Related Links
Asin
Atan
Cos
Cot
Degrees
Radians
Sin
Tan

ActiveRowCount

Syntax

ActiveRowCount(Scrollpath)

Where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

Description

Use the ActiveRowCount function to return the number of active (non-deleted) rows for a specified scroll
area in the active page.

Copyright © 1988, 2022, Oracle and/or its affiliates. 65



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: This function remains for backward compatibility only. Use the ActiveRowCount Rowset class
property instead.

ActiveRowCount is often used to get a limiting value for a For statement. This enables you to loop
through the active rows of a scroll area, performing an operation on each active row. Rows that have
been marked as deleted are not affected in a For loop delimited by ActiveRowCount. If you want to loop
through all the rows of a scroll area, including deleted rows, use TotalRowCount.

Use ActiveRowCount with CurrentRowNumber to determine whether the user is on the last row of a
record.

Related Links
"ActiveRowCount" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

Returns

Returns a Number value equal to the total active (non-deleted) rows in the specified scroll area in the
active page.

Example

In this example ActiveRowCount is used to delimit a For loop through a level-one scroll:

&CURRENT_L1 = CurrentRowNumber(1);
&ACTIVE_L2 = ActiveRowCount(RECORD.ASSIGNMENT, &CURRENT_L1, RECORD.ASGN_HOME_HOST);
&HOME_HOST = FetchValue(RECORD.ASSIGNMENT, &CURRENT_L1,
ASGN_HOME_HOST.HOME_HOST, 1);
If All(&HOME_HOST) Then
   For &I = 1 To &ACTIVE_L2
      DeleteRow(RECORD.ASSIGNMENT, &CURRENT_L1, RECORD.ASGN_HOME_HOST, 1);
   End-For;
End-If;

Related Links
CurrentRowNumber
TotalRowCount
For

AddAttachment

66  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Syntax

AddAttachment(URLDestination, DirAndFilePrefix, FileType, UserFileName[, MaxSize [,⇒

 PreserveCase[, UploadPageTitle[, AllowLargeChunks]]]])

Description

Use the AddAttachment function to upload one file from an end user specified location (local storage or
cloud storage) to a specified storage location. To upload more than one file with a single function call, use
the MAddAttachment function.

Important! It is the responsibility of the calling PeopleCode program to store the returned file name for
further use.

If a file exists at a particular place on a storage location and then another file with the same name is
uploaded to that same place on that same storage location, the original file will be silently overwritten by
the new file. If that is not the behavior you desire, it is recommended that you implement PeopleCode to
guarantee the ultimate uniqueness of either the name of the file at its place on the storage location or the
name of its place (the subdirectory) on the storage location.

You cannot use a relative path to specify the file that is to be uploaded; you must use a full path. If end
users experience problems in uploading files, ensure that they browse to the file they wish to upload
rather than attempting to manually enter the full path name of the file. This problem can manifest itself
differently depending on the browser used. For example, with some browser versions, the PeopleSoft
page appears to be in an infinite “Processing” state. Information is available on working with different
browsers.

See PeopleTools Browser Compatibility Guide (Oracle Support Document 704492.1) on My Oracle
Support for more information.

Additional information that is important to the use of AddAttachment can be found in the PeopleTools:
PeopleCode Developer's Guide:

• PeopleTools supports multiple types of storage locations.

See "Understanding File Attachment Storage Locations" (PeopleCode Developer’s Guide).

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See "File Name Considerations" (PeopleCode Developer’s Guide).

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See "Attachments with non-ASCII File Names" (PeopleCode Developer’s Guide).

• The PeopleCode file attachment functions do not provide text file conversions when files are attached
or viewed.

See "Considerations When Attaching Text Files" (PeopleCode Developer’s Guide).

• Because AddAttachment is interactive, it is known as a “think-time” function, and is restricted from
use in certain PeopleCode events.

Copyright © 1988, 2022, Oracle and/or its affiliates. 67

https://support.oracle.com/epmos/faces/DocumentDisplay?id=704492.1


PeopleCode Built-in Functions and Language Constructs Chapter 1

See "Restrictions on Invoking Functions in Certain PeopleCode Events" (PeopleCode Developer’s
Guide).

• Virus scanning can be performed on all files uploaded with the AddAttachment function.

See "Setting Up Virus Scanning" (PeopleCode Developer’s Guide).

• The HTML sanitizer can be enabled and configured to scan and sanitize specific HTML file types
(specified by file extension) uploaded with the AddAttachment function.

See "Using the HTML Sanitizer" (PeopleCode Developer’s Guide).

You can use a file extension list to identify file types to accept or reject when using this function.

See "Using Administration Utilities" (System and Server Administration).

Parameters

Parameter Description

URLDestination Specify the destination storage location for the file to be
uploaded. This can be either a URL identifier in the form
URL.URL_ID, or a string. This is where the file is transferred
to.

Note: When the URLDestination parameter is specified as
a string value, forward slashes (/) are required. Backward
slashes (\) are not supported for a string value.

Note: Oracle recommends that you do not use a URL of
the form file://file_name with the PeopleCode file
processing functions.

See "Understanding URL Strings Versus URL
Objects" (PeopleCode Developer’s Guide).

68  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

DirAndFilePrefix A directory and file name prefix. This is appended to the
URLDestination to make up the full URL when the file is
transferred to an FTP server or, when the file transferred to a
database table, to make the file name unique.

Note: If the destination location is an FTP server, then it
is very important whether the value passed into a call of
AddAttachment for the DirAndFilePrefix parameter ends with
a slash or not. If the value for the DirAndFilePrefix parameter
ends with a slash, then it will be appended to the value of
the URLDestination and used to indicate the relative (to the
configured root directory of the FTP server) path name of
the directory in which the uploaded file will be stored. If the
value for the DirAndFilePrefix parameter does not end with
a slash, then the portion of it prior to its rightmost slash will
be appended to the value of the URLDestination and used to
indicate the relative (to the configured root directory of the
FTP server) path name of the directory in which the uploaded
file will be stored, and the portion after the rightmost slash will
be prefixed to the name of the file that will be created at the
destination.

Note: Because the DirAndFilePrefix parameter is appended
to the URL, it also requires forward slashes (“/”). Backward
slashes (“\”) are not supported for this parameter.

FileType The file extension as a string. Since this parameter is required,
 a value must be specified; however, the value is currently
ignored.

UserFileName Returns the name of the file on the source system.

Specify UserFileName as a string variable or a field reference
in the form of [recordname.]fieldname. You must supply the
recordname only if the record field and your PeopleCode
program are in different record definitions.

AddAttachment returns the user-selected file name in this
parameter, so its initial value is ignored and it must not be
specified as a string constant.

Note: The file name for the user-selected file cannot be greater
than 64 characters.

MaxSize Specify, in kilobytes, the maximum size of the attachment.

If you specify 0, it indicates “no limit,” so any file size can be
uploaded. The default value of this parameter is 0.

Note: The system cannot check the size of the file selected by
the end user until that file has been uploaded to the web server.

Copyright © 1988, 2022, Oracle and/or its affiliates. 69



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

PreserveCase Specify a Boolean value to indicate whether the case of the
extension of the file to be uploaded is preserved or not at the
storage location; True, preserve the case, False, convert the
file name extension to all lowercase letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is
important that you use it in a consistent manner with all the
relevant file-processing functions or you may encounter
unexpected file-not-found errors.

Note: AddAttachment provides no indication of a conversion
in the file name it returns.

UploadPageTitle Specify a string value to be displayed in the title bar of the
file attachment dialog box (as its title). This string should be
simple text and contain no HTML elements. If no value is
specified, the default value is “File Attachment.”

Note: In screen reader mode, the string value of the
UploadPageTitle parameter is displayed in the body of the file
attachment dialog box rather than as the title of the window.

Note: The parameter does not automatically handle
localization issues. The string passed into the function is the
exact string embedded in the page. You and your application
are responsible for any translation issues.

70  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

AllowLargeChunks Specify a Boolean value to indicate whether to allow large
chunks.

If the value specified in the Maximum Attachment Chunk Size
field on the PeopleTools Options page is larger than is allowed
for retrieval, then the system breaks the file upload into the
largest sized chunks allowed. If AllowLargeChunks is set to
True, this behavior can be overridden so that it is possible for
an end user to upload a file in chunks that are too large for
the system to retrieve. If AllowLargeChunks is set to False,
 the system will use the largest size chunk that is allowed for
retrieval, or the configured chunk size, whichever is smaller.

Note: If the chunks are too big to be retrieved, then any file
retrieval built-in function, such as GetAttachment, will fail.

Note: The AllowLargeChunks parameter is only applicable
when the storage location is a database record. It has no
impact when the storage location is an FTP site or an HTTP
repository, since attachments at those locations are never
chunked.

See "PeopleTools Options" (System and Server
Administration)

This is an optional parameter.

The default value is False.

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

Copyright © 1988, 2022, Oracle and/or its affiliates. 71



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due to
some internal error.

• Failed due to unexpected or bad
reply from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error on
the HTTP repository.

If the HTTP repository resides on a
PeopleSoft web server, then you can
configure tracing on the web server
to report additional error details.

See "Enabling Tracing on the
Web Server or Application
Server" (PeopleCode Developer’s
Guide).

2 %Attachment_Cancelled File transfer didn't complete because the
operation was canceled by the end user.

72  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where %Attachment_
FileTransferFailed could be returned:

• Failed due to mismatch in file sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

6 %Attachment_FileExceedsMaxSize File exceeds maximum size, if specified.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSystNotFound could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

Copyright © 1988, 2022, Oracle and/or its affiliates. 73



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSysFailedLogin could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in certificates
used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where %Attachment_
FileNotFound could be returned:

• Remote file not found.

• Failed to read remote file.

11 %Attachment_NoFileName File transfer failed because no file name
was specified.

12 %Attachment_FileNameTooLong File transfer failed because name of
selected file name is too long. Maximum
is 64 characters.

13 %Attachment_ViolationFound File violation detected by virus scan
engine.

14 %Attachment_VirusScanError Virus scan engine error.

15 %Attachment_VirusConfigError Virus scan engine configuration error.

16 %Attachment_VirusConnectError Virus scan engine connection error.

74  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

21 %Attachment_Rejected File transfer failed because the file
extension is not allowed.

Example
&retcode = AddAttachment(URL.MYFTP, ATTACHSYSFILENAME, "", ATTACHUSERFILE, 0);

An example of the AddAttachment function is provided in the demonstration application delivered in the
FILE_ATTACH_WRK derived/work record. This demonstration application is shown on the PeopleTools
Test Utilities page.

See "Using the PeopleTools Test Utilities Page" (PeopleCode Developer’s Guide).

Related Links
CleanAttachments
CopyAttachments
DeleteAttachment
DetachAttachment
GetAttachment
MAddAttachment
PutAttachment
ViewAttachment
"Understanding the File Attachment Functions" (PeopleCode Developer’s Guide)

AddEmailAddress

Syntax

AddEmailAddress(Type, Address [, Primary])

Description

Use the AddEmailAddress function to add an email address for the current user. You can only add one
email address of a specific type for a user. If you try to add an email address for a type that is already
associated with an email address, you receive an error.

Parameters

Parameter Description

Type Specify the type of email address being added. This parameter
takes a string value. The valid values are:

Copyright © 1988, 2022, Oracle and/or its affiliates. 75



PeopleCode Built-in Functions and Language Constructs Chapter 1

Value Description

BB Blackberry email address

BUS Business email address

HOME Home email address

OTH Other email address

WORK Work email address

Parameter Description

Address Specify the email address that you want to add as a string.

Primary Specify whether this email address is the primary address
for the user. This parameter takes a Boolean value: True, this
email address is the primary email address, False otherwise. If
not specified, the default is False.

Returns

None.

Related Links
ChangeEmailAddress
DeleteEmailAddress
MarkPrimaryEmailAddress

AddJavaScript

Syntax

AddJavaScript(HTML.JS_NAME)

Description

Use the AddJavaScript function to add JavaScript to the HTML document for the page or component.

Important! Use this function within fluid applications only.

76  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

HTML.JS_NAME Specifies the JavaScript code as an HTML object stored in the
database.

Returns

None.

Example
AddJavaScript(HTML.PT_JQUERY_1_6_2_JS);
AddJavaScript(HTML.PTPG_NUI_GRID_JS);
AddJavaScript(HTML.PT_ACE_USER);
AddJavaScript(HTML.PT_ACE_LOAD);
AddJavaScript(HTML.PTS_NUI_SRCH);

Related Links
"Working with JavaScript" (Fluid User Interface Developer’s Guide)

AddKeyListItem

Syntax

AddKeyListItem(field, value)

Description

Use the AddKeyListItem to add a new key field and its value to the current list of keys. It enables
PeopleCode to help users navigate through related pages without being prompted for key values. A
common use of AddKeyListItem is to add a field to a key list and then transfer to a page which uses that
field as a key.

Parameters

Parameter Description

field The field to add to the key list.

value The value of the added key field used in the search.

Returns

Returns a Boolean value indicating whether it completed successfully.

Copyright © 1988, 2022, Oracle and/or its affiliates. 77



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The following example creates a key list using AddKeyListItem and transfers the user to a page named
VOUCHER_INQUIRY_FS.

AddKeyListItem(VNDR_INQ_VW_FS.BUSINESS_UNIT, ASSET_ACQ_DET.BUSINESS_UNIT_AP);
AddKeyListItem(VNDR_INQ_VW_FS.VOUCHER_ID, ASSET_ACQ_DET.VOUCHER_ID);
TransferPage("VOUCHER_INQUIRY_FS");

Related Links
ClearKeyList
TransferPage
Transfer

AddMetaTag

Syntax

AddMetaTag(tag_name, tag_value)

Description

Use the AddMetaTag function to add a meta tag to the HTML document for the page or component.

Important! Use this function within fluid applications only.

Parameters

Parameter Description

tag_name Specifies the name of the meta tag as a string value.

tag_value Specifies the value of the meta tag as a string value.

Returns

None.

Example

AddMetaTag("viewport", "user-scalable=no, initial-scale=1.0, minimum-scale=1.0, max⇒

imum-scale=1.0");

78  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

AddOnLoadScript

Syntax

AddOnLoadScript(onload_script)

Description

Use the AddOnLoadScript function to add the JavaScript code to be executed in the onload event of the
HTML document.

Important! Use this function within fluid applications only.

If multiple invocations of the AddOnLoadScript function that are batched into a single server trip include
identical JavaScript invocations, the first duplicate JavaScript invocation will be executed, and the
subsequent duplicates are ignored.

In the following example, the last  AddOnLoadScript("execFunc('open');"); is ignored
because it is identical to the first invocation.

AddOnLoadScript("execFunc('open');");
…
AddOnLoadScript("execFunc('close');");
…
/* This will never execute because it duplicates the first call. */
AddOnLoadScript("execFunc('open');");

To overcome this situation, add a unique comment to subsequent identical lines of code to make them
unique.

For example:

AddOnLoadScript("execFunc('open'); /*1*/");

Parameters

Parameter Description

onload_script Specifies the JavaScript code to be executed in the onload
event of the HTML document as a string value.

Returns

None.

Example
AddOnLoadScript("document.querySelector('.ps_header').style.display = 'none';");

Related Links
"Working with JavaScript" (Fluid User Interface Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 79



PeopleCode Built-in Functions and Language Constructs Chapter 1

AddStyleSheet

Syntax

AddStyleSheet(StyleSheet.STYLESHEET_NAME)

Description

Use the AddStyleSheet function to add a free form style sheet to the HTML document for the page or
component.

Important! Use this function within fluid applications only.

Parameters

Parameter Description

StyleSheet.STYLESHEET_NAME Specifies the style sheet as a style sheet object stored in the
database.

Returns

None.

Example
AddStyleSheet(StyleSheet.PTNUI_DOCK_CSS_R);
AddStyleSheet(StyleSheet.PTNUI_MODAL_CSS);

AddSystemPauseTimes

Syntax

AddSystemPauseTimes(StartDay, StartTime, EndDay, EndTime)

Description

Use the AddSystemPauseTimes function to set when pause times occur on your system by adding a row
to the system pause times tables.

A pause time is an interval of time during which the node becomes inactive. When the pause time begins,
the node is shut down until the pause time is scheduled to end.

80  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

StartDay Specify a number from 0-6. Values are:

Value Description

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Parameter Description

StartTime Specify a time, in seconds, since midnight.

EndDay Specify a number from 0-6. Values are:

Value Description

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

Copyright © 1988, 2022, Oracle and/or its affiliates. 81



PeopleCode Built-in Functions and Language Constructs Chapter 1

Value Description

6 Saturday

Parameter Description

EndTime Specify a time, in seconds, since midnight.

Returns

A Boolean value: True if the system pause time specified was added, False otherwise.

Example
Declare Function SetTime PeopleCode REFRESH_BTN FieldFormula;

Component Boolean &spt_changed;

Function GetSecond(&time) Returns number ;
   Return Hour(&time) * 3600 + Minute(&time) * 60 + Second(&time);
End-Function;

/* initialize; */

STARTDAY = "0";
AMM_STARTTIME = SetTime(0);
ENDDAY = "0";
AMM_ENDTIME = SetTime(0);

If DoModal(Panel.AMM_ADD_SPTIMES, MsgGetText(117, 13, ""), - 1, - 1) = 1 Then
   If AddSystemPauseTimes(Value(STARTDAY), GetSecond(AMM_STARTTIME), Value(ENDDAY),⇒

 GetSecond(AMM_ENDTIME)) Then
      &spt_changed = True;
      DoSave();
   Else
      MessageBox(16, MsgGetText(117, 13, ""), 117, 14, "");
   End-If;
End-If;

Related Links
DeleteSystemPauseTimes
"Understanding Pausing Nodes" (Integration Broker Service Operations Monitor)

AddToDate

Syntax

AddToDate(date, num_years, num_months, num_days)

Description

Use the AddToDate function to add the specified number of years, months, and days to the date provided.

82  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Suppose, for example, that you want to find a date six years from now. You could not just multiply 6
times 365 and add the result to today’s date, because of leap years. And, depending on the current year,
there may be one or two leap years in the next six years. AddToDate takes care of this for you.

You can subtract from dates by passing the function negative numbers.

Considerations Using AddToDate

When you are adding one month to the date provided, and the date provided is the last day of a month,
and the next month is shorter, the returned result is the last day of the next month.

For example, in the following, &NewDate is 29/02/2004:

&NewDate = AddToDate("31/01/2004", 0, 1, 0);

When you are adding one month to the date provided, and the date provided is the last day of a month,
and the next month is longer, the returned result is not the last day of the next month.

For example, in the following, &NewDate is 29/03/2004.

&NewDate = AddToDate("29/02/2004", 0, 1, 0)

Parameters

Parameter Description

date The input date to be adjusted.

num_years The number of years by which to adjust the specified date.
num_years can be a negative number.

num_months The number of months by which to adjust the specified date.
This parameter can be a negative number.

num_days The number of days by which to adjust the specified date. This
parameter can be a negative number.

Returns

Returns a Date value equal to the original date plus the number of years, months, and days passed to the
function.

Example

The following example finds the date one year, three months, and 16 days after a field called BEGIN_DT:

AddToDate(BEGIN_DT, 1, 3, 16);

This example finds the date two months ago prior to BEGIN_DT:

AddToDate(BEGIN_DT, 0, -2, 0);

Copyright © 1988, 2022, Oracle and/or its affiliates. 83



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
DateValue
Day
Days
Days360
Days365
Month
Weekday

AddToDateTime

Syntax

AddToDateTime(datetime, years,  months, days, hours, minutes, seconds)

Description

Use the AddToDateTime function to add the specified number of years, months, days, hours, seconds,
and minutes to the datetime provided. You can subtract from datetimes by passing the function negative
numbers.

Parameters

Parameter Description

datetime The initial Datetime value.

years An integer representing the number of years to add to
datetime.

months An integer representing the number of months to add to
datetime.

days An integer representing the number of days to add to datetime.

hours An integer representing the number of hours to add to
datetime.

minutes An integer representing the number of minutes to add to
datetime.

seconds An integer representing the number of seconds to add to
datetime.

84  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A Datetime value equal to the original date plus the number of years, months, days, hours, minutes, and
seconds passed to the function.

Example

The following example postpones an interview scheduled in the INTRTime field by two days and two
hours:

INTRTIME = AddToDateTime(INTRTIME, 0, 0, 2, 2, 0, 0);

Related Links
AddToTime
DateValue
DateTimeValue
TimeValue

AddToTime

Syntax

AddToTime(time, hours, minutes, seconds)

Description

Use the AddToTime function to add hours, minutes, and seconds to time. This function returns the result
as a Time value. To subtract from time, use negative numbers for hours, minutes, and seconds. The
resulting value is always adjusted such that it represents an hour less than 24 (a valid time of day.)

Parameters

Parameter Description

time A time value that you want to subtract from or add to.

hours An integer representing the number of hours to add to time.

minutes An integer representing the number of minutes to add to time.

seconds An integer representing the number of seconds to add to time.

Returns

A Time value equal to time increased by the number of hours, minutes, and seconds passed to the
function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 85



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

Assume that a time, &BREAKTime, is 0:15:00. The following moves the time &BREAKTime back by
one hour, resulting in 23:15:00:

&BREAKTime = AddToTime(&BREAKTime, -1, 0, 0);

Related Links
AddToDateTime
DateValue
DateTimeValue
TimeValue

Alias
See Declare Function.

All

Syntax

All(fieldlist)

Where fieldlist is an arbitrary-length list of field names in the form:

[recordname.]fieldname1 [, [recordname.]fieldname2] ...

Description

Use the All function to verify if a field contains a value, or if all the fields in a list of fields contain values.
If any of the fields are Null, then All returns False.

A blank character field, or a zero (0) numeric value in a required numeric field is considered a null value.

Related Functions

Function Description

AllOrNone Checks if either all the field parameters have values, or none
of them have values. Use this in examples where if the user
fills in one field, she must fill in all the other related values.

None Checks that a field or list of fields have no value.

OnlyOne Checks if exactly one field in the set has a value. Use this
when the user must fill in only one of a set of mutually
exclusive fields.

86  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Function Description

OnlyOneOrNone Checks if no more than one field in the set has a value. Use
this in examples when a set of fields is both optional and
mutually exclusive; that is, if the user can put a value into one
field in a set of fields, or leave them all empty.

Returns

Returns a Boolean value based on the values in fieldlist. The All function returns True if all of the
specified fields have a value; it returns False if any one of the fields does not contain a value.

Example

The All function is commonly used in SaveEdit PeopleCode to ensure that a group of related fields are all
entered. For example:

If All(RETURN_DT, BEGIN_DT) and
    8 * (RETURN_DT - BEGIN_DT) (DURATION_DAYS * 8 + DURATION_HOURS)
Then
    Warning MsgGet(1000, 1, "Duration of absence exceeds standard hours for number ⇒

of days absent.");
End-if;

Related Links
SetDefault
SetDefaultAll

AllOrNone

Syntax

AllOrNone(fieldlist)

Where fieldlist is an arbitrary-length list of field references in the form:

[recordname.]fieldname1 [, [recordname.]fieldname2] ...

Description

The AllOrNone function takes a list of fields and returns True if either of these conditions is true:

• All of the fields have values (that is, are not Null).

• None of the fields has a value.

For example, if field1 = 5, field2 = "Mary", and field3 = null, AllOrNone returns False.

This function is useful, for example, where you have a set of page fields, and if any one of the fields
contains a value, then all of the other fields are required also.

Copyright © 1988, 2022, Oracle and/or its affiliates. 87



PeopleCode Built-in Functions and Language Constructs Chapter 1

A blank character field, or a zero (0) numeric value in a required numeric field is considered a null value.

Related Functions

Function Description

All Checks to see if a field contains a value, or if all the fields in
a list of fields contain values. If any of the fields is Null, then
All returns False.

None Checks that a field or list of fields have no value.

OnlyOne Checks if exactly one field in the set has a value. Use this
when the user must fill in only one of a set of mutually
exclusive fields.

OnlyOneOrNone Checks if no more than one field in the set has a value. Use
this in examples when a set of fields is both optional and
mutually exclusive; that is, if the user can put a value into one
field in a set of fields, or leave them all empty.

Returns

Returns a Boolean value: True if all of the fields in fieldlist or none of the fields in fieldlist has a value,
False otherwise.

Example

You could use AllOrNone as follows:

If Not AllOrNone(STREET1, CITY, STATE) Then
   WinMessage("Address should consist of at least Street (Line 1), City, State, and⇒

 Country.");
End-if;

AllowEmplIdChg

Syntax

AllowEmplIdChg(is_allowed)

Description

By default, the Component Processor does not allow an user to make any changes to a record if a record
contains an EMPLID key field, EMPLID is a required field, and its value matches the value of the
user’s EMPLID. In some situations, though, such changes are warranted. For example, you would want
employees to be able to change information about themselves when entering time sheet data.

88  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The AllowEmplIdChg function enables the user to change records whose key matches the user’s
own EMPLID, or prevents the user from changing these records. The function takes a single Boolean
parameter that when set to True allows the employee to update their own data. When the parameter is set
to False, the employee is prevented from updating this data.

After permission is granted, it stays through the life of the component, not the page. After a user switches
to another component, the default value (not being able to make changes) is reapplied.

Parameters

Parameter Description

is_allowed A Boolean value indicating whether the user is permitted to
change the user's own data.

Returns

Optionally returns a Boolean value: True if the function executed successfully, False otherwise.

Example
If Substring (%Page, 1, 9) = Substring(PAGE.TimeSHEET_PNL_A, 1, 9) Then
   AllowEmplIdChg(true);
End-if;

Amortize

Syntax

Amortize(intr, pb, pmt, pmtnbr, payintr, payprin, balance)

Description

Use the Amortize function to compute the amount of a loan payment applied towards interest (payintr),
the amount of the payment applied towards principal (payprin), and the remaining balance balance,
based on the principal balance (pb) at the beginning of the loan term, the amount of one payment pmt, the
interest rate charged during one payment period (intr), and the payment number pmtnbr.

Parameters

Note that payintr, payprin, and balance are “outvars”: you must pass variables in these parameters, which
the Amortize function then fills with values. The remaining parameters are “invars” containing data the
function needs to perform its calculation.

Parameter Description

intr Number indicating the percent of interest charged per payment
period.

Copyright © 1988, 2022, Oracle and/or its affiliates. 89



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

pb Principal balance at the beginning of the loan term (generally
speaking, the amount of the loan).

pmt The amount of one loan payment.

pmtnbr The number of the payment.

payintr The amount of the payment paid toward interest.

payprin The amount of the payment paid toward principal.

balance The remaining balance after the payment.

Returns

None.

Example

Suppose you want to calculate the principal, interest, and remaining balance after the 24th payment on a
loan of $15,000, at an interest rate of 1% per loan payment period, and a payment amount of $290.

&INTRST_RT=1;
&LOAN_AMT=15000;
&PYMNT_AMNT=290;
&PYMNT_NBR=24;
Amortize(&INTRST_RT, &LOAN_AMT, &PYMNT_AMNT, &PYMNT_NBR, &PYMNT_INTRST, &PYMNT_PRIN⇒

, &BAL);
&RESULT = "Int=" | String(&PYMNT_INTRST) | " Prin=" | String(&PYMNT_PRIN) | "    Ba⇒

l=" | String(&BAL);

This example sets &RESULT equal to "Int=114 Prin=176 Bal=11223.72".

And

Description

Use And to combine Boolean expressions. See "Boolean Operators" (PeopleCode Developer’s Guide) for
more information.

As

Description

Use the As keyword in function and method declarations and when downcasting an object to a subclass.

90  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
Declare Function
"class" (PeopleCode API Reference)
"Downcasting" (PeopleCode API Reference)

Asin

Syntax

Asin(value)

Description

Use the Asin function to calculate the arcsine of the given value, that is, the size of the angle whose sine is
that value.

Parameters

Parameter Description

value Any real number between -1.00 and 1.00 inclusive, the range
of valid sine values. If the input value is outside this range, an
error message appears at runtime ("Decimal arithmetic error
occurred. (2,110)"). Adjust your code to provide a valid input
value.

Returns

A value in radians between -pi/2 and pi/2.

Example

The following example returns the size in radians of the angle whose sine is 0.5:

&MY_ANGLE = Asin(0.5);

Related Links
Acos
Atan
Cos
Cot
Degrees
Radians
Sin
Tan

Copyright © 1988, 2022, Oracle and/or its affiliates. 91



PeopleCode Built-in Functions and Language Constructs Chapter 1

Atan

Syntax

Atan(value)

Description

Use the Atan function to calculate the arctangent of the given value, that is, the size of the angle whose
tangent is that value.

Parameters

Parameter Description

value Any real number.

Returns

A value in radians between -pi/2 and pi/2.

Example

The following example returns the size in radians of the angle whose tangent is 0.5:

&MY_ANGLE = Atan(0.5);

Related Links
Acos
Asin
Cos
Cot
Degrees
Radians
Sin
Tan

PeopleCode Built-in Functions and Language Constructs: B

The PeopleCode built-In functions and language constructs beginning with the letter B are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

92  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

BlackScholesCall

Syntax

BlackScholesCall(Asset_Price, Strike_Price, Interest_Rate, Years, Volatility)

Description

Use the BlackScholesCall function to return the value of a call against an equity underlying according to
the Black-Scholes equations.

Parameters

Parameter Description

Asset_Price The asset price. This parameter takes a decimal value.

Strike_Price The strike price. This parameter takes a decimal value.

Interest_Rate The risk-free interest rate. This parameter takes a decimal
value.

Years The number of years to option expiration. This parameter takes
a number value (decimal).

Volatility The volatility of underlying. This parameter takes a decimal
value.

Returns

A number representing the value of a call against an equity.

Related Links
BlackScholesPut

BlackScholesPut

Syntax

BlackScholesPut(Asset_Price, Strike_Price, Interest_Rate, Years, Volatility)

Description

Use the BlackScholesPut function to return the value of a put against an equity underlying according to
the Black-Scholes equations.

Copyright © 1988, 2022, Oracle and/or its affiliates. 93



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

Asset_Price The asset price. This parameter takes a decimal value.

Strike_Price The strike price. This parameter takes a decimal value.

Interest_Rate The risk-free interest rate. This parameter takes a decimal
value.

Years The number of years to option expiration. This parameter takes
a number (decimal) value.

Volatility The volatility of underlying. This parameter takes a decimal
value.

Returns

A number representing the value of a call against an equity.

Related Links
BlackScholesCall

BootstrapYTMs

Syntax

BootstrapYTMs(Date, MktInst, Accrual_Conv)

Description

Use the BootstrapYTMs function to create a zero-arbitrage implied zero-coupon curve from a yield-to-
maturity curve using the integrated discount factor method, based on the Accrual_Conv.

Parameters

Parameter Description

Date The trading date of the set of market issues. This parameter
takes a date value.

MktInst The market instrument properties. This parameter takes an
array of array of number. The elements in the array specify the
following:

94  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Elements Description

1 tenor in days

2 yield in percent

3 price per 100 par

4 coupon rate (zero for spot instruments)

5 frequency of coupon payments

6 unit of measure for coupon frequency, 0 for days, 1 for
months, and 2 for years

7 coefficient a of a curve interpolating the dataset

8,9,10 coefficients b, c, and d of a curve interpolating the dataset

Returns

An array of array of number. The elements in the array have the same type as the elements in the array for
the MktInst parameter.

Related Links
"Understanding Arrays" (PeopleCode API Reference)

Break

Syntax

Break

Description

Use the Break statement to terminate execution of a loop or an Evaluate function. The program resumes
execution immediately after the end of the statement. If the loop or Evaluate is nested in another
statement, only the innermost statement is terminated.

Parameters

None.

Copyright © 1988, 2022, Oracle and/or its affiliates. 95



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

In the following example, Break is used to terminate the Evaluate statement, while staying within the
outermost If statement:

If CURRENCY_CD = PriorEffdt(CURRENCY_CD) Then
      Evaluate ACTION
      When = "PAY"
         If ANNUAL_RT = PriorEffdt(ANNUAL_RT) Then
            Warning MsgGet(1000, 27, "Pay Rate Change action is chosen and Pay Rate⇒

 has not been changed.");
         End-if;
         Break;
      When = "DEM"
         If ANNUAL_RT >= PriorEffdt(ANNUAL_RT) Then
            Warning MsgGet(1000, 29, "Demotion Action is chosen and Pay Rate has no⇒

t been decreased.");
         End-if;
        Break;
      When-other
      End-evaluate;
      WinMessage("This message appears after executing either of the BREAK statemen⇒

ts or after all WHEN statements are false");
End-if;

Related Links
Evaluate
Exit
For
While

BulkDeleteField

Syntax

BulkDeleteField(ProjectName, Field.FieldName [, ExclProj])

Description

Use the BulkDeleteField function to delete fields from records and pages, as well as the associated
PeopleCode programs and modify the SQL either on the record, or, if the record is a subrecord, on the
parent records.

Note: You must have the role PeopleSoft Administrator assigned to your UserId in order to use this
function.

If you specify a project that contains objects such as fields which have an upgrade action of delete, those
objects are ignored.

The field is removed from the page regardless of where the field exists on the page, whether on a grid or
not.

96  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

If the field is in the SELECT clause of the SQL, the removal is straightforward. However, if the field
is also used in a WHERE clause, or if the field is the only item in the SELECT clause, the record isn't
modified and is instead inserted into a project called BLK_FieldName. The record should be examined
and any additional changes made as necessary.

Deleting fields from records and pages does not remove the field definition itself and it does not remove
the field from other areas, such as projects or message definitions.

In addition, this function does not delete the references to the field in the PeopleCode. You must manually
remove the references to the deleted field. Use the Find In. . . tool to search for the field name you
deleted.

Note: Because performing this operation changes records, you must subsequently rebuild the project
(alter tables).

Using the Log File

Information about this operation is stored in a log field. The directory where the log file is placed depends
on where the function is run from:

• If the function is run in two-tier, the log file is located at PS_CFG_HOME /BulkOps.txt. This is also
the default location if the system cannot find the other paths.

• If the function is run from an application server, the log file is located at:

PS_CFG_HOME /APPSERV/Domain_Name/LOGS/BulkOps.txt

• If the function is run from an Application Engine program, the log file is written to the process' output
log directory, that is:

PS_CFG_HOME /APPSERV/prcs/Domain_Name/log_output/Process_Name_Instance/BulkOps.txt

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on a currently loaded component. In general, changes aren't recognized until the component is reloaded.

Bulk operations are time consuming, therefore, referencing the log file to see the progress of an operation
is recommended. These operations accommodate errors and continue processing, logging the overall
progress of the operation.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Considerations Using the Exclusion Project

If you specify ExclProj, the following items that are both in ProjectName and ExclProj are not changed,
that is, the field specified is not removed from these items:

• pages

• records

Copyright © 1988, 2022, Oracle and/or its affiliates. 97



PeopleCode Built-in Functions and Language Constructs Chapter 1

• associated SQL with records of type View

• any PeopleCode associated with those items.

Individual SQL or PeopleCode items are not ignored by themselves, only as associated with records or
pages.

Parameters

Parameter Description

ProjectName The name of a project that is the source of records and pages to
use.

Note: When passing the project name as a parameter, if the
project contains definitions with an upgrade action of delete,
 the system ignores those definitions.

FieldName The name of the field to be deleted. This name must be
prefixed with the reserved word Field.

ExclProj The name of a project that has pages that should be ignored by
this function.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

Example
&pjm = "MYPROJ";
&ret =  BulkDeleteField(&pjm, Field.OrgId, "EXCLPROJ");

If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "BulkDeleteField succeeded");
Else
MessageBox(0, "Metadata Fn Status", 0, 0, "BulkDeleteField failed");
End-If;

Related Links
BulkInsertField
BulkModifyPageFieldOrder
"Using the Find In Feature" (PeopleCode Developer’s Guide)

98  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

"Understanding Bulk Operations" (Application Designer Developer’s Guide)
"Understanding Data Administration and the Build Process" (Application Designer Developer’s Guide)

BulkInsertField

Syntax

BulkInsertField(ProjectName, Field.FieldName, ModelName, ClonePCode [, ExclProj])

Description

Use the BulkInsertField function to insert a source field into records and pages in a project if and only if
the model field specified by ModelName exists on those records and pages.

If you specify a project that contains objects such as fields which have an upgrade action of delete, those
objects are ignored.

Note: You must have the role PeopleSoft Administrator assigned to your UserId in order to use this
function.

Using the Log File

Information about this operation is stored in a log field. The directory where the log file is placed depends
on where the function is run from:

• If the function is run in two-tier, the log file is located at PS_HOME/BulkOps.txt. This is also the
default location if the system cannot find the other paths.

• If the function is run from an application server, the log file is located here:

PS_CFG_HOME /APPSERV/Domain_Name/LOGS/BulkOps.txt

• If the function is run from an Application Engine program, the log file is written to the process' output
log directory, that is:

PS_CFG_HOME /APPSERV/prcs/Domain_Name/log_output/Process_Name_Instance/BulkOps.txt

Considerations Inserting Fields into Records

In records, the source field is assigned the same record field properties as the model field on each record,
and is inserted directly after the model field.

If the model field has a prompt table, a prompt table is created for the source field using the name of the
source field with TBL appended to it.

If the record is either a SQL View or Dynamic View type, the associated SQL is modified by having the
SELECT clause expanded to include the new field.

If the record is a subrecord, the parent records of type SQL View or Dynamic View that contain this
subrecord are updated.

Copyright © 1988, 2022, Oracle and/or its affiliates. 99



PeopleCode Built-in Functions and Language Constructs Chapter 1

If the SQL contains the model field in the WHERE clause, or the SQL is complex, the associated record
is inserted into a project called BLK_FieldName. You should examine this record and make any necessary
changes.

If the model field has PeopleCode associated with it on the record or in a component, and ClonePCode
has been set to True, this PeopleCode is cloned to the new field, with all references to the model field
changed to refer to the new field.

Note: Because using this function changes records that are used to build application tables, you must
rebuild (alter) the specified project before these changes can be used.

Considerations Inserting Fields into Pages

If the model field is in a grid, the system inserts the new field into the grid next to the model field and
assigns it the same page field properties.

If the model field is not in a grid, the system inserts the new field onto the page to the right of the
model field (in the first open space) and assigns it the same page field properties. If the system detects a
questionable field position, it inserts the page into a project called BLK_FieldName. The page will work
as-is, however, the GUI layout may not be optimal, so you should examine these pages by hand.

The page field name property isn't cloned if it exists on the model field. Instead, the field name of the new
field is used, since the page field name should be a unique identifier for page elements.

Note: If the project you specified only contained pages and not records, you do not need to rebuild the
project after using this function. The changes take affect when the component containing the page is
reloaded.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Bulk operations are time consuming, therefore, referencing the log file to see the progress of an operation
is recommended. These operations accommodate errors and continue processing, logging the overall
progress of the operation.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Considerations Using the Exclusion Project

If you specify ExclProj, the following items that are both in ProjectName and ExclProj are not changed,
that is, the field specified is not inserted to these items:

• pages

• records

• associated SQL with records of type View

100  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

• any PeopleCode associated with those items.

Individual SQL or PeopleCode items are not ignored by themselves, only as associated with records or
pages.

Parameters

Parameter Description

ProjectName The name of a project that is the source of records and pages to
use.

Note: When passing the project name as a parameter, if the
project contains definitions with an upgrade action of delete,
 the system ignores those definitions.

FieldName The name of the field to be inserted. This name must be
prefixed with the reserved word Field.

ModelName The name of a field on which to model the inserted field.
 Attributes are cloned from it for records and pages,
 PeopleCode is modified, and SQL inserted.

ClonePCode Specify whether to clone the PeopleCode from the model to
this field. This parameter takes a Boolean value: True, clone
the PeopleCode programs, False, do not.

ExclProj The name of a project that has pages that should be ignored by
this function.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

Example
&pjm = "MYPROJ";

&ret =  BulkInsertField(&pjm, Field.OrgId, Field.DeptId, True, "EXCLPROJ");

If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "BulkInsertField succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "BulkInsertField failed");

Copyright © 1988, 2022, Oracle and/or its affiliates. 101



PeopleCode Built-in Functions and Language Constructs Chapter 1

End-If;

Related Links
BulkModifyPageFieldOrder
BulkDeleteField
"Understanding Bulk Operations" (Application Designer Developer’s Guide)
"Understanding Data Administration and the Build Process" (Application Designer Developer’s Guide)

BulkModifyPageFieldOrder

Syntax

BulkModifyPageFieldOrder({ProjectName | PageList}, ColNames, RequireAll, [ColWidths⇒

])

Description

Use the BulkModifyPageFieldOrder function to reorder the grid columns as specified by ColNames. If
ColWidths is specified, the columns are also resized. This can also be used to modify a single columns
width.

Note: You must have the role PeopleSoft Administrator assigned to your UserId in order to use this
function.

If you specify a project name as a parameter, and if that project contains objects such as fields which have
an upgrade action of delete, those objects are ignored.

The reordering algorithm “bunches” these fields together at the first instance of any of these fields in a
target page grid, and forces the remaining fields into the order specified.

This function only reorders fields inside a grid.

If the fields occur twice or more in a grid, from two or more records, such as work records, the fields
are bunched together in record groupings before being sorted into the order specified. For example, the
two records ABS_HIST and PERSONAL_HISTORY both contain the fields DURATION_DAYS and
DURATION_HOURS. The following is an example of how the records are fields would be bunched
together first:

• ABS_HIST, DURATION_DAYS

• ABS_HIST, DURATION_HOURS

• PERSONAL_HISTORY, DURATION_DAYS

• PERSONAL_HISTORY, DURATION_HOURS

Note: These changes take affect after components are reloaded.

102  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Using the Log File

Information about this operation is stored in a log field. The directory where the log file is placed depends
on where the function is run from:

• If the function is run in two-tier, the log file is located at PS_CFG_HOME /BulkOps.txt. This is also
the default location if the system cannot find the other paths.

• If the function is run from an application server, the log file is located here:

PS_CFG_HOME /APPSERV/Domain_Name/LOGS/BulkOps.txt

• If the function is run from an Application Engine program, the log file is written to the process' output
log directory, that is:

PS_CFG_HOME /APPSERV/prcs/Domain_Name/log_output/Process_Name_Instance/BulkOps.txt

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Bulk operations are time consuming, therefore, referencing the log file to see the progress of an operation
is recommended. These operations accommodate errors and continue processing, logging the overall
progress of the operation.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

ProjectName  | PageList Specify either the name of a project that is the source of pages
to use or an array of page names.

Note: When passing the project name as a parameter, if the
project contains definitions with an upgrade action of delete,
 the system ignores those definitions.

ColNames Specify an array of string that indicate which fields and the
desired order of those fields.

RequireAll Specify whether all the fields in ColNames must be present
before changes are made or not. This parameter takes a
Boolean value: True, all fields must be present.

ColWidths Specify an array of number that gives the pixel widths of the
grid columns. Use a -1 to indicate that the width of a column
shouldn't change.

Copyright © 1988, 2022, Oracle and/or its affiliates. 103



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

Example
Local Array of String &ColOrder;
Local Array of Number &ColWidth;
Local String &pjm, &ret;

&pjm = "MYPROJ";
&ColWidth = CreateArray(50, 100, -1);
&ColOrder = CreateArray("DEPTID", "ORGID", "PROJECT");

&ret =  BulkModifyPageFieldOrder(&pjm, &ColOrder, True, &ColWidth);

If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "BulkModifyPageFieldOrder succeeded");⇒

Else
      MessageBox(0, "Metadata Fn Status", 0, 0, "BulkModifyPageFieldOrder failed");⇒

End-If;

Related Links
BulkInsertField
BulkDeleteField
"Understanding Bulk Operations" (Application Designer Developer’s Guide)
"Understanding Data Administration and the Build Process" (Application Designer Developer’s Guide)

BulkUpdateIndexes

Syntax

BulkUpdateIndexes([StringFieldArray])

Description

Use BulkUpdateIndexes to update indexes (PSINDEXDEFN table) for records that contain a field whose
NotUsed setting has changed.

A field whose NotUsed flag has been set to True does not show up in indexes. The only way to modify a
field's NotUsed setting is through an API call such as in the following example:

SetDBFieldNotUsed(FIELD.OrgId, True);

104  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The indexes of records that contain this field need to be updated to reflect the new settings.

Information about this operation can be logged by turning on PeopleCode tracing of internal functions
(value 256.)

Considerations Using this Function

Do not invoke this function from runtime pages, as it modifies all records, including the records used to
support the page it is invoked from. This function should be invoked from a Application Engine program.

Note: If you do call this function from a page the operation completes successfully, but the page returns
an error message. Switching to a new component clears up this error, however, any changes not saved to
the database are lost.

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Bulk operations are time consuming, therefore, referencing the log file to see the progress of an operation
is recommended. These operations accommodate errors and continue processing, logging the overall
progress of the operation.

Calling this function without any parameter rebuilds the indexes for all records, an operation that may
take hours. By indicating a list of fields whose NotUsed flag has changed, only the affected records have
their indexes updated, reducing the time required to run this function.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

StringFieldArray Specify an array of field names (as strings), such as DEPTID,
representing the fields whose NotUsed flag has been modified.
 Only the records containing these fields are updated.

If you do not specify a value for this parameter, the indexes for
all records are rebuilt.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

Copyright © 1988, 2022, Oracle and/or its affiliates. 105



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The following example uses the function without the optional array of field names:

&ret =  BulkUpdateIndexes();
If (&ret = %MDA_Success) Then
MessageBox(0, "MetaData Fn Status", 0, 0, "BulkUpdateIndexes succeeded");
Else
MessageBox(0, "MetaData Fn Status", 0, 0, "BulkUpdateIndexes failed");
End-If;

The following example uses the function with an array of two field names passed to it:

&ret =  BulkUpdateIndexes(CreateArray("DEPTID","PROJECT"));
If (&ret = %MDA_success) Then
MessageBox(0, "MetaData Fn Status", 0, 0, "BulkUpdateIndexes succeeded");
Else
MessageBox(0, "MetaData Fn Status", 0, 0, "BulkUpdateIndexes failed");
End-If;

Related Links
BulkDeleteField
BulkInsertField
BulkModifyPageFieldOrder

PeopleCode Built-in Functions and Language Constructs: C

The PeopleCode built-In functions and language constructs beginning with the letter C are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

CallAppEngine

Syntax

CallAppEngine(applid[, statereclist, processinstance, allowcommit])

Where statereclist is list of record objects in the form:

&staterecord1 [, &staterecord2] .  .  .

There can be only as many record objects in statereclist as there are state records for the Application
Engine program. Additional record objects are ignored.

Description

Use the CallAppEngine function to start the Application Engine program named applid. This is how to
start your Application Engine programs synchronously from a page. (Prior to PeopleTools 8, you could
do only this using the RemoteCall function.) Normally, you won’t run Application Engine programs from

106  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

PeopleCode in this manner. Rather, the bulk of your Application Engine execution will be run using the
Process Scheduler, and the exception would be done using CallAppEngine.

The staterecord can be the hard-coded name of a record, but generally you use a record object to pass in
values to seed particular state fields. The record name must match the state record name exactly.

The processinstance allows you to specify the process instance used by the Application Engine runtime.
In your PeopleCode program this parameter must be declared of type integer since that is the only way the
runtime can tell whether the last parameter is to be interpreted as a process instance. For more details see
the Application Engine documentation.

After you use CallAppEngine, you may want to refresh your page. The Refresh method, on a rowset
object, reloads the rowset (scroll) using the current page keys. This causes the page to be redrawn.
GetLevel0().Refresh() refreshes the entire page. If you want only a particular scroll to be
redrawn, you can refresh just that part.

Note: If you supply a non-zero process instance, all message logging is done under the process instance.
You must build your own PeopleSoft Pure Internet Architecture page to access or delete the messages,
since there is no Process Monitor entry for the process instance you used.

PeopleCode Event Considerations

You must include the CallAppEngine PeopleCode function within events that allow database updates
because generally, if you’re calling Application Engine, you’re intending to perform database updates.
This includes the following PeopleCode events:

• SavePreChange (Page)

• SavePostChange (Page)

• Workflow

• FieldChange

If CallAppEngine results in a failure, all database updates is rolled back. All information the user entered
into the component is lost, as if the user pressed ESC.

Application Engine Considerations

You can also use the CallAppEngine function in a Application Engine program, either directly (in
a PeopleCode action) or indirectly (using a Component Interface). This functionality must be used
carefully, and you should only do this once you have a clear understanding of the following rules and
restrictions.

• Dedicated cursors are not supported inside a "nested application engine instance" (meaning an
application engine program invoked using CallAppEngine from within another application engine
program). If a nested application engine instance has any SQL actions with ReUse set to Yes or Bulk
Insert, those settings are ignored.

• As in any other type of PeopleCode event, no commits are performed within the called application
engine program. This is an important consideration. If a batch application engine program called
another program using CallAppEngine, and that child program updated many rows of data, the unit-
of-work might become too large, resulting in contention with other processes. A batch application
engine program should invoke such child programs using a Call Section action, not CallAppEngine.

Copyright © 1988, 2022, Oracle and/or its affiliates. 107



PeopleCode Built-in Functions and Language Constructs Chapter 1

• Temp tables are not shared between a batch application engine program and child program invoked
using CallAppEngine. Instead, the child program is assigned an "online" temporary table instance,
which is used for all temp tables in that program. In addition, if that child program invokes another
program using CallAppEngine, that grandchild shares the online temp instance with the caller. In
other words, only one online temp instance is allocated to a process at any one time, no matter how
many nested CallAppEngine's there might be.

• The lock on an online temp instance persists until the next commit. If the processing time of the
called program is significant (greater than a few seconds), this would be unacceptable. As a general
rule, application engine programs that make use of temp tables and have a significant processing
time should be called from other application engine programs using a Call Section action, not
CallAppEngine.

See "Using PeopleCode in Application Engine Programs" (Application Engine).

Save Events Considerations

To execute the Application Engine program based on an end user Save, use the CallAppEngine function
within a Save event. When you use CallAppEngine, you should keep the following items in mind:

• No commits occur during the entire program run.

• During SavePreChange, any modified rows in the page have not been written to the database.

• During SavePostChange, the modified rows have been written to the database. The Page Process
issues one commit at the end of the Save cycle.

FieldChange Considerations

If you don’t want the CallAppEngine call to depend on a Save event, you can also initiate CallAppEngine
from a FieldChange event. When having a FieldChange event initiate CallAppEngine, keep the following
items in mind:

• No commits occur within the program called by CallAppEngine. The called program remains a
synchronous execution in the same unit of work.

• The Component Processor commits all updates done in a FieldChange at the end of the event, which
frees any locks that the Application Engine program might have acquired.

• Do not include a DoSave function in the same FieldChange event. Not only is this not allowed, but it
also indicates that you should be including the CallAppEngine within a Save event.

• You can use the DoSaveNow function in the same FieldChange event, but it must be called prior to
the first CallAppEngine function, but not afterward.

Parameters

Parameter Description

applid Specify the name of the Application Engine program you want
to start.

108  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

statereclist Specify an optional record object that provides initial values
for a state record.

processinstance This parameter is not used.

allowcommit Specify an optional Boolean value indicating whether
intermediate commits are allowed. If omitted, allowcommit
defaults to False.

Intermediate commits of only the transactions that are
related to the Application Engine program use a secondary
connection to the database. Before invoking CallAppEngine
with intermediate commits, the secondary connection to the
database for that application server domain must be enabled
using the database flags (DbFlags) in the application server
configuration file. Note that the secondary connections are
enabled by default. If the secondary connection to the database
is disabled and CallAppEngine is invoked with allowcommit
set to True, the functionality will fall back to the default
where all transactions are committed only at the end of an
Application Engine program.

See "PSTOOLS Options" (System and Server Administration)

Returns

None.

Example

The following calls the Application Engine program named MYAPPID, and passes initialization values.

&REC = CreateRecord(RECORD.INIT_VALUES);
&REC.FIELD1.Value = "XYZ";
   /* set the initial value for INIT_VALUES.FIELD1 */
CallAppEngine("MYAPPID", &REC);

Related Links
DoSaveNow
"Understanding the AESection Class" (PeopleCode API Reference)
"Refresh" (PeopleCode API Reference)
"Running Application Engine Programs" (Application Engine)
"Specifying Call Section Actions" (Application Engine)

CancelPubHeaderXmlDoc

Syntax

CancelPubHeaderXmlDoc(PubID, PubNode, ChannelName, VersionName)

Copyright © 1988, 2022, Oracle and/or its affiliates. 109



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the CancelPubHeaderXmlDoc function to programmatically cancel the message header of a
publication contract, much the same as you can do in the message monitor.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Cancel method instead.

The message header, also known as the message instance, is the published message before the system
performs any transformations.

The function is only available when the message has one of the following statuses:

• Error

• New

• Retry

• Timeout

• Edited

Related Links
"Cancel" (PeopleCode API Reference)

Parameters

Parameter Description

PubID Specify the PubID of the message.

PubNode Specify the Pub Node Name of the message.

ChannelName Specify the channel name of the message.

VersionName Specify the version name of the message.

Returns

A Boolean value: True if the function completed successfully, False otherwise.

Related Links
ReSubmitPubHeaderXmlDoc

110  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

CancelPubXmlDoc

Syntax

CancelPubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName, SubNode[, Se⇒

gment])

Description

Use the CancelPubXmlDoc function to programmatically cancel a message publication contract, much the
same as you can do in the message monitor.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Cancel method instead.

This is the publication contract that exists after any transformations have been preformed.

The function is only available when the message has one of the following statuses:

• Error

• New

• Retry

• Timeout

• Edited

Related Links
"Cancel" (PeopleCode API Reference)

Parameters

Parameter Description

PubID Specify the PubID of the message.

PubNode Specify the Pub Node Name of the message.

ChannelName Specify the channel name of the message.

VersionName Specify the version name of the message.

MessageName Specify the name of the message.

SubNode Specify the subnode of the message.

Copyright © 1988, 2022, Oracle and/or its affiliates. 111



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

Segment Specify an integer representing which segment you want to
access. The default value is one, which means that if you do
not specify a segment, the first segment is accessed.

Returns

A Boolean value: True if the function completed successfully, False otherwise.

Related Links
ReSubmitPubXmlDoc

CancelSubXmlDoc

Syntax

CancelSubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName, Subscription⇒

Name[, Segment])

Description

Use the CancelSubXmlDoc function to programmatically cancel a message subscription contract, much
the same as you can do in the message monitor.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Cancel method instead.

The function is only available when the message has one of the following statuses:

• Error

• New

• Retry

• Timeout

• Edited

Related Links
"Cancel" (PeopleCode API Reference)

112  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

PubID Specify the PubID as a string.

PubNode Specify the Pub Node name as a string.

ChannelName Specify the Channel name as a string.

VersionName Specify the version name as a string.

MessageName Specify the message name as a string.

SubscriptionName Specify the subscription name as a string.

Segment Specify an integer representing which segment you want to
access. The default value is one, which means that if you do
not specify a segment, the first segment is accessed.

Returns

A Boolean value: True if function completed successfully, False otherwise.

Related Links
ReSubmitSubXmlDoc

ChangeEmailAddress

Syntax

ChangeEmailAddress(Type, Address)

Description

Use the ChangeEmailAddress function to change the type of an email address that you've already added
for the current user. You can only have one email address of a specific type for a user. If you try to use a
type that already has an email address associated with it, you receive an error.

Parameters

Parameter Description

Type Specify the type that you want to change the email address to.
 This parameter takes a string value. The valid values are:

Copyright © 1988, 2022, Oracle and/or its affiliates. 113



PeopleCode Built-in Functions and Language Constructs Chapter 1

Value Description

BB Blackberry email address

BUS Business email address

HOME Home email address

OTH Other email address

WORK Work email address

Parameter Description

Address Specify the email address that you want to add as a string.

Returns

None.

Related Links
AddEmailAddress
DeleteEmailAddress
MarkPrimaryEmailAddress

Char

Syntax

Char(n)

Description

Use the Char function to convert a decimal numeric value n to the corresponding Unicode character.

Parameters

Parameter Description

n The numeric value to be expressed as a decimal Unicode
value.

114  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

Returns a string representing the Unicode character corresponding to the number n.

Example

This example sets three strings:

&STRING1 = Char(80) | Char(83);
&STRING2 = Char(26085) | Char(26412);
&STRING3 = Char(55362) | Char(56697);

The following table shows the Unicode hexadecimal code points and the string equivalents for these calls
to the Char function:

Variable Char (Decimal) Unicode Code Points String

&STRING1 Char(80) | Char(83) U+0050, U+0053 PS

&STRING2 Char(26085) | Char(26412) U+65E5, U+672C 日本

&STRING3* Char(55362) | Char(56697) U+D842 U+DD79 A single Chinese character

* The single character in &STRING3 signifies a non-BMP, UTF-32 character (U+20979), which is
represented by the UTF-16 surrogate pair (U+D842 U+DD79). This single Chinese character has been
omitted from this example.

For reference, Unicode character charts are available from The Unicode Consortium.

See Unicode 6.2 Character Code Charts.

Related Links
Code
String
%Substring

CharType

Syntax

CharType(source_str, char_code)

Description

Use the CharType function to determine whether the first character in source_str is of type char_code .
The char_code parameter is a numeric value representing a character type (see the following Parameters
section for details). Most character types supported by this function equate to specific Unicode character
blocks or are based on Unicode character properties.

Copyright © 1988, 2022, Oracle and/or its affiliates. 115

http://www.unicode.org/charts/


PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
"Understanding Character Sets" (Global Technology)

Parameters

Parameter Description

source_str A String, the first character of which will be tested.

char_code A Number representing the character type to be tested for.

The following table shows valid values for char_code. You can specify either a Character Code or a
Constant:

Numeric Value Constant Character Set

0 %CharType_AlphaNumeric Basic Latin — Alphanumeric (printable
range of 7-bit US-ASCII), Unicode
characters in the range U+0020 — U
+007E

1 %CharType_ExtendedLatin1 Extended Latin-1 characters (ISO
8859-1 accents for Western European
languages), Unicode characters in the
range U+00BF — U+00FF

2 %CharType_HankakuKatakana Hankaku Katakana (half-width Japanese
Katakana)

3 %CharType_ZenkakuKatakana Zenkaku Katakana (full-width Japanese
Katakana)

4 %CharType_Hiragana Hiragana (Japanese)

5 %CharType_Kanji Chinese, Japanese and Korean
ideographic characters. Includes
Japanese Kanji, Chinese Hanzi and
Korean Hancha.

6 %CharType_DBAlphaNumeric Full-width Latin Alphanumeric
characters, primarily used for Japanese.
 Excludes

7 None Korean Hangul syllables, excluding
Hangul Jamo.

8,9 None Reserved for future use.

116  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Character Set

10 %CharType_JapanesePunctuation Full- and half-width punctuation,
 including space (U+0020) and
Fullwidth / Ideographic Space (U+3000).

11 None Greek

12 None Cyrillic

13 None Armenian

14 None Hebrew

15 None Arabic

16 None Devanagari

17 None Bengali

18 None Gurmukhi

19 None Gujarati

20 None Oriya

21 None Tamil

22 None Telugu

23 None Kannada

24 None Malayalam

25 None Thai

26 None Lao

27 None Tibetan

28 None Georgian

29 None Bopomofo

Copyright © 1988, 2022, Oracle and/or its affiliates. 117



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

CharType returns one of the following Number values. You can check for the constant values instead of
the numeric values if you prefer:

Numeric Value Constant Value Description

1 %CharType_Matched Character is of type char_code.

0 %CharType_NotMatched Character is not of type char_code.

-1 %CharType_Unknown UNKNOWN: unable to determine
whether character is of set char_code.
 This occurs if the character being
checked is an unallocated Unicode
code point, or was added in a version of
Unicode greater than that supported by
PeopleTools.

Example

This example tests to see if a character is Hiragana:

&ISHIRAGANA = CharType(&STRTOTEST, %CharType_Hiragana);
If &ISHIRAGANA = 1 Then
   WinMessage("Character type is Hiragana");
Else
   If &ISHIRAGANA = 0 Then
      WinMessage("Character type is not Hiragana");
   Else
      WinMessage("Character type is UNKNOWN");
   End-If;
End-If;

Related Links
ContainsCharType
ContainsOnlyCharType
ConvertChar
"Understanding Character Sets" (Global Technology)

ChDir

Syntax

ChDir(path)

Description

Use the ChDir function to change the current directory on a drive. This is similar to the DOS ChDir
command. The drive and the directory are both specified in a path string.

118  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: This function has been deprecated.

ChDrive

Syntax

ChDrive(str_dr)

Description

Use the ChDrive function to change the current disk drive to the drive specified by str_dr, which is a
string consisting of a valid drive letter followed by a colon, for example "C:".

Note: This function has been deprecated.

CheckMenuItem

Syntax

CheckMenuItem(BARNAME.menubar_name, ITEMNAME.menuitem_name)

Description

Use the CheckMenuItem function to change the menu state by placing a check mark beside the menu
item.

Note: This function has been deprecated.

ChunkText

Syntax

ChunkText(string, delimiter [, chunk_size])

Description

Use the ChunkText function to break a long text string into chunks that can be more readily managed
by a storage system, such as a database text field. You must specify a string delimiter; the chunk size is
optional.

Parameters

Parameter Description

string Specify the text to be split into chunks as a string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 119



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

delimiter Specify a single character as a text delimiter.

chunk_size Specify the chunk size in characters as a number.

If you specify no value, 0, or a number greater than 14000, the
default value of 14000 is used.

Returns

An array of string.

Example
Local array of string &chunkList;

&STRINGTOCHUNK = "NewYorkNewYorkNewYorkNewYorkNewYorkNewYorkNewYorkNewYorkNewYorkNe⇒

wYorkNewYorkNewYorkNewYorkNewYorkNewYorkNewYork";
&DELIM = "r";
&CHUNKSIZE = 8;

&chunkList = ChunkText(&STRINGTOCHUNK, &DELIM, &CHUNKSIZE);

The preceding example produces the following 16 chunks:

[NewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYor][kN⇒

ewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYor][kNewYork]

Related Links
DeChunkText

Clean

Syntax

Clean(string)

Description

Use the Clean function to remove all non-printable characters, such as control codes, end of line marks,
and unpaired Unicode combining marks, from a text string and return the result as a String value. It
is intended for use on text imported from other applications that contains characters that may not be
printable. Frequently, low-level characters appear at the beginning and end of each line of imported data,
and they cannot be printed.

Note: All white space characters (for example, a blank space, a tab, a carriage return, and so on) are
deemed printable. Therefore, they are not be removed by the Clean function.

120  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

string Specifies the text to be cleaned as a string.

Returns

Returns a String value purged of non-printable characters.

Example

Because Char(7) (U+0007) is a non-printable character, the following Clean function returns a null
string:

&CLEANSTR = Clean(Char(7));

Related Links
Char
String
%Substring

CleanAttachments

Syntax

CleanAttachments(([PreserveCaseHint])

Description

Use the CleanAttachments function to delete all unreferenced (orphaned) files from database tables
serving as file storage locations.

Note: CleanAttachments operates only on database tables that have been used as file attachment storage
locations, and not on FTP sites or HTTP repositories.

Warning! There is no way to roll back changes made by the CleanAttachments function. Oracle
recommends that you perform a database backup before invoking this function.

It is important that you understand how the system determines that a file is unreferenced, and how it
determines which tables contain file attachments.

CleanAttachments compiles two lists:

• List 1: A list of file references that is constructed by finding all the distinct values in the
ATTACHSYSFILENAME column in each table with a record definition that contains the
FILE_ATTACH_SBR subrecord (at any level). Any file not in this list is considered not referenced
(orphaned).

Copyright © 1988, 2022, Oracle and/or its affiliates. 121



PeopleCode Built-in Functions and Language Constructs Chapter 1

• List 2: A list of actual stored files that is constructed by finding the distinct values in the
ATTACHSYSFILENAME column in each table with a record definition that contains the
FILE_ATTDET_SBR subrecord at the top level.

The system deletes any file that appears in the second list, but not in the first, after having determined the
effect of the optional PreserveCaseHint parameter.

Note: A table is only considered to contain file references if its associated record contains the
FILE_ATTACH_SBR subrecord (at any level). If an application has stored file references in tables that
do not contain the FILE_ATTACH_SBR subrecord, and you invoke the CleanAttachments function, then
all the files uploaded to the database through that application will be deleted because the files will not be
found in list 1 and the system therefore regards them as unreferenced.

Similarly, the FILE_ATTDET_SBR subrecord must be at the top level of the table that contains the actual
attachments or the table will be ignored by CleanAttachments. In this case, CleanAttachments does not
find any files to delete and does nothing at all.

To schedule a regular job to clean up orphaned file attachments, you can use the CLEANATT84
Application Engine program, which can be executed from the Delete Orphan Files (Batch) page. See
"Delete Orphan Files (Batch)" (System and Server Administration) for more information.

Alternatively, you can use the Manage Attachment Repositories page to execute CleanAttachments
directly in a synchronous manner. See “Deleting Orphan Attachments” in "Manage Attachment
Repositories" (System and Server Administration) for more information.

Important! Executing CleanAttachments directly in a synchronous manner may result in a timeout if the
number of file attachments to be processed is large. Therefore, Oracle recommends that you use the batch
processing interface instead.

Parameters

Parameter Description

PreserveCaseHint An optional integer parameter that provides the
CleanAttachments function with a hint about how the
PreserveCase parameter was used when the files were
originally uploaded—that is, whether the PreserveCase
parameter was True, False, or a mix of the two.

The default value is %CleanAttach_Default (a mix of the two).

For PreserveCaseHint, specify one of the following constant values:

122  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

0 %CleanAttach_Default Indicates that the comparison is to be
performed as if PreserveCase were True
when some of the files were uploaded
to this database and False for others.
 Therefore, a file in list 2 (actual stored
files) is retained if it would have been
retained had PreserveCaseHint been
specified as either %CleanAttach
_PreserveCase or %CleanAttach_
NoPreserveCase. Otherwise, the file is
considered an orphan and is deleted.

1 %CleanAttach_PreserveCase Indicates that the comparison is to be
performed as if PreserveCase were True
when all the files were uploaded to this
database. Therefore, the comparison
between list 1 and list 2 requires an exact
match of the file name including its file
extension. Any files in list 2 (actual
stored files) that do not have an exact
match in list 1 (names of referenced
files) are deleted.

2 %CleanAttach_NoPreserveCase Indicates that the comparison is to
be performed as if PreserveCase
were False when all the files were
uploaded to this database. Therefore, the
comparison between list 1 and list 2 will
be performed only after the file extension
of each file in list 1 is converted to
lowercase. Any files in list 2 (actual
stored files) that do not have an exact
match in list 1 (names of referenced
files) after converting the file extension
to lowercase in list 1 are deleted.

The following table summarizes the action of CleanAttachments on five different stored files
depending on the values found in the file reference table and depending on the value of the optional
PreserveCaseHint parameter. CleanAttachments will either retain or delete the file from the file storage
tables.

System File Name
in File Storage
Tables (List 2)

System File Name
in File Reference
Tables (List 1)

PreserveCaseHint
= %CleanAttach_
 Default

PreserveCaseHint
= %CleanAttach_
 PreserveCase

PreserveCaseHint
= %CleanAttach_
 NoPreserveCase

file1.txt file1.txt Retain Retain Retain

file2.txt file2.TXT Retain Delete Retain

file3.TXT file3.TXT Retain Retain Delete

Copyright © 1988, 2022, Oracle and/or its affiliates. 123



PeopleCode Built-in Functions and Language Constructs Chapter 1

System File Name
in File Storage
Tables (List 2)

System File Name
in File Reference
Tables (List 1)

PreserveCaseHint
= %CleanAttach_
 Default

PreserveCaseHint
= %CleanAttach_
 PreserveCase

PreserveCaseHint
= %CleanAttach_
 NoPreserveCase

file4.TxT file4.TXT or file4.txt Delete Delete Delete

file5.txt none found Delete Delete Delete

Returns

An integer value. You can check for either an integer or a constant value:

Note: Because CleanAttachments is designed to work with multiple files, to track errors when using
CleanAttachments set your PeopleCode trace to 2112 and your SQL trace to 15 so that errors will be
written to the appropriate trace files.

Numeric Value Constant Value Description

0 %Attachment_Success Files were deleted successfully.

1 %Attachment_Failed Files were not deleted successfully.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due to
some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error on
the HTTP repository.

If the HTTP repository resides on a
PeopleSoft web server, then you can
configure tracing on the web server
to report additional error details.

See "Enabling Tracing on the
Web Server or Application
Server" (PeopleCode Developer’s
Guide).

124  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example
&retcode = CleanAttachments(%CleanAttach_PreserveCase);

Related Links
"Enabling Tracing on the Web Server or Application Server" (PeopleCode Developer’s Guide)
CopyAttachments
DeleteAttachment
DetachAttachment
GetAttachment
MAddAttachment
PutAttachment
ViewAttachment
"Understanding the File Attachment Functions" (PeopleCode Developer’s Guide)

ClearKeyList

Syntax

ClearKeyList()

Description

Use the ClearKeyList function to clear the current key list. This function is useful for programmatically
setting up keys before transferring to another component.

Returns

Optionally returns a Boolean value indicating whether the function succeeded.

Example

The following example sets up a key list and then transfers the user to a page named PAGE_2.

ClearKeyList( );
AddKeyListItem(OPRID, OPRID);
AddKeyListItem(REQUEST_ID, REQUEST_ID);
SetNextPage("PAGE_2");
TransferPage( );

Related Links
AddKeyListItem

ClearSearchDefault

Syntax

ClearSearchDefault([recordname.]fieldname)

Copyright © 1988, 2022, Oracle and/or its affiliates. 125



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the ClearSearchDefault function to disable default processing for the specified field, reversing the
effects of a previous call to the SetSearchDefault function.

Note: This function remains for backward compatibility only. Use the SearchDefault Field class property
instead.

If search default processing is cleared for a record field, the default value specified in the record field
properties for that field will not be assigned when the field appears in a search dialog box. This function is
effective only when used in SearchInit PeopleCode.

Related Links
"SearchDefault" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

[recordname .]fieldname The name of the target field, which is a search key or alternate
search key that is about to appear in a search dialog box. You
must supply the recordname only if the record field and your
PeopleCode program are in different locations.

Returns

Optionally returns a Boolean value indicating whether the function succeeded.

Related Links
ClearSearchEdit
SetSearchDefault
SetSearchEdit
SetSearchDialogBehavior
"Search Processing in Update Modes" (PeopleCode Developer’s Guide)

ClearSearchEdit

Syntax

ClearSearchEdit([recordname.]fieldname)

Description

Use the ClearSearchEdit function to reverse the effects of a previous call to the SetSearchEdit function. If
ClearSearchEdit is called for a specific field, the edits specified in the record field properties will not be
applied to the field when it occurs in a search dialog.

126  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: This function remains for backward compatibility only. Use the SearchEdit Field class property
instead.

Related Links
"SearchEdit" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

[recordname .]fieldname The name of the target field, which is a search key or alternate
search key about to appear in a search dialog box. The
recordname prefix is not required if the program that calls
ClearSearchEdit is on the recordname record definition.

Returns

Optionally returns a Boolean value indicating whether the function succeeded.

Related Links
SetSearchEdit
SetSearchDefault
ClearSearchDefault
SetSearchDialogBehavior
"Search Processing in Update Modes" (PeopleCode Developer’s Guide)

Code

Syntax

Code(str)

Description

Use the Code function to return the numerical Unicode UTF-16 value for the first character in the string
str. (Normally you would pass this function a single character.) If the string starts with a non-BMP
Unicode character, the value returned will be that of the Unicode high surrogate of the character (the first
value of the surrogate pair).

Returns

Returns a Number value equal to the character code for the first character in str.

Related Links
Char

Copyright © 1988, 2022, Oracle and/or its affiliates. 127



PeopleCode Built-in Functions and Language Constructs Chapter 1

String
%Substring

Codeb

Syntax

Codeb(str)

Description

Note: This function has been deprecated and is no longer supported.

Related Links
Code

CollectGarbage

Syntax

CollectGarbage()

Description

Use the CollectGarbage function to remove any unreachable application objects created by the
Application Classes.

Sometimes there may be unrecoverable application objects that are can no longer be referenced from
PeopleCode, but which have not been reclaimed and so are still taking up computer memory. Generally
this situation arises only if you have application objects that form into loops of references.

This function is automatically invoked by the application server as part of its end-of-service processing,
so generally you do not need to call it for online applications. However, in Application Engine (batch),
it is possible that a long-running batch job could grow in memory usage over time as these unreferenced
Application Objects accumulate. The solution to such a problem is to call CollectGarbage periodically to
reclaim these objects.

Parameters

None.

Returns

None.

Related Links
"Understanding Application Classes" (PeopleCode API Reference)

128  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

CommitWork

Syntax

CommitWork()

Description

Use the CommitWork function to commit pending changes (inserts, updates, and deletes) to the database.

Considerations for Using CommitWork

The following are the considerations for using CommitWork.

• This function is available in Application Engine PeopleCode, the FieldChange and SavePreChange
events. If you use it anywhere else, you'll receive a runtime error.

• When used with an Application Engine program, this function only applies to those Application
Engine programs that run in batch (not online). If the program is invoked using the CallAppEngine
function, the CommitWork call is ignored. The same is true for commit settings at the section or step
level.

• This function can only be used in an Application Engine program that has restart disabled. If you try
to use this function in a program that doesn't have restart disabled, you'll receive a runtime error.

• Component interfaces that rely on CommitWork to save data cannot be used in the Excel to
Component Interface utility.

• When CommitWork is called in the context of a component interface (such as, during a
SavePreChange PeopleCode program that's associated with the component), if the caller of the
component interface already has an open cursor (such as an active SQL object) the Commit does not
take effect immediately, but only when the last cursor is closed.

See CallAppEngine.

FieldChange and SavePreChange Considerations

The following are the FieldChange and SavePreChange considerations:

• All updates done in FieldChange (including those using CallAppEngine) should be considered a
single database transaction. This is a fundamental change: previously, a single transaction was
represented by a page or a component.

• A consequence of this is that a message requiring a reply, or any other think-time action, causes
a fatal error if located in FieldChange after a database update that has not been committed to the
database using the CommitWork function. So it is possible for an application to update the database
in FieldChange, then do a think-time action, by preceding the think-time action with a call to
CommitWork.

• CommitWork commits the updates and closes the database transaction (that is, the unit of work). The
consequence of using CommitWork is that because it closes the database transaction, any subsequent
rollback calls will not rollback the committed updates.

Copyright © 1988, 2022, Oracle and/or its affiliates. 129



PeopleCode Built-in Functions and Language Constructs Chapter 1

• Just as any database updates in FieldChange required careful application design to ensure that the
transaction model is appropriate, so too does the use of CommitWork.

• When using CommitWork in the Component Processor environment (as opposed to using it in an
Application Engine program) CommitWork produces an error if there are any open cursors, such as
any open PeopleCode SQL objects.

See "FieldChange Event" (PeopleCode Developer’s Guide).

Application Engine Considerations

The CommitWork function is useful only when you are doing row-at-a-time SQL processing in a single
PeopleCode program, and you must commit without exiting the program. In a typical Application Engine
program, SQL commands are split between multiple Application Engine actions that fetch, insert, update,
or delete application data. Therefore, you would use the section or step level commit settings to manage
the commits. This is the recommended approach.

However, with some types of Application Engine programs that are PeopleCode intensive, it can
be difficult to exit the PeopleCode in order to perform a commit. This is the only time when the
CommitWork function should be used.

See "Restarting Application Engine Programs" (Application Engine).

Restart Considerations

Disabling restart on a particular program means that the application itself is intrinsically self-restartable:
it can be re-run from the start after an abend, and it performs any initialization, cleanup, and filtering
of input data to ensure that everything gets processed once and only once, and that upon successful
completion, the database is in the same state it would have been if no abend occurred.

Set-based applications should always use Application Engine's restart. Only row-by-row applications that
have restart built into them can benefit from disabling Application Engine's restart.

Consider the following points to managing restarts in a self-restarting program:

• Locking input transactions (optional).

If the input data can change, and if it's important not to pick up new data during a restart, there should
be logic to lock transactions at the start of the initial run (such as updating rows with current Process
Instance). The program should first check whether any rows have the current Process Instance (that is,
is the process being restarted from the top after an abend?). If no rows found, do the update.

In some cases it is acceptable for a restarted process to pick up new rows, so that locking is not
necessary. It depends on your application.

Also, if you do not lock transactions, you must provide some other way to manage concurrent
processing of the same program. You do not want two simultaneous runs of the same program to use
the same data, so you must have some strategy for dividing up the data such that there is no overlap.

• Filtering input transactions (required).

After an input transaction is processed, the row should be updated accordingly (that is, setting a
"processed" flag). The SELECT statement that drives the main processing loop should include a
WHERE condition to filter out rows that have already been processed.

130  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A Boolean value, True if data was successfully committed, False otherwise.

Example

The following example fetches rows and processes them one at a time, committing every 100 iterations.
Because restart is disabled, you must have a marker indicating which rows have been processed, and use
it in a conditional clause that filters out those rows.

Local SQL &SQL;
Local Record &REC;
Local Number &COUNT;

&REC = CreateRecord(RECORD.TRANS_TBL);
&SQL = CreateSQL("%SelectAll(:1) WHERE PROCESSED <> 'Y'");
&COUNT = 0;

&SQL.Execute(&REC);
While &SQL.Fetch(&REC)
   If (&COUNT > 99) Then
      &COUNT = 0;
      CommitWork();   /* commit work once per 100 iterations */
   End-if;
   &COUNT = &COUNT + 1;
   /* do processing */
   ...

   /* update transaction as "processed" */
   &REC.PROCESSED.Value = 'Y';
   &REC.Update();
End-While;

Related Links
"Using PeopleCode in Application Engine Programs" (Application Engine)

CompareLikeFields

Syntax

CompareLikeFields(from, to)

where from and to are constructions that reference rows of data on specific source and target records in
the component buffer; each have the following syntax:

level, scrollpath, target_row

and where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

Copyright © 1988, 2022, Oracle and/or its affiliates. 131



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the CompareLikeFields function to compare fields in a row on a specified source record to similarly
named fields on a specified target record.

Note: This function remains for backward compatibility only. Use the CompareFields record class
method instead.

If all of the like-named fields have the same data value, CompareLikeFields returns True; otherwise it
returns False.

Related Links
"CompareFields" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

from A placeholder for a construction (level, scrollpath, target_row)
that references the first row in the comparison.

to A placeholder for a construction (level, scrollpath, target_row)
that references the second row in the comparison.

level Specifies the scroll level for the target level scroll.

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row Specifies the row number of each target row on its scroll level.

Returns

Returns a Boolean value indicating whether all of the like-named fields in the two records have the same
data value.

Example

The following example compares the like-named fields in two rows on levels 1 (&L1_ROW) and 2
(&L2_ROW) and returns True if all of the like-named fields in the two rows have the same value.

&L1_ROW = 1;
&L2_ROW = 1;
If CompareLikeFields(1, RECORD.BUS_EXPENSE_PER, &L1_ROW, 2, RECORD.BUS_EXPENSE_PER,⇒

 1, RECORD.BUS_EXPENSE_DTL, &L2_ROW) Then

132  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

   WinMessage("The fields match.");
End-If;

Related Links
CopyFields

CompareStrings

Syntax

CompareStrings(new_text, old_text [, content_type [, delimiter]])

Description

Use the CompareStrings function to compare the content of new_text with the content of old_text and
return an XML-formatted text string detailing the differences between the two strings.

The XML string indicates the type of change for each line or text segment, based on the delimiter, as
shown in the following table:

Notation Description

None Both lines are the same

Insert A line is present in new_text that is not in old_text.

Delete A line is absent in new_text that is present in old_text.

Change A change in a line shows as an Insert in new_text and a Delete
in old_text.

Parameters

Parameter Description

new_text Specifies the string that you want to compare with the old
version of the string.

old_text Specifies the old version of the string for comparison.

content_type Specifies the content type as a literal: text or html. This
parameter is optional.

If content_type is html, HTML tags are stripped and are not
included in the comparison.

If content_type is not specified, it is set by default to text.

Copyright © 1988, 2022, Oracle and/or its affiliates. 133



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

delimiter An array of string specifying the delimiters to be used to split
the content for comparison. This parameter is optional.

If content_type is text and delimiter is not specified, the
delimiter is set by default to char(13) (or \n, a carriage return).

If content_type is html and delimiter is not specified, the
delimiter array is populated by default with the following
values:

["</p>", "</br>", "</h1>", "</h2>", "</h⇒

3>", "</h4>",
"</h5>", "</h6>", "</div>", "</address>"⇒

, "</pre>",
"</br>", "</tr>", "</caption>", "</block⇒

quote>"]

Returns

Returns a String in XML format showing the differences between the two input strings.

Example

This example shows a comparison of two text strings.

The variable &NewText contains the following string:

Line 2.
Line 2.1.
Line 2.2.
Line 3.
Line 5.
Line 6.
Line 8.

The variable &OldText contains the following string:

Line 1.
Line 2.
Line 3.
Line 4.
Line 7.

The following PeopleCode statement compares the two ASCII-formatted text strings, &NewText and
&OldText.

&OutputXML = CompareStrings(&NewText, &OldText, "Text");

The string variable &OutputXML contains the following text:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<CompareReport ContentType="text" Delimitter="&#xA;">
 <FileContent Difference="Deleted">
  <Line Num="1">
   <LineContent>Line 1.</LineContent>

134  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

  </Line>
 </FileContent>
 <FileContent Difference="None">
  <Line Num="1" OldLineNum="2">
   <LineContent>Line 2.</LineContent>
  </Line>
 </FileContent>
 <FileContent Difference="Inserted">
  <Line Num="2">
   <LineContent>Line 2.1.</LineContent>
  </Line>
  <Line Num="3">
   <LineContent>Line 2.2.</LineContent>
  </Line>
 </FileContent>
 <FileContent Difference="None">
  <Line Num="4" OldLineNum="3">
   <LineContent>Line 3.</LineContent>
  </Line>
 </FileContent>
 <FileContent Difference="Changed">
  <OldLine Num="4">
   <LineContent>Line</LineContent>
   <LineContent Changed="Deleted">4.</LineContent>
  </OldLine>
  <Line Num="4">
   <LineContent>Line</LineContent>
   <LineContent Changed="Inserted">5.</LineContent>
  </Line>
  <OldLine Num="5">
   <LineContent>Line</LineContent>
   <LineContent Changed="Deleted">7.</LineContent>
  </OldLine>
  <Line Num="5">
   <LineContent>Line</LineContent>
   <LineContent Changed="Inserted">6.</LineContent>
  </Line>
 </FileContent>
 <FileContent Difference="Inserted">
  <Line Num="7">
   <LineContent>Line 8.</LineContent>
  </Line>
 </FileContent>
</CompareReport>

This example shows a comparison of two HTML strings.

The variable &NewHTML contains the following string:

<p><H1>peoplesoft<B>file<B> difference utility
<I>Peopletools<I> Release &lt;6 and &gt;5 </H1></p>
<p> &lt;BOLD&gt;Hello world<ITALIC></p>

The variable &OldHTML contains the following string:

<p><H1>peoplesoft<B>file<B>difference utility
<I>Peopletools<I> Release &lt;7 and &gt;5 </H1></p>
<p> &lt;BOLD&gt;Hello world<ITALIC></p>

The following PeopleCode statement compares the two HTML-formatted text strings, &NewHTML and
&OldHTML.

&OutputXML = CompareStrings(&NewHTML, &OldHTML, "HTML");

The string variable &OutputXML contains the following text:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<CompareReport Delimitter="</p>,</H1>" ContentType ="html">

Copyright © 1988, 2022, Oracle and/or its affiliates. 135



PeopleCode Built-in Functions and Language Constructs Chapter 1

 <FileContent Difference="Changed">
  <OldLine Num="1">
   <LineContent Changed="Deleted">peoplesoftfile difference</LineContent>
   <LineContent>utility Peopletools Release</LineContent>
   <LineContent Changed="Deleted ">&lt;6</LineContent>
   <LineContent>and &gt;5 </LineContent>
  </OldLine>
  <Line Num="1">
   <LineContent Changed="Inserted">peoplesoftfiledifference</LineContent>
   <LineContent>utility Peopletools Release</LineContent>
   <LineContent Changed="Inserted ">&lt;7</LineContent>
   <LineContent>and &gt;5 </LineContent>
  </Line>
 </FileContent>
 <FileContent Difference="None">
  <Line Num="2" OldLineNum="2">
   <LineContent>&amp;lt;BOLD&amp;gt;Hello world</LineContent>
  </Line>
  <Line Num="3" OldLineNum="3">
   <LineContent></LineContent>
  </Line>
 </FileContent>
</CompareReport>

Related Links
CompareTextDiff

CompareTextDiff

Syntax

CompareTextDiff(new_text, old_text [, content_type [, delimiter]])

Description

Use the CompareTextDiff function to compare the content of new_text with the content of old_text and
return an array of array of any detailing the differences between the two strings. The elements of the
returned subarray are as follows:

Element Data Type Description

index number The sequential index number in the
comparison array.

line number The line number for the line of text being
compared.

subline number The subline is the counter of added lines
that exist in the new_text.

Note: For DELETE, CHANGED and
COMMON operations, 0 is always
reported for the subline.

136  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Element Data Type Description

type string The type of difference:

• COMMON – Both lines are the
same

• ADD – A line is present in new_text
that is not in old_text.

• DELETE – A line is absent in new_
text that is present in old_text.

• CHANGED – A change in a line
shows as an Add in new_text and a
Delete in old_text.

text string The actual text being compared.

Parameters

Parameter Description

new_text Specifies the string that you want to compare with the old
version of the string.

old_text Specifies the old version of the string for comparison.

content_type Specifies the content type as a literal: text or html. This
parameter is optional.

If content_type is html, HTML tags are stripped and are not
included in the comparison.

If content_type is not specified, it is set by default to text.

Copyright © 1988, 2022, Oracle and/or its affiliates. 137



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

delimiter An array of string specifying the delimiters to be used to split
the content for comparison. This parameter is optional.

If content_type is text and delimiter is not specified, the
delimiter is set by default to char(13) (or \n, a carriage return).

If content_type is html and delimiter is not specified, the
delimiter array is populated by default with the following
values:

["</p>", "</br>", "</h1>", "</h2>", "</h⇒

3>", "</h4>",
"</h5>", "</h6>", "</div>", "</address>"⇒

, "</pre>",
"</br>", "</tr>", "</caption>", "</block⇒

quote>"]

Returns

An array of array of any.

Example

This example shows a comparison of two text strings. The variable &NewText contains the following
string:

Line 2.
Line 2.1.
Line 2.2.
Line 3.
Line 5.
Line 6.
Line 8.

The variable &OldText contains the following string:

Line 1.
Line 2.
Line 3.
Line 4.
Line 7.

The following PeopleCode statement compares the two ASCII-formatted text strings, &NewText and
&OldText:

&Output = CompareTextDiff(&NewText, &OldText, "text");

The string variable &Output contains the following array:

0, 1, 0, DELETED, Line 1.
1, 2, 0, COMMON, Line 2.
2, 2, 1, ADD, Line 2.1.
3, 2, 2, ADD, Line 2.2.
4, 3, 0, COMMON, Line 3.
5, 4, 0, CHANGED, Line 5.

138  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

6, 5, 0, CHANGED, Line 6.
7, 5, 1, ADD, Line 8.

Related Links
CompareStrings

Component

Syntax

Component  data_type &var_name

Description

Use the Component statement to declare PeopleCode component variables. A component variable, after
being declared in any PeopleCode program, remains in scope throughout the life of the component.

The variable must be declared with the Component statement in every PeopleCode program in which it is
used.

Declarations appear at the beginning of the program, intermixed with function declarations.

Note: Because a function can be called from anywhere, you cannot declare any component variables
within a function. You receive a design time error if you try.

The system automatically initializes temporary variables. Declared variables always have values
appropriate to their declared type. Undeclared variables are initialized as null strings.

Not all PeopleCode data types can be declared as Component.

Parameters

Parameter Description

data_type Specify a PeopleCode data type.

&var_name A legal variable name.

Example
Component string &PG_FIRST;

Related Links
Local
Global
"Data Types" (PeopleCode Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 139



PeopleCode Built-in Functions and Language Constructs Chapter 1

ComponentChanged

Syntax

ComponentChanged()

Description

Use the ComponentChanged function to determine whether a component has changed since the last save,
whether by the user or by PeopleCode.

Returns

Returns a Boolean value: True if the component has changed.

Example
If ComponentChanged() Then
   /* do some stuff */
End-if;

ConfigureClassicPlusComponent

Syntax

ConfigureClassicPlusComponent(component_name,
market, enable_disable_value)

Description

Use the ConfigureClassicPlusComponent function to apply the classic plus theme to a component.

Parameters

Parameter Description

component_name Specifies a string value representing the component.

market Specifies a string value representing the market associated
with the component.

Enable_Disable_value Specifies an integer value - 1 to enable classic plus theme; 0 to
disable classic plus theme.

Returns

A Boolean value. True if the classic plus theme is applied successfully to the component; False otherwise.

140  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example
If ConfigureClassicPlusComponent("USERMAINT_SELF", "GBL", 1) Then
 MessageBox(%MsgStyle_OK, "", 0, 0, "Classic Plus is enabled for this component");
Else
 MessageBox(%MsgStyle_OK, "", 0, 0, "Error: ConfigureClassicPlusComponent()returned⇒

 failure");
End-If;

Related Links
ConfigureClassicPlusForWC
IsClassicPlusMode

ConfigureClassicPlusForWC

Syntax

ConfigureClassicPlusForWC(portal_name,
CREF_name, enable_disable_value)

Description

Use the ConfigureClassicPlusForWC function to enable or disable the classic plus theme on a
WorkCenter.

Parameters

Parameter Description

portal_name Specifies a string value representing the portal name.

CREF_name Specifies a string value representing the WorkCenter using
its content reference ID (also referred to as its portal object
name).

enable_disable_value Specifies an integer value - 1 to enable classic plus theme; 0 to
disable classic plus theme.

Returns

A Boolean value. True if the classic plus theme is applied successfully to the WorkCenter; False
otherwise.

Example
If ConfigureClassicPlusForWC("EMPLOYEE", "IB_MAP_WRKCNTR", 1) Then
 MessageBox(%MsgStyle_OK, "", 0, 0, "Classic Plus is enabled for this WorkCenter");
Else
 MessageBox(%MsgStyle_OK, "", 0, 0, "Error: ConfigureClassicPlusForWC() returned fa⇒

Copyright © 1988, 2022, Oracle and/or its affiliates. 141



PeopleCode Built-in Functions and Language Constructs Chapter 1

ilure");
End-If;

Related Links
ConfigureClassicPlusComponent
IsClassicPlusMode

ConnectorRequest

Syntax

ConnectorRequest(&Message)

Description

Use the ConnectorRequest function to send data to the connector using a message, when the connector
properties are assigned in the message.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class ConnectorRequest method instead.

In general, you would build a message, add the specific connector properties, then use ConnectorRequest.

You do not need to set up any transaction or relationship when you use this function. It is a direct call to
the gateway.

The response to the message is returned as a nonrowset-based message. Use the GetXmlDoc message
class method to retrieve the content data. The data is wrapped in the CDATA tag.

Related Links
"ConnectorRequest" (PeopleCode API Reference)

Parameters

Parameter Description

&Message Specify an already instantiated message.

Returns

A nonrowset-based message object.

Related Links
ConnectorRequestURL

142  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

ConnectorRequestURL

Syntax

ConnectorRequestURL(ConnectorStringURL)

Description

Use the ConnectorRequestURL function to go directly to the gateway for accessing information.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class ConnectorRequestURL method instead.

Related Links
"ConnectorRequestUrl" (PeopleCode API Reference)

Parameters

Parameter Description

ConnectorStringURL Specify the URL of the gateway as a string. This is a fully
formed URL.

Returns

A string containing the URL information returned from the message.

Example

The following is the type of URL that could be returned if you were trying to get a PSFT stock quote:

 http://finance.yahoo.com/d/quotes.txt/?symbols=PSFT&format=l1c1d1t1

Related Links
ConnectorRequest

ContainsCharType

Syntax

ContainsCharType(source_str, char_code)

Description

Use the ContainsCharType function to determine if any of the characters in source_str are of type
char_code. The char_code is a numerical value representing a character type (see the following

Copyright © 1988, 2022, Oracle and/or its affiliates. 143



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters section for details). Most character types supported by this function equate to specific Unicode
character blocks or are based on Unicode character properties.

Parameters

Parameter Description

source_str String to be examined.

char_code A number value representing the character type to be tested
for. The following table shows valid values. You can specify
either a character code numeric value or a constant:

Numeric Value Constant Character Set

0 %CharType_AlphaNumeric Basic Latin — Alphanumeric (printable
range of 7-bit US-ASCII), Unicode
characters in the range U+0020 — U
+007E

1 %CharType_ExtendedLatin1 Extended Latin-1 characters (ISO
8859-1 accents for Western European
languages), Unicode characters in the
range U+00BF — U+07E

2 %CharType_HankakuKatakana Hankaku Katakana (half-width Japanese
Katakana)

3 %CharType_ZenkakuKatakana Zenkaku Katakana (full-width Japanese
Katakana)

4 %CharType_Hiragana Hiragana (Japanese)

5 %CharType_Kanji Chinese, Japanese and Korean
ideographic characters. Includes
Japanese Kanji, Chinese Hanzi and
Korean Hancha.

6 %CharType_DBAlphaNumeric Full-width Latin Alphanumeric
characters, primarily used for Japanese.
 Excludes

7 None Korean Hangul syllables, excluding
Hangul Jamo.

8,9 None Reserved for future use.

144  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Character Set

10 %CharType_JapanesePunctuation Full- and half-width punctuation,
 including space (U+0020) and
Fullwidth / Ideographic Space (U+3000).

11 None Greek

12 None Cyrillic

13 None Armenian

14 None Hebrew

15 None Arabic

16 None Devanagari

17 None Bengali

18 None Gurmukhi

19 None Gujarati

20 None Oriya

21 None Tamil

22 None Telugu

23 None Kannada

24 None Malayalam

25 None Thai

26 None Lao

27 None Tibetan

28 None Georgian

29 None Bopomofo

Copyright © 1988, 2022, Oracle and/or its affiliates. 145



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

ContainsCharType returns one of the following Number values. You can check for the constant instead of
the numeric value if you prefer:

Numeric Value Constant Value Description

1 %CharType_Matched String contains at least one character of
set char_code.

0 %CharType_NotMatched String contains no characters of set char
_code.

-1 %CharType_Unknown UNKNOWN: unable to determine
whether character is of set char_code.
 This occurs if the character being
checked is an unallocated Unicode
codepoint, or was added in a version of
Unicode greater than that supported by
PeopleTools.

Example

This example tests to see if the string contains any Hiragana:

&ANYHIRAGANA = ContainsCharType(&STRTOTEST, 4);
If &ANYHIRAGANA = 1 Then
   WinMessage("There are Hiragana characters");
Else
   If &ANYHIRAGANA = 0 Then
      WinMessage("There are no Hiragana characters");
   Else
      WinMessage("UNKNOWN");
   End-If;
End-If;

Related Links
ContainsCharType
ContainsOnlyCharType
ConvertChar
"Selecting Character Sets" (Global Technology)

ContainsOnlyCharType

Syntax

ContainsOnlyCharType(source_str, char_code_list)

Where char_code_list is a list of character set codes in the form:

char_code_1 [, char_code_2]. . .

146  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the ContainsOnlyCharType function to determine whether every character in source_str belongs to
one or more of the character types in char_code_list. See the following Parameters section for a list of
valid character code values. Most character types supported by this function equate to specific Unicode
character blocks or are based on Unicode character properties.

Parameters

Parameter Description

Source_str String to be examined.

char_code_list A comma-separated list of character set codes.

char_code_n Either a Number value identifying a character set, or a
constant. The following table shows valid values. You can
specify either a character code numeric value or a constant:

Numeric Value Constant Character Set

0 %CharType_AlphaNumeric Alphanumeric (7-bit ASCII codes; A-Z,
 a-z, 1-9, punctuation)

1 %CharType_ExtendedLatin1 Extended Latin-1 characters (ISO8859-1
accents for Spanish, French, etc.)

2 %CharType_HankakuKatakana Hankaku Katakana (single-byte Japanese
Katakana)

3 %CharType_ZenkakuKatakana Zenkaku Katakana (double-byte
Japanese Katakana)

4 %CharType_Hiragana Hiragana (Japanese)

5 %CharType_Kanji Kanji (Japanese)

6 %CharType_DBAlphaNumeric Double-byte Alphanumeric (Japanese)

7,8,9  Reserved for future use

10 %CharType_JapanesePunctuation Japanese punctuation

Copyright © 1988, 2022, Oracle and/or its affiliates. 147



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

ContainsOnlyCharType returns one of the following Number values. You can check for the constant
instead of the numeric value, if you prefer:

Numeric Value Constant Value Description

1 %CharType_Matched String contains only characters belonging
to the sets listed in char_code_list.

0 %CharType_NotMatched String contains one or more characters
that do not belong to sets listed in char_
code_list.

-1 %CharType_Unknown UNKNOWN: unable to determine
whether character is of set char_code.
 This occurs if the character being
checked is an unallocated Unicode
codepoint, or was added in a version of
Unicode greater than that supported by
PeopleTools.

Note: If any character in the string is determined to be UNKNOWN, the return value is UNKNOWN.

Example

This example tests to see is the string is only Hiragana or Punctuation:

&ONLYHIRAGANA = ContainsOnlyCharType(&STRTOTEST, 4, 10);
If &ONLYHIRAGANA = 1 Then
   WinMessage("There are only Hiragana and Punctuation characters");
Else
   If &ONLYHIRAGANA = 0 Then
      WinMessage("Mixed characters");
   Else
      WinMessage("UNKNOWN");
   End-If
End-If

Related Links
CharType
ContainsCharType
ConvertChar
"Selecting Character Sets" (Global Technology)

Continue

Syntax

Continue

148  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the Continue statement to continue execution in a loop. How the statement performs depends on the
type of loop:

• In For loops, this statement continues to do the next step of the iteration

• In While loops, this statement continues to the top of the loop and the test of the condition

• In Repeat-Until loops, this statement continues to the Until check at the bottom of the loop.

Parameters

None.

Example

The following are tests of the continue statement in various types of loops:

SetTracePC(%TracePC_List);
/* tests of continue statement */
&N = 0;
For &I = 1 To 10;

   If &I > 5 Then
      Continue;
   End-If;
   &J = &I + 1;
   &K = 0;
   /* now a while loop in here */
   While &J <= 10;
      &J = &J + 1;
      If &J = 7 Then
         Continue;
      End-If;
      For &A = 0 To 5;
         &K = &K + 2;
      End-For; /* no continue statement */
      &Barf = 2;
      Repeat
         &Barf = &Barf;
         If &Barf = 1 Then
            Continue;
         End-If;
      Until &Barf = &Barf;
      &K = &K + 1;
   End-While;
   MessageBox(0, "", 0, 0, "K=" | &K);
   If &I < 2 Then
      Continue;
   End-If;
   &N = &N + 1;
End-For;
MessageBox(0, "", 0, 0, "N=" | &N);

Related Links
Break
Exit

Copyright © 1988, 2022, Oracle and/or its affiliates. 149



PeopleCode Built-in Functions and Language Constructs Chapter 1

ConvertChar

Syntax

ConvertChar(source_str, source_str_category, output_str, target_char_code)

Description

Use the ConvertChar function to convert every character in source_str to type target_char_code, if
possible, and place the converted string in output_str. ConvertChar supports the following conversions:

• Conversion among Japanese Hankaku (half-width) Katakana, Zenkaku (full-width) Katakana, and
Hiragana .

• Conversion of Japanese Hankaku (half-width) Katakana, Zenkaku (full-width) Katakana, and
Hiragana to Hepburn Romaji (Latin representation).

• Conversion of full-width alphanumeric characters to their half-width equivalents.

• Conversion of full-width punctuation characters to their half-width equivalents.

Other source_str and target_char_code combinations are either passed through without conversion, or
not supported. Character types 0 and 1 (alphanumeric and extended Latin-1) are always passed through
to output_str without conversion. See the Supported Conventions section later in this reference entry for
details.

If ConvertChar is unable to determine whether the characters in source_str belong to the specified
character set, the function returns a value of UNKNOWN (-1). If source_str can be partially converted,
ConvertChar will partially convert string, echo the remaining characters to the output string as-is, and
return a value of -2 (Completed with Issues).

Parameters

Parameter Description

Source_str String to be converted.

Source_str_category Language category of input string. You can specify either a
number or a constant.

Numeric Value Constant Value Description

0 %ConvertChar_AlphaNumeric Half-width AlphaNumeric

1 %ConvertChar_ExtendedLatin1 Extended Latin-1 Characters (ISO8859-1
accents, Spanish, French etc.)

2 %ConvertChar_Japanese Japanese (any)

150  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

Output_str A String variable to receive the converted string.

Target_char_code Either a Number or a constant representing the conversion
target character type. You can specify either a character code
numeric value or a constant:

Numeric Value Constant Value Description

0 %CharType_AlphaNumeric Half-width AlphaNumeric — results
in a Hepburn Romaji conversion when
the input string contains Hiragana or
Katakana

2 %CharType_HankakuKatakana Hankaku Katakana (half—width
Japanese Katakana)

3 %CharType_ZenkakuKatakana Zenkaku Katakana (full-width Japanese
Katakana)

4 %CharType_Hiragana Hiragana (Japanese)

6 %CharType_DBAlphaNumeric Full-width AlphaNumeric (Japanese)

The following target values are not supported; if the source string is of the same type as any of these
values, then the string is passed through without conversion.

Numeric Value Constant Value Description

1 %CharType_ExtendedLatin1 Extended Latin-1 characters (ISO8859-1
accents for Spanish, French, etc.)

5 %CharType_Kanji Chinese, Japanese and Korean
ideographic characters.

10 %CharType_JapanesePunctuation Full- and half-width punctuation,
 including space (U+0020) and
Fullwidth / Ideographic Space (U+3000).

Supported Conversions

The following table shows which conversions are supported, which are passed through without
conversion, and which are not supported:

Copyright © 1988, 2022, Oracle and/or its affiliates. 151



PeopleCode Built-in Functions and Language Constructs Chapter 1

Source Target Conversion

0 (Alphanumeric US-ASCII) 0-6 (All supported character types) Pass through without conversion

1 (Extended Latin-1 characters) 0-6 (All supported character sets) Pass through without conversion

2 (Hankaku Katakana) 0 (Alphanumeric — Hepburn romaji) Conversion supported

1 (Extended Latin) Not supported

2 (Hankaku Katakana) Pass through without conversion

3 (Zenkaku Katakana) Conversion supported

4 (Hiragana) Conversion supported

5 (Kanji) Not supported

6 (Full-width alphanumeric) Not supported

3 (Zenkaku Katakana) 0 (Alphanumeric) Conversion supported

1 (Extended Latin) Not supported

2 (Hankaku Katakana) Conversion supported

3 (Zenkaku Katakana) Pass through without conversion

4 (Hiragana) Conversion supported

5 (Kanji) Not supported

6 (Full-width alphanumeric) Not supported

4 (Hiragana) 0 (Alphanumeric- Hepburn Romaji) Conversion supported

1 (Extended Latin) Not supported

2 (Hankaku Katakana) Conversion supported

152  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Source Target Conversion

3 (Zenkaku Katakana) Conversion supported

4 (Hiragana) Pass through without conversion

5 (Kanji) Not supported

6 (Full-width alphanumeric) Not supported

5 (Kanji) 0-4, 6 Not supported

5 (Kanji) Pass through without conversion

6 (Full-width alphanumeric) 0 (Alphanumeric) Conversion supported

1-5 Not supported

6 (Full-width alphanumeric) Pass through without conversion

10 (Japanese punctuation) 0 (Alphanumeric) Conversion supported

1 (Extended Latin) Not supported

3-6, 10 Pass through without conversion

Returns

Returns either a Number or a constant with one of the following values, depending on what you’re
checking for:

Numeric Value Constant Value Description

1 %ConvertChar_Success String successfully converted.

0 %ConvertChar_NotConverted String not converted.

Copyright © 1988, 2022, Oracle and/or its affiliates. 153



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

-1 %ConvertChar_Unknown UNKNOWN: unable to determine
whether character is of set char_code.
 This occurs if the character being
checked is an unallocated Unicode
codepoint, or was added in a version of
Unicode greater than that supported by
PeopleTools.

-2 %ConvertChar_Issues Completed with issues. Conversion
executed but there were one or more
characters encountered that were either
not recognized, or whose conversion is
not supported.

Note: If any character cannot be translated, it is echoed as-is to output_str. output_str could therefore be a
mixture of converted and non-converted characters.

Example

This example attempts to convert a string to Hiragana:

&RETVALUE = ConvertChar(&INSTR, 2, &OUTSTR, 4);
If &RETVALUE = 1 Then
   WinMessage("Conversion to Hiragana successful");
Else
   If &RETVALUE = 0 Then
      WinMessage("Conversion to Hiragana failed");
   Else
      If &RETVALUE = - 1 Then
         WinMessage("Input string is UNKNOWN character type.");
      Else
         WinMessage("Some characters could not be converted.");
      End-If
   End-If
End-If

Related Links
CharType
ContainsCharType
ContainsOnlyCharType
"Selecting Character Sets" (Global Technology)

ConvertCurrency

Syntax

ConvertCurrency(amt, currency_cd, exchng_to_currency, exchng_rt_type, effdt, conver⇒

ted_amt [, error_process [, round] [, rt_index]])

154  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the ConvertCurrency function to convert between currencies. The result of the conversion is placed in
a variable passed in converted_amt.

Related Links
"Understanding Currency-Specific Settings" (Global Technology)

Parameters

Parameter Description

Amt The currency amount to be converted.

Currency_cd The currency in which the amt is currently expressed.

Exchng_to_currency The currency to which the amt should be converted.

Exchng_rt_type The currency exchange rate to be used. This is the value of the
RT_TYPE field in the RT_RATE table of RT_DFLT_VW.

Effdt The effective date of the conversion to be used.

Converted_amt The resulting converted amount. You must supply a variable
for this parameter. If a conversion rate cannot be found,
 converted_amt is set equal to amt.

Error_process An optional string that, if specified, contains one of the
following values:

• "F" - Produce a fatal error if a matching conversion rate is
not found.

• "W" - Produce a warning message box if a matching
conversion rate is not found.

• "I" - Or other−return without producing a message box

If error_process is not specified, it defaults to Fatal ("F").

Round Optional Boolean value indicating whether to round converted
_amt to the smallest currency unit. If omitted, round defaults
to False.

rt_index An optional string to indicate which exchange rate index
should be used to retrieve the exchange rate. If omitted, the
Default Exchange Rate index (as specified on the Market Rate
index definition) is used.

Copyright © 1988, 2022, Oracle and/or its affiliates. 155



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: If the currency exchange rate is changed in a PeopleSoft table, this change will not be reflected in
an already open page until the user closes the page, then opens it again.

Returns

ConvertCurrency returns a Boolean value where True means a conversion rate was found and
converted_amt calculated, and False means a conversion rate was not found and a value of one (1) was
used.

Example
rem **-----------------------------------------------**;
rem *  Convert the cost & accum_depr fields if books *;
rem * use different currencies.  *;
rem **-----------------------------------------------**;
rem;
   If &FROM_CUR <> &PROFILE_CUR_CD Then
      &CON_COST_FROM = &COST_COST;
      &CON_ACC_DEPR_FROM = &COST_ACCUM;
      ConvertCurrency(&CON_COST_FROM, &FROM_CUR, &PROFILE_CUR_CD, RT_TYPE,TRANS_DT,⇒

 &CON_COST_TO, "F");
      UpdateValue(COST_NON_CAP.COST, &COST_ROW_CUR, &CON_COST_TO);
   Else
      UpdateValue(COST_NON_CAP.COST, &COST_ROW_CUR, &COST_COST);
   End-If;
   UpdateValue(COST_NON_CAP.FROM_CUR, &COST_ROW_CUR, &PROFILE_CUR_CD);
UpdateValue(COST_NON_CAP.OPRID, &COST_ROW_CUR, %UserIdId);

ConvertDatetimeToBase

Syntax

ConvertDatetimeToBase(textdatetime, {timezone | "Local" | "Base"})

Description

Use the ConvertDatetimeToBase function to convert the text value textdatetime to a DateTime value.
The ConvertDatetimeToBase function then further converts it from the specified time zone to the base
time zone. This function automatically calculates whether daylight saving time is in effect for the given
textdatetime and time zone.

The system’s base time zone is specified in the PSOPTIONS table.

156  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

textdatetime Specify a date/time represented as text in the PeopleSoft
internal format: yyyy-mm-dd hh:mm:ss[.S] (for example,
 "2011-01-01 18:10:52.000000").

In which:

• yyyy is a four-digit year.

• mm is a two-digit month (01 through 12).

• dd is a two-digit day of the month (01 through 31).

• hh is a two digits of hour (00 through 23).

• mm is a two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• S is milliseconds in one or up to six digits.

timezone | Local | Base Specify a value for converting textdatetime. Values are:

• timezone - a time zone abbreviation or a field reference to
be used for converting textdatetime

• Local - use the local time zone for converting
textdatetime.

• Base - use the base time zone for converting textdatetime.

Returns

Returns a DateTime value in the base time zone.

Example

In the following example, assuming the base time (as defined in PSOPTIONS) is PST, &DATETIMEVAL
would have a DateTime value of "1999-01-01 07:00:00.000000":

&DATETIMEVAL= ConvertDateTimeToBase("1999-01-01 10:00:00.000000", "EST");

Related Links
ConvertTimeToBase
FormatDateTime
IsDaylightSavings
DateTimeToTimeZone
TimeToTimeZone
TimeZoneOffset
"PeopleTools Options" (System and Server Administration)

Copyright © 1988, 2022, Oracle and/or its affiliates. 157



PeopleCode Built-in Functions and Language Constructs Chapter 1

ConvertRate

Syntax

ConvertRate(Rate, In_Frequency, Out_Frequency)

Description

Use the ConvertRate function to convert a rate between various compounding frequencies.

Parameters

Parameter Description

Rate The rate to be converted. This parameter takes a number value.

In_Frequency The frequency of the rate to be converted from. This parameter
takes an array of number, with two elements. The first element
is periodicity, (for example, if you chose daily compounding,
 1 would represent daily while 7 would represent weekly.) The
second element is the unit of measure of frequency. The values
for the second element are:

Value Description

0 continuous compounding

1 daily compounding

2 monthly compounding

3 yearly compounding

Parameter Description

Out_Frequency The frequency of the rate to be converted to. This parameter
takes an array of number, with two elements. The first element
is periodicity, (for example, if you chose daily compounding,
 1 would represent daily while 7 would represent weekly.) The
second element is the unit of measure of frequency. The values
for the second element are:

Value Description

0 continuous compounding

158  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Value Description

1 daily compounding

2 monthly compounding

3 yearly compounding

Returns

A number representing the converted rate.

Example

The following example converts the specified values from days to years.

Local array of number &In, &Out;
Local number &rate, &NewRate;

&rate = 0.01891;
&In = CreateArray(0, 0);
&In[1] = 1; /* daily */
&In[2] = 1; /* compound_days */
&Out = CreateArray(0, 0);
&Out[1] = 1; /* one year */
&Out[2] = 3; /* compound_years */

&NewRate = ConvertRate(&rate, &In, &Out);

Related Links
RoundCurrency

ConvertTimeToBase

Syntax

ConvertTimeToBase(texttime,{timezone | "Local" | "Base"})

Description

Use the ConvertTimeToBase function to convert the text value texttime to a Time value and converts it
to the base time. This function automatically calculates whether daylight saving time is in effect for the
given texttime.

This function is useful for users to convert constant times in specific time zones into database time.
For example, there is a deadline for completing Federal Funds transfers by 3:00 PM Eastern Time.
ConvertTimeToBase does this conversion, taking into account daylight saving time. The date used to
calculate whether daylight saving time is in effect is the current date.

The system’s base time zone is specified on the PSOPTIONS table.

Copyright © 1988, 2022, Oracle and/or its affiliates. 159



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

texttime Specify a time value represented as text (e.g., "3:00 PM")

timezone | Local | Base Specify a value for converting texttime. Values are:

• timezone - a time zone abbreviation or a field reference to
be used for converting texttime

• Local - use the local time zone for converting texttime.

• Base - use the base time zone for converting texttime.

Returns

Returns a time value in the base time zone.

Example

In the following example, &TIMEVAL would have a time value of "07:00:00.000000", assuming the
Base time (as defined in PSOPTIONS) was PST.

&TEXTTIME = ConvertTimeToBase("01/01/99 10:00:00AM", "EST");

Related Links
ConvertDatetimeToBase
FormatDateTime
IsDaylightSavings
DateTimeToTimeZone
TimeToTimeZone
TimeZoneOffset
"PeopleTools Options" (System and Server Administration)

CopyAttachments

Syntax

CopyAttachments(URLSource, URLDestination [, FileRefRecords [, PreserveCase[, Allow⇒

LargeChunks]]])

Description

Use the CopyAttachments function to copy all files from one storage location to another. The files to be
copied can be limited to those referenced in specific file reference tables.

160  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

To schedule a batch job to copy file attachments, you can use the COPYATTS Application Engine
program, which can be executed from the Copy File Attachments (Batch) page. See "Copy File
Attachments (Batch)" (System and Server Administration) for more information.

Alternatively, you can use the Manage Attachment Repositories page to execute CopyAttachments
directly in a synchronous manner. See "Manage Attachment Repositories" (System and Server
Administration) for more information.

Important! Executing CopyAttachments directly in a synchronous manner may result in a timeout if the
number of file attachments to be processed is large. Therefore, Oracle recommends that you use the batch
processing interface instead.

CopyAttachments looks for the field ATTACHSYSFILENAME in the table that stores the file
references. Oracle recommends that you include the FILE_ATTACH_SBR subrecord, which includes the
ATTACHSYSFILENAME and ATTACHUSERFILE fields, in your record definition, not just the fields
themselves.

CopyAttachments generates a list of all file attachments references, and then performs two operations on
each file attachment. First, CopyAttachments calls GetAttachment to retrieve the file from your source
location. Then, it calls PutAttachment to copy the attachment to your destination.

Note: If the specified subdirectories do not exist this function tries to create them.

PeopleTools supports multiple types of storage locations. Additional information on using
CopyAttachments with storage locations can be found in the PeopleTools: PeopleCode Developer's
Guide:

See "Understanding File Attachment Storage Locations" (PeopleCode Developer’s Guide).

Considerations on Using PreserveCase with CopyAttachments

If the files to be copied were originally uploaded with the value of the PreserveCase optional parameter
unspecified or explicitly specified as False, then CopyAttachments should be similarly invoked (with
the value of PreserveCase unspecified or explicitly specified as False). On the other hand, if the files to
be copied were originally uploaded with the value of the PreserveCase explicitly specified as True, then
CopyAttachments should be similarly invoked (with the value of PreserveCase explicitly specified as
True). If the files to be copied fall into both categories, then CopyAttachment will need to be run twice ,
once with the value of PreserveCase unspecified or explicitly specified as False, and then again with the
value of PreserveCase explicitly specified as True.

Copyright © 1988, 2022, Oracle and/or its affiliates. 161



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

URLSource Specify the source storage location of the files to be copied.
This parameter can either be a URL identifier in the form URL
.URL_ID, or a string.

Note: When the URLSource parameter is specified as a string
value, forward slashes (/) are required. Backward slashes (\)
are not supported for a string value.

See "Understanding URL Strings Versus URL
Objects" (PeopleCode Developer’s Guide).

URLDestination Specify the destination storage location for the files to be
copied. This parameter can either be a URL identifier in the
form URL.URL_ID, or a string.

Note: When the URLDestination parameter is specified as
a string value, forward slashes (/) are required. Backward
slashes (\) are not supported for a string value.

See "Understanding URL Strings Versus URL
Objects" (PeopleCode Developer’s Guide).

FileRefRecords Specify an array of record names each of which is associated
with a table containing valid file references. By using
this parameter, it is possible to explicitly specify which
groups of file references will be considered during a call to
CopyAttachments and, in this way, further restrict the scope of
that call. If you do not specify this optional parameter, all the
records that contain the FILE_ATTACH_SBR subrecord will
be considered to have been implicitly specified (that is, every
file at the specified source storage location that has some valid
corresponding file reference will be copied).

Note: If you want to specify the PreserveCase parameter, the
AllowLargeChunks parameter, or both and retain the default
behavior of copying from all the records that contain the FILE
_ATTACH_SBR subrecord, then specify an empty array as the
value of the FileRefRecords parameter.

162  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

PreserveCase Specify a Boolean value to indicate whether, when searching
the source storage locations for the file specified by each file
reference and when naming that file at the destination, its file
name extension will be preserved or not; True, preserve the
case of the file name extension, False, convert the file name
extension to all lower case letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is
important that you use it in a consistent manner with all the
relevant file-processing functions or you may encounter
unexpected file-not-found errors.

AllowLargeChunks Specify a Boolean value to indicate whether to allow large
chunks.

If the value specified in the Maximum Attachment Chunk Size
field on the PeopleTools Options page is larger than is allowed
for retrieval, then the system breaks the file upload into the
largest sized chunks allowed. If AllowLargeChunks is set to
True, this behavior can be overridden so that it is possible for
an end user to upload a file in chunks that are too large for
the system to retrieve. If AllowLargeChunks is set to False,
 the system will use the largest size chunk that is allowed for
retrieval, or the configured chunk size, whichever is smaller.

Note: If the chunks are too big to be retrieved, then any file
retrieval built-in function, such as GetAttachment, will fail.

Note: The AllowLargeChunks parameter is only applicable
when the storage location is a database record. It has no
impact when the storage location is an FTP site or an HTTP
repository, since attachments at those locations are never
chunked.

See "PeopleTools Options" (System and Server
Administration)

This is an optional parameter.

The default value is False.

Returns

You can check for either an integer or a constant value:

Note: Since file attachment references might not always point to real files in your source location (they
might point to files in other locations, for example), file not found errors from the GetAttachment
operation are ignored and not included in the CopyAttachments return code.

Copyright © 1988, 2022, Oracle and/or its affiliates. 163



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: Because CopyAttachments is designed to work with multiple files, to track errors when using
CopyAttachments set your PeopleCode trace to 2112 and your SQL trace to 15 so that errors will be
written to the appropriate trace files.

Numeric Value Constant Value Description

0 %Attachment_Success Files were copied successfully.

1 %Attachment_Failed File copy failed due to an unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due to
some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error on
the HTTP repository.

If the HTTP repository resides on a
PeopleSoft web server, then you can
configure tracing on the web server
to report additional error details.

See "Enabling Tracing on the
Web Server or Application
Server" (PeopleCode Developer’s
Guide).

164  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File copy failed due to an unspecified
error during FTP attempt.

The following are some possible
situations where %Attachment_
FileTransferFailed could be returned:

• Failed due to mismatch in file sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

4 %Attachment_NoDiskSpaceAppServ No disk space on the application server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSystNotFound could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

Copyright © 1988, 2022, Oracle and/or its affiliates. 165



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSysFailedLogin could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in certificates
used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where %Attachment_
FileNotFound could be returned:

• Remote file not found.

• Failed to read remote file.

Example
&retcode = CopyAttachments(URL.UrlID, ftp://user:passwd@ftpaddress/");

Here is another example.

&aRecs = CreateArray("HRATTS", "MFGATTS", "CRMATTS");

&ret = CopyAttachments("ftp://user:pass@system/HR/", "record://HRARCHIVE",
&aRecs);

If (&ret = %Attachment_Success) Then
   MessageBox(0, "Copy Archive Status", 0, 0, "Copy attachment archive succeeded");⇒

Else
   MessageBox(0, "Copy Archive Status", 0, 0, "Copy attachment archive failed");
End-If;

166  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

If you want to specify the PreserveCase parameter, the AllowLargeChunks parameter, or both and retain
the default behavior of copying from all the records that contain the FILE_ATTACH_SBR subrecord,
then specify an empty array as the value of the FileRefRecords parameter. For example:

Local string &URL1 = "ftp://my_ftp_user:my_ftp_password@my_ftp_server.example.com";
Local string &URL2 = "record://PSFILE_ATTDET";
Local array of string &FileRefRecords = CreateArrayRept("", 0);
Local boolean &PreserveCase = True;
&ret = CopyAttachments(&URL1, &URL2, &FileRefRecords, &PreserveCase);

Related Links
"Enabling Tracing on the Web Server or Application Server" (PeopleCode Developer’s Guide)
CleanAttachments
DeleteAttachment
DetachAttachment
GetAttachment
MAddAttachment
PutAttachment
ViewAttachment
"Understanding the File Attachment Functions" (PeopleCode Developer’s Guide)

CopyFields

Syntax

CopyFields(from, to)

where from and to are constructions that reference rows of data on specific source and target records in
the component buffer; each have the following syntax:

level, scrollpath, target_row

and where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

Description

Use the CopyFields function to copy like-named fields from a row on the specific source record to a row
on the specific target record.

Note: This function remains for backward compatibility only. Use the CopyFieldsTo or
CopyChangedFieldsTo record class methods instead.

Related Links
"CopyFieldsTo" (PeopleCode API Reference)

Copyright © 1988, 2022, Oracle and/or its affiliates. 167



PeopleCode Built-in Functions and Language Constructs Chapter 1

"CopyChangedFieldsTo" (PeopleCode API Reference)
"CopyTo" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

from A placeholder for a construction (level, scrollpath, target_row)
that references the first row in the comparison.

to A placeholder for a construction (level, scrollpath, target_row)
that references the second row in the comparison.

level Specifies the scroll level for the target level scroll.

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row Specifies the row number of each target row on its scroll level.

Returns

Optionally returns a Boolean value indicating whether the function succeeded.

Example

The following example copies fields from PO_RECEIVED_INV (level 1 scroll) from row &ROW to
PO_RECV_INV_VW (level 1 scroll), row &LOC_ROW:

CopyFields(1, RECORD.PO_RECEIVED_INV, &ROW, 1, RECORD.PO_RECV_INV_VW, &LOC_ROW);

Related Links
CompareLikeFields
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

CopyFromJavaArray

Syntax

CopyFromJavaArray(JavaArray, &PeopleCodeArray [, &RestrictionArray])

168  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the CopyFromJavaArray function to copy the array specified by JavaArray into one-dimensional
PeopleCode array &PeopleCodeArray.

Note: The Java array must be at least the same size as the PeopleCode array.

The optional &RestrictionArray parameter is a PeopleCode array that contains the index elements of the
elements to copy. For example if &RestrictionArray contains the indexes 3, 5 and 7, only elements 3, 5
and 7 in the PeopleCode array are copied to the Java array, and they are copied to the elements 3, 5 and
7. This allows you to minimize the copying when you have arrays that don’t require a full element by
element copy. If &RestrictionArray is not specified, a complete array copy is done.

The array types between the PeopleCode array and the Java array must match the standard type mapping
between Java and PeopleCode types. For example, trying to copy a PeopleCode array of Any into a Java
array of int will fail because the Any PeopleCode type doesn't map onto the Java int type.

Related Links
"Understanding Java Class" (PeopleCode API Reference)
"PeopleCode and Java Data Types Mapping" (PeopleCode API Reference)

Parameters

Parameter Description

JavaArray Specify the name of the Java array that you want to copy data
from.

&PeopleCodeArray Specify the name of an already instantiated PeopleCode array
that you want to copy the data into.

&RestrictionArray Specify an already instantiated and populated PeopleCode
array that contains the set of elements the copy is restricted to.
 This array should be of type number.

Returns

None.

Example
Local array of any &x = CreateArrayAny();

&x.Push("First bit");
&x.Push(1);
&x.Push(%Datetime);
&x.Push(%Date);
&x.Push("Final bit");
Local array of number &selection = CreateArray(1, 3, 5);
Local JavaObject &Jarray = CreateJavaArray("java.lang.Object[]", &x.Len);
/* Full copy to a Java array */
CopyToJavaArray(&x, &Jarray);

Copyright © 1988, 2022, Oracle and/or its affiliates. 169



PeopleCode Built-in Functions and Language Constructs Chapter 1

/* Full copy from Java array to PeopleCode array */
Local array of any &y = CreateArrayAny();
&y [5] = Null; /* make sure it's the right length */
CopyFromJavaArray(&Jarray, &y);

Related Links
CopyToJavaArray
CreateJavaArray
"Understanding Arrays" (PeopleCode API Reference)
"Java Packages and Classes Delivered with PeopleTools" (PeopleCode API Reference)

CopyRow

Syntax

CopyRow(destination_row, source_row)

Description

Use the CopyRow function to copy data from one row to another row.

Note: This function remains for backward compatibility only. Use the CopyTo row class method instead.

destination_row is the row number to which you want the source _row data values copied. The two rows,
and the PeopleCode function call, must all be located on the same scroll level.

Related Links
"CopyTo" (PeopleCode API Reference)
"CopyFieldsTo" (PeopleCode API Reference)
"CopyChangedFieldsTo" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

destination_row Row number of row to which to copy data.

source_row Row number of row from which to read data.

Example

This example uses CopyRow to give an inserted row the same values as the previous row:

/*  Get the row number of the inserted row and the previous row */
&NEW_ROW_NUM = CurrentRowNumber();
&LAST_ROW_NUM = &NEW_ROW_NUM - 1;
/*  Copy the data from the previous row into the inserted row */
CopyRow(&NEW_ROW_NUM, &LAST_ROW_NUM);

170  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

CopyToJavaArray

Syntax

CopyToJavaArray(&PeopleCodeArray, JavaArray [, &RestrictionArray])

Description

Use the CopyToJavaArray function to copy the one-dimensional array specified by &PeopleCodeArray
into the Java array JavaArray. The Java array must be at least as large as the PeopleCode array.

The optional &RestrictionArray parameter is a PeopleCode array that contains the index elements of the
elements to copy. For example if &RestrictionArray contains the indexes 3, 5 and 7, only elements 3, 5
and 7 in the PeopleCode array are copied to the Java array, and they are copied to the elements 3, 5 and
7. This allows you to minimize the copying when you have arrays that don’t require a full element by
element copy. If &RestrictionArray is not specified, a complete array copy is done.

The array types between the PeopleCode array and the Java array must match the standard type mapping
between Java and PeopleCode types. For example, trying to copy a PeopleCode array of Any into a Java
array of int will fail because the Any PeopleCode type doesn't map onto the Java int type.

Related Links
"Understanding Java Class" (PeopleCode API Reference)
"PeopleCode and Java Data Types Mapping" (PeopleCode API Reference)

Parameters

Parameter Description

&PeopleCodeArray Specify an already instantiated and populated one-dimensional
PeopleCode array that contains the information you want to
copy to a Java array.

JavaArray Specify the Java array that you want to copy information into.

&RestrictionArray Specify an already instantiated and populated PeopleCode
array that contains the set of elements the copy is restricted to.
 This array should be of type number.

Returns

None.

Example

The following example creates an array, then shows both copying the full array, as well as only copying
elements of it.

Local array of any &x = CreateArrayAny();

Copyright © 1988, 2022, Oracle and/or its affiliates. 171



PeopleCode Built-in Functions and Language Constructs Chapter 1

&x.Push("First bit");
&x.Push(1);
&x.Push(%Datetime);
&x.Push(%Date);
&x.Push("Final bit");

Local array of number &selection = CreateArray(1, 3, 5);

Local JavaObject &Jarray = CreateJavaArray("java.lang.Object[]", &x.Len);

/* Full copy to a Java array */
CopyToJavaArray(&x, &Jarray);

/* Only copy elements 1, 3 and 5 */
CopyToJavaArray(&x, &Jarray, &selection);

Related Links
CopyFromJavaArray
CreateJavaArray
"Understanding Arrays" (PeopleCode API Reference)
"Java Packages and Classes Delivered with PeopleTools" (PeopleCode API Reference)

Cos

Syntax

Cos(angle)

Description

Use the Cos function to calculate the cosine of the given angle (adjacent / hypotenuse).

Parameters

Parameter Description

angle A value in radians.

Returns

A real number between -1.00 and 1.00.

Example

The following example returns the cosine of an angle measuring 1.2 radians:

&MY_RESULT = Cos(1.2);

Related Links
Acos

172  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Asin
Atan
Cot
Degrees
Radians
Sin
Tan

Cot

Syntax

Cot(angle)

Description

Use the Cot function to calculate the cotangent of the given angle (adjacent / opposite, that is, the
reciprocal of the tangent).

Parameters

Parameter Description

angle A value in radians, excluding 0. If the input value is 0, you
receive an error message at runtime (“Decimal arithmetic error
occurred. (2,110)”). Adjust your code to provide a valid input
value.

Note: In theory, all values of angle such that mod(angle, pi) equals 0 are not valid for this
function, because inputs approaching such values produce results that tend toward infinity. In practice,
however, no computer system can represent such values exactly. Thus, for example, the statement
Cot(Radians(180)) produces a number close to the largest value PeopleCode can represent, rather
than an error.

Returns

A real number.

Example

The following example returns the cotangent of an angle measuring 1.2 radians:

&MY_RESULT = Cot(1.2);

Related Links
Acos
Asin

Copyright © 1988, 2022, Oracle and/or its affiliates. 173



PeopleCode Built-in Functions and Language Constructs Chapter 1

Atan
Cos
Degrees
Radians
Sin
Tan

create

Syntax

create PKG_NAME[:SubpackageName[:SubpackageName]]{:ClassName([paramlist])

Description

Use the create function to instantiate an object of the specified application class.

Because the object’s constructor method is automatically invoked by the create function, any parameters
needed by the constructor method must be included in the invocation of create.

Parameters

Parameter Description

PKG_NAME Specify the name of the package that contains the class.

:SubpackageName[:SubpackageName] Specify the subpackage path to the class.

ClassName Specify the class that defines the object to be instantiated.

paramlist Specify the parameters required by the object’s constructor
method.

Returns

An object of the specified application class.

Example 1

The following example simultaneously declares and instantiates a SearchFactory object:

import PT_SEARCH:SearchFactory;

Local PT_SEARCH:SearchFactory &factory = create PT_SEARCH:SearchFactory();

174  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example 2

In the following example, the constructor method of the Privilege class requires the list ID as an input
parameter. Therefore, the parameter must be supplied in the invocation of create:

import PTAI_ACTION_ITEMS:*;

Component PTAI_ACTION_ITEMS:Privilege &privileges;

&privileges = create PTAI_ACTION_ITEMS:Privilege(&ListId);

----------------------------------------------------------
class Privilege
   method Privilege(&newListId As string);

   ...

end-class;

Related Links
"Constructors" (PeopleCode API Reference)

CreateAnalyticInstance

Syntax

CreateAnalyticInstance(AnalyticType, ID, Descr, &RecordRef, ForceDelete)

Description

Use the CreateAnalyticInstance function to create an analytic instance as identified by the analytic ID. If
ID is an empty string, the system automatically generates a unique ID.

This function only creates the metadata for the ID. It doesn't load the instance into an analytic server.

If this analytic instance already exists in the system, and you specify ForceDelete as false, the analytic
instance is not created. If you specify ForceDelete as true, the existing analytic instance is deleted and the
new one is created.

Every analytic type definition is defined with an application package that contains three methods: Create,
Delete, and Copy. The values in &RecordRef are passed to the Create method.

Parameters

Parameter Description

AnalyticType Specify the name of the analytic type definition to be used.

ID Specify the analytic instance identifier as a string. This
parameter must be 20 characters or less.

Descr Specify a description for this analytic instance as a string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 175



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

&RecordRef Specify an already instantiated record object to pass values to
the application package Create method that's associated with
the analytic type definition. If you do not want to specify a
record, you can specify NULL.

ForceDelete Specify the behavior if the specified analytic ID already exists.
 This parameter takes a boolean value. If ForceDelete is set
to false and the specified ID exists, this function terminates
without creating a new analytic instance. If ForceDelete is
set to true and the specified ID exists, the analytic instance is
deleted and then recreated.

Returns

An AnalyticInstance object if successful, null otherwise.

Example
Local AnalyticInstance &pi;

/* Create a brand new analytic instance */
&pi = CreateAnalyticInstance("BusinessPlanning", "Test", "PopulateTables", &argrec,⇒

 True);

Related Links
GetAnalyticInstance
"Understanding the Analytic Calculation Engine Classes" (PeopleCode API Reference)
"Understanding Application Classes" (PeopleCode API Reference)
"Creating Analytic Type Definitions" (Optimization Framework)

CreateArray

Syntax

CreateArray(paramlist)

Where paramlist is an arbitrary-length list of values in the form:

param1 [, param2] ...

Description

Use the CreateArray function to construct an array and returns a reference to it.

The type of the first parameter determines the type of array that is built. That is, if the first parameter is of
type NUMBER, an array of number is built. If there is no first parameter an empty array of ANY is built.

176  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The CreateArray function uses flattening and promotion as required to convert subsequent values into
suitable elements of the array.

Parameters

Parameter Description

paramlist Specify a list of values to be used as the elements of the array.

Returns

Returns a reference to the array.

Example
Local array of array of number &AAN;
Local array of number &AN;

&AAN = CreateArray(CreateArray(1, 2), CreateArray(3, 4), 5);
&AN = CreateArray(6, &AAN [1]);

&AAN is a two dimensional array with three elements:

• A one-dimensional array with 1 and 2 as elements.

• A one-dimensional array with 3 and 4.

• A one-dimensional array with only the element 5.

The last parameter to Array was promoted to a one-dimensional array. &AN is a one-dimensional
array with 3 elements: 6, 1, and 2. The last parameter to Array in the last line was flattened into its two
elements.

Related Links
CreateArrayRept
Split
"Understanding Arrays" (PeopleCode API Reference)
"Using Flattening and Promotion" (PeopleCode API Reference)

CreateArrayAny

Syntax

CreateArrayAny([paramlist])

Where paramlist is an arbitrary-length list of values in the form:

param1 [, param2] ...

Copyright © 1988, 2022, Oracle and/or its affiliates. 177



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the CreateArrayAny function to construct an array whose elements are of data type ANY and returns
a reference to it.

The CreateArrayAny function uses flattening and promotion as required to convert subsequent values into
suitable elements of the array.

If you do not specify any parameters with CreateArrayAny, it's the same as using the CreateArray
function without any parameters.

If you do not know how many values are needed in a SQL statement until runtime, you can use an array
of any to supply the values.

Parameters

Parameter Description

paramlist Specify a list of values to be used as the elements of the array.

Returns

Returns a reference to an array of ANY.

Example
Local array of any &ArrayAny = CreateArrayAny(1, 2, "hi", "there");

Local array of array of any &AAAny = CreateArray(CreateArrayAny(1, 2), CreateArrayA⇒

ny("hi"), "there");

&ArrayAny is a one dimensional array with four elements: 1, 2, "hi" and "there". All the elements have
the data type any.

&AAAny is a two-dimensional array with three elements: a one-dimensional array with 1 and 2 as
elements, a one-dimensional array with "hi" as its element, and a one-dimensional array with only the
element "there". The last parameter to the array was promoted to a one-dimensional array.

Related Links
CreateArrayRept
CreateArray
Split
"Understanding Arrays" (PeopleCode API Reference)
"Using Flattening and Promotion" (PeopleCode API Reference)
"Understanding SQL Class" (PeopleCode API Reference)

178  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

CreateArrayRept

Syntax

CreateArrayRept(val, count)

Description

Use the CreateArrayRept function to create an array that contains count copies of val. If val is itself an
array, the created array has one higher dimension, and each element (sub-array) is the array reference val.

The type of the first parameter (val) determines the type of array that is built. That is, if the first parameter
is of type NUMBER, an array of number is built. If count is zero, CreateArrayRept creates an empty
array, using the val parameter for the type.

If you are making an array that is multi-dimensional, val will be the subarray used as the elements.

To make the subarrays distinct, use the Clone method. For example:

&A = CreateArrayRept(&AN, 4).Clone();

Parameters

Parameter Description

val A value of any type.

count The number of copies of val contained in the array.

Returns

Returns a reference to the array.

Example

The following code sets &A to a new empty array of string:

&A = CreateArrayRept("", 0);

The following code sets &A to a new array of ten zeroes:

&A = CreateArrayRept(0, 10);

The following code sets &AAS to a new array of array of strings, with two subarrays:

&AAS = CreateArrayRept(CreateArray("one", "two"), 2);

Note that in this case, both elements (rows) of &AAS contain the same subarray, and changing the value
of an element in one of them changes it in both of them. To get distinct subarrays, use the Clone method:

&AAS = CreateArrayRept(CreateArray("one", "two"), 2).Clone();

Copyright © 1988, 2022, Oracle and/or its affiliates. 179



PeopleCode Built-in Functions and Language Constructs Chapter 1

The following example shows how to create a two-dimension array using CreateArrayRept and Push. In
addition, it shows how to randomly assigns values to the cells in a two-dimension array.

Local array of array of string &ValueArray;

&Dim1 = 10;
&Dim2 = 5;
&ValueArray = CreateArrayRept(CreateArrayRept("", 0), 0);
For &I = 1 To &Dim1
   &ValueArray.Push(CreateArrayRept("", &Dim2));
End-For;
&ValueArray[1][1] = "V11";
&ValueArray[2][1] = "V21";

WinMessage("&ValueArray[1][1] = " | &ValueArray[1][1] | " " | "&ValueArray[2][1] = ⇒

" | &ValueArray[2][1], 0);

Related Links
CreateArray
Split
"Understanding Arrays" (PeopleCode API Reference)
"Clone" (PeopleCode API Reference)

CreateBreadcrumb

Syntax

CreateBreadcrumb(Back_label, history_ID, portal_ID, node_ID, component, page_ID,
page_title, comp_mode [, comp_keys] [, qry_string])

Description

Note: This function has been deprecated and is retained for backward compatibility only.

Use the CreateBreadcrumb function to inject a history record containing application-specific data into
the user’s Back button history stack. Optionally, the HTML representing the new history record can be
returned as a String value. The result of the function depends on the context from which it is invoked:

• When navigating to a content reference from the menu, the application-specific history record
generated by CreateBreadcrumb is used instead of the history record generated by PeopleTools.

• If the history record is generated as the result of a related action, the history record generated by
CreateBreadcrumb is used instead of the history record generated by the related action.

• If the generated history record duplicates an existing history record in the history stack (identical
history record ID), the original history record is deleted from its position in the list and the generated
history record is appended to the end of the list.

• However, if the history record is generated by a pagelet or tile on a homepage or dashboard, the
history stack list is not updated.

Note: This function cannot be invoked from a fluid component. In addition, this function cannot be
invoked after the content is displayed via a direct psc URL.

180  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

Back_label Specifies a label for the Back button as a String value.

history_ID Specifies a unique ID for the history record as a String value.

portal_ID Specifies the portal to be used to construct the content URL as
a String value.

This portal ID can be specified as a literal string, by using the
%Portal system variable, or by using the Portal.PORTAL_
NAME reserved word.

node_ID Specifies the portal to be used to construct the content URL as
a String value.

This node ID can be specified as a literal string, by using the
%Node system variable, or by using the Node.NODE_NAME
reserved word.

component Specifies the component to be used to construct the content
URL as a String value. The component parameter is
constructed from three values (MENU.COMPONENT.MKT)
as follows:

• MENU: This menu ID can be specified as a literal string,
 by using the %Menu system variable, or by using the
MenuName.MENU_NAME reserved word.

• COMPONENT: This component ID can be specified as a
literal string, by using the %Component system variable,
 or by using the Component.COMPONENT_NAME
reserved word.

• MKT: This market ID can be specified as a literal string,
 by using the %Market system variable, or by using the
Market.MARKET_NAME reserved word.

page_ID Specifies the current page in the component as a String value.

This page ID can be specified as a literal string, by using the
%Page system variable, or by using the Page.PAGE_NAME
reserved word.

page_title Specifies a title for the page as a String value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 181



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

comp_mode Specifies the mode for the component as a single-character
String value. Valid modes are:

• "A" ( add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a empty string ("") for this value.

comp_keys Specifies optional component keys and key values to be used
to select a unique row at level zero in the current component
as a String value. Specify keys and values in the following
recommended format:

KEY1_NAME:'KEY1_VALUE';KEY2_NAME:'KEY2_V⇒

ALUE';...

qry_string Specifies optional query string parameters to be appended to
the content URL as a String value in standard query string
format:

param1=value1&param2=value2&...

Returns

(Optional) A String value.

Example

The following PeopleCode program is executed when the user is on the Roles page of the User Profiles
component:

&szLabel = "User Profile - Roles";
&szID = "PT_USERMAINT_GBL";
&szPortalID = %Portal;
&szNodeID = %Node;
&szComponentID = %Menu | "." | %Component | "." | %Market;
&szPage = %Page;
&szPageTitle = "Roles - App Back";
&szMode = %Mode;
&szKeys = "OPRID:'PSADMIN'";

Local string &retHTML;

&retHTML = CreateBreadcrumb(&szLabel, &szID, &szPortalID, &szNodeID, &szComponentID⇒

, &szPage, &szPageTitle, &szMode, &szKeys);

182  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Then, the following HTML would be returned by this invocation of CreateBreadcrumb:

<li id="pthnavbccref_PT_USERMAINT_GBL" class="pthnavbarcref pthbcdispiblock ptdynna⇒

vbc ptappbc">
<a id="pthnavbccrefanc_PT_USERMAINT_GBL" class="ptntop" data-ptf-nextid="id" data-p⇒

tf-previd="id" role="menuitem" href="url" >User Profile - Roles</a>
<div class="pthnavcrefimg"> </div>
<div id="pthnavcrefid_PT_USERMAINT_GBL" style="display:none;">PT_USERMAINT_GBL</div⇒

>
<div id="pthnavportalid_PT_USERMAINT_GBL" style="display:none;">EMPLOYEE</div>
<div id="pthnavnodeid_PT_USERMAINT_GBL" style="display:none;">QE_LOCAL</div>
<div id="pthnavcomponentid_PT_USERMAINT_GBL" style="display:none;">MAINTAIN_SECURIT⇒

Y.USERMAINT.GBL</div>
<div id="pthnavpageid_PT_USERMAINT_GBL" style="display:none;">USER_ROLES</div>
<div id="pthnavpagetitle_PT_USERMAINT_GBL" style="display:none;">Roles - App Back</⇒

div>
<div id="pthnavcomponentmode_PT_USERMAINT_GBL" style="display:none;">U</div>
<div id="pthnavcomponentkeys_PT_USERMAINT_GBL" style="display:none;"> OPRID:'PSADMI⇒

N'</div>
<div id="pthnavqs_PT_USERMAINT_GBL" style="display:none;">UnknownValue</div>
</li>

Related Links
GetBreadcrumbs
SetTransferAttributes

CreateDirectory

Syntax

CreateDirectory(path, [, pathtype])

Description

Use the CreateDirectory function to create the directory specified by path and any non-existent directories
specified in path.

Important! The CreateDirectory function can be used to create a directory on an existing Windows share
—for example, \\my_server\my_share\mydir. However, if the root of a Windows share (for example, \
\my_server\my_share) is passed to CreateDirectory, the function will always fail.

On UNIX systems, the directory has the mode 755, that is, read-write-execute permission for the owner,
while group and other have only read and execute permission.

drwxr-xr-x

Copyright © 1988, 2022, Oracle and/or its affiliates. 183



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

path Specify the path to be created.

pathtype Use this parameter to specify whether the path is an absolute
or relative path. The valid values for this parameter are:

• %FilePath_Relative (default)

• %FilePath_Absolute

If you don’t specify pathtype the default is %FilePath_
Relative.

If you specify a relative path, that path is appended to the
path constructed from a system-chosen environment variable.
 A complete discussion of relative paths and environment
variables is provided in documentation on the File class.

See "Working With Relative Paths" (PeopleCode API
Reference).

If the path is an absolute path, whatever path you specify
is used verbatim. You must specify a drive letter and the
complete path. You can’t use any wildcards when specifying a
path.

The Component Processor automatically converts platform-
specific separator characters to the appropriate form for
where your PeopleCode program is executing. On a Windows
system, UNIX "/" separators are converted to "\", and on a
UNIX system, Windows "\" separators are converted to "/".

Note: The syntax of the file path does not depend on the
file system of the platform where the file is actually stored;
it depends only on the platform where your PeopleCode is
executing.

Returns

None.

Example
CreateDirectory("D:\Resumes\New_Hires", %FilePath_Absolute);

Related Links
FileExists
FindFiles
GetFile
GetAttachment
PutAttachment

184  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

RemoveDirectory
"Folder Class" (PeopleCode API Reference)

CreateDirecttransferObject()

Syntax

CreateDirecttransferObject()

Description

Use the CreateDirecttransferObject function to create the Direct Transfer object to perform a synchronous
request to a specified endpoint.

Note: This is the first function to be called to create a handle, which can be used to call the
PTDirectTransferObject class methods.

Parameters

None.

Returns

The Direct Transfer object as PTDirectTransferObject.

Example
Local PTDirectTransferObject &PTDTObject = CreateDirecttransferObject();

Related Links
"PTDirectTransferObject Class Methods" (PeopleCode API Reference)

CreateDocument

Syntax

CreateDocument(DocumentKey | Package, DocumentName, Version)

Description

Use this method to instantiate a new Document object.

Copyright © 1988, 2022, Oracle and/or its affiliates. 185



PeopleCode Built-in Functions and Language Constructs Chapter 1

Important! When using this CreateDocument to instantiate a Document object, the object must stay
in scope for as long as any child objects (Collection, Compound, or Primitive) generated from this
Document object are referenced. Referencing a property on a child object of a Document object that has
gone out of scope will result in the PeopleCode program failing to execute properly.
For example if you define a variable as a Document variable as local and instantiate it via
CreateDocument within an application class method, any objects created off the Document object must
be used within the method itself. If you need to pass references of any of the child objects, then the
Document object should be a global variable or defined as part of the application class as a property.

Parameters

Parameter Description

DocumentKey Specifies a DocumentKey object that defines the document’s
package, document name, and version.

Package Specifies a document package as a string.

DocumentName Specifies the name of the document as a string.

Note: The document name also becomes the root element
name for the document.

Version Specifies the document version as a string.

Returns

A Document object.

Example

The following provides two examples of instantiating a Document object. Both result in the same object.

Example 1:

Local Document &Doc;

/* Instatiate the Document object */
&Doc = CreateDocument("Purchasing", "PurchaseOrder", "v1");

Example 2:

Local Document &Doc;
Local DocumentKey &DocKey;

/* Instatiate the Document object */
&DocKey = CreateDocumentKey("Purchasing", "PurchaseOrder", "v1");
&Doc = CreateDocument(&DocKey);

Related Links
"Document Class" (PeopleCode API Reference)

186  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

"DocumentKey Class" (PeopleCode API Reference)

CreateDocumentKey

Syntax

CreateDocumentKey(Package, DocumentName, Version)

Description

Use this method to instantiate a new DocumentKey object.

Parameters

Parameter Description

Package Specifies a document package as a string.

DocumentName Specifies the name of the document as a string.

Note: The document name also becomes the root element
name for the document.

Version Specifies the document version as a string.

Returns

A DocumentKey object.

Example

The following provides an example of instantiating a Document object from a document key:

Local Document &Doc;
Local DocumentKey &DocKey;

/* Populating Document Object */
&DocKey = CreateDocumentKey("Purchasing", "PurchaseOrder", "v1");
&Doc = CreateDocument(&DocKey);

Related Links
"DocumentKey Class" (PeopleCode API Reference)

CreateException

Syntax

CreateException(message_set, message_num, default_txt [, subslist])

Copyright © 1988, 2022, Oracle and/or its affiliates. 187



PeopleCode Built-in Functions and Language Constructs Chapter 1

where subslist is an arbitrary-length list of substitutions of undetermined (Any) data type to be substituted
in the resulting text string, in the form:

substitution1 [, substitution2]. . .

Description

Use the CreateException function to create an exception object with the given properties. You can use
this in your exception handling. Use this function either in conjunction with the throw statement, or on its
own to get more information of a message.

Parameters

Parameter Description

message_set Specify the message set number of the message you want
associated with this exception.

message_num Specify the message number of the message you want
associated with this exception.

default_txt Specify the text you want associated with the exception if the
message specified by message_set and message_num isn't
found.

subslist A comma-separated list of substitutions; the number of
substitutions in the list is arbitrary. The substitutions are
referenced in the message text using the % character followed
by an integer corresponding to the position of the substitution
in the subslist. The number of substitutions specified with
this parameter are what get counted with the exception class
SubsitutionCount property.

Returns

A reference to an exception object if successful, Null otherwise.

Example
Function t2
   throw CreateException(2, 160, "'%1' doesn't support property or method '%2'", "S⇒

omeClass", "SomeMethod");
End-Function;

Related Links
"Understanding Exception Class" (PeopleCode API Reference)

188  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

CreateFieldDefn

Syntax

CreateFieldDefn()

Description

Use the CreateFieldDefn function to create a field definition with the same property defaults that
Application Designer provides:

• Type: Character

• Field Length: 1

• Field Format Type: Uppercase

This function sets the RuntimeDefn flag for the field.

All other properties are blank or not set.

Parameters

None.

Returns

A field definition object.

Returns a null value if the user doesn’t have write permissions for fields.

Example
Local FieldDefn &newField = CreateFieldDefn();
If All(&newField) Then
   &newField.Name = "MYNEWFIELD";
   &newField.Type = %FieldType_Char;
   &newField.Description = "My new field";
   &retVal = &newField.SetLabel("MYNEWFIELD", "My field", "My New Field", True);
   /* do error checking … */
   &retVal = &newField.Save();
   /* do error checking … */
End-If;

Related Links
DeleteFieldDefn
GetFieldDefn

CreateJavaArray

Syntax

CreateJavaArray(ElementClassName[], NumberOfElements)

Copyright © 1988, 2022, Oracle and/or its affiliates. 189



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the CreateJavaArray function to create a Java array without knowing the number or value of the
elements.

When you create an array in Java, you already know the number of elements in the array. If you do not
know the number of elements in the array, but you want to use a Java array, use the CreateJavaArray
function in PeopleCode. This creates a Java object that is a Java array, and you can pass in the number of
elements that are to be in the array.

The first index in a Java array is 0. PeopleCode arrays start at 1.

Do the following to specify this type of array in Java:

new ElementClassName[NumberOfElements];

Parameters

Parameter Description

ElementClassName[] Specify the array class name. This parameter takes a string
value.

NumberOfElements Specify the number of elements in the array. This parameter
takes a number value.

Returns

A Java object

Related Links
CreateJavaObject
GetJavaClass
"Java Packages and Classes Delivered with PeopleTools" (PeopleCode API Reference)

CreateJavaObject

Syntax

CreateJavaObject(ClassName [ConstructorParams])

Where ConstructorParams has the form

argument1 [, argument2] . . .

Description

Use the CreateJavaObject function to create a Java object that can be manipulated in PeopleCode.

190  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: If you create a class that you want to call using GetJavaClass, it can be located in a directory
specified in the PS_CLASSPATH environment variable or in other specified locations. The PeopleCode
API Reference provides details on where you can place custom and third-party Java classes.

See "System Setup for Java Classes" (PeopleCode API Reference).

Use the CreateJavaObject function to create a Java array when you know how many values it should
contain. If ClassName is the name of an array class (ending with [ ]), ConstructorParams are used to
initialize the array.

In Java, do the following to initialize an array:

intArray = new int[]{1, 2, 3, 5, 8, 13};

Do the following to initialize such a Java array from PeopleCode:

&IntArray = CreateJavaObject("int[]", 1, 2, 3, 5, 8, 13);

To initialize a Java array without knowing the number of parameters until runtime, use the
CreateJavaArray function.

Parameters

Parameter Description

ClassName Specify the name of an already existing class.

ConstructorParams Specify any construction parameters required for the class.
 Constructors are matched by construction parameter type and
placement.

Returns

A Java object.

Example

The following is an example of using dot notation and CreateJavaObject.

&CHARACTER.Value = CreateJavaObject(&java_path).GetField(&java_newchar).Value;

&NUMBER.Value = CreateJavaObject(&java_path).GetField(&java_newnum).Value;

&DATE.Value = CreateJavaObject(&java_path).GetField(&java_newdate).Value;

Related Links
CreateJavaArray
GetJavaClass
"System Setup for Java Classes" (PeopleCode API Reference)
"Java Packages and Classes Delivered with PeopleTools" (PeopleCode API Reference)

Copyright © 1988, 2022, Oracle and/or its affiliates. 191



PeopleCode Built-in Functions and Language Constructs Chapter 1

CreateJsonBuilder

Syntax

CreateJsonBuilder()

Description

Use the CreateJsonBuilder function to create a JsonBuilder object.

Parameters

None.

Returns

A reference to the newly created JsonBuilder object.

Example
Local JsonBuilder &jBldr = CreateJsonBuilder();

Related Links
"JsonBuilder Class" (PeopleCode API Reference)

CreateJsonParser

Syntax

CreateJsonParser()

Description

Use the CreateJsonParser function to create a JsonParser object.

Parameters

None.

Returns

A reference to the newly created JsonParser object.

Example
Local JsonParser &jParser = CreateJsonParser();

192  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
"JsonParser Class" (PeopleCode API Reference)

CreateMCFIMInfo

Note: This function has been deprecated and currently exists for backward compatibility only.

CreateMessage

Syntax

CreateMessage(Operation.srvc_op_name [, message_type])

Description

Use the CreateMessage function to instantiate a Message object that refers to a message definition
associated with a service operation. The CreateMessage function sets the following properties for the
resulting Message object, based on the values set for the message definition:

• Name

• QueueName

• Active

Other properties are set when the message is published or subscribed to (TransactionID and so on,) or are
dynamically generated at other times (Size, EditError, and so on.)

For rowset-based messages, CreateMessage also sets the LANGUAGE_CD field in the level 0 PSCAMA
record for a message based on the USERID default language group. If the message is being published
from a component, the language code is set to the USERID language code for the component. If
CreateMessage is called from a PeopleSoft Application Engine program, the language code of the user
who started the batch process is used.

Parameters

Parameter Description

Operation.srvc_op_name Specify the name of the service operation you want to create a
Message object for as a string value.

message_type Specify the type of message that you want to create. Valid
values are:

Value Description

%IntBroker_Request A request message. This is the default.

Copyright © 1988, 2022, Oracle and/or its affiliates. 193



PeopleCode Built-in Functions and Language Constructs Chapter 1

Value Description

%IntBroker_Response A response message.

%IntBroker_Fault A fault message.

Returns

A Message object.

Example

The following example creates a request message &MSG associated with the DELETE_USER_PROFILE
service operation.

Local Message &MSG;

&MSG = CreateMessage(Operation.DELETE_USER_PROFILE);

Related Links
GetMessage
GetPubContractInstance
GetSubContractInstance
"Understanding Message Classes" (PeopleCode API Reference)

CreateObject

Syntax

CreateObject(str_class_name, create_par,  ...)

Where str_class_name either identifies:

• A class by class name

• A class of OLE Automation object in the form:

app_name.object_name

Description

Use the CreateObject function to return an instance of a class. You can use this function to access an
application class, a PeopleCode built-in object (like a chart), or an OLE Automation object.

If the class you are creating requires values to be passed, use the create_par  parameters to supply them,
or use the CreateObjectArray function.

194  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Considerations for Instantiating Application Classes

You can use the CreateObject function to access an application class. You would want to do this when you
were programming at a high-level, when you might not know the name of the class you wanted to access
until runtime. You must specify a fully-qualified class name. In addition, the class name is case-sensitive.

The returned object has the type of class you specified.

Alternatively, when the application class name and path is known at design time, use the create function
instead. See create for more information.

Considerations for Instantiating PeopleCode Built-in Objects

For example, to instantiate a Chart object without using a chart control (that is, without using the
GetChart function) you could use:

&MyChart = CreateObject("Chart");

The returned object has the type of class you specified.

Note: The only way to instantiate a Crypt object is using the CreateObject function.

Considerations Using OLE Automation Objects

CreateObject returns an instance of an OLE Automation object as a variable of type Object.

The str_class_name argument uses the syntax app_name.object_type, which consists of: app_name (the
name of the application providing the object) and object_type (the class or type of the object to create),
separated by a period (dot).

Any application that supports OLE Automation exposes at least one type of object. For example, a
spreadsheet application may provide an application object, a worksheet object, and a toolbar object.

To create an OLE Automation object, you assign the object returned by CreateObject to a variable of type
Object:

local object &WORKSHEET;

&WORKSHEET = CreateObject("Excel.Sheet");

After an object is created, you can reference it using the object variable. In the previous example, you
access properties and methods of the new object using the ObjectGetProperty, ObjectSetProperty, and
ObjectDoMethod functions.

Note: If an object has registered itself as a single-instance object, only one instance of the object can be
created, even if CreateObject is executed more than once. Note also that an object assigned to a global
variable is not valid across processes: that is, the scope and lifetime of the global is the same as the scope
and lifetime of the instance of PeopleTools in which the object was created.

Copyright © 1988, 2022, Oracle and/or its affiliates. 195



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

str_class_name Specify the name of the class that you want to instantiate an
object from.

create_par Specify the parameters required by the class for instantiating
the object.

Example

This example instantiates an Excel worksheet object, makes it visible, names it, saves it, and displays its
name. Note the use of ObjectGetProperty in the example to return the Excel.Sheet.Application object.

&WORKAPP = CreateObject("COM", "Excel.Application");
&WORKBOOKS = ObjectGetProperty(&WORKAPP, "Workbooks");
/* This associates the INVOICE template w/the workbook */
ObjectDoMethod(&WORKBOOKS, "Add", "C:\TEMP\INVOICE.XLT");
ObjectDoMethod(&WORKAPP, "Save", "C:\TEMP\TEST1.XLS");
ObjectSetProperty(&WORKAPP, "Visible", True);

This following example illustrates the creation of an application class object. This code assumes that
MyBaseClass is the superclass of both MySubclass1 and MySubclass2 classes.

local MyBaseClass &mbobj;
local String &ClassName = "MySubclass1";
if &test then
&ClassName = "MySubclass2";
end-if;
&mbobj = CreateObject(&ClassName);

The following example creates a chart in an iScript, using the CreateObject function to generate a
reference to a chart object.

Function IScript_GetChartURL()

   Local Chart &oChart;
   Local Rowset &oRowset;
   Local string &sMap;
   Local string &sURL;

   &oChart = CreateObject("Chart");
    
   &oRowset = CreateRowset(Record.QE_CHART_RECORD);
   &oRowset.Fill("where QE_CHART_REGION= :1", "MIDWEST");
   &oChart.SetData(&oRowset);

   &oChart.Width = 400;
   &oChart.Height = 300;

   &oChart.SetDataYAxis(QE_CHART_RECORD.QE_CHART_SALES);
   &oChart.SetDataXAxis(QE_CHART_RECORD.QE_CHART_PRODUCT);
   &oChart.SetDataSeries(QE_CHART_RECORD.QE_CHART_REGION);

   &oChart.HasLegend = True;
   &oChart.LegendPosition = %ChartLegend_Right;

   &sURL = %Response.GetChartURL(&oChart);
   &sMap = &oChart.ImageMap;

   %Response.Write("<HTML><IMG SRC=");

196  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

   %Response.Write(&sURL);
   %Response.Write("  USEMAP=#THEMAP></IMG><MAP NAME=THEMAP>");
   %Response.Write(&sMap);
   %Response.Write("</MAP></HTML>");

End-Function;

Related Links
ObjectDoMethod
ObjectGetProperty
ObjectSetProperty
CreateObjectArray
ObjectDoMethodArray
"Using OLE Functions" (PeopleCode Developer’s Guide)

CreateObjectArray

Syntax

CreateObjectArray(Class_Name, Array_of_Args)

Description

Use the CreateObjectArray function to return an instance of a class.

Use this function when you must pass in parameters to create the object and you don’t know when
you write the code how many parameters are required. If you can create the object without passing in
additional values, or if you know how many parameters are required, use the CreateObject function
instead.

The array of parameters is an array of Any. It must be a one-dimensional array, that is, you cannot pass in
an array of array of Any. You cannot pass in field references, that is, you cannot pass in references of the
form:

RECORD.FIELDNAME

If you do not want to supply any parameters, you can use an empty array, or a reference to a Null array.

Parameters

Parameter Description

Class_Name Specify the name of the class you want to create an instance
of, as a string.

Array_Of_Args Specify an Array of Any containing all parameters for creating
an instance of the class.

Copyright © 1988, 2022, Oracle and/or its affiliates. 197



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A reference to newly created object.

Example

The following is an example of the creation of an Application Class object where the number of
parameters used to create the object varies, depending on data in the database.

local String &ClassName, &RecName;
local Record &Rec;

/* Read class name and parameter record name from the database. */
SQLExec("SELECT CLASSNAME, RECNAME FROM %TABLE(RECORD.CLASSDATA)", &ClassName, &Rec⇒

Name);

local Record &Rec = CreateRecord(@ ("RECORD." | &RecName));

/* Read the parameters from the database. */
local Array of Any &Params = CreateArrayAny();

SQLExec("%SelectAll(:1)", &Rec, &Params);

/* Create the object. */
local MyPackage:BaseClass &Obj = CreateObjectArray(&ClassName, &Params);

Related Links
CreateObject
ObjectDoMethod
ObjectGetProperty
ObjectSetProperty
ObjectDoMethodArray
"Understanding Arrays" (PeopleCode API Reference)
"Using OLE Functions" (PeopleCode Developer’s Guide)

CreateProcessRequest

Syntax

CreateProcessRequest([ProcessType, ProcessName])

Description

Use the CreateProcessRequest function to create a ProcessRequest object. After you’ve created this
object, you can assign values to its properties then use the Schedule method to submit the process request
for scheduling.

If you specify PSJob for the process type, the ProcessRequest object contains all the items of the job.

198  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

ProcessType Specify the process type as a string. Values depend on the
process types defined for your system.

ProcessName Specify the name of the process as a string.

Returns

A reference to a ProcessRequest object.

Example
Local ProcessRequest &MYRQST;

&MYRQST = CreateProcessRequest("PSJOB", &MyJobName);

Related Links
"Understanding Process Request Classes" (PeopleCode API Reference)
"Schedule" (PeopleCode API Reference)

CreateRecord

Syntax

CreateRecord(Record.recname)

Description

Use the CreateRecord function to create a standalone record definition and its component set of field
objects. The specified record must have been defined previously, that is, it must have a record definition.
However, if you are calling this function from PeopleCode associated with a page, the record does not
have to be included on the current page.

The record and field objects created by this function are accessible only within PeopleCode. They can
be used with any of the record and field object methods and properties. The record and field objects are
automatically deleted when there are no remaining references to them stored in any variables.

The fields created by this function are initialized to null values. Default processing is not performed. No
data associated with the record definition’s SQL table is brought in: only the record definition.

You can select into a record object created this way using the SelectByKey record class method. You can
also select into it using the SQLExec function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 199



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

Record. recname Specify a record definition that already exists.

Returns

This function returns a record object that references a new record buffer and set of fields.

Example
Local Record &REC2;

&REC2 = CreateRecord(RECORD.OPC_METH);

In the following example, a free-standing record is created (&PSBATREPREQRES). Values are assigned
to the fields associated with the record. Then a second record is created (&PUBHDR), and the values
from the first record are used to populate the second record.

&PSBATREPREQRES = CreateRecord(RECORD.PSBATREPREQRES);
   &PSBATREPREQRES.BATREPID.Value = &BATREPID;
   &PSBATREPREQRES.PUBID.Value = &MSG.Pubid;
   &PSBATREPREQRES.CHNLNAME.Value = &MSG.ChannelName;
   &PSBATREPREQRES.PUBNODE.Value = &MSG.PubNodeName;
   &PSBATREPREQRES.MSGNAME.Value = &MSG.Name;

   &PUBHDR = CreateRecord(RECORD.PSAPMSGPUBHDR);
   &PSBATREPREQRES.CopyFieldsTo(&PUBHDR);

To create a PeopleCode record object for a record whose name is unknown when the PeopleCode is
written, do the following.

Suppose a record name is in the PeopleCode variable &RECNAME. Use the @ operator to convert the
string to a component name. The following code creates a corresponding record object:

&RECNAME = "RECORD." | Upper(&RECNAME);
&REC = CreateRecord(@ &RECNAME);

The following example uses SQLExec to select into a record object, based on the effective date.

Local Record &DST;

&DST = CreateRecord(RECORD.DST_CODE_TBL);
&DST.SETID.Value = GetSetId(FIELD.BUSINESS_UNIT, DRAFT_BU, RECORD.DST_CODE_TYPE, ""⇒

);
&DST.DST_ID.Value = DST_ID_AR;
SQLExec("%SelectByKeyEffDt(:1,:2)", &DST, %Date, &DST);
/* do further processing using record methods and properties */

Related Links
GetRecord
GetField
"Understanding Record Class" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

200  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

CreateRecordDefn

Syntax

CreateRecordDefn()

Description

The CreateRecordDefn function creates an empty record definition with the type set to SQLView, and sets
the RuntimeDefn flag for the record definition.

All other properties are blank or not set, similar to Application Designer.

Parameters

None.

Returns

A record definition object.

Returns a null value if the user doesn’t have write permissions for records.

Example
Local RecordDefn &myNewRecord = CreateRecordDefn();
&myNewRecord.Name = "MYRECORD_VW";
&myNewRecord.Description = "My new record";
&myNewRecord.SQL = "SELECT DISTINCT(PROCESS_INSTANCE) FROM PS_MESSAGE_LOG WHERE MES⇒

SAGE_NBR = 1018";
Local RecordFieldDefn &recField = &myNewRecord.AddField("MYNEWFIELD");
If All(&recField) Then
   &recField.Key = True;
End-If;

Related Links
DeleteRecordDefn
GetRecordDefn

CreateRowset

Syntax

CreateRowset({RECORD.recname | &Rowset} [, {FIELD.fieldname, RECORD.recname | &Rows⇒

et}] .  .  .)

Description

Use the CreateRowset function to create an unpopulated, standalone rowset.

Copyright © 1988, 2022, Oracle and/or its affiliates. 201



PeopleCode Built-in Functions and Language Constructs Chapter 1

A standalone rowset is a rowset that has the specified structure, but is not tied to any data (that is, to
the component buffer or to a message.) In addition, a standalone rowset isn’t tied to the Component
Processor. When you fill it with data, no PeopleCode runs (like RowInsert, FieldDefault, and so on.)

The first parameter determines the structure of the rowset to be created.

If you specify a record as the first parameter, it’s used as the primary level 0 record. If you don’t specify
any other parameters, you create a rowset containing one row, with one unpopulated record. To populate
this type of rowset with data, you should only use:

• the Fill or FillAppend rowset class methods

• a record method (SelectByKey)

• the SQLExec function

If you specify a rowset object, you are creating a new rowset based on the structure of the specified
rowset object, including any child rowsets. It will not contain any data. If you want to populate this type
of rowset with data, use the CopyTo method or a SQL statement.

Note: You should not use the rowset Select or SelectNew methods for populating rowsets created using
CreateRowset. Use Fill or FillAppend instead.

Restrictions on Using CreateRowset

The following methods and properties don’t work with a rowset created using CreateRowset:

• Select

• SelectNew

• Any GUI methods (like HideAllRows)

• Any effective date methods or properties (like EffDt, EffSeq, or GetCurrEffRow)

In addition, rowsets created using CreateRowset are not automatically tied to the database. This means if
you insert or delete rows, the rows will not be inserted or deleted in the database when you save the page.

Parameters

Parameter Description

RECORD.recname | &Rowset Specify either a record name or an existing rowset object.

FIELD.fieldname, RECORD.recname | &Rowset Use FIELD.fieldname, RECORD.recname to specify
a related display record. FIELD.fieldname refers to the
controlling field, (not the related display field) while
RECORD.recname refers to the related display record.

If you specify &rowset, you are adding a child rowset object
to the newly created rowset. This must be an existing rowset
object.

202  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

An unpopulated, standalone rowset object.

Example

The following creates a simple rowset of just a single record per row:

&RS = CreateRowset(RECORD.QA_MYRECORD);

The following creates a rowset with the same structure as the specified rowset:

&RS2 = CreateRowset(&RS);

The following code creates a rowset structure composed of four records in an hierarchical structure, that
is,

QA_INVEST_HDR
   QA_INVEST_LN
      QA_INVEST_TRANS
         QA_INVEST_DTL

Note that you have to start at the bottom of the hierarchy, and add the upper levels, not the other way
around.

Local Rowset &RS, &RS2, &RS_FINAL;

&RS2 = CreateRowset(RECORD.QA_INVEST_DTL);
&RS = CreateRowset(RECORD.QA_INVEST_TRANS, &RS2);
&RS2 = CreateRowset(RECORD.QA_INVEST_LN, &RS);
&RS_FINAL = CreateRowset(RECORD.QA_INVEST_HDR, &RS2);

The following example reads all of the QA_MYRECORD records into a rowset, and returns the number
of rows read:

&RS = CreateRowset(RECORD.QA_MYRECORD);
&NUM_READ = &RS.Fill();

To make a clone of an existing rowset, that is, to make two distinct copies, you can do the following:

&RS2 = CreateRowset(&RS);
&RS.CopyTo(&RS2);

The following code example is used for creating multiple children in a standalone rowset:

Local Rowset &rsBOCMRole, &rsBOCMRel, &rsBOCMUse;

   &rsBOCMRole = CreateRowset(Record.BO_CM_ROLE);
   &rsBOCMRel = CreateRowset(Record.BO_CM_REL);
   &rsBOCMUse = CreateRowset(Record.BO_CM_USE);
   &rsBOCM = CreateRowset(Record.BO_CM, &rsBOCMUse, &rsBOCMRole, &rsBOCMRel);

Related Links
GetRowset
GetLevel0
GetRecord
GetField
"Using Standalone Rowsets" (PeopleCode Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 203



PeopleCode Built-in Functions and Language Constructs Chapter 1

CreateRowsetCache

Syntax

CreateRowsetCache(&Rowset, [Rowset.]Name, Description)

Description

Use the CreateRowsetCache function to create a new RowsetCache object with the given name if it
doesn't already exist.

Parameters

Parameter Description

&Rowset Specify an already instantiated and populated rowset that
you want to use for creating a RowsetCache object. The
RowsetCache object will have the same format and data as
&Rowset.

Record. Name Specify the name of the created RowsetCache object. If you
just specify name, you must enclose the name in quotation
marks.

Description Specify a description of the RowsetCache as a string.

Returns

A reference to the new RowsetCache object if there is not already a RowsetCache object of the given
name.

Example
Local RowsetCache &Cache;
Local Rowset &RS;

&RS = CreateRowset(Record.PSLANGUAGES);
&NUM_READ = &RS.Fill();

&Cache = CreateRowsetCache(&RS, "AAROWSET1", "ROWSET_AAROWSET1");

Related Links
GetRowsetCache
"Using the RowsetCache Class" (PeopleCode API Reference)

204  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

CreateSearchRowset

Syntax

CreateSearchRowset([counts])

Description

Use the CreateSearchRowset function to create the rowset based off of the search record and key list
values.

Important! Use this function within fluid applications only.

Parameters

Parameter Description

counts The optional counts parameter is currently not supported.

Returns

A Rowset object.

Example
&RS_srch = CreateSearchRowset();

CreateSOAPDoc

Syntax

CreateSOAPDoc()

Description

Use the CreateSOAPDoc function to create an empty SOAPDoc object. Then use the SOAPDoc class
methods and properties, as well as the XmlDoc class methods and properties to populate the SOAPDoc
object.

Parameters

None.

Returns

A reference to a SOAPDoc object.

Copyright © 1988, 2022, Oracle and/or its affiliates. 205



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example
Local SOAPDoc &MyDoc;

&MyDoc = CreateSOAPDoc();

Related Links
"Understanding theSOAPDoc Class" (PeopleCode API Reference)
"Understanding XmlDoc Classes" (PeopleCode API Reference)

CreateSQL

Syntax

CreateSQL([{sqlstring | SQL.SqlName}[, paramlist]])

Where paramlist is an arbitrary-length list of values in the form:

inval1 [, inval2] ...

Description

Use the CreateSQL function to instantiate a SQL object from the SQL class and opens it on the given
sqlstring and input values. sqlstring is a PeopleCode string value giving the SQL statement.

Any errors in the SQL processing cause the PeopleCode program to be terminated with an error message.

You can use CreateSQL with no parameters to create an empty SQL object that can be used to assign
properties before being populated and executed.

Opening and Processing sqlstring

If sqlstring is a SELECT statement, it is immediately bound with the inval input values and executed. The
SQL object should subsequently be the subject of a series of Fetch method calls to retrieve the selected
rows. If you want to fetch only a single row, use the SQLExec function instead. If you want to fetch a
single row into a PeopleCode record object, use the record Select method.

If sqlstring is not a SELECT statement, and either there are some inval parameters, or there are no bind
placeholders in the SQL statement, the statement is immediately bound and executed. This means that
there is nothing further to be done with the SQL statement and the IsOpen property of the returned SQL
object will be False. In this case, using the SQLExec function would generally be better. If you want to
delete, insert or update a record object, use the record Delete, Insert, or Update methods.

If sqlstring is not a SELECT statement, there are no inval parameters, and there are bind placeholders
in the SQL statement, the statement is neither bound nor executed. The resulting SQL object should
subsequently be the subject of a series of Execute method calls to affect the desired rows.

Using Arrays with paramlist

You can use a parameter of type "Array of Any" in place of a list of bind values or in place of a list of
fetch result variables. This is particularly useful when fetching an unknown number of results.

&SQL_1 = CreateSql("Select * from " | &TableName);
&AAny = CreateArrayAny();

206  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

While &SQL_1.Fetch(&AAny)
   /* Process the row in &AAny. */
   ...
End-While;

Because the Array of Any promotes to absorb any remaining select columns, it must be the last parameter
for the SQL object Fetch method or (for results) SQLExec. For binding, it must be the only bind
parameter, as it is expected to supply all the bind values needed.

Parameters

Parameter Description

sqlstring| SQL.SqlName Specify either a SQL string containing the SQL command to
be created or a reference to an existing SQL definition. This
string can include bind variables, inline bind variables, and
meta-SQL.

paramlist Specify input values for the SQL string.

Returns

A SQL object.

Example

This SQL object should be used in a series of Fetch method calls:

Local SQL &SQL;

&SQL = CreateSQL("%SelectAll(:1) where EMPLID = :2", RECORD.ABSENCE_HIST, &EMPLID);⇒

This SQL object has been opened, bound, and is already closed again:

&SQL = CreateSQL("Delete from %Table(:1) where EMPLID = :2", RECORD.ABSENCE_HIST, &⇒

EMPLID);

This SQL object should be used in a series of Execute method calls:

&SQL = CreateSQL("Delete from %Table(:1) where EMPLID = :2");

This SQL object is created as an empty object in order to set properties before being executed:

&SQL = CreateSQL();
&SQL.Tracename = "SQL1";
&SQL.ReuseCursor = True;
&SQL.Open(......);

Related Links
DeleteSQL
FetchSQL
GetSQL

Copyright © 1988, 2022, Oracle and/or its affiliates. 207



PeopleCode Built-in Functions and Language Constructs Chapter 1

SQLExec
StoreSQL
"Understanding SQL Class" (PeopleCode API Reference)
"Open" (PeopleCode API Reference)

CreateWSDLMessage

Syntax

CreateWSDLMessage(MessageName, ChannelName)

Description

Use the CreateWSDLMessage function to create an unstructured message. This function creates both the
message as well as the channel.

This function has been deprecated. It is no longer supported.

Related Links
"Understanding Consuming Services" (Integration Broker)

CreateXmlDoc

Syntax

CreateXmlDoc(XmlString, DTDValidation)

Description

Use the CreateXmlDoc function to create an XmlDoc object. If you specify a Null string for XmlString
(""), you create an empty XmlDoc object.

Considerations Using CreateXmlDoc

The following coding is either ignored or removed from the XmlDoc object that is created with this
function:

• encoding attributes

PeopleSoft only supports UTF-8 encoding. Any specified encoding statement is removed, as all
XmlDoc objects are considered UTF-8.

• version attributes

Regardless of what version is specified in XmlString, the version attribute in the generated XmlDoc
object is 1.0.

208  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

XmlString Specify an XML string that you want to convert into
an XmlDoc object that you can then manipulate using
PeopleCode. You can also specify a Null string ("") to generate
an empty XmlDoc object.

DTDValidation Specify whether a DTD should be validated. This parameter
takes a boolean value. If you specify true, the DTD validation
occurs if a DTD is provided. If you specify false, and if a DTD
is provided, it is ignored and the XML isn't validated against
the DTD. False is the default value.

In the case of application messaging, if a DTD is provided, it's
always ignored and the XML isn't validated against the DTD.
 If the XML cannot be validated against a DTD, an error is
thrown saying that there was an XML parse error.

Returns

A reference to the newly created XmlDoc object.

Example

The following creates an empty XmlDoc object.

Local XmlDoc &MyDoc;

&MyDoc = CreateXmlDoc("");

Related Links
"Understanding XmlDoc Classes" (PeopleCode API Reference)

CreateXmlDocFactory

Syntax

CreateXmlDocFactory()

Description

Use the CreateXmlFactory function to create an XmlDocFactory object.

Important! The XmlDocFactory object must be declared as a local variable only. Component and global
scope are not supported.

Copyright © 1988, 2022, Oracle and/or its affiliates. 209



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

None.

Returns

A reference to an XmlDocFactory object.

Example
Local XmlDocFactory &theXmlDocFactory;

&theXmlDocFactory = CreateXmlDocFactory();

&returnbool = &theXmlDocFactory.SetStringToParse(&inputXmlString);

Related Links
"Using the XmlDocFactory Class" (PeopleCode API Reference)

CropImage

Syntax

CropImage(src_recfield, dst_recfield, [width, height])

Description

Use the CropImage function to crop a source image existing in a database record field and save it to a
different destination record field in the database. The source and destination fields must be defined with
the same image format: BMP, GIF, or, JPG only.

The image cropping can be constrained to a specific aspect ratio by specifying the optional [width and
height parameters. These parameters define the aspect ratio only, and do not constrain the cropping to a
specific size. If the aspect ratio is not specified, then the user will be unconstrained when cropping the
image.

An error occurs and CropImage returns False when:

• The source or destination field does not exist in the component buffer.

• The source or destination field is not of type image

• The image type of the destination field differs from that of the source field.

• The destination image field is the same as the source image field.

Note: CropImage displays the image in actual size. If the image dimensions do not match the device
dimensions, it may be difficult to crop the image even though a scroll bar is displayed. In such a case,
Oracle PeopleSoft recommends that you resize the image and then crop the image.

210  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Restrictions on Use in PeopleCode Events

CropImage is a “think-time” function, which means it shouldn’t be used in any of the following
PeopleCode events:

• SavePreChange

• SavePostChange

• Workflow

• RowSelect

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or
a Select (or one of its relatives) Rowset class method.

See "Think-Time Functions" (PeopleCode Developer’s Guide).

Parameters

Parameter Description

src_recfield Specifies the record field location of the source image file.

dst_recfield Specifies the record field location of the destination image file.

width Specifies an aspect ratio width as a numeric value.

height Specifies an aspect ratio height as a numeric value.

Important! If the width is specified, but the height is omitted,
 the PeopleCode program will pass syntax checking. However,
 at run time, the user will encounter an error and will not be
able to crop the image.

Returns

A Boolean value: True when successful, False otherwise.

Example
&bRet = CropImage(QE_IMAGE.QE_IMAGE, QE_IMAGE_CROP.QE_CROP_IMAGE, 60, 90);

CubicSpline

Syntax

CubicSpline(DataPoints, Control_Option, Left_Constraint, Right_Constraint)

Copyright © 1988, 2022, Oracle and/or its affiliates. 211



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the CubicSpline function to compute a cubic spline interpolation through a set of at least four
datapoints.

Parameters

Parameter Description

DataPoints This parameter takes an array of array of number. The array’s
contents are an array of six numbers. The first two of these
six numbers are the x and y points to be fit. The last four are
the four coefficients to be returned from the function: a, b, c
and d. a is the coefficient of the x0 term, b is the coefficient
of the x1 term, c is the coefficient of the x2 term, and d is the
coefficient of the x3 term.

Control_Option Specifies the control option. This parameter takes either a
number or constant value. The values are:

Numeric Value Constant Value Description

0 %SplineOpt_SlEstEst Generate an internal estimate of the
beginning and ending slope of the cubic
piecewise equations.

1 %SplineOpt_SlSetEst Use the user-specified value for the slope
of the leftmost point, and generate an
estimate for the rightmost point.

2 %SplineOpt_SlEstSet Use the user-specified value for the slope
of the rightmost point, and generate an
estimate for the leftmost point.

3 %SplineOpt_SlSetSet Use the user-specified values for the
slopes of the leftmost and rightmost
points.

4 %SplineOpt_CvEstEst Generate an internal estimate of the
beginning and ending curvature of the
cubic piecewise equations.

5 %SplineOpt_CvSetEst Use the user-specified value for the
curvature of the leftmost point, and
generate an estimate for the rightmost
point.

212  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

6 %SplineOpt_CvEstSet Use the user-specified value for the
curvature of the rightmost point, and
generate an estimate for the leftmost
point.

7 %SplineOpt_CvSetSet Use the user-specified values for the
curvatures of the leftmost and rightmost
points.

8 %SplineOpt_ClEstEst Generate an internal estimate of the
beginning and ending curl of the cubic
piecewise equations.

9 %SplineOpt_ClSetEst Use the user-specified value for the curl
of the leftmost point, and generate an
estimate for the rightmost point.

10 %SplineOpt_ClEstSet Use the user-specified value for the curl
of the rightmost point, and generate an
estimate for the leftmost point.

11 %SplineOpt_ClSetSet Use the user-specified values for the
curls of the leftmost and rightmost
points.

12 %SplineOpt_Natural Generate a “natural” spline.

13 %SplineOpt_ContCurl Generate a spline wherein the equation
for the first segment is the exact same
equation for the second segment, and
where the equation for the penultimate
segment is the same as the equation for
the last segment.

Parameter Description

Left_Constraint A single number for the constraint for the left point. Specify a
zero if this parameter isn’t needed.

Right_Constraint A single number for the constraint for the right point. Specify
a zero if this parameter isn’t needed.

Returns

A modified array of array of numbers. The elements in the array correspond to the elements in the array
used for DataPoints.

Copyright © 1988, 2022, Oracle and/or its affiliates. 213



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
HermiteCubic
LinearInterp

CurrEffDt

Syntax

CurrEffDt([level_num])

Description

Use the CurrEffDt function to return the effective date of the specified scroll level as a Date value.

Note: This function remains for backward compatibility only. Use the EffDt rowset class property instead.

If no level is specified, CurrEffDt returns the effective date of the current scroll level.

Related Links
"EffDt" (PeopleCode API Reference)
"GetCurrEffRow" (PeopleCode API Reference)
"EffSeq" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Returns

Returns a Date value equal to the current effective date of the specified scroll level.

Example
If INSTALLATION.POSITION_MGMT = "P" Then
   If All(POSITION_NBR) Then
      If (EFFDT = CurrEffDt(1) and
            EFFSEQ >= CurrEffSeq(1)) or
            (EFFDT > CurrEffDt(1) and
               EFFDT = %Date) Then
         Gray_employment( );
       End-if;
   End-if;
End-if;

Related Links
CurrEffRowNum
CurrEffSeq
CurrentLevelNumber

214  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

CurrEffRowNum

Syntax

CurrEffRowNum([level_num])

Description

Use the CurrEffRowNum function to return the effective row number of the selected scroll level.

Note: This function remains for backward compatibility only. Use the RowNumber row class property, in
combination with the GetCurrEffRow rowset method, instead.

If no level is specified, it returns the effective row number of the current level.

Related Links
"RowNumber" (PeopleCode API Reference)
"GetCurrEffRow" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Example
&ROW = CurrEffRowNum(1);

Related Links
CurrEffSeq
CurrentLevelNumber
CurrEffRowNum

CurrEffSeq

Syntax

CurrEffSeq([level_num])

Description

Use the CurrEffSeq function to determine the effective sequence of a specific scroll area.

Note: This function remains for backward compatibility only. Use the EffSeq rowset class property
instead.

If no level is specified, CurrEffSeq returns the effective sequence of the current scroll level.

Related Links
"EffSeq" (PeopleCode API Reference)
"GetCurrEffRow" (PeopleCode API Reference)

Copyright © 1988, 2022, Oracle and/or its affiliates. 215



PeopleCode Built-in Functions and Language Constructs Chapter 1

"DeleteEnabled" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Returns

Returns a Number representing the effective sequence of the specified scroll level.

Example
If INSTALLATION.POSITION_MGMT = "P" Then
   If All(POSITION_NBR) Then
      If (EFFDT = CurrEffDt(1) and
            EFFSEQ >= CurrEffSeq(1)) or
            (EFFDT > CurrEffDt(1) and
               EFFDT = %Date) Then
         Gray_employment( );
       End-if;
   End-if;
End-if;

Related Links
CurrEffDt
CurrentLevelNumber
CurrEffRowNum

CurrentLevelNumber

Syntax

CurrentLevelNumber()

Description

Use the CurrentLevelNumber function to return the scroll level where the function call is located.

Returns

Returns a Number value equal to the scroll level where the function is being called. The function returns 0
if the field where the function is called is not in a scroll area.

Example
&LEVEL = CurrentLevelNumber();

Related Links
CurrentRowNumber
FetchValue

216  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

CurrentRowNumber

Syntax

CurrentRowNumber([level])

Description

Use the CurrentRowNumber function to determine the row number of the row currently displayed in a
specific scroll area.

Note: This function remains for backward compatibility only. Use the RowNumber row class property
instead.

This function can determine the current row number on the level where the function call resides, or on a
higher scroll level. It won’t work on a scroll level below the one where the PeopleCode program resides.

Related Links
GetRow
"RowNumber" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

level A Number specifying the scroll level from which the function
returns the current row number. If the level parameter is
omitted, it defaults to the scroll level where the function call
resides.

Returns

Returns a Number value equal to the current row number on the specified scroll level. The current number
is the row where the PeopleCode program is being processed, or, if level specifies a higher level scroll,
CurrentRowNumber returns the row number of the parent or grandparent row.

Example

CurrentRowNumber is typically used in component buffer functions to return the current row of the
parent scroll of the target:

&VAL = FetchValue(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(), BUS_EXPENSE_DTL.CHARG⇒

E_DT, &COUNT);

The following example checks if the current row number is equal to the active row count (that is, whether
the active row is the last record on the scroll):

If CurrentRowNumber() = ActiveRowCount(EMPLID) Then

Copyright © 1988, 2022, Oracle and/or its affiliates. 217



PeopleCode Built-in Functions and Language Constructs Chapter 1

   det_employment_dt();
End-if;

Related Links
ActiveRowCount
CurrentLevelNumber
FetchValue

PeopleCode Built-in Functions and Language Constructs: D

The PeopleCode built-In functions and language constructs beginning with the letter D are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

Date

Syntax

Date(date_num)

Description

The Date function takes a number in the form YYYYMMDD and returns a corresponding Date value. If
the date is invalid, Date displays an error message.

Warning! Make sure that you pass a four-digit year in the year parameter of this function. Two-digit
values are interpreted literally: 93, for example, represents the year 93 AD.

Returns

Returns a date equal to the date specified in date_num.

Example

Set the temporary variable &HIREDate to a date field containing the date July 1, 1997:

&HIREDate = Date(19970701);

Related Links
Date3
DateValue
Day
Days360
Days365

218  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Month
Weekday
Year

Date3

Syntax

Date3(year, month, day)

Description

The Date3 function accepts a date expressed as three integers: year, month, and day. It returns a
corresponding Date value. If the date is invalid, the Date3 displays an error message.

Warning! Make sure that you pass a four-digit year in the year parameter of this function. Two-digit
values will be interpreted literally: 93, for example, represents the year 93 AD.

Parameters

Parameter Description

year An integer for the year in the form YYYY.

month An integer from 1 to 12 designating the month.

day An integer from 1 to 31 designating the day of the month.

Returns

Returns a Date value equal to the date specified in the function parameters.

Example

The following PeopleCode Date3 function returns the first day of the year in which the employee was
hired:

Date3(HIRE_YEAR, 1, 1);

Related Links
Date
DateValue
Day
Days360
Days365

Copyright © 1988, 2022, Oracle and/or its affiliates. 219



PeopleCode Built-in Functions and Language Constructs Chapter 1

DatePart

Syntax

DatePart(datetime_value)

Description

Use the DatePart function to determine a date based on a provided DateTime value.

Returns

Returns a Date value equal to the date part of a specified DateTime value.

Example

The following statement sets &D2 to a Date value for 11/12/1997:

&D1 = DateTimeValue("11/12/1997 10:23:15 AM");
&D2 = DatePart(&D1);

DateTime6

Syntax

DateTime6(year, month, day, hour, minute, second)

Description

The DateTime6 function returns a DateTime value based on integer values for the year, month, day, hour,
minute, and second. If the result of this function is not an actual date, there is a runtime error.

Warning! Make sure that you pass a four-digit year in the year parameter of this function. Two-digit
values will be interpreted literally: 93, for example, represents the year 93 AD.

Parameters

Parameter Description

year A four-digit number representing the year.

month A number between 1 and 12 representing the month.

day A number representing the day of the month.

hour A number from 0 to 23 representing the hour of the day.

220  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

minute A number from 0 to 59 representing the minute of the hour.

second A number from 0 to 59.999999 representing seconds.

Returns

Returns a DateTime value based on the integers provided.

Example

The following example sets &DTTM to a DateTime value equal to 10:09:20 on March 15, 1997:

&DTTM = DateTime6(1997, 3, 15, 10, 9, 20);

DateTimeToHTTP

Syntax

DateTimeToHTTP(datetime)

Description

Use the DateTimeToHTTP function to convert any DateTime value to a date/time string in the format
specified by HTTP 1.0 and 1.1 standards.

Note: Because the HTTP protocol is used to interchange information between diverse computing systems,
the value returned from this function is always the ”US English” form of weekdays and months. If you
want the value to use the localized form, use the DateTimeToLocalizeString function instead.

The standard HTTP date/time has the following fixed length format:

<dow><,><sp><dd><sp><mon><sp><year><sp><hh><:><mm><:><ss><sp><GMT>

where:

Value Description

<dow> a 3-character day of week name, one of Sun, Mon, Tue, Wed,
 Thu, Fri, Sat.

<,> a literal comma character

<sp> a literal space character

<dd> a 2-digit day of month, such as 02 or 22.

Copyright © 1988, 2022, Oracle and/or its affiliates. 221



PeopleCode Built-in Functions and Language Constructs Chapter 1

Value Description

<mon> is a 3-character month name, one of Jan, Feb, Mar, and so on.

<year> a 4-digit year number

<hh> a 24-hour hour number, such as 00 or 13

<mm> a 2-digit minute number, such as 01 or 56

<ss> a 2-digit second number, such as 03 or 59

<GMT> a literal 3-character GMT.

As indicated by the trailing GMT, this date/time format is always expressed in GMT (or UTC, which is
declared to be the same for the purposes of HTTP).

Parameters

Parameter Description

datetime Specify the DateTime value you want converted to HTTP
format. This DateTime is assumed to be in the base time zone
of the installation.

Returns

A string containing the converted HTTP date/time.

Example
&gmtdate = DateTimeToHTTP(AddToDateTime(%DateTime, 0,0,0,0,600,0));

%Response.setHeader("Last-Modified", &gmtdate);

Related Links
AddToDateTime
DateTimeToLocalizedString
FormatDateTime

DateTimeToISO

Syntax

DateTimeToISO(textdatetime)

222  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the DatetimeToISO function to convert the text value textdatetime (as a base time zone time) to a
DateTime value in ISO 8601 format. This function automatically calculates whether daylight saving time
is in effect for the given textdatetime.

The system’s base time zone is specified in the PSOPTIONS table.

Parameters

Parameter Description

textdatetime Specify a date/time represented as text in the ISO 8601
format: YYYY-MM-DDThh:mm:ss[.S] (for example,
1999-01-01T19:20:30.000000)

In which:

• YYYY is a four-digit year.

• MM is a two-digit month (01 through 12).

• DD is a two-digit day of the month (01 through 31).

• hh is a two digits of hour (00 through 23).

• mm is a two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• S is milliseconds in one or up to six digits.

• TZD is a time zone designator (Z, +/-hh:mm or +/-hhmm).

Returns

Returns a DateTime value in ISO 8601 format.

Example

In the following example, assuming the base time (as defined in PSOPTIONS) is PST, &DATETIME
would have a DateTime value of "1999-01-01T01:00:00.000000-08:00":

&DATETIME= DateTimeToISO("1999-01-01 01:00:00.000000");

Related Links
ConvertDatetimeToBase
DateTimeValue
ISOToDate
ISOToDateTime

Copyright © 1988, 2022, Oracle and/or its affiliates. 223



PeopleCode Built-in Functions and Language Constructs Chapter 1

DateTimeToLocalizedString

Syntax

DateTimeToLocalizedString({datetime | date}, [Pattern])

Description

Use the DateTimeToLocalizedString function to convert either datetime or date to a localized string. You
can also specify a particular pattern to convert datetime or date to.

The Pattern is optional. Only specify Pattern if necessary.

If you need to change the pattern for each language, change the first message in Message Catalog set
number 138. This is a format for each language.

Parameters

Parameter Description

datetime | date Specify either the DateTime or Date value that you want to
convert.

Pattern Specify the pattern you want to the localized DateTime or Date
value to be converted to.

Using the Pattern Parameter

Pattern takes a string value, and indicates how you want the DateTime or Date value converted.

The valid values for Pattern are as follows.

Note: The values for pattern are case-sensitive. For example, if you specify a lowercase m, you get
minutes, while an uppercase M displays the month.

Symbol Definition Type Example

G Era designator Text AD

y Year Number 1996

M Month in year Text&Number July&07

d Day in month Number 10

h Hour in am/pm Number (1-12) 12

224  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Symbol Definition Type Example

H Hour in day Number (0-23) 0

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

E Day in week Text Tuesday

a am/pm marker Text PM

k Hour in day Number (1-24) 24

K Hour in am/pm Number (0-11) 0

' Escape for text Delimiter  

'' Single quote Literal '

The number of pattern letters determine the format.

Type Pattern Format

Text If 4 or more pattern letters are used, the full form is used. If
less than 4 pattern letters are used, the short or abbreviated
form is used if one exists.

Number Use the minimum number of digits. Shorter numbers are zero-
padded to this amount.

The year is handled specially; that is, if the count of 'y' is 2, the
year is truncated to 2 digits.

Text&Number If 3 or more pattern letters are used, text is used, otherwise, a
number is used.

Any characters in Pattern are not in the ranges of ['a'..'z'] and ['A'..'Z'] are treated as quoted text. For
instance, characters like ':', '.', ' ', '#' and '@' appear in the resulting string even they're not within single
quotes.

Copyright © 1988, 2022, Oracle and/or its affiliates. 225



PeopleCode Built-in Functions and Language Constructs Chapter 1

A pattern containing any invalid pattern letter results in a runtime error.

Examples using a United States locale:

Pattern Result

"yyyy.MM.dd G 'at' hh:mm:ss" 1996.07.10 AD at 15:08:56

"EEE, MMM d, ''yy" Wed, July 10, '96

"h:mm a" 12:08 PM

"hh 'o''clock' a" 12 o'clock PM

"K:mm a" 0:00 PM

"yyyyy.MMMMM.dd GGG hh:mm aaa" 1996.July.10 AD 12:08 PM

Returns

A string.

Example
REM**************************************************************;
Function ConvertDateToDTTM(&Date As date) Returns DateTime ;
REM ***********************************************************;
   &String = DateTimeToLocalizedString(&Date, "M/d/y");
   &String = &String | " 00:00:00.000000";
   &DateTime = DateTimeValue(&String);
   Return &DateTime;
End-Function;

Related Links
FormatDateTime
DateTimeToHTTP

DateTimeToTimeZone

Syntax

DateTimeToTimeZone(OldDateTime, SourceTimeZone, DestinationTimeZone)

Description

Use the DateTimeToTimeZone function to convert DateTime values from the DateTime specified by
SourceTimeZone to the DateTime specified by DestinationTimeZone.

226  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Considerations Using this Function

Typically, this function is used in PeopleCode, not for displaying time. If you take a DateTime value,
convert it from base time to client time, then try to display this time, depending on the user settings,
when the time is displayed the system might try to do a second conversion on an already converted
DateTime. This function could be used as follows: suppose a user wanted to check to make sure a time
was in a range of times on a certain day, in a certain timezone. If the times were between 12 AM and 12
PM in EST, these resolve to 9 PM and 9 AM PST, respectively. The start value is after the end value,
which makes it difficult to make a comparison. This function could be used to do the conversion for the
comparison, in temporary fields, and not displayed at all.

Parameters

Parameter Description

OldDateTime Specify the DateTime value to be converted.

SourceTimeZone Specify the time zone that OldDateTime is in. Valid values are:

• timezone - a time zone abbreviation or a field reference to
be used for converting OldDateTime.

• Local - use the local time zone for converting
OldDateTime.

• Base - use the base time zone for converting
OldDateTime.

DestinationTimeZone Specify the time zone that you want to convert OldDateTime
to. Valid values are:

• timezone - a time zone abbreviation or a field reference to
be used for converting OldDateTime.

• Local - use the local time zone for converting
OldDateTime.

• Base - use the base time zone for converting
OldDateTime.

Returns

A converted DateTime value.

Example

The following example. TESTDTTM, is a DateTime field with a value 01/01/99 10:00:00. This example
converts TESTDTTM from Pacific standard time (PST) to eastern standard time (EST).

&NEWDATETIME = DateTimeToTimeZone(TESTDTTM, "PST", "EST");

&NEWDATETIME will have the value 01/01/99 13:00:00 because EST is three hours ahead of PST on
01/01/99, so three hours are added to the DateTime value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 227



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
ConvertDatetimeToBase
ConvertTimeToBase
FormatDateTime
IsDaylightSavings
TimeToTimeZone
TimeZoneOffset
"PeopleTools Options" (System and Server Administration)

DateTimeToUserFormat

Syntax

DateTimeToUserFormat(textdatetime, {timezone | "Local" | "Base"})

Description

Use the DateTimeToUserFormat function to convert the string value textdatetime in PeopleSoft internal
date/time format to a date/time value in the user's personalized date/time format for a specified time zone.

The format for the return value is determined in the following order of precedence:

1. User personalizations if they exist.

2. If there are no user personalizations, then any format specified by the browser language setting in
PSLOCALEDEFN.

3. If there are no user personalizations and there is no browser session to determine the browser
language settings (for example, when running an Application Engine program directly in Application
Designer), the system’s regional language setting is used to determine the format.

For example, if the user's date and time format personalization settings are DDMMYY and 24-hour clock,
the following function invocation returns a DateTime string equal to 27/09/2011 08:00:00.

&DTM = DateTimeToUserFormat("2011-09-27 08:00:00.000000", "Base");

228  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

textdatetime Specifies a String value representing a date/time value in the
PeopleSoft internal format: YYYY-MM-DD hh:mm:ss.SSSSSS 
(for example, 1999-01-01 19:20:30.000000)

In which:

• YYYY is a four-digit year.

• MM is a two-digit month (01 through 12).

• DD is a two-digit day of the month (01 through 31).

• hh is two digits of hour (00 through 23).

• mm is two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• S is milliseconds in one or up to six digits.

timezone | "Local" | "Base" Specifies a String value to indicating the time zone to convert
to. The values are:

• timezone – A time zone abbreviation or a field reference.

• "Local" – Use the local time zone.

• "Base" – Use the base time zone.

Returns

Returns a DateTime value in user format for the specified time zone.

Example

In the following example, assuming the base time (as defined in PSOPTIONS) is PST, &DT would have a
value of "1999-01-13 22:00:00":

&DT= DateTimeToUserFormat("1999-01-13 19:00:00.000000","EST");

DateTimeValue

Syntax

DateTimeValue(textdatetime)

Description

Use the DateTimeValue function to derive a DateTime value from a string representing a date and time.

Copyright © 1988, 2022, Oracle and/or its affiliates. 229



PeopleCode Built-in Functions and Language Constructs Chapter 1

Using this Function in Fields Without a Default Century Setting

This function may derive the wrong century setting if passed a two-character year and DateTimeValue is
executing in a PeopleCode event not associated with a field that has a default century setting.

For example, assume that TEST_DATE is a date field with a default century setting of 10. TEST_FIELD
is a field with no default century setting. If the following PeopleCode program is executing in
TEST_FIELD, the date will be calculated incorrectly:

TEST_DATE = DateTimeValue("10/13/11 15:34:25");

Although TEST_DATE has a century setting, it isn’t used because the PeopleCode fired in TEST_FIELD.
Instead, DateTimeValue uses the 50/50 rule and calculates the year to be 2011 (instead of 1911).

Parameters

Parameter Description

textdatetime Specify a date/time value represented as text in one of three
formats:

• MM/DD/YY[YY] hh:mm:ss.ssssss [{AM|PM}]

• MM.DD.YY[YY] hh:mm:ss.ssssss [{AM|PM}]

• YYYY-MM-DDThh:mm:ss[.S]TZD (that is, ISO
8601 format—for example, 1999-01-01T19:20:30.
000000+0800)

In which:

• YY[YY] is a two- or four-digit year.

• YYYY is a four-digit year.

• MM is a two-digit month (01 through 12).

• DD is a two-digit day of the month (01 through 31).

• hh is a two digits of hour (00 through 23).

• mm is a two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• ssssss is six digits of milliseconds.

• S is milliseconds in one or up to six digits.

• TZD is a time zone designator (Z, +/-hh:mm or +/-hhmm).

Returns

Returns a DateTime value.

230  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

Both of the following examples set &Date_TIME to a DateTime value equal to October 13, 1997
10:34:25 PM.:

&Date_TIME = DateTimeValue("10/13/97 10:34:25 PM");
&Date_TIME = DateTimeValue("10/13/97 22:34:25");

Assuming the base time (as defined in PSOPTIONS) is PST, the following three examples set
&Date_TIME to a DateTime value equal to 2009-12-31-22.30.40.120000 UTC:

&Date_Time = DateTimeValue("2010-01-01 06:30:40.12Z");
&Date_Time = DateTimeValue("2010-01-01 00:30:40.12-0600");
&Date_Time = DateTimeValue("2010-01-01 10:30:40.12+04:00");

Related Links
Date
Date3
DateValue
Day
Days360
Days365
Month
Weekday
Year

DateValue

Syntax

DateValue(date_str)

Description

Use the DateValue function to convert a date string and returns the result as a Date type. date_str must be
a string in the active date format user's current personalization date format.

If the user's Date Format personalization setting is set to DDMMYY (or it is defaulted to this from their
browser locale or the system-wide personalization defaults) then the following code returns a Date value
equal to September 10, 1997.

&DTM = DateValue("10/09/97");

If the user's Date Format personalization setting is set to MMDDYY (or it is defaulted to this from their
browser locale or the system-wide personalization defaults) then the same function call returns a value
equal to October 9, 1997.

Using this Function in Fields Without a Default Century Setting

This function may derive the wrong century setting if passed a 2-character year and DateValue is
executing in a PeopleCode event not associated with a field that has a default century setting.

Copyright © 1988, 2022, Oracle and/or its affiliates. 231



PeopleCode Built-in Functions and Language Constructs Chapter 1

For example, assume that TEST_DATE is a date field with a default century setting of 10. TEST_FIELD
is a field with no default century setting. If the following PeopleCode program is executing in
TEST_FIELD, the date will be calculated incorrectly:

TEST_DATE = DateValue("10/13/11");

Though TEST_DATE has a century setting, it isn’t used because the PeopleCode fired in TEST_FIELD.
Instead, DateValue uses the 50/50 rule and calculates the year to be 2011 (instead of 1911).

Returns

Returns a Date value.

Related Links
Date
Date3
DateTimeValue
Day
Days360
Days365
Month
Weekday
Year

Day

Syntax

Day(dt_val)

Description

Use the Day function to determine an integer representing the day of the month based on a Date or
DateTime value.

Returns

Returns a Number value equal to the day of the month for dt_val. The return value is an integer from 1 to
31.

Example

If HIRE_DATE is November, 1, 1997, the following Day function returns the integer 1:

&FIRST_DAY = Day(HIRE_DATE);

Related Links
Date
Date3

232  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

DateValue
Days
Days360
Days365
Month
Weekday
Year

Days

Syntax

Days(dt_val)

Description

Use the Days function to returns the Julian date for the dt_val specified. This function accepts a Date,
DateTime, or Time value parameter.

Returns

Returns a Number value equal to the Julian date for dt_val.

Example

To find the number of days between two dates, use the Days function on both dates, and subtract one from
the other:

&NUM_DAYS = Abs(Days(HIRE_Date) - Days(RELEASE_Date));

Related Links
DateValue
Days360
Days365
Month
Weekday
Year

Days360

Syntax

Days360(date_val1, date_val2)

Copyright © 1988, 2022, Oracle and/or its affiliates. 233



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the Days360 function to return the number of days between the Date values date_val1 and date_val2
using a 360-day year (twelve 30-day months). Use this function to help compute payments if your
accounting system is based on twelve 30-day months.

If date_val2 occurs before date_val1, Days360 returns a negative number.

Example

The following example sets &NUMDAYS to the number of days between TERM_START_DT and
PMT_DT based on a 360-day calendar:

&NUMDAYS = Days360(TERM_START_DT, PMT_DT);

Related Links
Date
Date3
DateValue
Day
Days
Days365
Month
Weekday
Year

Days365

Syntax

Days365(date_val1, date_val2)

Description

Use the Days365 function to return the number of days between the Date values date_val1 and date_val2
using a 365-day year. Use this function to help compute payments if your accounting system is based on a
365-day year.

If date_val2 occurs before date_val1, Days365 returns a negative number.

Returns

Returns a Number value equal to the number of days between the two dates in a 365-day calendar.

Example

The following example sets &NUMDAYS to the number of days between and TERM_START_DT and
PMT_DT, based on a 365-day calendar:

&NUMDAYS = Days360(TERM_START_DT, PMT_DT);

234  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
Date
Date3
DateValue
Day
Days360
Month
Weekday
Year

DBCSTrim

Syntax

DBCSTrim(source_str)

Description

Note: This function has been deprecated.

Use the DBCSTrim function to remove a trailing DBCS lead byte at the end of the string.

DBPatternMatch

Syntax

DBPatternMatch(Value, Pattern, CaseSensitive)

Description

Use the DBPatternMatch function to match the string in Value to the given pattern.

You can use wildcard characters % and _ when searching. % means find all characters, while _ means
find a single character. For example, if you wanted to find if the string in Value started with the letter M,
you'd use "M%" for Pattern. If you wanted to find either DATE or DATA, use "DAT_" for Pattern.

These characters can be escaped (that is, ignored) using a \. For example, if you want to search for a value
that contains the character %, use \% in Pattern.

If Pattern is an empty string, this function retrieves the value just based on the specified case-sensitivity
(that is, specifying "" for Pattern is the same as specifying "%").

Parameters

Parameter Description

Value Specify the string to be searched.

Copyright © 1988, 2022, Oracle and/or its affiliates. 235



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

Pattern Specify the pattern to be used when searching.

CaseSensitive Specify whether the search is case-sensitive. This parameter
takes a Boolean value: True, the search is case-sensitive, False,
 it is not.

Returns

Returns a Boolean value. True if the string matches the pattern, False otherwise.

Related Links
Find
Findb

DeChunkText

Syntax

DeChunkText(table_name, seq_field, data_field, &array_of_keys, &array_of_key_dataty⇒

pes, &array_of_key_values)

Description

Use the DeChunkText function to read the chunks created by the ChunkText function from a database
table and assemble them back into a long text string.

Parameters

Parameter Description

table_name Specify the name of the database table as a string. This table
stores the chunks created by ChunkText.

seq_field Specify the name of the field that stores the sequence number
for each chunk as a string.

data_field Specify the name of the field that stores the data chunks as a
string.

&array_of_keys Specify key field names as an array of string.

&array_of_key_datatypes Specify the types for the key fields as an array of string. See
below.

236  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

&array_of_key_values Specify the key field values as an array of string.

The values for &array_of_key_datatypes can be as follows:

Value Description

STR String value

CHAR Single character

LONGTEXT Long text value

DATE Date value

TIME Time value

DATETIME Date/time value

INT Integer value

SHORT Short integer value

LONG Long integer value

DOUBLE Double-sized integer value

Returns

A string.

Example
Local array of string &key_names;
Local array of string &keyfdatatypes;
Local array of string &key_vals;
Local string &text;

&tablename = "PSPCMTXT";
&seq_fld = "SEQNUM";
&data_fld = "PEOPLECODE";

&key_names = CreateArray("OBJECTID1", "OBJECTVALUE1", "OBJECTID2", "OBJECTVALUE2", ⇒

"OBJECTID3", "OBJECTVALUE3");
&keyfdatatypes = CreateArray("INT", "STR", "INT", "STR", "INT", "STR");
&key_vals = CreateArray("1", "PSTRANSFRM_WRK", "2", "IB_TRANSFORM_PB", "12", "Field⇒

Copyright © 1988, 2022, Oracle and/or its affiliates. 237



PeopleCode Built-in Functions and Language Constructs Chapter 1

Change");

&text = DeChunkText(&tablename, &seq_fld, &data_fld, &key_names, &keyfdatatypes, &k⇒

ey_vals);

Related Links
ChunkText

Declare Function

Syntax

PeopleCode Function Syntax

Declare Function function_name PeopleCode record_name.field_name event_type

External Library Function Syntax

Declare Function function_name Library lib_name
    [Alias module_name]
    [paramlist]
    [Returns ext_return_type [As pc_type]]

In which paramlist is:

([ext_param1 [, ext_param2] . . .)

And in which ext_param1, ext_param2, and so on is:

ext_datatype [{Ref|Value}] [As pc_return_type]

Description

PeopleCode can call PeopleCode functions defined in any field on any record definition. You can
create special record definitions whose sole purpose is to serve as function libraries. By convention,
PeopleCode functions are stored in FieldFormula PeopleCode, in record definitions with names beginning
in FUNCLIB_.

PeopleCode can also call external programs that reside in dynamic link libraries. You must declare either
of these types of functions at the top of the calling program using the Declare Function statement.

To support processes running on an application server, you can declare and call functions compiled
in dynamic link libraries on windows (*.DLL files) and shared libraries on UNIX (lib*.so files.) The
PeopleCode declaration and function call syntax is the same regardless of platform, but UNIX libraries
must be compiled with an interface function.

See "Calling DLL Functions on the Application Server" (PeopleCode Developer’s Guide).

PeopleCode Functions

You can call a PeopleCode function defined on any record definition, provided you declare it at the top of
the calling program. The declaration identifies the function name, as well as the record, field, and event
type where the function definition resides. The function parameters and return type are not declared; they
are determined from the function definition.

238  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: You can define functions only in record field PeopleCode. You can’t define functions in component
PeopleCode, component record Field PeopleCode, and so on.

External Library Functions

Function declarations define routines in an external (C-callable) library. The function declaration provides
the name of the library, an optional alias module_name, a list of parameters to pass to the function,
an optional Returns clause specifying the type of any value returned by the external function, and the
PeopleCode data type into which to convert the returned value. The library must be a DLL accessible by
Windows or a shared library accessible by UNIX.

After you have declared an external library function, you can call it the same way as an external
PeopleCode function. Like PeopleCode functions, you must pass the number of parameters the library
function expects. Calls to external functions suspend processing: this means that you should exercise
caution to avoid “think-time” errors when calling the function in the following PeopleCode events:

• SavePreChange.

• SavePostChange.

• Workflow.

• RowSelect.

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or
a Select (or one of its relatives) Rowset class method.

See "Think-Time Functions" (PeopleCode Developer’s Guide).

Parameters

The following are the parameters for the PeopleCode function syntax:

Parameter Description

function_name Name of the function.

PeopleCode Reserved word that identifies the function as a PeopleCode
function.

recordname.fieldname Specifies the record and field where the function is located.

event_type Component Processor event with which the function is
associated.

Note: event_type can be used to specify record field events only. You can’t specify a component record
field event, a component record event, and so on.

The following are the parameters for the external library function syntax:

Copyright © 1988, 2022, Oracle and/or its affiliates. 239



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

function_name Name of the function.

Library Reserved word that identifies the function as an external
library function.

lib_name A string representing the name of the external library. The
external routine must be located in a DLL named lib_name
accessible by Windows, or an equivalent shared library in a
UNIX system.

Alias  module_name Optionally specifies the name of the function’s entry point
within the shared library. This is needed only if the C function
name differs from function_name in the PeopleCode external
function declaration. The external module is invoked using
the __stdcall calling convention on Windows.

paramlist List of parameters expected by the function, each in the form:

ext_datatype [{Ref | Value}] [As pc_type]

ext_datatype The data type of the parameter expected by the function. To
specify the type you can use any of the following:

• BOOLEAN

• INTEGER

• LONG

• UINTEGER

• ULONG

• STRING

• STRING

• FLOAT

• DOUBLE

Ref  | Value Optionally use one of these two reserved words to specify
whether the parameter is passed by reference or by value. If
Ref is specified, it is passed by pushing a reference (pointer)
on the stack. If Value is specified the value is pushed on the
stack (for integers, and so on.) If neither is specified, Ref is
assumed.

As pc_type Specifies PeopleCode data type of the value passed to the
function. You can choose between PeopleCode data types
String, Number, Integer, Float, Date, Boolean, and Any.

240  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

Returns ext_return_type Specifies the data type of any value returned by the function.
 The Returns clause is omitted if the function is void (returns
no value.) To specify the return type you can use any of the
following:

• BOOLEAN

• INTEGER

• LONG

• UINTEGER

• ULONG

• FLOAT

• DOUBLE

The types String and LString are not allowed for the result
type of a function.

As pc_return_type Specifies the PeopleCode data type of the variable or field
into which to read the returned value. You can choose between
PeopleCode data types String, Number, Integer, Float, Date,
 Boolean, and Any. If the As clause is omitted, PeopleTools
selects an appropriate type based on the type of value returned
by the external function (for example, all integer and floating
point types are converted to Number).

Example

Assume you have defined a PeopleCode function called VerifyZip. The function definition is located in
the record definition FUNCLIB_MYUTILS, in the record field ZIP_EDITS, attached to the FieldFormula
event. You would declare the function using the following statement:

Declare Function verifyzip PeopleCode FUNCLIB_MYUTILS.ZIP_EDITS FieldFormula;

Now assume you want to declare a function called PCTest in PSUSER.DLL. It takes an integer and
returns an integer. You would write this declare statement:

Declare Function pctest Library "psuser.dll"
      (integer Value As number) Returns integer As number;

Related Links
Function

Decrypt

Important! Oracle recommends that you do not use the Decrypt function due to outdated algorithms.
Instead, use the DecryptStr function.
The Decrypt function will be deprecated in a future release.

Copyright © 1988, 2022, Oracle and/or its affiliates. 241



PeopleCode Built-in Functions and Language Constructs Chapter 1

Syntax

Decrypt(KeyString, EncryptedString)

Description

Use the Decrypt function to decrypt a string previously encrypted with the Encrypt function. This
function is generally used with merchant passwords. For this function to decrypt a string successfully, you
must use the same KeyString value used to encrypt the string.

Parameters

Parameter Description

KeyString Specify the key used for encrypting the string. You can specify
a NULL value for this parameter, that is, two quotation marks
with no blank space between them ("").

EncryptedString Specify the string you want decrypted.

Returns

A clear text string.

Example

Encrypt and Decrypt support only strings.

&AUTHPARMS.WRKTOKEN.Value = Decrypt("", RTrim(LTrim(&MERCHANTID_REC.CMPAUTHNTCTNTOK⇒

EN.Value)));

Related Links
Encrypt
Hash
HashSHA256
"PeopleSoft Online Security" (Security Administration)
DecryptStr

DecryptStr

Syntax

DecryptStr(EncryptedString, KeyString)

242  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the DecryptStr function to decrypt a string previously encrypted with the EncryptStr function. For
this function to decrypt a string successfully, you must use the same KeyString value used to encrypt the
string.

Note: The default cipher algorithm is AES128 (Advanced Encryption Standard).

Parameters

Parameter Description

EncryptedString Specify the string you want decrypted.

This parameter is required.

KeyString Specify the key used for encrypting the string.

This parameter is optional. However, as a safe security
practice, Oracle recommends that you generate an AES128
key. You may use the GenSecureKey function to generate a
key. If you plan to generate a key on your own, you must have
a thorough knowledge of the AES128 key size because Oracle
does not provide guidelines on generating or managing keys.

Refer to the PeopleSoft Security Practices Technical Brief.

Returns

A clear text string.

Example

EncryptStr and DecryptStr support only strings.

Cleartext-String = DecryptStr("Encrypted-Based64-String as required field", "Cleart⇒

ext-KeyString as optional field");

Related Links
GenSecureKey
Hash
HashSHA256
"PeopleSoft Online Security" (Security Administration)

Degrees

Syntax

Degrees(angle)

Copyright © 1988, 2022, Oracle and/or its affiliates. 243



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the Degrees function to convert the given angle from radian measurement to degree measurement.

Parameters

Parameter Description

angle The size of an angle in radians.

Returns

The size of the given angle in degrees.

Example

The following example returns the equivalent size in degrees of an angle measuring 1.2 radians:

&DEGREE_SIZE = Degrees(1.2);

Related Links
Acos
Asin
Atan
Cos
Cot
Radians
Sin
Tan

DeleteAttachment

Syntax

DeleteAttachment(URLSource, DirAndSysFileName[, PreserveCase])

Description

Use the DeleteAttachment function to delete a file from the specified storage location.

DeleteAttachment does not generate any type of “Are you sure?” message. If you want the end user to
verify the deletion before it is performed, you must write your own checking code in your application.

Additional information that is important to the use of DeleteAttachment can be found in the PeopleTools:
PeopleCode Developer's Guide:

• PeopleTools supports multiple types of storage locations.

244  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

See "Understanding File Attachment Storage Locations" (PeopleCode Developer’s Guide).

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See "File Name Considerations" (PeopleCode Developer’s Guide).

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See "Attachments with non-ASCII File Names" (PeopleCode Developer’s Guide).

You can use a file extension list to identify file types to accept or reject when using this function.

See "Using Administration Utilities" (System and Server Administration).

Parameters

Parameter Description

URLSource A reference to a URL. This can be either a URL identifier
in the form URL.URL_ID, or a string. This, along with the
DirAndSysFileName parameter, indicates the file's location.

Note: When the URLSource parameter is specified as a string
value, forward slashes (/) are required. Backward slashes (\)
are not supported for a string value.

See "Understanding URL Strings Versus URL
Objects" (PeopleCode Developer’s Guide).

DirAndSysFileName The relative path and system file name of the file on the file
server. This is appended to URLSource to make up the full
URL where the file is deleted from. This parameter takes a
string value.

Note: Because the DirAndSysFileName parameter is appended
to the URL, it also requires forward slashes (“/”). Backward
slashes (“\”) are not supported for this parameter.

PreserveCase Specify a Boolean value to indicate whether when searching
for the file specified by the DirAndSysFileName parameter,
 its file name extension is preserved or not; True, preserve the
case of the file name extension, False, convert the file name
extension to all lower case letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is
important that you use it in a consistent manner with all the
relevant file-processing functions or you may encounter
unexpected file-not-found errors.

Copyright © 1988, 2022, Oracle and/or its affiliates. 245



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was deleted successfully.

1 %Attachment_Failed File deletion failed due to an unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due to
some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error on
the HTTP repository.

If the HTTP repository resides on a
PeopleSoft web server, then you can
configure tracing on the web server
to report additional error details.

See "Enabling Tracing on the
Web Server or Application
Server" (PeopleCode Developer’s
Guide).

3 %Attachment_FileTransferFailed File deletion failed due to unspecified
error during FTP attempt.

The following are some possible
situations where %Attachment_
FileTransferFailed could be returned: No
response from server.

246  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSystNotFound could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

8 %Attachment_DestSysFailedLogin Unable to login to destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSysFailedLogin could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in certificates
used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

This error code applies to the following
storage locations: database records
only. The following are some possible
situations where %Attachment_
FileNotFound could be returned:

• Remote file not found.

• Failed to read remote file.

Copyright © 1988, 2022, Oracle and/or its affiliates. 247



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

10 %Attachment_DeleteFailed Cannot delete file.

This error code applies to the following
storage locations: FTP sites and HTTP
repositories. The following are some
possible situations where %Attachment_
DeleteFailed could be returned:

• Remote file not found.

• Failed to read remote file.

Example
&retcode = DeleteAttachment(URL.BKFTP, ATTACHSYSFILENAME);

An example of the DeleteAttachment function is provided in the demonstration application delivered
in the FILE_ATTACH_WRK derived/work record. This demonstration application is shown on the
PeopleTools Test Utilities page.

See "Using the PeopleTools Test Utilities Page" (PeopleCode Developer’s Guide).

Related Links
AddAttachment
CleanAttachments
CopyAttachments
DetachAttachment
GetAttachment
MAddAttachment
PutAttachment
ViewAttachment
"Understanding the File Attachment Functions" (PeopleCode Developer’s Guide)

DeleteEmailAddress

Syntax

DeleteEmailAddress(Type)

Description

Use the DeleteEmailAddress function to delete the email address associated with the specified type for the
current user. You can only have one email address of a specific type for a user.

248  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: You can only delete the Primary Email Address if it's the only address. If the email address you
want to delete is marked as the primary email address, and it is not the only email address, you must mark
another email address as primary before you can delete the email address you want to delete. Use the
MarkPrimaryEmailAddress function to set the primary email address.

Parameters

Parameter Description

Type Specify the type that you want to change the email address to.
 This parameter takes a string value. The valid values are:

Value Description

BB Blackberry email address

BUS Business email address

HOME Home email address

OTH Other email address

WORK Work email address

Returns

None.

Related Links
AddEmailAddress
ChangeEmailAddress
MarkPrimaryEmailAddress

DeleteFieldDefn

Syntax

DeleteFieldDefn(field_name)

Description

The DeleteFieldDefn function deletes the specified field.

Copyright © 1988, 2022, Oracle and/or its affiliates. 249



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

field_name Specify a field to be deleted.

Returns

An integer representing the following values:

Numeric Value Constant Description

0 %MDA_Success The specified field is deleted
successfully.

1 %MDA_Failed The specified field is not deleted.

3 %MDA_NotFound The specified field doesn’t exist.

4 %MDA_Unsupported The specified field is not created using
the PeopleCode FieldDefn class.

13 %MDA_FieldOnRecord The specified field is used on a record
definition.

14 %MDA_NoWriteAccess The user doesn’t have write permissions
to the field.

Related Links
CreateFieldDefn
GetFieldDefn

DeleteImage

Syntax

DeleteImage(scrollpath, target_row, [recordname.]fieldname)

where scrollpath is:

[SCROLL.level1_recname, level1_row, [SCROLL.level2_recname, level2_row,]] SCROLL.ta⇒

rget_recname

Description

Use the DeleteImage function to remove an image associated with a record field.

250  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: To update an image field using this function, be sure that PSIMAGEVER field is also on the same
record as the image field being updated.

Parameters

Parameter Description

scrollpath A construction that specifies a scroll area in the component
buffer.

target_row The row number of the target row.

[recordname .]fieldname The name of the field. The recordname prefix is not required
if the program that calls DeleteImage is on the recordname
record definition.

Returns

Returns a Boolean value: True if image was successfully deleted, False otherwise.

Example
&Rslt = DeleteImage(EMPL_PHOTO.EMPLOYEE_PHOTO);

Related Links
InsertImage

DeleteRecord

Syntax

DeleteRecord(level_zero_recfield)

Description

Use the DeleteRecord function to remove a high-level row of data and all dependent rows in other tables
from the database.

Note: This function remains for backward compatibility only. Use the Delete record class method instead.

DeleteRecord deletes the component’s level-zero row from the database, deletes any dependent rows in
other tables from the database, and exits the component.

This function, like DeleteRow, initially marks the record or row as needing to be deleted. At save time the
row is actually deleted from the database and cleared from the buffer.

This function works only if the PeopleCode is on a level-zero field. It cannot be used from
SavePostChange or WorkFlow PeopleCode.

Copyright © 1988, 2022, Oracle and/or its affiliates. 251



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
"Delete" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

level_zero_recfield A recordname.fieldname reference identifying any field on the
level-zero area of the page.

Returns

Optionally returns a Boolean value indicating whether the deletion was completed successfully.

Example

The following example, which is in SavePreChange PeopleCode on a level-zero field, deletes the high-
level row and all dependent rows in other tables if the current page is EMPLOYEE_ID_DELETE.

if %Page = PAGE.EMPLOYEE_ID_DELETE then
     &success = DeleteRecord(EMPLID);
end-if;

Related Links
DeleteRow

DeleteRecordDefn

Syntax

DeleteRecordDefn(record_name)

Description

The DeleteRecordDefn function drops the view and deletes the specified record definition.

Parameters

Parameter Description

record_name Specifies the record definition to be deleted.

Returns

An integer representing one of the following values:

252  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

0 %MDA_Success The record definition is deleted
successfully.

1 %MDA_Failed The record definition is not deleted.

3 %MDA_NotFound The specified record doesn’t exist.

4 %MDA_Unsupported The specified record is not created using
the PeopleCode RecordDefn class.

14 %MDA_NoWriteAccess The user doesn’t have write permissions
to the record.

16 %MDA_ViewNotDropped This value is returned if an error occurs
while dropping a view.

Related Links
CreateRecordDefn
GetRecordDefn

DeleteRow

Syntax

DeleteRow(scrollpath, target_row)

Where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

Description

Use the DeleteRow function to delete rows programmatically.

Note: This function remains for backward compatibility only. Use the DeleteRow rowset class method
instead.

See "DeleteRow" (PeopleCode API Reference).

A call to this function causes the RowDelete event sequence to fire, as if an user had manually deleted a
row.

Copyright © 1988, 2022, Oracle and/or its affiliates. 253



PeopleCode Built-in Functions and Language Constructs Chapter 1

DeleteRow cannot be executed from the same scroll level where the deletion will take place, or from a
lower scroll level. Place the PeopleCode in a higher scroll level record.

When DeleteRow is used in a loop, you have to process rows from high to low to achieve the correct
results, that is, you must delete from the bottom up rather than from the top down. This is necessary
because the rows are renumbered after they are deleted (if you delete row one, row two becomes row
one).

Related Links
"DeleteRow" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row The row number of the row to delete.

Returns

Boolean (optional). DeleteRow returns a Boolean value indicating whether the deletion was completed
successfully.

Example

In the following example DeleteRow is used in a For loop. The example checks values in each row, then
conditionally deletes the row. Note the syntax of the For loop, including the use of the -1 in the Step
clause to loop from the highest to lowest values. This ensures that the renumbering of the rows will not
affect the loop.

For &L1 = &X1 To 1 Step - 1
    &SECTION = FetchValue(AE_STMT_TBL.AE_SECTION, &L1);
    &STEP = FetchValue(AE_STMT_TBL.AE_STEP, &L1);
    If None(&SECTION, &STEP) Then
       DeleteRow(RECORD.AE_STMT_TBL, &L1);
    End-If;
 End-For;

Related Links
InsertRow
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

254  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

DeleteSQL

Syntax

DeleteSQL([SQL.]sqlname[, dbtype[, effdt]])

Description

Use the DeleteSQL function to programmatically delete a SQL definition. The SQL definition must
have already been created and saved, either using the CreateSQL and StoreSQL functions, or by using
Application Designer.

When you create a SQL definition, you must create a base statement before you can create other types of
statements, that is, one that has a dbtype as GENERIC and effdt as the null date (or Date(19000101)). If
you specify a base (generic) statement to be deleted, all statements as well as the generic statement are
deleted.

If you specify a non-generic statement that ends up matching the generic statement, DeleteSQL does not
delete anything, and returns False.

You must commit all database changes prior to using this function. This is to avoid locking critical
Tools tables and hence freezing all other users. You receive a runtime error message if you try to use this
function when there are pending database updates, and your PeopleCode program terminates. You need
to commit any database updates prior to using this function. The CommitWork PeopleCode function has
been enhanced to allow this.

Parameters

Parameter Description

sqlname Specify the name of a SQL definition. This is either in the
form SQL.sqlname or a string value giving the sqlname.

dbtype Specify the database type associated with the SQL definition.
 This parameter takes a string value. If dbtype isn’t specified
or is null (""), it set by default to the current database type (the
value returned from the %DbName system variable.)

Valid values for dbtype are as follows. These values are not
case sensitive:

• APPSRV

• DB2ODBC

• DB2UNIX

• MICROSFT

• ORACLE

Note: Database platforms are subject to change.

Copyright © 1988, 2022, Oracle and/or its affiliates. 255



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

effdt Specify the effective date associated with the SQL definition.
 If effdt isn’t specified, it is set by default to the current as of
date, that is, the value returned from the %AsOfDate system
variable.

Returns

A Boolean value: True if the delete was successful, False if the specified SQL statement wasn’t found,
and terminates with an error message if there was another problem (that is, date in incorrect format, and
so on.)

Example

The following code deletes the ABCD_XY SQL definition for the current DBType and as of date:

&RSLT = DeleteSQL(SQL.ABC_XY);

If NOT(&RSLT) Then
   /* SQL not found − do error processing */
End-if;

The following code deletes the ABCD_XY SQL Definition for the current DBType and November 3,
1998:

&RSLT = DeleteSQL(SQL.ABCD_XY, "",Date(19981103));

Related Links
CreateSQL
FetchSQL
GetSQL
StoreSQL
CommitWork
"Understanding SQL Class" (PeopleCode API Reference)
%DbName
%AsOfDate

DeleteSystemPauseTimes

Syntax

DeleteSystemPauseTimes(StartDay, StartTime, EndDay, EndTime)

Description

Use the DeleteSystemPauseTimes function to delete pause times that occur on your system by adding a
row to the system pause times table.

256  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

A pause time is an interval of time during which the node becomes inactive. When the pause time begins,
the node is shut down until the pause time is scheduled to end.

Parameters

Parameter Description

StartDay Specify a number from 0-6. The values are:

Value Description

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Parameter Description

StartTime Specify a time, in seconds, since midnight.

EndDay Specify a number from 0-6. The values are:

Value Description

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

Copyright © 1988, 2022, Oracle and/or its affiliates. 257



PeopleCode Built-in Functions and Language Constructs Chapter 1

Value Description

4 Thursday

5 Friday

6 Saturday

Parameter Description

EndTime Specify a time, in seconds, since midnight.

Returns

A Boolean value: True if the system pause time specified was deleted, False otherwise.

Example
Component Boolean &spt_changed;

/* deleting a system pause time interval; */

If Not DeleteSystemPauseTimes(PSSPTIMES.STARTINGDAY, PSSPTIMES.STARTINGSECOND, PSSP⇒

TIMES.ENDINGDAY, PSSPTIMES.ENDINGSECOND) Then
   Error MsgGetText(117, 15, "");
Else
   &spt_changed = True;

/* to force a save; */

   PSSPTIMES.MSGSPTNAME = " ";

   DoSave();
End-If;

Related Links
AddSystemPauseTimes
"Understanding Pausing Nodes" (Integration Broker Service Operations Monitor)

DeQueue

Syntax

DeQueue(physical queue ID, task type, task number, agent ID)

258  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Once a task that has been placed in a queue by the EnQueue function and has been completed by the
agent, use the DeQueue function to notify the queue server. The queue server removes the task from the
queue and subtracts the cost of that task from the agent's workload.

Note: The queue server does not allow a task to be dequeued if the agent who owns that task is not logged
on to that particular queue server. PeopleSoft recommends that you only use the DeQueue function in
application pages that the MultiChannel Framework Console launches when agents accept or activate
assigned tasks.

Parameters

Parameter Description

physical queue ID The physical queue is the internal representation of the
logical queue that the agent signs onto and to which the task
currently belongs. This is a string value, such as “sales3”
or “marketing2.” You retrieve the current physical queue
from the query string in the URL of the page launched by the
MultiChannel Framework console, using the GetParameter
request class method with the value ps_qid.

task type Specifies the type of task that an agent completed. It is a string
value. The valid values are:

• email

• generic

Note: This parameter is valid only for persistent tasks (email
and generic). It is not valid for chat or voice tasks.
You can retrieve the value from the query string in the URL of
the application page launched by the MultiChannel Framework
console. Use the GetParameter request class method with the
value ps_tasktype.

task number Uniquely identifies a particular task. This is the task number
returned by the Enqueue function when the system first
inserted the task into a queue. This is a string value.

You can retrieve the value from the query string in the URL of
the application page launched by the MultiChannel Framework
console. Use the GetParameter request class method with the
value ps_tasknum.

agent ID Identifies the agent who processed the task. This is a string
value.

You can retrieve the value from the query string in the URL of
the application page launched by the MultiChannel Framework
console. Use the GetParameter request class method with the
value ps_agentid.

Copyright © 1988, 2022, Oracle and/or its affiliates. 259



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

Returns 0 for success. Otherwise, it returns a message number. The message set ID for MultiChannel
Framework is 162.

For example, 1302 is returned when an invalid task type or no value is provided.

Example
PSMCFFUNCLIB.MCF_QUEUE.Value = %Request.GetParameter("ps_qid");
PSMCFFUNCLIB.MCF_TASKTYPE.Value = %Request.GetParameter("ps_tasktype");
PSMCFFUNCLIB.MCF_TASKNUM.Value = %Request.GetParameter("ps_tasknum");
PSMCFFUNCLIB.MCF_AGENTID.Value = %Request.GetParameter("ps_agentid");

&nret = DeQueue(PSMCFFUNCLIB.MCF_QUEUE, PSMCFFUNCLIB.MCF_TASKTYPE, PSMCFFUNCLIB.MCF⇒

_TASKNUM, PSMCFFUNCLIB.MCF_AGENTID);

If &nret = 0 Then
      MessageBox(0, "", 0, 0, "Successfully dequeued.");
      End-If

Related Links
EnQueue

DetachAttachment

Syntax

DetachAttachment(URLSource, DirAndSysFileName, UserFileName [,PreserveCase])

Description

Use the DetachAttachment function to download a file from its source storage location and save it locally
on the end-user machine. The file is sent to the browser with appropriate HTTP headers to cause the
browser to display a save dialog box to the user.

The end user can specify any file name to save the file.

Additional information that is important to the use of DetachAttachment can be found in the PeopleTools:
PeopleCode Developer's Guide:

• PeopleTools supports multiple types of storage locations.

See "Understanding File Attachment Storage Locations" (PeopleCode Developer’s Guide).

• The PeopleCode file attachment functions do not provide text file conversions when files are attached
or viewed.

See "Considerations When Attaching Text Files" (PeopleCode Developer’s Guide).

• Because DetachAttachment is interactive, it is known as a “think-time” function, and is restricted
from use in certain PeopleCode events.

260  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

See "Restrictions on Invoking Functions in Certain PeopleCode Events" (PeopleCode Developer’s
Guide).

• You can restrict the file types that can be uploaded to or downloaded from your PeopleSoft system.

See "Restricting the File Types That Can Be Uploaded or Downloaded" (PeopleCode Developer’s
Guide).

Problems Downloading Files

If you need to use the SetLanguage built-in function to change languages, invoke SetLanguage prior to
invoking ViewAttachment or DetachAttachment. You must place the call to SetLanguage in a different
PeopleCode program and event from the PeopleCode program and event that invokes ViewAttachment or
DetachAttachment.

Parameters

Parameter Description

URLSource A reference to a URL. This can be either a URL identifier the
form URL.URL_ID, or a string.

Note: When the URLSource parameter is specified as a string
value, forward slashes (/) are required. Backward slashes (\)
are not supported for a string value.

See "Understanding URL Strings Versus URL
Objects" (PeopleCode Developer’s Guide).

DirAndSysFileName The relative path and file name of the file on the file server.
 This is appended to URLSource to make up the full URL
where the file is transferred from. This parameter takes a string
value.

Note: Because the DirAndSysFileName parameter is appended
to the URL, it also requires forward slashes (“/”). Backward
slashes (“\”) are not supported for this parameter.

UserFileName The default file name provided by the Detach dialog.

PreserveCase Specify a Boolean value to indicate whether when searching
for the file specified by the DirAndSysFileName parameter,
 its file name extension is preserved or not; True, preserve the
case of the file name extension, False, convert the file name
extension to all lowercase letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is
important that you use it in a consistent manner with all the
relevant file-processing functions or you may encounter
unexpected file-not-found errors.

Copyright © 1988, 2022, Oracle and/or its affiliates. 261



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

Important! If file type restrictions are
changed so that access to a previously
uploaded file is now blocked, a call
to DetachAttachment will return
%Attachment_Success, even though the
file and its contents are not downloaded.

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due to
some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to no-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error on
the HTTP repository.

If the HTTP repository resides on a
PeopleSoft web server, then you can
configure tracing on the web server
to report additional error details.

See "Enabling Tracing on the
Web Server or Application
Server" (PeopleCode Developer’s
Guide).

2 %Attachment_Cancelled File transfer didn't complete because the
operation was canceled by the end user.

262  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where %Attachment_
FileTransferFailed could be returned:

• Failed due to mismatch in file sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded.

• No response from server.

• Failed to overwrite the file on
remote server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSystNotFound could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

Copyright © 1988, 2022, Oracle and/or its affiliates. 263



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSysFailedLogin could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in certificates
used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where %Attachment_
FileNotFound could be returned:

• Remote file not found.

• Failed to read remote file.

Example
&retcode = DetachAttachment(URL.MYFTP, ATTACHSYSFILENAME, ATTACHUSERFILE);

An example of the DetachAttachment function is provided in the demonstration application delivered
in the FILE_ATTACH_WRK derived/work record. This demonstration application is shown on the
PeopleTools Test Utilities page.

See "Using the PeopleTools Test Utilities Page" (PeopleCode Developer’s Guide).

Related Links
AddAttachment
CleanAttachments
CopyAttachments
DeleteAttachment
GetAttachment

264  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

MAddAttachment
PutAttachment
ViewAttachment
"Understanding the File Attachment Functions" (PeopleCode Developer’s Guide)

DisableMenuItem

Syntax

DisableMenuItem(BARNAME.menubar_name, ITEMNAME.menuitem_name)

Description

Use the DisableMenuItem function to disable (make unavailable) the specified menu item. To apply this
function to a pop-up menu, use the PrePopup Event of the field with which the pop-up menu is associated.

If you’re using this function with a pop-up menu associated with a page (not a field), the earliest event
you can use is the PrePopup event for the first "real" field on the page (that is, the first field listed in the
Order view of the page in Application Designer.)

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Parameters

Parameter Description

menubar_name Name of the menu bar that owns the menu item, or, in the case
of pop-up menus, the name of the pop-up menu that owns the
menu item.

menuitem_name Name of the menu item.

Returns

None.

Example
DisableMenuItem(BARNAME.MYPOPUP1, ITEMNAME.DO_JOB_TRANSFER);

Related Links
EnableMenuItem
HideMenuItem
"PrePopup Event" (PeopleCode Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 265



PeopleCode Built-in Functions and Language Constructs Chapter 1

DiscardRow

Syntax

DiscardRow()

Description

Use the DiscardRow function to prevent a row from being added to a page scroll during Row Select
processing. This function is valid only in RowSelect PeopleCode. When DiscardRow is called during
RowSelect processing, the current row is skipped (not added to the scroll). Processing then continues
on the next row, unless the StopFetching function has also been called, in which case no more rows are
added to the page.

If you try to discard a row and it's the only row in the scroll, the row is not discarded. You will still have
one blank row in your scroll.

DiscardRow has the same functionality as the Warning function in the RowSelect event. The anomalous
behavior of Warning is supported for compatibility with previous releases of PeopleTools.

Note: RowSelect processing is used infrequently, because it is more efficient to filter out rows of data
using a search view or an effective-dated record before the rows are selected into the component buffer
from the database server.

In row select processing, the following actions occur:

1. The Component Processor checks for more rows to add to the component.

2. The Component Processor initiates the RowSelect event, which triggers any RowSelect PeopleCode
associated with the record field or component record.

This enables PeopleCode to filter rows using the StopFetching and DiscardRow functions.
StopFetching causes the system to add the current row to the component, and then to stop adding rows
to the component. DiscardRow filters out a current row, and then continues the row select process.

3. If neither the StopFetching nor DiscardRow function is called, the Component Processor adds the
rows to the page and checks for the next row.

The process continues until there are no more rows to add to the component buffers. If both
StopFetching and DiscardRow are called, the current row is not added to the page, and no more rows
are added to the page.

266  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The following flowchart shows this row select processing logic:

Parameters

None.

Returns

None.

Related Links
StopFetching

Copyright © 1988, 2022, Oracle and/or its affiliates. 267



PeopleCode Built-in Functions and Language Constructs Chapter 1

Warning
"Row Select Processing" (PeopleCode Developer’s Guide)

DoCancel

Syntax

DoCancel( )

Description

Use the DoCancel function to cancel the current page.

• In the page, the DoCancel function terminates the current component and returns the user to the
search dialog box.

• In the menu, the DoCancel function terminates the current component and returns the user to the
current menu with no component active.

DoCancel terminates any PeopleCode programs executing prior to a save action. It does not stop
processing of PeopleCode in SaveEdit, SavePreChange, and SavePostChange events.

Parameters

None.

Returns

None.

Related Links
DoSave
DoSaveNow
DoModal
EndModal
WinEscape

DoesTableExist

Syntax

DoesTableExist(DB_tbl_name)

Description

Use the DoesTableExist function to return a boolean value indicating whether the database table exists.

268  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

DB_tbl_name Specifies the name of the database table as a string value.

Returns

A boolean value.

Example
Local boolean &IsExist = DoesTableExist("PSTIMEZONEMAP");

DoModal

Syntax

DoModal(Page.page_name, title, xpos, ypos, [level, scroll_path, target_row])

In which scrollpath is:

[Record.level1_recname, level1_row, [Record.level2_recname, level2_row, ]] Record.t⇒

arget_recname

To prevent ambiguous references, you can also use Scroll. scrollname, in which scrollname is the same as
the scroll level’s primary record name.

Description

Use the DoModal function to display a secondary page in a modal, secondary window with a child
relationship to the parent window. This means that the user must dismiss the secondary window before
continuing work in the page from which the secondary window was called. DoModal can display a single
page modally. To display an entire component modally, use DoModalComponent.

Important! The DoModal and DoModalComponent functions support fluid-to-fluid, or classic-to-classic
parent/child relationships only. See "Transfer and Modal Functions" (Fluid User Interface Developer’s
Guide) for more information on which functions are available for which purposes.

Alternatively, you can specify a secondary page in a command push button definition without using
PeopleCode. This may be preferable for performance reasons.

Any variable declared as a component variable will still be defined after calling the DoModal function.
If you call DoModal without specifying a level number or any record parameters, the function uses the
current context as the parent. See "Using Secondary Pages" (Application Designer Developer’s Guide).

Copyright © 1988, 2022, Oracle and/or its affiliates. 269



PeopleCode Built-in Functions and Language Constructs Chapter 1

Restrictions on Use in PeopleCode Events

Control does not return to the line after DoModal until after the user has dismissed the secondary page.
This interruption of processing makes DoModal a “think-time” function, which means that it shouldn’t be
used in any of the following PeopleCode events:

• SavePreChange.

• SavePostChange.

• Workflow.

• RowSelect.

• Any PeopleCode event that executes as a result of a ScrollSelect, ScrollSelectNew, RowScrollSelect,
or RowScrollSelectNew function call.

• Any PeopleCode event that executes as a result of a Rowset classes Select method or SelectNew
method.

• You should not use DoModal or any other think-time function in FieldChange when the field is
associated with an edit box, long edit box, or drop-down list box. Use FieldEdit instead.

However, DoModal can be used in FieldChange when the field is associated with a push button, radio
button, check box, or hyperlink.

In addition, you can't use DoModal in the SearchInit event.

See "Think-Time Functions" (PeopleCode Developer’s Guide).

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
component interface.

Considerations for the DoModal Function and Catching Exceptions

Using the DoModal function inside a try-catch block does not catch PeopleCode exceptions thrown in the
new component. Starting a new component starts a brand new PeopleCode evaluation context. Exceptions
are only caught for exceptions thrown within the current component.

In the following code example, the catch statement only catches exceptions thrown in the code prior to
the DoModal, but not any exceptions that are thrown within the new component:

/* Set up transaction */
If %CompIntfcName = "" Then
   try
      &oTrans = &g_ERMS_TransactionCollection.GetTransactionByName(RB_EM_WRK.DESCR)⇒

;
      &sSearchPage = &oTrans.SearchPage;
      &sSearchRecord = &oTrans.SearchRecord;
      &sSearchTitle = &oTrans.GetSearchPageTitle();
      If Not All(&sSearchPage, &sSearchRecord, &sSearchTitle) Then
         Error (MsgGetText(17834, 8081, "Message Not Found"));
      End-If;
      &c_ERMS_SearchTransaction = &oTrans;

      /* Attempt to transfer to hidden search page with configurable filter */

270  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

      &nModalReturn = DoModal(@("Page." | &sSearchPage), &sSearchTitle, - 1, - 1);
   catch Exception &e
      Error (MsgGetText(17834, 8082, "Message Not Found"));
   end-try;

Parameters

Parameter Description

page_name The name of the secondary page.

title The text that displays in the caption of the secondary page.

xpos The pixel coordinates of the top left corner of the secondary
page, offset from the top left corner of the parent page (the
default of -1, -1 means centered).

ypos The pixel coordinates of the top right corner of the secondary
page, offset from the top right corner of the parent page (the
default of -1, -1 means centered).

level Specifies the level of the scroll level on the parent page that
contains the row corresponding to level 0 on the secondary
page.

scroll_path A construction that specifies a scroll level in the component
buffer.

target_row The row number of the row in the parent page corresponding
to the level 0 row in the secondary page.

Returns

Returns a number that indicates how the secondary page was terminated. A secondary page can be
terminated by the user clicking a built-in OK or Cancel button, or by a call to the EndModal function in a
PeopleCode program. In either case, the return value of DoModal is one of the following:

• 1 if the user clicked OK in the secondary page, or if 1 was passed in the EndModal function call that
terminated the secondary page.

• 0 if the user clicked Cancel in the secondary page, or if 0 was passed in the EndModal function call
that terminated the secondary page.

Example

DoModal(Page.EDUCATION_DTL, MsgGetText(1000, 167, "Education Details - %1", EDUCATN⇒

.DEGREE), - 1, - 1, 1, Record.EDUCATN, CurrentRowNumber());

Copyright © 1988, 2022, Oracle and/or its affiliates. 271



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
DoModalComponent
DoModalX
EndModal
IsModal
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)
"Implementing Modal Transfers" (PeopleCode Developer’s Guide)

DoModalComponent

Syntax

DoModalComponent(MenuName.MENU_NAME, BarName.BAR_NAME, ItemName.MENU_ITEM_NAME,
Page.COMPONENT_ITEM_NAME, action, Record.SHARED_RECORD_NAME, keylist)

In which keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2]. . .

Description

Use the DoModalComponent function to display a secondary component in a modal, secondary window
with a child relationship to the parent window. This means that the user must dismiss the secondary
window before continuing work in the page from which the secondary window was called. The secondary
component launches modally from within an originating component. After the secondary component
is displayed, the user can’t proceed with changes to the originating component until either accepting or
canceling the secondary component.

Important! The DoModal and DoModalComponent functions support fluid-to-fluid, or classic-to-classic
parent/child relationships only. See "Transfer and Modal Functions" (Fluid User Interface Developer’s
Guide) for more information on which functions are available for which purposes.

Secondary components can be displayed in any of the following action modes: Add, Update/Display,
Update/Display All, Correction. A secondary component can be launched from any component, including
another secondary component. You can also use DoModalComponent from a secondary page.

The originating component and the secondary component share data, including search keys, using a
Shared Work Record or the values in the keylist parameter. If valid search keys are provided in the shared
work record and populated with valid values before launching the secondary component, the search is
conducted using the provided search key values.

Valid search keys are required for fluid applications; otherwise, an error occurs. In classic applications
only, if the keylist parameter isn't used and no search keys are provided, or if search key fields contain
invalid values, the user accesses the secondary component using a search dialog box.

272  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: The user may see a different title for a search page if they enter the search page using this function
versus from the regular navigation.

In the COMPONENT_ITEM_NAME parameter, make sure to pass the component item name for the page,
not the page name.

The component item name is specified in the component definition, in the Item Name column on the
row corresponding to the specific page, as shown here. In this example, the PERSONAL_DATA page
name appears twice: once with an item name of PERSONAL_DATA_1, and once with the item name of
PERSONAL_DATA_2.

Shared Work Records

The originating component and the secondary component share fields in a Derived/Work record called
a shared work record. Shared fields from this record must be placed at level zero of both the originating
component and the secondary component.

You can use the shared fields to:

• Pass values that are assigned to the search keys in the secondary component search record. If these
fields are missing or not valid, the search dialog box appears, enabling the user to enter search keys.

• Optionally pass other values from the originating component to the secondary component.

• Pass values back from the secondary component to the originating component for processing.

To do this, you have to write PeopleCode that:

• Assigns values to fields in the shared work record in the originating page at some point before the
modal transfer takes place.

• Accesses and changes the values, if necessary, in the secondary component.

• Accesses the values from the shared work record from the originating component after the secondary
component is dismissed.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
component interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Copyright © 1988, 2022, Oracle and/or its affiliates. 273



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

MenuName.MENU_NAME Name of the menu through which the secondary component is
accessed.

BarName.BAR_NAME Name of the menu bar through which the secondary
component is accessed.

ItemName.MENU_ITEM_NAME Name of the menu item through which the secondary
component is accessed.

Page.COMPONENT_ITEM_NAME The component item name of the page to be displayed on top
of the secondary component when it displays. The component
item name is specified in the component definition.

action String representing the action mode in which to start up the
component. You can use either a character value (passed in as
a string) or a constant. See below.

If only one action mode is allowed for the component, that
action mode is used. If more than one action mode is allowed,
 the user can select which mode to come up in.

Record.SHARED_RECORD_NAME The record name of the shared work record. This record must
include:

• Fields that are search keys in the secondary component
search record; if search key fields are not provided,
 or if they are invalid, the user accesses the secondary
component using the search dialog box.

• Other fields to pass to the secondary component.

• Fields to get back from the secondary component after it
has finished processing.

274  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

keylist Important! Valid search keys are required for fluid
applications; otherwise, an error occurs. In classic applications
only, if the keylist parameter isn't used and no search keys are
provided, or if search key fields contain invalid values, the
user accesses the secondary component using a search dialog
box.

The keylist is optional list of field specifications used to select
a unique row at level zero in the page you are transferring to,
 by matching keys in the page you are transferring from. It can
also be an already instantiated record object. If a record object
is specified, any field of that record object that is also a field
of the search record for the destination component is added to
keylist. The keys in keylist must uniquely identify a row in the
"to" page search record. If a unique row is not identified, the
search dialog box appears.

If the keylist parameter is not supplied then the destination
components' search key must be found as part of the source
component's level 0 record buffer.

The values for the action parameter can be as follows:

Numeric Value Constant Value Description

A %Action_Add Add

U %Action_UpdateDisplay Update/Display

L %Action_UpdateDisplayAll Update/Display All

C %Action_Correction Correction

E %Action_DataEntry Data Entry

P %Action_Prompt Prompt

Returns

Returns a Boolean that indicates how the secondary page was terminated. A secondary page can be
terminated by the user clicking a built-in OK or Cancel button, or by a call to the EndModalComponent
function in a PeopleCode program. In either case, the return value of DoModalComponent is one of the
following:

• True if the user clicked OK in the secondary page, or if 1 was passed in the EndModal function call
that terminated the secondary page.

Copyright © 1988, 2022, Oracle and/or its affiliates. 275



PeopleCode Built-in Functions and Language Constructs Chapter 1

• False if the user clicked Cancel in the secondary page, or if 0 was passed in the EndModal function
call that terminated the secondary page.

Example

The following example shows how to structure a DoModalComponent function call:

DoModalComponent(MenuName.MAINTAIN_ITEMS_FOR_INVENTORY, BarName.USE_A, ItemName.ITE⇒

M_DEFINITION, Component.ESTABLISH_AN_ITEM, "C", Record.NEW7_WRK);

Supporting PeopleCode is required if you must assign values to fields in the shared work record or access
those values, either from the originating component, or from the secondary component.

Related Links
DoModal
DoModalXComponent
EndModalComponent
IsModalComponent
Transfer
TransferPage
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)
"Implementing Modal Transfers" (PeopleCode Developer’s Guide)

DoModalComponentPopup

Syntax

DoModalComponentPopup(modal_options, Cancel_button_ID, title, MenuName.menuname,
BarName.BARNAME, ItemName.MENUITEM_NAME, Page.COMPONENT_ITEM_NAME, action,
Record.SHARED_RECORD_NAME, keylist)

In which keylist is a list of field references in the form:

[RECORD_NAME.]field1 [, [recordname.]field2]. . .

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2]. . .

Description

Use DoModalComponentPopup as the recommended function to display a secondary fluid component
in a modal, secondary window with a child relationship to the parent window. This function includes a
modal_options parameter, which allows you to specify characteristics of the modal window such as height
and width.

Important! Use the DoModalComponentPopup and DoModalPopup functions in fluid applications only.
See "Transfer and Modal Functions" (Fluid User Interface Developer’s Guide) for more information on
which functions are available for which purposes.

276  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Using DoModalComponentPopup means that the user must dismiss the secondary window before
continuing work in the page from which the secondary window was called. The secondary component
launches modally from within an originating component. After the secondary component is displayed,
the user can’t proceed with changes to the originating component until either accepting or canceling the
secondary component.

Secondary components can be displayed in any of the following action modes: Add, Update/Display,
Update/Display All, Correction. A secondary component can be launched from any component, including
another secondary component. You can also use DoModalComponentPopup from a secondary page.

The originating component and the secondary component share data, including search keys, using a
shared work record or the values in the keylist parameter. If valid search keys are provided in the shared
work record and populated with valid values before launching the secondary component, the search is
conducted using the provided search key values.

Valid search keys are required for fluid applications; otherwise, an error occurs. In classic applications
only, if the keylist parameter isn't used and no search keys are provided, or if search key fields contain
invalid values, the user accesses the secondary component using a search dialog box.

Note: The user may see a different title for a search page if they enter the search page using this function
versus from the regular navigation.

In the COMPONENT_ITEM_NAME parameter, make sure to pass the component item name for the page,
not the page name.

The component item name is specified in the component definition, in the Item Name column on the
row corresponding to the specific page, as shown here. In this example, the PERSONAL_DATA page
name appears twice: once with an item name of PERSONAL_DATA_1, and once with the item name of
PERSONAL_DATA_2.

Shared Work Records

The originating component and the secondary component share fields in a derived/work record called a
shared work record. Shared fields from this record must be placed at level zero of both the originating
component and the secondary component.

You can use the shared fields to:

• Pass values that are assigned to the search keys in the secondary component search record. If these
fields are missing or not valid, the search dialog box appears, enabling the user to enter search keys.

• Optionally pass other values from the originating component to the secondary component.

• Pass values back from the secondary component to the originating component for processing.

Copyright © 1988, 2022, Oracle and/or its affiliates. 277



PeopleCode Built-in Functions and Language Constructs Chapter 1

To do this, you have to write PeopleCode that:

• Assigns values to fields in the shared work record in the originating page at some point before the
modal transfer takes place.

• Accesses and changes the values, if necessary, in the secondary component.

• Accesses the values from the shared work record from the originating component after the secondary
component is dismissed.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
component interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Parameters

Parameter Description

modal_options Specifies custom modal options as a String value. See "Modal
Options" (Fluid User Interface Developer’s Guide) for more
information.

Cancel_button_ID Specifies the field ID of the cancel button as a string value.

title Specifies a string value to be displayed in the caption of the
secondary page.

MenuName.MENUNAME Name of the menu through which the secondary component is
accessed.

BarName.BARNAME Name of the menu bar through which the secondary
component is accessed.

ItemName.MENUITEM_NAME Name of the menu item through which the secondary
component is accessed.

Page.COMPONENT_ITEM_NAME The component item name of the page to be displayed on top
of the secondary component when it displays. The component
item name is specified in the component definition.

action String representing the action mode in which to start up the
component. You can use either a character value (passed in as
a string) or a constant. See below.

278  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

If only one action mode is allowed for the component, that
action mode is used. If more than one action mode is allowed,
 the user can select which mode to come up in.

Record.SHARED_RECORD_NAME The record name of the shared work record (preceded by the
reserved word Record). This record must include:

• Fields that are search keys in the secondary component
search record; if search key fields are not provided,
 or if they are invalid, the user accesses the secondary
component using the search dialog box.

• Other fields to pass to the secondary component.

• Fields to get back from the secondary component after it
has finished processing.

keylist Important! Valid search keys are required for fluid
applications; otherwise, an error occurs. In classic applications
only, if the keylist parameter isn't used and no search keys are
provided, or if search key fields contain invalid values, the
user accesses the secondary component using a search dialog
box.

The keylist is optional list of field specifications used to select
a unique row at level zero in the page you are transferring to,
 by matching keys in the page you are transferring from. It can
also be an already instantiated record object. If a record object
is specified, any field of that record object that is also a field
of the search record for the destination component is added to
keylist. The keys in keylist must uniquely identify a row in the
"to" page search record. If a unique row is not identified, the
search dialog box appears.

If the keylist parameter is not supplied then the destination
components' search key must be found as part of the source
component's level 0 record buffer.

The values for the action parameter can be as follows:

Numeric Value Constant Value Description

A %Action_Add Add

U %Action_UpdateDisplay Update/Display

L %Action_UpdateDisplayAll Update/Display All

C %Action_Correction Correction

Copyright © 1988, 2022, Oracle and/or its affiliates. 279



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

E %Action_DataEntry Data Entry

P %Action_Prompt Prompt

Returns

Returns a Boolean that indicates how the secondary page was terminated. A secondary page can be
terminated by the user clicking a built-in OK or Cancel button, or by a call to the EndModalComponent
function in a PeopleCode program. In either case, the return value of DoModalComponentPopup is one of
the following:

• True if the user clicked OK in the secondary page, or if 1 was passed in the EndModal function call
that terminated the secondary page.

• False if the user clicked Cancel in the secondary page, or if 0 was passed in the EndModal function
call that terminated the secondary page.

Example

The following example shows how to structure a DoModalComponentPopup function call:

Local string &sPopupOptions = "bFullScreen@1;";
Local string &sCancelButtonId = "";
Local string &sTemp = &srchPivotGrid.Prompt.PageName;
&srchPivotGrid.Prompt.PageName = Page.PTPG_GRIDVIEWERNUI;

Local boolean &ret = DoModalComponentPopup(&sPopupOptions, &sCancelButtonId, &srchP⇒

ivotGrid.m_model.getModelTitle(), MenuName.PTPG_WIZ_MENU, BarName.PTPG_MENU, ItemNa⇒

me.PTPG_NUI_VWGRID, Page.PTPG_GRIDVIEWERNUI, "U", Record.PTPG_NUI_WRK);
&srchPivotGrid.Prompt.PageName = &sTemp;

Supporting PeopleCode is required if you must assign values to fields in the shared work record or access
those values, either from the originating component, or from the secondary component.

Related Links
DoModalPopup
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)
"Implementing Modal Transfers" (PeopleCode Developer’s Guide)

DoModalPanelGroup

Syntax

DoModalPanelGroup(MENUNAME.menuname, BARNAME.barname, ITEMNAME.menuitem_name,
PANEL.panel_group_item_name, action, RECORD.shared_record_name)

280  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the DoModalPanelGroup function to launch a secondary component.

Note: The DoModalPanelGroup function is supported for compatibility with previous releases of
PeopleTools. Future applications should use DoModalComponent instead.

Related Links
DoModalComponent

DoModalPopup

Syntax

DoModalPopup(modal_options, Cancel_button_ID, display_only, cached, Page.PAGE_NAME,⇒

title, xpos, ypos[, level, scrollpath, target_row])

In which scrollpath is:

[Record.level1_recname, level1_row, [Record.level2_recname, level2_row, ]] Record.t⇒

arget_recname

To prevent ambiguous references, you can also use Scroll. scrollname, in which scrollname is the same as
the scroll level’s primary record name.

Description

Use DoModalPopup as the recommended function to display a secondary fluid page in a modal,
secondary window with a child relationship to the parent window. This function includes a modal_options
parameter, which allows you to specify characteristics of the modal window such as height and width.

Important! Use the DoModalComponentPopup and DoModalPopup functions in fluid applications only.
See "Transfer and Modal Functions" (Fluid User Interface Developer’s Guide) for more information on
which functions are available for which purposes.

Using DoModalPopup means that the user must dismiss the secondary window before continuing work
in the page from which the secondary page was called. In addition, DoModalPopup can display the
secondary page in a display-only mode.

Note: Alternatively, you can specify a secondary page in a command push button definition without using
PeopleCode. This may be preferable for performance reasons, especially with PeopleSoft Pure Internet
Architecture.

DoModalPopup can display a single page modally. To display an entire component modally, use
DoModalComponentPopup. Any variable declared as a component variable will still be defined after
calling the DoModalPopup function. If you call DoModalPopup without specifying a level number
or any record parameters, the function uses the current context as the parent. See "Using Secondary
Pages" (Application Designer Developer’s Guide).

Copyright © 1988, 2022, Oracle and/or its affiliates. 281



PeopleCode Built-in Functions and Language Constructs Chapter 1

Restrictions on Use in PeopleCode Events

Control does not return to the line after DoModalPopup until after the user has dismissed the secondary
page. This interruption of processing makes DoModalPopup a “think-time” function, which means that it
shouldn’t be used in any of the following PeopleCode events:

• SavePreChange.

• SavePostChange.

• Workflow.

• RowSelect.

• Any PeopleCode event that executes as a result of a ScrollSelect, ScrollSelectNew, RowScrollSelect,
or RowScrollSelectNew function call.

• Any PeopleCode event that executes as a result of a Rowset class Select method or SelectNew
method.

• You should not use DoModalPopup or any other think-time function in FieldChange when the field is
associated with an edit box, long edit box, or drop-down list box. Use FieldEdit instead.

However, DoModalPopup can be used in FieldChange when the field is associated with a push button,
radio button, check box, or hyperlink.

In addition, you can't use DoModalPopup in the SearchInit event.

See "Think-Time Functions" (PeopleCode Developer’s Guide).

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
component interface.

Parameters

Parameter Description

modal_options Specifies custom modal options as a String value. See "Modal
Options" (Fluid User Interface Developer’s Guide) for more
information.

Cancel_button_ID Specifies the ID of the cancel button as a string value.

display_only Specifies a Boolean value indicating whether the modal
secondary page is display-only.

282  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

cached Specifies a Boolean value indicating whether to cache the
<div> group container for the modal secondary page within
the parent page.

Note: The value of display_only must be True for this
parameter to take effect.

Page.PAGE_NAME The name of the secondary page.

title The text that displays in the caption of the secondary page.

xpos The pixel coordinates of the top left corner of the secondary
page, offset from the top left corner of the parent page (the
default of -1, -1 means centered).

ypos The pixel coordinates of the top right corner of the secondary
page, offset from the top right corner of the parent page (the
default of -1, -1 means centered).

level Specifies the level of the scroll level on the parent page that
contains the row corresponding to level 0 on the secondary
page.

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row The row number of the row in the parent page corresponding
to the level 0 row in the secondary page.

Returns

Returns a number that indicates how the secondary page was terminated. A secondary page can be
terminated by the user clicking a built-in OK or Cancel button, or by a call to the EndModal function in a
PeopleCode program. In either case, the return value of DoModal is one of the following:

• 1 if the user clicked OK in the secondary page, or if 1 was passed in the EndModal function call that
terminated the secondary page.

• 0 if the user clicked Cancel in the secondary page, or if 0 was passed in the EndModal function call
that terminated the secondary page.

Example
Local string &sPopupOptions = "bAutoClose@1;";
&sPopupOptions = &sPopupOptions | "bCenter@1;";
&sPopupOptions = &sPopupOptions | "bHeader@1;";
&sPopupOptions = &sPopupOptions | "bClose@1;";
&sPopupOptions = &sPopupOptions | "width@350;";
&sPopupOptions = &sPopupOptions | "height@400;";

Copyright © 1988, 2022, Oracle and/or its affiliates. 283



PeopleCode Built-in Functions and Language Constructs Chapter 1

&newHPName = "";
If DoModalPopup(&sPopupOptions, "", False, False, Page.PTNUI_ADDLP_SEC, MsgGetExpla⇒

inText(95, 10017, "MNF-Add Homepage"), - 1, - 1) = 1 Then
End-If;

Related Links
DoModalComponentPopup
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

DoModalX

Syntax

DoModalX(showInModal, cancelButtonName, Page.pagename, title, xpos, ypos
[, level, scrollpath, target_row])

In which scrollpath is:

[Record.level1_recname, level1_row, [Record.level2_recname, level2_row, ]] Record.t⇒

arget_recname

To prevent ambiguous references, you can also use Scroll. scrollname, in which scrollname is the same as
the scroll level’s primary record name.

Description

Use the DoModalX function to display a secondary page modally when you do not want it to display in
a modal, secondary window. Instead, the page to be displayed completely replaces the primary window
when the showInModal parameter is set to False. Similar to DoModal, the user must complete work on
the secondary page before continuing work in the page from which the secondary page was called.

Important! Use the DoModalX and DoModalXComponent functions in classic applications only, either
in a standalone classic application or when classic components are included in fluid activity guide and
master/detail wrappers. See "Transfer and Modal Functions" (Fluid User Interface Developer’s Guide) for
more information on which functions are available for which purposes.

Important! When the showInModal parameter is set to False, using DoModalX will completely replace
the primary window, even if DoModalX is called from a modal window. In addition, this will also
close any open modal windows. Therefore, Oracle recommends that DoModalX with the showInModal
parameter set to False not be used after calling DoModal or DoModalComponent, or after calling
DoModalX or DoModalXComponent when the showInModal parameter is set to True.

DoModalX can display a single page modally. To display an entire component modally, use
DoModalXComponent. Any variable declared as a component variable will still be defined after
calling the DoModalX function. If you call DoModalX without specifying a level number or any record
parameters, the function uses the current context as the parent.

See "Using Secondary Pages" (Application Designer Developer’s Guide).

284  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Restrictions on Use in PeopleCode Events

Control does not return to the line after DoModalX until after the user has dismissed the secondary page.
This interruption of processing makes DoModalX a “think-time” function, which means that it shouldn’t
be used in any of the following PeopleCode events:

• SavePreChange.

• SavePostChange.

• Workflow.

• RowSelect.

• Any PeopleCode event that executes as a result of a ScrollSelect, ScrollSelectNew, RowScrollSelect,
or RowScrollSelectNew function call.

• Any PeopleCode event that executes as a result of a Rowset class Select method or SelectNew
method.

• You should not use DoModalX or any other think-time function in FieldChange when the field is
associated with an edit box, long edit box, or drop-down list box. Use FieldEdit instead.

However, DoModalX can be used in FieldChange when the field is associated with a push button,
radio button, check box, or hyperlink.

In addition, you can't use DoModalX in the SearchInit event.

See "Think-Time Functions" (PeopleCode Developer’s Guide).

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
component interface.

Parameters

Parameter Description

showInModal Specify a Boolean value to indicate whether to display the
secondary page in a modal, secondary window:

• True display the page in a secondary, modal window
similar to the function of DoModal

• False do not display the page in a secondary window;
instead, completely replace the primary window.

cancelButtonName Currently, this parameter is not used and should be specified as
an empty string: “”.

pagename The name of the secondary page.

Copyright © 1988, 2022, Oracle and/or its affiliates. 285



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

title The text that displays in the caption of the secondary page.

xpos The pixel coordinates of the top left corner of the secondary
page, offset from the top left corner of the parent page (the
default of -1, -1 means centered).

ypos The pixel coordinates of the top right corner of the secondary
page, offset from the top right corner of the parent page (the
default of -1, -1 means centered).

level Specifies the level of the scroll level on the parent page that
contains the row corresponding to level 0 on the secondary
page.

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row The row number of the row in the parent page corresponding
to the level 0 row in the secondary page.

Returns

Returns a number that indicates how the secondary page was terminated. A secondary page can be
terminated by the user clicking a built-in OK or Cancel button, or by a call to the EndModal function in a
PeopleCode program. In either case, the return value of DoModalX is one of the following:

• 1 if the user clicked OK in the secondary page, or if 1 was passed in the EndModal function call that
terminated the secondary page.

• 0 if the user clicked Cancel in the secondary page, or if 0 was passed in the EndModal function call
that terminated the secondary page.

Example

DoModalX( False, "", Page.EDUCATION_DTL, MsgGetText(1000, 167, "Education Details -⇒

 %1", EDUCATN.DEGREE), - 1, - 1, 1, Record.EDUCATN, CurrentRowNumber());

Related Links
DoModal
DoModalXComponent
EndModal
IsModal
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

286  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

"Implementing Modal Transfers" (PeopleCode Developer’s Guide)

DoModalXComponent

Syntax

DoModalXComponent(showInModal, cancelButtonName,  MenuName.MENU_NAME,
BarName.BAR_NAME,  ItemName.MENU_ITEM_NAME,  Page.COMPONENT_ITEM_NAME,
action, Record.SHARED_RECORD_NAME [, keylist])

In which keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2]. . .

Description

Use the DoModalXComponent function to display a secondary component modally when you
do not want it to display in a modal, secondary window. Instead, the component to be displayed
completely replaces the primary window when the showInModal parameter is set to False. Similar to
DoModalComponent, the user must complete work on the secondary component before continuing work
in the page from which the secondary component was called.

Important! Use the DoModalX and DoModalXComponent functions in classic applications only, either
in a standalone classic application or when classic components are included in fluid activity guide and
master/detail wrappers. See "Transfer and Modal Functions" (Fluid User Interface Developer’s Guide) for
more information on which functions are available for which purposes.

Important! When the showInModal parameter is set to False, using DoModalXComponent will
completely replace the primary window, even if DoModalXComponent is called from a modal
window. In addition, this will also close any open modal windows. Therefore, Oracle recommends that
DoModalXComponent with the showInModal parameter set to False not be used after calling DoModal
or DoModalComponent, or after calling DoModalX or DoModalXComponent when the showInModal
parameter is set to True.

Secondary components can be displayed in any of the following action modes: Add, Update/Display,
Update/Display All, Correction. A secondary component can be launched from any component, including
another secondary component. You can also use DoModalXComponent from a secondary page.

The originating component and the secondary component share data, including search keys, using a
Shared Work Record or the values in the keylist parameter. If valid search keys are provided in the shared
work record and populated with valid values before launching the secondary component, the search is
conducted using the provided search key values. If the keylist parameter isn't used and no search keys are
provided, or if search key fields contain invalid values, the user accesses the secondary component using
a search dialog box.

Note: The user may see a different title for a search page if they enter the search page using this function
versus from the regular navigation.

Copyright © 1988, 2022, Oracle and/or its affiliates. 287



PeopleCode Built-in Functions and Language Constructs Chapter 1

In the component_item_name parameter, make sure to pass the component item name for the page, not the
page name.

The component item name is specified in the component definition, in the Item Name column on the
row corresponding to the specific page, as shown here. In this example, the PERSONAL_DATA page
name appears twice: once with an item name of PERSONAL_DATA_1, and once with the item name of
PERSONAL_DATA_2.

Shared Work Records

The originating component and the secondary component share fields in a Derived/Work record called
a shared work record. Shared fields from this record must be placed at level zero of both the originating
component and the secondary component.

You can use the shared fields to:

• Pass values that are assigned to the search keys in the secondary component search record. If these
fields are missing or not valid, the search dialog box appears, enabling the user to enter search keys.

• Optionally pass other values from the originating component to the secondary component.

• Pass values back from the secondary component to the originating component for processing.

To do this, you have to write PeopleCode that:

• Assigns values to fields in the shared work record in the originating page at some point before the
modal transfer takes place.

• Accesses and changes the values, if necessary, in the secondary component.

• Accesses the values from the shared work record from the originating component after the secondary
component is dismissed.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
component interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

288  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

showInModal Specify a Boolean value to indicate whether to display the
secondary component in a modal, secondary window:

• True display the page in a secondary, modal window
similar to the function of DoModal

• False do not display the page in a secondary window;
instead, completely replace the primary window.

cancelButtonName Currently, this parameter is not used and should be specified as
an empty string: “”.

MENU_NAME Name of the menu through which the secondary component is
accessed.

BAR_NAME Name of the menu bar through which the secondary
component is accessed.

MENU_ITEM_NAME Name of the menu item through which the secondary
component is accessed.

COMPONENT_ITEM_NAME The component item name of the page to be displayed on top
of the secondary component when it displays. The component
item name is specified in the component definition.

action String representing the action mode in which to start up the
component. You can use either a character value (passed in as
a string) or a constant. See below.

If only one action mode is allowed for the component, that
action mode is used. If more than one action mode is allowed,
 the user can select which mode to come up in.

SHARED_RECORD_NAME The record name of the shared work record (preceded by the
reserved word Record). This record must include:

• Fields that are search keys in the secondary component
search record; if search key fields are not provided,
 or if they are invalid, the user accesses the secondary
component using the search dialog box.

• Other fields to pass to the secondary component.

• Fields to get back from the secondary component after it
has finished processing.

Copyright © 1988, 2022, Oracle and/or its affiliates. 289



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

keylist An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object. If a record object
is specified, any field of that record object that is also a field
of the search record for the destination component is added to
keylist. The keys in keylist must uniquely identify a row in the
"to" page search record. If a unique row is not identified, the
search dialog box appears.

If the keylist parameter is not supplied then the destination
components' search key must be found as part of the source
component's level 0 record buffer.

The values for action can be as follows:

Numeric Value Constant Value Description

A %Action_Add Add

U %Action_UpdateDisplay Update/Display

L %Action_UpdateDisplayAll Update/Display All

C %Action_Correction Correction

E %Action_DataEntry Data Entry

P %Action_Prompt Prompt

Returns

Returns a Boolean that indicates how the secondary page was terminated. A secondary page can be
terminated by the user clicking a built-in OK or Cancel button, or by a call to the EndModalComponent
function in a PeopleCode program. In either case, the return value of DoModalXComponent is one of the
following:

• True if the user clicked OK in the secondary page, or if 1 was passed in the EndModal function call
that terminated the secondary page.

• False if the user clicked Cancel in the secondary page, or if 0 was passed in the EndModal function
call that terminated the secondary page.

290  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

The following example shows how to structure a DoModalXComponent function call:

DoModalXComponent( False, "", MenuName.MAINTAIN_ITEMS_FOR_INVENTORY, BarName.USE_A,⇒

 ItemName.ITEM_DEFINITION, Component.ESTABLISH_AN_ITEM, "C", Record.NEW7_WRK);

Supporting PeopleCode is required if you must assign values to fields in the shared work record or access
those values, either from the originating component, or from the secondary component.

Related Links
DoModalComponent
DoModalX
EndModalComponent
IsModalComponent
Transfer
TransferPage
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)
"Implementing Modal Transfers" (PeopleCode Developer’s Guide)

DoSave

Syntax

DoSave()

Description

Use the DoSave function to save the current page. DoSave defers processing to the end of the current
PeopleCode program event, as distinct from DoSaveNow, which causes save processing (including
SaveEdit, SavePreChange, SavePostChange, and Workflow PeopleCode) to be executed immediately.

DoSave can be used in the following PeopleCode events only: FieldEdit, FieldChange, or ItemSelected
(for menu items in popup menus only).

Parameters

None.

Returns

None.

Example

The following example sets up a key list with AddKeyListItem, saves the current page, and then transfers
the user to a page named PAGE_2.

ClearKeyListItem( );
AddKeyListItem(OPRID, OPRID);

Copyright © 1988, 2022, Oracle and/or its affiliates. 291



PeopleCode Built-in Functions and Language Constructs Chapter 1

AddKeyListItem(REQUEST_ID, REQUEST_ID);
SetNextPage("PAGE_2");
DoSave( );
TransferPage( );

Related Links
DoCancel
DoSaveNow
TransferPage
AddKeyListItem

DoSaveNow

Syntax

DoSaveNow()

Description

The DoSaveNow function is designed primarily for use with remote calls. It enables a PeopleCode
program to save page data to the database before running a remote process (most frequently a COBOL
process) that will access the database directly. It is generally necessary to call DoSaveNow before calling
the RemoteCall function.

DoSaveNow causes the current page to be saved immediately. Save processing (including SaveEdit,
SavePreChange, SavePostChange, and Workflow PeopleCode) is executed before continuing execution of
the program where DoSaveNow is called. DoSaveNow differs from the DoSave function in that DoSave
defers saving the component until after any running PeopleCode is completed.

DoSaveNow can only be called from a FieldEdit or FieldChange event.

If you call DoSaveNow and there are no changes to save, save processing is skipped entirely. You can call
SetComponentChanged right before you call DoSaveNow. The SetComponentChanged function makes
the Component Processor think there are changes and so will force full save processing.

See RemoteCall, DoSave.

Errors in DoSaveNow Save Processing

DoSaveNow initiates save processing. It handles errors that occur during save processing as follows:

• If save processing encounters a SaveEdit error, it displays the appropriate message box. DoSaveNow
immediately exits from the originating FieldChange or FieldEdit program. The user can correct the
error and continue.

• If save processing encounters a fatal error, it displays the appropriate fatal error. DoSaveNow handles
the error by immediately exiting from the originating FieldChange or FieldEdit program. The user
must then cancel the page.

• If save processing completes with no errors, PeopleCode execution continues on the line after the
DoSaveNow call in FieldChange or FieldEdit.

292  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Restrictions on Use of DoSaveNow

The following restrictions apply:

• DoSaveNow can be executed only from a FieldEdit or FieldChange event.

• DoSaveNow is only allowed prior to the first CallAppEngine function in a FieldChange event, but not
afterward.

• Deferred operations should not be called before the DoSaveNow. Deferred operations include the
DoSave, TransferPage, SetCursorPos, and EndModal functions.

• Components that use DoSaveNow must not use the DoCancel, Transfer, TransferPage, or
WinEscape functions in PeopleCode attached to save action events (SaveEdit, SavePreChange, and
SavePostChange), because these functions terminate the component, which would cause the program
from which DoSaveNow was called to terminate prematurely.

Note: You should be aware that DoSaveNow may result in unpredictable behavior if PeopleCode in
save events deletes rows or inserts rows into scrolls. PeopleCode that runs after DoSaveNow must be
designed around the possibility that rows were deleted or inserted (which causes row number assignments
to change). Modifying data on a deleted row may cause it to become “undeleted.”

Parameters

None.

Returns

None.

Example

The following example calls DoSaveNow to save the component prior to running a remote process in the
remote_depletion declared function:

Declare Function remote_depletion PeopleCode FUNCLIB_ININTFC.RUN_DEPLETION FieldFor⇒

mula;

/*
Express Issue Page - run Depletion job through RemoteCall()
*/
If %Component = COMPONENT.EXPRESS_ISSUE_INV Then
   DoSaveNow();
   &BUSINESS_UNIT = FetchValue(SHIP_HDR_INV.BUSINESS_UNIT, 1);
   &SHIP_OPTION = "S";
   &SHIP_ID = FetchValue(SHIP_HDR_INV.SHIP_ID, 1);
   remote_depletion(&BUSINESS_UNIT, &SHIP_OPTION, &SHIP_ID, &PROGRAM_STATUS);
End-If

DownloadToExcel

Syntax

DownloadToExcel(&Rowset, File_Name, Output_Format, [Header_Required])

Copyright © 1988, 2022, Oracle and/or its affiliates. 293



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the DownloadToExcel function to generate a spreadsheet file with data as specified by the rowset
object, and download it locally to the end-user’s machine. You can specify the following file formats for
the spreadsheet file - XLSX, HTML, or CSV.

Parameters

Parameter Description

Rowset Specify an already instantiated and populated rowset object
containing the result.

File_Name Specify a name for the spreadsheet file, which is generated and
downloaded to the user’s machine.

Output_Format Specify the format of the output. You can specify either a
numeric value or a constant value.

Header_Required Specify whether the spreadsheet header should be displayed or
not. This parameter takes a Boolean value. This parameter is
optional.

The values for Output_Format values can be as follows:

Numeric Value Constant Value File Format

1 %ExcelFormat_Xlsx XLSX

2 %ExcelFormat_Html HTML

3 %ExcelFormat_Csv CSV

Returns

Returns 0 if the function is successful; returns 1 if the function is unsuccessful.

Example
Local Rowset &rs;
&rs = CreateRowset(Record.QE_ABSENCE_HIST);
/*Populate Rowset*/
&NUM_READ = &rs.Fill();
&File_Name = "output-" | %Datetime | ".csv";
/*Download the result into spreadsheet file and push it to the web browser*/
&result = DownloadToExcel(&rs, &File_Name, %ExcelFormat_Csv);

294  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

PeopleCode Built-in Functions and Language Constructs: E

The PeopleCode built-In functions and language constructs beginning with the letter E are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

Else

Description

Use the Else keyword to create an else clause in an if block. See If for more information.

EnableMenuItem

Syntax

EnableMenuItem(BARNAME.menubar_name, ITEMNAME.menuitem_name)

Description

Use the EnableMenuItem function to enable (make available for selection) the specified menu item. To
apply this function to a pop-up menu, use the PrePopup Event of the field with which the pop-up menu is
associated.

If you’re using this function with a pop-up menu associated with a page (not a field), the earliest event
you can use is the PrePopup event for the first "real" field on the page (that is, the first field listed in the
Order view of the page in Application Designer.)

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Parameters

Parameter Description

menubar_name Name of the menu bar that owns the menu item, or, in the case
of pop-up menus, the name of the pop-up menu that owns the
menu item.

menuitem_name Name of the menu item.

Copyright © 1988, 2022, Oracle and/or its affiliates. 295



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

None.

Example
EnableMenuItem(BARNAME.MYPOPUP1, ITEMNAME.DO_JOB_TRANSFER);

Related Links
DisableMenuItem
HideMenuItem
"PrePopup Event" (PeopleCode Developer’s Guide)

EncodeSearchCode

Syntax

EncodeSearchCode(search_string)

Description

Use this function in special circumstances to encode a search string so that it is not “tokenized” by the
search provider.

Note: Tokenization is the process that the search provider uses to split both indexed words as well as
search terms containing special characters into multiple alphanumeric tokens. The index is generated
using these tokens; therefore, at search time, the search provider also splits a similar search term into
tokens to search the index. For special circumstances, PeopleSoft search definitions also allow that
specific attributes can be encoded so that they are not tokenized during index generation. Similarly, to
perform a search on attributes that have been marked for encoding on the Advanced Properties page,
use this function to return an encoded search string to match the encoding done when the attribute was
indexed..

This function converts all non-alphanumeric characters and the letters z and Z to hexadecimal values. A
string that has been converted is terminated with Z. A string that does not include any special characters
that require conversion remains unchanged as the return value. The following examples show the string
input to and output from the EncodeSearchCode function.

• Input: abcz123456

Output: abc7A123456Z — The z was converted to hexadecimal 7A and the string was terminated
with Z.

• Input: abc123456

Output: abc123456 — The search string was not encoded and therefore the string was not
terminated with Z.

296  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

search_string Specifies the search string that is to be encoded.

Returns

A String value.

Example
import PT_SEARCH:*;

Local PT_SEARCH:SearchFilter &flt;
Local PT_SEARCH:SearchField &fld;

&flt.Field = &fld;
&srchString = &fld.Value;
&flt.Value = EncodeSearchCode(&srchString);

Related Links
"Working With Advanced Settings" (Search Technology)

EncodeURL

Syntax

EncodeURL(URLString)

Description

Use the EncodeURL function to apply URL encoding rules, including escape characters, to the string
specified by URLString. The method used to encode the URLString is the standard defined by W3C.
This function returns a string that contains the encoded URL. All characters outside the Unicode Basic
Latin block (U+0020 — U+007F) are encoded, with the exception of the characters in the table below
which are not encoded as they may represent valid components of URL or protocol syntax. If you need to
encode such characters, use the EncodeURLForQueryString function.

The following table lists the characters in the Unicode Basic Latin block that are not encoded by the
URLEncode function.

Character (Glyph) Description (Unicode Character Name)

! Exclamation mark

# Number sign

Copyright © 1988, 2022, Oracle and/or its affiliates. 297



PeopleCode Built-in Functions and Language Constructs Chapter 1

Character (Glyph) Description (Unicode Character Name)

$ Dollar sign

& Ampersand

( Left parenthesis

) Right parenthesis

* Asterisk

+ Plus sign

, Comma

- Hyphen (minus sign)

. Period (full stop)

/ Slash (solidus)

: Colon

; Semicolon

= Equals sign

? Question mark

_ Underscore

Parameters

Parameter Description

URLString Specify the string you want encoded. This parameter takes a
string value.

Returns

An encoded string.

298  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

The example below returns the following encoded URL:

http://corp.office.com/human%20resources/benefits/401kchange_home.htm?FirstName=Gun⇒

ter&LastName=D%c3%9crst

&MYSTRING = EncodeURL("http://corp.office.com/hr/benefits/401k/401k_home.htm");

Related Links
EncodeURLForQueryString
Unencode
"Understanding Internet Script Classes" (PeopleCode API Reference)

EncodeURLForQueryString

Syntax

EncodeURLForQueryString(URLString)

Description

Use the EncodeURLForQueryString function to encode URLString for use in a query string parameter in
a URL. All characters outside the Unicode Basic Latin block (U+0020 — U+007F) are encoded, with the
exception of the characters in the table below which are not encoded as they are typically valid in a query
string.

If the link is constructed in a page, and the value is a link field, you should not call EncodeURL to encode
the entire URL, as the PeopleSoft Pure Internet Architecture does this for you. You still need to unencode
the parameter value when you retrieve it, however.

Always encode each field value being added directly to query strings using EncodeURLForQueryString.

The following table lists characters in the Unicode Basic Latin block that are not encoded by the
URLEncodeForQueryString function.

Character (Glyph) Description (Unicode Character Name)

( Left parenthesis

) Right parenthesis

* Asterisk

- Hyphen (minus sign)

. Period (full stop)

Copyright © 1988, 2022, Oracle and/or its affiliates. 299



PeopleCode Built-in Functions and Language Constructs Chapter 1

Character (Glyph) Description (Unicode Character Name)

_ Underscore

Parameters

Parameter Description

URLString Specify the string you want encoded. This parameter takes a
string value.

Returns

An encoded URL string.

Example

In an Internet Script, to construct an anchor with a URL in a query string parameter, do the following:

&url = "http://host/psp/ps/EMPLOYEE/HRMS/s/EMPL_INFO.FieldFormula.IScript_EMPL_INFO⇒

?emplid=1111&mkt=usa"

&href = %Request.RequestURI | "?" | %Request.QueryString | "&myurl=" | EncodeURLFor⇒

QueryString(&url);

%Response.WriteLine("<a href= " | EncodeURL(&href) | ">My Link</a>");

The following uses a generic method to find, then encode, the URL, for the external link:

&StartPos = Find("?", &URL, 1);
&CPColl = &Portal.ContentProviders;
&strHREF = EncodeURLForQueryString(Substring(&URL, &StartPos + 1, Len(&URL), &Start⇒

Pos));
&LINK = &Portal.GetQualifiedURL("PortalServlet", "PortalOriginalURL=" | &CPColl.Ite⇒

mbyName(&CP_NAME).URI | "?" | &strHREF);

Related Links
EncodeURL
Unencode
EscapeHTML
EscapeJavascriptString
EscapeWML
"Understanding Internet Script Classes" (PeopleCode API Reference)

300  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Encrypt

Note: Oracle recommends that you do not use the Encrypt function due to outdated algorithms. Instead,
use the EncryptStr function.
The Encrypt function will be deprecated in a future release.

Syntax

Encrypt(KeyString, ClearTextString)

Description

Use the Encrypt function to encrypt a string. This function is generally used with merchant passwords.

The value you use for KeyString must be the same for Decrypt and Encrypt.

Size Considerations for Encrypt

The Encrypt function uses 56-bit DES (Data Encryption Standard). The size of the output string is
increased to the nearest multiple of 8 bytes. The string is encrypted (which doesn't modify the size), then
encoded, which increases the resulting size to the next multiple of 3. Then, the system multiplies the
result by 4/3 to get the final encrypted size.

For example, a 16-character, Unicode field is 32 bytes long, which is already an even multiple of 8. After
it is encrypted, it is encoded, which increases the size of the string to 33 bytes (the next multiple of 3).
Then, the system multiplies this by 4/3 to get the final encrypted string size of 44 bytes.

Parameters

Parameter Description

KeyString Specify the key used for encrypting the string. You can specify
a Null value for this parameter, that is, two quotation marks
with no blank space between them ("").

ClearTextString Specify the string you want encrypted.

Returns

An encrypted string.

Example

The following encrypts a field if it contains a value. It also removes any blanks either preceding or trailing
the value.

If All(PSCNFMRCHTOKEN.WRKTOKEN) Then
   CMPAUTHTOKEN = Encrypt("", RTrim(LTrim(PSCNFMRCHTOKEN.WRKTOKEN)));
End-If;

Copyright © 1988, 2022, Oracle and/or its affiliates. 301



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
DecryptStr
EncryptStr
GenSecureKey
Hash
HashSHA256
"PeopleSoft Online Security" (Security Administration)

EncryptStr

Syntax

EncryptStr(ClearTextString, KeyString,CipherAlgorithm)

Description

Use the EncryptStr function to encrypt a string.

The value you use for KeyString must be the same for DecryptStr and EncryptStr.

The EncryptStr function uses the AES128 (Advanced Encryption Standard) cipher algorithm.

In this algorithm, the length of clear text after cipher will increase by three-quarters (¾) of the original
input string, that is, input string plus three-quarters (¾) of the input string.

Parameters

Parameter Description

ClearTextString Specify the string you want encrypted.

This parameter is required.

KeyString Specify the key used for encrypting the string.

This parameter is optional. However, as a safe security
practice, Oracle recommends that you generate an AES128
key. You may use the GenSecureKey function to generate a
key. If you plan to generate a key on your own, you must have
a thorough knowledge of the AES128 key size because Oracle
does not provide guidelines on generating or managing keys.

Refer to the PeopleSoft Security Practices Technical Brief.

CipherAlgorithm Specify the cipher algorithm. The default is AES128.

This parameter is optional.

302  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

An encrypted string (CipherBase64Text).

Example

Encrypted-Based64-String = EncryptStr("Cleartext String as required field", "Cleart⇒

ext-KeyString as optional field", "AES128 as optional field and default as AES128")⇒

;

Related Links
GenSecureKey
Hash
HashSHA256
"PeopleSoft Online Security" (Security Administration)

EncryptNodePswd

Important! Oracle recommends that you do not use the EncryptNodePswd function due to outdated
algorithms.
The EncryptNodePswd function will be deprecated in a future release.

Syntax

EncryptNodePswd(Password)

Description

Use the EncryptNodePswd function to encrypt an Integration Broker node password.

Note: This function is generally used with Integration Broker node password encryption. This function
should not be used casually, as once you encrypt your node password, there is no decrypt PeopleCode
method.

Parameters

Parameter Description

Password Specify the Integration Broker node password that you want
encrypted, as a string.

Returns

An encrypted password as a string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 303



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

In the following example, the password is stored in the database in an encrypted form instead of as plain
text:

PSMSGNODEDEFN.IBPASSWORD = EncryptNodePswd(RTrim(LTrim(PSNODE_WRK.WRKPASSWORD)));

Related Links
"Adding Node Definitions" (Integration Broker Administration)

End-Evaluate

Description

Use End-Evaluate to terminate an Evaluate construct. See Evaluate for more information.

End-For

Description

Use End-For to terminate a for loop. See For for more information.

End-Function

Description

Use End-Function to terminate a function definition. See Function for more information.

End-If

Description

Use End-If to terminate an if block. See If for more information.

EndMessage

Syntax

EndMessage(message, messagebox_title)

Description

Note: The EndMessage function is obsolete and is supported only for backward compatibility. The
MessageBox function, which can now be used to display informational messages in any PeopleCode
event, should be used instead.

304  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Use the EndMessage function to display a message at the end of a transaction, at the time of the database
COMMIT. This function can be used only in SavePostChange PeopleCode.

When an EndMessage function executes, PeopleTools:

• Verifies that the function is in SavePostChange; if it is not, an error occurs and the function
terminates.

• Displays the message.

• Terminates the SavePostChange PeopleCode program.

Because it terminates the SavePostChange program, EndMessage is always be the last statement executed
in the program on the specific field and row where the EndMessage is called. For this reason, you must
write the SavePostChange program so that all necessary processing takes place before the EndMessage
statement. PeopleCode programs on other fields and rows execute as usual.

Parameters

Parameter Description

message A string that must be enclosed in quotes containing the
message text you want displayed.

messagebox_title A string that must be enclosed in quotes containing the title of
the message. It appears in the message box title bar.

Returns

None.

Example

The following example is from SavePostChange event PeopleCode. It checks to see whether a condition
is true, and if so, it displays a message and terminates the SavePostChange program. If the condition is
false, then processing continues in the Else clause:

If BUSINESS_UNIT = BUS_UNIT_WRK.DEFAULT_SETID Then
         EndMessage(MsgGet(20000, 12, "Message not found in Message Catalog")," ");
      Else
/* any other SavePostChange processing in Else clause */

Related Links
MessageBox
WinMessage

Copyright © 1988, 2022, Oracle and/or its affiliates. 305



PeopleCode Built-in Functions and Language Constructs Chapter 1

EndModal

Syntax

EndModal(returnvalue)

Description

Use the EndModal function to close a currently open modal or modeless secondary window. It is required
only for secondary windows that do not have OK and Cancel buttons. If the secondary window has OK
and Cancel buttons, then the function for exiting the window is built in and no additional PeopleCode is
required.

Important! Do not use multiple EndModal or EndModalComponent invocations to close multiple, open
modal secondary windows simultaneously. Each modal window must be closed individually with a single
EndModal call followed by an event that triggers a trip to the application server. Otherwise, multiple,
simultaneous EndModal or EndModalComponent invocations will close all open modal secondary
windows.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Parameters

Parameter Description

returnvalue A number value that determines whether the secondary page
data is copied back to the parent page. A positive value runs
SaveEdit PeopleCode and copies the data (this is the same as
clicking the OK button). A value of zero skips SaveEdit and
discards buffer changes made in the secondary page (this is
the same as clicking the Cancel button). This value becomes
the return value of the DoModal function that started the
secondary page, and it can be tested after the secondary page is
closed.

Returns

None.

Example

The following statement acts as an OK button:

EndModal(1);

The following statement acts as a Cancel button:

EndModal(0);

306  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
DoModal
DoModalX
IsModal

EndModalComponent

Syntax

EndModalComponent(ReturnValue)

Description

Use the EndModalComponent function to close a currently open secondary component. You could use
this for creating your own links to exit a secondary component.

Important! Do not use multiple EndModalComponent or EndModal invocations to close multiple,
open modal secondary windows simultaneously. Each modal window must be closed individually with
a single EndModalComponent call followed by an event that triggers a trip to the application server.
Otherwise, multiple, simultaneous EndModalComponent or EndModal invocations will close all open
modal secondary windows.

Restrictions on Use With a Component Interface

This function can’t be used by a PeopleCode program that’s been called by a Component Interface, and is
ignored.

Parameters

Parameter Description

ReturnValue A Number value that determines whether the secondary
component data is saved and copied back to the parent page. A
positive value saves the data in the component to the database,
including all save processing and PeopleCode (this is the same
as pressing the OK button). It also copies the data in the shared
work record, if any, back to the primary component. A value
of zero skips save processing discards buffer changes made
in the secondary component (this is the same as pressing the
Cancel button).

Returns

A Boolean value: True if a non-zero value was used, False if zero was used.

Example
EndModalComponent(0);  /* cancels the component without saving */

EndModalComponent(1); /* saves and closes the component */

Copyright © 1988, 2022, Oracle and/or its affiliates. 307



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
DoModalComponent
DoModalXComponent
EndModal
IsModal

End-While

Description

Use End-While to terminate a while loop. See While for more information.

EnQueue

Syntax

EnQueue(logical_queue, task_type, Relative_URL, Language_Code [, subject][, agent_I⇒

D]
[, overflow_timeout][, escalation_timeout][, cost][, priority][, skill_level])

Description

Use the EnQueue function to assign a task to one of the active, physical queues belonging to the specified
logical queue. The physical queue to which the system assigns the task is chosen randomly to balance
load across the queues.

Note: PeopleSoft recommends that you always follow the EnQueue function with the NotifyQ function.

See NotifyQ.

Parameters

Parameter Description

logical_queue Specifies the logical queue in which the task should be queued.
 It is a string value.

The logical queue ID is a case-sensitive value. The case used
in the EnQueue function must exactly match the case used
when creating the logical queue ID with the MultiChannel
Framework administration pages.

308  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

task_type Specifies the type of task to be inserted. It is a string value.
 The valid values are:

• email

• generic

Note: This parameter does not apply to voice or chat. Chat
tasks are enqueued using the InitChat function. Voice queueing
is managed by PeopleSoft CTI.

Relative_URL The system uses this relative URL to generate the URL
of the appropriate application page for the MultiChannel
Framework console to launch when an agent accepts this task.
 The application page should contain the logic to enable the
agent to resolve the task and either forward the task using
the Forward function or dequeue the task using the DeQueue
function.

Language_Code This is the language code associated with the task to be
enqueued. It is a string value that must exist in the PeopleSoft
language table.

The queue server only assigns this task to an agent whose list
of languages contains this value. For example if an email to
be enqueued is written in English, the language code would
be “ENG”, and this email would only be assigned to agents
whose language list contains English.

subject This is an optional parameter. It is a string value describing
the purpose of the request. This value appears on the agent's
console when the system assigns the task.

agent_ID Specifies the assigned agent. This is an optional, string
parameter.

If specified, the system holds the task until the specified agent
is available to take this task. If this parameter is left blank, the
queue server assigns it to the first available agent.

Note: For better performance, PeopleSoft recommends not
specifying the target agent as this has a processing overhead
for the queue servers and does not allow the system to balance
workload across all available agents.

Copyright © 1988, 2022, Oracle and/or its affiliates. 309



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

overflow_timeout This is an optional parameter. It is an integer value expressing
the overflow timeout in minutes.

The overflow timeout is the time period within which a queue
server has to find an agent who accepts the task (clicks on the
flashing icon on the MultiChannel console). If the task is not
accepted within this time, the task is removed from the queue
and placed in the MultiChannel overflow table.

If you do not specify a value, the system uses the default value
specified for that task type in the Task Configuration page.

escalation_timeout This is an optional parameter. It is an integer value expressing
the escalation timeout in minutes.

The escalation timeout is the time period within which a task
must be completed by the agent and closed with DeQueue.
 If the task is not closed within this time, the task is removed
from the queue and from the agent's accepted task list, which
means the task becomes unassigned. Then the task is placed in
the MultiChannel Framework escalation table.

If no value is specified, the system uses the default specified
for that task type in the Task Configuration pages.

cost This is an optional parameter. It is an integer value measuring
the workload each task places on an agent. The cost of a task is
an estimate of the tasks's expected complexity and of the time
required to resolve the task. The minimum value is 0, and there
is no maximum value.

The cost of a task is added to an agent's workload after
accepting a task on the MultiChannel Framework console. A
task can't be assigned to an agent if the difference between the
current workload and the maximum workload defined for that
agent on the Agent configuration page is less than the cost of
this task.

If you do not specify a value, the system uses the default value
specified for that task in the Task Configuration pages.

Note: If the required skill level or cost submitted exceeds the
highest skill level or maximum workload of any of the agents
on that queue, the task cannot be assigned.

310  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

priority This is an optional parameter. It is an integer value expressing
the priority level of the request. The minimum value is 0 and
there is no maximum value.

A higher value means a higher priority. Tasks are ordered on
a physical queue based on their assigned priority. That is, the
system assigns a task of a higher priority before it assigns a
task of a lower priority.

If no value is specified, the system uses the default value
specified for that task type in the Task Configuration page.

When tasks have the same priority, the system orders the tasks
according to the time they were created. For example, suppose
the following tasks exist: Priority 2 created at 11:15 AM and
Priority 2 created at 11:16 AM. In this case, the system assigns
the task created at 11:15 AM before the task created at 11:16
AM.

skill_level This is an optional parameter. It is an integer value expressing
the minimum skill level required of the agent to whom the
system routes the request. You set an agent's skill level in the
Agent configuration page.

The queue server assigns this task type to an available agent on
that queue whose lowest skill level is greater than or equal to
the skill level required by the task.

If no value is specified, the system uses the default value
specified for that task type in the Task Configuration page.

Note: If the required skill level or cost submitted exceeds the
highest skill level or maximum workload of any of the agents
on that queue, the task cannot be assigned.

Returns

If the insert was successful, the function returns a task number in the form of a string.

If unsuccessful, it returns a message number. The message set ID for MultiChannel Framework is 162.

For example, 1302 is returned when an invalid task type or no value is provided.

Example
&PortalValue = Portal.EMPLOYEE;
   &NodeValue = Node.QE_LOCAL; /*If running in Application Engine, this code
assumes CONTENT URI has been set in node defn admin page*/

   &MyCompURL = GenerateComponentContentRelURL(&PortalValue, &NodeValue,
MenuName.PT_MCF, "GBL", Component.MCFEM_DEMOERMS_CMP, Page.MCFEM_ERMSMN, "");
   &MyCompURL = &MyCompURL | "&ps_emailid=" | &emailid; /*Query string
dependent on component. Our demo comonent just needs email id*/

rem The URL to be passed will look something like;
rem "/psc/ps/EMPLOYEE/QE_LOCAL/c/PT_MCF.MCF_DEMOERMS_CMP.GBL?Page=MCFEM_ERMSMN";

Copyright © 1988, 2022, Oracle and/or its affiliates. 311



PeopleCode Built-in Functions and Language Constructs Chapter 1

&strtasknum = EnQueue(&queueID, "email", &MyCompURL, &langcode,
&subject, "QEDMO", 15, 60, &cost, &priority, &minskill);

Related Links
DeQueue

Error

Syntax

Error str

Description

Use the Error function in FieldEdit or SaveEdit PeopleCode to stop processing and display an error
message. It is distinct from Warning, which displays a warning message, but does not stop processing.
Error is also used in RowDelete and RowSelect PeopleCode events.

Warning! The behavior of the Error function in the RowSelect event is very different from its normal
behavior.
See the Error in RowSelect section for more details.

The text of the error message (the str parameter), should always be stored in the Message Catalog
and retrieved using the MsgGet or MsgGetText functions. This makes it much easier for the text to be
translated, and it also enables you to include more detailed Explain text about the error.

Note: If you pass a string to the Error function instead of using a Message Catalog function, the
explanation text from the last call to the Message Catalog may be appended to the message. This can
cause unexpected results.

See WinMessage.

When Error executes in a PeopleCode program, the program terminates immediately and no statements
after the Error are executed. In other respects behavior of Error differs, depending on which PeopleCode
event the function occurs in.

Errors in FieldEdit and SaveEdit

The primary use of Error is in FieldEdit and SaveEdit PeopleCode:

• In FieldEdit, Error stops processing, displays a message, and highlights the relevant field.

• In SaveEdit, Error stops all save processing and displays a message, but does not highlight any
field. You can move the cursor to a specific field using the SetCursorPos function, but be sure to call
SetCursorPos before calling Error, otherwise Error stops processing before SetCursorPos is called.
Note that an Error on any field in SaveEdit stops all save processing, and no page data is saved to the
database.

312  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Errors in RowDelete

When the user attempts to delete a row of data, the system first prompts for confirmation. If the user
confirms, the RowDelete event fires. An Error in the RowDelete event displays a message and prevents
the row from being deleted.

Error in RowSelect

The behavior of Error in RowSelect is totally anomalous, and is supported only for backward
compatibility. It is used to filter rows that are being added to a page scroll after the rows have been
selected and brought into the component buffer. No message is displayed. Error causes the Component
Processor to add the current row (the one where the PeopleCode is executing) to the page scroll, then
stops adding any additional rows to the page scroll.

The behavior of Error in the RowSelect event enables you to filter out rows that are above or below some
limiting value. In practice this technique is rarely used, because it is more efficient to filter out rows of
data before they are brought into the component buffer. This can be accomplished with search views or
effective date processing.

Errors in Other Events

Do not use the Error function in any of the remaining events, which include:

• FieldDefault

• FieldFormula

• RowInit

• FieldChange

• Prepopup

• RowInsert

• SavePreChange

• SavePostChange

Parameters

Parameter Description

Str A string containing the text of the error message. This string
should always be stored in the Message Catalog and retrieved
using the MsgGet or MsgGetText function. This makes
translation much easier and also enables you to provide
detailed Explain text about the error.

Returns

None.

Copyright © 1988, 2022, Oracle and/or its affiliates. 313



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The following example, from SaveEdit PeopleCode, displays an error message, stops all save processing,
and places the cursor in the QTY_ADJUSTED field. Note that SetCursorPos must be called before Error.

If PAGES2_INV_WRK.PHYS_CYC_INV_FLG = "Y" Then
   SetCursorPos(%Page, PHYSICAL_INV.INV_LOT_ID, CurrentRowNumber(1), QTY_ADJUSTED, ⇒

CurrentRowNumber());
   Error MsgGet(11100, 180, "Message not found.");
End-If;

Related Links
MsgGet
MsgGetText
SetCursorPos
Warning
WinMessage

EscapeHTML

Syntax

EscapeHTML(text_string)

Description

Use the EscapeHTML function to replace the characters in text_string that would otherwise be interpreted
as HTML markup.

For example, this function can be used with strings that are displayed in an HTML area or strings that are
re-purposed to form a portion of URL parameters. The characters that are replaced are ones that would
cause the browser to interpret them as HTML tags or other markup if they aren't encoded. Therefore,
pre-formatted HTML should not be passed to this function unless the output desired is a rendering of the
HTML code itself as opposed to its interpretation. This function is intended to make the text "browser
safe."

Either HTML character entities (for example, &lt;) or numeric character representations (for example,
&#039;) are output by the EscapeHTML function, depending on the character passed.

In addition to escaping characters that could be misinterpreted as HTML tags or other elements,
EscapeHTML escapes the percentage sign (%) as this could interfere with PeopleCode-specific meta-
HTML processing. Since all HTML in a PeopleSoft system is generated in Unicode, it is not necessary
to escape other Unicode characters—their value may be passed directly to the browser instead of as a
character entity or in numeric character representation.

The following table lists the Unicode characters that are escaped by the EscapeHTML function:

Unicode Character Name Glyph Escape Sequence

Quotation mark " &quot;

314  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Unicode Character Name Glyph Escape Sequence

Ampersand & &amp;

Less than sign < &lt;

Apostrophe, single quote ' &#039;

Percentage sign % &#037;

New line Not applicable <BR>

Parameters

Parameter Description

text_string Specify a text string that contains characters that must be
replaced with HTML escape sequences.

Returns

A string value.

Related Links
EscapeJavascriptString
EscapeWML
StripOffHTMLTags

EscapeJavascriptString

Syntax

EscapeJavascriptString(String)

Description

Use the EscapeJavascriptString function to replace the characters in String that have special meaning in a
JavaScript string as escape sequences.

For example, a single quotation mark` ( ' ) is replaced by \', a new line character is replaced by \n, and so
on.

This function is for use with text that becomes part of a JavaScript program.

Copyright © 1988, 2022, Oracle and/or its affiliates. 315



PeopleCode Built-in Functions and Language Constructs Chapter 1

The characters that are replaced are ones that cause the browser to misinterpret the JavaScript if they
aren't encoded. This function is intended to make the text “browser safe.” The table below shows the
strings that are replaced by this function, and their replacement character sequence.

Character Name Glyph Description

Apostrophe, single quote ' \'

Quotation mark " \"

New line Not applicable \n

Carriage return Not applicable Deleted

Double backslash \\ \\\\

Parameters

Parameter Description

String Specify a string that contains character that need to be replaced
with JavaScript escape sequences.

Returns

A string containing the original text plus JavaScript escape sequences.

Related Links
EscapeHTML
EscapeWML

EscapeWML

Syntax

EscapeWML(String)

Description

Use the EscapeWML function to escape special characters that are significant to WML. This includes <,
>, $ (escaped as $$), &, ' and ".

This function is for use with strings that display on an WML browser.

316  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

String Specify a string that contains characters that need to be
replaced with WML escape sequences.

Returns

A string containing the original plus text plus WML escape sequences.

Related Links
EscapeHTML
EscapeJavascriptString

Evaluate

Syntax

Evaluate left_term
   When [relop_1] right_term_1
      [statement_list]
   .
   .
   .
   [When [relop_n] right_term_n
      [statement_list]]
   [When-Other
      [statement_list]]
End-Evaluate

Description

Use the Evaluate statement to check multiple conditions. It takes an expression, left_term, and compares
it to compatible expressions (right_term) using the relational operators (relop) in a sequence of When
clauses. If relop is omitted, then = is assumed. If the result of the comparison is True, it executes the
statements in the When clause, then moves on to evaluate the comparison in the following When clause. It
executes the statements in all of the When clauses for which the comparison evaluates to True. If and only
if none of the When comparisons evaluates to True, it executes the statement in the When-other clause (if
one is provided).

To end the Evaluate after the execution of a When clause, you can add a Break statement at the end of the
clause.

Considerations Using When Clause

Generally, you use the When clause without a semicolon at the end of the statement. However, in certain
circumstances, this can cause an error. For example, the following PeopleCode produces an error because

Copyright © 1988, 2022, Oracle and/or its affiliates. 317



PeopleCode Built-in Functions and Language Constructs Chapter 1

the PeopleCode compiler cannot separate the end of the When clause with the beginning of the next
statement:

When = COMPONENT.GARBAGE

   (create BO_SEARCH:Runtime:BusinessContact_Contact(&fBusObjDescr, Null, &fDerived⇒

BOID, &fDerivedBORole, &fBusObjDescr1, Null, &fContactBOID, &fContactRoleID, &fCust⇒

BOID, &fCustRoleID, "")).SearchItemSelected();

End-Evaluate;

If you place a semicolon after the When clause, the two expressions are read separately by the compiler:

 When = COMPONENT.GARBAGE;

Example

The following is an example of a When statement taken evaluates ACTION and performs various
statements based on its value:

&PRIOR_STATUS = PriorEffdt(HIRE.EMPL_STATUS);
Evaluate HIRE.ACTION
When = "HIR"
   If %Mode = "A" Then
      Warning MsgGet(1000, 13, "You are hiring an employee and Action is not set to⇒

 Hire.");
   End-If;
   Break;
When = "REH"
   If All(&PRIOR_STATUS) And
         Not (&PRIOR_STATUS = "T" Or
            &PRIOR_STATUS = "R") Then
      Error MsgGet(1000, 14, "Hire or Rehire action is valid only if employee statu⇒

s is Terminated or Retired.");
   End-If;
   Break;
When-Other
   /* default code */
End-Evaluate;

Exact

Syntax

Exact(string1, string2)

Description

Use the Exact function to compare two text strings and returns True if they are the same, False otherwise.
Exact is case-sensitive because it uses the internal character codes.

Returns

Returns a Boolean value: True if the two strings match in a case-sensitive comparison.

318  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

The examples set &MATCH to True, then False:

&MATCH = Exact("PeopleSoft", "PeopleSoft");
&MATCH = Exact("PeopleSoft", "Peoplesoft");

Related Links
Len
String
%Substring

Exec

Syntax

Exec(command_str [, parameter])

where parameter has one of the following formats:

Boolean constant

Exec_Constant + Path_Constant

Description

Exec is a cross-platform function that executes an external program on either UNIX or Windows.

This function has two parameter conventions in order to maintain upward compatibility with existing
programs.

Note: All PeopleCode is executed on the application server. So if you're calling an interactive application,
you receive an error. There shouldn't be any application interaction on the application server console.

The function can make either a synchronous or asynchronous call. Synchronous execution acts as a
"modal" function, suspending the PeopleSoft application until the called executable completes. This is
appropriate if you want to force the user (or the PeopleCode program) to wait for the function to complete
its work before continuing processing. Asynchronous processing, which is the default, launches the
executable and immediately returns control to the calling PeopleSoft application.

If Exec is unable to execute the external program, the PeopleCode program terminates with a fatal error.
You may want to try to catch these exceptions by enclosing such statements in a try-catch statement (from
the Exception Class).

Command Formatting

The function automatically converts the first token on command_str platform-specific separator characters
to the appropriate form for where your PeopleCode program is executing, regardless of the path_constant.
On a Windows system, a UNIX "/" separator is converted to "\", and on a UNIX system, a Windows "\"
separator is converted to "/".

Copyright © 1988, 2022, Oracle and/or its affiliates. 319



PeopleCode Built-in Functions and Language Constructs Chapter 1

This is only done for the first token on command_str assuming it to be some sort of file specification. This
allows you to put file or program names in canonical form (such as, UNIX style) as the first token on the
exec command.

Using an Absolute Path

If you do not specify anything for the second parameter, or if you specify a Boolean value, the path to
PS_HOME is prefixed to the command_str.

If you specify constant values for the second parameter, PS_HOME may or may not be prefixed,
depending on the values you select.

You can use the GetEnv function to determine the value of PS_HOME.

Creating a File in UNIX

If you try to create a file on a UNIX machine using the Exec function the file might not be created due
to permission issues. If you encounter this problem, create a script file that includes the file creation
commands and run the script using the Exec function. The script file must have correct privileges.

If you pass an absolute path in the Exec argument you must use the %FilePath_Absolute flag

Restrictions on Use in PeopleCode Events

When Exec is used to execute a program synchronously (that is, if its synch_exec parameter is set to True)
it behaves as a think-time function, which means that it can’t be used in any of the following PeopleCode
events:

• SavePreChange.

• SavePostChange.

• Workflow.

• RowSelect.

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or
a Select (or one of its relatives) Rowset class method.

Related Links
"Think-Time Functions" (PeopleCode Developer’s Guide)

320  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

command_str The command_str parameter consists of a series of tokens
that together make up the name of the executable to run and
the parameters to be passed to it. Tokens are separated by
unquoted space characters. Single or double quote characters
can be used for quoting. Both types of quotes are treated
equivalently, but the starting and ending quotes for a quoted
portion of a token must match. A quoted string may not
contain quotes of the same type but a single quoted string
can contain double quote characters and vice versa. A single
token may consist of multiple adjacent quoted characters 
(There must be no spaces between the quoted fragments).
 Unterminated quoted fragments will result in an error.

Note: PeopleCode strings will require two double quote
characters within a string to embed a double quote character.

Boolean  | Constants If you specify a Boolean value, it indicates whether to execute
the external program synchronously or asynchronously. Values
are:

• True - Synchronous

• False - Asynchronous (default)

If you do not specify a value, the program executes
asynchronously.

If you use this style, PS_HOME is always prefixed to
command_str.

If you specify constant values, you're specifying a numeric
value composed of an exec_constant and a path_constant.
The exec_constant specifies whether to execute the external
program synchronously or not. The path_constant specifies
how the path name is to be treated. The value specified is
made up of the addition of these predefined constants.

Values are:

Exec Constant Description

%Exec_Asynchronous Program executes asynchronously (the default)

%Exec_Synchronous Program executes synchronously.

Path Constant Description

%FilePath_Relative PS_HOME is prefixed to command_str.

Copyright © 1988, 2022, Oracle and/or its affiliates. 321



PeopleCode Built-in Functions and Language Constructs Chapter 1

Path Constant Description

%FilePath_Absolute Nothing is prefixed to command_str.

Returns

What is returned depends on what you specified for the second parameter.

If you specified a Boolean, a Number value equal to the process ID of the called process is returned.

If you specify constant values, the returned value contains the value of the exit code of the program
executed using this function, unless you have executed the program asynchronously.

Example
&ExitCode = Exec("sh -c " | &scriptFile, %Exec_Synchronous + %FilePath_Absolute);

The following example demonstrates executing a program where the path to the executable contains
spaces and a single parameter containing space characters is passed. Suppose the location of the
executable is C:\Program Files\App\program.exe and the value of the first parameter is 1 2 3.

Exec("'c:\Program Files\App\program.exe' '1 2 3'", %FilePath_Absolute)

or

Exec("""c:\Program Files\App\program.exe"" ""1 2 3""", %FilePath_Absolute)

This is an example of executing a program with a parameter that contains space and single quote
characters. The second parameter is enclosed in double quotes so that the single quote and space
characters are passed correctly. Suppose your executable is program.exe. The first parameter is -p and the
second parameter is customer's update.

Exec("program.exe -p ""customer’s update""")

This is an example of executing a program with a parameter that contains space, single quote, and double
quote characters. The second parameter consists of several adjacent quoted fragments. The first fragment
is enclosed in double quotes so that the single quote and space characters are passed correctly and the
second fragment is enclosed in single quotes so that the double quote and space characters are passed
correctly. Note that there are no spaces between the quoted fragments. Suppose your executable is
program.exe. The first parameter is -p and the second parameter is John’s comment: “Hello There”.

Exec("program.exe -p ""John's comment: ""'""Hello There""'")

Related Links
Declare Function
RemoteCall
WinExec
ScrollSelect
ScrollSelectNew
RowScrollSelect
RowScrollSelectNew

322  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GetEnv
"Select" (PeopleCode API Reference)
"Understanding Exception Class" (PeopleCode API Reference)
"Think-Time Functions" (PeopleCode Developer’s Guide)

ExecuteRolePeopleCode

Syntax

ExecuteRolePeopleCode(RoleName)

Description

Use the ExecuteRolePeopleCode function to execute the PeopleCode Rule for the Role RoleName. This
function returns an array of string containing dynamic members (UserIds).

Typically, this function is used by an Application Engine process that runs periodically and executes the
role rules for different roles. It could then write the results of the rules (a list of users) into the security
tables, effectively placing users in certain roles based on the rule.

Parameters

Parameter Description

RoleName Specify the name of an existing role.

Returns

An array of string containing the appropriate UserIds.

Example

The following saves valid users to a temporary table:

Local array of string &pcode_array_users;

SQLExec("delete from ps_dynrole_tmp where ROLENAME=:1", &ROLENAME);
   If &pcode_rule_status = "Y" Then
      SQLExec("select RECNAME, FIELDNAME, PC_EVENT_TYPE, PC_FUNCTION_NAME from
      PSROLEDEFN where ROLENAME= :1", &ROLENAME, &rec, &fld, &pce, &pcf);
      If (&rec <> "" And
            &fld <> "" And
            &pce <> "" And
            &pcf <> "") Then
         &pcode_array_users = ExecuteRolePeopleCode(&ROLENAME);
         &pcode_results = True;
      Else
         &pcode_results = False;
      End-If;
      &comb_array_users = &pcode_array_users;
   End-If;

Copyright © 1988, 2022, Oracle and/or its affiliates. 323



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
ExecuteRoleQuery
ExecuteRoleWorkflowQuery
IsUserInPermissionList
IsUserInRole
%Roles
"PeopleSoft Online Security" (Security Administration)

ExecuteRoleQuery

Syntax

ExecuteRoleQuery(RoleName, BindVars)

where BindVars is an arbitrary-length list of bind variables that are stings in the form:

bindvar1 [, bindvar2]. . .

Description

Use the ExecuteRoleQuery function to execute the Query rule for the role rolename, passing in BindVars
as the bind variables. This function returns an array object containing the appropriate user members
(UserIds).

Parameters

Parameter Description

RoleName Specify the name of an existing role.

BindVars A list of bind variables to be substituted in the query. These
bind variables must be strings. You can't use numbers, dates,
 and so on.

Returns

An array object containing the appropriate UserIds.

Related Links
ExecuteRolePeopleCode
ExecuteRoleWorkflowQuery
IsUserInPermissionList
IsUserInRole
%Roles
"PeopleSoft Online Security" (Security Administration)

324  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

ExecuteRoleWorkflowQuery

Syntax

ExecuteRoleWorkflowQuery(RoleName, BindVars)

where BindVars is an arbitrary-length list of bind variables in the form:

bindvar1 [, bindvar2]. . .

Description

Use the ExecuteRoleWorkflowQuery function to execute the Workflow Query rule for the role rolename,
passing in BindVars as the bind variables. This function returns an array object containing the appropriate
user members (UserIds).

Parameters

Parameter Description

RoleName Specify the name of an existing role.

BindVars A list of bind variables to be substituted in the query.

Returns

An array object containing the appropriate UserIds.

Related Links
ExecuteRolePeopleCode
ExecuteRoleQuery
IsUserInPermissionList
IsUserInRole
%Roles
"PeopleSoft Online Security" (Security Administration)

ExecuteSearchSavePC

Syntax

ExecuteSearchSavePC()

Description

Use the ExecuteSearchSavePC function to execute any SearchSave PeopleCode on the search page.

Important! Use this function within fluid applications only.

Copyright © 1988, 2022, Oracle and/or its affiliates. 325



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

None.

Returns

None.

Related Links
"SearchSave Event" (PeopleCode Developer’s Guide)

Exit

Syntax

Exit[(1)]

Description

Use the Exit statement to immediately terminate a PeopleCode program. If the Exit statement is executed
within a PeopleCode function, the main program terminates.

Note: Exit(1) does not rollback iScript transactions. To rollback in an iScript, you can use the SqlExec
built-in function with the parameter of ROLLBACK (SQLEXEC("ROLLBACK")) or the MessageBox
built-in function with a message error severity of error. You can also use the built-in function Error, but
only if you are not sending HTML or XML in the error text itself.

Parameters

Parameter Description

1 Use this parameter to rollback database changes.

Generally, this parameter is used in PeopleCode programs
that affect messages. When used with a message, all database
changes are rolled back, errors for the subscription contract
are written to the subscription contract error table, and the
status of the message is marked to Error. All errors that
have occurred for this message are viewable in the message
monitor: even those errors detected by the ExecuteEdits
method.

Note: This function takes only numeric values. It fails if you use a Boolean value, True or False.

Returns

None.

326  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

The following example terminates the main program from a For loop:

For &I = 1 To ActiveRowCount(RECORD.SP_BUIN_NONVW)
   &ITEM_SELECTED = FetchValue(ITEM_SELECTED, &I);
   If &ITEM_SELECTED = "Y" Then
      &FOUND = "Y";
      Exit;
   End-If;
End-For;

Related Links
Break
Return

Exp

Syntax

Exp(n)

Description

Exp returns the constant e raised to the power of n where n is a number. The constant e equals
2.71828182845904, the base of natural logarithms. The number n is the exponent applied to the base e.

Exp is the inverse of the Ln function, which is the natural logarithm of x.

Returns

Returns a Number value equal to the constant e raised to the power of n.

Example

The examples set &NUM to 2.71828182845904, then 7.389056099(e2):

&NUM = Exp(1);
&NUM = Exp(2);

Related Links
Ln
Log10

ExpandBindVar

Syntax

ExpandBindVar(str)

Copyright © 1988, 2022, Oracle and/or its affiliates. 327



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Inline bind variables can be included in any PeopleCode string. An inline bind variable is a field reference
(in the form recordname.fieldname), preceded by a colon. The inline bind variable references the value in
the field.

Use the ExpandBindVar function to expand any inline bind variables that it finds in str into strings
(converting the data type of non-character fields) and returns the resulting string. This works with inline
bind variables representing fields containing any data type except Object. It also expands bind variables
specified using additional parameters.

See SQLExec.

Parameters

Parameter Description

str A string containing one or more inline bind variables.

Returns

Returns a String value equal to the input string with all bind variables expanded.

Example

A bind variable is included in the string &TESTSTR, which is then expanded into a new string containing
the current value of BUS_EXPENSE_PER.EMPLID in place of the bind variable. If this program runs on
the row for EMPLID 8001, the message displayed reads "This is a test using EmplID 8001".

&TESTSTR = "This is a test using EmplID :bus_expense_per.emplid";
&RESULT = ExpandBindVar(&TESTSTR);
WinMessage(&RESULT);

Related Links
MessageBox
SQLExec

ExpandEnvVar

Syntax

ExpandEnvVar(string)

Description

Use the ExpandEnvVar function to convert any environment variables that it finds within string into
String values and returns the entire resulting string.

328  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

string A string containing an environment variable.

Returns

Returns a string equal to string with any enclosed environment variables expanded to their values.

Example

Assume that the environment variable %NETDRIVE% is equal to "N:". The following PeopleCode sets
&newstring equal to "The network drive is equal to N:":

&newstring = ExpandEnvVar("The network drive is equal to %netdrive%.");

Related Links
ExpandBindVar
GetEnv
GetCwd

ExpandSqlBinds

Syntax

ExpandSqlBinds(string)

Description

Prior to PeopleTools 8.0, the PeopleCode replaced runtime parameter markers in SQL strings with the
associated literal values. For databases that offer SQL statement caching, a match was never found in the
cache so the SQL had to be re-parsed and re-assigned a query path.

To process skipped parameter markers, each parameter marker is assigned a unique number. This doesn’t
change the values associated with the parameter markers.

However, some SQL statements can’t contain parameter markers because of database compatibility.

To process these exceptions, use the ExpandSqlBinds function. This function does the bind variable
reference expansion, and can be used within a SQLExec statement or on its own.

You should use ExpandSQLBinds only for those parts of the string that you want to put literal values into.
The following code shows how to use ExpandSQLBinds with %Table:

SQLExec(ExpandSqlBinds("Insert....  Select A.Field, :1, :2 from ", "01", "02") |
 "%table(:1)", Record.MASTER_ITEM_TBL);

Copyright © 1988, 2022, Oracle and/or its affiliates. 329



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

string Specify the string you want to do the bind variable reference
expansion on.

Returns

A string.

Example

The following example shows both the original string and what it expands to.

&NUM = 1;
&STRING = "My String";
&STR2 = ExpandSqlBinds("This :2 is an expanded string(:1)", &STRING, &NUM);

The previous code produces the following value for &STR2:

This 1 is an expanded string(My String)

If you’re having problems with an old SQL statement binds, you can use ExpandSqlBinds with it. For
example, if your SQLExec is this:

SQLExec("String with concatenated bindrefs ‘M’:2, ‘M’:1", &VAR1, &VAR2),
 &FETCHRESULT1, &FETCHRESULT2);

you can make it work by expanding it as follows:

SQLExec(ExpandSqlBinds("String with concatenated bindrefs ‘M’:2, ‘M’:1", &VAR1,
 &VAR2), &FETCHRESULT1, &FETCHRESULT2);

Related Links
SQLExec
"Understanding SQL Class" (PeopleCode API Reference)

PeopleCode Built-in Functions and Language Constructs: F

The PeopleCode built-In functions and language constructs beginning with the letter F are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

330  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Fact

Syntax

Fact(x)

Description

Use the Fact function to return the factorial of a positive integer x. The factorial of a number x is equal to
1*2*3*...*x. If x is not an integer, it is truncated to an integer.

Returns

Returns a Number equal to the factorial of x.

Example

The example sets &X to 1, 1, 2, then 24. Fact(2) is equal to 1*2; Fact(4) is equal to 1*2*3*4:

&X = Fact(0);
&X = Fact(1);
&X = Fact(2);
&X = Fact(4);

Related Links
Product

FetchSQL

Syntax

FetchSQL([SQL.]sqlname[, dbtype[, effdt]] )

Description

Use the FetchSQL function to return the SQL definition with the given sqlname as SQL.sqlname or a
string value, matching the dbtype and effdt. If sqlname is a literal name, it must be in quotes.

Parameters

Parameter Description

sqlname Specify the name of a SQL definition. This is either in the
form SQL.sqlname or a string value giving the sqlname.

Copyright © 1988, 2022, Oracle and/or its affiliates. 331



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

dbtype Specify the database type associated with the SQL definition.
 This parameter takes a string value. If dbtype isn’t specified or
is null (""), it is set by default to the current database type (the
value returned from the %DbType system variable.)

Values for dbtype are as follows. These values are not case-
sensitive:

• APPSRV

• DB2ODBC

• DB2UNIX

• MICROSFT

• ORACLE

Note: Database platforms are subject to change.

effdt Specify the effective date associated with the SQL definition.
 If effdt isn’t specified, it is set by default to the current as of
date, that is, the value returned from the %AsOfDate system
variable.

Returns

The SQL statement associated with sqlname as a string.

Example

The following code gets the text associated with the ABCD_XY SQL Definition for the current DBType
and as of date:

&SQLSTR = FetchSQL(SQL.ABC_XY);

The following code gets the text associated with the ABCD_XY SQL Definition for the current DBType
and November 3, 1998:

&SQLSTR = FetchSQL(SQL.ABCD_XY, "", Date(19981103));

Related Links
CreateSQL
DeleteSQL
SQLExec
GetSQL
StoreSQL
"Understanding SQL Class" (PeopleCode API Reference)
%AsOfDate
%DbName

332  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

FetchValue

Syntax

FetchValue(scrollpath, target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same
as the scroll level’s primary record name.

Description

Use the FetchValue function to return the value of a buffer field in a specific row of a scroll level.

Note: This function remains for backward compatibility only. Use the Value field class property instead.

This function is generally used to retrieve the values of buffer fields outside the current context; if a buffer
field is in the current context, you can reference it directly using a [recordname.]fieldname expression.

Related Links
"Value" (PeopleCode API Reference)
"LongTranslateValue" (PeopleCode API Reference)
"ShortTranslateValue" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row An integer specifying the row on the target scroll level where
the referenced buffer field is located.

[recordname.]fieldname The name of the field where the value to fetch is located.
 The field can be on scroll level one, two, or three of the
active page. The recordname prefix is required if the call to
FetchValue is not on the record definition recordname.

Copyright © 1988, 2022, Oracle and/or its affiliates. 333



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

Returns the field value as an Any data type.

Example

The following example retrieves the value from field DEPEND_ID in record DEPEND on row
&ROW_CNT from scroll level one:

&VAL = FetchValue(SCROLL.DEPEND, &ROW_CNT, DEPEND.DEPEND_ID);

Related Links
ActiveRowCount
CopyRow
CurrentRowNumber
PriorValue
UpdateValue
"Accessing Secondary Component Buffer Data" (PeopleCode Developer’s Guide)

FieldChanged

Syntax

The syntax of the FieldChanged function varies depending on whether you want to use a scroll path
reference or a contextual reference to specify the field.

If you want to use a scroll path reference, the syntax is:

FieldChanged(scrollpath, target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same
as the scroll level’s primary record name.

If you want to use a contextual reference, the syntax is:

FieldChanged([recordname.]fieldname)

In this construction the scroll level and row number are determined based on the current context.

Description

The FieldChanged function returns True if the referenced buffer field has been modified since being
retrieved from the database either by a user or by a PeopleCode program.

Note: This function remains for backward compatibility only. Use the IsChanged field class property
instead.

334  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

This is useful during SavePreChange or SavePostChange processing for checking whether to make related
updates based on a change to a field.

Related Links
"IsChanged" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

[recordname.]fieldname The name of the field where the value to check is located.
 The field can be on scroll level one, two, or three of the
active page. The recordname prefix is required if the call to
FieldChanged is not on the record definition recordname.

target_row The row number of the target row. If this parameter is omitted,
 the function assumes the row on which the PeopleCode
program is executing.

Related Functions

Save PeopleCode programs (SaveEdit, SavePreChange, SavePostChange) normally process each row
of data in the component. The following four functions enable you to control more precisely when the
Component Processor should perform save PeopleCode:

• FieldChanged

• RecordChanged

• RecordDeleted

• RecordNew

These functions enable you to restrict save program processing to specific rows.

Example

The following example checks three fields and sets a flag if any of them has changed:

/* Set the net change flag to 'Yes' if the scheduled date, scheduled */
/*  time or quantity requested is changed */
If FieldChanged(QTY_REQUESTED) Or
      FieldChanged(SCHED_DATE) Or
      FieldChanged(SCHED_TIME) Then
   NET_CHANGE_FLG = "Y";
End-If;

Copyright © 1988, 2022, Oracle and/or its affiliates. 335



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
RecordChanged
RecordDeleted
RecordNew

FileExists

Syntax

FileExists(filename [, pathtype])

Description

Use the FileExists function to determine whether a particular file or directory is present on your
PeopleSoft system, so, in the case of a file, you can decide which mode to use when you open the file for
writing or whether the file is available to be read, and, in the case of a directory, you can decide whether
the directory already exists or needs to be created.

Note: If you want to open a file for reading, you should use the "E" mode with the GetFile function or the
File class Open method, which prevents another process from deleting or renaming the file between the
time you tested for the file and when you open it.

Important! The FileExists function can be used to confirm the existence of a directory on a Windows
share—for example, \\my_server\temp\mydir. However, if the root of a Windows share (for example, \
\my_server\temp) is passed to FileExists, the return value will always be False.

Parameters

Parameter Description

filespec Specify the name, and optionally, the path, of the file or
directory you want to test.

336  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

pathtype If you have prefixed a path to the file name, use this parameter
to specify whether the path is an absolute or relative path. The
valid values for this parameter are:

• %FilePath_Relative (default)

• %FilePath_Absolute

If you don’t specify pathtype the default is %FilePath_
Relative.

If you specify a relative path, that path is appended to the
path constructed from a system-chosen environment variable.
 A complete discussion of relative paths and environment
variables is provided in documentation on the File class.

See "Working With Relative Paths" (PeopleCode API
Reference).

If the path is an absolute path, whatever path you specify
is used verbatim. You must specify a drive letter and the
complete path. You can’t use any wildcards when specifying a
path.

The Component Processor automatically converts platform-
specific separator characters to the appropriate form for
where your PeopleCode program is executing. On a Windows
system, UNIX "/" separators are converted to "\", and on a
UNIX system, Windows "\" separators are converted to "/".

Note: The syntax of the file path does not depend on the
file system of the platform where the file is actually stored;
it depends only on the platform where your PeopleCode is
executing.

Returns

A Boolean value: True if the file or directory exists, False if it doesn’t.

Example

The following example opens a file for appending if it exists in the system:

If FileExists("c:\work\item.txt", %FilePath_Absolute) Then
   &MYFILE = GetFile("c:\work\item.txt", "A", "UTF8");
   /* Process the file */
   &MYFILE.Close();
End-If;

Related Links
FindFiles
GetFile
"Folder Class" (PeopleCode API Reference)
"Open" (PeopleCode API Reference)

Copyright © 1988, 2022, Oracle and/or its affiliates. 337



PeopleCode Built-in Functions and Language Constructs Chapter 1

Find

Syntax

Find(string, within_string [, number])

Description

Use the Find function to locate one string of text within another string of text and returns the character
position of the string as an integer. Find is case-sensitive and does not allow wildcards.

If you need to do either case-sensitive search or pattern matching, just to find if a string matches a pattern,
use the DBPatternMatch function.

If you need to find a quotation mark, you need to escape it with a single ". For example

&find = Find("""", PSOPRDEFN_SRCH.OPRID);

Parameters

Parameter Description

string The text you are searching for.

A tilde character (~) used in the string parameter stands for an
arbitrary number of white spaces.

within_string The text string you are searching within.

number The position of within_string at which you want to start your
search. If you omit number, Find starts at the first character of
within_string.

Returns

Returns a Number value indicating the starting position of string in within_string.

Find returns with 0 if string does not appear in within_string, if number is less than or equal to zero, or if
number is greater than the length of within_string.

Example

In the following example, the first statement returns 1; the second statement returns 6.

&POS = Find("P", "PeopleSoft")
&POS = Find("e", "PeopleSoft", 4)

Related Links
Exact
Len

338  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

DBPatternMatch

Findb

Syntax

Findb(string, within_string [, number])

Description

Note: This function has been deprecated and is no longer supported.

FindCodeSetValues

Syntax

FindCodeSetValues(CodesetName, &NameValuePairs, SourceNodeName, TargetNodeName)

Description

Use the FindCodeSetValues function to find a list of code set name-value pairs. Code sets are primarily
used with data value translations as part of a transformation.

Parameters

Parameter Description

CodeSetName Specify the name of the code set you want to find, as a string.

&NameValuePairs Specify a 2 dimensional array containing the name value pairs
in the specified code set that you want to use.

SourceNodeName Specify the name of the source (initial) node used in the data
transformation.

TargetNodeName Specify the name of the target (result) node used in the data
transformation.

Returns

A two-dimensional array of any.

Copyright © 1988, 2022, Oracle and/or its affiliates. 339



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

This example checks the specified CodeSet values, with the name value pairs of "locale/en_us" and "uom/
box". It takes the returned array and adds XML nodes to the document. The XML nodes names are the
unique names of the CodeSet value, and the XML node value is the corresponding return value.

/* Get the data from the AE Runtime */
Local TransformData &incomingData = %TransformData;

/* Set a temp object to contain the incoming document */
Local XmlDoc &tempDoc = &incomingData.XmlDoc;

/* Declare the node */
Local XmlNode &tempNode;

/* Create an array to hold the name value pairs */
   Local array of array of string &inNameValuePairsAry;

/* Clear out the doc and put in a root node */
If (&tempDoc.ParseXmlString("<?xml version=""1.0""?><xml/>")) Then

   /* Load the array with some values */
   &inNameValuePairsAry = CreateArray(CreateArray("locale", "en_us"),
   CreateArray("uom", "box"));

   /* Find the codeset values */
   &outAry = FindCodeSetValues("PS_SAP_PO_01", &inNameValuePairsAry,
   "SAP_SRC", "PSFT_TGT");

/*    Local XmlNode &tempNode; */

   /* Make sure something was returned */
   If &outAry.Len > 0 Then

      /* Loop through the quantities and make sure they are all above 5 */
      For &i = 1 To &outAry.Len

         /* Add the current system date to the working storage*/
         &tempNode = &tempDoc.DocumentElement.AddElement(&outAry [&i][1]);
         &tempNode.NodeValue = &outAry [&i][2];

      End-For;
   End-If;
End-If;

Related Links
"Understanding Arrays" (PeopleCode API Reference)
"Understanding Filtering, Transformation, and Translation" (Integration Broker)

FindFiles

Syntax

FindFiles(filespec_pattern [, pathtype])

Description

Use the FindFiles function to return a list of the external file names that match the file name pattern you
provide, in the location you specify.

340  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

filespec_pattern Specify the path and file name pattern for the files you want
to find. The path can be any string expression that represents
a single relative or absolute directory location. The file name
pattern, but not the path, can include two wildcards:

* (Asterisk): matches zero or more characters at its position.

? (Question mark): matches exactly one character at its
position.

pathtype If you have prefixed a path to the file name, use this parameter
to specify whether the path is an absolute or relative path. The
valid values for this parameter are:

• %FilePath_Relative (default)

• %FilePath_Absolute

If you don’t specify pathtype the default is %FilePath_
Relative.

If you specify a relative path, that path is appended to the
path constructed from a system-chosen environment variable.
 A complete discussion of relative paths and environment
variables is provided in documentation on the File class.

See "Working With Relative Paths" (PeopleCode API
Reference).

If the path is an absolute path, whatever path you specify
is used verbatim. You must specify a drive letter and the
complete path. You can’t use any wildcards when specifying a
path.

The Component Processor automatically converts platform-
specific separator characters to the appropriate form for
where your PeopleCode program is executing. On a Windows
system, UNIX "/" separators are converted to "\", and on a
UNIX system, Windows "\" separators are converted to "/".

Note: The syntax of the file path does not depend on the
file system of the platform where the file is actually stored;
it depends only on the platform where your PeopleCode is
executing.

Returns

A string array whose elements are file names qualified with the same relative or absolute path you
specified in the input parameter to the function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 341



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The following example finds all files in the system’s TEMP location whose names end with ".txt", then
opens and processes each one in turn:

Local array of string &FNAMES;
Local file &MYFILE;

&FNAMES = FindFiles("\*.txt");
while &FNAMES.Len > 0
   &MYFILE = GetFile(&FNAMES.Shift(), "R", "UTF8");  /* Open each file */
      /* Process the file contents */
   &MYFILE.Close();
end-while;

Related Links
FileExists
GetFile
"Folder Class" (PeopleCode API Reference)
"Understanding Arrays" (PeopleCode API Reference)

FlushBulkInserts

Syntax

FlushBulkInserts()

Description

Use the FlushBulkInserts function to move the bulk inserted rows from the bulk insert buffers of the
PeopleSoft process to the physical tables on the database. This flushes all open SQL objects that have
pending bulk inserts, but performs no COMMITs. If the flush fails, the PeopleCode program terminates.

When executing a SQL insert using a SQL object with the BulkMode property set to True, the rows
being inserted cannot be selected by this database connection until the bulk insert is flushed. For another
connection to the database to be able to select those rows, both a flush and a COMMIT are required. To
have your process see the bulk inserted rows without committing and without closing the SQL object or
its cursor (that is, maintaining reuse for the SQL object), use FlushBulkInserts.

An example of using this function would be in preparation for a database commit where you do not want
to close the SQL insert statement, but need to ensure that all the rows you have inserted up to this point
are in fact in the database and not in the buffer.

Another example would be when another SQL statement in the same PeopleSoft process needs to select
rows that have been inserted using bulk insert and you do not want to close the SQL insert statement. The
SELECT cannot read rows in the bulk insert buffer, so you need to flush them to the table from which the
SELECT is reading.

Parameters

None.

342  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

None. If the flush fails, the PeopleCode program terminates.

Example
&CM_DEPLETION_REC = CreateRecord(Record.CM_DEPFIFO_VW);
&CM_DEPLETE_REC = CreateRecord(Record.CM_DEPLETE);
&DEPLETE_FIFO_SEL = GetSQL(SQL.CM_DEPLETE_FIFO_SEL);
&ONHAND_FIFO_SEL = GetSQL(SQL.CM_ONHAND_FIFO_SEL);
DEPLETE_INS = GetSQL(SQL.CM_DEPLETE_INS);
&DEPLETE_INS.BulkMode = True;

&DEPLETE_FIFO_SEL.Execute(&CM_DEPLETION_REC, CM_COSTING_AET.BUSINESS_UNIT,
CM_COSTING_AET.CM_BOOK);
While &DEPLETE_FIFO_SEL.Fetch(&CM_DEPLETION_REC);
   /* Call functions that populate &CM_DEPLETE_REC.values */
   . . .
   &DEPLETE_INS.Execute(&CM_DEPLETE_REC);
   .  .  .
   If &CM_DEPLETION_REC.CM_COST_PROC_GROUP.Value = "BINTOBIN" Then
      /* Bin to Bin transfers are both a deplete and receipt, call functions to
         create the receipt */
      .  .  .
          /* Flush Bulk Insert to be able to see the current on hand quantities in
             CM_ONHAND_VW */
          FlushBulkInserts();
   End-if;
End-While;
.  .  .

Related Links
"Understanding Filtering, Transformation, and Translation" (Integration Broker)

For

Syntax

For count = expression1 To expression2 [Step i]
   statement_list
End-For

Description

Use the For loop to cause the statements of the statement_list to be repeated until count is equal to
expression2. Step specifies the value by which count will be incremented for each iteration of the loop. If
you do not include Step, count is incremented by 1 (or -1 if the start value is greater than the end value.)
Any statement types are allowed in the loop, including other loops.

Note: If your index variable in a For loop is an integer, explicitly declare the variable as integer to greatly
improve runtime performance.

A Break statement inside the loop causes execution to continue with whatever follows the loop. If the
Break occurs in a nested loop, the Break does not apply to the outside loop.

Copyright © 1988, 2022, Oracle and/or its affiliates. 343



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The following example loops through all of the rows for the FIELDNAME scroll area:

&FIELD_CNT = ActiveRowCount(DBFIELD_VW.FIELDNAME);

Local integer &i;
For &i = 1 To &FIELD_CNT;
   WinMessage(MsgGetText(21000, 1, "Present Row Number is: %1", &i));
End-For;

FormatDateTime

Syntax

FormatDateTime(datetime, {timezone | "Local" | "Base"}, displayTZ)

Description

Use the FormatDateTime function to take a datetime value and convert it to text. If a specific time zone
abbreviation, or a field reference, is passed in timezone, FormatDateTime adjusts the DateTime to the
user’s local time zone instead of the specified time zone. The system’s base time zone is specified on the
PSOPTIONS table. The value datetime is assumed to be in base time.

See "PeopleTools Options" (System and Server Administration).

If Local is specified for time zone, FormatDateTime adjusts the DateTime to the user’s local time zone
instead of a specific time zone.

If True is specified for displayTZ, FormatDateTime appends the time zone abbreviation to the returned
string.

Parameters

Parameter Description

datetime Specify the DateTime value to be formatted.

timezone | Local | Base Specify a value for converting datetime. The values are:

• timezone - a time zone abbreviation or a field reference to
be used for converting datetime.

• Local - use the local time zone for converting datetime.

• Base - use the base time zone for converting datetime.

displayTZ Specify whether the time zone abbreviation should be
appended to the returned string. This parameter takes a
Boolean: True if the abbreviation should be appended, False,
 otherwise.

344  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A formatted string value.

Example

The following example populates the &DISPDATE variable with a string containing the DateTime value
in the ORDER_DATE field adjusted to the user’s local time zone, and with the time zone abbreviation.

&DISPDATE=FormatDateTime(ORDER_DATE, "Local", True);

The following example populates the &DISPDATE variable with a string containing the DateTime value
in the SHIP_DATE field adjusted to the time zone stored in the SHIP_TZ field, and does not include the
time zone abbreviation in the output.

&DISPDATE=FormatDateTime(SHIP_DATE, SHIP_TZ, False);

Related Links
ConvertDatetimeToBase
ConvertTimeToBase
DateTimeToLocalizedString
IsDaylightSavings
DateTimeToTimeZone
TimeToTimeZone
TimeZoneOffset
DateTimeToHTTP

Forward

Syntax

Forward(from physical queue ID, from agent ID, task number, task type,
to logical queue ID[, to agent ID])

Description

Use the Forward function to transfer a task from one agent to another agent or from one agent's logical
queue to another logical queue. This enables agents to reroute tasks that are not appropriate for their skill
level or functional expertise.

Keep the following in mind when using Forward:

• The queue server subtracts the task's cost from the transferring agent's workload.

• The system cannot forward tasks to logical queues that do not have active physical queues on the
same MultiChannel Framework cluster as the physical queue to which the task currently belongs. That
is, you can't forward tasks across MultiChannel Framework clusters.

• A queue server does not allow a task to be transferred if the agent who owns that task is not logged on
to that queue server. PeopleSoft recommends that you only use Forward for application pages that the
MultiChannel Framework console launches when agents accept or activate assigned tasks.

Copyright © 1988, 2022, Oracle and/or its affiliates. 345



PeopleCode Built-in Functions and Language Constructs Chapter 1

• Forward only applies to email and generic task types.

Parameters

Parameter Description

from physical queue ID The physical queue is the internal representation of the
logical queue that the agent signs onto and to which the task
currently belongs. This is a string value, such as “sales3” or
“marketing2.”

You retrieve the current physical queue from the query
string in the URL of the page launched by the MultiChannel
Framework console. Use the GetParameter request class
method with the value ps_qid

from agent ID Specifies the current agent, as in the agent that “accepted” the
task. This is a string value.

You retrieve the current physical queue from the query
string in the URL of the page launched by the MultiChannel
Framework console. Use the GetParameter request class
method with the value ps_agentid.

task number Identifies the task to be forwarded. The EnQueue function
returns this value. This is a string value.

You retrieve the current physical queue from the query
string in the URL of the page launched by the MultiChannel
Framework console. Use the GetParameter request class
method with the value ps_tasknum.

task type Identifies the task type. This value is provided by the queue.
 This is a string value. Valid values are:

• email

• generic

You retrieve the current physical queue from the query
string in the URL of the page launched by the MultiChannel
Framework console. Use the GetParameter request class
method with the value ps_tasktype.

to logical queue ID Specifies the logical queue to which the system forwards the
task. This is a string value.

The queue ID is case sensitive and must match the case used
when you created the queue using the Queues page.

346  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

to agent ID This is an optional parameter. It is a string value specifying a
particular agent ID to receive the forwarded task.

If this value is specified, the system holds the task until the
specified agent is available on the new queue to take this task.
 This means that the specified agent must be able to log in to
one of the physical queues belonging to the destination logical
queue. The system determines which physical queue the
specified agent has access to and assigns the task to that queue
for that agent. If the agent ID is not specified, the physical
queue is chosen at random from the active physical queues.

Note: For better performance, PeopleSoft recommends not
specifying the target agent as this has a processing overhead
for the queue servers and does not allow the system to balance
workload across all available agents.

Returns

Returns 0 on success.

If unsuccessful, it returns a message number. The message set ID for MultiChannel Framework is 162.

For example, 1302 is returned when an invalid task type or no value is provided.

Example
Forward("SALES5", "TSAWYER", "email_2145", "email", "MARKETING", "GSALMON");

The following example shows how to retrieve parameters from the application page using the
GetParameter request class method.

PSMCFFUNCLIB.MCF_QUEUE.Value = %Request.GetParameter("ps_qid");
PSMCFFUNCLIB.MCF_TASKTYPE.Value = %Request.GetParameter("ps_tasktype");
PSMCFFUNCLIB.MCF_TASKNUM.Value = %Request.GetParameter("ps_tasknum");
PSMCFFUNCLIB.MCF_AGENTID.Value = %Request.GetParameter("ps_agentid");

&nret = Forward(PSMCFFUNCLIB.MCF_QUEUE, PSMCFFUNCLIB.MCF_AGENTID,
PSMCFFUNCLIB.MCF_TASKNUM, PSMCFFUNCLIB.MCF_TASKTYPE, &ToQueue);

If &nret = 0 Then
      MessageBox(0, "", 0, 0, "Successfully forwarded.");
      End-If

Function

Syntax

Function name[(paramlist)] [Returns data_type]
   [statements]
End-Function

Copyright © 1988, 2022, Oracle and/or its affiliates. 347



PeopleCode Built-in Functions and Language Constructs Chapter 1

Where paramlist is:

&param1 [As data_type] [, &param2 [As data_type]]...

Where data_type is any valid data type, including Number, String, Date, Rowset, SQL, Record, and so on.

Where statements is a list of PeopleCode statements.

Description

PeopleCode functions can be defined in any PeopleCode program. Function definitions must be placed at
the top of the program, along with any variable and external function declarations.

Functions can be called from the program in which they are defined, in which case they don’t need to be
declared, and they can be called from another program, in which case they need to be declared at the top
of the program where they are called.

Any variables declared within a function are valid for the scope of the function.

By convention, external PeopleCode functions are stored in records whose names begin in FUNCLIB_,
and they are always placed in the FieldFormula event (which is convenient because this event should no
longer be used for anything else).

Note: Functions can be stored in the FieldFormula event only for record fields, not for component record
fields.

A function definition consists of:

• The keyword Function followed by the name of the function and an optional list of parameters. The
name of the function can be up to 100 characters in length.

• An optional Returns clause specifying the data type of the value returned by the function.

• The statements to be executed when the function is called.

• The End-function keyword.

The parameter list, which must be enclosed in parentheses, is a comma-separated list of variable names,
each prefixed with the & character. Each parameter is optionally followed by the keyword As and the
name for one of the conventional PeopleCode data types (Number, String, Date, and so on) or any of
the object data types (such as Rowset, SQL, and so on.) If you specify data types for parameters, then
function calls are checked to ensure that values passed to the function are of the appropriate type. If data
types are not specified, then the parameters, like other temporary variables in PeopleCode, take on the
type of the value that is passed to them.

Note: If a parameter is listed in the function definition, then it is required when the function is called.

PeopleCode parameters are always passed by reference. This means that if you pass the function a
variable from the calling routine and change the value of the variable within the function, the value of the
variable is changed when the flow of execution returns to the calling routine.

If the function is to return a result to the caller, the optional Returns part must be included to specify
the data type of the returned value. You have seven choices of value types: Number, String, Date, Time,
DateTime, Boolean, or Any.

348  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

PeopleCode internal subroutines are part of the enclosing program and can access the same set of
variables as the other statement-lists of the program, in addition to local variables created by the
parameters and local variable declarations within the function.

Returning a Value

You can optionally return a value from a PeopleCode function. To do so, you must include a Returns
statement in the function definition, as described in the preceding section. For example, the following
function returns a Number value:

Function calc_something(&parm1 as number, &parm2 as number) Returns number

In the code section of your function, use the Return statement to return the value to the calling routine.
When the Return statement executes, the function ends and the flow of execution goes back to the calling
routine.

Example

This example returns a Boolean value based on the return value of a SQLExec:

Function run_status_upd(&PROCESS_INSTANCE, &RUN_STATUS) Returns boolean;
   &UPDATEOK = SQLExec("update PS_PRCS_RQST set run_status = :1    where process_in⇒

stance = :2", &RUN_STATUS, &PROCESS_INSTANCE);
   If &UPDATEOK Then
      Return True;
   Else
      Return False;
   End-If;
End-Function;

Related Links
Declare Function
Return

PeopleCode Built-in Functions and Language Constructs: G

The PeopleCode built-In functions and language constructs beginning with the letter G are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

GenABNNodeURL

Syntax

GenABNNodeURL(node,initial_node,display_parent)

Copyright © 1988, 2022, Oracle and/or its affiliates. 349



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use the GenABNNodeURL function to generate a URL for a specific node within a SmartNavigation
chart.

Important! This function must be called during a user action that displays the SmartNavigation chart
—for example, when the user clicks on a folder icon from the menu or when the user clicks on the first
description link of a SmartNavigation chart node. Otherwise, the function returns an empty string.

Parameters

Parameter Description

node Specify the ID of the node to be displayed as a string.

initial_node Specify the ID of the initial node of the SmartNavigation chart
as a string.

display_parent A Boolean value indicating whether the node to be displayed
requires that its parent node also be displayed in the chart.

Returns

A string representing the URL to navigate to the specified node.

GenDynABNElement

Syntax

GenDynABNElement(&str_param1[,&str_param2], ...)

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use the GenDynABNElement function to generate <li> elements for the specified data source to be used
as a dynamically generated SmartNavigation subfolder. This built-in function is required when the root
SmartNavigation folder is designated as a “dynamic hierarchy” folder on the Folder Administration page.

The <li> elements generated by this function can be provided as the input to the GenHTMLMenu
function. Alternatively, the output of one invocation of GenDynABNElement can be concatenated to
subsequent invocations prior to calling the GenHTMLMenu function.

350  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

&str_param1, &str_param2, ... Specifies the first and additional input parameters to the
function as string variables.

Note: Each string parameter can be specified as a string literal or a string variable.

While this function can accept an unlimited number of string parameters, in practical terms, the function
expects a specific number of string parameters in a specific order depending on whether the data source
for the dynamically generated SmartNavigation subfolder is a tree or a rowset.

When the data source for the SmartNavigation subfolder is a tree, 11 string parameters are required in the
following order with the following specifications:

• Data source type – For a tree, this parameter must be "t".

• Display as CREF – Indicates that the SmartNavigation folder is to be displayed as a CREF, which
immediately displays the SmartNavigation chart, instead of as a folder with submenus. Specify as
false = "f"; true = "t".

• Folder ID – Specifies a programmatically generated folder ID. For example: "PRS_DATA_001".

• Folder label – Specifies the label to display for this subfolder in the SmartNavigation menu drop-
downs, fly-outs, and breadcrumbs. For example: "Personnel Data".

• Chart component – Specifies the page used to render the SmartNavigation chart in the following
format: COMPONENT.PAGE.MKT.

• PeopleCode ID – Specifies the PeopleCode program to run to generate the SmartNavigation
elements for the specified data source. The PeopleCode ID must be in the following format:
APP_PKG.Class.Method.

• Tree name – Specifies the name for the tree. For example: "PERS_DATA".

• Tree setID – Specifies the setID for the tree. For example: "SHARE".

• Tree user key – Specifies the user key value for the tree (also known as the set control value). An
actual value is optional but must be specified as the null string: "".

• Tree effective date – Specifies the effective date for the tree. An actual value is optional but must be
specified as the null string: "".

• Tree branch – Specifies the tree branch. An actual value is optional but must be specified as the null
string: "".

SmartNavigation passes the values of several tree-specific fields to the application via URL.
Certain characters are inappropriate for use in a URL and must be avoided. When using a tree as a
SmartNavigation data source, do not use any of the following characters in the tree name, setID, user key
value, and tree branch values:

Copyright © 1988, 2022, Oracle and/or its affiliates. 351



PeopleCode Built-in Functions and Language Constructs Chapter 1

pound (#) percent (%) dollar ($)

ampersand (&) plus (+) comma (,)

forward slash/virgule (/) colon (:) semi-colon (;)

equals (=) question mark (?) at symbol (@)

space ( ) quotation marks(") less than symbol (<)

greater than symbol (>) left curly brace ({) right curly brace (})

vertical bar/pipe (|) backslash (\) caret (^)

tilde (~) left square bracket ([) right square bracket (])

grave accent (`)

For example:

rem Create SmartNavigation dynamic folder from a tree;
&fldr = GenDynABNElement(&ds_t, &cref_t, &fldr_id, &label_t, &chart_t, &pcode_t, &t⇒

ree_name, &tree_setid, &tree_userkey, &tree_effdt, &tree_branch);

When the data source for the SmartNavigation subfolder is a rowset, 6 string parameters are required in
the following order with the following specifications:

• Data source type – For a rowset, this parameter must be "r".

• Display as CREF – Indicates that the SmartNavigation folder is to be displayed as a CREF, which
immediately displays the SmartNavigation chart, instead of as a folder with submenus. Specify as
false = "f"; true = "t".

• Folder ID – Specifies a programmatically generated folder ID. For example: "PRS_DATA_001".

• Folder label – Specifies the label to display for this subfolder in the SmartNavigation menu drop-
downs, fly-outs, and breadcrumbs. For example: "Personnel Data".

• Chart component – Specifies the page used to render the SmartNavigation chart in the following
format: COMPONENT.PAGE.MKT.

• PeopleCode ID – Specifies the PeopleCode program to run to generate the SmartNavigation
elements for the specified data source. The PeopleCode ID must be in the following format:
APP_PKG.Class.Method.

For example:

rem Create SmartNavigation dynamic folder from a rowset;
&fldr = GenDynABNElement(&ds_r, &cref_r, &fldr_id, &label_r, &chart_r, &pcode_r);

352  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A string representing the <li> elements for the data source.

GenSecureKey

Syntax

GenSecureKey()

Description

The GenSecureKey function only generates a key; application developers should plan the storage of the
key.

The GenSecureKey function generates a key of the default key size for the EncryptStr and DecryptStr
functions, that is, the default key size of AES128 key length.

Parameters

None.

Returns

AES128 key string.

Example
Local string &genkey = GenSecureKey();

Related Links
DecryptStr
EncryptStr

GenerateActGuideContentUrl

Syntax

GenerateActGuideContentlUrl(PORTAL.portalname, NODE.nodename, MENUNAME.menuname,
Marketname, COMPONENT.componentname, ActivityGuide)

Description

Use the GenerateActGuideContentUrl function to create a URL string that represents an absolute
reference to the specified Workflow activity guide for the content servlet. The ContentURI of the node
that hosts the specified portal is used in the generated URL. The URL contains a reference to the content
service (psc) servlet.

Copyright © 1988, 2022, Oracle and/or its affiliates. 353



PeopleCode Built-in Functions and Language Constructs Chapter 1

If you want to generate a URL for the portal service (psp) servlet, use the GenerateActGuidePortalURL
function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the activity guide,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

menuname Specify the name of the menu containing the activity guide,
 prefixed with the reserved word MENUNAME. You can also
use a string, such as %Menu, for this value.

Marketname Specify the name of the market of the component. You can
also use a string, such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved
word COMPONENT. You can also use a string, such as
%Component, for this value.

ActivityGuide Specify the name of the Workflow activity guide as a string.

Returns

A string with the following format:

http://Content URI of node/portal/node/l/ActivityGuide.component.market

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&AGURL = GenerateActGuideContentUrl(%Portal, %Node, MENUNAME.MAINTAIN_SECURITY, "GB⇒

L", COMPONENT.CHANGE_PASSWORD, "QE_ACTIVITY_GUIDE_DEMO");

might produce the following URL string:

http://boynten8700/psc/ps/EMPLOYEE/QE_LOCAL/l/QE_ACTIVITY_GUIDE_DEMO.MAINTAIN_
SECURITY.CHANGE_PASSWORD.GBL

Related Links
GenerateActGuidePortalUrl

354  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GenerateActGuideRelativeUrl
"Creating Workflow Activity Guide Pages" (Workflow Technology)

GenerateActGuidePortalUrl

Syntax

GenerateActGuidePortalUrl(PORTAL.portalname, NODE.nodename, MENUNAME.menuname,
Marketname, COMPONENT.componentname, ActivityGuide)

Description

Use the GenerateActGuidePortalUrl function to create a URL string that represents an absolute reference
to the specified Workflow activity guide for the portal servlet. The PortalURI of the node that hosts the
specified portal is used in the generated URL. The URL contains a reference to the portal service (psp)
servlet.

If you want to generate a URL for the portal content (psc) servlet, use the GenerateActGuideContentURL
function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the activity guide,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

menuname Specify the name of the menu containing the activity guide,
 prefixed with the reserved word MENUNAME. You can also
use a string, such as %Menu, for this value.

Marketname Specify the name of the market of the component. You can
also use a string, such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved
word COMPONENT. You can also use a string, such as
%Component, for this value.

ActivityGuide Specify the name of the Workflow activity guide as a string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 355



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A string with the following format:

http://Portal URI of node/portal/node/l/ActivityGuide.component.market

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&AGURL = GenerateActGuidePortalUrl(%Portal, %Node, MENUNAME.MAINTAIN_SECURITY,
 "GBL", COMPONENT.CHANGE_PASSWORD, "QE_ACTIVITY_GUIDE_DEMO");

might create the following URL string:

http://boynte700/psp/ps/EMPLOYEE/QE_LOCAL/l/QE_ACTIVITY_GUIDE_DEMO.MAINTAIN_
SECURITY.CHANGE_PASSWORD.GBL

Related Links
GenerateActGuideContentUrl
GenerateActGuideRelativeUrl
"Creating Workflow Activity Guide Pages" (Workflow Technology)

GenerateActGuideRelativeUrl

Syntax

GenerateActGuideRelativeUrl(PORTAL.portalname, NODE.nodename, MENUNAME.menuname,
Marketname, COMPONENT.componentname, ActivityGuide)

Description

Use the GenerateActGuideContentUrl function to create a URL string that represents an relative reference
to the specified Workflow activity guide. The relative reference is suitable for use on any page that itself
has the simple URL format.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the activity guide,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

356  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

menuname Specify the name of the menu containing the activity guide,
 prefixed with the reserved word MENUNAME. You can also
use a string, such as %Menu, for this value.

Marketname Specify the name of the market of the component. You can
also use a string, such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved
word COMPONENT. You can also use a string, such as
%Component, for this value.

ActivityGuide Specify the name of the Workflow activity guide as a string.

Returns

A string with the following format:

../../../Portal/node/l/ActivityGuide.menu.component.market

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&AGURL = GenerateActGuideRelativeUrl(%Portal, %Node, MENUNAME.MAINTAIN_SECURITY,
 "GBL", COMPONENT.CHANGE_PASSWORD, "QE_ACTIVITY_GUIDE_DEMO");

might produce the following URL string:

../../../EMPLOYEE/QE_LOCAL/l/QE_ACTIVITY_GUIDE_DEMO.MAINTAIN_SECURITY.CHANGE_
PASSWORD.GBL

Related Links
GenerateActGuideContentUrl
GenerateActGuidePortalUrl
"Creating Workflow Activity Guide Pages" (Workflow Technology)

GenerateComponentContentRelURL

Syntax

GenerateComponentContentRelURL(PORTAL.portalname, NODE.nodename, MENUNAME.menuname,⇒

MARKET.marketname, COMPONENT.componentname, PAGE.pagename, action, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

Copyright © 1988, 2022, Oracle and/or its affiliates. 357



PeopleCode Built-in Functions and Language Constructs Chapter 1

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the GenerateComponentContentRelURL function to create a URL string that represents a relative
reference to the specified component for the content servlet. The relative reference is suitable for use on
any page that itself has the simple URL format.

If you want to generate an absolute URL for a component, use the GenerateComponentContentURL
function.

Note: PeopleSoft recommends using the Transfer function for opening new windows, not this function, as
there may be problems maintaining state and window count.

Parameters

Parameter Description

PortalName Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
 such as %Portal, for this value. This parameter is ignored
by the content service, but is a required part of the psc URL
format.

NodeName Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

MenuName Specify the name of the menu containing the content, prefixed
with the reserved word MENUNAME. You can also use a
string, such as %Menu, for this value.

Marketname Specify the name of the market of the component, prefixed
with the reserved word MARKET. You can also use a string,
 such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved
word COMPONENT. You can also use a string, such as
%Component, for this value.

Pagename Specify the name of the page that contains the content. If you
specify a page name, it must be prefixed with the keyword
PAGE. You can also specify an empty string ("") for this
value.

358  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

Action Specify a single-character code. Valid actions are:

• "A" ( add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify an empty string ("") for this value.

Keylist An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, of if Force Search Processing has
been selected, the search dialog appears.

If the keylist parameter is not supplied the destination
component's search key must be found as part of the source
components level 0 record buffer.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

../../../Portal/node/c/menu.component.market?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

../../../portal/node/?ICType=Panel&Menu=menu&Market=market&PanelGroupName=component⇒

?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyCompURL = GenerateComponentContentRelURL("EMPLOYEEPORTAL", "CRM", MenuName.SFA,
 "GBL", Component.CUSTOMERINFO, Page.CUST_DATA1, "U", EMPLID);

Copyright © 1988, 2022, Oracle and/or its affiliates. 359



PeopleCode Built-in Functions and Language Constructs Chapter 1

Might create the following URL:

../../../psc/PS84/EMPLOYEEPORTAL/CRM/c/SFA.CUSTOMERINFO.GBL?page=
CUST_DATA1&&Action=U&emplid=00001

Because this function terminates if the portal or node name is invalid, it's enclosed in a try-catch section
so if an exception gets raised, it can be handled.

try
   &MyURL = GenerateComponentContentRelURL(%Portal, "HRMS", Menuname.ADMIN_
WORKFORCE, "GBL", Component.ABSENCE_HISTORY, Page. ABSENCE_HISTORY, "U", EMPLID)

   catch ExceptionPortal &Ex1
      /* error handling portal name not valid */
   catch ExceptionNode &Ex2
      /* error handling Node name not valid */

end-try;

Related Links
GenerateComponentContentURL
GenerateComponentPortalRelURL
GenerateComponentPortalURL
GenerateComponentRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateComponentContentURL

Syntax

GenerateComponentContentURL(PORTAL.portalname, NODE.nodename, MENUNAME.menuname,
MARKET.marketname, COMPONENT.componentname, PAGE.pagename, action, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the GenerateComponentContentURL function to create a URL string that represents an absolute
reference to the specified component for the content servlet.

The ContentURI of the specified node is used in the generated URL. The URL contains a reference
to the portal content (psc) servlet. If you want to generate a URL for the portal service (psp), use the
GenerateComponentPortalURL function.

360  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

PortalName Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
 such as %Portal, for this value. This parameter is ignored
by the content service, but is a required part of the psc URL
format.

NodeName Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

MenuName Specify the name of the menu containing the content, prefixed
with the reserved word MENUNAME. You can also use a
string, such as %Menu, for this value.

Marketname Specify the name of the market of the component, prefixed
with the reserved word MARKET. You can also use a string,
 such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved
word COMPONENT. You can also use a string, such as
%Component, for this value.

Pagename Specify the name of the page that contains the content. If you
specify a page name, it must be prefixed with the keyword
PAGE. You can also specify an empty string ("") for this
value.

Action Specify a single-character code. Valid actions are:

• "A" ( add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify an empty string ("") for this value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 361



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

Keylist An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, of if Force Search Processing has
been selected, the search dialog appears.

If the keylist parameter is not supplied the destination
component's search key must be found as part of the source
components level 0 record buffer.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

http://Content URI of host node/Portal/node/c/menu.component.market?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

http://Content URI of host node/portal/node/?ICType=Panel&Menu=menu&Market=market
&PanelGroupName=component?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyCompURL = GenerateComponentContentURL("EMPLOYEEPORTAL", "CRM", MenuName.SFA,
 "GBL", Component.CUSTOMERINFO, Page.CUST_DATA1, "U", EMPLID);

Might create the following URL:

http://serverx/servlets/psc/PS84/EMPLOYEEPORTAL/CRM/c/SFA.CUSTOMERINFO.GBL?page=
CUST_DATA1&&Action=U&emplid=00001

Because this function terminates if the portal or node name is invalid, it's enclosed in a try-catch section
so if an exception gets raised, it can be handled.

try
   &MyURL = GenerateComponentContentURL(%Portal, "HRMS", Menuname.ADMIN_WORKFORCE,
 "GBL", Component.ABSENCE_HISTORY, Page. ABSENCE_HISTORY, "U", EMPLID)

   catch ExceptionPortal &Ex1
      /* error handling portal name not valid */
   catch ExceptionNode &Ex2
      /* error handling Node name not valid */

end-try;

362  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
GenerateComponentContentRelURL
GenerateComponentPortalRelURL
GenerateComponentPortalURL
GenerateComponentRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateComponentPortalRelURL

Syntax

GenerateComponentPortalRelURL(PORTAL.portalname, NODE.nodename, MENUNAME.menuname, ⇒

MARKET.marketname, COMPONENT.componentname, PAGE.pagename, action, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the GenerateComponentPortalRelURL function to create a URL string URL string that represents a
relative reference the specified content (component). The relative reference is suitable for use on any page
that itself has the simple URL format.

If you want to generate an absolute URL for a component, use the GenerateComponentPortalURL
function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

menuname Specify the name of the menu containing the content, prefixed
with the reserved word MENUNAME. You can also use a
string, such as %Menu, for this value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 363



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

Marketname Specify the name of the market of the component, prefixed
with the reserved word MARKET. You can also use a string,
 such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved
word COMPONENT. You can also use a string, such as
%Component, for this value.

pagename Specify the name of the page that contains the content. If you
specify a page name, it must be prefixed with the keyword
PAGE. You can also specify a Null string ("") for this value.

action Specify a single-character code. Valid actions are:

• "A" ( add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a Null string ("") for this value.

keylist An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, of if Force Search Processing has
been selected, the search dialog appears.

If the keylist parameter is not supplied the destination
component's search key must be found as part of the source
components level 0 record buffer.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

../../../portal/node/c/menu.component.market?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

../../../portal/node/?ICType=Panel&Menu=menu&Market=market&PanelGroupName=component⇒

?parameters

364  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyCompURL = GenerateComponentPortalRelURL("EMPLOYEEPORTAL", "CRM", MenuName.SFA,
 "GBL", Component.CUSTOMERINFO, , "", "");

Might create the following URL:

../../../EMPLOYEEPORTAL/CRM/c/sfa.customerinfo.gbl

Related Links
GenerateComponentContentRelURL
GenerateComponentContentURL
GenerateComponentPortalURL
GenerateComponentRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateComponentPortalURL

Syntax

GenerateComponentPortalURL(PORTAL.portalname, NODE.nodename, MENUNAME.menuname,
MARKET.marketname, COMPONENT.componentname, PAGE.pagename, action, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the GenerateComponentPortalURL function to create a URL string that represents an absolute
reference to the specified component for the portal servlet. The PortalURI of the node that hosts the
specified portal is used in the generated URL. The URL contains a reference to the portal service (psp)
servlet.

If you want to generate a URL for the portal content (psc) servlet, use the
GenerateComponentContentURL function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 365



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

menuname Specify the name of the menu containing the content, prefixed
with the reserved word MENUNAME. You can also use a
string, such as %Menu, for this value.

Marketname Specify the name of the market of the component, prefixed
with the reserved word MARKET. You can also use a string,
 such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved
word COMPONENT. You can also use a string, such as
%Component, for this value.

pagename Specify the name of the page that contains the content. If you
specify a page name, it must be prefixed with the keyword
PAGE. You can also specify a Null string ("") for this value.

action Specify a single-character code. Valid actions are:

• "A" ( add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a Null string ("") for this value.

366  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

keylist An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, of if Force Search Processing has
been selected, the search dialog appears.

If the keylist parameter is not supplied the destination
component's search key must be found as part of the source
components level 0 record buffer.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

http://Portal URI of host node/portal/node/c/menu.component.market?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

http://Portal URI of host node/portal/node/?ICType=Panel&Menu=menu&Market=market&Pa⇒

nelGroupName=component?parameters

Note: If the host node is local, then Portal URI of host node will always be the one you're currently
logged in as.

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyCompURL = GenerateComponentPortalURL("EMPLOYEEPORTAL", "CRM", MenuName.SFA,
 "GBL", Component.CUSTOMERINFO, , "", "");

Might create the following URL:

http://mike.com/servlets/psp/testsite/EMPLOYEEPORTAL/CRM/c/sfa.customerinfo.gbl

The following example uses a de-referenced name for the component.

&sComponent = "Component." | &sComponent;
&sPage = "Page.EM_VCHR_PYMNT_CLN";

&rwCurrent = GetRow();
/*- The Search Record keys -*/
&sQueryString = &sQueryString | "&BUSINESS_UNIT=" | &rwCurrent.EM_VCHR_INQ_VW.EM_
BUSINESS_UNIT.Value;

Copyright © 1988, 2022, Oracle and/or its affiliates. 367



PeopleCode Built-in Functions and Language Constructs Chapter 1

&sQueryString = &sQueryString | "&VOUCHER_ID=" |
&rwCurrent.EM_VCHR_INQ_VW.VOUCHER_ID.Value;

&sQueryString = GenerateComponentPortalURL(%Portal, %Node,
MenuName.EM_BILL_PRESENTMENT, %Market, @&sComponent, @&sPage, "U") |
&sQueryString;

%Response.RedirectURL(&sURL);

Related Links
GenerateComponentContentRelURL
GenerateComponentContentURL
GenerateComponentPortalRelURL
GenerateComponentRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateComponentRelativeURL

Syntax

GenerateComponentRelativeURL(PORTAL.portalname, NODE.nodename, MENUNAME.menuname,
MARKET.marketname, COMPONENT.componentname, PAGE.pagename, action, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the GenerateComponentRelativeURL function to create a URL string that represents a relative
reference the specified content (component). The relative reference is suitable for use on any page that
itself has the simple URL format.

If you want to generate an absolute URL for a component, use either the
GenerateComponentContentURL or GenerateComponentPortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

368  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

menuname Specify the name of the menu containing the content, prefixed
with the reserved word MENUNAME. You can also use a
string, such as %Menu, for this value.

Marketname Specify the name of the market of the component, prefixed
with the reserved word MARKET. You can also use a string,
 such as %Market, for this value.

ComponentName Specify the name of the component, prefixed with the reserved
word COMPONENT. You can also use a string, such as
%Component, for this value.

Pagename Specify the name of the page that contains the content. If you
specify a page name, it must be prefixed with the keyword
PAGE. You can also specify a Null string ("") for this value.

Action Specify a single-character code. Valid actions are:

• "A" ( add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a Null string ("") for this value.

Keylist An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, of if Force Search Processing has
been selected, the search dialog appears.

If the keylist parameter is not supplied the destination
component's search key must be found as part of the source
components level 0 record buffer.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

../../../portal/node/c/menu.component.market?parameters

Copyright © 1988, 2022, Oracle and/or its affiliates. 369



PeopleCode Built-in Functions and Language Constructs Chapter 1

If the node has a Node Type of ICType, a string of the following format is returned:

../../../portal/node/?ICType=Panel&Menu=menu&Market=market&PanelGroupName=component⇒

?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code example:

&MyCompURL = GenerateComponentRelativeURL("EMPLOYEEPORTAL", "CRM", MenuName.SFA,
 "GBL", Component.CUSTOMERINFO, "", "");

Might yield the following:

../../../EMPLOYEEPORTAL/CRM/c/sfa.customerinfo.gbl

Related Links
GenerateComponentContentRelURL
GenerateComponentContentURL
GenerateComponentPortalRelURL
GenerateComponentPortalURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateExternalPortalURL

Syntax

GenerateExternalPortalURL(PORTAL.portalname, NODE.nodename, URL)

Description

Use the GenerateExternalPortalURL function to create a URL string that represents an absolute reference
the specified external content (URL) on the portal servlet.

The PortalURI of the node that hosts the specified portal is used in the generated URL. The generated
URL contains a reference to the portal service (psp) servlet.

If you want to generate a relative URL, use the GenerateExternalRelativeURL function.

370  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

NodeName Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

URL Specify the URL to be used for this content.

Returns

A string of the following format is returned:

http://Portal URI of host node/Portal/node/e/encodedURL

When the portal servlet evaluates an external URL, the Node is ignored, so %Node can always be passed
in for the Node parameter.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&url = GenerateExternalPortalURL("EMPLOYEEPORTAL", "CRM", "http://www.excite.com");⇒

Might create the following URL:

http://myserver/psp/ps/EMPLOYEEPORTAL/CRM/e/http%3a%2f%2fwww.excite.com

Related Links
GenerateExternalRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateExternalRelativeURL

Syntax

GenerateExternalRelativeURL(PORTAL.portalname, NODE.nodename, EncodedURL)

Copyright © 1988, 2022, Oracle and/or its affiliates. 371



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the GenerateExternalRelativeURL function to create a URL string that represents a relative reference
the specified external content (URL). The relative reference is suitable for use on any page that itself has
the simple URL format and which is served by the portal servlet (psp).

If you want to generate an absolute URL, use the GenerateExternalPortalURL function.

Parameters

Parameter Description

PortalName Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

NodeName Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

EncodedURL Specify the URL to be used for this content.

Returns

A string of the following format is returned:

../../../Portal/node/e/encodedURL

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&url = GenerateExternalRelativeURL("EMPLOYEEPORTAL", "CRM", "http:
//www.excite.com");

Might create the following URL:

../../../EMPLOYEEPORTAL/CRM/e/http%3a%2f%2fwww.excite.com

Related Links
GenerateExternalRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateHomepagePortalURL

Syntax

GenerateHomepagePortalURL(PORTAL.portalname, NODE.nodename, Tabname)

372  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the GenerateHomepagePortalURL function to create a URL string that represents an absolute
reference the specified homepage tab on the portal servlet.

The PortalURI of the node that hosts the specified portal is used in the generated URL. The generated
URL contains a reference to the portal service (psp) servlet.

If you want to generate a relative URL, use the GenerateHomepageRelativeURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

Note: The value specified for this parameter is ignored. The
node name that is used is automatically calculated. However,
 you must still specify a value for this parameter.

nodename Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value. This should be the node
that hosts the specified portal.

Tabname Specify the name of the tab on the homepage that you want to
generate a URL for. If you specify a null string (""), the default
tab is used.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

http://Portal URI of host node/Portal/node/h/?tab=tabname

This function returns a Null string if you specify an invalid portal or node.

Example

Specifying the following code:

&HomePage = GenerateHomepagePortalURL(%Portal, NODE.North_Asia, "");

Might generate the following string:

http://bejing/psp/psoft/crm/North_Asia/h/?tab=DEFAULT

Related Links
GenerateHomepageRelativeURL
"Understanding the Portal Registry" (PeopleCode API Reference)

Copyright © 1988, 2022, Oracle and/or its affiliates. 373



PeopleCode Built-in Functions and Language Constructs Chapter 1

"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateHomepageRelativeURL

Syntax

GenerateHomepageRelativeURL(PORTAL.portalname, NODE.nodename, Tabname)

Description

Use the GenerateHomepageRelativeURL function to create a URL string that represents a relative
reference the specified homepage on the portal servlet. The relative reference is suitable for use on any
page that itself has the simple URL format.

If you want to generate an absolute URL, use the GenerateHomepagePortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value. . This should be the node
that hosts the specified portal.

Tabname Specify the name of the tab on the homepage that you want to
generate a URL for. If you specify a null string (""), the default
tab is used.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

../../../Portal/node/h/?tab=tabname

If the node has a Node Type of ICType, a string of the following format is returned:

./?cmd=start

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&HomePage = GenerateHomepageRelativeURL(%Portal, NODE.North_Asia, "");

374  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Might generate the following string:

../../../crm/North_Asia/h/?tab=DEFAULT

Related Links
GenerateHomepagePortalURL
"Understanding the Portal Registry" (PeopleCode API Reference)
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateQueryContentURL

Syntax

GenerateQueryContentURL(Portal.portalname, Node.nodename, QueryName, IsPublic
[, IsNewWindow])

Description

Use the GenerateQueryContentURL function to create a URL string that represents an absolute reference
to the specified query (URL) on the content servlet.

The PortalURI of the node that hosts the specified portal is used in the generated URL. The generated
URL contains a reference to the portal content (psc) servlet.

If you want to generate a relative URL, use the GenerateQueryRelativeURL function.

If you want to generate a URL for the portal service (psp) servlet, use the GenerateQueryPortalURL
function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word Portal. You can also use a string, such
as %Portal, for this value.

nodename Specify the name of the node that contains the query, prefixed
with the reserved word Node. You can also use a string, such
as %Node, for this value.

Queryname Specify the name of the query you want to generate a URL for.
 This parameter takes a string value.

IsPublic Specify whether the query is public or private. This parameter
takes a Boolean value: True, the query is public, False
otherwise.

Copyright © 1988, 2022, Oracle and/or its affiliates. 375



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

IsNewWindow Specify whether the URL is for a new browser instance. This
parameter takes a Boolean value: True, the URL is for a new
browser instance, False otherwise. The default is False.

If the value is True this function generates a new state
block for use in a separate browser instance. This does not
automatically open a new browser instance. It just supports it.

Note: When Query is being run on a PeopleTools version prior to 8.16, the query URL does not include
the ability to specify if a query is public or private. On PeopleTools versions 8.16 and higher, the
generated URL contains either the keyword PUBLIC or PRIVATE prefixed to the query name. If you
are building a URL for a portal node that is on a PeopleTools release prior to 8.16, you must remove the
public or private keyword before trying to use the URL.

Returns

If IsPublic is specified as True, and the node has a Node Type of PIA, a string of the following format is
returned:

http://PortalURI/Portal/node/q/?ICAction=ICQryNameURL=PUBLIC.QueryName

If IsPublic is specified as False, and the node has a Node Type of PIA, a string of the following format is
returned:

http://PortalURI/Portal/node/q/?ICAction=ICQryNameURL=PRIVATE.QueryName

This function returns a Null string if you specify an invalid portal or node.

Example

The following code example:

&url = GenerateQueryContentURL(%Portal, "RMTNODE", "QUERYNAME", True);

might produce a string as follows:

http://bsto091200/psc/ps/EMPLOYEE/RMTNODE/q/?ICAction=ICQryNameURL=PUBLIC.QUERYNAME

The following code example uses the optional parameter to produce a URL that supports a new browser
instance:

&url = GenerateQueryContentURL(%Portal, "RMTNODE", "QUERYNAME", True, True);

might produce a string as follows:

http://bsto091200/psc/ps_newwin/EMPLOYEE/RMTNODE/q/?ICAction=ICQryNameURL=
PUBLIC.QUERYNAME

Related Links
GenerateQueryPortalURL
GenerateQueryRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

376  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

"Understanding Query Classes" (PeopleCode API Reference)

GenerateQueryPortalURL

Syntax

GenerateQueryPortalURL(Portal.portalname, Node.nodename, QueryName, IsPublic
[, IsNewWindow])

Description

Use the GenerateQueryPortalURL function to create a URL string that represents an absolute reference to
the specified query (URL) on the portal servlet.

The PortalURI of the node that hosts the specified portal is used in the generated URL. The generated
URL contains a reference to the portal service (psp) servlet.

If you want to generate a relative URL, use the GenerateQueryRelativeURL function.

If you want to generate a URL for the portal content (psc) servlet, use the GenerateQueryContentURL
function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word Portal. You can also use a string, such
as %Portal, for this value.

nodename Specify the name of the node that contains the query, prefixed
with the reserved word Node. You can also use a string, such
as %Node, for this value.

Queryname Specify the name of the query you want to generate a URL for.
 This parameter takes a string value.

IsPublic Specify whether the query is public or private. This parameter
takes a Boolean value: True, the query is public, False
otherwise.

IsNewWindow Specify whether the URL is for a new browser instance. This
parameter takes a Boolean value: True, the URL is for a new
browser instance, False otherwise. The default is False.

If the value is True this function generates a new state
block for use in a separate browser instance. This does not
automatically open a new browser instance. It just supports it.

Copyright © 1988, 2022, Oracle and/or its affiliates. 377



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: When Query is being run on a PeopleTools version prior to 8.16, the query URL does not include
the ability to specify if a query is public or private. On PeopleTools versions 8.16 and higher, the
generated URL contains either the keyword PUBLIC or PRIVATE prefixed to the query name. If you
are building a URL for a portal node that is on a PeopleTools release prior to 8.16, you must remove the
public or private keyword before trying to use the URL.

Returns

If IsPublic is specified as True, and the node has a Node Type of PIA, a string of the following format is
returned:

http://PortalURI/Portal/node/q/?ICAction=ICQryNameURL=PUBLIC.QueryName

If IsPublic is specified as False, and the node has a Node Type of PIA, a string of the following format is
returned:

http://PortalURI/Portal/node/q/?ICAction=ICQryNameURL=PRIVATE.QueryName

This function returns a Null string if you specify an invalid portal or node.

Example

The following code example:

&url = GenerateQueryPortalURL(%Portal, "RMTNODE", "QUERYNAME", True);

might produce a string as follows:

http://bsto091200/psp/ps/EMPLOYEE/RMTNODE/q/?ICAction=ICQryNameURL=PUBLIC.QUERYNAME

The following code example uses the optional parameter to produce a URL that supports a new browser
instance:

&url = GenerateQueryPortalURL(%Portal, "RMTNODE", "QUERYNAME", True, True);

might produce a string as follows:

http://bsto091200/psp/ps_newwin/EMPLOYEE/RMTNODE/q/?ICAction=ICQryNameURL=
PUBLIC.QUERYNAME

Related Links
GenerateQueryContentURL
GenerateQueryRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)
"Understanding Query Classes" (PeopleCode API Reference)

GenerateQueryRelativeURL

Syntax

GenerateQueryRelativeURL(Portal.portalname, Node.nodename, QueryName, IsPublic
[, IsNewWindow])

378  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the GenerateQueryRelativeURL function to creates a URL string that represents a relative reference
to the specified query on the portal servlet. The relative reference is suitable for use on any page that itself
has the simple URL format.

If you want to generate an absolute URL, use either the GenerateQueryPortalURL or
GenerateQueryContentURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word Portal. You can also use a string, such
as %Portal, for this value.

nodename Specify the name of the node that contains the query, prefixed
with the reserved word Node. You can also use a string, such
as %Node, for this value.

Queryname Specify the name of the query you want to generate a URL for.
 This parameter takes a string value.

IsPublic Specify whether the query is public or private. This parameter
takes a Boolean value: True, the query is public, False
otherwise.

IsNewWindow Specify whether the URL is for a new browser instance. This
parameter takes a Boolean value: True, the URL is for a new
browser instance, False otherwise. The default is False.

If the value is True this function generates a new state
block for use in a separate browser instance. This does not
automatically open a new browser instance. It just supports it.

Note: When Query is being run on a PeopleTools version prior to 8.16, the query URL does not include
the ability to specify if a query is public or private. On PeopleTools versions 8.16 and higher, the
generated URL contains either the keyword PUBLIC or PRIVATE prefixed to the query name. If you
are building a URL for a portal node that is on a PeopleTools release prior to 8.16, you must remove the
public or private keyword before trying to use the URL.

Returns

If IsPublic is specified as True, and the node has a Node Type of PIA, a string of the following format is
returned:

../../../portal/node/q/?ICAction=ICQryNameURL=PUBLIC.QueryName

Copyright © 1988, 2022, Oracle and/or its affiliates. 379



PeopleCode Built-in Functions and Language Constructs Chapter 1

If IsPublic is specified as False, and the node has a Node Type of PIA, a string of the following format is
returned:

../../../portal/node/q/q/?ICAction=ICQryNameURL=PRIVATE.QueryName

This function returns a Null string if you specify an invalid portal or node.

Example

The following code example:

&url = GenerateQueryRelativeURL(%Portal, "RMTNODE", "QUERYNAME", True);

might produce a string as follows:

../../../EMPLOYEE/RMTNODE/q/?ICAction=ICQryNameURL=PUBLIC.QUERYNAME

Related Links
GenerateQueryContentURL
GenerateQueryPortalURL
"Understanding Internet Script Classes" (PeopleCode API Reference)
"Understanding Query Classes" (PeopleCode API Reference)

GenerateScriptContentRelURL

Syntax

GenerateScriptContentRelURL(PORTAL.portalname, NODE.nodename, RECORD.recordname,
FIELD.fieldname, event_name, function_name, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the GenerateScriptContentRelURL function to create a URL string that represents a relative reference
to the specified iScript. The generated URL contains a reference to the portal content (psc) servlet.

If you want to generate an absolute URL for an iScript for the portal content servlet, use the
GenerateScriptContentURL function.

380  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the iScript, prefixed
with the reserved word NODE. You can also use a string, such
as %Node, for this value.

recordname Specify the name of the record containing the iScript, prefixed
with the reserved word RECORD.

fieldname Specify the name of the field containing the iScript, prefixed
with the reserved word FIELD.

event_name Specify the name of the event containing the iScript. This is
generally the FieldFormula event.

function_name Specify the name of the iScript function.

keylist An optional list of parameters used with the function. It can
also be an already instantiated record object.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

/psc/s/recname.fieldname.event_name.function_name?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

/portal/node/?ICType=Script&ICScriptProgramName=recname.fieldname.event_name.functi⇒

on_name?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyScriptURL = GenerateScriptContentRelURL("EMPLOYEEPORTAL", "CRM", Record.WEBLIB_
CRM, Field.SFASCRIPTS, "FieldFormula", "Iscript_SFAHOME ");

Copyright © 1988, 2022, Oracle and/or its affiliates. 381



PeopleCode Built-in Functions and Language Constructs Chapter 1

Might yield the following URL:

/psc/s/WEBLIB_CRM.SFASCRIPTS.FieldFormula.IScript_SFAHOME

Related Links
GenerateScriptContentURL
GenerateScriptPortalRelURL
GenerateScriptPortalURL
GenerateScriptRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateScriptContentURL

Syntax

GenerateScriptContentURL(PORTAL.portalname, NODE.nodename, RECORD.recordname,
FIELD.fieldname, event_name, function_name, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the GenerateScriptContentURL function to create a URL string that represents an absolute reference
to the specified iScript for the content servlet.

The ContentURI of the specified node is used in the generated URL. The URL contains a reference to the
portal content (psc) servlet.

If you want to generate a URL for an iScript for the portal servlet, use the GenerateScriptPortalURL
function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the iScript, prefixed
with the reserved word NODE. You can also use a string, such
as %Node, for this value.

382  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

recordname Specify the name of the record containing the iScript, prefixed
with the reserved word RECORD.

fieldname Specify the name of the field containing the iScript, prefixed
with the reserved word FIELD.

event_name Specify the name of the event containing the iScript. This is
generally the FieldFormula event.

function_name Specify the name of the iScript function.

keylist An optional list of parameters used with the function. It can
also be an already instantiated record object.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

http://Content URI of host node/portal/node/s/recname.fieldname.event_
name.function_name?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

http://Content URI of host node/portal/node/?ICType=Script&ICScriptProgramName=recn⇒

ame.fieldname.event_name.function_name?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyScriptURL = GenerateScriptContentURL("EMPLOYEEPORTAL", "CRM", Record.WEBLIB_
CRM, Field.SFASCRIPTS, "FieldFormula", "Iscript_SFAHOME ");

Might yield the following URL:

http://mike.com/servlets/psc/testsite/EMPLOYEEPORTAL/CRM/s/WEBLIB_
CRM.SFASCRIPTS.FieldFormula.IScript_SFAHOME

Related Links
GenerateScriptContentRelURL
GenerateScriptPortalRelURL
GenerateScriptPortalURL
GenerateScriptRelativeURL

Copyright © 1988, 2022, Oracle and/or its affiliates. 383



PeopleCode Built-in Functions and Language Constructs Chapter 1

"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateScriptPortalRelURL

Syntax

GenerateScriptPortalRelURL(PORTAL.portalname, NODE.nodename, RECORD.recordname,
FIELD.fieldname, event_name, function_name, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the GenerateScriptPortalRelURL function to create a URL string that represents a relative reference
to the specified iScript. The generated URL contains a reference to the portal service (psp) servlet.

If you want to generate an absolute URL for an iScript for the portal service servlet, use the
GenerateScriptPortalURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the iScript, prefixed
with the reserved word NODE. You can also use a string, such
as %Node, for this value.

recordname Specify the name of the record containing the iScript, prefixed
with the reserved word RECORD.

fieldname Specify the name of the field containing the iScript, prefixed
with the reserved word FIELD.

event_name Specify the name of the event containing the iScript. This is
generally the FieldFormula event.

function_name Specify the name of the iScript function.

384  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

keylist An optional list of parameters used with the function. It can
also be an already instantiated record object.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

/psp/s/recname.fieldname.event_name.function_name?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

/portal/node/?ICType=Script&ICScriptProgramName=recname.fieldname.event_name.functi⇒

on_name?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyScriptURL = GenerateScriptPortalRelURL("EMPLOYEEPORTAL", "CRM", Record.WEBLIB_
CRM, Field.SFASCRIPTS, "FieldFormula", "IScript_SFAHOME");

Might yield the following:

/psp/s/WEBLIB_CRM.SFASCRIPTS.FieldFormula.IScript_SFAHOME

Related Links
GenerateScriptContentRelURL
GenerateScriptContentURL
GenerateScriptPortalURL
GenerateScriptRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateScriptPortalURL

Syntax

GenerateScriptPortalURL(PORTAL.portalname, NODE.nodename, RECORD.recordname,
FIELD.fieldname, event_name, function_name, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

Copyright © 1988, 2022, Oracle and/or its affiliates. 385



PeopleCode Built-in Functions and Language Constructs Chapter 1

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the GenerateScriptPortalURL function to create a URL string that represents an absolute reference to
the specified iScript for the portal servlet. The PortalURI of the node that hosts the specified portal is used
in the generated URL. The URL contains a reference to the portal service (psp) servlet.

If you want to generate a URL for an iScript for the portal content (psc) servlet, use the
GenerateScriptContentURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the iScript, prefixed
with the reserved word NODE. You can also use a string, such
as %Node, for this value.

recordname Specify the name of the record containing the iScript, prefixed
with the reserved word RECORD.

fieldname Specify the name of the field containing the iScript, prefixed
with the reserved word FIELD.

event_name Specify the name of the event containing the iScript. This is
generally the FieldFormula event.

function_name Specify the name of the iScript function.

keylist An optional list of parameters used with the function. It can
also be an already instantiated record object.

Returns

If a node has a Node Type of PIA, a string of the following format is returned:

http://Portal URI of host portal/portal/node/s/recname.fieldname.event_
name.function_name?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

http://Portal URI of host node/portal/node/?ICType=Script&ICScriptProgramName=
recname.fieldname.event_name.function_name?parameters

386  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyScriptURL = GenerateScriptPortalURL("EMPLOYEEPORTAL", "CRM", Record.WEBLIB_CRM,
 Field.SFASCRIPTS, "FieldFormula", "IScript_SFAHOME");

Might yield the following:

http://mike.com/servlets/psp/testsite/EMPLOYEEPORTAL/CRM/s/WEBLIB_
CRM.SFASCRIPTS.FieldFormula.IScript_SFAHOME

Related Links
GenerateScriptContentRelURL
GenerateScriptContentURL
GenerateScriptPortalRelURL
GenerateScriptRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateScriptRelativeURL

Syntax

GenerateScriptRelativeURL(PORTAL.portalname, NODE.nodename, RECORD.recordname,
FIELD.fieldname, event_name, function_name, [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2] ...

OR

&RecordObject1 [, &RecordObject2] ...

Description

Use the GenerateScriptRelativeURL function to create a relative URL string that represents a relative
reference to the specified iScript. The relative reference is suitable for use on any page that has the simple
URL format.

If you want to generate an absolute URL for an iScript, use either the GenerateScriptContentURL or
GenerateScriptPortalURL function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 387



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the iScript, prefixed
with the reserved word NODE. You can also use a string, such
as %Node, for this value.

recordname Specify the name of the record containing the iScript, prefixed
with the reserved word RECORD.

fieldname Specify the name of the field containing the iScript, prefixed
with the reserved word FIELD.

event_name Specify the name of the event containing the iScript. This is
generally the FieldFormula event.

function_name Specify the name of the iScript function.

keylist An optional list of parameters used with the function. It can
also be an already instantiated record object.

Returns

If the node has a Node Type of PIA, a string of the following format is returned:

../../../portal/node/s/recname.fieldname.event_name.function_name?parameters

If the node has a Node Type of ICType, a string of the following format is returned:

../../../portal/node/?ICType=Script&ICScriptProgramName=recname.fieldname.event_nam⇒

e.function_name?parameters

The question mark and the text following the question mark may or may not be included, depending on
whether or not you specified a page and action or not.

This function returns a Null string if you specify an invalid portal or node.

Example

The following code:

&MyScriptURL = GenerateScriptRelativeURL("EMPLOYEE", "CRM", Record.WEBLIB_CRM, Fiel⇒

d.SFASCRIPTS, "FieldFormula", "IScript_SFAHOME");

388  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Might yield the following:

../../../EMPLOYEE/CRM/s/WEBLIB_CRM.SFASCRIPTS.FieldFormula.IScript_SFAHOME

Related Links
GenerateScriptContentRelURL
GenerateScriptContentURL
GenerateScriptPortalRelURL
GenerateScriptPortalURL
"Understanding Internet Script Classes" (PeopleCode API Reference)

GenerateTree

Syntax

GenerateTree(&rowset [, TreeEventField])

Description

Use the GenerateTree function to display data in a tree format, with nodes and leaves. The result of the
GenerateTree function is an HTML string, which can be displayed in an HTML area control. The tree
generated by GenerateTree is called an HTML tree.

The GenerateTree function can be used in conjunction with the Tree Classes to display data from trees
created using Tree Manager.

The GenerateTree function works with both an HTML area control and a hidden field. The
TreeEventField parameter contains the contents of the invisible character field used to process the HTML
tree events.

When an end user selects a node, expands a node, collapses a node, or uses one of the navigation
links, that event (end-user action) is passed to the invisible field, and the invisible field's FieldChange
PeopleCode is executed.

Related Links
"Using HTML Tree Actions (Events)" (PeopleCode Developer’s Guide)
"Building HTML Tree Pages" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

&rowset Specify the name of the rowset you've populated with tree
data.

Copyright © 1988, 2022, Oracle and/or its affiliates. 389



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

TreeEventField Specify the contents of the invisible character field used to
process the HTML tree events. The first time the GenerateTree
function is used, that is, to generate the initial tree, you do not
need to include this parameter. Subsequent calls require this
parameter.

Returns

A string that contains HTML code that can be used with the HTML control to display a tree.

Example

In the following example, TREECTLEVENT is the name of the invisible control field that contains the
event string that was passed from the browser.

HTMLAREA = GenerateTree(&TREECTL, TREECTLEVENT);

Related Links
"Using the GenerateTree Function" (PeopleCode Developer’s Guide)

GenerateWorklistPortalURL

Syntax

GenerateWorklistPortalURL(PORTAL.portalname, NODE.nodename, BusProc, Activity, Even⇒

t,
Worklist, Instance)

Description

Use the GenerateWorklistPortalURL function to create a URL string that represents an absolute reference
the specified Worklist (URL) on the portal servlet.

The PortalURI of the node that hosts the specified portal is used in the generated URL. The generated
URL contains a reference to the portal service (psp) servlet.

If you want to generate a relative URL, use the GenerateWorklistRelativeURL function.

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

390  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

nodename Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

BusProc Specify the business process of the Worklist.

Activity Specify the activity of the Worklist.

Event Specify the event of the Worklist.

Instance Specify the instance of the Worklist.

Returns

A string of the following format:

http://PortalURI/Portal/node/w/BusProc.Activity.Event.Worklist.Instance

This function returns a Null string if you specify an invalid portal or node.

Related Links
GenerateWorklistRelativeURL
"Understanding Internet Script Classes" (PeopleCode API Reference)
"Understanding PeopleSoft Workflow" (Workflow Technology)

GenerateWorklistRelativeURL

Syntax

GenerateWorklistRelativeURL(PORTAL.portalname, NODE.nodename, BusProc, Activity, Ev⇒

ent,
Worklist, Instance)

Description

Use the GenerateWorklistRelativeURL function to create a URL string that represents a relative reference
to the specified Worklist on the portal servlet. The relative reference is suitable for use on any page that
itself has the simple URL format.

If you want to generate an absolute URL, use the GenerateWorklistPortalURL function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 391



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

portalname Specify the name of the portal used for this request, prefixed
with the reserved word PORTAL. You can also use a string,
such as %Portal, for this value.

nodename Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

BusProc Specify the business process of the Worklist.

Activity Specify the activity of the Worklist.

Event Specify the event of the Worklist.

Instance Specify the instance of the Worklist.

Returns

A string of the following format:

../../../Portal/Node/w/BusProc.Activity.Event.Worklist.Instance

This function returns a Null string if you specify an invalid portal or node.

Example

The following is an example PeopleCode statement used to generate a URL for a worklist activity:

GenerateWorklistRelativeURL(%Portal, %Node, "Administer Workflow", "Find Timeout Wo⇒

rklists", "Worklist Current Operator", "Timeout Notification", 1);

Related Links
GenerateWorklistPortalURL
"Understanding Internet Script Classes" (PeopleCode API Reference)
"Understanding PeopleSoft Workflow" (Workflow Technology)

GenHTMLMenu

Syntax

GenHTMLMenu(list[, fldr_img_class_ID] [, element_label])

392  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to generate an HTML code fragment that will be rendered in the browser as menu
drop-downs, fly-outs, and breadcrumbs. Typically, this function is used when the SmartNavigation data
source is a tree. The <li> elements in the input string are created by the GenRelatedActions function, the
GenABNMenuElement method of the Node class, and the GenABNMenuElement method of the Leaf
class.

Parameters

Parameter Description

list Specifies the list of <li> elements as a string.

fldr_img_class_ID Specifies the class ID for a custom folder icon as a string. This
class must be defined in a style sheet, and the style sheet must
be assigned to the SmartNavigation folder.

This is an optional parameter. To use the default folder icon,
 you can omit this parameter or specify the null string "".
 However, to ensure forward compatibility or to use the default
folder icon while specifying the element_label parameter, you
must specify the null string.

element_label Specifies a label for a drop-down menu item as an array with
two numeric elements, which represents a message catalog
entry. The first element is the message set number and the
second element is the message number.

This label is applied to a drop-down menu item that is
generated for the SmartNavigation breadcrumb on which the
user has clicked, allowing the user to view the chart associated
with that breadcrumb. The complete label is the word “View”
with the element_label message appended.

This is an optional parameter.

If the element_label is not provided or if the message set or
number is undefined, then a default message catalog entry 
(95, 9109) is used, which includes the default message, “User
Profile Page,” in the label for the drop-down menu item.

Returns

None.

Copyright © 1988, 2022, Oracle and/or its affiliates. 393



PeopleCode Built-in Functions and Language Constructs Chapter 1

GenToken

Syntax

GenToken()

Description

Use the GenToken function to create an authentication token for the user currently logged in, as a string.

Generally this function is used in an application engine program when an authentication token is not
automatically generated. However, it can be used anytime. The token that is generated is usually passed to
another process that has no token.

Parameters

None.

Returns

A string containing the authentication token.

Related Links
%AuthenticationToken

GetABNChartRowSet

Syntax

GetABNChartRowSet()

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to return a reference to a rowset representing the SmartNavigation chart for the rowset
or tree data currently in the component buffer. This function flushes the rowset prior to returning.
The SmartNavigation chart rowset comprises two record definitions: PT_ABNCHARTNODE and
PT_ABN_CHART_ND.

Parameters

None.

Returns

A SmartNavigation chart rowset. If the user clicks on a menu folder description instead, then this function
returns Null.

394  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example
&chart_RS = GetABNChartRowSet();

GetABNInitialNode

Syntax

GetABNInitialNode(&reqParams)

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to return the identifier of the initial SmartNavigation chart node as a string.

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs)
generated by the GetABNReqParameters function. This is an
array of array of string.

Returns

The identifier of the initial chart node as a string.

GetABNNode

Syntax

GetABNNode(&reqParams)

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to return the identifier of the current SmartNavigation chart node as a string. The user
requests this chart node through a mouse-click event

Copyright © 1988, 2022, Oracle and/or its affiliates. 395



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs)
generated by the GetABNReqParameters function. This is an
array of array of string.

Returns

The identifier of the current SmartNavigation chart node as a string.

GetABNRelActnRowSet

Syntax

GetABNRelActnRowSet()

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to return a reference to the related actions rowset for the SmartNavigation chart. This
function flushes the rowset prior to returning.

Parameters

None.

Returns

A related actions rowset. If the user clicks on the menu folder description instead, then this function
returns Null.

GetABNReqParameters

Syntax

GetABNReqParameters([start])

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to generate HTTP request parameters as an array of name-value pairs. The start
parameter specifies the initial node of the data source. When using a tree data source, the start parameter
is optional. If the initial node is not provided, the tree's root node is the initial node.

396  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

When using a rowset data source, the start parameter is required. The returned request parameter array
contains the following values:

Array Element HTTP Request Parameter Name/Value

[1][1]

[1][2]

TREE_NAME

The tree's name.*

[2][1]

[2][2]

TREE_SETID

The tree's setID key.*

[3][1]

[3][2]

TREE_USERKEY

The tree's user key.*

[4][1]

[4][2]

TREE_EFFDT

The tree's effective date key.*

[5][1]

[5][2]

TREE_NODE

The name of the currently requested tree node.*

[6][1]

[6][2]

INITIAL_TREE_NODE

The name of the initial node.

* Set to an empty string when the data source is a rowset.

Parameters

Parameter Description

start Specifies a string representing the initial node of the tree or
rowset data source.

Returns

An array of array of string representing the HTTP request parameters (name-value pairs).

GetABNTreeEffdt

Syntax

GetABNTreeEffdt(&reqParams)

Copyright © 1988, 2022, Oracle and/or its affiliates. 397



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to extract the effective date key for the tree from the request parameter array. The output
of this function is used to open the specified tree.

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs)
generated by the GetABNReqParameters function. This is an
array of array of string.

Returns

A string representing the effective date key for the tree.

Note: If the SmartNavigation chart data source is a rowset, this function returns an empty string.

GetABNTreeName

Syntax

GetABNTreeName(&reqParams)

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to extract the tree name from the request parameter array. The output of this function is
used to open the specified tree.

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs)
generated by the GetABNReqParameters function. This is an
array of array of string.

Returns

A string representing the tree name.

398  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: If the SmartNavigation chart data source is a rowset, this function returns an empty string.

GetABNTreeSetid

Syntax

GetABNTreeSetid(&reqParams)

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to extract the setID key for the tree from the request parameter array. The output of this
function is used to open the specified tree.

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs)
generated by the GetABNReqParameters function. This is an
array of array of string.

Returns

A string representing the setID key for the tree.

Note: If the SmartNavigation chart data source is a rowset, this function returns an empty string.

GetABNTreeUserKey

Syntax

GetABNTreeUserKey(&reqParams)

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to extract the user key for the tree from the request parameter array. The output of this
function is used to open the specified tree.

Copyright © 1988, 2022, Oracle and/or its affiliates. 399



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

&reqParams Specifies the array of request parameters (name-value pairs)
generated by the GetABNReqParameters function. This is an
array of array of string.

Returns

A string representing the user key for the tree.

Note: If the SmartNavigation chart data source is a rowset, this function returns an empty string.

GetAddSearchRecName

Syntax

GetAddSearchRecName()

Description

Use the GetAddSearchRecName function to return the add search record name for the component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A string value.

Example
&strRecName = GetAddSearchRecName();

Related Links
GetSearchRecordName
"Setting Use Properties" (Application Designer Developer’s Guide)

GetAESection

Syntax

GetAESection(ae_applid, ae_section [, effdt])

400  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the GetAESection function to open and associate an AESection PeopleCode object with the base
section, as specified. If no base section by the specified name is found, one is created. This enables you to
create base sections as needed.

Warning! When you open or get an AESection object, (that is, the base section) any existing steps in the
section are deleted.

After you’ve instantiated the AESection object, set the template section using the SetTemplate AESection
class method. You can copy steps from the template section to the base section before you start the
Application Engine program. This is useful for applications that let users input their "rules" into a user-
friendly page, then convert these rules, at save time, into Application Engine constructs.

When an AESection is opened (or accessed), the system first looks to see if it exists with the given
input parameters. If such a section doesn’t exist, the system looks for a similar section based on market,
database platform, and effective date.

The AESection Object is designed for use within an online program. Typically, dynamic sections should
be constructed in response to an end-user action.

Note: Do not call an AESection object from an Application Engine PeopleCode Action. If you need to
access another section, use the CallSection action instead.

Parameters

Parameter Description

ae_applid Specifies the application ID of the section you want to modify.

ae_section Specifies the section name of the base section you want to
modify. If no base section by the specified name is found, one
is created.

effdt Specifies the effective date of the section you want to modify 
(optional).

Returns

An AESection object is returned.

Related Links
"Understanding the AESection Class" (PeopleCode API Reference)
"Open" (PeopleCode API Reference)
"AESection Example" (PeopleCode API Reference)

Copyright © 1988, 2022, Oracle and/or its affiliates. 401



PeopleCode Built-in Functions and Language Constructs Chapter 1

GetAnalyticGrid

Syntax

GetAnalyticGrid(Page.page_name, grid_name)

Description

Use the GetAnalyticGrid function to instantiate an analytic grid object from the AnalyticGrid class, and
populates it with the grid specified by grid_name, which is the Page Field Name on the General tab of
that analytic grid’s page field properties.

Note: PeopleSoft builds a page grid one row at a time. Because the AnalyticGrid class applies to a
complete grid, you can’t attach PeopleCode that uses the AnalyticGrid class to events that occur before
the grid is built; the earliest event you can use is the page Activate event.

See "Activate Event" (PeopleCode Developer’s Guide).

Specifying the Grid Name

When you place an analytic grid on a page, the grid is automatically named the same as the name of the
primary record of the scroll for the grid (from the Page Field Name field). This is the name you use with
the GetAnalyticGrid function.

Note: If the name of the record changes, the Page Field Name is not automatically updated. You must
change this name if you want the name of the grid to reflect the name of the record.

To change a grid name:

1. Open the page definition in PeopleSoft Application Designer.

2. Select the analytic grid and access the Analytic Grid control properties.

3. On the General tab, type the new grid name in the Page Field Name field.

Note: Every grid on a page must have a unique name.

Parameters

Parameter Description

Page.page_name Specify the name of the page definition containing the grid
you want to access.

Specify a grid name consisting of any combination of
uppercase letters, digits and "#", "$", "@", and "_".

grid_name Specify the Page Field Name on the General tab of the grid’s
page field properties.

402  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A reference to an AnalyticGrid object.

Related Links
"AnalyticGrid Class Reference" (PeopleCode API Reference)

GetAnalyticInstance

Syntax

GetAnalyticInstance(ID)

Description

Use the GetAnalyticInstance function to return a reference to the AnalyticInstance object as specified by
the ID.

The analytic instance specified by ID must already be created before using this function.

Parameters

Parameter Description

ID Specify the analytic instance identifier that you want to access.

Returns

An AnalyticInstance object if successful, null otherwise.

Related Links
CreateAnalyticInstance
"CheckStatus" (PeopleCode API Reference)

GetArchPubHeaderXmlDoc

Syntax

GetArchPubHeaderXmlDoc(PubID, PubNode, ChannelName, VersionName[, Segment])

Description

Use the GetArchPubHeaderXMLDoc function to retrieve an archived message header from the message
queue.

This function has been deprecated. You will receive an error if you use this function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 403



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
"Understanding Consuming Services" (Integration Broker)

GetArchPubXmlDoc

Syntax

GetArchPubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName, SubNode[, S⇒

egment])

Description

Use the GetArchPubXmlDoc function to retrieve an archived message from the message queue.

This function has been deprecated. You will receive an error if you use this function.

Related Links
"Understanding Error Handling, Logging, Tracing and Debugging" (Integration Broker)

GetArchSubXmlDoc

Syntax

GetArchSubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName[, Segment])

Description

Use the GetArchSubXmlDoc function to retrieve an archived message from the message queue.

This function has been deprecated. You will receive an error if you use this function.

GetAttachment

Syntax

GetAttachment(URLSource, DirAndSysFileName, DirAndLocalFileName[, LocalDirEnvVar
[, PreserveCase]])

Description

Use the GetAttachment function to download a file from its source storage location to the file system of
the application server. The file system of the application server includes any directories accessible from
the application server including those on local disks as well as on network shares.

Note: All directories that are part of the destination full path name must exist before GetAttachment is
called. The GetAttachment function will not create any directories on the application server's file system.

404  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Additional information that is important to the use of GetAttachment can be found in the PeopleTools:
PeopleCode Developer's Guide:

• PeopleTools supports multiple types of storage locations.

See "Understanding File Attachment Storage Locations" (PeopleCode Developer’s Guide).

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See "File Name Considerations" (PeopleCode Developer’s Guide).

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See "Attachments with non-ASCII File Names" (PeopleCode Developer’s Guide).

• The PeopleCode file attachment functions do not provide text file conversions when files are attached
or viewed.

See "Considerations When Attaching Text Files" (PeopleCode Developer’s Guide).

File System Considerations

If you are uncertain which type of file system the file is going to be transferred to, either a UNIX or
Windows system, you should simply specify a file name for the DirAndLocalFileName parameter and
either explicitly set the LocalDirEnvVar parameter or accept its default value, which is “TMP” (indicating
that the value of the TMP environment variable will be used).

The following code example works for Windows systems, but not UNIX systems:

&retcode = GetAttachment(&FTPINFO, &SOURCEFILENAME, "c:\temp\resume.doc");

The following code example works for Unix systems, but not Windows systems:

&retcode = GetAttachment(&FTPINFO, &SOURCEFILENAME, "/tmp/resume.doc");

The following two examples work for both Windows and Unix systems:

&retcode = GetAttachment(&FTPINFO, &SOURCEFILENAME, "resume.doc");

&retcode = GetAttachment(&FTPINFO, &SOURCEFILENAME, "resume.doc", "PS_CFG_HOME");

Warning! If the effectively specified target directory that is to ultimately contain the downloaded file
on the application server is a UNC (Universal Naming Convention) share, an error will occur and
GetAttachment will fail to download the file.

You cannot use a share as the target directory—that is, as the ultimate destination—to download a file
onto an application server using GetAttachment. However, you can use a subdirectory of a UNC share as
the target directory.

For example, if a directory similar to the following were the target directory, GetAttachment would fail:

\\server_name\share_name

However, the following subdirectory of the same UNC share could be used with GetAttachment:

\\server_name\share_name\temp

Copyright © 1988, 2022, Oracle and/or its affiliates. 405



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

URLSource A reference to a URL. This can be either a URL identifier
the form URL.URL_ID, or a string. This (along with the
DirAndSysFileName parameter) indicates the file's source
location.

Note: When the URLSource parameter is specified as a string
value, forward slashes (/) are required. Backward slashes (\)
are not supported for a string value.

See "Understanding URL Strings Versus URL
Objects" (PeopleCode Developer’s Guide).

DirAndSysFileName The relative path and file name of the file at the storage
location. This is appended to URLSource to form the full URL
where the file will be transferred from. This parameter takes a
string value.

Note: Because the DirAndSysFileName parameter is appended
to the URL, it also requires forward slashes (“/”). Backward
slashes (“\”) are not supported for this parameter.

DirAndLocalFileName The name, relative path name, or full path name of the
destination file on the application server. This parameter
takes a string value. If you specify only a name or a relative
path name for the destination file, the file will be placed in or
relative to:

• The directory indicated by the value of the environment
variable specified by the LocalDirEnvVar parameter.

• The directory indicated by the value of the TMP
environment variable if the LocalDirEnvVar parameter
has not been specified.

If you do not want to use the LocalDirEnvVar parameter or
the value of the TMP environment variable in this way, you
must specify a full path name as appropriate to the application
server’s operating system.

406  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

LocalDirEnvVar This optional parameter takes a string value.

If LocalDirEnvVar is specified, then its value will be prefixed
to the value of the DirAndLocalFileName parameter to form
the full path name of the destination file on the application
server’s file system. With this parameter, you can avoid the
need to hard-code the full path name.

If LocalDirEnvVar is not specified and the value of the
DirAndLocalFileName parameter is already a full path file
name, then that value will itself be used as the full path
name that the downloaded file will have at its destination
on the application server machine. If LocalDirEnvVar is
not specified and the value of the DirAndLocalFileName
parameter is not a full path file name, then the value of the
TMP environment variable will be prefixed to the value of the
DirAndLocalFileName parameter to form the full path name
that the downloaded file will have at its destination on the
application server machine.

Note: In order to use the optional parameter PreserveCase,
 you must pass some value for LocalDirEnvVar. If you want
to use the default behavior of LocalDirEnvVar and also use
PreserveCase, you can specify "" (the empty string) for
LocalDirEnvVar. Then the function behaves as if no value
is specified. In this situation, if you wish to use the TMP
environment variable, it must be explicitly specified.

Note: Do not specify LocalDirEnvVar if you use an absolute
path for the DirAndLocalFileName parameter.

PreserveCase When searching for the file specified by the
DirAndSysFileName parameter, PreserveCase specifies
a Boolean value to indicate whether the case of its file
name extension is preserved: True, preserve the case, False,
 convert the file name extension in DirAndSysFileName to all
lowercase letters.

The default value is False.

For a particular file, use the same value for this parameter that
was used when the file was originally uploaded.

Warning! If you use the PreserveCase parameter, it is
important that you use it in a consistent manner with all the
relevant file-processing functions or you may encounter
unexpected file-not-found errors.

This is an optional parameter.

Returns

You can check for either an integer or a constant value:

Copyright © 1988, 2022, Oracle and/or its affiliates. 407



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due to
some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error on
the HTTP repository.

If the HTTP repository resides on a
PeopleSoft web server, then you can
configure tracing on the web server
to report additional error details.

See "Enabling Tracing on the
Web Server or Application
Server" (PeopleCode Developer’s
Guide).

408  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where %Attachment_
FileTransferFailed could be returned:

• Failed due to mismatch in file sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

4 %Attachment_NoDiskSpaceAppServ No disk space on the application server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

• Improper URL format.

• Failed to connect to the server
specified.

Copyright © 1988, 2022, Oracle and/or its affiliates. 409



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSysFailedLogin could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in certificates
used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where %Attachment_
FileNotFound could be returned:

• Remote file not found.

• Failed to read remote file.

Example

The following downloads the file, HRarchive/NewHire/11042000resume.txt, from the FTP
server to c:\NewHires\resume.txt on the application server machine.

&retcode = GetAttachment("ftp://anonymous:hobbit1@ftp.ps.com/HRarchive/", "NewHire/⇒

11042000resume.txt", "c:\NewHires\resume.txt");

Related Links
"Enabling Tracing on the Web Server or Application Server" (PeopleCode Developer’s Guide)
CleanAttachments
CopyAttachments
DeleteAttachment
DetachAttachment
MAddAttachment

410  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

PutAttachment
ViewAttachment
"Debugging File Attachment Problems" (PeopleCode Developer’s Guide)

GetAttachmentURL

Syntax

GetAttachmentURL(URLSource, DirAndSysFileName, UserFileName , AttachmentURL
[, AuthToken][, ContentURI][, PreserveCase])

Description

Use the GetAttachmentURL function within a Mobile Application Platform (MAP) application to
temporarily download a file from its source storage location and return the associated attachment URL.
This attachment URL can subsequently be used by the MAP application to temporarily gain secure access
to the downloaded file.

Additional information that is important to the use of GetAttachmentURL can be found in the
PeopleTools: PeopleCode Developer's Guide:

• PeopleTools supports multiple types of storage locations.

See "Understanding File Attachment Storage Locations" (PeopleCode Developer’s Guide).

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See "File Name Considerations" (PeopleCode Developer’s Guide).

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See "Attachments with non-ASCII File Names" (PeopleCode Developer’s Guide).

• The PeopleCode file attachment functions do not provide text file conversions when files are attached
or viewed.

See "Considerations When Attaching Text Files" (PeopleCode Developer’s Guide).

Copyright © 1988, 2022, Oracle and/or its affiliates. 411



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

URLSource Specifies a reference to a URL. This can be either a URL
identifier in the form URL.URL_ID, or a string. This, along
with the DirAndSysFileName parameter, indicates the file's
source location.

Note: The URLSource parameter requires forward slashes (/).
 Backward slashes (\) are not supported for this parameter.

See "Understanding URL Strings Versus URL
Objects" (PeopleCode Developer’s Guide).

DirAndSysFileName Specifies the relative path and file name of the file on the file
server. This is appended to URLSource to make up the full
URL where the file is transferred from. This parameter takes a
string value

Note: The URLSource requires "/" slashes. Because
DirAndSysFileName is appended to the URL, it also requires
only "/" slashes. "\" are NOT supported in anyway for either
the URLSource or the DirAndSysFileName parameter.

UserFileName Specifies the name of the as it was known to the end-user at
the time it was originally uploaded as a string value (may be
different than the name of the file at the storage location).

AttachmentURL Returns the attachment URL as a string value.

Specify AttachmenURL as a string variable or a field reference
in the form of [RECORD.]FIELD. You must supply the
RECORD only if the record field and your PeopleCode
program are in different record definitions.

AuthToken Specifies the PeopleSoft authentication token to be used to
retrieve the file from the file storage location.

The default value for this optional parameter is the empty
string.

Important! A MAP application must treat AuthToken as a
required parameter.

412  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

ContentURI Specifies the content URI to be used by this function to
construct the returned attachment URL. This string value can
be specified as:

• A quoted reference to a PeopleSoft node object (in the
form, Node.NODE_NAME) that has a content URI
property with a value that will be used as the content URI.
 For example:

"Node.PSFT_HR"

• A quoted reference to a PeopleSoft URL object (in the
form, URL.URL_ID) that has a URL property with a
value that will be used as the content URI. For example:

"URL.MY_URI_URL"

• A literal string. For example:

"http://example.com:8080/psc/ps/"

The default value of this optional parameter is the empty
string.

Important! If no value is specified for this parameter or its
value is explicitly specified as an empty string, then the value
of the content URI property of the default local node is used.

PreserveCase Specify a Boolean value to indicate whether when searching
for the file specified by the DirAndSysFileName parameter,
 its file name extension is preserved or not; True, preserve the
case of the file name extension, False, convert the file name
extension to all lowercase letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is
important that you use it in a consistent manner with all the
relevant file-processing functions or you may encounter
unexpected file-not-found errors.

Returns

You can check for either an integer or a constant value:

Copyright © 1988, 2022, Oracle and/or its affiliates. 413



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

Important! If file type restrictions are
changed so that access to a previously
uploaded file is now blocked, a
call to ViewAttachment will return
%Attachment_Success, even though the
file and its contents are not displayed.

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due to
some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error on
the HTTP repository.

If the HTTP repository resides on a
PeopleSoft web server, then you can
configure tracing on the web server
to report additional error details.

See "Enabling Tracing on the
Web Server or Application
Server" (PeopleCode Developer’s
Guide).

414  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where %Attachment_
FileTransferFailed could be returned:

• Failed due to mismatch in file sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSystNotFound could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

Copyright © 1988, 2022, Oracle and/or its affiliates. 415



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSysFailedLogin could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in certificates
used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where %Attachment_
FileNotFound could be returned:

• Remote file not found.

• Failed to read remote file.

Example

For example, a file called, "my_resume.doc", has previously been uploaded with a system file name of
"21EC2020-3AEA-4069-A2DD-08002B30309D_my_resume.doc" to the database table associated with
the PSFILE_ATTDET record, and the content URI property of the default local node has been explicitly
set to the appropriate content URI value. The GetAttachmentURL invocation returns a URL giving
temporary access to that file. The MAP application assigns the URL as the value of a primitive—for
example, a URL element.

Local integer &RETCODE;
Local string &URL_ID;
Local string &ATTACHSYSFILENAME;
Local string &ATTACHUSERFILE;
Local string &ATTACHMENTURL;
Local string &AUTHTOKEN;
Local Document &Doc;
Local Compound &Com;

&URL_ID = "record://PSFILE_ATTDET";
&ATTACHSYSFILENAME = "21EC2020-3AEA-4069-A2DD-08002B30309D_my_resume.doc";

416  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

&ATTACHUSERFILE = "my_resume.doc";
&AUTHTOKEN = &Map.GetAuthToken();
&RETCODE = GetAttachmentURL(&URL_ID, &ATTACHSYSFILENAME, &ATTACHUSERFILE, &ATTACHME⇒

NTURL, &AUTHTOKEN);

&Doc = &Map.getDocument();
&Com = &Doc.DocumentElement;
&Com.GetPropertyByName("AttachURL").Value = &ATTACHMENTURL;

Related Links
AddAttachment
MAddAttachment
"Understanding the File Attachment Functions" (PeopleCode Developer’s Guide)

GetBiDoc

Syntax

GetBiDoc(XMLstring)

Description

Use the GetBiDoc function to create a BiDocs structure. You can populate the structure with data from
XMLstring. This is part of the incoming Business Interlink functionality, which enables PeopleCode to
receive an XML request and return an XML response.

Note: Business Interlinks is a deprecated product. Use PeopleSoft Integration Broker instead.
See PeopleTools: Integration Broker.

Parameters

Parameter Description

XMLstring A string containing XML. You can specify a NULL string
for this parameter, that is, two quotation marks ("") without a
space between them.

Return Value

A BiDocs object.

Example

The following example gets an XML request, puts it into a text string, and puts that into a BiDoc. After
this is done, the GetDoc method and the GetValue method can get the value of the skills XML element,
which is contained within the postreq XML element in the XML request.

Local BIDocs &rootInDoc, &postreqDoc;
Local string &blob;
Local number &ret;

Copyright © 1988, 2022, Oracle and/or its affiliates. 417



PeopleCode Built-in Functions and Language Constructs Chapter 1

&blob = %Request.GetContentBody();
/* process the incoming xml(request)- Create a BiDoc and fill with the request*/
&rootInDoc = GetBiDoc(&blob);
&postreqDoc = &rootInDoc.GetDoc("postreq");
&ret = &postreqDoc.GetValue("skills", &skills);

You can also create an empty BiDoc with GetBiDoc, as in the following example.

Local BIDocs &rootInDoc, &postreqDoc;
Local string &blob;
Local number &ret;

&blob = %Request.GetContentBody();
/* process the incoming xml(request)- Create a BiDoc and fill with the request*/
&rootInDoc = GetBiDoc("");
&ret = &rootInDoc.ParseXMLString(&blob);
&postreqDoc = &rootInDoc.GetDoc("postreq");
&ret = &postreqDoc.GetValue("skills", &skills);

GetBreadcrumbs

Syntax

GetBreadcrumbs()

Description

Note: This function has been deprecated and is retained for backward compatibility only.

Use the GetBreadcrumbs function to return the user’s current history stack as an array of array of string in
reverse order of access—that is, the first history record in the list represents the current content reference.
The array of string includes 11 elements as specified in the following table. Specific values are included
in the table when they do not vary based on the breadcrumb type; otherwise, blank cells indicate values
that are dependent on the specific breadcrumb. For example, breadcrumbs created by PeopleTools do not
include certain values such as a page ID or component keys. These and any other unknown values are
returned as the literal string “UnknownValue”.

Data Element Breadcrumb Generated
by CreateBreadcrumb

Content Breadcrumb
Generated by
PeopleTools

Folder Breadcrumb
Generated by
PeopleTools

Element type C C F

History record ID

Portal ID

Node ID

Component ID UnknownValue

418  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Data Element Breadcrumb Generated
by CreateBreadcrumb

Content Breadcrumb
Generated by
PeopleTools

Folder Breadcrumb
Generated by
PeopleTools

Page ID UnknownValue UnknownValue

Back label

Component mode UnknownValue UnknownValue

Component keys UnknownValue UnknownValue

Content URL

Query string parameters UnknownValue UnknownValue

The GetBreadcrumbs function returns a Null value in the following situations:

• When the history stack is empty—for example, when the function is invoked by an action on a
homepage pagelet or tile.

• When the source content is not displayed in the PeopleSoft portal template—for example, if you
display the content in your own portal or if the content is displayed via a direct psc URL.

• When executing JavaScript fails to retrieve any history stack data.

Note: This function cannot be invoked from a fluid component. In addition, this function cannot be
invoked after the content is displayed via a direct psc URL.

Parameters

None

Returns

A array of array of string.

Example

In the following example, the invocation of GetBreadcrumbs returns five history records. The first and
second history records are application-specific records generated by calls to CreateBreadcrumb. The final
three history records represent folder navigation generated automatically by PeopleTools:

[C,PT_ROLEMAINT_GBL_2,EMPLOYEE,QE_LOCAL,MAINTAIN_SECURITY.ROLEMAINT.GBL,ROLEDEFN,Ro⇒

le Maintenance,U,ROLENAME:'ADMINISTRATOR',http://.../MAINTAIN_SECURITY.ROLEMAINT.GB⇒

L,UnknownValue]
[C,PT_USERMAINT_GBL,EMPLOYEE,QE_LOCAL,MAINTAIN_SECURITY.USERMAINT.GBL,USER_ROLES,Ro⇒

Copyright © 1988, 2022, Oracle and/or its affiliates. 419



PeopleCode Built-in Functions and Language Constructs Chapter 1

le Maintenance,U,UnknownValue,http://.../MAINTAIN_SECURITY.USERMAINT.GBL,UnknownVal⇒

ue]
[F,PT_USER_PROFILES,EMPLOYEE,QE_LOCAL,UnknownValue,UnknownValue,User Profiles,Unkno⇒

wnValue,UnknownValue,http://.../WEBLIB_PT_NAV.ISCRIPT1.FieldFormula.IScript_PT_NAV_⇒

INFRAME,UnknownValue ]
[F,PT_SECURITY,EMPLOYEE,QE_LOCAL,UnknownValue,UnknownValue,Security,UnknownValue,Un⇒

knownValue,http://.../WEBLIB_PT_NAV.ISCRIPT1.FieldFormula.IScript_PT_NAV_INFRAME,Un⇒

knownValue]
[F,PT_PEOPLETOOLS,EMPLOYEE,QE_LOCAL,UnknownValue,UnknownValue,PeopleTools,UnknownVa⇒

lue,UnknownValue,http://.../WEBLIB_PT_NAV.ISCRIPT1.FieldFormula.IScript_PT_NAV_INFR⇒

AME,UnknownValue]

Related Links
CreateBreadcrumb
SetTransferAttributes

GetCalendarDate

Syntax

GetCalendarDate(comparedate, periods, periodadjustment,outfieldname, company, paygr⇒

oup)

Description

Use the GetCalendarDate function to return the value of a Date field from the PS_PAY_CALENDAR
table. If a table entry is not found, GetCalendarDate returns 1899-01-01.

Processing Rules

The following are the processing rules for GetCalendarDate:

1. The function SELECTs all the values for outfieldname, PAY_BEGIN_DT and PAY_END_DT from
PS_PAY_CALENDAR. The result set is sorted in increasing PAY_END_DT order.

2. A SQL SELECT statement is generated in the following form:

3. SELECT outfieldname, PAY_BEGIN_DT, PAY_END_DT FROM PS_PAY_CALENDAR WHERE
COMPAny=:1 AND PAYGROUP=:2 ORDER BY PAY_END_DT;

4. Rows are fetched from the result set until the value of comparedate falls between PAY_BEGIN_DT
and PAY_END_DT. The value of outfieldname is stored in a storage stack.

5. A work variable equal to the value in periods is set.

6. If the value of outfieldname in the located result row is equal to comparedate, then the value in
periodadjustment is added to the work variable. Because periodadjustment may be negative, the result
may be negative.

420  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

7. If the work variable is negative then the saved value of outfieldname is returned from the storage
stack at the level specified by the work variable. If the work variable is positive then fetch forward the
number of times specified by the work variable. The value of outfieldname is returned from the most
recently fetched (current) row.

Parameters

Parameter Description

comparedate A date field set by the caller as the date of interest, for
example, "1997-02-17."

periods A numeric variable set by the caller specifying the number of
periods forward or backward to be returned.

periodadjustment A numeric variable that adjusts the periods if the comparedate
equals the period end date. This is typically used to adjust for
period end dates. Usually the periodadjustment is either -1, 0,
 or 1.

outfieldname The name of a date field in the PS_PAY_CALENDAR table.
 For example PAY_BEGIN_DT. The value of this field is not
referenced or modified by the routine, but the name of the
field is used to build a SQL SELECT statement and to indicate
which value from the table to return in the return date.

company A field set by the caller to be equal to the company code of
interest, for example, "CCB".

paygroup A variable set by the caller to be equal to the PayGroup code
of interest, for example, "M01".

Returns

Returns a Date value from the PS_PAY_CALENDAR table.

Example

The following examples use the sample PS_PAY_CALENDAR entries in the following table. In the
example, comparedate and the result date are Date type fields defined in some record.

COMPANY PAYGROUP PAY_END_DT PAY_BEGIN_DT CHECK_DT

CCB MO1 1997-01-31 1997-01-01 1997-01-31

CCB MO1 1997-02-28 1997-02-01 1997-02-28

Copyright © 1988, 2022, Oracle and/or its affiliates. 421



PeopleCode Built-in Functions and Language Constructs Chapter 1

COMPANY PAYGROUP PAY_END_DT PAY_BEGIN_DT CHECK_DT

CCB MO1 1997-03-31 1997-03-01 1997-03-29

CCB MO1 1997-04-30 1997-04-01 1997-04-30

CCB MO1 1997-05-31 1997-05-01 1997-05-31

CCB MO1 1997-06-30 1997-06-01 1997-06-28

CCB MO1 1997-07-31 1997-07-01 1997-07-31

CCB MO1 1997-08-31 1997-08-01 1997-08-30

CCB MO1 1997-09-30 1997-09-01 1997-09-30

CCB MO1 1997-10-31 1997-10-01 1997-10-31

CCB MO1 1997-11-30 1997-11-01 1997-11-27

CCB MO1 1997-12-31 1997-12-01 1997-12-31

CCB SM1 1997-01-15 1997-01-01 1997-01-15

Find the begin date of the pay period containing the date 1997-05-11 (the value of &COMPAREDate).
The result date returned would be 1997-05-01.

&RESULT_Date = GetCalendarDate(&COMPAREDate, 0, 0,
   PAY_BEGIN_DT, COMPAny, PAYGROUP);

Or:

&RESULT_Date = GetCalendarDate(&COMPAREDate, 1, -1,
   PAY_BEGIN_DT, COMPAny, PAYGROUP);

GetChart

Syntax

GetChart(RecordName.FieldName)

Description

Use the GetChart function to get a reference to a Chart object.

422  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

A chart must be associated with a record and field merely so that the chart object can be instantiated in
PeopleCode. Which record and field you use doesn't matter. Commonly, the same derived/work record is
used for all the charts in an application.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field name associated with the chart.

Returns

A reference to a Chart object.

Example
&MyChart = GetChart(CHARTREC_WRK.CHART_FLD);

Related Links
"Using the Chart Class" (PeopleCode API Reference)

GetChartURL

Syntax

GetChartURL(&Chart)

Description

Use the GetChartURL function to generate the URL of a chart object. This URL can then be used in your
application for displaying a chart.

GetChartURL can be used only with the Chart class and Gantt class.

Parameters

Parameter Description

&Chart Specify an already instantiated Chart object or Gantt object.

Returns

A URL as a string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 423



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example
Function IScript_GetChartURL()
local object &MyChart;
local string &MyURL;

   &MyChart = CreateObject("Chart");
   &MyChart .SetData = xx;

/* xx will be a data row set */

   &MyURL = %Response.GetChartURL(&MyChart);
   &sMap = &oChart.ImageMap;

   %Response.Write("<HTML><IMG SRC=");
   %Response.Write(&MyURL);
   %Response.Write("  USEMAP=#THEMAP></IMG><MAP NAME=THEMAP>");
   %Response.Write(&sMap);
   %Response.Write("</MAP></HTML>");

End-Function;

Related Links
"Using the Chart Class" (PeopleCode API Reference)

GetComponentTitle

Syntax

GetComponentTitle()

Description

Use the GetComponentTitle function to return the name of the component (from the component
definition).

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A String value.

Example
&sPageTitle = GetComponentTitle();

Related Links
GetPageTitle

424  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GetCwd

Syntax

GetCwd()

Description

Use the GetCwd function to determine the current working directory of the process that executes it. This
means that in PeopleSoft Pure Internet Architecture it returns the current working directory on the server,
in an Application Engine program it returns the current working directory of the Application Engine
process, and so on.

Returns

Returns a string containing the path of the current working directory.

Example

The example stores a string specifying the current working directory in &CWD.

&CWD = GetCwd();

Related Links
GetEnv
ExpandEnvVar

GetDefinitionAccess

Syntax

GetDefinitionAccess(Definition_Type, Key_Collection)

Description

Use the GetDefinitionAccess function to return the access setting of a particular definition for a user.

Note: Definition type and definition security setting do not apply to runtime operations. You should
consider using the GetDefinitionAccess function to determine the access settings of a definition only for
PIA components that are considered design-time components.

Parameters

Parameter Description

Definition_Type Specifies the definition group for creating and modifying
definitions as a string value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 425



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

Key_Collection Determines the keys of the table that contains the Definition
Type as a string value.

Valid definition types:

Definition Type Description

ACTIVITYNAME Activities

ANALYTIC_MODEL_ID Analytic Models

PROBTYPE Analytic Types

AEAPPLICATIONID Application Engine Programs

APPLICATION_PACKAGE Application Packages

APPRRULESET Approval Rule Sets

INTERFACE_OBJECT Business Interlinks

BUSINESSPROCESS Business Processes

COMPONENTINTERFACE Component Interfaces

COMPONENT Components

FIELD_FORMAT Field Formats

DBFIELD Fields

FILELAYOUT File Layouts

TYPECODE File Type Codes

HTML HTML

IMAGE Images

MENU Menus

426  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Definition Type Description

CHANNEL Message Channels

MESSAGE Messages

MOBILEPAGE Mobile Pages

OPTMODEL Optimization Models

PAGE Pages

PROJECT Projects

QRYNAME Queries

RECORD Records

SQL SQL

STYLESHEET Style Sheets

STYLE Styles

TRANSLATE Translate Tables

TREE_STRCT_ID Tree Structures

TREE_NAME Trees

Returns

Integer.

Numeric Value Description

0 Full access.

1 Display only access.

2 No access.

Copyright © 1988, 2022, Oracle and/or its affiliates. 427



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example
&Access = GetDefinitionAccess("RECORD", "PSOPRDEFN");
If &Access = 0 Then
   WinMessage("You have Full Access", 0);
Else
   If &Access = 1 Then
      WinMessage("You have Display-Only Access", 0);
   Else
      WinMessage("You have No Access", 0);
   End-If;
End-If;

Related Links
"Understanding Definition Security" (Security Administration)
"Defining Permissions" (Security Administration)

GetDialGauge

Description

Note: The GetDialGauge function is no longer used in PeopleTools 8.57 and will be ignored.

GetEnv

Syntax

GetEnv(env_var)

Description

Use the GetEnv function to return the value of an environment variable specified by env_var as a string. If
the environment variable does not exist, GetEnv it returns a null string.

For example, you can use the GetEnv function to determine the actual path of PS_HOME. You could
use this with the Exec function, which automatically prefixes the command string with the path of
PS_HOME.

Parameters

Parameter Description

env_var A string specifying the environment variable.

Important! Because the input string is converted to all
uppercase, the env_var parameter is case-insensitive. While
environment variable names are case-sensitive on UNIX
systems—that is, "netdrive" is a different variable from
"NetDrive"—in both cases, GetEnv returns the value of the
NETDRIVE environment variable if it exists.

428  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A string representing the value of the specified environment variable; Null if the variable does not exist.

Example

Assume that the environment variable NETDRIVE is equal to "N:" and the environment variable netdrive
is equal to "P:”. The following statement returns "N:" in &drive:

&drive = GetEnv("netdrive");

Furthermore, if the environment variables netdrive and NetDrive are defined on a UNIX system, but not
NETDRIVE, each of the following calls to GetEnv return Null:

&string = GetEnv("netdrive");
&string = GetEnv("NetDrive");
&string = GetEnv("NETDRIVE");

Related Links
GetCwd
ExpandEnvVar

GetField

Syntax

GetField([recname.fieldname])

Description

Use the GetField function to create a reference to a field object for the current context; that is, from the
row containing the currently executing program.

If you do not specify recname.fieldname, the current field executing the PeopleCode is returned.

Note: For PeopleCode programs located in events that are not associated with a specific row, record, and
field at the point of execution this function is invalid. That is, you cannot use this function in PeopleCode
programs on events associated with high-level objects like pages or components. For events associated
with record level programs (like component record), this function is valid, but it must be specified with a
field name, as there is an assumed record, but no assumed field name.

When GetField is used with an associated record and field name on component buffer data, the following
is assumed:

&FIELD = GetRow().recname.fieldname;

Copyright © 1988, 2022, Oracle and/or its affiliates. 429



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

recname.fieldname If you do not want to refer to the field executing the
PeopleCode, specify a record name and field name.

Returns

This function returns a field object that references the field from the specified record.

Example
Local Field &CHARACTER;

&CHARID = GetField(FIELD.CHAR_ID);

Related Links
"Understanding the Field Class" (PeopleCode API Reference)
GetPageField
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

GetFieldDefn

Syntax

GetFieldDefn(field_name)

Description

Use the GetFieldDefn function to return an existing field definition.

Parameters

Parameter Description

field_name Specify the field to be retrieved.

Returns

A field definition object.

Returns a null value if the field definition doesn’t exist, the field is not a supported type in PeopleCode, or
the user does not have permissions to access the field.

430  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example
Local FieldDefn &mktField = GetFieldDefn("MARKET");
If All(&mktField) Then
   &mktField.Description = "My new Market field";
   &retVal = &mktField.SetLabel("MYMARKET", "My Market", "My New Market", True);
   /* do error checking … */
   Local date &myDate = Date3(1900, 1, 1);
   &retVal = &mktField.SetTranslateValue("A", True, &myDate, "My New Market", "My M⇒

arket");
   /* do error checking … */
   &retVal = &mktField.SaveAs("MYMARKET");
   /* do error checking … */
End-If;

Related Links
CreateFieldDefn
DeleteFieldDefn

GetFile

Syntax

GetFile(filename, mode [, charset] [, pathtype])

Description

Use the GetFile function to instantiate a new file object from the File class, associate it with an external
file, and open the file so you can use File class methods to read from or write to it.

Any file opened for writing (using a call to the GetFile function or the File class Open method) by
a PeopleCode program that runs in the Process Scheduler is automatically managed by the Report
Repository.

You can use the GetFile or GetTempFile functions to access an external file, but each execution of GetFile
or GetTempFile instantiates a new file object. If you plan to access only one file at a time, you need
only one file object. Use GetFile or GetTempFile to instantiate a file object for the first external file you
access. Then, use Open to associate the same file object with as many different external files as you want.
However, if you expect to have multiple files open at the same time, you need to instantiate multiple file
objects with GetFile or GetTempFile.

GetFile and Open both perform implicit commits. Therefore, the GetTempFile function has been
introduced specifically to avoid these implicit database commits. GetTempFile differs from GetFile in two
respects:

• GetTempFile does not perform an implicit commit.

• GetTempFile does not make the associated file available through the Report Repository even when the
calling PeopleCode program is run through the Process Scheduler.

Therefore, GetTempFile can be a good choice when you wish to avoid implicit database commits and
when you do not need to have the file managed through the Report Repository. Otherwise, GetTempFile
operates exactly the same as GetFile.

Copyright © 1988, 2022, Oracle and/or its affiliates. 431



PeopleCode Built-in Functions and Language Constructs Chapter 1

See GetTempFile.

Parameters

Parameter Description

filespec Specify the name, and optionally, the path, of the file you want
to open.

mode A string indicating how you want to access the file. The mode
can be one of the following:

• "R" (Read mode): opens the file for reading, starting at
the beginning.

• "W" (Write mode): opens the file for writing.

Warning! When you specify Write mode, any existing
content in the file is discarded.

• "A" (Append mode): opens the file for writing, starting at
the end. Any existing content is retained.

• "U" (Update mode): opens the file for reading or writing,
 starting at the beginning of the file. Any existing content
is retained. Use this mode and the GetPosition and
SetPosition methods to maintain checkpoints of the
current read/write position in the file.

In Update mode, any write operation clears the file of all
data that follows the position you set.

Note: Currently, the effect of the Update mode and the
GetPosition and SetPosition methods is not well defined
for Unicode files. Use the Update mode only on files
stored with a non-Unicode character set.

• "E" (Conditional "exist" read mode): opens the file for
reading only if it exists, starting at the beginning. If it
doesn’t exist, the Open method has no effect. Before
attempting to read from the file, use the IsOpen property
to confirm that it’s open.

• "N" (Conditional "new" write mode): opens the file for
writing, only if it doesn’t already exist. If a file by the
same name already exists, the Open method has no effect.
 Before attempting to write to the file, use the IsOpen
property to confirm that it’s open. You can insert an
asterisk (*) in the file name to ensure that a new file is
created. The system replaces the asterisk with numbers
starting at 1 and incrementing by 1, and checks for the
existence of a file by each resulting name in turn. It uses
the first name for which a file doesn’t exist. In this way
you can generate a set of automatically numbered files. If
you insert more than one asterisk, all but the first one are
discarded.

432  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

charset A string indicating the character set you expect when you read
the file, or the character set you want to use when you write
to the file. You can abbreviate Unicode UCS-2 to "U". All
other character sets should be spelled out in full, for example,
 ASCII, Big5, Shift-JIS, UTF8, or UTF8BOM.

It is not recommended to specify “A” as the character set,
 as its use has been deprecated and will resolve to platform-
dependent character sets. Similarly, not specifying a character
set has the same outcome as specifying “A” and is not
recommended due to the variable nature of the outcome. If
“A” is specified as the character set, or you do not specify
a character set, the character set used is dependent on the
OS of the server host where your PeopleCode program is
running. If the server is Windows, the default character set
used will be the active Windows ANSI Codepage (ACP),
 which can be checked using the DOS command chcp. If the
server is Unix/Linux, the character set used is dependent on
the server configuration file (psappsrv.cfg or psprcs.cfg). If the
Character Set property is commented out or not specified in
the configuration file, the default character set will be UTF-8.

You can also use a record field value to specify the character
set (for example, RECORD.CHARSET).

A list of supported character set names valid for this argument
can be found in PeopleTools: Global Technology.

See "Character Sets Across the Tiers of the PeopleSoft
Architecture" (Global Technology).

Note: If you attempt to read data from a file using a different
character set than was used to write that data to the file, the
methods used generate a runtime error or the data returned is
unusable.

When a file is opened for reading using the “U” charset
argument, GetFile expects the file to begin with a Unicode
byte order mark (BOM). This mark indicates whether the file
is written in big endian order or little endian order. A BOM
consisting of the hex value 0xFEFF indicates a big endian
file, a BOM consisting of the hex value 0xFFEF indicates
a little endian file. If the Unicode UCS-2 file being opened
does not start with a BOM, an error is returned. The BOM is
automatically stripped from the file when it is read into the
buffers by GetFile.

When a file is opened for writing using the “U” charset
argument, the appropriate Unicode BOM is automatically
written to the start of the file depending on whether the
application server hardware platform operates in little endian
or big endian mode.

BOMs are only expected or supported for files in Unicode
character sets such as UTF8, UTF8BOM, and UCS2. For
consuming applications that do expect the BOM for UTF-8
files, use the UTF8BOM character set to create UTF-8 files
with the BOM.

Copyright © 1988, 2022, Oracle and/or its affiliates. 433



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

Note: For example, the UTF-8 BOM is represented by the
sequence 0xEF BB BF. This sequence can be misinterpreted
by a non-Unicode character set such as ISO-8859-1 and
appears as ISO characters ï»¿.

When working with XML documents, specify UTF8 or
UTF8BOM for charset. If you are writing an XML file using
a different character set, you must remember to include a
character set declaration in the XML file.

In some cases, a Unicode file (UCS-2 or UTF-8) cannot
be opened. An error message is displayed, when one of the
following error conditions is encountered:

• If the character set is U (that is, UCS2) and the mode is:

• A: The file is empty or the BOM is missing or
incorrect.

• R: The BOM is missing or incorrect.

• W: The file does not exist, or adding the BOM failed.

• If the character set is UTF8 or UTF8BOM and the mode
is:

• R: For UTF8BOM, the BOM is missing or the file is
empty; for UTF8, the file is empty.

• A or W: For UTF8BOM only, the file does not exist
or adding the BOM failed.

434  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

pathtype If you have prefixed a path to the file name, use this parameter
to specify whether the path is an absolute or relative path. The
valid values for this parameter are:

• %FilePath_Relative (default)

• %FilePath_Absolute

If you don’t specify pathtype the default is %FilePath_
Relative.

If you specify a relative path, that path is appended to the
path constructed from a system-chosen environment variable.
 A complete discussion of relative paths and environment
variables is provided in documentation on the File class.

See "Working With Relative Paths" (PeopleCode API
Reference).

If the path is an absolute path, whatever path you specify
is used verbatim. You must specify a drive letter and the
complete path. You can’t use any wildcards when specifying a
path.

The Component Processor automatically converts platform-
specific separator characters to the appropriate form for
where your PeopleCode program is executing. On a Windows
system, UNIX "/" separators are converted to "\", and on a
UNIX system, Windows "\" separators are converted to "/".

Note: The syntax of the file path does not depend on the
file system of the platform where the file is actually stored;
it depends only on the platform where your PeopleCode is
executing.

Note: The syntax of the file path does not depend on the file system of the platform where the file is
actually stored; it depends only on the platform where your PeopleCode is executing.

Returns

A File object if successful; Null otherwise.

Example

The following example opens an existing UCS-2 file for reading:

&MYFILE = GetFile(&SOMENAME, "E", "U");
If &MYFILE.IsOpen Then
   while &MYFILE.ReadLine(&SOMESTRING);
      /* Process the contents of each &SOMESTRING */
   End-While;
   &MYFILE.Close();
End-If;

Copyright © 1988, 2022, Oracle and/or its affiliates. 435



PeopleCode Built-in Functions and Language Constructs Chapter 1

The following example opens a numbered file for writing in a non-Unicode format, without overwriting
any existing files:

&MYFILE = GetFile("c:\temp\item*.txt", "N", "CP1252", %FilePath_Absolute);
If &MYFILE.IsOpen Then
   &MYFILE.WriteLine("Some text.");
   &MYFILE.Close();
End-If;

The following example uses the CHARSET field to indicate the character set to be used:

&MYFILE = GetFile("INPUT.DAT", "R", RECORD.CHARSET);

Related Links
FileExists
FindFiles
GetTempFile
"Folder Class" (PeopleCode API Reference)
"Open" (PeopleCode API Reference)
"GetPosition" (PeopleCode API Reference)
"SetPosition" (PeopleCode API Reference)
"IsOpen" (PeopleCode API Reference)
"File Access Interruption Recovery" (PeopleCode API Reference)

GetGanttChart

Syntax

GetGanttChart(RecordName.FieldName)

Description

Use the GetGanttChart function to get a reference to a Gantt object.

A chart must be associated with a record and field merely so that the chart object can be instantiated in
PeopleCode. Which record and field you use doesn't matter. Commonly, the same derived/work record is
used for all the charts in an application.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field associated with the chart you want
to get.

Returns

A reference to a Gantt object.

436  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example
&gGantt = GetGanttChart(CHARTREC_WRK.CHART_FLD);

Related Links
"Using the Gantt Class" (PeopleCode API Reference)

GetGaugeThreshold

Syntax

GetGaugeThreshold()

Description

Use the GetGaugeThreshold function to get a reference to a GaugeThreshold object. GaugeThreshold
objects can then be associated with a RatingGaugeChart object.

Parameters

None.

Returns

A reference to a GaugeThreshold object.

Example
&oGTresh1 = GetGaugeThreshold();

Related Links
"Using the Rating Gauge Classes" (PeopleCode API Reference)
"GaugeThreshold Class Properties" (PeopleCode API Reference)
"SetRatingGaugeThresholds" (PeopleCode API Reference)

GetGrid

Syntax

GetGrid(Page.page_name, grid_name, [L1_row_num])

Description

Use the GetGrid function to instantiate an object of the Grid class and populate it with the grid specified
by grid_name. For grids at level 2, specify the optional L1_row_num parameter. The grid_name
corresponds to the Page Field Name on the General tab of that grid’s page field properties.

Copyright © 1988, 2022, Oracle and/or its affiliates. 437



PeopleCode Built-in Functions and Language Constructs Chapter 1

Use the GetGrid function to return a reference to a Grid object. If you want to access an AnalyticGrid
object, use the GetAnalyticGrid function instead.

Note: If more than one occurs count was specified for the grid in Application Designer, GetGrid will
return only the first occurrence of the grid.

Note: PeopleSoft builds a page grid one row at a time. Because the Grid class applies to a complete grid,
you can’t attach PeopleCode that uses the Grid class to events that occur before the grid is built; the
earliest event you can use is the Activate event for a page.

See "Activate Event" (PeopleCode Developer’s Guide).

Specifying the Grid Name

When you place a grid on a page, the grid is automatically named the same as the name of the primary
record of the scroll for the grid (from the Page Field Name field) This is the name you use with the
GetGrid function.

Note: If the name of the record changes, the Page Field Name is not automatically updated. You must
change this name if you want the name of the grid to reflect the name of the record.

To change a grid name:

1. Open the page definition in Application Designer.

2. Select the grid and access the page field properties.

3. On the General tab, type the new grid name in the Page Field Name field.

Note: Every grid on a page must have a unique name.

Parameters

Parameter Description

Page.page_name Specify the name of the page definition containing the grid
you want.

grid_name Specify the Page Field Name on the General tab of the grid’s
page field properties.

Specify a grid name consisting of any combination of
uppercase letters, digits and "#", "$", "@", and "_".

L1_row_num Specify the row in the parent (level 1) scroll that contains this
grid. Therefore, specify this parameter for grids at level 2 only.

Note: The default value is 1.

438  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A Grid object populated with the requested grid.

Example

This example retrieves the grid named EMPL_GRID within a scroll:

local Grid &MYGRID;

&MYGRID = GetGrid(Page.EMPLOYEE_CHECKLIST, "EMPL_GRID");

Related Links
"GetColumn" (PeopleCode API Reference)
GetAnalyticGrid

GetHTMLText

Syntax

GetHTMLText(HTML.textname [, paramlist])

Where paramlist is an arbitrary-length list of values of undetermined (Any) data type in the form:

inval1 [, inval2] ...

Description

Use the GetHTMLText function to retrieve a predefined HTML text from an HTML definition in the
user's current language, or the base language if no entry exists in the user's current language. If any values
are included in paramlist, they are substituted into the HTML text based on positional reference (for
example, %BIND(:1) is the first parameter, %BIND(:2) is the second, and so on.)

Note: Use the GetHTMLText function only to retrieve HTML, or HTML that contains a JavaScript
program, from an HTML definition. If you have an HTML definition that contains only JavaScript, use
the GetJavaScriptURL response class method to access it.

See "GetJavaScriptURL" (PeopleCode API Reference).

You can use this function with PeopleSoft Pure Internet Architecture and Application Engine programs.
However, if run from a two-tier environment, the parameter substitution does not take place. When you
use this function in Application Engine programs, the meta-HTML in the HTML object referenced by the
GetHTMLText function may not resolve due to lack of context, for example, in a two-tier environment,
%AppServer is not resolved.

Copyright © 1988, 2022, Oracle and/or its affiliates. 439



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

HTML. textname Specify the name of an existing HTML text from an HTML
definition.

Returns

The resulting HTML text is returned as a string.

Example

The following is the text in the HTML definition TEST_HTML:

This is a %BIND(:1) and %BIND(:2) test.

The following is the PeopleCode program:

Local Field &HTMLfield;

&string = GetHTMLText(HTML.TEST_HTML, "good", "simple");
&HTMLfield = GetRecord(Record.CHART_DATA).HTMLAREA;
&HTMLfield.Value = &string;

The output from &string (displayed in an HTML area control) is:

This is a good and simple test.

Related Links
"Understanding Internet Script Classes" (PeopleCode API Reference)
"Using HTML Definitions and the GetHTMLText Function" (PeopleCode Developer’s Guide)
"Using HTML Areas" (Application Designer Developer’s Guide)

GetImageExtents

Syntax

GetImageExtents(IMAGE.ImageName)

Description

Use the GetImageExtents function to return the width and height of the image specified by ImageName.

440  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

ImageName Specify the name of the image on the page. This image must
exist on the page.

Returns

An array of data type number, where element 1 is the image height and element 2 is the image width.

Example
Local array of number &ImageExtents;

&ImageExtents = GetImageExtents(Image.PT_TREE_EXPANDED);

WinMessage("Height is " | &ImageExtents[1] | " and width is " | &ImageExtents[2]);

Related Links
"Specifying Image Field Attributes" (Application Designer Developer’s Guide)

GetInterlink

Syntax

GetInterlink(Interlink.name)

Description

Use the GetInterlink function to instantiate a Business Interlink definition object based on a Business
Interlink definition created in Application Designer. The Business Interlink object can provide a gateway
for PeopleSoft applications to the services of any external system.

Note: Business Interlinks is a deprecated product. Use Integration Broker instead.
See PeopleTools: Integration Broker.

After you use this function, you may want to refresh your page. The Refresh rowset class
reloads the rowset (scroll) using the current page keys. This causes the page to be redrawn.
GetLevel0().Refresh() refreshes the entire page. If you only want a particular scroll to be
redrawn, you can refresh just that part.

Generally, do not use the GetInterlink function in a program you create from scratch. If you drag
a Business Interlink definition from the project workspace (in Application Designer) to an open
PeopleCode editor window, a "template" is created, with values filled in based on the Business Interlink
definition you dragged in.

The following is the template created from dragging the Business Interlink definition
LDAP_SEARCHBIND to an open PeopleCode editor window.

/* ===>

Copyright © 1988, 2022, Oracle and/or its affiliates. 441



PeopleCode Built-in Functions and Language Constructs Chapter 1

   This is a dynamically generated PeopleCode template to be used only as a helper
 to the application developer.  You need to replace all references to '<*>' OR
 default values with  references to PeopleCode variables and/or a Rec.Fields.*/

/* ===> Declare and instantiate: */
Local Interlink &LDAP_SEARCHBI_1;
Local BIDocs &inDoc;
Local BIDocs &outDoc;
Local Boolean &RSLT;
Local number  &EXECRSLT;
&LDAP_SEARCHBI_1 =  GetInterlink(INTERLINK.LDAP_SEARCHBIND);

/* ===> You can use the following assignments to set the configuration parameters.
*/

&LDAP_SEARCHBI_1.Server = "example.com";
&LDAP_SEARCHBI_1.Port = 389;
&LDAP_SEARCHBI_1.User_DN = "cn=Admin,o=PeopleSoft";
&LDAP_SEARCHBI_1.Password = &password;
&LDAP_SEARCHBI_1.UserID_Attribute_Name = "uid";
&LDAP_SEARCHBI_1.URL = "///file:C:/User/Documentum/XML%20Applications/proddoc/
peoplebook_upc/peoplebook_
upc.dtd";
&LDAP_SEARCHBI_1.BIDocValidating = "Off";

/* ===> You might want to call the following statement in a loop if there is more t⇒

han one row of data to be added.  */

/* ===> Add inputs: */
&inDoc = &LDAP_SEARCHBI_1.GetInputDocs("");
&ret = &inDoc.AddValue("User_ID", <*>);
&ret = &inDoc.AddValue("User_Password", <*>);
&ret = &inDoc.AddValue("Connect_DN", <*>);
&ret = &inDoc.AddValue("Connect_Password", <*>);
&Directory_Search_ParmsDoc = &inDoc.AddDoc("Directory_Search_Parms");
&ret = &Directory_Search_ParmsDoc.AddValue("Host", <*>);
&ret = &Directory_Search_ParmsDoc.AddValue("Port", <*>);
&ret = &Directory_Search_ParmsDoc.AddValue("Base", <*>);
&ret = &Directory_Search_ParmsDoc.AddValue("Scope", <*>);
&ret = &Directory_Search_ParmsDoc.AddValue("Filter", <*>);

/* ===> The following statement executes this instance: */
&EXECRSLT = &LDAP_SEARCHBI_1.Execute();
If ( &EXECRSLT <> 1 ) Then
   /* The instance failed to execute */
Else
&outDoc = &LDAP_SEARCHBI_1.GetOutputDocs("");
&ret = &outDoc.GetValue("Distinguished_Name", <*>);
&ret = &outDoc.GetValue("return_status", <*>);
&ret = &outDoc.GetValue("return_status_msg", <*>);

End-If; /* If NOT &RSLT ...  */

Parameters

Parameter Description

Interlink. name Specify the name of the Business Interlink definition from
which to instantiate a Business Interlink object.

442  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A Business Interlink object.

Example

The following example instantiates a Business Interlink object based on the Business Interlink definition
QE_RP_SRAALL.

Local Interlink &SRA_ALL_1;

&SRA_ALL_1 = GetInterlink(Interlink.QE_RP_SRAALL);

Related Links
"Understanding Business Interlink Class" (PeopleCode API Reference)

GetJavaClass

Syntax

GetJavaClass(ClassName)

Description

Use the GetJavaClass function to access a Java class so that you can manipulate it in PeopleCode. This
is used for those classes that have static members, where it isn't appropriate to instantiate an object of the
class. You can call only static methods, that is, class methods, with the object created with this function.

In Java, you access such static members of a class by using the class name:

result = java.class.name.SomeStaticMethod();

To do this in PeopleCode, do the following:

&Result = GetJavaClass("java.class.name").SomeStaticMethod();

Note: If you create a class that you want to call using GetJavaClass, it can be located in a directory
specified in the PS_CLASSPATH environment variable or in other specified locations. The PeopleCode
API Reference provides details on where you can place custom and third-party Java classes.

See "System Setup for Java Classes" (PeopleCode API Reference).

Parameters

Parameter Description

ClassName Specify the name of an already existing class. This parameter
takes a string value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 443



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A JavaObject that refers to the named Java class.

Example

The Java class java.lang.reflect.Array has no public constructors and has only static methods. The
methods are used to manipulate Java array objects. One of these static methods is GetInt:

public static int getInt(Object array, int index)

To use this method, get the class by using GetJavaClass. This code illustrates accessing the value of the
fifth element of an integer array.

Local JavaObject &RefArray, &MyArray;

. . .

&RefArray = GetJavaClass("java.lang.reflect.Array");

. . .

&MyArray = CreateJavaArray(“int[]”, 24);

. . .

&FifthElement = &RefArray.getInt(&MyArray, 4);

Related Links
CreateJavaObject
CreateJavaArray
"Understanding Java Class" (PeopleCode API Reference)

GetLEDGauge

Syntax

GetLEDGauge(RecordName.FieldName)

Description

Use the GetLEDGauge function to get a reference to an LEDGauge object.

A gauge must be associated with a record and field merely so that the gauge object can be instantiated in
PeopleCode. Which record and field you use doesn't matter. Commonly, the same derived/work record is
used for all the charts in an application.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field name associated with the LED
gauge.

444  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A reference to an LEDGauge object.

Example
&MyGauge = GetLEDGauge(GAUGEREC_WRK.GAUGE_FLD);

Related Links
"Using the Gauge Classes" (PeopleCode API Reference)

GetLevel0

Syntax

GetLevel0()

Description

Use the GetLevel0 function to create a rowset object that corresponds to level 0 of the component buffer.
If used from PeopleCode that isn’t associated with a page, it returns the base rowset from the current
context.

Parameters

GetLevel0 has no parameters. However, it does have a default method, GetRow, and a shortcut.
Specifying GetLevel0()(1) is the equivalent of specifying GetLevel0().GetRow(1).

Returns

This function returns a rowset object that references the base rowset. For a component, this is the level 0
of the page. For a Application Engine program, this is the state record rowset. For a message, this is the
base rowset.

Note: You can also get the base rowset for a message using the GetRowset message class method, that is,
&MSG.GetRowset().

Example

The following code sample returns the level one rowset.

Local Rowset &ROWSET;

&ROWSET = GetLevel0().GetRow(1).GetRowset(SCROLL.LEVEL1_REC);

The following is equivalent to the previous example.

Local Rowset &ROWSET;

&ROWSET = GetLevel0()(1).GetRowset(SCROLL.LEVEL1_REC);

Copyright © 1988, 2022, Oracle and/or its affiliates. 445



PeopleCode Built-in Functions and Language Constructs Chapter 1

To reference a level 2 rowset you would have code similar to this:

Local Rowset &ROWSET_LEVEL2, &ROWSET_LEVEL0, &ROWSET_LEVEL1;

&ROWSET_LEVEL2 = GetLevel0().GetRow(1).GetRowset(SCROLL.LEVEL1_REC).GetRow(5).
 GetRowset(SCROLL.LEVEL2_REC);

   /* or */

&ROWSET_LEVEL0 = GetLevel0();
&ROWSET_LEVEL1 = &ROWSET_LEVEL0.GetRow(1).GetRowset(SCROLL.LEVEL1_REC);
&ROWSET_LEVEL2 = &ROWSET_LEVEL1.GetRow(5).GetRowset(SCROLL.LEVEL2_REC);
   /* or */
&ROWSET_LEVEL2 = GetLevel0()(1).LEVEL1_REC(5).GetRowset(SCROLL.LEVEL2_REC);

Related Links
GetRowset
"Understanding Rowset Class" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

GetMethodNames

Syntax

GetMethodNames(Type, Name)

Description

Use the GetMethodNames function to return either the method names for a Component Interface, or the
function names of a WEBLIB record.

Parameters

Parameter Description

Type Specify the type of methods or functions you want returned.
 This parameter takes a string value. The values are:

• WebLib

• CompIntfc

Name Specify the name of the Component Interface or WEBLIB
record that you want to know the methods or functions for.

Returns

An array of string containing the method or function names.

446  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example
Local array of string &Array;

&Array = GetMethodNames("CompIntfc", CompIntfc.USER_PROFILE);

&Array = GetMethodNames("WebLib", Record.WEBLIB_PORTAL);

Related Links
"Component Interface Examples" (PeopleCode API Reference)
"Web Libraries" (PeopleCode API Reference)

GetMessage

Syntax

GetMessage()

Description

Use the GetMessage function to return a message.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class GetMessage method instead.

It retrieves a message from the message queue for the current message being processed.

Note: The GetMessage function does not load the message with data. It always creates a new instance of
a message object. You must use another method, such as GetRowset, to populate the message object. In
addition, you must populate the message object with data before running any methods on it.

Related Links
"GetMessage" (PeopleCode API Reference)

Parameters

None.

Returns

A reference to an empty message object if successful, NULL if not successful.

Example
Local message &MSG;
&MSG = GetMessage();

Related Links
CreateMessage

Copyright © 1988, 2022, Oracle and/or its affiliates. 447



PeopleCode Built-in Functions and Language Constructs Chapter 1

"GetRowset" (PeopleCode API Reference)
"Understanding Message Classes" (PeopleCode API Reference)

GetMessageInstance

Syntax

GetMessageInstance(pub_id, pub_nodename, channelname)

Description

Use the GetMessageInstance function to get a message from the message queue.

Note: This function has been deprecated and is no longer supported.

GetMessageXmlDoc

Syntax

GetMessageXmlDoc()

Description

Use the GetMessageXmlDoc function in any of the messaging PeopleCode events.

Note: This function has been deprecated and remains for backward compatibility only. Use the Message
class GetXMLDoc method instead.

It retrieves an XML message, either from the message queue for asynchronous messages, or in memory
for synchronous messages, for the current message being processed. An XML message is a message that
is unstructured, that is, isn't based on a record hierarchy. It creates and loads a data tree for the default
message version, and returns NULL if not successful.

Related Links
"GetXmlDoc" (PeopleCode API Reference)

Parameters

None.

Returns

A reference to an XmlDoc object if successful, NULL if not successful.

448  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

The following example uses the GetMessageXmlDoc built-in function.

Local XmlDoc &BIGMAN;
Local XmlNode &node, &root;
Local string &outstring;
Local Rowset &LEVEL0;
Local Record &SALES_ORDER_INFO, &REC;

&CRLF = Char(13) | Char(10);

&BIGMAN = GetMessageXmlDoc();

&root = &BIGMAN.DocumentElement;
&child_count = &root.ChildNodeCount;

/* Get values out of XMLDoc */
&node_array = &root.GetElementsByTagName("QE_ACCT_ID");
&acct_id_node = &node_array.Get(2);
&account_id_value = &acct_id_node.NodeValue;

&node_array = &root.GetElementsByTagName("QE_ACCOUNT_NAME");
&acct_name_node = &node_array.Get(2);
&account_name_value = &acct_name_node.NodeValue;

&node_array = &root.GetElementsByTagName("QE_ADDRESS");
&address_node = &node_array.Get(2);
&address_value = &address_node.NodeValue;

&node_array = &root.GetElementsByTagName("QE_PHONE");
&phone_node = &node_array.Get(2);
&phone_value = &phone_node.NodeValue;

&outstring = "GetMessageXMLDoc Test";
&outstring = &outstring | &CRLF | &account_id_value | &CRLF | &account_name_value
 | &CRLF | &address_value | &CRLF | &phone_value;

&SALES_ORDER_INFO = CreateRecord(Record.QE_SALES_ORDER);
&SALES_ORDER_INFO.GetField(Field.QE_ACCT_ID).Value = &account_id_value;
&SALES_ORDER_INFO.GetField(Field.DESCRLONG).Value = &outstring;
&SALES_ORDER_INFO.Update();

Related Links
PublishXmlDoc
SyncRequestXmlDoc
"Understanding XmlDoc Classes" (PeopleCode API Reference)
"Understanding Message Classes" (PeopleCode API Reference)

GetNextNumber

Syntax

GetNextNumber({record.field | record_name, field_name}, max_number)

Description

Use the GetNextNumber function to increment the value in a record for the field you specify by one and
returns that value. You might use this function to increment an employee ID field by one when you are

Copyright © 1988, 2022, Oracle and/or its affiliates. 449



PeopleCode Built-in Functions and Language Constructs Chapter 1

adding a new employee. If the new value generated exceeds max_number, a negative value is returned
and the field value isn't incremented.

The maximum value possible for max_number is 2147483647.

PeopleCode Event Considerations

Because this function results in a database update (specifically, UPDATE, INSERT, and DELETE) it
should only be issued in the following events:

• SavePreChange

• WorkFlow

• SavePostChange

If you use this function in an event other than these, you need to ensure that the dataflow is correct and
that you do not receive unexpected results.

GetNextNumber and GetNextNumberWithGapsCommit

The following is some of the differences between the two functions, to enable you to better chose which
one is better for your application.

GetNextNumber GetNextNumberWithGapsCommit

No AutoCommit (which can be a problem, as the table is
locked until all Save events are finished.)

AutoCommit (this can be a performance enhancement as table
is not locked as long).

Ability to use WHERE criteria for maintaining multiple
sequence numbers in a single record.

Ability to increment by more than 1.

Allowed in SavePostChange Can be used in any PeopleCode event.

Parameters

Parameter Description

record.field Specify the record and field identifiers for the field for which
you want the new number. This is the recommended way to
identify the field.

record_name Specify as a string the name of the record containing the field
for which you want the new number. This parameter with field
_name was used prior to PeopleTools 8.

450  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

field_name Specify as a string the name of the field for which you want
the new number. This parameter with record_name was used
prior to PeopleTools 8.

Note: If you use the older syntax (record_name, field_name),
 you have to manually update these two parameters in your
programs whenever that record or field is renamed. The new
syntax (record.field) is automatically updated, so you won't
have to maintain it.

max_number Specify the highest allowed value for the field you're
incrementing. The maximum value possible for max_number
is 2147483647.

Returns

A Number value equal to the highest value of the field specified plus one.

GetNextNumber returns an error if the value to be returned would be greater than max_number. The
function returns one of the following:

Numeric Value Constant Value Description

Number N/A The new number

-1 %GetNextNumber_SQLFailure SQL failure

-2 %GetNextNumber_TooBig Number too large, beyond max_number

-3 %GetNextNumber_NotFound No number found, invalid data format

Example
If %Component = "RUN_AR33000" Then
   DUN_ID_NUM = GetNextNumber(INSTALLATION_AR.DUN_ID_NUM, 99999999);
End-if;

The following uses the constant to check for the value returned:

&VALUE = GetNextNumber(INSTALLATION_AR.DUN_ID_NUM, 999);

Evaluate &VALUE
When = %GetNextNumber_SQLFailure
     /* do processing */
When = %GetNextNumber_TooBig
     /* do processing */
When = %GetNextNumber_NotFound
     /* Do processing */
When-other
     /* do other processing */

Copyright © 1988, 2022, Oracle and/or its affiliates. 451



PeopleCode Built-in Functions and Language Constructs Chapter 1

End-Evaluate;

Related Links
GetNextNumberWithGaps

GetNextNumberWithGaps

Syntax

GetNextNumberWithGaps(record.field, max_number, increment [, WHERE_Clause, paramlis⇒

t])

Where paramlist is an arbitrary-length list of values in the form:

var1 [, var2] ...

Description

Use the GetNextNumberWithGaps function to determine the highest value in a table for the field you
specify, and return that value plus increment.

Note: This function has been deprecated and remains for backward compatibility only. Use the
GetNextNumberWithGapsCommit function instead.

This function also enables you to specify a SQL WHERE clause as part of the function for maintaining
multiple sequence numbers in a single record.

Note: GetNextNumberWithGaps also issues a COMMIT after incrementing the sequence number if no
other database updates have occurred since the last COMMIT. This limits the time a database lock is held
on the row and so may improve performance.

PeopleCode Event Considerations

Because this function results in a database update (specifically, UPDATE, INSERT, and DELETE) it
should only be issued in the following events:

• SavePreChange

• WorkFlow

If you use this function in an event other than these, you need to ensure that the dataflow is correct and
that you do not receive unexpected results.

Parameters

Parameter Description

record.field Specify the record and field identifiers for the field for which
you want the new number. This is the recommended way to
identify the field.

452  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

max_number Specify the highest allowed value for the field you're
incrementing. You can specify up to 31 digits for this value.

increment Specify the value you want the numbers incremented by. You
can specify up to 31 digits for this value.

WHERE_Clause Specify a WHERE clause for maintaining multiple sequence
numbers.

paramlist Parameters for the WHERE clause.

Returns

A Number value equal to the highest value of the field specified plus one.

GetNextNumberWithGaps returns an error if the value to be returned would be greater than max_number.
The function returns one of the following:

Numeric Value Constant Value Description

Number N/A The new number

-1 %GetNextNumber_SQLFailure SQL failure

-2 %GetNextNumber_TooBig Number too large, beyond max_number

-3 %GetNextNumber_NotFound No number found, invalid data format

Example

The following PeopleCode:

&greg = GetNextNumberWithGaps(GREG.DURATION_DAYS, 999999, 50,
"where emplid = :1", 8001);

results in the following:

2-942   21.53.09    0.000 Cur#4.PTTST81B RC=0 Dur=0.000 Connect=PTTST81B/sa/
2-943   21.53.09    0.000 Cur#4.PTTST81B RC=0 Dur=0.000 COM Stmt=UPDATE PS_GREG
 SET DURATION_DAYS = DURATION_DAYS + 50 where emplid = 8001
2-944   21.53.09    0.000 Cur#4.PTTST81B RC=0 Dur=0.000 EXE
2-945   21.53.09    0.000 Cur#4.PTTST81B RC=0 Dur=0.000 COM Stmt=SELECT DURATION_
DAYS FROM PS_GREG where emplid = 8001
2-946   21.53.09    0.000 Cur#4.PTTST81B RC=0 Dur=0.000 EXE
2-947   21.53.09    0.000 Cur#4.PTTST81B RC=0 Dur=0.000 Fetch
2-948   21.53.09    0.010 Cur#4.PTTST81B RC=0 Dur=0.010 Commit
2-949   21.53.09    0.010 Cur#4.PTTST81B RC=0 Dur=0.010 Disconnect

Copyright © 1988, 2022, Oracle and/or its affiliates. 453



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
GetNextNumber

GetNextNumberWithGapsCommit

Syntax

GetNextNumberWithGapsCommit(record.field, max_number, increment [, WHERE_Clause,
paramlist])

Where paramlist is an arbitrary-length list of values in the form:

var1 [, var2] ...

Description

Use the GetNextNumberWithGapsCommit function to return the sequence number value plus increment
for the given field residing in the given record. This function also enables you to specify a SQL Where
clause as part of the function for maintaining multiple sequence numbers in a single record.

This function is typically used for obtaining a new sequence number for the application, for example,
getting a new Purchase Order number to be used in the application transaction.

Use this function instead of the GetNextNumberWithGaps function. The GetNextNumberWithGaps
function is very restrictive in its usage. The GetNextNumberWithGapsCommit function can be used in
any event. The sequence number (record.field ) is incremented right away and it doesn't hold any database
internal row lock beyond the execution of this function.

Note: A secondary database connection is used to increment and retrieve record.field. The default
behavior is to keep the secondary database connection persistent in order to improve performance for
the next GetNextNumberWithGapsCommit usage. If the database administrator finds the persistent
connection too high an overhead for the production environment (which should not be the case since
PeopleSoft uses application server to multiplex the database connection), the database administrator can
change the default behavior to use an on-demand connection method. The persistent second connection
is disabled using DbFlags bit eight in the application server and process scheduler configuration files.
The second connection can be completely disabled using DbFlags bit four in the application server and
process scheduler configuration files

Considerations Using GetNextNumberWithGapsCommit

The following restrictions apply to the GetNextNumberWithGapsCommit function:

• PeopleSoft does not recommend Using both the GetNextNumberWithGapsCommit function and the
GetNextNumber function in the same application, on the same table, in the same unit of work. This
can lead to lock contention or deadlocking.

• For a DB2 for z/OS database, isolate the table that contains the sequence number to its own tablespace
and set the locksize parameter to row.

Related Links
"DbFlags" (System and Server Administration)

454  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

record.field Specify the record and field names for the field for which
you want the new number. This is the recommended way to
identify the field.

max_number Specify the highest allowed value for the field you're
incrementing. You can specify up to 31 digits for this value.

increment Specify the value you want the numbers incremented by. You
can specify up to 31 digits for this value.

WHERE_Clause Specify a SQL Where clause for maintaining multiple
sequence numbers.

paramlist Specify the parameters for the SQL Where clause.

Returns

A number value equal to the highest value of the field specified plus one increment.

The GetNextNumberWithGapsCommit function returns an error if the value to be returned would be
greater than max_number. The function returns one of the following:

Numeric Value Constant Value Description

Number None The new number

-1 %GetNextNumber_SQLFailure SQL failure

-2 %GetNextNumber_TooBig Number returned is too large, beyond
max_number.

-3 %GetNextNumber_NotFound No number found, invalid data format.

Example

The following PeopleCode increments the MCF_EMAIL_ID field by one and returns the new value,
committing immediately.

&LAST_AUTO_NBR = GetNextNumberWithGapsCommit(MCF_INSTALL.MCF_EMAIL_ID, 2147483647,
 1);

The above code produces output similar to the following:

1-192    10.39.54    0.320 Cur#2.1980.DB844901 RC=0 Dur=0.320 Connect=Secondry

Copyright © 1988, 2022, Oracle and/or its affiliates. 455



PeopleCode Built-in Functions and Language Constructs Chapter 1

/DB844901/testdb2/
1-193    10.39.54    0.000 GNNWGC ---- Successful obtain Second DB connection
1-194    10.39.54    0.010 Cur#2.1980.DB844901 RC=0 Dur=0.010 COM Stmt=UPDATE PS_
MCF_INSTALL SET MCF_EMAIL_ID = MCF_EMAIL_ID + 1
1-195    10.39.54    0.000 Cur#2.1980.DB844901 RC=0 Dur=0.000 COM Stmt=SELECT MCF_
EMAIL_ID FROM PS_MCF_INSTALL
1-196    10.39.54    0.000 Cur#2.1980.DB844901 RC=0 Dur=0.000 Commit
1-197    10.39.54    0.000 Cur#2.1980.DB844901 RC=0 Dur=0.000 Disconnect

Related Links
GetNextNumber

GetNextProcessInstance

Syntax

GetNextProcessInstance([Commit])

Description

Use the GetNextProcessInstance function to retrieve the next available process instance from the Process
Scheduler System table. When determining to find the next process instance in the sequence, the function
ensures the next available process instance does not exist in both the Process Request and Message Log
tables.

By default, the function commits the changes to the Process Scheduler system table to set it to the next
available process instance for the next available request. If this function is called within a PeopleCode
function for which issuing a COMMIT to the database destroys a unit of work, specify "0" for Commit.

Parameters

Parameter Description

Commit Specify whether the current data instance should be committed
to the database. This parameter takes a string value: "1",
commit the data, "0", do not commit the data. "1" is the default
value.

Returns

An integer representing the next available process instance if successful, otherwise 0 in case of a failure.

Related Links
"Understanding Process Request Classes" (PeopleCode API Reference)

GetNRXmlDoc

Syntax

GetNRXmlDoc(NRID, EntityName)

456  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the GetNRXmlDoc function in any of the messaging PeopleCode events. It retrieves an XML
message, categorized as non-repudiation, from the message queue for the specified non-repudiation ID.
An XML message is a message that is unstructured, that is, isn't based on a record hierarchy. It creates
and loads a data tree for the default message version, and returns Null if not successful.

Parameters

Parameter Description

NRID Specify the non-repudiation ID for the XML message that you
want to retrieve. This parameter takes a numeric value.

EntityName Specify the name of the entity that signed the data, as a string.
 For PeopleSoft, this is the node name.

Returns

A reference to an XmlDoc object if successful, Null if not successful.

Related Links
"Understanding XmlDoc Classes" (PeopleCode API Reference)

GetOrgChart

Syntax

GetOrgChart(RecordName.FieldName)

Description

Use the GetOrgChart function to get a reference to an OrgChart object.

A chart must be associated with a record and field merely so that the chart object can be instantiated in
PeopleCode. Which record and field you use doesn't matter. Commonly, the same derived/work record is
used for all the charts in an application.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field associated with the chart you want
to get.

Copyright © 1988, 2022, Oracle and/or its affiliates. 457



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A reference to a an OrgChart object.

Example
&ocOrgChart = GetOrgChart(CHARTREC_WRK.CHART_FLD);

Related Links
"Using the OrgChart Class" (PeopleCode API Reference)

GetPage

Syntax

GetPage(PAGE.pagename)

Description

Use the GetPage function to return a reference to a page object. Generally, page objects are used to hide
or unhide pages in a component.

Generally, the PeopleCode used to manipulate a page object would be associated with PeopleCode in the
Activate event.

Note: The page object shouldn’t be used until after the Component Processor has loaded the page: that is,
don’t instantiate this object in RowInit PeopleCode, use it in PostBuild or Activate instead.

Note

An expression of the form

PAGE.name.property

is equivalent to GetPage(name).property.

Parameters

Parameter Description

PAGE. pagename The name of the page for which you want to create an object
reference. Must be a page in the current context.

Returns

A page object that references the page.

458  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

In the following example, a page is hidden based on the value of the current field.

If PAYROLE_TYPE = "Global" Then
   GetPage(PAGE.JOB_EARNINGS).Visible = False;
End-If;

Related Links
"Understanding Page Class" (PeopleCode API Reference)
"Understanding Current Context" (PeopleCode Developer’s Guide)

GetPageField

Syntax

GetPageField(Page.PAGE_NAME, [scrollpath. [target_row, ]] PAGEFIELD_NAME)

In which scrollpath is:

[Record.level1_recname, level1_row, [Record.level2_recname, level2_row, ]] Record.t⇒

arget_recname

To prevent ambiguous references, you can use Scroll. scrollname, in which scrollname is the same as the
scroll level’s primary record name.

Description

Use the GetPageField function to reference a specific instance of a record field on any page in the
current component. Typically, you use GetPageField to reference radio buttons, which represent multiple
instances of a record field. While the GetField function uses the record field name as an argument,
GetPageField uses the page field name instead, which can be uniquely defined for each instance.
Regardless, GetPageField still requires that the page field be associated with a record field.

Note: The page field name is the name specified on the General tab for the page field properties in the
page definition in Application Designer.

Parameters

Parameter Description

PAGE_NAME The name of the page specified in the page definition,
 preceded by the keyword Page. The PAGE_NAME page must
be in the current component.

Note: The %Page system variable refers to the current page
only, and therefore cannot be used to refer to a record field on
any page in the current component.

Copyright © 1988, 2022, Oracle and/or its affiliates. 459



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer. This parameter is optional. The default is the current
scroll.

target_row The row number of the row in which the field occurs. This
parameter is optional. The default is the current row.

PAGEFIELD_NAME The name of the page field specified in the page field
properties in the page definition.

Returns

A Field object.

Example

The following example initializes four Field objects to four distinct radio button page fields and
conditionally sets their labels to either a long version or a short version.

Local Field &Fld1, &Fld2, &Fld3, &Fld4;

&Fld1 = GetPageField(Page.GNNWG_PAGE, "INITIALIZE");  /* Initialize Radio Button */
&Fld2 = GetPageField(Page.GNNWG_PAGE, "COMMIT");      /* Commit Radio Button     */
&Fld3 = GetPageField(Page.GNNWG_PAGE, "ROLLBACK");    /* Rollback Radio Button   */
&Fld4 = GetPageField(Page.GNNWG_PAGE, "SAMFAIL");     /* SAMFAIL Radio Button    */

If &label_type = "Long"  Then
   &Fld1.Label = "Initialize_Long_Label_Name";
   &Fld2.Label = "Commit_Long_Label_Name";
   &Fld3.Label = "Rollback_Long_Label_Name";
   &Fld4.Label = "SAMFAIL_Long_Label_Name";
Else
   &Fld1.Label = "Initialize";
   &Fld2.Label = "Commit";
   &Fld3.Label = "Rollback";
   &Fld4.Label = "SAMFAIL";
End-If;

Related Links
"Understanding the Field Class" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
Idiv
GetField

GetPagePrefix

Syntax

GetPagePrefix(page_type)

460  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the GetPagePrefix function to return the prefix for the page based on the page type as set on the Use
tab.

Important! Use this function within fluid applications only.

Parameters

Parameter Description

page_type Specifies the page type as an Integer value.

Returns

A String value:

• "" = Standard Page

• ftr = Footer Page

• hdr - Header page

• side = Side Page 1

• side2 = Side Page 2

• srch = Search Page

Example
Local string &pg_pre = GetPagePrefix(GetPageType(Page.PAGE_NAME));

Related Links
GetPageType

GetPageTitle

Syntax

GetPageTitle()

Description

Use the GetPageTitle function to return the title of the page.

Important! Use this function within fluid applications only.

Copyright © 1988, 2022, Oracle and/or its affiliates. 461



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

None.

Returns

A string value.

Example
PTLAYOUT.PAGETITLE_GROUPBOX.Label = GetPageTitle();

GetPageType

Syntax

GetPageType(Page.PAGE_NAME)

Description

Use the GetPageType function to return the page type—for example, header, footer, prompt, and so on.

Important! Use this function within fluid applications only.

Parameters

Parameter Description

Page.PAGE_NAME Specifies the page ID as a string value. Alternatively, you can
use the %Page system variable (without the Page. reserved
word) to specify the current page.

Returns

One of the following Integer values:

Numeric Value Constant Value Description

0 %MainPage

%MainPanel

The main, or primary fluid page. A main fluid page definition
includes the outermost group box that acts as the overall container
for the fluid page content.

1 %SubPage

%SubPanel

A standard subpage that contains a grouping of fields—such as an
address block—which is defined to be reusable within multiple other
page definitions.

462  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

2 %SecondaryPage

%SecondaryPanel

A standard secondary page that you access through another page,
 usually by clicking a link or push button.

3 %PopupPage

%PopupPanel

A standard, display-only pop-up page that you access through
another page, usually by clicking a link or push button.

4 %HeaderPage

%HeaderPanel

A page displayed in the <header> section of the HTML acting
as the banner area fixed at the top of every page within the fluid
component.

5 %SidePage

%SidePage1

%SidePanel

A page of type Side Page 1 (left panel).

6 %FooterPage

%FooterPanel

A page displayed in the <footer> section of the HTML at the bottom
of every page within the fluid component, containing elements
related to the end of a transaction, such as a Save button.

7 %LayoutPage

%LayoutPanel

A fluid page layout template.

Note: Do not include layout pages within a fluid component
definition.

8 %SearchPage

%SearchPanel

A page generated in <aside> section containing search pages.

9 %PromptPage

%PromptPanel

A fluid prompt page.

10 %MDTargetPage

%MasterDetailPanel

A Master&Detail Target page that displays the transactional fluid
page for use within a master/detail component.

11 %SidePage2

%Side2Panel

A page of type Side Page 2 (right panel).

Example
If GetPageType(Page.QE_NUI_SHOP_FT) <> %FooterPage Then
...
End-If;
If GetPageType(Page.QE_NUI_SHOP_SIDE) <> %SidePage Then
...

Copyright © 1988, 2022, Oracle and/or its affiliates. 463



PeopleCode Built-in Functions and Language Constructs Chapter 1

End-If;

Related Links
"Selecting Fluid Page Types" (Fluid User Interface Developer’s Guide)

GetPanelControlStyle

Syntax

GetPanelControlStyle()

Description

Use the GetPanelControlStyle function to return the styles set by the system that control the state of the
left and right panels as a String value.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A String value.

Example
method Initialize
   /* … */
   &m_oCSS = create PT_PAGE_UTILS:Styles(GetPanelControlStyle());
   /* … */
end-method;

GetProgramFunctionInfo

Syntax

GetProgramFunctionInfo(ProgramId)

Where ProgramId is the following for PeopleCode user-defined functions:

RECORD.RecordName.FIELD.FieldName.METHOD.MethodName

Where ProgramId is the following for Component Interface user-defined methods:

COMPONENTINTERFACE.CIName.METHODS.Methods

464  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the GetProgramFunctionInfo function to determine the full signature and return values of a
PeopleCode user-defined function, or a Component Interface method.

Considerations Using Component Interfaces

Component Interfaces only support type conversion of primitive data types back and forth between
PeopleCode values and those using inside Component Interface processing.

Component Interface processing traps all errors that occur inside the invocation of the Component
Interface and on failure simply returns a false value.

Parameters

Parameter Description

ProgramId Specify the full name of the function or the Component
Interface method, as a string.

Returns

An array of array of any.

There is one array for every function or method defined in the program. Each array contains the following
information:

1. The name of the function.

2. The signature of the parameters as a comma-separated string (see additional information below.)

3. The signature of the result (see result list below.)

4. The annotation of the Doc tag.

5. A boolean indicator of whether this function is to be exported (as indicated by the noexp tag).

6. A boolean indicator of whether this function is permitted to be called by this user. This only makes
sense for Functions defined as CI methods in Component Interface PeopleCode. The default value is
True.

The parameters may be modified by the following values:

Value Description

? An optional parameter.

* A repeated parameter.

& A parameter reference (PARM_NAME)

Copyright © 1988, 2022, Oracle and/or its affiliates. 465



PeopleCode Built-in Functions and Language Constructs Chapter 1

The possibly values of the result are as follows. Note the use of both lower and upper case letters.

Value Description

D Dec

d Date

S String

A Any

B Boolean

V None

t Time

T DateTime

I Image

i Integer

O Object

f Float

9 Number

x Unknown

[<value> Array

A single bracket indicates a single array. Two brackets
indicates a two-dimensional array, three brackets a three-
dimensional array, and so on.

The value following the bracket indicates the type of array. For
example, [i indicates an array of integer, [[S indicates an
array of array of string.

466  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

In the following example, this code is associated with the record QE_ABSENCE_HIST, on the field
QE_REASON, in the FieldChange event.

Function Update(&1 As string) Returns number NoExport
   Doc "this is some attached annotation"
   Return 1.23;
End-Function;
/* everything else . . */

The following PeopleCode program:

Local array of array of any &r;
&r = GetProgramFunctionInfo("RECORD.QE_ABSENCE_HIST.FIELD.QE_REASON.METHOD.Field
Change");

Returns a two-dimensional array with a single row that contains the following:

&r[1][1] – the name of the function “Update”

&r[1][2] – the signature of the parameter “S&”

&r[1][3] – the signature of the result “9”

&r[1][4] – the annotation of the doc tag “this is some attached annotation”

&r[1][5] – a boolean indicator of whether this function is to be exported. In this case it returns false.

The following example is used with a Component Interface program:

Function Update(&1 As string) Returns number NoExport
   Doc "this is some attached annotation"
   Return 1.23;
End-Function;

Function Updateagain(&1 As string) Returns number
   Doc "this is some more attached annotation"
   Return 1.23;
End-Function;

Local File &log;

Function LogText(&msg As string)
   If &log = Null Then
      Return
   End-If;
   &log.WriteLine(&msg);
End-Function;

Function CreateCI(&Name As string) Returns ApiObject
   Local ApiObject &CI;
   /** Get Component Interface **/
   &CI = %Session.GetCompIntfc(@("CompIntfc." | &Name));
   /* instantiate */
   &CI.PROCESSNAME = "AEMINITEST";
   &CI.PROCESSTYPE = "Application Engine";
   &CI.RUNCONTROLID = 99;
   &CI.Create();
   Return &CI;
End-Function;

Function DisplayProgramFuncInfo(&r As array of array of any)

   Local integer &i;

Copyright © 1988, 2022, Oracle and/or its affiliates. 467



PeopleCode Built-in Functions and Language Constructs Chapter 1

   For &i = 1 To &r.Len
      Local string &o;
      &o = &r [&i][1] | "(" | &r [&i][2] | ";" | &r [&i][3] | ") doc '"
      | &r [&i][4] | "'";
      If &r [&i][5] = 0 Then
         &o = &o | " noexport ";
      Else
         &o = &o | " export ";
      End-If;
      If &r [&i][6] = 0 Then
         &o = &o | " no permission ";
      Else
         &o = &o | " permitted ";
      End-If;
      LogText(&o);
   End-For;
End-Function;

Function SetupParameters(&Names As array of string, &Sigs As array of string)
 Returns array of any
   Local array of any &p = CreateArrayAny();
   Local integer &i;

   /* could use the parameter name to get values out of a dom?? */
   /* Base types we could handle
//  D = Dec
//  S = String
//  d = Date
//  A = Any
//  B = Boolean
//  V = None
//  t = Time
//  T = DateTime
//  I = Image
//  O = Object
//  i = Integer
//  f = Float
//  9 = Number
//  x = Unknown
*/
   For &i = 1 To &Sigs.Len
      Local string &parName = RTrim(LTrim(&Names [&i + 1]));
/* first name is create/get/?? */
      /* Here is where you'd get the value for this particular parameter
 and then push it properly onto the parameter array */
      Evaluate Substring(&Sigs [&i], 1, 1)
      When = "D"
         &p.Push(1);
         Break;
      When = "S"
         &p.Push("String for " | &parName);
         Break;
      When = "9"
      When = "i"
         &p.Push(&i);
         Break;
      When-Other
         &p.Push("Unimplemented . . .");
      End-Evaluate
   End-For;

   Return &p;
End-Function;

Function CallUDMMethod(&ci As ApiObject, &funcInfo As array of array of any,
 &methodName As string) Returns any

   /* an example of calling a user defined method on a ci */

   /* 1. find it in the funcinfo */

468  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

   Local integer &i = 1;
   Local integer &nFuncs = &funcInfo.Len;

   While &i <= &nFuncs
      /* name should match and it should be exportable (the default)
   and the doc tag should have something in it
   and it should be permitted */
      If &funcInfo [&i][1] = &methodName And
            &funcInfo [&i][5] <> 0 And
            Len(&funcInfo [&i][4]) > 0 And
            &funcInfo [&i][6] <> 0 Then
         Break;
      End-If;
      &i = &i + 1;
   End-While;

   If &i > &nFuncs Then
      LogText("not found");
      Return False;
   End-If;

   /* 2. Next get the info necessary to call the function based on the signature
 info */
   Local string &parSignatures = &funcInfo [&i][2];
   Local boolean &bPars = False;
   Local array of any &Pars;
   If Len(&parSignatures) > 0 Then
      &bPars = True;
      Local array of string &parSignature = Split(&parSignatures, ",");
      Local array of string &parNames = Split(&funcInfo [&i][4], ",");
/* first one should be Create/get/? */
      /* number of parameters should match number of parameter names  */
      If &parSignature.Len <> &parNames.Len - 1 Then
         LogText("length mismatch");
         Return False;
      End-If;
      &Pars = SetupParameters(&parNames, &parSignature);
   Else
      &Pars = CreateArrayAny();
   End-If;

   /* 3. Call the udm method with our parameters */
   Return &ci.InvokeMethodUDF(&methodName, &Pars);

End-Function;

QE_ABSENCE_HIST.QE_REASON.Value = ""; /* clean it up */
Local string &ciName = "PROCESSREQUEST";

Local ApiObject &CI = CreateCI(&ciName);

Local array of any &pars = CreateArrayAny("First parameter", 2);
/* check with variable for method name */
Local string &methodname = "FoxTest";
/* add in a bogus parameter  - tested - works - fails with false return :-( as per ⇒

usual in api objects*/
Local string &bogus = "bogus par";

&log = GetFile("C:\temp\junk\udflog.txt", "a", "UTF8", %FilePath_Absolute);
LogText("=====================================");
LogText("Result of direct call: " | &CI.InvokeMethodUDF(&methodname, &pars /* , &bo⇒

gus */));
rem LogText("&ci: " | &CI);

/* do this the new way - at least model how a webservices Peoplecode implementation⇒

 could do it */
Local string &ciObjid = "COMPONENTINTERFACE." | &ciName | ".METHOD.Methods";
/* get the program information */

Copyright © 1988, 2022, Oracle and/or its affiliates. 469



PeopleCode Built-in Functions and Language Constructs Chapter 1

Local array of array of any &progInfo;
&progInfo = GetProgramFunctionInfo(&ciObjid);
/* returns a an array of arrays: an array for each function defined in the program.

Each row has the following ([i] = position i):
[1] = program name (string)
[2] = comma separated list of parameter signatures (string)
[3] = result signature (string)
[4] = text that was with the doc tag. Convention here is a comma separated list of ⇒

values:
    first item is one of either Create or Get, specifying what method has to be cal⇒

led first
    second and subsequent items are the names of the parameters (this information i⇒

s not obtainable from the
    program information. These are the names to be exposed as the web service param⇒

eter names

    e.g. the above function would have a doc like "Create, StringParameter, Numeric⇒

Parameter"
[5] = an integer setting: 0=no export and 1=export (the default)
[6] = an integer setting indicating the permission for user to call this (only appl⇒

ies to CI programs)
  0=no permission and 1=permitted (the default)

*/
DisplayProgramFuncInfo(&progInfo);
If &CI = Null Then
   &CI = CreateCI(&ciName);
End-If;
LogText("Result of indirect call: " | CallUDMMethod(&CI, &progInfo, &methodname));

Related Links
"Understanding Component Interface Class" (PeopleCode API Reference)

GetPubContractInstance

Syntax

GetPubContractInstance(pub_id, pub_nodename, channelname, sub_nodename)

Description

Note: This function is no longer available. It has been replaced with the GetPubXmlDoc function.

See GetPubXmlDoc.

GetPubHeaderXmlDoc

Syntax

GetPubHeaderXmlDoc(PubID, PubNode, ChannelName, VersionName[, Segment])

470  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the GetPubHeaderXmlDoc function to retrieve the message header from the message queue.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class GetMessage method instead.

The message header, also known as the message instance, is the published message before any
transformations were performed.

Note: This function should not be used in standard message processing. It should only be used when
correcting or debugging a publication contract that is in error.

Related Links
"GetMessage" (PeopleCode API Reference)

Parameters

Parameter Description

PubID Specify the PubID of the message.

PubNode Specify the Pub Node Name of the message.

ChannelName Specify the channel name of the message.

VersionName Specify the version name of the message.

Segment Specify an integer representing which segment you want to
access. The default value is one, which means that if you do
not specify a segment, the first segment is accessed.

Returns

A reference to an XmlDoc object if successful, NULL if not successful.

Related Links
ReSubmitPubHeaderXmlDoc
GetPubXmlDoc

GetPubXmlDoc

Syntax

GetPubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName, SubNode
[, Segment])

Copyright © 1988, 2022, Oracle and/or its affiliates. 471



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the GetPubXmlDoc function to retrieve a message from the message queue.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class GetMessage method instead.

This is the message after any transformations have been preformed. It creates and loads a data tree for
the specified message version, and returns NULL if not successful. This function is used for publication
contract error correction when the error correction process needs to fetch a particular message instance for
the publication contract in error. SQL on the Publication Contract table is used to retrieve the key fields.

Note: This function should not be used in standard message processing. It should only be used when
correcting or debugging a publication contract that is in error.

Related Links
"GetMessage" (PeopleCode API Reference)

Parameters

Parameter Description

PubID Specify the PubID of the message.

PubNode Specify the Pub Node Name of the message.

ChannelName Specify the channel name of the message.

VersionName Specify the version name of the message.

MessageName Specify the name of the message.

SubNode Specify the subnode of the message.

Segment Specify an integer representing which segment you want to
access. The default value is one, which means that if you do
not specify a segment, the first segment is accessed.

Returns

A reference to an XmlDoc object if successful, NULL if not successful.

Related Links
ReSubmitPubXmlDoc
ReSubmitPubHeaderXmlDoc

472  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GetRatingBoxChart

Syntax

GetRatingBoxChart(RecordName.FieldName)

Description

Use the GetRatingBoxChart function to get a reference to an RatingBoxChart class object.

A chart must be associated with a record and field merely so that the chart object can be instantiated in
PeopleCode. Which record and field you use doesn't matter. Commonly, the same derived/work record is
used for all the charts in an application.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field associated with the chart you want
to get.

Returns

A reference to a RatingBoxChart object.

Example
&rbRatingBoxChart = GetRatingBoxChart(CHARTREC_WRK.CHART_FLD);

Related Links
"Using the RatingBoxChart Class" (PeopleCode API Reference)

GetRatingGauge

Syntax

GetRatingGauge(RecordName.FieldName)

Description

Use the GetRatingGauge function to get a reference to a RatingGaugeChart object.

A gauge must be associated with a record and field merely so that the gauge object can be instantiated in
PeopleCode. While the record and field you use doesn't matter, for a rating gauge, the field must be either
Numeric or Float. Commonly, the same derived/work record is used for all the charts in an application.

Copyright © 1988, 2022, Oracle and/or its affiliates. 473



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

RecordName.FieldName Specify the record and field name associated with the rating
gauge.

Note: For a rating gauge, the field must be either Numeric or
Float.

Returns

A reference to a RatingGaugeChart object.

Example
&oRating = GetRatingGauge(QE_TRNMNT_SCR.CJY_RND_SCR);

Related Links
"Using the Rating Gauge Classes" (PeopleCode API Reference)
"RatingGaugeChart Class Methods" (PeopleCode API Reference)
"RatingGaugeChart Class Properties" (PeopleCode API Reference)

GetRatingGaugeState

Syntax

GetRatingGaugeState()

Description

Use the GetRatingGaugeState function to get a reference to a RatingGaugeState object. A
RatingGaugeState object can then be associated with the corresponding state property on the
RatingGaugeChart object.

Parameters

None.

Returns

A reference to a RatingGaugeState object.

Example
&oRatGaugeSelState = GetRatingGaugeState();
&oRatGaugeSelState.Shape = %RatingGauge_Circle;
&oRatGaugeSelState.Color = 3;
&oRatGaugeSelState.BorderColor = 10;

474  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

&oRating.SelectedState = &oRatGaugeSelState;

Related Links
"RatingGaugeState Class Properties" (PeopleCode API Reference)
"Using the Rating Gauge Classes" (PeopleCode API Reference)
"ChangedState" (PeopleCode API Reference)
"HoverState" (PeopleCode API Reference)
"SelectedState" (PeopleCode API Reference)
"UnselectedState" (PeopleCode API Reference)

GetRecord

Syntax

GetRecord([Record.REC_NAME])

Description

Use the GetRecord function to create a reference to a record object for the current context, that is, from
the row containing the currently executing program.

The following code:

&REC = GetRecord();

is equivalent to:

&REC = GetRow().GetRecord(Record.recname);

or

&REC = GetRow().recname;

Note: This function is invalid for PeopleCode programs located in events that aren't associated with a
specific row and record at the point of execution. That is, you cannot use this function in PeopleCode
programs on events associated with high-level objects like pages (the Activate event) or components
(component events).

Parameters

With no parameters, this function returns a record object for the current context (the record containing the
program that is running).

If a parameter is given, Record. REC_NAME must specify a record in the current row.

Returns

GetRecord returns a record object.

Copyright © 1988, 2022, Oracle and/or its affiliates. 475



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

In the following example, the level 2 rowset (scroll) has two records: EMPL_CHKLST_ITM,
(the primary record) and CHKLST_ITM_TBL. If the code is running from a field on the
EMPL_CHKLST_ITM record, the following returns a reference to that record:

&REC = GetRecord(); /*returns primary record */

The following returns the other record in the current row.

&REC2 = GetRecord(Record.CHKLST_ITM_TBL);

The following event uses the @ symbol to convert a record name that’s been passed in as a string to a
component name.

Function set_sub_event_info(&REC As Record, &NAME As string)
   &FLAGS = CreateRecord(RECORD.DR_LINE_FLG_SBR);
   &REC.CopyFieldsTo(&FLAGS);
   &INFO = GetRecord(@("Record." | &NAME));
   If All(&INFO) Then
      &FLAGS.CopyFieldsTo(&INFO);
   End-If;
End-Function;

Related Links
CreateRecord
"Understanding Message Classes" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Understanding Current Context" (PeopleCode Developer’s Guide)

GetRecordDefn

Syntax

GetRecordDefn(record_name)

Description

Use the GetRecordDefn function to return an existing record definition.

Parameters

Parameter Description

record_name Specifies the record to be retrieved.

Returns

A record definition object.

476  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns a null value if the record definition doesn’t exist or the user doesn’t have permissions to access
the record.

Example
Local RecordDefn &myRecord = GetRecordDefn("MYRECORD_VW");
If All(&myRecord) Then
   &myRecord.Description = "My new record description";
   &retVal = &myRecord.Save();
   /* do error checking … */
   &retVal = &myNewRecord.Build();
   /* do error checking … */
End-If;

Related Links
CreateRecordDefn
DeleteRecordDefn

GetReferenceArea

Syntax

GetReferenceArea()

Description

Use the GetReferenceArea function to get a reference to a ReferenceArea object. ReferenceArea instances
can then be associated with a Chart object.

Parameters

None.

Returns

A reference to a ReferenceArea object.

Example
&MyRefArea = GetReferenceArea();

Related Links
"Creating and Using Data Series with Charts" (PeopleCode API Reference)

GetReferenceLine

Syntax

GetReferenceLine()

Copyright © 1988, 2022, Oracle and/or its affiliates. 477



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the GetReferenceLine function to get a reference to a ReferenceLine object. ReferenceLine instances
can then be associated with a Chart object.

Parameters

None.

Returns

A reference to a ReferenceLine object.

Example
&MyRefLine = GetReferenceLine();

Related Links
"Using the ReferenceLine Class" (PeopleCode API Reference)

GetRelField

Syntax

GetRelField(ctrl_field, related_field)

Description

Use the GetRelField function to retrieve the value of a related display field and returns it as an
unspecified (Any) data type.

Note: This function remains for backward compatibility only. Use the GetRelated field class method
instead.

The field ctrl_field specifies the display control field, and related_field specifies the name of the related
display field whose value is to be retrieved. In most cases, you could get the value of the field by
referencing it directly. However, there are two instances where GetRelField can be useful:

• If there are two related display fields bound to the same record field, but controlled by different
display control fields, use this function to specify which of the two related display fields you want.

• If all of a page’s level-zero fields are search keys, the Component Processor does not load the entire
row of level-zero data into the component buffer; it only loads the search keys. Adding a non-search-
key level-zero field to the page would cause the Component Processor to load the entire row into
the component buffer. To prevent a large row of data from being loaded into the buffer, you may
occasionally want to make a level-zero display-only field a related display, even though the field is
in the primary level-zero record. You won’t be able to reference this related display field directly, but
you can using GetRelField.

See "GetRelated" (PeopleCode API Reference).

478  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Using GetRelField With a Control Field

PeopleCode events on the Control Field can be triggered by the Related Edit field. When this happens,
there can be different behavior than with other types of fields:

• If the events are called from FieldEdit of the Control Field, and that FieldEdit is triggered by a change
in the Related Edit field, the functions return the previous value.

• If the events are called from FieldChange of the Control Field, and that FieldChange is triggered by
a change in the Related Edit field, the functions return the value entered into the Related Edit. This
may be a partial value that will subsequently be expanded to a complete value when the processing is
complete.

Example

In the following example, there are two related display fields in the page bound to
PERSONAL_DATA.NAME. One is controlled by the EMPLID field of the high-level key, the other
controlled by an editable DERIVED/WORK field in which the user can enter a new value. Use
GetRelField to get the value of the related display controlled by EMPLID.

/* Use a related display of a required non-default field to verify
 * that the new Employee Id is not already in use */
If GetRelField(EMPLID, PERSONAL_DATA.NAME) <> "" Then
   Error MsgGet(1000, 65, "New Employee ID is already in use.  Please reenter.");
End-If;

Related Links
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

GetRow

Syntax

GetRow()

Description

Use the GetRow function to obtain a row object for the current context, that is the row containing the
currently executing program.

Using the GetRow function is equivalent to:

&ROW = GetRowset().GetRow(CurrentRowNumber());

Note: For PeopleCode programs located in events that are not associated with a specific row at the point
of execution, this function is invalid. That is, you cannot use this function in PeopleCode programs on
events associated with high-level objects like pages or components.

Parameters

None.

Copyright © 1988, 2022, Oracle and/or its affiliates. 479



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

GetRow returns a row object that references the current row in the component buffers. If the program
is not being run from a page (such as from Application Engine, or as part of a Message program) it
references that data.

Example
Local Row &ROW;

&ROW = GetRow();

Related Links
GetRowset
"Understanding Row Class" (PeopleCode API Reference)
"Understanding Current Context" (PeopleCode Developer’s Guide)

GetRowset

Syntax

GetRowset([SCROLL.scrollname])

Description

Use the GetRowset function to get a rowset object based on the current context. That is, the rowset is
determined from the row containing the program that is running.

Syntax Format Considerations

An expression of the form

RECORD.scrollname.property

or

RECORD.scrollname.method(. . .)

is converted to an object expression by using GetRowset(SCROLL. scrollname).

Parameters

If a parameter is specified, it must be the name of the primary record for the scroll that is a child of the
current context.

Returns

With no parameters, GetRowset returns a rowset object for the rowset containing the currently running
program. If a parameter is specified, it returns a rowset for that child scroll. scrollname must be the name
of the primary record for the scroll.

480  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

In the following example, RS1 is a level 1 rowset, and RS2 is a child rowset of RS1.

Local Rowset &RS1, &RS2;

&RS1 = GetRowset();
&RS2 = GetRowset(SCROLL.EMPL_CHKLST_ITM);

Related Links
GetLevel0
"Understanding Rowset Class" (PeopleCode API Reference)
"Understanding Current Context" (PeopleCode Developer’s Guide)

GetRowsetCache

Syntax

GetRowsetCache([Rowset.]name, [language])

Description

Use GetRowsetCache to return the existing rowset cache with the given name.

Note: This function returns a RowsetCache object, not a rowset object. You must use the Get
RowsetCache method in order to convert a RowsetCache object into a rowset object.

Every time you use the GetRowsetCache function, you should verify that the function executed
successfully by testing for a null object. For example:

Local RowsetCache &RSC;

&RSC = GetRowsetCache(Rowset.MyRowset);

If All(&RSC) Then
  /* do processing */
Else
  /* call to populate rowset cache */
End-if;

Parameters

Parameter Description

Record. name Specify the name of a RowsetCache. If you just specify name,
you must enclose the name in quotation marks.

Copyright © 1988, 2022, Oracle and/or its affiliates. 481



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

language Specify which language the rowset cache is retrieved from.

Possible values are:

%RowsetCache_SignonLang – Fetch the rowset cache for the
sign-on language. If it doesn't exist then return failure.

%RowsetCache_BaseLang – Fetch the rowset cache for the
base language only. If it doesn't exist then return failure.

%RowsetCache_SignonOrBaseLang – Fetch the rowset cache
for the sign-on language. If the rowset cache for the sign-on
language doesn't exist then fetch the base language rowset
cache. If the base language rowset cache doesn't exist then
return failure.

This parameter is optional.

The default is %RowsetCache_SignonLang

Returns

A RowsetCache object populated with the rowset cache instance specified.

Example
&Cache1 = GetRowsetCache("AAROWSET1");

Related Links
CreateRowsetCache
"Understanding a Rowset Cache" (PeopleCode API Reference)

GetRTISwitchThreshold

Syntax

GetRTISwitchThreshold(search definition)

Description

Use the GetRTISwitchThreshold function to return the document count specified as the threshold for a
search definition on the Configure Real Time Indexing page.

482  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

search definition Specify the search definition for which you want to obtain the
document count as a String value.

Returns

The document count as an integer. Returns -1 for failure.

Example
Local integer &x2 = GetRTISwitchThreshold("EP_AP_VENDOR");
WinMessage(&x2, 0);

Related Links
TurnOffRTI
"Configuring Real Time Indexing" (Search Technology)

GetSearchRecordName

Syntax

GetSearchRecordName()

Description

Use the GetSearchRecordName function to return the search record name for the component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A string value.

Example
&strRecName = GetSearchRecordName();

Related Links
GetAddSearchRecName
"Setting Use Properties" (Application Designer Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 483



PeopleCode Built-in Functions and Language Constructs Chapter 1

GetSelectedTreeNode

Syntax

GetSelectedTreeNode(RECORD.recordname)

Description

Use the GetSelectedTreeNode function to determine what node the user has selected in a dynamic tree
control.

Note: Dynamic tree controls have been deprecated. Use the GenerateTree function or Tree Viewer.

Related Links
GenerateTree
Understanding View Trees

GetSeries

Syntax

GetSeries()

Description

Use the GetSeries function to get a reference to a Series object. Series instances can then be associated
with a Chart object.

Parameters

None.

Returns

A reference to a Series object.

Example
&series1 = GetSeries();

Related Links
"Using the Series Class" (PeopleCode API Reference)
"Series Class Properties" (PeopleCode API Reference)
"SetSeries" (PeopleCode API Reference)

484  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GetSession

Syntax

GetSession()

Description

Use the GetSession function to retrieve a PeopleSoft session object.

After you use GetSession, you can instantiate many other types of objects, like Component Interfaces,
data trees, and so on.

After you use GetSession you must connect to the system using the Connect property.

If you are connecting to the existing session and not doing additional error checking, you may want to
use the %Session system variable instead of GetSession. %Session returns a connection to the existing
session.

Parameters

None.

Returns

A PeopleSoft session object.

Example
Local ApiObject &MYSESSION;

&MYSESSION = GetSession();

Related Links
"Understanding Component Interface Class" (PeopleCode API Reference)
"Understanding the Portal Registry" (PeopleCode API Reference)
"Understanding Query Classes" (PeopleCode API Reference)
"Understanding Session Class" (PeopleCode API Reference)
"Understanding Tree Classes" (PeopleCode API Reference)
%Session

GetSetId

Syntax

GetSetId({FIELD.fieldname | text_fieldname}, set_ctrl_fieldvalue, {RECORD.recname
| text_recname}, treename)

Copyright © 1988, 2022, Oracle and/or its affiliates. 485



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the GetSetId function to return a string containing a setID based on a set control field (usually
BUSINESS_UNIT), a set control value, and one of the following:

• The name of a control table (or view) belonging to a record group in the TableSet Control controlled
by the set control value.

• The name of a tree in the TableSet Control controlled by the set control value.

If you want to pass a control record name to the function, you must pass an empty string in the
treename parameter. Conversely, if you want to pass a tree name, you must pass an empty string in the
text_recname parameter. In practice, tree names are rarely used in this function.

Note: This function does not validate the parameters passed to it. It is up to your application to ensure that
only valid data is used. If an invalid value is used, the defined default value is used.

Parameters

Parameter Description

fieldname Specify the set control field name as a FIELD reference.
 Use this parameter (recommended) or the text_fieldname
parameter.

text_fieldname Specify the name of the set control field as a string. Use this
parameter or the fieldname parameter.

set_ctrl_fieldvalue Specify the value of the set control field as a string.

recname Specify as a RECORD reference the name of the control
record belonging to the record group for which you want to
obtain the setID corresponding to the set control value. Use
this parameter (recommended) or the text_recname parameter.

text_recname Specify as a string the name of the control record belonging
to the record group for which you want to obtain the setID
corresponding to the set control field value. Use this parameter
or the recname parameter.

treename Specify as a string the name of the tree for which you want to
obtain the setID corresponding to the set control field value.

Returns

GetSetId returns a five-character setID string.

486  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

In this example, BUSINESS_UNIT is the Set Control Field, and PAY_TRMS_TBL is a control table
belonging to a record group controlled by the current value of BUSINESS_UNIT. The function returns
the setID for the record group.

&SETID = GetSetId(FIELD.BUSINESS_UNIT, &SET_CTRL_VAL, RECORD.PAY_TRMS_TBL, "");

Related Links
"Control Tables" (Application Designer Developer’s Guide)

GetSparkChart

Syntax

GetSparkChart(RecordName.FieldName)

Description

Use the GetSparkChart function to return a reference to a SparkChart object.

A spark chart must be associated with a record and field merely so that the spark chart object can be
instantiated in PeopleCode. Which record and field you use doesn't matter. Commonly, the same derived/
work record is used for all the charts in an application.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field name associated with the spark
chart.

Returns

A reference to a SparkChart object.

Example
&aS = GetSparkChart(QE_DVTSCR_WRK.QE_CHRT1);

Related Links
"Using the Spark Chart Classes" (PeopleCode API Reference)
"SparkChart Class Methods" (PeopleCode API Reference)
"SparkChart Class Properties" (PeopleCode API Reference)

Copyright © 1988, 2022, Oracle and/or its affiliates. 487



PeopleCode Built-in Functions and Language Constructs Chapter 1

GetSparkChartItem

Syntax

GetSparkChartItem()

Description

Use the GetSparkChartItem function to return a reference to a SparkChartItem object.

Parameters

None.

Returns

A reference to a SparkChartItem object.

Example
&aS1 = GetSparkChartItem();

Related Links
"Using the Spark Chart Classes" (PeopleCode API Reference)
"SparkChartItem Class Properties" (PeopleCode API Reference)

GetSQL

Syntax

GetSQL(SQL.sqlname [, paramlist])

Where paramlist is an arbitrary-length list of values in the form:

inval1 [, inval2] ...

Description

Use the GetSQL function to instantiate a SQL object and associates it with the SQL definition specified
by sqlname. The SQL definition must already exist, either created using Application Designer or the
StoreSQL function.

Processing of the SQL definition is the same as for a SQL statement created by the CreateSQL function.

Setting Data Fields to Null

This function does not set Component Processor data buffer fields to NULL after a row not found
fetching error. However, it does set fields that aren’t part of the Component Processor data buffers to
NULL.

488  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Using Arrays With paramlist

You can use a parameter of type "Array of Any" in place of a list of bind values. This is primarily used
when you do not know the number of values being supplied until the code runs.

For example, suppose you had a SQL definition INSERT_TEST, that had PeopleCode that dynamically
(that is, at runtime) generated the following SQL statement:

"INSERT INTO PS_TESTREC (TESTF1, TESTF2, TESTF3, TESTF4, . . .TESTN) VALUES (:1, :2⇒

, %DateTimeIn(:3), %TextIn(:4). . .N)";

Suppose you have placed the values to be inserted into an Array of Any, say &AAny:

&AAny = CreateArrayAny("a", 1, %DateTime, "abcdefg", . . .N);

You can execute the insert by:

GetSQL(SQL.INSERT_TEST, &AAny);

Because the Array of Any promotes to absorb any remaining select columns, it must be the last parameter
for the SQL object Fetch method or (for results) SQLExec. For binding, it must be the only bind
parameter, as it is expected to supply all the bind values needed.

Parameters

Parameter Description

SQL.sqlname Specify the name of a SQL definition.

paramlist Specify input values for the SQL string.

Returns

A SQL object.

Example

The following code creates and opens an SQL object on the SQL definition stored as ABCD_XY (for the
current market, database type and as of date). It binds the given input values, and executes the statement.
If the SQL.ABCD is a SELECT, this should be followed by a series of Fetch method calls.

&SQL = GetSQL(SQL.ABCD_XY, ABSENCE_HIST, &EMPLID);

The following is a generic function that can be called from multiple places to retrieve a specific record
using the SQL Objects.

Local SQL &SQL;
Local string &SETID, &TEMPLATE;
Local date &EFFDT;

Function FTP_GET_TEMPLATE(&REC As Record) Returns Boolean ;
   &TEMPLATE = FTP_RULE_TEMPLATE;
   &EFFDT = EFFDT;
   &SETID = SETID;
   &SQL = GetSQL(SQL.FTP_TEMPLATE_SELECT, &SETID, &TEMPLATE, &EFFDT);

Copyright © 1988, 2022, Oracle and/or its affiliates. 489



PeopleCode Built-in Functions and Language Constructs Chapter 1

   If &SQL.Status = 0 Then
      If &SQL.Fetch(&REC) Then
         &SQL.Close();
         Return True;
      End-If;
   Else
      &TITLE = MsgGet(10640, 24, "SQL Error");
      MessageBox(64, &TITLE, 10640, 23, "SQL Object Not Found in SQL", SQL.FTP_TEMP⇒

LATE_SELECT);
   End-If;
   &SQL.Close();
   Return False;
End-Function;

The SQL definition FTP_TEMPLATE_SELECT has the following code. Note that it uses the %List and
%EFFDTCHECK meta-SQL statements. This makes the code easier to maintain: if there are any changes
to the underlying record structure, this SQL definition won’t have to change:

SELECT %List(FIELD_LIST,FTP_DEFAULT_TBL A)
FROM PS_FTP_TEMPLATE_TBL A
WHERE A.SETID = :1  AND A.FTP_RULE_TEMPLATE = :2
AND %EFFDTCHECK(FTP_DEFAULT_TBL A1,A,:3)  AND A.EFF_STATUS = 'A'

Related Links
CreateSQL
DeleteSQL
FetchSQL
SQLExec
"Understanding SQL Class" (PeopleCode API Reference)
"Open" (PeopleCode API Reference)

GetStatusMeterGauge

Syntax

GetStatusMeterGauge(RecordName.FieldName)

Description

Use the GetStatusMeterGauge function to get a reference to a StatusMeterGauge object.

A gauge must be associated with a record and field merely so that the gauge object can be instantiated in
PeopleCode. Which record and field you use doesn't matter. Commonly, the same derived/work record is
used for all the charts in an application.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field name associated with the status
meter gauge.

490  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A reference to a StatusMeterGauge object.

Example
&MyGauge = GetStatusMeterGauge(GAUGEREC_WRK.GAUGE_FLD);

Related Links
"Using the Gauge Classes" (PeopleCode API Reference)

GetStoredFormat

Syntax

GetStoredFormat(scrollpath, target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same
as the scroll level’s primary record name.

Description

Use the GetStoredFormat function to return the name of a field’s custom stored format.

Note: This function remains for backward compatibility only. Use the StoredFormat field class property
instead.

To return the format for a field on level zero of the page, pass 1 in target_row.

Related Links
"StoredFormat" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row An integer specifying the row of the target field. If you are
testing a field on level zero, pass 1 in this parameter.

Copyright © 1988, 2022, Oracle and/or its affiliates. 491



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

[recordname .]fieldname The name of the field from which to get the stored format
name. The field can be on any level of the active page. The
recordname prefix is required if the call to GetStoredFormat is
not on the record definition recordname.

Returns

Returns a String equal to the name of the stored custom format for the field.

Example

This example returns a string containing the custom format for postal codes on level zero of the page
or on the current row of scroll level one. This function is called in the RowInit event, so no looping is
necessary.

Function get_postal_format() Returns string
   &CURR_LEVEL = CurrentLevelNumber();
   Evaluate &CURR_LEVEL
   When = 0
      &FORMAT = GetStoredFormat(POSTAL, 1);
   When = 1
      &FORMAT = GetStoredFormat(POSTAL, CurrentRowNumber(1));
   End-Evaluate;
   Return (&FORMAT);
End-Function;

Related Links
SetDisplayFormat
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

GetSubContractInstance

Syntax

GetSubContractInstance(pub_id, pub_nodename, channelname, messagename, sub_name)

Description

Note: This function is no longer available. It has been replaced with the GetSubXmlDoc function.

See GetSubXmlDoc.

GetSubXmlDoc

Syntax

GetSubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName[, Segment])

492  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the GetSubXmlDoc function to retrieve a message from the message queue.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class GetMessage method instead.

It creates and loads a data tree for the specified message version, and returns NULL if not successful. This
function is used for subscription contract error correction, when the error correction process needs to fetch
a particular message instance for the subscription contract in error. SQL on the Subscription Contract
table is used to retrieve the key fields.

Note: This function should not be used in standard message processing. It should only be used when
correcting or debugging a subscription contract that is in error.

Related Links
"GetMessage" (PeopleCode API Reference)

Parameters

Parameter Description

PubID Specify the PubID of the message.

PubNode Specify the Pub Node Name of the message.

ChannelName Specify the channel name of the message.

VersionName Specify the version name of the message.

MessageName Specify the name of the message.

Segment Specify an integer representing which segment you want to
access. The default value is one, which means that if you do
not specify a segment, the first segment is accessed.

Returns

A reference to an XmlDoc object if successful, NULL if not successful.

Related Links
ReSubmitSubXmlDoc

Copyright © 1988, 2022, Oracle and/or its affiliates. 493



PeopleCode Built-in Functions and Language Constructs Chapter 1

GetSyncLogData

Syntax

GetSyncLogData(GUID, pubnode, chnlname, msg_name, logtype [, message_version])

Description

Use the GetSyncLogData to return a log containing information about the specified synchronous message.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class GetSyncLogData method instead.

You can use this information for debugging. Using this function, you can obtain the request and response
data in a synchronous request, both pre- and post-transformation.

This function is used in the PeopleCode for the Message Monitor.

Related Links
"GetSyncLogData" (PeopleCode API Reference)

Parameters

Parameter Description

GUID Specify the GUID for the published synchronous message as a
string. This property is populated after the message is sent.

pubnode Specify the name of the node that the synchronous message
was published from as a string.

chnlname Specify the name of the channel the synchronous message was
published to as a string.

msg_name Specify the message definition name that you want to retrieve
log data from as a string.

Log_type Specify the type of log data you want to obtain, as a number.
 Values are:

1: the original request

2: the transformed request

3: the original response

4: the transformed response

message_version Specify the message version name as a string.

494  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

An XML string containing the log data.

Example
Local String &guid, &pubnode, &channel, &msg_name;
Local Number &log_type;
..
..
&descrlong = GetSyncLogData(&guid, &pubnode, &channel, &msg_name, &log_type);

GetTempFile

Syntax

GetTempFile(filename, mode  [, charset] [, pathtype])

Description

The GetTempFile function provides an alternative to GetFile. Similar to GetFile, use the GetTempFile
function to instantiate a new file object from the File class, associate it with an external file, and open the
file so you can use File class methods to read from or write to it.

GetTempFile differs from GetFile in two respects: \

• GetTempFile does not perform an implicit commit.

• GetTempFile does not make the associated file available through the Report Repository even when the
calling PeopleCode program is run through the Process Scheduler.

Therefore, GetTempFile can be a good choice when you wish to avoid implicit database commits
and when you do not need to have the file managed through the Report Repository. Otherwise,
GetTempFile operates exactly the same as GetFile. For additional information about GetTempFile, see the
documentation on GetFile.

See GetFile.

Parameters

Parameter Description

filespec Specify the name, and optionally, the path, of the file you want
to open.

Copyright © 1988, 2022, Oracle and/or its affiliates. 495



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

mode A string indicating how you want to access the file. The mode
can be one of the following:

"R" (Read mode): opens the file for reading, starting at the
beginning.

"W" (Write mode): opens the file for writing.

Warning! When you specify Write mode, any existing content
in the file is discarded.

"A" (Append mode): opens the file for writing, starting at the
end. Any existing content is retained.

"U" (Update mode): opens the file for reading or writing,
 starting at the beginning of the file. Any existing content is
retained. Use this mode and the GetPosition and SetPosition
methods to maintain checkpoints of the current read/write
position in the file.

In Update mode, any write operation clears the file of all data
that follows the position you set.

Note: Currently, the effect of the Update mode and the
GetPosition and SetPosition methods is not well defined for
Unicode files. Use the Update mode only on files stored with a
non-Unicode character set.

"E" (Conditional "exist" read mode): opens the file for reading
only if it exists, starting at the beginning. If it doesn’t exist, the
Open method has no effect. Before attempting to read from the
file, use the IsOpen property to confirm that it’s open.

"N" (Conditional "new" write mode): opens the file for
writing, only if it doesn’t already exist. If a file by the same
name already exists, the Open method has no effect. Before
attempting to write to the file, use the IsOpen property to
confirm that it’s open. You can insert an asterisk (*) in the file
name to ensure that a new file is created. The system replaces
the asterisk with numbers starting at 1 and incrementing by 1,
and checks for the existence of a file by each resulting name in
turn. It uses the first name for which a file doesn’t exist. In this
way you can generate a set of automatically numbered files.
 If you insert more than one asterisk, all but the first one are
discarded.

496  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

charset A string indicating the character set you expect when you
read the file, or the character set you want to use when you
write to the file. You can abbreviate Unicode UCS-2 to
"U" and the host operating system's default non-Unicode 
(sometimes referred to as the ANSI character set) to “A”. All
other character sets must be spelled out in full, for example,
 ASCII, Big5, Shift-JIS, UTF8, or UTF8BOM.

If “A” is specified as the character set, or you do not specify
a character set, the character set used is dependent on the
application server configuration. On a Windows application
server, the default non-Unicode character set is dependent on
the Windows ANSI Codepage (ACP) which can be checked
using the DOS command chcp. On a Unix application server,
 the default non-Unicode character set is specified in the
application server configuration file, psappsrv.cfg, and can be
modified using PSADMIN. You can also use a record field
value to specify the character set (for example, RECORD.
CHARSET.)

A list of supported character set names valid for this argument
can be found in PeopleTools: Global Technology.

See "Character Sets Across the Tiers of the PeopleSoft
Architecture" (Global Technology).

Note: If you attempt to read data from a file using a different
character set than was used to write that data to the file, the
methods used generate a runtime error or the data returned is
unusable.

When a file is opened for reading using the “U” charset
argument, GetFile expects the file to begin with a Unicode
byte order mark (BOM). This mark indicates whether the file
is written in big endian order or little endian order. A BOM
consisting of the hex value 0xFEFF indicates a big endian
file, a BOM consisting of the hex value 0xFFEF indicates
a little endian file. If the Unicode UCS-2 file being opened
does not start with a BOM, an error is returned. The BOM is
automatically stripped from the file when it is read into the
buffers by GetFile.

When a file is opened for writing using the “U” charset
argument, the appropriate Unicode BOM is automatically
written to the start of the file depending on whether the
application server hardware platform operates in little endian
or big endian mode.

BOMs are only expected or supported for files in Unicode
character sets such as UTF8, UTF8BOM, and UCS2. For
consuming applications that do expect the BOM for UTF-8
files, the UTF8BOM character set is to create UTF-8 files with
the BOM.

Note: For example, the UTF-8 BOM is represented by the
sequence 0xEF BB BF. This sequence can be misinterpreted
by a non-Unicode character set such as ISO-8859-1 and
appears as ISO characters ï»¿.

Copyright © 1988, 2022, Oracle and/or its affiliates. 497



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

When working with XML documents, specify UTF8 or
UTF8BOM for charset.

If you are writing an XML file using a different character set,
 you must remember to include a character set declaration in
the XML file.

pathtype If you have prefixed a path to the file name, use this parameter
to specify whether the path is an absolute or relative path. The
valid values for this parameter are:

• %FilePath_Relative (default)

• %FilePath_Absolute

If you don’t specify pathtype the default is %FilePath_
Relative.

If you specify a relative path, that path is appended to the
path constructed from a system-chosen environment variable.
 A complete discussion of relative paths and environment
variables is provided in documentation on the File class.

See "Working With Relative Paths" (PeopleCode API
Reference).

If the path is an absolute path, whatever path you specify
is used verbatim. You must specify a drive letter and the
complete path. You can’t use any wildcards when specifying a
path.

The Component Processor automatically converts platform-
specific separator characters to the appropriate form for
where your PeopleCode program is executing. On a Windows
system, UNIX "/" separators are converted to "\", and on a
UNIX system, Windows "\" separators are converted to "/".

Note: The syntax of the file path does not depend on the
file system of the platform where the file is actually stored;
it depends only on the platform where your PeopleCode is
executing.

Returns

A file object if successful; Null otherwise.

Related Links
GetFile
"Open" (PeopleCode API Reference)

498  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GetThreshold

Syntax

GetThreshold()

Description

Use the GetThreshold function to get a reference to a Threshold object. Threshold instances can then be
associated with gauge instances.

Parameters

None.

Returns

A reference to a Threshold object.

Example
&MyThreshold = GetThreshold();

Related Links
"Using the Threshold Class" (PeopleCode API Reference)

GetTimeLine

Syntax

GetTimeLine(RecordName.FieldName)

Description

Use the GetTimeLine function to get a reference to a TimeLine object.

A chart must be associated with a record and field merely so that the chart object can be instantiated in
PeopleCode. Which record and field you use does not matter. Commonly, the same derived/work record is
used for all the charts in an application.

Parameters

Parameter Description

RecordName.FieldName Specify the record and field associated with the chart you want
to get.

Copyright © 1988, 2022, Oracle and/or its affiliates. 499



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A reference to a TimeLine object.

Example
&MyTimeLine = GetTimeLine(CHARTREC_WRK.CHART_FLD);

Related Links
"Timeline Class Methods" (PeopleCode API Reference)

GetToolTip

Syntax

GetToolTip()

Description

Use the GetToolTip function to get a reference to a TooltipLabel object. TooltipLabel instances can then
be associated with a Chart object.

Parameters

None.

Returns

A reference to a TooltipLabel object.

Example
&label1 = GetToolTip();

Related Links
"Using the ToolTipLabel Class" (PeopleCode API Reference)
"ToolTipLabel Class Properties" (PeopleCode API Reference)
"SetToolTipLabels" (PeopleCode API Reference)

GetTreeNodeParent

Syntax

GetTreeNodeParent(node)

Description

Use the GetTreeNodeParent function to access data from dynamic tree controls.

500  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: Dynamic tree controls have been deprecated. Use the GenerateTree function or Tree Viewer.

Related Links
GenerateTree
Understanding View Trees

GetTreeNodeRecordName

Syntax

GetTreeNodeRecordName(node)

Description

Use the GetTreeNodeRecordName function in accessing data from dynamic tree controls.

Note: Dynamic tree controls have been deprecated. Use the GenerateTree function or Tree Viewer.

Related Links
GenerateTree
Understanding View Trees

GetTreeNodeValue

Syntax

GetTreeNodeValue(node, [recordname.]fieldname)

Description

Use the GetTreeNodeValue function in accessing data from dynamic tree controls.

Note: Dynamic tree controls have been deprecated. Use the GenerateTree function or Tree Viewer.

Related Links
GenerateTree
Understanding View Trees

GetURL

Syntax

GetURL(URL.URLIdentifier)

Copyright © 1988, 2022, Oracle and/or its affiliates. 501



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the GetURL function to return the URL, as a string, for the specified URLIdentifier. The
URLIdentifier must exist and been created using URL Maintenance.

Note: If the URL identifier contains spaces, you must use quotation marks around URLIdentifier. For
example, GetURL(URL."My URL");

If a language-specific URL exists for the user's current session language, and the user is not calling
GetURL from a batch program, it is returned. Otherwise, the base language version of the URL is
returned.

When GetURL is called from an application engine program, the URL is retrieved either from the base
URL table or the related language table depending on the language code. The language code is provided
by the User Profile for the user that executed the application engine program. The language code does not
come from the language that the user specified when logging into the system.

Parameters

Parameter Description

URLIdentifier Specify a URL Identifier for a URL that already exists and was
created using the URL Maintenance page.

Returns

A string containing the URL value for that URL Identifier, using the user's language preference.

Example

Suppose you have a URL with the identifier PEOPLESOFT, and the following URL:

http://www.example.com

From the following code example

&PS_URL = GetURL(URL.PEOPLESOFT);

&PS_URL has the following value:

http://www.example.com

Suppose you have the following URL stored in the URL Maintenance, with the name QE_CALL:

/S/WEBLIB_QE_MCD.QE_MCD_MAIN.FieldFormula.iScript_Call

You could combine this in the following code to produce an HTML string used as part of a response:

&output = GetHTMLText(HTML.QE_PHONELIST, %Request.RequestURI | "?" |
GetURL(URL.QE_CALL));

Related Links
ViewURL

502  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

"URL Maintenance" (System and Server Administration)

GetUserOption

Syntax

GetUserOption(Level, OPTN)

Description

Use the GetUserOption function to return the default value for the specified option.

Parameters

Parameter Description

Level Specify the option category level as a string.

OPTN Specify the option as a string.

Returns

The default value for the specified option.

Example
Local Any &MyValue;

&MyValue = GetUserOption("PPLT", "TZONE");

Related Links
SetUserOption
"Understanding System Personalizations" (Security Administration)

GetWLFieldValue

Syntax

GetWLFieldValue(fieldname)

Description

When the user has opened a page from a Worklist (by selecting one of the work items) use the
GetWLFieldValue function to retrieve the value of a field from the current row of the application Worklist
record. You can use the %WLName system variable to check whether the page was accessed from a
Worklist.

Copyright © 1988, 2022, Oracle and/or its affiliates. 503



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

Returns the value of a specified field in the Worklist record as an Any data type.

Example

This example, from RowInit PeopleCode, populates page fields with values from the Worklist record.
The %WLName system variable is used to determine whether there is a currently active Worklist (that is,
whether the user accessed the page using a Worklist).

&WL = %WLName;
If &WL > " " Then
   &TEMP_NAME = "ORDER_NO";
   ORDER_NO = GetWLFieldValue(&TEMP_NAME);
   &TEMP_NAME = "BUSINESS_UNIT";
   BUSINESS_UNIT = GetWLFieldValue(&TEMP_NAME);
   &TEMP_NAME = "SCHED_Date";
   &SCHED_Date = GetWLFieldValue(&TEMP_NAME);
   SCHED_Date = &SCHED_Date;
   &TEMP_NAME = "DEMAND_STATUS";
   DEMAND_STATUS = GetWLFieldValue(&TEMP_NAME);
End-If;

Related Links
MarkWLItemWorked
TriggerBusinessEvent
%WLName

Global

Syntax

Global data_type &var_name

Description

Use the Global statement to declare PeopleCode global variables. A global variable, once declared in any
PeopleCode program, remains in scope throughout the PeopleSoft session. The variable must be declared
with the Global statement in any PeopleCode program in which it is used.

Declarations tend to appear at the beginning of the program, intermixed with function declarations.

Not all PeopleCode data types can be declared as Global. For example, ApiObject data types can only be
declared as Local.

Parameters

Parameter Description

data_type Specify a PeopleCode data type.

504  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

&var_name A legal variable name.

Example

The following example declares a global variable and then assigns it the value of a field:

Global string &ID;
&ID = AE_APPL_ID;

Related Links
Local
Component
"Data Types" (PeopleCode Developer’s Guide)

Gray

Syntax

Gray(scrollpath, target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

If you put the function on the same scroll level as the field being changed, you can use the following
syntax:

Gray(Fieldname)

The more complex syntax can be used to loop through a scroll on a lower level than the PeopleCode
program.

Description

Use the Gray function to make a field unavailable for entry a page field, preventing the user from making
changes to the field.

Note: This function remains for backward compatibility only. Use the Enabled field class property
instead.

Gray makes a field display-only, while Hide makes it invisible. You can undo these effects using the built-
in functions UnGray and UnHide.

Copyright © 1988, 2022, Oracle and/or its affiliates. 505



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: If you specify a field as Display Only in Application Designer, using the PeopleCode functions
Gray, followed by UnGray, will not make it editable. This function shouldn't be used in any event prior to
RowInit.

Related Links
"Enabled" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row An integer specifying the row on the target scroll level where
the referenced buffer field is located.

[recordname .]fieldname The name of the field to gray. The field can be on scroll level
one, two, or three of the active page. The recordname prefix
is required if the call to Gray is not on the record definition
recordname.

Returns

Optionally returns a Boolean value indicating whether the function succeeded.

Example

This example, which would typically be found in the RowInit event, disables the page’s address fields if
the value of the SAME_ADDRESS_EMPL field is "Y".

If SAME_ADDRESS_EMPL = "Y" Then
   Gray(STREET1);
   Gray(STREET2);
   Gray(CITY);
   Gray(STATE);
   Gray(ZIP);
   Gray(COUNTRY);
   Gray(HOME_PHONE);
End-If;

Related Links
Hide
UnGray
UnHide

506  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GrayMenuItem

Syntax

GrayMenuItem(BARNAME.menubar_name, ITEMNAME.menuitem_name)

Description

Note: The GrayMenuItem function is supported for compatibility with previous releases of PeopleTools.
New applications should use DisableMenuItem instead.

Related Links
DisableMenuItem

GroupletRequestSource

Syntax

GroupletRequestSource()

Description

Use the GroupletRequestSource function to return an Integer value indicating the source page (location)
for the grouplet.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

One of the following Integer values:

Numeric Value Constant Value Description

-1 %GroupletSourceMain The main, or primary fluid page.

0 %GroupletSourceHeader The page displayed in the <header> section of the HTML acting as the
banner area fixed at the top of every page within the fluid component.

1 %GroupletSourceSide1 The left panel (page of type Side Page 1).

2 %GroupletSourceSide2 The right panel (page of type Side Page 2).

Copyright © 1988, 2022, Oracle and/or its affiliates. 507



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

3 %GroupletSourceFooter The page displayed in the <footer> section of the HTML at the bottom
of every page within the fluid component.

Example
Evaluate GroupletRequestSource()
When = %GroupletSourceMain
   /* Some processing */
   Break;
When-Other
   /* Some processing */
   Break;
End-Evaluate;

PeopleCode Built-in Functions and Language Constructs: H

The PeopleCode built-In functions and language constructs beginning with the letter H are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

Hash

Syntax

Hash(cleartext_string)

Description

Use the Hash function to generate a hashed string that is always 28 characters in length. The input is
variable length, with no maximum size.

Regardless of the operating system platform, underlying character encoding, or hardware byte order,
identical character strings always generate identical hash values regardless of the platform on which the
hash generation is run. Because of this, hash output should not be used as a unique key to a table of data.
Given the output of hash, it is impossible to determine the input.

Some of the original data is deliberately lost during the conversion process. This way, even if you know
the algorithm, you can't “un-hash” the data.

Generally the Hash function is used like a checksum—for example, to compare hashed values to ensure
they match.

508  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

cleartext_string Specifies the string, such as a password, to be hashed.

Returns

A hash string.

Example
MessageBox("Please confirm password");

&HASHPW = Hash(&PASSWD);
&OPERPSWD = USERDEFN.OPERPSWD.Value;

If not (&HASHPW = &OPERPSWD) Then
   /* do error handling */
End-if;

Related Links
Decrypt
Encrypt
HashSHA256
HashWithSalt

HashSHA256

Syntax

HashSHA256(cleartext_string)

Description

Use the HashSHA256 function to generate a hashed string that is always 44 characters in length. The
input is variable length, with no maximum size.

Generally the HashSHA256 function is used like a checksum—for example, to compare hashed values to
ensure they match.

Parameters

Parameter Description

cleartext_string Specifies the string, such as a password, to be hashed.

Copyright © 1988, 2022, Oracle and/or its affiliates. 509



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A hash string.

Example
&HASHVALUE = HashSHA256(&newtext);
&HASHPRIOR = REC.STOREDHASH.Value;
If Not (&HASHVALUE = &HASHPRIOR) Then
   /* do error handling */
End-If;

Related Links
Decrypt
Encrypt
HashWithSalt

HashWithSalt

Syntax

HashWithSalt(cleartext_string [, &salt_string] [, hash_type] [, disallow_emptystrin⇒

g])

Description

Use the HashWithSalt function to generate a hashed (or “salted”) string. The output is Base64 encoded.
For example, use the HashWithSalt function to generate a password for storage in the database. Because
the HashWithSalt function generates output from the clear text password and a randomly generated salt
value, it provides more secure hashing than the Hash function.

Important! When you store a hashed password generated by HashWithSalt in
PSOPRDEFN.OPERPSWD, you must also store the salt string used in PSOPRDEFN.OPERPSWDSALT.

To compare a clear text input value with an hashed value, use either the VerifyOprPassword function (for
hashed and stored passwords) or the VerifyHash function for other salted strings.

Parameters

Parameter Description

cleartext_string Specifies the string, such as a password, to be hashed.

&salt_string Specifies the randomly generated salt value as a string value.

Important! If the supplied salt value is a null value, then the
HashWithSalt function will generate a salt value that will be
returned as the value of this variable or record field.

510  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

hash_type Specifies the hashing algorithm to be used as a quoted literal
string:

• "SHA1" – Use the SHA-1 algorithm.

Important! Oracle reserves the right to remove support
for SHA-1 hashing in a future release.

• "SHA256" – Use the SHA-256 algorithm of the SHA-2
family.

Note: The default value is "SHA256".

disallow_emptystring Specifies a Boolean value indicating whether to disallow an
empty string as the text to be hashed.

Note: The default value is False.

Returns

A String value.

Examples

The following examples demonstrate three methods for generating and storing a hashed password:

• Method 1 – Presents a loop that could process a series of passwords. In this specific case, only one
salt value is generated and the loop is executed once only. Because SecureRandomGen is based on the
Java security SecureRandom function, it is more efficient to call it once to return an array of required
salt values than it is to call it for each salt value required.

/* method 1 */
Local array of string &operpwsdsalt;
Local string &resultSalt;
&operpwsdsalt = SecureRandomGen();
If (&operpwsdsalt <> Null) Then
   For &i = 1 To &operpwsdsalt.Len
      &resultSalt = &operpwsdsalt [&i];
      &pswd = HashWithSalt(&OPRPSWD, &operpwsdsalt [&i]);
      PSOPRDEFN.OPERPSWD = &pswd;
      PSOPRDEFN.OPERPSWDSALT = &resultSalt;
   End-For;
End-If;

• Method 2 – Uses the &resultSalt variable as a salt value to generate the hashed password. When
the &resultSalt variable is null, HashWithSalt generates a salt value, which in turn is automatically
returned back to the variable. Both the hashed password and the salt value are stored together in the
database.

/* method 2 */
Local string &resultSalt;
&pswd = HashWithSalt(&OPRPSWD, &resultSalt); 
PSOPRDEFN.OPERPSWD = &pswd;
PSOPRDEFN.OPERPSWDSALT = &resultSalt;

Copyright © 1988, 2022, Oracle and/or its affiliates. 511



PeopleCode Built-in Functions and Language Constructs Chapter 1

• Method 3 – Uses the PSOPRDEFN.OPERPSWDSALT field as a salt value to generate the
hashed password, which is then stored in the database. When PSOPRDEFN.OPERPSWDSALT
is null, HashWithSalt generates a salt value, which in turn is automatically returned back to the
PSOPRDEFN.OPERPSWDSALT field.

/* method 3 */
&pswd = HashWithSalt(&OPRPSWD, PSOPRDEFN.OPERPSWDSALT);
PSOPRDEFN.OPERPSWD = &pswd;

Related Links
Hash
HashSHA256
SecureRandomGen
VerifyHash
VerifyOprPassword

HermiteCubic

Syntax

HermiteCubic(DataPoints)

Description

Use the HermiteCubic function to compute a set of interpolating equations for a set of at least three
datapoints. This particular Hermitian cubic is designed to mimic a hand-drawn curve.

Parameters

Parameter Description

DataPoints This parameter takes an array of array of number. The array’s
contents are an array of six numbers. The first two of these
six numbers are the x and y points to be fit. The last four are
the four coefficients to be returned from the function: a, b, c
and d. a is the coefficient of the x0 term, b is the coefficient
of the x1 term, c is the coefficient of the x2 term, and d is the
coefficient of the x3 term.

Returns

A modified array of array of numbers. The elements in the array correspond to the elements in the array
used for DataPoints.

Related Links
CubicSpline
LinearInterp

512  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Hide

Syntax

Hide(scrollpath, target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can also use SCROLL.scrollname, where scrollname is the same
as the scroll level’s primary record name.

Description

Use the Hide function to make a page field invisible.

Note: This function remains for backward compatibility only. Use the Visible field class property instead.

You can display the field again using Unhide, but Unhide has no effect on a field that has been made
display-only in the page definition.

Gray, Hide, UnGray, and UnHide usually appear in RowInit programs that set up the initial display of
data, and in FieldChange programs that change field display based on changes the user makes to a field.
Generally, you put the functions on the same scroll level as the field that is being changed. This reduces
the complexity of the function’s syntax to:

Hide(FIELDNAME)

The more complex syntax can be used to loop through a scroll on a lower level than the PeopleCode
program.

Note: This function shouldn't be used in any event prior to RowInit.

Related Links
"Visible" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

Copyright © 1988, 2022, Oracle and/or its affiliates. 513



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

target_row An integer specifying the row on the target scroll level where
the referenced buffer field is located.

[recordname .]fieldname The name of the field to hide. The field can be on scroll level
one, two, or three of the active page. The recordname prefix
is required if the call to Hide is not on the record definition
recordname

Returns

Boolean (optional). Hide returns a Boolean value indicating whether it executed successfully.

Example

This example hides the page’s address fields if SAME_ADDRESS_EMPL is equal to "Y":

If SAME_ADDRESS_EMPL = "Y" Then
   Hide(STREET1);
   Hide(STREET2);
   Hide(CITY);
   Hide(STATE);
   Hide(COUNTRY);
   Hide(HOME_PHONE);
End-If;

Related Links
Gray
UnGray
UnHide

HideMenuItem

Syntax

HideMenuItem(BARNAME.menubar_name, ITEMNAME.menuitem_name)

Description

Use the HideMenuItem function to hide a specified menu item. To apply this function to a pop-up menu,
use the PrePopup Event of the field with which the pop-up menu is associated.

If you’re using this function with a pop-up menu associated with a page (not a field), the earliest event
you can use is the PrePopup event for the first “real” field on the page (that is, the first field listed in the
Order view of the page in Application Designer.)

When a menu is first displayed, all menus are visible by default, so there is no need for a function to re-
display a menu item that has been hidden.

514  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Parameters

Parameter Description

menubar_name Name of the menu bar that owns the menu item, or, in the case
of pop-up menus, the name of the pop-up menu that owns the
menu item.

menuitem_name Name of the menu item.

Returns

None.

Example
HideMenuItem(BARNAME.MYPOPUP1, ITEMNAME.DO_JOB_TRANSFER);

Related Links
DisableMenuItem
EnableMenuItem
"PrePopup Event" (PeopleCode Developer’s Guide)

HideRow

Syntax

HideRow(scrollpath) [, target_row])

Where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

Description

Use the HideRow function to hide a row occurrence programmatically.

Note: This function remains for backward compatibility only. Use the Visible row class property instead.

Copyright © 1988, 2022, Oracle and/or its affiliates. 515



PeopleCode Built-in Functions and Language Constructs Chapter 1

It hides the specified row and any associated rows at lower scroll levels.

Hiding a row just makes the row invisible, it does not affect database processing such as inserting new
rows, updating changed values, or deleting rows.

When you hide a row, it becomes the last row in the scroll or grid, and the other rows are renumbered
accordingly. If you later use UnHideRow to make the row visible again, it is not moved back to its
original position, but remains in its new position. When HideRow is used in a loop, you have to process
rows from the highest number to the lowest to achieve the correct results.

Note: HideRow cannot be executed from the same scroll level as the row that is being hidden, or from a
lower scroll level. Place the PeopleCode in a higher scroll level record.

Related Links
"Visible" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row An integer specifying which row in the scroll to hide. If
this parameter is omitted, the row on which the PeopleCode
program is executing is assumed.

Returns

Boolean (optional). HideRow returns a Boolean value indicating whether the function executed
successfully.

Example

This example hides all rows in scroll level 1 where the EXPORT_SW field is equal to "Y". Note that the
loop has to count backwards from ActiveRowCount to 1.

For &ROW = ActiveRowCount(RECORD.EXPORT_OBJECT) to 1
step - 1
      &EXPORT_SW = FetchValue(EXPORT_OBJECT.EXPORT_SW, &ROW);
      If &EXPORT_SW  "Y" Then
         HideRow(RECORD.EXPORT_OBJECT, &ROW);
      Else
         /* WinMessage("not hiding row " | &ROW);*/
      End-if;
End-for;

516  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
UnhideRow
DeleteRow

HideScroll

Syntax

HideScroll(scrollpath)

Where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]] RECORD.t⇒

arget_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

Description

Use the HideScroll function to programmatically hide a scroll bar and all data items within the scroll.

Note: This function remains for backward compatibility only. Use the HideAllRows rowset class method
instead.

Typically this function is used in RowInit and FieldChange PeopleCode to modify the page based on user
action.

Related Links
"HideAllRows" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

Returns

HideScroll returns a Boolean value indicating whether the function executed successfully.

Copyright © 1988, 2022, Oracle and/or its affiliates. 517



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

This example, from RowInit PeopleCode, initializes the visibility of the scroll based on a field setting:

If %Component = COMPONENT.APPR_RULE Then
   If APPR_AMT_SW = "N" Then
      HideScroll(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL, C⇒

urrentRowNumber(2), RECORD.APPR_RULE_AMT);
   Else
      UnhideScroll(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL,⇒

 CurrentRowNumber(2), RECORD.APPR_RULE_AMT);
   End-If;
End-If;

The corresponding FieldChange PeopleCode dynamically changes the appearance of the page based on
user changes to the APPR_AMT_SW field:

If APPR_AMT_SW = "N" Then
   HideScroll(RECORD.APPR_RULEs_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL, Cur⇒

rentRowNumber(2), RECORD.APPR_RULE_AMT);
   &AMT_ROWS = ActiveRowCount(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR⇒

_RULE_DETL, CurrentRowNumber(2), RECORD.APPR_RULE_AMT);
   For &AMT_LOOP = &AMT_ROWS To 1 Step - 1
      DeleteRow(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL, Cu⇒

rrentRowNumber(2), RECORD.APPR_RULE_AMT, &AMT_LOOP);
   End-For;
Else
   UnhideScroll(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL, Cu⇒

rrentRowNumber(2), RECORD.APPR_RULE_AMT);
End-If;

Related Links
UnhideRow
HideRow
UnhideScroll

HistVolatility

Syntax

HistVolatility(Closing_Prices, Trading_Days)

Description

Use the HistVolatility function to compute the historical volatility of a market-traded instrument.

518  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

Closing_Prices An array of number. The elements in this array contain a
vector of closing prices for the instrument.

Trading_Days The number of trading days in a year.

Returns

A number.

Related Links
ConvertRate

Hour

Syntax

Hour(time_value)

Description

Use the Hour function to extract a Number value for the hour of the day based on a time or DateTime
value. The value returned is a whole integer and is not rounded to the nearest hour.

Parameters

Parameter Description

time_value A DateTime or Time value.

Returns

Returns a Number equal to a whole integer value from 0 to 23 representing the hour of the day.

Example

If &TIMEOUT contains a Time value equal to 04:59:59 PM, the following example sets
&TIMEOUT_HOUR to 16:

&TIMEOUT_HOUR = Hour(&TIMEOUT);

Related Links
Minute

Copyright © 1988, 2022, Oracle and/or its affiliates. 519



PeopleCode Built-in Functions and Language Constructs Chapter 1

Second

PeopleCode Built-in Functions and Language Constructs: I

The PeopleCode built-In functions and language constructs beginning with the letter I are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

IBPurgeDomainStatus

Syntax

IBPurgeDomainStatus()

Description

Use the IBPurgeDomainStatus function to purge the domain status.

Parameters

None.

Returns

A boolean value: true if the functions completes successfully, false otherwise.

IBPurgeNodesDown

Syntax

IBPurgeNodesDown()

Description

Use the IBPurgeNodesDown function to purge the down nodes from the service operation monitor.

Parameters

None.

Returns

Boolean: true if the function completes successfully, false otherwise.

520  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Idiv

Syntax

Idiv(x, divisor)

Description

The Idiv function is an explicit integer division operation. It divides one number (x) by another (divisor).

Parameters

Parameter Description

X Specify an integer to be divided.

divisor Specify the integer used to divide the first parameter.

Returns

An integer value.

Example

The following example sets &I1 to 1 and &I2 to -1:

&I1 = Idiv(3, 2);

&I2 = Idiv(17, 10);

Related Links
Mod
Int
Integer
Round
Truncate
Value

If

Syntax

If condition Then
   statement_list
[Else
   statement_list]
End-If

Copyright © 1988, 2022, Oracle and/or its affiliates. 521



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the If statement to execute statements conditionally, depending on the evaluation of a conditional
expression. The Then and Else clauses of an If consist of arbitrary lists of statements. The Else clause
may be omitted. If condition evaluates to True, all statements in the Then clause are executed; otherwise,
all statements in the Else clause are executed.

Example

The following example’s first If statement checks for BEGIN_DT and RETURN_DT, and makes sure that
RETURN_DT is greater (later) than BEGIN_DT. If this is True, the execution continues at the following
line, otherwise execution continues at the line beginning with WinMessage:

If All(BEGIN_DT, RETURN_DT) AND
      BEGIN_DT = RETURN_DT Then
   &DURATION_DAYS = RETURN_DT - BEGIN_DT;
   If &DURATION_DAYS  999 Then
      DURATION_DAYS = 999;
   Else
      DURATION_DAYS = &DURATION_DAYS;
   End-if;
Else
   WinMessage("The beginning date is later then the return date!");
End-if;

Related Links
#If

InboundPublishXmlDoc

Syntax

InboundPublishXmlDoc(&XmlDoc, Message.MessageName, Node.PubNodeName [, Enqueue])

Description

Use the InboundPublishXmlDoc function to send an asynchronous message that simulates an inbound
request from an external node. The content data is based on an XmlDoc object.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class InboundPublish method instead.

This function is used to test inbound message processing. Though you are sending a message to yourself,
it goes through all the inbound message processing on PubNodeName.

The &XmlDoc object must already be instantiated and populated. The message included in the function
call should be a nonrowset-based message, that is, one that isn't based on a hierarchical record structure.

Related Links
"InBoundPublish" (PeopleCode API Reference)

522  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

&XmlDoc Specify an already instantiated and populated XmlDoc object
that you want to test.

MessageName Specify an already existing nonrowset-based message,
 prefaced with the reserved word Message.

PubNodeName Specify a node. This is for Sender Specified Routing (SSR),
 prefixed with the reserved word Node. The node defines the
target for the published message.

Enqueue Specify if the message is enqueued. This parameter takes a
Boolean value.

Returns

A Boolean value: True if the message was successfully published, False otherwise.

Example

The following code example re-publishes the XmlDoc and simulates that it is coming from the node
EXTERNAL.

Local XMLDOC &xmldoc = GetMessageXmlDoc();

InBoundPublishXmlDoc(&xmldoc, NODE.EXTERNAL);

Related Links
GetMessageXmlDoc
SyncRequestXmlDoc

InitChat

Syntax

InitChat(logical queue ID, application data URL, customer username, [chat_subject]
[, chat_question][, wizard_URL][, priority][, skill_level][, cost])

Description

Use the InitChat function to engage a customer and an agent in a chat session. It places a chat request on
a MultiChannel Framework queue and immediately launches a customer chat window. When an agent
accepts this task from the queue, the system launches an agent chat window.

Copyright © 1988, 2022, Oracle and/or its affiliates. 523



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: Chats are implicitly queued with the current language setting of the initiator (%Language_user).
Chats are only assigned to agents who have this language in their language list as specified on the
Languages page of the Agents component.

Parameters

Parameter Description

logical queue ID Specifies the logical queue in which the task should be queued.
 It is a string value.

The logical queue ID is a case-sensitive value. The case used
in the InitChat function must exactly match the case used
when creating the logical queue ID on the Queues page.

application data relative URL This is the relative URL of the application page you want
the agent to see on the left side of the agent-to-customer chat
window when the agent accepts the chat. This value needs to
be provided by your program.

Note: This URL parameter must not point to content that
includes JavaScript that breaks surrounding frames or that
references the "top" window. In addition, the application page
should not contain URL links to such content. This is because
the Agent Chat Console is framed by the RenServer API
which sends and receives the chat text.

customer username This reflects the name of the customer or end user initiating
the chat request. This value can be derived from the sign-in
mechanism (%UserID) or by prompting the user.

This is the name used to identify the chat requestor in the
MultiChannel Framework chat console. For example, in the
chat history window, all text sent by the customer is prefixed
with this name.

chat_subject This is an optional string parameter. The application can
indicate a subject of the chat request.

This could be prompted from the user or inferred from the
page from which the chat is initiated. The system displays the
subject on the agent's chat console when it assigns the chat to
an agent.

chat_question This is an optional string parameter. The application can
indicate a specific question to be addressed in the chat. This
could be prompted from the user or inferred from the page
from which the chat is initiated.

The value appears in the agent's chat window history box
immediately after accepting the chat. This enables the agent to
know the customer's question without having to ask.

524  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

wizard_URL This feature leads the agent to an application page from which
the agent can select a URL to push to the customer. This is
an optional string parameter. This is the relative URL of the
application page you wish the agent to launch when the agent
clicks the Grab button on the Agent Chat console.

If you do not provide this value, a default wizard is launched
with no application-specific functionality.

If you do provide this value, the application page must provide
a wizard for pushing a URL to the customer.

The wizard page provided by the application must be able to
write the URL generated by the wizard to the URL field. The
URL field is defined by PeopleSoft. In addition, you need
to embed the HTML definition, MCF_GRABURL, which
provides the Push and Push and Close buttons that push the
URL in the URL field to the customer.

See the Example section for examples showing the
PeopleCode that would be used to generate the relative URL
that is passed in to InitChat and the PeopleCode that would be
used to embed the provided MCF_GRABURL definition into
your application page.

priority This is an optional parameter. It is an integer value expressing
the priority level of the request. The minimum value is 0 and
there is no maximum value.

Specify the priority of this chat task. A higher value means a
higher priority. MultiChannel Framework tasks are ordered on
a physical queue based on their assigned priority, which means
the system assigns a task of a higher priority before it assigns a
task of a lower priority.

If no value is specified, the system uses the default value
specified for that task type on the Task Configuration page.

When tasks have the same priority, the system orders the tasks
according to time they were created. For example, suppose
the following tasks exist: Priority 2 created at 11:15 AM and
Priority 2 created at 11:16 AM. In this case, the system places
the task created at 11:15 AM before the task created at 11:16
AM.

skill level This is an optional parameter. It is an integer value expressing
the minimum skill level required of the agent to whom the
system routes the request. You set an agent's skill level in the
Agent page. The minimum value is 0 and there is no maximum
value.

The queue server assigns this task type to an available agent on
that queue with the lowest skill level greater than or equal to
the skill level required by the task.

If no value is specified, the system uses the default value
specified for that task type in the Task Configuration page.

Copyright © 1988, 2022, Oracle and/or its affiliates. 525



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

cost This is an optional parameter. It is an integer value measuring
the workload each task places on an agent. The cost of a task is
an estimate of the tasks's expected complexity and of the time
required to resolve the task. The minimum value is 0, and there
is no maximum value.

The cost of a task is added to an agent's workload after
accepting a task on the MultiChannel Framework console. A
task can't be assigned to an agent if the difference between the
current workload and the maximum workload defined for that
agent on the Agent configuration page is less than the cost of
this task.

If you do not specify a value, the system uses the default value
specified for that task in the Task Configuration pages.

Note: If the required skill level or cost submitted exceeds the
highest skill level or maximum workload of any of the agents
on that queue, the task cannot be assigned.

Returns

Returns a unique Chat ID in the form of an integer. You can use this ID to reference the chat in the chat
log.

If unsuccessful, it returns a message number. The message set ID for MultiChannel Framework is 162.

For example, 1302 is returned when an invalid task type or no value is provided.

Example

For example, the following PeopleCode could be used to generate the relative URL that is passed in to
InitChat.

&WizURL = GenerateComponentContentRelURL(%Portal, %Node, MenuName.PT_MCF, "GBL", Co⇒

mponent.MCF_DEMO_CMP, Page.MCF_URLWIZARD, "U");

The following is an example of embedding the provided MCF_GRABURL definition into your
application page, using the GetHTMLText function.

Function IScript_GrabURL()
   &cssPTMCFDEF = %Response.GetStyleSheetURL(StyleSheet.PTMCFDEF);
   &cssPTSTYLEDEF = %Response.GetStyleSheetURL(StyleSheet.PTSTYLEDEF);
   &titleGrabURL = MsgGetText(162, 1170, "URL Wizard");
   &psDomain = SetDocDomainForPortal();
   If (&psDomain = "") Then
      &psDomain = SetDocDomainToAuthTokenDomain();
   End-If;
   &labelBtPush = MsgGetText(162, 1181, "Push");
   &labelBtPushClose = MsgGetText(162, 1186, "Push and Close");
   &HTML = GetHTMLText(HTML.MCF_GRABURL, &titleGrabURL, &cssPTSTYLEDEF, &cssPTMCFDE⇒

F, &psDomain, &labelBtPush, &labelBtPushClose);
   %Response.Write(&HTML);
End-Function;

526  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The following is an example of the usage of InitChat.

&ret = InitChat("SALES", "http://www.support.example.com/products.html",
"John Smith", "Widgets", "How to order widgets", "", 2, 2);

The following example illustrates how to pass a PeopleCode-generated URL using the
GenerateComponentContentRelURL function for Application Data URL and wizards.

     &urlTestComponent = GenerateComponentContentRelURL(%Portal, %Node, MenuName.UT⇒

ILITIES, "GBL", Component.MESSAGE_CATALOG1, Page.MESSAGE_CATALOG, "U");

   &WizURL = GenerateComponentContentRelURL(%Portal, %Node, MenuName.PT_MCF, "GBL",⇒

 Component.MCF_DEMO_CMP, Page.MCF_URLWIZARD, "U");

   try

      &ret = InitChat(&QUEUEID, &urlTestComponent, &Username, &subject, &question, ⇒

&wizurl, &priority, &minskill);
   catch Exception &E

      MessageBox(0, "", 0, 0, "Caught exception: " | &E.ToString());
   end-try;

InsertImage

Syntax

InsertImage([scrollpath, target_row,] [recordname.]fieldname [, max_size])

where scrollpath  is:

[SCROLL.level1_recname, level1_row, [SCROLL.level2_recname, level2_row,]] SCROLL.ta⇒

rget_recname

Description

Use the InsertImage function to associate an image file with a record field on a page. After the image file
is associated with the record field, it can be saved to the database when the component is saved.

The following are the valid types of image files that can be associated with a record field:

• BMP

• DIB

• JPEG

• PNG

• SVG

InsertImage uses a search page to enable the end user to select the image file to be used. This is the same
search page used to add an attachment.

Copyright © 1988, 2022, Oracle and/or its affiliates. 527



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: To update an image field using this function, be sure that PSIMAGEVER field is also on the same
record as the image field being updated.

Virus scanning can be performed on all files uploaded with the InsertImage function.

See "Setting Up Virus Scanning" (PeopleCode Developer’s Guide).

Restrictions on Use in PeopleCode Events

InsertImage is a “think-time” function, which means it shouldn’t be used in any of the following
PeopleCode events:

• SavePreChange

• SavePostChange

• Workflow

• RowSelect

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or
a Select (or one of its relatives) Rowset class method.

See "Think-Time Functions" (PeopleCode Developer’s Guide).

Parameters

Parameter Description

scrollpath A construction that specifies a scroll area in the component
buffer.

target_row The row number of the target row.

[recordname .]fieldname The name of the field to be associated with the image file.
 The field can be on scroll level one, two, or three of the active
page. The recordname prefix is required if the function call is
not on the record definition recordname

max_size Specify the maximum size for this image file in kilobytes.

You should declare this parameter as an integer.

Note: The default value is 0, which indicates that there is no
maximum size.

Returns

The InsertImage function returns either a constant or a number:

528  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

0 %InsertImage_Success Image was successfully associated with
the record field.

1 %InsertImage_Failed Image was not successfully associated
with the record field. When the
component is saved the image file will
not be saved to the database.

2 %InsertImage_Cancelled User canceled the transaction so image
file isn't associated with record field.

3 %InsertImage_ExceedsMaxSize Image exceeds the maximum allowed
size. 

13 %Attachment_ViolationFound File violation detected by virus scan
engine.

14 %Attachment_VirusScanError Virus scan engine error.

15 %Attachment_VirusConfigError Virus scan engine configuration error.

16 %Attachment_VirusConnectError Virus scan engine connection error.

Example
&RC = InsertImage(EMPL_PHOTO.EMPLOYEE_PHOTO);

Related Links
DeleteImage

InsertRow

Syntax

InsertRow(scrollpath, target_row [, turbo])

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ] RECORD.ta⇒

rget_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

Copyright © 1988, 2022, Oracle and/or its affiliates. 529



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the InsertRow function to programmatically perform the ALT+7 and ENTER (RowInsert) function.

Note: This function remains for backward compatibility only. Use the InsertRow method of the Rowset
class instead.

InsertRow inserts a new row in the scroll buffer and causes a RowInsert PeopleCode event to fire,
followed by the events that normally follow a RowInsert, as if the user had manually pressed ALT+7 and
ENTER.

In scrolls that are not effective-dated, the new row is inserted after the target row specified in the function
call. However, if the scroll is effective-dated, then the new row is inserted before the target row, and all
the values from the previous current row are copied into the new row, except for EffDt, with is set to the
current date.

Note: InsertRow cannot be executed from the same scroll level where the insertion will take place, or
from a lower scroll level. Place the PeopleCode in a higher scroll level record.

Turbo Mode

The InsertRow built-in function can be executed in turbo mode or non-turbo mode. In turbo mode, default
processing is performed on the row being inserted only, which provides a performance improvement over
non-turbo mode. In non-turbo mode, default processing is performed on all rows.

Turbo mode is available as an option to the InsertRow, RowScrollSelect, RowScrollSelectNew,
ScrollSelect, and ScrollSelectNew PeopleCode built-in functions. To execute any of these functions in
turbo mode, pass a value of True in the optional turbo parameter. Non-turbo mode is the default for these
functions.

Note: For the Flush, InsertRow, and Select methods of the Rowset class, turbo mode is the only available
operating mode.

Related Links
"InsertRow" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row The row number indicating the position where the new row
will be inserted.

530  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

turbo Specifies whether default processing is performed on the entire
scroll buffer (non-turbo mode) or just the row being inserted 
(turbo mode). Pass a value of True to perform processing in
turbo mode. Non-turbo mode is the default.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

The example inserts a row on the level-two page scroll. The PeopleCode has to be in the scroll-level-one
record:

InsertRow(RECORD.BUS_EXPENSE_PER, &L1_ROW, RECORD.BUS_EXPENSE_DTL, &L2_ROW);

Related Links
DeleteRow
HideRow
UnhideRow

Int

Syntax

Int(decimal)

Description

Use the Int function to truncate a decimal number x to an integer and returns the result as a Number value.

Note: PeopleSoft only supports 32 bit integers. The largest integer value we support is 4294967295.

Parameters

Parameter Description

decimal A decimal number to be truncated.

Returns

Returns a Number equal to decimal truncated to a whole integer.

Copyright © 1988, 2022, Oracle and/or its affiliates. 531



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The following example sets &I1 to 1 and &I2 to -4:

&I1 = Int(1.975);
&I2 = Int(-4.0001);

Related Links
Mod
Round
Truncate
Value

Integer

Syntax

Integer(decimal)

Description

Use the Integer function to convert decimal to an integer (32 bit signed twos complement number) by
truncating any fraction part towards zero and returns the result as an Integer value.

Differences between Int and Integer

There is one primary difference between the Int function and the Integer function.

• The Int function rounds to a number in floating-decimal-point representation with a range of
-9,999,999,999,999,999,999,999,999,999,999 to 9,999,999,999,999,999,999,999,999,999,999.

• The Integer function truncates to a number in 32 bit binary twos-complement representation with a
range of -2,147,483,648 to 2,147,483,647.

Parameters

Parameter Description

decimal A decimal number to be truncated to an integer.

Returns

Returns an Integer equal to decimal truncated to a whole integer. If decimal is outside the range that can
be represented by an integer type, the result isn't defined.

Related Links
Mod
Int

532  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Round
Truncate
Value

IsAddEnabled

Syntax

IsAddEnabled()

Description

Use the IsAddEnabled function to return a Boolean value indicating whether Add mode has been enabled
on the component's Use tab.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
&bHasAddMode = IsAddEnabled();

IsAddMode

Syntax

IsAddMode()

Description

Use the IsAddMode function to return a Boolean value indicating whether the component build process is
in add mode.

Important! Use this function within fluid applications only.

Parameters

None.

Copyright © 1988, 2022, Oracle and/or its affiliates. 533



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A Boolean value.

Related Links
SetAddMode
"Component Build Processing in Add Modes" (PeopleCode Developer’s Guide)

IsAGComponent

Syntax

IsAGComponent()

Description

Use the IsAGComponent function to return a Boolean value indicating whether the component type is set
to Activity Guide on the Fluid tab.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
Local boolean &bIsAG = IsAGComponent();
If (&bIsAG) Then
   /* Some processing */
End-If;

IsAGRequest

Syntax

IsAGRequest()

Description

Use the IsAGRequest function to return a Boolean value indicating whether the request was initiated by a
component from within an activity guide wrapper.

Important! Use this function within fluid applications only.

534  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

None.

Returns

A Boolean value.

Example
If %Request.BrowserDeviceFormFactor = %FormFactor_Small Or
      IsAGRequest() = True Or
      IsMDRequest() = True Then
   /* Some processing */
End-If;

IsAlpha

Syntax

IsAlpha(String)

Description

Use the IsAlpha function to determine if String contains only textual characters, including alphabetic
characters from several scripts including Latin, Greek, Cyrillic and Thai, ideographic characters from
Chinese, Japanese and Korean and Japanese kana. It excludes all punctuation, numerics, spaces and
control codes

Parameters

Parameter Description

String Specify the string you want to search for alphabetic and other
textual characters.

Returns

A Boolean value: true if the string contains only alphabetic and textual characters, false if it contains any
numbers, punctuation or spaces.

Example
&Value = Get Field().Value;
If IsAlpha(&Value) Then
   /* do textual processing */
Else
   /* do non-textual processing */
End-if;

Copyright © 1988, 2022, Oracle and/or its affiliates. 535



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
IsAlphaNumeric
IsDigits
IsDate
IsDateTime
IsNumber
IsTime

IsAlphaNumeric

Syntax

IsAlphaNumeric(String)

Description

Use the IsAlphaNumeric function to determine if String contains only textual and numeric characters.

Textual characters include all characters valid for the IsAlpha function. Alphanumeric characters do not
include sign indicators and comma and period decimal points. If you want to check for numbers as well as
sign indicators, use the IsNumber function.

Parameters

Parameter Description

String Specify the string you want to search for alphanumeric
characters.

Returns

A Boolean value: True if the string contains only alphanumeric characters, False otherwise.

Example
&Value = Get Field().Value;
If IsAlphaNumeric(&Value) Then
   /* do alphanumeric processing */
Else
   /* do non-alphanumeric processing */
End-if;

Related Links
IsNumber
IsAlpha

536  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

IsBackEnabled

Syntax

IsBackEnabled()

Description

Use the IsBackEnabled function to return a Boolean value indicating whether the Back button is enabled
on the component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If Not (IsBackEnabled()) Then
   PT_WORK.PT_BUTTON_BACK.Visible = False;
End-If;

Related Links
"Setting Component Properties for Fluid Components" (Fluid User Interface Developer’s Guide)

IsClassicPlusMode

Syntax

IsClassicPlusMode(COMPONENT_NAME, MARKET)

Description

Use the IsClassicPlusMode function to return a Boolean value indicating whether the classic plus theme is
enabled or disabled at the system level and at the component level.

Parameters

Parameter Description

COMPONENT_NAME Specifies a string value representing the component.

Copyright © 1988, 2022, Oracle and/or its affiliates. 537



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

MARKET Specifies a string value representing the market associated
with the component.

Returns

A Boolean value.

True if the classic plus theme is enabled at the system level and on the specified component.

False if the classic plus theme is disabled at the system level or on the component.

Example
If IsClassicPlusMode(%Component, %Market) Then
 MessageBox(%MsgStyle_OK, "", 0, 0, "This system is classic plus enabled.");
Else
 MessageBox(%MsgStyle_OK, "", 0, 0, "This system is not classic plus enabled.");
End-If;

Related Links
ConfigureClassicPlusComponent
ConfigureClassicPlusForWC

IsDate

Syntax

IsDate(Value)

Description

Use the IsDate function to determine if Value contains a valid date.

You can use this function when you want to determine if a value is compatible with the Date built-in
function.

Uninitialized date variables, 0 numerics, or blank strings return true. If these values are possibilities for a
variable passed to the IsDate function, you should add an additional check to ensure there is a value, such
as using the All function.

Parameters

Parameter Description

Value Specify either a string or number you want to search for a
valid date. Value is a number of the format YYYYMMDD or
string of the format YYYY-MM-DD.

538  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A Boolean value: True if the string contains a valid date, False otherwise.

Example
If IsDate(&Num) Then
   &Datevalue = Date(&Num);
End-if;

Related Links
IsAlphaNumeric
IsDigits
IsDateTime
IsNumber
IsTime

IsDateTime

Syntax

IsDateTime(String)

Description

Use the IsDateTime function to determine if String contains a date/time string in the standard PeopleSoft
format, that is, in the following format:

yyyy-mm-dd hh:mm:ss.mmmmmm

Parameters

Parameter Description

String Specify the string you want to search for a valid PeopleSoft
date/time.

Returns

A Boolean value: True if the string contains a valid PeopleSoft date/time, False otherwise.

Example

The following example uses the short form of dot notation, by combining the getting the field value with
getting the value of IsDateTime and making it a conditional statement:

If IsDateTime(GetField().Value) Then
   /* do date processing */
Else
   /* do non-date processing */

Copyright © 1988, 2022, Oracle and/or its affiliates. 539



PeopleCode Built-in Functions and Language Constructs Chapter 1

End-if;

Related Links
IsAlphaNumeric
IsDigits
IsDate
IsNumber
IsTime

IsDaylightSavings

Syntax

IsDaylightSavings(datetime, {timezone | "Local" | "Base"})

Description

Use the IsDaylightSavings function to determine if daylight saving time is active in the specified time
zone at the specified date and time. For time zones that don’t observe daylight saving time, this function
always returns False.

The system’s base time zone is specified on the PSOPTIONS table.

Parameters

Parameter Description

datetime The DateTime value you want to check.

timezone | Local | Base Specify a value for converting datetime. The values are:

• timezone - a time zone abbreviation or a field reference to
be used for converting datetime.

• Local - use the local time zone for converting datetime.

• Base - use the base time zone for converting datetime.

Returns

A Boolean value: True if daylight saving time is active in the specified time zone at the specified date and
time. Returns False otherwise.

Example

In the first example, TESTDTTM has value of 01/01/99 10:00:00AM. &OUTPUT is False.

&OUTPUT = IsDaylightSavings(TESTDTTM, "EST")

540  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

In this example, TESTDTTM has value of 04/05/99 12:00:00AM. &OUTPUT has a value of True:
12:00am PST = 3:00am EST, so daylight saving time has switched on.

&OUTPUT = IsDaylightSavings(TESTDTTM, "EST")

In this example, TESTDTTM has value of 04/05/99 12:00:00AM. &OUTPUT returns False: 12:00am
PST = 1:00am MST, so daylight saving time hasn't started yet.

&OUTPUT = IsDaylightSavings(TESTDTTM, "MST")

In this example, TESTDTTM has value of 07/07/99 10:00:00. &OUTPUT returns False: ESTA is Indiana
time, where they do not observe daylight saving time.

&OUTPUT = IsDaylightSavings(TESTDTTM, "ESTA")

Related Links
ConvertDatetimeToBase
ConvertTimeToBase
DateTimeToTimeZone
TimeToTimeZone
TimeZoneOffset
"PeopleTools Options" (System and Server Administration)

IsDigits

Syntax

IsDigits(String)

Description

Use the IsDigits function to determine if String contains only digit (numeric) characters. Numeric
characters do not include sign indicators and comma and period decimal points. If you want to check for
numbers as well as sign indicators, use the IsNumber function.

Parameters

Parameter Description

String Specify the string you want to search.

Returns

A Boolean value: True if the string contains digits, False otherwise.

Example

If IsDigits(&MyValue) Then
   /* do processing */
Else

Copyright © 1988, 2022, Oracle and/or its affiliates. 541



PeopleCode Built-in Functions and Language Constructs Chapter 1

   /* do error processing */
End-if;

Related Links
IsAlpha
IsAlphaNumeric
IsDate
IsDateTime
IsNumber
IsTime

IsFluidMode

Syntax

IsFluidMode([Component.COMPONENT_NAME] [, Market.MARKET])

Description

Use the IsFluidMode function to return a Boolean value indicating whether fluid mode is enabled on the
specified component. If neither optional parameter is specified, then the function operates on the current
component.

Parameters

Parameter Description

Component.COMPONENT_NAME Specifies the component ID as a string value.

Market.MARKET Specifies the market ID as a string value. Alternatively, you
can specify the %Market system variable (without the Market.
 reserved word).

Returns

A Boolean value.

Example
Function SetGroupletCRefData(&Portal As ApiObject, &CRef As ApiObject)
...

   If PORTAL_CREF_ADM.PORTAL_URLTYPE = "UPGE" Then
      If IsFluidMode(PORTAL_CREF_ADM.PNLGRPNAME, PORTAL_CREF_ADM.MARKET) = True The⇒

n
         &CRef.IsFluid = 1;
      Else
         &CRef.IsFluid = 0;
      End-If;
...

542  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
"IsFluid" (PeopleCode API Reference)
"Setting Component Properties for Fluid Components" (Fluid User Interface Developer’s Guide)

IsFluidNotifyEnabled

Syntax

IsFluidNotifyEnabled()

Description

Use the IsFluidNotifyEnabled function to return a Boolean value indicating whether the Notify option is
enabled on the component's Fluid tab.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
Local boolean &NotifyAuthorized = False;
If IsFluidNotifyEnabled() Then
   &NotifyAuthorized = IsMenuItemAuthorized(MenuName.PTPNEVENTS, BarName.USE, ItemN⇒

ame.PTPN_SHARE_OPT, Page.PTNC_NOTIFY_CFG, %Action_UpdateDisplay);
End-If;

Related Links
"Setting Component Properties for Fluid Components" (Fluid User Interface Developer’s Guide)

IsFluidSearchStart

Syntax

IsFluidSearchStart()

Description

Use the IsFluidSearchStart function to return a Boolean value indicating whether the user has already run
a search on this component.

Important! Use this function within fluid applications only.

Copyright © 1988, 2022, Oracle and/or its affiliates. 543



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

None.

Returns

A Boolean value.

Example
If (IsFluidSearchStart()) Then
   Local ApiObject &Portal = %Session.GetPortalRegistry();
   &Portal.Open(%Portal);
   Local string &sComponentUrl = GenerateComponentContentURL(%Portal, %Node, @("Men⇒

uname." | %Menu), %Market, @("Component." | %Component), "", "");
   Local ApiObject &thisCref = &Portal.FindCRefByURL(&sComponentUrl);
   If &thisCref <> Null And
         All(&thisCref.Label) Then
      PTLAYOUT.PAGETITLE_GROUPBOX.Label = &thisCref.Label;
   Else
      PTLAYOUT.PAGETITLE_GROUPBOX.Label = MsgGetText(124, 522, "Message Not Found: ⇒

Search"); /* TBD - need message set for label */
   End-If;
Else
   PTLAYOUT.PAGETITLE_GROUPBOX.Label = GetPageTitle();
   AddOnLoadScript("SearchPageClose();");
End-If;

IsGroupletInteractive

Syntax

IsGroupletInteractive()

Description

Use the IsGroupletInteractive function to return a Boolean value indicating whether the fluid component
running as a grouplet request is an interactive grouplet (or tile).

Important! Use this function within fluid applications only.

Parameters

None

Returns

A Boolean value.

Example
If IsGroupletRequest() And
      IsGroupletInteractive() Then

544  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

   /* Some processing */
End-If;

Related Links
IsGroupletRequest

IsGroupletRequest

Syntax

IsGroupletRequest()

Description

Use the IsGroupletRequest function to return a Boolean value indicating whether the request was initiated
by a grouplet, a tile, or a regular component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value: True when the request was initiated by a grouplet a tile, otherwise, False when the
request was initiated by a regular component

Example
If Not IsGroupletRequest() Then
   If Not &bUsePhoneLayout Then
      &chart.HighlightSelectedDataPoint = True;
      &chart.IsChartDrillable = True;
      &chart.IsDrillable = True;
      REM &chart.AdditionalStyleSuffix = "CHARTDRILL";
   End-If;
End-If;

If &bUsePhoneLayout And
      Not IsGroupletRequest() Then
   PTPG_NUI_CHTOPT.PTPG_GROUP_BOX1.FreeFormStyleName = "ptpg_chart_phone";
   PTS_SRCH.PTS_CHART_GB.FreeFormStyleName = "ptpg_chartarea_phone";
End-If;

Related Links
IsGroupletInteractive

Copyright © 1988, 2022, Oracle and/or its affiliates. 545



PeopleCode Built-in Functions and Language Constructs Chapter 1

IsHidden

Syntax

IsHidden(scrollpath, target_row)

Where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ] RECORD.ta⇒

rget_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

Description

Use the IsHidden function to verify whether a row is hidden or not.

Note: This function remains for backward compatibility only. Use the Visible row class property instead.

It returns True if the row is hidden, otherwise it returns False. IsHidden must be called in a PeopleCode
program on a higher scroll level than one you are checking.

Related Links
"Visible" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row The row number indicating the position of the row.

Example

The following example tests whether a specific row on scroll level one is hidden:

&ROW_CNT = ActiveRowCount(RECORD.LD_SHP_INV_VW);
&FOUND = True;
If &ROW_CNT = 1 Then
   &ORDER = FetchValue(LD_SHP_INV_VW.ORDER_NO, 1);
   If None(&ORDER) Then
      &FOUND = False;
   End-If;
End-If;
If &FOUND Then
   For &I = 1 To &ROW_CNT
      If Not IsHidden(RECORD.LD_SHP_INV_VW, &I) Then
         UpdateValue(ITEM_SELECTED, &I, "N");

546  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

      End-If;
   End-For;
End-If;

Related Links
GenerateScriptContentURL
UnhideRow

IsHomeEnabled

Syntax

IsHomeEnabled()

Description

Use the IsHomeEnabled function to return a Boolean value indicating whether the Home button is
enabled on the component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If Not (IsHomeEnabled()) Then
   PT_WORK.PT_BUTTON_HOME.Visible = False;
End-If;

Related Links
"Setting Component Properties for Fluid Components" (Fluid User Interface Developer’s Guide)

IsIScriptAuthorized

Syntax

IsIScriptAuthorized(RECORD_NAME, FIELD_NAME, Event_Name, Function_Name[, action])

Description

The IsIScriptAuthorized function returns a Boolean value indicating whether the current user is allowed
to access the specified iScript.

Copyright © 1988, 2022, Oracle and/or its affiliates. 547



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: The PeopleSoft Administrator role implicitly has access to all iScripts; therefore, this function
always returns True for users with this role.

Parameters

Parameter Description

RECORD_NAME Specify the WEBLIB derived/work record name that contains
the target iScript as a String value.

FIELD_NAME Specify the field name that contains the target iScript as a
String value.

Event_Name Specify the PeopleCode event name as a String value.

Function_Name Specify the user-defined PeopleCode function to be executed
as a String value.

action Specify the empty string, "", for the action parameter. This
parameter is not used and any other value is ignored.

Returns

A Boolean value: True if the user is authorized to execute the iScript, False otherwise.

Example

&bAddToAuth = IsIScriptAuthorized("WEBLIB_PTNUI", "PT_BUTTON_PIN", "FieldFormula", ⇒

"IScript_SavePin", "");

IsLogoutEnabled

Syntax

IsLogoutEnabled()

Description

Use the IsLogoutEnabled function to return a Boolean value indicating whether the Logout button is
enabled on the component.

Important! Use this function within fluid applications only.

Parameters

None.

548  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A Boolean value.

Example
If Not (IsLogoutEnabled()) Then
   PT_WORK.PT_BUTTON_LOGOUT.Visible = False;
End-If;

Related Links
"Setting Component Properties for Fluid Components" (Fluid User Interface Developer’s Guide)

IsMDAJAXTrf

Syntax

IsMDAJAXTrf()

Description

For custom fluid wrapper components (fluid activity guides or master/detail components), use the
IsMDAJAXTrf function to return a boolean value indicating whether fluid component transfers stay
within the master/detail or activity guide wrapper. Since classic components are displayed within an
iframe, this setting is ignored for classic component transfers. The default value is False; component
transfers leave the wrapper.

Parameters

None.

Returns

A boolean value.

Related Links
"AJAX Transfers" (Fluid User Interface Developer’s Guide)
SetMDAJAXTrf

IsMDComponent

Syntax

IsMDComponent()

Description

Use the IsMDComponent function to return a Boolean value indicating whether the component type is set
to Master/Detail on the Fluid tab.

Copyright © 1988, 2022, Oracle and/or its affiliates. 549



PeopleCode Built-in Functions and Language Constructs Chapter 1

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If (IsMDRequest() Or
      IsMDComponent()) Then
   /* Some processing */
End-If;

Related Links
"Working with Master/Detail Components" (Fluid User Interface Developer’s Guide)

IsMDGuided

Syntax

IsMDGuided()

Description

For master/detail and activity guide components, use the IsMDGuided function to return a Boolean value
indicating whether the master/detail or activity guide wrapper is in guided mode (that is, Previous and
Next are displayed in the fluid banner). The default value is False; non-guided mode is in effect.

Note: If search results are to be displayed in the Master/Detail format (as set on the Fluid tab of the
component definition), once a user drills into an individual search, the master/detail format is displayed,
and this function returns true at that time.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
Local boolean &bIsGuided = IsMDGuided();

550  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

/* Some processing */
   If Not (&bIsGuided) Then
      PT_WORK.PT_BUTTON_NEXTLST.Visible = True;
      PT_WORK.PT_BUTTON_PREVLST.Visible = True;
   End-If;

Related Links
SetMDGuided
"Understanding Activity Guide Templates and Template Types" (Portal Technology)

IsMDListPopup

Syntax

IsMDListPopup()

Description

For master/detail and activity guide components, use the IsMDListPopup function to return a Boolean
value whether the master/detail or activity guide wrapper is in non-optimized mode (that is, navigation to
pages is presented in a drop-down list in the fluid banner, not in the left panel). The default value is False;
optimized mode is in effect (that is, items are presented in the left panel).

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If (IsMDListPopup()) Then
   /* Some processing */
Else

Related Links
SetMDListPopup
"Understanding Activity Guide Templates and Template Types" (Portal Technology)

IsMDListSlideout

Syntax

IsMDListSlideout()

Copyright © 1988, 2022, Oracle and/or its affiliates. 551



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

For custom fluid wrapper components (fluid activity guides or master/detail components), use the
IsMDListSlideout function to return a boolean value indicating whether a slide-out left panel has been
enabled for the component.

Important! Use this function within fluid components (wrapper or inner) only.

Parameters

None.

Returns

A boolean value.

Related Links
"Left Panel Collision Handling with Slide-out Left Panels" (Fluid User Interface Developer’s Guide)
SetMDListSlideout

IsMDNonOptimized

Syntax

IsMDNonOptimized()

Description

For master/detail and activity guide components, use the IsMDNonOptimized function to return a
Boolean value whether the master/detail or activity guide wrapper is in non-optimized mode (that is,
navigation to pages is presented in a drop-down list in the fluid banner, not in the left panel). The default
value is False; optimized mode is in effect (that is, items are presented in the left panel).

Note: This function is equivalent to the IsMDListPopup function.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
Local boolean &bNonOptimized = IsMDNonOptimized();

552  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

If Not (&bNonOptimized) Then
   /* Some processing */
End-If;

Related Links
IsMDListPopup
SetMDListPopup
"Understanding Activity Guide Templates and Template Types" (Portal Technology)

IsMDRequest

Syntax

IsMDRequest()

Description

Use the IsMDRequest function to return a Boolean value indicating whether the request was initiated by a
component from within the master/detail wrapper.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If (IsMDRequest() Or
      IsMDComponent()) Then
   /* Some processing */
End-If;

IsMDSearchEnabled

Syntax

IsMDSearchEnabled()

Description

Use the IsMDSearchEnabled function to return a Boolean value indicating whether the search type is set
to Master/Detail for the current component.

Important! Use this function within fluid applications only.

Copyright © 1988, 2022, Oracle and/or its affiliates. 553



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

None.

Returns

A Boolean value.

Example
If (IsMDSearchEnabled() Or
      IsStandardSearchEnabled()) Then
   PT_WORK.PT_BUTTON_SUBMIT.Visible = False;
   /* Some additional processing */
Else
   PT_WORK.PT_BUTTON_BACKS.Visible = False;
   If &tfld <> Null Then
      &tfld.Visible = False;
   End-If;
End-If;

Related Links
IsStandardSearchEnabled

IsMenuItemAuthorized

Syntax

IsMenuItemAuthorized(MENUNAME.menuname,  BARNAME.barname, ITEMNAME.menuitem_name,
PAGE.component_item_name[, action])

Description

The IsMenuItemAuthorized function returns True if the current user is allowed to access the specified
menu item.

Note: You do not need to use this function to gray internal link pushbuttons/hyperlinks. This function is
generally used for transfers that are part of some PeopleCode processing.

Parameters

Parameter Description

menuname The name of the menu where the page is located, prefixed with
the reserved word MENUNAME.

barname The name of the menu bar where the page is located, prefixed
with the reserved word BARNAME.

554  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

menu_itemname The name of the menu item where the page is located, prefixed
with the reserved word ITEMNAME.

component_item_name Specify the component item name of the page to be displayed
on top of the component when it displays. The component
item name is specified in the component definition. If you
specify a page, it must be prefixed with the keyword PAGE.
You can also specify a null ("") for this parameter.

action Specify the action mode in which to start up the page. If action
is omitted, the current action is used. Values are:

Constant Description

%Action_Add Add

%Action_UpdateDisplay Update/Display

%Action_UpdateDisplayAll Update/Display All

%Action_Correction Correction

%Action_DataEntry Data Entry

%Action_Prompt Prompt

Returns

A Boolean value: True if the user is authorized to access the specified page, False otherwise.

Related Links
DoModal
DoModalComponent
Transfer
TransferPage

IsMessageActive

Syntax

IsMessageActive(Message.Message_Name)

Copyright © 1988, 2022, Oracle and/or its affiliates. 555



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the IsMessageActive built-in function to determine whether the specified message definition has been
set to inactive in Application Designer.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class IsOperationActive method instead.

Note: This function is used only with XmlDoc messages, that is, after you get an XmlDoc message (using
GetMessageXmlDoc) use this function to determine if the message is active. Use the IsActive message
class property to determine if a rowset-based message definition is active.

This function returns True if the message definition for the XmlDoc message is active, False if it’s been
inactivated from Application Designer. If you have a lot of PeopleCode associated with publishing an
XmlDoc message, you might use this function to check if the message is active before you publish it.

Related Links
"IsOperationActive" (PeopleCode API Reference)

Parameters

Parameter Description

Message_Name Specify the name of the message you want to inquire about.
 The message name must be prefixed with the reserved work
Message. This function is used only with XmlDoc message
definitions.

Returns

A Boolean value: True if the message is active, False otherwise.

Example
&Active = IsMessageActive(Message.MyMessage);
If &Active Then
   /* code for getting message, populating it and publishing it */
End-if;

Related Links
"IsActive" (PeopleCode API Reference)
"Understanding XmlDoc Classes" (PeopleCode API Reference)

IsModal

Syntax

IsModal()

556  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

The IsModal function returns True if executed from PeopleCode running in a modal secondary page and
False if executed elsewhere. This function is useful in separating secondary page-specific logic from
general PeopleCode logic.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Parameters

None.

Returns

A Boolean value.

Example

The following example executes logic specific to a secondary page:

If Not IsModal() Or
      Not (%Page = PAGE.PAY_OL_REV_RUNCTL Or
         %Page = PAGE.PAY_OL_RE_ASSGN_C Or
         %Page = PAGE.PAY_OL_RE_ASSGN_S) Then
   Evaluate COUNTRY
   When = "USA"
   When = "CAN"
      If Not AllOrNone(ADDRESS1, CITY, STATE) Then
         Warning MsgGet(1000, 5, "Address should consist of at least Street (Line 1⇒

), City, State, and Country.")
      End-If;
      Break;
   When-Other;
      If Not AllOrNone(ADDRESS1, CITY, COUNTRY) Then
         Warning MsgGet(1000, 6, "Address should consist of at least Street (Line 1⇒

), City, and Country.")
      End-If;
   End-Evaluate;
End-If;

Related Links
DoModal
EndModal

IsModalComponent

Syntax

IsModalComponent()

Copyright © 1988, 2022, Oracle and/or its affiliates. 557



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the IsModalComponent function to test whether a secondary component is currently executing,
enabling you to write PeopleCode that only executes when a component has been called with
DoModalComponent.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Parameters

None.

Returns

Returns a Boolean value: True if the current program is executing from a secondary component, False
otherwise.

Example
If IsModalComponent() then
/* Logic that executes only if component is executing modally.  */
end-if;

Related Links
DoModalComponent

IsModalPanelGroup

Syntax

IsModalPanelGroup()

Description

Use the IsModalPanelGroup function to test whether a secondary component is currently executing.

Note: The IsModalPanelGroup function is supported for compatibility with previous releases of
PeopleTools. New applications should use the IsModalComponent function instead.

Related Links
IsModalComponent

558  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

IsModeless

Syntax

IsModeless()

Description

Use the IsModeless function to return a Boolean value indicating whether the target content for the tile is
currently being displayed in a modal window—that is, the Display In setting for the tile is set to Modal.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Related Links
"Setting Fluid Attributes for Content References" (Portal Technology)

IsNavBarEnabled

Syntax

IsNavBarEnabled()

Description

Use the IsNavBarEnabled function to return a Boolean value indicating whether the NavBar button is
enabled on the component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If Not (IsNavBarEnabled()) Then

Copyright © 1988, 2022, Oracle and/or its affiliates. 559



PeopleCode Built-in Functions and Language Constructs Chapter 1

   PT_WORK.PT_BUTTON_NAVBAR.Visible = False;
Else
   If %Request.BrowserDeviceFormFactor = %FormFactor_Small Then
      PT_WORK.PT_BUTTON_NAVBAR.Label = PT_WORK.PT_BUTTON_NAVBAR.GetLongLabel("PT_NA⇒

VIGATOR");
   End-If;
   AddStyleSheet(StyleSheet.PTNUI_NAVBAR_CSS);
   AddOnLoadScript("PTNavBar.Url = '" | GetNavBarURL( True) | "';");
End-If;

Related Links
"Setting Component Properties for Fluid Components" (Fluid User Interface Developer’s Guide)

IsNewWindowEnabled

Syntax

IsNewWindowEnabled()

Description

Use the IsNewWindowEnabled function to return a boolean value indicating whether the new window
feature is enabled on the component. If new windows are disabled for the current web profile, then this
function always returns False regardless of the component setting.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example

&cookieValue = %Request.GetCookieValue("IOS_FULLSCREEN"); /* Do not enable if ios f⇒

ullscreen */
PT_WORK.PT_BUTTON_NEWWIN.Visible = (IsNewWindowEnabled() And
   Not (&cookieValue = "1"));

Related Links
"Setting Component Properties for Fluid Components" (Fluid User Interface Developer’s Guide)
"Configuring General Portal Properties" (Portal Technology)

560  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

IsNextInListEnabled

Syntax

IsNextInListEnabled()

Description

Use the IsNextInListEnabled function to return a Boolean value indicating whether the Next in List button
is enabled on the component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If ( Not (IsSearchEnabled())) Then
   PT_WORK.PT_BUTTON_NEXTLST.Visible = False;
   PT_WORK.PT_BUTTON_RETLST.Visible = False;
   PT_WORK.PT_BUTTON_PREVLST.Visible = False;
Else

   If (IsFluidSearchStart() Or
         Not (IsNextInListEnabled())) Then
      PT_WORK.PT_BUTTON_NEXTLST.Visible = False;
   Else
      PT_WORK.PT_BUTTON_NEXTLST.Visible = True;
   End-If;
   If (IsFluidSearchStart() Or
         Not (IsPrevInListEnabled())) Then
      PT_WORK.PT_BUTTON_PREVLST.Visible = False;
   Else
      PT_WORK.PT_BUTTON_PREVLST.Visible = True;
   End-If;

   If IsFluidSearchStart() Then
      PT_WORK.PT_BUTTON_RETLST.Visible = False;
   Else
      PT_WORK.PT_BUTTON_RETLST.Visible = True;
   End-If;

End-If;

Related Links
"Setting Component Properties for Fluid Components" (Fluid User Interface Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 561



PeopleCode Built-in Functions and Language Constructs Chapter 1

IsNotificationEnabled

Syntax

IsNotificationEnabled()

Description

Use the IsNotificationEnabled function to return a Boolean value indicating whether the Notifications
feature is enabled on the fluid component. This corresponds to the Notifications toolbar option on the
component’s Fluid tab.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If IsNotificationEnabled() Then
   &PNAuthorized = IsMenuItemAuthorized(MenuName.PTPNEVENTS, BarName.USE, ItemName.⇒

PTPN_POPUP_WINDOW, Page.PTPN_CAT_NOTIFY, %Action_UpdateDisplay);
End-If;

Related Links
IsNotifyEnabled

IsNotifyEnabled

Syntax

IsNotifyEnabled()

Description

Use the IsNotifyEnabled function to return a Boolean value indicating whether the Notify button is
enabled on the classic component. This corresponds to the Notify toolbar option on the component’s
Internet tab.

Important! Use this function with classic components only. For fluid components in PeopleTools 8.55 or
later, use the IsNotificationEnabled function instead.

562  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

None.

Returns

A Boolean value.

Related Links
IsNotificationEnabled

IsNumber

Syntax

IsNumber(Value)

Description

Use the IsNumber function to determine if Value contains a valid numeric value. Numeric characters
include sign indicators and comma and period decimal points.

To determine if a value is a number and if it's in the user's local format, use the IsUserNumber function.

Parameters

Parameter Description

Value Specify a string you want to search to determine if it is a valid
number.

Returns

A Boolean value: True if Value contains a valid numeric value, False otherwise.

Example
&Value = Get Field().Value;
If IsNumber(&Value) Then
   /* do numeric processing */
Else
   /* do non-numeric processing */
End-if;

Related Links
IsAlpha
IsAlphaNumeric
IsDigits
IsDate

Copyright © 1988, 2022, Oracle and/or its affiliates. 563



PeopleCode Built-in Functions and Language Constructs Chapter 1

IsDateTime
IsTime
IsUserNumber

IsOperatorInClass

Syntax

IsOperatorInClass(operclass1 [, operclass2]. . .)

Description

The IsInOperatorClass takes an arbitrary-length list of strings representing the names of operator classes
and determines whether the current operator belongs to any class in a list of classes.

Note: The IsOperatorInClass function is supported for compatibility with previous releases of
PeopleTools. New applications should use the IsUserInPermissionList function instead.

Related Links
IsUserInPermissionList

ISOToDate

Syntax

ISOToDate(textdatetime)

Description

Use the ISOToDate function to convert the text value textdatetime in ISO 8601 format to a String value in
the base time zone. This function automatically calculates whether daylight saving time is in effect for the
base time zone.

The system’s base time zone is specified in the PSOPTIONS table.

564  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

textdatetime Specify a date/time represented as text in the ISO 8601
format: YYYY-MM-DDThh:mm:ss[.S]TZD (for example,
 1999-01-01T19:20:30.000000+0800)

In which:

• YYYY is a four-digit year.

• MM is a two-digit month (01 through 12).

• DD is a two-digit day of the month (01 through 31).

• hh is a two digits of hour (00 through 23).

• mm is a two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• S is milliseconds in one or up to six digits.

• TZD is a time zone designator (Z, +/-hh:mm or +/-hhmm).

Returns

Returns a String value in the base time zone.

Example

In the following example, assuming the base time (as defined in PSOPTIONS) is PST, &DATE would
have a Stringvalue of "1999-01-01":

&DATE= ISOToDate("1999-01-01T18:00:00.000000-0800");

Related Links
ConvertDatetimeToBase
DateTimeToISO
DateTimeValue
ISOToDateTime

ISOToDateTime

Syntax

ISOToDateTime(textdatetime)

Copyright © 1988, 2022, Oracle and/or its affiliates. 565



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the ISOToDatetime function to convert the text value textdatetime in ISO 8601 format to a String
value in base time zone. This function automatically calculates whether daylight savings time is in effect
for the base time zone.

The system’s base time zone is specified on the PSOPTIONS table.

Parameters

Parameter Description

textdatetime Specify a date/time represented as text in the ISO 8601
format: YYYY-MM-DDThh:mm:ss[.S]TZD (for example,
 1999-01-01T19:20:30.000000+0800)

In which:

• YYYY is a four-digit year.

• MM is a two-digit month (01 through 12).

• DD is a two-digit day of the month (01 through 31).

• hh is a two digits of hour (00 through 23).

• mm is a two digits of minute (00 through 59).

• ss is two digits of second (00 through 59).

• S is milliseconds in one or up to six digits.

• TZD is a time zone designator (Z, +/-hh:mm or +/-hhmm).

Returns

Returns a String value in the base time zone.

Example

In each of the following examples, assuming the base time (as defined in PSOPTIONS) is PST,
&DATETIME would have a String value of "1999-01-01 18:00:00.000000":

&DATETIME= ISOToDateTime("1999-01-01T18:00:00.000000-08:00");
&DATETIME= ISOToDateTime("1999-01-01T21:00:00.000000-0500");
&DATETIME= ISOToDateTime("1999-01-02T02:00:00.0Z");

Related Links
ConvertDatetimeToBase
DateTimeToISO
DateTimeValue
ISOToDate

566  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

IsPIIandSensitiveForUser

Syntax

IsPIIandSensitiveForUser(Record_Name, Field_Name)

Description

Use the IsPIIandSensitiveForUser function to return a Boolean value indicating whether PII or sensitive
flags should be ignored for a user.

Parameters

Parameter Description

Record_Name Specifies the record name as a String value.

Field_Name Specifies the field name as a String value.

Returns

A Boolean value.

The IsPIIandSensitiveForUser returns false under three conditions, which are evaluated in the order of
appearance. When it encounters the first false, it stops future evaluation.

• If the record field is not flagged as either PII or sensitive.

• If the record field is flagged as PII and/or sensitive, but the user has a role that authorizes the PII/
Sensitive flags to be ignored.

• If the record field is flagged as PII and/or sensitive, but the user does not have a role that requires the
PII/Sensitive flags to be honored.

Example
&sourcefield = GetField(Field.RECNAME);
If (IsPIIandSensitiveForUser(&sourcefield.ParentRecord.Name, &sourcefield.Name)) Th⇒

en;
   /*apply masking*/
End-If;

Related Links
IsRecFieldPII
IsRecFieldSensitive

Copyright © 1988, 2022, Oracle and/or its affiliates. 567



PeopleCode Built-in Functions and Language Constructs Chapter 1

IsPinEnabled

Syntax

IsPinEnabled()

Description

Use the IsPinEnabled function to return a Boolean value indicating whether the Add To (pin) button is
enabled on the component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If Not (IsPinEnabled()) Or
      %Request.BrowserDeviceFormFactor = %FormFactor_Small Then
   PT_WORK.PT_ADD_TO_HP.Visible = False;
   PT_WORK.PT_ADD_TO_NAVBAR.Visible = False;
   PT_WORK.PT_ADD_TO_FAV.Visible = False;
Else
   AddStyleSheet(StyleSheet.PTNUI_PINTO_CSS);
   AddJavaScript(HTML.PTNUI_PINTO_JS);
   AddOnLoadScript("portalContextNodeURI = '" | getPortalContextNode() | "';");
   PT_WORK.PT_ADD_TO_HP.JavaScriptEvents = "href=""javascript:PTPinTo.SavePin('LP')⇒

;""";
   PT_WORK.PT_ADD_TO_NAVBAR.JavaScriptEvents = "href=""javascript:PTPinTo.SavePin('⇒

NB');""";
   PT_WORK.PT_ADD_TO_FAV.JavaScriptEvents = "href=""javascript:PTPinTo.SavePin('FAV⇒

');""";
End-If;

Related Links
"Setting Component Properties for Fluid Components" (Fluid User Interface Developer’s Guide)

IsPrevInListEnabled

Syntax

IsPrevInListEnabled()

568  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the IsPrevInListEnabled function to return a Boolean value indicating whether the Previous in List
button is enabled on the component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If ( Not (IsSearchEnabled())) Then
   PT_WORK.PT_BUTTON_NEXTLST.Visible = False;
   PT_WORK.PT_BUTTON_RETLST.Visible = False;
   PT_WORK.PT_BUTTON_PREVLST.Visible = False;
Else

   If (IsFluidSearchStart() Or
         Not (IsNextInListEnabled())) Then
      PT_WORK.PT_BUTTON_NEXTLST.Visible = False;
   Else
      PT_WORK.PT_BUTTON_NEXTLST.Visible = True;
   End-If;
   If (IsFluidSearchStart() Or
         Not (IsPrevInListEnabled())) Then
      PT_WORK.PT_BUTTON_PREVLST.Visible = False;
   Else
      PT_WORK.PT_BUTTON_PREVLST.Visible = True;
   End-If;

   If IsFluidSearchStart() Then
      PT_WORK.PT_BUTTON_RETLST.Visible = False;
   Else
      PT_WORK.PT_BUTTON_RETLST.Visible = True;
   End-If;

End-If;

Related Links
"Setting Component Properties for Fluid Components" (Fluid User Interface Developer’s Guide)

IsRecFieldPII

Syntax

IsRecFieldPII(Record_Name, Field_Name)

Copyright © 1988, 2022, Oracle and/or its affiliates. 569



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the IsRecFieldPII function to return a Boolean value indicating whether the record field is flagged as
PII (personally identifiable information).

Parameters

Parameter Description

Record_Name Specifies the record name as a String value.

Field_Name Specifies the field name as a String value.

Returns

A Boolean value. True if the record field is flagged as PII; False otherwise.

Example
&sourcefield = GetField(Field.RECNAME);
If (IsRecFieldPII(&sourcefield.ParentRecord.Name, &sourcefield.Name)) Then;
   /*apply masking*/
End-If;

Related Links
IsRecFieldSensitive
IsPIIandSensitiveForUser

IsRecFieldSensitive

Syntax

IsRecFieldSensitive(Record_Name, Field_Name)

Description

Use the IsRecFieldSensitive function to return a Boolean value indicating whether the record field is
flagged as sensitive.

Parameters

Parameter Description

Record_Name Specifies the record name as a String value.

Field_Name Specifies the field name as a String value.

570  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A Boolean value. True if the record field is flagged as sensitive; False otherwise.

Example
&sourcefield = GetField(Field.RECNAME);
If (IsRecFieldSensitive(&sourcefield.ParentRecord.Name, &sourcefield.Name)) Then;
   /*apply masking*/
End-If;

Related Links
IsRecFieldPII
IsPIIandSensitiveForUser

IsReturnToListEnabled

Syntax

Description

Use the IsReturnToListEnabled function to return a Boolean value indicating whether the Return to
Search button is enabled on the component.

IsReturnToListEnabled()

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
PT_WORK.PT_BUTTON_NEXTLST.Visible = IsNextInListEnabled();
PT_WORK.PT_BUTTON_PREVLST.Visible = IsPrevInListEnabled();
PT_WORK.PT_BUTTON_RETLST.Visible = IsReturnToListEnabled();

Related Links
IsNextInListEnabled
IsPrevInListEnabled

Copyright © 1988, 2022, Oracle and/or its affiliates. 571



PeopleCode Built-in Functions and Language Constructs Chapter 1

IsSaveEnabled

Syntax

IsSaveEnabled()

Description

Use the IsSaveEnabled function to return a Boolean value indicating whether the Save button is enabled
on the component (on the Internet tab).

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If Not (IsSaveEnabled()) Then
   PT_WORK.PT_BUTTON_SAVE.Visible = False;
End-If;

Related Links
"Setting Internet Properties" (Application Designer Developer’s Guide)

IsSearchDialog

Syntax

IsSearchDialog()

Description

Use the IsSearchDialog function to determine whether a search dialog, add dialog, or data entry dialog
box is currently executing. Use it to make processes conditional on whether a search dialog box is
running.

Returns

Returns a Boolean value: True if a search dialog box is executing, False otherwise.

Example
If Not (IsSearchDialog()) Then

572  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

   If %Component = COMPONENT.SALARY_GRADE_TBL Then
      If All(SALARY_MATRIX_CD) Then
         Gray(RATING_SCALE)
      End-If;
      calc_range_spread();
   End-If;
End-If;

Related Links
IsUserInPermissionList

IsSearchEnabled

Syntax

IsSearchEnabled()

Description

Important! In PeopleTools 8.55 or later, use either the IsMDSearchEnabled function or the
IsStandardSearchEnabled function instead to determine which type of search is enabled.

Use the IsSearchEnabled function to return a Boolean value indicating whether search is enabled on the
component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If ( Not (IsSearchEnabled())) Then
   PT_WORK.PT_BUTTON_NEXTLST.Visible = False;
   PT_WORK.PT_BUTTON_RETLST.Visible = False;
   PT_WORK.PT_BUTTON_PREVLST.Visible = False;
Else

   If (IsFluidSearchStart() Or
         Not (IsNextInListEnabled())) Then
      PT_WORK.PT_BUTTON_NEXTLST.Visible = False;
   Else
      PT_WORK.PT_BUTTON_NEXTLST.Visible = True;
   End-If;
   If (IsFluidSearchStart() Or
         Not (IsPrevInListEnabled())) Then
      PT_WORK.PT_BUTTON_PREVLST.Visible = False;
   Else
      PT_WORK.PT_BUTTON_PREVLST.Visible = True;
   End-If;

Copyright © 1988, 2022, Oracle and/or its affiliates. 573



PeopleCode Built-in Functions and Language Constructs Chapter 1

   If IsFluidSearchStart() Then
      PT_WORK.PT_BUTTON_RETLST.Visible = False;
   Else
      PT_WORK.PT_BUTTON_RETLST.Visible = True;
   End-If;

End-If;

Related Links
IsMDSearchEnabled
IsStandardSearchEnabled

IsSingleComponentAG

Syntax

IsSingleComponentAG()

Description

Use the IsSingleComponentAG function to return a Boolean value indicating whether this is a single
component activity guide. This function can be invoked from the activity guide wrapper component
as well as from the single component that comprises the action items (that is, the pages within that
component). The default value is False; the activity guide is not defined as a single component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
Local boolean &bSC = IsSingleComponentAG();

Related Links
"Understanding Activity Guide Templates and Template Types" (Portal Technology)

IsSingleUnitOfWork

Syntax

IsSingleUnitOfWork()

574  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the IsSingleUnitOfWork function to return a Boolean value indicating whether this is a single unit of
work activity guide. This function can be invoked from the activity guide wrapper component as well as
from any of the components that are defined as action items. The default value is False; the activity guide
is not defined as a single unit of work.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
Local boolean &bSUOW = IsSingleUnitOfWork();

Related Links
"Understanding Activity Guide Templates and Template Types" (Portal Technology)

IsSmallFFOptimized

Syntax

IsSmallFFOptimized()

Description

Use the IsSmallFFOptimized function return a boolean value indicating whether the tile for this content
reference definition has been designated to display on small form factor devices such as smart phones. If
this function returns False, this tile will not be available when the user is signed in on small form factor
devices.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 575



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
"IsSmallFFOptimized" (PeopleCode API Reference)

IsStandardSearchEnabled

Syntax

IsStandardSearchEnabled()

Description

Use the IsStandardSearchEnabled function to return a Boolean value indicating whether the search type is
set to Standard for the current component.

Important! Use this function within fluid applications only.

Parameters

None.

Returns

A Boolean value.

Example
If (IsMDSearchEnabled() Or
      IsStandardSearchEnabled()) Then
   PT_WORK.PT_BUTTON_SUBMIT.Visible = False;
   /* Some additional processing */
Else
   PT_WORK.PT_BUTTON_BACKS.Visible = False;
   If &tfld <> Null Then
      &tfld.Visible = False;
   End-If;
End-If;

Related Links
IsMDSearchEnabled

IsTime

Syntax

IsTime(Value)

Description

Use the IsTime function to determine if Value contains a valid Time.

You can use this function when you want to determine if a value is compatible with the Time function.

576  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

Value Specify either a string or number you want to search for to
determine if it's a valid Time.

Returns

A Boolean value: True if the string contains a valid Time value, False otherwise.

Example

If IsTime(&Num) Then
   &Timevalue = Time(&Num);
End-if;

Related Links
IsAlpha
IsAlphaNumeric
IsDigits
IsDate
IsDateTime
IsNumber
IsTime

IsUserInPermissionList

Syntax

IsUserInPermissionList(permissionlist1[, permissionlist2]. . .)

Description

Use the IsUserInPermissionList function to return a boolean value indicating whether the user is a
member of any of the specified list of permission lists.

This function also returns true when an alias exists for a permission list and the user is a member of the
permission list alias. See "Using Role and Permission List Aliases" (Security Administration).

Parameters

Parameter Description

permissionlist1[, permissionlist2]. . . A comma-separated list of string values, each representing a
permission list.

Copyright © 1988, 2022, Oracle and/or its affiliates. 577



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

Returns a boolean value: True if the current user has access to one or more of the permission lists, False
otherwise.

Example
If IsUserInPermissionList("PTPT1300", "PTPT1600") Then

Related Links
"Understanding Permission Lists" (Security Administration)
IsUserInRole
%PermissionLists

IsUserInRole

Syntax

IsUserInRole(role1[, role2]. . .)

Description

Use the IsUserInRole function to return a boolean value indicating whether the user is a member of any of
the specified list of roles.

This function also returns true when an alias exists for a role and the user is a member of the role alias.
See "Using Role and Permission List Aliases" (Security Administration).

Parameters

Parameter Description

role1[, role2]. . . An arbitrary-length list of strings, each of which represents a
role.

Returns

Returns a boolean value: True if the current user belongs to one or more of the roles, False otherwise.

Example
While &selectSQL1.Fetch(&sRoleNames)
   If (IsUserInRole(&sRoleNames) = True) Then
      &found = &sRoleNames;
      Break;
   End-If;
End-While;

578  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
"Understanding Roles" (Security Administration)
IsUserInPermissionList
%Roles

IsUserNumber

Syntax

IsUserNumber(Value)

Description

Use the IsUserNumber function to determine if Value contains a valid numeric value that uses the locale-
specific form of the number for the current user. Numeric characters include sign indicators and comma
and period decimal points.

For example, if your regional settings specified periods for the thousands separator, and the number uses
commas, this function returns false.

To determine if a value is a number regardless if it's in the user's local format, use the IsNumber function.

Parameters

Parameter Description

Value Specify a string you want to search to determine if it is a valid
number in the correct format.

Returns

A Boolean value: True if Value contains a valid numeric value in the correct format, False otherwise.

Example
&Value = Get Field().Value;
If IsUserNumber(&Value) Then
   /* display number */
Else
   /* do other processing */
End-if;

Related Links
IsAlpha
IsAlphaNumeric
IsDigits
IsDate
IsDateTime
IsTime

Copyright © 1988, 2022, Oracle and/or its affiliates. 579



PeopleCode Built-in Functions and Language Constructs Chapter 1

IsNumber
ValueUser

PeopleCode Built-in Functions and Language Constructs: J-L

The PeopleCode built-In functions and language constructs beginning with the letters J, K, and L are
listed in alphabetical order within this topic.

Related Links
Typographical Conventions

Left

Syntax

Left(source_str, num_chars)

Description

Use the Left function to return a substring containing the leftmost number of characters in source_str.
num_chars specifies how many characters to extract. If the string contains Unicode non-BMP characters,
each code unit of the surrogate pair is counted as a separate character and care should be taken not to split
the surrogate pair.

Parameters

Parameter Description

source_str A String from which to derive the substring.

num_chars A Number specifying how many characters to take from the
left of source_str. The value of num_chars must be greater
than or equal to zero. If num_chars is greater than the length
of source_str, Left returns the entire string. If num_chars is
omitted, it is assumed to be one.

Returns

Returns a String value derived from source_str.

Example

The following example sets &SHORT_ZIP to "90210":

&SHORT_ZIP = Left("90210-4455", 5);

580  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
Right

Len

Syntax

Len(str)

Description

Use the Len function to determine the number of characters in a string. If the string contains Unicode non-
BMP characters, each code unit of the surrogate pair is counted as a separate character.

Returns

Returns a Number value equal to the number of characters, including spaces, in str.

Example

The following example sets &STRLEN to 10, then to 0:

&STRLEN = Len("PeopleSoft");
&STRLEN = Len("");

Related Links
Lenb

Lenb

Syntax

Lenb(str)

Description

Note: This function has been deprecated and is no longer supported.

LinearInterp

Syntax

LinearInterp(DataPoints)

Description

Use the LinearInterp function to compute a set of lines through a sequence of at least two points.

Copyright © 1988, 2022, Oracle and/or its affiliates. 581



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

DataPoints This parameter takes an array of array of number. The array’s
contents are an array of six numbers. The first two of these
six numbers are the x and y points to be fit. The last four are
the four coefficients to be returned from the function: a, b, c
and d. a is the coefficient of the x0 term, b is the coefficient
of the x1 term, c is the coefficient of the x2 term, and d is the
coefficient of the x3 term.

Returns

A modified array of array of numbers. The elements in the array correspond to the elements in the array
used for DataPoints. The c and d elements contain zeros.

Related Links
CubicSpline
HermiteCubic

Ln

Syntax

Ln(i)

Description

Use the Ln function to determine the natural logarithm of a number. Natural logarithms are based on
the constant e, which equals 2.71828182845904. The number i must be a positive real number. Ln is the
inverse of the Exp function.

Returns

A Number equal to the natural logarithm of i.

Example

The following examples set &I to 2.302585 and &J to 1:

&I = Ln(10);
&J = Ln(2.7182818);

Related Links
Exp
Log10

582  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

LoadABN

Syntax

LoadABN(&DS_rowset, &chart_rowset, &relactions_rowset, node, initial_node
[, disp_relactions][, fldr_img_class_ID][, CREF_img_class_ID])

Description

Note: SmartNavigation has been deprecated. This function remains for backward compatibility only.

Use this function to load data into the SmartNavigation chart and to generate an HTML code fragment
that will be rendered in the browser as menu drop-downs, fly-outs, and breadcrumbs. The function loads
data for the node specified by the node parameter from the rowset data source into the SmartNavigation
chart rowset. If the data source contains siblings of node, the siblings are loaded and displayed in the chart
at the same level as node.

The LoadABN function is applicable to rowset data sources only, and not to tree data sources.
The standalone data source record specified by the &DS_rowset parameter must include the
PT_ABNORGND_SBR, PT_ABNNDURL_SBR, PT_ABNNDDTL_SBR and PTORGBOXFLD_SBR
subrecords in that order. Prior to calling the LoadABN function, data must be loaded from the applicable
database data source into the standalone rowset data source.

Because this standalone rowset data source includes the PT_ABNORGND_SBR subrecord, the data is
organized by an organization chart hierarchy of parent and child nodes. To simplify loading data from the
database data source, it should also be organized using the organization chart hierarchy.

Related Links
"Creating an Organization Chart" (PeopleCode API Reference)

Parameters

Parameter Description

&DS_rowset Specifies the data source as a standalone rowset.

&chart_rowset Specifies the SmartNavigation chart rowset. Typically, this is
the rowset returned by the GetABNChartRowSet function.

&relactions_rowset Specifies the related actions rowset. Typically, this is the
rowset returned by the GetABNRelActnRowSet function.

node Specifies the currently requested chart node. Typically, this is
returned directly by calling the GetABNNode function.

initial_node Specifies the initial chart node. Typically, this is returned
directly by calling the GetABNInitialNode function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 583



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

disp_relactions Specifies a Boolean value indicating whether to display the
related actions folder in the fly-out menus. True indicates
to display the related actions folder; False indicates that the
related actions folder is not displayed. The default value is
True.

This is an optional parameter. However, if you want to use
custom folder or CREF icons (with the fldr_img_class_ID
or CREF_img_class_ID parameters, respectively), you must
explicitly define the disp_relactions parameter.

fldr_img_class_ID Specifies the class ID for a custom folder icon as a string. This
class must be defined in a style sheet, and the style sheet must
be assigned to the SmartNavigation folder.

This is an optional parameter. To use the default folder icon,
 you can omit this parameter or specify the null string "".
 However, to ensure forward compatibility, you must specify
the null string.

CREF_img_class_ID Specifies the class ID for a custom CREF icon as a string. This
class must be defined in a style sheet, and the style sheet must
be assigned to the SmartNavigation folder.

This is an optional parameter. To use the default CREF icon,
 you can omit this parameter or specify the null string "".
 However, to ensure forward compatibility, you must specify
the null string.

Returns

None.

Local

Syntax

Local data_type &var_name [= expression]

Description

Use the Local statement to explicitly define local variables in PeopleCode.

Variable declarations can appear at the start of the program, intermixed with function declarations. Local
variable declarations can also appear in the body of a program, including inside functions or methods.

The scope of local variables declared outside of a function or method is the PeopleCode program. The
scope of local variables declared inside a function or method is to the end of the function or method.
Also, these function local variables are different variables for each invocation of the function (even for
recursive calls,) in the same manner as parameters.

584  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Local variable declarations intermixed with the body of the program or inside functions or method can
include initialization, that is, the variable can be set to a value at the same time it is declared.

In the absence of an initialization, the system automatically initializes temporary variables. Declared
variables always have values appropriate to their declared type. Undeclared local variables are initialized
as null strings.

Parameters

Parameter Description

data_type Any PeopleCode data type.

&var_name A legal variable name.

expression Specify the value of the variable. This parameter is optional.

Example
Local string &LOC_FIRST;

The following example scopes the variable &Constant as a local variable, as well as initializes it.

Local Number &Constant = 42;

Related Links
Global
Component
"Data Types" (PeopleCode Developer’s Guide)

LogObjectUse

Syntax

LogObjectUse([annotation])

Description

Use the LogObjectUse function to write to the system log a list of all the current PeopleCode objects with
the current count, the object class name, and the maximum count of objects of this type.

While this function is mainly used to determine memory usage, the output is also an informative display
of the object use in your system at a particular point in time.

Copyright © 1988, 2022, Oracle and/or its affiliates. 585



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

annotations Specify a string to become the first line in the log file. This
enables you to easily identify output corresponding to your use
of this built-in.

Returns

None.

Example

The following is an example of output that can be generated in the system log.

PeopleCode side - after Java
         1902 JavaPeerReference
            0 Field                                              14
            0 ContentRefCollection                                4
            0 PortalCollection                                    3
           83 String                                         116459
            0 PT_NAV:NavEndNode                                   6
            0 PT_NAV:NavFolderNode                               35
            0 PT_NAV:NavTheme                                     1
            0 PT_NAV:NavNodeCollection                            4
            0 PortalRegistry                                      7
            0 PT_BRANDING:HeaderLinkBase                          1
            0 PT_NAV:NavNode                                     45
            0 PT_BRANDING:HeaderLinkHP                            1
            0 BIDocs                                              4
            0 PT_NAV:NavPortal                                    1
            1 SyncServer                                          1
            0 TabDefinition                                       1
          951 Rowset                                         220001
            0 FolderCollection                                    4
            0 SQL                                                 5
            0 Folder                                             69
            1 Response                                           14
            1 Foxtest                                             3
            0 Record                                              1
           23 Array                                             264
            1 Request                                            15
            0 AttributeCollection                                40
            0 UserHomepage                                        2
            0 Portal                                              3
            0 NodeCollection                                      3
            0 UserTabCollection                                   1
            0 ObjPropRef                                          3
          951 FOXTEST:Test                                   110001
            0 PT_BRANDING:BrandingBase                            3
            0 ContentRef                                         13
            0 PT_NAV:NavPagelet                                   1
            0 TabDefinitionCollection                             1
            0 Session                                            10
            0 NetworkNode                                         3

Related Links
%PerfTime
"Understanding PeopleCode Programs and Events" (PeopleCode Developer’s Guide)

586  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Log10

Syntax

Log10(x)

Description

Use the Log10 function to return the base-10 logarithm of a number x as a number value. The number x
must be a positive real number.

Returns

Returns a Number equal to the base-10 logarithm of x.

Example

The following example sets &X to 1 and &Y to 1.39794:

&X = Log10(10);
&Y = Log10(25);

Related Links
Exp
Ln

Lower

Syntax

Lower(string)

Description

Use the Lower function to convert all uppercase characters in a text string to lowercase characters and
returns the result as a String value. Lower does not change characters that are not letters or characters do
not have case sensitivity.

Returns

A String value equal to string, but in all lowercase format.

Example

The example sets &GOODKD to "k d lang":

&GOODKD = Lower("K D Lang");

Copyright © 1988, 2022, Oracle and/or its affiliates. 587



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
Proper
Upper

LTrim

Syntax

LTrim(string[, trim_string])

Description

Use the LTrim function to return a string formed by deleting from the beginning of string, all occurrences
of each character in trim_string. If trim_string is omitted, " " is assumed; that is, leading blanks are
trimmed.

If you need to trim a quotation mark, you need to escape it with a single ". For example

&TRIMMED = LTrim(&NAME, """");

Example

The following removes leading blanks from &NAME:

&TRIMMED = LTrim(&NAME);

The following removes leading punctuation marks from REC.INP:

&TRIMMED = LTrim(REC.INP, ".,;:!?");

Related Links
RTrim

PeopleCode Built-in Functions and Language Constructs: M

The PeopleCode built-In functions and language constructs beginning with the letter M are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

MAddAttachment

Syntax

MAddAttachment(URLDestination, DirAndFilePrefix, Prompts, &UserFileArray,
&ActualSizeArray, &DetailedReturnCodeArrayName [, MaxSize [, PreserveCase
[, UploadPageTitle[, AllowLargeChunks[, StopOnError]]]]])

588  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the MAddAttachment function to upload one or more files from an end user specified location (local
storage or cloud storage) to a specified storage location. The Prompts parameter specifies that maximum
number of files that the end user can upload at one time. A user can select multiple files at once. Use the
AddAttachment function to upload a single file.

Important! It is the responsibility of the calling PeopleCode program to store the returned file names for
further use.

If a file exists at a particular place on a storage location and then another file with the same name is
uploaded to that same place on that same storage location, the original file will be silently overwritten by
the new file. If that is not the behavior you desire, it is recommended that you implement PeopleCode to
guarantee the ultimate uniqueness of either the name of the file at its place on the storage location or the
name of its place (the subdirectory) on the storage location.

You cannot use a relative path to specify the file that is to be uploaded; you must use a full path. If end
users experience problems in uploading files, ensure that they browse to the file they wish to upload
rather than attempting to manually enter the full path name of the file. This problem can manifest itself
differently depending on the browser used. For example, with some browser versions, the PeopleSoft
page appears to be in an infinite “Processing” state. Information is available on working with different
browsers.

See PeopleTools Browser Compatibility Guide (Oracle Support Document 704492.1) on My Oracle
Support for more information.

Additional information that is important to the use of MAddAttachment can be found in the PeopleTools:
PeopleCode Developer's Guide:

• PeopleTools supports multiple types of storage locations.

See "Understanding File Attachment Storage Locations" (PeopleCode Developer’s Guide).

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See "File Name Considerations" (PeopleCode Developer’s Guide).

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See "Attachments with non-ASCII File Names" (PeopleCode Developer’s Guide).

• The PeopleCode file attachment functions do not provide text file conversions when files are attached
or viewed.

See "Considerations When Attaching Text Files" (PeopleCode Developer’s Guide).

• Because MAddAttachment is interactive, it is known as a “think-time” function, and is restricted from
use in certain PeopleCode events.

See "Restrictions on Invoking Functions in Certain PeopleCode Events" (PeopleCode Developer’s
Guide).

• You can restrict the file types that can be uploaded to or downloaded from your PeopleSoft system.

Copyright © 1988, 2022, Oracle and/or its affiliates. 589

https://support.oracle.com/epmos/faces/DocumentDisplay?id=704492.1


PeopleCode Built-in Functions and Language Constructs Chapter 1

See "Restricting the File Types That Can Be Uploaded or Downloaded" (PeopleCode Developer’s
Guide).

• You can restrict the file types that can be uploaded to or downloaded from your PeopleSoft system.

See "Restricting the File Types That Can Be Uploaded or Downloaded" (PeopleCode Developer’s
Guide).

• Virus scanning can be performed on all files uploaded with the MAddAttachment function.

See "Setting Up Virus Scanning" (PeopleCode Developer’s Guide).

• The HTML sanitizer can be enabled and configured to scan and sanitize specific HTML file types
(specified by file extension) uploaded with the AddAttachment function.

See "Using the HTML Sanitizer" (PeopleCode Developer’s Guide).

You can use a file extension list to identify file types to accept or reject when using this function.

See "Using Administration Utilities" (System and Server Administration).

Parameters

Parameter Description

URLDestination A reference to a URL. This can be either a URL identifier
in the form URL.URL_ID, or a string. This is the
storage location to which the files in this invocation of
MAddAttachment are transferred.

Note: When the URLDestination parameter is specified as
a string value, forward slashes (/) are required. Backward
slashes (\) are not supported for a string value.

Note: Oracle recommends that you do not use a URL of
the form file://file_name with the PeopleCode file
processing functions.

See "Understanding URL Strings Versus URL
Objects" (PeopleCode Developer’s Guide).

590  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

DirAndFilePrefix A directory and file name prefix. This is appended to the
URLDestination to make up the full URL when the file is
transferred to an FTP server or, when the file transferred to a
database table, to make the file name unique.

Note: If the destination location is an FTP server, then it
is very important whether the value passed into a call of
MAddAttachment for the DirAndFilePrefix parameter ends
with a slash or not. If the value for the DirAndFilePrefix
parameter ends with a slash, then it will be appended to the
value of the URLDestination and used to indicate the relative 
(to the configured root directory of the FTP server) path name
of the directory in which the uploaded file will be stored. If the
value for the DirAndFilePrefix parameter does not end with
a slash, then the portion of it prior to its rightmost slash will
be appended to the value of the URLDestination and used to
indicate the relative (to the configured root directory of the
FTP server) path name of the directory in which the uploaded
file will be stored, and the portion after the rightmost slash will
be prefixed to the name of the file that will be created at the
destination.

Note: Because the DirAndFilePrefix parameter is appended
to the URL, it also requires forward slashes (“/”). Backward
slashes (“\”) are not supported for this parameter.

Prompts Specifies the number of files that the end user will be
prompted to upload as an integer.

&UserFileArray Returns the names of the files on the source system as an array
of strings.

Note: You can specify this parameter as a zero-length array of
string. The array will be populated by MAddAttachment with
the actual file names.

Note: The file name for each user-selected file cannot be
greater than 64 characters.

&ActualSizeArray Returns the file sizes in kilobytes for the uploaded files as an
array of numbers.

Note: You can specify this parameter as a zero-length array
of number. The array will be populated by MAddAttachment
with the actual file sizes.

Copyright © 1988, 2022, Oracle and/or its affiliates. 591



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

&DetailedReturnCodeArray Returns the return code for each individual file attachment
operation as an array of numeric constants.

Note: You can specify this parameter as a zero-length array
of number. The array will be populated by MAddAttachment
with the actual return codes.

MaxSize Specify, in kilobytes, the maximum size of each file.

If you specify 0, it indicates “no limit,” so any file size can be
uploaded. The default value of this parameter is 0.

Note: The system cannot check the size of the file selected by
the end user until that file has been uploaded to the web server.

PreserveCase Specify a Boolean value to indicate whether the case of the
extension of the file to be uploaded is preserved or not at the
storage location; True, preserve the case, False, convert the
file name extension to all lowercase letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is
important that you use it in a consistent manner with all the
relevant file-processing functions or you may encounter
unexpected file-not-found errors.

Note: MAddAttachment provides no indication of a
conversion in the file name it returns.

UploadPageTitle Specify a string value to be displayed in the title bar of the
file attachment dialog box (as its title). This string should be
simple text and contain no HTML elements. If no value is
specified, the default value is “File Attachment.”

Note: In screen reader mode, the string value of the
UploadPageTitle parameter is displayed in the body of the file
attachment dialog box rather than as the title of the window.

Note: The parameter does not automatically handle
localization issues. The string passed into the function is the
exact string embedded in the page. You and your application
are responsible for any translation issues.

592  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

AllowLargeChunks Specify a Boolean value to indicate whether to allow large
chunks.

If the value specified in the Maximum Attachment Chunk Size
field on the PeopleTools Options page is larger than is allowed
for retrieval, then the system breaks the file upload into the
largest sized chunks allowed. If AllowLargeChunks is set to
True, this behavior can be overridden so that it is possible for
an end user to upload a file in chunks that are too large for
the system to retrieve. If AllowLargeChunks is set to False,
 the system will use the largest size chunk that is allowed for
retrieval, or the configured chunk size, whichever is smaller.

Note: If the chunks are too big to be retrieved, then any file
retrieval built-in function, such as GetAttachment, will fail.

Note: The AllowLargeChunks parameter is only applicable
when the storage location is a database record. It has no
impact when the storage location is an FTP site or an HTTP
repository, since attachments at those locations are never
chunked.

See "PeopleTools Options" (System and Server
Administration)

This is an optional parameter.

The default value is False.

StopOnError Specify a Boolean value to indicate whether to continue
processing files when a system error is encountered.

If StopOnError is set to False, processing continues
with the next selected file. If StopOnError is set to True,
 MAddAttachment terminates on the first system error
encountered (for example, %Attachment_Failed, %Attachment
_FileTransferFailed, and so on). No attempt is made to upload
any of the remaining files. For each of the remaining files, a
return code of %Attachment_Unprocessed is returned as the
detailed return code.

This is an optional parameter.

The default value is False.

Returns

The MAddAttachment function returns one of the following summary return codes that you can check for
either as an integer or as a constant value:

Copyright © 1988, 2022, Oracle and/or its affiliates. 593



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

0 %Attachment_Success The upload was successful if and only
if the upload was not cancelled, at least
one non-empty file name was specified
by the user, and all the files specified
with non-empty names were successfully
uploaded.

1 %Attachment_Failed Either the user cancelled the upload, the
user specified no files to upload, or at
least one of the specified files did not
successfully upload.

In addition, the MAddAttachment function returns detailed return codes in the array specified by the
&DetailedReturnCodeArray parameter. The array contains the number of elements specified by the
Prompts parameter even if some files remain unprocessed or were not selected by the user. You can check
for the detailed return codes either as integers or as constant values:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

594  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due to
some internal error.

• Failed due to unexpected or bad
reply from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error on
the HTTP repository.

If the HTTP repository resides on a
PeopleSoft web server, then you can
configure tracing on the web server
to report additional error details.

See "Enabling Tracing on the
Web Server or Application
Server" (PeopleCode Developer’s
Guide).

2 %Attachment_Cancelled File transfer didn't complete because the
operation was canceled by the end user.

Copyright © 1988, 2022, Oracle and/or its affiliates. 595



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where %Attachment_
FileTransferFailed could be returned:

• Failed due to mismatch in file sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

6 %Attachment_FileExceedsMaxSize File exceeds maximum size, if specified.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSystNotFound could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

596  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSysFailedLogin could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in certificates
used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where %Attachment_
FileNotFound could be returned:

• Remote file not found.

• Failed to read remote file.

11 %Attachment_NoFileName File transfer failed because no file name
was specified.

12 %Attachment_FileNameTooLong File transfer failed because name of
selected file name is too long. Maximum
is 64 characters.

Copyright © 1988, 2022, Oracle and/or its affiliates. 597



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

20 %Attachment_Unprocessed This file was not processed.

The following are some possible
situations where %Attachment_
Unprocessed could be returned:

1. This file was not processed due to
an error in processing another file
attachment.

2. This file was not processed because
the operation was canceled by the
user.

13 %Attachment_ViolationFound File violation detected by virus scan
engine.

14 %Attachment_VirusScanError Virus scan engine error.

15 %Attachment_VirusConfigError Virus scan engine configuration error.

16 %Attachment_VirusConnectError Virus scan engine connection error.

21 %Attachment_Rejected File transfer failed because the file
extension is not allowed.

Example

&retcode = MAddAttachment(URL.MYFTP, ATTACHSYSFILENAME, 4, &MyFileArray, &MySzArray⇒

, &MyRtrnCodeArray, 0, False, "Upload Attachments", False, True);

The following example demonstrates initialization of the arrays used to store the values returned by
MAddAttachment:

&prompts = 2;
Local array of string &AttachUsrFiles;
&AttachUsrFiles = CreateArrayRept("", 0);

Local array of number &AttachSzs;
&AttachSzs = CreateArrayRept(0, 0);

Local array of number &AttachRtrnCds;
&AttachRtrnCds = CreateArrayRept(0, 0);

If Exact(Left(&URL_ID, 4), "URL.") Then
   &sum_rt_cd = MAddAttachment(@(&URL_ID), ATTACHSYSFILENAME, &prompts, &AttachUsrF⇒

iles, &AttachSzs, &AttachRtrnCds);
Else
   &sum_rt_cd = MAddAttachment(&URL_ID, ATTACHSYSFILENAME, &prompts, &AttachUsrFile⇒

s, &AttachSzs, &AttachRtrnCds);
End-If;

598  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
"Enabling Tracing on the Web Server or Application Server" (PeopleCode Developer’s Guide)
CleanAttachments
CopyAttachments
DeleteAttachment
DetachAttachment
GetAttachment
PutAttachment
ViewAttachment
"Understanding the File Attachment Functions" (PeopleCode Developer’s Guide)

MarkPrimaryEmailAddress

Syntax

MarkPrimaryEmailAddress(Type)

Description

Use the MarkPrimaryEmailAddress function to specify which email address is the primary email address
for the current user. You can only have one primary email address per user.

Parameters

Parameter Description

Type Specify the type that you want to change the email address to.
 This parameter takes a string value. The valid values are:

Value Description

BB Blackberry email address

BUS Business email address

HOME Home email address

OTH Other email address

WORK Work email address

Returns

None.

Copyright © 1988, 2022, Oracle and/or its affiliates. 599



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
AddEmailAddress
ChangeEmailAddress
DeleteEmailAddress

MarkWLItemWorked

Syntax

MarkWLItemWorked()

Description

Use the MarkWLItemWorked function to mark the current Worklist entry as worked using this function.
This function works only if you’ve invoked a page from the Worklist. This function should be called only
in Workflow PeopleCode. You can use the %WLName system variable to check whether the page has
been accessed using a Worklist.

Note: If the Worklist entry was created using a web service, and you do not need to send any additional
information other than the Mark Worked reply message, you can use this function to mark the Worklist
entry as worked. However, if you need to send additional data, you must use the WorklistEntry class
SaveWithCustomData method to mark the Worklist entry as finished.

See "SaveWithCustomData" (PeopleCode API Reference).

Parameters

None.

Returns

Returns a Boolean value indicating whether it executed successfully. The return value is not optional.

Example

This example, which would be in the WorkFlow event, checks to see whether a page check box
MARK_WORKED_SW is selected, and if so, it marks the item in the worklist as complete:

If MARK_WORKED_SW = "Y" Then
   If MarkWLItemWorked() Then
   End-If;
End-If;

Related Links
GetWLFieldValue
%WLName

600  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Max

Syntax

Max(param_list)

Where param_list has the form

parameter1, parameter2 [, parameter3, . . . parameterN]

Description

Use the Max function to determine the maximum value in the parameter list. The type of every item in the
parameter list must be compatible with the first parameter in the list.

For example, if the first parameter is a string and the second parameter is a number with value 123.456,
the second parameter is converted to the string "123.456" before the comparison is performed.

If all the values in the parameter list are alpha characters, "Z" is greater than "A" so Max("Z", "A")
returns "Z".

Parameters

Parameter Description

param_list Specify a list of items to be compared. All items in the
parameter list must be of the same type. If a value isn't
defined, the system assumes it's of the same type as the first
parameter.

Returns

The item in the list that has the maximum value.

Example
&RSULT = Max("A", "B", "C", "D", "E");

Related Links
Min

MCFBroadcast

Syntax

MCFBroadcast(ClusterID,QueueID, ChannelID, AgentState, AgentPresence, Message,
MessageSetNumber, MessageNumber, DefaultMessage, SecurityLevel, ImportanceLevel,
SenderId, NameValueString)

Copyright © 1988, 2022, Oracle and/or its affiliates. 601



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the MCFBroadcast function to broadcast a notification message. You can specify whether to send
the message to agents, to a queue, or even system wide. This function is used with the MultiChannel
Framework.

Parameters

Parameter Description

ClusterID Specify the name of the cluster that you want to broadcast the
message to, such as, RENCLSTR_001, as a string.

QueueID Specify the name of the physical or logical queue that you
want to broadcast the message to, such as, SALES, as a string.

ChannelID Specify the name of the channel, or task, for the broadcast,
 such as Email, Chat, Voice or Generic, as a string.

AgentState Specify the state of the agents you want to broadcast the
message to, such as Available, as a string.

AgentPresence Specify the presence of the agents you want to broadcast the
message to, such as Active, as a string.

Message Specify the text of the message you want to broadcast, as a
string.

MessageSetNumber Specify the message set number of a message from the
message catalog if you want to broadcast a message from
the message catalog. You must also specify values for the
MessageNumber and DefaultMessageText parameters if you
want to broadcast this type of message. Specify the message
set number as a number.

MessageNumber Specify the message number of a message from the message
catalog if you want to broadcast a message from the
message catalog. You must also specify values for the
MessageSetNumber and DefaultMessageText parameters if you
want to broadcast this type of message. Specify the message
number as a number.

DefaultMessageText Specify the text to be used if the specified message catalog
message isn't found. Use the MessageSetNumber and
MessageNumber parameters to specify the catalog message.
 Specify the default message text as a string.

SecurityLevel Specify the security level for the broadcast message, as a
string.

602  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

ImportanceLevel Specify the importance level of the broadcast message, as a
string.

SenderID Specify the ID of the sender of the broadcast message, as a
string.

NameValueString Specify a string containing name-value pairs specific to your
application.

Returns

None.

Example

The following example would broadcast a message to a specific logical queue:

MCFBroadcast("", "SALES", "", "", "Best of Luck!", "", "", "Default Message", "PRIV⇒

1", "URGENT", "Admin", "EffDate, 2005-10-25:12:00:45");

Related Links
"Understanding Universal Queue Classes" (PeopleCode API Reference)

MessageBox

Syntax

MessageBox(style, title, message_set, message_num, default_msg_txt[, paramlist])

where paramlist is an arbitrary-length list of parameters of undetermined (Any) data type to be substituted
in the resulting text string, in the form:

param1 [, param2]. . .

Description

Use the MessageBox function to display a message box window. This function combines dialog-display
ability with the text-selection functionality of MsgGet, MsgGetText, or MsgGetExplainText. The style
parameter selects the buttons to be included. title determines the title of message.

Note: The title parameter is ignored for messages displayed in the PeopleSoft Pure Internet Architecture.
The title of a message box displayed by the browser is always “Message”.
Also, style is ignored if the message has any severity other than Message.

The remaining parameters are used to retrieve and process a message selected from the Message Catalog.

Copyright © 1988, 2022, Oracle and/or its affiliates. 603



PeopleCode Built-in Functions and Language Constructs Chapter 1

MessageBox can be used for simple informational display, where the user reads the message, then clicks
an OK button to dismiss the message box. Use MessageBox as a way of branching based on user choice,
in which case the message box contains two or more buttons (such as OK and Cancel or Yes, No, and
Cancel). The value returned by the function tells you which button the user clicked, and your code can
branch based on that value.

In the MessageBox dialogs, both the Message Text and the Description, that is, more detailed information
stored in the Message Catalog, are included.

If MessageBox displays buttons other than OK, it causes processing to stop while it waits for user
response. This makes it a "user think-time" function, restricting its use to certain PeopleCode events.

See MsgGet, MsgGetText, MsgGetExplainText"Think-Time Functions" (PeopleCode Developer’s
Guide).

Message Retrieval

MessageBox retrieves a message from the Message Catalog and substitutes the values of the parameters
into the message and explanation.

You can access and update the Message Catalog by accessing
PeopleTools >Utilities >Administration >Message Catalog. You can enter message text in multiple
languages. The message_set and message_num parameters specify the message to retrieve from
the catalog. If the message is not found in the Message Catalog, the default message provided in
default_msg_txt is used. Message sets 1 through 19,999 are reserved for use by PeopleSoft applications.
Message sets 20,000 through 32,767 can be used by PeopleSoft users.

The optional paramlist is a comma-separated list of parameters; the number of parameters in the list
is arbitrary. The parameters are referenced in the message text using the % character followed by an
integer corresponding to the position of the parameter in the paramlist. For example, if the first and
second parameters in paramlist were &FIELDNAME and &USERNAME, they would be inserted into
the message string as %1 and %2. To include a literal percent sign in the string, use %%; %\ is used to
indicate an end-of-string and terminates the string at that point. This is generally used to specify fixed-
length strings with trailing blanks.

Message Severity

MessageBox specifies processing for error handling functions based on the message severity, which you
can set in the Message Catalog. This enables you to change the severity of an error without changing
the underlying PeopleCode, by setting the severity level for the message in the Message Catalog. The
message severity settings and processing options are:

Severity Processing

Message The message is displayed and processing continues.

Warning The message is displayed and treated as a warning.

Error The message is displayed and treated as an error.

604  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Severity Processing

Cancel The message is displayed and forces a Cancel.

In addition, in the PeopleSoft Pure Internet Architecture the Message Severity dictates how the message
displays:

• If the message has a severity of Warning, Error, or Cancel, the message is displayed in a pop-up
dialog box with a single OK button regardless of the value of the style parameter.

• If the message has a severity of Message and style is %MsgStyle_OK (0), the message displays in a
pop-up dialog box with the single OK button.

• If the message has a severity of Message and style is not %MsgStyle_OK (0), the message displays
in a separate window.

Restrictions on Use in PeopleCode Events

If MessageBox displays any buttons other than OK, it returns a value based on the end user response and
interrupts processing until the end user has clicked one of the buttons. This makes it a "user think-time"
function, subject to the same restrictions as other think-time functions which means that it cannot be used
in any of the following PeopleCode events:

• SavePreChange.

• Workflow.

• RowSelect.

• SavePostChange.

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or
a Select (or one of its relatives) Rowset class method.

If the style parameter specifies a single button (that is, the OK button), the function can be called in any
PeopleCode event.

Important! On the initial loading of a component (initial page Activate event), it is recommended that
you allow the component to render correctly before you call any modality that requires user interaction
(think-time functions).
If you call any modality that requires user interaction during the initial page Activate event, except if
its a message box with only an OK button, the user interaction suspends the processing of the page
load leading to undesired rendering. For example, the message box (with more than one button) loses
its styling, and the rendering of the page and component is corrupted. If you use DoModalPopup or
DoModalComponentPopup, you should note that it will render as a full page.

See "Think-Time Functions" (PeopleCode Developer’s Guide).

Copyright © 1988, 2022, Oracle and/or its affiliates. 605



PeopleCode Built-in Functions and Language Constructs Chapter 1

Restrictions on Use With PeopleSoft Pure Internet Architecture

In the PeopleSoft Pure Internet Architecture, you can’t change the icon of a message box. You can change
the number and type of buttons, and the default button, but the message always displays with the warning
icon (a triangle with an exclamation mark in it.)

In addition, you can't change the message box title. The message box title is always 'Message'.

If the message has a severity of Warning and the MessageBox PeopleCode is in a SaveEdit event, the
message is displayed in a new window with the OK and Cancel buttons.

Restrictions on Use With Application Engine

If you call MessageBox from a PeopleCode action in an Application Engine program, the syntax is the
same. However, all GUI-related parameters like style and title are ignored. You should use 0 and "".

Note: If you have an existing MessageBox in code called from a page, it should work as is.

The actual message data is routed to PS_MESSAGE_LOG at runtime, and you can view it from the
Process Monitor by drilling down to the process details.

Parameters

Parameter Description

style Either a numerical value or a constant specifying the contents
and behavior of the dialog box. This parameter is calculated by
cumulatively adding either a value or a constant from each of
the following list of categories:

Note: In PeopleSoft Pure Internet Architecture style is ignored if the message has any severity other than
Message. If the message has a severity of Warning and the MessageBox PeopleCode is in a SaveEdit
event, the message is displayed in a new window with the OK and Cancel buttons.

Category Value Constant Meaning

Buttons 0 %MsgStyle_OK The message box contains one
push button: OK.

1 %MsgStyle_OKCancel The message box contains two
push buttons: OK and Cancel.

2 %MsgStyle_
AbortRetryIgnore

The message box contains
three push buttons: Abort,
 Retry, and Ignore.

3 %MsgStyle_YesNoCancel The message box contains
three push buttons: Yes, No,
 and Cancel.

606  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Category Value Constant Meaning

4 %MsgStyle_YesNo The message box contains two
push buttons: Yes and No.

5 %MsgStyle_RetryCancel The message box contains
two push buttons: Retry and
Cancel.

Parameter Description

title Title of message box. If a null string is specified, then
PeopleTools provides an appropriate value.

Note: The title parameter is ignored for messages displayed in the PeopleSoft Pure Internet Architecture.
The title of a message box displayed by the browser is always "Message".

Parameter Description

message_set The message set number of the message to be displayed.
 When message set and number are provided, it overrides the
specified text. A value less than one indicates that the message
comes from the provided text and not the Message Catalog.

message_num The message number of the message to be displayed.

default_msg_txt Default text to be displayed in the message box.

paramlist A comma-separated list of parameters; the number of
parameters in the list is arbitrary. The parameters are
referenced in the message text using the % character followed
by an integer corresponding to the position of the parameter in
the paramlist.

Returns

Returns either a Number value or a constant. The return value is zero if there is not enough memory to
create the message box. In other cases the following menu values are returned:

Value Constant Meaning

-1 %MsgResult_Warning Warning was generated.

1 %MsgResult_OK OK button was selected.

Copyright © 1988, 2022, Oracle and/or its affiliates. 607



PeopleCode Built-in Functions and Language Constructs Chapter 1

Value Constant Meaning

2 %MsgResult_Cancel Cancel button was selected.

3 %MsgResult_Abort Abort button was selected.

4 %MsgResult_Retry Retry button was selected.

5 %MsgResult_Ignore Ignore button was selected.

6 %MsgResult_Yes Yes button was selected.

7 %MsgResult_No No button was selected.

Example

Suppose the following string literal is stored in the Message Catalog as the message text:

Expenses of employee %1 during period beginning %2 exceed allowance.

The following is stored in the Explanation:

You do not have the authority to approve this expense. Only a director
can approve this.

Here %1 is a placeholder for the employee ID and %2 a placeholder for the expense period date. The
following MessageBox call provides bind variables corresponding to these placeholders at the end of its
parameter list:

MessageBox(0, "", 30000, 1, "Message not found.", BUS_EXPENSE_PER.EMPLID, BUS_EXPEN⇒

SE_PER.EXPENSE_PERIOD_DT);

If the message severity is Error or Warning, the call would display a message box similar to this:

Suppose the following is stored in the Message Catalog as the message text:

File not found.

The following is stored in the Explanation:

The file you specified wasn't found. Either select retry, and specify a new file, o⇒

r cancel.

608  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Suppose this message had a Severity of message, and you used the %MsgStyle_RetryCancel, in the
following code:

MessageBox(%MsgStyle_RetryCancel, "", 30000, 2, "Message not found.");

This is how the message displays:

If the message severity is of type Cancel, a critical message is displayed similar to the following:

Related Links
MsgGet
MsgGetText
MsgGetExplainText

Min

Syntax

Min(param_list)

Where param_list has the form

parameter1, parameter2 [, parameter3, . . . parameterN]

Description

Use the Min function to determine the minimum value in the parameter list. The type of every item in the
parameter list must be compatible with the first parameter in the list.

For example, if the first parameter is a string and the second parameter is a number with value 123.456,
the second parameter is converted to the string "123.456" before the comparison is performed.

If all the values in the parameter list are alpha characters, "a" is less than "m", so Min("a", "m") returns
"a".

Copyright © 1988, 2022, Oracle and/or its affiliates. 609



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

param_list Specify a list of items to be compared. All items in the
parameter list must be of the same type. If a value isn't
defined, the system assumes it's of the same type as the first
parameter.

Returns

The item in the list that has the minimum value.

Example
&RES = Min(&A, Max(&B, &C, &D), "-20");

Related Links
Max

Minute

Syntax

Minute(timevalue)

Description

Use the Minute function to extract the minute component of a Time value.

Returns

Returns the minute part of timevalue as a Number data type.

Example

If &TIMEOUT contains "16:48:01" then the example sets &TIMEOUT_MINUTES to 48:

&TIMEOUT_MINUTES = Minute(&TIMEOUT);

Related Links
Hour
Second

610  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Mod

Syntax

Mod(x, divisor)

Description

The Mod function is the modulus math function, which divides one number (x) by another (divisor) and
returns the remainder.

Returns

Returns a Number equal to the remainder of the division of the number x by divisor.

Example

The example sets &NUM1 to 1 and &NUM2 to 0:

&NUM1 = Mod(10,3);
&NUM2 = Mod(10,2);

Related Links
Int
Round
Truncate

Month

Syntax

Month(datevalue)

Description

Use the Month function to return the month of the year as an integer from 1 to 12 for the specified
datevalue. The Month function accepts a date or DateTime value as a parameter.

Parameters

Parameter Description

datevalue A date or DateTime value on the basis of which to determine
the month.

Returns

Returns a Number value from 1 to 12 specifying the month of the year.

Copyright © 1988, 2022, Oracle and/or its affiliates. 611



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

This example sets &HIRE_MONTH to 3:

&HIREDATE = DateTime6(1997, 3, 15, 10, 9, 20);
&HIRE_MONTH = Month(&HIRE_DATE);

Related Links
Date
Date3
DateValue
Day
Days360
Days365
Weekday
Year

MsgGet

Syntax

MsgGet(message_set, message_num, default_msg_txt[, paramlist])

where paramlist is an arbitrary-length list of parameters of undetermined (Any) data type to be substituted
in the resulting text string, in the form:

param1 [, param2]. . .

Description

Use the MsgGet function to retrieve the Message Text text of a message from the Message Catalog and
substitutes in the values of the parameters into the message text

You can access and update messages on the Message Catalog page (select PeopleTools, Utilities,
Administration, Message Catalog). You can enter message text in multiple languages. The Message
Catalog also enables you to enter more detailed description text about the message. The message_set and
message_num parameters specify the message to retrieve from the catalog. If the message is not found in
the Message Catalog, the default message provided in default_msg_txt is used. Message sets 1 through
19,999 are reserved for use by PeopleSoft applications. Message sets 20,000 through 32,767 can be used
by PeopleSoft users.

The optional paramlist is a comma-separated list of parameters; the number of parameters in the list is
arbitrary. The parameters are referenced in the message text using the % character followed by an integer
corresponding to the position of the parameter in the paramlist. For example, if the first and second
parameters in paramlist were &Fieldname and &Username, they would be inserted into the message
string as %1 and %2. To include a literal percent sign in the string, use %%; %\ is used to indicate an end-
of-string and terminates the string at that point. This is generally used to specify fixed-length strings with
trailing blanks.

MsgGet prefixes the message with "[Message Set# and Message Error#]", so it can be processed by a user
not conversant in the translated language.

612  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example
&MsgText = MsgGet(30000, 2, "Message not found");

Related Links
MsgGetText
MsgGetExplainText
MessageBox
"Message Catalog" (System and Server Administration)

MsgGetExplainText

Syntax

MsgGetExplainText(message_set, message_num, default_msg_txt[, paramlist])

where paramlist is an arbitrary-length list of parameters of undetermined (Any) data type to be substituted
in the resulting text string, in the form:

param1 [, param2]. . .

Description

Use the MsgGetExplainText function to retrieve the Description text of a message from the Message
Catalog and substitutes the values of the parameters in paramlist into the Description text. It returns the
resulting message as a String data type.

You can access and update messages on Message Catalog page (select PeopleTools, Utilities,
Administration, Message Catalog). You can enter messages in multiple languages.

Message sets 1 through 19,999 are reserved for use by PeopleSoft applications. Message sets 20,000
through 32,767 can be used by PeopleSoft users.

Unlike the MsgGet function, MsgGetExplainText returns the message without a message set and message
number appended to the message.

Parameters

Parameter Description

message_set Specify the message set to be retrieved from the catalog. This
parameter takes a number value.

message_num Specify the message number to be retrieved from the catalog.
 This parameter takes a number value.

default_msg_txt Specify the text to be displayed if the message isn't found. This
parameter takes a string value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 613



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

paramlist Specify values to be substituted into the message explain text.

The parameters listed in the optional paramlist are referenced
in the message explain text using the % character followed
by an integer referencing the position of the parameter in the
function call. For example, if the first and second parameters
in paramlist were &FIELDNAME and &USERNAME, they
would be inserted into the message string as %1 and %2.

To include a literal percent sign in the string, use %%; %\ is
used to indicate an end-of-string and terminates the string at
that point. This is generally used to specify fixed-length strings
with trailing blanks.

Example

Suppose the following Description text is stored in the Message Catalog:

A reference was made to a record.field (%1.%2) that is not defined within Applicati⇒

on Designer.  Check for typographical errors in the specification of the record.fie⇒

ld or use Application Designer to add the new field or record.

Here %1 is a placeholder for the record name and %2 a placeholder for the field name. If the record.field
in error was MyRecord.Field5, the above would resolve as follows:

A reference was made to a record.field (MYRECORD.FIELD5) that is not defined within⇒

 Application Designer.  Check for typographical errors in the specification of the ⇒

record.field or use Application Designer to add the new field or record.

Related Links
MsgGet
MsgGetText
MessageBox
"Message Catalog" (System and Server Administration)

MsgGetText

Syntax

MsgGetText(message_set, message_num, default_msg_txt[, paramlist])

where paramlist is an arbitrary-length list of parameters of undetermined (Any) data type to be substituted
in the resulting text string, in the form:

param1 [, param2]. . .

614  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the MsgGetText function to retrieve the Message Text text of a message from the Message Catalog
and substitutes the values of the parameters in paramlist into the message. It returns the resulting message
as a String data type.

You can access and update messages on Message Catalog page (select PeopleTools, Utilities,
Administration, Message Catalog). You can enter message text in multiple languages. The message_set
and message_num parameters specify the message to retrieve from the catalog. If the message is not
found in the Message Catalog, the default message provided in default_msg_txt is used. Message sets 1
through 19,999 are reserved for use by PeopleSoft applications. Message sets 20,000 through 32,767 can
be used by PeopleSoft users.

The parameters listed in the optional paramlist are referenced in the message text using the % character
followed by an integer referencing the position of the parameter in the function call. For example, if
the first and second parameters in paramlist were &FIELDNAME and &USERNAME, they would be
inserted into the message string as %1 and %2. To include a literal percent sign in the string, use %%; %\
is used to indicate an end-of-string and terminates the string at that point. This is generally used to specify
fixed-length strings with trailing blanks.

Unlike the MsgGet function, MsgGetText returns the message without a message set and message number
appended to the message.

Example
&MsgText = MsgGetText(30000, 2, "Message not found");

Related Links
MsgGet
MsgGetExplainText
MessageBox
"Message Catalog" (System and Server Administration)

PeopleCode Built-in Functions and Language Constructs: N

The PeopleCode built-In functions and language constructs beginning with the letter N are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

NextEffDt

Syntax

NextEffDt(field)

Copyright © 1988, 2022, Oracle and/or its affiliates. 615



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the NextEffDt function to return the value of the specified field from the record with the next
effective date (and effective sequence number if specified). The return value is an Any data type. This
function is valid only for effective-dated records.

If the next record doesn't exist, the statement is skipped. If the NextEffDt function isn't a top-level
statement, that is, if it's contained within a compound statement or a loop, the statement is skipped and
execution restarts with the next top-level statement.

In the following example, execution skips to the top If statement:

If ACTION <> "REH" Then  /* skip to here if NextEffDt fails to find next record */
   If    STD_HOURS <> NextEffDt(STD_HOURS) And
         Day(EFFDT) <> 1 Then
      Error MsgGet(30000, 8, "Meldung nicht vorhanden - WAZ bzw. Beschäftigungsgrad⇒

änderungen sind nur zum ersten eines Monats zulässig.")
   End-If;
End-If;
/* if NextEffDt fails, run to here directly */

Related Links
NextRelEffDt
PriorRelEffDt
PriorEffDt

NextRelEffDt

Syntax

NextRelEffDt(search_field, fetch_field)

where fieldlist is an arbitrary-length list of fields in the form:

field1 [,field2]. . .

Description

Use the NextRelEffDt function to locate the next occurrence of the search_field with the next effective
date (and effective sequence number if the record contains an effective sequence number). It then returns
the value of the specified fetch_field corresponding to the search_field. The return value is an Any data
type. Typically, this function is used to retrieve values for related display fields.

This function is valid only for effective-dated records.

If a next record doesn't exist, the statement is skipped. If the NextRelEffDt function isn't a top-level
statement, that is, if it's contained within a compound statement or a loop, the statement is skipped and
execution restarts with the next top-level statement.

Related Links
GetRelField
NextEffDt

616  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

PriorRelEffDt
PriorEffDt

NodeDelete

Syntax

NodeDelete(nodeName)

Description

Use the NodeDelete function to delete the specified node and all subordinate objects (transactions, node
properties, certificates, and so on.)

Warning! Once this function has completed, you cannot recover the node.

Event Considerations

PeopleSoft recommends only using this function in the SavePostChange event. In addition, you should
put a warning in the SaveEdit event, so the user has a chance to change their mind about deleting the
node.

If you use a push button on a page to delete a node, PeopleSoft recommends the following code in the
FieldChange event:

If %Page = Page.YourDeletePage Then
/* changes the record in the buffer so that the DoSaveNow fires */
   PSMSGNODEDEFN.DESCR = PSMSGNODEDEFN.DESCR | " ";
   DoSaveNow();
   ClearKeyList();
/* Transfer to another component or display information message; */
End-If;

Parameters

Parameter Description

nodeName Specify the name of the node you want to delete, as a string.
 All node names are uppercase.

Returns

A Boolean value: True, the function completed successfully deleted, False otherwise.

Copyright © 1988, 2022, Oracle and/or its affiliates. 617



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example
&Rslt = NodeDelete("QEM_TEST_NODE");

If Not &Rslt Then

   /* Do error processing */

End-if;

Related Links
NodeRename
NodeSaveAs
"Configuring Nodes" (Integration Broker Administration)

NodeRename

Syntax

NodeRename(oldNodeName, newNodeName)

Description

Use the NodeRename function to rename a node. All node names are uppercase.

Event Considerations

PeopleSoft recommends using this function only in the SavePreChange event. This gives the user a
chance to edit any other page fields before executing, which may be important because this function
affects several tables.

Parameters

Parameter Description

oldNodeName Specify the name of the node that you want to change, as a
string.

newNodeName Specify the new name for the node, as a string.

Returns

A Boolean value: True, the function completed successfully deleted, False otherwise.

618  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example
&Rslt = NodeRename("QEM_TEST_NODE", "QE_TEST_NODE");

If Not &Rslt Then

   /* Do error processing */

End-if;

Related Links
NodeDelete
NodeSaveAs
"Configuring Nodes" (Integration Broker Administration)

NodeSaveAs

Syntax

NodeSaveAs(oldNodeName, newNodeName)

Description

Use the NodeSaveAs function to create a copy of the node specified by oldNodeName, and save it to the
database as newNodeName. All node names are uppercase.

Event Considerations

PeopleSoft recommends using this function only in the SavePreChange event. This gives the user a
chance to edit any other page fields before executing, which may be important because this function
affects several tables.

Parameters

Parameter Description

oldNodeName Specify the name of the node that you want to copy, as a
string.

newNodeName Specify the name for the new node, as a string.

Returns

A Boolean value: True, the function completed successfully deleted, False otherwise.

Copyright © 1988, 2022, Oracle and/or its affiliates. 619



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example
&Rslt = NodeSaveAs("PRODUCTION_NODE", "MY_TEST_NODE");

If Not &Rslt Then

   /* Do error processing */

End-if;

Related Links
NodeRename
NodeDelete
"Configuring Nodes" (Integration Broker Administration)

NodeTranDelete

Syntax

NodeTranDelete(MsgNodeName, EffDt, TrxType, RqstMsgName, RqstMsgVer)

Description

Use the NodeTranDelete function to delete a node transaction.

Warning! If you delete a node transaction, any transaction modifier using that transaction is also deleted.

Parameters

Parameter Description

MsgNodeName Specify the message node name as a string.

EffDt Specify the effective date as a string.

TrxType Specify the transaction type as a string.

RqstMsgName Specify the request message name as a string.

RqstMsgVer Specify the request message version as a string.

Returns

A Boolean value, True if the function completed successfully, False otherwise.

Example

&ret = NodeTranDelete("QE_LOCAL", "1900-01-01",  "IA",  "ROLESYNCH_MSG",

620  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

"VERSION_1");

Related Links
RelNodeTranDelete

None

Syntax

None(fieldlist)

where fieldlist is an arbitrary-length list of fields in the form:

[recordname.]fieldname1 [, [recordname.]fieldname2] ...

Description

The None function takes an arbitrary number of field names as parameters and tests for values. None
returns True if none of the specified fields contain a value. It returns False if any one of the fields contains
a value.

A blank character field, or a zero (0) numeric value in a required numeric field is considered a null value.

Related Functions

Function Description

All Checks to see if a field contains a value, or if all the fields in
a list of fields contain values. If any of the fields is Null, then
All returns False.

AllOrNone Checks if either all the field parameters have values, or none
of them have values. Use this in examples where if the user
fills in one field, she must fill in all the other related values.

OnlyOne Checks if exactly one field in the set has a value. Use this
when the user must fill in only one of a set of mutually
exclusive fields.

OnlyOneOrNone Checks if no more than one field in the set has a value. Use
this in examples when a set of fields is both optional and
mutually exclusive; that is, if the user can put a value into one
field in a set of fields, or leave them all empty.

Copyright © 1988, 2022, Oracle and/or its affiliates. 621



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The following example uses None to check whether REFERRAL_SOURCE has a value:

If None(REFERRAL_SOURCE) or
   REFERRAL_SOURCE = "EE" Then
   Gray(EMP_REFERRAL_ID);
End-if;

The following example uses None with a variable:

&ONETIME = FetchValue(POSN_INCUMB_WS.EMPLID, 1);
   If None(&ONETIME) Then
   /* do processing */
End-if;

Not

Description

Use Not to negate Boolean expressions. See "Boolean Operators" (PeopleCode Developer’s Guide) for
more information.

NotifyQ

Syntax
NotifyQ(logical queue ID, task type)

Description

Use the NotifyQ function to notify the queue server of an incoming task. NotifyQ should always follow
the use of the EnQueue function. EnQueue inserts the task into the PeopleSoft database, and NotifyQ
notifies the queue server about a task's existence and location.

When you process a batch of tasks to be enqueued, PeopleSoft recommends calling NotifyQ just once
(after the last task is processed). NotifyQ forces the queue server to reorder its internal lists and save its
state to the database, and therefore affects performance.

NotifyQ is not required for chat or voice tasks, and should not be used for these tasks.

Note: If tasks of different types or tasks that are assigned to different logical queues are enqueued, at least
one NotifyQ is required for each logical queue and for each task type. This ensures that the system is
notified of tasks waiting to be assigned.

622  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

logical queue ID Specifies the logical queue in which the task should be queued.
 It is a string value.

The logical queue ID is a case-sensitive value. The case used
in the NotifyQ function must exactly match the case used
when creating the logical queue ID on the Queues page.

task type Specifies the type of task to be inserted. It is a string value.
 The valid values are:

• email

• generic

Returns

Returns 0 if the function was successful.

If unsuccessful, it returns a message number. The message set ID for MultiChannel Framework is 162.

For example, 1302 is returned when an invalid task type or no value is provided.

Example
&strtasknum = EnQueue(&queueID, "email", &MyCompURL, &langcode,
&subject, "QEDMO", 15, 60, &cost, &priority, &minskill);

&nret = NotifyQ(&queueID, "email");
   If &nret = 0 Then
         MessageBox(0, "", 162, 1547, "Queue Successfully notified.");

   End-If

NumberToDisplayString

Syntax

NumberToDisplayString(Format, Number [, Width] [, Precision])

Description

Use the NumberToDisplayString function to format Number according to the pattern specified in Format.
The decimal and thousand's separator are formatted with what is with the current user's personalizations.

Specify the Width and Precision parameters when you want to dynamically specify the width or precision.
Both width and precision can be set based on Format. For example, the following statically specifies the
width to be 6, and the precision to be 2:

&MyValue = NumberToDisplayString("%6.2", &Num);

Copyright © 1988, 2022, Oracle and/or its affiliates. 623



PeopleCode Built-in Functions and Language Constructs Chapter 1

The following example show the width taken dynamically from the &Width variable:

&MyValue = NumberToDisplayString("%*.2", &Num, &Width);

The following example shows how both the width and the precision values are taken dynamically from
the &Width and &Precision variables, respectively.

&MyValue = NumberToDisplayString("%*.*", &Num, &Width, &Precision);

Parameters

Parameter Description

Format Specify the pattern for how Number is supposed to be
formatted. See Using the Format parameter, below.

Number Specify the number to be formatted.

Width Specify the width of the string to be formatted.

Precision Specify the precision of the string to be formatted.

Using the Format Parameter

The Format parameter has the following format:

%[flags][width][.precision][R | T] [type]

• Flags have the following format:

Flag Description

- Left align the number.

$ Fill out field on left hand side with international currency
symbol.

# Force the number to have a decimal point.

blank Pad left hand side with blanks only indicating a negative
number with a '-' sign.

+ Prefix output with plus sign.

M Append " (cr)" on right for negative numbers and " (dr)" for
positive numbers.

624  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Flag Description

m Opposite of M: " (dr)" for negative and " (cr)" for positive.

A Bracket negative numbers with "[" and "]".

a Bracket negative numbers with "(" and ")".

q Display zeros as blanks.

Q Display zeros as "None".

0 Pad left hand side with zeroes. This must be the last flag
before any other pattern indicators.

• Width must be specified as a non-negative integer. Specifying an asterisks ("*") allows for dynamic
field width specification. The maximum width is 50.

• Precision specifies how many digits follow the ".". It must be specified as a non-negative integer.
Specifying an asterisks ("*") allows for a dynamic precision specification. The maximum precision is
50.

• R specifies rounding in conversion from the internal PeopleCode representation, that is, specifying
12.345 with precision of 2 (%n.2Rt) prints 12.35. In the absence of the R control rounding is the
default.

• T specifies truncation in conversion from the internal PeopleCode representation, that is, specifying
2.345 with precision of 2 (%n.2Tt) prints 12.34.

• Type has the following format:

Type Description

t Type has format like printf %f. For example, the form dddd.
dddd. This is the default value.

v 1000ths separator delimited output. For example, if the
separator is a comma, the format is 1,000,000.02.

w Scientific format like printf %e. For example, the form
d.ddddeddd where "e" indicates exponent. d specifies 1
decimal digit and dddd specifies an arbitrary number.

W Scientific format (like above, for "w") except "e" is "E".

Copyright © 1988, 2022, Oracle and/or its affiliates. 625



PeopleCode Built-in Functions and Language Constructs Chapter 1

Type Description

z Scientific Engineering format like printf %e where the
exponent is always a multiple of 3 and the mantissa is
between 1 and a 1000.

Z Scientific Engineering format (like above, for "z") except
"e" is "E".

Returns

A string value.

Example

In the following example, &Str1 would be "0001234,56".

&Num = 1234.56;

&Str1 = NumberToDisplayString("%#010.2t", &Num);

In the following example, &Str2 would be "$$$1234.56".

&Num = 1234.56;

&Str2 = NumberToDisplayString("%$10.2", &Num);

In the following example, &Str3 would be " 1,234.56".

&Num = 1234.56;

&Str3 = NumberToDisplayString("%10.2v", &Num);

In the following example, &Str4 would be "1.23456e+003".

&Num = 1234.56;

&Str4 = NumberToDisplayString("%w", &Num);

Related Links
NumberToString

NumberToString

Syntax

NumberToString(Format, Number [, Width] [, Precision])

Description

Use the NumberToString function to format Number according to the pattern specified in Format.

626  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Specify the Width and Precision parameters when you want to dynamically specify the width or precision.
Both width and precision can be set based on Format. For example, the following statically specifies the
width to be 6, and the precision to be 2:

&MyValue = NumberToString("%6.2", &Num);

The following example show the width taken dynamically from the &Width variable:

&MyValue = NumberToString("%*.2", &Num, &Width);

The following example shows how both the width and the precision values are taken dynamically from
the &Width and &Precision variables, respectively.

&MyValue = NumberToString("%*.*", &Num, &Width, &Precision);

Parameters

Parameter Description

Format Specify the pattern for of how Number is supposed to be
formatted.

Number Specify the Number to be formatted.

Width Specify the width of the string to be formatted.

Precision Specify the precision of the string to be formatted.

Using the Format Parameter

The Format parameter has the following format:

%[flags][width][.precision][R | T] [type]

• Flags have the following format:

Flag Description

- Left align the number.

$ Fill out field on left hand side with international currency
symbol.

# Force the number to have a decimal point.

blank Pad left hand side with blanks only indicating a negative
number with a '-' sign.

Copyright © 1988, 2022, Oracle and/or its affiliates. 627



PeopleCode Built-in Functions and Language Constructs Chapter 1

Flag Description

+ Prefix output with plus sign.

M Append " (cr)" on right for negative numbers and " (dr)" for
positive numbers.

m Opposite of M: " (dr)" for negative and " (cr)" for positive.

A Bracket negative numbers with "[" and "]".

a Bracket negative numbers with "(" and ")".

q Display zeros as blanks.

Q Display zeros as "None".

0 Pad left hand side with zeroes. This must be the last flag
before any other pattern indicators.

• Width must be specified as a non-negative integer. Specifying an asterisks ("*") allows for dynamic
field width specification. The maximum width is 50.

• Precision specifies how many digits follow the ".". It must be specified as a non-negative integer.
Specifying an asterisks ("*") allows for a dynamic precision specification. The maximum precision is
50.

• R specifies rounding in conversion from the internal PeopleCode representation, that is, specifying
12.345 with precision of 2 (%n.2Rt) prints 12.35. In the absence of the R control rounding is the
default.

• T specifies truncation in conversion from the internal PeopleCode representation, that is, specifying
2.345 with precision of 2 (%n.2Tt) prints 12.34.

• Type has the following format:

Type Description

t Type has format like printf %f. For example, the form dddd.
dddd. This is the default value.

v 1000ths separator delimited output. For example, if the
separator is a comma, the format is 1,000,000.02.

628  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Type Description

w Scientific format like printf %e. For example, the form
d.ddddeddd where "e" indicates exponent. d specifies 1
decimal digit and dddd specifies an arbitrary number.

W Scientific format (like above, for "w") except "e" is "E".

z Scientific Engineering format like printf %e where the
exponent is always a multiple of 3 and the mantissa is
between 1 and a 1000.

Z Scientific Engineering format (like above, for "z") except
"e" is "E".

Returns

A string value.

Example

In the following example, &Str1 would be "0001234.56".

&Num = 1234.56;

&Str1 = NumberToString("%#010.2t", &Num);

In the following example, &Str2 would be "$$$1234.56".

&Num = 1234.56;

&Str2 = NumberToString("%$10.2", &Num);

In the following example, &Str3 would be " 1,234.56".

&Num = 1234.56;

&Str3 = NumberToString("%10.2v", &Num);

In the following example, &Str4 would be "1.23456e+003".

&Num = 1234.56;

&Str4 = NumberToString("%w", &Num);

Related Links
NumberToDisplayString
String
Value

Copyright © 1988, 2022, Oracle and/or its affiliates. 629



PeopleCode Built-in Functions and Language Constructs Chapter 1

PeopleCode Built-in Functions and Language Constructs: O

The PeopleCode built-In functions and language constructs beginning with the letter O are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

ObjectDoMethod

Syntax

ObjectDoMethod(obj_this, str_method_name [, paramlist])

Where paramlist is a list of parameters of arbitrary length:

param1 [, param2]. . .

Description

Use the ObjectDoMethod function to invoke the method specified by str_method_name for the object
object_this, passing in any required parameters using paramlist.

You can use ObjectDoMethod with Component Interfaces, Application Classes, OLE Automation objects,
and so on.

This method can be useful if you know the number of parameters you need to pass for a method. If you
do not know how many parameters you may need to pass when you write your PeopleCode, use the
ObjectDoMethodArray function.

Parameters

Parameter Description

obj_this Specify an already instantiated object. This variable must have
been instantiated either with CreateObject, or another function
or method that creates objects.

str_method_name A string containing the name of an exposed method of obj_
this.

paramlist The parameter list to pass to the str_method_name method.

Returns

None.

630  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

This simple example instantiates an Excel worksheet object, makes it visible, names it, saves it, and
displays its name.

&WORKAPP = CreateObject("Excel.Application");
&WORKBOOKS = ObjectGetProperty(&WORKAPP, "Workbooks");
ObjectDoMethod(&WORKBOOKS, "Add", "C:\TEMP\INVOICE.XLT"); /* This associates the IN⇒

VOICE template w/the workbook */
ObjectDoMethod(&WORKAPP, "Save", "C:\TEMP\TEST1.XLS");
ObjectSetProperty(&WORKAPP, "Visible", True);

This simple example invokes a user-defined method associated with the current component interface
object:

ObjectDoMethod(%CompIntfcName, &inMethodName);

Related Links
CreateObject
ObjectGetProperty
ObjectSetProperty
CreateObjectArray
ObjectDoMethodArray
"Using OLE Functions" (PeopleCode Developer’s Guide)

ObjectDoMethodArray

Syntax

ObjectDoMethodArray(Object_Name, Method_Name, Array_of_Args)

Description

Use the ObjectDoMethodArray function to invoke the method specified by method_name for the object
object_name, passing in any required parameters using the array.

Use this function when you're not certain, at the time you're writing your PeopleCode program, how many
parameters a method is going to require. If you know the number of parameters, use the ObjectDoMethod
function instead.

The array of parameters is an array of Any. It can only be one-dimensional. You cannot pass in field
references, that is, you can't pass in references of the form RECORD.FIELDNAME.

If you do not want to supply any parameters, you can use an empty array, or a reference to a Null array.

Copyright © 1988, 2022, Oracle and/or its affiliates. 631



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

Object_Name Specify an already instantiated object on which the method is
to be evaluated.

Method_Name Specify the name of an exposed method for the object.

Array_Of_Args Specify an Array of Any containing the parameters for the
method.

Returns

Depends on the specified object and method if a result is returned or not.

Example
&MyRslt = ObjectDoMethodArray(&MyObject, "My-Method", &MyArray);

Related Links
CreateObject
ObjectGetProperty
ObjectSetProperty
CreateObjectArray
ObjectDoMethod
"Using OLE Functions" (PeopleCode Developer’s Guide)
"Understanding Arrays" (PeopleCode API Reference)

ObjectGetProperty

Syntax

ObjectGetProperty(obj_this, str_property_name [, index_param_list])

Description

Use the ObjectGetProperty function to return the value of a property str_property_name of the object
obj_this.

Note: The object must have already been instantiated, either using CreateObject or another function or
method that returns an object. Default" OLE Automation object properties are not supported. You must
specify the object property that you want to retrieve explicitly.

632  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

obj_this Specify an already instantiated object. This variable must have
been instantiated either with CreateObject or another function
or method that creates objects.

str_property_name A string containing the name of an exposed property of obj_
this.

index_param_list A comma-separated list for accessing an OLE automation
object indexed property. (These parameters are only used with
OLE/COM objects.)

Returns

Returns an Any value equal to the value of the str_property_name property of the obj_this object.

Example

This simple example instantiates an Excel worksheet object, makes it visible, names it, saves it, and
displays its name.

&WORKAPP = CreateObject("Excel.Application");
&WORKBOOKS = ObjectGetProperty(&WORKAPP, "Workbooks");
ObjectDoMethod(&WORKBOOKS, "Add", "C:\TEMP\INVOICE.XLT"); /* This associates the IN⇒

VOICE template w/the workbook */
ObjectDoMethod(&WORKAPP, "Save", "C:\TEMP\TEST1.XLS");
ObjectSetProperty(&WORKAPP, "Visible", True);

Excel Worksheets had an index property called Range that has the following signature:

Property Range (Cell1 [, Cell2]) as Range

In the following example, the range is A1:

&CELL = ObjectGetProperty(&SHEET, "Range", "A1");

Related Links
CreateObject
ObjectDoMethod
ObjectSetProperty
CreateObjectArray
ObjectDoMethodArray
"Using OLE Functions" (PeopleCode Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 633



PeopleCode Built-in Functions and Language Constructs Chapter 1

ObjectSetProperty

Syntax

ObjectSetProperty(obj_this, str_property_name, val [, index_param_list])

Description

Use the ObjectSetProperty function to set the value of a property str_property_name of the object obj_this
to val.

The object must have already been instantiated, either using CreateObject or another function or method
that returns an object.

Note: Default OLE Automation object properties are not supported. You must specify the object property
that you want to set explicitly.

Parameters

Parameter Description

obj_this Specify an already instantiated object. This variable must have
been instantiated either with CreateObject or another function
or method that creates objects.

str_property_name A string containing the name of an exposed property of obj_
this.

val str_property_name is set to this value.

index_param_list A comma-separated list of parameters for accessing an OLE
automation object indexed property. (This is only used with
COM/OLE objects.)

Returns

None.

Example

This simple example instantiates an Excel worksheet object, makes it visible, names it, saves it, and
displays its name.

&WORKAPP = CreateObject("Excel.Application");
&WORKBOOKS = ObjectGetProperty(&WORKAPP, "Workbooks");
ObjectDoMethod(&WORKBOOKS, "Add", "C:\TEMP\INVOICE.XLT"); /* This associates the IN⇒

VOICE template w/the workbook */
ObjectDoMethod(&WORKAPP, "Save", "C:\TEMP\TEST1.XLS");
ObjectSetProperty(&WORKAPP, "Visible", True);

634  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
CreateObject
ObjectDoMethod
ObjectGetProperty
CreateObjectArray
ObjectDoMethodArray
"Using OLE Functions" (PeopleCode Developer’s Guide)

OnlyOne

Syntax

OnlyOne(fieldlist)

where fieldlist is an arbitrary-length list of fields in the form:

[recordname.]fieldname1 [, [recordname.]fieldname2] ...

Description

Use the OnlyOne function to check a list of fields and return True if one and only one of the fields has a
value. If all of the fields are empty, or if more than one of the fields has a value, OnlyOne returns False.
This function is used to validate that only one of a set of mutually exclusive fields has been given a value.

A blank character field, or a zero numeric value in a required numeric field is considered a Null value.

Related Functions

Function Description

All Checks to see if a field contains a value, or if all the fields in
a list of fields contain values. If any of the fields is Null, then
All returns False.

AllOrNone Checks if either all the field parameters have values, or none
of them have values. Use this in examples where if the user
fills in one field, she must fill in all the other related values.

None Checks that a field or list of fields have no value.

OnlyOneOrNone Checks if no more than one field in the set has a value. Use
this in examples when a set of fields is both optional and
mutually exclusive; that is, if the user can put a value into one
field in a set of fields, or leave them all empty.

Copyright © 1988, 2022, Oracle and/or its affiliates. 635



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

You typically use OnlyOne as follows:

If OnlyOne(param_one, param_two)
   Then value_a = "y";
End-if;

OnlyOneOrNone

Syntax

OnlyOneOrNone(fieldlist)

where fieldlist is an arbitrary-length list of fields in the form:

[recordname.]fieldname1 [, [recordname.]fieldname2] ...

Description

Use the OnlyOneOrNone function to check a list of fields and return True if either of these conditions is
true:

• Only one of the fields has a value.

• None of the fields has a value.

This function is useful when you have a set of mutually exclusive fields in a page and the entire set of
fields is optional. The end user can leave all the fields blank or enter a value in one of the fields only.

A blank character field, or a zero numeric value in a required numeric field is considered a null value.

Related Functions

Function Description

All Checks to see if a field contains a value, or if all the fields in
a list of fields contain values. If any of the fields is Null, then
All returns False.

AllOrNone Checks if either all the field parameters have values, or none
of them have values. Use this in examples where if the user
fills in one field, she must fill in all the other related values.

None Checks that a field or list of fields have no value.

OnlyOne Checks if exactly one field in the set has a value. Use this
when the user must fill in only one of a set of mutually
exclusive fields.

636  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

You typically use OnlyOneOrNone as follows:

If OnlyOneOrNone(param_one, param_two)
   Then value_a = "y";
End-if;

Or

Description

Use Or to combine Boolean expressions. See "Boolean Operators" (PeopleCode Developer’s Guide) for
more information.

OverrideCNAVDisplayMode

Syntax

OverrideCNAVDisplayMode([disable])

Description

Important! OverrideCNAVDisplayMode has been deprecated and remains for backward compatibility.
Use the OverrideConditionalNav function instead.

Use the OverrideCNAVDisplayMode function to specify whether to disable conditional navigation.

Conditional navigation can be disabled for the life of a component by invoking this function as the
first executable statement in a PeopleCode PreBuild event. Alternatively, conditional navigation can be
temporarily disabled for just a segment of code in other PeopleCode events.

Important! When temporarily disabling conditional navigation, you must explicitly re-enable it by
calling OverrideCNavDisplayMode( False). Failing to do so will leave conditional navigation disabled for
the remainder of the code execution.

The following methods, properties, and functions are “conditional navigation aware,” which means that
they will generate a URL or return a value that is dependent on the conditional navigation configuration
as well as on the current state as set by the OverrideCNAVDisplayMode function:

• AbsoluteContentURL property (content reference class and content reference link class).

• AbsolutePortalURL property (content reference class and content reference link class).

• FindCRefByName method (PortalRegistry class).

• FindCRefByURL method (PortalRegistry class).

• FindCRefLinkByName method (PortalRegistry class).

• GenerateComponentContentRelURL built-in function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 637



PeopleCode Built-in Functions and Language Constructs Chapter 1

• GenerateComponentContentURL built-in function.

• GenerateComponentPortalRelURL built-in function.

• GenerateComponentPortalURL built-in function.

• GenerateComponentRelativeURL built-in function.

• GenerateHomepagePortalURL built-in function.

• GenerateHomepageRelativeURL built-in function.

• GetAbsoluteContentURL method (PortalRegistry class).

• GetURL built-in function.

• Transfer built-in function.

• ViewURL built-in function.

Parameters

Parameter Description

disable Specifies whether to disable conditional navigation as a
Boolean value.

Note: The default value is True.

Returns

(Optional) A Boolean value. True if the function executed successfully, False otherwise.

Example 1

The following example, which must appear in the component PreBuild event, disables conditional
navigation for the life of the component:

OverrideCNavDisplayMode( True);

Example 2

The following example temporarily disables conditional navigation to generate a URL to a classic
component. Then, conditional navigation is re-enabled for the remainder of the program’s execution.

/* Disable conditional navigation before generating the URL. */
OverrideCNavDisplayMode( True);
&URL = GenerateComponentPortalURL(%Portal, %Node, MenuName."ROLE_MANAGER", "GBL", C⇒

omponent."HR_PROMOTE_APPR", "", "");

/* IMPORTANT: Re-enable conditional navigation */
OverrideCNavDisplayMode( False);
&URL = &URL | "?Action=U&BUSINESS_UNIT=US100&REQ_ID=0000000067";
&URL = &URL | "&SKIPCNAV=1"; /* Add this  to skip Pre and Post Processing */

638  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

/* Invoke MCFOutboundEmail.Send to send the email including the generated URL */
...

Related Links
OverrideConditionalNav
"Understanding Conditional Navigation" (Portal Technology)

OverrideConditionalNav

Syntax

OverrideConditionalNav([mode])

Description

Use the OverrideConditionalNav function to specify how to disable conditional navigation.

Conditional navigation can be disabled for the life of a component by invoking this function as the
first executable statement in a PeopleCode PreBuild event. Alternatively, conditional navigation can be
temporarily disabled for just a segment of code in other PeopleCode events.

Important! When temporarily disabling conditional navigation, you must explicitly re-enable it by
calling OverrideConditionalNav(%CNAV_RestoreAll). Failing to do so will leave conditional navigation
disabled for the remainder of the PeopleCode program.

The following methods, properties, and functions are “conditional navigation aware,” which means that
they will generate a URL or return a value that is dependent on the conditional navigation configuration
as well as on the current state as set by the OverrideConditionalNav function:

• AbsoluteContentURL property (content reference class and content reference link class).

• AbsolutePortalURL property (content reference class and content reference link class).

• FindCRefByName method (PortalRegistry class).

• FindCRefByURL method (PortalRegistry class).

• FindCRefLinkByName method (PortalRegistry class).

• GenerateComponentContentRelURL built-in function.

• GenerateComponentContentURL built-in function.

• GenerateComponentPortalRelURL built-in function.

• GenerateComponentPortalURL built-in function.

• GenerateComponentRelativeURL built-in function.

• GenerateHomepagePortalURL built-in function.

• GenerateHomepageRelativeURL built-in function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 639



PeopleCode Built-in Functions and Language Constructs Chapter 1

• GetAbsoluteContentURL method (PortalRegistry class).

• GetURL built-in function.

• Transfer built-in function.

• ViewURL built-in function.

Parameters

Parameter Description

mode Specifies how to disable conditional navigation as an Integer
value.

Specify the mode as one of the following values. You can use either the numeric or constant value.
Except for %CNAV_SkipAll and %CNAV_RestoreAll, any of the other constant values can be
combined. For example, specifying 12 is the equivalent of specifying %CNAV_SkipDisplayMode +
%CNAV_SkipToolsRel while specifying 60 is the equivalent of specifying %CNAV_SkipAll.

Numeric Value Constant Value Description

1 %CNAV_SkipAll

Note: The default value is
%CNAV_SkipAll.

Ignores all conditional navigation attributes.

2 %CNAV_RestoreAll Turns on conditional navigation

4 %CNAV_
SkipDisplayMode

Ignores CN_DISPLAYMODE attributes only.

8 %CNAV_SkipToolsRel Ignores CN_TOOLSREL attributes only.

16 %CNAV_SkipGeneric Ignores user-defined conditional navigation attributes only.

32 %CNAV_SkipNavGroup Ignores CN_NAVGROUP attributes only.

Note: The skipcnav query string parameter that can be appended to a generated URL takes the same
integer values that are valid for the mode parameter of the OverrideConditionalNav function. This
includes the ability to combine two values by using their sum as the integer value. See Example 4 for
information on how to post-process a URL to append the skipcnav query string parameter.

Returns

(Optional) An Integer value. 1 indicates the function executed successfully, 0 indicates failure.

640  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example 1

The following example temporarily disables all conditional navigation to generate a URL to a classic
component. Then, conditional navigation is re-enabled for the remainder of the program’s execution.

OverrideConditionalNav();
rem generate the URL to base;
&url = GenerateComponentContentURL(%Portal, %Node, @("Menuname.ROLE_EMPLOYEE"), %Ma⇒

rket, @("Component.HR_EE_NAME"), "", "U");
OverrideConditionalNav(%CNAV_RestoreAll);
ViewURL(&url, False);

Example 2

The following example, which must appear in the component PreBuild event, disables conditional
navigation for the life of the component:

OverrideConditionalNav(%CNAV_SkipAll);

Example 3

The following example temporarily disables for CN_DISPLAYMODE attributes only. If other attributes
types are set—for example, CN_TOOLSREL or user-defined attributes—those attributes will still be used
to generate a URL to a classic component. Then, conditional navigation is re-enabled for the remainder of
the program’s execution.

/* Skip display mode CNAV only */
OverrideConditionalNav(%CNAV_SkipDisplayMode);
rem generate the URL to base ;
&url = GenerateComponentContentURL(%Portal, %Node, @("Menuname.ROLE_EMPLOYEE"), %Ma⇒

rket, @("Component.HR_EE_NAME"), "", "U");
OverrideConditionalNav(%CNAV_RestoreAll);
ViewURL(&url, False);

Example 4

The following example temporarily disables conditional navigation to generate a URL to a classic
component. Then, conditional navigation is re-enabled for the remainder of the program’s execution.
However, conditional navigation could be invoked at a later date whenever the generated link is clicked.
Therefore, post-processing of the generated URL appends the skipcnav query string parameter to the
URL to ensure that conditional navigation is always ignored for every user who clicks the link in every
situation.

/* Disable conditional navigation before generating the URL. */
OverrideConditionalNav();
&URL = GenerateComponentPortalURL(%Portal, %Node, MenuName."ROLE_MANAGER", "GBL", C⇒

omponent."HR_PROMOTE_APPR", "", "");

/* IMPORTANT: Re-enable conditional navigation */
OverrideConditionalNav(%CNAV_RestoreAll);

&URL = &URL | "?Action=U&BUSINESS_UNIT=US100&REQ_ID=0000000067";
/* Post-processing ensures that CN is skipped when the user clicks the link.  */
&URL = &URL | "&skipcnav=1";

/* Invoke MCFOutboundEmail.Send to send the email including the generated URL */
...

Copyright © 1988, 2022, Oracle and/or its affiliates. 641



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: The skipcnav query string parameter takes the same integer values that are valid for the mode
parameter of the OverrideConditionalNav function. This includes the ability to combine two values by
using their sum as the integer value. See the mode parameter of the OverrideConditionalNav function for
more information.

Related Links
"Understanding Conditional Navigation" (Portal Technology)

PeopleCode Built-in Functions and Language Constructs: P-Q

The PeopleCode built-In functions and language constructs beginning with the letters P and Q are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

PanelGroupChanged

Syntax

PanelGroupChanged()

Description

Use the PanelGroupChanged function to determine whether a component has changed since the last save,
whether by the user or by PeopleCode.

Note: The PanelGroupChanged function is supported for compatibility with previous releases of
PeopleTools. New applications should use the ComponentChanged function instead.

Related Links
ComponentChanged

PingNode

Syntax

PingNode(MsgNodeName)

Description

Use the PingNode function to ping the specified node. It returns an XmlDoc object that you must go
through to find the status of the node.

642  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

MsgNodeName Specify the name of the message node you want to ping, as a
string.

Returns

An XmlDoc object. The node in the XmlDoc object with the name of status contains information about
the node you pinged.

Example
Local XmlDoc &ErrorInfo;

&ErrorInfo = PingNode("TESTNODENAME");
   &Root = &ErrorInfo.DocumentElement;
   &MsgNodeArray = &Root.GetElementsByTagName("msgnode");
   For &M = 1 To &MsgNodeArray.Len
      &MsgNode = &MsgNodeArray [&M];
      &MsgText = &MsgNode.FindNode("status").NodeValue;
      If &MsgText <> "Success (117,73)" Then
         Error ("Web Server not available for web service");
      End-If;
   End-For;

Related Links
"Understanding Arrays" (PeopleCode API Reference)
"Understanding Message Classes" (PeopleCode API Reference)
"Understanding XmlDoc Classes" (PeopleCode API Reference)
"Understanding Managing Messages" (Integration Broker)

PreloadCache

Syntax

PreloadCache(mgrNames, dirPath, delete_dir, Lang_list)

Description

Use the PreloadCache function to load a list of manager names to a specified directory.

Note: Use the PreloadCache function only in AE programs.

Copyright © 1988, 2022, Oracle and/or its affiliates. 643



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

mgrNames Specify the list of manager names to be loaded to cache as an
array of strings.

Note: You can use the AE program LOADCACHE to get the
most up-to-date list of managers.

dirPath Specify an absolute path for the location of the preload cache
directory. Specify the string <<DBCACHE>> to load database
cache instead of file cache.

For more information on shared file cache or database cache,
 see "Load Application Server Cache" (System and Server
Administration), Loading Shared File Cache or Database
Cache.

delete_dir Specify a Boolean value: Specify True to clear existing
preload cache files from the cache-loading output directory;
specify False to add to the existing preload cache files in the
cache-loading output directory.

The cache-loading directory is either the directory specified in
the second parameter (dirPath) or in most cases, it is the PS_
CFG_HOME\appserv\prcs\ProcessScheduler_domain\CACHE
\CACHE\STAGE\stage directory.

Lang_list This is an optional parameter.

Specify a list of language codes to be used when loading cache
files as an array of strings.

If this parameter is not specified, then the files are loaded for
all installed languages.

Returns

A Boolean value: True if the files are cached successfully, False otherwise.

Example

&ret = PreloadCache(&array_MgrName, &dirPath, /* purge existing cache = */ False, &⇒

array_Languages);

Related Links
"Load Application Server Cache" (System and Server Administration)

644  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

PriorEffDt

Syntax

PriorEffDt(field)

Description

Use the PriorEffDt function to return the value of the specified field from the record with the prior
effective date. This function is valid only for effective-dated records.

If the record contains an effective sequence number field, the value of this field is compared along with
the effective-date field when the prior effective date/effective record sequence is determined. Therefore,
if there is an effective-sequence number, it's possible that the effective-date field will be the same as the
current record, but the sequence number would be earlier.

If a prior record does not exist, the statement is skipped. If the PriorEffDt function is not a top-level
statement, that is, if it's contained with a compound statement or a loop, the statement is skipped and
execution begins with the next top-level statement.

In the following example, execution skips to the top If statement:

If ACTION <> "REH" Then  /* skip to here if PriorEffdt fails to find prior record *⇒

/
   If    STD_HOURS <> PriorEffdt(STD_HOURS) And
         Day(EFFDT) <> 1 Then
      Error MsgGet(30000, 8, "Meldung nicht vorhanden - WAZ bzw. Beschäftigungsgrad⇒

änderungen sind nur zum ersten eines Monats zulässig.")
   End-If;
End-If;
/* if PriorEffdt fails, run to here directly */

Example
If CURRENCY_CD = PriorEffdt(CURRENCY_CD) Then
      Evaluate ACTION
      When = "PAY"
         If ANNUAL_RT = PriorEffdt(ANNUAL_RT) Then
            Warning MsgGet(1000, 27, "Pay Rate Change action is chosen and Pay Rate⇒

 has not been changed.");
         End-if;
         Break;
      When = "DEM"
         If ANNUAL_RT >= PriorEffdt(ANNUAL_RT) Then
            Warning MsgGet(1000, 29, "Demotion Action is chosen and Pay Rate has no⇒

t been decreased.");
         end-if;
      When-other
      End-evaluate;
      WinMessage("This message appears after executing either of the BREAK statemen⇒

ts or after all WHEN statements are false");
   End-if;

Copyright © 1988, 2022, Oracle and/or its affiliates. 645



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
NextEffDt
NextRelEffDt
PriorRelEffDt

PriorRelEffDt

Syntax

PriorRelEffDt(search_field, fetch_field)

Description

Use the PriorRelEffDt function to locate the prior occurrence of the search_field with the prior effective
date (and effective-sequence number if specified), then return the value of the specified fetch_field
corresponding to the search_field. The return value is an Any data type. Typically, this function is used to
retrieve values for related display fields.

This function is valid only for effective-dated records.

If a prior record does not exist, then the statement is skipped. If the PriorRelEffDt function isn't a top-
level statement, that is, if it's contained within a compound statement or a loop, the statement is skipped
and execution restarts with the next top-level statement.

Related Links
NextEffDt
NextRelEffDt
PriorEffDt

PriorValue

Syntax

PriorValue(fieldname)

Description

Use the PriorValue function in FieldEdit and FieldChange PeopleCode to obtain the prior value of a
buffer field that the user just changed. It returns the value that was in the buffer field before the user
changed it, not the value of the field the last time the component was saved.

PriorValue gives correct results only in FieldEdit and FieldChange PeopleCode, and only for the buffer
field where the function is executing. If you pass another field name to the function, it returns the current
value of the buffer field, not the prior value.

646  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

fieldname The name of the record field. For correct results, this must be
the name of the field where the call to PriorValue executes.

Returns

Returns an Any value equal to the value that was in the current buffer field immediately prior to the last
edit.

Example

The following example from FieldChange PeopleCode gets the prior value of a field:

&PRIOR = PriorValue(QUANTITY);
DERIVED_TEST.TOTAL_AMT = (DERIVED_TEST.TOTAL_AMT  -  &PRIOR) + QUANTITY;

Related Links
CurrentRowNumber

Product

Syntax

Product(numlist)

where numlist is an arbitrary-length list of numbers in the form

n1 [, n2]. . .

Description

Use the Product function to multiply all the numbers in numlist and returns the product as a Number data
type. The numbers in the list can be any number expressed as a number, variable, or expression.

Returns

Returns a Number value equal to the product of the numbers in numlist.

Example

The example sets &N2 to 96:

&N2 = Product(4,80,0.3);

Related Links
Fact

Copyright © 1988, 2022, Oracle and/or its affiliates. 647



PeopleCode Built-in Functions and Language Constructs Chapter 1

Prompt

Syntax

Prompt(title, heading, {fieldlist | &Record})

where fieldlist is an arbitrary-length list of fields in the form:

field1 [, label1 [, tempvar1]] [, field2 [, label2 [, tempvar2]]]...

Note that the label parameter is required before the temporary variable.

Description

Important! The Prompt function is not supported in fluid applications. A PeopleCode error will occur if
the function is used in a fluid application.

Use the Prompt function to display a page prompting the user to insert values into one or more text boxes.
If the user cancels the page, any entered values are discarded and the function returns False. When the
prompt page is displayed, the text boxes are initially filled with default values from the fields in fieldlist.
The user can change the values in the text boxes, then if the user clicks OK, the values are placed either
into the buffer for the appropriate field, or into a temporary variable, if a tempvar for that field is provided
in the function call.

Prompt can also take a record object. This is primarily used with the Query classes, when running a query,
to prompt the end user for the prompt values of a query.

Prompt is a think-time function, and as such cannot be used during the PeopleCode attached to the
following events:

• SavePreChange

• Workflow

• RowSelect

• SavePostChange

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or
a Select (or one of its relatives) Rowset class method.

Prompt should also not be called in any PeopleCode event that fires as a result of a ScrollSelect or its
relatives, or a Select Rowset class method or its relatives.

Related Links
"Think-Time Functions" (PeopleCode Developer’s Guide)

648  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

title Used as the title for the page.

heading Displayed in the page above the fields. If a zero-length string 
("") is passed, the heading line is omitted in the page.

fieldlist | &Record A list of one or more fields; each field in the list consists of
a [recordname.]fieldname followed by an optional label and
an optional temporary variable for storing the input value.
 The label parameter is required if you supply the temporary
variable parameter.

Instead of a list of fields, you can also specify an already
instantiated and populated record object.

field The name of the field being prompted for, the form
[recordname.]fieldname.

label Optional label for the prompted field. If this parameter is
omitted, the field RFT Long value is used. This parameter is
required before the tempvar parameter.

tempvar Optional temporary variable to receive the user-entered value.
 If this parameter is omitted, the value is placed into the buffer
for the field specified. Using a temp variable enables the
PeopleCode program to inspect and process the entered value
without affecting the buffer contents.

Returns

Optionally returns a Boolean value:

• False if the user clicks the Cancel button.

• True if the user clicks the OK button.

Example

The following example prompts for a single field, using calls to the MsgGetText function to retrieve
values for the window title and prompt, and places the result into FISCAL_YEAR field:

Prompt(MsgGetText(5000, 182, " "), MsgGetText(5000, 184, " "), FISCAL_YEAR);

To following example places the results of the prompt into a temporary variable:

Prompt("Change Voucher", "", VOUCHER_ID, "Change Voucher ID to", &NEW_VOUCHER_ID);

Copyright © 1988, 2022, Oracle and/or its affiliates. 649



PeopleCode Built-in Functions and Language Constructs Chapter 1

The following code is in the USA push button FieldChange PeopleCode, and calls for the single field as
shown in the page.

When = PAGE.PERSONAL_DATA1
        /* Administer Global Personnel - USA Flag Btn on PERSONAL_DATA1 Page */
         Prompt("US Social Security Number", "", PERSONAL_DATA.SSN);
         Break;

Proper

Syntax

Proper(string)

Description

Use the Proper function to capitalize the first letter in a text string and any other letters in a text string that
follow any character other than another letter. It also converts all other letters in a text string to lowercase.
Punctuation and other characters that have no case sensitivity are not changed.

Returns

Returns a String value with the first character of each word capitalized.

Example

The example sets the value of &BADKD to "K. D. Lang".

&BADKD = Proper("k.  d.  LANG")

Related Links
Lower
Upper

PublishXmlDoc

Syntax

PublishXmlDoc(&XmlDoc, Message.MessageName [, Node.NodeName])

Description

Use the PublishXmlDoc function to send an asynchronous message that is based on an XmlDoc object.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Publish method instead.

The XmlDoc object must already be instantiated and populated. The message included in the function call
should be an unstructured message, that is, one that isn't based on a hierarchical record structure.

650  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

If you want to retrieve an XmlDoc message that was sent asynchronously, use the GetMessageXmlDoc
built-in function.

If you want to handle an XmlDoc as a Message object, you need to define a Message object with a
hierarchical structure and migrate the data in the XmlDoc object into the Message object.

Related Links
"Publish" (PeopleCode API Reference)

Parameters

Parameter Description

&XmlDoc Specify an already instantiated and populated XmlDoc object
that you want to send as an asynchronous message.

MessageName Specify an already existing nonrowset-based message,
 prefaced with the reserved word Message.

NodeName Specify a node. This is for Sender Specified Routing (SSR),
 prefixed with the reserved word Node. The node defines the
target for the published message.

Returns

A Boolean value: True if the message was successfully published, False otherwise.

Example
Local XmlDoc &MyDoc;

. . .

PublishXmlDoc(&MyDoc, Message.MyXmlMessage, Node.MyNode);

Related Links
GetMessageXmlDoc
SyncRequestXmlDoc

PutAttachment

Syntax

PutAttachment(URLDestination, DirAndSysFileName, DirAndLocalFileName[, LocalDirEnvV⇒

ar
[, PreserveCase[, AllowLargeChunks]]])

Copyright © 1988, 2022, Oracle and/or its affiliates. 651



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the PutAttachment function to upload a file from the file system of the application server to the
specified storage location. The file system of the application server includes any directories accessible
from the application server including those on local disks as well as on network shares.

Note: It is the responsibility of the calling PeopleCode program to store the specified file name for further
use.

If a file exists at a particular place on a storage location and then another file with the same name is
uploaded to that same place on that same storage location, the original file will be silently overwritten by
the new file. If that is not the behavior you desire, it is recommended that you implement PeopleCode to
guarantee the ultimate uniqueness of either the name of the file at its place on the storage location or the
name of its place (the subdirectory) on the storage location.

Note: If the web server load-balances via Jolt session pooling, then it may be difficult to anticipate which
application server machine will be expected to have the specified file.

Note: If the specified destination subdirectories do not exist at the storage location, this function tries to
create them.

Additional information that is important to the use of PutAttachment can be found in the PeopleTools:
PeopleCode Developer's Guide:

• PeopleTools supports multiple types of storage locations.

See "Understanding File Attachment Storage Locations" (PeopleCode Developer’s Guide).

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See "File Name Considerations" (PeopleCode Developer’s Guide).

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See "Attachments with non-ASCII File Names" (PeopleCode Developer’s Guide).

• The PeopleCode file attachment functions do not provide text file conversions when files are attached
or viewed.

See "Considerations When Attaching Text Files" (PeopleCode Developer’s Guide).

File System Considerations

If you are uncertain which type of file system the file is going to be transferred from, either a Unix or
Windows system, you should simply specify a file name for the DirAndLocalFileName parameter and
either explicitly set the LocalDirEnvVar parameter or accept its default value, which is “TMP” (indicating
that the value of the TMP environment variable will be used).

The following code example works for Windows systems, but not Unix systems:

&retcode = PutAttachment(&FTPINFO, &TARGETFILENAME, "c:\temp\resume.doc");

652  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The following code example works for Unix systems, but not Windows systems:

&retcode = PutAttachment(&FTPINFO, &TARGETFILENAME, "/tmp/resume.doc");

The following two examples work for both Windows and Unix systems:

&retcode = PutAttachment(&FTPINFO, &TARGETFILENAME, "resume.doc");

&retcode = PutAttachment(&FTPINFO, &TARGETFILENAME, "resume.doc", "PS_CFG_HOME");

Parameters

Parameter Description

URLDestination A reference to a URL. This can be either a URL identifier
the form URL.URL_ID, or a string. This (along with the
corresponding DirAndSysFileName) indicates a file's
destination location.

Note: When the URLDestination parameter is specified as
a string value, forward slashes (/) are required. Backward
slashes (\) are not supported for a string value.

See "Understanding URL Strings Versus URL
Objects" (PeopleCode Developer’s Guide).

DirAndSysFileName The relative path and file name of the file at the storage
location. This is appended to URLDestination to form the full
URL where the file will be transferred to. This parameter takes
a string value.

Note: Because the DirAndSysFileName parameter is appended
to the URL, it also requires forward slashes (“/”). Backward
slashes (“\”) are not supported for this parameter.

DirAndLocalFileName The name, relative path name, or full path name of the source
file on the application server. This parameter takes a string
value. If you specify only a name or a relative path name for
the source file, the file will be searched for in or relative to:

• The directory indicated by the value of the environment
variable specified by the LocalDirEnvVar parameter.

• The directory indicated by the value of the TMP
environment variable if the LocalDirEnvVar parameter
has not been specified.

Important! If a reference to the uploaded file is to be stored
in a file reference table, then the PeopleCode that calls
PutAttachment must restrict the length of the file name portion
of the value of the DirAndLocalFileName parameter to 64
characters. Otherwise, that file name will be too long to be
stored in that file reference table as a user file name.

Copyright © 1988, 2022, Oracle and/or its affiliates. 653



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

LocalDirEnvVar This optional parameter takes a string value.

If LocalDirEnvVar is specified, then its value will be prefixed
to the value of the DirAndLocalFileName parameter to form
the full path name of the source file on the application server’s
file system. With this parameter, you can avoid the need to
hard-code the full path name.

If LocalDirEnvVar is not specified and the value of the
DirAndLocalFileName parameter is already a full path file
name, then that value will itself be used as the full path name
of the source file on the application server. If LocalDirEnvVar
is not specified and the value of the DirAndLocalFileName
parameter is not a full path file name, then the value of the
TMP environment variable will be prefixed to the value of the
DirAndLocalFileName parameter to form the full path name of
the source file on the application server.

Note: Do not specify LocalDirEnvVar if you use an absolute
path for the DirAndLocalFileName parameter.

Note: In order to use the optional parameter PreserveCase,
 you must pass some value for LocalDirEnvVar. If you want
to use the default behavior of LocalDirEnvVar and also use
PreserveCase, you can specify "" (the empty string) for
LocalDirEnvVar. Then the function behaves as if no value
is specified. In this situation, if you wish to use the TMP
environment variable, it must be explicitly specified.

PreserveCase Specify a Boolean value to indicate whether the case of the
extension of the file specified in DirAndSysFileName is
preserved at the storage location: True, preserve the case,
 False, convert the file name extension in DirAndSysFileName
to all lower case letters.

The default value is False.

For a particular file, save the value specified for this parameter
so that it may be used when later calling other file-processing
built-in functions on this file.

Warning! If you use the PreserveCase parameter, it is
important that you use it in a consistent manner with all the
relevant file-processing functions or you may encounter
unexpected file-not-found errors.

This is an optional parameter.

654  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

AllowLargeChunks Specify a Boolean value to indicate whether to allow large
chunks.

If the value specified in the Maximum Attachment Chunk Size
field on the PeopleTools Options page is larger than is allowed
for retrieval, then the system breaks the file upload into the
largest sized chunks allowed. If AllowLargeChunks is set to
True, this behavior can be overridden so that it is possible for
an end user to upload a file in chunks that are too large for
the system to retrieve. If AllowLargeChunks is set to False,
 the system will use the largest size chunk that is allowed for
retrieval, or the configured chunk size, whichever is smaller.

The default value is False.

Note: If the chunks are too big to be retrieved, then any file
retrieval built-in function, such as GetAttachment, will fail.

Note: The AllowLargeChunks parameter is only applicable
when the storage location is a database record. It has no
impact when the storage location is an FTP site or an HTTP
repository, since attachments at those locations are never
chunked.

See "PeopleTools Options" (System and Server
Administration)

This is an optional parameter.

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

Copyright © 1988, 2022, Oracle and/or its affiliates. 655



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due to
some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error on
the HTTP repository.

If the HTTP repository resides on a
PeopleSoft web server, then you can
configure tracing on the web server
to report additional error details.

See "Enabling Tracing on the
Web Server or Application
Server" (PeopleCode Developer’s
Guide).

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where %Attachment_
FileTransferFailed could be returned:

• Failed due to mismatch in file sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

656  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

4 %Attachment_NoDiskSpaceAppServ No disk space on the application server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSystNotFound could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

8 %Attachment_DestSysFailedLogin Unable to login to destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSysFailedLogin could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in certificates
used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where %Attachment_
FileNotFound could be returned:

• Remote file not found.

• Failed to read remote file.

Copyright © 1988, 2022, Oracle and/or its affiliates. 657



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The following uploads the file, HRarchive/NewHire/11042000resume.txt, to the FTP server
from c:\NewHires\resume.txt on the application server machine.

&retcode = PutAttachment("ftp://anonymous:hobbit1@ftp.ps.com/HRarchive/", "NewHire/⇒

11042000resume.txt", "C:\NewHires\resume.txt");

Related Links
"Enabling Tracing on the Web Server or Application Server" (PeopleCode Developer’s Guide)
CleanAttachments
CopyAttachments
DeleteAttachment
DetachAttachment
GetAttachment
MAddAttachment
ViewAttachment
"Understanding the File Attachment Functions" (PeopleCode Developer’s Guide)

Quote

Syntax

Quote(String)

Description

Use the Quote function to enclose a string in single quotation marks. This function also can be used to put
quotation marks around SQL statements.

Parameters

Parameter Description

String Specify the string you want to enclose in single quotation
marks.

Returns

The string specified by String enclosed in single quotation marks.

Example

The following code returns 'Bob':

&QuotedString = Quote("Bob");

658  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The following code returns 'Bob''s' (two single quotes to represent the apostrophe)

&QuotedString = Quote("Bob's");

The following code returns '%'' OR USER ID LIKE ''%':

&QuotedString = Quote("%' OR USERID LIKE '%");

PeopleCode Built-in Functions and Language Constructs: R

The PeopleCode built-In functions and language constructs beginning with the letter R are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

Radians

Syntax

Radians(angle)

Description

Use the Radians function to convert the given angle from degree measurement to radian measurement.

Parameters

Parameter Description

angle The size of an angle in degrees.

Returns

The size of the given angle in radians.

Example

The following example returns the equivalent size in radians of an angle measuring 65.5 degrees:

&RADIAN_SIZE = Radians(65.5);

The following example returns the value of pi, that is, 180 degrees expressed as radians:

&PI = Radians(180);

Copyright © 1988, 2022, Oracle and/or its affiliates. 659



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: This example represents pi with a high degree of accuracy, but no computer system can represent
irrational numbers exactly. Thus, the results of extended calculations based on pi have the potential for a
cumulative reduction in precision.

Related Links
Acos
Asin
Atan
Cos
Cot
Degrees
Sin
Tan

Rand

Syntax

Rand( )

Description

Use the Rand function to generate a random number greater than or equal to 0 and less than 1. To generate
a random integer that is greater than or equal to 0 but less than x, use Int(Rand()*x).

Returns

Returns a random Number value greater than or equal to 0 and less than 1.

Example

The example sets &RANDOM_NUM to a random value less than 100.

&RANDOM_NUM = Int(Rand( )*100)

Related Links
Int

RecordChanged

Syntax

The syntax of the RecordChanged function varies, depending on whether you use a scroll path reference
or a contextual reference to designate the row being tested.

Using a scroll path reference, the syntax is:

RecordChanged(scrollpath, target_row)

660  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row,]] RECORD.ta⇒

rget_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

Using a contextual reference the syntax is:

RecordChanged(RECORD.target_recname)

A contextual reference specifies the current row on the scroll level designated by RECORD.
target_recname.

An older construction, in which a record field expression is passed, is also supported. The record field is
any field in the row where the PeopleCode program is executing (typically the one on which the program
is executing).

RecordChanged(recordname.fieldname)

Description

Use the RecordChanged function to determine whether the data in a specific row has been modified since
it was retrieved from the database either by the user or by a PeopleCode program.

Note: This function remains for backward compatibility only. Use the IsChanged record class property
instead.

This is useful during save processing for making updates conditional on whether rows have changed.

Note: The word "record" is used in this function name in a misleading way. Remember that this function
(like the related functions RecordDeleted and RecordNew) checks the state of a row, not a record.

Related Links
"IsChanged" (PeopleCode API Reference)
"DeleteEnabled" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)
"Understanding Current Context" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

Copyright © 1988, 2022, Oracle and/or its affiliates. 661



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

RECORD .target_recname The primary scroll record of the scroll level where the row
being referenced is located. As an alternative, you can use
SCROLL. scrollname.

Returns

Returns a Boolean value:

• True if any data in the target row has been changed.

• False if no data in the target row has been changed.

Example

This example shows a RecordChanged call using a contextual reference:

If RecordChanged(RECORD.BUS_EXPENSE_DTL) Then
   WinMessage("Changed row msg from current row.", 64);
End-If;

The following example, which would execute on level one, checks rows on level two to determine which
have been changed:

For &I = 1 To ActiveRowCount(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1), RECORD.BU⇒

S_EXPENSE_DTL);
   If RecordChanged(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1), RECORD.BUS_EXPENSE⇒

_DTL, &I) Then
      WinMessage("Changed row message from level one.", 64);
   End-If;
End-For;

Related Links
FieldChanged
RecordDeleted
RecordNew

RecordDeleted

Syntax

The syntax of the RecordDeleted function varies, depending on whether you use a scroll path reference or
a contextual reference to designate the row being tested.

Using a scroll path reference, the syntax is:

RecordDeleted(scrollpath, target_row)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row,]] RECORD.ta⇒

662  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

rget_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

Using a contextual reference the syntax is:

RecordDeleted(RECORD.target_recname)

A contextual reference specifies the current row on the scroll level designated by RECORD.
target_recname.

An older construction, in which a record field expression is passed, is also supported. The record field is
any field in the row where the PeopleCode program is executing (typically the one on which the program
is executing).

RecordDeleted(recordname.fieldname)

Description

Use the RecordDeleted function to verify if a row of data has been marked as deleted, either by an end-
user row delete (F8) or by a call to DeleteRow.

Note: This function remains for backward compatibility only. Use the IsDeleted record class property
instead.

RecordDeleted is useful during save processing to make processes conditional on whether a row has been
deleted.

Deleted rows are not actually removed from the buffer until after the component has been successfully
saved, so you can check for deleted rows all the way through SavePostChange PeopleCode.

RecordDeleted is not typically used in a loop, because it is easier to put it on the same scroll level as the
rows being checked in SavePreChange or SavePostChange PeopleCode: these events execute PeopleCode
on every row in the scroll, so no looping is necessary.

Note: To avoid confusion, note that this function (like the related functions RecordChanged and
RecordNew) checks the state of a row, not a record.

Related Links
"IsDeleted" (PeopleCode API Reference)
"IsDeleted" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)
"Understanding Current Context" (PeopleCode Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 663



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

RECORD. target_recname The primary scroll record of the scroll level where the row
being referenced is located. As an alternative, you can use
SCROLL. scrollname.

Returns

Returns a Boolean value:

• True if the target row has been deleted.

• False if the target row has not been deleted.

Example

This example shows a RecordDeleted call using a contextual reference

If RecordDeleted(RECORD.BUS_EXPENSE_DTL) Then
   WinMessage("Deleted row msg from current row.", 64);
End-If;

The following example, which would execute on level zero, checks rows on level one to determine which
have been deleted:

For &I = 1 To TotalRowCount(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1), RECORD.BUS⇒

_EXPENSE_DTL);
   If RecordDeleted(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1), RECORD.BUS_EXPENSE⇒

_DTL, &I) Then
      WinMessage("Deleted row message from level one.", 64);
   End-If;
End-For;

Note that the loop is delimited by TotalRowCount. For loops delimited by ActiveRowCount don’t process
deleted rows.

Related Links
FieldChanged
RecordChanged
RecordNew
TotalRowCount
ActiveRowCount

664  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

RecordNew

Syntax

The syntax of the RecordNew function varies, depending on whether you use a scroll path reference or a
contextual reference to designate the row being tested.

Using a scroll path reference, the syntax is:

RecordNew(scrollpath, target_row)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row,]] RECORD.ta⇒

rget_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

Using a contextual reference the syntax is:

RecordNew(RECORD.target_recname)

A contextual reference specifies the current row on the scroll level designated by RECORD.
target_recname.

An older construction, in which a record field expression is passed, is also supported. The record field is
any field in the row where the PeopleCode program is executing (typically the one on which the program
is executing).

RecordNew(recordname.fieldname)

Description

Use the RecordNew function to check a specific row to determine whether it was added to the component
buffer since the component was last saved.

Note: This function remains for backward compatibility only. Use the IsNew row class property instead.

This function is useful during save processing to make processes conditional on whether or not a row is
new.

Note: To avoid confusion, remember that this function (like the related functions RecordChanged and
RecordDeleted) checks the state of a row, not a record. In normal PeopleSoft usage, the word "record"
denotes a table-level object (such as a table, view, or Derived/Work record).

Related Links
"IsNew" (PeopleCode API Reference)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)
"Understanding Current Context" (PeopleCode Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 665



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

RECORD. target_recname The primary scroll record of the scroll level where the row
being referenced is located. As an alternative, you can use
SCROLL. scrollname.

Returns

Returns a Boolean value:

• True if the target row is new.

• False if the target row is not new.

Example

This example shows a RecordNew call using a contextual reference:

If RecordNew(RECORD.BUS_EXPENSE_DTL) Then
   WinMessage("New row msg from current row.", 64);
End-If;

The following example, which would execute on level one, checks rows on level two to determine which
have been added:

For &I = 1 To ActiveRowCount(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1), RECORD.BU⇒

S_EXPENSE_DTL);
   If RecordNew(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1), RECORD.BUS_EXPENSE_DTL⇒

, &I) Then
      WinMessage("New row message from level one.", 64);
   End-If;
End-For;

Related Links
FieldChanged
RecordChanged
RecordDeleted

RefreshTree

Syntax

RefreshTree(Record.bound_recname)

666  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the RefreshTree function to update a dynamic tree.

Note: Dynamic tree controls have been deprecated. Use the GenerateTree function or Tree Viewer.

Related Links
GenerateTree
Understanding View Trees

RelNodeTranDelete

Syntax

RelNodeTranDelete(RelationshipId , SrcTrxType, SrcNode, SrcRqstMsgName, SrcRqstMsgV⇒

er,
TgtNode, TgtRqstMsgName, TgtRqstMsgName, TgtRqstMsgVer)

Description

Use the RelNodeTranDelete function to delete a transaction modifier.

Parameters

Parameter Description

RelationshipId Specify the relationship ID as a string.

ScrTrxType Specify the source transaction type as a string.

SrcNode Specify the source node as a string.

ScrRqstMsgName Specify the source request message name as a string.

ScrRqstMsgVer Specify the source request message version as a string.

TgtNode Specify the target node as a string.

TgtRqstMsgName Specify the target request message name as a string.

TgtRqstMsgName Specify the target message name as a string.

TgtRqstMsgVer Specify the target request message version as a string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 667



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A Boolean value, True if the function completed successfully, False otherwise.

Example

&ret = RelNodeTranDelete("QE_TEST", "CMS_TEST", "CMS_TEST_LOCAL", "OA",  "ROLESYNCH⇒

_MSG",  "VERSION_1", "CMS_TEST_LOCAL2",   "ROLESYNCH_MSG2",  "VERSION_1",);

Related Links
NodeTranDelete
"Managing Service Operation Versions" (Integration Broker)

RemoteCall

Syntax

RemoteCall(dispatcher_name [, service_paramlist] [, user_paramlist])

where service_paramlist and user_paramlist are arbitrary-length lists of parameters in the form:

var1, val1 [, var2, val2]. . .

Description

Use the RemoteCall function to call a Tuxedo service from a PeopleSoft application. A typical use of
Remote Call is to run data-intensive, performance-sensitive programs near or on the database server.

Note: After PeopleTools 8 you can no longer use RemoteCall to start an Application Engine program.
You must use CallAppEngine instead.

Because complex PeopleCode processes can now be run on the application server in three-tier mode, the
RemoteCall PeopleCode function has more limited utility. However, RemoteCall can still be very useful,
because it provides a way to take advantage of existing COBOL processes.

• In three-tier mode, RemoteCall always runs on the application server.

• In two-tier mode, RemoteCall always runs on the client.

This means that it is no longer necessary to set a location for the remote call in PeopleSoft Configuration
Manager.

Each RemoteCall service can have zero or more standard parameters and any number of user parameters.
The standard parameters are determined by the RemoteCall dispatcher, the user parameters by the
COBOL program being run.

There is only one RemoteCall dispatcher delivered with PeopleTools 7, PSRCCBL, which executes a
COBOL program using the connect information of the current end user.

In the application server configuration file, you can specify where RemoteCall can find the COBOL
executables

668  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

RemoteCall can be used from any type of PeopleCode except SavePostChange, SavePreChange,
Workflow, and RowSelect. However, remote programs that change data should not be run as part of the
SaveEdit process, because the remote program may complete successfully even though an error occurs in
a later part of the save process. For remote programs that change data, the normal place for them would be
in the FieldChange PeopleCode behind a command push button, or in a pop-up menu item.

After you use RemoteCall, you may want to refresh your page. The Refresh method, on a rowset object,
reloads the rowset (scroll) using the current page keys. This causes the page to be redrawn. The following
code refreshes the entire page:

GetLevel0().Refresh()

If you only want a particular scroll to be redrawn, you can refresh just that part.

Related Links
CallAppEngine
"Refresh" (PeopleCode API Reference)
"Remote Call Options" (System and Server Administration)

Parameters

The parameters passed to RemoteCall can be broken into three parts: the RemoteCall Dispatcher Name,
the standard Parameter Lists for the service, and the User Parameter Lists for the program being called
on the service.

Dispatcher Name

The dispatcher_name parameter is a string value that specifies the type of RemoteCall performed. For
PeopleTools 7 there is only one RemoteCall dispatcher delivered, PSRCCBL, which executes a COBOL
program using the connect information of the current end user, so the value you pass to this parameter
should always be "PSRCCBL". Future versions of PeopleTools may provide support for Red Pepper,
SQR, or customer supplied remote calls.

Parameter Lists

Both the standard parameter list and user parameter list have the same form. Think of the parameters
passed to the service as being passed as pairs of variable names and values of input and output
parameters:

                  variable_name, value

Where:

• variable_name is a string literal or string variable that contains the name of the input or output
variable as referenced in the remote program. For example, if the remote program expects a variable
named "USERNAME", then the PeopleCode should use "USERNAME" or &VARIABLE (which had
been assigned the value "USERNAME").

• For input variables, value is the value to be passed to the remote program with the variable name. It
can be either a variable or literal with a data type that corresponds to the variable_name variable. For

Copyright © 1988, 2022, Oracle and/or its affiliates. 669



PeopleCode Built-in Functions and Language Constructs Chapter 1

output variables, value is the value returned to the PeopleCode program from the remote program. It
must be a variable in this case, representing the buffer into which the value is returned.

An arbitrary number of parameters can be passed to the service. There is, however, a limitation on the
number of variables that can be passed in PeopleCode, which is limited by the size of the PeopleCode
parameter stack, currently 128.

In the case of the PSRCCBL dispatcher, there are three standard parameters, listed in the following table:

Dispatcher Parameter Required Description

PSRCCBL PSCOBOLPROG Y Name of the COBOL program
to run.

PSRCCBL PSRUNCTL N Run-control parameter to pass
to the COBOL program.

PSRCCBL INSTANCE N Process instance parameter to
pass to the COBOL program.

User Parameter List

For PSRCCBL, the remote COBOL program must match the user parameters to the usage of its
application. The names of the parameters are sent to the server and can be used by the COBOL program.
The COBOL program returns any modified (output) parameters by name. Parameters which are not
returned are not modified, and any extra returned parameters (that is, parameters beyond the number
passed or of different names) are discarded with no effect.

Returns

None.

Example

You could use the following PeopleCode to execute the program "CBLPROG1":

Rem Set the return code so we are sure it is sent back.
&Returncode = -1;
Rem Set the parameters that will be sent across.
&param1 = "John";
&param2 = "Smith";
Rem Set the standard parameters that indicate program name and run-control.
&RemoteCobolPgm = "CBLPROG1";
/* call the remote function */
RemoteCall ("PSRCCBL",
"PSCOBOLPROG", &RemoteCobolPgm,
"PSRUNCTL", workrec.runctl,
"FirstName", &param1,
"LastName", &param2,
"Returncode", &Returncode,
"MessageSet", &msgset,
"MessageID", &msgid,
"MessageText1", &msgtext1,
"MessageText2", &msgtext2);

670  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

if &Returncode <> 0
   WinMessage(MsgGet(&msgset, &msgid, "default message", &msgtext1, &msgtext2));
end-if;

Related Links
Exec
WinExec
"Using the RemoteCall Feature" (PeopleCode Developer’s Guide)

RemoveDirectory

Syntax

RemoveDirectory(path [, remove_parameters])

where remove_parameters can be in the form:

path_type [+ directory_type]

Description

Use the RemoveDirectory function to remove the directory specified by path. You can also specify
whether to remove just the directory, or to delete the directory and all subdirectories, including any files,
that is, to remove the entire directory tree.

Parameters

Parameter Description

path Specify the directory to be removed.

Copyright © 1988, 2022, Oracle and/or its affiliates. 671



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

remove_parameters Specify additional considerations about the directory to be
removed.

Specify whether the path is an absolute or relative path. Values
are:

• %FilePath_Relative (default)

• %FilePath_Absolute

The default is %FilePath_Relative.

If you specify a relative path, that path is appended to the
path constructed from a system-chosen environment variable.
 A complete discussion of relative paths and environment
variables is provided in documentation on the File class.

See "Working With Relative Paths" (PeopleCode API
Reference).

If the path is an absolute path, whatever path you specify is
used verbatim. You must specify a drive letter as well as the
complete path. You can’t use any wildcards when specifying a
path.

The Component Processor automatically converts platform-
specific separator characters to the appropriate form for
where your PeopleCode program is executing. On a Windows
system, UNIX "/" separators are converted to "\", and on a
UNIX system, Windows "\" separators are converted to "/".

Note: The syntax of the file path does not depend on the
file system of the platform where the file is actually stored;
it depends only on the platform where your PeopleCode is
executing.

Specify whether to remove only the specified directory or to
remove the directory and all its subdirectories. The default is
to just remove the specified directory.

The valid values are:

• %Remove_Subtree

• %Remove_Directory (default)

Returns

None.

Example

The following example is for a Windows operating system:

RemoveDirectory("C:\temp\mydir\temp", %filepath_absolute + %remove_subtree);

672  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The following example is for a UNIX operating system:

RemoveDirectory("/temp/mydir/temp", %filepath_absolute + %remove_subtree);

Related Links
CreateDirectory
DeleteAttachment
FileExists
FindFiles
"Understanding File Layout" (PeopleCode API Reference)

RenameDBField

Syntax

RenameDBField(Field.NewFieldName, Field.OldFieldName [, FixRefsOnly])

Description

Use the RenameDBField function to modify a field definition to have a new name. This function also
cleans up most references, such as in PeopleCode programs and on records so they now use the new
name.

Note: Because using this function changes records that are used to build application tables, you must
rebuild (alter) the specified project before these changes can be used.

Considerations Using this Function

In SQL associated with records of type view, the field name is not changed. You must fix those by hand.

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

This operation is time consuming.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

NewFieldName Specify the new field name to be used. This name must be
prefixed by the reserved word Field.

OldFieldName Specify the name of the field to be changed. This name must
be prefixed by the reserved word Field.

Copyright © 1988, 2022, Oracle and/or its affiliates. 673



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

FixRefsOnly Specify to rename all references of OldFieldName to
NewFieldName whether or not NewFieldName exists or not.
 This parameter takes a Boolean value. The default value is
False.

For example, suppose a company renames a field PROJECT to
MYPROJECT. Then they receive a patch which has records,
 pages, code, and so on that references Field.PROJECT.
 In this case you could set this parameter to True, rename
MYPROJECT to PROJECT, and have all the references to
the field PROJECT redirect to the field MYPROJECT even if
neither field exists in the database, nor if only one exists.

Note: Using this parameter is a completely free-form path to
renaming references. Be aware that the system won't work if
pages and records are not eventually pointing to a valid field.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

%MDA_FieldNotFound The field specified by OldFieldName wasn't found in the
specified project or page list.

%MDA_Duplicate The field specified by NewFieldName already exists.

Example

&ret = RenameDBField(Field.OrgId, Field.DeptId, True);
If (&ret = %MDA_Success) Then
    MessageBox(0, "Metadata Fn Status", 0, 0, "RenameDBField succeeded");
Else
    MessageBox(0, "Metadata Fn Status", 0, 0, "RenameDBField failed");
End-If;

The following example de-references the field name for the function.

&oldcf = "CF1";
&newcf = "XYZ_STORE_ID";
&new = "FIELD." | &newcf;
&old = "FIELD." | &oldcf;
&ret = RenameDBField(@(&new), @(&old));
If (&ret = 0) Then
   MessageBox(0, "RenameDBField", 0, 0, "Succeeded");
Else
   MessageBox(0, "RenameDBField", 0, 0, "Failed");

674  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

End-If;

Related Links
RenamePage
RenameRecord

RenamePage

Syntax

RenamePage(Page.NewPageName, Page.OldPageName)

Description

Use the RenamePage function to modify a page definition to have a new name. This function also cleans
up most references so they now use the new name.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

This operation is time consuming

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

NewPageName Specify the new page name to be used. This name must be
prefixed by the reserved word Page.

OldPageName Specify the name of the page to be changed. This name must
be prefixed by the reserved word Page.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

Copyright © 1988, 2022, Oracle and/or its affiliates. 675



PeopleCode Built-in Functions and Language Constructs Chapter 1

Value Description

%MDA_Failure Bulk operation did not complete successfully.

%MDA_PageNotFound The page specified with OldPageName wasn't found.

Example
&ret =  RenamePage(PAGE.OrgIdTbl, PAGE.DeptIdTbl);
If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "RenamePage succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "RenamePage failed");
End-If;

Related Links
RenameDBField
RenameRecord

RenameRecord

Syntax

RenameRecord(Record.NewRecordName, Record.OldRecordName)

Description

Use the RenameRecord function to modify a record definition to have a name. This function also cleans
up most references so they now use the new name.

Note: Because using this function changes records that are used to build application tables, you must
rebuild (alter) the specified project before these changes can be used.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

This operation is time consuming.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

676  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

NewRecordName Specify the new record name to be used. This name must be
prefixed by the reserved word Record.

OldRecordName Specify the name of the record to be changed. This name must
be prefixed by the reserved word Record.

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

%MDA_RecordNotFound The record specified with OldRecordName wasn't found.

Example

&ret = RenameRecord(RECORD.OrgIdTbl, RECORD.DeptIdTbl);
If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "RenameRecord succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "RenameRecord failed");
End-If;

Related Links
RenameDBField
RenamePage

Repeat

Syntax

Repeat
   statement_list
Until logical_expression

Description

Use the Repeat loop to cause the statements in statement_list to be repeated until logical_expression is
True. Any kind of statements are allowed in the loop, including other loops. A Break statement inside the

Copyright © 1988, 2022, Oracle and/or its affiliates. 677



PeopleCode Built-in Functions and Language Constructs Chapter 1

loop causes execution to continue with whatever follows the end of the loop. If the Break is in a nested
loop, the Break does not apply to the outside loop.

Example

The following example repeats a sequence of statements until a complex Boolean condition is True:

Repeat
   &J = &J + 1;
   &ITEM = FetchValue(LOT_CONTROL_INV.INV_ITEM_ID, &J);
   &LOT = FetchValue(LOT_CONTROL_INV.INV_LOT_ID, &J);
Until (&ITEM = &INV_ITEM_ID And &LOT = &INV_LOT_ID) Or &J = &NUM_LOT_ROWS;

Replace

Syntax

Replace(oldtext, start, num_chars, newtext)

Description

Use the Replace function to replace a specified number of characters in a string.

Parameters

Parameter Description

oldtext A String value, part of which is to be replaced.

start A Number designating the position in oldtext from which to
start replacing characters.

num_chars A Number, specifying how many characters to replace in
oldtext.

newtext A String value that replaces num_chars characters.

Returns

Returns a String value in which specific characters in oldtext are replaced with newtext.

Example

After the following statement &NEWDATESTR equals "1997":

&NEWDATESTR =Replace("1996",3,2,"97");

678  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

If this example, where the number of characters in newtext is less than num_chars, &SHORTER equals
"txtx":

&SHORTER = Replace("txt123",4,3,"x");

In this example, where the number of characters in newtext is greater than num_chars, &LONGER equals
"txtxxxx":

&LONGER = Replace("txt123",4,3,"xxxx");

Related Links
Substitute

Rept

Syntax

Rept(str, reps)

Description

Use the Rept function to replicate a text string a specified number of times and combine the result into a
single string.

Parameters

Parameter Description

str A String value to be replicated.

reps A Number value specifying how many times to replicate str.
If reps is 0, Rept returns an empty string. If reps is not a whole
integer, it is truncated.

Returns

Returns a String value equal to str repeated reps times.

Example

This example sets &SOMESTARS to "**********".

&SOMESTARS = Rept("*",10);

ResizeImage

Syntax

ResizeImage(URL.source_URL, URL.dest_URL, array_of_sizes [, type][, aspect_ratio])

Copyright © 1988, 2022, Oracle and/or its affiliates. 679



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the ResizeImage function to create one or more resized copies of the source image. Depending on the
image source, ResizeImage supports the following image formats only:

• Record field: BMP and JPEG.

• File system folder: BMP, GIF, JPEG, and PNG.

The resized images can be created in file system folder or in a database table. When the destination
location is a file system folder, then the name of the resized image is created from the source image file
name along with the resize dimensions. For example, if file1.jpg is resized to 40 x 60 pixels, then the
resulting file name would be file14060.jpg. If the same file is resized to 10%, the resulting file name
would be file110.jpg.

When a database table is specified as the destination location, the PS_PT_IMG_TMPSTORE table
is used to temporarily store the images instead of the specified database table. Using the return code
of the function invocation as a key value, your application must retrieve the resized images from the
PS_PT_IMG_TMPSTORE table.

Column Name Data Type Description

PT_IMG_UUID* Nbr The return value of the ResizeImage method. All the resized images stored in
database for a specific invocation are stored with this identifier.

PT_IMG_FILESEQNO* Nbr The sequence number for multiple resizings of the same source image file.

PT_IMG_WIDTH* Nbr The image width in pixels.

PT_IMG_HEIGHT* Nbr The image height in pixels.

PT_IMG_IMGNAME Char The file name of the source image.

PT_IMG_IMGDATA Long The image data for the re-sized image.

PSIMAGEVER Nbr The image version.

LAST_UPDATE_DTTM DtTm The last update timestamp.

OPRID Char The operator ID

* Represents a key field. The composite key for a specific resized image would consist of:
PT_IMG_UUID + PT_IMG_FILESEQNO + PT_IMG_WIDTH + PT_IMG_HEIGHT +
PT_IMG_IMGNAME.

Three image manipulation testing pages provide a sample application that allows an administrator to
predefine resize dimensions (Image Size page), predefine groupings of dimensions (Image Group page),
and then test the usage of these predefined groups for resizing images (Test Utility page). See "Using
Image Manipulation Utilities" (System and Server Administration) for more information.

680  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

URL.source_URL Specifies the location of the source image (or images) as a
URL object. The source location can be either a database
record or a folder on the application server’s file system
containing one or more image files.

When the URL object specifies a database record, you must
define three URL properties: to specify the column name
from which image data has to be read (), the column name
from which the image name has to be taken (), and destination
image type ().

• IMG_DATA_COLUMN: The record field containing the
image.

• IMG_NAME_COLUMN: The record field containing the
name of the image.

• IMG_FILE_FORMAT: The record field specifying
the image format. This field serves as a filter, and only
images of the specified format are resized.

Note: If the source record includes more than one row of
data, then the IMG_FILE_FORMAT field is ignored.

URL.dest_URL Specifies the location of the resized image (or images) as a
URL object. The destination location can be either a database
record or a folder on the application server’s file system.

Important! When the destination location is specified as a
database record, the PS_PT_IMG_TMPSTORE table is used
to temporarily store the images instead of the specified record.
 Using the return code of the function invocation as a key
value, your application must retrieve the resized images from
the PS_PT_IMG_TMPSTORE table. See the “Description”
for more information on using the PS_PT_IMG_TMPSTORE
table.

Copyright © 1988, 2022, Oracle and/or its affiliates. 681



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

array_of_sizes Specifies resize dimensions as an array of integer. The
contents of the array are retrieved in pairs or one-by-one
depending on the value of the type parameter. In addition, the
array must be terminated with two 0s or one 0, depending on
the type parameter.

• If type is 0 (%Resize_ByDimensions), the values in the
array are retrieved in pairs representing the width and
height (in pixels) of the resize dimensions. Terminate
the array with two 0s. For example, the following array
would resize the images to 20x20 pixels, 80x100 pixels,
 and to a width of 40 pixels maintaining the source
images’ aspect ratio:

&resize_array = CreateArray(20, 20,⇒

 80, 100, 40, 0, 0, 0);

• If type is 1 (%Resize_ByPercentage), the values in the
array are retrieved one-by-one representing the percentage
to resize the images. Terminate the array with a single 0.
 For example, the following array would resize the images
to 10% and 50%:

&resize_array = CreateArray(10, 50,⇒

 0);

Important! Oracle recommends that you do not resize images
to dimensions larger than the original size or to a percentage
larger than 100%.

type Specifies an optional numeric value indicating how to retrieve
the values from the array_of_sizes array:

• %Resize_ByDimensions (0) – The values in the array are
retrieved in pairs representing the width and height (in
pixels) of the resize dimensions.

• %Resize_ByPercentage (1) – The values in the array are
retrieved one-by-one representing the percentage to resize
the images.

682  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

aspect_ratio Specifies an optional Boolean value indicating whether to
maintain the aspect ratio of the source image:

• If aspect_ratio is True and either the height or width
is 0, the aspect ratio of the source image is maintained.
 Otherwise, if both height and width are non-zero values,
 then aspect_ratio is ignored and the image is resized to
the specified aspect ratio.

• If aspect_ratio is False, then a resize is performed only if
both height and width are non-zero values. Otherwise, if
either the height or width is 0, no resize is performed.

True is the default value. In addition, the aspect_ratio
parameter is ignored when the type parameter is 1 (%Resize_
ByPercentage).

Returns

An Integer value representing the unique identifier for the resize invocation. A negative number indicates
that the function terminated with an error.

Example

In the following example, a Resize method is defined to invoke the ResizeImage function. The source
and destination URLs are passed into the method and then on to the function invocation. The third input
parameter to the method is a group of predefined sizes. These predefined sizes are retrieved from a table
and are converted into the &ImgDimensions array, which is the third required input parameter to the
ResizeImage function.

method Resize
   /+ &SourceImgPath as String, +/
   /+ &DestImagPath as String, +/
   /+ &ImgGroupDefn as String +/
   /+ Returns Number +/

   Local number &retcode;
   Local Rowset &RS1, &RS2;
   Local Record &REC_IMGGROUP, &REC_SIZEDEFN;
   Local string &ImgSizeName;
   Local number &I, &width, &height;
   Local array of number &ImgDimensions;
   &ImgDimensions = CreateArray(0);

   &RS1 = CreateRowset(Record.PT_IMG_IMGGROUP);
   &RS1.Fill("where PT_IMG_GROUPNAME = :1", &ImgGroupDefn);

   Local Row &dimrow;

   For &I = 1 To &RS1.ActiveRowCount
      &dimrow = &RS1.GetRow(&I);
      &ImgSizeName = &dimrow.PT_IMG_IMGGROUP.PT_IMG_SIZENAME.Value;

      SQLExec("SELECT PT_IMG_WIDTH, PT_IMG_HEIGHT FROM PS_PT_IMG_SIZEDEFN WHERE PT_⇒

IMG_SIZENAME = :1", &ImgSizeName, &width, &height);

      &ImgDimensions.Push(&width);

Copyright © 1988, 2022, Oracle and/or its affiliates. 683



PeopleCode Built-in Functions and Language Constructs Chapter 1

      &ImgDimensions.Push(&height);
   End-For;

   If Exact(Left(&SourceImgPath, 4), "URL.") Then
      If Exact(Left(&DestImagPath, 4), "URL.") Then
         &retcode = ResizeImage(@(&SourceImgPath), @(&DestImagPath), &ImgDimensions⇒

);
      Else
         &retcode = ResizeImage(@(&SourceImgPath), &DestImagPath, &ImgDimensions);
      End-If
   Else
      If Exact(Left(&DestImagPath, 4), "URL.") Then
         &retcode = ResizeImage(&SourceImgPath, @(&DestImagPath), &ImgDimensions);
      Else
         &retcode = ResizeImage(&SourceImgPath, &DestImagPath, &ImgDimensions);
      End-If
   End-If;

   Return &retcode;

end-method;

Related Links
"Understanding URL Strings Versus URL Objects" (PeopleCode Developer’s Guide)
"URL Maintenance" (System and Server Administration)
"Using Image Manipulation Utilities" (System and Server Administration)

ReSubmitPubHeaderXmlDoc

Syntax

ReSubmitPubHeaderXmlDoc(PubID, PubNode, ChannelName, VersionName)

Description

Use the ReSubmitPubHeaderXmlDoc function to programmatically resubmit a message instance, as the
message instance existed before any transformations were performed, much the same as you can do in the
message monitor. This function resubmits the corresponding publication contract header.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Resubmit method instead.

You may want to use this method after an end user has finished fixing any errors in the message data, and
you want to resubmit the message, rerunning the PeopleCode.

The function is only available when the XML message has one of the following statuses:

• Error

• Timeout

• Edited

• Canceled

684  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
"Resubmit" (PeopleCode API Reference)

Parameters

Parameter Description

PubID Specify the PubID as a number.

PubNode Specify the Pub node as a string.

ChannelName Specify the channel name as a string.

VersionName Specify the version name as a string.

Returns

A Boolean value: True if function completed successfully, False otherwise.

Related Links
ReSubmitPubXmlDoc

ReSubmitPubXmlDoc

Syntax

ReSubmitPubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName, SubNode
[, Segment])

Description

Use the ReSubmitPubXmlDoc function to programmatically resubmit a message, much the same as you
can do in the message monitor.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Resubmit method instead.

This is the message publication as it exists after any transformations have been preformed. This function
resubmits the corresponding publication contract.

You may want to use this method after an end user has finished fixing any errors in the message data, and
you want to resubmit the message, rerunning the PeopleCode.

The function is only available when the message has one of the following statuses:

• Error

• Timeout

Copyright © 1988, 2022, Oracle and/or its affiliates. 685



PeopleCode Built-in Functions and Language Constructs Chapter 1

• Edited

• Canceled

Related Links
"Resubmit" (PeopleCode API Reference)

Parameters

Parameter Description

PubID Specify the PubID as a number.

PubNode Specify the Pub node as a string.

ChannelName Specify the channel name as a string.

VersionName Specify the version name as a string.

MessageName Specify the name of the message as a string.

SubNode Specify the name of the sub node as a string.

Segment Specify an integer representing which segment you want to
access. The default value is one, which means that if you do
not specify a segment, the first segment is accessed.

Returns

A Boolean value: True if function completed successfully, False otherwise.

Related Links
ReSubmitSubXmlDoc
ReSubmitPubHeaderXmlDoc

ReSubmitSubXmlDoc

Syntax

ReSubmitSubXmlDoc(PubID, PubNode, ChannelName, VersionName, MessageName,
SubscriptionName[, Segment])

Description

Use the ReSubmitSubXmlDoc function to programmatically resubmit a message, much the same as you
can do in the message monitor. This function resubmits the corresponding subscription contract.

686  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class Resubmit method instead.

You may want to use this method after an end user has finished fixing any errors in the message data, and
you want to resubmit the message, rerunning the subscription PeopleCode.

The function is only available when the message has one of the following statuses:

• Error

• Timeout

• Edited

• Canceled

Related Links
"Resubmit" (PeopleCode API Reference)

Parameters

Parameter Description

PubID Specify the PubID as a number.

PubNode Specify the Pub node as a string.

ChannelName Specify the channel name as a string.

VersionName Specify the version name as a string.

MessageName Specify the name of the message as a string.

SubscriptionName Specify the name of the subscription as a string.

Segment Specify an integer representing which segment you want to
access. The default value is one, which means that if you do
not specify a segment, the first segment is accessed.

Returns

A Boolean value: True if function completed successfully, False otherwise.

Related Links
ReSubmitPubHeaderXmlDoc
ReSubmitPubXmlDoc

Copyright © 1988, 2022, Oracle and/or its affiliates. 687



PeopleCode Built-in Functions and Language Constructs Chapter 1

Return

Syntax

Return [expression]

Description

Use the Return function to return from the currently active function or method; the flow of execution
continues from the point where the function was called.

If the function or method returns a result, that is, if a return value is specified in the Returns clause of
the function or method definition, expression specifies the value to pass back to the caller and must
be included. If the function or method does not return a result, the expression is not allowed. If Return
appears in a main program, it acts the same as the Exit function.

Example

In the example a Boolean return value is specified in the Returns clause of the Function statement.
The Return statement returns a True or False value to the calling routine, based on the contents of
&UPDATEOK.

Function run_status_upd(&PROCESS_INSTANCE, &RUN_STATUS) Returns Boolean;
   &UPDATEOK = SQLExec( )("update PS_PRCS_RQST set run_status = :1  where process_i⇒

nstance = :2", &RUN_STATUS, &PROCESS_INSTANCE);
   If &UPDATEOK Then
      Return True;
   Else
      Return False;
   End-If;
End-Function;

Related Links
Function
Exit
"method" (PeopleCode API Reference)

Returns

Description

Use the Returns keyword in function definitions and in method declarations and definitions.

Related Links
Function
"class" (PeopleCode API Reference)
"method" (PeopleCode API Reference)

688  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

ReturnToServer

Syntax

ReturnToServer({True | False | &NODE_ARRAY, | &Message})

Description

Use the ReturnToServer function to return a value from a PeopleCode messaging program to the
publication or subscription server.

Note: ReturnToServer is a special case of a built-in function that's no longer supported. The deprecated
handler for OnRequest subscriptions cannot be upgraded. ReturnToServer can only be used in an
OnRequest event fired using the deprecated handler. This means that ReturnToServer no longer works
and is not valid in any case other than when the code has already been written and used in a deprecated
handler.

You would use this in either your publication or subscription routing code, to either return an array of
nodes that the message should be published to, or to do error processing (return False if entire message
wasn’t received.)

What is returned depends on where the PeopleCode program is called from.

From OnRoute Publication:

• True: All nodes the message was published to are returned.

• False: No nodes are returned (generally used with error checking).

• &NODE_ARRAY: The nodes specified in the array are returned.

• &Message: Return a response message. This must be an already instantiated message object.

Note: You can return XmlDoc objects as responses. Only homogeneous type transactions are supported,
that is, you can only return an XmlDoc object as a response if and only if an XmlDoc object was used in
the request. Similarly, you can only return a Message object if and only if a Message object was used in
the request.

From OnRoute Subscription:

• True: The subscription node is returned.

• False: No node is returned. This is generally used with error checking.

Copyright © 1988, 2022, Oracle and/or its affiliates. 689



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

True | False |&NODE_ARRAY | &Message Specify True if you want publication nodes or the subscription
node returned.

Specify False if you do not want any nodes returned, and
nothing written to the database. This is generally used with
error checking.

Specify an object reference to an array of node names if you
want to return a list of nodes to be published to.

Specify a reference to a response message if you want to return
a message.

Returns

None.

Example

The following is an example of a publication routing rule, which would be in the OnRoutePublication. It
is used to create publication contracts.

local message &MSG;
local array &NODE_ARRAY;
&MSG = GetMessage();
&EMPLID = &MSG.GetRowset()(1).QA_INVEST_HDR.EMPLID.Value;
&SELECT_SQL = CreateSQL("select PUBNODE from PS_EMPLID_NODE where EMPLID = :1", &EM⇒

PLID);
&NODE_ARRAY = CreateArray();

While &SELECT_SQL.Fetch(&PUBNODE)
   &NODE_ARRAY.Push(&PUBNODE);
End-While;
ReturnToServer(&NODE_ARRAY);

The following is an example of a subscription routing rule, which would be placed in the
OnRouteSubscribe event:

local message &MSG;

&MSG = GetMessage();
&BUSINESS_UNIT = &MSG.GetRowset()(1).PO_HDR.BUSINESS_UNIT.Value;
SQLExec("Select BUSINESS_UNIT From PS_BUSINESS_UNIT where BUSINESS_UNIT = :1",&BUSI⇒

NESS_UNIT,&FOUND);
If all(&FOUND) Then
   ReturnToServer(True);
Else
   ReturnToServer(False);
End-if;

The following is a basic example of using an XmlDoc object:

Local XmlDoc &xmldoc;
. . .

690  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

/* build xmldoc */
. . .
ReturnToServer(&xmldoc);

Related Links
"Understanding XmlDoc Classes" (PeopleCode API Reference)
"Understanding Managing Messages" (Integration Broker)

ReValidateNRXmlDoc

Syntax

ReValidateNRXmlDoc(NRID, EntityName)

Description

Use the ReValidateNRXmlDoc function to revalidate a non-repudiation XML message. After a document
has been signed and validated, you can use this function to verify it was delivered or received by the
system calling the function. This function is primarily used by the Message Monitor.

Parameters

Parameter Description

NRID Specify the non-repudiation ID for the XML message that you
want to revalidate. This parameter takes a numeric value.

EntityName Specify the name of the entity that signed the data, as a string.
 For PeopleSoft, this is the node name.

Returns

A Boolean value: True if message is revalidated, False otherwise.

Related Links
GetNRXmlDoc
"Understanding XmlDoc Classes" (PeopleCode API Reference)

RevalidatePassword

Syntax

RevalidatePassword()

Copyright © 1988, 2022, Oracle and/or its affiliates. 691



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the RevalidatePassword function to revalidate the password that the current user used to sign onto the
PeopleSoft application.

Note: In certain scenarios such as LDAP authentication and depending on the implementation,
the user ID used for sign-in might differ from the operator ID of user profile in effect after sign-in.
RevalidatePassword automatically accounts for this and requests revalidation based on the sign-in ID.

This function displays a window similar to the following prompting the user for the same password that
the user signed onto the PeopleSoft application:

Restrictions on Use in PeopleCode Events

Control does not return to the line after RevalidatePassword until after the user has filled in a value or
pressed ENTER. This interruption of processing makes RevalidatePassword a “think-time” function
which means that it shouldn’t be used in any of the following PeopleCode events:

• SavePreChange.

• Workflow.

• RowSelect.

• SavePostChange.

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or
a Select (or one of its relatives) Rowset class method.

See "Think-Time Functions" (PeopleCode Developer’s Guide).

Restrictions on Use in Signon PeopleCode

RevalidatePassword does not work in Signon PeopleCode. If you use this function in Signon PeopleCode,
you create an infinite loop.

Returns

Returns a numeric value or a constant: you can check for either.

Value Constant Meaning

0 %RevalPW_Valid Password Validated

692  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Value Constant Meaning

1 %RevalPW_Failed Password Validation Check Failed

2 %RevalPW_Cancelled Password Validation Cancelled

Example

RevalidatePassword is commonly used in the SaveEdit PeopleCode to verify that the user entering the
data is the same as the one who signed onto the PeopleSoft application.

&TESTOP = RevalidatePassword();
Evaluate &TESTOP
   /* Password does not match the current user's password */
When 1
   Error MsgGet(48, 18, "Message not found: This password does not match the curren⇒

t value.");
   Break;
End-Evaluate;

Right

Syntax

Right(str [, num_chars])

Description

Use the Right function to return a specified number of characters from the right side of a string. The
function is useful if, for example, you want to get the last set of characters in a zip code or other fixed-
length identification string. If the string contains Unicode non-BMP characters, each code unit of the
surrogate pair is counted as a separate character and care should be taken not to split the surrogate pair.

Parameters

Parameter Description

str A String value from which you want to get the rightmost
characters.

num_chars A Number value, greater than or equal to zero. If num_chars is
omitted it is assumed to be equal to 1.

Returns

Returns a String value equal to the rightmost num_chars character(s) in str.

Copyright © 1988, 2022, Oracle and/or its affiliates. 693



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

If &ZIP is equal to "90210-4455", the following example sets &SUFFIX to "4455":

&SUFFIX = Right(&ZIP, 4)

Related Links
Left

Round

Syntax

Round(dec, precision)

Description

Use the Round function to round a decimal number to a specified precision.

Parameters

Parameter Description

dec A Number value to be rounded.

precision A number value specifying the decimal precision to which to
round dec.

Returns

Returns a Number value equal to dec rounded up to precision decimal places.

Example

The following examples set the value of &TMP to 2.2, 9, then 24.09:

&TMP = Round(2.15,1);
&TMP = Round(8.789,0);
&TMP = Round(24.09372,2);

Related Links
Int
Mod
Truncate

694  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

RoundCurrency

Syntax

RoundCurrency(amt, currency_cd, effdt)

Description

Different currencies are represented at different decimal precessions. The RoundCurrency function
is a rounding function that takes currency precision into account, using a value stored in the
CURRENCY_CD_TBL PeopleTools table.

Parameters

Parameter Description

amt The amount to be rounded.

currency_cd The currency code.

effdt The effective date of currency rounding.

Returns

Returns a Number value equal to amt rounded to the currency precision for currency_cd.

Example

The following example rounds 12.567 to 12.57, using the appropriate currency precision for US Dollars
("USD"):

&RESULT = RoundCurrency(12.567, "USD", EFFDT);

Related Links
"Understanding Currency-Specific Settings" (Global Technology)

RowFlush

Syntax

RowFlush(scrollpath, target_row)

Where scrollpath is:

[RECORD.level1_recname, level1_row,  [RECORD.level2_recname, level2_row, ]  RECORD.⇒

target_recname

Copyright © 1988, 2022, Oracle and/or its affiliates. 695



PeopleCode Built-in Functions and Language Constructs Chapter 1

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

Description

Use the RowFlush function to remove a specific row from a page scroll and from the component buffer.

Note: This function remains for backward compatibility only. Use the FlushRow rowset method instead.

Rows that are flushed are not deleted from the database.

RowFlush is a specialized and rarely used function. In most situations, you will want to use DeleteRow to
remove a row from the component buffer and remove it from the database as well when the component is
saved.

Related Links
"FlushRow" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row The row number of the row to flush.

Returns

None.

Example

The following example flushes a row in a view from the component buffer:

RowFlush(RECORD.BNK_RCN_DTL_VW, &ROW1);

Related Links
ScrollFlush
DeleteRow

696  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

RowScrollSelect

Syntax

RowScrollSelect(levelnum, scrollpath, Record.sel_recname [, sqlstr [, bindvars]]
[, turbo])

Where scrollpath is:

[Record.level1_recname, level1_row, [Record.level2_recname, level2_row, ]
Record.target_recname

and where bindvars is an arbitrary-length list of bind variables in the form:

bindvar1 [, bindvar2]. . .

To prevent ambiguous references, you can use Scroll. scrollname, where scrollname is the same as the
scroll level’s primary record name.

Description

The RowScrollSelect is similar to ScrollSelect except that it reads data from the select record into a scroll
under a specific parent row, rather than automatically distributing the selected rows under the correct
parent rows throughout the buffer.

Note: This function remains for backward compatibility only. Use the Select rowset method instead.

You must use the WHERE clause in the SQL string to ensure that only rows that match the parent row are
read into the scroll from the select record. Otherwise, all rows are read in under the specified parent row.

Related Links
ScrollSelect
"Select" (PeopleCode API Reference)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

levelnum Specifies the scroll level of the scroll area into which selected
rows will be read. It can be 1, 2, or 3.

scrollpath A construction that specifies a scroll level in the component
buffer.

Copyright © 1988, 2022, Oracle and/or its affiliates. 697



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

Record. sel_recname Specifies the select record. The selname record must be
defined in Application Designer and SQL created as a table
or a view, unless sel_recname and target_recname are the
same. The sel_recname record can contain fewer fields than
target_recname, although it must contain any key fields to
maintain dependencies page records. This enables you to limit
the amount of data read into the component buffers.

sqlstr Contains a WHERE clause to restrict the rows selected from
sel_recname and/or an ORDER BY clause to sort the rows.
The WHERE clause may contain the PeopleSoft SQL platform
functions that are used for SQLExec processing, such as
%DateIn or %Substring.

bindvars A list of bind variables to be substituted in the WHERE clause.

turbo Setting this parameter to True turns on turbo mode for
RowScrollSelect. This will improve the performance of
ScrollSelect verbs by as much as 300%, but should be
implemented with caution on existing applications.

See InsertRow.

Returns

The number of rows read (optional.) This counts only lines read into the specified scroll. It does not
include any additional rows read into autoselect child scrolls of the scroll.

Example

Here is an example of RowScrollSelect using bind variables:

If All(QTY_PICKED) Then
   &LEVEL1ROW = CurrentRowNumber(1);
   &LEVEL2ROW = CurrentRowNumber(2);
   &ORDER_INT_LINE_NO = FetchValue(Record.SHIP_SUM_INV_VW, &LEVEL1ROW,
   ORDER_INT_LINE_NO, &LEVEL2ROW);
   &INV_ITEM_ID = FetchValue(Record.SHIP_SUM_INV_VW, &LEVEL1ROW,
   INV_ITEM_ID, &LEVEL2ROW);
   &QTY = RowScrollSelect(3, Record.SHIP_SUM_INV_VW, CurrentRowNumber(1),
    RECORD.SHIP_DTL_INV_VW, CurrentRowNumber(2), Record.DEMAND_LOC_INV,
    RECORD.DEMAND_LOC_INV, "WHERE BUSINESS_UNIT = :1 AND ORDER_NO = :2
    AND DEMAND_SOURCE = :3 AND SOURCE_BUS_UNIT = :4
    AND ORDER_INT_LINE_NO = :5 AND SCHED_LINE_NO = :6 AND INV_ITEM_ID = :7
    AND DEMAND_LINE_NO = :8", SHIP_HDR_INV.BUSINESS_UNIT, ORDER_NO, DEMAND_SOURCE,
    SOURCE_BUS_UNIT, ORDER_INT_LINE_NO, SCHED_LINE_NO, INV_ITEM_ID, DEMAND_LINE_NO,⇒

 True);
End-If;

Related Links
RowScrollSelectNew
ScrollSelect

698  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

ScrollSelectNew
ScrollFlush
SQLExec

RowScrollSelectNew

Syntax

RowScrollSelectNew(levelnum, scrollpath, RECORD.sel_recname, [sqlstr [, bindvars]] ⇒

[, turbo])

Where scrollpath is:

[Record.level1_recname, level1_row, [Record.level2_recname, level2_row, ]
Record.target_recname

where bindvars is an arbitrary-length list of bind variables in the form:

binvar1 [, bindvar2]. . .

To prevent ambiguous references, you can use Scroll. scrollname, where scrollname is the same as the
scroll level’s primary record name.

Description

The RowScrollSelectNew function is similar to RowScrollSelect, except that all rows read into the work
scroll are marked new so they are automatically inserted into the database at Save time.

Note: This function remains for backward compatibility only. Use the SelectNew rowset method instead.

This capability can be used, for example, to insert new rows into the database by selecting data using a
view of columns from another database tables.

Related Links
RowScrollSelect
"SelectNew" (PeopleCode API Reference)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

level Specifies the scroll level of the scroll area into which selected
rows are read. It can be 1, 2, or 3.

scrollpath A construction that specifies a scroll level in the component
buffer.

Copyright © 1988, 2022, Oracle and/or its affiliates. 699



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

Record. sel_recname Specifies the select record. The selname record must be
defined in the record definition and SQL created as a table or
a view, unless sel_recname and target_recname are the same.
 The sel_recname record can contain fewer fields than target
_recname, although it must contain any key fields to maintain
dependencies with other page records. This enables you to
limit the amount of data read into the data buffers.

sqlstr Contains a WHERE clause to restrict the rows selected from
sel_recname and/or an ORDER BY clause to sort the rows.
The WHERE clause may contain the PeopleSoft SQL platform
functions that are used for SQLExec processing, such as
%DateIn or %Substring.

bindvars A list of bind variables to be substituted in the WHERE clause.
 The same restrictions that exist for SQLExec exist for these
variables.

turbo Setting this parameter to True turns on turbo mode for
RowScrollSelectNew. This will improve the performance
of ScrollSelect verbs by as much as 300%, but should be
implemented with caution on existing applications.

See InsertRow.

Returns

The number of rows read (optional.) This counts only lines read into the specified scroll. It does not
include any additional rows read into autoselect child scrolls of the scroll.

Example

The following example reads rows into the level 2 scroll and marks the rows as new:

&QTY = RowScrollSelectNew(2, Record.BI_LINE_VW, &ROW1, Record.BI_LINE_DST, Record.B⇒

I_LINE_DST, "where business_unit = :1 and invoice = :2 and line_seq_num = :3", BI_H⇒

DR.BUSINESS_UNIT, BI_HDR.INVOICE, &CURR_LINE_SEQ);

Related Links
RowScrollSelect
ScrollSelect
ScrollSelectNew
ScrollFlush
SQLExec

700  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

RTrim

Syntax

RTrim(string[, trim_string])

Description

Use the RTrim function to remove characters, usually trailing blanks, from the right of a string.

If you need to trim a quotation mark, you need to escape it with a single ". For example

&TRIMMED = RTrim(&NAME, """");

Parameters

Parameter Description

string A String from which you want to remove trailing characters.

trim_string A String consisting of a list of characters, all occurrences of
which are removed from the right of string. Characters in trim
_string that occur in string to the left of any character not in
trim_string are be removed. If this parameter is not specified, "
" is assumed.

Returns

Returns a String formed by deleting, from the end of source_str, all occurrences of each character
specified in trim_str.

Example

The following example removes trailing blanks from &NAME and places the results in &TRIMMED:

&TRIMMED = RTrim(&NAME);

The following example removes trailing punctuation marks from REC.INP and places the results in
&TRIMMED:

&TRIMMED = RTrim(REC.INP, ".,;:!?");

Related Links
LTrim

PeopleCode Built-in Functions and Language Constructs: S

The PeopleCode built-In functions and language constructs beginning with the letter S are listed in
alphabetical order within this topic.

Copyright © 1988, 2022, Oracle and/or its affiliates. 701



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
Typographical Conventions

SamRefreshView

Syntax

SamRefreshView(matview_name, override_complete_refresh)

Description

Use the SamRefreshView function to refresh a materialized view based on its properties, such as Refresh
Status, Refresh Mode, and Refresh Method.

• If refresh status is set to 1 and refresh mode is set to ON DEMAND, then it will be a first refresh or
complete refresh based on the refresh method property of the view.

• If refresh status is set to 2 and the override_complete_refresh parameter is set to true, the materialized
view is refreshed. If the override_complete_refresh parameter is set to false, the materialized view is
not refreshed.

• In all other cases, a complete refresh is performed if the override_complete_refresh parameter is set to
true. If set to false, a complete refresh is not performed on the materialized view.

Note: On the MSS platform, the SamRefreshView function refreshes the summary table or indexed view.
On the DB2 platform, the function refreshes the materialized query table (MQT).

Parameters

Parameter Description

matview_name Specifies the materialized view to be refreshed.

override_complete_refresh Default value is true, that is, a complete refresh is performed.

Set it to false if you do not want a complete refresh to be
performed.

Example

This example refreshes a materialized view:

/*Refresh a materialized view named MATVIEW1*/
SamRefreshView(“MATVIEW1”);

/*Refresh a materialized view named MATVIEW1 but do not perform complete refresh*/
SamRefreshView(“MATVIEW1”, false);

702  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

ScanFile

Syntax

ScanFile(filepath, path_type)

Description

Use the ScanFile function to scan a file on the application server. This function reads the file and sends
the data to the virus scan engine.

Parameters

Parameter Description

filepath Specify the path of the file on the local system.

path_type Specify whether the file path is absolute or relative. This is an
optional parameter.

Valid values:

• %FilePath_Relative

• %FilePath_Absolute

The default value is %FilePath_Absolute.

Returns

An integer indicating the status of the file: 0 for clean file; non-zero value for infected or other statuses.

You can check for numeric or constant value.

Numeric Value Constant Value Description

9 %Attachment_FileNotFound Cannot locate file.

13 %Attachment_ViolationFound File violation detected by virus scan
engine.

14 %Attachment_VirusScanError Virus scan engine error.

15 %Attachment_VirusConfigError Virus scan engine configuration error.

16 %Attachment_VirusConnectError Virus scan engine connection error.

Copyright © 1988, 2022, Oracle and/or its affiliates. 703



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

24 %Virusscan_Disabled Virus scan is not enabled.

Example
&nRetcode= ScanFile("C:\Inline\example.pdf");

/*Following example uses relative path*/
&nRetcode= ScanFile("docs\example_scan.pdf",%FilePath_Relative);

Related Links
"Enabling Virus Scanning for Application Servers" (Security Administration)

ScheduleProcess

Syntax

ScheduleProcess(process_type, process_name [, run_location] [, run_cntl_id]
[, process_instance]   [, run_dttm] [, recurrence_name] [, server_name])

Description

Use the ScheduleProcess function to schedule a process or job, writing a row of data to the Process
Request table (PSPRCSRQST).

Note: This function is no longer supported. Use the CreateProcessRequest function instead.

Related Links
CreateProcessRequest

ScrollFlush

Syntax

ScrollFlush(scrollpath)

Where scrollpath is:

[RECORD.level1_recname, level1_row,  [RECORD.level2_recname, level2_row, ]RECORD.ta⇒

rget_recname

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

Description

Use the ScrollFlush function to remove all rows inside the target scroll area and frees its associated buffer.

704  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: This function remains for backward compatibility only. Use the Flush rowset method instead.

Rows that are flushed are not deleted from the database. This function is often used to clear a work scroll
before a call to ScrollSelect.

Related Links
"Flush" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

Returns

None.

Example

The following example clears the level-one scroll then fills the level-one and level-two scrolls.

/* Throw away all rows */
ScrollFlush(RECORD.DBFIELD_VW);
/* Fill in new values */
&FIELDSEL = "where FIELDNAME like '" | FIELDNAME | "%'";
&ORDERBY = " order by FIELDNAME";
ScrollSelect(1, RECORD.DBFIELD_VW, RECORD.DBFIELD_VW, &FIELDSEL | &ORDERBY);
ScrollSelect(2, RECORD.DBFIELD_VW, RECORD.DBFIELD_LANG_VW, RECORD.DBFIELD_LANG_VW, ⇒

&FIELDSEL | " and LANGUAGE_CD = :1" | &ORDERBY, DBFIELD_SRCH.LANGUAGE_CD);

Related Links
RowFlush
RowScrollSelect
RowScrollSelectNew
ScrollSelect
ScrollSelectNew

ScrollSelect

Syntax

ScrollSelect(levelnum, [Record.level1_recname,  [Record.level2_recname,]]
Record.target_recname, Record.sel_recname [, sqlstr [, bindvars]] [, turbo])

Copyright © 1988, 2022, Oracle and/or its affiliates. 705



PeopleCode Built-in Functions and Language Constructs Chapter 1

where bindvars is an arbitrary-length list of bind variables in the form:

bindvar1 [, bindvar2]. . .

Description

The ScrollSelect function, like the related ScrollSelect functions (ScrollSelectNew, RowScrollSelect, and
RowScrollSelectNew) reads data from database tables or views into a scroll area on the active page.

Note: This function remains for backward compatibility only. Use the Select rowset class method instead.

See "Select" (PeopleCode API Reference).

Using ScrollSelect

ScrollSelect automatically places child rows in the target scroll area under the correct parent row in the
next highest scroll area. If it cannot match a child row to a parent row an error occurs.

ScrollSelect selects rows from a table or view and adds the rows to a scroll area of a page. Let’s call
the record definition of the table or view that it selects from the select record; and let’s call the record
definition normally referenced by the scroll area (as specified in the page definition) the default scroll
record. The select record can be the same as the default scroll record, or it can be a different record
definition that has compatible fields with the default scroll record. If you define a select record that differs
from the default scroll record, you can restrict the number of fields that are loaded into the component
buffers by including only the fields that you actually need.

ScrollSelect accepts a SQL string that can contain a WHERE clause restricting the number of rows
selected into the scroll area. The SQL string can also contain an ORDER BY clause to sort the rows.

ScrollSelect functions generate a SQL SELECT statement at runtime, based on the fields in the select
record and WHERE clause passed to them in the function call. This gives ScrollSelect functions a
significant advantage over SQLExec: they enable you to change the structure of the select record without
affecting the PeopleCode, unless the field affected is referred to in the WHERE clause string. This can
make the application easier to maintain.

Often, ScrollSelect is used to select rows into a work scroll, which is sometimes hidden using HideScroll.
A work scroll is a scroll in which the No Auto Select option is selected on the record definition in
Application Designer so that PeopleTools does not automatically populate the scroll at page startup. You
can right-click on the scroll or grid then select the scroll’s No Auto Select attribute check box in the
record property dialog box.

Depending on how you intend the scroll to be used by the end user, you may also want to select No Auto
Update to prevent database updates, and prevent row insertions or deletions in the scroll area by selecting
No Row Insert or No Row Update.

To call ScrollSelect at page startup, place the function call in the RowInit event of a key field on the
parent scroll record. For example, if you want to fill scroll level one, place the call to ScrollSelect in the
RowInit event of a field on level zero.

706  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

levelnum Specifies the level of the scroll level to be filled (the target
scroll area. The value can be 1, 2, or 3.

target_recname Specifies a record identifying the target scroll, into which the
selected rows are read. If target_recname is on scroll level 2,
 it must be proceeded by a Record. level1_recname. If it is on
level 3, you must specify both Record. level1_recname and
Record. level2_recname.

Record. sel_recname Specifies the select record. The selname record must be
defined in Application Designer and SQL created (using
Build, Project) as a table or a view, unless sel_recname and
target_recname are the same. The sel_recname record can
contain fewer fields target_recname, although it must contain
any key fields to maintain dependencies with other page
records. This enables you to limit the amount of data read into
the component buffers.

sqlstr Contains a WHERE clause to restrict the rows selected from
sel_recname and/or an ORDER BY clause to sort the rows.
 The WHERE clause can contain the PeopleSoft meta-SQL
functions such as %Datein or %CurrentDateIn. It can also
contain inline bind variables.

bindvars A list of bind variables to be substituted in the WHERE clause.
 The same restrictions that exist for SQLExec exist for these
variables.

turbo Setting this parameter to True turns on turbo mode for
ScrollSelect. This will improve the performance of
ScrollSelect verbs by as much as 300%, but should be
implemented with caution on existing applications.

See InsertRow.

Returns

The number of rows read (optional.) This counts only lines read into the specified scroll. It does not
include any additional rows read into autoselect child scrolls of the scroll.

Example

This example uses WHERE clauses to reset the rows in two scroll areas:

&FIELD_CNT = ActiveRowCount(DBFIELD_VW.FIELDNAME);
For &I = 1 to &FIELD_CNT;
   If RecordChanged(DBFIELD_VW.FIELDNAME, &I, DBFIELD_LANG_VW.FIELDNAME, 1)    Then
      &FIELDNAME = FetchValue(DBFIELD_VW.FIELDNAME, &I);
      &RET = WinMessage("Descriptions for " | &FIELDNAME | " have been changed. Dis⇒

Copyright © 1988, 2022, Oracle and/or its affiliates. 707



PeopleCode Built-in Functions and Language Constructs Chapter 1

card changes?", 289, "DBField Changed!");
      If &RET = 2 Then
         /* Cancel selected */
         Exit;
      End-if;
   End-if;
End-for;
/* Now throw away all rows */
ScrollFlush(Record.DBFIELD_VW);
/* Fill in new values */
&FIELDSEL = "where FIELDNAME like '" | FIELDNAME | "%'";
&ORDERBY = " order by FIELDNAME";
&QTY1 = ScrollSelect(1, Record.DBFIELD_VW, Record.DBFIELD_VW, &FIELDSEL | &ORDERBY)⇒

;
&QTY2 = ScrollSelect(2, Record.DBFIELD_VW, Record.DBFIELD_LANG_VW, Record.DBFIELD_L⇒

ANG_VW, &FIELDSEL | " and LANGUAGE_CD = :1" | &ORDERBY, DBFIELD_SRCH.LANGUAGE_CD);

Related Links
RowScrollSelect
RowScrollSelectNew
ScrollFlush
ScrollSelectNew
SQLExec

ScrollSelectNew

Syntax

ScrollSelectNew(levelnum, [Record.level1_recname, [Record.level2_recname, ]]
Record.target_recname, Record.sel_recname [, sqlstr [, bindvars]] [, turbo])

and where bindvars is an arbitrary-length list of bind variables in the form:

bindvar1 [, bindvar2]. . .

Description

The ScrollSelectNew function is similar to ScrollSelect, except that all rows read into the work scroll are
marked new so they are automatically inserted into the database at Save time.

Note: This function remains for backward compatibility only. Use the SelectNew rowset class method
instead.

This capability can be used, for example, to insert new rows into the database by selecting data using a
view of columns from other database tables.

Related Links
ScrollSelect
"SelectNew" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

708  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

levelnum Specifies the level of the scroll level to be filled (the target
scroll area. The value can be 1, 2, or 3.

target_recname Specifies a record identifying the target scroll, into which the
selected rows are read. If target_recname is on scroll level 2,
 it must be proceeded by a Record. level1_recname. If it is on
level 3, you must specify both Record. level1_recname and
Record. level2_recname.

Record. sel_recname Specifies the select record. The selname record must be
defined in Application Designer and SQL created as a table or
a view (using Build, Project), unless sel_recname and target
_recname are the same. The sel_recname record can contain
fewer fields target_recname, although it must contain any key
fields to maintain dependencies with other records on the page.
 This enables you to limit the amount of data read into the
component buffers.

sqlstr Contains a WHERE clause to restrict the rows selected from
sel_recname and/or an ORDER BY clause to sort the rows.
The WHERE clause may contain the PeopleSoft SQL platform
functions that are used for SQLExec processing, such as
%Datein or %Substring.

bindvars A list of bind variables to be substituted in the WHERE clause.
 The same restrictions that exist for SQLExec exist for these
variables.

turbo Setting this parameter to True turns on turbo mode for
ScrollSelectNew. This will improve the performance of
ScrollSelect verbs by as much as 300%, but should be
implemented with caution on existing applications.

See InsertRow.

Returns

The number of rows read (optional.) This counts only lines read into the specified scroll. It does not
include any additional rows read into autoselect child scrolls of the scroll.

Example

The following statement selects rows from DATA2 and reads them into scroll level one on the page. If the
end user saves the page, these rows will be inserted into DATA1:

&QTY = ScrollSelectNew(1, Record.DATA1, Record.DATA2, "Where SETID = :1 and CUST_ID⇒

 = :2", CUSTOMER.SETID, CUSTOMER.CUST_ID);

Copyright © 1988, 2022, Oracle and/or its affiliates. 709



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
RowScrollSelect
RowScrollSelectNew
ScrollSelect
ScrollFlush
SQLExec

Second

Syntax

Second(timevalue)

Description

Use the Second function to extract the seconds component of a Time value.

Parameters

Parameter Description

timevalue A Time value from which to extract seconds.

Returns

Returns a Number equal to the seconds part of timevalue.

Example

Assume that &TIMEOUT contains Time value of 16:48:21. The following would set &SECS to 21:

&SECS = Second(&TIMEOUT);

Related Links
Hour
Minute

SecureRandomGen

Syntax

SecureRandomGen([num][, bytes])

710  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the SecureRandomGen function to generate one or more cryptographically secure pseudo-random
number generator (CSPRNG) values. For example, a CSPRNG value can be used as a salt to then
generate a hashed (or “salted”) string, such as a hashed password.

Note: Because SecureRandomGen is based on the Java security SecureRandom function, it is more
efficient to call it once to return an array of required salt values than it is to call it for each salt value
required.

Parameters

Parameter Description

num Specifies the number of random numbers to generate. If this
value is not specified, one random number is generated.

bytes Specifies the size of each random number in bytes. If this
value is less than 1 or not specified, the default is 16 bytes 
(128 bits).

Returns

An array of string.

Example

In this example, SecureRandomGen generates an array with one 16-byte value:

Local array of string &operpwsdsalt;

&operpwsdsalt = SecureRandomGen();

In this example, SecureRandomGen generates an array with four 16-byte values:

Local array of string &operpwsdsalt;

&operpwsdsalt = SecureRandomGen(4);

In this example, SecureRandomGen generates an array with four 32-byte values.

Local array of string &operpwsdsalt;

&operpwsdsalt = SecureRandomGen(4, 32);

Related Links
HashWithSalt

SendMail

Copyright © 1988, 2022, Oracle and/or its affiliates. 711



PeopleCode Built-in Functions and Language Constructs Chapter 1

Syntax

SendMail(flags, recipients, CCs, BCCs, subject, text, [, attachment_filenames]
[, attachment_titles] [, Mail_From] [, Mail_Sep] [, Content_Type] [, Reply_To]
[, Sender])

Description

Important! The SendMail function has been deprecated. Use the MCFOutboundEmail class instead.

The SendMail function was formerly used to send an email message from a PeopleSoft application page.

Parameters

Parameter Description

flags An integer value. This parameter is ignored.

recipients A string consisting of a delimiter-separated list of email
addresses containing the names of the message’s primary
recipients.

Note: The delimiter is specified by the Mail_Sep parameter.

CCs A string consisting of a delimiter-separated list of email
addresses that are sent copies of the message.

Note: The delimiter is specified by the Mail_Sep parameter.

BCCs A string consisting of a delimiter-separated list of email
addresses that are sent copies of the message. These recipients
won’t appear on the message list.

Note: The delimiter is specified by the Mail_Sep parameter.

subject A string containing the text that appears in the message’s
Subject field.

text The text of the message.

attachment_filenames A string consisting of a semicolon-separated list of fully
qualified file names, containing the complete path to the file
and the file name itself.

attachment_titles Another semicolon-separated list containing titles for each of
the files provided in the attachment_filenames parameter. The
titles appear near the attachment icons in place of the fully
qualified file name.

712  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

Mail_From A string used to populate the 'reply-to' field. If this parameter
isn't specified, the sender address from application server
configuration file is used.

Mail_Sep Specify the delimiter to be used to separate one email address
from another. The default value is a semicolon (;).

Content_Type Specify the content type of the email as a string. The default
value is plain text.

If you want to specify HTML, you should use the following:

Content-type: text/html; charset=utf8

Reply_To Specify the email address that the receiver should use when
replying to this email instead of the Mail_From value.

Sender Specifies who the email is from, as a string. This may be
different than the values specified for Mail_From or Reply_To
parameters.

Returns

Returns a number:

Return Code Description

0 No error

-1 No mail interface installed.

Related Links
"MCFOutboundEmail Class" (PeopleCode API Reference)

SetAddMode

Syntax

SetAddMode(add_mode)

Description

Use the SetAddMode function to indicate that the component build occurs in add mode.

Important! Use this function within fluid applications only.

Copyright © 1988, 2022, Oracle and/or its affiliates. 713



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

add_mode Specifies a Boolean value indicating whether the component
build process should occur in add mode or not.

Returns

None.

Example
If (&nAction = 0) Then
   REM &nAction=0 for Add mode aka New mode;
   SetAddMode( True);
Else
   If (&nAction = 2) Then
      REM &nAction=2 for Keyword Search;
      PTS_SRCH.PTS_VIEWMODE.Value = "L";
      &bDoSesSearch = True;
      SetAddMode( False);
   Else
      REM &nAction=1 for Real time Search;
      SetAddMode( False);
   End-If;
End-If;

Related Links
IsAddMode
"Component Build Processing in Add Modes" (PeopleCode Developer’s Guide)

SetAuthenticationResult

Syntax

SetAuthenticationResult(AuthResult [, UserId] [, ResultDocument] [, PasswordExpired⇒

]
[, DaysLeftBeforeExpire])

Description

Use the SetAuthenticationResult function in Signon PeopleCode to customize the authentication process.
It enables the developer using Signon PeopleCode to implement additional authentication mechanisms
beyond the basic PeopleSoft ID and password authentication.

When PasswordExpired is True, it indicates the password is expired, the passwordexpired.html page is
displayed during login when Signon PeopleCode is enabled.

When DaysLeftBeforeExpire is greater than 0, and PasswordExpired is False, indicating that the password
will expire in x days, the passwordwarning.html page is displayed during login when Signon PeopleCode
is enabled.

714  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: If you set AuthResult to False, ResultDocument must be the text of an error message. This text is
displayed on the sign-in screen.

Parameters

Parameter Description

AuthResult Specify whether the authentication is successful. This
parameter takes a Boolean value. If True is used, the end user
of the UserId specified on the sign-in page is allowed access to
the system.

When AuthResult is True, the customer is responsible for
providing a logout to the end user. They will remain logged in
until a logout command is issued from the user, or the session
expires.

UserId Specify the UserId of the user signing on. The default value is
the UserId entered on the sign-in page. This parameter takes a
string value. This is the value returned by %SignonUserId

ResultDocument When ResultDocument is blank (""), this parameter value is
ignored. Otherwise, specify a message to be displayed in the
signonresultdoc.html file when AuthResult is True.

If AuthResult is False, the ResultDocument text value
is displayed on the sign-in screen. If ResultDocument
has a value, any values in PasswordExpired and
DaysLeftBeforeExpire are ignored.

PasswordExpired Specify if the user’s password has expired. The values are:

• False (default) if the user's password hasn't expired.

• True if the user's password has expired

If this value is specified as True, the user is allowed to log in,
 but is able to access only a limited portion of the system: just
enough to change their expired password.

DaysLeftBeforeExpire A numeric value indicating the number of days left before the
password expires. If the value is greater than 0, a warning is
displayed when Authorized is True and Expired is False.

Returns

A Boolean value: True if function completed successfully, False otherwise.

Example
If updateUserProfile(%SignonUserId, %SignonUserPswd, &array_attribs) Then
   SetAuthenticationResult(True, &SignonUserID, "", False);
End-If;

Copyright © 1988, 2022, Oracle and/or its affiliates. 715



PeopleCode Built-in Functions and Language Constructs Chapter 1

The following example is within a function used for logging onto a system:

    If (AddToDateTime(&fmc_wsl_exp_date, 0, 0, 0, 0, 10, 0) >= %Datetime) Then
         /* WSL logon was within last x minutes, so accept WSL for PS logon */
         SetAuthenticationResult( True, Upper(&userID), "", False);
      Else
         /* WSL logonn was too long ago, so request a more recent WSL logon */
         SetAuthenticationResult( False, "getmorerecentcookie", "", False,7); /*dis⇒

plays the customized passwordwarning.html. */
      End-If;

In the following example, AuthResult is True and ResultDocument is set as text to be displayed in an
HTML tag.

SetAuthenticationResult( True, &USERID, "Result Doc Text", False, 0);

As part of this example, specify the following in the configuration properties:

singonresultdoc_page=signonresultdoctext.html

In signonresultdoctext.html, add a meta field as follows:

<%=resultDoc%>:

<html>
....
  <tr><td class="PSSRCHACTION" no wrap=true><%=resultDoc%></td></tr>
.....
</html>

Related Links
%ResultDocument
%AuthenticationToken
"PeopleSoft Sign In" (Security Administration)

SetChannelStatus

Syntax

SetChannelStatus(ChannelName, Status)

Description

Use the SetChannelStatus to set the status of the specified channel. You could use this function to restart a
channel that had been paused, or pause a running channel.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class SetQueueStatus method instead.

Related Links
"SetStatus" (PeopleCode API Reference)

716  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

ChannelName Specify the channel name.

Status Specify the status you want to set the channel to. The values
are:

• 1 for Run

• 2 for Pause

Returns

A Boolean value: True if the channel status was changed successfully. False otherwise.

Example
/* User has clicked on a channel to change its status */

If CHNL_STATUS = "1" Then
   rem running, so pause;
   &status = 2;
Else
   rem paused. So run;
   &status = 1;
End-If;

If SetChannelStatus(AMM_CHNL_SECVW.CHNLNAME, &status) Then
   CHNL_STATUS = String(&status);
Else
   MessageBox(0, MsgGetText(117, 1, ""), 117, 22, "");
End-If;

Related Links
"Understanding Message Classes" (PeopleCode API Reference)
"PeopleSoft Integration Broker Metadata" (Integration Broker)

SetComponentChanged

Syntax

SetComponentChanged()

Description

Use the SetComponentChanged function to set the changed flag for the component. This flag is used to
determine if save processing is needed or not, when the user clicks Save, or save is triggered through
DoSave PeopleCode. This flag is also used to determine if a save warning needs to be issued to the
user when they leave the component. Using SetComponentChanged causes full save processing to
occur the next time a save is triggered. This includes the SaveEdit, SavePreChange, Workflow, and

Copyright © 1988, 2022, Oracle and/or its affiliates. 717



PeopleCode Built-in Functions and Language Constructs Chapter 1

SavePostChange events. This function can be used to replace a workaround of changing a field to a
different value then back to force save processing.

Note: Using this function causes a save warning to be issued to the user when they try to leave the
component, assuming the save warning feature is enabled, and the end user has not saved the component
since the function was called.

Using SetComponentChanged does not cause unchanged data to be saved. The component processor only
saves changed data to the database. If nothing in the component has been changed, nothing is saved to the
database.

Most components do not need to use this function. The changed flag is automatically set when the user
changes any value in the component, as well as when PeopleCode changes a database field buffer value.
This function is for certain pages that have a requirement to have save processing execute even if the user
has not changed a value.

After save processing has completed successfully, the flag is cleared.

Note: SetComponentChanged can be used only in events that occur after the Page activate event.

Parameters

None.

Returns

None.

Related Links
DoSave
DoSaveNow

SetControlValue

Syntax

SetControlValue(Value, PageName, PageFieldName [, RowNumber] [, &Field])

Description

Use the SetControlValue function to set an override string on the current field so that it simulates an end
user entering data.

When a page is refreshed after a PeopleCode program completes, each field value gets set from the buffer.
However, if you use this function to specify an override string for a field, the value you specify is used
instead of the value in the buffer. This value is inserted directly into the control on the page, as if the
end user typed it in. The field buffer remains unchanged. All validations, FieldEdit and FieldChange
PeopleCode run immediately.

718  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

This function can be used in the following scenario: Suppose you have a text field that has a menu pop-up
associated with it. The end user can use a secondary page to select an item to be used for the value. From
the menu PeopleCode, you can verify that the value is valid, but the field doesn’t turn red and the end user
can leave the field. This could potential mean saving the page with bad data. You can use this function
after the secondary page is dismissed. This causes the same edits to be run as if the end user had typed in
the value.

This function doesn't work for radio button or check box controls.

Considerations With Field Verification

SetControlValue only sets the value of the field. If you specify an incorrect value, SetControlValue has an
error at runtime.

For example, suppose you are setting a value like "1900-01-01" into a date field that is expecting the
format 01/01/1900. If the end user entered 1900-01-01 they would get an error, so SetControlValue causes
an error with this value also. You may want to use a value in the format the end user might enter. You can
get this value by using the FormattedValue method on a field. For example:

&DATE_IN_EFFECT = SF_PRDN_AREA_IT.DATE_IN_EFFECT.FormattedValue;
...
SetControlValue(&DATE_IN_EFFECT, %Page, "DATE_IN_EFFECT", &OCCURSNUM);

The FormattedValue function converts the field value from the PeopleSoft representation to the
representation the end user would see and enter.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Parameters

Parameter Description

Value Specify an override value on the current field. This parameter
takes a string value.

pagename Specify the name of page where the field exists.

pagefieldname Specify the page field name. This is not the name of the field.
 This is the name that is assigned to the field in Application
Designer, on the page field properties.

RowNumber Specify the row number of the field. The default value is 1 if
this parameter isn't set.

&Field Specify an already instantiated field object referencing the
field you want to override.

Copyright © 1988, 2022, Oracle and/or its affiliates. 719



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: If you want to set an override string for a field on the level 1 scroll for a page, you do not need to
specify either a row number or a field object. However, if you want to set the override string for a field on
either the second or third level scroll for a page, you must specify both a row number and a field object
for SetControlValue to work.

Returns

None.

Example
Declare Function item_seach PeopleCode FUNCLIB_ITEM.INV_ITEM_ID FieldFormula;

&SEARCHREC = "PS_" | RECORD.MG_ITEM_OWN1_VW;
item_seach("", SF_PRDN_AREA.BUSINESS_UNIT, "ITEM", &SEARCHREC, "", &INV_ITEM_ID, ""⇒

);
SetControlValue(&INV_ITEM_ID);

The following example is used in the PeopleSoft Pure Internet Architecture:

Declare Function item_search PeopleCode FUNCLIB_ITEM.INV_ITEM_ID FieldFormula;

Component string &ITEM_ID_SEARCH;

&ITEMRECNAME = "PS_" | Record.MG_ITEM_PDO_VW;
item_serach("", EN_PDO_WRK.BUSINESS_UNIT, "ITEM", &ITEMRECNAME, "", &INV_ITEM_ID, "⇒

");
If All(&INV_ITEM_ID) Then
   Evaluate &ITEM_ID_SEARCH
   When "F"
      SetControlValue(&INV_ITEM_ID, Page.EN_PDO_COPY, "FROM_ITEMID")
   When "T" SetControlValue(&INV_ITEM_ID, Page.EN_PDO_COPY, "TO_ITEMID")
   End-Evaluate;
End-If;

SetCursorPos

Syntax

SetCursorPos(Page.pagename, scrollpath, target_row, [recordname.]fieldname)

where scrollpath is:

[Record.level1_recname, level1_row, [Record.level2_recname, level2_row, ]]
Record.target_recname

To prevent ambiguous references, you can use Scroll. scrollname, where scrollname is the same as the
scroll level’s primary record name.

Description

Use the SetCursorPos to place the focus in a specific field in the current component. To transfer to a page
outside the current component, use Transfer.

720  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: If you use SetCursorPos to change the focus to a field that is not on the current page, any
PeopleCode associated with the Activate event for the page being transferred to runs.

You can use the SetCursorPos function in combination with an Error or Warning function in SaveEdit to
place the focus on the field that caused the error or warning condition. You must call SetCursorPos before
an Error statement, because Error in SaveEdit terminates all save processing, including the program from
which it was called.

Related Links
Transfer
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

Pagename The name of the page specified in the page definition,
 preceded by the keyword Page. The pagename page must be
in the current component. You can also pass the %page system
variable in this parameter (without the Page reserved word).

scrollpath A construction that specifies a scroll level in the component
buffer.

[recordname .]fieldname Specify a field designating the record and field in the scroll
where you want to place the cursor.

target_row The row number of the row in which you want to place the
cursor.

Returns

None.

Example

The following example places the cursor in the appropriate field if a SaveEdit validation fails. Note the
use of the %page system variable to get the page name. Note also that SetCursorPos is called before Error.

If None(&ITEM_FOUND) Then
   SetCursorPos(%Page, INV_ITEM_ID, CurrentRowNumber());
   Error (MsgGet(11100, 162, "Item is not valid in the order business unit.", INV_I⇒

TEM_ID, CART_ATTRIB_INV.ORDER_BU));
End-If;

The following example is similar, but uses the Page reserved word and page name:

If %Component = COMPONENT.BUS_UNIT_TBL_GL Then
   SetCursorPos(PAGE.BUS_UNIT_TBL_GL1, DEFAULT_SETID, CurrentRowNumber());

Copyright © 1988, 2022, Oracle and/or its affiliates. 721



PeopleCode Built-in Functions and Language Constructs Chapter 1

End-If;
Error MsgGet(9000, 165, "Default TableSet ID is a required field.");

Related Links
TransferPage

SetDBFieldAuxFlag

Syntax

SetDBFieldAuxFlag(Field.FieldName, FlagNumber, Setting)

Description

Use the SetDBFieldAuxFlag function to set the auxiliary flag mask (AuxFlagMask) property for the
specified field. This field indicates properties about the field.

Currently, only one flag comes preset from PeopleSoft: a 1 indicates a ChartField. If you want to associate
a property with a field, you must coordinate with other developers to make certain that no one else is
setting a property using the same flag number.

Use the GetAuxFlag Field method to read the current setting of the property.

If you use this function, the change is made to the database field, but it doesn't require a rebuild of the
database. However, the change is not reflected in the component buffer. You must reload the component
for the new setting to take place.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

Fieldname Specify the name of the field that you want the AuxMaskFlag
property changed. This name must be prefixed by the reserved
word Field.

FlagNumber Specify the flag value, a number between 1 and 16. 1 is a
ChartField.

Setting Specify whether this flag should be on (True) or off (False).

722  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

%MDA_FieldNotFound The specified field was not found in the database.

Example

&ret = SetDBFieldAuxFlag(Field.OrgId, 1, True);
If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldAuxFlag succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldAuxFlag failed");
End-If;

Related Links
"GetAuxFlag" (PeopleCode API Reference)

SetDBFieldCharDefn

Syntax

SetDBFieldCharDefn(Field.FieldName, Length [, FormatFamily])

Description

Use the SetDBFieldCharDefn function to create a field definition of type character, with the indicated
name, length, and format family.

Note: After using this function, you should use the SetDBFieldLabel function to define the label for the
new field.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Copyright © 1988, 2022, Oracle and/or its affiliates. 723



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

Fieldname Specify the name of the new field that you want to create. This
name must be prefixed by the reserved word Field.

Length Specify the length of the new field as a number.

FormatFamily Specify the format family of the new field. This parameter is
optional: the default value is upper case. The valid values are:

• %FormatFamilyType_Upper (default)

• %FormatFamilyType_Name

• %FormatFamilyType_Phone

• %FormatFamilyType_Zip

• %FormatFamilyType_SSN

• %FormatFamilyType_MixedCase

• %FormatFamilyType_NumOnly

• %FormatFamilyType_SIN

• %FormatFamilyType_PhoneIntl

• %FormatFamilyType_ZipIntl

Returns

A constant value. The values are:

Value Description

%MDA_Success Bulk operation completed successfully.

%MDA_Failure Bulk operation did not complete successfully.

%MDA_Duplicate The field specified by FieldName already exists.

%MDA_FieldFmtLength The specified length conflicts with the specified format family
and was overwritten when the field was created.

Example

&ret = SetDBFieldCharDefn(Field.OrgId, 10,
%FormatFamilyType_MixedCase);
If (&ret = %MDA_Success) Then

724  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldCharDefn succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldCharDefn failed");
End-If;

You can also use this function with de-referenced parameters, as follows:

&ret = SetDBFieldCharDefn(@("FIELD." | FS_CF_UPD_AET.FIELDNAME),
FS_CF_UPD_AET.NEW_CF_LENGTH, %FormatFamilyType_MixedCase);

The following example adds a new character field:

&cf = "CF1";
&len = 10;
&frmt = %FormatFamilyType_Upper;
&fld = "FIELD." | &cf;
&ret = SetDBFieldCharDefn(@(&fld), &len, &frmt);
If (&ret = 0) Then
   MessageBox(0, "SetDBFieldCharDefn", 0, 0, "Succeeded");
Else
   MessageBox(0, "SetDBFieldCharDefn", 0, 0, "Failed");
End-If;

Related Links
SetDBFieldLabel

SetDBFieldFormat

Syntax

SetDBFieldFormat(Field.FieldName, FormatFamily [, FamilyName, DisplayName])

Description

Use the SetDBFieldFormat function to change the format family for a field.

Use the StoredFormat Field property to determine the existing format family for a field.

If you only want to change the display format of a single field at runtime, and not change the database
field, use the DisplayFormat Field property.

Note: This function only works with character fields.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Copyright © 1988, 2022, Oracle and/or its affiliates. 725



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

FieldName Specify the name of the field that you want to modify. This
name must be prefixed by the reserved word Field.

FormatFamily Specify the new format family of the field. The valid values
are:

• %FormatFamilyType_Upper

• %FormatFamilyType_Name

• %FormatFamilyType_Phone

• %FormatFamilyType_Zip

• %FormatFamilyType_SSN

• %FormatFamilyType_MixedCase

• %FormatFamilyType_NumOnly

• %FormatFamilyType_SIN

• %FormatFamilyType_PhoneIntl

• %FormatFamilyType_ZipIntl

• %FomatFamilyType_Custom

FamilyName Specify a new family name. This parameter is optional,
 and only valid if FormatFamily is specified as custom 
(%FormatFamilyType_Custom).

DisplayName Specify a new display name. This parameter is optional,
 and only valid if FormatFamily is specified as custom 
(%FormatFamilyType_Custom).

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

726  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

&ret = SetDBFieldFormat(Field.OrgId, %FormatFamilyType_Custom, "Postal_Code", "Norm⇒

al");
If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldFormat succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldFormat failed");
End-If;

Related Links
SetDBFieldFormatLength
"StoredFormat" (PeopleCode API Reference)
"DisplayFormat" (PeopleCode API Reference)

SetDBFieldFormatLength

Syntax

SetDBFieldFormatLength(FieldName, Length)

Description

Use the SetDBFieldFormatLength function to change the format length for a field. This length controls
the maximum number of characters an end user can type into an edit box for this character field. This can
be used to limit the user without having to rebuild or alter the table.

Note: This function only works with character fields.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

FieldName Specify the name of the field that you want to modify. This
name must be prefixed by the reserved word Field.

Length Specify the new format length as a number. Valid values are
between 1 and 254.

Copyright © 1988, 2022, Oracle and/or its affiliates. 727



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_FieldNotFound The specified field wasn't found in the database.

%MDA_Unsupported You tried to use this function on a non character field. This
function is only supported on character fields.

Example
&ret =  SetDBFieldFormatLength(FIELD.OrgId, 10);
If (&ret = %MDA_success) Then
  MessageBox(0, "MetaData Fn Status", 0, 0, "SetDBFieldFormatLength succeeded");
Else
  MessageBox(0, "MetaData Fn Status", 0, 0, "SetDBFieldFormatLength failed");
End-If;

Related Links
SetDBFieldFormat
"FormatLength" (PeopleCode API Reference)

SetDBFieldLabel

Syntax

SetDBFieldLabel(Field.FieldName, LabelID, Long, Short, Default [, LanguageID])

Description

Use the SetDBFieldLabel function to either modify an existing label, or add a new label to a field
definition.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

728  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

FieldName Specify the name of the field that you want to modify. This
name must be prefixed by the reserved word Field.

LabelID Specify the label ID of the field label that you want to modify
as a string. If the specified label ID isn't found, a new label,
 with the specified label ID, is created for the field.

Long Specify the new long label for the field as a string.

Short Specify the new short label for the field as a string.

Default Specify whether the new label is the default label for the field.
This parameter takes a Boolean value: True, set the label as the
default, False, do not.

LanguageID Specify the three character language code to use with this
field. This parameter is optional. If you do not specify a
language code, the language of the current user is used.

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_FieldNotFound The specified field wasn't found.

Example

&ret = SetDBFieldLabel(Field.OrgId, "ORGID", "Organization ID", "OrgId", True);
If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldLabel succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldLabel failed");
End-If;

Related Links
"Label" (PeopleCode API Reference)

Copyright © 1988, 2022, Oracle and/or its affiliates. 729



PeopleCode Built-in Functions and Language Constructs Chapter 1

SetDBFieldLength

Syntax

SetDBFieldLength(Field.FieldName, Length)

Description

Use the SetDBFieldLength function to modify an existing character field to have a new length.

Note: Because using this function changes records that are used to build application tables, you must
rebuild (alter) the specified project before these changes can be used.

Use the Length Field class property to find the existing length of a field.

Note: This function only works with character fields.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

FieldName Specify the name of the field that you want to modify. This
name must be prefixed by the reserved word Field.

Length Specify the new field length as a number between 1 and 254.

Note: If a default has been specified for this field in any record, and the size of the default is greater than
the new size, you must modify the record field separately.

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

730  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Value Description

%MDA_Failure Function didn't complete successfully.

%MDA_Unsupported The specified field isn't a character field. This function is only
supported for character fields.

%MDA_FieldNotFound The specified field wasn't found.

%MDA_FieldFmtLength The specified length isn't compatible with the current format
family, or there are record field defaults greater than the
specified size.

Note: If a default has been specified for this field in any record, and the size of the default is greater than
the new size, you must modify the record field separately.

Example

&ret = SetDBFieldLength(Field.OrgId, 10);
If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldLength succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldLength failed");
End-If;

You can also use this function with de-referenced parameters, as follows:

&ret = SetDBFieldLength(@("FIELD." | FS_CF_UPD_AET.FIELDNAME), FS_CF_UPD_AET.NEW_CF⇒

_LENGTH);

Related Links
"FieldLength" (PeopleCode API Reference)

SetDBFieldNotUsed

Syntax

SetDBFieldNotUsed(Field.FieldName, NotUsed)

Description

Use the SetDBFieldNotUsed function to specify whether a database field is used as a chart field or not.

SetDBFieldNotUsed does the following for a field:

• Specifies whether the field is included in the index when indexes are built for records that contain this
field. The column always remains in the table associated with the record.

• Specifies that the field is ignored in Query.

Copyright © 1988, 2022, Oracle and/or its affiliates. 731



PeopleCode Built-in Functions and Language Constructs Chapter 1

• Specifies that the field is ignored in nVision.

In addition, fields marked as Search Keys or List Box Items  in the Application Designer that are set as
not used do not display in search dialogs and list boxes.

Considerations Using this Function

This function is primarily intended for use during configuration time only, before active runtime usage
is initiated. Using this function during active runtime is not, in general, supported. Changes to data
definitions are not recognized on currently loaded component. In general, changes aren't recognized
until the component is reloaded. Using this function to modify records in components that have not been
loaded, and then loading those components will, while not changing indices, prevent Query and nVision
from using the field, and may be used to key display of the field in pages.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

FieldName Specify the name of the field that you want to modify. This
name must be prefixed by the reserved word Field.

NotUsed Specify whether this field is to be used as a chart field. This
parameter takes a Boolean value: True, this field is not used,
 False, this field is used.

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_FieldNotFound The specified field wasn't found.

Example

&ret = SetDBFieldNotUsed(Field.OrgId, True);
If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldNotUsed succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetDBFieldNotUsed failed");
End-If;

732  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
"Understanding Bulk Operations" (Application Designer Developer’s Guide)

SetDefault

Syntax

SetDefault([recordname.]fieldname)

Description

Use the SetDefault function to set a field to a null value, so that the next time default processing
occurs, it is set to its default value: either a default specified in its record field definition or one set
programmatically by PeopleCode located in a FieldDefault event. If neither of these defaults exist, the
Component Processor leaves the field blank.

Note: This function remains for backward compatibility only. Use the SetDefault field class property
instead.

Blank numbers correspond to zero on the database. Blank characters correspond to a space on the
database. Blank dates and long characters correspond to NULL on the database. SetDefault gives each
field data type its proper value.

See "SetDefault" (PeopleCode API Reference).

Where to Use SetDefault

If a PeopleCode program or function executes the SetDefault built-in on a field that does not exist in
the component buffer, the remainder of the program or function is skipped. In the case of a function,
execution of the calling program continues with the next statement after the call to the function. However,
if the program containing the SetDefault call is at the "top level", meaning that it was called directly from
the component processor or application engine runtime, it exits.

Therefore, if you want to control the behavior of SetDefault, you should encapsulate any calls to this
built-in function inside your own functions. This enables your overall programs to continue, whether or
not the SetDefault succeeds.

Parameters

Parameter Description

[recordname.]fieldname Specify a field designating the fields that you want to set to its
default value.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Copyright © 1988, 2022, Oracle and/or its affiliates. 733



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

This example resets the PROVIDER to its null value. This field is reset to its default value when default
processing is next performed:

If COVERAGE_ELECT = "W" Then
   SetDefault(PROVIDER);
End-if;

Related Links
SetDefaultAll
SetDefaultNext
SetDefaultPrior
"Default Processing" (PeopleCode Developer’s Guide)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

SetDefaultAll

Syntax

SetDefaultAll([recordname.]fieldname)

Description

Use the SetDefaultAll function to set all occurrences of the specified recordname.fieldname within a
scroll to a blank value, so that the next time default processing is run these fields are set to their default
value, as specified by the record definition, or one set programmatically by PeopleCode located in a
FieldDefault event. If neither of these defaults exist, the Component Processor leaves the field blank.

Note: This function remains for backward compatibility only. Use the SetDefault rowset method instead.

Related Links
"SetDefault" (PeopleCode API Reference)
"SearchDefault" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Example

The following example sets the fields TO_CUR and CUR_EXCHNG_RT to their default values on every
row of the scroll area where the PeopleCode is run:

SetDefaultAll(TO_CUR);
SetDefaultAll(CUR_EXCHNG_RT);

Related Links
SetDefault
SetDefaultNext
SetDefaultNextRel
SetDefaultPrior

734  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

SetDefaultPriorRel

SetDefaultNext

Syntax

SetDefaultNext([recordname.]fieldname)

Description

Use the SetDefaultNext function to locate the next occurrence of the recordname.fieldname with the next
effective date (and effective-sequence number if specified) and set the field to a blank value, so that the
next time default processing is run this field will be set to its default value, as specified by the record
definition, or one set programmatically by PeopleCode located in a FieldDefault event. If neither of these
defaults exist, the Component Processor leaves the field blank.

SetDefaultNext is typically used to reset values within a scroll which are calculated within default
PeopleCode based on a next value.

This function is valid only for effective-dated records. If a next record does not exist, then the statement is
skipped.

Related Links
SetDefaultAll
SetDefaultNextRel
SetDefaultNextRel
SetDefaultPriorRel

SetDefaultNextRel

Syntax

SetDefaultNextRel(search_field, default_field)

Description

Use the SetDefaultNextRel function to locate the next occurrence of the search_field with the next
effective date (and effective-sequence number if the record contains an effective-sequence number), then
set the value of the specified default_field corresponding to the search_field to a blank value, so that the
next time default processing is run this field will be set to its default value, as specified by the record
definition, or one set programmatically by PeopleCode located in a FieldDefault event. If neither of these
defaults exist, the Component Processor leaves the field blank.

This function is valid only for effective-dated records. If a next record does not exist, then the statement is
skipped.

Related Links
SetDefault
SetDefaultAll

Copyright © 1988, 2022, Oracle and/or its affiliates. 735



PeopleCode Built-in Functions and Language Constructs Chapter 1

SetDefaultPrior
SetDefaultPriorRel

SetDefaultPrior

Syntax

SetDefaultPrior([recordname.]fieldname)

Description

Use the SetDefaultPrior function to locate the prior occurrence of the recordname.fieldname with the prior
effective date (and effective-sequence number if specified), then set the field to a blank value, so that
the next time default processing is run this field will be set to its default value, as specified by the record
definition, or one set programmatically by PeopleCode located in a FieldDefault event. If neither of these
defaults exist, the Component Processor leaves the field blank.

SetDefaultPrior is typically used to reset values within a scroll which are calculated within FieldDefault
PeopleCode based on a next value.

This function is valid only for effective-dated records. If a prior record does not exist, then the statement
is skipped.

Related Links
SetDefault
SetDefaultAll
SetDefaultNext
SetDefaultNextRel
SetDefaultPriorRel

SetDefaultPriorRel

Syntax

SetDefaultPriorRel(search_field, default_field)

Description

Use the SetDefaultPriorRel function to locate the prior occurrence of the search_field with the prior
effective date (and effective sequence-number if the record contains an effective-sequence number) and
then sets the specified default_field to a blank value, so that the next time default processing is run this
field will be set to its default value, as specified by the record definition, or one set programmatically by
PeopleCode located in a FieldDefault event. If neither of these defaults exist, the Component Processor
leaves the field blank.

This function is valid only for effective-dated records. If a next record does not exist, then the statement is
skipped.

736  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
SetDefaultPriorRel
SetDefaultAll
SetDefaultNext
SetDefaultNextRel
SetDefaultPrior

SetDisplayFormat

Syntax

SetDisplayFormat(scrollpath, target_row, [recordname.]fieldname,
display_format_name)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]]
RECORD.target_recname

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

Description

Use the SetDisplayFormat function to change the display format of Custom Defined Fields at runtime.
For instance, you may want to update a custom numeric display to reveal more decimal points.

Note: This function remains for backward compatibility only. Use the DisplayFormat field property
instead.

Related Links
"DisplayFormat" (PeopleCode API Reference)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row The row number of the target row.

Copyright © 1988, 2022, Oracle and/or its affiliates. 737



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

[recordname .]fieldname The name of the field to change. The field can be on scroll
level one, two, or three of the active page. The recordname
prefix is required if the call to SetDisplayFormat is not on the
record definition recordname.

display_format_name The name of the custom display format specified in the field
definition.

Returns

Returns a Boolean value indicating whether the function executed successfully. The return value is not
optional.

Related Links
GetStoredFormat

SetFacetNamesToRemove

Syntax

SetFacetNamesToRemove(Facet1_Name as String, Facet2_Name as String)

Description

Use the SetFacetNamesToRemove function to remove facets from component search results page if it
contains PII or sensitive data. In Fluid real-time search page with chart view, if chart view’s x-axis is on
any facet in the parameter list, then chart view will be removed.

Parameters

Parameter Description

Facet1_Name as String Specifies the name of a facet as a String.

Returns

None.

Example
SetFacetNamesToRemove("INV_ITEM_GROUP", "QE_DATE_ADDED");

738  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

SetLabel

Syntax

SetLabel(scrollpath, target_row, [recordname.]fieldname, new_label_text)

Where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]]
RECORD.target_recname

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

Description

Use the SetLabel function to change the label text of a page field or grid column heading.

Note: This function remains for backward compatibility only. Use the Label field property instead.

You can't use this function to set labels longer than 100 characters. If you try to set a label of more than
100 characters, the label is truncated to 100 characters.

Related Links
"Label" (PeopleCode API Reference)
"GetLongLabel" (PeopleCode API Reference)
"GetShortLabel" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row The row number of the target row.

[recordname .]fieldname The name of the field with the associated label text. The field
can be on scroll level one, two, or three of the active page. The
recordname prefix is required if the function call is not on the
record definition recordname.

new_label_text A String value specifying the new value for the field or grid
column label.

Copyright © 1988, 2022, Oracle and/or its affiliates. 739



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

Optionally returns a Boolean value indicating whether the function completed successfully.

Example
If training_loc = "HAW" then
     SetLabel(voucher_tbl.training_loc, "Hawaii Training Center");
End-if;

SetLanguage

Syntax

SetLanguage(language_code)

Description

Use the SetLanguage function to set the end user's current language preference to the specified
language_code. language_code must be a valid translate value for the field LANGUAGE_CD.
SetLanguage returns True if it is successful, and it returns False if it fails or an invalid value was passed.
The new language preference is temporary, remaining in effect only until the user logs off, or until another
call is made to SetLanguage.

Note: SetLanguage does not work in Signon PeopleCode, or with asynchronous messages.

Considerations Using SetLanguage With %Language

The value of %Language depends on the type of application:

• For online applications, %Language is the language code that the current component is using.

• For non-online applications (such as in an application engine program), %Language is the language
code of the user based on their language preference in their User Profile.

SetLanguage changes the default language for the current session only. The language change does not
take effect until the component buffer is flushed and repopulated. For example, transferring to a new
component causes the buffer to be flushed.

%Language reflects the value using SetLanguage after the function is executed.

SetLanguage changes the current user interface and data language simultaneously. If the Multi Language
Entry personalization option is enabled, users can change the data language independently from the user
interface language. There is no way to change the data language from PeopleCode without also changing
the user interface language using SetLanguage.

740  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

language_code A valid language code, stored in the Translate table for the
LANGUAGE_CD field.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully. Returns False if
an invalid language code is passed.

Example

The following example switches the language code and displays a message informing the end user of the
change:

  If SetLanguage(LANGUAGE_CD) Then
      WinMessage(MsgGet(102, 5, "Language preference changed to ", LANGUAGE_CD));
   Else
      WinMessage(MsgGet(102, 6, "Error in setting language.  Language is currently ⇒

%1", %Language));
  End-if;

Related Links
%Language

SetMDAJAXTrf

Syntax

SetMDAJAXTrf(enabled)

Description

For custom fluid wrapper components (fluid activity guides or master/detail components), use the
SetMDAJAXTrf function to set whether fluid component transfers stay within the master/detail or activity
guide wrapper. Since classic components are displayed within an iframe, this setting is ignored for classic
component transfers. If this function is never invoked, the default value is False; component transfers
leave the wrapper.

Note: Invoke this function from the wrapper component only, and not from individual components or
pages displayed within the wrapper.

Note: Alternatively, AJAX transfers can be enabled on the URL for the content reference definition that
launches the fluid wrapper.

Copyright © 1988, 2022, Oracle and/or its affiliates. 741



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

enabled Specifies a Boolean value indicating whether AJAX transfers
are enabled on the master/detail or activity guide wrapper.

Returns

None.

Related Links
"AJAX Transfers" (Fluid User Interface Developer’s Guide)
IsMDAJAXTrf

SetMDGuided

Syntax

SetMDGuided(guided)

Description

For master/detail and activity guide components, use the SetMDGuided function to set whether the
master/detail or activity guide wrapper is in guided mode (that is, Previous and Next buttons are displayed
in the fluid banner). If this function is never invoked, the default value is False; non-guided mode is in
effect.

Note: Invoke this function from the wrapper component only, and not from individual components or
pages displayed within the wrapper.

Important! Use this function within fluid applications only.

Parameters

Parameter Description

guided Specifies a Boolean value indicating whether the master/detail
or activity guide wrapper is in guided mode.

Returns

A Boolean value.

742  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
IsMDGuided
"Understanding Activity Guide Templates and Template Types" (Portal Technology)

SetMDListPopup

Syntax

SetMDListPopup(non_optimized)

Description

For master/detail and activity guide wrapper components, use the SetMDListPopup function to set
whether the master/detail or activity guide wrapper is in non-optimized mode (that is, navigation to pages
is presented in a drop-down list in the fluid banner, not in the left panel). If this function is never invoked,
the default value is False; optimized mode is in effect (that is, items are presented in the left panel).

Note: Invoke this function from the wrapper component only, and not from individual components or
pages displayed within the wrapper.

Important! Use this function within fluid applications only.

Parameters

Parameter Description

non_optimized Specifies a Boolean value indicating whether the master/detail
or activity guide wrapper is in non-optimized mode.

Returns

A Boolean value.

Related Links
IsMDListPopup
"Understanding Activity Guide Templates and Template Types" (Portal Technology)

SetMDListSlideout

Syntax

SetMDListSlideout(enabled)

Copyright © 1988, 2022, Oracle and/or its affiliates. 743



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

To prevent left panel collisions in custom fluid wrapper components (fluid activity guides or master/detail
components), use the SetMDListSlideout function to set whether collision handling with the slide-out left
panel is enabled for the component. If this function is never invoked, the default value is False; collision
handling is not enabled.

Important! Use this function within custom fluid wrapper components only.

Note: While SetMDListSlideout is used in custom fluid wrapper components, left panel collision
handling is enabled via the URL for standard fluid wrappers. For master/detail components, fluid activity
guides, and fluid navigation collections, add the following query string parameter to the URL for the
content reference definition that launches the fluid wrapper: &ICMDListSlideout=true

Parameters

Parameter Description

enabled Specifies a Boolean value indicating whether collision
handling with the slide-out left panel is enabled on the master/
detail or activity guide wrapper.

Returns

None.

Related Links
"Left Panel Collision Handling with Slide-out Left Panels" (Fluid User Interface Developer’s Guide)
IsMDListSlideout

SetMessageStatus

Syntax

SetMessageStatus(Message.MessageName, Status)

Description

Use the SetMessageStatus function to specify whether a message is active or inactive.

744  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

MessageName Specify the name of the message definition that you want to
change the status for. Prefix this name with the reserved word
Message.

Status Specify the status for the message. Valid values are:

• %IB_Status_Active

• %IB_Status_InActive

Returns

A Boolean value: true if the status is set correctly, false otherwise.

Related Links
SetChannelStatus
"Understanding Managing Service Operations" (Integration Broker)

SetNextPanel

Syntax

SetNextPanel(panelname)

Description

Use the SetNextPanel to specify the panel name to which the user will be transferred when selecting the
NextPanel (F6) function or specifying it with the PeopleCode TransferPage function.

Note: The SetNextPanel function is supported for compatibility with previous releases of PeopleTools.
New applications should use the SetNextPage function instead.

Related Links
SetNextPage

SetNextPage

Syntax

SetNextPage(pagename)

Copyright © 1988, 2022, Oracle and/or its affiliates. 745



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the SetNextPage function to specify the page name to which the user is transferred when selecting the
NextPage (ALT+6 and ENTER) function or specifying it with the PeopleCode TransferPage function.

SetNextPage validates that pagename is listed on current menu. This selection is cleared when the user
transfers to a new page.

Parameters

Parameter Description

pagename A String equal to the name of the page as specified in the page
definition.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

See AddKeyListItem.

ClearKeyListItem( );
AddKeyListItem(OPRID, OPRID);
AddKeyListItem(REQUEST_ID, REQUEST_ID);
SetNextPage("PAGE_2");
DoSave( );
TransferPage( );

The following example sets up and transfers the user to page JOB_DATA.

If SetNextPage(PAGE.JOB_DATA) Then
     TransferPage( );
End-if;

Related Links
TransferPage

SetPageFieldPageFieldName

Syntax

SetPageFieldPageFieldName(Page.PageName, Record.RecordName, Field.FieldName,
PageFieldName)

Description

Use the SetPageFieldPageFieldName function to add or change a page field name for a field. The
page field name is set on the General tab of the page field properties. Changing a name to itself is not
supported.

746  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The first field on the page with the specified record name and field name is the field that's changed.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

PageName Specify the page containing the field you want to change. This
name must be prefixed by the reserved word Page.

RecordName Specify the record containing the field you want to change.
 This name must be prefixed by the reserved word Record.

FieldName Specify the name of the field that you want to modify. This
name must be prefixed by the reserved word Field.

PageFieldName Specify the page field name that you want associated with the
page field as a string.

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_PageNotFound The specified page wasn't found.

%MDA_PageFieldNotFound The specified field wasn't found on the specified page.

%MDA_Duplicate A second field by the same name was found on the page. Only
the first page field name was changed.

Copyright © 1988, 2022, Oracle and/or its affiliates. 747



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The following example adds a page field name to a page field.

&ret = SetPageFieldPageFieldName(Page.ABSENCE_HIST, Record.ABSENCE_HIST, Field.EMPL⇒

ID, "EMPLID")

The following example adds a page field name to a page field using dereferenced parameters.

&Pnl = "Page." | "ABSENCE_HIST";
&Rec = "Record." | "ABSENCE_HIST";
&Field = "Field." | "EMPLID";
&Name = "EMPLID"
&ret = SetPageFieldPageFieldName(@(&Pnl), @(&Rec), @(&Field), &Name);

Related Links
"Understanding Field Definitions" (Application Designer Developer’s Guide)

SetPanelControlStyle

Syntax

SetPanelControlStyle(style)

Description

Use the SetPanelControlStyle function to specify a String value that updates the system with styles that
control the state of the left and right panels.

Important! Use this function within fluid applications only.

Parameters

Parameter Description

style Specifies the styles for the panel controller as a String value.

Returns

A String value.

Example
method UpdatePanel
   SetPanelControlStyle(&m_oCSS.ResultStyles);
end-method;

748  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

SetPasswordExpired

Syntax

SetPasswordExpired(NewValue)

Description

Use the SetPasswordExpired function to set the password expired status for the current user. When the
user's password expired flag is set to True, they can only access the page that allows them to change
their password. The function returns the old value, that is, the value that represented the status of the flag
before it was set to NewValue.

Parameters

Parameter Description

NewValue Specify a new value for the user's password expired flag. This
parameter takes a Boolean value

Returns

A Boolean value: True if you've set the password expire flag to False, False if you've set the password
expire flag to True.

Example
If %PasswordExpired Then
   &NewValue = SetPasswordExpired(True);
End-If;

Related Links
SwitchUser
%PasswordExpired
"PeopleSoft Online Security" (Security Administration)

SetPostReport

Syntax

SetPostReport()

Description

Use the SetPostReport function to create a reference to a PostReport object. After you’ve created this
object, you can assign values to its properties, then use the Put method to initiate the posting of the files to
the Report Repository.

Copyright © 1988, 2022, Oracle and/or its affiliates. 749



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

None.

Returns

A reference to a PostReport object.

Related Links
"PostReport Class Overview" (PeopleCode API Reference)

SetRecFieldEditTable

Syntax

SetRecFieldEditTable(Record.RecordName, Field.FieldName, EditTable [, TableEditType⇒

])

Description

Use the SetRecFieldEditTable function to set the edit table value for a record field. This overwrites the
value for the edit table for the record field. Use the SetEditTable Record method to just set the edit table
value at runtime.

If you specify a null value for EditTable, and no value is specified for TableEditType, the table edit flag is
turned off, that is, no prompt table is set for the record field.

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

RecordName Specify the record containing the field you want to change.
 This name must be prefixed by the reserved word Record.

FieldName Specify the name of the field that you want to modify. This
name must be prefixed by the reserved word Field.

750  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

EditTable Specify the name of the edit table record. This name must be
prefixed by the reserved word Record. If you do not want to
specify a record name, specify Record."".

TableEditType Specify the type of edit table record to be associated with the
record field. If you specify a value for EditTable (and not a
null value) this parameter is required. You can specify either a
constant or numeric value for this parameter. Valid values are:

Constant Value Numeric Value Used for which types of fields

%EditTableType_NoEdit 0 Character, Number, Date, Time,
 Datetime

%EditTableType_Prompt 1 Character, Number, Date, Time,
 Datetime

%EditTableType_YesNo 2 Character

%EditTableType_Translate 3 Character fields with length 4 or less
only

%EditTableType_OneZero 4 Number fields only

Returns

A constant value. The values are:

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_RecordNotFound The specified record wasn't found.

%MDA_RecFieldNotFound The specified field wasn't found on the record.

Example

&ret = SetRecFieldEditTable(RECORD.AbsHist, Field.OrgId, RECORD.EmplId_Tbl, %EditTa⇒

bleType_Prompt);
If (&ret = %MDA_Success) Then

Copyright © 1988, 2022, Oracle and/or its affiliates. 751



PeopleCode Built-in Functions and Language Constructs Chapter 1

   MessageBox(0, "Metadata Fn Status", 0, 0, "SetRecFieldEditTable succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetRecFieldEditTable failed");
End-If;

SetRecFieldKey

Syntax

SetRecFieldKey(Record.RecordName, Field.FieldName, Key)

Description

Use the SetRecFieldKey function to specify whether a field on a record is a key field or not.

Use the IsKey field class property to determine whether or not the field is already a key.

Note: Because performing this operation changes records, you must subsequently rebuild the project
(alter tables).

Considerations Using this Function

This function is intended for use during configuration time only, before active runtime usage is initiated.
Using this function during active runtime is not supported. Changes to data definitions are not recognized
on currently loaded component. In general, changes aren't recognized until the component is reloaded.

Warning! These operations take place in a separate transaction from the page's save status: the initiation
of any of these operations immediately changes the definitions, even if the page is subsequently cancelled.

Parameters

Parameter Description

RecordName Specify the record containing the field you want to change.
 This name must be prefixed by the reserved word Record.

FieldName Specify the name of the field that you want to modify. This
name must be prefixed by the reserved word Field.

Key Specify whether the field is a key or not. This parameter takes
a Boolean value: True, the field is a key field, False, it isn't.

Returns

A constant value. The values are:

752  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Value Description

%MDA_Success Function completed successfully.

%MDA_Failure Function didn't complete successfully.

%MDA_RecordNotFound The specified record wasn't found.

%MDA_RecFieldNotFound The specified field wasn't found on the record.

Example

&ret = SetRecFieldKey(RECORD.AbsHist, Field.OrgId, True);
If (&ret = %MDA_Success) Then
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetRecFieldKey succeeded");
Else
   MessageBox(0, "Metadata Fn Status", 0, 0, "SetRecFieldKey failed");
End-If;

Related Links
"Understanding Field Definitions" (Application Designer Developer’s Guide)

SetReEdit

Syntax

SetReEdit(reedit_on)

Description

Use the SetReEdit to switch re-edit mode on and off. When re-edit mode is on, definitional edits (such
as translate table and prompt table edits), as well as FieldEdit PeopleCode, are run on each editable field
in the component when the component is saved. If an error is found, the component data is not saved.
SetReEdit can be called at any time during the life of the component before the SaveEdit event fires, and
would typically be called in RowInit when other page settings are being initialized. When a component is
started, re-edit mode is off by default.

SetReEdit is used primarily in financial applications, where transactions are sometimes brought into the
database by non-online processes. When re-edit mode is on, the values read in during these transactions
can be validated by simply bringing them up in the page and saving. Any errors are then reported, as if the
end user had entered all of the data online.

Copyright © 1988, 2022, Oracle and/or its affiliates. 753



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

reedit_on A Boolean value specifying whether to switch re-edit mode on
or off. True turns re-edit mode on, False turns re-edit mode off.

Example

This example is used in RowInit PeopleCode to initialize component settings. After re-edit mode is on,
field-level edits are re-applied when the component is saved.

SetReEdit(True);

SetRemovelistView

Syntax

SetRemovelistView(bRemove as Boolean)

Description

Use the SetRemovelistView function to remove list view from component search results page if it
contains PII or sensitive data. Use SetRemoveListView in SearchInit people code of Search Record’s key
field.

Parameters

Parameter Description

bRemove Specifies an optional parameter. Default value is true.

Returns

None.

Example

Write the following PeopleCode in the SearchInit event:

/*add the following code if NATIONAL_ID is a column in search results*/
GetRecord().GetField(Field.NATIONAL_ID).SetDisplayMask("*", 4);
/*add this line if NATIONAL_ID or any other sensitive field is in list view’s Title⇒

 or Summary fields*/
SetRemovelistView();

754  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

SetSaveWarningFilter

Syntax

SetSaveWarningFilter(enable_or_disable)

Description

Use the SetSaveWarningFilter function to suppress save warning irrespective of whether the component
level flag (indicating whether the component is changed) is set or not. If you use this function, the
component processor ignores the component level flag value and lets the user to navigate away from the
component without issuing any save warning.

Note: After the updates are completed, ensure to call SetSaveWarningFilter(False) to resume the save
warning flag.

Parameters

Parameter Description

enable_or_disable Specifies a Boolean value indicating whether to issue save
warning to a user.

If True, the component processor ignores the flag and save
warning is not issued; if False, component processor issues
save warning.

Returns

None.

Example

In this example, the function temporarily disables save warning and then enables save warning.

method LoadGroupletSetupGrid
   /+ &p_rwCurrentRow as Row +/
   /* Disabling save warning */
   SetSaveWarningFilter( True);
   If &p_rwCurrentRow.PTGPLT_WORK.PTGPLT_DT_DROPDOWN.Value = "All" Then
      &m_rsPTGPLTSetup.Flush();
      GetLevel0().Select(Scroll.PTPPB_GROUPLET, Record.PTPPB_GROUPLET);
   Else
      &m_rsPTGPLTSetup.Flush();
      GetLevel0().Select(Scroll.PTPPB_GROUPLET, Record.PTPPB_GROUPLET, "Where PTPPB⇒

_DATATYPE_ID = :1", &p_rwCurrentRow.PTGPLT_WORK.PTGPLT_DT_DROPDOWN.Value);
   End-If;
   /* Re-enabling save warning */
   SetSaveWarningFilter( False);
end-method;

Copyright © 1988, 2022, Oracle and/or its affiliates. 755



PeopleCode Built-in Functions and Language Constructs Chapter 1

SetSearchDefault

Syntax

SetSearchDefault([recordname.]fieldname)

Description

Use the SetSearchDefault function to set system defaults (default values set in record field definitions) for
the specified field on search dialog boxes. It does not cause the FieldDefault event to fire.

Note: This function remains for backward compatibility only. Use the SearchDefault field property
instead.

The system default occurs only once, when the search dialog box first starts, immediately after SearchInit
PeopleCode. If the end user subsequently blanks out a field, the field is not reset to the default value. The
related function ClearSearchDefault disables default processing for the specified field. SetSearchDefault
is effective only when used in SearchInit PeopleCode programs.

Related Links
"SearchDefault" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

[recordname .]fieldname The name of the target field, a search or alternate search
key that is about to appear in the search dialog box. The
recordname prefix is required if the call to SetSearchDefault is
not on the record definition recordname.

Example

This example, from SearchInit PeopleCode turns on edits and defaults for the SETID field in the search
dialog box:

SetSearchEdit(SETID);
SetSearchDefault(SETID);

Related Links
ClearSearchDefault
ClearSearchEdit
SetSearchDialogBehavior
SetSearchEdit
"Search Processing in Update Modes" (PeopleCode Developer’s Guide)

756  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

SetSearchDialogBehavior

Syntax

SetSearchDialogBehavior(force_or_skip)

Description

Use the SetSearchDialogBehavior function in SearchInit PeopleCode to set the behavior of search
and add dialog boxes before a page is displayed, overriding the default behavior. There are two dialog
behavior settings: skip if possible (0) and force display (1).

Skip if possible means that the dialog box is skipped if all of the following are true:

• All required keys have been provided (either by system defaults or by PeopleCode).

• If this an Add dialog box, then no duplicate key error results from the provided keys; if this error
occurs, the processing resets to the default behavior.

• If this is a Search dialog box, then at least one row is returned based on the provided keys.

Force display means that the dialog box displays even if all required keys have been provided.

The default behavior of the search and add dialog boxes is force display.

Note: SetSearchDialogBehavior can only be used in SearchInit PeopleCode.

Special Usage in Fluid Components

In a fluid component, if you set the search page type to None, you are bypassing the fluid search pages.
You must use SearchInit PeopleCode or specify a search record that does not have a search key defined.

To avoid a known issue in PeopleTools 8.57 or earlier releases, if you create a SearchInit program, you
must set all high-level keys and you must prevent the display of a non-functional search page using the
SetSearchDialogBehavior function. For example:

#If #ToolsRel <= "8.57" #Then
   PSUSRSELF_SRCH.OPRID = %UserId;
   SetSearchDialogBehavior(0);
#Else
   PSUSRSELF_SRCH.OPRID = %UserId;
#End-If

Parameters

Parameter Description

force_or_skip A Number equal to one of the following values:

• 0: sets the dialog behavior to skip if possible.

• 1: sets the dialog behavior to force display.

Copyright © 1988, 2022, Oracle and/or its affiliates. 757



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

None.

Example

The following function call, which must occur in SearchInit PeopleCode, sets the dialog behavior to skip
if possible.

SetSearchDialogBehavior(0);

Related Links
SetSearchDefault
SetSearchEdit
ClearSearchEdit
ClearSearchDefault
IsUserInRole
"Search Processing in Update Modes" (PeopleCode Developer’s Guide)

SetSearchEdit

Syntax

SetSearchEdit([recordname.]fieldname)

Description

Use the SetSearchEdit function to enable system edits (edits specified in the record field definition) for
the specified [recordname.]fieldname, for the life of the search dialog box, or until the ClearSearchEdit
function is called with that same field.

Note: This function remains for backward compatibility only. Use the SearchEdit field property instead.

See "SearchEdit" (PeopleCode API Reference).

Using SetSearchEdit

In the Add mode search dialog, the following edits are performed when the end user clicks the Add
button. In any other mode, the following edits are performed when the end user clicks the Search button:

• Formatting

• Required Field

• Yes/No Table

• Translate Table

• Prompt Table

758  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

SetSearchEdit does not cause the FieldEdit, FieldChange, or SaveEdit PeopleCode events to fire during
the search dialog.

You might use SetSearchEdit to control access to the system. For example, you can apply this function to
the SETID field of a dialog box and require the end user to enter a valid SETID.

If you use this function in the SearchInit event, the search page options are limited to the "=" and "IN"
operators.

Parameters

Parameter Description

fieldname The name of the search dialog field on which to enable field
edits.

Returns

Returns a Boolean value indicating whether the function executed successfully.

Example

This example turns on edits and system defaults for the SETID field in the search dialog box:

SetSearchEdit(SETID);
SetSearchDefault(SETID);

Related Links
ClearSearchEdit
ClearSearchDefault
SetSearchDefault
SetSearchDialogBehavior
"Search Processing in Update Modes" (PeopleCode Developer’s Guide)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

SetTempTableInstance

Syntax

SetTempTableInstance(instance_number)

Description

Use the SetTempTableInstance function to set the default temp table instance to the specified number for
the processing of temporary tables. This default is used by all %Table meta-SQL references to temporary
tables, and by all SQL operations. Generally, you use this function only when you’re trying to use any of
the ScrollSelect functions, the Rowset class Select or SelectAll methods, the record class SQL methods
(SelectByKey, Insert, and so on.), or any of the meta-SQL statements that use %Table (%InsertSelect,

Copyright © 1988, 2022, Oracle and/or its affiliates. 759



PeopleCode Built-in Functions and Language Constructs Chapter 1

%InsertSelectWithLongs, %SelectAll, %Delete, and so on.) Generally, %Table should be used to override
the default.

If you use this built-in within an Application Engine program, and the program uses a process-level
instance on the request, the old instance value must be saved, then restored after you’re finished using the
new instance.

If you pass a zero for instance_number, the Fill method uses the physical table instance with no
table append, for example, if the temporary table record is FI_INSTR_T, the physical table used is
PS_FI_INSTR_T.

Parameters

Parameter Description

instance_number Specify the instance number for the temporary tables.

Returns

Existing (or previous) instance number.

Example

To avoid interfering with other uses of temporary tables, you should only set the temporary table instance
for your process, then set it back to the default. For example:

/* Set temp table instance */
&PrevInstNum = SetTempTableInstance(&NewInstNum);
/* use the temporary table */
.  .  .
/* Restore the temp table instance */
SetTempTableInstance(&PrevInstNum);

Related Links
"%Table" (Application Engine)

SetThemeId

Syntax

SetThemeId(theme_ID)

Description

Use the SetThemeId function to set the theme ID for the page or component so that proper theme style
sheets get loaded.

Important! Use this function within fluid applications only.

760  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

theme_ID Specifies the theme ID as a string value.

Returns

None.

Example
SetThemeId(DEFAULT_THEME_TANGERINE_ALT);

Related Links
"Assembling Branding Themes" (Portal Technology)

SetTracePC

Syntax

SetTracePC(n)

Description

Use the SetTracePC function to control PeopleCode trace settings programmatically. This is useful if you
want to isolate and debug a single program or part of a program.

Note: If you’re using an API with the Session class, use the Trace Setting class properties instead of this
function.

You can also set options prior to starting a PeopleSoft Application Designer session using the Trace tab of
PeopleSoft Configuration Manager.

Tracing PeopleCode creates and writes data to a trace file that it shares with SQL tracing; SQL trace and
PeopleCode trace information are both output to the file in the order of execution. The trace file uses a
file name and location specified in the Trace page of PeopleSoft Configuration Manager. If no trace file is
specified in PeopleSoft Configuration Manager, the file is set by default to DBG1.TMP in your Windows
TEMP directory. If you specify only a file name, and no directory is specified, the file is written to the
directory you’re running PeopleSoft Application Designer from. This file is cleared each time you log on
and can be opened in a text editor while you are in a PeopleSoft Application Designer session, so if you
want to save it, you must print it or copy it from your text editor.

Trace timings are given in the elapsed time in seconds, but reported in microseconds and include CPU
time and "cycles". The CPU time measurement, depending on platform, may not be very precise. The
"cycles" is a measure of how much PeopleCode the program is executing. It counts loops around the
PeopleCode interpreter. This cycle count is only updated when some tracing or debugging is going on. So,
for example, turning the trace off then back on again will skip some cycles.

Copyright © 1988, 2022, Oracle and/or its affiliates. 761



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: Oracle recommends using a value of  %TracePC_Statements (2048) instead of
%TracePC_Functions (1) and %TracePC_List (2).

Related Links
"Trace Setting Class Properties" (PeopleCode API Reference)
"Specifying Trace Settings" (System and Server Administration)

Parameters

Parameter Description

options Either a number or a constant value that sets trace options.
 Calculate options by either totaling the numbers associated
with any of the following options or by adding constants
together:

Numeric Value Constant Value Description

0 %TracePC_None Set trace off.

1 %TracePC_Functions Provide a trace of the program as it is
executed. This implies options 64, 128,
 and 256 described in the following rows.

2 %TracePC_List Provide a listing of the entire program.

4 %TracePC_Assigns Show the results of all assignments made
to variables.

8 %TracePC_Fetches Show the values fetched for all variables.

16 %TracePC_Stack Show the contents of the internal
machine stack. This option is normally
used for debugging the PeopleCode
language and not PeopleCode programs.

64 %TracePC_Starts Provide a trace showing when each
program starts.

128 %TracePC_ExtFuncs Provide a trace showing the calls made
to each external PeopleCode routine.

256 %TracePC_IntFuncs Provide a trace showing the calls made
to each internal PeopleCode routine.

762  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

512 %TracePC_ParamsIn Show the values of the parameters to a
function.

1024 %TracePC_ParamsOut Show the values of the parameters as
they exist at the return from a function.

2048  %TracePC_Statements Show each statement as it's executed 
(and do not show statements on branches
not taken.)

32768 %TracePC_Evaluations Start the timing tracing of the start and
end of top-level program evaluations.
 This is similar to the Trace Start of
Programs, but only traced when the call
isn't directly from PeopleCode.

It traces recursive evaluations, like
what happens when a ScrollSelect in a
RowInit event causes another recursive
RowInit to fire during the outer RowInit.

If both Trace Evaluations (32768) and
Trace Start of Programs (64) are on 
(32768+64 = 32832) then all routine
calls (functions, methods, get, set for
both internal and external PeopleCode
to PeopleCode calls) are traced. The
resulting trace file can be processed
by a program to add up the timings for
each routine and separate the in-routine
timings from those for called routines.

Returns

None.

Example

The following example is part of a SavePreChange PeopleCode program that sets PeopleCode trace based
on page field settings:

DEBUG_CODE = 0;
If DEBUG_TRACE_ALL = "Y" Then
   DEBUG_CODE = DEBUG_CODE + 1
End-if;
If DEBUG_LIST = "Y" Then
   DEBUG_CODE = DEBUG_CODE + 2
End-if;
If DEBUG_SHOW_ASSIGN = "Y" Then
   DEBUG_CODE = DEBUG_CODE + 4
End-if;
If DEBUG_SHOW_FETCH = "Y" Then
   DEBUG_CODE = DEBUG_CODE + 8
End-if;
If DEBUG_SHOW_STACK = "Y" Then

Copyright © 1988, 2022, Oracle and/or its affiliates. 763



PeopleCode Built-in Functions and Language Constructs Chapter 1

   DEBUG_CODE = DEBUG_CODE + 16
End-if;
If DEBUG_TRACE_START = "Y" Then
   DEBUG_CODE = DEBUG_CODE + 64
End-if;
If DEBUG_TRACE_EXT = "Y" Then
   DEBUG_CODE = DEBUG_CODE + 128
End-if;
If DEBUG_TRACE_INT = "Y" Then
   DEBUG_CODE = DEBUG_CODE + 256
End-if;
If DEBUG_SHOW_PARMS = "Y" Then
   DEBUG_CODE = DEBUG_CODE + 512
End-if;
If DEBUG_SHOW_PARMSRT = "Y" Then
   DEBUG_CODE = DEBUG_CODE + 1024
End-if;
SetTracePC(DEBUG_CODE);

The following example sets Trace PC to show a listing of all the calls made to external routines as well as
calls made to internal routines:

SetTracePC(384);

The following is identical to the previous example:

SetTracePC(%TracePC_ExtFuncs + %TracePC_IntFuncs);

If you need a thorough trace, you can use a value of 3596. That combines the following:

Value Description

2048 Show each statement as it's executed

1024 Show the values of the parameters as they return

512 Show the values of the parameters to a function

8 Show the values fetched for all variables

4 Show the results of all assignments

Related Links
SetTraceSQL
"Understanding Database Level Auditing" (Data Management)

SetTraceSQL

Syntax

SetTraceSQL(options)

764  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the SetTraceSQL function to programmatically control the Trace SQL utility, enabling you to control
TraceSQL options during the course of program execution.

Note: If you’re using an API with the Session class, use the Trace Setting class properties instead of this
function.

When you interact with PeopleTools, SQL statements transparently perform actions such as page
construction. The Trace SQL utility creates and updates a file showing the SQL statements generated by
PeopleTools.

You can set options prior to starting a PeopleTools session using the Trace tab of PeopleSoft
Configuration Manager.

Trace SQL creates and writes data to a trace file that it shares with Trace PeopleCode; Trace SQL and
Trace PeopleCode information are both output to the file in the order of execution. The trace file uses a
file name and location specified in the Trace page of PeopleSoft Configuration Manager. If no trace file
is specified in PeopleSoft Configuration Manager, the file is set by default to DBG1.TMP in your Temp
directory. If you specify only a file name, and no directory is specified, the file is written to the directory
you’re running Tools from. This file is cleared each time you log on and can be opened in a text editor
while you are in a PeopleTools session, so if you want to save it, you must print it or copy it from your
text editor.

Related Links
"Trace Setting Class Properties" (PeopleCode API Reference)
"Understanding PeopleSoft Configuration Manager" (System and Server Administration)

Parameters

Parameter Description

options Either a Number value or a constant that sets trace options.
 Calculate options by either totaling the numbers associated
with any of the following options, or adding constants
together:

Numeric Value Constant Value Description

0 %TraceSQL_None No output

1 %TraceSQL_Statements SQL statements

2 %TraceSQL_Variables SQL statement variables (binds)

4 %TraceSQL_Connect SQL connect, disconnect, commit and
rollback

Copyright © 1988, 2022, Oracle and/or its affiliates. 765



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

8 %TraceSQL_Fetch Row Fetch (indicates that it occurred and
the return code - not the data fetched.)

16 %TraceSQL_MostOthers All other API calls except Set Select
Buffers

32 %TraceSQL_SSB Set Select Buffers(identifies the
attributes of the columns to be selected)

64 %TraceSQL_DBSpecific Database API-specific calls

128 %TraceSQL_Cobol COBOL Statement Timings

1024 %TraceSQL_DB2400Server Manager information for DB2/400 only

4096 %TraceSQL_ManagerInfo All manager information.

8192 %TraceSQL_AppEngineInfo Trace Application Engine information.

Note: PeopleSoft recommends setting options to 3 to provide most essential information without
performance degradation. Options 8 and 32 greatly increase the volume of the trace and will noticeably
degrade performance.

Returns

None.

Example

The following example switches off Trace SQL:

SetTraceSQL(0);

The following is identical to the previous example:

SetTraceSQL(%TraceSQL_None);

The following example sets Trace SQL to typical settings that won’t degrade performance:

SetTraceSQL(3);

The following is identical to the previous example:

SetTraceSQL(%TraceSQL_Statements + %TraceSQL_Variables);

Related Links
SetTracePC

766  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

"Understanding Database Level Auditing" (Data Management)

SetTransferAttributes

Syntax

SetTransferAttributes(enable_animation, [add_to_history], [back_label], [user_data]⇒

,
[qry_string_array])

Description

Use the SetTransferAttributes function to set certain transfer-related properties when executing a transfer
to a different page or component. SetTransferAttributes can be invoked prior to the transfer (for example,
in a FieldChange program) or after the transfer in the target component (for example, in a page Activate
program).

Parameters

Parameter Description

enable_animation Specifies a Boolean value indicating whether to animate the
transfer.

The default value is False.

add_to_history Specifies a Boolean value indicating whether to track the
transfer in the Back button history stack.

The default value is True.

Note: The Back button is a user interface widget that appears
in the portal header of classic pages and in the fluid page
banner; it is not the browser’s back button.

back_label Specifies a custom label for the Back button as a string value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 767



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

user_data Specify any additional transfer attributes as name/value pairs
using the following format:

Name1@Value1;Name2@Value2;...;NameN@Valu⇒

eN

Specify the empty string, "", when no additional attributes
need to be set.

Use the returntolastpage attribute to specify which
page is displayed when returning to this component via the
Back button:

• returntolastpage@0 — The Back button returns
the user to the first page of the component. This is the
system default behavior for components.

• returntolastpage@1 — The Back button returns
the user to the last viewed page of the component.

The returntolastpage attribute overrides any page
navigation settings specified in Application Designer. For
fluid components, this is set on the Fluid tab; see "Setting
Properties on the Fluid Tab" (Fluid User Interface Developer’s
Guide). For classic components, this is set on the Internet
tab; see "Setting Internet Properties" (Application Designer
Developer’s Guide).

qry_string_array Specifies an array of array of string containing name/value
pairs to be used as query string parameters constituting the
history record.

Returns

None.

Example

The following example sets animation to true, keeps the current content in the history, sets the back
button's label to "Search Results," and then invokes the Transfer built-in function to complete the transfer:

SetTransferAttributes( True, True, "Search Results");
Transfer( False, MenuName.QE_NUI, BarName.USE, ItemName.QE_NUI_ED_BOOK, Page.QE_BOO⇒

K, "U", QE_BOOK.QE_BOOK_NAME);

The following example sets and uses an array of array of string containing name/value pairs to be used as
query string parameters constituting the history record and then invokes the ViewURL built-in function to
complete the transfer:

import EP_FUNCTIONS:DocumentPageTitle;
import EP_NUI_FUNCTIONS:EEmasterlist;
...
Component EP_NUI_FUNCTIONS:EEmasterlist &Component_MasterList;
...

768  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

SQLExec(SQL.EP_SEL_ROLE_DESCR, &EP_GBLKEYS_WRK.EP_ROLE.Value, &RoleDescr);
&Gbl_PageTitle = GetText("APPR_MAIN1_TITLE", " ", " ", " ", &EP_GBLKEYS_WRK.EP_USER⇒

_ROLE.Value, " ", &RoleDescr, " ", " ", " ", " ");
&Cmp_PageTitle = &Gbl_PageTitle;

/*  Transfer to WorkCenter  */
Local array of array of string &qs = CreateArray(CreateArray("XFER_TAB_NUMBER", Str⇒

ing(&Component_MasterList.GetTabNumber())));
SetTransferAttributes( False, True, "", "", &qs);

&url = GenerateComponentPortalURL(%Portal, %Node, MenuName.ROLE_EMPLOYEE, "GBL", Co⇒

mponent.EP_APPR_MAIN, "", "");
&EndPos = Find("?", &url, 0);
If &EndPos = 0 Then
   &url = &url | "?replaceCurrentTopWindow=y&cmd=uninav";
Else
   &url = &url | "&replaceCurrentTopWindow=y&cmd=uninav";
End-If;

rem %Response.RedirectURL(&url);
ViewURL(&url);

In certain scenarios, you may require intermediate components to perform a contextual transfer to content
such as a dashboard. In these scenarios, you must prevent tracking of the intermediate component in the
Back button history stack. To do so, the following code can be used in the intermediate component:

SetTransferAttributes( False, False, "", "", null, True);
ViewURL("http://domain:port/psp/ps_7/EMPLOYEE/T55106RO/h/?tab=QE_PT_DASHBOARD&pslnk⇒

id=QE_PT_DASHBOARD_LINK");

Related Links
CreateBreadcrumb
GetBreadcrumbs
Transfer
TransferExact
TransferPage
ViewContentURL
ViewURL

SetupScheduleDefnItem

Syntax

SetupScheduleDefnItem(ScheduleName, JobName)

Description

Use the SetupScheduleDefnItem function to create a ProcessRequest object. After you’ve created this
object, you can assign values to its properties then specific methods created to either schedule or print
info for a Scheduled Jobset.

Copyright © 1988, 2022, Oracle and/or its affiliates. 769



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

ScheduleName Specify the process type as a string. Values depend on the
Scheduled Jobset defined for your system.

JobsName Specify the name of the job name as a string.

Returns

A reference to a ProcessRequest object.

Example
Local ProcessRequest &MYRQST;

&MYRQST = SetupScheduleDefnItem("SampleSchedule", &MyJobName);

Related Links
"Understanding Process Request Classes" (PeopleCode API Reference)

SetUserOption

Syntax

SetUserOption(Level, OPTN, Value)

Description

Use the SetUserOption to set the default value for the specified option.

Parameters

Parameter Description

Level Specify the option category level as a string.

OPTN Specify the option as a string.

Value Specify the value of the option.

Returns

A Boolean value: True, if the function completed successfully, False otherwise.

770  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
GetUserOption
"Understanding System Personalizations" (Security Administration)

ShareAttachment

Syntax

ShareAttachment(URLID, DirAndFilePrefix, ShareURL, ShareMode, ShareRole, Expiration⇒

DateTime, AccessToken, UsernameArray)

Description

Use the ShareAttachment function to share files in Oracle Content and Experience Cloud (CEC).

Parameters

Parameter Description

URLID Specifies an Oracle Content Cloud.

DirAndFilePrefix A directory and file name prefix. This is appended to the
URLID parameter to get the actual file for sharing.

Note: Because the DirAndFilePrefix parameter is appended to
the URL, it requires forward slashes (“/”). Backward slashes 
(“\”) are not supported for this parameter.

ShareURL Specifies the URL to access the file that is being shared.

Copyright © 1988, 2022, Oracle and/or its affiliates. 771



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

ShareMode Specifies the sharing mode assigned to a user.

The following modes of sharing are supported:

• %ShareMode_Member - Use this sharing mode to allow
access as a member to the folder, which contains the
specified file. The link to access the file is updated in the
ShareURL parameter.

• %ShareMode_PublicRegisteredUsers - Use this sharing
mode to allow access as a public registered user, who can
access the file if the user has a cloud account. The link to
access the file is updated in the ShareURL parameter.

• %ShareMode_PublicAnyone - Use this sharing mode to
allow anyone having access to the Web. The link to access
the file is updated in the ShareURL parameter.

If no value is passed for this parameter, %ShareMode_
PublicRegisteredUsers access is assumed.

This is an optional parameter.

ShareRole Specifies the role assigned to a user that allows user to view a
file, download a file, and modify a file.

The following roles are supported:

• %ShareRole_Viewer - allowed to view a file online.

• %ShareRole_Downloader - allowed to download a file.

• %ShareRole_Contributor - allowed to modify a file.

If no value is passed for this parameter, %ShareRole_Viewer
role is assumed.

This is an optional parameter.

ExpirationDateTime This parameter is used only when the sharing mode
is %ShareMode_PublicAnyone or %ShareMode_
PublicRegisteredUsers.

If a valid date and time are not passed, a public link URL that
never expires is created.

This is an optional parameter.

772  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

AccessToken AccessKey is set in the public link that is generated.

This parameter is used only when the sharing mode
is %ShareMode_PublicAnyone or %ShareMode_
PublicRegisteredUsers.

If the GENERATEACCESSKEY property is set to Y and

• if you don't pass a string variable, the API fails.

• if you pass an empty string variable, the API generates a
random access key and sets it in this variable.

• if you pass a non-empty string variable, the API uses that
as the access key.

This is an optional parameter.

UsernameArray Specifies users who are added as members to the folder, which
contains the specified file.

This parameter is used only when the sharing mode is
%ShareMode_Member.

If no value is passed in this parameter, an empty string array is
assumed.

This is an optional parameter.

Returns

An integer value (0) irrespective of whether the function is successful or not.

Note: It is reserved for future use.

Example
Local array of string &user = CreateArrayRept("XYZ", 1);
Local string &url;
ShareAttachment(URLID.PAYSLIP, "PaySlips_XYZ", &url, %ShareMode_Member, %ShareRole_⇒

Downloader, , &dt, "", &user);

Related Links
AddAttachment
MAddAttachment
PutAttachment
UnshareAttachment

Copyright © 1988, 2022, Oracle and/or its affiliates. 773



PeopleCode Built-in Functions and Language Constructs Chapter 1

ShouldSuppressCREF

Syntax

ShouldSuppressCREF(CREF_URL)

Description

Note: The ShouldSuppressCREF function has been deprecated and is retained for backward compatibility
only.

Use the ShouldSuppressCREF function to return a boolean value indicating whether the URL should be
displayed in the particular conditional navigation context. If the return value is True, the URL should
not be shown in the current context; when the return value is False, the URL can be shown in the current
context.

Parameters

Parameter Description

CREF_URL Specifies the URL for a content reference as a string value.

Returns

A Boolean value.

Related Links
"Understanding Conditional Navigation" (Portal Technology)

Sign

Syntax

Sign(n)

Description

Use the Sign function to determine the sign of a number.

Parameters

Parameter Description

n A number value of which to determine the sign.

774  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

Returns a number value equal to:

• 1 if n is positive

• 0 if n is 0

• -1 if n is negative

Example

The example sets &NUMSIGN to 1:

&NUMSIGN = Sign(25);

Related Links
Abs

Sin

Syntax

Sin(angle)

Description

Use the Sin function to calculate the sine of the given angle (opposite / hypotenuse).

Parameters

Parameter Description

angle A value in radians.

Returns

A real number between -1.00 and 1.00.

Example

The following example returns the sine of an angle measuring 1.2 radians:

&MY_RESULT = Sin(1.2);

Related Links
Acos
Asin

Copyright © 1988, 2022, Oracle and/or its affiliates. 775



PeopleCode Built-in Functions and Language Constructs Chapter 1

Atan
Cos
Cot
Degrees
Radians
Tan

SinglePaymentPV

Syntax

SinglePaymentPV(int_rate, n_per)

Description

Use the SinglePaymentPV function to calculate the future value of a single monetary unit after a specified
number of periods at a specified interest rate.

Parameters

Parameter Description

int_rate A number representing the interest rate at which value is
accrued per period.

n_per A number specifying the number of periods on which to base
the calculated value.

Returns

Returns a number value equal to the value of the unit after n_per periods at an interest rate of int_rate per
period.

Example

The example calculates &PMT as .857338820301783265:

&PMT = SinglePaymentPV(8, 2);

Related Links
UniformSeriesPV

SortScroll

Syntax

SortScroll(level, scrollpath, sort_fields)

776  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Where scrollpath is:

[Record.level1_recname, [Record.level2_recname,] Record.target_recname

and where sort_fields is a list of field specifiers in the form:

[recordname.]field_1, order_1 [, [recordname.]field_2, order_2]. . .

Description

The SortScroll function programmatically sorts the rows in a scroll area on the active page. The rows can
be sorted on one or more fields.

Note: This function remains for backward compatibility only. Use the Sort rowset method instead.

The type of sort done by this function, that is, whether it is a linguistic or binary sort, is determined by the
Sort Order Option on the PeopleTools Options page.

Related Links
"Sort" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)

Parameters

Parameter Description

level Integer specifying the level of the scroll to sort. It can be 1, 2,
 or 3.

scrollpath A construction that specifies a scroll area in the component
buffer.

sort_fields A list of field and order specifiers which act as sort keys. The
rows in the scroll area are sorted by the first field in either
ascending or descending order, then by the second field in
either ascending or descending order, and so on.

[recordname.]field_n Specifies a sort key field in target_recname. The recordname
prefix is required if the call to SortScroll is in a record other
than target_recname.

order_n A single-character string. "A" specifies ascending order; "D"
specifies descending order.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Copyright © 1988, 2022, Oracle and/or its affiliates. 777



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The first example repopulates a scroll in a page programmatically by first flushing its contents, selecting
new contents using ScrollSelect, then sorting the rows in ascending order by EXPORT_OBJECT_NAME:

Function populate_scrolls;
   ScrollFlush(Record.EXPORT_OBJECT);
   ScrollSelect(1, Record.EXPORT_OBJECT, Record.EXPORT_OBJECT,
               "where export_type = :EXPORT_TYPE_VW.EXPORT_TYPE");
   SortScroll(1, Record.EXPORT_OBJECT, EXPORT_OBJECT.EXPORT_OBJECT_NAME, "A");
End-function;

The second example sorts the rows on scroll level one by primary and secondary key fields:

SortScroll(1,Record.EN_BOM_COMPS,EN_BOM_COMPS.SETID,"A",
   EN_BOM_CMOPS.INV_ITEM_ID,"A");

Related Links
HideScroll
RowScrollSelect
RowScrollSelectNew
ScrollSelect
ScrollSelectNew
UnhideScroll
"PeopleTools Options" (System and Server Administration)

Split

Syntax

Split(string, separator)

Description

Use the Split function to convert a string into an array of strings by looking for the string separator in the
given string.

Note: Split does not split an array.

If separator is omitted, a blank is used.

If separator is a null string (""), the string is split into single characters.

If separator is the last character in the string, you will not get an empty string. For example, in the
following code, &array only has a value of 2:

&test = "value1:value2:";

&array = Split(&test, ":");

778  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

string The string to be converted into an array

separator The character used for dividing the string.

Returns

Returns a reference to the array.

Example

The following code produces in &AS the array ("This", "is", "a", "simple", "example.").

&STR = "This is a simple example.";

&AS = Split(&STR);

Related Links
CreateArray
CreateArrayRept
"Understanding Arrays" (PeopleCode API Reference)

SQLExec

Syntax

SQLExec({sqlcmd | SQL.sqlname}, [bindexprs [, outputvars]])

where bindexprs is a list of expressions, one for each :n reference within sqlcmd or the text found in the
SQL definition sqlname, in the form:

inexpr_1 [, inexpr_2]. . .

and where outputvars is a list of variables, record fields, or record object references, one for each column
selected by the SQL command, in the form:

out_1 [, out_2]. . .

Description

Use the SQLExec function to execute a SQL command from within a PeopleCode program by passing
a SQL command string. The SQL command bypasses the Component Processor and interacts with the
database server directly. If you want to delete, insert, or update a single record, use the corresponding
PeopleCode record object method.

If you want to delete, insert, or update a series of records, all of the same type, use the CreateSQL or
GetSQL functions, then the Execute SQL class method.

Copyright © 1988, 2022, Oracle and/or its affiliates. 779



PeopleCode Built-in Functions and Language Constructs Chapter 1

Note: SQLExec opens a new database cursor each time it executes.

Limitation of SQLExec SELECT Statement

SQLExec can only Select a single row of data. If your SQL statement (or your SQL.sqlname statement)
retrieves more than one row of data, SQLExec sends only the first row to its output variables. Any
subsequent rows are discarded. This means if you want to fetch only a single row, SQLExec can perform
better than the other SQL functions, because only a single row is fetched. If you need to SELECT
multiple rows of data, use the CreateSQL or GetSQL functions and the Fetch SQL class method. You can
also use ScrollSelect or one of the Select methods on a rowset object to read rows into a (usually hidden)
work scroll.

Note: The PeopleSoft record name specified in the SQL SELECT statement must be in uppercase.

Limitations of SQLExec UPDATE, DELETE, and INSERT Statements

SQLExec statements that result in a database update (specifically, UPDATE, INSERT, and DELETE) can
only be issued in the following events:

• SavePreChange

• WorkFlow

• SavePostChange

• FieldChange

Remember that SQLExec UPDATEs, INSERTs, and DELETEs go directly to the database server, not
to the Component Processor (although SQLExec can look at data in the buffer using bind variables
included in the SQL string). If a SQLExec assumes that the database has been updated based on changes
made in the component, that SQLExec can be issued only in the SavePostChange event, because before
SavePostChange none of the changes made to page data has actually been written back to the database.

Setting Data Fields to Null

SQLExec does not set Component Processor data buffer fields to NULL after a row not found fetching
error. However, it does set fields that aren’t part of the Component Processor data buffers to NULL. Work
record fields are also reset to NULL.

Using Meta-SQL in SQLExec

Different DBMS platforms have slightly different formats for dates, times, and date/times; and PeopleSoft
has its own format for these data types as well. Normally the Component Processor performs any
necessary conversions when platform-specific data types are read from the database into the buffer or
written from the buffer back to the database.

When a SQLExec statement is executed, these automatic conversions do not take place. Instead, you need
to use meta-SQL functions inside the SQL command string to perform the conversions. The basic types of
meta-SQL functions are:

• General functions that expand at runtime to give you lists of fields, key fields, record fields, and so
on. %InsertSelect or %KeyEqual are typical examples.

780  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

• In functions that expand at runtime into platform-specific SQL within the WHERE clause of a
SELECT or UPDATE statement or in an INSERT statement. %DateIn is a typical example.

• Out functions that expand at runtime into platform-specific SQL in the main clause of SELECT
statement. %DateOut is a typical example.

Following is an example of a SQL SELECT using both and "in" and "out" metastring:

select emplid, %dateout(effdt) from PS_CAR_ALLOC a where car_id = '" | &REGISTRATIO⇒

N_NO | "' and plan_type = '" | &PLAN_TYPE | "' and a.effdt = (select max (b.effdt) ⇒

from PS_CAR_ALLOC b where a.emplid=b.emplid and b.effdt <= %currentdatein) and star⇒

t_dt <= %currentdatein and (end_dt is null or end_dt >= %currentdatein)";

See Understanding Meta-SQL.

Bind Variables in SQLExec

Bind variables are references within the sqlcmd string to record fields listed in bindvars. Within the string,
the bind variables are integers preceded by colons:

 :1, :2,. . .

The integers need not in numerical order. Each of these :n integers represents a field specifier in the
bindvars list, so that :1 refers to the first field reference in bindvars, :2 refers to the second field reference,
and so on.

For example, in the following statement:

SQLExec("Select sum(posted_total_amt)
   from PS_LEDGER
   where deptid between  :1 and :2", DEPTID_FROM, DEPTID_TO, &SUM);

:1 is replaced by the value contained in the record field DEPTID_FROM; :2 is replaced by the value
contained in the record field DEPTID_TO.

Note the following points:

• Bind variables can be used to refer to long character (longchar) fields. Long character fields are
represented in PeopleCode as strings. You should use %TextIn() meta-SQL to ensure these fields are
represented correctly on all database platforms.

• Bind variables can be passed as parameters to meta-SQL functions, for example:

SQLExec(". . .%datein(:1). . .", START_DT, &RESULT)

• If a bind variable :n is a Date field that contains a null value, SQLExec replaces all occurrences of
":n" located before the first WHERE clause with "NULL" and all occurrences of "= :n" located after
the first WHERE to "IS NULL".

Inline Bind Variables in SQLExec

Inline bind variables are included directly in the SQL string in the form:

:recordname.fieldname

Copyright © 1988, 2022, Oracle and/or its affiliates. 781



PeopleCode Built-in Functions and Language Constructs Chapter 1

The following example shows the same SQLExec statement with standard bind variables, then with inline
bind variables:

Rem without Inline Bind Variables;
SQLExec("Select sum(posted_total_amt)
   from PS_LEDGER
   where deptid between  :1 and :2", deptid_from, deptid_to, &sum);

Rem with Inline Bind Variables;
SQLExec("Select sum(posted_total_amt)
   from PS_LEDGER
   where deptid between  :LEDGER.DEPTID_FROM
   and :LEDGER.DEPTID_TO",  &sum);

Inline bind variables, like all field and record references enclosed in strings, are considered by
PeopleTools as a "black box". If you rename records and fields, PeopleTools does not update record and
field names that are enclosed in strings as inline bind variables. For this reason, you should use standard
bind variable in preference to inline bind variables wherever standard bind variables are available (as they
are in SQLExec).

Prior to PeopleTools 8.0, PeopleCode replaced runtime parameter markers in SQL strings with the
associated literal values. For databases that offer SQL statement caching, a match was never found in
the cache so the SQL had to be re-parsed and re-assigned a query path. However, with PeopleTools 8.0,
PeopleCode passes in bind variable parameter markers. For databases with SQL caching, this can offer
significant performance improvements.

If you use inline bind variables, they will still be passed as literals to the database. However, if you
convert them to bind variables, you may see significant performance improvements.

Output Variables in SQLExec

If you use SQLExec to Select a row of data, you must place the data into variables or record fields so
that it can be processed. You list these variables or fields, separated by commas in the output part of the
statement following the bindvars list. Supply one variable or field for each column in the row of data
retrieved by SQLExec. They must be listed in the same order in which the columns will be selected.

The number of output variables cannot exceed 64.

Selecting Columns with Leading Spaces

When you execute a select SQL statement that returns data from a Character type column that has leading
spaces, leading spaces are removed from the resulting text. If the column is a Long Character type,
leading spaces are not removed.

Using Arrays for Bind Variables

You can now use a parameter of type Array of Any in place of a list of bind values or in place of a list of
fetch result variables. This is generally used when you do not know how many values are needed until the
code runs.

For example, suppose that you had some PeopleCode that dynamically (that is, at runtime) generated the
following SQL statement:

&Stmt = "INSERT INTO PS_TESTREC (TESTF1, TESTF2, TESTF3, TESTF4, . . . N) VALUES (:
1, :2, %DateTimeIn(:3), %TextIn(:4), . . .N)";

782  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Suppose you have placed the values to be inserted into an Array of Any, say &AAny:

&AAny = CreateArrayAny("a", 1, %DateTime, "abcdefg", . . .N);

You can execute the insert by:

SQLExec(&Stmt, &AAny);

Because the Array of Any promotes to absorb any remaining select columns, it must be the last parameter
for the SQL object Fetch method or (for results) SQLExec. For binding, it must be the only bind
parameter, as it is expected to supply all the bind values needed.

SQLExec Maintenance Issues

SQLExec statements are powerful, but they can be difficult to upgrade and maintain. If you use a SQL
string passed in the command, it’s considered a "black box" by PeopleCode. If field names or table names
change during an upgrade, table and field references within the SQL string are not updated automatically.
For these reasons, you should use a SQL definition and the meta-SQL statements provided in PeopleTools
8.0, instead of typing in a SQL string.

Generally, you should use SQLExec only when you must interact directly with the database server and
none of the ScrollSelect functions, or record class methods (which are somewhat easier to maintain) will
serve your purpose effectively.

Be Careful How You Use It

SQLExec performs any SQL statement the current Access ID has database privileges to perform. This
normally includes SELECT, INSERT, UPDATE, and DELETE statements against application data
tables. However, you can set up users to use Access IDs with more privileges (typically, AccessIDs have
full database administrator authority). In such cases, the user could alter the structure of tables using
SQLExec, or even drop the database.

Warning! The PeopleSoft application will not stop the end user from doing anything that the Access ID
has privileges to do on the database server, so be very careful what you write in a SQLExec statement.

Parameters

Parameter Description

sqlcmd | SQL.sqlname Specify either a String containing the SQL command to be
executed or a reference to an existing SQL definition. This
string can include bind variables, inline bind variables, and
meta-SQL.

bindexprs A list of expressions, each of which corresponds to a numeric 
(:n) bind variable reference in the SQL command string.
 It can also be a reference to a record object or an array of
Any containing all the bind values. See Bind Variables in
SQLEXEC for more details.

Copyright © 1988, 2022, Oracle and/or its affiliates. 783



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

outputvars A list of PeopleCode variables or record fields to hold the
results of a SQL SELECT. There must be one variable for each
column specified in the SELECT statement. It can also be a
reference to a record object or an Array of Any that contains
all the selected values.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Note: Not returning a row is not considered an error. If this is a concern, consider using the %SqlRows
system variable after your call to SQLExec.

Example

The following example, illustrates a SELECT statement in a SQLExec:

SQLExec("SELECT COUNT(*) FROM PS_AE_STMT_TBL WHERE AE_PRODUCT = :1 AND AE_APPL_ID =
 :2 AND AE_ADJUST_STATUS = 'A' ", AE_APPL_TBL.AE_PRODUCT, AE_APPL_TBL.AE_APPL_ID,
 AE_ADJ_AUTO_CNT);

Note the use of bind variables, where :1 and :2 correspond to AE_APPL_TBL.AE_PRODUCT and
AE_APPL_TBL.AE_APPL_ID. AE_ADJ_AUTO_CNT is an output field to hold the result returned by
the SELECT.

The next example is also a straightforward SELECT statement, but one which uses the %datein meta-
SQL function, which expands to appropriate platform-specific SQL for the :5 bind variable:

 SQLExec("SELECT 'X', AE_STMT_SEG FROM PS_AE_STMT_B_TBL where AE_PRODUCT = :1 AND
 AE_APPL_ID = :2 AND AE_SECTION = :3 AND DB_PLATFORM = :4 AND EFFDT = %datein(:5)
 AND AE_STEP = :6 AND AE_STMT_TYPE = :7 AND AE_SEQ_NUM = :8", AE_STMT_TBL.AE_
PRODUCT, AE_STMT_TBL.AE_APPL_ID, AE_STMT_TBL.AE_SECTION, AE_STMT_TBL.DB_PLATFORM,
 AE_STMT_TBL.EFFDT, AE_STMT_TBL.AE_STEP, AE_STMT_TBL.AE_STMT_TYPE, &SEG, &EXIST,
 &STMT_SEG);

This last example (in SavePreChange PeopleCode) passes an INSERT INTO statement in the SQL
command string. Note the use of a date string this time in the %datein meta-SQL, instead of a bind
variable:

SQLExec("INSERT INTO PS_AE_SECTION_TBL ( AE_PRODUCT, AE_APPL_ID, AE_SECTION, DB_
PLATFORM, EFFDT, EFF_STATUS, DESCR, AE_STMT_CHUNK_SIZE, AE_AUTO_COMMIT, AE_
SECTION_TYPE ) VALUES ( :1, :2, :3, :4, %DATEIN('1900-01-01'), 'A', ' ', 200,
 'N', 'P' )", AE_APPL_TBL.AE_PRODUCT, AE_APPL_TBL.AE_APPL_ID, AE_SECTION, DB_
PLATFORM);

In the following example, a SQLExec statement is used to select into a record object.

Local Record &DST;

&DST = CreateRecord(RECORD.DST_CODE_TBL);
&DST.SETID.Value = GetSetId(FIELD.BUSINESS_UNIT, DRAFT_BU,
RECORD.DST_CODE_TYPE, "");
&DST.DST_ID.Value = DST_ID_AR;
SQLExec("%SelectByKeyEffDt(:1,:2)", &DST, %Date, &DST);
/* do further processing using record methods and properties */

784  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
CreateSQL
FetchSQL
GetSQL
StoreSQL
ScrollSelect
"Understanding SQL Class" (PeopleCode API Reference)

Sqrt

Syntax

SQRT(n)

Description

Use the Sqrt function to calculate the square root of a number.

Parameters

Parameter Description

n A number of which you want to find the square root.

Returns

Returns a number equal to the positive square root of n. If n is a negative number, Sqrt displays an error.

Example

The examples return 15, 4, and 8.42615, respectively:

&NUM = Sqrt(225);
&NUM = Sqrt(16);
&NUM = Sqrt(71);

StartWork

Syntax

StartWork()

Description

Use the StartWork function to mark the start of a unit of work.

Copyright © 1988, 2022, Oracle and/or its affiliates. 785



PeopleCode Built-in Functions and Language Constructs Chapter 1

Once this function is executed, no updates to the database are allowed until a unit of work is completed.
A unit of work is completed by an event completing (such as a FieldChange event) in which case all the
Updates are saved.

A unit of work can also be completed using the CommitWork built-in function.

If a SQL failure occurs anytime during the unit of work, after the StartWork function has been called and
before the unit of work completes, all updates are rolled back, up to when the StartWork function was
executed.

This function can be used for nested component interface calls, such that if the lower level component
interface fails, any database changes made by the calling component interface can be rolled back.

Parameters

None.

Returns

None.

Example
&oCI = &SESSION.GetCompIntfc(CompIntfc.CUSTOMER);

   If &oCI <> Null Then
      .
      .
      .
      For &i = 1 To &rsCustomer.RowCount
         &recCust = &rsCustomer(&Transaction).GetRecord(Record.CUSTOMER);
         StartWork();
         If &oCI.Create() Then
             rem ***** Set CI Properties *****;
      .
         .
         .
             If Not &oCI.Save() Then
                 rem ***** Error Handling *****;
                 .....
             End-If;
         End-If;

         rem ***** CommmitWork ensures that all transactions between     *****;
         rem ***** StartWork and CommitWork get committed to the database *****;

         CommitWork();

         &oCI.Cancel();
      .
      .
      .
      End-For;
   End-If

Related Links
"Understanding Component Interface Class" (PeopleCode API Reference)

786  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Step

Description

Use the Step keyword in for loops. See For for more information.

StopFetching

Syntax

StopFetching()

Description

The StopFetching function is called during Row Select processing, during which rows of data that have
been selected down from the database can be filtered as they are added to the component. This function
is valid only in RowSelect PeopleCode. If StopFetching is called without DiscardRow, it adds the current
row to the component, then stops adding any more rows. If StopFetching is called with DiscardRow, the
system skips the current row and stops adding rows to the component.

StopFetching has the same functionality as the Error function in the RowSelect event. The anomalous
behavior of Error is supported for compatibility with previous releases of PeopleTools.

Note: Row Select processing is used infrequently, because it is more efficient to filter out rows of data
using a search view or an effective-dated record before the rows are selected down to the client from the
database server.

In row select processing, the following actions occur:

1. The Component Processor checks for more rows to add to the component.

2. The Component Processor initiates the RowSelect event, which triggers any RowSelect PeopleCode
associated with the record field or component record.

This enables PeopleCode to filter rows using the StopFetching and DiscardRow functions.
StopFetching causes the system to add the current row to the component, and then to stop adding rows
to the component. DiscardRow filters out a current row, and then continues the row select process.

3. If neither the StopFetching nor DiscardRow function is called, the Component Processor adds the
rows to the page and checks for the next row.

The process continues until there are no more rows to add to the component buffers. If both
StopFetching and DiscardRow are called, the current row is not added to the page, and no more rows
are added to the page.

Copyright © 1988, 2022, Oracle and/or its affiliates. 787



PeopleCode Built-in Functions and Language Constructs Chapter 1

The following flowchart shows this row select processing logic:

Returns

None.

Related Links
DiscardRow
Error
"Row Select Processing" (PeopleCode Developer’s Guide)

788  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

StoreSQL

Syntax

StoreSQL(sqlstring, [SQL.]sqlname[, dbtype[, effdt [, ownerid [, description]]]])

Description

Use the StoreSQL function to write the given sqlstring value to a SQL definition, storing it under the
name sqlname, with the database type dbtype and the effective date effdt. If sqlname is a literal name, it
must be in the form SQL.sqlname or in quotes ("sqlname").

To specify a generic statement, that is, one that is overridden by any other matching statement, specify
dbtype as Default and effdt as the null date (or Date(19000101).

You must commit all database changes prior to using this function. This is to avoid locking critical
Tools tables and hence freezing all other users. You receive a runtime error message if you try to use this
function when there are pending database updates, and your PeopleCode program terminates. You need
to commit any database updates prior to using this function. The CommitWork PeopleCode function has
been enhanced to allow this.

Parameters

Parameter Description

sqlstring Specify the SQL string to be saved as the SQL definition. This
parameter takes a string value.

sqlname Specify the name of the SQL definition to be created. This is
either in the form SQL.sqlname or a string value giving the
sqlname.

dbtype Specify the database type to be associated with the SQL
definition. This parameter takes a string value. If dbtype
isn’t specified or is null (""), it is set by default to the current
database type (the value returned from the %DbName system
variable.)

Values for dbtype are as follows. These values are not case-
sensitive:

• APPSERVER

• DB2

• DB2UNIX

• MICROSOFT

• ORACLE

Note: Database platforms are subject to change.

Copyright © 1988, 2022, Oracle and/or its affiliates. 789



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

effdt Specify the effective date to be associated with the SQL
definition. If effdt isn’t specified, it is set by default to
the current as of date, that is, the value returned from the
%AsOfDate system variable.

ownerid Specify the four character owner ID associated with this SQL
statement. If not specified, no owner ID is associated.

description Specify the description text associated with this SQL
statement.

Returns

None.

Example

The following code stores the select statement as a SQL definition under the name
SELECT_BY_EMPLID, for the current database type and effective as of the current as of date:

StoreSQL("%Select(:1) where EMPLID = :2", SQL.SELECT_BY_EMPLID);

Related Links
CreateSQL
DeleteSQL
FetchSQL
GetSQL
SQLExec
CommitWork
%DbName
%AsOfDate
"Understanding SQL Class" (PeopleCode API Reference)

String

Syntax

String(value)

Description

Use the String function to convert any non-string data type (except an object data type) to a string.

Normally the Component Processor automatically handles data type conversions. However, for some
operations, such as comparisons, you want to specify the data type explicitly. Assume, for example, that

790  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

you have two fields FIELD_I and FIELD_J containing number values 5000 and 10000. As character
fields, 10000 is less than 5000 (because the first character in 10000 is less than the first character in
5000). As numbers, however, 10000 is of course greater than 5000.

Note: Due to the internal representation of numbers, sometimes String represents numbers differently. If
you want to control exactly how a number is represented, use the NumberToString function.

Parameters

Parameter Description

value A value of any data type other than an object data type, to be
converted to its String representation.

Returns

Returns a String value representing value.

Example

To force the comparison of the two fields as strings, you could use:

if string(FIELD_1) > string(FIELD_2). . .

You can use the String function with a field object as follows:

&DATE = GetRecord(RECORD.DERIVED_HR).GetField(FIELD.EFFDT);
&STR = String(&DATE.Value);

Related Links
Char
Exact
Find
Left
Substring
Value
NumberToString

StripOffHTMLTags

Syntax

StripOffHTMLTags(HTML_text)

Copyright © 1988, 2022, Oracle and/or its affiliates. 791



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the StripOffHTMLTags function to remove all HTML tags in an HTML-formatted string and return
plain text. First, the function removes all tags in the form of <tag_name>. Then, the function decodes
six specific HTML entities into their plain text character equivalents:

HTML Entity Character Unicode Character Name

&quot; " Quotation mark

&amp; & Ampersand

&lt; < Less than sign

&gt; > Greater than sign

&#039; ' Apostrophe, single quote

&nbsp; Non-breaking space

If the HTML string was generated by the rich text editor, any < and > characters in the original text are
not stripped because the rich text editor generates these as &lt; and &gt;, respectively, which are in
turn decoded back to their plain text equivalents by this function.

Warning! Do not use StripOffHTMLTags to prevent cross-site scripting (XSS). In fact, the string returned
by StripOffHTMLTags should be re-encoded using the EscapeHTML function before sending to the
browser because the decoding performed by the function can activate XSS injection.

Parameters

Parameter Description

HTML_text A text string with HTML tags and entities.

Returns

A string value.

Example
local string &HTML_text = "<B>This is a <i> test HTML string.";
local string &plain_text;
&plain_text = StripOffHTMLTags(&HTML_text);

The output plain text string is:

This is a  test HTML string.

792  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
EscapeHTML

Substitute

Syntax

Substitute(source_text, old_text, new_text)

Description

Use the Substitute function to replace every occurrence of a substring found in a string with a new
substring. To replace text that occurs in a specific location in a text string use the Replace function.

Parameters

Parameter Description

source_text A String in which you want to replace substrings.

old_text A String equal to the substring of source_text you want to
replace.

A tilde character (~) used in the old_text parameter stands
for an arbitrary number of white spaces. For example,
 the following substitution: Substitute("2003*
0723* * * * ~", "* ~", "~") produces the result
2003~0723~~~~~, not  the result 2003* 0723* * * ~.

new_text A String with which to replace occurrences of old_text in
source_text.

Returns

Returns a String resulting from replacing every occurrence of old_text found in source_text with
new_text.

Example

The following example changes "Second Annual Conference" to "Third Annual Conference":

&newstr = Substitute("Second Annual Conference","Second","Third");

The next example sets &newstr to "cdcdcd":

&newstr = Substitute("ababab", "ab", "cd");

Related Links
Replace

Copyright © 1988, 2022, Oracle and/or its affiliates. 793



PeopleCode Built-in Functions and Language Constructs Chapter 1

Substring

Syntax

Substring(source_str, start_pos, length)

Description

Use the Substring function to extract a substring of a specified number of characters beginning at a
specified location in a source string. If the string contains Unicode non-BMP characters, each code unit
of the surrogate pair is counted as a separate character, care should be taken not to split a surrogate pair
using Substring.

If you know the exact length of source_str, and that it is null terminated, you can set length to 1 plus the
exact length of source_str to get everything from start_pos to the end.

Parameters

Parameter Description

source_str A String from which to extract a substring.

start_pos A number representing the character position in source_str
where the substring starts, starting at 1.

length A number specifying the number of characters in the substring.

Returns

Returns a String equal to a substring length characters long beginning at character start of source_str.

Example

This example sets &PAGE_NAME to the first eight characters of the name of the current page:

&PAGE_NAME = Substring(%page,1,8);

Related Links
Char
Exact
Find
Left
Right
String
Substringb

794  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Substringb

Syntax

Substringb(source_str, start_pos, length)

Description

Note: This function has been deprecated and is no longer supported.

SwitchUser

Syntax

SwitchUser(UserID, Password, AuthToken , ExtAuthInfo)

Note: Password is not encrypted: it is passed as a string.

Description

Use the SwitchUser function to change the user ID of the current user logged onto the PeopleSoft system.

Note: SwitchUser changes the Portal user rather than the content specific user. This means it changes the
user ID in all databases to which the user is connected.

Note: If you use SwitchUser with the AuthToken parameter, the local Integration Broker node must have a
Password or Certificate Authentication option. If the local Integration Broker node authentication option
is None, SwitchUser always fails and returns false.

The SwitchUser function might be used as follows. Suppose there is a special user ID in the system called
REGIST. REGIST only has access to the self-registration component. The self-registration component
has logic that asks the user a list of questions and information based on data in the database. Are you
a customer, vendor, or employee? Enter your customer name. Enter other information related to this
customer account (such as information only this customer knows or information this customer just
received from a workflow email). After the program verifies the information, create a User ID for this
customer. After the user ID is created, the program should take the user directly into their transaction
without having to logoff, by using SwitchUser.

Considerations Using SwitchUser

You must never call SwitchUser from Signon PeopleCode. SwitchUser calls Signon PeopleCode,
therefore creating an infinite loop.

Do not use SwitchUser in Application Engine or in asynchronous notification PeopleCode.

Do not use SwitchUser in a Component Interface. The user is only switched for the duration of the service
call. During the next call, the user reverts to the original user.

Copyright © 1988, 2022, Oracle and/or its affiliates. 795



PeopleCode Built-in Functions and Language Constructs Chapter 1

Do not try to use the PeopleCode Debugger with the SwitchUser function. Only the first user is logged
into the PeopleCode Debugger. Once the switch occurs, any breakpoints, logging, and so on, are no longer
executed.

Parameters

Parameter Description

UserID Specify the User ID to be started. This parameter takes a string
value.

Password Specify the Password for this User ID. This parameter takes a
string value.

Note: Password is not encrypted: it is passed as a string.

AuthToken Specify a single sign-in authentication token used to
authenticate the user. If you are authenticating the user by user
ID and password, specify a NULL value for this parameter,
 that is, two quotation marks with no blank space between
them (""). If you specify a token, and the token is valid,
 SwitchUser switches to the User ID embedded in the token.
 All other parameters are ignored if a token is used. This
parameter takes a string value.

ExtAuthInfo Specify binary data (encoded as a base64 string) used as
additional input to authenticate the user. If your application
doesn't use external authentication information, specify a
NULL value for this parameter, that is, two quotation marks
with no blank space between them ("").

Returns

A Boolean value: True if user ID is switched successfully, False otherwise.

Example

The most common use of SwitchUser specifies only a user ID and password. If the SwitchUser function
executes successfully, you should check to see if the password for the new user id has expired.

If Not SwitchUser("MYUSERID", "MYPASSWORD", "", "") Then
   /* switch failed, do error processing */
Else
   If %PasswordExpired Then
      /* application specific processing for expired passwords */
   End-If;
End-If;

Related Links
SetPasswordExpired
%UserId
%PasswordExpired

796  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

"PeopleSoft Online Security" (Security Administration)

SyncRequestXmlDoc

Syntax

SyncRequestXmlDoc(&XmlDoc, Message.MessageName [, Node.NodeName])

Description

Use the SyncRequestXmlDoc function to send a synchronous message that is based on an XmlDoc object.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class SyncRequest method instead.

See "SyncRequest" (PeopleCode API Reference).

The XmlDoc object must already be instantiated and populated. The message included in the function call
should be an unstructured message, that is, one that isn't based on a hierarchical record structure.

If you want to handle an XmlDoc as a Message object, you need to define a Message object with a
hierarchical structure and migrate the data in the XmlDoc object into the Message object.

Parameters

Parameter Description

&XmlDoc Specify an already instantiated and populated XmlDoc object
that you want to send as a synchronous message.

MessageName Specify an already existing nonrowset-based message,
 prefixed with the reserved word Message.

NodeName Specify a node. This is for Sender Specified Routing (SSR)
prefixed with the reserved word Node. The node defines the
target for the published message.

Returns

A reference to an XmlDoc object that is the response.

Example
Local XmlDoc &reqdoc, &respdoc;

. . .

&respdoc = SyncRequestXmlDoc(&reqdoc, Message.MY_MESSAGE, Node.MY_NODE);

Copyright © 1988, 2022, Oracle and/or its affiliates. 797



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
PublishXmlDoc
"SyncRequest" (PeopleCode API Reference)
"Understanding Managing Messages" (Integration Broker)

PeopleCode Built-in Functions and Language Constructs: T

The PeopleCode built-In functions and language constructs beginning with the letter T are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

Tan

Syntax

Tan(angle)

Description

Use the Tan function to calculate the tangent of the given angle (opposite / adjacent).

Parameters

Parameter Description

angle A value in radians.

Note: In theory, values of angle such that angle mod pi = pi/2 are not valid for this function,
because inputs approaching such values produce results that tend toward infinity. In practice,
however, no computer system can represent such values exactly. Thus, for example, the statement
Tan(Radians(90)) produces a number close to the largest value PeopleCode can represent, rather
than an error.

Returns

A real number.

Example

The following example returns the tangent of an angle measuring 1.2 radians:

&MY_RESULT = Tan(1.2);

798  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
Acos
Asin
Atan
Cos
Cot
Degrees
Radians
Sin

Then

Description

Use the Then keyword in an if block. See If for more information.

throw

Syntax

throw expression

Description

Use the throw statement to throw an exception. This can be used to create your own exceptions, instead
of using ones generated by the system.

Parameters

Parameter Description

expression Specify the exception object that you want to throw. This can
either be an already defined and created exception object, or
one that you create with the Throw statement.

Returns

None.

Example
Local Exception &ex;

Function t1(&i As integer) Returns number

   Local number &res = &i / 0;

End-Function;

Copyright © 1988, 2022, Oracle and/or its affiliates. 799



PeopleCode Built-in Functions and Language Constructs Chapter 1

Function t2
   throw CreateException(2, 160, "'%1' doesn't support property or method '%2'", "S⇒

omeClass", "SomeMethod");
End-Function;

try

   /* This will cause a divide by 0 leading to an exception             */
   /* This code will never be caught since t1(2) will resume execution  */
   /* in the catch block below. It is here to show how an exception can */
   /* be thrown directly bythe PeopleCode itself.                       */

   t2();

   Local number &res = t1(2);
catch Exception &caught
   MessageBox(0, "", 0, 0, "Caught exception: " | &caught.ToString());
end-try;

Related Links
CreateException
try
"Understanding Managing Messages" (Integration Broker)

Time

Syntax

Time(n)

Description

Use the Time function to derive a Time value from a Number value. Use it to assign values to Time fields
and variables, since Time values cannot be directly represented as constants.

Parameters

Parameter Description

n A Number in the form HHMMSS[.SSSSSS], representing a
time to a precision of up to .000001 second, based on a 24-
hour clock.

Returns

Returns a Time value based on the number n.

Example

The example sets &START_TIME to 12:34:56.123456:

&START_TIME = Time(123456.123456);

800  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
Date
DateTimeValue
Time3
TimeValue

Time3

Syntax

Time3(hours, mins, secs)

Description

Use the Time3 function to derive a Time value from three supplied numbers. It can be used to assign
values to Time fields and variables, since Time values cannot be directly represented as constants.

Parameters

Parameter Description

hours A Number in the form HH between 00 and 23, representing
hours on a 24-hour clock.

mins A Number in the form MM between 00 and 59, representing
minutes of the hour.

secs A Number in the form SS[.SSSSSS], between 00 and 59.
999999, representing seconds.

Returns

Returns a Time value based equal to the sum of the three input values representing hours, minutes, and
seconds, to a precision of .000001 second.

Example

The example sets &START_TIME to 11.14.09.300000:

&START_TIME = Time3(11,14,9.3);

Related Links
Date3
DateTime6
Time
TimeValue

Copyright © 1988, 2022, Oracle and/or its affiliates. 801



PeopleCode Built-in Functions and Language Constructs Chapter 1

TimePart

Syntax

TimePart(datetime_val)

Description

Use the TimePart function to derive the time component of a DateTime value.

Parameters

Parameter Description

datetime_val A DateTime value from which to extract the time component.

Returns

Returns a Time value.

Example

The example set &T to 15.34.35.000000:

&DT = DateTimeValue("12/13/1993 3:34:35 PM");
&T = TimePart(&DT);

Related Links
DatePart
Hour
Minute
Second

TimeToTimeZone

Syntax

TimeToTimeZone(OldTime, SourceTimeZone, DestinationTimeZone)

Description

Use the TimeToTimeZone function to convert a time field from the time specified by SourceTimeZone to
the time specified by DestinationTimeZone.

Considerations Using this Function

This function should generally be used in PeopleCode, not for displaying time. If you take a time value,
convert it from base time to client time, then try to display this time, depending on the user settings, when

802  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

the time is displayed the system might try to do a second conversion on an already converted time. This
function could be used as follows: suppose a user wanted to check to make sure a time was in a range
of times on a certain day, in a certain timezone. If the times were between 12 AM and 12PM in EST,
these resolve to 9 PM and 9AM PST, respectively. The start value is after the end value, which makes it
difficult to make a comparison. This function could be used to do the conversion for the comparison, in
temporary fields, and not displayed at all.

Parameters

Parameter Description

OldTime Specify the time value to be converted.

SourceTimeZone Specify the time zone that OldTime is in. Values are:

timezone - a time zone abbreviation or a field reference to be
used for converting OldTime.

Local - use the local time zone for converting OldTime.

Base - use the base time zone for converting OldTime.

DestinationTimeZone Specify the time zone that you want to convert OldTime to.
 Values are:

timezone - a time zone abbreviation or a field reference to be
used for converting OldTime.

Local - use the local time zone for converting OldTime.

Base - use the base time zone for converting OldTime.

Returns

A converted time value.

Example

The following example TESTTM is a time field with a value 01/01/99 10:00:00. This example converts
TESTTM from Eastern Standard Time (EST) to Pacific Standard Time (PST).

&NEWTIME = TimeToTimeZone(TESTTM, "EST", "PST");

&NEWTIME is a time variable with a value of 7:00:00AM.

Related Links
ConvertDatetimeToBase
ConvertTimeToBase
FormatDateTime
IsDaylightSavings
DateTimeToTimeZone

Copyright © 1988, 2022, Oracle and/or its affiliates. 803



PeopleCode Built-in Functions and Language Constructs Chapter 1

TimeZoneOffset
"PeopleTools Options" (System and Server Administration)

TimeValue

Syntax

TimeValue(time_str)

Description

Use the TimeValue function to calculate a Time value based on an input string. This function can be
used to assign a value to a Time variable or field using a string constant, since a Time value cannot be
represented with a constant.

Parameters

Parameter Description

time_str A string representing the time. It can either be in the form
HH:MM:SS.SSSSSS, based on a 24-hour clock, or in the form
HH:MM:SS indicator, where indicator is either AM or PM.

Returns

Returns a Time value based on time_str.

Example

The example sets &START_TIME to 12.13.00.000000:

&START_TIME = TimeValue("12:13:00 PM");

Related Links
DateTimeValue
DateValue

TimeZoneOffset

Syntax

TimeZoneOffset(DateTime {[, timezone | "Base" | "Local"]})

804  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the TimeZoneOffset function to generate a time offset for datetime. The offset represents the relative
time difference to GMT. If no other parameters are specified with datetime, the server's base time zone is
used.

Parameters

Parameter Description

datetime Specify the DateTime value to be used for generating the
offset.

timezone | Local | Base Specify a value to be used with datetime. The values are:

timezone - a time zone abbreviation or a field reference to be
used with datetime.

Local - use the local time zone with datetime.

Base - use the base time zone with datetime.

Returns

An offset string of the following format:

Shh:mm

where

Parameter Description

S is + or -, with + meaning East of Greenwich

hh is the hours of offset

mm is the minutes of offset

Related Links
ConvertDatetimeToBase
ConvertTimeToBase
FormatDateTime
IsDaylightSavings
DateTimeToTimeZone
TimeToTimeZone

Copyright © 1988, 2022, Oracle and/or its affiliates. 805



PeopleCode Built-in Functions and Language Constructs Chapter 1

To

Description

Use the To keyword in a for loop. See For for more information.

TotalRowCount

Syntax

TotalRowCount(scrollpath)

Where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ] RECORD.ta⇒

rget_recname

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

Description

Use the TotalRowCount function to calculate the number of rows (including rows marked as deleted) in a
specified scroll area of a page.

Note: This function remains for backward compatibility only. Use the RowCount rowset property instead.

Rows that have been marked as deleted remain accessible to PeopleCode until the database has been
updated; that is, all the way through SavePostChange.

TotalRowCount is used to calculate the upper limit of a For loop if you want the loop to go through rows
in the scroll that have been marked as deleted. If the logic of the loop does not need to execute on deleted
rows, use ActiveRowCount instead.

Related Links
ActiveRowCount
For
"RowCount" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

806  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

Returns a Number equal to the total rows (including rows marked as deleted) in the target scroll.

Example

The example uses TotalRowCount to calculate the limiting value on a For loop, which loops through all
the rows in the scroll area:

&ROW_COUNT = TotalRowCount(RECORD.BUS_EXPENSE_PER, CurrentRowNumber(1),
  RECORD.BUS_EXPENSE_DTL);
for &I = 1 to &ROW_COUNT
 /* do something with row &I that has to be done to deleted as well as active rows ⇒

*/
end-for;

Related Links
ActiveRowCount
CopyRow
CurrentRowNumber
FetchValue
For

Transfer

Syntax

Transfer(new_instance, MenuName.MENU_NAME, BarName.BAR_NAME, ItemName.MENU_ITEM_NAM⇒

E,
Page.COMPONENT_ITEM_NAME, action [, keylist])

In which keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the Transfer function to exit the current context and transfer the user to another page. Transfer can
either start a new instance of the component processor in a new window and transfer to the new page
there, or close the old page and transfer to the new one in the same instance of the component processor in
the current window.

Note: The Transfer function cannot be used with an Internet script or an Application Engine program.

Transfer is more powerful than the simpler TransferPage, which permits a transfer only within the current
component in the current instance of the component processor. However, any variables declared as
component do not remain defined after using the Transfer function, whether you’re transferring within the
same component or not.

Copyright © 1988, 2022, Oracle and/or its affiliates. 807



PeopleCode Built-in Functions and Language Constructs Chapter 1

You can use Transfer from a secondary page (either with or without using a pop-up menu) only if you’re
transferring to a separate instance of a component. You cannot use Transfer from a secondary page if
you’re not transferring to a separate instance of a component.

If you provide a valid search key for the new page in the optional keylist, the new page opens directly,
using the values provided from keylist as search key values. A valid key means that enough information is
provided to uniquely identify a row: not all of the key values need to be provided. If no key is provided,
or if the key is invalid, or if not enough information is provided to identify a unique row, the search dialog
box displays, enabling the end user to search for a row.

Note: If Force Search Processing is specified in Application Designer for the component, the search
dialog box always displays, whether the keylist is provided or not.

If MENU_NAME+BAR_NAME+MENU_ITEM_NAME+COMPONENT_ITEM_NAME is an invalid
combination, an error message displays explaining that there were invalid transfer parameters.

In the COMPONENT_ITEM_NAME parameter, make sure to pass the component item name for the page,
not the page name.

The component item name is specified in the component definition, in the Item Name column on the
row corresponding to the specific page, as shown here. In this example, the PERSONAL_DATA page
name appears twice: once with an item name of PERSONAL_DATA_1, and once with the item name of
PERSONAL_DATA_2.

Differences Between Transfer and TransferExact

When you do a transfer, the first thing the system checks is whether all the key field values for the target
component are provided.

If all the keys aren't provided, the search page is displayed. In this scenario, TransferExact and Transfer
are the same.

If all the keys are provided, a Select is done against the search record for that component using those
keys.

• If you use the Transfer function, a LIKE operator is used in the Where clause of that Select for each
key.

• If you use the TransferExact function, the equals operator is used in the Where clause for each key.
Using equals allows the database to take full advantage of key indexes for maximum performance.

See TransferExact.

808  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Parameters

Parameter Description

new_instance Set this parameter to True to start a new application instance
in a new window, or to False to use the current window and
replace the page already displayed.

When the component invoking the Transfer function is
displayed in a fluid wrapper (fluid activity guide or master/
detail component), the action of this parameter depends on
whether AJAX transfers have been enabled. AJAX transfers,
 or asynchronous in-place transfers, use AJAX (asynchronous
JavaScript and XML) technology to allow component-
to-component transfers to occur without exiting from the
fluid wrapper that contains the source component from
which the transfer was invoked. AJAX transfers apply to
four PeopleCode functions only: Transfer, TransferExact,
 ViewContentURLClassic, and ViewContentURLFluid.

When AJAX transfers are not enabled (the default), the action
exits the fluid wrapper and the content replaces the current
window. If the transfer function is set to open a new window,
 the action opens a new window instead.

When AJAX transfers are enabled, the new content is
displayed in the target content area of the fluid wrapper when
the target is set to current window. If the transfer function
is set to open a new window, this new window setting is
overridden and the new content is also displayed in the target
content area of the fluid wrapper except when the transfer
is from classic content to other classic content. In that case,
 the new window setting is honored and the classic content is
opened in a new window.

See "AJAX Transfers" (Fluid User Interface Developer’s
Guide) for more information.

MENU_NAME The name of the menu where the page is located prefixed with
the reserved word MenuName.

BAR_NAME The name of the menu bar where the page is located, prefixed
with the reserved word BarName.

MENU_ITEM_NAME The name of the menu item where the page is located, prefixed
with the reserved word ItemName.

Copyright © 1988, 2022, Oracle and/or its affiliates. 809



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

COMPONENT_ITEM_NAME The component item name of the page to be displayed on top
of the component when it displays. The component item name
is specified in the component definition. This parameter must
be prefixed with the keyword Page.

action Uses a single-character code as in %Action. Valid actions
are "A" (add), "U" (update), "L" (update/display all), "C" 
(correction), and "E" (data entry).

[keylist ] An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, or if Force Search Processing is
selected for the component, the search dialog box appears.

If the keylist parameter is not supplied then the destination
component's search key must be found as part of the source
components level 0 record buffer.

Returns

None.

Example

The example starts a new instance of the component processor and transfers to a new page in Update
mode. The data in the new page is selected by matching the EMPLID field from the old page.

Transfer( True, MenuName.ADMINISTER_PERSONNEL, BarName.USE, ItemName.PERSONAL_DATA,⇒

 Page.PERSONAL_DATA_1, "U");

The following example is used with workflow.

Local Record &WF_WL_DEFN_VW, &MYREC, &PSSTEPDEFN;

If All(WF_WORKLIST_VW.BUSPROCNAME) Then

   &BPNAME = FetchValue(WF_WORKLIST_VW.BUSPROCNAME, CurrentRowNumber());
   &WLNAME = FetchValue(WF_WORKLIST_VW.WORKLISTNAME, CurrentRowNumber());
   &INSTANCEID = FetchValue(WF_WORKLIST_VW.INSTANCEID, CurrentRowNumber());

   &WF_WL_DEFN_VW = CreateRecord(RECORD.WF_WL_DEFN_VW);
   &PSSTEPDEFN = CreateRecord(RECORD.PSSTEPDEFN);

   SQLExec("select %List(SELECT_LIST, :1) from %Table(:1) where Busprocname = :2 an⇒

d Worklistname = :3", &WF_WL_DEFN_VW, &BPNAME, &WLNAME, &WF_WL_DEFN_VW);

   SQLExec("select %List(SELECT_LIST, :1) from %Table(:1) where Activityname = :2 a⇒

810  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

nd Stepno = 1 and Pathno = 1", &PSSTEPDEFN, &WF_WL_DEFN_VW.ACTIVITYNAME.Value, &PSS⇒

TEPDEFN);

   Evaluate &PSSTEPDEFN.DFLTACTION.Value
   When = 0
      &ACTION = "A";
   When = 1
      &ACTION = "U";
   When-Other
      &ACTION = "U";
   End-Evaluate;

   &MYREC = CreateRecord(@("RECORD." | &WF_WL_DEFN_VW.WLRECNAME.Value));

   SQLExec("Select %List(SELECT_LIST, :1) from %Table(:1) where Busprocname = :2 an⇒

d Worklistname = :3 and Instanceid = :4", &MYREC, &BPNAME, &WLNAME, &INSTANCEID, &M⇒

YREC);

   Transfer( True, @("MenuName." | &PSSTEPDEFN.MENUNAME.Value), @("BarName." | &PSS⇒

TEPDEFN.BARNAME.Value), @("ItemName." | &PSSTEPDEFN.ITEMNAME.Value), @("Page." | &P⇒

SSTEPDEFN.PAGEITEMNAME.Value), &ACTION, &MYREC);

End-If;

Related Links
TransferPage
DoModalComponent
TransferExact
TransferTop
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

TransferExact

Syntax

TransferExact(new_instance, MenuName.MENU_NAME, BarName.BAR_NAME,
ItemName.MENU_ITEM_NAME, Page.COMPONENT_ITEM_NAME, action [, keylist]
[, AutoSearch])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the TransferExact function to exit the current context and transfer the end user to another page using
an exact match of all keys in the optional key list. TransferExact can either start a new instance of the

Copyright © 1988, 2022, Oracle and/or its affiliates. 811



PeopleCode Built-in Functions and Language Constructs Chapter 1

component processor in a new window and transfer to the new page there, or close the old page and
transfer to the new one in the same instance of the component processor in the current window.

Note: The TransferExact function cannot be used with an internet script or an application engine program.

TransferExact is more powerful than the simpler TransferPage, which permits a transfer only within the
current component in the current instance of the component processor. However, any variables declared
as Component do not remain defined after using the TransferExact function, whether you’re transferring
within the same component or not.

You can use TransferExact from a secondary page (either with or without using a pop-up menu) only if
you’re transferring to a separate instance of a component. You cannot use TransferExact from a secondary
page if you’re not transferring to a separate instance of a component.

If you provide a valid search key for the new page in the optional keylist, the new page opens directly,
using the values provided from keylist as search key values. A valid key means that enough information is
provided to uniquely identify a row: not all of the key values need to be provided. If no key is provided,
or if the key is invalid, or if not enough information is provided to identify a unique row, the search dialog
box displays, enabling the end user to search for a row.

Note: If Force Search Processing is specified in Application Designer for the component, the search
dialog box always displays, whether the keylist is provided or not.

If MENU_NAME+BAR_NAME+MENU_ITEM_NAME+COMPONENT_ITEM_NAME is an invalid
combination, an error message displays explaining that there were invalid transfer parameters.

In the COMPONENT_ITEM_NAME parameter, make sure to pass the component item name for the page,
not the page name.

The component item name is specified in the component definition, in the Item Name column on the
row corresponding to the specific page, as shown here. In this example, the PERSONAL_DATA page
name appears twice: once with an item name of PERSONAL_DATA_1, and once with the item name of
PERSONAL_DATA_2.

Differences Between Transfer and TransferExact

When you do a transfer, the first thing the system checks is whether all the key field values for the target
component are provided.

If all the keys aren't provided, the search page is displayed. In this scenario, TransferExact and Transfer
are the same.

If all the keys are provided, a Select is done against the search record for that component using those
keys.

812  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

• If you use the Transfer function, a LIKE operator is used in the Where clause of that Select for each
key.

• If you use the TransferExact function, the equals operator is used in the Where clause for each key.
Using equals allows the database to take full advantage of key indexes for maximum performance.

See Transfer.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Parameters

Parameter Description

new_instance Set this parameter to True to start a new application instance
in a new window, or to False to use the current window and
replace the page already displayed.

When the component invoking the TransferExact function is
displayed in a fluid wrapper (fluid activity guide or master/
detail component), the action of this parameter depends on
whether AJAX transfers have been enabled. AJAX transfers,
 or asynchronous in-place transfers, use AJAX (asynchronous
JavaScript and XML) technology to allow component-
to-component transfers to occur without exiting from the
fluid wrapper that contains the source component from
which the transfer was invoked. AJAX transfers apply to
four PeopleCode functions only: Transfer, TransferExact,
 ViewContentURLClassic, and ViewContentURLFluid.

When AJAX transfers are not enabled (the default), the action
exits the fluid wrapper and the content replaces the current
window. If the transfer function is set to open a new window,
 the action opens a new window instead.

When AJAX transfers are enabled, the new content is
displayed in the target content area of the fluid wrapper when
the target is set to current window. If the transfer function
is set to open a new window, this new window setting is
overridden and the new content is also displayed in the target
content area of the fluid wrapper except when the transfer
is from classic content to other classic content. In that case,
 the new window setting is honored and the classic content is
opened in a new window.

See "AJAX Transfers" (Fluid User Interface Developer’s
Guide) for more information.

Copyright © 1988, 2022, Oracle and/or its affiliates. 813



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

MENU_NAME The name of the menu where the page is located prefixed with
the reserved word MenuName.

BAR_NAME The name of the menu bar where the page is located, prefixed
with the reserved word BarName.

MENU_ITEM_NAME The name of the menu item where the page is located, prefixed
with the reserved word ItemName.

COMPONENT_ITEM_NAME The component item name of the page to be displayed on top
of the component when it displays. The component item name
is specified in the component definition. This parameter must
be prefixed with the keyword Page.

Action Uses a single-character code as in %Action. Valid actions
are "A" ( add), "U" (update), "L" (update/display all), "C" 
(correction), and "E" (data entry).

Keylist An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, or if Force Search Processing is
selected for the component, the search dialog box appears.

If the keylist parameter is not supplied then the destination
component's search key must be found as part of the source
components level 0 record buffer.

AutoSearch Specify whether an automatic search on the target search page
is executed after the transfer. This means the search results are
already shown without the end user having to click the Search
button. This parameter takes a Boolean value: True, do an
automatic search. The default value is False (that is, the user
has to click the Search button).

Returns

None.

814  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

The example starts a new instance of the component processor and transfers to a new page in Update
mode. The data in the new page is selected by matching the EMPLID field from the old page.

TransferExact(true, MenuName.ADMINISTER_PERSONNEL, BarName.USE, ItemName.PERSONAL_D⇒

ATA, Page.PERSONAL_DATA_1, "U");

Using the following PeopleCode program:

&MYREC = CreateRecord(RECORD.QEOPC_9A2FIELDS);
&MYREC.QE_TITLE.Value = "KEY";

Transfer(False, MenuName.QE_PEOPLECODE_PAGES, BarName.USE, ItemName.QEPC9PROPSTESTS⇒

, Page.QEOPC_9A2FIELDS, "U", &MYREC);

The following SQL is produced:

SELECT DISTINCT TOP 301 QE_TITLE, QEPC_ALTSRCH FROM PS_QEOPC_9A2FIELDS
WHERE QE_TITLE LIKE 'KEY%' ORDER BY QE_TITLE

If you change the Transfer to TransferExact:

&MYREC = CreateRecord(RECORD.QEOPC_9A2FIELDS);
&MYREC.QE_TITLE.Value = "KEY";

TransferExact(False, MenuName.QE_PEOPLECODE_PAGES, BarName.USE, ItemName.QEPC9PROPS⇒

TESTS, Page.QEOPC_9A2FIELDS, "U", &MYREC);

The following SQL is produced:

SELECT DISTINCT TOP 301 QE_TITLE, QEPC_ALTSRCH FROM PS_QEOPC_9A2FIELDS
WHERE QE_TITLE=:1 ORDER BY QE_TITLE

Related Links
DoModalComponent
TransferPage
Transfer
TransferExactTop
TransferTop
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

TransferExactTop

Syntax

TransferExactTop(new_window, MenuName.MENU_NAME, BarName.BAR_NAME, ItemName.MENU_IT⇒

EM_NAME, Page.COMPONENT_ITEM_NAME, action [, keylist][, AutoSearch]))

In which keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

Copyright © 1988, 2022, Oracle and/or its affiliates. 815



PeopleCode Built-in Functions and Language Constructs Chapter 1

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the TransferExactTop function to exit the current context and transfer the user to another page using
an exact match of all keys in the optional key list and by always replacing the current window. Use the
TransferExactTop function as an alternative to the TransferExact function to ensure that when the source
component is being displayed within a fluid wrapper (that is, the source component is being displayed
within a fluid activity guide, a master/detail component, an interactive grouplet, or a modeless window)
that the entire current window is replaced with the new content.

Unlike TransferExact, TransferExactTop ignores the new_window parameter. TransferExactTop always
exits the current context and completely replaces the current window.

You can use TransferExactTop from a secondary page only if you’re transferring to a separate instance
of a component. You cannot use TransferExactTop from a secondary page if you’re not transferring to a
separate instance of a component.

If you provide a valid search key for the new page in the optional keylist, the new page opens directly,
using the values provided from keylist as search key values. A valid key means that enough information is
provided to uniquely identify a row: not all of the key values need to be provided. If no key is provided,
or if the key is invalid, or if not enough information is provided to identify a unique row, the search page
could be displayed (depending on the component), enabling the user to search for a row.

If MENU_NAME+BAR_NAME+MENU_ITEM_NAME+COMPONENT_ITEM_NAME is an invalid
combination, an error message displays explaining that there were invalid transfer parameters.

In the COMPONENT_ITEM_NAME parameter, make sure to pass the component item name for the page,
not the page name.

The component item name is specified in the component definition, in the Item Name column on the
row corresponding to the specific page, as shown here. In this example, the PERSONAL_DATA page
name appears twice: once with an item name of PERSONAL_DATA_1, and once with the item name of
PERSONAL_DATA_2.

Differences Between TransferTop and TransferExactTop

When you do a transfer, the first thing the system checks is whether all the key field values for the target
component are provided.

If all the keys aren't provided, the search page is displayed. In this scenario, TransferExactTop and
TransferTop are the same.

816  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

If all the keys are provided, a Select is done against the search record for that component using those
keys.

• If you use the TransferTop function, a LIKE operator is used in the Where clause of that Select for
each key.

• If you use the TransferExactTop function, the equals operator is used in the Where clause for
each key. Using equals allows the database to take full advantage of key indexes for maximum
performance.

See Transfer.

Restrictions on Using TransferExactTop

• TransferExactTop cannot be used with an Internet script or an Application Engine program.

• TransferExactTop is ignored (has no effect) when used by a PeopleCode program that’s been called by
a component interface.

• You can't use TransferExactTop in a SearchInit PeopleCode program.

Parameters

Parameter Description

new_window Note: This parameter is ignored and has no effect.

MENU_NAME The name of the menu where the page is located prefixed with
the reserved word MenuName.

BAR_NAME The name of the menu bar where the page is located prefixed
with the reserved word BarName.

MENU_ITEM_NAME The name of the menu item where the page is located prefixed
with the reserved word ItemName.

COMPONENT_ITEM_NAME The component item name of the page to be displayed on top
of the component when it displays. The component item name
is specified in the component definition. This parameter must
be prefixed with the keyword Page.

action Uses a single-character code as in %Action. Valid actions
are "A" (add), "U" (update), "L" (update/display all), "C" 
(correction), and "E" (data entry).

Copyright © 1988, 2022, Oracle and/or its affiliates. 817



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

[keylist] An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, or if Force Search Processing is
selected for the component, the search dialog box appears.

If the keylist parameter is not supplied then the destination
component's search key must be found as part of the source
components level 0 record buffer.

AutoSearch Specify whether an automatic search on the target search page
is executed after the transfer. This means the search results are
already shown without the end user having to click the Search
button. This parameter takes a Boolean value: True, do an
automatic search. The default value is False (that is, the user
has to click the Search button).

Returns

None.

Example

Using the following PeopleCode program:

&MYREC = CreateRecord(RECORD.QEOPC_9A2FIELDS);
&MYREC.QE_TITLE.Value = "KEY";

TransferTop(False, MenuName.QE_PEOPLECODE_PAGES, BarName.USE, ItemName.QEPC9PROPSTE⇒

STS, Page.QEOPC_9A2FIELDS, "U", &MYREC);

The following SQL is produced:

SELECT DISTINCT TOP 301 QE_TITLE, QEPC_ALTSRCH FROM PS_QEOPC_9A2FIELDS
WHERE QE_TITLE LIKE 'KEY%' ORDER BY QE_TITLE

If you change the TransferTop to TransferExactTop:

&MYREC = CreateRecord(RECORD.QEOPC_9A2FIELDS);
&MYREC.QE_TITLE.Value = "KEY";

TransferExactTop(False, MenuName.QE_PEOPLECODE_PAGES, BarName.USE, ItemName.QEPC9PR⇒

OPSTESTS, Page.QEOPC_9A2FIELDS, "U", &MYREC);

The following SQL is produced:

SELECT DISTINCT TOP 301 QE_TITLE, QEPC_ALTSRCH FROM PS_QEOPC_9A2FIELDS
WHERE QE_TITLE=:1 ORDER BY QE_TITLE

818  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
Transfer
TransferExact
ViewURLTop
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

TransferModeless

Syntax

TransferModeless(MenuName.MENU_NAME, BarName.BAR_NAME, ItemName.MENU_ITEM_NAME,
Page.COMPONENT_ITEM_NAME, action [, keylist] [, AutoSearch])

In which keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the TransferModeless function to open a new page in a modeless window on top of the parent
window. Only one modeless window can be opened per browser session. Similar to the new_instance
parameter of the Transfer function, TransferModeless instantiates a separate instance of the component
processor so that the parent window and secondary window are completely independent PeopleCode
contexts.

Note: TransferModeless is currently not supported for transfers from or to fluid components. In addition,
TransferModeless function cannot be used with an Internet script or an Application Engine program.

TransferModeless is more powerful than the simpler TransferPage, which permits a transfer only within
the current component in the current instance of the component processor. However, any variables
declared as component do not remain defined after using the TransferModeless function, whether you’re
transferring within the same component or not.

You can use TransferModeless from a secondary page (either with or without using a pop-up menu) only
if you’re transferring to a separate instance of a component. You cannot use TransferModeless from a
secondary page if you’re not transferring to a separate instance of a component.

If you provide a valid search key for the new page in the optional keylist, the new page opens directly,
using the values provided from keylist as search key values. A valid key means that enough information is
provided to uniquely identify a row: not all of the key values need to be provided. If no key is provided,
or if the key is invalid, or if not enough information is provided to identify a unique row, the search dialog
box displays, enabling the end user to search for a row.

Note: If Force Search Processing is specified in Application Designer for the component, the search
dialog box always displays, whether the keylist is provided or not.

Copyright © 1988, 2022, Oracle and/or its affiliates. 819



PeopleCode Built-in Functions and Language Constructs Chapter 1

If MENU_NAME+BAR_NAME+MENU_ITEM_NAME+COMPONENT_ITEM_NAME is an invalid
combination, an error message displays explaining that there were invalid transfer parameters.

In the COMPONENT_ITEM_NAME parameter, make sure to pass the component item name for the page,
not the page name.

The component item name is specified in the component definition, in the Item Name column on the
row corresponding to the specific page, as shown here. In this example, the PERSONAL_DATA page
name appears twice: once with an item name of PERSONAL_DATA_1, and once with the item name of
PERSONAL_DATA_2.

Modeless Windows

In addition to modal secondary windows, you can create modeless secondary windows. A modeless
window is different from a modal window launched by any of the DoModal* functions in that its state
is separate from that of the parent, launching component. When a modeless window is launched from a
classic component using the TransferModeless function, the modeless window does not mask the parent
window, which allows the user to update the modeless and parent window from the same browser session
at the same time.

Note: While the title bar of a modeless window includes an X (or cancel) button, it cannot include any
custom buttons.

Important! Only one active child modeless window can be open at one time. Therefore, after opening
a modeless child window from the parent, you cannot open a second modeless child window from that
modeless window. However, you can open a modal window from that modeless window.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

820  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

MENU_NAME The name of the menu where the page is located prefixed with
the reserved word MenuName.

BAR_NAME The name of the menu bar where the page is located, prefixed
with the reserved word BarName.

MENU_ITEM_NAME The name of the menu item where the page is located, prefixed
with the reserved word ItemName.

COMPONENT_ITEM_NAME The component item name of the page to be displayed on top
of the component when it displays. The component item name
is specified in the component definition. This parameter must
be prefixed with the keyword Page.

Action Uses a single-character code as in %Action. Valid actions
are "A" ( add), "U" (update), "L" (update/display all), "C" 
(correction), and "E" (data entry).

Keylist An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, or if Force Search Processing is
selected for the component, the search dialog box appears.

If the keylist parameter is not supplied then the destination
component's search key must be found as part of the source
components level 0 record buffer.

AutoSearch Specify whether an automatic search on the target search page
is executed after the transfer. This means the search results are
already shown without the end user having to click the Search
button. This parameter takes a Boolean value: True, do an
automatic search. The default value is False (that is, the user
has to click the Search button).

Returns

None.

Related Links
EndModal
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 821



PeopleCode Built-in Functions and Language Constructs Chapter 1

TransferNode

Syntax

TransferNode(new_instance, NODE.nodename, MENUNAME.menuname,  MARKET.marketname,
COMPONENT.componentname,  PAGE.component_item_name, action [, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the TransferNode function to transfer the user to a page in another Node, but within the same portal.

TransferNode can either start a new instance of the application and transfer to the new page, or close the
old page and transfer to the new one in the same instance of the component processor.

Component scoped and Global scoped variables are not available if the new page is in a different node.

Entering null values ("") for the node opens the new component within the current node or portal.

If you want to transfer the end user to another portal, use the TransferPortal function.

If you provide a valid search key for the new page in the optional fieldlist, the new page opens directly,
using the values provided from fieldlist as search key values. If no key is provided, or if the key is invalid,
the search dialog displays, allowing the end user to search for a row.

Note: If Force Search Processing is specified in Application Designer for the component, the search
dialog always displays, whether the keylist is provided or not.

If TransferNode is called in a RowInit PeopleCode program, the PeopleCode program is terminated.
However, the component processor continues with its RowInit processing, calling RowInit on the
other fields. The actual transfer won't happen until after that completes. You may want to place any
TransferPage functions in the Activate event for the page, or later in the Component Processor event flow.

See "Understanding Component Definitions" (Application Designer Developer’s Guide).

Restrictions on Use with a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Restrictions on Use with SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

822  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

new_instance Set this parameter to True to start a new application instance,
 or to False to use the current window and replace the page
already displayed.

nodename Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

menuname Specify the name of the menu containing the content, prefixed
with the reserved word MENUNAME. You can also use a
string, such as %Menu, for this value.

marketname Specify the name of the market of the component, prefixed
with the reserved word MARKET. You can also use a string,
 such as %Market, for this value.

component_item_name Specify the component item name of the page to be displayed
on top of the component when it displays. The component
item name is specified in the component definition. If you
specify a page, it must be prefixed with the keyword PAGE.
You can also specify a null ("") for this parameter.

action Specify a single-character code. Valid actions are:

• "A" ( add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a null ("") for this parameter.

keylist An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, of if Force Search Processing has
been selected, the search dialog appears.

If the keylist parameter is not supplied then the destination
component's search key must be found as part of the source
components level 0 record buffer.

Copyright © 1988, 2022, Oracle and/or its affiliates. 823



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

A Boolean value: True if function completed successfully, False otherwise.

Related Links
TransferPortal
TransferPage
Transfer

TransferPanel

Syntax

TransferPanel([PANEL.panel_name])

Description

Use the TransferPanel function to transfer control to the panel indicated by PANEL. panel_name_name
within, or to the panel set with the SetNextPage function.

Note: The TransferPanel function is supported for compatibility with previous releases of PeopleTools.
New applications should use the TransferPage function instead.

Related Links
TransferPage

TransferPage

Syntax

TransferPage([Page.page_name_name])

Description

Use the TransferPage function to transfer control to the page indicated by Page.page__name or to the
page set with the SetNextPage function. The page that you transfer to must be in the current component or
menu. To transfer to a page outside the current component or menu, or to start a separate instance of the
component processor prior to transfer into, use the Transfer function.

Note: If the visibility of the current page is set to False in a PeopleCode program, then you must invoke
the TransferPage function to transfer control to a visible page.

See SetNextPage, Transfer.

Note: You can’t use TransferPage from a secondary page.

Any variable declared as a Component variable will still be defined after using a TransferPage function.

824  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Considerations Using TransferPage

The following are important considerations when using the TransferPage function:

• TransferPage always terminates the current PeopleCode program.

• TransferPage is always processed after all events are completed.

Given these considerations, here are some scenarios for how TransferPage executes:

• When called in RowInit: The current RowInit PeopleCode program is terminated, but RowInit
processing continues. In addition, RowInit PeopleCode programs run for the rest of the fields in the
row. Then TransferPage is processed.

• When called in FieldEdit: The FieldEdit PeopleCode program is terminated. The FieldChange
program for that field still runs. Then TransferPage is processed.

• When called in SavePreChange: The SavePreChange program for that field is terminated.
SavePreChange runs for the rest of the fields on that page. Then SavePostChange run for all the fields.
Then TransferPage is processed.

• When called in FieldChange in deferred mode: In deferred mode, changed fields are processed in
order. The FieldChange program is terminated. Then any subsequent fields in the page order are
processed with the normal FieldEdit-Field Change logic. Once that has finished, the TransferPage is
processed.

When TransferPage is processed, any PeopleCode associated with the Activate event for the page being
transferred to runs. This always occurs at the end, after all field processing.

If TransferPage is called multiple times during field processing, all the calls are processed at the end, in
the same order the calls were made. The Activate event executes each time. The final active page is the
one that was transferred to by the last call.

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Restrictions on Use With SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Parameters

Parameter Description

page_name A String equal to the name of the page you are transferring to,
 as set in the page definition, prefixed with the reserved word
Page. The page must be in the same component as the page
you are transferring from.

Copyright © 1988, 2022, Oracle and/or its affiliates. 825



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

The following examples both perform the same function, which is to transfer to the JOB_DATA_4 page:

TransferPage(Page.JOB_DATA_4);

or

SetNextPage(Page.JOB_DATA_4);
TransferPage( );

Related Links
DoModalComponent
SetNextPage
Transfer

TransferPortal

Syntax

TransferPortal(new_instance, PORTAL.portalname, NODE.nodename, MENUNAME.menuname,
MARKET.marketname, COMPONENT.componentname, PAGE.component_item_name, action
[, keylist])

where keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2].
. .

OR

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the TransferPortal function to transfer the user to a page in another Node in a different portal.

TransferPortal can either start a new instance of the application and transfer to the new page, or close the
old page and transfer to the new one in the same instance of the component processor.

Component scoped and Global scoped variables are not available after this function.

If you want to transfer the end user to another node within the same portal, use the TransferNode function.

If you provide a valid search key for the new page in the optional fieldlist, the new page opens directly,
using the values provided from fieldlist as search key values. If no key is provided, or if the key is invalid,
the search dialog displays, allowing the end user to search for a row.

Note: If Force Search Processing is specified in Application Designer for the component, the search
dialog always displays, whether the keylist is provided or not.

826  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

If TransferPortal is called in a RowInit PeopleCode program, the PeopleCode program is terminated.
However, the component processor continues with its RowInit processing, calling RowInit on the
other fields. The actual transfer won't happen until after that completes. You may want to place any
TransferPortal functions in the Activate event for the page, or later in the Component Processor flow.

See "Understanding Component Definitions" (Application Designer Developer’s Guide).

Restrictions on Use with a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Restrictions on Use with SearchInit Event

You can't use this function in a SearchInit PeopleCode program.

Restrictions on Use with Different Releases

You cannot use this function to transfer a user from a PeopleTools 8.42 portal to any base PeopleTools
8.1x portal that overwrites the expired cookie value when login occurs.

The TransferPortal function is currently supported to transfer users to pages in other nodes to base
PeopleTools 8.18 portals, including all PeopleTools 8.18 versions and patches.

Parameters

Parameter Description

new_instance Set this parameter to True to start a new application instance,
 or to False to use the current window and replace the page
already displayed.

PortalName Specify the name of the portal that you want to transfer to,
 prefixed with the reserved word Portal.

nodename Specify the name of the node that contains the content,
 prefixed with the reserved word NODE. You can also use a
string, such as %Node, for this value.

menuname Specify the name of the menu containing the content, prefixed
with the reserved word MENUNAME. You can also use a
string, such as %Menu, for this value.

marketname Specify the name of the market of the component, prefixed
with the reserved word MARKET. You can also use a string,
 such as %Market, for this value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 827



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

component_item_name Specify the component item name of the page to be displayed
on top of the component when it displays. The component
item name is specified in the component definition. If you
specify a page, it must be prefixed with the keyword PAGE.
You can also specify a null ("") for this parameter.

action Specify a single-character code. Valid actions are:

• "A" ( add)

• "U" (update)

• "L" (update/display all)

• "C" (correction)

• "E" (data entry)

You can also specify a null ("") for this parameter.

keylist An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, of if Force Search Processing has
been selected, the search dialog appears.

If the keylist parameter is not supplied then the destination
component's search key must be found as part of the source
components level 0 record buffer.

Returns

A Boolean value: True if function completed successfully, False otherwise.

Related Links
TransferNode
TransferPage
Transfer

TransferTop

Syntax

TransferTop(new_window, MenuName.MENU_NAME, BarName.BAR_NAME, ItemName.MENU_ITEM_NA⇒

ME,

828  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Page.COMPONENT_ITEM_NAME, action [, keylist])

In which keylist is a list of field references in the form:

[recordname.]field1 [, [recordname.]field2]. . .

Or in which keylist is a list of field references in the form:

&RecordObject1 [, &RecordObject2].  .  .

Description

Use the TransferTop function to exit the current context and transfer the user to another page by always
replacing the current window. Use the TransferTop function as an alternative to the Transfer function
to ensure that when the source component is being displayed within a fluid wrapper (that is, the source
component is being displayed within a fluid activity guide, a master/detail component, an interactive
grouplet, or a modeless window) that the entire current window is replaced with the new content.

Unlike Transfer, TransferTop ignores the new_window parameter. TransferTop always exits the current
context and completely replaces the current window.

You can use TransferTop from a secondary page only if you’re transferring to a separate instance of a
component. You cannot use TransferTop from a secondary page if you’re not transferring to a separate
instance of a component.

If you provide a valid search key for the new page in the optional keylist, the new page opens directly,
using the values provided from keylist as search key values. A valid key means that enough information is
provided to uniquely identify a row: not all of the key values need to be provided. If no key is provided,
or if the key is invalid, or if not enough information is provided to identify a unique row, the search page
could be displayed (depending on the component), enabling the user to search for a row.

If MENU_NAME+BAR_NAME+MENU_ITEM_NAME+COMPONENT_ITEM_NAME is an invalid
combination, an error message displays explaining that there were invalid transfer parameters.

In the COMPONENT_ITEM_NAME parameter, make sure to pass the component item name for the page,
not the page name.

The component item name is specified in the component definition, in the Item Name column on the
row corresponding to the specific page, as shown here. In this example, the PERSONAL_DATA page
name appears twice: once with an item name of PERSONAL_DATA_1, and once with the item name of
PERSONAL_DATA_2.

Restrictions on Using TransferTop

• TransferTop cannot be used with an Internet script or an Application Engine program.

Copyright © 1988, 2022, Oracle and/or its affiliates. 829



PeopleCode Built-in Functions and Language Constructs Chapter 1

• TransferTop is ignored (has no effect) when used by a PeopleCode program that’s been called by a
component interface.

• You can't use TransferTop in a SearchInit PeopleCode program.

Parameters

Parameter Description

new_window Note: This parameter is ignored and has no effect.

MENU_NAME The name of the menu where the page is located prefixed with
the reserved word MenuName.

BAR_NAME The name of the menu bar where the page is located prefixed
with the reserved word BarName.

MENU_ITEM_NAME The name of the menu item where the page is located prefixed
with the reserved word ItemName.

COMPONENT_ITEM_NAME The component item name of the page to be displayed on top
of the component when it displays. The component item name
is specified in the component definition. This parameter must
be prefixed with the keyword Page.

action Uses a single-character code as in %Action. Valid actions
are "A" (add), "U" (update), "L" (update/display all), "C" 
(correction), and "E" (data entry).

[keylist] An optional list of field specifications used to select a unique
row at level zero in the page you are transferring to, by
matching keys in the page you are transferring from. It can
also be an already instantiated record object.

If a record object is specified, any field of that record object
that is also a field of the search record for the destination
component is added to keylist. The keys in the fieldlist must
uniquely identify a row in the "to" page search record. If a
unique row is not identified, or if Force Search Processing is
selected for the component, the search dialog box appears.

If the keylist parameter is not supplied then the destination
component's search key must be found as part of the source
components level 0 record buffer.

Returns

None.

830  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

The example starts does not start a new instance of the component processor, but transfers to a new page
in Update mode.

TransferTop( False, MenuName.QE_FLUID_CR, BarName.USE, ItemName.QE_CBACK_F1, Page.Q⇒

E_CBACK_F1, "U");

Related Links
Transfer
ViewURLTop
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

Transform

Syntax

Transform({XmlString | &XmlDoc} AE_Program_Name, Initial_Node_Name,
Initial_Message__Name, Initial_Message_Version, Result_Node_Name,
Result_Message_Name, Result_Message_Version)

Description

Use the Transform function to modify one transaction, as specified by the Initial parameters, to another
transaction, specified by the Result parameters, using an Application Engine program. This is used with
Integration Broker.

Generally using this function implies that you're transforming a message that you're not actually sending
or receiving at the current time. By using this method, and specifying the two transactions, it's as if you're
defining a relationship, without having to use the relationship component.

Considerations Using the Transform Functions

The Transform function uses an existing Application Engine program to do transformations. This enables
you to break up the flow of Integration Broker and do transformations when you need to. If you wish to
reuse your Application Engine programs, you can invoke them by using this function.

The TransformEx function does not use an Application Engine program to do a transformation. Instead,
it does an Extensible Stylesheet Language Transformation (XSLT.) This enables you to dynamically do
transformations outside of Integration Broker, such as, performing transformations on pagelets in a portal
every time a page is accessed.

The TransformExCache function also does XSLT transformations without using an Application Engine
program, outside of Integration Broker. Use TransformExCache when you have a large volume of similar
transformations to be done. Caching technology is used with this function. You may see an increase in
performance, as well as an increase in memory consumption, using this function.

Copyright © 1988, 2022, Oracle and/or its affiliates. 831



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

XmlString | &XmlDoc Specify an already populated XmlDoc object, an XML string,
 or other text that you want transformed.

AE_Program_Name Specify the name of the Application Engine program that you
want to use for the transformation.

Initial_Node_Name Specify the name of the initial node as a string.

Initial_Message_Name Specify the name of the initial message.

Initial_Message_Version Specify the version of the initial message that you want to use.

Result_Node_Name Specify the result, where you want the transformed message to
go to.

Result_Message_Name Specify the name of the result message, the one to use for the
output.

Result_Message_Version Specify the version of the result message to be used.

Returns

An XmlDoc object containing the resulting XML from the transformation. Null is never returned. If you
do not want to display an error to the user, place this function inside a try-catch statement.

Related Links
TransformEx
TransformExCache
"Understanding Filtering, Transformation, and Translation" (Integration Broker)

TransformEx

Syntax

TransformEx(XmlString, XsltString)

Description

Use the TransformEx function to do an XSLT transformation of the specified XML string.

This function also strips off any encoding information located within the XML Declaration.

832  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

The input, output, and XSL string must all be well-formed XML. If the output is HTML, it is actually
XHTML (which is well-formed XML.)

Considerations Using the Transform Functions

The Transform function uses an existing Application Engine program to do transformations. This enables
you to break up the flow of Integration Broker and do transformations when you need to. If you wish to
reuse your Application Engine programs, you can invoke them by using this function.

The TransformEx function does not use an Application Engine program to do a transformation. Instead,
it does an Extensible Stylesheet Language Transformation (XSLT.) This enables you to dynamically do
transformations outside of Integration Broker, such as, performing transformations on pagelets in a portal
every time a page is accessed.

The TransformExCache function also does XSLT transformations without using an Application Engine
program, outside of Integration Broker. Use TransformExCache when you have a large volume of similar
transformations to be done. Caching technology is used with this function. You may see an increase in
performance, as well as an increase in memory consumption, using this function.

Parameters

Parameter Description

XmlString Specify the XML string that you want transformed.

XsltString Specify the XSLT string you wish to use to transform the
XML string.

Returns

The output of the transformation as a string if successful, NULL otherwise.

Example
try
   &outStr = TransformEx(&inXML, &inXSLT);
catch Exception &E
   MessageBox(0, "", 0, 0, "Caught exception: " | &E.ToString());
end-try;

Related Links
Transform
TransformExCache
"Understanding Filtering, Transformation, and Translation" (Integration Broker)

Copyright © 1988, 2022, Oracle and/or its affiliates. 833



PeopleCode Built-in Functions and Language Constructs Chapter 1

TransformExCache

Syntax

TransformExCache(&XmlDoc, FilePath, XsltKey)

Description

Use the TransformExCache function to do an Extensible Stylesheet Language Transformation (XSLT)
transformation of the specified XmlDoc object.

The file specified by FilePath must be in well-formed XML.

Considerations Using the Transform Functions

The Transform function uses an existing Application Engine program to do transformations. This enables
you to break up the flow of Integration Broker and do transformations when you need to. If you wish to
reuse your Application Engine programs, you can invoke them by using this function.

The TransformEx function does not use an Application Engine program to do a transformation. Instead,
it does an Extensible Stylesheet Language Transformation (XSLT.) This enables you to dynamically do
transformations outside of Integration Broker, such as, performing transformations on pagelets in a portal
every time a page is accessed.

The TransformExCache function also does XSLT transformations without using an Application Engine
program, outside of Integration Broker. Use TransformExCache when you have a large volume of similar
transformations to be done. Caching technology is used with this function. You may see an increase in
performance, as well as an increase in memory consumption, using this function.

Parameters

Parameter Description

&XmlDoc Specify an already instantiated and populated XmlDoc object
that you want transformed.

FilePath Specify an XSLT file. You must specify an absolute path to the
file, including the file extension.

XsltKey Specify a key to uniquely name the compiled and cached
XSLT in the data buffers. This key is used both to create the
item in memory as well as retrieve it. This parameter takes a
string value, up to 30 characters.

Returns

An XmlDoc object containing the resulting XML from the transformation. Null is never returned. If you
do not want to display an error to the user, place this function inside a try-catch statement.

834  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example
Local XmlDoc &inXMLdoc = CreateXmlDoc("");

Local Boolean &ret = &inXMLdoc.ParseXmlFromURL("c:\temp\in.xml");

Local XmlDoc &outDoc = TransformExCache(&inXMLdoc, "c:\temp\in.xsl", "INBOUND");

Related Links
Transform
TransformEx
"Understanding Filtering, Transformation, and Translation" (Integration Broker)

TreeDetailInNode

Syntax

TreeDetailInNode(setID, tree, effdt, detail_value, node)

Description

Use the TreeDetailInNode function to determine whether a specific record field value is a descendant of a
specified node in a specified tree.

Note: This function is not compatible with the PeopleSoft Pure Internet Architecture. However, this
function is still available for use with the PeopleSoft Tree Manager Windows client, available in the 8.1
product line.
An equivalent PeopleCode tree class method or built-in function for PeopleSoft Pure Internet Architecture
does not exist, however, you may achieve this same functionality using the tree classes.

Parameters

Parameter Description

setID SetID for the appropriate business unit. This parameter is
required. If there is no setID, you can pass a NULL string ("",
 not a blank) and a blank will be used.

tree The tree name that contains the detail_value.

effdt Effective date to be used in the search. You must use a valid
date.

detail_value The recordname.fieldname containing the value you are
looking for.

node The "owning" tree node name.

Copyright © 1988, 2022, Oracle and/or its affiliates. 835



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

Returns a Boolean value, True if detail_value is a descendant of node in tree.

Example

This example sets the value of &APPR_RULE_SET to the value at the APPR_RULE_LN record and
APPR_RULE_SET fieldname, on the tree ACCOUNT.

&APPR_RULE_SET = TreeDetailInNode("SALES", "ACCOUNT", %Date, APPR_RULE_LN.APPR_RULE⇒

_SET, "test");

Related Links
"Maintaining Tree Structures" (Tree Manager)
"PeopleSoft Tree Manager Overview" (Tree Manager)

TriggerBusinessEvent

Syntax

TriggerBusinessEvent(BUSPROCESS.bus_proc_name, BUSACTIVITY.activity_name,
BUSEVENT.bus_event_name)

Description

Use the TriggerBusinessEvent function to trigger a business event and the workflow routings associated
with that event. This function should only be used in Workflow PeopleCode. You can edit Workflow
PeopleCode via the Event Definition dialog while you are defining a workflow event.

Parameters

Parameter Description

bus_proc_name A string consisting of the name of the business process, as
defined in the Business Process Designer, prefixed with the
reserved word BUSPROCESS.

activity_name A string consisting of the name of the business activity, as
defined in the Business Process Designer, prefixed with the
reserved word BUSACTIVITY.

bus_event_name A string consisting of the name of the business event, as
defined in the Business Process Designer, prefixed with the
reserved word BUSEVENT.

Returns

Returns a Boolean value: True if successful, false otherwise. The return value is not optional.

836  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note: You must check the return from TriggerBusinessEvent to see if you have an error. If you have
an error, all of the updates up to that TriggerBusinessEvent process are rolled back. However, if you
don’t halt execution, even if you have an error, all updates after the TriggerBusinessEvent process are
committed. This could result in your database information being out of synch.

Example

The following example triggers the Deny Purchase Request event in the Manager Approval activity of the
Purchase Requisition business process:

&SUCCESS = TriggerBusinessEvent(BUSPROCESS."Purchase Requisition", BUSACTIVITY."Man⇒

ager Approval", BUSEVENT."Deny Purchase Request");

Related Links
GetWLFieldValue
MarkWLItemWorked
"Understanding Events and Routings" (Workflow Technology)

Truncate

Syntax

Truncate(dec, digits)

Description

Use the Truncate function to truncate a decimal number dec to a specified precision.

Parameters

Parameter Description

digits A Number value that sets the precision of the truncation 
(that is, the number of digits to leave on the right side of the
decimal point).

Returns

Returns a Number value equal to dec truncated to a digits precision.

Example

The example sets the value of &NUM to 9, 9.99, -9, then 0.

&NUM = Truncate(9.9999, 0);
&NUM = Truncate(9.9999, 2);
&NUM = Truncate(-9.9999, 0);
&NUM = Truncate(0.001, 0);

Copyright © 1988, 2022, Oracle and/or its affiliates. 837



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
Int
Mod
Round

try

Syntax

try
   Protected StatementList
catchQualifiedID &ID
   StatementList
end-try

Description

Use the try statement as part of a try-catch block to trap exceptions thrown either by the system or by
using the CreateException function.

Parameters

Parameter Description

Protected StatementList Specify the statements that are protected by the try-catch
block.

catch QualifiedID &ID Specify the catch statement at the end of the list of statements
you want to protect.

QualifiedID Specify what class of exception you are catching—that is,
 Exception or the name of a class extending the Exception
class.

&ID Specify a variable to be set with the caught exception.

StatementList Specify the steps to be taken once the exception is caught.

Returns

None.

Example
try
   &res = 15.3 / 7 * 22.1;
catch Exception &c1
   MessageBox(0, "", 0, 0, "Caught exception: " | &c1.ToString());
end-try;

838  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
throw
CreateException
"Understanding Exception Class" (PeopleCode API Reference)

TurnOffRTI

Syntax

TurnOffRTI(search definition)

Description

Use the TurnOffRTI function to disable real time indexing for a specified search definition when the
document count exceeds the threshold specified on the Configure Real Time Indexing page. Additionally,
this function disables real time indexing for other search definitions that have common trigger records.

Parameters

Parameter Description

search definition Specify the search definition for which you want to disable
real time indexing as a String value.

Returns

A return code as an integer.

Return Code Description

1 Real time indexing is successfully disabled for the specified
search definition and other search definitions that have
common trigger records.

2 Batch jobs are not configured for the specified search
definition.

3 SQL execution failed.

4 Real time indexing is not enabled for the search definition or
the search definition is not deployed.

5 Illegal arguments are passed to API call.

6 Trigger records are not found for the specified search
definition.

Copyright © 1988, 2022, Oracle and/or its affiliates. 839



PeopleCode Built-in Functions and Language Constructs Chapter 1

Return Code Description

8 Batch job is not configured for real time indexing switch.

Example
Local integer &x = TurnOffRTI("EP_AP_VOUCHERS");
WinMessage(&x, 0);

Related Links
GetRTISwitchThreshold
"Configuring Real Time Indexing" (Search Technology)

PeopleCode Built-in Functions and Language Constructs: U

The PeopleCode built-In functions and language constructs beginning with the letter U are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

UIDisplayMode

Syntax

UIDisplayMode()

Description

Use the UIDisplayMode function to return an Integer value indicating the user interface display mode
of the current execution context (a combination of the active web profile configuration and the user’s
browser):

Numeric Value Description

0 Error (undefined)

1 Classic

2 Fluid

3 Small form factor optimized

840  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

None.

Returns

A Integer value.

Example 1

In the following example, certain characteristics regarding the browser and web profile are obtained
from the executing environment. In turn, these values are used to construct a cookie that is saved to the
browser.

/* Read conditional navigation related parameters */
Local number &formfactor = %Request.BrowserDeviceFormFactor;
Local number &fluidCapable = UIDisplayMode();
/*Error - Default back to classic mode when undefined. */
If (&fluidCapable = 0) Then
   &fluidCapable = 1; /* Set to classic mode. */
End-If;

/* Set a browser cookie indicating these characteristics */
&cookieStr = "PS_CONDNAV" | "=" | &fluidCapable | "," | &formfactor | "; ";
&cookieStr = RTrim(&cookieStr, "; ");
&reqMsg.IBInfo.IBConnectorInfo.Cookies = &cookieStr;
&resMsg = %IntBroker.SyncRequest(&reqMsg, &targetNode);

Example 2

In the following example, the display mode is set as a property of the search object. Then, if the current
mode is classic, certain characteristics are set for conditional navigation search mode:

...
   %This.nUIDisplayMode = UIDisplayMode();

   %This.SearchType = "S";
   %This.IsAdvancedSearch = False;
end-method;
...

method SetConditionalSearchNavMode
   /+ Returns Boolean +/
   If Not %This.bIsGlobalSearch Then
      Return False;
   End-If;

   Local string &name = "PTSF_NAV_MODE";
   If (%This.nUIDisplayMode = 1) Then
      %This.fg.MatchAny();
      %This.fg.EqualsString(&name, "1");
      %This.fg.NotEqualsString(&name, "2");
      %This.fg.EndMatchAny();
      Return True;
   End-If;
   Return False;
end-method;

Related Links
"Understanding Conditional Navigation" (Portal Technology)
"Web Profile Configuration - General Page" (Fluid User Interface Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 841



PeopleCode Built-in Functions and Language Constructs Chapter 1

"BrowserFluidCapable" (PeopleCode API Reference)

UnCheckMenuItem

Syntax

UnCheckMenuItem(BARNAME.menubar_name, ITEMNAME.menuitem_name)

Description

Use the UnCheckMenuItem function to remove a check mark from the specified menu item.

Note: This function has been deprecated.

Unencode

Syntax

Unencode(URLString)

Description

Use the Unencode function to unencode URLString, converting all character codes of the form %xx where
xx is a hex number, to the character represented by that number.

Parameters

Parameter Description

URLString Specify the string you want unencoded. This parameter takes a
string value.

Returns

An unencoded URL string.

Example

For the following example, the URL is:

http://corp.office.com/human%20resources/benefits/401kchange_home.htm?FirstName=Gun⇒

ter&LastName=D%c3%9crst

The encoded values are those beginning with the percentage sign (%). If you wanted to know the value in
the Target Content’s URL for the parameter “LastName”, then the following PeopleCode would return the
string “Dürst”:

&MENU = Unencode(%Request.GetParameter("LastName"));

842  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

This method works for any querystring in the Target Content’s URL.

If the link is constructed in a PeopleSoft Pure Internet Architecture page, and the value of a link field, you
should not call EncodeURL to encode the entire URL, as the PeopleSoft Pure Internet Architecture does
this for you. You must still unencode the parameter value when you retrieve it, however.

Related Links
EncodeURL
EncodeURLForQueryString

UnGray

Syntax

UnGray(scrollpath, target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]]
RECORD.target_recname

To prevent ambiguous references, you can also use SCROLL. scrollname, where scrollname is the same
as the scroll level’s primary record name.

Description

Use the Ungray function to make a gray (non-editable) page field editable, if the field was grayed with a
call to the Gray function.

Note: This function remains for backward compatibility only. Use the Enabled field property instead.

If the page field is made display-only in the Page Field Properties dialog, then Ungray has no effect.

The Gray, Ungray, Hide, and Unhide functions usually appear in RowInit programs that set up the initial
display of data, and FieldChange programs that change field display based on changes the end user makes
to a field.

Generally, you want to put this function on the same scroll level as the field that is being changed in
RowInit (which executes on every row) or FieldChange (which executes on the current row). This
simplifies the function’s syntax to:

UnGray(FIELDNAME)

A typical use of the more complex syntax is when looping through rows on a scroll on a lower level than
the program.

Note: This function shouldn't be used in any event prior to RowInit.

Related Links
Gray
Hide

Copyright © 1988, 2022, Oracle and/or its affiliates. 843



PeopleCode Built-in Functions and Language Constructs Chapter 1

UnHide
"Enabled" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

Scrollpath A construction that specifies a scroll level in the component
buffer.

target_row The row number of the target row. If this parameter is omitted,
 the function assumes the row on which the PeopleCode
program is executing.

[recordname .]fieldname The name of the field to make editable. The field can be
on scroll level one, two, or three of the active page. The
recordname prefix is required if the call to Ungray is not on
the record definition recordname.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

The following example checks to see if a person’s emergency contact is the same as their home address
and phone, then grays or ungrays the fields accordingly. In a typical case, this program would be in the
FieldChange event.

If SAME_ADDRESS_EMPL = "Y" Then
   Gray(STREET1);
   Gray(STREET2);
   Gray(CITY);
   Gray(STATE);
   Gray(ZIP);
   Gray(COUNTRY);
   Gray(HOME_PHONE);
   STREET1 = PERSONAL_DATA.STREET1;
   STREET2 = PERSONAL_DATA.STREET2;
   CITY = PERSONAL_DATA.CITY;
   STATE = PERSONAL_DATA.STATE;
   ZIP = PERSONAL_DATA.ZIP;
   COUNTRY = PERSONAL_DATA.COUNTRY;
   HOME_PHONE = PERSONAL_DATA.HOME_PHONE;
Else
   UnGray(STREET1);
   UnGray(STREET2);
   UnGray(CITY);
   UnGray(STATE);
   UnGray(ZIP);
   UnGray(COUNTRY);
   UnGray(HOME_PHONE);
End-If;

844  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
Gray
Hide
UnHide

UnHide

Syntax

UnHide(scrollpath, target_row, [recordname.]fieldname)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]]
RECORD.target_recname

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

Description

Use the Unhide function to make a field visible that was previously hidden with Hide. If the field was
hidden by setting its Invisible property in the Page Field Properties dialog box, then Unhide has no effect.

Note: This function remains for backward compatibility only. Use the Visible field property instead.

Generally, you want to put this function on the same scroll level as the field that is being changed in
RowInit (which executes on every row) or FieldChange (which executes on the current row). This
simplifies the function’s syntax to:

UnHide(FIELDNAME)

A typical use of the more complex syntax is when looping through rows on a scroll on a lower level than
the program.

Note: This function shouldn't be used in any event prior to RowInit.

Related Links
Hide
"Visible" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 845



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row The row number of the target row. If this parameter is omitted,
 the function assumes the row on which the PeopleCode
program is executing.

[recordname .]fieldname The name of the field to unhide. The field can be on scroll
level one, two, or three of the active page. The recordname
prefix is required if the call to Unhide is not on the record
definition recordname.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

The following example sets security for displaying a person’s password:

If (&DISPLAY) Then
   UnHide(EMPLOYEE.PASSWORD);
Else
   Hide(EMPLOYEE.PASSWORD);
End-if;

Related Links
Gray
Hide
UnGray

UnhideRow

Syntax

UnhideRow(scrollpath, target_row)

Where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]
RECORD.target_recname

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

846  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Description

Use the UnhideRow function to programmatically unhide a row that has been hidden by HideRow. It
unhides the specified row and any dependent rows at a lower scroll level.

Note: This function remains for backward compatibility only. Use the Visible row property instead.

UnhideRow works by putting the row that you unhide to the last non-hidden row in the list. When
UnhideRow is used in a loop, you have to process rows from low to high to achieve the correct results.

Note: UnhideRow cannot be executed from the same scroll level where the insertion takes place, or from
a lower scroll level. Place the PeopleCode in a higher scroll level record.

Related Links
"Visible" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

target_row An integer specifying which row in the scroll to unhide.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example
      AE_ROW_COUNT = ActiveRowCount(RECORD.AE_STMT_TBL);
      for &ROW = ActiveRowCount(RECORD.AE_STMT_TBL) to 1 step - 1
         UnhideRow(RECORD.AE_STMT_TBL, &ROW);
         UpdateValue(RECORD.AE_STMT_TBL, &ROW, AE_ROW_NUM, &ROW);
      end-for;

Related Links
HideRow

UnhideScroll

Syntax

UnhideScroll(Scrollpath)

Copyright © 1988, 2022, Oracle and/or its affiliates. 847



PeopleCode Built-in Functions and Language Constructs Chapter 1

Where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]
RECORD.target_recname

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

Description

Use the UnhideScroll function to programmatically unhide a scroll area that has been hidden with
HideScroll. It unhides the specified scroll and any associated scrolls at a lower level.

Note: This function remains for backward compatibility only. Use the ShowAllRows rowset method
instead.

Related Links
HideScroll
"ShowAllRows" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

scrollpath A construction that specifies a scroll level in the component
buffer.

Returns

Optionally returns a Boolean value indicating whether the function executed successfully.

Example

This example clears the contents of a level-one hidden scroll, then unhides it:

   ScrollFlush(RECORD.ORDER_INQ_INV);
   UnhideScroll(RECORD.ORDER_INQ_INV);

The following example hides or unhides a level-three scroll:

If APPR_QTY_SW = "N" Then
   HideScroll(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL, Curr⇒

entRowNumber(2), RECORD.APPR_RULE_QTY);
Else
   UnhideScroll(RECORD.APPR_RULE_LN, CurrentRowNumber(1), RECORD.APPR_RULE_DETL, Cu⇒

rrentRowNumber(2), RECORD.APPR_RULE_QTY);
End-If;

848  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
HideScroll
RowScrollSelect
RowScrollSelectNew
ScrollSelect
ScrollSelectNew
SortScroll

UniformSeriesPV

Syntax

UniformSeriesPV(int_rate,n_per)

Description

Use the UniformSeriesPV function to calculate the present value of a single monetary unit after a uniform
series of payments at a specified interest rate.

Parameters

Parameter Description

int_rate A Number specifying the interest rate on the basis of which to
calculate the return value.

n_per A Number specifying the number of payments in the uniform
series.

Returns

Returns a Number equal to the value of a single unit after n_per payments at an interest rate of int_rate.

Example

The example sets &NUM to 3.790786769408448256:

&NUM = UniformSeriesPV(10,5);

Related Links
SinglePaymentPV

UnshareAttachment

Syntax

UnshareAttachment(URLID, DirAndFilePrefix, ShareMode, ShareRole, UsernameArray)

Copyright © 1988, 2022, Oracle and/or its affiliates. 849



PeopleCode Built-in Functions and Language Constructs Chapter 1

Description

Use the UnshareAttachment function to revoke sharing access to files in Oracle Content and Experience
Cloud (CEC).

Parameters

Parameter Description

URLID Specifies an Oracle Content Cloud.

DirAndFilePrefix A directory and file name prefix. This is appended to the
folder path configured in the URLID parameter to get the
actual file.

Note: Because the DirAndFilePrefix parameter is appended to
the URL, it requires forward slashes (“/”). Backward slashes 
(“\”) are not supported for this parameter.

ShareMode Specifies the sharing mode, which is revoked.

The sharing modes are:

• %ShareMode_Member

• %ShareMode_PublicRegisteredUsers

• %ShareMode_PublicAnyone

ShareRole Specifies the sharing roles, which is revoked.

The sharing roles are:

• %ShareRole_Viewer

• %ShareRole_Downloader

• %ShareRole_Contributor

This parameter is not used when the sharing mode is
%ShareMode_Member.

UsernameArray Specifies users who are to be removed from sharing list.

This parameter is not used when the sharing mode is
%ShareMode_PublicRegisteredUsers or %ShareMode_
PublicAnyone.

If no value is passed in this parameter, an empty string array is
assumed.

This is an optional parameter.

850  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

An integer value (0) irrespective of whether the function is successful or not.

Note: It is reserved for future use.

Example
Local array of string &users = CreateArrayRept("XYZ", 1);
Local string &share_url = "https://<host:port>/documents/fileview/<docID>/_PaySlip_⇒

XYZ";
UnshareAttachment(URLID.PAYSLIP, "PaySlip_XYZ", &share_url, %ShareMode_Member, 0, &⇒

users);

Related Links
ShareAttachment

Until

Description

Use the Until keyword to terminate a repeat loop. See Repeat for more information.

UpdateSysVersion

Syntax

UpdateSysVersion()

Description

Use the UpdateSysVersion function to coordinate system changes and changes to system objects
maintained by pages, such as messages and Set Tables. This function is not normally used in standard
applications and should only used in PeopleSoft-provided extensions of PeopleTools.

Returns

Returns the updated system version Number.

Example

The following example could be used to maintain the version number on MESSAGE_SET_TBL, which
controls the refreshing of cache files for the message entries:

VERSION = UpdateSysVersion();

Copyright © 1988, 2022, Oracle and/or its affiliates. 851



PeopleCode Built-in Functions and Language Constructs Chapter 1

UpdateValue

Syntax

UpdateValue(scrollpath, [recordname.]fieldname, target_row, value)

where scrollpath is:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row, ]]

To prevent ambiguous references, you can use SCROLL. scrollname, where scrollname is the same as
the scroll level’s primary record name.

Description

Use the UpdateValue function to update the value of a specified field with the value provided. The value
must be of a data type compatible with the field.

Note: This function remains for backward compatibility only. Use the Value field property instead.

Related Links
"Value" (PeopleCode API Reference)
"Understanding Data Buffer Access" (PeopleCode Developer’s Guide)
"Specifying Data with References Using Scroll Path Syntax and Dot Notation" (PeopleCode Developer’s
Guide)

Parameters

Parameter Description

Scrollpath A construction that specifies a scroll level in the component
buffer.

target_row An integer specifying the row of the field to update.

[recordname .]fieldname The name of the field that you want to update. The field can
be on scroll level one, two, or three of the active page. The
recordname prefix is required if the call to UpdateValue is not
on the record definition recordname.

Value The new value to put into the target field.

Returns

None.

852  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example

This example updates values in the level-one scroll:

For &I = 1 To &ROW_CNT
   UpdateValue(RECORD.ASGN_CMP_EFFDT, &I, ITEM_SELECTED, "Y");
End-For;

The next example loops through rows in the level-two scroll:

For &I = 1 To &CURRENT_L2
   UpdateValue(RECORD.ASGN_CMP_EFFDT, &CURRENT_L1, RECORED.SOME_L2_RECORD, &I, TO_C⇒

UR, &HOME_CUR);
End-For;

Related Links
FetchValue
PriorValue

UpdateXmlDoc

Syntax

UpdateXmlDoc(&XmlDoc, PubID, PubNode, ChannelName, VersionName [, Message Name
[, SubNode[, Segment]]])

Description

Use the UpdateXmlDoc function to update a message in the message queue with the specified message
version.

Note: This function has been deprecated and remains for backward compatibility only. Use the IntBroker
class UpdateXmlDoc method instead.

If VersionName isn’t specified, the default message version is used. This method is commonly used in the
OnRouteSend and OnRouteReceive PeopleCode events.

Note: This function can't be called from notification PeopleCode.

Related Links
"UpdateXmlDoc" (PeopleCode API Reference)

Parameters

Parameter Description

&XmlDoc Specify an already instantiated XmlDoc object.

PubID Specify the PubID as a string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 853



PeopleCode Built-in Functions and Language Constructs Chapter 1

Parameter Description

PubNode Specify the PubNode as a sting.

ChannelName Specify the Channel name as a string.

VersionName Specify the version name as a string.

MessageName Specify the message name as a string. This is only used for
Pub and Sub contracts.

SubNode Specify the sub node as a string. This is only used for Pub
contracts.

Segment Specify an integer representing which segment you want to
access. The default value is one, which means that if you do
not specify a segment, the first segment is accessed.

Returns

A Boolean value: True if function completed successfully, False otherwise.

Related Links
"Understanding XmlDoc Classes" (PeopleCode API Reference)

Upper

Syntax

Upper(str)

Description

Use the Upper function to convert a text string to all uppercase. This function can be used to perform a
case-insensitive string comparison. Upper does not change characters that are not letters or characters that
do not have case sensitivity.

Parameters

Parameter Description

str A String to convert to uppercase.

854  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Returns

Returns a String value equal to str converted to all uppercase.

Example

The following example converts the contents of two string variables to uppercase before determining if
they are equal to simulate a case-insensitive comparison:

If Upper(&STR1) = Upper(&STR2) Then
   /* do something */
End-If;

Related Links
Lower
Proper

PeopleCode Built-in Functions and Language Constructs: V

The PeopleCode built-In functions and language constructs beginning with the letter V are listed in
alphabetical order within this topic.

Related Links
Typographical Conventions

Value

Syntax

Value(string)

Description

Use the Value function to convert a string representing a number to the number.

To convert a number using the user's local format for the number, use the ValueUser function.

Parameters

Parameter Description

string A String value representing a number.

Returns

Returns the Number value represented by string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 855



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The example sets &VAL1 to 5.25 and &VAL2 to 12500:

&VAL1 = Value("5.25");
&VAL2 = Value("12,500");

Related Links
String
ValueUser

ValueUser

Syntax

ValueUser(str)

Description

Use the ValueUser function to convert a string representing a number to the number, using the locale-
specific format for the current user to interpret the number. For example, if the locale or user level
personalization settings specify to use a comma as the decimal separator, the number will be interpreted
based on that setting, instead of the default for the database.

To convert a number without using the user's format for the number, use the Value function.

Parameters

Parameter Description

str Specify the string value representing a number that you want
converted to a number.

Returns

Returns the number value represented by str.

Example

The example sets &VAL1 to 5.25 and &VAL2 to 12500:

&VAL1 = ValueUser("5.25");
&VAL2 = ValueUser("12,500");

Related Links
String
Value
IsUserNumber

856  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

VerifyHash

Syntax

VerifyHash(cleartext_string, salt_string, hashed_string)

Description

Use the VerifyHash function to verify that the combination of an input clear text string plus salt string
generates a hashed value that is the same as a hashed string generated by the HashWithSalt function.

The VerifyHash function is general purpose, in that it can be used for any clear text string that has been
hashed with the HashWithSalt function. Use the VerifyOprPassword function instead when the input clear
text is a user’s password that has been stored in the database as a hashed value.

Parameters

Parameter Description

cleartext_string Specifies the string to be verified as a string value.

salt_string Specifies the salt value as a string value.

Important! The salt value must be exactly the same as the
randomly generated salt value used to hash the original string.

hashed_string Specifies the hashed value to be compared to the output of the
hash algorithm.

Returns

A Boolean value: True if the input string plus salt value generate the hashed text, False otherwise.

Example
Local array of string &salt;

&salt = SecureRandomGen();
&hashedtext = HashWithSalt(&cleartext, &salt [1]);
MY_REC.MY_HTEXT = &hashedtext;
MY_REC.MY_SALT = &salt [1];

/*** other processing ***/

If Not VerifyHash(&cleartext, MY_REC.MY_SALT, MY_REC.MY_HTEXT) Then
   rem they don't match, throw error;
   Error MsgGet(10001, 1, "Message not found");
End-If;

Related Links
HashWithSalt

Copyright © 1988, 2022, Oracle and/or its affiliates. 857



PeopleCode Built-in Functions and Language Constructs Chapter 1

SecureRandomGen
VerifyOprPassword

VerifyOprPassword

Syntax

VerifyOprPassword(O_or_U, user_ID, cleartext_pwd)

Description

Use the VerifyOprPassword function to verify that an input clear text string matches the password hashed
by either HashWithSalt or Hash and stored in the PSOPRDEFN table.

Parameters

Parameter Description

O_or_U Indicates which PSOPRDEFN field to use when matching the
user ID:

• O – Indicates the OPRID field.

• U – Indicates the USERIDALIAS field.

user_ID Specifies the user ID as a string value.

cleartext_pwd Specifies the input password as a clear text string.

Returns

A Boolean value: True if the input password matches the hashed password stored in the database, False
otherwise.

Example
If Not VerifyOprPassword("O", %UserId, "user_password") Then
   rem they don't match, throw error;
   Error MsgGet(48, 18, "Message not found");
End-If;

Related Links
Hash
HashWithSalt
SecureRandomGen
VerifyHash

858  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

ViewAttachment

Syntax

ViewAttachment(URLSource, DirAndSysFileName, UserFileName [, NewWindow
[, PreserveCase]])

Description

Use the ViewAttachment function to download a file from its source storage location and open it locally
on the end-user machine.

By using the UserFileName parameter, the copy of the file to be viewed may be given a different name
than the file at the storage location.

Additional information that is important to the use of ViewAttachment can be found in the PeopleTools:
PeopleCode Developer's Guide:

• PeopleTools supports multiple types of storage locations.

See "Understanding File Attachment Storage Locations" (PeopleCode Developer’s Guide).

• Certain characters are illegal in file names; other characters in file names are converted during file
transfer.

See "File Name Considerations" (PeopleCode Developer’s Guide).

• Non-ASCII file names are supported by the PeopleCode file attachment functions.

See "Attachments with non-ASCII File Names" (PeopleCode Developer’s Guide).

• The PeopleCode file attachment functions do not provide text file conversions when files are attached
or viewed.

See "Considerations When Attaching Text Files" (PeopleCode Developer’s Guide).

• Because ViewAttachment is interactive, it is known as a “think-time” function, and is restricted from
use in certain PeopleCode events.

See "Restrictions on Invoking Functions in Certain PeopleCode Events" (PeopleCode Developer’s
Guide).

You can use a file extension list to identify file types to accept or reject when using this function.

See "Using Administration Utilities" (System and Server Administration).

Security Considerations

PeopleTools includes an X-Content-Type-Options: nosniff response header with content retrieved using
the ViewAttachment built-in function.

Viewing a file involves requesting that it be opened. The result of the open action depends upon the
extension of the file name and the application associated with that extension. Keep in mind that the act of
opening a file with certain extensions (for example, .exe or .bat) results in the file being executed when it

Copyright © 1988, 2022, Oracle and/or its affiliates. 859



PeopleCode Built-in Functions and Language Constructs Chapter 1

is opened. If you do not want specific file type to be handled this way, you must prevent the end user from
viewing the requested file.

When the end user views attachments using the ViewAttachment function, some browsers treat
documents as HTML regardless of file extension, and thus execute embedded JavaScript. You may want
to write a PeopleCode program to allow only specific file extensions to be viewed.

Alternatively, you can use a file extension list to restrict the file types that can be uploaded to or
downloaded from your PeopleSoft system.

See "Restricting the File Types That Can Be Uploaded or Downloaded" (PeopleCode Developer’s Guide).

Problems Downloading Files

The combination of the attachmentExtraWindow web profile property and some of Internet Explorer’s
settings can silently interfere with downloading and opening of files with the ViewAttachment function.
For more information, see the documentation on the attachmentExtraWindow web profile property.

See "Configuring Custom Properties" (Portal Technology).

In addition, if you need to use the SetLanguage built-in function to change languages, invoke
SetLanguage prior to invoking ViewAttachment or DetachAttachment. You must place the call to
SetLanguage in a different PeopleCode program and event from the PeopleCode program and event that
invokes ViewAttachment or DetachAttachment.

Parameters

Parameter Description

URLSource A reference to a URL. This can be either a URL identifier
in the form URL.URL_ID, or a string. This, along with the
DirAndSysFileName parameter, indicates the file's source
location.

Note: When the URLSource parameter is specified as a string
value, forward slashes (/) are required. Backward slashes (\)
are not supported for a string value.

See "Understanding URL Strings Versus URL
Objects" (PeopleCode Developer’s Guide).

DirAndSysFileName The relative path and file name of the file on the file server.
 This is appended to URLSource to make up the full URL
where the file is transferred from. This parameter takes a string
value

Note: Because the DirAndSysFileName parameter is appended
to the URL, it also requires forward slashes (“/”). Backward
slashes (“\”) are not supported for this parameter.

UserFileName The name associated with the copy of the file to be viewed 
(may be different than the name of the file at the storage
location).

860  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameter Description

NewWindow Specify if the browser should try to use a new window to
display the attachment. This parameter takes a Boolean value.
 The default is True.

PreserveCase Specify a Boolean value to indicate whether when searching
for the file specified by the DirAndSysFileName parameter,
 its file name extension is preserved or not; True, preserve the
case of the file name extension, False, convert the file name
extension to all lowercase letters.

The default value is False.

Warning! If you use the PreserveCase parameter, it is
important that you use it in a consistent manner with all the
relevant file-processing functions or you may encounter
unexpected file-not-found errors.

Returns

You can check for either an integer or a constant value:

Numeric Value Constant Value Description

0 %Attachment_Success File was transferred successfully.

Important! If file type restrictions are
changed so that access to a previously
uploaded file is now blocked, a
call to ViewAttachment will return
%Attachment_Success, even though the
file and its contents are not displayed.

Copyright © 1988, 2022, Oracle and/or its affiliates. 861



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

1 %Attachment_Failed File transfer failed due to unspecified
error.

The following are some possible
situations where %Attachment_Failed
could be returned:

• Failed to initialize the process due to
some internal error.

• Failed due to unexpected/bad reply
from server.

• Failed to allocate memory due to
some internal error.

• Failed due to timeout.

• Failed due to non-availability of
space on FTP server.

• Failed to close SSL connection.

• Failed due to an unspecified error on
the HTTP repository.

If the HTTP repository resides on a
PeopleSoft web server, then you can
configure tracing on the web server
to report additional error details.

See "Enabling Tracing on the
Web Server or Application
Server" (PeopleCode Developer’s
Guide).

2 %Attachment_Cancelled File transfer didn't complete because the
operation was canceled by the end user.

862  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Numeric Value Constant Value Description

3 %Attachment_FileTransferFailed File transfer failed due to unspecified
error during FTP attempt.

The following are some possible
situations where %Attachment_
FileTransferFailed could be returned:

• Failed due to mismatch in file sizes.

• Failed to write to local file.

• Failed to store the file on remote
server.

• Failed to read local file to be
uploaded

• No response from server.

• Failed to overwrite the file on
remote server.

7 %Attachment_DestSystNotFound Cannot locate destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSystNotFound could be returned:

• Improper URL format.

• Failed to connect to the server
specified.

Copyright © 1988, 2022, Oracle and/or its affiliates. 863



PeopleCode Built-in Functions and Language Constructs Chapter 1

Numeric Value Constant Value Description

8 %Attachment_DestSysFailedLogin Unable to login to destination system for
FTP.

The following are some possible
situations where %Attachment_
DestSysFailedLogin could be returned:

• Unsupported protocol specified.

• Access denied to server.

• Failed to connect using SSL Failed
to verify the certificates.

• Failed due to problem in certificates
used.

• Could not authenticate the peer
certificate.

• Failed to login with specified SSL
level.

• Remote server denied logon.

• Problem reading SSL certificate.

9 %Attachment_FileNotFound Cannot locate file.

The following are some possible
situations where %Attachment_
FileNotFound could be returned:

• Remote file not found.

• Failed to read remote file.

Example
&retcode = ViewAttachment(URL.MYFTP, ATTACHSYSFILENAME, ATTACHUSERFILE);

An example of the ViewAttachment function is provided in the demonstration application delivered in the
FILE_ATTACH_WRK derived/work record. This demonstration application is shown on the PeopleTools
Test Utilities page.

See "Using the PeopleTools Test Utilities Page" (PeopleCode Developer’s Guide).

Related Links
AddAttachment
CleanAttachments
CopyAttachments
DeleteAttachment
DetachAttachment

864  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

GetAttachment
PutAttachment
MAddAttachment
"Understanding the File Attachment Functions" (PeopleCode Developer’s Guide)

ViewContentURL

Syntax

ViewContentURL(URL)

Description

Use the ViewContentURL function to open a new browser window and navigate to the location specified
by the URL parameter.

Important! Use the ViewContentURL function in classic applications only. See "Transfer and Modal
Functions" (Fluid User Interface Developer’s Guide) for more information on which functions are
available for which purposes.

The content specified by the URL is not wrapped by the portal template. Therefore, you can use this
function when you want to display third-party content. If you want to wrap the content in the portal
template, use the ViewURL function.

This is a deferred execution command: the browser is launched after any executing PeopleCode has run to
completion. This function automatically launches a new browser window.

Considerations for Opening Local Files

Note: Due to restrictions inherent in certain browsers, you cannot use ViewContentURL to open a file
on a local file system. See the PeopleTools Browser Compatibility Guide (Oracle Support Document
704492.1) on My Oracle Support for more information.

For browsers that do support opening a file on a local file system, you must use a URL style path
(file://path_name) instead of a UNC style path (\\path_name). For example:

ViewContentURL("file://PT-NFS01/PSUSERWS/temp/TVN/81X-PATCHES.TXT");

Parameters

Parameter Description

URL Specify the location to navigate to. You can specify the URL
either as a string value or as a URL saved in the URL table
using the following format: URL.URL_ID

Returns

None.

Copyright © 1988, 2022, Oracle and/or its affiliates. 865

https://support.oracle.com/epmos/faces/DocumentDisplay?id=704492.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=704492.1


PeopleCode Built-in Functions and Language Constructs Chapter 1

Example
If &MyPage Then
   ViewURL(URL.MYPAGE);
Else
   ViewContentURL("http://www.oracle.com");
End-If;

Related Links
GetURL
ViewContentURLClassic
ViewContentURLFluid
ViewURL
"URL Maintenance" (System and Server Administration)
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

ViewContentURLClassic

Syntax

ViewContentURLClassic(URL [, new_window])

Description

Use the ViewContentURLClassic function to navigate to the classic content specified by the URL
parameter. Use the ViewContentURLClassic function as an alternative to the Transfer function or the
ViewContentURL function. The result of this function depends on the source from which it was invoked:

• When invoked from within a fluid activity guide or master/detail component with AJAX transfers
enabled, the classic content replaces the target content area within the fluid activity guide or master/
detail wrapper.

• When invoked from within a fluid activity guide or master/detail component with AJAX transfers
disabled:

• If the source component is a classic component, the classic content replaces the target content area
within the fluid activity guide or master/detail wrapper. This is the same as when AJAX transfers
are enabled.

• If the source component is a fluid component, the classic content completely replaces the current
window. This is similar to how the ViewURLTop function operates.

• When invoked from outside a fluid activity guide or master/detail component the classic content
completely replaces the current window. (This is similar to how the ViewURLTop function operates.)

This is a deferred execution command: the browser is launched after any executing PeopleCode has run to
completion.

866  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

URL Specify the location to navigate to. You can specify the URL
either as a string value or as a URL saved in the URL table
using the following format: URL.URL_ID

new_window Note: This parameter is ignored and has no effect.

Returns

None.

Example

Local string &strURL = GenerateComponentContentURL(%Portal, %Node, MenuName.PROCESS⇒

MONITOR, "GBL", Component.PROCESSMONITOR, Page.PMN_PRCSLIST, "U");

ViewContentURLClassic(&strURL);

Related Links
Transfer
ViewContentURL
ViewContentURLFluid
ViewURLTop
"AJAX Transfers" (Fluid User Interface Developer’s Guide)
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

ViewContentURLFluid

Syntax

ViewContentURLFluid(URL [, new_window])

Description

Use the ViewContentURLFluid function to navigate to the fluid content specified by the URL
parameter. Use the ViewContentURLFluid function as an alternative to the Transfer function or the
ViewContentURL function. The result of this function depends on the source from which it was invoked:

• When invoked from within a fluid activity guide or master/detail component with AJAX transfers
enabled, the fluid content replaces the target content area within the fluid activity guide or master/
detail wrapper.

• When invoked from within a fluid activity guide or master/detail component with AJAX transfers
disabled, the fluid content completely replaces the entire browser window. This is similar to how the
ViewURLTop function operates.

Copyright © 1988, 2022, Oracle and/or its affiliates. 867



PeopleCode Built-in Functions and Language Constructs Chapter 1

• When invoked from outside a fluid activity guide or master/detail component, the fluid content
completely replaces the entire browser window. This is similar to how the ViewURLTop function
operates.

This is a deferred execution command: the browser is launched after any executing PeopleCode has run to
completion.

Parameters

Parameter Description

URL Specify the location to navigate to. You can specify the URL
either as a string value or as a URL saved in the URL table
using the following format: URL.URL_ID

new_window Note: This parameter is ignored and has no effect.

Returns

None.

Example

Local string &sURL = GenerateComponentContentURL(%Portal, %Node, MenuName.HRSC_HIDD⇒

EN_FL, "GBL", Component.HR_PSEL_FLU, Page.HR_PSEL_FLU, %Action_UpdateDisplay);

ViewContentURLFluid(&sURL);

Related Links
Transfer
ViewContentURL
ViewContentURLClassic
ViewURLTop
"AJAX Transfers" (Fluid User Interface Developer’s Guide)
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

ViewContentURLModeless

Syntax

ViewContentURLModeless(URL, [modal_options])

Description

Use the ViewContentURLModeless function to open a modeless modal window displaying the
PeopleSoft component content (either classic or fluid) specified by the URL parameter. The user must

868  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

dismiss the modeless window before continuing work in the page from which the modeless window was
called.

Important! Use this function within fluid applications only.

Modeless Windows

In addition to modal secondary windows, you can create modeless secondary windows. A modeless
window is different from a modal window launched by any of the DoModal* functions in that its state
is separate from that of the parent, launching component. When a modeless window is launched from a
classic component using the TransferModeless function, the modeless window does not mask the parent
window, which allows the user to update the modeless and parent window from the same browser session
at the same time.

Note: While the title bar of a modeless window includes an X (or cancel) button, it cannot include any
custom buttons.

Important! Only one active child modeless window can be open at one time. Therefore, after opening
a modeless child window from the parent, you cannot open a second modeless child window from that
modeless window. However, you can open a modal window from that modeless window.

Parameters

Parameter Description

URL_str  | URL.URL_ID Specify the location to navigate to. You can specify the URL
either as a string value or as a URL saved in the URL table
using the following format: URL.URL_ID

modal_options Specifies custom modal options as a String value. See "Modal
Options" (Fluid User Interface Developer’s Guide) for more
information.

Returns

None.

Example
Local string &sUrl;
Local string &sMenuTitle;
Local string &sOptions;

&sUrl = GenerateComponentContentURL(%Portal, %Node, MenuName.ROLE_CUSTOMER, %Market⇒

, Component.BI_CONTACT_INFO_SS, Page.BI_CR_CARD_LIST_SS, "U");
&sMenuTitle = EscapeHTML(MsgGetText(11124, 524, "Message Not Found: New Window"));
&sOptions = "sTitle@" | &sMenuTitle | ";width@640;height@400;";
ViewContentURLModeless(&sUrl, &sOptions);

Copyright © 1988, 2022, Oracle and/or its affiliates. 869



PeopleCode Built-in Functions and Language Constructs Chapter 1

Related Links
EndModal
TransferModeless
ViewURLModeless
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

ViewURL

Syntax

ViewURL(URL [, new_window])

Description

Use the ViewURL function to navigate to the location specified by the URL parameter.

This is a deferred execution command: the browser is launched after any executing PeopleCode has run
to completion. You can also specify whether the new page launches a new browser, or replaces the current
page in the browser.

Note: This function does not issue any kind of warning to the user about losing data. Your application
should verify that all data is saved before launching a new page.

The content specified by the URL is automatically wrapped by the portal template. If you do not want to
wrap the content in the portal template, use the ViewContentURL function.

Important! While the ViewURL function can be used to launch a fluid component from a classic
component, if the classic component will be included in a fluid activity guide or master/detail component,
do not use ViewURL or RedirectURL. Use the ViewURLTop function instead.

Parameters

Parameter Description

URL Specify the location to navigate to. You can specify the URL
either as a string value or as a URL saved in the URL table
using the following format: URL.URL_ID

new_window Specify whether the new page is opened in the current
browser, or launched in a new browser window. This
parameter takes a Boolean value: True to launch a new
browser, False to replace the existing page. The default value
is False.

Returns

None.

870  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Example
If &MyPage Then
   ViewURL(URL.MYPAGE);
Else
   ViewContentURL("http://www.example.com");
End-If;

Related Links
GetURL
"RedirectURL" (PeopleCode API Reference)
Transfer
ViewContentURL
ViewURLTop
"URL Maintenance" (System and Server Administration)
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

ViewURLModeless

Syntax

ViewURLModeless(URL, [modal_options])

Description

Use the ViewURLModeless function to open a modeless modal window displaying the non-component
content (for example, an iScript or external content) specified by the URL parameter. The user must
dismiss the modeless window before continuing work in the page from which the modeless window was
called.

To be displayed within the iframe of the modeless window, the external content and the PeopleSoft
application must either reside within the same domain or they must both set the document.domain
property to the same value. For more information on how the domain and same-origin is determined, see
Same-origin policy.

Important! Use this function within fluid applications only.

Modeless Windows

In addition to modal secondary windows, you can create modeless secondary windows. A modeless
window is different from a modal window launched by any of the DoModal* functions in that its state
is separate from that of the parent, launching component. When a modeless window is launched from a
classic component using the TransferModeless function, the modeless window does not mask the parent
window, which allows the user to update the modeless and parent window from the same browser session
at the same time.

Note: While the title bar of a modeless window includes an X (or cancel) button, it cannot include any
custom buttons.

Copyright © 1988, 2022, Oracle and/or its affiliates. 871

https://en.wikipedia.org/wiki/Same-origin_policy


PeopleCode Built-in Functions and Language Constructs Chapter 1

Important! Only one active child modeless window can be open at one time. Therefore, after opening
a modeless child window from the parent, you cannot open a second modeless child window from that
modeless window. However, you can open a modal window from that modeless window.

Parameters

Parameter Description

URL Specify the location to navigate to. You can specify the URL
either as a string value or as a URL saved in the URL table
using the following format: URL.URL_ID

modal_options Specifies custom modal options as a String value. See "Modal
Options" (Fluid User Interface Developer’s Guide) for more
information.

Returns

None.

Examples

The following example displays iScript content in a modal window:

Local string &sUrl;
Local string &sMenuTitle;
Local string &sOptions;

&sUrl = GenerateScriptContentURL(%Portal, %Node, Record.WEBLIB_PTNUI, Field.FUNCLIB⇒

, "FieldFormula", "IScript_GroupletDiag");
&sMenuTitle = EscapeHTML(MsgGetText(11124, 525, "Message Not Found: iScript"));
&sOptions = "sTitle@" | &sMenuTitle | ";width@600;height@400;");
ViewURLModeless(&sUrl, &sOptions);

The following example displays external content in a modal window:

Local string &sMenuTitle;
Local string &sOptions;

&sMenuTitle = EscapeHTML(MsgGetText(11124, 526, "Message Not Found: Oracle.com"));
&sOptions = "sTitle@" | &sMenuTitle | ";width@600;height@400;");
ViewURLModeless("http://www.oracle.com", &sOptions);

Related Links
EndModal
TransferModeless
ViewContentURLModeless
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

872  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

ViewURLTop

Syntax

ViewURLTop(URL [, new_window])

Description

Use the ViewURLTop function to exit the current context and navigate to the location specified by the
URL parameter by always replacing the current window. Use the ViewURLTop function as an alternative
to the either the ViewURL or the Transfer function to ensure that when the source component is being
displayed within a fluid wrapper (that is, the source classic component is being displayed within a fluid
activity guide, a master/detail component, an interactive grouplet, or a modeless window) that the entire
current window is replaced with the new content.

Unlike ViewURL, ViewURLTop ignores the new_window parameter. ViewURLTop always exits the
current context and completely replaces the current window.

This is a deferred execution command: the new content is displayed after any executing PeopleCode has
run to completion.

Note: This function does not issue any kind of warning to the user about losing data. Your application
should verify that all data is saved before launching a new page.

Parameters

Parameter Description

URL Specify the location to navigate to. You can specify the URL
either as a string value or as a URL saved in the URL table
using the following format: URL.URL_ID

new_window Note: This parameter is ignored and has no effect.

Returns

None.

Example

&contentURL = GenerateComponentContentURL(%Portal, %Node, MenuName.QE_FLUID_CR, %Ma⇒

rket, Component.QE_CBACK_C1, Page.QE_CBACK_C1, "");
ViewURLTop(&contentURL);

Related Links
Transfer
TransferTop

Copyright © 1988, 2022, Oracle and/or its affiliates. 873



PeopleCode Built-in Functions and Language Constructs Chapter 1

ViewURL
"Transfer and Modal Functions" (Fluid User Interface Developer’s Guide)

PeopleCode Built-in Functions and Language Constructs: W-Z

The PeopleCode built-In functions and language constructs beginning with the letters W, X, Y, and Z are
listed in alphabetical order within this topic.

Related Links
Typographical Conventions

Warning

Syntax

Warning str

Description

You typically use the Warning function in FieldEdit or SaveEdit PeopleCode to display a message alerting
the end user about a potentially incorrect data entry or change. It differs from the Error function in that
it does not prevent the end user from taking an action, and it does not stop processing in the PeopleCode
program where it occurs.

Warning is also used in RowDelete and RowSelect PeopleCode, where its behavior is specialized. See the
following sections Warnings in RowDelete and Warnings in RowSelect.

The text of the warning message (the str parameter), should always be stored in the Message Catalog and
retrieved using the MsgGet or MsgGetText function. This makes it easier to translate the text, and it also
enables you to include more detailed Explain text about the warning.

Note: If you pass a string to the Warning function instead of using a Message Catalog function, the
explanation text from the last call to the Message Catalog may be appended to the message. This can
cause unexpected results.

See WinMessage.

Warnings in FieldEdit and SaveEdit

The primary use of Warning is in FieldEdit and SaveEdit PeopleCode:

• In FieldEdit, Warning displays a message and highlights the relevant field.

• In SaveEdit, Warning displays a message, but does not highlight any field. You can move the cursor to
a specific field using the SetCursorPos function.

See SetCursorPos.

874  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Warnings in RowDelete

When the end user attempts to delete a row of data, the system first prompts for confirmation. If the end
user confirms, the RowDelete event fires. A Warning in the RowDelete event displays a warning message
with OK and Cancel buttons. If the end user clicks OK, the row is deleted. If the end user clicks Cancel,
the row is not deleted.

Warnings in RowSelect

The behavior of Warning in RowSelect is totally anomalous and maintained for backward compatibility
only. Use it to filter rows being added to a page scroll after the rows have been selected and brought to
the component buffer. Warning causes the Component Processor to skip the current row (so that it is not
added to the page scroll), then continue processing. No message is displayed.

Note: Do not use Warning in this fashion. Use the DiscardRow function for replacement instead.

See DiscardRow.

Warnings in Other Events

Do not use the Warning function in any of the remaining events, which include:

• FieldDefault

• FieldFormula

• RowInit

• FieldChange

• RowInsert

• SavePreChange

• SavePostChange

Parameters

Parameter Description

str A string containing the text of the warning message. This
string should always be stored in the Message Catalog and
retrieved using the MsgGet or MsgGetText function. This
makes translation easier and also enables you to provide
detailed Explain text about the warning.

Returns

None.

Copyright © 1988, 2022, Oracle and/or its affiliates. 875



PeopleCode Built-in Functions and Language Constructs Chapter 1

Example

The following example shows a warning that alerts an end user to a possible error, but allows the end user
to accept the change:

If All(RETURN_DT, BEGIN_DT) And
      8 * (RETURN_DT - BEGIN_DT) < (DURATION_DAYS * 8 + DURATION_HOURS) Then
   Warning MsgGet(1000, 1, "Duration of absence exceeds standard hours for number o⇒

f days absent.");
End-If;

Related Links
Error
MsgGet
MsgGetText
WinMessage

Weekday

Syntax

Weekday(dt)

Description

Use the Weekday function to calculate the day of the week based on a date value.

Parameters

Parameter Description

dt A Date value. Weekday determines the day of the week that dt
falls on.

Returns

Returns a Number value representing the day of the week. 1 is Sunday, 7 is Saturday.

Example

If &Date_HIRED equals October 30, 1996, a Monday, then the following statement sets &DAY_HIRED
to 2:

&DAY_HIRED = Weekday(&Date_HIRED);

Related Links
Date
Date3

876  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

DateValue
Day
Days360
Days365
Month
Year

When

Description

Use When clauses in an Evaluate construct. See Evaluate for more information.

When-Other

Description

Use a When–Other clause in an Evaluate construct. See Evaluate for more information.

While

Syntax

While logical_expression
   statement_list
End-While

Description

The While loop causes the statements of the statement_list to be repeated until logical_expression is false.
Statements of any kind are allowed in the loop, including other loops. A Break statement inside the loop
causes execution to continue with whatever follows the end of the loop. If the Break is in a nested loop,
the Break does not apply to the outside loop.

Example

The following example counts from 0 to 10:

&COUNTER = 1;
While &COUNTER <= 10
   WinMessage(MsgGet(21000, 1, "Count is %1", &COUNTER));
   &COUNTER = &COUNTER + 1;
End-While;

Related Links
Repeat

Copyright © 1988, 2022, Oracle and/or its affiliates. 877



PeopleCode Built-in Functions and Language Constructs Chapter 1

WinEscape

Syntax

WinEscape()

Description

Note: This function has been deprecated and is no longer supported.

WinExec

Syntax

WinExec(command_line, window_option [, synch_exec])

Description

Note: This function has been deprecated and is no longer supported.

WinMessage

Syntax

WinMessage(message [, style] [, title])

Description

Note: The WinMessage function is supported for compatibility with previous releases of PeopleTools.
New applications should use MessageBox instead.

See MessageBox.

Use the WinMessage function to display a message in a message box.

Use the WinMessage for simple informational display, where the end user reads the message, then clicks
an OK button to dismiss the message box. WinMessage can also be used for branching based on end user
choice, in which case the message box contains two or more buttons (such as OK and Cancel or Yes, No,
and Cancel). The value returned by the function tells you which button the end user clicked, and your
code can branch based on that value.

If WinMessage displays more than one button, it causes processing to stop while it waits for user
response. This makes it a "user think-time" function, restricting its use in certain PeopleCode events.

The contents of the message displayed by WinMessage can be passed to the function as a string, but
unless you are using the function for testing purposes you should always retrieve the message from
the Message Catalog using the MsgGet or MsgGetText function. This has the advantage of making the
messages much easier to localize and maintain.

878  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Note that if you pass a string to the WinMessage function (or a Warning or Error function) instead of
using a Message Catalog function, the explanation text from the last call to the Message Catalog may be
appended to the message. This can cause unexpected results.

The Message Catalog functions MsgGet, MsgGetText, and MessageBox retrieve and store two text strings
in memory: the message text and the explanation text. The MsgGetExplainText function retrieves and
stores only the explanation text. When these strings are displayed by a WinMessage, MessageBox, Error
or Warning dialog, the buffers are reinitialized.

If a Message Catalog function is called without displaying the text, for instance to populate a variable or
record field, the message text and the explanation text remain in memory.

If a subsequent call passes a string to a WinMessage, Warning, or Error function before the buffers are
reinitialized, the explanation text remains in memory and is appended to the message.

The following example shows one way this could occur.

The Message Catalog might contain an entry such as this:

MsgGetText is used to assign the Message Catalog entry to a variable for further processing.

&PartDesc = MsgGetText(30000, 5, "Amana Radar Range");
/** Process order **/
WinMessage("Your Kitchen Upgrade Order has been processed");

Copyright © 1988, 2022, Oracle and/or its affiliates. 879



PeopleCode Built-in Functions and Language Constructs Chapter 1

The WinMessage dialog displays the explanation text appended to the intended message:

This example shows a simple workaround to clear the buffers using MsgGet.

&PartDesc = MsgGetText(30000, 5, "Amana Radar Range");
/** Process order **/
&Dummy = MsgGet(0,0, " ");
WinMessage("Your Kitchen Upgrade Order has been processed");

Restrictions on Use in PeopleCode Events

The style parameter is optional in WinMessage. If style is omitted WinMessage displays OK and Cancel
buttons, which causes the function to behave as a think-time function. To avoid unnecessary restrictions,
you should always pass an appropriate value in the WinMessage style parameter.

If the style parameter specifies a single button (that is, the OK button), the function can be called in any
PeopleCode event.

If the style parameter specifies more than one button, or if the style parameter is omitted, WinMessage
returns a value based on user response and interrupts processing until the user has clicked one of the
buttons. This makes it a "user think-time" function, subject to the same restrictions as other think-time
functions which means that it cannot be used in any of the following PeopleCode events:

• SavePreChange.

• Workflow.

• RowSelect.

• SavePostChange.

• Any PeopleCode event that fires as a result of a ScrollSelect (or one of its relatives) function calls, or
a Select (or one of its relatives) Rowset class method.

Important! On the initial loading of a component (initial page Activate event), it is recommended that
you allow the component to render correctly before you call any modality that requires user interaction
(think-time functions).
If you call any modality that requires user interaction during the initial page Activate event, except if
its a message box with only an OK button, the user interaction suspends the processing of the page
load leading to undesired rendering. For example, the message box (with more than one button) loses
its styling, and the rendering of the page and component is corrupted. If you use DoModalPopup or
DoModalComponentPopup, you should note that it will render as a full page.

See "Think-Time Functions" (PeopleCode Developer’s Guide).

880  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Restrictions on Use With a Component Interface

This function is ignored (has no effect) when used by a PeopleCode program that’s been called by a
Component Interface.

Message Box Icons

In the PeopleSoft Pure Internet Architecture, you can’t change the icon of a message box. You can change
the number and type of buttons, as well as the default button, but the message always displays with the
warning icon (a triangle with an exclamation mark in it.)

Parameters

Parameter Description

Message Text displayed in message box. Normally you want to use the
MsgGet or MsgGetText function to retrieve the message from
the Message Catalog.

Title Title of message box.

Style Either a numerical value or a constant specifying the contents
and behavior of the dialog box. This parameter is calculated by
cumulatively adding either a value or a constant from each of
the following categories:

Category Value Constant Meaning

Buttons 0 %MsgStyle_OK The message box contains one
push button: OK.

1 %MsgStyle_OKCancel The message box contains two
push buttons: OK and Cancel.

2 %MsgStyle_
AbortRetryIgnore

The message box contains
three push buttons: Abort,
 Retry, and Ignore.

3 %MsgStyle_YesNoCancel The message box contains
three push buttons: Yes, No,
 and Cancel.

4 %MsgStyle_YesNo The message box contains two
push buttons: Yes and No.

5 %MsgStyle_RetryCancel The message box contains
two push buttons: Retry and
Cancel.

Copyright © 1988, 2022, Oracle and/or its affiliates. 881



PeopleCode Built-in Functions and Language Constructs Chapter 1

Returns

If the style parameter is provided, WinMessage optionally returns a Number value. If the style parameter
is omitted, WinMessage optionally returns a Boolean value: True if the OK button was clicked, otherwise
it returns False.

The return value is zero if there is not enough memory to create the message box.

If the style parameter is provided, WinMessage returns one of the following Number values:

Value Constant Meaning

-1 %MsgResult_Warning Warning was generated.

1 %MsgResult_OK OK button was selected.

2 %MsgResult_Cancel Cancel button was selected.

3 %MsgResult_Abort Abort button was selected.

4 %MsgResult_Retry Retry button was selected.

5 %MsgResult_Ignore Ignore button was selected.

6 %MsgResult_Yes Yes button was selected.

7 %MsgResult_No No button was selected.

Example

The following example displays a message dialog box with Yes and No buttons. The message is taken
from the Message Catalog. The message displayed looks like this:

When the end user clicks the Yes or No button, a result is passed back that the program uses to control
branching.

/* Displays Yes/No buttons in message box.  */
&RESULT = WinMessage(MsgGetText(30000, 1, "Message not found."), 4, "Test Applicati⇒

on");
if &RESULT = %MsgResult_Yes then
   /* Yes button was pressed -- do Yes button stuff */
else
   /* No button was pressed -- do No button stuff */
end-if;

882  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Related Links
Encrypt
MessageBox
MsgGet
MsgGetText
MsgGetExplainText

WriteToLog

Syntax

WriteToLog(AppFenceSetting, String)

Description

Use the WriteToLog function to write String to either the application server or the TraceSQL log file.

The WriteToLog function writes String to the TraceSQL log file if AppFenceSetting is less than or equal
to the current application log fence (AppLogFence) setting in the application server configuration file
(PSAPPSRV.CFG.)

Note: This is distinct from the PeopleTools LogFence capability which applies to PeopleTools level
logging.

The WriteToLog function writes String to the TraceSQL log file in PSAPPSRV.CFG if any of the
following trace options is turned on.

• TracePPR

• TraceSQL

• TracePC

• TracePIA

If any change is made to the trace options in PSAPPSRV.CFG, you must restart both the application
server and web server so that the change takes effect.

The debugging options for a Web Profile also affects the WriteToLog function. If any of the following
page fields are selected (checked), the WriteToLog function writes String to the TraceSQL log file.

• Show Layout

• Show Overlapping Fields

• Show Stylesheet Inline HTML

• Show JavaScript Inline HTML

• Generate HTML for Testing

• Create File from PIA HTML Page

Copyright © 1988, 2022, Oracle and/or its affiliates. 883



PeopleCode Built-in Functions and Language Constructs Chapter 1

If the above conditions are not true, the WriteToLog function writes String to the application server log
file.

Related Links
"Setting Up the PeopleCode Debugger" (System and Server Administration)

Parameters

Parameter Description

AppFenceSetting Specify the level at which logging should occur, if
AppFenceSetting is less than or equal to the current application
log fence. You can use either a number or a constant value.
 The values are:

Value Description

%ApplicationLogFence_Error Allow all levels of errors to be written to the log. This is the
lowest setting.

%ApplicationLogFence_ Warning Allowing only warnings or higher to be written to the log.

%ApplicationLogFence_ Level1 Allow only this level of errors or higher to be written to the
log.

%ApplicationLogFence_ Level2 Allow only this level of errors or higher to be written to the
log.

%ApplicationLogFence_ Level3 Allow only this level of errors to be written to the log.

Parameter Description

String Specify the message text to be written to the log file.

Returns

None.

Example
WriteToLog(%ApplicationLogFence_Level2, "MYAPP" | &Somestring);

Related Links
%ApplicationLogFence
"Using Application Logging" (PeopleCode Developer’s Guide)

884  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Year

Syntax

Year(dt)

Description

Use the Year function to derive the year component of a Date value.

Parameters

Parameter Description

dt A Date value from which to derive the year component.

Returns

Returns a Number value between 1900 and 2078 equal to the year component in dt.

Example

The example sets &GRAD_YEAR to 1976:

&GRAD_DATE = DateValue("10/04/1976");
&GRAD_YEAR = Year(&GRAD_DATE);

Related Links
Date
Date3
DateValue
Day
Days360
Days365
Month
Weekday

Directive PeopleCode Functions and Constructs

PeopleCode pre-compile directives enable developers to select which portions of the code will be
compiled based on the PeopleTools release. Developers can write separate blocks of code that are
pertinent to different PeopleTools releases and encapsulate these portions in different if-then-else-style
blocks. Then, the directive PeopleCode can be compiled in one of two ways:

• In Application Designer. See "Compiling All PeopleCode Programs at Once" (PeopleCode
Developer’s Guide).

Copyright © 1988, 2022, Oracle and/or its affiliates. 885



PeopleCode Built-in Functions and Language Constructs Chapter 1

• On the command line. See "Compiling and Saving Directive PeopleCode" (Lifecycle Management
Guide).

Related Links
"Command Line Parameters" (Lifecycle Management Guide)

#Else

Description

Use the #Else keyword to create an else clause in a #If block. See #If for more information.

#End-If

Description

Use the #End-If keyword terminate a #If block. See #If for more information.

#If

Syntax

#If directive_expression #Then
   statement_list
[#Else
   statement_list]
#End-If

Description

Use the #If construct to compile PeopleCode statements conditionally, depending on the evaluation of the
directive conditional expression. Similar to regular If-Then-Else structures, the #Then and #Else clauses
of an #If structure consist of arbitrary lists of statements. The #Else clause is optional and may be omitted.
If the directive condition evaluates to True, all statements in the #Then clause are compiled; otherwise, all
statements in the #Else clause are compiled.

Note: During compilation, the entire directive block that evaluates to False is treated as a PeopleCode
comment. This PeopleCode comment has a special limit of 32,766 characters (unlike regular PeopleCode
comments which are limited to 16,383 characters). If your PeopleCode program has a block that evaluates
to False that is greater than 32,766 characters, you will be unable to save your program and will receive
an error message.

886  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 1 PeopleCode Built-in Functions and Language Constructs

Parameters

Parameter Description

directive_expression Specifies a directive function (for example, #ToolsRel) in a
standard comparison that evaluates to a Boolean value.

To combine multiple directive expressions, use && (AND) or
|| (OR) as the Boolean operators.

Note: && and || cannot be used in parentheses.

Returns

None.

Example

Note: Unlike regular If structures, a semicolon separator is not required after an #End-If.

In the following example, the #If block is compiled for an version of PeopleTools greater than or equal to
8.54.00. The #Else block is compiled for any other versions of PeopleTools.

#If #ToolsRel >= "8.54" #Then
   ...
   MessageBox(0, "", 0, 0, "PeopleTools version 8.54 and above");
#Else
...
Messagebox(0, "" , 0 , 0, "PeopleTools version less than 8.54");
#End-If

In the following example, the #If block is compiled for specific patch levels: 8.54.01 and 8.54.02. The
#Else block is compiled for any other versions of PeopleTools.

#If #ToolsRel >= "8.54.01" && #ToolsRel < "8.54.03" #Then
   ...
#Else
...
#End-If

Related Links
"Comparison Operators" (PeopleCode Developer’s Guide)
#ToolsRel

#Then

Description

Use the #Then keyword in a #If block. See #If for more information.

Copyright © 1988, 2022, Oracle and/or its affiliates. 887



PeopleCode Built-in Functions and Language Constructs Chapter 1

#ToolsRel

Syntax

#ToolsRel

Description

Use the #ToolsRel function to return a string value representing the current PeopleTools release in the
following format:

PT_major_rel.PT_minor_rel.patch_level

Use the #ToolsRel function in a directive expression to compare the return value to a literal string. Similar
to the value returned by the #ToolsRel function, this literal string must be specified in the following
format:

PT_major_rel.PT_minor_rel[.patch_level]

When the literal string contains the optional patch level, the comparison is performed to the patch
level in the directive expression. However, if the literal string does not specify the optional patch level,
the comparison is performed to the release level in the directive expression. Therefore, because the
comparison is performed to the release level only, the following directive expression evaluates to True
when the current PeopleTools release is 8.54.00, 8.54.01, 8.54.02, and so on:

#ToolsRel = "8.54"

Considerations for Directive Expressions

Directive expressions are logical expressions evaluated before compile time. They are always provided
between the #If and #Then directive keywords. Directive expressions use directive functions and regular
PeopleCode comparison operators for evaluating the directive expressions.

Important! Directive functions can be used in conjunction with directives in directive expressions only.
Using a directive function anywhere else will result in a compile time error.

Parameters

None.

Returns

A String value.

Related Links
"Comparison Operators" (PeopleCode Developer’s Guide)
#If

888  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2

Meta-SQL Elements

Understanding Meta-SQL

This section discusses how to use Meta-SQL and its three types of elements.

Related Links
SQLExec
ScrollSelect
"Understanding Record Class" (PeopleCode API Reference)
"Understanding Row Class" (PeopleCode API Reference)
"Understanding SQL Class" (PeopleCode API Reference)

Meta-SQL Use
Meta-SQL expands to platform-specific SQL substrings, causes another function to be called, or
substitutes a value. Meta-SQL constructs are used in functions that pass SQL strings, such as the
following:

• SQLExec.

• Scroll buffer functions (ScrollSelect and its relatives).

• Application Designer dynamic views and SQL views.

• Some Rowset class methods (Select, SelectNew, Fill, and so on.).

• The SQL class.

• Application Engine programs.

• Some Record class methods (Insert, Update, and so on.).

• COBOL functions.

Meta-SQL Element Types
There are three types of meta-SQL elements:

• Constructs

Constructs are a direct substitution of a value, and help to build or modify a SQL statement.

Examples include %Bind, %InsertSelect, and %List.

• Functions

Copyright © 1988, 2022, Oracle and/or its affiliates. 889



Meta-SQL Elements Chapter 2

Functions perform actions or cause another function to be called.

Examples include %ClearCursor, %Execute, and %ExecuteEdits.

• Meta-SQL variables

Meta-SQL variables enable substitution of text within SQL statements.

Examples include %AsOfDate, %Comma, and %JobInstance.

Parameter Markers
Parameter markers or bind variables are most commonly used in predicates, however some database
platforms allow them in the SELECT list. However, since this is not supported across all platforms, you
should not code your SQL to use bind variables in a SELECT list.

In addition, do not have bind variables as the operands of the same operator. This is not supported on all
platforms. DB2/400 and DB2/OS390 cannot handle this type of operation.

Date Considerations

This section provides an overview of different date considerations followed when using meta-SQL.

Basic Date Meta-SQL Guidelines
You can avoid confusion when using meta-SQL such as %Datein and %Dateout if you remember to use
"in" functions in the Where subclause of a SQL query and to use "out" functions in the Select (main)
clause of the query. For example:

select emplid, %dateout(effdt) from ps_car_alloc  a where car_id = '" | &REGISTRATI⇒

ON_NO | "' and plan_type = '" | &PLAN_TYPE | "' and a.effdt = (select max (b.effdt)⇒

 from ps_car_alloc b where a.emplid=b.emplid and b.effdt <= %currentdatein) and sta⇒

rt_dt <= %currentdatein and (end_dt is null or end_dt >= %currentdatein)";

Date, DateTime, and Time Wrappers with Application Engine Programs
Use date or time wrappers (%Datein, %TimeOut, and so on) when selecting date or time columns into
memory. Different database platforms use different internal formats for these data types. Those different
formats range from 1900-01-01 to 01-JAN-1900. DateTime (timestamp) formats are even more complex.

In PeopleCode (SQLExecs and the like), use both an "out" wrapper when selecting a DateTime value into
memory, as well as an "in" wrapper when referencing the value as a bind variable.

In an Application Engine program, when you populate a DateTime state field in a %Select, you still must
use an "out" wrapper to get the value into the standard format. But when you reference this state field in a
%Bind, Application Engine automatically provides the "in" wrapper around the substituted literal or bind
marker (the latter if reuse is in effect).

890  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Actually, if you use the code %Bind(date) in the select list of another %Select statement, to load the
value into another date field, Application Engine doesn't provide a wrapper (since you are selecting a
value that is already in the standard format, you do not need to use a wrapper).

Date, DateTime, and Time Out Wrappers for SQL Views and Dynamic Views
Dynamic views containing Date, Time, or DateTime fields must be wrapped with the appropriate meta-
SQL. PeopleTools uses the SQL directly from the view definition (view text) and doesn't generate
anything, so no meta-SQL wrapping is done.

SQL views should not contain meta-SQL that wraps Date, Time, or DateTime fields.

{DateTimein-prefix} in SQR
In SQR, if you are using {DateTimein-prefix}, and so on, you need to do the following:

• For string or let statements when using dynamic SQL, you need to use the following:

 {DYN-Date***in/out-prefix/suffix}

• For SQL statements, you need to use the regular SQL, as follows:

{Date*** in/out-prefix/suffix}

Meta-SQL Placement Considerations

Not all meta-SQL can be used by all programs. Some meta-SQL can be used only in Application Engine
programs. Other meta-SQL can only be used as part of a SQL statement in a SQL view or dynamic view.
The following table lists available meta-SQL elements and where each element can be used.

If a meta-SQL construct, function, or meta-variable is supported in PeopleCode, it is supported in all
types of PeopleCode programs—that is, in Application Engine PeopleCode programs (PeopleCode
actions), component interface PeopleCode programs, and so on. Meta-SQL elements that are available for
Application Engine only are described in Application Engine documentation.

Note: Even if a meta-SQL element is used in PeopleCode, you cannot use meta-SQL like a built-in
function. You can use meta-SQL in the SQLExec function, the Select method, the Fill method, and so on.

Note: Meta-SQL is not available in SQR.

The following table indicates which meta-SQL elements can be used in which locations.

Meta-SQL Element Name All
PeopleCode
Programs

Application
Engine SQL
Actions

COBOL Dynamic
Views and
SQL Views

PeopleSoft
Query

%Abs X X X X

%AEProgram X

Copyright © 1988, 2022, Oracle and/or its affiliates. 891



Meta-SQL Elements Chapter 2

Meta-SQL Element Name All
PeopleCode
Programs

Application
Engine SQL
Actions

COBOL Dynamic
Views and
SQL Views

PeopleSoft
Query

%AESection X

%AEStep X

%AsOfDate X

%AsOfDateOvr X

%BINARYSORT X X X X

%Bind X

%Cast  X X X  X X

%ClearCursor X

%COALESCE

Note: %COALESCE has been
deprecated but remains for backward
compatibility only. Use your
database's native COALESCE
function instead.

* * *

%Comma X

%Concat X X X X

%CurrentDateIn X X X X X

%CurrentDateOut X X X X X

%CurrentDateTimeIn X X X X X

%CurrentDateTimeOut X X X X X

%CurrentTimeIn X X X X X

%CurrentTimeOut X X X X X

892  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Meta-SQL Element Name All
PeopleCode
Programs

Application
Engine SQL
Actions

COBOL Dynamic
Views and
SQL Views

PeopleSoft
Query

%DateAdd X X X X X

%DatabaseRelease X X X X X

%DateDiff X X X X X

%DateIn X X X X X

%DateNull X X X X

%DateOut X X X X X

%DatePart X X X X

%DateTimeDiff X X X X

%DateTimeDiffExtended X X X X X

%DateTimeIn X X X X X

%DateTimeNull X X X X

%DateTimeOut X X X X X

%DecDiv X X X X X

%DecMult X X X X X

%Delete X

%DTTM X X X X

%EffDtCheck X X X

%Execute X

%ExecuteEdits X

%FirstRows X X X

Copyright © 1988, 2022, Oracle and/or its affiliates. 893



Meta-SQL Elements Chapter 2

Meta-SQL Element Name All
PeopleCode
Programs

Application
Engine SQL
Actions

COBOL Dynamic
Views and
SQL Views

PeopleSoft
Query

%GetProgText X

%Insert X

%InsertSelect X X X

%InsertSelectWithLongs X X X

%InsertValues X X

%JobInstance X

%Join X X X

%KeyEqual X X

%KeyEqualNoEffDt X X

%LeftParen X

%Like X X X X

%LikeExact X X X X

%List X

%ListBind X

%ListEqual X

%Mod X X X X

%Next and %Previous X

%NoUppercase X X X

%NumToChar X X X X

%OldKeyEqual X X

894  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Meta-SQL Element Name All
PeopleCode
Programs

Application
Engine SQL
Actions

COBOL Dynamic
Views and
SQL Views

PeopleSoft
Query

%OPRCLAUSE X

%ProcessInstance X

%ResolveMetaSQL X

%ReturnCode X

%RightParen X

%Round X X X X X

%RoundCurrency X

%RunControl X

%Select X

%SelectAll X

%SelectByKey X

%SelectByKeyEffDt X

%SelectByRowNum X

%SelectDistinct X

%SelectDummyTable X X

%SelectInit X

%Space X

%SQL X X X

%SqlHint X X X

%SQLRows X

Copyright © 1988, 2022, Oracle and/or its affiliates. 895



Meta-SQL Elements Chapter 2

Meta-SQL Element Name All
PeopleCode
Programs

Application
Engine SQL
Actions

COBOL Dynamic
Views and
SQL Views

PeopleSoft
Query

%Substring X X X X X

%SUBREC X

%Table X X X

%Test X X

%TextIn X X X

%TimeAdd X X X

%TimeIn X X X X X

%TimeNull X X X

%TimeOut X X X X X

%TimePart X X X X

%TrimSubstr X X X X X

%Truncate X X X X X

%TruncateTable X X X X

%Update X

%UpdatePairs X X

%UpdateStats X X 

%Upper X X X X

%UuidGen X X

%UuidGenBase64 X X

896  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Related Links
"Understanding Application Engine Meta-SQL" (Application Engine)

Meta-SQL Reference

This section discusses meta-SQL elements in alphabetical order.

Note: The parameter recname refers to a record name, not a table name. If you specify a table name
(for example, PS_ST_OPTION_PARMS) you receive a SQL error. Use the record name (for example,
ST_OPTION_PARMS) instead. Also, do not use quotation marks around a record name.

%Abs

Syntax

%Abs(x)

Description

Use the %Abs meta-SQL construct to return a decimal value equal to the absolute value of a number x.

Note: This meta-SQL construct is not implemented for COBOL.

Example

SELECT INVENTORY_CODE FROM INVENTORY_TABLE WHERE %ABS(NEW_AMOUNT - OLD_AMOUNT) > SO⇒

ME_ALLOWED_VALUE

%BINARYSORT

Syntax

%BINARYSORT(Recname)

Description

Any in-memory sorting performed using COBOL language functions is performed as a binary sort in the
current character set used for COBOL processing, and may not necessarily match the sort order returned
by the database in response to an Order By clause. Should you require the database to return data sorted
using a binary sort of its encoding rather than the default linguistically-correct sort, you must use the
%BINARYSORT meta-SQL function around each column in the Where or Order By clause where binary
ordering is important.

However, for z/OS implementations, keep in mind that this binary sorting is only equivalent when the
COBOL program is run z/OS server. For example, the binary sort produced in COBOL differs from
the binary sort produced by the database, as the database is encoded in extended binary-coded decimal
interchange code (EBCDIC) and the client is in an ASCII-based encoding. Therefore, %BINARYSORT

Copyright © 1988, 2022, Oracle and/or its affiliates. 897



Meta-SQL Elements Chapter 2

should only be used in COBOL programs that are not run using the RemoteCall function, where the z/OS
platform is not supported as a RemoteCall server.

When running against non-z/OS systems, %BINARYSORT can be used in both RemoteCall and non-
RemoteCall programs.

Note: Using %BINARYSORT in Where and Order By clauses negates the use of any indexes,
as most databases can't use indexes for functional comparisons. (For example, WHERE
%BINARYSORT(column) > 'X'). Use this syntax only when sorting equivalence of SQL statement
results and COBOL memory order is required.

Parameters

Parameter Description

Recname Specify the record name to use with the sorting.

Example
SELECT RECNAME FROM PSRECDEFN  WHERE %BINARYSORT(RECNAME) < %BINARYSORT('xxx')

SELECT RECNAME FROM PSRECDEFN  ORDER BY %BINARYSORT(RECNAME)

Related Links
RemoteCall
"Understanding COBOL in a Unicode Environment" (Global Technology)

%Cast

Syntax

%Cast(source_expr, source_type, target_type[, precision[.scale]])

Description

Use the %Cast meta-SQL function to convert a PeopleSoft data type to a Character data type. A
database-generated error is returned if the function attempts to make an invalid conversion. %Cast
can be used wherever %DateOut, %TimeOut, %DateTimeOut, %CurrentDateOut, %CurrentTimeOut,
%CurrentDateTimeOut, and %NumToChar functions can be used.

Note: %NumToChar will preserve all trailing zeroes. Therefore, use the scale parameter of %Cast to
specify the number of trailing zeroes.

On some platforms the meta-SQL functions %DateOut, %TimeOut, %DateTimeOut, %CurrentDateOut,
%CurrentTimeOut and %CurrentDateTimeOut don’t return a Character value. On other platforms, these
functions return a Character string only in certain cases. %Cast returns a Character value on all supported
platforms.

898  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Use %Cast only in the Select portion of query. Do not use it in a Where clause or in Insert or Update
statements.

Parameters

Parameter Description

source_expr Specify the input expression in the form of a Number,
 Long Character, Date, Time, or DateTime column
name or as a %CurrentDateOut, %CurrentTimeOut, or
%CurrentDateTimeOut meta-SQL variable.

This parameter is not case sensitive.

source_type Specify the source data type. Valid data types are Number,
 Long, Date, Time, and DateTime.

This parameter is not case sensitive.

target_type Currently the only target type supported is Character.

precision.scale The precision.scale parameter is currently supported on DB2
for z/OS only and with a source type of Number. While this
parameter can be supplied on other platforms, it is ignored.

This parameter is optional.

The scale parameter is an optional part of this parameter.
 Therefore, the expression  precision.0 is equivalent to 
precision.

%COALESCE

Syntax

%COALESCE(expr1, expr2, ...)

Description

Use the %COALESCE function to return the first non-null argument provided to the function.

Note: This meta-SQL function is not implemented for COBOL.

Copyright © 1988, 2022, Oracle and/or its affiliates. 899



Meta-SQL Elements Chapter 2

Parameters

Parameter Description

expr1. . .exprn Specify the expressions to check.

Note: You cannot specify bind parameters using these
expressions.

Note: %COALESCE has been deprecated but remains for backward compatibility only. Use your
database's native COALESCE function instead.

Example

The following example uses the PRODUCT_INFO table to organize a clearance sale of products. It gives
a 10 percent discount to all products with a list price. If there is no list price, the sale price is the minimum
price. If there is no minimum price, the sale price is 10.

SELECT product_id, list_price, min_price, %COALESCE(0.9*list_price, min_price, 10) ⇒

"Sale"
from PRODUCT_INFO
where SUPPLIER_ID = 6009;

%Concat

Syntax

string1 %Concat string2

Description

At runtime, the %Concat meta-SQL variable is replaced by the string concatenation operator appropriate
for the relational database management system (RDBMS) being used. For example, on DB2, the %Concat
meta-SQL variable is replaced with CONCAT, while on SQL Server it's replaced with a +, and on Oracle
it’s replaced with ||.

This meta-SQL variable is supported with the same limitations as the native concatenation operator
for the RDBMS where the meta-SQL is being executed. For example, some platforms enable you to
concatenate a string with a numeric value; others flag this as an error. PeopleTools makes no attempt to
check or convert the data types of either of the operands.

Note: Concat is not available in COBOL, but the DYN-STMT-CONCAT field can be strung into dynamic
COBOL strings to resolve into a platform-specific concatenation operator.

Example

Example 1:

SELECT LAST_NAME %Concat ',' %Concat FIRST_NAME FROM PS_EMPLOYEE

900  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Example 2:

SELECT PORTAL_NAME
 , PORTAL_LABEL
 , %TrimSubstr(PORTAL_OBJNAME,1,30) %Concat ':' %Concat %TrimSubstr(PORTAL_NAME,1,3⇒

0)
  FROM PSPRSMDEFN
 WHERE PORTAL_PRNTOBJNAME = 'CO_NAVIGATION_COLLECTIONS'
   AND PORTAL_REFTYPE = 'F'

%CurrentDateIn

Description

The %CurrentDateIn meta-SQL variable expands to a platform-specific SQL substring representing the
current date in the Where clause of a SQL Select or Update statement, or when the current date is passed
in an Insert statement.

%CurrentDateOut

Description

The %CurrentDateOut meta-SQL variable expands to platform-specific SQL for the current date in the
Select clause of a SQL query.

%CurrentDateTimeIn

Description

The %CurrentDateTimeIn meta-SQL variable expands to a platform-specific SQL substring representing
the current datetime in the Where clause of a SQL Select or Update statement, or when the current date
time is passed in an Insert statement.

%CurrentDateTimeOut

Description

The %CurrentDateTimeOut meta-SQL variable expands to platform-specific SQL for the current datetime
in the Select clause of a SQL query.

%CurrentTimeIn

Description

The %CurrentTimeIn meta-SQL variable expands to a platform-specific SQL substring representing the
current time in the Where clause of a SQL Select or Update statement, or when the current time is passed
in an Insert statement.

Copyright © 1988, 2022, Oracle and/or its affiliates. 901



Meta-SQL Elements Chapter 2

%CurrentTimeOut

Description

The %CurrentTimeOut meta-SQL variable expands to platform-specific SQL for the current time in the
Select clause of a SQL query.

%DatabaseRelease

Syntax

%DatabaseRelease([descr_level])

Description

The %DatabaseRelease meta-SQL variable returns the database version of the current database
connection. The return value is a number or a string depending on descr_level. Optionally specify the
description level as MAJOR, FULL, or DESCR.

If MAJOR is specified, %DatabaseRelease returns the major release number as a number value.

If FULL is specified, %DatabaseRelease returns the full release and version as a string value.

If DESCR is specified, %DatabaseRelease returns the full release and version with description as a string
value.

Parameters

Parameter Description

descr_level Specify the level of description to be returned. Valid values are
MAJOR, FULL, and DESCR.

This parameter is optional. The default is MAJOR.

Example

If the current database is Oracle Database 10g Enterprise Edition Release 10.2.0.3.0- 64-bit Production
With the Partitioning and Data Mining option:

SQLExec("SELECT %DatabaseRelease(MAJOR) from %SelectDummyTable", &DBRel);

Returns 10.

SQLExec("SELECT %DatabaseRelease(FULL) from %SelectDummyTable", &DBRel);

Returns '10.2.0.3.0',

SQLExec("SELECT %DatabaseRelease(DESCR) from %SelectDummyTable", &DBRel);

Returns 'Oracle Database 10g Enterprise Edition Release 10.2.0.3.0-
64bit Production With the Partitioning and Data Mining options'.

902  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

%DateAdd

Syntax

%DateAdd(date_from, add_days)

Description

The %DateAdd meta-SQL function returns a date by adding add_days to date_from. The add_days
variable can be negative.

Example
SQLExec("SELECT %DateAdd(%DateIn('2002-02-02'), 12) from %SelectDummyTable", &add);
WinMessage(&add);

%DateDiff

Syntax

%DateDiff(date_from, date_to)

Description

The %DateDiff meta-SQL function returns an integer representing the difference between two dates in
number of days. For example: diff = date_to - date_from

Example
%DateDiff(%DateIn('1966-06-30'), %DateIn('1997-01-01'))

%DateDiff( date1_column, date2_column)

%DateDiff( %DateAdd(date1_column, 30), date2_column)

The following usage is illegal (always use %Datein for inputting date literals):

%DateDiff('1996-06-30', '1997-01-01') /* should use %DateIn for inputting date lite⇒

rals */

%DateIn

Syntax

%DateIn(dt)

Description

The %DateIn meta-SQL variable expands into platform-specific SQL syntax for the date. Use %DateIn
whenever a date literal or Date bind variable is used in a comparison in the Where clause of a Select or
Update statement, or when a Date value is passed in an Insert statement.

Copyright © 1988, 2022, Oracle and/or its affiliates. 903



Meta-SQL Elements Chapter 2

Restrictions Using COBOL

You can only use string literals when using this construct in COBOL. You cannot use it with bind
parameters in COBOL. For example, the following works in COBOL:

UPDATE PS_PERSONAL_DATA SET LASTUPDT = %DATEIN('2002-12-11')

The following SQL fails:

UPDATE PS_PERSONAL_DATA SET LASTUPDT = %DATEIN(:1)

Parameters

Parameter Description

dt Specify either a Date value or a date literal in YYYY-MM-DD
format.

%DateNull

Syntax

%DateNull

Description

Use the %DateNull meta-SQL variable to specify a null value for a Date field. Only use this meta-SQL in
Insert or Update clauses. Do not use this meta-SQL in a Where clause.

Note: This meta-SQL variable is not implemented for COBOL.

This meta-SQL resolves into a database-specific SQL substring, as shown in the following table:

Database Resolved Substring

DB2 NULLIF(CURRENT DATE, CURRENT DATE)

All others NULL

Parameters

None.

%DateOut

Syntax

%DateOut(dt)

904  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Description

The %DateOut meta-SQL variable expands to either a platform-specific SQL substring or datetime value,
depending on the database platform, representing a datetime column in the Select clause of a SQL query

Parameters

Parameter Description

dt Specify dt as a date column.

Note: You cannot specify a literal value for dt. Code such as
%DateOut('1900-01-01') is not allowed.

%DatePart

Syntax

%DatePart(DTTM_Column)

Description

The %DatePart meta-SQL variable returns the date portion of the specified DateTime column.

Note: This meta-SQL variable is not implemented for COBOL.

Considerations using %DatePart

Use %DateOut meta-SQL when fetching values, as in the following example:

%DateOut(%DatePart(DTTM_COLUMN)) from some_table

If a literal is used as the parameter to %DatePart, it must be wrapped in %DateTimeIn:

insert into some_table values(%DatePart(%DateTimeIn('2001-01-01-12.34.56.789012')))

Parameters

Parameter Description

DTTM_Column Specify the datetime column from which you want to return
the date.

%DateTimeDiff

Syntax

%DateTimeDiff(datetime_from, datetime_to)

Copyright © 1988, 2022, Oracle and/or its affiliates. 905



Meta-SQL Elements Chapter 2

Description

The %DateTimeDiff meta-SQL function returns a time value, representing the difference between two
date times in minutes.

Example

The following example returns the difference in hours between the current datetime and the requested
datetime:

%DateTimeDiff(%CurrentDateIn, RQSTDTTM) < " | RECORD.FIELDNAME * 60;

The following example returns the difference in minutes:

%DateTimeDiff(%CurrentDateIn, RQSTDTTM) < " | RECORD.FIELDNAME;

%DateTimeDiffExtended

Syntax

%DateTimeDiffExtended(datetime_from, datetime_to, granularity, precision)

Description

The %DateTimeDiff meta-SQL function returns a numeric value, representing the difference between two
date times. 

The granularity determines what that value represents:

• DAYS or DAY — Difference in number of days.

• HOURS or HOUR — Difference in number of hours.

• MINUTES or MINUTE — Difference in number of minutes.

• SECONDS or SECOND — Difference in number of seconds.

The precision specifies how many decimal places the result may have. The valid values are 0–5.

Example

The following two examples both return name of every batch process that is queued to be run in the next
hour:

SELECT PRCSNAME FROM PSPRCSRQST WHERE RUNSTATUS = '5' AND %DateTimeDiffExtended(RQS⇒

TDTTM, %CURRENTDATETIMEIN, HOUR, 0) < 1;

SELECT PRCSNAME FROM PSPRCSRQST WHERE RUNSTATUS = '5' AND %DateTimeDiffExtended(RQS⇒

TDTTM, %CURRENTDATETIMEIN, MINUTE, 0) < 60;

906  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

%DateTimeIn

Syntax

%DateTimeIn(dtt)

Description

The %DateTimeIn meta-SQL variable expands to platform-specific SQL for a DateTime value in the
Where clause of a SQL Select or Update statement, or when a DateTime value is passed in an Insert
statement.

Restrictions Using COBOL

You can only use string literals when using this construct in COBOL. You cannot use it with bind
parameters in COBOL. For example, the following works in COBOL:

UPDATE PS_PERSONAL_DATA SET LASTUPDTTM = %DATETIMEIN('2002-12-11-11.59.00.000000')

The following SQL fails:

UPDATE PS_PERSONAL_DATA SET LASTUPDTTM = %DATETIMEIN(:1)

Parameters

Parameter Description

dtt Specify either a DateTime bind variable or a string literal in
the form YYYY-MM-DD-hh.mm.ss.ssssss.

%DateTimeNull

Syntax

%DateTimeNull

Description

Use the %DateTimeNull meta-SQL variable to specify a null value for a DateTime field. Only use this
meta-SQL in Insert or Update clauses. Do not use this meta-SQL in a Where clause.

Note: This meta-SQL is not implemented for COBOL.

This meta-SQL resolves into a database-specific SQL substring, as shown in the following table:

Copyright © 1988, 2022, Oracle and/or its affiliates. 907



Meta-SQL Elements Chapter 2

Database Resolved Substring

DB2 NULLIF(CURRENT TIMESTAMP, CURRENT
TIMESTAMP)

All others NULL

Parameters

None.

Example

%InsertSelect(LEDGER_KK_WK2,LEDGER_KK_WRK, CURRENCY_CD = %Bind(TO_CURRENCY) ,POSTED⇒

_TOTAL_AMT = SUM(POSTED_BASE_AMT),POSTED_TRAN_AMT = 0,POSTED_BASE_AMT = 0,BASE_CURR⇒

ENCY = %Bind(TO_CURRENCY),PROCESS_INSTANCE = %Bind(PROCESS_INSTANCE),DTTM_STAMP_SEC⇒

 = %DateTimeNull)

FROM PS_LEDGER_KK_WRK

WHERE PROCESS_INST_STG = %Bind(PROCESS_INSTANCE)

AND CURRENCY_CD <> %Bind(TO_CURRENCY)

GROUP BY PROCESS_INST_STG, BUSINESS_UNIT,LEDGER, ACCOUNT, %List(FIELD_LIST, CFCC1_A⇒

K_SBR) ,STATISTICS_CODE, FISCAL_YEAR,ACCOUNTING_PERIOD

%DateTimeOut

Syntax

%DateTimeOut(datetime_col)

Description

The %DateTimeOut meta-SQL variable expands to either a platform-specific SQL substring or datetime
value, depending on the database platform, representing a datetime column in the Select clause of a SQL
query

Parameters

Parameter Description

datetime_col Specify a datetime column.

908  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

%DecDiv

Syntax

%DecDiv(a,b)

Description

The %DecDiv meta-SQL function returns a number representing the value of a divided by b, where a and
b are numeric expressions.

If the result needs to be picked up by a bind variable, pick it up using the Character type or PIC X(50).

Parameters

Parameter Description

a Specify the dividend as a number.

b Specify the divisor as a number.

Example
%DecDiv(1000.0, :1)

In the example, :1 is a bind variable in SQLExec PeopleCode.

Related Links
%Mod

%DecMult

Syntax

%DecMult(a,b)

Description

The %DecMult meta-SQL function returns a number representing a multiplied by b, where a and b are
numeric expressions.

If the result needs to be picked up by a bind variable, pick it up using the Character type or PIC X(50).

Note: %DecMult is replaced with a simple multiplication function on all platforms except for the DB2 for
OS/390 and z/OS platform. On this platform, it is converted to MULTIPLY_ALT. The MULTIPLY_ALT
scalar function returns the product of the two arguments as a decimal value. It is provided as an
alternative to the multiplication operator, especially when the sum of the precision of the arguments
exceeds 31.

Copyright © 1988, 2022, Oracle and/or its affiliates. 909



Meta-SQL Elements Chapter 2

Note: If you receive an overflow error using this meta-SQL, you may need to use the CAST function on
the MSSQL, ORACLE, DB2UNIX and DB2 for OS/390 platforms.

Parameters

Parameter Description

a Specify a number to be multiplied.

b Specify a number to use for multiplying.

Example
%DecMult(12.3, 34.67)

%DecMult(c1 + c2, c3)

In the example, c1, c2, and c3 are fields of the Number data type.

%DTTM

Syntax

%DTTM(date, time)

Description

The %DTTM meta-SQL function combines the database date in the date value with the database time in
the time value and returns a database timestamp value.

Note: For Microsoft SQL Server and DB2 databases, do not use null characters for the time argument.
You can use default values such as 00.00.00.000000.

Note: This meta-SQL function is not implemented for COBOL.

Example
INSERT INTO TABLE1 (TIMESTAMP) SELECT %DTTM(DATE,TIME) FROM TABLE2

Related Links
%TimeIn
%DateIn

910  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

%EffDtCheck

Syntax

%EffDtCheck(recordname [correlation_id1], correlation_id2, as_of_date)

Description

The %EffDtCheck construct expands into an effective date subquery suitable for a Where clause. The
value for as_of_date is automatically wrapped in %DateIn unless as_of_date is already wrapped in
%DateIn or refers to other database columns.

Note: This meta-SQL construct is not implemented for COBOL.

%EffDtCheck only works with effective dates. It does not take effective sequence numbers (EFFSEQ)
into account. It also does not do effective-status (EFF_STATUS) checking.

Parameters

Parameter Description

recordname Specify the record name to use as the record in the effective-
date checking. This can be a bind variable, a record object,
 or a record name in the form recname. You cannot specify a
RECORD. recname, a record name in quotation marks, or a
table name.

Note: If you specify a bind variable, it should refer to a record
object, not a string variable.

correlation_id1 (Optional) Specify the letter used inside the effective-dating
subselect. If this parameter isn't specified, recordname is used.

correlation_id2 Specify the letter already assigned to the main record in the
From clause of the SQL statement.

as_of_date Specify the date to use in the effective date. This can be a bind
variable, a variable, or a hard-coded date. The value for as_
of_date is automatically wrapped in %DateIn unless as_of_
date is already wrapped in %DateIn or refers to other database
columns.

Example

The following is a generic code sample:

SELECT. . .
   FROM. . .
      WHERE %EffDtCheck(recordname correlation_id, as_of_date)

Copyright © 1988, 2022, Oracle and/or its affiliates. 911



Meta-SQL Elements Chapter 2

The example code resolves into the following:

SELECT . . .
   FROM. . .
   WHERE correlation_id.EFFDT = (SELECT MAX(EFFDT) FROM recordname
      WHERE recordname.KEYFIELD1 = correlation_id.KEYFIELD1
      AND recordname.KEYFIELD2 = correlation_id.KEYFIELD2
      AND. . .
      AND recordname.EFFDT <= %DATEIN(as_of_date))

In the following example, &Date has the value of 01/02/1998. The example &Rec object has an EFFDT
key field.

SQLExec("SELECT FNUM FROM PS_REC A WHERE %EffDtCheck(:1, A, :2)", &Rec, &Date);

This example code resolves into the following:

"Select FNUM from PS_REC A where EFFDT = (select MAX(EFFDT)
from PS_REC
   where PS_REC.FNUM = A.FNUM
   and PS_REC.EFFDT <= %DateIn('1998-01-02') )"

The following example uses correlation IDs:

SELECT A.DEPTID
FROM %Table(DEPT_TBL) A
WHERE
%EffDtCheck(DEPT_TBL B, A, %CurrentDateIn)
AND A.EFF_STATUS = 'A'

This example code resolves into the following:

SELECT A.DEPTID
FROM %Table(DEPT_TBL) A
WHERE
A.EFFDT =
(SELECT MAX(B.EFFDT)
FROM DEPT_TBL B
WHERE
A.SETID = B.SETID
AND A.DEPTID = B.DEPTID
AND B.EFFDT <=%CurrentDateIn)
AND A.EFF_STATUS = 'A'

%FirstRows

Syntax

%FirstRows(n)

Description

The %FirstRows meta-SQL variable is replaced by database-specific SQL syntax to optimize retrieval of
n rows. Depending on the database, this variable optimizes:

• The query path.

• The number of rows returned.

• The number of rows returned per fetch buffer.

912  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Considerations Using %FirstRows

Consider the following when using %FirstRows:

• Using %FirstRows does not mean only the first n rows are returned.

It means that the SQL is optimized for the first n rows where the platform supports it. More rows
might be returned, depending on the platform.

• It is the application's responsibility to stop fetching when enough rows have been returned.

• This meta-SQL variable is not implemented for COBOL or dynamic view SQL.

• Do not use this meta-SQL variable if the application might require more than n rows fetched.

The results of fetching more than n rows varies by platform. Some return the extra rows, but
performance may be suboptimal. Others return the message "ROW NOT FOUND".

• Place this meta-SQL variable between the Select statement that begins the SQL statement and the
Select List statement.

Do not use it in subqueries, views, Insert/Select statements, and so on. Do not use a wildcard (*) with
the Select List statement.

• Do not use this meta-SQL variable with Distinct statements, because the code SELECT TOP 1
DISTINCT fails on Microsoft SQL Server.

• This meta-SQL variable is implicitly embedded in all Select statements for SQLExecs for all
platforms except Oracle.

Parameters

Parameter Description

n Specify the number of rows to optimize retrieval for.

Example

The following code checks for the existence of a row:

&SQL = CreateSQL("select %firstrows(1) 'x' from PS_EXAMPLE where COL1 = :1", &temp)⇒

;

The following populates a 10-element array:

&SQL = CreateSQL("select %firstrows(10) COL2, COL3 from PS_EXAMPLE_VW where COL1 = ⇒

:1", &temp);

Copyright © 1988, 2022, Oracle and/or its affiliates. 913



Meta-SQL Elements Chapter 2

%InsertSelect

Syntax

%InsertSelect([DISTINCT, ]insert_recname, select_recname [ correlation_id]
[, select_recname_n [ correlation_id_n]] [, override_field = value]. . .)

Description

The %InsertSelect meta-SQL construct generates an Insert statement with a Select statement. It does not
generate a From statement. You must specify the select records before you specify override fields.

Note: %InsertSelect has a limit of 99 override fields.

The Insert column list is composed of all the fields in the specified insert_recname, with the exception of
LongChar or Image fields.

Note: Because of the way long values (LongChar and Image fields) are handled in the various database
platforms for Insert statements, all long values in insert_recname  are skipped in the generated Insert
statement. This implies that these fields should be defined in such a manner as to allow null values.
If you need to include long values in insert_recname  use %InsertSelectWithLongs.

The corresponding value in the Select list is generated based on the following precedence:

1. If the Insert fieldname appears as an override_field, the corresponding value is used in the Select list.

2. If the Insert field name matches a field name in one of the select_recname variables specified, the
corresponding Select field is used in the Select list.

3. The search order of the select_recname records is the order that they are specified in the %InsertSelect
function.

4. If the Insert field name has a constant default value defined in Application Designer, that value is used
in the Select list.

5. A default value appropriate for the data type of the Insert field is used (blank for characters, zero for
numbers, NULL for Date, Time, and DateTime values, and so on.)

Use the optional override_field variable to specify values for a particular field.

Note: You cannot use bind variables with the override_field.

For each field you specify, the matching logic described in the preceding list is not performed. Instead, the
value that you specify after the equal sign is used for that field in the actual Select list. Use this technique
to let PeopleTools or Application Engine handle most of the fields in the record, while specifying some of
them explicitly. Also, you can use override_field to specify aggregate functions like Sum, Max, and so on.

Note: This meta-SQL is not implemented for COBOL.

914  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Parameters

Parameter Description

DISTINCT Specify if the Select statement being generated should contain
a Distinct clause.

insert_recname Specify the name of record being inserted into. You must
specify a record name, not RECORD. recname, a record name
in quotation marks, a bind variable, or a table name.

Note: If the record for insert_recname is a temporary table,
 %InsertSelect automatically substitutes the corresponding
table instance (PS_TARGETnn instead of PS_TARGET).

select_recname Specify the name of record being selected from. You can
specify more than one record. You must specify a record name,
 not a RECORD. recname, a record name in quotation marks,
 or a table name.

correlation_id Identify the correlation ID to be used for the select_recname
records and fields.

override_field Specify the name of a field on insert_recname that you want
to supply a value for (instead of using the value supplied from
the select_recname.)

Value Specify the value that should be used for the override_field
instead of the value from select_recname.

Example

Here is a basic example:

%InsertSelect(AE_SECTION_TBL, AE_STEP_TBL S, AE_SECTION_TYPE = ' ')
   FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
WHERE. . .

The example code resolves into the following:

INSERT INTO PS_AE_SECTION_TBL (AE_APPLID, AE_SECTION,. . ., AE_SECTION_TYPE)
SELECT S.AE_APPL_ID, S.AE_SECTION, . . . ' '
FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
   WHERE. . .

In the following example, you have a temporary table, PS_MY_TEMP, which is based on a join between
two other tables, PS_MY_TABLE1 and PS_MY_TABLE2:

%InsertSelect(MY_TEMP, MY_TABLE1, MY_TABLE2 T2)
   FROM PS_MY_TABLE1 T1, PS_MY_TABLE2 T2
WHERE %Join(COMMON_KEYS, MY_TABLE1 T1, MY_TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MY_TEMP (FIELD1, FIELD2 . . .)

Copyright © 1988, 2022, Oracle and/or its affiliates. 915



Meta-SQL Elements Chapter 2

   SELECT T2.FIELD1, T2.FIELD2, . . .
FROM PS_MY_TABLE1 T1, PS_MYTABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

The following example creates a distinct Select statement.

%InsertSelect(DISTINCT, MY_TABLE, TABLE1, TABLE2 T2)
   FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE %Join(COMMON_KEYS, TABLE1 T1, TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MYTABLE (FIELD1, FIELD2 . . .)
   SELECT DISTINCT T2.FIELD1, T2.FIELD2, . . .
FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

Related Links
%InsertSelectWithLongs

%InsertSelectWithLongs

Syntax

%InsertSelectWithLongs([DISTINCT, ]insert_recname, select_recname [ correlation_id]⇒

[, select_recname_n [ correlation_id_n]] [, override_field = value]. . .)

Description

The %InsertSelectWithLongs meta-SQL construct generates an Insert statement with a Select statement.
It does not generate a From statement. You must specify the select records before you specify override
fields.

Use %InsertSelectWithLongs instead of %InsertSelect when the fields in insert_recname  include long
values (LongChar and Image fields).

Note: %InsertSelectWithLongs has a limit of 99 override fields.

The Insert column list is composed of all the fields in the specified insert_recname.

The corresponding value in the Select list is generated based on the following precedence:

1. If the Insert fieldname appears as an override_field, the corresponding value is used in the Select list.

2. If the Insert field name matches a field name in one of the select_recname variables specified, the
corresponding Select field is used in the Select list.

3. The search order of the select_recname records is the order that they are specified in the
%InsertSelectWithLongs function.

4. If the Insert field name has a constant default value defined in Application Designer, that value is used
in the Select list.

916  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

5. A default value appropriate for the data type of the Insert field is used (blank for characters, zero for
numbers, NULL for Date, Time, and DateTime values, and so on.)

Use the optional override_field variable to specify values for a particular field.

Note: You cannot use bind variables with the override_field.

For each field you specify, the matching logic described in the preceding list is not performed. Instead, the
value that you specify after the equal sign is used for that field in the actual Select list. Use this technique
to let PeopleTools or Application Engine handle most of the fields in the record, while specifying some of
them explicitly. Also, you can use override_field to specify aggregate functions like Sum, Max, and so on.

Note: This meta-SQL is not implemented for COBOL.

Parameters

Parameter Description

DISTINCT Specify if the Select statement being generated should contain
a Distinct clause.

insert_recname Specify the name of record being inserted into. You must
specify a record name, not RECORD. recname, a record name
in quotation marks, a bind variable, or a table name.

Note: If the record for insert_recname is a temporary table,
 %InsertSelectWithLongs automatically substitutes the
corresponding table instance (PS_TARGETnn instead of PS_
TARGET).

select_recname Specify the name of record being selected from. You can
specify more than one record. You must specify a record name,
 not a RECORD. recname, a record name in quotation marks,
 or a table name.

correlation_id Identify the correlation ID to be used for the select_recname
records and fields.

override_field Specify the name of a field on insert_recname that you want
to supply a value for (instead of using the value supplied from
the select_recname.)

Value Specify the value that should be used for the override_field
instead of the value from select_recname.

Example

Here is a basic example:

%InsertSelectWithLongs(AE_SECTION_TBL, AE_STEP_TBL S, AE_SECTION_TYPE = ' ')

Copyright © 1988, 2022, Oracle and/or its affiliates. 917



Meta-SQL Elements Chapter 2

   FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
WHERE. . .

The example code resolves into the following:

INSERT INTO PS_AE_SECTION_TBL (AE_APPLID, AE_SECTION,. . ., AE_SECTION_TYPE)
SELECT S.AE_APPL_ID, S.AE_SECTION, . . . ' '
FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
   WHERE. . .

In the following example, you have a temporary table, PS_MY_TEMP, which is based on a join between
two other tables, PS_MY_TABLE1 and PS_MY_TABLE2:

%InsertSelectWithLongs(MY_TEMP, MY_TABLE1, MY_TABLE2 T2)
   FROM PS_MY_TABLE1 T1, PS_MY_TABLE2 T2
WHERE %Join(COMMON_KEYS, MY_TABLE1 T1, MY_TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MY_TEMP (FIELD1, FIELD2 . . .)
   SELECT T2.FIELD1, T2.FIELD2, . . .
FROM PS_MY_TABLE1 T1, PS_MYTABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

The following example creates a distinct Select statement.

%InsertSelectWithLongs(DISTINCT, MY_TABLE, TABLE1, TABLE2 T2)
   FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE %Join(COMMON_KEYS, TABLE1 T1, TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MYTABLE (FIELD1, FIELD2 . . .)
   SELECT DISTINCT T2.FIELD1, T2.FIELD2, . . .
FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

Related Links
%InsertSelect

%InsertValues

Syntax

%InsertValues(recname)

Description

The %InsertValues meta-SQL construct produces a comma-separated list of the record's non-null field
values. Input processing is applied to the fields in the following ways:

• If the field is a Date, a Time, or a DateTime data type, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If the field is a string, its value is automatically wrapped in quotation marks.

918  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

• If the field has a null value, it is not included in the list.

Note: This meta-SQL construct can only be used in PeopleCode programs, not in Application Engine
SQL actions. Also, this meta-SQL construct is not implemented for COBOL.

Parameters

Parameter Description

recname Specify the name of the record to be used for inserting. This
can be a bind variable, a record object, or a record name in
the form recname. You can't specify a RECORD. recname, a
record name in quotation marks, or a table name.

Example

Here's an example:

SQLExec("Insert into TABLE (%List(NonNull_Fields, :1)) values (%InsertValues(:1))",⇒

 &Rec);

This example code is expanded into:

"Insert into TABLE (FNUM, FCHAR, FDATE) values (27, 'Y', %datein('1989-11-27'))"

%Join

Syntax

%Join({COMMON_KEYS | COMMON_FIELDS}, join_recname [ correlation_id1], to_recname
[ correlation_id2] [, override_field_list])

where override_field_list is an arbitrary-length list of fields to be substituted in the resulting text string, in
the form:

field1 [, field2]. . .

Description

Use the %Join meta-SQL construct to dynamically build a Where clause joining one table to another. At
runtime, the entire construct is replaced with a character string.

Note: This meta-SQL construct is not implemented for COBOL. If date key fields are not marked as
required in the record definition for either of the referenced tables in the %Join clause, a Null clause
check is added to the date field comparison. This additional clause can have a significant impact on the
execution time for the generated SQL statement.

Copyright © 1988, 2022, Oracle and/or its affiliates. 919



Meta-SQL Elements Chapter 2

Parameters

Parameter Description

{COMMON_KEYS | COMMON_FIELDS} Use COMMON_KEYS to specify that all common primary
key fields are used in constructing a Where clause; use
COMMON_FIELDS to specify all common fields, not
just key fields. You can select either COMMON_KEYS or
COMMON_FIELDS.

join_recname Specify the name of the record to be joined. This can be a
bind variable, a record object, or a record name in the form
recname. You can't specify a RECORD. recname, a record
name in quotation marks, or a table name.

correlation_id1 Identify the correlation ID used to relate the record specified
by join_recname and its fields.

to_recname Specify the name of the record to be joined to. This can be a
bind variable, a record object, or a record name in the form
recname. You can't specify a RECORD. recname, a record
name in quotation marks, or a table name.

correlation_id2 Identify the correlation ID used to relate the record specified
by to_recname and its fields.

override_field_list Specify a list of fields that you do not want used in the join.
 For example, if fields A, B, and C were common to two
records, and you didn't want to join on C, list C as an override
_field.

Example

Here is an example:

%Join(COMMON_KEYS, PSAESECTDEFN ABC,  PSAESTEPDEFN XYZ)

The example code results in the following being generated:

ABC.AE_APPLID = XYZ.AE_APPLID
AND ABC.AE_SECTION = XYZ.AE_SECTION
AND ABC.DBTYPE = XYZ.DBTYPE
AND ABC.EFFDT = XYZ.EFFDT

Here's another example:

%Join(COMMON_FIELDS, PSAEAPPLDEFN ABC,  PSAESECTDEFN XYZ)

The second example results in the following being generated:

ABC.AE_APPLID = XYZ.AE_APPLID
AND ABC.DESCR = XYZ.DESCR

920  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

However, you do not want to perform the join using the DESCR field because it's a long field. Instead use
override_field, as shown in the following code:

%Join(COMMON_FIELDS, PSAEAPPLDEFN ABC,  PSAESECTDEFN XYZ, DESCR)

This example results in the following being generated:

ABC.AE_APPLID = XYZ.AE_APPLID

You can also specify a value for a field. Suppose you want to join two tables, but not on the field C3. In
addition, you would like to specify a value for C3. Your code could look like the following:

%Join(COMMON_FIELDS, MY_TABLE1 A, MY_TABLE2 B, C3) AND C3 = 'XX'

%KeyEqual

Syntax

%KeyEqual(recname [ correlation_id])

Description

The %KeyEqual meta-SQL construct expands into a conditional phrase suitable for use in a Where
clause.

The conditional phrase consists of a conjunction (AND) of [correlation_id.]keyfieldname = 'keyfieldvalue'
phrases for each key field of the given record.

No auto-update processing is done, but other input processing is applied to the values, according to the
following:

• If the field is a Date, a Time, or a DateTime data type, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If a value is a string, its value is automatically wrapped in quotation marks.

• If a value is NULL, the "=value" part is replaced with "IS NULL".

Note: This meta-SQL can only be used in PeopleCode programs, not in Application Engine SQL actions.
Also, this meta-SQL is not implemented for COBOL.

Parameters

Parameter Description

recname Specify the name of the record to use for inserting. This can be
a bind variable, a record object, or a record name in the form
recname. You cannot specify RECORD. recname, a record
name in quotation marks, or a table name.

correlation_id Identify the single-letter correlation ID to relate the record
specified by recname and its fields.

Copyright © 1988, 2022, Oracle and/or its affiliates. 921



Meta-SQL Elements Chapter 2

Example

Suppose that the record &REC has three keys: FNUM, FDATE, and FSMART. Here is a code example:

Local record &REC;

&REC = CreateRecord(RECORD.MYRECORD);
&REC.FNUM.Value = 27;
&REC.FDATE.Value = %Date;
SQLExec("Delete from MYRECORD A where %KeyEqual(:1 A)", &REC);

This example expands to:

"Delete from TABLE A
   where A.FNUM = 27
   AND A.FDATE = %Date('1989-11-27')
   AND A.FSMART IS NULL"

%KeyEqualNoEffDt

Syntax

%KeyEqualNoEffDt(recname [ correlation_id])

Description

The %KeyEqualNoEffDt meta-SQL construct expands into a conditional phrase suitable for use in a
Where clause.

The conditional phrase consists of a conjunction (AND) of [correlation_id.]keyfieldname = 'keyfieldvalue'
phrases for all key fields of the given record, except that it omits any key field named EFFDT.

No auto-update processing is done, but other input processing is applied to the values as follows:

• If the field is a Date, a Time, or a DateTime data type, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If a value is a string, its value is automatically wrapped in quotation marks.

• If a value is NULL, the "=value" part is replaced with "IS NULL."

Note: This meta-SQL can only be used in PeopleCode programs, not in Application Engine SQL actions.
Also, this meta-SQL is not implemented for COBOL.

Parameters

Parameter Description

recname Specify the name of the record to be used for inserting. This
can be a bind variable, a record object, or a record name in the
form recname. You can't specify RECORD. recname, a record
name in quotation marks, or a table name.

922  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Parameter Description

correlation_id Identify the single-letter correlation ID to relate the record
specified by recname and its fields.

Example

The EMPL_CHECKLIST record has three keys: EMPLID, CHECK_SEQ, and EFFDT. Here is a code
example:

&REC = CreateRecord(EMPL_CHECKLIST);

SQLExec("Delete from TABLE A where %KeyEqualNoEffdt(:1 A)", &REC)

The example expands to:

"Delete from TABLE A
   where A.EMPLID = 8001
   AND A.CHECK_SEQ = 00001"

%Like

Syntax

%Like("Literal")

Description

The %Like construct expands to look for literal values. This meta-SQL should be used when looking for
like values. A percent sign character (%) is appended to literal.

Note: This meta-SQL is not implemented for COBOL.

If you're using a bind marker (such as ":1") for the literal argument in a SQLExec, you must wrap the
SQL string with the ExpandSqlBinds function. ExpandSqlBinds replaces bind markers with the actual
input values.

%Like generates the following:

like 'literal%'

If the literal value contains a backslash character (\) or percent sign (%), then %Like generates the
following:

like 'literal%' escape '\'

See ExpandSqlBinds.

Using %Like and Eliminating Blanks

Some platforms require that you use RTRIM to get the correct value. The following characters are
wildcards even when preceded with the backslash (\) escape character:

Copyright © 1988, 2022, Oracle and/or its affiliates. 923



Meta-SQL Elements Chapter 2

• %

• _

Therefore, on some platforms, the literal must end with a percent sign (%) wildcard that isn't preceded by
a backslash (\). Here are some examples:

• literal = 'ABC%'

There is no need for RTRIM on any platform.

• literal = 'ABC\%'

You need RTRIM on Microsoft SQL Server and DB2.

Using %Like and Trailing Blanks

Not all executions of %Like perform the same. When dealing with trailing blanks, some platforms behave
as if there is an implicit percent sign (%) at the end of the comparison string, while most do not.

In the following example, if the selected column contains the string "ABCD " (with three trailing blanks.
The statement may or may not return any rows:

select  *  from  t1 Where c like 'ABCD'

Therefore, it is always important to explicitly code the percent sign (%) the end of matching strings for
columns where you want to include trailing blanks. The following table shows the use of implicit percent
signs with specific databases:

Database Includes Implicit Percent Sign (%)

PeopleSoft Standard Usage Yes

DB2/400 No

DB2/MVS No

DB2/Unix No

Microsoft SQL Server Yes

Oracle No

SQLBase No

Using %Like and Wildcards

SQL specifies two wildcards that can be used when specifying pattern matching strings for use with the
SQL Like predicate. The underscore is used as a substitution for a single character within a string, and the

924  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

percent sign represents any number of character spaces within a string. All supported databases use these
characters as wildcards.

Parameters

Parameter Description

literal Specify the value to search for.

%LikeExact

Syntax

%LikeExact(fieldname, "Literal")

Description

The %LikeExact meta-SQL variable expands to look for literal values. Use this variable when exact
matches are necessary, taking into account wildcards in the literal values.

Note: This meta-SQL is not implemented for COBOL.

%LikeExact generates one of the following:

• If the literal contains no wildcards:

fieldname = 'literal'

• If the literal ends with the '%' wildcard:

fieldname like 'literal' [escape '\']

Some platforms require that you use RTRIM to get the correct value. The following characters are
wildcards even when preceded with the backslash (\) escape character.

• %

• _

Therefore, on some platforms, the literal must end with a percent sign (%) wildcard that isn't preceded by
a backslash (\). Here are some examples:

• literal = 'ABC%'

You do not need RTRIM on any platform.

• literal = 'ABC\%'

You need RTRIM on Microsoft SQL Server and DB2.

Copyright © 1988, 2022, Oracle and/or its affiliates. 925



Meta-SQL Elements Chapter 2

Considerations Using Bind Markers

If you're using a bind marker (such as ":1") for the literal argument in a SQLExec, you must wrap the
SQL string with ExpandSqlBinds. ExpandSqlBinds replaces bind markers with the actual input values.

The following forms work:

• Application Engine SQL action (with or without the ReUse property enabled).

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, %Bind(⇒

AE_APPL_ID, STATIC))

The STATIC modifier is only required if the ReUse property is enabled, but you can always use it.

• PeopleCode.

AE_TESTAPPL_AET.AE_APPL_ID = "AB\_C";

SQLExec("UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_I⇒

D, :AE_TESTAPPL_AET.AE_APPL_ID)");

Here is another acceptable form:

SQLExec(ExpandSqlBinds("UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %Like⇒

Exact(AE_APPL_ID, :1)", "AB\_C"));

This form does not work:

SQLExec("UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, :1⇒

)", "AB\_C");

Parameters

Parameter Description

fieldname Specify a field to be used in the first part of the Like
comparison.

literal Specify the value to search for.

Example

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, 'ABC')

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE AE_APPL_ID = 'ABC'

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, 'AB%C')

926  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE RTRIM(AE_APPL_ID) LIKE 'AB%C'

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE LIKEEXACT(AE_APPL_ID, 'AB%C%')

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE AE_APPL_ID LIKE 'AB%C%'

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, 'AB%C% ')

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE AE_APPL_ID LIKE 'AB%C% '

The following example shows using ExpandSqlBinds:

SQLExec(ExpandSqlBinds("SELECT COUNT(*) FROM PS_ITEM WHERE %LIKEEXACT(BUSINESS_UNIT⇒

, :1)", "M04"), %COUNT);

Related Links
ExpandSqlBinds

%Mod

Syntax

%Mod(a, b)

Description

Use the %Mod meta-SQL function to return the remainder (or modulo) of division of one number by
another number. %Mod uses the integer portion of both the dividend and the divisor. If the divisor is 0,
%Mod returns the dividend value.

Parameters

Parameter Description

a Specifies the dividend as a number.

b Specifies the divisor as a number.

Copyright © 1988, 2022, Oracle and/or its affiliates. 927



Meta-SQL Elements Chapter 2

Example

Each of the following examples shows the computed result of the %Mod function:

%Mod(10, 3) = 1
%Mod(9, 3) = 0
%Mod(10.1, 3) = 1
%Mod(-10, 3) = -1
%Mod(10, 0)= 10

Related Links
%DecDiv

%NoUppercase

Syntax

%NoUppercase

Description

When processing a SQL statement, the system automatically casts all field names and possibly record
names to uppercase when processing a SQL statement. When processing records from a third party, fields
that are lowercase are cast into uppercase, which can create a runtime issue on case-sensitive platforms.

To prevent this, use the %NoUppercase meta-SQL statement at the beginning of the SQL statement.

Parameters

None.

Note there are not parameters, as well as no parenthesis, for this meta-SQL.

Returns

None.

Example
%NoUppercase
INSERT INTO PS_RM_APP_ENG_LOG (MAP_ID
, RECNAME
, FIELDNAME
, MESSAGE_SET_NBR
, MESSAGE_NBR
, LANGUAGE_CD)
SELECT %Bind(MAP_ID)
, %Bind(RECNAME)
, ' '
,17834
, 1116
, %Bind(LANGUAGE_CD)
FROM %SelectDummyTable
WHERE EXISTS (
SELECT 'X'
FROM SW_OPPORTUNITY SW_OPPORTUNITY
, SW_PERSON SW_PERSON

928  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

, SW_CUSTOMER SW_CUSTOMER
, SW_SALES_TEAM_VW SW_SALES_TEAM_VW
WHERE SW_OPPORTUNITY.SWCUSTOMERID = SW_CUSTOMER.SWCUSTOMERID
AND SW_OPPORTUNITY.SWSALESTEAMID = SW_SALES_TEAM_VW.SWPROVIDERGRPID
AND SW_SALES_TEAM_VW.SWPERSONID = SW_PERSON.SWPERSONID
GROUP BY SW_OPPORTUNITY.SwOpportunityId
HAVING COUNT(*) > 1)

%NumToChar

Syntax

%NumToChar(Number)

Description

Use the %NumToChar construct to transform a numeric value into a character value. Spaces are trimmed
from Number.

Note: %NumToChar will preserve all trailing zeroes. Therefore, use the scale parameter of %Cast to
specify the number of trailing zeroes.

Parameters

Parameter Description

Number Specify the number to convert to a character value. Signed
numbers, as well as decimals, are acceptable.

Related Links
%Cast

%OldKeyEqual

Syntax

%OldKeyEqual(recname [correlation_id])

Description

The %OldKeyEqual meta-SQL construct is similar to the %KeyEqual construct, except that it uses the
original values of the record fields, rather than the current values. Since the rules for which values are
original and which are current are not very clear, especially for standalone record objects, avoid using this
meta-SQL construct. You should use separate records to hold previous values. This can make your code
clearer and more maintainable.

Note: This meta-SQL construct can only be used in PeopleCode programs, not in Application Engine
SQL actions. Also, this meta-SQL is not implemented for COBOL.

Copyright © 1988, 2022, Oracle and/or its affiliates. 929



Meta-SQL Elements Chapter 2

Related Links
%KeyEqual

%OPRCLAUSE

Description

The %OPRCLAUSE meta variable is used in the view text of dynamic views.

To support the concept of a specific row-level security class, this meta variable fills in the
WHERE clause with the value from PSOPRDEFN.OPRID, PSOPRDEFN.OPRCLASS, or
PSOPRDEFN.ROWSECCLASS depending which is present in the SELECT clause.

%OPRCLAUSE must be either all uppercase or all lowercase.

%OPRCLAUSE translates to OprId, OprClass or RowSecClass, following the same rules used for
security on search dialog boxes. If OPRID is in the view, %OPRCLAUSE expands to OPRID = 'current
operator'. If OPRCLASS is in the view, %OPRCLAUSE expands to OPRCLASS = 'primary permission
list'. If ROWSECCLASS is in the view, %OPRCLAUSE expands to ROWSECCLASS = 'row security
permission list'.

Example

Here is an example:

SELECT EMPLID, ABSENCE_TYPE, OPRID FROM PS_ABSENCE_HIST WHERE %OPRCLAUSE
AND (EMPLID='8001' AND ABSENCE_TYPE='CNF')

This code expands to:

SELECT EMPLID, ABSENCE_TYPE, OPRID FROM PS_ABSENCE_HIST WHERE ( OPRID 'PTDMO')
AND (EMPLID='8001' AND ABSENCE_TYPE='CNF')

Here's another example:

SELECT EMPLID, ABSENCE_TYPE, OPRCLASS FROM PS_ABSENCE_HIST WHERE %OPRCLAUSE AND
(EMPLID='8001' AND ABSENCE_TYPE='CNF')

This code expands to:

SELECT EMPLID, ABSENCE_TYPE, OPRCLASS FROM PS_ABSENCE_HIST WHERE ( OPRCLASS ='ALLPA⇒

NLS')
AND (EMPLID='8001' AND ABSENCE_TYPE='CNF')

%Round

Syntax

%Round(expression, factor)

930  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Description

%Round rounds an expression to a specified scale before or after the decimal point. If factor is a literal, it
can be rounded to a negative number.

Parameters

Parameter Description

expression Specify an arbitrary numeric expression involving numeric
constants and database columns.

factor Specify an integer or bind variable in SQLExec PeopleCode.
 The range of a factor is from -31 to +31 for literals. Non-
literals can only be positive.

Example

Here is an example:

%Round(10.337, 2) = 10.34

%Round(13.67, 0) = 14

SQLExec("SELECT %Round(field_c1, :1) from RECORD_T", field_c2, &Result);

In the example, field_c1 and field_c2 are two fields in the record.

The following cases are illegal, and may cause incorrect results or runtime SQL errors:

%Round(10.337, 2 + 1)  (factor can not be an expression)

%Round(field_c1, field_c2) (factor can not be database columns)

%SelectByRowNum

Syntax

%SelectByRowNum(:num1 [prefix] [[wherestring] [orderbystring]], :num_x, :num_x+1)

Description

%SelectByRowNum is shorthand for selecting the fields in the specified record by the specified row's
number scope, wrapping datetime fields with %DateOut, %TimeOut, and so on.

The pseudocode looks like this:

Select (AllFields, :num1 correlation_id) from (Select ROW_NUMBER() OVER( orderbystr⇒

ing) AS ROW_NUM, (AllFields, :num1 correlation_id) FROM %Table(:num1) wherestring) ⇒

Where ROW_NUM >= :num_x AND ROW_NUM <= :num_x+1

Copyright © 1988, 2022, Oracle and/or its affiliates. 931



Meta-SQL Elements Chapter 2

Example
Local SQL &SQL_OBJ;
&SQL_OBJ = CreateSQL("%SelectByRowNum(:1 FILL where FILL.CLASSID = :2 order by FILL⇒

.CLASSID, :3, :4)", Record.PSAUTHOPTN, "PTMSF_CLIENT_USER", 1, 5);
&SQL_OBJ.Close();

%SelectDummyTable

Description

Use the %SelectDummyTable variable to perform a SELECT without specifying a specific table. The
database platform-specific “dummy table” is substituted in the SELECT.

Example

Before: In the following example, the SELECT was performed on the one-row PeopleTools installation
table.

SELECT 'x'
  FROM PS_INSTALLATION WHERE ...

After: Using the %SelectNoTable variable ensures that the SQL will not fail if the table does not exist or
if the table contains more than one row.

SELECT 'x'
  FROM %SelectDummyTable WHERE ...

Before: In the following example, %SelectInit is used to initialize files in an Application Engine state
record.

%SelectInit(GL_JP_AET.PROCESS_STATUS, GL_JP_AET.PROCESS_ORIG, GL_LOG_MSG_AET.MESSAG⇒

E_SET_NBR, GL_LOG_MSG_AET.MESSAGE_NBR, GL_LOG_MSG_AET.MESSAGE_PARM1, GL_LOG_MSG_AET⇒

.MESSAGE_PARM2, GL_LOG_MSG_AET.MESSAGE_PARM3)
 SELECT 'P'
 , 'P'
 , 5830
 , 4
 , TO_CHAR(1)
 , 'DVP1'
 , 'EK'
  FROM PS_INSTALLATION

After: Using the %SelectNoTable variable ensures that the SQL will not fail if the table does not exist or
if the table contains more than one row.

%SelectInit(GL_JP_AET.PROCESS_STATUS, GL_JP_AET.PROCESS_ORIG, GL_LOG_MSG_AET.MESSAG⇒

E_SET_NBR, GL_LOG_MSG_AET.MESSAGE_NBR, GL_LOG_MSG_AET.MESSAGE_PARM1, GL_LOG_MSG_AET⇒

.MESSAGE_PARM2, GL_LOG_MSG_AET.MESSAGE_PARM3)
 SELECT 'P'
 , 'P'
 , 5830
 , 4
 , TO_CHAR(1)
 , 'DVP1'
 , 'EK'

932  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

  FROM %SelectDummyTable

%SQL

Syntax

%SQL(SQL_ID [, paramlist])

where paramlist is a list of arguments that are used for dynamic substitutions at runtime, in the form:

arg1 [, arg2]. . .

Description

Use the %SQL construct for common SQL fragments that you have already defined and want to reuse,
substituting additional values dynamically. SQL_ID is the name of a SQL definition created using either
Application Designer or the StoreSQL function.

You can only nest up to 10 %SQL statements at a time.

Note: This meta-SQL construct is not implemented for COBOL. A SQL definition is not the same as the
SQL object that is instantiated from the SQL class at runtime. A SQL definition is created either using
Application Designer at design time, or using the StoreSQL function. A SQL object is instantiated at
runtime from the SQL class, and has methods and properties associated with it like any other object.

When a specified SQL definition has more than one version, the database type always takes precedence.

If one or more versions of a SQL definition are found for the database type of the current database
connection, and if any of the versions have an effective date less than or equal to the value returned for
%AsOfDate, the most recent version is used.

If no versions are found for the current database type, or if all of the versions have effective dates greater
than the value returned for %AsOfDate, the system looks for an effective version of the SQL definition
under the database type Generic.

If no version is found, an error occurs.

Application Engine Considerations

Application Engine programs use the current date to compare with the effective date, not the date returned
by %AsOfDate.

Special SQL Characters

The following meta-SQL variables can be used as part of the %SQL construct to represent special
characters as SQL parameters.

Meta-SQL Variable Description

%Comma Represents a single comma.

Copyright © 1988, 2022, Oracle and/or its affiliates. 933



Meta-SQL Elements Chapter 2

Meta-SQL Variable Description

%LeftParen Allows you to pass a left parenthesis character to a %P()
variable, without closing the SQL object.

%RightParen Allows you to pass a right parenthesis character to a %P()
variable, without closing the SQL object.

%Space Represents a space.

Parameters

Parameter Description

SQL_ID Specify the name of an existing SQL definition.

paramlist Specify a list of arguments for dynamic substitutions at
runtime. The first argument replaces all occurrences of %P(1)
in the referenced SQL definition, the second argument replaces
%P(2), and so forth. You can specify up to 99 arguments.

Note: For PeopleCode, the %P should not be contained in
quotation marks. '%P(2)' is considered to be a literal, and so
isn't replaced at runtime.

Example

In the following example, the SQL definition MY_SQL was created in Application Designer to be the
following:

%P(1).EFFDT = (SELECT MAX(EFFDT) FROM ...)

In the following example, the %SQL statement is dynamically generated:

UPDATE PS_TEMP
SET ...
WHERE ...
AND %SQL(MY_SQL, PS_TEMP)

The previous example resolves to the following:

UPDATE PS_TEMP
SET ...
WHERE ...
AND PS_TEMP.EFFDT = (SELECT MAX(EFFDT) FROM ...)

Related Links
"Understanding SQL Class" (PeopleCode API Reference)

934  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

%SqlHint

Syntax

%SqlHint(SQL_cmd, index, hint_text, DB_platform [,
{ENABLE | DISABLE}])

Description

Use the %SqlHint function to insert a database platform-specific SQL hint into the specified SQL
statement. The hint is inserted immediately after the SQL command specified by the SQL_cmd parameter.

This meta-SQL function is ignored in any of the following circumstances:

• The current database connection does not match the DB_platform parameter.

• The DB_platform parameter is not specified as ORACLE. (This is a limitation of the current release.)

• The nth occurrence of the SQL command specified by SQL_cmd and index does not exist in the
current SQL statement.

Parameters

Parameter Description

SQL_cmd Specifies the SQL command that will use the hint as one of the
following literal constants:

• SELECT

• INSERT

• UPDATE

• DELETE

• MERGE

index Specifies which occurrence of the SQL command will use the
hint as an Integer value from 1 to 99.

hint_text Specifies the SQL hint as a String value enclosed in single
quotes. The hint can include other meta-SQL, such as %Table.

Copyright © 1988, 2022, Oracle and/or its affiliates. 935



Meta-SQL Elements Chapter 2

Parameter Description

DB_platform Specifies the database platform for which the hint is valid as
one of the following literal constants:

• ORACLE

• DB2

• DB2UNIX

• SQLSERVER

Note: Currently, ORACLE is the only supported platform.
 This meta-SQL function is ignored for all other platforms.

ENABLE | DISABLE Specifies whether to enable or disable the hint as a literal
constant.

Note: ENABLE is the default value for this optional
parameter.

Example 1

Before: The following example includes an Oracle-specific SQL hint to be inserted after the first
SELECT of the SQL statement:

%SqlHint(SELECT, 1, '/*+ FIRST_ROWS(10) */', ORACLE)
 SELECT EMPLID
  FROM PS_JOB

After: For an Oracle connection, this meta-SQL would expand to:

 SELECT '/*+ FIRST_ROWS(10) */' EMPLID
  FROM PS_JOB

After: On all other connections, this meta-SQL would expand to:

 SELECT EMPLID
  FROM PS_JOB

Example 2

Before: In the following example, %SqlHint functions will be expanded and applied after all other meta-
SQL expansion has occurred. In this example, the APPEND hint will be applied to the first INSERT
found in this SQL statement. The LEADING hint will be applied to the first SELECT found in this SQL
statement.

%SqlHint(INSERT, 1, '/*+ APPEND*/', ORACLE, ENABLE ),%SqlHint(SELECT, 1, '/*+ LEADI⇒

NG(H) INDEX(L, PSFJRNL_LN) */', ORACLE, ENABLE) %InsertSelect(JRNL_LIU_TAO, JRNL_LN⇒

 L, BUSINESS_UNIT_IU=H.BUSINESS_UNIT_IU, LEDGER_GROUP=H.LEDGER_GROUP, IU_SYS_TRAN_C⇒

D=H.IU_SYS_TRAN_CD, IU_TRAN_CD=H.IU_TRAN_CD, PROCESS_INSTANCE=%Bind(PROCESS_INSTANC⇒

E))

936  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

  FROM %Table(JRNL_HIU_TAO) H, PS_%Bind(GL_JEDIT_WK_AET.RECNAME_JRNL_LN,NOQUOTES) L⇒

 WHERE H.PROCESS_INSTANCE=%Bind(PROCESS_INSTANCE)
   AND H.BUSINESS_UNIT=L.BUSINESS_UNIT
   AND H.JOURNAL_ID=L.JOURNAL_ID
   AND H.JOURNAL_DATE=L.JOURNAL_DATE
   AND H.UNPOST_SEQ=L.UNPOST_SEQ;

After: The SQL statement after all meta-SQL expansion and hint insertion:

 INSERT /*+ APPEND */ INTO PS_JRNL_LIU_TAO5 (BUSINESS_UNIT , JOURNAL_ID , JOURNAL_D⇒

ATE

/* For the purposes of clarity, many columns in this column list have been omitted ⇒

from this example. */

 , DEPTID , SCENARIO , BUSINESS_UNIT_IU)
 SELECT /*+ LEADING(H) INDEX(L, PSFJRNL_LN) */ L.BUSINESS_UNIT
 , L.JOURNAL_ID
 , L.JOURNAL_DATE

/* For the purposes of clarity, many columns in this column list have been omitted ⇒

from this example. */

 ,L.DEPTID
 ,L.SCENARIO
 , H.BUSINESS_UNIT_IU
  FROM PS_JRNL_HIU_TAO5 H
  , PS_%Bind(GL_JEDIT_WK_AET.RECNAME_JRNL_LN,NOQUOTES) L
 WHERE H.PROCESS_INSTANCE=%Bind(PROCESS_INSTANCE)
   AND H.BUSINESS_UNIT=L.BUSINESS_UNIT
   AND H.JOURNAL_ID=L.JOURNAL_ID
   AND H.JOURNAL_DATE=L.JOURNAL_DATE
   AND H.UNPOST_SEQ=L.UNPOST_SEQ ;

%Substring

Syntax

%Substring(source_str, start, length)

Description

%Substring expands to a substring of source_str.

Parameters

Parameter Description

source_str Specify the source string.

start Specify the substring's beginning position. The first character
of source_str is position 1.

Copyright © 1988, 2022, Oracle and/or its affiliates. 937



Meta-SQL Elements Chapter 2

Parameter Description

length Specify the length of the substring.

%SUBREC

Syntax

%SUBREC(subrec_name, corel_name)

Description

%SUBREC is used only in dynamic view SQL, where it expands to the columns of a subrecord. You can't
use this statement in SQLExec or any other SQL statement.

Note: %SUBREC must be either all uppercase or all lowercase.

Parameters

Parameter Description

subrec_name Specify the name of the subrecord.

corel_name Specify the correlation name.

Example

Suppose you have a record definition AAA_VW that is a dynamic view, with fields CHR, SUB, and
NUM. The field SUB is a subrecord with fields CHR_SUB, NUM_SUB, and IMG_SUB. The view text
for AAA_VW could be:

"select a.chr, %subrec(sub,a), a.num from ps_aaa a"

The Create View SQL generated by this view text would be:

"CREATE VIEW SYSADM.PS_AAA_VW (CHR, CHR_SUB, NUM_SUB, IMG_SUB, NUM) AS SELECT A.CHR⇒

, A.CHR_SUB, A.NUM_SUB, A.IMG_SUB, A.NUM FROM PS_AAA A"

%Table

Syntax

%Table(recname [, instance])

938  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Description

The %Table construct returns the SQL table name for the record specified with recname.

For example, %Table(ABSENCE_HIST) returns PS_ABSENCE_HIST.

Note: This meta-SQL is not implemented for COBOL.

If the record is a temporary table and the current process has a temporary table instance number assigned,
%Table resolves to that instance of the temporary table (that is, PS_ABSENCE_HISTInstance Number).

You can override this value with the instance parameter. For example, if you know you want the third
instance of a temporary table, you could specify it with %Table(&MYREC, 3). You can use the
SetTempTableInstance function to set the instance of a temporary table that is used with %Table.

This construct can be used to specify temporary tables for running parallel Application Engine processes.

Parameters

Parameter Description

recname Identify the record that the table name is drawn from. This
can be a bind variable, a record object, or a record name in
the form recname. You cannot specify RECORD. recname, a
record name in quotation marks, or a table name.

instance Specify the instance of the temporary table to be used.

Example

The following function deletes records based on two other fields:

Function delete_draft_type(&RECNAME)

&SQL = "Delete from %Table(:1) where " | FIELD.SETID | " =
 :2 and " | FIELD.DRAFT_TYPE | " = :3";

SQLExec(&SQL, @("RECORD." | &RECNAME), SETID, DRAFT_TYPE);

End-Function;

Related Links
SetTempTableInstance
"%Table" (Application Engine)

%Test

Syntax

%Test(Prefix, Test, Suffix)

Copyright © 1988, 2022, Oracle and/or its affiliates. 939



Meta-SQL Elements Chapter 2

Description

The %Test construct can be used with records that have no key values.

Parameters

Parameter Description

Prefix Specify a string that is conditionally added before the
expansion of the test string. You cannot use meta-SQL in this
parameter.

Test Specify a meta-SQL string to be expanded.

Suffix Specify a string that is conditionally added at the end of the
test string. You can use meta-SQL in this parameter.

Returns

If the expansion of Test produces only a blank (or empty) string, the entire %Test meta-SQL construct is
replaced with an empty string. Otherwise, the %Test meta-SQL construct is replaced by the prefix, then
the expansion of Test, and then the suffix.

Example

The following meta-SQL generates valid SQL even when the given record has no keys:

%SelectAll(:1) %Test(WHERE ,%KeyEqual(:1));

%TextIn

Syntax

%TextIn(BindVariable)

Description

%TextIn construct, when used with a bind variable, allows the insertion and updating of a text string into
a LongChar field (column).

This construct is mandatory for any LongChar field insertion or update to be compatible on all database
platforms on which it is supported.

940  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Parameters

Parameter Description

BindVariable Specify a bind variable.

Example

In the following example, :1 is a bind variable in PeopleCode:

&String1 = "This is a test."

SqlExec("INSERT INTO PS_TABLE1 (STMTID, SQLSTMT) VALUES (1, %TextIn(:1))", &String1⇒

)

%TimeAdd

Syntax

%TimeAdd(datetime, add-minutes)

Description

This construct generates the SQL that adds add-minutes (a positive or negative integer literal or
expression, provided that the expression resolves to a data type that can be used in datetime arithmetic for
the given RDBMS) to the provided datetime (which can be a datetime literal or expression).

Note: On some platforms, you can use time-value in place of datetime. However, this can give a SQL
error on other platforms. This meta-SQL construct is not implemented for COBOL.

Parameters

Parameter Description

time Specify a Time or DateTime value to add more time to.

add-minutes Specify the number of minutes to add to time. This must be
a numeric value or an expression that resolves to a numeric
value.

Example
SELECT %TimeAdd(%CurrentTimeIn, 60) FROM %SelectNoTable

Copyright © 1988, 2022, Oracle and/or its affiliates. 941



Meta-SQL Elements Chapter 2

%TimeIn

Syntax

%TimeIn(tm)

Description

%TimeIn expands to platform-specific SQL for a Time value in the Where clause of a SQL Select or
Update statement, or when a time value is passed in an Insert statement.

Restrictions Using COBOL

You can only use string literals when using this construct in COBOL. You cannot use it with bind
parameters in COBOL. For example, the following works in COBOL:

UPDATE PS_PERSONAL_DATA SET LASTUPTM = %TIMEIN('11:59:00:000000')

The following SQL fails:

UPDATE PS_PERSONAL_DATA SET LASTUPTM = %TIMEIN(:1)

Parameters

Parameter Description

tm Specify a Time bind variable or a string literal in the form hh.
mm.ss.ssssss.

%TimeNull

Syntax

%TimeNull

Description

Use this meta-SQL to specify a null value for a time field. Only use this meta-SQL in Insert or Update
statements. Do not use this meta-SQL in a Where clause.

Note: This meta-SQL is not implemented for COBOL.

This meta-SQL resolves into a database-specific SQL substring, as shown in the following table:

Database Resolved Substring

DB2 NULLIF(CURRENT TIME, CURRENT TIME)

942  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Database Resolved Substring

All others NULL

Parameters

None.

%TimeOut

Syntax

%TimeOut(time_col)

Description

The %TimeOut meta-SQL variable expands to either a platform-specific SQL substring or datetime value,
depending on the database platform, representing the time_col column in the Select clause of a SQL
query.

Parameters

Parameter Description

time_col Specify a time column.

%TimePart

Syntax

%TimePart(DTTM_Column)

Description

%TimePart returns the time portion of the specified datetime column.

Note: This meta-SQL is not implemented for COBOL.

Considerations Using %TimePart

Use %TimeOut meta-SQL when fetching from the database:

%TimeOut(%TimePart(DTTM_COLUMN)) from some_table

Copyright © 1988, 2022, Oracle and/or its affiliates. 943



Meta-SQL Elements Chapter 2

If a literal is used as the parameter to %TimePart, it must be wrapped in %DateTimeIn as shown in the
following:

insert into some_table values(%TimePart(%DateTimeIn('2001-01-01-12.34.56.789012')))

Parameters

Parameter Description

DTTM_Column Specify the datetime column to return the time for.

%TrimSubstr

Syntax

%TrimSubstr(source_str, start, length)

Description

%TrimSubstr, like %Substring, expands to a substring of source_str, except that trailing blanks are
removed from the substring.

Note: If you trim a string of blanks, an empty string is returned on all database platforms except Oracle,
when a Null is returned. If a Null result is not acceptable, such as when using the result as a value to insert
into a non-nullable column, you can turn the Null into a single blank using the %COALESCE meta-SQL
with %TrimSubstr, for example: %COALESCE( %TrimSubstr( <expression>), ' ')

Parameters

Parameter Description

source_str Specify the source string.

start Specify the substring's beginning position. The first character
of source_str is position 1.

length Specify the length of the substring.

Related Links
%Substring

944  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

%Truncate

Syntax

%Truncate(expression, factor)

Description

%Truncate truncates an expression to a specified scale before or after the decimal point.

Considerations Using %Truncate

You may get incorrect results or runtime SQL errors if you try to use an expression for factor. The
following code example produces incorrect results:

%Truncate(10.337, 2 + 1)

Parameters

Parameter Description

Expression Specify an expression involving numeric constants and
database columns.

Factor Specify an integer or bind variable in SQLExec PeopleCode.
 The range of a factor is -30 to +31. A negative number
truncates to left of the decimal point.

Example

Here is an example:

%Truncate(10.337, 2) = 10.33

%Truncate(13.37, 0) = 13

%Truncate(19.337, -1) = 10

SQLExec("SELECT %Truncate(field_c1, :1) from RECORD_T", field_c2, &Result);

In the example, field_c1 and field_c2 are two fields in the record.

%TruncateTable

Syntax

%TruncateTable(table_name)

Description

%TruncateTable deletes all the rows in a table.

Copyright © 1988, 2022, Oracle and/or its affiliates. 945



Meta-SQL Elements Chapter 2

Note: You must use a table name, not a record name, with this statement.

On all databases, the use of %TruncateTable causes an implicit commit. The rows deleted by this
command, and any other pending database updates, are all committed. To postpone the commit
until subsequent database updates have been successfully completed, use the SQL statement
DELETE FROM table_name or the statement IMPORT REPLACE WITH NULL instead of
%TruncateTable(table_name). The advantage of using %TruncateTable is that its execution is faster than
either of the SQL statements. %TruncateTable is often used for removing rows from a work table or a
temporary table.

If you're calling %TruncateTable from an Application Engine program step, you should commit after
the step that immediately precedes the step containing the %TruncateTable statement. Also, do not use
%TruncateTable on a step that is executed multiple times within a loop. In general, it's best to use this
construct early in your Application Engine program as an initialization task. In addition, avoid using this
meta-SQL when your Application Engine program is started from the CallAppEngine function.

If a commit is not possible, Application Engine replaces the meta-SQL with a Delete From string. This
ensures restart integrity when your program runs against a database where there is an implicit commit
associated with Truncate Table or where rollback data is not logged.

For databases that either execute an implicit commit for %TruncateTable or require a commit before or
after this meta-SQL, replace %TruncateTable with an unconditional delete in certain circumstances.

Example

If you use %TruncateTable with %Table, you must specify the full name of the table. For example:

%TruncateTable(%Table(BAS_ELIG_DBGFLD))

The following is a code example:

%TruncateTable(PS_TEMP_TABLE)

Related Links
"%TruncateTable" (Application Engine)

%UpdatePairs

Syntax

%UpdatePairs(recname [correlation_id])

Description

The %UpdatePairs construct produces a comma-separated list of fieldname = 'fieldvalue' phrases for each
changed field of the given record. Input processing is applied to the values in the following ways:

• If the field is a Date, a Time, or a DateTime value, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If the field is a string, its value is automatically wrapped in quotes.

946  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

• If the field has a null value, NULL is the given value.

Note: This meta-SQL construct can only be used in PeopleCode programs, not in Application Engine
SQL actions. Also, this meta-SQL construct is not implemented for COBOL.

Parameters

Parameter Description

recname Specify the name of the record to use for updating. This can
be a bind variable, a record object, or a record name in the
form recname. You can't specify RECORD. recname, a record
name in quotation marks, or a table name.

correlation_id Identify the single-letter correlation ID to relate the record
specified by recname and its fields.

Example

Suppose that the record &REC has one key: FNUM, and the FCHAR field has changed. Here is an
example:

Local record &REC;

&REC = CreateRecord(RECORD.MYRECORD);
&REC.FNUM.Value = 27;
&REC.FCHAR.Value = 'Y';
SQLExec("Update TABLE set %UpdatePairs(:1) where %KeyEqual(:1)", &REC)

The example expands to:

"Update TABLE set FCHAR = 'Y' where FNUM = 27"

The following example updates all the fields on a base record (&REC) that are not also fields on the
related language record (&REC_RELATED_LANG). It creates a holding record (&REC_TEMP), copies
the fields to update from the base record to the holding record, and then uses the holding record for the
update.

&UPDATE = CreateSQL("Update %Table(:1) set %UpdatePairs(:1) Where %KeyEqual(:2)");
&REC_TEMP = CreateRecord(@("RECORD." | &REC.Name));
&FIELD_LIST_ARRAY = CreateArray();
For &I = 1 to &REC_RELATED_LANG.FieldCount
   &FIELD_LIST_ARRAY.Push(&REC_RELATED_LANG.GetField(&I).Name);
End-For;

For &I = 1 to &REC.FieldCount
   If &FIELD_LIST_ARRAY.Find(&REC.GetField(&I).Name) = 0 then
      &REC_TEMP.GetField(&I).Value = &REC.GetField(&I).Value;
   End-If;
End-For;

&UPDATE.Execute(&REC_TEMP, &REC);

Copyright © 1988, 2022, Oracle and/or its affiliates. 947



Meta-SQL Elements Chapter 2

%Upper

Syntax

%Upper(charstring)

Description

The %Upper construct converts the string charstring to uppercase. You can use wildcards with charstring,
such as the percent sign (%).

Note: This meta-SQL construct is not implemented for COBOL.

Considerations with COBOL and Unicode

COBOL's uppercase function is not Unicode-aware, and corrupts Unicode data. To use an uppercase
function with COBOL, use the function supplied with PeopleTools called PTPUPPER.

The syntax to call PTPUPPER is:

CALL 'PTPUPPER' USING SQLRT

   <any PIC S9(4) COMP field that contains the fields
defined length (non-unicode)>

   <the String field - max PIC X(8192).>

The following is an example from Unicode-expanded source code:

01  W-WORK.

   02   W-DESCR      PIC X(90)   VALUE SPACES.
    02   W-SIZE       PIC S9(4)   COMP VALUE +30.
      CALL 'PTPUPPER' USING SQLRT
         W-SIZE OF W-WORK
         W-DESCR OF W-WORK

Parameters

Parameter Description

charstring Specify the string to convert to uppercase.

Example
SELECT EMPLID, NAME FROM PS_EMPLOYEES WHERE %UPPER(NAME) LIKE %UPPER(sch%)

%UuidGen

Syntax

%UuidGen()

948  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

Description

Use the %UuidGen function in a SQL Insert or Update statement to generate a universally unique
identifier (UUID) as a globally unique 36-character string.

%UuidGen can only be used in an Insert or Update statement. You will get an error if you use the function
in any other type of SQL.

%UuidGenBase64

Syntax

%UuidGenBase64()

Description

Use the %UuidGenBase64 function in a SQL Insert or Update statement to generate a universally unique
identifier (UUID) as a globally unique 24-character base64 string.

%UuidGenBase64 can only be used in an Insert or Update statement. You will get an error if you use the
function in any other type of SQL.

Meta-SQL Shortcuts

Take advantage of the following shortcuts to use the entire list of key fields for a record.

Note: The meta-SQL shortcuts can only be used in PeopleCode programs, not in Application Engine SQL
actions. Also, none of the meta-SQL shortcuts are implemented for COBOL.

%Delete

Syntax

%Delete(:num)

Description

This is a shorthand for:

Delete from %Table(:num) where %KeyEqual(:num)

%Insert

Syntax

%Insert(:num)

Copyright © 1988, 2022, Oracle and/or its affiliates. 949



Meta-SQL Elements Chapter 2

Description

This is a shorthand for:

Insert into %Table(:num) (%List(Nonnull_Fields :num)) values (%InsertValues(:num))

%SelectAll

Syntax

%SelectAll(:num [ correlation _id])

Description

%SelectAll is shorthand for selecting all fields in the specified record, wrapping DateTime fields with
%DateOut, %TimeOut, and so on.

The pseudocode looks like this:

Select(AllFields, :num correlation_id) from %Table(:num) prefix

This shortcut is only appropriate if the statement is being used in PeopleCode or Application Engine to
read data into memory. Dynamic views should retain the internal database formats for DateTime fields.

Using %SelectAll with CreateSQL

You can use %SelectAll with the CreateSQL function without a record object. It must subsequently be
executed with the record object with which you want to do the Select statement. Here is an example:

    &REC_PROJ_FUNDING = CreateRecord(Record.PROJ_FUNDING); /* free standing record
 object */
    /* Create SQL objects */
    &SQL_PROJ_FUNDING_SEL = CreateSQL("%SelectAll(:1)" /* bind this later */);
        /* bind the %SelectAll */
        &SQL_PROJ_FUNDING_SEL.Execute(&REC_PROJ_FUNDING);
    While &SQL_PROJ_FUNDING_SEL.Fetch(&REC_PROJ_FUNDING);
  /* Process row content ... /*
  End-While;

You could also move the CreateRecord SQL statements out of the loop (and then move the close
statements out of the loop too).

%SelectDistinct

Syntax

%SelectDistinct(:num [ prefix])

Description

%SelectDistinct is shorthand for selecting all fields in the specified record, wrapping DateTime fields
with %DateOut, %TimeOut, and so on.

950  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 2 Meta-SQL Elements

The pseudocode looks like this:

Select DISTINCT(AllFields, :num correlation_id) from %Table(:num) prefix

This shortcut is only appropriate if the statement is being used in PeopleCode or Application Engine to
read data into memory. Dynamic views should retain the internal database formats for DateTime fields.

%SelectByKey

Syntax

%SelectByKey(:num [ correlation_id ])

Description

This is a shorthand for:

Select %List(Select_List, :num correlation_id) from %Table(:num) correlation_id whe⇒

re %KeyEqual(:num, correlation_id)

%SelectByKeyEffDt

Syntax

%SelectByKeyEffDt(:num1, :num2)

Description

This is a shorthand for:

Select %List(Select_List, :num1) from %Table(:num1) A where %KeyEqualNoEffDt(:num1 ⇒

A) and %EffDtCheck(:num1 B, A, :num2)

%Update

Syntax

%Update(:num [ , :num2 ])

Description

This is a shorthand for:

Update %Table(:num) set %UpdatePairs(:num) where %KeyEqual(:num2)

If num2 is omitted, the value defaults to num.

Copyright © 1988, 2022, Oracle and/or its affiliates. 951



Meta-SQL Elements Chapter 2

952  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3

System Variables

Understanding System Variables

PeopleTools provides a number of system variables that provide access to system information. System
variables are prefixed with the ‘%’ character, rather than the ‘&’ character. You can use these system
variables wherever you can use a constant, passing them as parameters to functions or assigning their
values to fields or to temporary variables.

System Variables Reference

In this section, each system variable is discussed in alphabetical order.

%AECallerApplId

Description

%AECallerApplId returns the name of the Application Engine program that executed a plug-in
action or a call section to the currently executing program. The Application Engine program name
returned by %AECallerApplID will be the immediate parent, not necessarily the top parent program.
%AECallerApplId returns a blank value when executed from the top-level parent Application Engine
program.

Use %AECallerApplId in PeopleCode within Application Engine programs. If you use the system
variable outside of Application Engine programs, it will return a blank value.

Related Links
"Configuring Application Engine Action Plug-ins" (Application Engine)

%AEExitReturnCode

Description

Use the %AEExitReturnCode system variable to return the status of PeopleCode action or a SQL action,
which is used as an on-exit action in Application Engine.

Valid return codes:

Copyright © 1988, 2022, Oracle and/or its affiliates. 953



System Variables Chapter 3

Return Value Description

0 Returns 0 when:

• The last executed action was not SQL or PeopleCode.

• The PeopleCode being executed is not running as an On-Exit plugin.

• The last executed action was a SQL or PeopleCode action and exited with a
Continue.

100 Returns 100 when the last executed action was a SQL or PeopleCode action and exited
with Abort.

101 Returns 101 when the last executed action was a SQL or PeopleCode action and exited
with Break.

102 Returns 102 when the last executed action was a SQL or PeopleCode action and exited
with Skip Step.

Related Links
"Configuring Application Engine Action Plug-ins" (Application Engine)

%AllowNotification

Description

Indicates whether the Allow Notification check box for the current role's workflow routing options is
selected. This system variable returns a Boolean value: True if the check box is selected (notifications
allowed), False otherwise.

Related Links
"Security Basics" (Security Administration)

%AllowRecipientLookup

Description

Indicates whether the Allow Recipient Lookup check box for the current role's workflow routing options
is selected. This system variable returns a Boolean value: True if the check box is selected (recipient
lookup allowed), False otherwise.

Related Links
"Security Basics" (Security Administration)

954  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

%ApplicationLogFence

Description

Returns the current setting of the application log fence (AppLogFence) setting in the application server
configuration file (PSAPPSRV.CFG.)

Note: This is distinct from the PeopleTools LogFence capability which applies to PeopleTools level
logging.

You can use this system variable to conditionally determine whether you want to do certain logging from
your application. You generally use it with the following predefined PeopleCode constants.

Numeric Value Constant Value Description

1 %ApplicationLogFence_Error Allow all levels of errors to be written to
the log. This is the lowest setting.

2 %ApplicationLogFence_Warning Allowing only warnings or higher to be
written to the log.

3 %ApplicationLogFence_Level1 Allow only this level of errors or higher
to be written to the log.

4 %ApplicationLogFence_Level2 Allow only this level of errors or higher
to be written to the log.

5 %ApplicationLogFence_Level3 Allow only this level of errors to be
written to the log.

Example
If %ApplicationLogFence > %ApplicationLogFence_Warning then
      /* do some logging */
End-if;

Related Links
WriteToLog
"Using Application Logging" (PeopleCode Developer’s Guide)

%AppService_HTTP_DELETE

Description

Returns the string value of the HTTP DELETE method.

Copyright © 1988, 2022, Oracle and/or its affiliates. 955



System Variables Chapter 3

Example
If %This.ServiceAPI.HttpMethod = %AppService_HTTP_DELETE then
/* perform the DELETE method logic */
End-If;

%AppService_HTTP_GET

Description

Returns the string value of the HTTP GET method.

Example
If %This.ServiceAPI.HttpMethod = %AppService_HTTP_GET then
/* perform the GET method logic */
End-If;

%AppService_HTTP_PATCH

Description

Returns the string value of the HTTP PATCH method.

Example
If %This.ServiceAPI.HttpMethod = %AppService_HTTP_PATCH then
/* perform the PATCH method logic */
End-If;

%AppService_HTTP_POST

Description

Returns the string value of the HTTP POST method.

Example
If %This.ServiceAPI.HttpMethod = %AppService_HTTP_POST then
/* perform the POST method logic */
End-If;

%AppService_HTTP_PUT

Description

Returns the string value of the HTTP PUT method.

Example
If %This.ServiceAPI.HttpMethod = %AppService_HTTP_PUT then

956  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

/* perform the PUT method logic */
End-If;

%AsOfDate

Description

Returns the as-of-date of the environment that the PeopleCode is running in. In most cases, this is the
current date, but for Application Engine environments, it is the processing date of the Application Engine
program.

%AuthenticationToken

Description

This system variable returns a single sign on authentication token for the user after SwitchUser is
executed. For example, you can use this system variable to write a single sign on cookie to the http
response after a new user is authenticated.

Note: This system variable returns a valid value only after SwitchUser executes successfully. The value
of this system variable is the authentication token itself. The value of the AuthTokenDomain Request
object property is the domain across which the authentication token is valid, set in the AuthTokenDomain
configuration property in the configuration properties file.

Related Links
SwitchUser
"AuthTokenDomain" (PeopleCode API Reference)

%BPName

Description

%BPName is relevant when the user has accessed a page from a worklist entry. It returns a string
containing the name of the Business Process for the worklist entry. It returns an empty string if the user
didn’t access the current page group from a worklist.

%ClientDate

Description

%ClientDate returns the current date for the current user, adjusted for the user’s time zone. This is the
date as specified with the current user's personalizations.

You can use this system variable as the default constant for a date field, a time field, or a datetime field.

Note: This is potentially one day different than the server date, which is returned with %Date.

Copyright © 1988, 2022, Oracle and/or its affiliates. 957



System Variables Chapter 3

Related Links
"Understanding System Personalizations" (Security Administration)

%ClientTimeZone

Description

%ClientTimeZone returns the current time zone for the current user as a three-character string. This is
potentially different than the server time zone. This is the timezone as specified with the current user's
personalizations.

Related Links
"Understanding System Personalizations" (Security Administration)

%Component

Description

%Component returns an uppercase character string containing the name of the current component, as set
in the component definition.

%CompIntfcName

Description

%CompIntfcName returns the name of the Component Interface, if the currently executing PeopleCode
program is being run from a Component Interface. If the currently executing PeopleCode program is
not being run from a Component Interface, this variable returns NULL (if the program is running from
PeopleCode) or "Nothing" (if running from Visual Basic.)

Note: This system variable is not valid in an iScript.

%ContentID

Description

%ContentID returns the identification of the content for the current context as a string. The format of the
value depends on the type of content.

PeopleSoft Pure Internet Architecture Content Type Content ID Format

Component Menu.Component.Market/?Page=Page &Action=Action
&Key ID = Key Value …

Script Record.Event.Function/?&Parm ID = Parm Value …

958  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

PeopleSoft Pure Internet Architecture Content Type Content ID Format

External URL

Homepage tab name

Template template name

Query query name

Worklist worklist name

Navigation Business Process Map name

File file name

%ContentType

Description

%ContentType returns the type of content for the current content as a string.

For example, suppose your PeopleCode is part of the page USERMAIN_SELF, in this URL:

http://serverx/servlets/psp/eprocurement/hrms/c/MAINTAINT_SECURITY.USERMAIN_SEF.GBL

This system variable returns the following:

c

The content types are:

PeopleSoft Pure Internet Architecture Content Type Value

Component c

Script s

External e

Homepage h

Template t

Query q

Copyright © 1988, 2022, Oracle and/or its affiliates. 959



System Variables Chapter 3

PeopleSoft Pure Internet Architecture Content Type Value

Worklist w

Navigation n

File f

%Copyright

Description

This system variable returns a string suitable for use as a standard PeopleSoft copyright notice.

%Currency

Description

This system variable returns the preferred currency for the current user.

%Date

Description

%Date returns a Date value equal to the current server date. This is potentially different than the client
date, returned by %ClientDate. You can use this system variable as the default value for a date field.

Related Links
%ClientDate

%DateTime

Description

%DateTime returns the current server date and time as a Datetime value.

Note: This variable does not return actual milliseconds. It always returns zeros for the millisecond value.

%DbName

Description

%DbName returns the name of the current database as a string value.

960  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

Note: On SQL Server, the value returned is the ODBC name for the database.

%DbServerName

Description

Note: This system variable has been deprecated and remains for backward compatibility only.

%DbServerName returns an empty string.

%DbType

Description

%DbType returns a string representing the type of the current database. The valid values are:

• APPSERVER

• DB2

• DB2UNIX

• MICROSFT

• ORACLE

Note: Supported database platforms are subject to change.

%EmailAddress

Description

This system variable returns the email address of the current user.

%EmployeeId

Description

%EmployeeId returns an uppercase character string containing the Employee ID of the user currently
logged on. This is typically used to restrict access to an employee's own records.

Copyright © 1988, 2022, Oracle and/or its affiliates. 961



System Variables Chapter 3

%ExternalAuthInfo

Description

This system variable returns external connect information. Programmers can customize the authentication
process by passing in binary data. This data is encoded with base64 encoding and passed to sign on
PeopleCode as a string using this system variable.

Note: This system variable can be used only in Signon PeopleCode. This system variable isn't applicable
with the PeopleSoft Pure Internet Architecture.

%FilePath

Description

This meta-variable returns the current file path as a string.

Note: This is not a system variable. This is a meta-variable only available in a Application Engine
program.

Related Links
"Using the Command Line to Invoke Application Engine Programs" (Application Engine)

%HPTabName

Description

This system variable returns the name of the last homepage tab visited by the user as a string.

%IB_JSON

Description

This system variable returns the JSON document schema as a string.

%IB_XML

Description

This system variable returns the XML document schema as a string.

962  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

%Import

Description

%Import returns True if an import is being performed by PeopleSoft Import Manager and False if not.

%IntBroker

Description

Use the %IntBroker system variable to return a reference to a web services gateway object.

Related Links
"IntBroker Class" (PeopleCode API Reference)

%IsMultiLanguageEnabled

Description

This system variable returns True if the current user is multi-language enabled.

Related Links
"Understanding Data Editing in Related Language Tables and Base Tables" (Global Technology)

%Language

Description

%Language returns a string value representing the current session's language as selected from the sign-in
page.

Note: This function remains for backward compatibility only. Use the %Language_User system variable
instead.

Related Links
%Language_User
SetLanguage

%Language_Base

Description

%Language_Base returns the base language for the current database, as set with the PeopleTools Options
page.

Copyright © 1988, 2022, Oracle and/or its affiliates. 963



System Variables Chapter 3

Related Links
"PeopleTools Options" (System and Server Administration)

%Language_Data

Description

If multi-language entry is enabled, %Language_Data returns a string value representing the current data
language selected by the user.

If multi-language entry is not enabled, %Language_Data returns the current session language.

Use %Language_Data if your application must know the language any entered application data is stored
as in the component's related language records. Do not use this variable to control the user interface, such
as messages or page text. For determining the language of the user interface, use the %Language_User
variable.

Related Links
%Language_User

%Language_User

Description

%Language_User returns a string value representing the current session's language as selected from the
sign-in page. This value can be changed for the current session with the SetLanguage function.

Note: The value of this system variable may not reflect the current data language if the user has multi-
language entry enabled.

Related Links
SetLanguage

%LocalNode

Description

%LocalNode returns the name of the local node for the current database as a string.

For example, suppose your PeopleCode is part of the page USERMAIN_SELF, in this URL:

http://serverx/servlets/psp/eprocurement/hrms/c/MAINTAINT_SECURITY.USERMAIN_SEF.GBL

This system variable returns the following:

hrms

964  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

Related Links
"Understanding Nodes" (Integration Broker Administration)

%Market

Description

The %Market system variable returns a three-character String value for the Market property of the current
component. This is useful if you want to add market-specific PeopleCode functionality to a component.
For example:

if %Component = COMPONENT.PERSONAL_DATA then
   /* do some stuff that applies to all localized version */
   :
   :
   /* do some stuff that differs by market */
   evaluate %Market
      when = "USA"
       /* do usa stuff */
         break;
      when = "GER"
         /* do german stuff */
   end-evaluate;
end-if;

The Market property of a component specifies a component’s target market. This property is set when a
component is initially saved or cloned.

Components that are used on a global basis have a market setting of "GBL". Variations of components
targeted at a specific market can have a local Market setting, for example "FRA". This enables developers
to avoid cloning, renaming, and coding distinct PeopleCode in market-specific components. Instead, they
can create a single component with market-specific PeopleCode, then clone the component, applying
different Market property settings.

Because the %Market string is a three-character string like Country Code, Country Codes can be used as
market settings where appropriate.

Considerations Using %Market in Application Engine Programs

Whenever %Market resolves to no value, it is processing in global ('GBL'). The absence of a value should
be treated the same as if the value is 'GBL'.

To process a non-GBL market, a row must be created in PS_AEREQUESTTBL with the desired market
value placed in the MARKET field of that row.

Note: You must make this change to the table for every application engine program PeopleCode that
refers to %Market.

Related Links
"Understanding Component Definitions" (Application Designer Developer’s Guide)

Copyright © 1988, 2022, Oracle and/or its affiliates. 965



System Variables Chapter 3

%MaxMessageSize

Description

%MaxMessageSize returns the current size limit of messages as set on the PeopleTools Options page.

Related Links
"PeopleTools Options" (System and Server Administration)

%MaxNbrSegments

Description

%MaxNbrSegments returns an Integer value representing the maximum number of message segments as
defined on the PeopleTools Options page. The default value is 10.

Related Links
"PeopleTools Options" (System and Server Administration)

%Menu

Description

%Menu returns an uppercase string containing the current menu name. It can be used to restrict edits or
processing to a specific menu.

Note: Do not use the %Menu variable in the SearchSave event. You may get unexpected results.

%Mode

Description

%Mode returns a String value consisting of an uppercase character specifying the action a user selected
when starting the current component. The following values can be returned. You can check either for the
string value ("A", "U", and so on.) or for the constant:

Numeric Value Constant Value Description

A %Action_Add Add

U %Action_UpdateDisplay Update/Display

L %Action_UpdateDisplayAll Update/Display All

966  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

Numeric Value Constant Value Description

C %Action_Correction Correction

E %Action_DataEntry Data Entry

%NavigatorHomePermissionList

Description

This system variable returns the navigator homepage permission list for the current user.

%Node

Description

%Node returns the name of the node from the current request object. This variable can only be used
within a request (%Request). If you need to get the node name for a message, use the PubNodeName
message property instead.

Related Links
"Understanding Nodes" (Integration Broker Administration)
"PubNodeName" (PeopleCode API Reference)

%OperatorClass

Description

This system variable returns a string representing the primary or base class of the current operator.

Note: This system variable is supported for compatibility with previous releases of PeopleTools. New
applications should use %PermissionLists instead.

Related Links
%PermissionLists

%OperatorId

Description

%OperatorId returns an uppercase character string containing the operator currently logged on. This is
typically used to restrict access to records or fields to specific operators.

Copyright © 1988, 2022, Oracle and/or its affiliates. 967



System Variables Chapter 3

Note: This system variable is supported for compatibility with previous releases of PeopleTools. New
applications should use %UserId instead.

Related Links
%UserId

%OperatorRowLevelSecurityClass

Description

This system variable returns a string representing the row-level security class of the current operator. The
row-level security class is now distinct from the operator’s primary class.

Note: This system variable is supported for compatibility with previous releases of PeopleTools. New
applications should use %RowSecurityPermissionList instead.

Related Links
%RowSecurityPermissionList

%OutDestFormat

Description

This meta-variable returns the current output destination format as a string.

Note: This is not a system variable. This is a meta-variable only available in a Application Engine
program.

Related Links
"Using the Command Line to Invoke Application Engine Programs" (Application Engine)

%OutDestType

Description

This meta-variable returns the current output destination type as a string.

Note: This is not a system variable. This is a meta-variable only available in a Application Engine
program.

Related Links
"Using the Command Line to Invoke Application Engine Programs" (Application Engine)

968  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

%Page

Description

%Page returns an uppercase character string containing the current page name. It is typically used
to restrict processing to a specific page, which is often necessary, because PeopleCode programs are
associated with record definitions that can be shared by multiple pages.

%Panel

Description

%Panel returns an uppercase character string containing the current panel name.

Note: This system variable is supported for compatibility with previous releases of PeopleTools. New
applications should use %Page instead.

Related Links
%Page

%PanelGroup

Description

%PanelGroup returns an uppercase character string containing the name of the current component, as set
in the component definition.

Note: This system variable is supported for compatibility with previous releases of PeopleTools. New
applications should use %Component instead.

Related Links
%Component

%PasswordExpired

Description

This system variable returns a Boolean indicating if the current user's password has expired. This system
variable should be used after using SwitchUser, to verify if the password of the user that the user has just
switched to is expired.

Related Links
SwitchUser

Copyright © 1988, 2022, Oracle and/or its affiliates. 969



System Variables Chapter 3

%PerfTime

Description

Use the %PerfTime system variable to return the application server's local system time.

This variable returns only the local system time. This is different from the %Time system variable, which
returns the system time from the database server, which may or may not be the same physical system as
the application server.

PeopleSoft recommends using %PerfTime when measuring performance time for a specific PeopleCode
program. This can enable developers to evaluate which coding logic has better performance time.

Note: Do not assume that %PerfTime returns the same time as the database server. Use %Time if you
need to use a time value for your application transaction.

Example

The following is an example of how to use %PerfTime to check performance of a PeopleCode program:

&startTime = %PerfTime;

Local number &nbr;
Local Rowset &Table1_rs, &Table2_rs, &Table1_cpy_rs, &Table2_cpy_rs;
Local Rowset &Table1_vw_rs;

&Table1_rs = CreateRowset(Record.PTP_TABLE1);
&Table1_cpy_rs = CreateRowset(Record.PTP_TABLE1);
&Table1_rs.Fill("WHERE PTP_SEQ_NBR <= 10001");

REM
REM  Copy using Rowset function from one RowSet to Another
REM;

&Table1_rs.CopyTo(&Table1_cpy_rs);

REM
REM USE ROWSET TO READ RESULTS FROM A JOIN WITH BIND VARIABLE
REM;

&nbr = 10001;
&Table1_vw_rs = CreateRowset(Record.PTP_TABLE1_VW);
&Table1_vw_rs.Fill("WHERE PTP_SEQ_NBR >= :1", &nbr);

REM
REM  END OF EXERCISE CODE FOR PERFORMANCE COLLECTOR
REM;

&Rs = GetRowset(Scroll.PTP_TABLE1);

&Rs.Flush();
&Rs.Select(Record.PTP_TABLE1, "WHERE PTP_SEQ_NBR <= 10005");

&timeTaken = %PerfTime - &startTime;

Related Links
%Time

970  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

%PermissionLists

Description

This system variable returns an array object containing entries for all the permission lists to which the
current user belongs.

Note: Only permission list definition names and not permission list alias names are returned in the array.

Related Links
IsUserInPermissionList

%PID

Description

This system variable returns the process ID of the process that issues it as a number. For example, if an
application server has a process ID of 445656 (as seen on task manager), this system variable would
return 445656 for any PeopleCode that ran on that application server (that is, from a component.)
Application Engine PeopleCode run on the Application Engine server, and so on.

%Portal

Description

%Portal returns the name of the portal the current service is being accessed through, as a string. For
example, suppose your PeopleCode is part of the page USERMAIN_SELF, in this URL:

http://serverx/servlets/psp/eprocurement/hrms/c/MAINTAINT_SECURITY.USERMAIN_SEF.GBL

This system variable returns the following:

eprocurement

Related Links
"Understanding Nodes" (Integration Broker Administration)

%PrevComponent

Description

% PrevComponent returns an uppercase character string containing the name of the component that a user
visited previously.

MessageBox(0, "", 0, 0, "The previously visited component is " | %PrevComponent);

Copyright © 1988, 2022, Oracle and/or its affiliates. 971



System Variables Chapter 3

Note: The %PrevComponent system variable cannot be used in all scenarios. It is only effective in
PeopleCode when a component has been visited. If it is used in batch process PeopleCode or iScript, you
will get an empty string value.

%PrimaryPermissionList

Description

This system variable returns a string representing the primary permission list of the current user.

%ProcessProfilePermissionList

Description

This system variable returns the process profile Permission List for the current user.

%PSAuthResult

Description

This system variable returns the result (True of False) of PeopleSoft ID and password authentication for
the user signing on.

%Recipient_Mail

Description

This system variable returns the external email addresses of users or recipients.

You can use this system variable to group users or recipients by their external email addresses.

Related Links
"AddRecipient" (PeopleCode API Reference)
"AddRecipients" (PeopleCode API Reference)

%Recipient_OPRID

Description

This system variable returns the user ID of users or recipients.

You can use this system variable to group users or recipients by their user IDs.

Related Links
"AddRecipient" (PeopleCode API Reference)
"AddRecipients" (PeopleCode API Reference)

972  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

%Recipient_Phone

Description

This system variable returns the external phone numbers of users or recipients.

You can use this system variable to group users or recipients by their external phone numbers.

Related Links
"AddRecipient" (PeopleCode API Reference)
"AddRecipients" (PeopleCode API Reference)

%Recipient_Role

Description

This system variable returns the roles of users or recipients.

You can use this system variable to group users or recipients by their roles.

Related Links
"AddRecipient" (PeopleCode API Reference)
"AddRecipients" (PeopleCode API Reference)

%Request

Description

%Request returns a reference to the request object. This reference can be used like an object, that is, you
can use this as part of a dot notation string. For example:

&LOGOUT = %Request.LogoutURL;

This system variable is applicable only in an internet script.

Related Links
"Understanding Internet Script Classes" (PeopleCode API Reference)

%Response

Description

%Response returns a reference to the response object. This reference can be used like an object, that is,
you can use this as part of a dot notation string. For example:

&CookieArray = %Response.CookieNames();

This system variable is applicable only in an internet script.

Copyright © 1988, 2022, Oracle and/or its affiliates. 973



System Variables Chapter 3

Related Links
"Understanding Internet Script Classes" (PeopleCode API Reference)

%ResultDocument

Description

This system variable returns a string containing an HTML document displayed to a user. This system
variable is used with SwitchUser to pass any messages from the sign on process (or Signon PeopleCode)
to the user.

Note: This system variable can be used only in Signon PeopleCode.

Related Links
SwitchUser

%Roles

Description

This system variable returns an array object containing entries for all the roles to which the current user
belongs.

Note: Only role definition names and not role alias names are returned in the array.

Related Links
IsUserInRole

%RowSecurityPermissionList

Description

This system variable returns a string representing the row-level PermissionList of the current user. The
row-level security PermissionList is distinct from the user’s primary PermissionList.

%RunningInPortal

Description

This system variable returns a Boolean value, letting you know if you're in the portal or not. This variable
works in both frame templates and HTML templates.

974  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

%ServerTimeZone

Description

%ServerTimeZone returns the current time zone on the server as a three-character string.

%Session

Description

%Session returns a reference to the current, existing session. If you use %Session successfully, you do not
have to use the GetSession function and Connect method. If you do not have a current session, %Session
returns NULL.

Example
Local ApiObject &MySession

&MySession = %Session;
If Not (&MySession) Then
   /* Application level error handling */
End-If;

%SignonUserId

Description

%SignonUserId returns the value the user typed in at the sign on page.

Note: This system variable can be used only in Signon PeopleCode.

%SignOnUserPswd

Description

%SignOnUserPswd returns the value the user typed in at the sign on page. This value is encrypted. This
ensures end-user passwords can't be "captured" by a Signon PeopleCode program.

Note: This system variable can be used only in Signon PeopleCode.

%SMTPBlackberryReplyTo

Description

This system variable returns the email address used by Blackberry to reply to, as a string, based on
value in the application server configuration file for SMTPBlackberryReplyTo. This value is used in the
Blackberry Response processing when Notification Templates are used.

Copyright © 1988, 2022, Oracle and/or its affiliates. 975



System Variables Chapter 3

Related Links
"Understanding RIM BlackBerry Email Responses" (Workflow Technology)

%SMTPGuaranteed

Description

This system variable returns a Boolean value, based on the value in the application server configuration
file for SMTPGuaranteed. The values are:

Value in Configuration File Value Returned by System Variable

0 False

1 True

When this value is set to True, the Notification Send method sends emails asynchronously by publishing
an Application Message (EMAIL_MSG).

When this value is set to False, the Notification Send method sends emails synchronously by calling the
SMTP server directly.

Related Links
SendMail
"Send" (PeopleCode API Reference)
"Understanding RIM BlackBerry Email Responses" (Workflow Technology)

%SMTPSender

Description

This system variable returns an email address as a string. The value is based on the value in the
application server configuration file for SMTPSender. This value is used as the default sender email
address for the following emails:

• TriggerBusinessEvent function

• SendMail function

• Notification class Send method

When using Notification Templates, if the Sender value is set to "System", this is the email address that is
used for the Sender.

Related Links
"Understanding RIM BlackBerry Email Responses" (Workflow Technology)

976  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

%SQLRows

Description

%SQLRows returns the number of rows affected by the most recent UPDATE, DELETE, or INSERT
executed through the SQLExec function.

%SQLRows can also be used after SELECT. It returns 0 if no rows are returned, a non-zero value if one
or more rows are returned. In this case, the non-zero value does not indicate the total number of rows
returned.

%Super

Description

%Super returns a reference to an object of the superclass.

A class that extends another class must have a constructor. In addition, the constructor method must
include code to initialize its superclass by assigning the %Super system variable to an instance of the
superclass. This assignment is allowed only in the constructor for the subclass.

Example

The following example shows this type of assignment:

class Example extends ExampleBase
   method Example();
   ...
end-class;

Global string &CurrentBaseString;

method Example
   %Super = create ExampleBase();
   &BaseString = &CurrentBaseString;
   &SlashString = &BaseString;
   &ImportantDate = Date(19970322);
end-method;

Related Links
"Superclass Reference" (PeopleCode API Reference)
"Constructors" (PeopleCode API Reference)

%This

Description

%This returns a reference to the current object.

Copyright © 1988, 2022, Oracle and/or its affiliates. 977



System Variables Chapter 3

Example

In the following example, both Banana and Apple are defined as subclasses of Fruit. When implemented,
the Slice method of each subclass will override the Slice method of the superclass. In addition, Banana
defines a Freeze method not found in the superclass; similarly, Apple defines a Juice method not found in
the superclass.

import FRUIT:Fruit;

class Banana extends FRUIT:Fruit
   method Banana();
   method Slice(&slices As number);
   method Freeze();
end-class;

method Banana
   %Super = create FRUIT:Fruit();
   %This.Color = "yellow";
end-method;

method Slice
   /+ &slices as Number +/
   /+ Extends/implements FRUIT:Fruit.Slice +/
end-method;

method Freeze
end-method;

---------------------------------------------
import FRUIT:Fruit;

class Apple extends FRUIT:Fruit
   method Apple();
   method Slice(&slices As number);
   method Juice();
end-class;

method Apple
   %Super = create FRUIT:Fruit();
   %This.Color = "red";
end-method;

method Slice
   /+ &slices as Number +/
   /+ Extends/implements FRUIT:Fruit.Slice +/
end-method;

method Juice
end-method;

Related Links
"Self-Reference" (PeopleCode API Reference)

%Time

Description

%Time retrieves the current database server time.

If your application deals with time-sensitive data, use this value. If you want to measure the performance
of a PeopleCode program, use the %PerfTime system variable instead.

978  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 3 System Variables

Related Links
%PerfTime

%ToolsRelease

Description

%ToolsRelease returns a character string containing the PeopleTools release and patch version.

Example
MessageBox(0, "", 0, 0, "Current PeopleTools release is: %1", %ToolsRelease);

The message box would display Current PeopleTools release is: 8.55.22 on a PeopleSoft environment
running PeopleTools 8.55 with patch version 22.

%TransformData

Description

This system variable returns a reference to the TransformData object. If you do not have a current
TransformData object, %TransformData returns Null.

Related Links
"Understanding Filtering, Transformation, and Translation" (Integration Broker)
"Understanding the TransformData Class" (PeopleCode API Reference)

%UserDescription

Description

This system variable returns the description (if any) listed for the current user.

%UserId

Description

%UserId returns a character string containing the user currently logged on. This is typically used to
restrict access to records or fields to specific users.

%WLInstanceID

Description

%WLInstanceID returns a string containing the name of the Worklist Instance ID for the current worklist
entry. It returns a blank string if the current page was not accessed using a worklist.

Copyright © 1988, 2022, Oracle and/or its affiliates. 979



System Variables Chapter 3

%WLName

Description

%WLName returns a string containing the name of the Worklist for the current worklist entry. It returns a
blank string if the current page was not accessed using a worklist.

980  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 4

Meta-HTML

Understanding Meta-HTML

PeopleSoft page processing includes functionality to perform certain substitutions in the generated
HTML. These substitutions are known as meta-HTML. These meta-HTML elements enable access to
some of the runtime environment, and in some cases, to perform browser-dependent substitutions.

The meta-HTML processing is performed on the entire page, including the contents of any HTML areas
in the page. Meta-HTML can be used in the following items:

• An HTML area of a page definition.

• iScript output – An iScript can generate HTML, which could also contain JavaScript code.

• HTML layout objects – That is, HTML objects used for homepage tab or pagelet layout.

• Style sheet definitions – Typically, free form style sheets. These are attached as an “auxiliary file”
with a .css extension.

• JavaScript definitions – That is, an HTML definition that consists of JavaScript code. These are
attached as an “auxiliary file” with a .js extension.

Related Links
"Working With Free Form Sub Style Sheets" (Application Designer Developer’s Guide)
"Understanding HTML Definitions" (Application Designer Developer’s Guide)
"Working with JavaScript in HTML Definitions" (Application Designer Developer’s Guide)
"Internet Script Classes" (PeopleCode API Reference)

Meta-HTML Placement Considerations
A limited subset of the meta-HTML processing is performed on any auxiliary JavaScript or style sheet
files attached and downloaded to the web server. Each meta-HTML element that may be used in auxiliary
files is noted in its description and in the following table. This meta-HTML processing occurs both for
files attached to PeopleSoft pages and for files attached to iScript output:

• Attaching JavaScript as an auxiliary file:

• Use the %JavaScript meta-HTML function to attach JavaScript as an auxiliary file to an HTML
area. See %JavaScript.

• Use the GetJavaScriptURL method of the Response class to attach JavaScript as an auxiliary file
to iScript output or a PeopleSoft page. See "GetJavaScriptURL" (PeopleCode API Reference).

• Attaching a style sheet as an auxiliary file:

Copyright © 1988, 2022, Oracle and/or its affiliates. 981



Meta-HTML Chapter 4

• Use the %StyleSheet meta-HTML function to attach a style sheet as an auxiliary file to an HTML
area. See %StyleSheet.

• Use the GetStyleSheetURL method of the Response class to attach a style sheet as an auxiliary
file to iScript output or a PeopleSoft page. See "GetStyleSheetURL" (PeopleCode API
Reference).

Meta-HTML Element Auxiliary JavaScript Auxiliary Style Sheets

%AlignEnd Yes Yes

%AlignStart Yes Yes

%Appserver No No

%AppsRel Yes No

%Browser No No

%BrowserPlatform No No

%BrowserVersion No No

%Cols Yes No

%Component No No

%BB No Yes

%BP No Yes

%BV No Yes

%ContentReference Yes Yes

%Copyright Yes No

%DBName Yes No

%DBType Yes No

%Direction Yes No

982  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 4 Meta-HTML

Meta-HTML Element Auxiliary JavaScript Auxiliary Style Sheets

%Encode Yes No

%ExplainMessage Yes No

%FORMFACTOREXTRALARGE No No

%FORMFACTORLARGE No No

%FORMFACTORMEDIUM No No

%FORMFACTORSMALL No No

%Formname Yes No

%HtmlContent Yes No

%Image Yes Yes

%JavaScript Yes No

%LableTag No No

%LanguageISO Yes No

%Menu No No

%Message Yes Yes

%Page No No

%ServicePack Yes No

%StyleSheet Yes No

%SubmitScriptName No No

%tabindex Yes No

%ToolsRel Yes No

Copyright © 1988, 2022, Oracle and/or its affiliates. 983



Meta-HTML Chapter 4

Meta-HTML Element Auxiliary JavaScript Auxiliary Style Sheets

%URL Yes No

%UserID Yes No

Meta-HTML Variables
A meta-HTML variable has the form %name, similar to the PeopleCode system variables. It's replaced by
the substituted value wherever it appears. The following example shows the use of meta-HTML variables:

&html = "<html dir='" | %Direction | "' lang='" | %LanguageISO | "'>";

Meta-HTML Functions
A meta-HTML function has the following form:

%name(parameter, parameter...)

The entire expression is replaced by a substituted value, where the parameters are used in determining the
value to be substituted. The parameters are arbitrary sequences of characters separated by commas. Do
not place quotes around the parameters unless they form part of the value to be used.

In the following example, the entire text is replaced by the contents of the message 126, 45 from the
message catalog, or the phrase "Unable to load images" if that message isn't found.

%Message(126, 45, Unable to load images)

Comments in HTML
The meta-HTML processor recognizes two forms of comments. These comments are deleted from the
generated HTML or JavaScript. They enable the application developer to comment the HTML objects in
the database without increasing the size of the HTML passed to the browser.

The recognized comments are as follows:

Two slashes followed by a percent sign at the start of a line designates everything to the end of the line
containing the slashes as a comment.

//%  anything

A less-than sign, followed by an exclamation mark and a percentage sign designates everything from
those marks to the mark --> as a comment, which may be on another line.

<!%  anything   -->

These meta-HTML comments may be used both in HTML areas and attached auxiliary files.

984  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 4 Meta-HTML

Considerations When Using Find Definition References
When you specify a definition name in an HTML area, it is not found using the Find Definition
References menu item in Application Designer. It also won't be automatically renamed when a definition
is renamed. All text within an HTML area is treated like a quoted string, a literal.

For example, Find Definition References won't find references to the PSLOGO image or the
PT_EDITSCRIPTS HTML definition .

<img src='%Image(PSLOGO)'>

<script src='%JavaScript(PT_EDITSCRIPTS)'></script>

Meta-HTML Reference

In this section, each meta-HTML element is discussed in alphabetical order.

%AlignEnd

Description

At runtime, %AlignEnd is replaced with the orientation of the end of the line based on the directionality
of the language set at user signon:

• right for left-to-right languages.

• left for right-to-left languages.

Note: This variable is valid for use in auxiliary style sheet files and auxiliary JavaScript files.

Related Links
%Direction

%AlignStart

Description

At runtime, %AlignStart is replaced with the orientation of the start of the line based on the directionality
of the language set at user signon:

• left for left-to-right languages.

• right for right-to-left languages.

Note: This variable is valid for use in auxiliary style sheet files and auxiliary JavaScript files.

Related Links
%Direction

Copyright © 1988, 2022, Oracle and/or its affiliates. 985



Meta-HTML Chapter 4

%Appserver

Description

At runtime %Appserver is replaced with the name of the application server.

%AppsRel

Description

At runtime %AppsRel is replaced with the application release string.

Note: This variable is valid for use in auxiliary JavaScript files.

%Browser

Description

At runtime %Browser is replaced with the browser name as specified by the browser loading the current
page.

%BrowserPlatform

Description

At runtime %BrowserPlatform is replaced with the operating system name as specified by the browser
loading the current page.

%BrowserVersion

Description

At runtime %BrowserVersion is replaced by the version string as specified by the browser loading the
current page.

%Cols

Syntax

%Cols(n)

Description

At runtime %Cols(n) is replaced with COLS=n.

986  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 4 Meta-HTML

Parameters

Parameter Description

n Specify the number of columns.

Note: This variable is valid for use in auxiliary JavaScript files. However, it always generates COLS=n,
that is, it isn't Browser-aware when used in attached files.

%Component

Description

At runtime %Component is replaced with the component name of the current component.

%BB

Syntax

%BB(css_property)

Description

Use the %BB function to expand the generic style into the browser-specific style and add the browser
prefix to the both the CSS property name and the property value. Use this function in free form style sheet
definitions only.

Note: Use this function in style sheet definitions only.

Note: This function is valid for use in auxiliary style sheet files.

Parameters

Parameter Description

css_property Specifies the CSS property as a String value.

Example
%BB(transition:transform 1s ease-in-out 0.3s);

In the case of Firefox, the expanded browser-specific style would be as follows:

-moz-transition:-moz-transform 1s ease-in-out 0.3s

Copyright © 1988, 2022, Oracle and/or its affiliates. 987



Meta-HTML Chapter 4

%BP

Syntax

%BP(css_property)

Description

Use the %BP function to expand the generic style into the browser-specific style and add the browser
prefix to the CSS property name. Use this function in free form style sheet definitions only.

Note: Use this function in style sheet definitions only.

Note: This function is valid for use in auxiliary style sheet files.

Parameters

Parameter Description

css_property Specifies the CSS property as a String value.

Example

The following %BP function expands the generic style:

%BP(box-orient: vertical);

In the case of a WebKit browser (Safari or Chrome), the expanded browser-specific style would be as
follows:

-webkit-box-orient: vertical

%BV

Syntax

%BV(css_property)

Description

Use the %BV function to expand the generic style into the browser-specific style and add the browser
prefix to the CSS property value. Use this function in free form style sheet definitions only.

Note: Use this function in style sheet definitions only.

Note: This function is valid for use in auxiliary style sheet files.

988  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 4 Meta-HTML

Parameters

Parameter Description

css_property Specifies the CSS property as a String value.

Example

The following %BV function expands the generic style:

%BV(display:box);

In the case of Internet Explorer, the expanded browser-specific style would be as follows:

display:-ms-box

%ContentReference

Syntax

%ContentReference(PORTAL_NAME, CREF_object, [URL_type])

Description

At runtime, %ContentReference is replaced with the absolute URL to the specified content reference.

Note: If the specified content reference object does not exist or the current user does not have access to it,
an error message is returned instead of the URL.

Note: This function is valid for use in auxiliary style sheet files and auxiliary JavaScript files.

Parameters

Parameter Description

PORTAL_NAME Specifies the portal.

CREF_object Specifies the name of the content reference definition.

URL_type Specifies the URL type:

• psp — Specifies the absolute portal URL.

• psc — Specifies the absolute content URL.

Note: psp is the default value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 989



Meta-HTML Chapter 4

Example

The following example demonstrates a usage of %ContentReference:

%ContentReference(EMPLOYEE, PT_PTFP_VIEW_GBL, psp)

The resulting absolute URL would be similar to the following:

http://myserver.example.com:8080/psp/QEDMO/EMPLOYEE/PT_LOCAL/c/PTFP_FEED_PUBLISHING⇒

.PTFP_VIEW.GBL

%Copyright

Description

At runtime %Copyright is replaced with a string suitable for use as a standard PeopleSoft copyright
notice.

Note: This variable is valid for use in auxiliary JavaScript files.

%DBName

Description

At runtime %DBName is replaced with the name of the application database.

Note: This variable is valid for use in auxiliary JavaScript files.

%DBType

Description

At runtime %DBType is replaced with the type of the application database.

Note: This variable is valid for use in auxiliary JavaScript files.

%Direction

Description

At runtime, %Direction is replaced with the directionality of the language set at user signon:

• ltr for left-to-right languages.

• rtl for right-to-left languages.

Note: This variable is valid for use in auxiliary JavaScript files.

990  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 4 Meta-HTML

Related Links
%AlignStart
%AlignEnd

%Encode

Syntax

%Encode(anything)

Description

At runtime %Encode plus anything is replaced with the encoded string. Encoding is done according to
normal URL encoding rules.

Note: This function is valid for use in auxiliary JavaScript files.

Parameters

Parameter Description

anything Specify the string to be encoded.

%ExplainMessage

Syntax

%ExplainMessage(message_set, message_num [, alt_msg_text])

Description

Use the %ExplainMessage function to retrieve the Description field (that is, the explain, or detailed text)
for a message from the message catalog.

Note: Use this function in HTML definitions only.

Note: This variable is valid for use in auxiliary JavaScript files.

Parameters

Parameter Description

message_set Specifies the message set as an Integer value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 991



Meta-HTML Chapter 4

Parameter Description

message_num Specifies the message number as an Integer value.

alt_msg_text Specifies a String value representing an alternate message to
be used if the message set and number are not found in the
message catalog.

Note: The alternate message is used as is. Any quotation
marks used to enclose the alternate message will be output as
part of the message instead. In addition, because a comma is
used as a separator between parameters, a comma will truncate
the alternate message.

Example 1

The following example demonstrates usage of the %ExplainMessage function:

%ExplainMessage(124, 528, Message Not Found: Click Yes to go back and save; No to d⇒

iscard your changes)

The resulting description is returned from the message catalog:

Click Yes to go back and save, No to discard your changes

Example 2

The following example specifies a message set and number that is undefined in the message catalog:

%ExplainMessage(124, 999, "Message Not Found: Click Yes to go back and save, No to ⇒

discard your changes")

Because the alternate message includes a comma, it would be truncated as follows:

"Message Not Found: Click Yes to go back and save

Related Links
%Message

%FORMFACTOREXTRALARGE

Description

Use the %FORMFACTOREXTRALARGE variable to return the ceiling (the maximum device width in
physical pixels) defined in the web server's browscap file for the extra large form factor as an Integer.

Note: Use this variable in media queries in free form style sheet definitions only.

992  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 4 Meta-HTML

Example
@media only screen
and (max-width:%FORMFACTORMEDIUM)
{
 .psc_columnitem-1of2,
 .psc_columnitem-2of2,
 .psc_columnitem-1of3,
 .psc_columnitem-2of3,
 .psc_columnitem-3of3
 {
 float:none;
 width:auto;
 display:block;
 }
}

%FORMFACTORLARGE

Description

Use the %FORMFACTORLARGE variable to return the ceiling (the maximum device width in physical
pixels) defined in the web server's browscap file for the large form factor as an Integer.

Note: Use this variable in media queries in free form style sheet definitions only.

%FORMFACTORMEDIUM

Description

Use the %FORMFACTORMEDIUM variable to return the ceiling (the maximum device width in
physical pixels) defined in the web server's browscap file for the medium form factor as an Integer.

Note: Use this variable in media queries in free form style sheet definitions only.

%FORMFACTORSMALL

Description

Use the %FORMFACTORSMALL variable to return the ceiling (the maximum device width in physical
pixels) defined in the web server's browscap file for the small form factor as an Integer.

Note: Use this variable in media queries in free form style sheet definitions only.

%Formname

Description

At runtime %Formname is replaced with the name of the HTML FORM generated for the current page.

Note: This variable is valid for use in auxiliary JavaScript files.

Copyright © 1988, 2022, Oracle and/or its affiliates. 993



Meta-HTML Chapter 4

%HtmlContent

Syntax

%HtmlContent(ContentName)

Description

At runtime %HtmlContent and ContentName are replaced by the URL suitable for referencing the content
on the web server. In addition, the content is loaded into the web server's cache directory.

Note: This variable is valid for use in auxiliary JavaScript files.

Parameters

Parameter Description

ContentName Specify the content you want to access, as a string.

%Image

Syntax

%Image(IMAGE_NAME)

Description

At runtime %Image and IMAGE_NAME are replaced by the URL suitable for referencing the image on
the web server. In addition, the image is loaded into the web server's cache directory.

Note: This function is valid for use in auxiliary style sheet files and auxiliary JavaScript files.

Parameters

Parameter Description

IMAGE_NAME Specify the name of an image saved as an image definition in
Application Designer.

Example
<img src='%Image(PSLOGO)'>

994  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 4 Meta-HTML

%JavaScript

Syntax

%JavaScript(HTML_DEF_NAME)

Description

At runtime %JavaScript and the HTML_DEF_NAME are replaced by the URL suitable for referencing
the .js file on the web server. In addition, the JavaScript is loaded into the web server's cache directory.

Note: This function is valid for use in auxiliary JavaScript files.

Parameters

Parameter Description

HTML_DEF_NAME Specify the name of an HTML definition that contains a
JavaScript program.

Example
<script src='%JavaScript(PT_EDITSCRIPTS)'></script>

%LabelTag

Description

At runtime %LableTag is replaced with the text LABEL.

%LanguageISO

Description

At runtime %LanguageISO is replaced with a string value representing the current session’s language
code or language code and country code if a country code exists.

Use %LanguageISO to declare the language of a Web page using the HTML lang attribute.

For instance, if the language for the current language is English, then <html
lang="%LanguageISO"> resolves to <html lang="en"> at runtime. If the current language is
Canadian French then it would resolve to <html lang="fr-ca"> .

Note: This variable is valid for use in auxiliary JavaScript files.

Example
&html = "<html dir='" | %Direction | "' lang='" | %LanguageISO | "'>";

Copyright © 1988, 2022, Oracle and/or its affiliates. 995



Meta-HTML Chapter 4

%Menu

Description

At runtime %Menu is replaced by the menu name for the currently loaded component.

%Message

Syntax

%Message(message_set, message_num, default_msg_txt [, paramlist])

where paramlist is an arbitrary-length list of parameters to be substituted in the resulting text string, in the
form:

param1 [, param2]. . .

Description

%Message retrieves a message from the PeopleCode Message Catalog and substitutes in the values of the
parameters into the message.

The message_set and message_num parameters specify the message to retrieve from the catalog. If the
message is not found in the Message Catalog, the default message provided in default_msg_txt is used.
Message sets 1 through 19,999 are reserved for use by PeopleSoft applications. Message sets 20,000
through 32,767 can be used by PeopleSoft users.

The parameters listed in the optional paramlist are referenced in the message using the % character
followed by an integer referencing the position of the parameter in the function call. For example, if the
first and second parameters in paramlist were MONDAY and 12/5/2001, they would be inserted into
the message string as %1 and %2. To include a literal percent sign in the string, use %%; %\ is used to
indicate an end-of-string and terminates the string at that point, this is generally used to specify fixed-
length strings with trailing blanks.

The message is obtained using the current user language code.

Note: This function is valid for use in auxiliary style sheet files and auxiliary JavaScript files.

Parameters

Parameter Description

message_set Specify the message set to be retrieved from the catalog. This
parameter takes a number value.

message_num Specify the message number to be retrieved from the catalog.
 This parameter takes a number value.

996  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 4 Meta-HTML

Parameter Description

default_msg_txt Specify the text to be displayed if the message isn't found. This
parameter takes a string value.

paramlist Specify values to be substituted into the message.

Note: If the message is changed (or a new language version is added) after the auxiliary file has been
loaded to the web server, the auxiliary file still contains the old version of the message. It is necessary
to manually delete the file from the web server cache directory to get it to re-retrieve the (unmodified)
auxiliary component with the (modified) message bindings.

Related Links
%ExplainMessage

%Page

Description

At runtime %Page is replaced by the name of the current page.

%ServicePack

Description

At runtime %ServicePack is replaced with the application service pack string.

Note: This variable is valid for use in auxiliary JavaScript files.

%StyleSheet

Syntax

%StyleSheet(STYLE_SHEET_NAME)

Description

At runtime, %StyleSheet and the STYLE_SHEET_NAME parameter are replaced by the absolute URL
suitable for referencing the .css file on the web server. In addition, the style sheet is loaded into the web
server's cache directory.

Note: This function is valid for use in auxiliary JavaScript files.

Copyright © 1988, 2022, Oracle and/or its affiliates. 997



Meta-HTML Chapter 4

Parameters

Parameter Description

STYLE_SHEET_NAME Specify the name of a style sheet definition stored in the
database.

Example

The following example demonstrates a usage of %StyleSheet:

%StyleSheet(PSSTYLEDEF_FMODE)

The resulting absolute URL would be similar to the following:

http://myserver.example.com:8080/cs/QEDMO/cache/PSSTYLEDEF_FMODE_133.css

%SubmitScriptName

Description

At runtime %SubmitScriptName is replaced with the name of the JavaScript function that the current page
uses to submit the form when a server action is required.

%tabindex

Description

At runtime, for each field inside an HTML area that is defined with the %tabindex meta-variable,
%tabindex will be replaced with the tab index of the HTML area itself.

This meta-variable is valid for fields inside an HTML area only; if the field is not inside HTML area, then
this meta-variable will remain unresolved at runtime.

Note: This variable is valid for use in auxiliary JavaScript files.

Example

In the following example, two fields have been defined with the %tabindex meta-HTML variable, while
one has not:

<a href="http://www.w3schools.com" tabindex="%tabindex">Visit W3Schools.com!</a>
<a id="HELP" name="HELP" href="javascript:some_function1();" tabindex="%tabindex">H⇒

elp</a>
<a id="NEWWIN" name="NEWWIN" href="javascript:some_function2();">New Window</a>

At runtime, if the tab index for the HTML area is 20, then this HTML fragment resolves to:

<a href="http://www.w3schools.com" tabindex="20">Visit W3Schools.com!</a>
<a id="HELP" name="HELP" href="javascript:some_function1();" tabindex="20">Help</a>
<a id="NEWWIN" name="NEWWIN" href="javascript:some_function2();">New Window</a>

998  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 4 Meta-HTML

%ToolsRel

Description

At runtime %ToolsRel is replaced with the tools release string.

Note: This variable is valid for use in auxiliary JavaScript files.

%URL

Syntax

%URL(URLIdentifier [, NOENCODE | ENCODE | DESCR])

Description

The %URL meta-HTML function finds the URL specified by URLIdentifier and substitutes its value. The
URLIdentifier must already exist and have been created using URL Maintenance.

Note: This function is valid for use in auxiliary JavaScript files.

Parameters

Parameter Description

URLIdentifier Specify a URL Identifier for a URL that already exists and was
created using the URL Maintenance page.

NOENCODE | ENCODE | DESCR Specify any encoding or other processing to be done with the
URL. ENCODE is the default value. If you specify ENCODE,
special characters in the URL are encoded using standard URL
encoding rules, that is, blanks are replaced with %20, and so
on.

If you specify NOENCODE, no encoding is done with the
URL.

If you specify DESCR, the description from the URL
definition is used instead of the URL itself.

Example
<a href='%URL(homepage)'>%URL(homepage, DESCR)</a>

Related Links
"URL Maintenance" (System and Server Administration)

Copyright © 1988, 2022, Oracle and/or its affiliates. 999



Meta-HTML Chapter 4

%UserId

Description

At runtime %UserID is replaced with the current user ID.

Note: This variable is valid for use in auxiliary JavaScript files.

1000  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 5

Viewing Trees From Application Pages

Understanding View Trees

These topics are for developers of PeopleSoft applications who want to display a tree from an application
page, and enable users to select a node or leaf from the tree. It provides an overview of View Trees and
discusses how to invoke View Trees from application pages.

Use a secondary ‘Tree Viewer’ page, (PSTREEVIEWER), to display an existing PeopleSoft tree from an
application using the same HTML format as PeopleSoft Tree Manager. It enables the user to select a node
or a leaf from a tree and return the selected node or leaf back to the application.

The following PeopleTools definitions are used:

• Secondary Page: PSTREEVIEWER

• Work Page: PSTREEVIEWERWRK

• Work Record: PSTREEVIEWWRK

The work record and work page are used as a way to transfer data between an application page and
the secondary page. The PSTREEVIEWWRK record contains fields that define which tree to display,
whether the user has selected a node or leaf, and control fields that give the application some control over
the display options of the tree.

The following fields identify the specific tree to be displayed. These values should be populated by the
calling application as discussed in the following table.

Field Description

SetID SetID of the Tree to be displayed. Required if the tree is keyed
by a setID.

SetCntrlValue Business unit or SetCntrlValue of the Tree to be displayed.

Required if the tree is keyed by a business unit or
SetCntrlValue.

Tree_Name Name of the tree to be displayed. Required.

Copyright © 1988, 2022, Oracle and/or its affiliates. 1001



Viewing Trees From Application Pages Chapter 5

Field Description

EffDt Specify either the Tree’s Effective Date, or the date to be used
for finding the most current effective-dated version of the tree.

Tree Viewer performs a maximum effective date test and
displays the most current tree whose effective date is less than
or equal to the EffDt value passed in the PSTREEVIEWWRK
record.

Note: If a tree contains branches, they are ignored and shown as regular nodes. However, the root node
displays with the branch icon to indicate that the tree does contain branches.

There are two methods of opening the PSTREEVIEWER secondary page from an application:

• Without ‘MultiNode’ Selection (Method A): Enables user to select, and application to receive a single
node with level information, or a leaf with parent node information.

• With ‘MultiNode’ Selection (Method B): Enables user to select, and application to receive multiple
nodes without level information. If user selects a leaf the parent node is returned.

The following fields indicate whether specific nodes or a leaf has been selected by the application.
These fields can be populated by the calling application if it wants the position of a specific node or
leaf, identifying it as the currently selected. The fields are also updated or populated on the Tree Viewer
secondary page (PSTRREVIEWER), when the user selects a specific node or leaf and clicks the Select
button.

If the application specifies the node value and the leaf value, the search tries to find the leaf under the
specified node. This is important when a tree contains duplicate leaves. If a tree does have duplicate
leaves and no node is specified, the first leaf occurrence is returned.

Field Name Description Remarks

Tree_Node The Node_Id selected.

Must be an exact match to the Node_Id
stored in the PSTREENODE table.

Input and/or Output

Tree_Level_Num Level number associated with the
selected node.

Output

Tree_Level Level name associated with the selected
node.

Output

Tree_Level_Descr Level description associated with the
selected node.

Output

1002  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 5 Viewing Trees From Application Pages

Field Name Description Remarks

Leaf_Selected Y/N flag.

Indicates whether the application
specified a leaf.

Input

Range_From Range from value of the selected leaf. Input and/or Output

Range_To Range to value of the selected leaf. Input and/or Output

Dynamic_Flag Indicates whether the selected leaf is
dynamic.

Output

Message_Set_Nbr Populated in PSTREEVIEWERWRK if
error occurs. For example, selected node
or leaf is not found.

Collapsed tree is displayed.

Output

Message_Nbr Populated in PSTREEVIEWERWRK
if error occurs. For example, specified
node or leaf is not found.

Collapsed tree is displayed.

Output

Multinode Holds list of selected nodes as a comma-
separated string.

Populated if Multinodeselection is set to
"Y".

Output

The following fields (input) can be used to control the appearance and formatting of the Tree Viewer
secondary page:

Field Name Description

Page_Size Determines the number of lines to be displayed on a given
page.

If no value is specified the default value is 60 lines per page.

Show_Leaves Y/N flag.

Controls whether the Tree Viewer displays Detail Values.

Show_Levels Y/N flag.

Controls whether the Tree Viewer should display the Level
Description next to the node description.

Copyright © 1988, 2022, Oracle and/or its affiliates. 1003



Viewing Trees From Application Pages Chapter 5

Field Name Description

Multinodeselection Y/N Flag.

Default = "N"

Related Links
"PeopleSoft Tree Manager Overview" (Tree Manager)

Invoking View Trees From Application Pages

This section outlines the development steps and provides some sample code to view trees from an
application page. It provides two methods of how to view trees from application pages:

• Without multi-node selection.

• With multi-node selection.

To view a tree from an application page:

1. Add the PSTREEVIEWERWRK page to your component as a hidden page.

2. Add a field to a work record that will then be used as a Command Button or Hyperlink to your
secondary page.

The user selects this button or link to invoke the Tree Viewer page. You also need to add the following
sample code to the FieldChange event for this field.

3. Add the Command Button or Hyperlink to the application page.

4. Add a Secondary Page control to the application page, and set the secondary page to
PSTREEVIEWER.

The Secondary Page control must be placed on the page at a level higher than level 3.

In addition, the Command button or Hyperlink to invoke the PSTREEVIEWER secondary page must
be placed on the same level as a secondary page control.

5. Add the application PeopleCode, which should do the following:

a. Set the values of the Tree’s key fields on the PSTREEVIEWWRK record.

b. Determine whether a node has been previously selected, and if so, setting the Tree_Node field to
be the ID of the selected node:

If a leaf has been previously selected, your code should do the following:

— Populate the Range_From and Range_To fields with the selected leaf values

— Set the Tree_Node field to the parent node

— Set the Leaf_Selected field to "Y"

1004  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 5 Viewing Trees From Application Pages

c. Set any of the display options that you want to use.

d. Display the Tree Viewer secondary page (PSTREEVIEWER) by calling the DoModal PeopleCode
function.

e. Optionally, check the return code value and storing the ID of the selected node if the user selected
a node and clicked the OK or Select button.

/* Note: Keys of Tree are stored in &SetId,&TreeName variables.
Assume that application has Leaf selected with values stored in variables &RangeFro⇒

m; &RangeTo and has parent node name stored in &TreeNode variable. QE_TREETEST_WRK ⇒

Record holds input and received output values. */

/*Tree to open specification */
PSTREEVIEWWRK.SETID = &SETID;
PSTREEVIEWWRK.SETCNTRLVALUE = " ";
PSTREEVIEWWRK.TREE_NAME = &TREENAME;
PSTREEVIEWWRK.TREE_BRANCH = " ";
PSTREEVIEWWRK.EFFDT = %DATE; /* Get Latest Tree as of Today */

/* Tree appearance specification */
PSTREEVIEWWRK.PAGE_SIZE = 60;
PSTREEVIEWWRK.SHOW_LEAVES = "Y";
PSTREEVIEWWRK.SHOW_LEVELS = "Y";
PSTREEVIEWWRK.MULTINODESELECTION = "N";

/* Leaf input specification */
/* (Assuming QE_TREETEST_WK.LEAF_SELECTED ="Y"; */
PSTREEVIEWWRK.LEAF_SELECTED = QE_TREETEST_WRK.LEAF_SELECTED;
PSTREEVIEWWRK.TREE_NODE = &TreeNode;
PSTREEVIEWWRK.RANGE_FROM = &RangeFrom;
PSTREEVIEWWRK.RANGE_TO = &RangeTo;

/* Opening the PSTREEVIEWER secondary page */
&rslt = DoModal(Page.PSTREEVIEWER, " ", - 1, - 1);

/* populating the application Record (QE_TREETEST_WRK) with output values from user⇒

 selection in Tree */
If &rslt = 1 Then
   QE_TREETEST_WRK.TREE_NODE = PSTREEVIEWWRK.TREE_NODE;
   QE_TREETEST_WRK.TREE_LEVEL_NUM = PSTREEVIEWWRK.TREE_LEVEL_NUM;
   QE_TREETEST_WRK.TREE_LEVEL = PSTREEVIEWWRK.TREE_LEVEL;
   QE_TREETEST_WRK.TREE_LEVEL_DESCR = PSTREEVIEWWRK.TREE_LEVEL_DESCR;
   QE_TREETEST_WRK.RANGE_FROM = PSTREEVIEWWRK.RANGE_FROM;
   QE_TREETEST_WRK.RANGE_TO = PSTREEVIEWWRK.RANGE_TO;
   QE_TREETEST_WRK.DYNAMIC_FLAG = PSTREEVIEWWRK.DYNAMIC_FLAG;
   QE_TREETEST_WRK.MESSAGE_SET_NBR = PSTREEVIEWWRK.MESSAGE_SET_NBR;
   QE_TREETEST_WRK.MESSAGE_NBR = PSTREEVIEWWRK.MESSAGE_NBR;
End-If;

The following is the sample PeopleCode (Method A), which would be part of the FieldChange event
triggered from a Command Button or Hyperlink command on the application page:

In some cases, you may need to use the Component Level Record variable &cPSTREEVIEWWRK to
set values for the tree. For example, if the application added the Tree Viewer secondary page to the
application’s secondary page and cannot reach the record from the component buffer. The following is the
sample PeopleCode illustrating the use of the variable:

Component Record &cPSTREEVIEWWRK;
Component boolean &gbShowTreeLeaves;
Local number &rslt;

Copyright © 1988, 2022, Oracle and/or its affiliates. 1005



Viewing Trees From Application Pages Chapter 5

/* opening the Tree Viewer secondary page */

&cPSTREEVIEWWRK = CreateRecord(Record.PSTREEVIEWWRK);

&cPSTREEVIEWWRK.SETID.Value = &SETID;
&cPSTREEVIEWWRK.SETCNTRLVALUE.Value = " ";
&cPSTREEVIEWWRK.TREE_NAME.Value = &TREENAME;
&cPSTREEVIEWWRK.TREE_BRANCH.Value = " ";
&cPSTREEVIEWWRK.EFFDT.Value = %DATE; /* Get Latest Tree as of Today */;
&cPSTREEVIEWWRK.PAGE_SIZE.Value = 60;
&cPSTREEVIEWWRK.SHOW_LEVELS.Value = "Y";
&cPSTREEVIEWWRK.MULTINODESELECTION.Value = "N";

If &gbShowTreeLeaves Then
   &cPSTREEVIEWWRK.SHOW_LEAVES.Value = "Y";
Else
   &cPSTREEVIEWWRK.SHOW_LEAVES.Value = "N";
End-If;

&rslt = DoModal(Page.PSTREEVIEWER, "", - 1, - 1);

/* reading output value in a case when Component Level Record variable &cPSTREEVIEW⇒

ERWRK is used. */

If &rslt = 1 Then
   QE_TREETEST_WRK.TREE_NODE = &cPSTREEVIEWWRK.TREE_NODE.value;
   QE_TREETEST_WRK.TREE_LEVEL_NUM = &cPSTREEVIEWWRK.TREE_LEVEL_NUM.value;
   QE_TREETEST_WRK.TREE_LEVEL = &cPSTREEVIEWWRK.TREE_LEVEL.value;
   QE_TREETEST_WRK.TREE_LEVEL_DESCR = &cPSTREEVIEWWRK.TREE_LEVEL_DESCR.value;
   QE_TREETEST_WRK.RANGE_FROM = &cPSTREEVIEWWRK.RANGE_FROM.value;
   QE_TREETEST_WRK.RANGE_TO = &cPSTREEVIEWWRK.RANGE_TO.value;
   QE_TREETEST_WRK.DYNAMIC_FLAG = &cPSTREEVIEWWRK.DYNAMIC_FLAG.value;
   QE_TREETEST_WRK.MESSAGE_SET_NBR = &cPSTREEVIEWWRK.MESSAGE_SET_NBR.value;
   QE_TREETEST_WRK.MESSAGE_NBR = &cPSTREEVIEWWRK.MESSAGE_NBR.value;

   EndModal(1);

Else
   EndModal(0);

End-If;

Note: The name of the variable &cPSTREEVIEWWRK is hard-coded and should not be changed.

The segment of code in italics reads the results that came from the tree. (Node or leaf selected).

Example of Method A: Viewing Trees Without Multi-Node Selection
An example of an application that uses the Tree Viewer secondary page (PSTREEVIEWER) with the
Multinodeselection flag set to "N" is the Copy/Delete Tree (PSTREEMAINT) component.

To view the Tree Viewer secondary page from the Copy/Delete Tree page:

1. Select Tree Manager >Tree Utilities >Copy/Delete Tree.

2. Select a tree.

3. Click the View button.

1006  Copyright © 1988, 2022, Oracle and/or its affiliates.



Chapter 5 Viewing Trees From Application Pages

The following example shows the QE_PERS_DATA tree as viewed on the Tree Viewer secondary page
without multi-node selection:

Example of Method B: Viewing Trees With Multi-Node Selection
An example of an application that uses the PSTREEVIEWER secondary page with the
Multinodeselection flag set to "Y" is the Query Manager component.

To view the Tree Viewer secondary page from Query Manager:

1. Select Reporting Tools >Query >Query Manager.

2. Click the Edit link for any query.

3. Click the Add Criteria icon button.

4. Select Field as the first expression.

5. Select in tree as the condition type.

6. Click the New Node List link.

7. Select a tree to display.

Copyright © 1988, 2022, Oracle and/or its affiliates. 1007



Viewing Trees From Application Pages Chapter 5

8. Use the page fields and tree widgets to select multiple tree nodes.

9. Once all tree nodes have been selected, click the OK button.

The following example shows the QE_PERS_DATA tree as viewed on the Tree Viewer secondary page
with multi-node selection:

The Tree Viewer secondary page (PSTREEVIEWER) in Method B has a frame that holds the Selected
Nodes List with action buttons associated with each selected node. This page is used to select the set of
nodes, return them to the calling application (Query Manager), and use the list of nodes as Query criteria.

Once all nodes have been selected, the selected tree setID, tree name, effective date, and selected nodes
display in the Select Tree Node List group box. The list of selected nodes can also be read from the
Multinode field of the PSTREEVIEWWRK work record as a comma-separated string. The string can be
parsed to get the node names.

1008  Copyright © 1988, 2022, Oracle and/or its affiliates.


	Legal Notices
	Contents
	Preface
	Understanding the PeopleSoft Online Help and PeopleBooks
	Hosted PeopleSoft Online Help
	Locally Installed Help
	Downloadable PeopleBook PDF Files
	Common Help Documentation
	Field and Control Definitions
	Typographical Conventions
	ISO Country and Currency Codes
	Region and Industry Identifiers
	Translations and Embedded Help

	Using and Managing the PeopleSoft Online Help
	PeopleTools Related Links
	Contact Us
	Follow Us

	PeopleCode Built-in Functions and Language Constructs
	Functions by Category
	Analytic Calculation Engine
	APIs
	Application Classes
	Application Engine
	Application Logging
	Arrays
	Attachment
	Bulk
	Business Interlink
	Character Processing
	Charting
	ChartField
	Classic Plus
	Component Buffer
	Component Interface
	Conditional Navigation
	Conversion
	Currency and Financial
	Current Date and Time
	Custom Display Formats
	Database and Platform
	Date and Time
	Debugging
	Defaults, Setting
	DirectTransfer
	Documents
	Effective Date and Effective Sequence
	Email
	Environment
	Exceptions
	Executable Files, Running
	Files
	Financial
	Fluid Applications
	Grids
	Images
	Integration Broker
	Java
	Language Constructs
	Language Preference and Locale
	Logical (Tests for Blank Values)
	Mail
	Masking
	Math
	Menu Appearance
	Message Catalog
	Message Classes (Integration Broker)
	Modal Windows and Secondary Pages
	MultiChannel Framework
	Objects
	Pages
	Page Control Appearance
	Personalizations
	Portal
	Process Scheduler
	Remote Call
	RowsetCache
	Saving and Canceling
	Scroll Select
	Search Dialog
	SQL
	SQL Date and Time
	SQL Shortcuts
	String
	Subrecords
	Time Zone
	Trace Control
	Transfers
	Type Checking
	User Information
	User Security
	Validation
	Workflow
	XML

	PeopleCode Built-in Functions and Language Constructs: A
	Abs
	AccruableDays
	AccrualFactor
	Acos
	ActiveRowCount
	AddAttachment
	AddEmailAddress
	AddJavaScript
	AddKeyListItem
	AddMetaTag
	AddOnLoadScript
	AddStyleSheet
	AddSystemPauseTimes
	AddToDate
	AddToDateTime
	AddToTime
	Alias
	All
	AllOrNone
	AllowEmplIdChg
	Amortize
	And
	As
	Asin
	Atan

	PeopleCode Built-in Functions and Language Constructs: B
	BlackScholesCall
	BlackScholesPut
	BootstrapYTMs
	Break
	BulkDeleteField
	BulkInsertField
	BulkModifyPageFieldOrder
	BulkUpdateIndexes

	PeopleCode Built-in Functions and Language Constructs: C
	CallAppEngine
	CancelPubHeaderXmlDoc
	CancelPubXmlDoc
	CancelSubXmlDoc
	ChangeEmailAddress
	Char
	CharType
	ChDir
	ChDrive
	CheckMenuItem
	ChunkText
	Clean
	CleanAttachments
	ClearKeyList
	ClearSearchDefault
	ClearSearchEdit
	Code
	Codeb
	CollectGarbage
	CommitWork
	CompareLikeFields
	CompareStrings
	CompareTextDiff
	Component
	ComponentChanged
	ConfigureClassicPlusComponent
	ConfigureClassicPlusForWC
	ConnectorRequest
	ConnectorRequestURL
	ContainsCharType
	ContainsOnlyCharType
	Continue
	ConvertChar
	ConvertCurrency
	ConvertDatetimeToBase
	ConvertRate
	ConvertTimeToBase
	CopyAttachments
	CopyFields
	CopyFromJavaArray
	CopyRow
	CopyToJavaArray
	Cos
	Cot
	create
	CreateAnalyticInstance
	CreateArray
	CreateArrayAny
	CreateArrayRept
	CreateBreadcrumb
	CreateDirectory
	CreateDirecttransferObject()
	CreateDocument
	CreateDocumentKey
	CreateException
	CreateFieldDefn
	CreateJavaArray
	CreateJavaObject
	CreateJsonBuilder
	CreateJsonParser
	CreateMCFIMInfo
	CreateMessage
	CreateObject
	CreateObjectArray
	CreateProcessRequest
	CreateRecord
	CreateRecordDefn
	CreateRowset
	CreateRowsetCache
	CreateSearchRowset
	CreateSOAPDoc
	CreateSQL
	CreateWSDLMessage
	CreateXmlDoc
	CreateXmlDocFactory
	CropImage
	CubicSpline
	CurrEffDt
	CurrEffRowNum
	CurrEffSeq
	CurrentLevelNumber
	CurrentRowNumber

	PeopleCode Built-in Functions and Language Constructs: D
	Date
	Date3
	DatePart
	DateTime6
	DateTimeToHTTP
	DateTimeToISO
	DateTimeToLocalizedString
	DateTimeToTimeZone
	DateTimeToUserFormat
	DateTimeValue
	DateValue
	Day
	Days
	Days360
	Days365
	DBCSTrim
	DBPatternMatch
	DeChunkText
	Declare Function
	Decrypt
	DecryptStr
	Degrees
	DeleteAttachment
	DeleteEmailAddress
	DeleteFieldDefn
	DeleteImage
	DeleteRecord
	DeleteRecordDefn
	DeleteRow
	DeleteSQL
	DeleteSystemPauseTimes
	DeQueue
	DetachAttachment
	DisableMenuItem
	DiscardRow
	DoCancel
	DoesTableExist
	DoModal
	DoModalComponent
	DoModalComponentPopup
	DoModalPanelGroup
	DoModalPopup
	DoModalX
	DoModalXComponent
	DoSave
	DoSaveNow
	DownloadToExcel

	PeopleCode Built-in Functions and Language Constructs: E
	Else
	EnableMenuItem
	EncodeSearchCode
	EncodeURL
	EncodeURLForQueryString
	Encrypt
	EncryptStr
	EncryptNodePswd
	End-Evaluate
	End-For
	End-Function
	End-If
	EndMessage
	EndModal
	EndModalComponent
	End-While
	EnQueue
	Error
	EscapeHTML
	EscapeJavascriptString
	EscapeWML
	Evaluate
	Exact
	Exec
	ExecuteRolePeopleCode
	ExecuteRoleQuery
	ExecuteRoleWorkflowQuery
	ExecuteSearchSavePC
	Exit
	Exp
	ExpandBindVar
	ExpandEnvVar
	ExpandSqlBinds

	PeopleCode Built-in Functions and Language Constructs: F
	Fact
	FetchSQL
	FetchValue
	FieldChanged
	FileExists
	Find
	Findb
	FindCodeSetValues
	FindFiles
	FlushBulkInserts
	For
	FormatDateTime
	Forward
	Function

	PeopleCode Built-in Functions and Language Constructs: G
	GenABNNodeURL
	GenDynABNElement
	GenSecureKey
	GenerateActGuideContentUrl
	GenerateActGuidePortalUrl
	GenerateActGuideRelativeUrl
	GenerateComponentContentRelURL
	GenerateComponentContentURL
	GenerateComponentPortalRelURL
	GenerateComponentPortalURL
	GenerateComponentRelativeURL
	GenerateExternalPortalURL
	GenerateExternalRelativeURL
	GenerateHomepagePortalURL
	GenerateHomepageRelativeURL
	GenerateQueryContentURL
	GenerateQueryPortalURL
	GenerateQueryRelativeURL
	GenerateScriptContentRelURL
	GenerateScriptContentURL
	GenerateScriptPortalRelURL
	GenerateScriptPortalURL
	GenerateScriptRelativeURL
	GenerateTree
	GenerateWorklistPortalURL
	GenerateWorklistRelativeURL
	GenHTMLMenu
	GenToken
	GetABNChartRowSet
	GetABNInitialNode
	GetABNNode
	GetABNRelActnRowSet
	GetABNReqParameters
	GetABNTreeEffdt
	GetABNTreeName
	GetABNTreeSetid
	GetABNTreeUserKey
	GetAddSearchRecName
	GetAESection
	GetAnalyticGrid
	GetAnalyticInstance
	GetArchPubHeaderXmlDoc
	GetArchPubXmlDoc
	GetArchSubXmlDoc
	GetAttachment
	GetAttachmentURL
	GetBiDoc
	GetBreadcrumbs
	GetCalendarDate
	GetChart
	GetChartURL
	GetComponentTitle
	GetCwd
	GetDefinitionAccess
	GetDialGauge
	GetEnv
	GetField
	GetFieldDefn
	GetFile
	GetGanttChart
	GetGaugeThreshold
	GetGrid
	GetHTMLText
	GetImageExtents
	GetInterlink
	GetJavaClass
	GetLEDGauge
	GetLevel0
	GetMethodNames
	GetMessage
	GetMessageInstance
	GetMessageXmlDoc
	GetNextNumber
	GetNextNumberWithGaps
	GetNextNumberWithGapsCommit
	GetNextProcessInstance
	GetNRXmlDoc
	GetOrgChart
	GetPage
	GetPageField
	GetPagePrefix
	GetPageTitle
	GetPageType
	GetPanelControlStyle
	GetProgramFunctionInfo
	GetPubContractInstance
	GetPubHeaderXmlDoc
	GetPubXmlDoc
	GetRatingBoxChart
	GetRatingGauge
	GetRatingGaugeState
	GetRecord
	GetRecordDefn
	GetReferenceArea
	GetReferenceLine
	GetRelField
	GetRow
	GetRowset
	GetRowsetCache
	GetRTISwitchThreshold
	GetSearchRecordName
	GetSelectedTreeNode
	GetSeries
	GetSession
	GetSetId
	GetSparkChart
	GetSparkChartItem
	GetSQL
	GetStatusMeterGauge
	GetStoredFormat
	GetSubContractInstance
	GetSubXmlDoc
	GetSyncLogData
	GetTempFile
	GetThreshold
	GetTimeLine
	GetToolTip
	GetTreeNodeParent
	GetTreeNodeRecordName
	GetTreeNodeValue
	GetURL
	GetUserOption
	GetWLFieldValue
	Global
	Gray
	GrayMenuItem
	GroupletRequestSource

	PeopleCode Built-in Functions and Language Constructs: H
	Hash
	HashSHA256
	HashWithSalt
	HermiteCubic
	Hide
	HideMenuItem
	HideRow
	HideScroll
	HistVolatility
	Hour

	PeopleCode Built-in Functions and Language Constructs: I
	IBPurgeDomainStatus
	IBPurgeNodesDown
	Idiv
	If
	InboundPublishXmlDoc
	InitChat
	InsertImage
	InsertRow
	Int
	Integer
	IsAddEnabled
	IsAddMode
	IsAGComponent
	IsAGRequest
	IsAlpha
	IsAlphaNumeric
	IsBackEnabled
	IsClassicPlusMode
	IsDate
	IsDateTime
	IsDaylightSavings
	IsDigits
	IsFluidMode
	IsFluidNotifyEnabled
	IsFluidSearchStart
	IsGroupletInteractive
	IsGroupletRequest
	IsHidden
	IsHomeEnabled
	IsIScriptAuthorized
	IsLogoutEnabled
	IsMDAJAXTrf
	IsMDComponent
	IsMDGuided
	IsMDListPopup
	IsMDListSlideout
	IsMDNonOptimized
	IsMDRequest
	IsMDSearchEnabled
	IsMenuItemAuthorized
	IsMessageActive
	IsModal
	IsModalComponent
	IsModalPanelGroup
	IsModeless
	IsNavBarEnabled
	IsNewWindowEnabled
	IsNextInListEnabled
	IsNotificationEnabled
	IsNotifyEnabled
	IsNumber
	IsOperatorInClass
	ISOToDate
	ISOToDateTime
	IsPIIandSensitiveForUser
	IsPinEnabled
	IsPrevInListEnabled
	IsRecFieldPII
	IsRecFieldSensitive
	IsReturnToListEnabled
	IsSaveEnabled
	IsSearchDialog
	IsSearchEnabled
	IsSingleComponentAG
	IsSingleUnitOfWork
	IsSmallFFOptimized
	IsStandardSearchEnabled
	IsTime
	IsUserInPermissionList
	IsUserInRole
	IsUserNumber

	PeopleCode Built-in Functions and Language Constructs: J-L
	Left
	Len
	Lenb
	LinearInterp
	Ln
	LoadABN
	Local
	LogObjectUse
	Log10
	Lower
	LTrim

	PeopleCode Built-in Functions and Language Constructs: M
	MAddAttachment
	MarkPrimaryEmailAddress
	MarkWLItemWorked
	Max
	MCFBroadcast
	MessageBox
	Min
	Minute
	Mod
	Month
	MsgGet
	MsgGetExplainText
	MsgGetText

	PeopleCode Built-in Functions and Language Constructs: N
	NextEffDt
	NextRelEffDt
	NodeDelete
	NodeRename
	NodeSaveAs
	NodeTranDelete
	None
	Not
	NotifyQ
	NumberToDisplayString
	NumberToString

	PeopleCode Built-in Functions and Language Constructs: O
	ObjectDoMethod
	ObjectDoMethodArray
	ObjectGetProperty
	ObjectSetProperty
	OnlyOne
	OnlyOneOrNone
	Or
	OverrideCNAVDisplayMode
	OverrideConditionalNav

	PeopleCode Built-in Functions and Language Constructs: P-Q
	PanelGroupChanged
	PingNode
	PreloadCache
	PriorEffDt
	PriorRelEffDt
	PriorValue
	Product
	Prompt
	Proper
	PublishXmlDoc
	PutAttachment
	Quote

	PeopleCode Built-in Functions and Language Constructs: R
	Radians
	Rand
	RecordChanged
	RecordDeleted
	RecordNew
	RefreshTree
	RelNodeTranDelete
	RemoteCall
	RemoveDirectory
	RenameDBField
	RenamePage
	RenameRecord
	Repeat
	Replace
	Rept
	ResizeImage
	ReSubmitPubHeaderXmlDoc
	ReSubmitPubXmlDoc
	ReSubmitSubXmlDoc
	Return
	Returns
	ReturnToServer
	ReValidateNRXmlDoc
	RevalidatePassword
	Right
	Round
	RoundCurrency
	RowFlush
	RowScrollSelect
	RowScrollSelectNew
	RTrim

	PeopleCode Built-in Functions and Language Constructs: S
	SamRefreshView
	ScanFile
	ScheduleProcess
	ScrollFlush
	ScrollSelect
	ScrollSelectNew
	Second
	SecureRandomGen
	SendMail
	SetAddMode
	SetAuthenticationResult
	SetChannelStatus
	SetComponentChanged
	SetControlValue
	SetCursorPos
	SetDBFieldAuxFlag
	SetDBFieldCharDefn
	SetDBFieldFormat
	SetDBFieldFormatLength
	SetDBFieldLabel
	SetDBFieldLength
	SetDBFieldNotUsed
	SetDefault
	SetDefaultAll
	SetDefaultNext
	SetDefaultNextRel
	SetDefaultPrior
	SetDefaultPriorRel
	SetDisplayFormat
	SetFacetNamesToRemove
	SetLabel
	SetLanguage
	SetMDAJAXTrf
	SetMDGuided
	SetMDListPopup
	SetMDListSlideout
	SetMessageStatus
	SetNextPanel
	SetNextPage
	SetPageFieldPageFieldName
	SetPanelControlStyle
	SetPasswordExpired
	SetPostReport
	SetRecFieldEditTable
	SetRecFieldKey
	SetReEdit
	SetRemovelistView
	SetSaveWarningFilter
	SetSearchDefault
	SetSearchDialogBehavior
	SetSearchEdit
	SetTempTableInstance
	SetThemeId
	SetTracePC
	SetTraceSQL
	SetTransferAttributes
	SetupScheduleDefnItem
	SetUserOption
	ShareAttachment
	ShouldSuppressCREF
	Sign
	Sin
	SinglePaymentPV
	SortScroll
	Split
	SQLExec
	Sqrt
	StartWork
	Step
	StopFetching
	StoreSQL
	String
	StripOffHTMLTags
	Substitute
	Substring
	Substringb
	SwitchUser
	SyncRequestXmlDoc

	PeopleCode Built-in Functions and Language Constructs: T
	Tan
	Then
	throw
	Time
	Time3
	TimePart
	TimeToTimeZone
	TimeValue
	TimeZoneOffset
	To
	TotalRowCount
	Transfer
	TransferExact
	TransferExactTop
	TransferModeless
	TransferNode
	TransferPanel
	TransferPage
	TransferPortal
	TransferTop
	Transform
	TransformEx
	TransformExCache
	TreeDetailInNode
	TriggerBusinessEvent
	Truncate
	try
	TurnOffRTI

	PeopleCode Built-in Functions and Language Constructs: U
	UIDisplayMode
	UnCheckMenuItem
	Unencode
	UnGray
	UnHide
	UnhideRow
	UnhideScroll
	UniformSeriesPV
	UnshareAttachment
	Until
	UpdateSysVersion
	UpdateValue
	UpdateXmlDoc
	Upper

	PeopleCode Built-in Functions and Language Constructs: V
	Value
	ValueUser
	VerifyHash
	VerifyOprPassword
	ViewAttachment
	ViewContentURL
	ViewContentURLClassic
	ViewContentURLFluid
	ViewContentURLModeless
	ViewURL
	ViewURLModeless
	ViewURLTop

	PeopleCode Built-in Functions and Language Constructs: W-Z
	Warning
	Weekday
	When
	When-Other
	While
	WinEscape
	WinExec
	WinMessage
	WriteToLog
	Year

	Directive PeopleCode Functions and Constructs
	#Else
	#End-If
	#If
	#Then
	#ToolsRel


	Meta-SQL Elements
	Understanding Meta-SQL
	Meta-SQL Use
	Meta-SQL Element Types
	Parameter Markers

	Date Considerations
	Basic Date Meta-SQL Guidelines
	Date, DateTime, and Time Wrappers with Application Engine Programs
	Date, DateTime, and Time Out Wrappers for SQL Views and Dynamic Views
	{DateTimein-prefix} in SQR

	Meta-SQL Placement Considerations
	Meta-SQL Reference
	%Abs
	%BINARYSORT
	%Cast
	%COALESCE
	%Concat
	%CurrentDateIn
	%CurrentDateOut
	%CurrentDateTimeIn
	%CurrentDateTimeOut
	%CurrentTimeIn
	%CurrentTimeOut
	%DatabaseRelease
	%DateAdd
	%DateDiff
	%DateIn
	%DateNull
	%DateOut
	%DatePart
	%DateTimeDiff
	%DateTimeDiffExtended
	%DateTimeIn
	%DateTimeNull
	%DateTimeOut
	%DecDiv
	%DecMult
	%DTTM
	%EffDtCheck
	%FirstRows
	%InsertSelect
	%InsertSelectWithLongs
	%InsertValues
	%Join
	%KeyEqual
	%KeyEqualNoEffDt
	%Like
	%LikeExact
	%Mod
	%NoUppercase
	%NumToChar
	%OldKeyEqual
	%OPRCLAUSE
	%Round
	%SelectByRowNum
	%SelectDummyTable
	%SQL
	%SqlHint
	%Substring
	%SUBREC
	%Table
	%Test
	%TextIn
	%TimeAdd
	%TimeIn
	%TimeNull
	%TimeOut
	%TimePart
	%TrimSubstr
	%Truncate
	%TruncateTable
	%UpdatePairs
	%Upper
	%UuidGen
	%UuidGenBase64

	Meta-SQL Shortcuts
	%Delete
	%Insert
	%SelectAll
	%SelectDistinct
	%SelectByKey
	%SelectByKeyEffDt
	%Update


	System Variables
	Understanding System Variables
	System Variables Reference
	%AECallerApplId
	%AEExitReturnCode
	%AllowNotification
	%AllowRecipientLookup
	%ApplicationLogFence
	%AppService_HTTP_DELETE
	%AppService_HTTP_GET
	%AppService_HTTP_PATCH
	%AppService_HTTP_POST
	%AppService_HTTP_PUT
	%AsOfDate
	%AuthenticationToken
	%BPName
	%ClientDate
	%ClientTimeZone
	%Component
	%CompIntfcName
	%ContentID
	%ContentType
	%Copyright
	%Currency
	%Date
	%DateTime
	%DbName
	%DbServerName
	%DbType
	%EmailAddress
	%EmployeeId
	%ExternalAuthInfo
	%FilePath
	%HPTabName
	%IB_JSON
	%IB_XML
	%Import
	%IntBroker
	%IsMultiLanguageEnabled
	%Language
	%Language_Base
	%Language_Data
	%Language_User
	%LocalNode
	%Market
	%MaxMessageSize
	%MaxNbrSegments
	%Menu
	%Mode
	%NavigatorHomePermissionList
	%Node
	%OperatorClass
	%OperatorId
	%OperatorRowLevelSecurityClass
	%OutDestFormat
	%OutDestType
	%Page
	%Panel
	%PanelGroup
	%PasswordExpired
	%PerfTime
	%PermissionLists
	%PID
	%Portal
	%PrevComponent
	%PrimaryPermissionList
	%ProcessProfilePermissionList
	%PSAuthResult
	%Recipient_Mail
	%Recipient_OPRID
	%Recipient_Phone
	%Recipient_Role
	%Request
	%Response
	%ResultDocument
	%Roles
	%RowSecurityPermissionList
	%RunningInPortal
	%ServerTimeZone
	%Session
	%SignonUserId
	%SignOnUserPswd
	%SMTPBlackberryReplyTo
	%SMTPGuaranteed
	%SMTPSender
	%SQLRows
	%Super
	%This
	%Time
	%ToolsRelease
	%TransformData
	%UserDescription
	%UserId
	%WLInstanceID
	%WLName


	Meta-HTML
	Understanding Meta-HTML
	Meta-HTML Placement Considerations
	Meta-HTML Variables
	Meta-HTML Functions
	Comments in HTML
	Considerations When Using Find Definition References

	Meta-HTML Reference
	%AlignEnd
	%AlignStart
	%Appserver
	%AppsRel
	%Browser
	%BrowserPlatform
	%BrowserVersion
	%Cols
	%Component
	%BB
	%BP
	%BV
	%ContentReference
	%Copyright
	%DBName
	%DBType
	%Direction
	%Encode
	%ExplainMessage
	%FORMFACTOREXTRALARGE
	%FORMFACTORLARGE
	%FORMFACTORMEDIUM
	%FORMFACTORSMALL
	%Formname
	%HtmlContent
	%Image
	%JavaScript
	%LabelTag
	%LanguageISO
	%Menu
	%Message
	%Page
	%ServicePack
	%StyleSheet
	%SubmitScriptName
	%tabindex
	%ToolsRel
	%URL
	%UserId


	Viewing Trees From Application Pages
	Understanding View Trees
	Invoking View Trees From Application Pages
	Example of Method A: Viewing Trees Without Multi-Node Selection
	Example of Method B: Viewing Trees With Multi-Node Selection



