
Development Security Guide
Oracle Banking Corporate Lending

Release 14.7.0.0.0
[Nov] [2022]

Table of Contents
Security Guide

Table of Contents .. 2
1.2 Scope .. 4

1.2.1 Read Sections Completely ... 4
1.2.2 Understand the Purpose of this Guidance .. 4
1.2.3 Limitations .. 4

2. How to address the OWASP Top10 in Oracle ... 5
2.1 Injection ... 5
2.2 Broken Authentication and Session Management ... 5
2.3 Cross-Site Scripting (XSS)... 7
2.4 Insecure Direct Object References .. 8
2.5 Security Misconfiguration ... 9
2.6 Sensitive Data Exposure ... 11
2.7 Missing Function Level Access Control ... 12
2.8 Cross-Site Request Forgery (CSRF) ... 13
2.9 Using Components with Known Vulnerabilities .. 13
2.10 Unvalidated Redirects and Forwards Network Security ... 13

3. Securing Gateway Services ... 14
3.1 Inbound Application Integration ... 14
3.2 EJB Based Synchronous Deployment Pattern ... 14
3.3 Web Services Based Synchronous Deployment Pattern .. 15
3.4 HTTP Servlet Based Synchronous Deployment Pattern .. 15
3.5 MDB Based Asynchronous Deployment Pattern ... 16
3.6 Outbound Application Integration .. 16
3.7 Securing Web Services ... 16
3.8 Accessing Service and Operation .. 17
3.9 Gateway Password Generation Logic for External System Authentication ... 17
3.10 XSD Validation and Input Validation .. 17
3.11 List of Services .. 18
3.12 List of Interfaces .. 23

1.1 Introduction

1. About this Manual

Purpose:

This document provides security-related usage and configuration recommendations for Oracle
Banking Corporate Lending. This guide may outline procedures required to implement or secure
certain features, but it is also not a general-purpose configuration manual.

Audience:

This guide is primarily intended for Developers for Oracle Banking Corporate Lending application
and third party or vendor software’s. Some information may be relevant to IT decision makers and
users of the application are also included. Readers are assumed to possess basic operating
system, network, and system administration skills with awareness of vendor/third-party software’s
and knowledge of Oracle Banking Corporate Lending application.

1.2 Scope
1.2.1 Read Sections Completely

Each section should be read and understood completely. Instructions should never be blindly
applied. Relevant discussion may occur immediately after instructions for an action, so be sure to
read whole sections before beginning implementation.

1.2.2 Understand the Purpose of this Guidance

The purpose of the guidance is to provide security-relevant code and configuration
recommendations.

1.2.3 Limitations

This guide is limited in its scope to security-related guideline for developers.

2. How to address the OWASP Top10 in Oracle
Banking Corporate Lending

2.1 Injection
Injection flaws occur when an application sends untrusted data to an interpreter. Injection flaws are
very prevalent, particularly in legacy code. They are often found in SQL, LDAP, Xpath, or SQL queries;
OS commands; XML parsers, SMTP Headers, program arguments, etc. Injection flaws are easy to
discover when examining code.

Application uses Oracle database and it has adequate inbuilt techniques to prevent SQL injections as
underlined below:-

1. Use of prepared statements (parameterized queries)—Application uses Prepared Statement
with bind variables to construct and execute SQL statements in JAVA.

2. Use of Stored procedures-- Stored procedures have the same effect as the use of prepared
statements when implemented safely. 'Implemented safely' means the stored procedure does not
include any unsafe dynamic SQL generation. Application uses safe Java stored procedures calls.

In addition to the above, wherever dynamic queries exist, application uses adequate defence to
sanitize the untrusted input. The use of DBMS_ASSERT.SIMPLE_SQL_NAME and the use of bind
variables justify the fact.

3. Escaping all user supplied input-- This third technique is to escape user input before putting it
in a query. If it’s a concern that rewriting the dynamic queries as prepared statements or stored
procedures might break the application or adversely affect performance, then this might be the
best approach for the purpose. However, this methodology is frail compared to using
parameterized queries and there’s no guarantee that it will prevent all SQL Injection in all
situations.
APPLICATION uses context specific escaping. It has a StringEscapeUtils.java file, where context
specific escaping is handled.

2.2 Broken Authentication and Session Management
In application session interval will be validated against the session interval stored in the configurable
file FCUBS.properties file. Validations are added to check the maximum time limit for the inactive
session from being expired. Java API method javax.servlet.http.HTTPSession will set the max time
out period for the session.

A maximum limit is imposed on the value passed to set the maximum limit of session interval. The
maximum limit is a positive practical value. This validation is required to prevent long running
sessions that can be actively targeted.

The default value for session time out is 30 minutes and it is configurable in properties file.

The session used for login authentication will be invalidated (destroyed) and a new session will be
created once the user logged-in successfully to the application .And the new session will be used to
store the required variables.

A session attribute IsAuthenticated set to “Y” on successful login to the application. A new random
token (Cross-site request forgery) also generates and same is available in the session attribute.

The entire subsequent request within the session will be having the Authenticated and Cross-site
request forgery tokens .Every request send to the application from the browser is validated against
the IsAuthenticated attribute and Cross-site request forgery token.

A hidden form is used to submit the logout request to the server, with the response resulting in a 302
redirect instead of client initiated redirect to the login page.

Session get expire once user log off from application or if idle for its maximum limit.

Cryptography used

PCI council defines Strong Cryptography as:

Cryptography based on industry-tested and accepted algorithms, along with strong key lengths and
proper key-management practices. Cryptography is a method to protect data and includes both
encryption (which is reversible) and hashing (which is not reversible, or “one way”). SHA-1 is an example
of an industry-tested and accepted hashing algorithm. Examples of industry-tested and accepted
standards and algorithms for encryption include AES (128 bits and higher), TDES (minimum double-
length keys), RSA (1024 bits and higher), ECC (160 bits and higher), and ElGamal (1024 bits and higher).

Encryption algorithm: The application leverages AES encryption algorithm to store sensitive
information into properties file. This algorithm uses 256 bit secret key for encryption and decryption
which would be stored at property file.

Hashing algorithm: Oracle Banking Corporate Lending Solutions leverages SHA-512 hashing
algorithm for user password authentication. This algorithm generates a password digest for the
user password by using the SALT (Random number generated using SHA1PRNG algorithm) and
the iteration number available in the property file.

Session storage

Oracle Banking Corporate Lending Solutions application does not store Http Session
objects.

A unique sequence number generates and stored in current user table for the purpose of mapping
server-side sessions with the entries in the current user table.

During session expiry (triggered by the container), the session listener provides the application with
the sequence number of the session. The application makes checks as to whether the entry in
current user table contains the same sequence number. Only in such a case should the entry be
deleted.

When authentication of credentials (involving an incorrect user ID) is unsuccessful, the user id
should not be logged in the audit logs (database table). The following possible scenarios will be
accounted for:

Session logging

Unsuccessful attempt to login is stored in the database with terminal’s ip address and timestamp.
Invalid and expired session IDs submitted to the application are categorized as authentication
failures and the same are logged in the database table.

2.3 Cross-Site Scripting (XSS)

XSS is the most prevalent web application security flaw. XSS flaws occur when an application
includes user supplied data in a page sent to the browser without properly validating or escaping that
content. Application is coded keeping in view the XSS prevention rules as below:-

1. Technique#1—HTML Escape before inserting untrusted data into HTML element content

Across the Oracle Banking Corporate Lending application, context specific escaping has been used to
sanitize the untrusted data. For HTML content, the below function takes care of escaping the
probable tainted data:

public static String escapeHTML (String input);

Escaping the following characters, with HTML entity encoding, to prevent switching into any
execution context, such as script, style, or event handlers has been done. Use of recommended hex
entities is in place. In addition to the 5 characters significant in XML (&, <, >, ", '), the forward slash is
included as it helps to end an HTML entity.

& --> &
< --> <
> --> >
" --> "
' --> '
/ --> /

2. Technique #2-- JavaScript Escape Before Inserting Untrusted Data into JavaScript Data Values

Including untrusted data inside any other JavaScript context is quite dangerous, as it is extremely
easy to switch into an execution context with characters including (but not limited to) semi-colon,
equals, space, plus, and many more. For JavaScript context, the below function takes care of escaping
the probable tainted data:

public static String escapeJavaScript(String input);

3. Technique #3—Escape JavaScript Characters
This works in conjunction with rule#2. Except for alphanumeric characters, all characters less than
256 are escaped with the \xHH format to prevent switching out of the data value into the script
context or into another attribute. No use of any escaping shortcuts like \" ,because the quote
character may be matched by the HTML attribute parser which runs first. These escaping shortcuts
are also susceptible to "escape-the-escape" attacks where the attacker sends \" and the vulnerable
code turns that into \\" which enables the quote.

4. Technique #4--URL Escape And Strictly Validate Before Inserting Untrusted Data into HTML

URL Parameters.
Oracle Banking Corporate Lending encodes URL with the URLEncoder java class. It doesn’t check for
a valid URL, but directly does URL encoding, and that encoding is based on the context of display.

5. Technique #5---Use of HttpOnly and secure cookie flag
Oracle Banking Corporate Lending uses the HTTPOnly flag on the session cookie and any custom
cookies that are not accessed by any JavaScript.

2.4 Insecure Direct Object References
1. Use of prepared statements (parameterized queries)

Oracle Banking Corporate Lending uses Prepared Statement with bind variables to construct and
execute SQL statements in JAVA.

2. Input Validation
Oracle Banking Corporate Lending is a web based application, the request data from browser to
server will be passed using request headers and request parameters. All the request fields
coming from the client are validated using white list validation to prevent cross site scripting.
User defined method validateParameter() is used for input validation which checks each
character of the request field with a range of allowed characters.
User defined methods escapeJavaScript(), escapeHTML() and escapeURL() will sanitize the
output data before flushing it into client browser.
escapeJavaScript() will escape all characters except immune JavaScript characters and
alphanumeric characters in the ASCII character set. All other characters are encoded using the
\\xHH or \\uHHHH notation for representing ASCII or Unicode sequences.
escapeHTML() will escape the characters with equivalent HTML entities obtained from the
lookup map. Lookup map will have entities such as amp, quot, lt, gt etc.
escapeURL() will encode the URL using URLEncoder class.
White list validation is also used to restrict Image/signature/excel upload and to check rights for
every operation performed by user.

3. Image Content validation
Signature upload will check for image type and image content using the inbuilt classes (ImageIO
and JarFile) available in java.

4. Field validation
Field level validations exist for all mandatory fields. Database too had limits on the type and the
length of data. Blacklisted characters are not allowed in the mandatory fields. Nevertheless,
Oracle Banking Corporate Lending has free-text fields, which takes all data, entered by the user,
as a String.

5. Restriction on Blacklist characters

Similar to white list validation black list validation is also used for validating the request fields.
Oracle Banking Corporate Lending uses blacklist validation to check whether the request xml
contains unwanted tags like scripting tag, html tag, anchor tag etc inside the xml content. It is
also used for the advance summary field’s validation to check whether proper request fields are
coming from the browser.

Below table shows the list of bad characters which should not be allowed in URL path but the
Oracle Banking Corporate Lending operations requires many of the below characters to be
passed in the request. So Oracle Banking Corporate Lending will encode the below bad
characters before sending them through the URL and same will be decoded at the server to
prevent the hacker from modifying the request.

Bad URL Characters(Unsafe Characters)

&

//

<

./

>

/.

;

/*

\"

*.

\'

~

%

\

)

25%

(

%25u

+

%25U

,

%00-%1f, %7f-%ff

" " (space)

%00-%1f and %7f-%ff

-

%25u and %25U

6. Restriction on Script/Html tags

Oracle Banking Corporate Lending has blacklist validation for unwanted tag in xml like scripting
tag or html tag inside xml content particularly in the header

2.5 Security Misconfiguration
1. Configuration files

Configuration files are securely placed inside the Classes folder of the WEB-INF folder which is not
publicly accessible.

2. Exception handling in java

Different types of exceptions can rise in application. Java exceptions handled using try catch blocks
available in java. Sometimes we use the Throw statement to throw an exception which is caught
by the catch block. Caught exceptions will be written into the log files for the debug purpose when
ever required. Whenever any exception occurs in application, proper information used to send to
the front end user by showing alert.

3. Exception handling in oracle database

Database exceptions handled using EXCEPTION statement available in PL/SQL. Caught
exceptions will be written into the log files for the debug purpose. And proper error message created
to send the same in response to the user.

4. Package lockout situation handled in backend

Application will be hanged in an oracle system package lockout situation. Locked objects will be
released manually using SQL scripts or through database restart.

We have handled cursor lock out problem in the required packages.

5. Auto generated password:

The password is generated by the system accordance to the password policy. The salt is also be
generated every time the password is changed by using predefined algorithm.

The salt concatenated with auto generated password and SHA-512 hash applies on the resultant
which results the password digest.

Once the successful generation of password digests both salt and password digest is stored in the
DB.

6. Custom password:

The password is keyed in by the administrator / user accordance to the password policy. The salt is
generated every time the password is changed by using predefined algorithm.

The salt concatenated with the password input and SHA-512 hash applies on the resultant which
results the password digest.

Once the successful generation of password digests both salt and password digest is stored in the
DB.

Oracle Banking Corporate Lending does not provide any default user/password. User and password
needs to be created at the time of installation.

7. Sand Box for File Upload

The application uses a sandbox for placing files that are uploaded via the signature/image upload
screen. The sandbox is placed in a specified location (the location will be specified in the properties
file) on the server.

8. BI Publisher Reports – generation and access

The application uses a sandbox for placing the generated reports file into a sandbox area. The
sandbox is placed in a specified location (the location will be specified in the properties file) on the
server. The application validates if the user has explicit Rights to generate Reports.

2.6 Sensitive Data Exposure
1. Secure Transformation of Data (SSL)

The Installer allows a deployer to configure the application such that all HTTP connections to the
application are over SSL/TLS. In other words, all HTTP traffic in the clear will be prohibited; only
HTTPS traffic will be allowed. It is mandatory to enable this option in a production environment,
especially when WebLogic Server acts as the SSL terminator.

A two-way SSL is used when the server needs to authenticate the client. In a two-way SSL
connection the client verifies the identity of the server and then passes its identity certificate to the
server. The server then validates the identity certificate of the client before completing the SSL
handshake.

In order to establish a two-way SSL connection, need to have two certificates, one for the server and
the other for client. This is required for de-centralized setup of application.

For Oracle Banking Corporate Lending Solutions, need to configure a single connector. This
connector is related to SSL/TLS communication between host or browser and the branch which uses
two-way authentication.

If the secure flag is set on a cookie, then browsers will not submit the cookie in any requests that use
an unencrypted HTTP connection, thereby preventing the cookie from being trivially intercepted by
an attacker monitoring network traffic.

Below configuration has to be ensured in weblogic.xml within the deployed application ear.

• Cookies are set with Http only as true
• Cookie secure flag set to true
• Cookie path to refer to deployed application
<wls: session-descriptor>
<wls: cookie-http-only>true</wls: cookie-http-only>
</wls: session-descriptor>

<wls: session-descriptor>
<wls: cookie-secure>true</wls: cookie-secure>
<wls: url-rewriting-enabled>false</wls: url-rewriting-enabled>
</wls: session-descriptor>

<session-descriptor>
<cookie-name>JSESSIONID</cookie-name>
<cookie-path>/<DeployedApplicationPath></cookie-path>
<cookie-http-only>true</cookie-http-only>
<cookie-secure>true</cookie-secure>
<url-rewriting-enabled>false</url-rewriting-enabled>

</session-descriptor>

Always make sure Cookies are set with always Auth Flag enabled by default for WebLogic server .

2. Sign-On messages

Below table shows the general Sign-On messages which would be displayed to the user during
invalid authentication.

Message Explanation

User Already Logged In The user has already logged into the system and is attempting a
login through a different terminal.

Invalid User ID/Login. An incorrect user ID or password was entered.

User Status is Disabled.
Please contact your
System Administrator

The user profile has been disabled due to number of dormancy
days allowed for the user has exceeded the dormancy days
configured in the system.

User Status is Locked.
Please contact your
System Administrator

The user profile has been locked due to an excessive number of
attempts to login, using an incorrect user ID or password. The
number of attempts could have matched either the successive or
cumulative number of login failures (configured for the system).

3. CACHE Control in Servlet and jsp

There are three basic HTTP response headers that prevent a page from being cached to disk.
Different browsers handle them in slightly different ways, so they need to be used in combination to
ensure all browsers do not cache the specific page. These headers are "Expires", "Pragma" and
"Cache-control". In addition, these headers can either be sent directly by the server or placed in the
HTML code as HTTP-EQUIV META tags within the HEAD section. The "Expire" header gives a date
at which point the page should expire and no longer be cached. Internet Explorer supports a date of
"0" for immediately and any negative number for already expired. The "Pragma: no-cache" header
indicates that the page should not be cached.

4. Clickjacking/Frame-bursting

Application uses the X-Frame-Options HTTP response header to indicate whether or not a browser
should be allowed to render a page in a <frame> or <iframe>. This is used to avoid Clickjacking
attacks, by ensuring that the content is not embedded into other sites.

2.7 Missing Function Level Access Control

It is likely that users working in the same department at the same level of hierarchy need to have
similar user profiles. In such cases, you can define a Role Profile that includes access rights to the
functions that are common to a group of users. A user can be linked to a Role Profile by which you
give the user access rights to all the functions in the Role Profile.

Application level access has implemented via the Security Management System (SMS) module.
SMS supports “ROLE BASED” access of Screens and different types of operations.

Oracle Banking Corporate Lending Solutions supports dual control methodology, wherein every
operation performed has to be authorized by another user with the requisite rights.
Please refer 2.6 section of the SMS user manual for more details.

Apart from the role based access control particular functions , products can be restricted for user
as described below.

Disallowed functions: Function IDs or UI level restrictions can be provided for the user by including
the function Ids in the disallowed list. This will restrict the user from accessing the UI. When
accessed, an error message dialogue box will pop up saying-“User not authorized to access the
screen”.

Disallowed account class: The user could be restricted to perform any operation using a particular
a/c class. When disallowed, no accounts could be created by the user using the account class.

Disallowed products: The user could be restricted to use product(s) of any module(s), if disallowed.
This is really required when restricting users department wise. For example, staffs of accounts
department need not be given access to view the loans of customers.

Disallowed branches: The user could be restricted to access branches other than his own branch
(reporting branch). He can be given access to login from other branches of the bank at an approval
from authenticated person, an action which again requires manual authorization.

2.8 Cross-Site Request Forgery (CSRF)

In case of XMLHttpRequest objects, the XMLHttpRequest object sets a custom HTTP header in the
request, with the header value being the Cross-site request forgery token; the server then verifies for
the presence of such a header and the Cross-site request forgery token. This serves as a protection
at endpoints used for XMLHttpRequest requests, since only XMLHttpRequest objects can set HTTP
headers (apart from Flash; and both cannot make cross-domain requests).

2.9 Using Components with Known Vulnerabilities

Source code scanning done using the latest fortify to identify the sources code issue and will provide
the proper fix for the reported issues.

3rd party libraries scanning for every release has been done to validate if any security issues rise for
any of the components or not. Update the 3PL with latest security patch or upgraded to latest version.

2.10 Unvalidated Redirects and Forwards Network
Security

Application uses 302 redirect wherever required. Oracle Banking Corporate Lending uses
response.sendRedirect(newURL);

3. Securing Gateway Services

Different applications deployed on disparate platforms and using different infrastructure need to be
able to communicate and integrate seamlessly with Oracle Banking Corporate Lending in order to
exchange data. The Oracle Banking Corporate Lending Integration Gateway will cater to these
integration needs.

The integration needs supported by the Gateway can be broadly categorized from the perspective
of the Gateway as follows:

• Inbound application integration – used when any external system needs to add, modify or

query information within Oracle Banking Corporate Lending
• Outbound application integration – used when any external system needs to be notified of

the various events that occur within Oracle Banking Corporate Lending.

3.1 Inbound Application Integration

Oracle Banking Corporate Lending Inbound Application Gateway provides XML based interfaces
thus enhancing the need to communicate and integrate with the external systems. The data
exchanged between Oracle Banking Corporate Lending and the external systems will be in the
form of XML messages. These XML messages are defined in Oracle Banking Corporate Lending
in the form of XML Schema Documents (XSD).

Oracle Banking Corporate Lending Inbound Application Integration Gateway uses the Synchronous
and Asynchronous Deployment Pattern for addressing the integration needs.

The Synchronous Deployment Pattern is classified into the following:

• EJB Based Synchronous Inbound Application Integration Deployment Pattern
• Web Services Based Synchronous Inbound Application Integration Deployment Pattern
• MDB Based Asynchronous Inbound Application Integration Deployment Patten

3.2 EJB Based Synchronous Deployment Pattern

The Enterprise Java Beans (EJB) deployment pattern will be used in integration scenarios where
the external system connecting to Oracle Banking Corporate Lending is ‘EJB literate’, i.e., the
external system is capable of interacting with Oracle Banking Corporate Lending based upon the
EJB interface. In this deployment pattern, the external system will use the RMI/IIOP protocol to
communicate with the Oracle Banking Corporate Lending EJB.

In this deployment pattern the EJB displayed by Oracle Banking Corporate Lending will be a
stateless session bean. The actual request will be in the form of an XML message. After the
necessary processing is done in Oracle Banking Corporate Lending based on the request, the
response is returned to the external system as an XML message. The transaction control for the
processing will stay with the Oracle Banking Corporate Lending EJB.

3.3 Web Services Based Synchronous Deployment Pattern

The web services deployment pattern will be used in integration scenarios where the external
system connecting to Oracle Banking Corporate Lending wants to connect using standards-based,
inter-operable web services.

This deployment pattern is especially applicable to systems which meet the following broad
guidelines:

• Systems that are not ‘EJB literate’, i.e., such systems are not capable of establishing

connections with Oracle Banking Corporate Lending based upon the EJB interface; and/or
• Systems that prefer to use a standards-based approach

In this deployment pattern, the external system will use the SOAP (Simple Object Access Protocol)
messages to communicate to the Oracle Banking Corporate Lending web services.

The services displayed by Oracle Banking Corporate Lending are of a ‘message based’ style, i.e.,
the actual request will be in the form of an XML message, but the request will be a ‘payload’ within
the SOAP message. After the necessary processing is done in Oracle Banking Corporate Lending
based on the request, the response is returned to the external system as an XML message which
will be a ‘payload’ within the response SOAP message. The transaction control for the processing
will stay with the Oracle Banking Corporate Lending.

3.4 HTTP Servlet Based Synchronous Deployment Pattern

The HTTP servlet deployment pattern will be used in integration scenarios where the external
system connecting to Oracle Banking Corporate Lending wants to connect to Oracle Banking
Corporate Lending using simple HTTP messages.
This is especially applicable to systems such as the following:

• Systems that are not ‘EJB literate’, i.e., are not capable establishing a connections with

Oracle Banking Corporate Lending based upon the EJB interface; and/or
• Systems that prefer to use a simple http message based approach without wanting to use

SOAP as the standard
•

In this deployment pattern, the external system will make an HTTP request to the Oracle Banking
Corporate Lending servlet.

For this deployment pattern, Oracle Banking Corporate Lending will display a single servlet. The
actual request will be in the form of an XML message. This XML message is embedded into the
body of the HTTP request sent to the Oracle Banking Corporate Lending servlet. After the
necessary processing is done in Oracle Banking Corporate Lending based on the request, the
response is returned to the external system as an XML message which is once again embedded
within the body of the response HTTP message. The transaction control for the processing will stay
with the Oracle Banking Corporate Lending .

3.5 MDB Based Asynchronous Deployment Pattern

The MDB deployment pattern is used in integration scenarios where the external system
connecting to Oracle Banking Corporate Lending wants to connect to Oracle Banking Corporate
Lending using JMS queues.

This is especially applicable to systems such as the following:

• Systems that prefer to use JMS queues based approach without wanting to wait for the

reply
•

Here external system sends messages in XML format to request queue on which an MDB is
listening. When a message arrives on the queue, it is picked up for processing. After the necessary
processing is done in Oracle Banking Corporate Lending , based on the request, the response is
sent to the response queue as an XML message.

3.6 Outbound Application Integration

The Outbound Application Integration is also called the Oracle Banking Corporate Lending Notify
Application Integration layer. This application layer sends out notification messages to the external
system whenever events occur in Oracle Banking Corporate Lending .

The notification messages generated by Oracle Banking Corporate Lending on the occurrence of
these events will be XML messages. These XML messages are defined in the form of XML Schema
Documents (XSD) and are referred to as ‘FLEXCUBE formats’

3.7 Securing Web Services

Web services can be secured by applying security policies available in web logic sever. We can
attach two types of policies to Web Logic Web services and clients at design and deployment time.
Oracle WSM policy : We can attach Oracle Web Services Manager(WSM) policies to Web Logic
JAX-WS Web services and clients

Web Logic Web service policy: This policies are provided by Oracle Web Logic Server and can be
attached to any web service deployed in Web Logic.
We can use Oracle Enterprise Manager Fusion Middleware Control to attach Oracle WSM security
policies to Web Logic Java EE Web services and clients.
We can attach policies to Web Logic Web services at both design time and after the Web service
has been deployed.
At design time, use the weblogic.jws.Policy and weblogic.jws.Policies JWS annotations in JWS file
to associate policy files with Web service. We can associate any number of policy files with a Web
service, although it is up to us to ensure that the assertions do not contradict each other. We can
specify a policy file at the class level of our JWS file.
After the Web service has been deployed, use the Oracle Web Logic Server Administration
Console to attach Web Logic Web service policies to Web Logic Web services.

3.8 Accessing Service and Operation

In a message it is mandatory to maintain a list of Service Names and Operation Codes. This
information is called Gateway Operations.
A combination of every such Service Name and Operation Code is mapped to a combination of
Function ID and Action. Every screen in Oracle Banking Corporate Lending is linked with a function
ID. This information is called Gateway Functions.
User can gain access to an external system using the Gateway Functions. The Function IDs
mapped in Gateway Functions should be valid Function IDs maintained in Oracle Banking
Corporate Lending. Hence, for every new Service or Operation being introduced, it is important that
you provide data in Gateway Operations and Gateway Functions.

3.9 Gateway Password Generation Logic for External
System Authentication

As a secure configuration password authentication should be enabled for the external system
maintained. The same can be verifying in External system detail screen level.
Once these features enable, system will validate for Encrypted password as part of every request
sent by the External System.
The Message ID which is present as part of the header in Request XML, is considered as hash.
External System generates a unique Message ID, which is functional mandatory field in the header.
Create a Message Digest with SHA-512 algorithm.
The hash created from the previous step and the password in clear text together is encrypted in
AES encryption method. Apply Base64 encoding to encrypted value and send to the Oracle
Banking Corporate Lending gateway.

3.10 XSD Validation and Input Validation

Oracle Banking Corporate Lending supports the XSD validation for all types Gateway. Each node
in request xml is getting validated with the corresponding webservice XSD’s.

Restriction on Script/Html tags

Oracle Banking Corporate Lending Gateway has blacklist validation for unwanted tag in xml like
scripting tag or html tag inside xml content particularly in the header

3.11 List of Services

Service Name Description Operations
FCUBSOLService

This single service
covering all the major
operations through
Webservices for OL
Module.

AuthorizeAuthContAmend
AuthorizeContAmend
AuthorizeContract
AuthorizeContractAuth
AuthorizeContractInactive
AuthorizeCustEntity
AuthorizeDisbursement
AuthorizeDsbrAuth
AuthorizeExPmtResponse
AuthorizeExResponse
AuthorizeFCHOL
AuthorizeMultiLoanPayment
AuthorizePayMtAuth
AuthorizePayment
AuthorizeProduct
CloseAuthContAmend
CloseCustEntity
CloseFCHOL
CloseLDDDRYET
CloseProduct
CreateAuthContAmend
CreateBCDetails
CreateCLASS
CreateContract
CreateContractInactive
CreateContractSim
CreateCustEntity
CreateDisbursement
CreateExPmtResponse
CreateExResponse
CreateFCHOL
CreateIFProductPop
CreateLDDDRYET
CreateLoanOSAmount
CreateMultiLoanPayment
CreatePayment
CreatePaymentSIM
CreateProduct
DeleteAuthContAmend
DeleteContAmend
DeleteContract
DeleteContractInactive
DeleteCustEntity
DeleteDisbursement
DeleteFCHOL
DeleteMultiLoanPayment
DeletePayment
DeleteProduct
ModifyAuthContAmend
ModifyBCDetails
ModifyCLASS
ModifyContAmend
ModifyContAmendSim

ModifyContract
ModifyContractInactive
ModifyCustEntity
ModifyDisbursement
ModifyExPmtResponse
ModifyExResponse
ModifyFCHOL
ModifyIFProductPop
ModifyLDDDRYET
ModifyOLDFCREV
ModifyProduct
QueryAuthContAmend
QueryCLASS
QueryCLOSURECHK
QueryContAmend
QueryContract
QueryContractInactive
QueryCorpCustView
QueryCustEntity
QueryCustLoanView
QueryCustMaintenance
QueryCustinfo
QueryCustview
QueryDisbursement
QueryFCHOL
QueryIntDetails
QueryLDDDRYET
QueryLoanOSAmount
QueryOLProdList
QueryPayMtAuth
QueryPayment
QueryPckOLcontractList
QueryProduct
QueryTrnInfo
ReopenAuthContAmend
ReopenCustEntity
ReopenLDDDRYET
ReopenProduct
ReverseContAmend
ReverseContract
ReverseDisbursement
ReverseMultiLoanPayment
ReversePayment
RolloverContract

OBCLLSService This single service

covering all the major
operations through
Webservices for LS
Module.

AuthorizeAuthContAmend
 AuthorizeBorrowerProduct
 AuthorizeBulkPayment
 AuthorizeConsolRepc
 AuthorizeConsolRepcAuth
 AuthorizeConsolRoll
 AuthorizeConsolRollAuth
 AuthorizeContAmend
 AuthorizeContract
 AuthorizeDDContract
 AuthorizeDrawdownAuth

https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm

 AuthorizeFacilityOnline
 AuthorizeFacilityOnlineAuth
 AuthorizeFacilityProd
 AuthorizeFeeLiqd
 AuthorizeFeeLiqdAuth
 AuthorizeInstruction
 AuthorizeLBPayment
 AuthorizeLBPaymentAuth
 AuthorizeMarginAmendment
 AuthorizePartTransfer
 AuthorizeParticipantProduct
 AuthorizePartyTransAuth
 AuthorizeRestructureCont
 AuthorizeSplitRepc
 AuthorizeSplitRepcAuth
 AuthorizeTrancheAuth
 CloseBorrowerProduct
 CloseFacilityProd
 CloseInstruction
 CloseLBPayment
 CloseParticipantProduct
 CreateBorrowerProduct
 CreateBulkPayment
 CreateConsolRepc
 CreateConsolRoll
 CreateContract
 CreateDDContract
 CreateFacilityOnline
 CreateFacilityProd
 CreateFeeLiqd
 CreateInstruction
 CreateLBPayment
 CreateMarginAmendment
 CreateMarkLiqd
 CreatePartTransfer
 CreateParticipantProduct
 CreateRestructureCont
 CreateSplitRepc
 DeleteBorrowerProduct
 DeleteBulkPayment
 DeleteConsolRepc
 DeleteConsolRoll
 DeleteContAmend
 DeleteContract
 DeleteDDContract
 DeleteFacilityOnline
 DeleteFacilityProd
 DeleteFeeLiqd
 DeleteInstruction
 DeleteLBPayment

https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm

 DeleteMarginAmendment
 DeletePartTransfer
 DeleteParticipantProduct
 DeleteRestructureCont
 DeleteSplitRepc
 ModifyBorrowerProduct
 ModifyBulkPayment
 ModifyConsolRoll
 ModifyContAmend
 ModifyContract
 ModifyDDContract
 ModifyFacilityOnline
 ModifyFacilityProd
 ModifyFeeLiqd
 ModifyInstruction
 ModifyLBPayment
 ModifyMarginAmendment
 ModifyMarkLiqd
 ModifyPartTransfer
 ModifyParticipantProduct
 ModifyRestructureCont
 QueryAuthContAmend
 QueryBorrowerProduct
 QueryBulkPayment
 QueryConsolRepc
 QueryConsolRepcAuth
 QueryConsolRoll
 QueryConsolRollAuth
 QueryContAmend
 QueryContract
 QueryDDContract
 QueryDrawdownAuth
 QueryFacilityOnline
 QueryFacilityOnlineAuth
 QueryFacilityProd
 QueryFeeLiqd
 QueryFeeLiqdAuth
 QueryInstruction
 QueryLBPayment
 QueryLBPaymentAuth
 QueryMarginAmendment
 QueryMarkLiqd
 QueryPartTransfer
 QueryParticipantProduct
 QueryPartyTransAuth
 QueryRestructureCont
 QuerySplitRepc
 QuerySplitRepcAuth
 QueryTrancheAuth
 ReopenBorrowerProduct

https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm

 ReopenFacilityProd
 ReopenInstruction
 ReopenLBPayment
 ReopenParticipantProduct
 ReverseBulkPayment
 ReverseConsolRepc
 ReverseConsolRoll
 ReverseContAmend
 ReverseContract
 ReverseDDContract
 ReverseFacilityOnline
 ReverseFeeLiqd
 ReverseLBPayment
 ReversePartTransfer
 ReverseRestructureCont
 ReverseSplitRepc
 SummaryQueryParticipantProduct

https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm
https://docs.oracle.com/cd/F54317_01/PDF/GatewayXSD/WebServiceIndex.htm

3.12 List of Interfaces

Interfaces Description Security Considerations

Generic Interface
This Generic Interface called
'GI', streamline the incoming /
outgoing data between Oracle
Banking Corporate Lending
system and external systems
using batch mechanism (flat
files).

Refer section 4. Securing
Gateway Services in Security

Measure Documents

Development Security Guide
[Nov] [2022]
Version 14.7.0.0.0
Oracle Financial Services Software Limited
Oracle Park
Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India

Worldwide Inquiries:
Phone: +91 22 6718 3000
Fax:+91 22 6718 3001
www.oracle.com/financialservices/

Copyright © [2016], [2022], Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer
software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and
license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any
kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

http://www.oracle.com/financialservices/

	Table of Contents
	1.2 Scope
	1.2.1 Read Sections Completely
	1.2.2 Understand the Purpose of this Guidance
	1.2.3 Limitations

	2. How to address the OWASP Top10 in Oracle
	2.1 Injection
	2.2 Broken Authentication and Session Management
	Cryptography used
	Session storage
	Session logging

	2.3 Cross-Site Scripting (XSS)
	1. Technique#1—HTML Escape before inserting untrusted data into HTML element content
	public static String escapeHTML (String input);
	public static String escapeJavaScript(String input);
	4. Technique #4--URL Escape And Strictly Validate Before Inserting Untrusted Data into HTML URL Parameters.
	5. Technique #5---Use of HttpOnly and secure cookie flag

	2.4 Insecure Direct Object References
	1. Use of prepared statements (parameterized queries)
	2. Input Validation
	3. Image Content validation
	4. Field validation
	5. Restriction on Blacklist characters
	6. Restriction on Script/Html tags

	2.5 Security Misconfiguration
	1. Configuration files
	2. Exception handling in java
	3. Exception handling in oracle database
	4. Package lockout situation handled in backend
	5. Auto generated password:
	6. Custom password:
	7. Sand Box for File Upload
	8. BI Publisher Reports – generation and access

	2.6 Sensitive Data Exposure
	1. Secure Transformation of Data (SSL)
	2. Sign-On messages
	3. CACHE Control in Servlet and jsp
	4. Clickjacking/Frame-bursting

	2.7 Missing Function Level Access Control
	2.8 Cross-Site Request Forgery (CSRF)
	2.9 Using Components with Known Vulnerabilities
	2.10 Unvalidated Redirects and Forwards Network Security

	3. Securing Gateway Services
	3.1 Inbound Application Integration
	3.2 EJB Based Synchronous Deployment Pattern
	3.3 Web Services Based Synchronous Deployment Pattern
	3.4 HTTP Servlet Based Synchronous Deployment Pattern
	3.5 MDB Based Asynchronous Deployment Pattern
	3.6 Outbound Application Integration
	3.7 Securing Web Services
	3.8 Accessing Service and Operation
	3.9 Gateway Password Generation Logic for External System Authentication
	3.10 XSD Validation and Input Validation
	3.11 List of Services
	3.12 List of Interfaces

