
PeopleSoft FSCM 9.2: Application
Integration Framework

December 2022

PeopleSoft FSCM 9.2: Application Integration Framework
Copyright © 1988, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement
or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and
Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users
are "commercial computer software," "commercial computer software documentation," or "limited rights data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained
in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by
the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create a
risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation
and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as
set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit https://docs.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Preface: Preface..vii
Understanding the PeopleSoft Online Help and PeopleBooks.. vii

Hosted PeopleSoft Online Help...vii
Locally Installed Help..vii
Downloadable PeopleBook PDF Files...vii
Common Help Documentation.. vii
Field and Control Definitions... viii
Typographical Conventions...viii
ISO Country and Currency Codes..viii
Region and Industry Identifiers.. ix
Translations and Embedded Help... ix

Using and Managing the PeopleSoft Online Help... x
PeopleSoft Enterprise Components Related Links...x
Contact Us...x
Follow Us..x

Chapter 1: Getting Started with Application Integration Framework..11
Understanding the Application Integration Framework... 11
Application Integration Framework Implementation... 11

Define Value Maps...11
Create Application Engine Transform Programs...11
Update Service Operation Routing.. 12

Chapter 2: Understanding Application Integration Framework..13
Application Integration Framework..13

Use Cases for Application Integration Framework... 14
Maps.. 15

Domain Value Map.. 15
Cross-Reference Map... 16

Functions to Populate and Maintain the Cross-Reference and DVMs...16
Use Case: Integration Broker Transformation Without AIA Middleware... 18
Use Case: Integration Broker Point-to-Point Transformation.. 22
Use Case: Integration Broker Transformation in Which a Third Party Uses AIA Middleware........... 25

Chapter 3: Defining and Populating Value Maps.. 31
Understanding Value Maps...31
Defining Map Options.. 35

Page Used to Define Value Map Options..35
Value Map Options Page..35

Defining Value Maps.. 38
Pages Used to Define Value Maps.. 38
Define Value Maps search Page.. 38
Define Value Map - Elements Page...39
Define options for a value map Page.. 41
Define Value Maps - Domains Page..42

Populating a Domain Value Map... 44
Page Used to Populate a Domain Value Map..44
Domain Value Map Page... 44

Importing Value Maps.. 44

Copyright © 1988, 2022, Oracle and/or its affiliates. iii

Contents

Page Used to Import Value Map..45
Understanding Import File Types Used with Value Maps...45
Import Value Maps Page..47

Exporting Value Maps.. 48
Understanding Export Schemas... 48
Exporting a Value Map.. 49

Chapter 4: Creating Transform Programs and Updating Service Operations................................... 51
Understanding Transform Programs...51
Creating a Transform Program... 51
Updating Service Operation Routing... 52

Chapter 5: Accessing Maps Using XSLT Extension.. 55
Understanding XSLT Extension Functions.. 55
Cross-Reference Functions... 55

xref:BulkPopulateDomainData...55
xref:BulkPopulateElementData.. 56
xref:populateXRefRow... 57
xref:populateXrefRowNVP.. 59
xref:markForDelete...62
xref:markForDeleteNVP...63
xref:lookupXRef... 64
xref:lookupXRefNVP... 65

Domain Value Map Functions.. 66
dvm:lookupValue.. 66
dvm:lookupValueNVP.. 68
dvm:lookup-dvm...69

Generate-Guid Function..70
generate-guid...70

SetID Functions...71
SetID:lookupSetCtrlValues... 71

Chapter 6: Accessing Maps Using PeopleCode.. 75
Understanding Application Integration Framework Classes.. 75
How to Import Application Integration Framework Type Classes.. 75
DVM Utility Class Methods...76

ExtractData..76
LookupValue... 77
LookupValue1M... 78
LookupValueNVP... 79

DVM Utility Class Properties.. 80
exceptionCaught..80
exceptionDetails..80

SetId Utility Class Methods..80
lookupSetCtrlValues..80
lookupSetID.. 82

Xref Utility Class Methods...83
BulkPopulateDomainData.. 83
BulkPopulateElementData.. 84
ExtractData..86
LookupValue... 87
LookupValue1M... 88
LookupValueNVP... 89
MarkForDelete.. 90

iv Copyright © 1988, 2022, Oracle and/or its affiliates.

Contents

MarkForDeleteNVP.. 91
PopulateData... 92
PopulateValue..93
PopulateValueNVP..95

Xref Class Properties.. 96
exceptionCaught..97
exceptionDetails..97

Chapter 7: Accessing Maps Using Web Services... 99
Understanding Application Integration Framework Web Services.. 99
EOTF_DVM Service.. 99

EOTF_DVM_LOOKUP... 100
EOTF_DVM_IMPORT.v2..101
EOTF_DVM_IMPORT.v1..103

EOTF_XREF Service..104
EOTF_XREF_ADD..104
EOTF_XREF_LINK...105
EOTF_XREF_UPDATE... 106
EOTF_XREF_DELETE... 108
EOTF_XREF_LOOKUP.. 109
EOTF_XREF_IMPORT.v2...110
EOTF_XREF_IMPORT.v1...111

Cross-Reference Lookup Web Service Example..112
Chapter 8: Application Integration Framework Example..117

Example Overview..117
Defining a Dynamic Value Map...118
Defining and Populating a Static Value Map...119
Using the XSLT Extension Function in the Transformation Program... 122

Key Value Transformation... 122
Domain Value Transformation... 124

Updating the Service Operation Routing... 124

Copyright © 1988, 2022, Oracle and/or its affiliates. v

Contents

vi Copyright © 1988, 2022, Oracle and/or its affiliates.

Preface

Understanding the PeopleSoft Online Help and PeopleBooks

The PeopleSoft Online Help is a website that enables you to view all help content for PeopleSoft
applications and PeopleTools. The help provides standard navigation and full-text searching, as well as
context-sensitive online help for PeopleSoft users.

Hosted PeopleSoft Online Help
You can access the hosted PeopleSoft Online Help on the Oracle Help Center. The hosted PeopleSoft
Online Help is updated on a regular schedule, ensuring that you have access to the most current
documentation. This reduces the need to view separate documentation posts for application maintenance
on My Oracle Support. The hosted PeopleSoft Online Help is available in English only.

To configure the context-sensitive help for your PeopleSoft applications to use the Oracle Help Center,
see Configuring Context-Sensitive Help Using the Hosted Online Help Website.

Locally Installed Help
If you’re setting up an on-premise PeopleSoft environment, and your organization has firewall restrictions
that prevent you from using the hosted PeopleSoft Online Help, you can install the online help locally.
See Configuring Context-Sensitive Help Using a Locally Installed Online Help Website.

Downloadable PeopleBook PDF Files
You can access downloadable PDF versions of the help content in the traditional PeopleBook format on
the Oracle Help Center. The content in the PeopleBook PDFs is the same as the content in the PeopleSoft
Online Help, but it has a different structure and it does not include the interactive navigation features that
are available in the online help.

Common Help Documentation
Common help documentation contains information that applies to multiple applications. The two main
types of common help are:

• Application Fundamentals

• Using PeopleSoft Applications

Most product families provide a set of application fundamentals help topics that discuss essential
information about the setup and design of your system. This information applies to many or all
applications in the PeopleSoft product family. Whether you are implementing a single application, some
combination of applications within the product family, or the entire product family, you should be familiar
with the contents of the appropriate application fundamentals help. They provide the starting points for
fundamental implementation tasks.

Copyright © 1988, 2022, Oracle and/or its affiliates. vii

https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_HOSTED
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_LOCAL
https://docs.oracle.com/en/applications/peoplesoft/index.html

Preface

In addition, the PeopleTools: Applications User's Guide introduces you to the various elements of the
PeopleSoft Pure Internet Architecture. It also explains how to use the navigational hierarchy, components,
and pages to perform basic functions as you navigate through the system. While your application or
implementation may differ, the topics in this user’s guide provide general information about using
PeopleSoft applications.

Field and Control Definitions
PeopleSoft documentation includes definitions for most fields and controls that appear on application
pages. These definitions describe how to use a field or control, where populated values come from, the
effects of selecting certain values, and so on. If a field or control is not defined, then it either requires
no additional explanation or is documented in a common elements section earlier in the documentation.
For example, the Date field rarely requires additional explanation and may not be defined in the
documentation for some pages.

Typographical Conventions
The following table describes the typographical conventions that are used in the online help.

Typographical Convention Description

Key+Key Indicates a key combination action. For example, a plus sign
(+) between keys means that you must hold down the first key
while you press the second key. For Alt+W, hold down the Alt
key while you press the W key.

. . . (ellipses) Indicate that the preceding item or series can be repeated any
number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode syntax.
 Options are separated by a pipe (|).

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
 an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

⇒ This continuation character has been inserted at the end of a
line of code that has been wrapped at the page margin. The
code should be viewed or entered as a single, continuous line
of code without the continuation character.

ISO Country and Currency Codes
PeopleSoft Online Help topics use International Organization for Standardization (ISO) country and
currency codes to identify country-specific information and monetary amounts.

viii Copyright © 1988, 2022, Oracle and/or its affiliates.

Preface

ISO country codes may appear as country identifiers, and ISO currency codes may appear as currency
identifiers in your PeopleSoft documentation. Reference to an ISO country code in your documentation
does not imply that your application includes every ISO country code. The following example is a
country-specific heading: "(FRA) Hiring an Employee."

The PeopleSoft Currency Code table (CURRENCY_CD_TBL) contains sample currency code data. The
Currency Code table is based on ISO Standard 4217, "Codes for the representation of currencies," and
also relies on ISO country codes in the Country table (COUNTRY_TBL). The navigation to the pages
where you maintain currency code and country information depends on which PeopleSoft applications
you are using. To access the pages for maintaining the Currency Code and Country tables, consult the
online help for your applications for more information.

Region and Industry Identifiers
Information that applies only to a specific region or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a region-specific heading: "(Latin America) Setting Up Depreciation"

Region Identifiers

Regions are identified by the region name. The following region identifiers may appear in the PeopleSoft
Online Help:

• Asia Pacific

• Europe

• Latin America

• North America

Industry Identifiers

Industries are identified by the industry name or by an abbreviation for that industry. The following
industry identifiers may appear in the PeopleSoft Online Help:

• USF (U.S. Federal)

• E&G (Education and Government)

Translations and Embedded Help
PeopleSoft 9.2 software applications include translated embedded help. With the 9.2 release, PeopleSoft
aligns with the other Oracle applications by focusing our translation efforts on embedded help. We
are not planning to translate our traditional online help and PeopleBooks documentation. Instead we
offer very direct translated help at crucial spots within our application through our embedded help
widgets. Additionally, we have a one-to-one mapping of application and help translations, meaning that
the software and embedded help translation footprint is identical—something we were never able to
accomplish in the past.

Copyright © 1988, 2022, Oracle and/or its affiliates. ix

Preface

Using and Managing the PeopleSoft Online Help

Select About This Help in the left navigation panel on any page in the PeopleSoft Online Help to see
information on the following topics:

• Using the PeopleSoft Online Help.

• Managing hosted Online Help.

• Managing locally installed PeopleSoft Online Help.

PeopleSoft Enterprise Components Related Links

PeopleSoft Information Portal

My Oracle Support

PeopleSoft Training from Oracle University

Contact Us

Send your suggestions to psoft-infodev_us@oracle.com.

Please include the applications update image or PeopleTools release that you’re using.

Follow Us

Icon Link

YouTube

Twitter@PeopleSoft_Info.

PeopleSoft Blogs

LinkedIn

x Copyright © 1988, 2022, Oracle and/or its affiliates.

http://www.peoplesoft92.com/
https://support.oracle.com/CSP/ui/flash.html
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=402&p_nl=OPSE
mailto:PSOFT-INFODEV_US@ORACLE.COM
http://www.youtube.com/user/PSFTOracle
https://twitter.com/PeopleSoft_Info
https://blogs.oracle.com/peoplesoft
https://www.linkedin.com/groups/4530781/?home=&gid=4530781&trk=anet_ug_hm

Chapter 1

Getting Started with Application Integration
Framework

Understanding the Application Integration Framework

This product documentation describes using Application Integration Framework to create integrations
between diverse systems using a common framework.

Application Integration Framework Implementation

Application Integration Framework uses PeopleSoft Integration Broker framework. These implementation
steps assume PeopleSoft Integration Broker is configured and service operations have been created for the
integration.

To implement Application Integration Framework, you will:

• Define value maps.

• Populate domain value maps.

• Create application engine transform programs.

• Update service operation routing.

See PeopleTools: PeopleSoft Integration Broker

Define Value Maps
To define value maps, perform the following steps:

Step Reference

Define value maps See Define Value Maps.

For more details, refer Viewing Application Engine Programs under Development Tools

Create Application Engine Transform Programs
To create the application engine transform program, perform the following steps:

Copyright © 1988, 2022, Oracle and/or its affiliates. 11

Getting Started with Application Integration Framework Chapter 1

Step Reference

Create application engine program See PeopleTools: PeopleSoft Integration Broker, Applying
Filtering, Transformation and Translation, Defining Transform
Programs.

Code the XSLT step See PeopleTools: PeopleSoft Integration Broker, Creating
Transform Programs and Updating Service Operations,
 Adding XSLT Steps to Transformation Programs.

Update Service Operation Routing
To update the service operation routing, perform the following steps:

Step Reference

Update the routing See PeopleTools: PeopleSoft Integration Broker, Creating
Transform Programs and Updating Service Operations,
 Updating Service Operation Routing.

12 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 2

Understanding Application Integration
Framework

Application Integration Framework

Application Integration Framework extends PeopleSoft Integration Broker (IB) functionality to provide
a standard way to represent, classify, store, query, publish, acquire, and invoke data that maps element
names, structures, and values between PeopleSoft Application Business Messages (ABMs) and other
applications. PeopleSoft Integration Broker provides the framework to send and receive messages with
other PeopleSoft systems or third-party systems. If the message structure differs between systems,
transformation programs are used to transform the incoming or outgoing message to a message format
that the PeopleSoft system understands.

Each application that you are integrating with may use different data values or identifiers to represent the
same information. For example, for a new customer in a PeopleSoft application, a new row is inserted in
its customer database with a unique identifier such as PS1001. When the same information is propagated
to an Oracle E-Business Suite application and a Siebel application, a new row should be inserted with
different identifiers, such as EBS1001 and SBL1001. The application integration framework enables you
to transform this data.

Application Integration Architecture

Application Integration Architecture (AIA) is built on Oracle's Service Operation Architecture (SOA) as a
unified approach for integrating business processes across applications, including third-party applications,
based on a common architecture and common definition of business objects called Enterprise Business
Objects (EBOs). These applications were designed using different technologies and use different names
and structures to represent the same business object. AIA is the foundation for creating transformations
on messages sent between diverse systems to integrate multiple applications without the need to create
separate point-to-point integrations for each system involved.

AIA middleware can be used to transform business objects to a common object. Oracle's Fusion
middleware includes AIA as well as prebuilt integrations for Oracle products.

Application Integration Framework Integrations

Application Integration Framework is designed to assist developers with the tasks required to produce
integrations that are architected to be AIA-supportive. The integration produces ABMs with the same
semantic content and approximately the same shape as the canonical (AIA) EBMs, thus minimizing
transformation requirements. Each AIA-supportive integration that PeopleSoft applications delivers
includes a sample transformation to enable the integrations to map as closely as possible to the EBOs.
This strategy enables PeopleSoft customers to utilize IB to complete partner integrations without the need
for middleware to perform transformations. Of course, customers who choose to purchase Oracle AIA
middleware or who already own it can use the features of the EBS for transformations instead of or in
addition to using the delivered IB samples.

Copyright © 1988, 2022, Oracle and/or its affiliates. 13

Understanding Application Integration Framework Chapter 2

Note: PeopleSoft-delivered integrations transform messages to the EBM format for direct integration with
other Oracle products.

This diagram illustrates a PeopleSoft message transformed to a common value.

Use Cases for Application Integration Framework
Use cases fall into two categories:

• Key-mapping transforms using the dynamic cross-reference framework

• Static value transforms using the domain value map framework

These two frameworks are assumed to be separate; however, they in fact share common elements. The
values of keys are open-ended and are usually extended; thus they are created programmatically during
the transformation process, not in advance of the transform. Static value transforms generally have all
values entered into the maps prior to the transformation process, and are less frequently extended.

In addition to these two categories, the integration use case depends on whether the third party is using
AIA middleware.

This table shows where the transformations take place depending on whether AIA middleware is used:

Use Case PeopleSoft Integration
Broker

AIA Middleware Third Party

Integration Broker
Transformations without AIA
middleware

Transform PeopleSoft ABM
to EBM for outbound

Transform EBM to PeopleSoft
ABM for inbound

not used Transform EBM to third-party
ABM for inbound

Transform third-party ABM to
EBM for outbound

14 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 2 Understanding Application Integration Framework

Use Case PeopleSoft Integration
Broker

AIA Middleware Third Party

Integration Broker Point-to-
Point transformation

Transform PeopleSoft ABM
to third-party ABM for
outbound

Transform third-party ABM to
PeopleSoft ABM for inbound

not used No transformations are
necessary

Optionally, the third party
can do the outbound
transformation to PeopleSoft
ABM.

Integration Broker
Transformation in which third
party uses AIA middleware

Transform PeopleSoft ABM
to EBM for outbound

Transform EBM to PeopleSoft
ABM for inbound

Transform EBM to third-
party ABM for outbound from
PeopleSoft application

Transform third-party ABM
to EBM for inbound to
PeopleSoft application

No transforms are performed

Maps

Two different kinds of maps are available, domain values maps (DVM) and cross-reference maps
(XREF). The maps are similar in that both maps group elements by domain name and are composed
of elements that map specific values from one domain to another. The difference from a technical
perspective is that XREF values are constantly being created, whereas DVM values are relatively static.

XREF DVM

Usually keys Usually attributes

Data maintained programmatically Data maintained manually through the user interface

Map cardinality provides an independent classification of the mapping functions. Maps are based on
single values (1:1) or multivalues (N:N).

Domain Value Map
A Domain Value Map (DVM) is used for values that are relatively static and are relatively limited in total
number, such as country codes and states. DVMs generally have all values entered into the maps prior to
the transformation process, and are less frequently extended compared to cross-reference maps.

The DVM consists of domains, maps, and elements.

Copyright © 1988, 2022, Oracle and/or its affiliates. 15

Understanding Application Integration Framework Chapter 2

Term Definition

Domain A participating integrating system, for example, Siebel or
Oracle E-Business Suite.

Note: Multiple domains can be maintained for a map.

Maps A static object for which the mapping needs to be maintained,
 for example, currency code or country code.

Element The unit of data in the local or remote message upon which
an irreducible transanimation operates. An irreducible
transanimation is one that cannot be broken into smaller
transformations. Most elements contain a single data value,
 but that may not always be the case. For example, an
address could be represented as a single string, or it could be
composed of separate strings representing city, state, street,
 and house number. Examples of DVM elements are country
code and common value.

Cross-Reference Map
A cross-reference map is used for values that are dynamic in nature, such as key elements used to identify
an instance. These are referred to as key maps or cross-references. The values are the names of larger data
entities.

Cross-references consist of domains, maps, and elements.

Term Definition

Domain A participating integrating system, for example, Siebel or E-
Business Suite.

Note: Multiple domains can be maintained for a map.

Maps A transaction object where the cross-reference for the keys is
maintained, for example, voucher or vendor.

Element An individual element captured as part of the key information,
 for example, SETID, VENDOR_ID.

Functions to Populate and Maintain the Cross-Reference and
DVMs

Three types of functions are available to query and maintain the DVM and cross-reference data during the
transformation process.

16 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 2 Understanding Application Integration Framework

Term Definition

Application Class methods Application class methods are used in PeopleCode. These
classes are typically used in cases in which the transformations
are implemented as a PeopleCode step in an application engine
program. These PeopleCode classes are used internally by the
XPATH extension functions and by the web services.

XPath extension functions XPath extension functions are used in the XSLT steps in
application engine transform programs to invoke XSLT
transforms using the TransformEx PeopleCode API.

Web services Used by external systems to perform cross-reference lookups.

These functions enable you to query, manipulate, and delete cross-reference (XREF) and DVM data
during transforms. The cardinality of the function is incorporated into the API naming convention. Each
set of functions can be further broken down into three activities: lookup, populate, and delete.

The provided functions by class, activity, and form are:

Class Activity Form Description

XREF Populate populateValue Populate a transform item for
a single valued element.

XREF Populate populateValue1M Populate a transform element
for a 1 to many mapping.

XREF Populate populateValueNVP Populate a transform item for
a multivalued element.

XREF Delete markForDelete Mark for deletion a transform
element for a single valued
element. Items marked for
delete can be reactivated later.

XREF Delete markForDeleteNVP Mark for deletion a transform
element for a multivalued
element (name value pair).

XREF Lookup lookupValue Look up a cross-reference
value.

XREF Lookup lookupValue1M Look up a cross-reference
element for multiple values
corresponding to a specific
value in a reference element
(1 to many).

Copyright © 1988, 2022, Oracle and/or its affiliates. 17

Understanding Application Integration Framework Chapter 2

Class Activity Form Description

XREF Lookup lookupValueNVP Look up a cross-reference
value for a multivalued
element.

DVM Lookup lookupValue Look up a domain value.

DVM Lookup lookupValue1M Look up multiple domain
values corresponding to a
specific value in a reference
element.

DVM Lookup lookupValueNVP Look up a domain value for a
multivalued element.

DVM Lookup lookup-dvm Look up a domain value.

Use Case: Integration Broker Transformation Without AIA
Middleware

This section discusses the use case in which both the PeopleSoft and third-party map transformations take
place within the PeopleSoft Integration Broker through Application Integration Framework. In this use
case, PeopleSoft applications can take advantage of a canonical integration model without the need to
purchase AIA middleware.

Use case includes:

• Outbound request or post to a third party.

• Inbound request or post from a third party.

Outbound Request or Post to a Third Party

This diagram illustrates an outbound request or post to a third party.

The following steps are performed in this scenario:

18 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 2 Understanding Application Integration Framework

1. A user in the PeopleSoft system triggers publishing of an AIA supportive integration to a third-party
system.

2. Within PeopleSoft Integration Broker, a transform on the outbound routing generates the EBM. The
method used to translate the data values depends on the transaction. This table lists the transaction
types and the necessary transformation action.

Transaction Action

Dynamic key add-request If the transaction is an add-request, the transform creates a
new common key (GUID) and uses the appropriate form of
the populate XRef XPath extension function to put the new
common key and the corresponding PeopleSoft keys into the
PeopleSoft cross-reference framework.

Dynamic key lookup If the transaction is not an add-request, the transform looks
up the common key using the appropriate form of the
lookup XRef XPath extension function with the PeopleSoft
keys as input. If a common key does not exist, the developer
determines whether to create a new common key, generate
an error, or return an error message in the reply message if
the integration supports it.

Dynamic key delete request For asynchronous notification (request-only) integrations
that delete a keyed entity, developers may choose to leave
the cross-reference values in place for historical purposes
or, if desired, they may choose to delete the cross-reference
values. To mark the PeopleSoft keys for deletion, the
transform uses the appropriate form of the deleteXRef
XPath extension function with the PeopleSoft keys as input.

Static value lookup If the transaction uses a domain value map, the transform
looks up the PeopleSoft values using the appropriate form
of the lookupDVM XPath extension function with the
PeopleSoft values as input. If a value is not found, the
developer determines whether the transform supplies the
PeopleSoft values by default, leaves them blank, throws an
error, or returns an error message in the reply message if the
integration supports it.

3. The EBM is routed to the third-party system for processing.

Integrations supporting response messages have these additional steps:

1. The third-party system processes the request, formats the reply message, and then returns it along with
the common key or value.

2. Within PeopleSoft Integration Broker, asynchronous request-reply operations have a transform
to look up the PeopleSoft keys using the appropriate form of the lookupXref XPath extension
function with the common key as input. The PeopleSoft keys are then put into the PeopleSoft ABM.

Copyright © 1988, 2022, Oracle and/or its affiliates. 19

Understanding Application Integration Framework Chapter 2

Synchronous operations do not require this lookup because the PeopleSoft application already knows
the PeopleSoft keys from the initial request.

Transaction Action

Asynchronous request-reply operation using dynamic key
value

Requires a transform program to look up the PeopleSoft
keys using the appropriate form of the lookupXRef XPath
extension function with the common key as input. The
PeopleSoft keys are then put into the PeopleSoft ABM.

Synchronous operations using dynamic key value Lookup is not required because the PeopleSoft application
already knows the PeopleSoft keys from the initial request.

Asynchronous request-reply operation using DVM value Requires a transform program to look up the PeopleSoft
values using the appropriate form of the lookupDVM XPath
extension function with the common value as input. The
PeopleSoft keys are then put into the PeopleSoft ABM.

3. The PeopleSoft ABM reply is then returned to the originating PeopleSoft application.

Inbound Request or Post from a Third Party

This diagram illustrates an inbound request or post from a third party.

1. A user in the third-party system triggers publishing of an integration to a PeopleSoft system.

2. The EBM is routed to the PeopleSoft system for processing.

3. Within PeopleSoft Integration Broker, a transform on the inbound routing performs the following
actions based on transaction type:

Transaction Action

Dynamic key add request If the transaction is an add-request, the transform leaves the
PeopleSoft keys blank in the ABM and passes the common
key along for use in the handler.

20 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 2 Understanding Application Integration Framework

Transaction Action

Dynamic key lookup If the transaction is not an add-request, the transform looks
up the PeopleSoft keys using the appropriate form of the
lookup XRef XPath extension function with the common
key in the EBM as input. Optionally, this can be done in
the PeopleSoft inbound handler through the appropriate
PeopleSoft lookup XRef API with the common key as
input.

DVM lookup The transform on the inbound routing looks up the
PeopleSoft values using the appropriate form of the
lookupDVM XPath extension function with the common
value from the EBM. If a value is not found, the developer
determines whether the transform supplies the PeopleSoft
values, omits them, throws an error, or returns an error
message in the reply message if the integration supports it.

4. The PeopleSoft inbound handler processes the message.

Transaction Action

Dynamic key add request If the transaction is an add-request, it creates the PeopleSoft
keys and then uses the appropriate form of the populate
XRef API to add the PeopleSoft keys and the corresponding
common key to the PeopleSoft cross-reference framework.
 If the keys cannot be created or added to the framework,
 an error occurs or an error message is returned in the reply
message if the integration supports it.

Dynamic key lookup If the transaction is not an add-request, the message is
processed with the PeopleSoft keys from the ABM. If the
PeopleSoft key values are not found, an error occurs or a
message is returned in the reply message if the integration
supports it.

Integrations supporting response messages have these additional steps:

1. The PeopleSoft application processes the request and returns the ABM reply to the PeopleSoft
inbound handler.

2. The PeopleSoft inbound handler formats the EBM reply and returns it to the third-party system with
the common key.

3. Optionally, if the third-party system uses the PeopleSoft cross-reference framework to persist their
key mappings, asynchronous request-reply operations need to look up the third-party keys using the
appropriate form of the lookup XRef web service with the common key from the EBM reply as input.

Copyright © 1988, 2022, Oracle and/or its affiliates. 21

Understanding Application Integration Framework Chapter 2

Use Case: Integration Broker Point-to-Point Transformation

This section discusses the use case in which PeopleSoft Integration Broker performs all of the
transformations with a third party. In the previous use case, the messages were transformed to the EBM
format; in this use case, the message is transformed into the third-party ABM. If the third party is another
PeopleSoft system, no transform is necessary.

Use case includes:

• Outbound request or post to a third party.

• Inbound request or post from a third party.

Outbound Request or Post to a Third Party

This diagram illustrates an outbound point-to-point request or post to a third party.

The following steps are performed in this scenario:

1. A user in the PeopleSoft system triggers publishing of a point-to-point integration to a third-party
system.

2. Within PeopleSoft Integration Broker, a transform on the outbound routing generates the third-party
ABM. The method used to translate the data values depends on the transaction. This table lists the
transaction types and the necessary transformation action.

Transaction Action

Dynamic key add-request If the transaction is an add-request, the transform creates a
new common key (GUID) and uses the appropriate form of
the populate XRef XPath extension function to put the new
common key, corresponding PeopleSoft key, and third-party
key in the PeopleSoft cross-reference framework.

22 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 2 Understanding Application Integration Framework

Transaction Action

Dynamic key lookup If the transaction is not an add-request, the transform looks
up the key using the appropriate form of the lookup XRef
XPath extension function with the PeopleSoft keys as input.
 If a common key does not exist, the developer determines
whether to create a new common key, generate an error,
 or return an error message in the reply message if the
integration supports it.

Dynamic key delete request For asynchronous notification (request-only) integrations
that delete a keyed entity, developers may choose to leave
the cross-reference values in place for historical purposes
or, if desired, they may choose to delete the cross-reference
values. To mark the PeopleSoft keys for deletion, the
transform uses the appropriate form of the deleteXRef
XPath extension function with the PeopleSoft keys as input.

Static value lookup If the transaction uses a domain value map, a transform
on the outbound routing looks up the common value using
the appropriate form of the lookupDVM XPath extension
function with the PeopleSoft value as input. If a value is
not found, the developer determines whether the transform
supplies the PeopleSoft values by default, omits them,
 throws an error, or returns an error message in the reply
message if the integration supports it.

3. The third-party ABM is routed to the third-party system for processing.

Integrations supporting response messages have these additional steps.

1. The third-party system processes the request, formats the reply message, and then returns it along with
the common key or value.

2. Within PeopleSoft Integration Broker, asynchronous request-reply operations have a transform
to look up the PeopleSoft keys using the appropriate form of the lookup XRef XPath extension
function with the third-party key as input. The PeopleSoft keys are then put into the PeopleSoft ABM.
Synchronous operations do not require this lookup because the PeopleSoft application already knows
the PeopleSoft keys from the initial request.

Transaction Action

Asynchronous request-reply operation using dynamic key
value

Requires a transform program to look up the PeopleSoft
keys using the appropriate form of the lookupXRef XPath
extension function with the third-party key as input. The
PeopleSoft keys are then put into the PeopleSoft ABM.

Copyright © 1988, 2022, Oracle and/or its affiliates. 23

Understanding Application Integration Framework Chapter 2

Transaction Action

Synchronous operations using dynamic key value Lookup is not required because the PeopleSoft application
already knows the PeopleSoft keys from the initial request.

Asynchronous request-reply operation using DVM value Requires a transform program to look up the PeopleSoft
value using the appropriate form of the lookupDVM XPath
extension function with the third-party value as input. The
PeopleSoft keys are then put into the PeopleSoft ABM.

3. The PeopleSoft ABM reply is returned to the originating PeopleSoft application.

Inbound Request or Post from a Third Party

This diagram illustrates an inbound point-to-point request or post from a third-party.

1. A user in the third-party system triggers publishing an integration to a PeopleSoft system.

2. In this example, the request is sent in the third-party ABM format.

Note: In many instances, the third-party may be aware of the PeopleSoft ABM format and perform a
transformation before sending the message; in this case, no transform is required.

3. Within PeopleSoft Integration Broker, a transform on the inbound message performs the following
actions based on transaction type:

Transaction Action

Dynamic key add request If the transaction is an add-request, the transform leaves the
PeopleSoft keys blank in the ABM and passes the third-
party key along for use in the handler.

Dynamic key lookup If the transaction is not an add-request, the transform looks
up the PeopleSoft keys using the appropriate form of the
lookup XRef XPath extension function with the reference
key in the third-party ABM as input.

24 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 2 Understanding Application Integration Framework

Transaction Action

DVM lookup The transform on the inbound routing looks up the
PeopleSoft values using the appropriate form of the
lookupDVM XPath extension function with the reference
key from the third-party ABM. If a value is not found, the
developer determines whether the transform supplies the
PeopleSoft values, omits them, throws an error, or return
an error message in the reply message if the integration
supports it.

4. Within PeopleSoft Integration Broker, a transform on the inbound message performs the following
actions based on transaction type.

5. The PeopleSoft Inbound handler processes the message.

Transaction Action

Dynamic key add request If the transaction is an add-request, it creates the PeopleSoft
keys and then uses the appropriate form of the populate
XRef API to add the PeopleSoft keys and the corresponding
UniqueGUID to the PeopleSoft cross-reference framework.
 If the keys cannot be created or added to the framework, an
error occurs or a message is returned in the reply message if
the integration supports it.

Dynamic key lookup If the transaction is not an add-request, the message is
processed with the PeopleSoft key values from the ABM.
 If the PeopleSoft key values not found, an error occurs or a
message is returned in the reply message if the integration
supports it.

Integrations supporting response messages have these additional steps:

1. The PeopleSoft application processes the request and the PeopleSoft inbound handler formats the
ABM reply and returns it along with the common key or value.

2. No key translation is required in the transform, so the EBM reply is then returned to the third-party
system along with the common key from the ABM reply.

Use Case: Integration Broker Transformation in Which a Third
Party Uses AIA Middleware

From a PeopleSoft perspective, this use case has an identical flow to the transformation without the AIA
middleware. From a third-party perspective, however, it is similar in flow, but not in implementation.
In this case, the third-party system integrates with the AIA using their ABM instead of with PeopleSoft

Copyright © 1988, 2022, Oracle and/or its affiliates. 25

Understanding Application Integration Framework Chapter 2

software using an EBM. All of the third-party value maps and transforms between the EBM and the third-
party ABM are done on the AIA layer using the EBS graphical-mapper and XPath extension functions
instead of being done on the third-party system.

Note: This is the model used with AIA PIPs.

Use cases include:

• Outbound request or post to a third party.

• Inbound request or post from a third party.

Outbound Request or Post to a Third Party

In this use case, a request is sent from the PeopleSoft application to a third party that uses their own AIA
middleware to perform message transformation.

This diagram illustrates an outbound request or post to a third party that uses AIA middleware.

1. A user in the PeopleSoft system triggers publishing of an AIA supportive integration to a third-party
system through the AIA.

2. Within PeopleSoft Integration Broker, a transform on the outbound routing occurs, generating the
EBM. The method used to translate the data values depends on the transaction. This table lists the
transaction types and the necessary transformation action.

Transaction Action

Dynamic key add request If the transaction is an add-request, the transform creates a
new common key (GUID) and uses the appropriate form of
the populateXRef XPath extension function to put the new
common key and the corresponding PeopleSoft keys in the
PeopleSoft cross-reference framework.

26 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 2 Understanding Application Integration Framework

Transaction Action

Dynamic key lookup If the transaction is not an add-request, the transform looks
up the common key using the appropriate form of the
lookupXRef XPath extension function with the PeopleSoft
keys as input. If a common key does not exist, the developer
determines whether to create a new common key, generate
an error, or return an error message in the reply message if
the integration supports it.

Dynamic key delete request For asynchronous notification (request-only) integrations
that delete a keyed entity, developers may choose to leave
the cross-reference values in place for historical purposes
or, if desired, they may choose to delete the cross-reference
values. To mark the PeopleSoft keys for deletion, the
transform uses the appropriate form of the deleteXRef
XPath extension function with the PeopleSoft keys as input.

DVM lookup If the transaction uses a domain value map, the transform
looks up the PeopleSoft values using the appropriate form
of the lookupDVM XPath extension function with the
common value from the EBM. If a value is not found, the
developer determines whether the transform supplies the
PeopleSoft values by default, omits them, throws an error,
 or returns an error in the reply message if the integration
supports it.

3. The EBM is routed to the AIA.

4. Upon receiving the EBM request, the AIA transforms the common key to the third-party key and
sends the transformed request to the third party using their ABM.

Integrations supporting response messages use these additional steps:

1. The third party processes the request, formats the reply message, and returns it to the AIA
middleware.

2. The AIA transforms the third-party key in the reply to the common key and returns the EBM reply to
PeopleSoft software.

3. Within PeopleSoft Integration Broker, asynchronous request-reply operations have a transform
program to transform the common key or value and place it into the PeopleSoft ABM. Synchronous
operations do not require this lookup because the PeopleSoft application already knows the
PeopleSoft keys or values from the initial request.

Copyright © 1988, 2022, Oracle and/or its affiliates. 27

Understanding Application Integration Framework Chapter 2

Transaction Action

Dynamic key lookup Transform looks up the PeopleSoft keys using the
appropriate form of the lookup XRef XPath extension
function with the common key as input.

Dynamic key delete (Optional) For integrations that delete a keyed entity,
 developers may choose to leave the cross-reference values
in place for historical purposes or, if desired, they may
choose to delete the cross-reference values. To mark
the PeopleSoft keys for deletion, the transform uses the
appropriate form of the deleteXRef XPath extension
function with the PeopleSoft keys as input.

DVM lookup The transform looks up the common value using the
appropriate form of the lookup DVM XPath extension
function with the PeopleSoft values as input.

4. The PeopleSoft ABM reply is returned to the originating PeopleSoft application.

Inbound Request or Post from a Third Party

In this use case, a third-party application creates a request that is transformed using the third-party AIA
middleware and sent to the PeopleSoft application.

This diagram illustrates an inbound request or post from a third party using AIA middleware.

1. A user in the third-party system triggers publishing of an integration to a PeopleSoft system through
the AIA.

2. The AIA transforms the third-party ABM key and values to the common key and values and routes
the EBM request to the PeopleSoft system for processing.

3. Within PeopleSoft Integration Broker, a transform on the inbound routing transforms the EBM to
PeopleSoft ABM using one or more of the following methods depending on the transaction.

28 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 2 Understanding Application Integration Framework

Transaction Action

Dynamic key add If the transaction is an add-request, the transform leaves the
PeopleSoft keys blank in the ABM and passes the common
key along for use in the handler.

Dynamic key lookup If the transaction is not an add-request, the transform looks
up the PeopleSoft key using the appropriate form of the
lookupXRef XPath extension function with the common
key in the EBM as input. Optionally, this can be done
in the PeopleSoft inbound handler using the appropriate
PeopleSoft lookup XRef API with the common key as input.

DVM lookup A transform on the inbound routing looks up the PeopleSoft
values using the appropriate form of the lookup DVM
XPath extension function with the common value from
the EBM. If a value is not found, the developer determines
whether the transform supplies the PeopleSoft values by
default, leaves them blank, throws an error, or returns
an error message in the reply message if the integration
supports it.

For synchronous and asynchronous request-reply messages, the following additional steps are performed:

1. The PeopleSoft application processes the request and the PeopleSoft inbound handler formats the
ABM reply and returns it along with the common key or value.

2. No key translation is required in the IB transform, so the EBM reply is returned to the AIA for routing
back to the third-party system.

3. The AIA transforms the common key and values to the third-party ABM key and values and routes
the third-party ABM reply back to the third-party system.

Copyright © 1988, 2022, Oracle and/or its affiliates. 29

Understanding Application Integration Framework Chapter 2

30 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 3

Defining and Populating Value Maps

Understanding Value Maps

The Define Value Maps component enables users to define and classify value maps and elements. Each
value map must be defined as either dynamic (cross-reference) or static (DVM).

Value maps support the following types of maps:

• One-to-one

• One-to-many

• Multiple elements per domain

One-to-One Cross-Reference

Cross-reference maps support a one-to-one relationship between two systems. For example, the
PeopleSoft system uses one ID for customer A, the enterprise business object (EBO) or common value
uses a GUID, and the external system uses another ID for the same customer.

The cross-reference map would be defined like this:

PeopleSoft UniqueGUID External System

PS UniqueGUID EXT

PS100 <guid1> EXT-100

PS102 <guid2> EXT-102

In this scenario, when a PeopleSoft application creates a new customer and sends the create customer
message to the external system, the routing includes a transformation program that uses the cross-
reference map to translate the data.

One-to-Many Cross-Reference

Cross-reference maps support a one-to-many relationship between two systems. Two or more values in a
system may correspond to a single value in another system. For example, three different job codes might
exist in the PeopleSoft system that correspond to one job code in the external system.

The cross-reference map would be defined like this:

Copyright © 1988, 2022, Oracle and/or its affiliates. 31

Defining and Populating Value Maps Chapter 3

PeopleSoft UniqueGUID External System

PS UniqueGUID EXT

AS01

AS02

AS03

<guid1>

<guid2>

<guid3>

ASST

MG01 <guid4> MNGR

In this scenario, when the PeopleSoft application assigns or changes a job code and sends the message
to the external system, the routing includes a transformation program that uses the cross-reference map
to translate the data. If the integration requires translation from the external system value to a PeopleSoft
value, the developer is responsible for determining how to handle the multiple PeopleSoft values returned
from the lookup. Options include replicating the source data for each value, implementing a method of
choosing a default value, and generating an error for the transaction.

Cross-Reference with Multiple Domains

Many times a system implements functionality using compound keys. This is supported in the cross-
reference framework by means of multiple elements to identify the value set. For example, item
integrations from a PeopleSoft application to an external system would use a cross-reference map to
translate SetID/ItemID on the PeopleSoft system to Product on the external system.

The cross-reference map would be defined like this:

PeopleSoft PeopleSoft UniqueGUID External System

SETID ITEMID UniqueGUID Product

SHARE 1001 <guid1> RP001

SHARE 1002 <guid2> RP002

SHARE 1003 <guid3> RP003

SHR03 1000 <guid4> RP006

In this scenario, when the PeopleSoft application creates an item and sends the message to the external
system, the routing includes a transformation program that maps the setID and itemID to a common
element (UniqueGUID) and the external system receives the translated data.

32 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 3 Defining and Populating Value Maps

One-to-One DVM

In a domain value map, the one-to-one relationship contains the actual data values. For example, the
PeopleSoft application uses the short name for the state code, the EBO defines state code using the full
name as the common value, and the external application uses an abbreviated name for state code.

The DVM would be defined like this:

PeopleSoft Common External System

Short Full Abbrev

MA Massachusetts Mass

CA California Calif

In this scenario, when a PeopleSoft application creates an outbound message to the external system that
includes the state code, the routing includes a transformation program mapping the short name to the full
name and the external system requires a transformation from the full name to the abbreviated name. The
transformation for the external system can be done by means of the AIA middleware or a proprietary
transformation on the external system.

One-to-Many DVM

In the domain value map, a one-to-many relationship is created by entering multiple values for one
domain mapping to a single value in another domain. For example, in the PeopleSoft application, multiple
person types can map to a single person type in the external application.

The DVM would be defined like this:

PeopleSoft UniqueGUID External System 2

PS UniqueGUID EXT2

PS001

PS002

<guid1> SB001

PS003 <guid2> SBL002

In this scenario, when a PeopleSoft application creates an outbound message to an external system that
includes the person type, the routing includes a transformation program to translate the data values.

Copyright © 1988, 2022, Oracle and/or its affiliates. 33

Defining and Populating Value Maps Chapter 3

DVM with Multiple Elements Per Domain

In the DVM, you can map multiple elements to define a value set. For example, in the PeopleSoft
application, the Business Unit/Chartfield combination could map to a Ledger/Segment combination in an
external application.

In this scenario, when a PeopleSoft application creates an outbound message to the external system that
includes the person type, the routing includes a transformation program providing the data translation.

The DVM would be defined like this:

PeopleSoft PeopleSoft UniqueGUID External System 1

Business Unit Chartfield UniqueGUID Segment Ledger

US001 ACCOUNT <guid1> SEGMENT1 Ledger1

US001 DEPARTMENT <guid2> SEGMENT2 Ledger1

US001 PRODUCT <guid3> SEGMENT3 Ledger1

US002 ACCOUNT <guid4> SEGMENT1 Ledger2

In this scenario, when a PeopleSoft application creates an outbound message to an external system that
includes the Business Unit/Chartfield, the routing includes a transformation program to translate the
data values for the multiple elements to a single UniqueGUID. The external system would then need to
transform the UniqueGUID to the equivalent Segment/Ledger.

DVM with Qualifiers

Qualifiers provide additional context to uniquely identify mapping values. A mapping may not be valid
unless qualified with additional contextual information. For example, a domain value map containing city
code to city name mapping may have multiple mappings for a city based on the country. For example,
Kensington is a city in Canada as well as the United States.

The DVM would be defined like this:

EXT (Qualifier 1)

PSFT (Qualifier 1)

EXT (Qualifier 2)

PSFT (Qualifier 2)

Common EXT PSFT

Country State Common CityCode CityName

USA Minnesota BELG_MN BELG Belgrade

USA North Carolina BELG_NC BELG Belgrade

34 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 3 Defining and Populating Value Maps

EXT (Qualifier 1)

PSFT (Qualifier 1)

EXT (Qualifier 2)

PSFT (Qualifier 2)

Common EXT PSFT

USA Kansas KN_KS KN Kensington

Canada Prince Edward Island KN_PEI KN Kensington

In this scenario, when the PeopleSoft application creates an outbound message to an external system that
includes the Business Unit/Chartfield, the routing includes a transformation program mapping city name,
country, and state to a common value.

Defining Map Options

This section discusses how to define value map options.

Page Used to Define Value Map Options

Page Name Definition Name Usage

Value Map Options Page EOTF_MAP_OPTIONS Use this page to select default values
for the options available on value map
definitions.

Value Map Options Page
Use the Value Map Options page (EOTF_MAP_OPTIONS) to use this page to select default values for
the options available on value map definitions.

Navigation:

Enterprise Components > Integration Definitions > Transformation Framework > Define Map
Options

Copyright © 1988, 2022, Oracle and/or its affiliates. 35

Defining and Populating Value Maps Chapter 3

This example illustrates the fields and controls on the Value Map Options page. You can find definitions
for the fields and controls later on this page.

Field or Control Description

Cache Minutes The cache for map definitions and DVM data uses this value
to determine the stale datetime. Once this time is exceeded, the
cache is refreshed before use.

Concatenation Separator Indicates the separator for concatenation when importing or
exporting data. For V1 (Fusion Middleware FMW) schemas,
 if values are concatenated from multiple element domains into
a single column during export or unconcatenated during an
import of data then this separator value is used.

Import Options

These options are defaulted into the import component and any maps that are created. The import process
uses the map specific options.

36 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 3 Defining and Populating Value Maps

Field or Control Description

Import Mode Allows a user to import a definition, alter the definition via
the define value maps component, and subsequently import
data only. This gives users the ability to rename elements,
 or perhaps specify multiple elements for a domain prior to
importing data.

Valid values are:

• Definition Only

Allows users to move definitions from one environment
to another without the data.

• Definition and Data

Imports both the definition and associated data.

• Values Only

Allows users to import data using the map definition in
the database and not the definition in the file.

Error When Map Exists Select this check box to prevent maps from being wiped out
accidentally if a user tries to import a map with an existing
name. The default value is selected.

Delete Map/Data Before Import Select this check box to delete existing definition and data
prior to import (default). If this check box is cleared, append/
merge is used. Append/merge allows a user to add elements,
 domains or data to an existing map without deleting existing
data.

Note: This option is for advanced users only as they must
understand the implications.

Export Options

These options are defaulted into maps that are created. The export process uses map specific options.

Copyright © 1988, 2022, Oracle and/or its affiliates. 37

Defining and Populating Value Maps Chapter 3

Field or Control Description

Export Mode Valid options are:

• Definition Only

Allows users to move definitions from one environment
to another without the data.

This is the default for XREF.

• Definition and Data

Exports both the definition and associated data.

This is the default for DVM.

Export UniqueGUID to DVM.V1 Select to remove PeopleSoft required UniqueGUID domain
from the DVM when moving maps to Fusion Middleware
(FMW).

Defining Value Maps

This section discusses how to define value maps.

Pages Used to Define Value Maps

Page Name Definition Name Usage

Define Value Map - Elements Page EOTF_DEFINE_MAPS Assign elements to the map.

Define options for a value map Page EOTF_MAP_OPT_SEC Set the map level options. For new maps,
 the option values will default to the
defined system level option values.

Define Value Maps - Domains Page EOTF_DEFINE_MAPS2 Assign elements to domains.

Define Value Maps search Page
Use the Define Value Maps search page to add a new value.

Navigation:

Enterprise Components > Integration Definitions > Transformation Framework > Define Value
Maps

38 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 3 Defining and Populating Value Maps

This example illustrates the fields and controls on the Define Value Maps search page: Add a New Value
tab. You can find definitions for the fields and controls later on this page.

To add a value map:

1. Select the Add a New Value tab.

2. In the Map Name field, enter a name for the map.

3. In the Map Type field, select the map type.

4. Click the Add button.

The Elements page appears, where you can define the elements for the map.

Note: After you save the map, you can not change the map type.

Map Types

Maps are either static or dynamic.

Field or Control Description

Domain Value Map (static) Static map to which values are provided by means of the
Populate Domain value component.

Field or Control Description

Cross Reference (dynamic) Dynamic map to which values are provided based on key
information.

Define Value Map - Elements Page
Use the Define Value Maps - Elements page (EOTF_DEFINE_MAPS) to assign elements to the map.

Copyright © 1988, 2022, Oracle and/or its affiliates. 39

Defining and Populating Value Maps Chapter 3

Navigation:

Enterprise Components > Integration Definitions > Transformation Framework > Define Value
Maps > Elements

This example illustrates the fields and controls on the Define Value Maps - Elements page. You can find
definitions for the fields and controls later on this page.

Field or Control Description

Description Enter a description for the value map.

Options Use this link to modify the options for this map. The link will
take you to the Define options for a value map page, where
you can set up the options, as well as delete the existing cache
for the map. When you click OK, the options will be applied to
the map.

For new maps, the option values will default to the defined
system level option values.

See Value Map Options Page.

Comments Enter comments for the value map.

Order The common element is always assigned order 1. All other
elements must be assigned an order of 2 or higher.

40 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 3 Defining and Populating Value Maps

Field or Control Description

Element Name Enter the element name. Select one and only one element
as the common element. The common element must always
contain a unique value for each row of data entered into both
dynamic and static value maps.

For dynamic maps, the common element must be a unique
guid.

For static maps, the common element can be assigned as
required.

Data Type Values are:

• String

• Numeric

The data type is used for validation when you are entering data
values.

Length Enter the length of the element.

The length is used for validation when you are entering data
values.

Required Select to indicate that this is a required element.

Export This button allows the user to publish the map definition and
data in an XML format using the options defined for the value
map.

See Exporting Value Maps.

Delete Use this button to delete the value map.

Define options for a value map Page
Use the Define options for a value map page (EOTF_MAP_OPT_SEC) to set the map level options. For
new maps, the option values will default to the defined system level option values.

Navigation:

Click the Options link on the Define Value Maps - Elements page.

Copyright © 1988, 2022, Oracle and/or its affiliates. 41

Defining and Populating Value Maps Chapter 3

This example illustrates the fields and controls on the Define options for a value map page for a specific
map. You can find definitions for the fields and controls later on this page.

This page is similar to Define options for a value map used to define the default options, the difference is:

• The options apply to this specific map.

• A Delete Cache button is available to delete the existing cache for the map.

When you click the OK button, the options will be applied to the map and you will be returned to the
Define Value Maps page.

See Value Map Options Page.

Define Value Maps - Domains Page
Use the Define Value Maps - Domains page (EOTF_DEFINE_MAPS2) to assign elements to domains.

Navigation:

Enterprise Components > Integration Definitions > Transformation Framework > Define Value
Maps > Domains

42 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 3 Defining and Populating Value Maps

This example illustrates the fields and controls on the Define Value Maps - Domains page. You can find
definitions for the fields and controls later on this page.

Each element in a value map must be assigned to at least one domain.

Field or Control Description

Domain Name Enter the domain name for the participating system.

Is Unique Select to indicate that elements within the domain make up a
unique instance.

Element Name Select the element to assign.

Note: Domain name “UniqueGUID” will be automatically generated as it is required to maintain a unique
value for each row of data in a map. Elements may be shared across multiple domains, as long as users
understand the data value in the element is unique to the map, not the domain. In general, it is expected
most DVM domains will contain a single element, and most PeopleSoft XREF domains will contain
multiple elements, though this is not a rule.

Copyright © 1988, 2022, Oracle and/or its affiliates. 43

Defining and Populating Value Maps Chapter 3

Populating a Domain Value Map

This section discusses how to populate a domain value map.

Page Used to Populate a Domain Value Map

Page Name Definition Name Usage

Domain Value Map Page EOTF_POPULATE_DVMS Populate a domain value map.

Domain Value Map Page
Use the Domain Value Map page (EOTF_POPULATE_DVMS) to populate a domain value map.

Navigation:

Enterprise Components > Integration Definitions > Transformation Framework > Populate
Domain Value Maps

This example illustrates the fields and controls on the Domain Value Map page. You can find definitions
for the fields and controls later on this page.

You use domain value maps to enter and maintain data in static value maps. The elements that you define
for the value map make up the columns displayed on the page. Elements are ordered and validated as
specified in the map definition.

A unique value must be entered for each row of data in every DVM. When you save the page, the
component looks for a cached rowset and destroys it. The cache is reloaded the next time it is called.

Importing Value Maps

This section provides an overview of the import file types used with value maps and describes how to
import value maps.

44 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 3 Defining and Populating Value Maps

Page Used to Import Value Map

Page Name Definition Name Usage

Import Value Maps Page EOTF_MAP_IMPORT Import a DVM or XREF from a
specified file.

Understanding Import File Types Used with Value Maps
There are 2 import file types supported in the Transformation Framework:

• XML Files

• CSV Files

Importing XML Files

There are 2 types of schemas supported in the Transformation Framework:

• V1 Fusion Middleware (FMW)

This is the schema used with FMW using 11g format. The associated service operation is
EOTF_DVM_IMPORT.v1. This is not the default version of the service operation, therefore a version
transformation program is executed when a value map is imported in this format.

See EOTF_DVM_IMPORT.v1, EOTF_XREF_IMPORT.v1.

• PeopleSoft Format

This is the schema used for PeopleSoft. The associated service operation is
EOTF_DVM_IMPORT .v2, which is the default service operation.

See EOTF_DVM_IMPORT.v2, EOTF_XREF_IMPORT.v2.

When the specified file contains XML, the XML must conform to one of the schemas supported by the
import web service. When the file contains XML, users may choose to import a map definition, map
data, or both. When importing using the FMW (V1) schema, users may desire to have the import process
break composite values into element values. To do so, users need to import the definition, then alter the
definition to specify multiple elements for one or more of the domains using the Value Map Definition
component, then go back and import data values only. In this scenario, the process will unconcatenate the
values using the specified separator. An error will be thrown if a required element is not valued.

Importing CSV Files

When the file contains CSV data, the following rules apply:

• The first row in the file must contain the type of the value map (DVM or XREF) in the first column,
and the name of the value map to be imported in the second column.

• Each column in the second row of the file must identify either domain names or element names to
import into (no mixing allowed), or reference data. When importing into an existing map, domain and
element names will be validated against the map definition. An error will be thrown if not found, or if

Copyright © 1988, 2022, Oracle and/or its affiliates. 45

Defining and Populating Value Maps Chapter 3

all required elements for a domain are not included in the file. To define a reference data column that
will be ignored by the import process, prefix the name with an asterisk, or leave the name blank.

• Subsequent rows in the file identify the data values to be imported, and must contain the same number
of columns as the second row.

• When the data values in a column are composite (concatenated) values identifying the value of each
element in the domain, and the second row in the file identifies domain names, the import process
will unconcatenate the values using the specified separator for each domain defined with multiple
elements. An error will be thrown if a required element is not valued.

• If the value map already contains data for other domains, and the user wishes to add this domain’s
values to the existing rows of data, the domain referenced in the first column of data will be used
to locate an existing row of data. If a row of data is not found, a new row of data will be created. If
multiple rows are found and the additional domain(s) in the file do not allow duplicates, an error
will occur. Otherwise, the existing rows of data will be updated with the data values for the other
domain(s) in the file.

• If UniqueGUID is blank or not specified in the file, a value will be generated for each new row of
data.

• When importing a map definition, each column will be treated as a domain with a single element by
the same name. Users may import definition only, then use the Define Value Maps component to alter
the definition, then import data only to allow importing composite (concatenated) values or domains
with multiple elements.

This is an example of the cross-reference value map csv file in MicroSoft Excel:

This example illustrates a sample csv file to import a cross reference value map. You can find definitions
for the fields and controls later on this page.

This is an example of the DVM value map csv file in MicroSoft Excel:

46 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 3 Defining and Populating Value Maps

This example illustrates a sample csv file to import a DVM value map. You can find definitions for the
fields and controls later on this page.

Import Value Maps Page
Use the Import Value Maps page (EOTF_MAP_IMPORT) to import a DVM or XREF from a specified
file.

Navigation:

Enterprise Components > Integration Definitions > Transformation Framework > Import Value
Maps

This example illustrates the fields and controls on the Import Value Maps page. You can find definitions
for the fields and controls later on this page.

The import value maps component provides users the ability to import a DVM or XREF from a specified
file. The import file must be formatted as XML or comma separated values (CSV). If the import may
result in data loss, a confirmation dialog will be displayed. Option defaults will be pulled from the system
defaults set up by the user in the Value Map Options component.

Copyright © 1988, 2022, Oracle and/or its affiliates. 47

Defining and Populating Value Maps Chapter 3

Field or Control Description

File Name The name of the file including the path. Files must be XML or
CSV format and must contain a map name.

Import Mode Allows a user to import a definition, alter the definition via the
define value maps component, and subsequently import data
only. This gives users the ability to import a definition and
then rename elements, or perhaps specify multiple elements
for a domain prior to importing data. Valid values are:

• Definition Only

• Definition and Data

• Values Only

Delete Map/Data Before Import Select to delete existing definition and data prior to import
(default). If this check box is cleared, append/merge is used.
 Append/merge allows a user to add elements, domains or data
to an existing map without deleting existing data.

Note: This option is for advanced users only as they must
understand the implications.

Column Separator CSV files allow characters other than a comma to be utilized
for delimiting column values. The value entered here is the
delimiter value that will be used when reading the specified
file. To specify a tab character, enter \t as the separator value.

Concatenation Separator For V1 (FMW) schemas, if values are concatenated from
multiple element domains into a single column during export
or unconcatenated during an import of data only, this is the
separator value to be used.

Import Verifies the options and initiates the import process.

Exporting Value Maps

This section provides an overview of export schemas and discusses how to export a value map.

Understanding Export Schemas
Value maps can be exported from the Define Value Maps page using the Export button. The map
definition and data is published in an XML format using the options defined for the value map. The
XML will conform to the schemas specified in the active version of the EOTF_DVM_EXPORT service
operation.

• FMW format (V1)

48 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 3 Defining and Populating Value Maps

To export using the FMW schema, you must activate and supply a valid routing for the service
operation EOTF_DVM_EXPORT.v1.

Domain names are used as column names when exporting to a V1 schema. If multiple element
domains are exported to the V1 schema, the element values are concatenated to form a compound
value for each domain.

• PeopleSoft

To export using the PeopleSoft schema, you must activate and supply a valid routing for the service
operation EOTF_DVM_EXPORT.v2.

• Both

Activate and provide a routing for both EOTF_DVM_EXPORT.v1 and EOTF_DVM_EXPORT.v2.

See PeopleTools: PeopleSoft Integration Broker, Managing Service Operations, Configuring Service
Operation Definitions

Exporting a Value Map
To export a value map:

1. Select Enterprise Components > Integration Definitions > Transformation Framework >
Define Value Maps.

2. Select the map you want to export.

3. Click the Export button.

Copyright © 1988, 2022, Oracle and/or its affiliates. 49

Defining and Populating Value Maps Chapter 3

50 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 4

Creating Transform Programs and Updating
Service Operations

Understanding Transform Programs

A transform program is a type of PeopleSoft Application Engine program. After you create a new
transform application engine program, you add steps and actions to the program, and then add code to the
steps and actions that performs data transformation and translation.

To develop a transform program, you must know the initial structure and possibly the content of the
message with which you are working, as well as the structure (and content) of the result that you want to
achieve.

You specify which transform program to apply within a routing definition for a service operation.

Transformation Programming Languages

You can use PeopleCode or Extensible Stylesheet Language Transformation (XSLT) as a programming
language for creating transformation logic. XSLT is a recognized standard language that is well-suited to
manipulating XML structures, so it is highly recommended for transformations.

PeopleSoft applications provide XSLT extension functions and PeopleCode APIs to perform value map
lookups, deletes, and population.

Note: When programming using XSLT, you can manually code the XSLT or use the Oracle XSL Mapper
to graphically associate records and fields. The Oracle XSL Mapper then automatically generates the
XSLT code.

See PeopleTools: PeopleSoft Integration Broker, Applying Filtering, Transformation and Translation,
Developing Transform Programs.

Creating a Transform Program

Create a new application engine program in Application Designer. On the toolbar, click the Properties
button and select the Advanced tab.

Copyright © 1988, 2022, Oracle and/or its affiliates. 51

Creating Transform Programs and Updating Service Operations Chapter 4

This example illustrates the fields and controls on the Application Engine program properties for a
transform program. You can find definitions for the fields and controls later on this page.

The application engine program must be defined as program type Transform Only. Optionally, you
can indicate the input and output message name and version. The input and output message name and
version are required if you want to use the Oracle Graphical Mapper to create the XSLT for the transform
program.

Note: Refer to PeopleTools: PeopleSoft Integration Broker, Applying Filtering, Transformation and
Translation, Developing Transform Programs for details on creating a transform program using Oracle
Graphical Mapper.

Refer to the Understanding XSLT Extension Functions topic for the syntax to use for your cross-
references and domain value maps.

Note: Snippets of code are provided in the appendix, “Application Integration Framework Example.”

Updating Service Operation Routing

A routing definition contains routing parameters for each inbound request, inbound response, outbound
request, and outbound response associated with a service operation. For each request or response, you
define the routing alias, message names before and after transformation, and transformation program
names.

Your transform program is invoked by PeopleSoft Integration Broker if you specify its name in the a
routing definition for a service operation.

52 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 4 Creating Transform Programs and Updating Service Operations

Adding Routing Parameters

To access the Routing Definition page to add routing parameters:

1. Select PeopleTools > Integration Broker > Integration Setup > Service Operations.

2. Select the Routings page.

3. Either click the link for an existing routing or add a new routing.

4. If it is a new routing, add the routing information.

5. Select the Parameters page.

This example illustrates the fields and controls on the Routing Parameters page for asynchronous one-way
service operation. You can find definitions for the fields and controls later on this page.

If the application engine transform program includes the messages into and out of the transformation,
the messages are automatically populated with these values. If the application engine program does not
include the message names, enter the appropriate message names and save the page.

Note: For synchronous service operations, you can define transformation on both the outbound and
inbound messages.

See PeopleTools: PeopleSoft Integration Broker, Managing Routing Definitions, Creating Routing
Definitions.

Copyright © 1988, 2022, Oracle and/or its affiliates. 53

Creating Transform Programs and Updating Service Operations Chapter 4

54 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 5

Accessing Maps Using XSLT Extension

Understanding XSLT Extension Functions

When you have created your value maps, you need to write a transformation program that will map the
elements in the message and use the value maps for data translation.

PeopleSoft applications provide XSLT extension functions to perform value map lookups, deletes, and
population. Two nearly identical sets of functions are available, one for cross-references and one for
DVMs.

Cross-Reference Functions

This section describes the cross-reference XSLT extension functions in alphabetical order.

xref:BulkPopulateDomainData

Syntax

xref:BulkPopulateDomainData(mapName, domainList, dataRowsPath, dataValuesPath, mode⇒

)

Description

The XREF bulk populate domain data function populates cross-reference data from XML. It sequences
through the rows of data provided in the XML nodeset and uses the supplied domain list and data values
path to access the values for each domain in each row. Each row of data is then inserted into the XREF
framework for the specified map utilizing bulk insert to maximize performance. This function is expected
to be used for processing large volumes of data. It provides an abstraction layer from the physical data
persistence layer of the XREF framework. because inserts are done using bulk mode, duplicates are not
looked for until the end of the insert sequence. If a duplicate is encountered, none of the rows of data
will be inserted. When a domain contains multiple elements, each value for the domain must contain a
compound value consisting of a value for each element in the domain separated by the concatenation
string specified in the value map options. In this scenario, this function will unconcatenate the domain
element values before inserting the data into the transformation framework.

Copyright © 1988, 2022, Oracle and/or its affiliates. 55

Accessing Maps Using XSLT Extension Chapter 5

Parameters

Parameter Description

mapName The name of a dynamic (cross reference) value map, as string.

domainList A comma separated list of domain names identifying the order
of the data values to be imported.

dataRowsPath An XPath expression resulting in a series of XML nodes
where each node represents one row of data.

dataValuesPath An XPath expression (relative to each row of data) used to
identify each node containing a data value within a row of
data. The nodeset returned when this path is evaluated must
contain the same number of nodes as there are domains in the
specified domainList.

mode Only ADD mode is supported.

Returns

Boolean indicating success or failure of the process.

xref:BulkPopulateElementData

Syntax

xref:BulkPopulateElementData(mapName, elementList, dataRowsPath, dataValuesPath, mo⇒

de)

Description

The XREF bulk populate element data function populates cross-reference data from XML. It sequences
through the rows of data provided in the XML nodeset and uses the supplied pairs of elements and XPath
expressions to access the values for the elements in each row. Each row of data is then inserted into the
XREF framework for the specified map utilizing bulk insert to maximize performance. This function
is expected to be used for processing large volumes of data. It provides an abstraction layer from the
physical data persistence layer of the XREF framework. because inserts are done using bulk mode,
duplicates are not looked for until the end of the insert sequence. If a duplicate is encountered, none of the
rows of data will be inserted.

56 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 5 Accessing Maps Using XSLT Extension

Parameters

Parameter Description

mapName The name of a dynamic (cross reference) value map, as string.

elementList A comma separated list of element names identifying the order
of the data values to be imported.

dataRowsPath An XPath expression resulting in a series of XML nodes
where each node represents one row of data.

dataValuesPath An XPath expression (relative to each row of data) used to
identify each node containing a data value within a row of
data. The nodeset returned when this path is evaluated must
contain the same number of nodes as there are domains in the
specified domainList.

mode Only ADD mode is supported.

Returns

Boolean indicating success or failure of the process.

xref:populateXRefRow

Syntax

xref:populateXRefRow(mapName, referenceElementName, referenceValue, elementName, el⇒

ementValue, mode)

Description

Use the populateXRefRow function to populate a cross-reference element with a value.

Parameters

Parameter Description

mapName The name of the cross-reference map, as string.

referenceElementName The name of the reference element, as string.

referenceValue The value corresponding to the reference element name, as
string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 57

Accessing Maps Using XSLT Extension Chapter 5

Parameter Description

elementName The name of the element to be populated, as string.

elementValue The value with which to populate the element, as string.

mode The mode in which the function populates the element. You
can specify any of the following values: ADD, LINK, or
UPDATE. The mode parameter values are case-sensitive and
must be specified in the uppercase only.

Returns

This function returns the cross-reference value being populated as a string.

This table lists the results for the Xref:populateXRefRow function.

Mode Reference Value Value to Be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

UPDATE Absent

Present

Present

Absent

Absent

Present

Exception

Exception

Success

Example

This table lists examples of the modes with their descriptions and exception reasons:

58 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 5 Accessing Maps Using XSLT Extension

Mode Description Exception Reasons

ADD Adds the reference value and the value. For example:

xref:populateXRefRow("customers",
"PS","PS101","Common","CM001","ADD⇒

")

adds the reference value PS101 in the PS element
and the value CM001 in the Common element of the
customers cross-reference map.

Exceptions can occur for the following reasons:

• The specified cross-reference map is not found.

• The specified elements are not found.

• The values provided are empty.

• The value being added is not unique across that
element for that map.

• The element for that row already contains a value.

• The reference value exists.

LINK Adds the cross-reference value corresponding to the
existing reference value. For example:

xref:populateXRefRow("customers",
"Common","CM001","SBL","SB-101",
"LINK")

adds the value SB-101 in the SBL element of the
customers cross-reference map and links it to the value
CM001 in the Common element.

Exceptions can occur for the following reasons:

• The specified cross-reference map is not found.

• The specified elements are not found.

• The values provided are empty.

• The reference value is not found.

• The value being linked exists in that element for
that map.

UPDATE Updates the cross-reference value corresponding to an
existing reference element-value pair. For example:

xref:populateXRefRow("customers","⇒

PS",
"PS100","PS","PS1001","UPDATE")

updates the value PS100 in the PS element of the
customers cross-reference map to value PS1001.

Exceptions can occur for the following reasons:

• The specified cross-reference map is not found.

• The specified elements are not found.

• The values provided are empty.

• The value being updated is not unique across that
element for that map.

• Multiple values are found for the element being
updated.

• The reference value is not found.

• The element for that row does not have a value.

xref:populateXrefRowNVP

Syntax

xref:populateXRefRowNVP(mapName, referenceDomain, referenceNVP, targetDomain, targe⇒

tNVP, mode)

Copyright © 1988, 2022, Oracle and/or its affiliates. 59

Accessing Maps Using XSLT Extension Chapter 5

Description

Use the xref:populateXrefRowNVP function to populate multiple elements in the cross-reference map
with values.

Parameters

Parameter Description

mapName The name of the cross-reference map, as string.

referenceDomain The name of the reference domain, as string.

rreferencesNVP NVP list of reference elements and values, as string.

targetDomain The name of the domain to be populated, as string.

targetNVP NVP list of elements and values to be populated in the
elements, as string.

mode The mode in which the function populates the element. You
can specify any of the following values: ADD, LINK, or
UPDATE. The mode parameter values are case-sensitive and
must be specified in the uppercase only.

Returns

This table lists the results for the populateXrefRowNVP function.

Mode Reference Value Value to Be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

UPDATE Absent

Present

Present

Absent

Absent

Present

Exception

Exception

Success

60 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 5 Accessing Maps Using XSLT Extension

Example

This table lists the modes with their descriptions and exception reasons:

Mode Description Exception Reasons

ADD Adds the reference value and the value to be added. For
example:

xref:populateXRefRowNVP("Items",
"PeopleSoft", "<Setid>SHARE</Setid>⇒

<ItemID>1005</ItemID>","Common",
"<Common>” | generate-guid() |
”</Common>","ADD")

adds the reference values SHARE/1005 in the
PeopleSoft domain and the value <guid1> in the
Common domain.

Exceptions can occur for the following reasons:

• The specified cross-reference map is not found.

• The specified domains are not found.

• The specified elements are not found.

• The values provided are empty.

• The values being added are not unique across that
domain for that map.

• The element for that row already contains a value.

• The reference value exists.

LINK Adds the cross-reference value corresponding to the
existing reference value. For example:

xref:populateXRefRowNVP("Items",
"PeopleSoft","<Setid>SHARE</Setid>
<ItemID>1005</ItemID>","Retail",
"<Product>RP0005</Product>","LINK")⇒

adds value RP005 to the Retail domain and links it
to reference values SHARE/1005 in the PeopleSoft
domain.

Exceptions can occur due for following reasons:

• The specified cross-reference map is not found.

• The specified domains are not found.

• The specified elements are not found.

• The values provided are empty.

• The reference value is not found.

• The value being linked exists in that domain for
that map.

UPDATE Updates the cross-reference value corresponding to an
existing reference element-value pair. For example:

xref:populateXRefRowNVP("Items",
"PeopleSoft","<Setid>SHARE</Setid>
<ItemID>1000</ItemID>","PeopleSoft"⇒

,
"<Setid>SHARE</Setid>
<ItemID>10000</ItemID>","UPDATE")

updates the value 1000 in the ItemID element of the
PeopleSoft domain to value 10000.

Exceptions can occur for the following reasons:

• The specified cross-reference map is not found.

• The specified domains are not found.

• The specified elements are not found.

• The values provided are empty.

• The values being updated are not unique across
that domain for that map.

• Multiple values are found for the domain being
updated.

• The reference value is not found.

• The element for that row does not have a value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 61

Accessing Maps Using XSLT Extension Chapter 5

xref:markForDelete

Syntax

xref:markForDelete(mapName, elementName, elementValue)

Description

Use the xref:markForDelete function to delete a value in a cross-reference map when the element
specified is the only element for a single domain. The value in the element is marked as deleted. If
multiple domains reference the element or the domain the element is referenced by has multiple primary
elements, use the xref:markForDeleteNVP function instead.

A cross-reference map row should have at least two mappings. Therefore, if you have only two mappings
in a row and you mark one value for delete, then the value in another element is also deleted.

Any element value marked for delete is treated as if the value does not exist. Therefore, you can populate
the same element with the xref:populateXRefRow function in ADD mode. However, if the element
value is marked for delete as a reference, it cannot be used in the LINK mode of xref:populateXRefRow
function.

Parameters

Parameter Description

mapName The cross-reference map name, as string.

elementName The name of the element from which you want to delete a
value, as string.

elementValue The value to be deleted, as string.

Returns

This function returns true if deletion was successful; otherwise, it returns false.

An exception can occur for the following reasons:

• The cross-reference map with the given name is not found.

• The specified element name is not found.

• The specified element name is not unique to a domain.

• The specified value is empty.

• The specified value is not found in the element.

• Multiple values are found.

62 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 5 Accessing Maps Using XSLT Extension

Example

The following code deletes the PS001 value in the PS element of the customers cross-reference map:

xref:markForDelete("customers","PS","PS001")

xref:markForDeleteNVP

Syntax

xref:markForDeleteNVP(mapName, referenceDomain, referenceNVP)

Description

Use the xref:markForDeleteNVP function to delete a set of values in a cross-reference map for a specified
domain. The values in the elements are marked as deleted.

A cross-reference map row should have at least two mappings. Therefore, if you have only two mappings
in a row and you mark one value for delete, then the value in the other domain is also deleted.

Any values marked for delete are treated as if they do not exist. Therefore, you can populate the same
elements with the xref:populateXRefRowNVP function in ADD mode. However, if the element value
is marked for delete as a reference, it cannot be used in the LINK mode of xref:populateXRefRowNVP
function.

Parameters

Parameter Description

mapName The cross-reference map name, as string.

referenceDomain The name of the reference domain, as string.

referenceNVP NVP list of reference elements and values that you want to
delete, as string.

Returns

This function returns true if deletion was successful; otherwise, it returns false.

An exception can occur for the following reasons:

• The cross-reference map with the given name is not found.

• The specified element name is not found.

• All primary elements in this domain have not been specified.

• The specified value is empty.

• The specified value is not found in the element.

Copyright © 1988, 2022, Oracle and/or its affiliates. 63

Accessing Maps Using XSLT Extension Chapter 5

• Multiple values are found.

Example

The following code deletes the specified values in the Setid and ItemID elements of the PeopleSoft
domain from the Items cross-reference map:

xref:markForDeleteNVP ("Items","PeopleSoft","<Setid>SHARE</Setid><ItemID>1000</Item⇒

ID>")

xref:lookupXRef

Syntax

xref:lookupXRef (mapName, referenceElementName, xrefReferenceValue, elementName, ne⇒

edAnException)

Description

Use the lookupXRef function to look up a cross-reference element for a value that corresponds to a
specific value in a reference element.

Parameters

Parameter Description

mapName The name of the cross-reference map, as string.

referenceElementName The name of the reference element, as string.

referenceValue The value corresponding to the reference element name, as
string.

elementName The name of the element to be looked up for the value, as
string.

needAnException Specify true or false.

If the needAnException parameter is set to true, an exception
occurs if the value being looked up in the map is not found.
 If the needAnException parameter is set to false, an empty
value is returned if the value being looked up in the map is not
found.

Returns

The value of the requested element.

64 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 5 Accessing Maps Using XSLT Extension

An exception can occur for the following reasons:

• The cross-reference map with the given name is not found.

• The specified element names are not found.

• The specified reference value is empty.

• Multiple target values are found.

Example

The following code looks up the Common element of the customers cross-reference map for a value
corresponding to the PS001 value in the PS element:

xref:lookupXRef("customers","PS","PS001","Common",true())

xref:lookupXRefNVP

Syntax

xref:lookupXRefNVP (mapName, referenceDomain, referenceNVP, targetDomain, needAnExc⇒

eption)

Description

Use the lookupXRefNVP function to look up cross-reference values that correspond to a specified set
of values in a reference domain. All primary elements in the reference domain must be included in the
reference NVP list, but any qualifier elements are optional.

Parameters

Parameter Description

mapName The name of the cross-reference map, as string.

referenceDomain The name of the reference domain, as string.

referenceNVP NVP list of reference elements and values, as string.

targetDomain The name of the domain to be looked up for the values, as
string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 65

Accessing Maps Using XSLT Extension Chapter 5

Parameter Description

needAnException Specify true or false.

If the needAnException parameter is set to true, an exception
occurs if the value being looked up in the map is not found.
 If the needAnException parameter is set to false, an empty
value is returned if the value being looked up in the map is not
found.

Returns

The return string includes values for all primary and qualifier elements in the target domain as an NVP
list.

An exception can occur for the following reasons:

• The cross-reference map with the given name is not found.

• The specified domain names are not found.

• The specified element names are not found.

• The specified reference value is empty.

• Multiple target values are found.

Example

The following code looks up the values of all elements in the Common domain of the Items cross-
reference map that correspond to values SHARE/1000 in the PeopleSoft domain:

xref:lookupXRefNVP("Items","PeopleSoft","<Setid>SHARE</Setid><ItemID>1000</ItemID>"⇒

,"Common",true())

Domain Value Map Functions

This section describes the domain value map functions.

dvm:lookupValue

Syntax

dvm:lookupValue(mapName, referenceElementName, referenceValue, elementName, default⇒

Value, needAnException)

66 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 5 Accessing Maps Using XSLT Extension

Description

The dvm:lookupValue function finds the reference element value in a domain value map and returns the
equivalent value of the specified element name as a string. This form of DVM lookup is used to find a
single reference element and return a single element value. Lookups involving multiple elements in a
reference or return domain need to be done using the dvm:lookupValueNVP function.

Parameters

Parameter Description

mapName The domain value map name, as string.

referenceElementName The source element name, as string.

referenceValue The source value (an XPath expression bound to the source
document of the XSLT transformation), as string.

elementName The target element name, as string.

defaultValue If the value is not found, then the default value is returned, as
string.

needAnException Specify true or false.

If the needAnException parameter is set to true, an exception
occurs if the value being looked up in the map is not found.
 If the needAnException parameter is set to false, an empty
value is returned if the value being looked up in the map is not
found.

Returns

The dvm:lookupValue returns a string containing the value of the element.

An exception can occur for the following reasons:

• The DVM map with the given name is not found.

• The specified elements are not found.

• The specified source value is empty.

Example

The following code looks up the value of the Short element in the StateCodes DVM map corresponding to
the California value in the Long element:

dvm:lookupValue("StateCodes","Long","California","Short","CouldNotBeFound",True)

Copyright © 1988, 2022, Oracle and/or its affiliates. 67

Accessing Maps Using XSLT Extension Chapter 5

dvm:lookupValueNVP

Syntax

dvm:lookupValueNVP(mapName, referenceDomain, referenceNVP, targetDomain, defaultNVP⇒

, needAnException)

Description

The dvm:lookupValueNVP function finds the reference domain element values in a DVM and returns
the equivalent values of all elements in the specified domain as an NVP list. This form of DVM lookup
should be used when multiple elements exist in either the reference or return domain. All required
elements in the reference domain must be included in the reference NVP list, but optional elements
(qualifiers perhaps) do not have to be included. The return string will include values for all elements in
the target domain as an NVP list regardless of whether they are required.

Parameters

Parameter Description

mapName The domain value map name, as string.

referenceDomain The source domain name, as string.

referenceNVP NVP list of source elements and values, as string.

targetDomain The target domain name, as string.

defaultNVP If the value is not found, then the default values specified are
returned, as string.

needAnException Specify true or false.

Returns

The return string will include values for all elements in the target domain as an NVP list regardless of
whether they are required.

An exception can occur for one of the following reasons:

• The DVM map with the given name is not found.

• The specified domains are not found.

• The specified elements are not found.

• The specified source values are empty.

68 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 5 Accessing Maps Using XSLT Extension

Example

The following code looks up the specified values of the BusinessUnit and Chartfield elements in the
PeopleSoft domain of the ChartElements DVM and returns the value of the UniqueGUID element:

dvm:lookupValueNVP("ChartElements","PeopleSoft","<BusinessUnit>US100</BusinessUnit>⇒

<Chartfield>ACCOUNT</Chartfield>","UniqueGUID","<UniqueGUID>CouldNotBeFound</Unique⇒

GUID>",True)

dvm:lookup-dvm

Syntax

dvm:lookup-dvm (mapName, referenceElementName, referenceValue, elementName, default⇒

Value, needAnException)

Description

The dvm:lookup-dvm function finds the reference element value in a domain value map and returns the
equivalent value of the specified element name as a string. This form of DVM lookup is used to find a
single reference element and return a single element value. Lookups involving multiple elements in a
reference or return domain need to be done using the dvm:lookupValueNVP function. This function is
identical in purpose and function to the dvm:lookupValue function. It exists to mimic the function names
defined in the ESB implementation of DVM.

Parameters

Parameter Description

mapName The domain value map name, as string.

referenceElementName The name of the source element in the DVM, as string.

referenceValue The source value (an XPath expression bound to the source
document of the XSLT transformation), as string.

elementName The name of the target element in the DVM, as string.

defaultValue A default value to assign to the target element if no value is
found, as string.

Copyright © 1988, 2022, Oracle and/or its affiliates. 69

Accessing Maps Using XSLT Extension Chapter 5

Parameter Description

needAnException Specify true or false.

If the needAnException parameter is set to true, an exception
occurs if the value being looked up in the map is not found.
 If the needAnException parameter is set to false, an empty
value is returned if the value being looked up in the map is not
found.

Returns

This function returns a string by looking up the value for the target element in the DVM, where the value
for the source element is equal to the source value. The source value is an XPath expression bound to the
source document of the XSLT transformation. The expression is evaluated during the transformation and
the result value is passed as the source value for lookup.

An exception can occur for the following reasons:

• The DVM map with a given name is not found.

• The specified elements are not found.

• The specified source value is empty.

Example

The following code looks up the value of the Short element in the StateCodes DVM map corresponding to
the Calif value in the Abbrev element:

dvm:lookup-dvm("StateCodes","Abbrev","Calif","Short","CouldNotBeFound", True)

Generate-Guid Function

This section discuss the generate-guid function.

generate-guid

Syntax

generate-guid()

Description

Use this function to generate a guid.

Parameters

none

70 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 5 Accessing Maps Using XSLT Extension

Returns

This function returns a string containing a randomly generated globally unique identifier (GUID).

Example

The following code generates a random GUID that could be used as a new common key value:

generate-guid()

SetID Functions

This section describes the SetID XSLT extension function.

SetID:lookupSetCtrlValues

Syntax

SetID:lookupSetCtrlValues (SetId, LookupType, dvmTranslate, dvmMapName, SourceEleme⇒

ntName, TargetElementName, needAnException)

Description

Use the lookupSetCtrlValues function to look up the list of set control values associated with the setID
in the context of a record group or record. Optionally, each set control value can be translated through a
DVM map if a map name, source element name, and target element name are provided.

Parameters

Parameter Description

SetId The SetId value interested in lookup.

LookupType The lookup type is used to indicate the type of lookup. You
can specify either 1 for the record group name or 2 for the
record name.

LookupValue Value should be either a record name or record group ID as
determined by LookupType.

dvmTranslate Specify True if translation to Common ID using DVM Name
supplied is desired. Specify False if no translation is needed.

dvmMapName DVM map to be used in translation if requested.

Copyright © 1988, 2022, Oracle and/or its affiliates. 71

Accessing Maps Using XSLT Extension Chapter 5

Parameter Description

SourceElementName The source element name to be used in DVM translation if
requested.

TargetElementName The target element name to be used in DVM translation if
requested.

needAnException Specify true or false to indicate whether an exception should
occur if set control values are not found.

Returns

This function returns a list of set control values or a list of translated set control values as a concatenated
string that could be parsed in XSLT.

Example

This example looks up the set control values (representing PeopleSoft business units in this example)
associated with the setID SHARE for the record group VENDOR and translates them to the common IDs
for Business Unit by means of the DVM mapping BusinessUnit. An exception is requested if set control
values are not found:

xref:lookupSetCtrlValues("SHARE","1", "VENDOR",true(),"BusinessUnit","PSFT_BU","COM⇒

MON",true())

Exceptions can occur for the following reasons:

• The DVM map name specified is not valid.

• The source element name specified is not associated with the DVM map.

• The target element name specified is not associated with the DVM map.

• No translated value is found for the set control value in the DVM map.

• If needAnException is set to true, an exception will occur if the set control values cannot be found for
the given SETID/Record or record group ID.

This example looks up the set control values (representing PeopleSoft Business Units in this example)
associated with the SETID SHARE for the record VENDOR_LOC and translates them to the common
IDs for Business Unit by means of the DVM mapping BusinessUnit. An exception is not requested if set
control values are not found:

xref:lookupSetCtrlValues("SHARE","2", "VENDOR_LOC",true(),"BusinessUnit","PSFT_BU",⇒

"COMMON",false())

72 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 5 Accessing Maps Using XSLT Extension

This example looks up the set control values (representing PeopleSoft Business Units in this example)
associated with the setID SHARE for the record group VENDOR. An exception is requested if set control
values are not found:

xref:lookupSetCtrlValues("SHARE","1", "VENDOR",false(),"","","",true())

An exception can occur if the set control values cannot be found for the given SETID/Record or record
group ID.

Copyright © 1988, 2022, Oracle and/or its affiliates. 73

Accessing Maps Using XSLT Extension Chapter 5

74 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6

Accessing Maps Using PeopleCode

Understanding Application Integration Framework Classes

Application Integration Framework classes provide functions to perform value map lookups, deletes, and
population. The following functions mirror the functionality of the XPath extension functions provided
for XSLT transformation.

Term Definition

DVM Utility Class Functions for PeopleCode developers to access the data for
a domain value map (DVM) during transformations. These
functions mirror the functionality of the XPath extension
functions provided for XSLT transformations.

SetId Utility Class Functions for PeopleCode developers to access SetId data
stored in a DVM during transformations.

Xref Utility Class Functions for PeopleCode developers to access the data for a
dynamic (cross-reference) value map during transformations.

How to Import Application Integration Framework Type Classes

The Application Integration Framework type classes are not built-in classes, like Rowset, Field, Record,
and so on. They are application classes. Before you can use these classes in your PeopleCode program,
you must import them to your program.

An import statement names either all the classes in a package or one particular application class. For
importing Application Integration Framework classes, Oracle recommends that you import the functions
class in the application package that is specific to your needs.

The function classes are stored in the following application packages:

• EOTF_CORE:DVM

• EOTF_CORE:SetId

• EOTF_CORE:Xref

You should use one of the following import statements:

import EOTF_CORE:DVM:Functions;
import EOTF_CORE:Setid:Functions;
import EOTF_CORE:Xref;

Copyright © 1988, 2022, Oracle and/or its affiliates. 75

Accessing Maps Using PeopleCode Chapter 6

DVM Utility Class Methods

This section describes the DVM utility class methods. The methods are discussed in alphabetical order.

ExtractData

Syntax

ExtractData (mapName, domainList, tempRecName, instance)

Description

You can use the DVM extract data function to generate and execute set-based SQL to extract DVM data
into a specified table. Prior to data extraction, all data is removed from the temp table for the specified
process instance. Element values are mapped to fields in the temp record using the order of the specified
domain list followed by the element order specified in the value map definition. If no domains are
specified, element values are mapped to fields in the temp record using only the element order specified
in the value map definition. This function is expected to be used for processing large volumes of data. It
provides an abstraction layer from the physical data persistence layer of the DVM framework.

The temp table has the following design constraints:

1. The first column will be PROCESS_INSTANCE.

2. The second column will be used for UniqueGUID (EOTF_COMMONELEMENT).

3. The remaining columns correspond to the elements in the specified domain list.

4. The temp table column names do not have to match the element names in the DVM.

5. The table should be keyed by ProcessInstance, UniqueGUID.

6. There may be a performance benefit from having an index on the elements of each specified domain.

Parameters

Parameter Description

mapName The name of static value map definition (DVM), as sting.

domainList The name of the value map domain(s) to extract data for.
Provide null or an empty array in this parameter to extract data
for all domains in the map.

tempRecName The name of the temp table to extract data into, as string.

instance The number to use when qualifying process instance, as
integer.

76 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

Returns

Boolean indicating success or failure of the process.

Example
Local EOTF_CORE:DVM:Functions &dvm = create EOTF_CORE:DVM:Functions();
Local string &mapName = "States";
Local array of string &domainList = CreateArray("PS");
Local string &tempRecName = Record.HR_STATES_TAO;
Local boolean &success =
&dvm.ExtractData(&mapName, &domainList, &tempRecName, &instance);

LookupValue

Syntax

LookupValue (mapName, referenceElementName, referenceValue, elementName, defaultVal⇒

ue, needAnException)

Description

Locate the reference element value in a domain value map, and return the equivalent value for the
specified element name. This form of DVM lookup is used to find a single reference element and return a
single element value.

Parameters

Parameter Description

mapName Name of a static value map definition (DVM), as string.

referenceElementName Name of an element in the DVM in which to look for a value,
 as string.

referenceValue Value of an element in the DVM to look for, as string.

elementName Name of the element in the DVM to return an equivalent value
for, as string.

defaultValue Default value to be returned if needAnException is false and
an error occurs, as string.

needAnException True to return error messages, false to return the default value.

Returns

The equivalent value of elementName in the DVM, or the default value.

Copyright © 1988, 2022, Oracle and/or its affiliates. 77

Accessing Maps Using PeopleCode Chapter 6

Example

This example is used to look up the value &guid1 in the UniqueGUID element of the &TestName DVM
and return the equivalent value of element &EBS1.

Local string &returnValue = &dvm.LookupValue(&TestName, &UniqueGUID, &guid1, &EBS1,⇒

 "Value not found.", True);

This example will look up a value that does not exist in element &EBS1 of the &TestName DVM to verify
that the default value is returned when the NeedAnException parameter is false.

&returnValue = &dvm.LookupValue(&TestName, &EBS1, "NotFound", &UniqueGUID, &ValueNo⇒

tFound, False);

LookupValue1M

Syntax

 LookupValue1M (mapName, referenceElementName, referenceValue, elementName, needAnE⇒

xception)

Description

Locate the reference element value in a domain value map, and return the equivalent values of the
specified element name as an NVP list. This form of DVM lookup is used to find a single reference
element and return one to many equivalent values for the specified element.

Parameters

Parameter Description

mapName Name of a static value map definition (DVM), as string.

referenceElementName Name of an element in the DVM in which to look for a value,
 as string.

referenceValue Value of an element in the DVM to look for, as string.

elementName Name of the element in the DVM to return equivalent values
for, as string.

needAnException True to return error messages, false to return the default
values.

Returns

An array of string containing the equivalent values of elementName in the DVM.

78 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

Example

This example will look up value &guid1 in the UniqueGUID element of the &TestName DVM and return
the equivalent value of element &EBS1 :

&returnValue = &dvm.LookupValue1M(&TestName, &UniqueGUID, &guid1, &EBS1, True);

This example will look up a value that does not exist in the UniqueGUID element of the &TestName
DVM to verify that no value is returned when the NeedAnException parameter is false:

 &returnValue = &dvm.LookupValue1M(&TestName, &UniqueGUID, "NotFound", &EBS1, False⇒

);

LookupValueNVP

Syntax

LookupValueNVP (mapName, referenceDomain, referenceNVP, targetDomain, defaultNVP, n⇒

eedAnException

Description

Locate the reference domain element values in a DVM, and return the equivalent values of all elements in
the specified domain as an NVP list. This form of DVM lookup should be used when multiple elements
exist in either the reference or return domain. All required elements in the reference domain must be
included in the reference NVP list, but optional elements (qualifiers perhaps) do not have to be included.
The return string will include values for all elements in the target domain as an NVP list regardless of
whether they are required.

Parameters

Parameter Description

mapName Name of a static value map definition (DVM), as string.

referenceDomain Name of a domain in the DVM in which to look for a value, as
string.

referenceNVP Name value pairs of elements and values in the DVM domain
to look for, as an array of DataElement.

targetDomain Name of the domain to return equivalent values for, as string.

defaultNVP Default values (NVPs) to be returned if needAnException is
false and an error occurs, as an array of DataElement.

needAnException True to return error messages, false to return an NVP with the
default values.

Copyright © 1988, 2022, Oracle and/or its affiliates. 79

Accessing Maps Using PeopleCode Chapter 6

Returns

An array of DataElement. Name value pairs containing the equivalent values for the elements in the target
domain, or the default values.

Example

This example is used to look up value &guid1 in the UniqueGUID domain of the &TestName DVM and
return the equivalent values for the &RTK domain:

Local array of EOTF_CORE:Common:DataElement &UniqueGUIDrequestValues = CreateArray(⇒

create EOTF_CORE:Common:DataElement(&UniqueGUID));

&UniqueGUIDrequestValues [1].value = &guid1;
Local array of EOTF_CORE:Common:DataElement &returnValue = &dvm.LookupValueNVP(&Tes⇒

tName, &UniqueGUID, &UniqueGUIDrequestValues, &RTK, &DefaultRTKValues, True);

DVM Utility Class Properties

This section describes the DVM utility class properties.

exceptionCaught

Description

Value true when a lookup method suppresses an exception because the needAnException parameter was
false.

exceptionDetails

Description

Exception object containing the detail of the exception that was caught.

SetId Utility Class Methods

This section describes the SetId Utility class methods. The methods are discussed in alphabetical order.

lookupSetCtrlValues

Syntax

lookupSetCtrlValues (SetId, LookupType, LookupName, dvmTranslate, dvmMapName, PsftE⇒

lementName, CommonElementName, needAnException)

80 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

Description

You can use the lookupSetCtrlValues function to look up the set control values associated with a setId
in the context of a record or record group. Furthermore, you can request that the set control value be
translated through a specified DVM map from the element in the PeopleSoft domain to an element in
the common domain. In a typical PeopleSoft implementation the set control values represent PeopleSoft
Business Unit. In such case, you would have a DVM defined for Business Unit mapping for translation.

Parameters

Parameter Description

SetId The SetId value interested in lookup, as string.

LookupType The type of lookup to perform. Valid values are 1 for record
group ID and 2 for record name.

LookupName Record group ID or record name, as string. The value should
correspond to the LookupType specified.

dvmTranslate Specify True if translation of set control values using the static
value map (DVM) supplied is desired.

dvmMapName The name of the static value map (DVM) to be used in
translation, as string.

PsftElementName The name of the element belonging to the PeopleSoft domain
in the DVM to use in lookup, as string.

CommonElementName The name of the element belonging to the Common domain in
the DVM for which to return an equivalent value, as string.

needAnException True to cause exception to occur in case set control values
are not found. False to request an empty string in such case
instead.

Returns

The equivalent values in array of string.

Example

This example looks up the set control values (representing PeopleSoft Business Units in this example)
associated with the setID SHARE for the record group VENDOR and translates them to the common IDs
for Business Unit by means of the DVM mapping BusinessUnit. An exception is requested if set control
values are not found:

&oSetIdUtil = create EOTF_CORE:SetId:Functions();

Copyright © 1988, 2022, Oracle and/or its affiliates. 81

Accessing Maps Using PeopleCode Chapter 6

 Local array of string &arrReturnValue = CreateArrayRept("", 0);

 try

 &arrReturnValue = &oSetIdUtil.lookupSetCtrlValues("SHARE", "1", "VENDOR", tru⇒

e, "BusinessUnit", "PSFT_BU", "COMMON", true);

 catch Exception &exReturn
. . .
 {Your Exception Handling Logic Here}
. . .
 end-try;

lookupSetID

Syntax

lookupSetID (LookupValue, dvmTranslate, dvmMapName, PsftElementName, CommonElementN⇒

ame, LookupType, LookupName, needAnException)

Description

You can use the lookupSetID function to look up the setID corresponding to a set control value in
the context of a record or record group. Furthermore, you can request that the set control value to use
for lookup be translated through a specified DVM map from an element in a common domain to the
element in the PeopleSoft domain. In a typical PeopleSoft implementation the set control values represent
PeopleSoft Business Units. In this case, you would have a DVM defined for Business Unit mapping
translation.

Parameters

Parameter Description

LookupValue Value to use in setID lookup, as string. Value should either
be a set control value if dvmTranslate is false or a common
element value if dvmTranslate is true.

dvmTranslate Specify True if translation of set control values using static
value map (DVM) supplied is desired.

dvmMapName The name of the static value map (DVM) to be used in
translation, as string.

PsftElementName Name of the element belonging to the PeopleSoft domain in
the DVM for which to retrieve the equivalent set control value,
 as string.

CommonElementName Name of the element belonging to the Common domain in the
DVM to use in lookup, as string.

82 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

Parameter Description

LookupType The type of lookup to perform. Valid values are 1 for record
group ID and 2 for record name.

LookupName Record group ID or record name, as string. The value should
correspond to the LookupType specified.

needAnException True to cause exception to occur in case setID is not found.
False to request an empty string in such case instead.

Returns

The equivalent value as string.

Example

The following code looks up the setID associated with the common ID for Business Unit BUID001 in
the DVM mapping BusinessUnit for the record group VENDOR. No exception is requested if setID is not
found (empty string will be returned):

&oSetIdUtil = create EOTF_CORE:SetId:Functions();

Local string &ReturnValue;

&ReturnValue = &oSetIdUtil.lookupSetId("BUID001", "BusinessUnit", "PSFT_BU", "COMMO⇒

N", "1" ,"VENDOR", false);

Xref Utility Class Methods

This section describes the Xref class methods. The methods are discussed in alphabetical order.

BulkPopulateDomainData

Syntax

BulkPopulateDomainData (mapName, domainList, dataRows, dataValuesPath, mode)

Description

The XREF bulk populate domain data function populates cross-reference data from XML. It sequences
through the rows of data provided in the XML nodeset and uses the supplied domain list and data values
path to access the values for each domain in each row. Each row of data is then inserted into the XREF
framework for the specified map utilizing bulk insert to maximize performance. This function is expected
to be used for processing large volumes of data. It provides an abstraction layer from the physical data
persistence layer of the XREF framework. Because inserts are done using bulk mode, duplicates are not
looked for until the end of the insert sequence. If a duplicate is encountered, none of the rows of data

Copyright © 1988, 2022, Oracle and/or its affiliates. 83

Accessing Maps Using PeopleCode Chapter 6

will be inserted. When a domain contains multiple elements, each value for the domain must contain a
compound value consisting of a value for each element in the domain separated by the concatenation
string specified in the value map options. In this scenario, this function will unconcatenate the domain
element values before inserting the data into the transformation framework.

Parameters

Parameter Description

mapName The name of a dynamic (cross reference) value map, as string.

domainList An array of domain names identifying the order of the data
values to be imported.

dataRows An array of XML nodes where each node in the array is one
row of data.

dataValuesPath An XPath expression (relative to each row of data) used to
identify each node containing a data value within a row of
data. The nodeset returned when this path is evaluated must
contain the same number of nodes as there are domains in the
specified domainList.

mode Only ADD mode is supported.

Returns

Boolean indicating success or failure of the process.

Example
Local EOTF_CORE:Xref:Functions &xref = create EOTF_CORE:Xref:Functions();
Local string &mapName = "VendorIDs";
Local array of string &domainList = ...;
Local array of XmlNode &dataRows = ...;
Local string &dataValuesPath = "...";
Local string &mode = "ADD";
Local boolean &success =
&xref.BulkPopulateDomainData(&mapName, &domainList, &dataRows, &dataValuesPath, &mo⇒

de);

BulkPopulateElementData

Syntax

BulkPopulateElementData (mapName, elementList , dataRows, dataValuesPath, mode)

84 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

Description

The XREF bulk populate element data function populates cross-reference data from XML. It sequences
through the rows of data provided in the XML nodeset and uses the supplied pairs of elements and XPath
expressions to access the values for the elements in each row. Each row of data is then inserted into the
XREF framework for the specified map utilizing bulk insert to maximize performance. This function
is expected to be used for processing large volumes of data. It provides an abstraction layer from the
physical data persistence layer of the XREF framework. because inserts are done using bulk mode,
duplicates are not looked for until the end of the insert sequence. If a duplicate is encountered, none of the
rows of data will be inserted.

Parameters

Parameter Description

mapName The name of a dynamic (cross reference) value map, as string.

elementList An array of element names identifying the order of the data
values to be imported.

dataRows An array of XML nodes where each node in the array is one
row of data.

dataValuesPath An XPath expression (relative to each row of data) used to
identify each node containing a data value within a row of
data. The nodeset returned when this path is evaluated must
contain the same number of nodes as there are elements in the
specified elementList.

mode Only ADD mode is supported.

Returns

Boolean indicating success or failure of the process.

Example
Local EOTF_CORE:Xref:Functions &xref = create EOTF_CORE:Xref:Functions();
Local string &mapName = "VendorIDs";
Local array of string &elementList = ...;
Local array of XmlNode &dataRows = ...;
Local string &dataValuesPath = "...";
Local string &mode = "ADD";
Local boolean &success = &xref.BulkPopulateElementData(&mapName, &elementList, &da⇒

taRows, &dataValuesPath, &mode);

Copyright © 1988, 2022, Oracle and/or its affiliates. 85

Accessing Maps Using PeopleCode Chapter 6

ExtractData

Syntax

ExtractData (mapName, domainList, tempRecName, instance)

Description

You can use the XREF extract data function to generate and execute set-based SQL to extract cross-
reference data into a specified table. Prior to data extraction, all data is removed from the temp table for
the specified process instance. Element values are mapped to fields in the temp record using the order
of the specified domain list followed by the element order specified in the value map definition. If no
domains are specified, element values are mapped to fields in the temp record using only the element
order specified in the value map definition. This function provides an abstraction layer from the physical
data persistence layer of the XREF framework, and is expected to be used for processing large volumes of
data.

The temp table has the following design constraints:

1. The first column will be PROCESS_INSTANCE.

2. The second column will be used for UniqueGUID (EOTF_COMMONELEMENT).

3. The remaining columns correspond to the elements in the specified domain(s).

Note: If the third column is named EOTF_IMPORT_FLG, it will be valued with N during the export.

4. The temp table column names do not have to match the element names in the map.

5. The temp table should be uniquely keyed by ProcessInstance, UniqueGUID.

6. There may be a performance benefit from having an index on the elements of each specified domain.

Parameters

Parameter Description

mapName The name of the dynamic cross reference map, as string.

domainList The name of the value map domain(s) to extract data for.
Provide null or an empty array in this parameter to extract data
for all domains in the map.

tempRecName The name of the temp table to extract data into, as string.

instance The number to use when qualifying process instance, as
integer.

86 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

Returns

Boolean indicating success or failure of the process.

Example
Local EOTF_CORE:Xref:Functions &xref = create EOTF_CORE:Xref:Functions();
Local string &mapName = "VendorIDs";
Local array of string &domainList = CreateArray("PS");
Local string &tempRecName = Record.HR_VENDOR_TAO;
Local boolean &success =
&xref.ExtractData(&mapName, &domainList, &tempRecName, &instance);

LookupValue

Syntax

LookupValue (mapName, referenceElementName, referenceValue, elementName, needAnExce⇒

ption)

Description

Locate the reference element value in a cross-reference value map, and return the equivalent value for the
specified element name. This form of lookup is used to find a single reference element and return a single
element value.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as
string.

referenceElementName Name of an element in the Xref in which to look for a value, as
string.

referenceValue Value of an element in the Xref to look for, as string.

elementName Name of the element in the Xref for which to return equivalent
values, as string.

needAnException True to return error messages, false to return blank.

Returns

An array of string containing the equivalent values of elementName in the Xref.

Copyright © 1988, 2022, Oracle and/or its affiliates. 87

Accessing Maps Using PeopleCode Chapter 6

Example

This example will look up value &guid1 in the UniqueGUID element of the &TestName cross-reference
map and return the equivalent value of element &EBS1:

Local string &returnValue = &xref.LookupValue(&TestName, &UniqueGUID, &guid1, &EBS1⇒

, True);

This example will look up a value that does not exist in element &EBS1 of the &TestName cross-
reference map to verify that the default value (blank) is returned when the NeedAnException parameter is
false:

&returnValue = &xref.LookupValue(&TestName, &EBS1, "NotFound", &UniqueGUID, False);⇒

LookupValue1M

Syntax

 LookupValue1M (mapName, referenceElementName, referenceValue, elementName, needAn⇒

Exception)

Description

Locate the reference element value in a cross-reference value map, and return the equivalent values of
the specified element name as a named value pair (NVP) list. This form of lookup is used to find a single
reference element and return one to many equivalent values for the specified element.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as
string.

referenceElementName Name of an element in the Xref in which to look for a value, as
string.

referenceValue Value of an element in the Xref to look for, as string.

elementName Name of the element in the Xref for which to return equivalent
values, as string.

needAnException True to return error messages, false to return blank.

Returns

An array of string containing the equivalent values of elementName in the cross-reference.

88 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

Example

This example will look up value &guid1 in the UniqueGUID element of the &TestName cross-reference
map and return the equivalent value of element &EBS1:

Local array of string &returnValue;

&returnValue = &xref.LookupValue1M(&TestName, &UniqueGUID, &guid1, &EBS1, True);

This example will look up a value that does not exist in the UniqueGUID element of the &TestName
cross-reference map to verify that no value is returned when the NeedAnException parameter is false:

 &returnValue = &xref.LookupValue1M(&TestName, &UniqueGUID, "NotFound", &EBS1, Fals⇒

e);

LookupValueNVP

Syntax

LookupValueNVP (mapName, referenceDomain, referenceNVP, targetDomain, needAnExcepti⇒

on)

Description

Locate the reference domain element values in a cross-reference map, and return the equivalent values of
all elements in the specified domain as an NVP list. This form of lookup should be used when multiple
elements exist in either the reference or return domain. All required elements in the reference domain
must be included in the reference NVP list, but optional elements (qualifiers perhaps) do not have to
be included. The return string will include values for all elements in the target domain as an NVP list
regardless of whether they are required.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as
string.

referenceDomain Name of a domain in the XREF in which to look for a value,
 as string.

referenceNVP Name value pairs of elements and values in the reference
domain to look for, as an array of DataElement.

targetDomain Name of the domain to return equivalent values for, as string.

needAnException True to return error messages, false to return an NVP with the
default values.

Copyright © 1988, 2022, Oracle and/or its affiliates. 89

Accessing Maps Using PeopleCode Chapter 6

Returns

An array of DataElement for name value pairs containing the equivalent values for the elements in the
target domain, or the default values.

Example

This example will look up value &guid1 in the UniqueGUID domain of the &TestName cross-reference
map and return the equivalent values for the &RTK domain:

 Local array of EOTF_CORE:Common:DataElement &returnValue = &xref.LookupValueNVP(&T⇒

estName, &UniqueGUID, &UniqueGUIDrequestValues, &RTK, True);

MarkForDelete

Syntax

MarkForDelete (mapName, elementName, elementValue)

Description

Delete a value in a cross-reference map when the element specified is the only element for a single
domain. If multiple domains reference the element, or the element is used in a domain containing
multiple primary elements, the xref:markForDeleteNVP function should be used instead. The values
in the elements are marked as deleted. If only two mappings are in a row and one of them is marked
for deletion, then the value in the other domain will also be deleted. Any element value marked for
delete is treated as if the value does not exist. Therefore, you can populate the same element with the
xref:populateXRefRow function in ADD mode. However, using the element value marked for delete as a
reference value in the LINK mode of the xref:populateXRefRow function would cause an error.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as
string.

elementName Name of the element in the Xref from which to delete a value,
 as string.

elementValue Value of the element in the Xref to be deleted, as string.

Returns

True if the delete succeeds.

90 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

Example

This example will delete the PS001 value in the PS element of the Customers cross-reference map:

&return=&xref.MarkForDelete("Customers", "PS", "PS001")

MarkForDeleteNVP

Syntax

MarkForDeleteNVP (mapName, referenceDomain, referenceNVP)

Description

Delete a set of values in a cross-reference map for a specified domain. The values in the elements are
marked as deleted. If only two mappings are in a row and one of them is marked for deletion, then the
value in the other domain will also be deleted. Any values marked for delete are treated as if they do
not exist. Therefore, you can populate the same elements with xref:populateXRefRowNVP function in
ADD mode. However, using the values marked for delete as a reference value in the LINK mode of the
xref:populateXRefRowNVP function would cause an error.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as
string.

referenceDomain Name of a domain in the Xref from which to delete values, as
string.

referenceNVP Name value pairs of elements and values in the reference
domain to be deleted, as an array of DataElement.

Returns

True if the delete succeeds.

Example

This example deletes the specified values in the EBS domain from the Items cross-reference map:

Local array of EOTF_CORE:Common:DataElement &ebsNVP1 = CreateArrayRept(create EOTF_⇒

CORE:Common:DataElement(&EBS1), 1);
&ebsNVP1 [1].value = &value1;
Local boolean &return = &xref.MarkForDeleteNVP("Items", &EBS1, &ebsNVP1);

Copyright © 1988, 2022, Oracle and/or its affiliates. 91

Accessing Maps Using PeopleCode Chapter 6

PopulateData

Syntax

PopulateData (mapName, domainName, tempRecName, recName, instance)

Description

You can use the XREF populate data function to generate and execute set-based SQL to populate cross-
reference data from a specified source record (table or view). This function provides an abstraction
layer from the physical data persistence layer of the XREF framework, and is expected to be used for
processing large volumes of data.

The following steps are generated and executed in this function:

1. All data is removed from the temp table for the specified process instance.

2. Existing XREF data for the specified domain is extracted to the temp table with the import flag set to
N.

Note: Element values are mapped to fields in the record based on map element order (not on name).

3. Distinct rows of stage data are inserted into the temp table if they do not already exist, with the update
flag set to Y.

Note: Fields are mapped from temp to stage based on matching field names.

4. GUIDs are generated on the temp table where they are blank.

5. XREF data is inserted from the temp table where the import flag set to Y.

6. The stage data is updated with GUIDs from the temp table.

The temp table has the following design constraints:

1. The first column will be PROCESS_INSTANCE.

2. The second column will be used for UniqueGUID (EOTF_COMMONELEMENT).

3. The third column must be EOTF_IMPORT_FLG (for internal use by this function).

4. The remaining columns correspond to the elements in the specified domain.

5. The temp table column names do not have to match the element names in the maps.

6. The temp table column names must match the corresponding fields on the stage table.

7. The temp table should be keyed by ProcessInstance, UniqueGUID allowing for duplicates (blanks).

8. There may be a performance benefit from having an index on the elements of each specified domain.

92 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

Note: This function does not validate any of the data, therefore, users should be sure the data being
populated does not violate any of the constraints defined in the value map definition. If the data rules
are violated, future usability of the map may be impacted. This function is not responsible for protecting
against the potential for truncation of existing data values caused by defining temp table fields shorter
than the existing data values. If this occurs, no error will then be thrown, but existing values will not be
matched properly to stage values, potentially resulting in unintended data redundancy.

Parameters

Parameter Description

mapName The name of a dynamic (cross reference) value map, as string.

domainName The name of the value map domain to populate data for, as
string.

tempRecName The name of the temp table to extract existing XREF data to,
 as string.

recName The name of the stage record to populate data from, as string.

instance The number to use when qualifying process instance, as
integer.

Returns

Boolean indicating success or failure of the process.

Example
Local EOTF_CORE:Xref:Functions &xref = create EOTF_CORE:Xref:Functions();
Local string &mapName = "VendorIDs";
Local string &domainName = "PS";
Local string &tempRecName = Record.HR_VENDOR_TAO;
Local string &recName = Record.HR_VENDOR_STG;
Local boolean &success =
&xref.PopulateData(&mapName, &domainName, &tempRecName, &recName, &instance);

PopulateValue

Syntax

PopulateValue (mapName, referenceElementName, referenceValue, elementName, elementV⇒

alue, mode)

Copyright © 1988, 2022, Oracle and/or its affiliates. 93

Accessing Maps Using PeopleCode Chapter 6

Description

Locate a reference element value in a cross-reference map and populate another element in the same
data row with an equivalent value. This form of populate is used to find a single reference element and
populate a single element value.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as
string.

referenceElementName Name of an element in the Xref in which to look for a value, as
string.

referenceValue Value of an element in the Xref to look for, as string.

elementName Name of the element in the Xref in which to supply an
equivalent value, as string.

elementValue The equivalent value to be supplied to the element, as string.

mode The mode in which the function populates the element. You
can specify any of the following values: ADD, LINK, or
UPDATE. The mode parameter values are case-sensitive and
must be specified in uppercase only.

Returns

The UniqueGUID value of the Xref row where the data was populated.

Example

This example will locate value &guid1 in the UniqueGUID element of the &TestName cross-reference
map, and update the equivalent value of element EBS1 to &value1:

 &value1 = &value1 | "0";
 &returnValue = &xref.PopulateValue(&TestName, &UniqueGUID, &guid1, &EBS1, &value1⇒

, &UPDATE);

This example will add values &guid3 in the UniqueGUID element and &value3 in the EBS1 element to
the &TestName cross-reference map data:

Local string &guid3 = UuidGen();
Local string &value3 = "00003";
&returnValue = &xref.PopulateValue(&TestName, &EBS1, &value3, &UniqueGUID, &guid3, ⇒

&ADD);

94 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

This example will add value &value4 in the EBS1 element to the &TestName cross-reference map data,
and let the code generate a random UniqueGUID:

 Local string &value4 = "00004";
 &returnValue = &xref.PopulateValue(&TestName, &EBS1, &value4, &UniqueGUID, "", &AD⇒

D);

PopulateValueNVP

Syntax

PopulateValueNVP (mapName, referenceDomain, DataElement referenceNVP, targetDomain⇒

, targetNVP, mode)

Description

Locate the reference domain element values in a cross-reference map, and populate another domain's
elements in the same data row with an equivalent value. This form of populate should be used when
multiple elements exist in either the reference or target domain. All required elements in the reference
domain must be included in the reference NVP list, but optional elements such as qualifiers do not have to
be included.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as
string.

referenceDomain Name of a domain in the Xref in which to look for a value, as
string.

referenceNVP Name value pairs of elements and values in the reference
domain to look for, as an array of DataElement.

targetDomain Name of the domain in which to populate equivalent values, as
string.

targetNVP Element names and their equivalent values (NVPs) to be
populated in the Xref map, as an array of DataElement.

mode The mode in which the function populates the element. You
can specify any of the following values: ADD, LINK, or
UPDATE. The mode parameter values are case-sensitive and
must be specified in uppercase only.

Copyright © 1988, 2022, Oracle and/or its affiliates. 95

Accessing Maps Using PeopleCode Chapter 6

Returns

The UniqueGUID value of the Xref row where the data was populated.

Example

This example will locate value &guid1 in the UniqueGUID element of the &TestName cross-reference
map, and update the equivalent value of element EBS1 to &value1:

&value1 = &value1 | "0";
&ebsNVP1 [1].value = &value1;
&returnValue = &xref.PopulateValueNVP(&TestName, &UniqueGUID, &guidNVP1, &EBS, &ebs⇒

NVP1, &UPDATE);

This example will add values &guid3 in the UniqueGUID element and &value3 in the EBS1 element to
the &TestName cross-reference map data:

Local string &guid3 = UuidGen();
Local array of EOTF_CORE:Common:DataElement &guidNVP3 = CreateArrayRept(create EOTF⇒

_CORE:Common:DataElement(&UniqueGUID), 1);
&guidNVP3 [1].value = &guid3;
Local string &value3 = "00003";
Local array of EOTF_CORE:Common:DataElement &ebsNVP3 = CreateArrayRept(create EOTF_⇒

CORE:Common:DataElement(&EBS1), 1);
&ebsNVP3 [1].value = &value3;
&returnValue = &xref.PopulateValueNVP(&TestName, &EBS, &ebsNVP3, &UniqueGUID, &guid⇒

NVP3, &ADD);

This example will add value &value4 in the EBS1 element to the &TestName cross-reference map data,
and let the code generate a random UniqueGUID:

Local array of EOTF_CORE:Common:DataElement &guidNVP4 = CreateArrayRept(create EOTF⇒

_CORE:Common:DataElement(&UniqueGUID), 1);
Local string &value4 = "00004";
Local array of EOTF_CORE:Common:DataElement &ebsNVP4 = CreateArrayRept(create EOTF_⇒

CORE:Common:DataElement(&EBS1), 1);
&ebsNVP4 [1].value = &value4;
&returnValue = &xref.PopulateValueNVP(&TestName, &EBS, &ebsNVP4, &UniqueGUID, &guid⇒

NVP4, &ADD);
&requestValues = CreateArrayRept(create EOTF_CORE:Common:DataElement(&EBS1), 1);
&requestValues [1].value = &value4;

Xref Class Properties

This section discusses the Xref class properties.

96 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 6 Accessing Maps Using PeopleCode

exceptionCaught

Description

Value true when a lookup method suppresses an exception because the needAnException parameter was
false.

exceptionDetails

Description

Exception object containing the detail of the exception that was caught.

Copyright © 1988, 2022, Oracle and/or its affiliates. 97

Accessing Maps Using PeopleCode Chapter 6

98 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 7

Accessing Maps Using Web Services

Understanding Application Integration Framework Web Services

Application Integration Framework web services provide external applications a web-service-based
means of accessing Application Integration Framework map information. Web services are implemented
by means of the PeopleTools Integration Broker (IB) framework. The Integration Gateway web
application receives all the web service requests and forwards them to the Integration Engine (application
server) for processing.

This diagram illustrates an external application using the cross-reference lookup web service to look up
values in an Application Integration Framework cross-reference map.

1. The external application invokes one of the web service operations.

2. PeopleSoft Integration Broker receives the service operation and validates the WS security
credentials.

3. The request is passed to the application server for processing. The application server authenticates the
service operation and routes it to the respective handler. The handler runs the PeopleCode and sends
the response to the Integration Gateway.

4. Integration Broker sends the response to the external application.

EOTF_DVM Service

This section describes the Service Operations available as web services for DVM:

Copyright © 1988, 2022, Oracle and/or its affiliates. 99

Accessing Maps Using Web Services Chapter 7

• EOTF_DVM_LOOKUP

• EOTF_DVM_IMPORT.v2

• EOTF_DVM_IMPORT.v1

EOTF_DVM_LOOKUP
This service operation is used to lookup values from a DVM.

Alias: dvmLookupValue

Type: Synchronous

Request Message: EOTF_DVM_LOOKUP_REQ.V1

This is an example of the soap body for the request:

<soapenv:Body>
 <dvm:dvmLookupValue>
 <dvm:mapname>?</dvm:mapname>
 <!--2 or more repetitions:-->
 <dvm:Values>
 <dvm:domain>?</dvm:domain>
 <!--1 or more repetitions:-->
 <dvm:element name="?"/>
 </dvm:Values>
 <dvm:Values>
 <dvm:domain>?</dvm:domain>
 <!--1 or more repetitions:-->
 <dvm:element name="?"/>
 </dvm:Values>
 <dvm:targetDomain>?</dvm:targetDomain>
 </dvm:dvmLookupValue>
 </soapenv:Body>

Element Name Description

mapname The name of the domain value map to lookup values in.

Values This element holds the elements and values to be found in the
DVM.

domain The name of the target domain provided on the lookup request.

element Represents a DVM element and its value.

targetDomain The name of the domain the lookup request should return
values for.

100 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 7 Accessing Maps Using Web Services

Response Message: EOTF_DVM_RESPONSE.V1

Element Name Description

status The status of the operation. Returns Success or Exception.

reason If there is an exception, the reason will be returned.

requestValues This element hold the reference values used for a lookup
operation. For partially qualified lookups these values may
differ from the values provided in the request.

domain The name of the reference domain provided on the lookup
request.

element The DVM element and its value.

responseValues The values returned for the lookup operation.

domain The name of the target domain provided on the lookup request.

element The DVM element in the target domain and its value.

EOTF_DVM_IMPORT.v2
Use this service operation to import a Domain Value Map definition and values into the Enterprise
Transformation Framework, based on the PeopleSoft schema.

Type: Asynchronous-One Way.

Alias: import_dvm

Default: Yes

Request Message: EOTF_DVM.V2

This is an example of the soap body for an import request using PeopleSoft schema:

<soapenv:Body>
 <dvm:dvm>
 <dvm:name>?</dvm:name>
 <!--Optional:-->
 <dvm:description>?</dvm:description>
 <!--Optional:-->
 <dvm:comments>?</dvm:comments>
 <dvm:elements>
 <!--2 or more repetitions:-->
 <dvm:element name="?" order="?" dataType="string" dataLength="?" isComm⇒

on="false"/>

Copyright © 1988, 2022, Oracle and/or its affiliates. 101

Accessing Maps Using Web Services Chapter 7

 <dvm:element name="?" order="?" dataType="string" dataLength="?" isComm⇒

on="false"/>
 </dvm:elements>
 <dvm:domains>
 <!--1 or more repetitions:-->
 <dvm:domain name="?">
 <!--1 or more repetitions:-->
 <dvm:element name="?" qualifier="false"/>
 </dvm:domain>
 </dvm:domains>
 <!--Optional:-->
 <dvm:rows>
 <!--1 or more repetitions:-->
 <dvm:row>
 <!--2 or more repetitions:-->
 <dvm:cell>?</dvm:cell>
 <dvm:cell>?</dvm:cell>
 </dvm:row>
 </dvm:rows>
 </dvm:dvm>
 </soapenv:Body>

Element Name Description

description The DVM description.

Optional

comments Comments about the DVM.

Optional

elements This element holds the DVM's element list.

element Represents a DVM element.

domains This elements holds the DVM's domain list.

domain This element represents a domain in a DVM.

element This represents an element in the DVM domain.

rows This represents all the rows of data in the DVM.

row Each DVM row of values.

cell This is the value for this row and the for each element in the
same order as defined in elements.

102 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 7 Accessing Maps Using Web Services

EOTF_DVM_IMPORT.v1
Use this service operation to import a Domain Value Map definition and values into the Enterprise
Transformation Framework, based on the FMW schema.

Type: Asynchronous-One Way.

Alias: import_dvm

Default: No

Request Message: EOTF_DVM.V1

This is an example of the soap body for an import request using FMW schema:

<soapenv:Body>
 <dvm:dvm name="?">
 <!--Optional:-->
 <dvm:description>?</dvm:description>
 <dvm:columns>
 <!--2 or more repetitions:-->
 <dvm:column name="?" qualifier="false" order="?"/>
 <dvm:column name="?" qualifier="false" order="?"/>
 </dvm:columns>
 <!--Optional:-->
 <dvm:rows>
 <!--1 or more repetitions:-->
 <dvm:row>
 <!--2 or more repetitions:-->
 <dvm:cell>?</dvm:cell>
 <dvm:cell>?</dvm:cell>
 </dvm:row>
 </dvm:rows>
 </dvm:dvm>
 </soapenv:Body>

Element Name Description

description The DVM description.

Optional

columns This element holds the DVM's column list.

column Represents a DVM column.

rows This represents all the rows of data in the DVM.

row Each DVM row of values.

cell This is the value for this row and the for each column in the
same order as defined in columns.

Copyright © 1988, 2022, Oracle and/or its affiliates. 103

Accessing Maps Using Web Services Chapter 7

EOTF_XREF Service

This section lists the service operations available for cross references:

• EOTF_XREF_ADD

• EOTF_XREF_LINK

• EOTF_XREF_UPDATE

• EOTF_XREF_DELETE

• EOTF_XREF_LOOKUP

• EOTF_XREF_IMPORT.v2

• EOTF_XREF_IMPORT.v1

EOTF_XREF_ADD
Use this service operation to add values to a cross-reference map.

Alias: add_xref_value

Type: Synchronous

Request Message: EOTF_XREF_ADD_REQ.V1

This is an example of the soap body for the request:

<soapenv:Body>
 <xref:xrefAddValue>
 <xref:mapname>?</xref:mapname>
 <!--2 or more repetitions:-->
 <xref:Values>
 <xref:domain>?</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="?"/>
 </xref:Values>
 <xref:Values>
 <xref:domain>?</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="?"/>
 </xref:Values>
 </xref:xrefAddValue>
 </soapenv:Body>

Element Name Description

mapname The name of the cross-reference map to add values to.

Values This element holds the cross-reference elements and values to
be populated.

104 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 7 Accessing Maps Using Web Services

Element Name Description

domain The name of the domain the elements are a part of.

element This represents an element and its value.

Response Message: EOTF_XREF_RESPONSE.V1

Element Name Description

status The status of the operation. Returns Success or Exception.

reason If there is an exception, the reason will be returned.

responseValues The values returned for the lookup operation.

domain The name of the target domain provided on the lookup request.

element Represents an element in the target domain and its value.

EOTF_XREF_LINK
Use this service operation to link values to a cross-reference map.

Alias: link_xref_value

Type: Synchronous

Request Message: EOTF_XREF_LINK_REQ.V1

This is an example of the soap body for the request:

<soapenv:Body>
 <xref:xrefLinkValue>
 <xref:mapname>?</xref:mapname>
 <xref:ReferenceValues>
 <xref:domain>?</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="?"/>
 </xref:ReferenceValues>
 <!--1 or more repetitions:-->
 <xref:TargetValues>
 <xref:domain>?</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="?"/>
 </xref:TargetValues>
 </xref:xrefLinkValue>
 </soapenv:Body>

Copyright © 1988, 2022, Oracle and/or its affiliates. 105

Accessing Maps Using Web Services Chapter 7

Element Name Description

mapname The name of the cross-reference map to add values to.

ReferenceValues This element holds the existing elements and values in a cross-
reference to link target values with.

domain The name of the domain the reference elements are a part of.

element This represents a cross-reference element and its value.

targetValues This element holds the cross-reference elements and values to
be added.

domain The name of the domain the target elements are a part of.

element This represents a cross-reference element and its value.

Response Message: EOTF_XREF_RESPONSE.V1

Element Name Description

status The status of the operation. Returns Success or Exception.

reason If there is an exception, the reason will be returned.

responseValues The values returned for the lookup operation.

domain The name of the target domain provided on the lookup request.

element Represents an element in the target domain and its value.

EOTF_XREF_UPDATE
Use this service operation to update values in a cross-reference map.

Alias: update_xref_value

Type: Synchronous

106 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 7 Accessing Maps Using Web Services

Request Message: EOTF_XREF_UPDATE_REQ.V1

This is an example of the soap body for the request:

<soapenv:Body>
 <xref:xrefUpdateValue>
 <xref:mapname>?</xref:mapname>
 <xref:ReferenceValues>
 <xref:domain>?</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="?"/>
 </xref:ReferenceValues>
 <!--1 or more repetitions:-->
 <xref:TargetValues>
 <xref:domain>?</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="?"/>
 </xref:TargetValues>
 </xref:xrefUpdateValue>
 </soapenv:Body>

Element Name Description

mapname The name of the cross-reference map to update values to.

ReferenceValues This element holds the existing cross-reference elements and
values to locate the row to be updated.

domain The name of the domain the reference elements are a part of.

element This represents a cross-reference element and its value.

targetValues This element holds the cross-reference elements to be updated
and the new values.

domain The name of the domain the target elements are a part of.

element This represents a cross-reference element and its value.

Response Message: EOTF_XREF_RESPONSE.V1

Element Name Description

status The status of the operation. Returns Success or Exception.

reason If there is an exception, the reason will be returned.

responseValues The values returned for the lookup operation.

Copyright © 1988, 2022, Oracle and/or its affiliates. 107

Accessing Maps Using Web Services Chapter 7

Element Name Description

domain The name of the target domain provided on the lookup request.

element Represents an element in the target domain and its value.

EOTF_XREF_DELETE
Use this service operation to delete values from a cross-reference map.

Alias: delete_xref_value

Type: Synchronous

Request Message: EOTF_XREF_DELETE_REQ.V1

This is an example of the soap body for the request:

<soapenv:Body>
 <xref:xrefDeleteValue>
 <xref:mapname>?</xref:mapname>
 <!--2 or more repetitions:-->
 <xref:Values>
 <xref:domain>?</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="?"/>
 </xref:Values>
 <xref:Values>
 <xref:domain>?</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="?"/>
 </xref:Values>
 </xref:xrefDeleteValue>
 </soapenv:Body>

Element Name Description

mapname The name of the cross-reference map to delete values from.

Values This element holds the cross-reference elements and values to
be deleted.

domain The name of the domain the elements are a part of.

element This represents an element and its value.

108 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 7 Accessing Maps Using Web Services

Response Message: EOTF_XREF_RESPONSE.V1

Element Name Description

status The status of the operation. Returns Success or Exception.

reason If there is an exception, the reason will be returned.

responseValues No response values are returned.

EOTF_XREF_LOOKUP
Use this service operation to lookup values from a cross-reference map.

Alias: lookup_xref_value

Type: Synchronous

EOTF_XREF_LOOKUP_REQ.V1

This is an example of the soap body for the request:

<soapenv:Body>
 <xref:xrefLookupValue needFault="true">
 <xref:mapname>?</xref:mapname>
 <xref:Values>
 <xref:domain>?</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="?">?</xref:element>
 </xref:Values>
 <xref:targetDomain>?</xref:targetDomain>
 </xref:xrefLookupValue>
 </soapenv:Body>

Element Name Description

mapname The name of the cross-reference map to lookup values in.

Values This element holds the cross-reference elements and values to
lookup.

domain The name of the domain the reference elements are a part of.

element This represents a cross-reference element and its value.

targetDomain The name of the domain the lookup request should return
elements and values for.

Copyright © 1988, 2022, Oracle and/or its affiliates. 109

Accessing Maps Using Web Services Chapter 7

Response Message: EOTF_XREF_RESPONSE.V1

Element Name Description

status The status of the operation. Returns Success or Exception.

reason If there is an exception, the reason will be returned.

responseValues The values returned for the lookup operation.

domain The name of the target domain provided on the lookup request.

element Represents an element in the target domain and its value.

EOTF_XREF_IMPORT.v2
Use this service operation to import a cross-reference map definition and values in using PeopleSoft
schema.

Alias: xref

Type: Asynchronous - One Way

Default: Yes

Request Message: EOTF_XREF.V2

This is an example of the soap body for the request:

<soapenv:Body>
 <xref:xref>
 <xref:name>?</xref:name>
 <!--Optional:-->
 <xref:description>?</xref:description>
 <!--Optional:-->
 <xref:comments>?</xref:comments>
 <xref:elements>
 <!--2 or more repetitions:-->
 <xref:element name="?" order="?" dataType="string" dataLength="?" isCom⇒

mon="false"/>
 <xref:element name="?" order="?" dataType="string" dataLength="?" isCom⇒

mon="false"/>
 </xref:elements>
 <xref:domains>
 <!--1 or more repetitions:-->
 <xref:domain name="?">
 <!--1 or more repetitions:-->
 <xref:element name="?"/>
 </xref:domain>
 </xref:domains>
 <!--Optional:-->
 <xref:rows>
 <!--1 or more repetitions:-->

110 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 7 Accessing Maps Using Web Services

 <xref:row>
 <!--2 or more repetitions:-->
 <xref:cell>?</xref:cell>
 <xref:cell>?</xref:cell>
 </xref:row>
 </xref:rows>
 </xref:xref>
 </soapenv:Body>

Element Name Description

description The cross-reference description.

Optional

comments Comments about the cross-reference.

Optional

elements This element holds the cross-reference element list.

element Represents a cross-reference element.

domains This elements holds the cross-reference domain list.

domain This element represents a domain in a cross-reference map.

element This represents an element in the cross-reference domain.

rows This represents all the rows of data in the cross-reference map.

row Each cross-reference row of values.

cell This is the value for this row and the for each element in the
same order as defined in elements.

EOTF_XREF_IMPORT.v1
Use this service operation to import a cross-reference map definition and values in using PeopleSoft
schema.

Alias: xref

Type: Asynchronous - One Way

Default: No

Transform: To v2

Copyright © 1988, 2022, Oracle and/or its affiliates. 111

Accessing Maps Using Web Services Chapter 7

Request Message: EOTF_XREF.V1

This is an example of the soap body for the request:

<soapenv:Body>
 <xref:xref>
 <xref:table name="?">
 <!--Optional:-->
 <xref:description>?</xref:description>
 <!--Optional:-->
 <xref:columns>
 <!--1 or more repetitions:-->
 <xref:column name="?"/>
 </xref:columns>
 <!--Optional:-->
 <xref:rows>
 <!--1 or more repetitions:-->
 <xref:row>
 <!--1 or more repetitions:-->
 <xref:cell colName="?"/>
 </xref:row>
 </xref:rows>
 </xref:table>
 </xref:xref>
 </soapenv:Body>

Element Name Description

table This element hold the table elements.

description The DVM description.

Optional

columns This element holds the DVM's column list.

column Represents a DVM column.

rows This represents all the rows of data in the DVM.

row Each DVM row of values.

cell This is the value for this row and the for each column in the
same order as defined in columns.

Cross-Reference Lookup Web Service Example

The service operation EOTF_XREF_LOOKUP.v1 is used by external systems to look up a cross-
reference value. For the external system to have access to the web service, it must be published on the
PeopleSoft application.

112 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 7 Accessing Maps Using Web Services

See PeopleTools: PeopleSoft Integration Broker, Providing Services.

Example: Cross-Reference Map Definition

In this example, the third-party system requests a cross-reference lookup for payment terms. This page
shows elements in the value map PaymentTermsGUID:

This example illustrates the fields and controls on the Domain value map used in example. You can find
definitions for the fields and controls later on this page.

Three elements are defined: UniqueGUID, SETID, and PYMNT_TERMS_CD.

This page shows the domains that are defined for the domain value map:

Copyright © 1988, 2022, Oracle and/or its affiliates. 113

Accessing Maps Using Web Services Chapter 7

This example illustrates the fields and controls on the Value Map - Domains page used in this example.
You can find definitions for the fields and controls later on this page.

Two domains are defined for this map:

1. UniqueGUID is the domain used by the third party; it contains the UniqueGUID element.

2. PSFT represents the PeopleSoft application which contains the elements SETID and
PYMNT_TERMS_CD.

Example: Web Service Request and Response

This is a sample request to obtain the PeopleSoft values for a common GUID value:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:x⇒

ref="http://xmlns.oracle.com/Enterprise/tools/schema/xrefLookupValue.v1">
 <soapenv:Header/>
 <soapenv:Body>
 <xref:xrefLookupValue needFault="true">
 <xref:mapname>PaymentTermGUID</xref:mapname>
 <xref:Values>
 <xref:domain>UniqueGUID</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="UniqueGUID">9d266732-90e2-11dd-a062-96c8921a7858</x⇒

ref:element>
 </xref:Values>
 <xref:targetDomain>PSFT</xref:targetDomain>
 </xref:xrefLookupValue>
 </soapenv:Body>
</soapenv:Envelope>

This is the response:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:s⇒

oapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsd="http://www.w3.org/200⇒

114 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 7 Accessing Maps Using Web Services

1/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <xrefResponse xmlns="http://xmlns.oracle.com/Enterprise/tools/schema/xrefResp⇒

onse.v1">
 <status>Success</status>
 <responseValues>
 <domain>PSFT</domain>
 <element name="SETID">SHARE</element>
 <element name="PYMNT_TERMS_CD">CD01</element>
 </responseValues>
 </xrefResponse>
 </soapenv:Body>
</soapenv:Envelope>

Copyright © 1988, 2022, Oracle and/or its affiliates. 115

Accessing Maps Using Web Services Chapter 7

116 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 8

Application Integration Framework Example

Example Overview

This diagram represents the scenario for this application.

In this example, the PeopleSoft application updates the third-party application every time a new payment
term is added. This transformation requires mapping the PeopleSoft ABM elements to the EBM elements,
as well as mapping keys and static values. This example covers the following data translations within
Application Integration Framework:

• The combination of the fields SETID and PYMNT_TERMS_CD is used as the key in the PeopleSoft
application. This value needs to be assigned a common GUID for the EBM.

• The PeopleSoft application uses a 3-character code for language. The third-party system uses a
numeric code.

This integration requires a transformation that:

• Maps the message structure.

• Creates a common value for the key fields.

• Translates the data values for static fields that differ.

Copyright © 1988, 2022, Oracle and/or its affiliates. 117

Application Integration Framework Example Chapter 8

Defining a Dynamic Value Map

To create a new dynamic value map:

1. Select Enterprise Components > Integration Definitions > Transformation Framework >
Define Value Maps.

2. Select the Add a New Value page.

3. Enter PaymentTermsGUID for the map name.

4. Select Cross-reference (Dynamic) for the map type.

5. Click Add.

The map will contain the element UniqueGUID.

6. Add two additional elements SETID and PYMNT_TERMS_CD.

This example illustrates the fields and controls on the Domain value map used in example. You can find
definitions for the fields and controls later on this page.

Three elements are defined: UniqueGUID, SETID, and PYMNT_TERMS_CD.

To add the domains:

1. Select the Domains page.

The UniqueGUID domain appears.

2. Click the Add a new row icon to create another domain.

3. Enter PSFT for the domain name.

4. Select SETID for the first element.

5. Click the Add a new row icon to add another row.

118 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 8 Application Integration Framework Example

6. Select PYMNT_TERMS_CD for the second element.

7. Save the page.

This example illustrates the fields and controls on the Value Map-Domains page used in this example.
You can find definitions for the fields and controls later on this page.

Two domains are defined for this map:

• UniqueGUID is the domain used by the third party; it contains the UniqueGUID element.

• PSFT represents the PeopleSoft application and contains the elements SETID and
PYMNT_TERMS_CD.

Defining and Populating a Static Value Map

To create a new domain value map:

1. Select Enterprise Components > Integration Definitions > Transformation Framework >
Define Value Maps.

2. Select the Add a New Value page.

3. Enter LanguageCodeDVM for the map name.

4. Select Domain Value Map (static) for the map type.

5. Click Add.

The map will contain the element UniqueGUID.

Copyright © 1988, 2022, Oracle and/or its affiliates. 119

Application Integration Framework Example Chapter 8

6. Add two additional elements, LANGUAGE_CD and COMMON.

This example illustrates the fields and controls on the Domain value map for language code. You can find
definitions for the fields and controls later on this page.

To add the domains:

1. Select the Domains page.

The UniqueGUID domain appears.

2. Click the Add a new row icon to create another domain.

3. Enter PSFT for the domain name.

4. Select LANGUAGE_CD for the first element.

5. Click the Add a new row icon in the header to add another domain.

6. Enter AIA for the domain name.

7. Select COMMON for the first element.

8. Save the page.

120 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 8 Application Integration Framework Example

This example illustrates the fields and controls on the Domain value map domains for language code. You
can find definitions for the fields and controls later on this page.

Three domains are defined: AIA, PSFT and UniqueGUID.

To populate the DVM:

1. Select Enterprise Components > Integration Definitions > Transformation Framework >
Populate Domain Value Maps.

2. Select LanguageCodeDVM.

3. In the LANGUAGE_CD column, enter a data value as defined in the PeopleSoft (PSFT) domain.

4. In the corresponding COMMON column, enter the value to be used for the AIA domain.

5. Add as many rows as necessary to map all of the static values.

6. Save the page.

Copyright © 1988, 2022, Oracle and/or its affiliates. 121

Application Integration Framework Example Chapter 8

This example illustrates the fields and controls on the Domain Value Map page. You can find definitions
for the fields and controls later on this page.

Using the XSLT Extension Function in the Transformation
Program

Create a transformation program that maps the fields in the PeopleSoft ABM message to the
corresponding fields in the EBM message. You will then use the XSLT functions to map the data values.

This section provides sample coding for sections of the transform application engine program for:

• Key value transformation

• Domain value transformation

Key Value Transformation
This example shows the elements in XML in the ABM that need to be translated, the code for the
translation, and the resulting elements in the EBM.

Key Elements for Translation in PeopleSoft ABM

Elements in XML message:

<MsgData>
 <Transaction>
 <PYMT_TRMS_HDR class="R">
 <SETID IsChanged="Y">SHARE</SETID>
 <PYMNT_TERMS_CD IsChanged="Y">DIT91</PYMNT_TERMS_CD>

XSLT Code

This snippet of the XSLT code shows the transform XSLT in the application engine program:

1. Create a new variable by concatenating SETID and PYMT_TERMS_CD:

<corecom:ApplicationObjectKey>
 <corecom:ID>
 <xsl:attribute name="schemeID">
 <xsl:text disable-output-escaping="no">PSFT</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="schemeAgencyID">
 <xsl:text disable-output-escaping="no">PSFT_COMMON</xsl:text>
 </xsl:attribute>
 <xsl:variable name="NamedValuePair"select='concat("<SETID>",PYMT_T⇒

RMS_HDR/SETID,"</SETID><PYMNT_TERMS_CD>",PYMT_TRMS_HDR/PYMNT_TERMS⇒

122 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 8 Application Integration Framework Example

_CD,"</PYMNT_TERMS_CD>")'/>

2. Use the generate-guid utility to generate a unique GUID:

 <xsl:variable name="CommonGuid" select='concat("<UniqueGUID>",util⇒

ity:generate-guid(),"</UniqueGUID>")'/>

Note: This step is not necessary. If the GUID does not exist, the appropriate xref:populate function
automatically generates the unique GUID.

3. Use the xref:populateValueNVP function to add the new GUID to the cross-reference:

<xsl:variable name="GUIDAdd" select='xref:populateValueNVP("PaymentTermGUID","⇒

PSFT",$NamedValuePair,"UniqueGUID",$CommonGuid,"ADD")'/>
 <xsl:call-template name="Process-GUID">
 <xsl:with-param name="returnValue">
 <xsl:value-of select="$GUIDAdd"/>
 </xsl:with-param>
 <xsl:with-param name="statusDelimiter">;</xsl:with-param>
 </xsl:call-template>
 </corecom:ID>

4. Insert the values in the EBM message:

 <corecom:ContextID>
 <xsl:attribute name="schemeID">
 <xsl:text disable-output-escaping="no">SETID</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="schemeAgencyID">
 <xsl:text disable-output-escaping="no">PSFT</xsl:text>
 </xsl:attribute>
 <xsl:value-of select="PYMT_TRMS_HDR/SETID"/>
 </corecom:ContextID>
 <corecom:ContextID>
 <xsl:attribute name="schemeID">
 <xsl:text disable-output-escaping="no">Payment Terms Code</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="schemeAgencyID">
 <xsl:text disable-output-escaping="no">PSFT</xsl:text>
 </xsl:attribute>
 <xsl:value-of select="PYMT_TRMS_HDR/PYMNT_TERMS_CD"/>
 </corecom:ContextID>

Transformed Elements in EBM Message

The transformed EBM message contains the common GUID value:

<corecom:ApplicationObjectKey>
 <corecom:ID schemeAgencyID="PSFT_COMMON"schemeID="PSFT">b15f3c34-72bc-11d⇒

d-b7dd-aaf7c4308a71</corecom:ID>
 <corecom:ContextID schemeAgencyID="PSFT" schemeID="SETID">SHARE</corecom:⇒

ContextID>
 <corecom:ContextID schemeAgencyID="PSFT" schemeID="Payment Terms Code">DI⇒

T91</corecom:ContextID>

Copyright © 1988, 2022, Oracle and/or its affiliates. 123

Application Integration Framework Example Chapter 8

Domain Value Transformation
This example shows the domain value elements in XML in the ABM that need to be translated, the code
for the translation, and the resulting elements in the EBM.

Domain Value Elements for Translation in PeopleSoft ABM

Here is the element for language in PeopleSoft ABM message:

<<PSCAMA class="R">
 <LANGUAGE_CD>ENG</LANGUAGE_CD>

XSLT Code

This snippet of the XSLT code shows the dvm lookup in the transform application engine program:

<xsl:variable name="MsgLang" select='dvm:lookup-dvm ("LanguageCodeDVM","LANGUAGE_CD⇒

",//MsgData/Transaction/PSCAMA/LANGUAGE_CD,"COMMON",//MsgData/Transaction/PSCAMA/LA⇒

NGUAGE_CD,false())'/>
<xsl:variable name="BaseLang" select='dvm:lookup-dvm("LanguageCodeDVM","LANGUAGE_CD⇒

",//MsgData/Transaction/PSCAMA/BASE_LANGUAGE_CD,"COMMON",//MsgData/Transaction/PSCA⇒

MA/BASE_LANGUAGE_CD,false())'/>
<xsl:attribute name="languageCode">
 <xsl:value-of select="substring-after($MsgLang,';')"/>
</xsl:attribute>

Transformed Elements in EBM Message

Here is the translated elements in the resulting EBM message:

<?xml version="1.0"?>
<paytermcreate:CreatePaymentTermEBM languageCode="500" xmlns:corepaymenttermcust="h⇒

ttp://xmlns.oracle.com/EnterpriseObjects/Core/Custom/EBO/PaymentTerm/V1" xmlns:payt⇒

ermcreate="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/CreatePaymentTermEBM/⇒

V1">
 <corecom:EBMHeader languageCode="500" xmlns:corecom="http://xmlns.oracle.com/Ente⇒

rpriseObjects/Core/Common/V2">
 <corecom:Sender>
 <corecom:ID>E900B20</corecom:ID>
 </corecom:Sender>
 </corecom:EBMHeader>

Updating the Service Operation Routing

To update the service operations routing:

1. Select PeopleTools > Integration Broker > Integration Setup > Service Operations.

2. Select the service operation that you need to update.

3. Select the Routing page.

124 Copyright © 1988, 2022, Oracle and/or its affiliates.

Chapter 8 Application Integration Framework Example

4. Either enter a new routing or click the link for an existing routing.

5. If it is a new routing, enter the routing information.

6. Access the Parameters page.

Field or Control Description

Message.Ver into Transform 1 This is the PeopleSoft ABM message.

Transform Program 1 This is the transformation program created for this
integration.

Message.Ver out of Transforms This is the EBM message that will be sent to the third party.

7. Save the routing.

This example illustrates the fields and controls on the Service Operations Routing - Parameters page. You
can find definitions for the fields and controls later on this page.

Copyright © 1988, 2022, Oracle and/or its affiliates. 125

Application Integration Framework Example Chapter 8

126 Copyright © 1988, 2022, Oracle and/or its affiliates.

	Legal Notices
	Contents
	Preface
	Understanding the PeopleSoft Online Help and PeopleBooks
	Hosted PeopleSoft Online Help
	Locally Installed Help
	Downloadable PeopleBook PDF Files
	Common Help Documentation
	Field and Control Definitions
	Typographical Conventions
	ISO Country and Currency Codes
	Region and Industry Identifiers
	Translations and Embedded Help

	Using and Managing the PeopleSoft Online Help
	PeopleSoft Enterprise Components Related Links
	Contact Us
	Follow Us

	Getting Started with Application Integration Framework
	Understanding the Application Integration Framework
	Application Integration Framework Implementation
	Define Value Maps
	Create Application Engine Transform Programs
	Update Service Operation Routing

	Understanding Application Integration Framework
	Application Integration Framework
	Use Cases for Application Integration Framework

	Maps
	Domain Value Map
	Cross-Reference Map

	Functions to Populate and Maintain the Cross-Reference and DVMs
	Use Case: Integration Broker Transformation Without AIA Middleware
	Use Case: Integration Broker Point-to-Point Transformation
	Use Case: Integration Broker Transformation in Which a Third Party Uses AIA Middleware

	Defining and Populating Value Maps
	Understanding Value Maps
	Defining Map Options
	Page Used to Define Value Map Options
	Value Map Options Page

	Defining Value Maps
	Pages Used to Define Value Maps
	Define Value Maps search Page
	Define Value Map - Elements Page
	Define options for a value map Page
	Define Value Maps - Domains Page

	Populating a Domain Value Map
	Page Used to Populate a Domain Value Map
	Domain Value Map Page

	Importing Value Maps
	Page Used to Import Value Map
	Understanding Import File Types Used with Value Maps
	Import Value Maps Page

	Exporting Value Maps
	Understanding Export Schemas
	Exporting a Value Map

	Creating Transform Programs and Updating Service Operations
	Understanding Transform Programs
	Creating a Transform Program
	Updating Service Operation Routing

	Accessing Maps Using XSLT Extension
	Understanding XSLT Extension Functions
	Cross-Reference Functions
	xref:BulkPopulateDomainData
	xref:BulkPopulateElementData
	xref:populateXRefRow
	xref:populateXrefRowNVP
	xref:markForDelete
	xref:markForDeleteNVP
	xref:lookupXRef
	xref:lookupXRefNVP

	Domain Value Map Functions
	dvm:lookupValue
	dvm:lookupValueNVP
	dvm:lookup-dvm

	Generate-Guid Function
	generate-guid

	SetID Functions
	SetID:lookupSetCtrlValues

	Accessing Maps Using PeopleCode
	Understanding Application Integration Framework Classes
	How to Import Application Integration Framework Type Classes
	DVM Utility Class Methods
	ExtractData
	LookupValue
	LookupValue1M
	LookupValueNVP

	DVM Utility Class Properties
	exceptionCaught
	exceptionDetails

	SetId Utility Class Methods
	lookupSetCtrlValues
	lookupSetID

	Xref Utility Class Methods
	BulkPopulateDomainData
	BulkPopulateElementData
	ExtractData
	LookupValue
	LookupValue1M
	LookupValueNVP
	MarkForDelete
	MarkForDeleteNVP
	PopulateData
	PopulateValue
	PopulateValueNVP

	Xref Class Properties
	exceptionCaught
	exceptionDetails

	Accessing Maps Using Web Services
	Understanding Application Integration Framework Web Services
	EOTF_DVM Service
	EOTF_DVM_LOOKUP
	EOTF_DVM_IMPORT.v2
	EOTF_DVM_IMPORT.v1

	EOTF_XREF Service
	EOTF_XREF_ADD
	EOTF_XREF_LINK
	EOTF_XREF_UPDATE
	EOTF_XREF_DELETE
	EOTF_XREF_LOOKUP
	EOTF_XREF_IMPORT.v2
	EOTF_XREF_IMPORT.v1

	Cross-Reference Lookup Web Service Example

	Application Integration Framework Example
	Example Overview
	Defining a Dynamic Value Map
	Defining and Populating a Static Value Map
	Using the XSLT Extension Function in the Transformation Program
	Key Value Transformation
	Domain Value Transformation

	Updating the Service Operation Routing

