
Oracle
Primavera P6 EPPM
Web and Pro API Programming Guide for On-Premises

Version 23
February 2024

2

Oracle Primavera P6 EPPM Web and Pro API Programming Guide for On-Premises

Copyright © 2003, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

3

Contents

About This Guide ... 5

About Personal Information ... 5

Introduction... 6

What's New in P6 Integration API .. 6

Modes of Operation .. 9

Security ... 11

Packages ... 11

Where to Begin ... 13

Accessing Data in the API .. 13

Example: Establishing a Session in Local Mode .. 14

Example: Establishing a Session in Remote Mode .. 15

Core Functionality ... 17

Session .. 17

GlobalObjectManager .. 17

EnterpriseLoadManager .. 18

Business Objects .. 18

Additional Functionality .. 21

JobManager .. 21

Batch Exception Handling .. 21

TimeStamps .. 22

Resource Security... 22

XML Exporter and Importer ... 27

XMLExporter .. 27

XMLImporter ... 27

XML Schema ... 28

Performance Tips .. 28

Demo Applications .. 29

For More Information .. 29

Where to Get Documentation .. 29

Documentation Accessibility .. 29

Where to Get Training .. 30

Where to Get Support .. 31

5

About This Guide

Scope

This guide describes how to do the following using the P6 Integration API and P6 Professional
Integration API applications:

 Access data

 Use business objects

Audience

System administrators should use this guide.

About This Guide

This guide assumes that you have already installed a supported version of JDK, and have
familiarity with XML. For more information, see the Tested Configurations document.

In This Section

About Personal Information ... 5
Introduction ... 6
What's New in P6 Integration API .. 6
Modes of Operation ... 9
Security ... 11
Packages .. 11

About Personal Information

Personal information (PI) is any piece of data which can be used on its own or with other
information to identify, contact or locate an individual or identify an individual in context. This
information is not limited to a person's name, address, and contact details, for example a
person's IP address, phone IMEI number, gender, and location at a particular time could all be
personal information. Organizations are responsible for ensuring the privacy of PI wherever it is
stored, including in back-ups, locally stored downloads, and data stored in development
environments.

Caution: Personal information (PI) may be at risk of exposure.
Depending on local data protection laws organizations may be
responsible for mitigating any risk of exposure.

Web and Pro API Programming Guide for On-Premises

6

Introduction

The P6 Integration API and P6 Professional Integration API are both flexible, object-oriented,
cross platform, and Java-based interfaces. The P6 Integration API is used only in a P6 EPPM
environment.

The P6 Integration API is designed to run in one of two modes: Local or Remote. The P6
Professional Integration API is designed to run in one mode: Local. For more information about
Local and Remote modes, see Modes of Operation. It is important to understand that both
modes are available only if you are using the P6 Integration API, which can be done only in a P6
EPPM environment.

This document provides information on how to use these APIs. See the P6 for information on
installing and configuring the API and system requirements. For information on how to use
specific classes, see the associated Javadoc.

Note: The P6 Integration API is supported in this release, but might not
be supported in a future release. Oracle recommends using P6 EPPM
Web Services for integrations.

What's New in P6 Integration API

New Classes and Enumerations

The following classes and fields have been added to P6 Integration API.

New Classes

 LeanTask

 LeanTaskHelper

 Status

 StatusCompletion

 StatusDates

 TaskStatusCompletion

 TaskStatusDates

 UserConsent

 UserConsentHelper

New Methods

 New Activity Methods

 getOwnerIDArray()

 getOwnerNamesArray()

 getPerformancePercentCompleteByLaborUnits()

 setOwnerIDArray(String[])

 setOwnerNamesArray(String[])

 setTaskStatusCompletion(TaskStatusCompletion)

 setTaskStatusDates(TaskStatusDates)

About This Guide

7

 setTaskStatusIndicator(boolean)

 createLeanTask(LeanTask)

 createLeanTasks(LeanTask[])

 deleteLeanTasks(LeanTask[])

 New ActivityFilter Methods

 getFilterCriteriaConfig()

 getFilterType()

 setActivityFilterId(ObjectId)

 setActivityFilterName(String)

 setFilterCriteriaConfig(String)

 setFilterType(String)

 setUserId(ObjectId)

 New BaselineProject Methods

 getResourcesCanAssignThemselvesToActivitiesOutsideOBSAccess()

 setResourcesCanAssignThemselvesToActivitiesOutsideOBSAccess(boolean)

 loadAllLeanTasks(String[], String, String)

 New BusinessObject Methods

 setEarlyDate(int, Date)

 New EnterpriseLoadManager Methods

 loadUserConsent(String[], String, String)

 New GlobalPreferences Methods

 getEPPMConsentMessage()

 getEPPMEnableConsent()

 getResourcesCanAssignThemselvesToActivitiesOutsideTheirOBSAccess()

 setResourcesCanAssignThemselvesToActivitiesOutsideTheirOBSAccess(boolean)

 setTeamMemberConsentMessage(String)

 setTeamMemberEnableConsent(String)

 New Project Methods

 getPerformancePercentCompleteByLaborUnits()

 getResourcesCanAssignThemselvesToActivitiesOutsideOBSAccess()

 setResourcesCanAssignThemselvesToActivitiesOutsideOBSAccess(boolean)

 loadAllLeanTasks(String[], String, String)

 New ResourceAssignment Methods

 getPlannedCurve()

 getRemainingCurve()

 setPlannedCurve(String)

 setRemainingCurve(String)

 loadWithLiveSpreadActivityOrAssignment(Session, String[], ObjectId[], String[],
SpreadPeriodType, Date, Date, boolean)

 New UpdateBaselineOption Methods

Web and Pro API Programming Guide for On-Premises

8

 getNewActivityInformation()

 getNewBudgetUnitsCost()

 setNewActivityInformation(boolean)

 setNewBudgetUnitsCost(boolean)

New Fields

 New Activity Fields

 OwnerIDArray

 OwnerNamesArray

 PerformancePercentComplete

 TaskStatusCompletion

 New ActivityFilter Fields

 FilterCriteriaConfig

 FilterType

 UserId

 New UDFType Fields

 Formula

 SummaryMethod

 New UpdateBaselineOption Fields

 NewActivityInformation

 NewBudgetUnitsCost

 New BaselineProject Fields

 ResourcesCanAssignThemselvesToActivitiesOutsideOBSAccess

 New GlobalPreferences Fields

 EPPMConsentMessage

 EPPMEnableConsent

 ResourcesCanAssignThemselvesToActivitiesOutsideTheirOBSAccess

 TeamMemberConsentMessage

 TeamMemberEnableConsent

 New IssueHistory Fields

 ProjectIssueObjectId

 ProjectObjectId

 New Project Fields

 PerformancePercentCompleteByLaborUnits

 ResourcesCanAssignThemselvesToActivitiesOutsideOBSAccess

About This Guide

9

Modes of Operation

As discussed in the "Introduction" topic, the P6 Integration API is designed to run in Local Mode
or Remote, while the P6 Professional API can run in Local Mode only.

For more information about Local and Remote Modes, proceed to the applicable subsection
below, depending on the API you use:

 Modes of Operation If Using the P6 Integration API

 Modes of Operation If Using the P6 Professional API

Modes of Operation If Using the P6 Integration API

In Local Mode, the client code runs in the same Java Virtual Machine (JVM) as the Integration
server. Java Remote Method Invocation (RMI) is not used, and the Integration API
communicates directly with the business rule code in the server (the Business Rule Engine).
Local Mode is useful for when the API client code will be deployed on the same physical
machine as the internal Business Rule Engine. It can also be useful for applications that require
the improved performance achieved by avoiding the RMI layer.

In Remote Mode, the client code runs on a different machine than the Integration server and
Java Remote Method Invocation (RMI) is used for communication. Multiple clients can
communicate with the Integration server simultaneously.

Web and Pro API Programming Guide for On-Premises

10

Note: The maximum number of clients that can access a remote server
at one time is approximately 50. This number can be less, depending on
multiple factors including system hardware and network configuration.

There are three possible service modes for the RMI server: Standard, Compression, and SSL.
By default, all three modes are enabled. The RMI server also requires the RMI Registry, which
listens to port 9099 by default. You can change the default settings for the RMI server via the
Administrator tool, which can be launched using admin.cmd (admin.sh for AIX, HPUX, Linux).
The following settings can be found under Configurations\Custom\<Configuration
Name>\Integration API Server\RMI:

Enable - Enables (true) or disables (false) the RMI server (default setting is true).

RegistryPort - Port for the RMI Registry (default setting is 9099).

StandardServiceEnable - Enables (true) or disables (false) the Standard service mode (default
setting is true).

StandardServicePort - Port to use for Standard service mode. A setting of 0 (default) means
that any available port will be used. If the server will be accessed across a firewall, you must set
this to a specific port.

CompressionServiceEnable - Enables (true) or disables (false) the Compression service mode
(default setting is true).

CompressionServicePort - Port to use for Compression service mode. A setting of 0 (default)
means that any available port will be used. If the server will be accessed across a firewall, you
must set this to a specific port.

SSLServiceEnable - Enables (true) or disables (false) the SSL service mode (default setting is
true).

SSLServicePort - Port to use for SSL service mode. A setting of 0 (default) means that any
available port will be used. If the server will be accessed across a firewall, you must set this to a
specific port.

If the API is configured to use Remote Mode, the service mode can be chosen at runtime using
the RMIURL helper class: standard, compression, and SSL modes are available.

Note: P6 EPPM Web Services should be considered as an alternative to
using the Remote Mode of the API.

Modes of Operation If Using the P6 Professional API

If you are using the P6 Professional Integration API, then you can use the API in Local Mode
only. Java Remote Method Invocation (RMI) is not used, and the Integration API communicates
directly with the business rule code in the server (the Business Rule Engine), as illustrated in the
following graphic:

About This Guide

11

Security

Application layer security for the APIs is similar to what is used by the Primavera client/server
products. Global and project security profiles apply when using the APIs, so if a user attempts to
perform an action that is restricted by a security profile, an exception will be thrown.

Network layer security is achievable by using SSL.

Note: If you are using the P6 Integration API, see the section entitled
"Java Security Manager" in the P6 EPPM Integration API Configuration
Guide for information on how to enable additional security through the
use of a custom security policy.

Packages

Within the jar file, classes in the following packages can be accessed directly by client code:

com.primavera (base classes for Primavera exceptions)
com.primavera.common.exceptions (common exception classes)
com.primavera.common.value (value object classes)
com.primavera.common.value.spread (spread value classes)
com.primavera.integration.client (main classes, including Session, JobManager
EnterpriseLoadManager, and GlobalObjectManager)
com.primavera.integration.client.bo (business object base class and iterator classes)
com.primavera.integration.client.bo.enm (typesafe enumerations)
com.primavera.integration.client.bo.helper (business object helper classes)
com.primavera.integration.client.bo.object (client business object classes)
com.primavera.integration.client.xml.xmlexporter
com.primavera.integration.client.xml.xmlimporter
com.primavera.integration.common (general common classes)
com.primavera.integration.network (exception classes for Remote Mode)
com.primavera.integration.util (utility and helper classes)

Other packages in the jar file contain code for internal use only.

13

Where to Begin

If you will be writing code against either API, the Java Software Development Kit (SDK, also
known as the JDK) must be installed. The Integrated Development Environment (IDE) used to
write code must work with the supported version of the JDK. If you will not be writing code, only
the Java Runtime Environment (JRE) is required to be able to run applications written for the
APIs.

Note: For information on what version of the Java Software
Development Kit or Java Runtime Environment to use, see the Tested
Configurations document.

When Using the P6 Integration API

The API client code for Remote Mode is contained in intgclient.jar. For Local Mode, the API code
is contained in intgserver.jar. The jar files are installed in the lib directory under the Integration
API installation directory. To successfully compile and run the code written against the API, you
will need to include the appropriate jar file in your classpath.

For applications running in Local Mode, your classpath must include the other jar files that are
installed in the lib directory under the Integration API installation directory. Local Mode
applications must also have the System property "primavera.bootstrap.home" set to the location
of the installation directory. This setting is used by the server to find the BREBootStrap.xml file.

When Using the P6 Professional API

The API client code is contained in intgserver.jar. This and other related jar files are installed in
the lib directory under the Integration API installation directory. To successfully compile and run
the code written against the API, you must include these jar files in your classpath.

Additionally, the System property "primavera.bootstrap.home" must also be set to the location of
the installation directory. This setting is used by the server to find the BREBootStrap.xml file.

In This Section

Accessing Data in the API ... 13
Example: Establishing a Session in Local Mode .. 14
Example: Establishing a Session in Remote Mode .. 15

Accessing Data in the API

To access data in the API, you must first establish a valid session.

Then proceed as follows:

 If you are using the P6 Professional API, see the next topic, "Example: Establishing a
Session in Local Mode" for an example of how to establish a session and load a collection of
projects. Remember the P6 Professional API can run in Local Mode only.

Web and Pro API Programming Guide for On-Premises

14

 If you are using the P6 Integration API, see the next two topics as applicable: "Example:
Establishing a Session in Local Mode" and "Example: Establishing a Session in Remote
Mode." (Code written for Local Mode is the same as code written for Remote Mode, except
for calls to Session.getDatabaseInstances() and Session.login(), which require the
appropriate information to be specified for finding the server.)

Example: Establishing a Session in Local Mode

The following code provides an example of how to establish a session in Local Mode and load a
collection of projects:

import com.primavera.integration.client.Session;
import com.primavera.integration.client.EnterpriseLoadManager;
import com.primavera.integration.client.RMIURL;
import com.primavera.integration.common.DatabaseInstance;
import com.primavera.integration.client.bo.BOIterator;
import com.primavera.integration.client.bo.object.Project;
public class APITest
{

public static void main(String[] args)
{
Session session = null;
try
{
DatabaseInstance[] dbInstances = Session.getDatabaseInstances(RMIURL.getRmiUrl(
RMIURL.LOCAL_SERVICE));
// Assume only one database instance for now, and hardcode the username and
// password for this sample code
session = Session.login(RMIURL.getRmiUrl(RMIURL.LOCAL_SERVICE),
dbInstances[0].getDatabaseId(), "admin", "admin");
EnterpriseLoadManager elm = session.getEnterpriseLoadManager();
BOIterator<Project> boi = elm.loadProjects(new String[]{ "Name" }, null, "Name asc");
while (boi.hasNext())
{
 Project proj = boi.next();
 System.out.println(proj.getName());
}
}
catch (Exception e)
{
// Best practices would involve catching specific exceptions. To keep this
// sample code short, we catch Exception
e.printStackTrace();
}
finally
{
if (session != null) session.logout(); }
}

}

Where to Begin

15

Example: Establishing a Session in Remote Mode

The following code provides an example of how to establish a session in Remote Mode, using
the standard service mode, and load a collection of projects.

Note: Remote Mode applies only if you are using the P6 Integration API.

Example 2: (see the Javadoc for RMIURL for information on how to specify other service
modes):

import com.primavera.integration.client.Session;
import com.primavera.integration.client.EnterpriseLoadManager;
import com.primavera.integration.client.RMIURL;
import com.primavera.integration.common.DatabaseInstance;
import com.primavera.integration.client.bo.BOIterator;
import com.primavera.integration.client.bo.object.Project;
public class APITest { public static void main(String[] args)
{

Session session = null;
try
{
DatabaseInstance[] dbInstances = Session.getDatabaseInstances(RMIURL.getRmiUrl(
RMIURL.STANDARD_RMI_SERVICE, "localhost", 9099));
// Assume only one database instance for now, and hardcode the username and
// password for this sample code. Assume the server is local for this sample code.
session = Session.login(RMIURL.getRmiUrl(RMIURL.STANDARD_RMI_SERVICE, "localhost", 9099),
dbInstances[0].getDatabaseId(), "admin", "admin");
EnterpriseLoadManager elm = session.getEnterpriseLoadManager();
BOIterator<Project> boi = elm.loadProjects(new String[]{ "Name" }, null, "Name asc");
while (boi.hasNext())
{
Project proj = boi.next();
System.out.println(proj.getName());
}
}
catch (Exception e)
{
// Best practices would involve catching specific exceptions. To keep this
// sample code short, we catch Exception e.printStackTrace();
}
finally
{
if (session != null) session.logout();
}

}

Web and Pro API Programming Guide for On-Premises

16

17

Core Functionality

In This Section

Session ... 17
GlobalObjectManager ... 17
EnterpriseLoadManager .. 18
Business Objects ... 18

Session

Session is the main class used for communicating with the server. To establish a valid session,
a static login method is used. The session reference can then be used to access other main
objects, such as the EnterpriseLoadManager.

To log in, a valid database instance must be specified if multiple database instances are defined
in the current configuration. Use the Administrator tool to see the settings of your configuration. If
multiple configurations are defined in the database, check the "name" attribute of the
Bootstrap\Configurations\BRE element in the BREBootStrap.xml file to determine the
configuration used by your server installation.

Before logging in, you can retrieve a list of available database instances by calling
Session.getDatabaseInstances().

Note: The only difference in client code for Local Mode and Remote
Mode is the call to Session.getDatabaseInstances() and Session.login().
For Remote Mode, the code must specify the URL of the RMI server.
You can use com.primavera.integration.client.RMIURL to generate the
RMI URL for different remote modes: Standard, Compression, or SSL.

Session is not a singleton, which means you can establish multiple simultaneous communication
sessions with various servers and/or database instances. This can be useful for integrating with
multiple Oracle Primavera databases.

GlobalObjectManager

Retrieve the GlobalObjectManager instance for a particular session by calling
Session.getGlobalObjectManager(). This object is used for accessing all global business
objects: EPS, Projects, Resources, Roles, etc. In general, a business object is global if it is not a
child of a different type of object.

From the GlobalObjectManager, global objects can be created, loaded, updated, and deleted.
Each of these methods will cause the database to be accessed. When running in Remote Mode,
each of these methods results in a remote call to the server, which in turn might update the
database.

Web and Pro API Programming Guide for On-Premises

18

EnterpriseLoadManager

Retrieve the EnterpriseLoadManager instance for a particular session by calling
Session.getEnterpriseLoadManager(). This object is used for accessing all business objects
directly without having to follow a navigation model.

Business Objects

A business object is an encapsulation of business data and functionality that usually
corresponds to a record in a particular database table. Business objects contain fields, exposed
as properties. Get() methods exist for all fields, and set() methods exist only for writable fields.
Most business objects contain an ObjectId field, which serves as the primary key for that object.

Note: Client-side business objects are transient and should not be
reused. For example, when creating a new instance of a client-side
business object, after you call the create() method to create the object in
the database, the object should be reloaded from the database if you
intend to use it. This will help ensure that the data is valid, based on the
server-side business rules. This warning also applies to updating
business objects; after calling update(), reload the object if you intend to
use it further.

Load methods that cause multiple business objects to be loaded will return a BOIterator (a
business object iterator), that can be used to iterate through the returned business objects.
Similar to Java's java.util.Iterator class, it has both hasNext() and next() methods. Not all
business objects are retrieved from the server at one time. As you iterate through the result set,
more business objects are automatically loaded from the server as needed.

When loading an object, the fields to be loaded can be specified. If this parameter is null, the
minimal fields necessary will be loaded. You can obtain lists of available fields by calling the
following methods:

getAllFields() - Returns an array of all fields for this business object. Code assignment and UDF
value field names are not included in this array. For more information, see the Special Handling
of Codes and UDFs section below.

getRequiredCreateFields() - Returns an array of fields required to create this business object.
Some business objects have fields listed in this array that are OR'ed. These fields will appear in
the array separated by the "|" character. For example, the required create fields for Activity are
"Id", and "ProjectObjectId|WBSObjectId," meaning the Id field must always be set, and either the
ProjectObjectId or the WBSObjectId must be set (setting only the ProjectObjectId will cause the
Activity to be created at the project-level).

getSpreadFields() - Returns an array of spread fields (unit and cost) for business objects that
support spreads: EPS, Project, WBS, Activity, Role, Resource, and ResourceAssignment.

getMainFields() - Returns all fields supported by the business object, except for summary, code
assignment, and UDF fields.

Core Functionality

19

Note: In order to have the API perform optimally, only specify to load the
fields that are absolutely needed.

Business objects can be loaded directly using static load() methods of the class itself, from a
parent object, from the GlobalObjectManager if the object is global, or from the
EnterpriseLoadManager. To run the API using the EnterpriseLoadManager, ensure that both the
NLS_COMP and NLS_SORT parameters are set to the same value. Objects can be loaded by
specifying an array of ObjectIds or by specifying a "where" clause and/or an "order by" clause.
The where clause is used to filter the business objects when loaded.

 Where clauses that use Date data types must use the WhereClauseHelper to format the
date value. See Load Activities Example below.

 Complex where clauses can be created using AND and OR.

 Where clauses follow SQL-92 grammar and support function calls of the SQL language, with
some exceptions. Join statements and nested select statements are not supported. The
DATEADD function of SQL Server is also not supported.

The following code examples demonstrate how to specify a where clause when loading
business objects:

Example 1: Load all the projects that have an Id beginning with "API-Project," ordering by Id in
ascending order:

EnterpriseLoadManager elm = session.getEnterpriseLoadManager();
BOIterator<Project> boi = elm.loadProjects(new String[]{ "Id", "Status",
"StartDate", "FinishDate" },
 "Id like 'API-Project%'", "Id asc");
while (boi.hasNext())
{

Project proj = boi.next();
// Add code here to process each Project...

}

Example 2: Load activities from a project where the actual start is within a particular date range,
ordering by Name in descending order:

SimpleDateFormat formatter = new SimpleDateFormat("MM/dd/yyyy");
Date date = formatter.parse("03/03/2005");
String dateBegin = WhereClauseHelper.formatDate(session, date);
date = formatter.parse("03/09/2005");
String dateEnd = WhereClauseHelper.formatDate(session, date);
String whereClause = "ActualStartDate between " + dateBegin + " and " + dateEnd;
BOIterator<Activity> boi = project.loadAllActivities(new String[]{ "Id", "Name"
}, whereClause, "Name desc");
while (boi.hasNext())
{

Web and Pro API Programming Guide for On-Premises

20

Activity act = boi.next();
// Add code here to process each Activity...

}

Example 3: Load all active timesheets from a timesheet period:

BOIterator<Timesheet> boi = timesheetPeriod.loadTimesheets(new String[]{
"ResourceName", "ResourceId", "Status" }, "Status='" +
com.primavera.integration.client.bo.enm.TimesheetStatus.ACTIVE.getValue() +
"'", "");

while (boi.hasNext())
{

Timesheet ts = boi.next();
// Add code here to process each Timesheet...

}

21

Additional Functionality

In This Section

JobManager .. 21
Batch Exception Handling ... 21
TimeStamps .. 22
Resource Security ... 22

JobManager

 If you are using the P6 Integration API, the Job Manager is used to invoke all asynchronous
jobs: schedule, level, summarize, apply actuals, recalculateResourceAssignmentcosts, and
store period performance. It is retrieved for a particular session by calling
Session.getJobManager(). You can check the status of a particular asynchronous job by
calling getJobStatus and passing in the job ID returned when the job was created. Other
methods exist for deleting a job and getting a list of all jobs.

 If you are using the P6 Professional API, use the P6 Professional Job Service to invoke
asynchronous jobs instead of the Job Manager. (Job Manager is used to invoke
asynchronous jobs only when using the P6 Integration API.)

Batch Exception Handling

BatchException allows you to catch and collect all business rule exceptions without stopping the
batch create/update transaction. After the whole batch create/update is processed, the data
transaction is still rolled back but BatchException provides you a list of business rule exceptions
that occurred during the process. Looping through the exception list, you can identify the
problematic business objects. You might want to remove those from the transaction list and
rerun the batch update/create again. Or you might want to fix the issue and rerun the batch
update/create again.

Example: Catching BatchExceptions and looping through the exception list:

try
{

// call update or create here... ...

}
catch (BatchException e)
{

Web and Pro API Programming Guide for On-Premises

22

// Display stack trace of batch exception
e.printStackTrace();
System.out.println();
// Display index and exception message of all exceptions in the batch exception
List exceptions = e.getExceptionList();
for (int i = 0; i < exceptions.size(); i++)
{
ServerException se = (ServerException)exceptions.get(i);
System.out.println(se.getSource() + " - " + se.getMessage());
}

}

TimeStamps

Each business object now provides information about the user (getCreateUser()) and the date
(getCreateDate()) when the business object was created. Similarly, the getLastUpdateUser()
and getLastUpdateDate() return the user who updated the business object and the date it was
updated respectively. The getCreateUser() and getLastUpdateUser() only return the name of the
user. If the User object is needed, it will need to be loaded separately.

Example: Load all users that have been updated after June 30, 2005 at 6:00 AM. The results
are ordered by the update date:

java.util.Calendar calendar = new java.util.GregorianCalendar();
// 2005-6-30 06:00AM
calendar.set(2005, 5, 30, 6, 0, 0);
java.util.Date testDate = new java.util.Date(calendar.getTimeInMillis());
String wc = WhereClauseHelper.formatDate(session, testDate);
BOIterator<User> boi = elm.loadUsers(User.getAllFields(), "LastUpdateDate > " +
wc, "LastUpdateDate asc");
while (boi.hasNext())
{

User user = boi.next();
// Process user here...

}

Resource Security

Resource security allows you to restrict a user's ability to access resources. Restricted resource
access means that a user has access to a parts of the resource hierarchy only. Privileges that
control the resource hierarchy (add/edit/delete resource) still apply but only to those resources
that the user has access to.

Resource access types

Additional Functionality

23

 Access to all resources

If the User.AllResourceAccessFlag is True, the user has access to all resources and
resource security does not apply.

 Restricted access to resources

If the User.AllResourceAccessFlag is False, the user has limited access to resources.

If the user is assigned to resources in the hierarchy, that user has access to the assigned
resource and all their children. You can assign up to five resources to a user.

 If the user is not assigned to any resource in the hierarchy, that user does not have access
to any resources.

Note: Admin Superusers always have access to all resources.

Accessing resources assigned to a project

If a user can access a project, that user is able to see all resources assigned to that project
(activity, issue, risk, WBS) even if they are outside the user's resource access nodes. The user
can then reassign these resources anywhere, but will only be able to edit those that are under
the user's resource access nodes. For more information on the resource security feature, refer
to the P6 help (if using the P6 Integration API) or the P6 Professional help (if using the P6
Professional API).

The API implementation of resource security

Use the ResourceAccess business object to implement and maintain resource access in the
API.

When importing resources using the API as a user with restricted resource access, import the
resources to the first resource node that the user has access to, and into the highest resource
node that the user has access to.

Web and Pro API Programming Guide for On-Premises

24

For example, in the structure below, if the user has access to the nodes Purchasing, Operations,
ProductOps, CharlesM and Tom Hart, the user also has access to all the child resources of
those nodes. When importing resources, if the user does not specify which branch to import the
users into, import the resources under the Purchasing node.

Additional Functionality

25

For details on specific methods, refer to the JavaDoc.

Note: This note applies if you are using the P6 Integration API: On the
P6 Users page, users are filtered based on your resource access
settings. As an exception, Admin Superusers will always see all users. In
the API, all users are loaded but the ability to modify a user's resource
access settings is determined by your resource access settings. If the
user is associated to a resource that is outside your resource access,
you cannot change that user's resource access settings.

27

XML Exporter and Importer

In This Section

XMLExporter ... 27
XMLImporter ... 27
XML Schema ... 28

XMLExporter

The XML Exporters are used for writing business objects to XML. Every business object can be
exported, either by specifying an array of ObjectIds or by specifying a where clause to use for
loading the objects. Exporting non-global objects requires the parent object to be specified for
the methods that have where clause parameters.

Another XMLExporter method, exportFullProject, exports a project and all of its child objects
(such as WBS, Activities, ResourceAssignments, etc.). XML files created using exportFullProject
can be imported using the XMLImporter.

When objects are exported, the fields to be exported can be specified. If the fields parameter is
null, the default XML export fields will be used for each object. Since the default fields are the
writable fields, you can obtain this list of default fields by calling getWritableFields() on each
business object class.

To specify specific business object types or fields to be included in the export, use
XMLExporterListener. See the exporter demo application (ExportDemoApp.java) for example
code.

Note: All business objects can be written individually to XML even
without using the XMLExporter. Simply call toString() on a business
object instance and all fields currently loaded in that business object will
be output to XML using the p6apibo.xsd schema.

XMLImporter

The current version of the XML Importer only supports importing projects and project-related
data generated using XMLExporter.exportFullProject(). For the list of business objects and
related data exported by the XMLExporter.exportFullProject(), refer to the XMLExporter
JavaDoc.

The XMLImporter can also import XML generated data from other sources if the XML conforms
to the required schema and all necessary data are provided. However, anything that is not in the
full-project export, does not get imported, even if it is in the schema (for example, Users).

Note: Read-only fields or business objects do not get imported either,
and this version of the XMLImporter does not support importing

Web and Pro API Programming Guide for On-Premises

28

Documents and related business objects.

An example of using the XMLImporter is provided by the importer demo application
(ImportDemoApp.java).

Note: The XML Importer will not allow invalid data to be imported. It is
your responsibility to ensure the data is valid before initiating the import
process. For example, activities and resource assignments will not be
imported if the actual finish date precedes the actual start date in the
XML file.

If the data you would like to import is incomplete or does not conform to the full project export
schema, you can still use the API to create an integration solution. One possibility would be to
use DOM, SAX, or StAX to parse the XML yourself and then call the appropriate methods of the
API directly. For XML files for which you have the XML Schema (XSD) available, an even better
alternative might be to use an XML binding technology such as JAXB.

Note: It is highly recommended that you use the XMLImporter whenever
possible due to the many complexities that can be involved in the import
process in data dependency and matching.

XML Schema

 If using the P6 Professional API, the XMLExporter and XMLImporter uses the p6apibo.xsd
schema.

 If using the P6 Integration API, the XMLExporter and XMLImporter uses the p6apibo.xsd
schema. If the API is installed into a web/app server to support Remote Mode, the schema
file can be downloaded from the web server with the URL
http://<host>:<port>/PrimaveraAPI/schema/p6apibo.xsd.

Performance Tips

Many factors can affect the performance of an application that uses the API. The following tips
will help the programmer avoid some of the more common performance problems:

 If possible, log in to the API as a user with the Admin Superuser global security profile.

 When creating or updating business objects, use methods that allow multiple objects to be
processed at one time.

 When loading business objects, load only the fields that are absolutely necessary.

 Use where clauses to load business objects intelligently.

 When choosing the methods used to access business objects, be sure to use the methods
that will most effectively minimize server and database traffic. For example, a project is the
parent of its WBS hierarchy, and individual WBS objects can be parents of other business
objects, such as activities. To access activities quickly, use the loadAllActivities() method of
project to bypass the child WBS objects.

 Use only Local Mode with the XML exporter and importer.

Demo Applications

29

Demo Applications

Demo applications are installed in the demo directory under the Integration API installation
directory. Demo applications include source code, so they provide a working example of how to
use the API.

The following demo applications are included with this release:

 demo.general.GeneralDemoApp: provides sample code for creating, loading, updating,
and deleting business objects. It will, among other things, add a new project, add activities to
that project, add expenses to those activities, add global and project-specific activity code
types, add new activity codes for those types, and assign some activity codes to activities. It
will then load the activities from the server and output them to XML.

 demo.assignments.AssignmentsDemoApp: loads all resource assignments across
projects for the first 50 resources and generates an output HTML file. This application
demonstrates the speed at which data can be accessed across projects.

 demo.xmlexport.ExportDemoApp: performs an XML export of the first ten projects in the
database, and using the XMLExportListener interface, specifies to include all fields when
exporting activities and skip activity notes and WBS milestones.

 demo.xmlimport.ImportDemoApp: performs an import of an XML file created using
XMLExporter.exportFullProject().

For More Information

Where to Get Documentation

Complete documentation libraries for P6 EPPM releases are available from:

https://docs.oracle.com/en/industries/construction-engineering/

The documentation assumes a standard setup of the product, with full access rights to all
features and functions.

Help System Access

P6 EPPM is configured to access the versions of its help systems hosted by Oracle. For
on-premises, downloadable versions of the help systems are also available if you need to
download, deploy, and access a local copy.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Web and Pro API Programming Guide for On-Premises

30

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Where to Get Training

Equation 1: mylearn.oracle.com/construction

The MyLearn website provides free video-based training for all Construction and Engineering
applications. On your first visit, create a free account with Oracle University and enjoy these
benefits:

 More than 300 videos

 Site remembers which videos you have watched

 Filter by product

 Earn badges to share on social media

 Video captions translated into 14 languages

 Searchable transcript in English

 Build your own home page based on your preferences and favorites

 Track your progress and achievement on a personal dashboard

A variety of training is offered. (Not all training types offered for all products)

 Get Started: New user? These courses will get you up and running.

 What's New: Learn about the new features introduced in the latest release.

 Video Training: Single-topic, short duration videos provide instruction on basic functions
and common tasks.

 Crash Courses: Longer-duration videos (narrated by an instructor) guide you step-by-step
through processes like planning a project, or take a deep-dive into a single subject.

 Full Virtual Courses: Do hands-on exercises in the software and view training manuals in
these comprehensive instructor-led recorded courses. Requires fee.

For More Information

31

Where to Get Support

If you have a question about using Oracle products that you cannot resolve with information in
the documentation or help:

 Visit our support website for the latest information on contacting Oracle Global Customer
Support and accessing our knowledge articles: https://support.oracle.com/.

 Learn our tips and best practices for using our support services:

 Watch the How-to Video Training Series:
https://support.oracle.com/rs?type=doc&id=603505.2.

 Read our Working Effectively With Oracle Support - Best Practices guide:
https://support.oracle.com/rs?type=doc&id=166650.1.

 Access the Construction and Engineering support communities, which are moderated by
Oracle and provide a place for collaboration among industry peers to share best practices:
https://community.oracle.com/community/support/primavera.

Access to Oracle Support This is a legally required paragraph. Do Not Remove.

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Register on My Oracle Support

Register as a new user on My Oracle Support (MOS), so you can create Service Requests
(SRs). After you register, Oracle will ask you to verify your email address. Once verified, you can
log in to your MOS account.

After the first login, you need to request access to the Support Identifier (SI) number included in
the welcome email you received from Oracle. This number identifies your organization's
products and services and is required to use MOS.

Once you submit the SI number, you will be assigned as the Customer User Administrator
(CUA) in MOS. The CUA can submit Service Requests, approve or deny user access, and
assign user privileges in MOS.

Oracle recommends having at least two CUAs for every SI. Identify additional CUAs and/or
authorized users who can create Service Requests on behalf of your organization. Provide them
with the SI number and instruct them to register on MOS. Once they register, you will need to
approve their access and assign them as a CUA in MOS.

For more information on the CUA role and/or how to complete tasks, reference the CUA for
Cloud series in MOS. Note that you must have an MOS account with an SI number linked to
view support content in that portal.

Creating a Service Request

To access tutorials on how to create a service request, select the "Create and Manage Service
Requests" tab on our the How-to Video Training Series page:
https://support.oracle.com/rs?type=doc&id=603505.2.

When you create a service request, be sure to enter the correct product information and problem
details so that the request is assigned to the proper Oracle Support team.

Web and Pro API Programming Guide for On-Premises

32

On-premises users having issues with a related Oracle technology should contact the
appropriate support line. Available technologies vary by product and include the following
products:

 Oracle Access Manager

 Oracle AutoVue

 Oracle BI Publisher

 Oracle Analytics Publisher

 Oracle BPM

 Oracle Business Intelligence

 Oracle Database

 Oracle E-Business Suite

 Oracle Enterprise Manager

 Oracle Instantis EnterpriseTrack

 Oracle Server

 Oracle Value Chain Planning

 Oracle WebCenter Content Core Capabilities (formerly Universal Content Management)

 Oracle WebLogic

Using Information Centers

Information centers provide links to important support and product information. They organize
documents found on My Oracle Support (MOS), providing quick access to product- and
version-specific information, such as important knowledge documents, Release Value
Propositions, and Oracle University training.

Visit https://support.oracle.com/rs?type=doc&id=1486951.1 to access the information center for
your product.

Information centers also provide access to:

 Communities which are moderated by Oracle providing a place for collaboration among
industry peers to share best practices.

 Recently published knowledge base alerts and articles.

Support Renewals Process

If it's time to renew support for your Oracle products, or if you would like to sign up for
auto-renewal of your support services, visit the My Support Renewals site:
https://supportrenewals.oracle.com.

Keeping Your On-Premises Software Current and Secure

To ensure you have the latest versions of your products, download and install all available patch
sets from http://support.oracle.com.

To get the latest information about Critical Patch Updates, go to
http://www.oracle.com/technetwork/topics/security/alerts-086861.html.

	Contents
	About This Guide
	About Personal Information
	Introduction
	What's New in P6 Integration API
	Modes of Operation
	Security
	Packages

	Where to Begin
	Accessing Data in the API
	Example: Establishing a Session in Local Mode
	Example: Establishing a Session in Remote Mode

	Core Functionality
	Session
	GlobalObjectManager
	EnterpriseLoadManager
	Business Objects

	Additional Functionality
	JobManager
	Batch Exception Handling
	TimeStamps
	Resource Security

	XML Exporter and Importer
	XMLExporter
	XMLImporter
	XML Schema

	Performance Tips
	Demo Applications
	For More Information
	Where to Get Documentation
	Documentation Accessibility
	Where to Get Training
	Where to Get Support

