
Oracle® TimesTen In-Memory
Database
Kubernetes Operator User's Guide

Release 18.1
G13590-01
August 2024

Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide, Release 18.1

G13590-01

Copyright © 2020, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 What's New

New Features in Release 22.1.1.19.0 xiv

New features in Release 22.1.1.9.0 xiv

New features in Release 22.1.1.3.0 xv

New features in Release 22.1.1.1.0 xv

1 Overview of the Oracle TimesTen Kubernetes Operator

Overview of Containers and Kubernetes 1-1

Custom Resource Definition 1-2

Kubernetes Operator 1-2

About the TimesTen Kubernetes Operator 1-2

About TimesTenClassic and TimesTenScaleout Objects 1-3

About Provisioning Active Standby Pairs 1-4

About Deploying a TimesTenClassic Object 1-5

About Objects Created by the TimesTen Operator 1-5

StatefulSet 1-6

Service 1-7

Secret 1-7

Pods 1-7

Events 1-7

About the TimesTen Containers and the TimesTen Agent 1-7

Simple Deployment 1-8

About Deploying a TimesTen Scaleout Grid and Database 1-8

StatefulSets 1-9

Services 1-9

Secret 1-10

Persistent Volume Claims and Pods 1-10

Password-less ssh 1-10

Quick Rollout 1-10

iii

2 Set Up the Environment

Prerequisites 2-1

About TimesTen Container Images 2-2

Option 1: Use the Official TimesTen Container Images 2-2

Accept the Oracle TimesTen License Agreement 2-3

Obtain the TimesTen Operator Manifest Files from the Official TimesTen Image 2-4

Option 2: Build the TimesTen Container Image 2-6

Unpack the TimesTen and the TimesTen Operator Distributions 2-6

Copy the TimesTen Distribution 2-9

Choose How to Build 2-9

Option 2a: Build with Defaults 2-10

Option 2b: Build with Customizations 2-11

About Deploying the TimesTen Operator 2-13

Create the Service Account and the TimesTen Custom Resource Definitions (CRDs) 2-14

About Readiness and Liveness Probes 2-15

Customize the TimesTen Operator 2-16

Verify the TimesTen Operator is Running 2-19

3 Use Configuration Metadata

Overview of Configuration Metadata and Kubernetes Facilities 3-1

List of Configuration Metadata 3-1

About Configuration Metadata Details 3-3

adminUser 3-3

cachegroups.sql 3-3

cacheUser 3-4

csWallet 3-5

db.ini 3-5

epilog.sql 3-6

replicationWallet 3-7

schema.sql 3-7

sqlnet.ora 3-7

testUser 3-7

tnsnames.ora 3-8

*.connect 3-8

*.csconnect 3-9

Populate the /ttconfig Directory 3-9

Using ConfigMaps and Secrets 3-9

Example Using One ConfigMap 3-10

Example Using One ConfigMap and One Secret 3-13

Example Using One ConfigMap for a TimesTenScaleout Object 3-16

iv

Using an init container 3-18

Additional Configuration Options 3-20

Persistent Storage 3-20

Additional Resource Specifications 3-22

About Readiness Probes for TimesTen Containers 3-23

About /tmp/active Readiness Probes 3-24

About /tmp/readiness Readiness Probes 3-24

4 Specify CPU and Memory Requests and Limits

About Resource Requests and Limits 4-1

About TimesTen Containerized Deployments 4-3

About Specifying Requests and Limits for TimesTen Containers 4-4

Approach 1: Use Specific Datum for Requests and Limits 4-5

Approach 2: Use Templates for Requests and Limits 4-8

About Specifying Requests and Limits to Kubernetes 4-10

About Verifying databaseMemorySize 4-10

About Runtime Memory Monitoring 4-11

5 Deploy TimesTen Classic Databases

About the Deployment Process 5-1

Define and Create a TimesTenClassic Object 5-2

Monitor Progress of an Active Standby Pair Deployment 5-3

Monitor the State of a TimesTenClassic Object 5-3

Verify Underlying Objects Exist 5-8

Verify Connection to Active Database 5-8

6 Deploy TimesTen Scaleout Databases

About Deploying a Grid 6-1

About Planning a Grid 6-2

About Configuring a Grid 6-2

About Provisioning a Grid 6-3

About ssh 6-4

About Creating a Grid 6-4

Deploy a Grid 6-5

Create Configuration Metadata and a Kubernetes ConfigMap for a Grid 6-6

Define and Deploy a TimesTenScaleout Object 6-8

Monitor the High Level State of a TimesTenScaleout Object 6-10

Verify Underlying Objects 6-12

Connect to the Database 6-15

v

Manage a Grid and Its Database 6-16

7 Use Helm to Deploy the TimesTen Kubernetes Operator and
TimesTenClassic Objects

Overview of Helm 7-2

About a Helm Chart 7-2

About Helm Charts for TimesTen 7-3

About Versions in a Chart.yaml File 7-3

About the Helm Substitution Engine and Language 7-4

About Installing and Testing a Release 7-4

Install the TimesTen Custom Resource Definitions (CRDs) 7-5

Install the TimesTen Operator 7-6

Test the TimesTen Operator 7-9

Install TimesTen Databases 7-10

Test TimesTen 7-17

Upgrade the TimesTen Custom Resource Definitions (CRDs) 7-18

Upgrade the TimesTen Operator 7-20

Upgrade TimesTen 7-24

Roll Back a TimesTen Upgrade 7-31

Roll Back a TimesTen Operator Upgrade 7-36

Roll Back a TimesTen Custom Resource Definitions (CRDs) Upgrade 7-38

About Uninstalling a Release 7-39

Delete TimesTen Databases 7-39

Delete the TimesTen Operator 7-41

Delete the TimesTen Custom Resource Definitions (CRDs) 7-42

8 Use TimesTen Databases

About Using Direct Mode Applications 8-1

About Using Client/Server Drivers 8-3

9 Manage and Monitor Active Standby Pairs

About Monitoring the Health of Each Pod in an Active Standby Pair 9-1

CatchingUp 9-2

Down 9-2

Healthy 9-2

HealthyActive 9-2

HealthyStandby 9-2

OtherDown 9-2

vi

Terminal 9-2

Unknown 9-3

UpgradeFailed 9-3

About Monitoring the Health of an Active Standby Pair of Databases 9-3

ActiveDown 9-3

ActiveTakeover 9-4

BothDown 9-4

ConfiguringActive 9-4

Failed 9-4

Initializing 9-4

ManualInterventionRequired 9-5

Normal 9-5

Reexamine 9-5

StandbyCatchup 9-5

StandbyDown 9-5

StandbyStarting 9-5

WaitingForActive 9-6

About the BothDown State 9-6

About the ManualInterventionRequired State 9-7

About Bringing Up One Database 9-9

Verify Conditions Are Met for the Database 9-9

Set the reexamine Value 9-11

Suspend Management of a TimesTenClassic Object 9-16

About Suspending Management 9-16

Suspend Management 9-17

Locate the Operator 9-18

Manage the TimesTen Databases 9-19

Manually Invoke TimesTen Utilities 9-19

Modify TimesTen Connection Attributes 9-20

Manually Edit the db.ini File 9-20

Modify First Connection Attributes 9-22

Modify General Connection Attributes 9-24

Revert to Manual Control 9-27

Delete an Active Standby Pair of TimesTen Databases 9-29

10

Manage TimesTen Scaleout

About Managing TimesTen Scaleout 10-1

About Single Data Instance Failure 10-2

About Management Instance Failure 10-2

About the waiting for seed State 10-2

vii

About Failure of All Data Instances 10-3

About High Level States 10-3

DatabaseDown 10-4

DatabaseImpeded 10-4

DatabasePartial 10-4

DatabaseRestarting 10-4

DatabaseRestartRequired 10-4

Failed 10-4

Initializing 10-4

ManualInterventionRequired 10-4

Normal 10-5

Reexamine 10-5

Unmanaged 10-5

About Management States 10-5

ActiveAgentUp 10-6

ActiveDaemonUp 10-6

ActiveDown 10-6

Error 10-6

Normal 10-6

Unknown 10-6

About Database and Element States 10-6

About the ManualInterventionRequired State 10-7

About Suspending Management 10-7

Simulate Single Data Instance Failure 10-8

Simulate Management Instance Failure 10-9

Simulate Replica Set Failure with Restart 10-11

Simulate Replica Set Failure with Manual 10-13

Suspend Management 10-15

Set reexamine Datum 10-17

11

Expose TimesTen Metrics with the TimesTen Kubernetes Operator

Overview of TimesTen Metrics 11-1

Overview of the TimesTen Kubernetes Operator and the TimesTen Exporter 11-2

About the Prometheus Operator 11-2

About Exposing TimesTen Metrics 11-4

About Using http or https for TimesTen Metrics 11-5

About Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics 11-6

About Creating PodMonitor Objects 11-7

About the TimesTen Metrics Service 11-8

About Choosing to Expose TimesTen Metrics 11-8

viii

Expose TimesTen Metrics Automatically 11-9

12

Expose Metrics from the TimesTen Kubernetes Operator

About Exposing Metrics from the TimesTen Kubernetes Operator 12-1

About Using http or https 12-3

About Transport Layer Security (mutual TLS) Certificates 12-3

About Creating ServiceMonitor Objects 12-4

About the TimesTen Kubernetes Operator's Metrics Service 12-4

About TimesTen Operator Metrics 12-5

Demonstrate How to Expose TimesTen Kubernetes Operator Metrics 12-5

13

Work with TimesTen Cache

About Using TimesTen Cache 13-1

14

Use Encryption for Data Transmission

Create TLS Certificates for Replication and Client/Server 14-1

Configure TLS for Replication 14-3

Create Metadata Files and Kubernetes Facilities 14-3

Create a Kubernetes Secret 14-4

Create a ConfigMap 14-5

Create a TimesTenClassic Object 14-6

Monitor Deployment of a TimesTenClassic Object 14-8

Verify TLS Is Being Used for Replication 14-9

Configure TLS for Client/Server 14-11

Configuration Requirements for the Server 14-11

Overview of Metadata Files and Kubernetes Facilities 14-11

Create a Kubernetes Secret for the csWallet Metadata File 14-12

Create a ConfigMap for the Server-Side Attributes 14-13

Create a TimesTenClassic Object 14-15

Monitor Deployment of the TimesTenClassic Object 14-16

Configuration Requirements for the Client 14-17

Copy a Client Wallet 14-18

Configure Client-Side Attributes 14-18

15

Handle Failover and Recovery in TimesTen Classic

About Handling Failover and Recovery 15-1

Illustrate the Failover and Recovery Process 15-1

ix

16

Perform Upgrades

About New TimesTen Container Images 16-1

Upgrade the Operator 16-3

About Upgrading TimesTen Classic 16-6

Perform an Automated Upgrade 16-7

Modify a TimesTenClassic Object: Automated Upgrade 16-8

Monitor an Automated Upgrade 16-11

Perform a Manual Upgrade 16-15

Modify a TimesTenClassic Object: Manual Upgrade 16-16

Upgrade the Standby Database 16-19

Fail Over 16-23

Verify the Active Standby Pair of Databases Are Upgraded 16-28

About Upgrading Direct Mode Applications 16-30

About Failures During an Upgrade 16-30

17

The TimesTen Kubernetes Operator Object Types

Overview of the TimesTen Kubernetes Operator Object Types 17-1

About the TimesTenClassic Object Type 17-1

TimesTenClassic 17-2

TimesTenClassicSpec 17-2

TimesTenClassicSpecSpec 17-3

TimesTenClassicSpecSpecPrometheus 17-17

TimesTenClassicStatus 17-19

About the TimesTenScaleout Object Type 17-20

TimesTen Scaleout 17-20

TimesTenScaleoutSpec 17-21

TimesTenScaleoutSpecSpec 17-22

TimesTenScaleoutSpecSpecPrometheus 17-33

TimesTenScaleoutStatus 17-35

18

Helm Charts for the TimesTen Kubernetes Operator

The ttoperator Chart 18-1

The ttclassic Chart 18-7

19

TimesTen Kubernetes Operator Metrics

x

20

TimesTen Kubernetes Operator Environment Variables

21

Dockerfile ARGs

A Active Standby Pair Example

Before You Begin A-1

Create a ConfigMap Object A-1

Create a TimesTenClassic Object A-3

Monitor Deployment A-4

Verify Existence of Underlying Objects A-9

Verify Connection to the Active TimesTen Database A-10

Recover from Failure A-10

Clean Up A-11

B TimesTen Cache in TimesTen Classic Example

Set Up the Oracle Database to Cache Data B-1

Create the Oracle Database Users B-1

Grant Privileges to the Cache Administration User B-2

Create the Oracle Database Tables to Be Cached B-4

Create Metadata Files and a Kubernetes Facility B-5

Create a TimesTenClassic Object B-10

Monitor Deployment of a TimesTenClassic Object B-11

Verify TimesTen Cache Configuration B-14

Perform Operations On Cache Group Tables B-15

Perform Operations on the oratt.readtab Table B-15

Perform Operations on the oratt.writetab Table B-16

Clean Up Cache Metadata on the Oracle Database B-18

C TimesTen Cache in TimesTen Scaleout Example

Set Up the Oracle Database to Cache Data C-1

Create the Oracle Database Users C-1

Grant Privileges to the Cache Administration User C-3

Create the Oracle Database Table to Be Cached C-5

Create Metadata Files and a Kubernetes Facility C-7

Create a TimesTenScaleout Object C-12

xi

Monitor Deployment of a TimesTenScaleout Object C-14

Verify TimesTen Cache Configuration C-15

Perform Operations on the oratt_grid.readtab Table C-17

Clean Up Cache Metadata on the Oracle Database C-19

D Create Your Own Oracle Wallet, Certificates, and Secrets for Exposing
TimesTen Metrics

About Creating Your Own Oracle Wallet, Certificates, and Kubernetes Secrets D-1

Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets D-2

Before You Begin D-3

Create Certificates D-4

Create a Kubernetes Secret Containing an Oracle Wallet D-7

Define and Deploy a TimesTenClassic Object D-8

xii

About This Content

This document covers TimesTen support for the TimesTen Kubernetes Operator.

Audience

This document is intended for anyone who wants to use the TimesTen Kubernetes Operator
in a Kubernetes environment.

Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation. The
Oracle TimesTen Kubernetes Operator (TimesTen Operator) is a Kubernetes Operator that
provides the ability to do the following:

• Create and deploy highly available replicated pairs of TimesTen Classic databases to a
Kubernetes cluster with minimal effort. It also provides the ability to automate failure
detection and recovery.

• Create and deploy TimesTen Scaleout grids and their associated databases to a
Kubernetes cluster with minimal effort.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

13

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New

This section summarizes the new features of Oracle TimesTen In-Memory Database
Release 22.1 that are documented in this guide. It provides links to more information.

New Features in Release 22.1.1.19.0
• The TimesTen Kubernetes Operator (TimesTen Operator) provides TimesTen-

specific Helm charts. These charts let you use Helm to install the TimesTen CRDs,
TimesTen Operator, and TimesTenClassic objects in your Kubernetes cluster. See
Use Helm to Deploy the TimesTen Kubernetes Operator and TimesTenClassic
Objects.

• By default, the TimesTen Operator automatically exports and exposes TimesTen
metrics to Prometheus. See Expose TimesTen Metrics with the TimesTen
Kubernetes Operator.

You can control how TimesTen metrics are exported and exposed by using specific
datum in your TimesTenClassic and TimesTenScaleout object YAML manifest files.
See About Exposing TimesTen Metrics and
TimesTenClassicSpecSpecPrometheus and
TimesTenScaleoutSpecSpecPrometheus.

• The TimesTen Operator automatically exposes metrics about its own functionality
as well as the status of TimesTenClassic and TimesTenScaleout objects that it
manages to Prometheus. See Expose Metrics from the TimesTen Kubernetes
Operator.

You can control how these metrics are exposed by unsetting or setting TimesTen
Operator environment variables located in the operator.yaml YAML manifest file
of your TimesTen Operator deployment. See About Exposing Metrics from the
TimesTen Kubernetes Operator and TimesTen Kubernetes Operator Environment
Variables.

• The TimesTen Operator provides readiness and liveness probes so that
Kubernetes can determine the health of the TimesTen Operator. See About
Readiness and Liveness Probes.

• The TimesTen Operator creates and manages readiness probes for TimesTen
containers. See About Readiness Probes for TimesTen Containers.

New features in Release 22.1.1.9.0
• The TimesTen Operator monitors and manages TimesTen Scaleout objects that

are deployed in your Kubernetes cluster. It also detects, repairs, and recovers from
failures in your grid and associated database. See Manage TimesTen Scaleout.

What's New

xiv

• The Operator supports TimesTen Cache in TimesTen Scaleout. See Work with TimesTen
Cache. For a complete example, see TimesTen Cache in TimesTen Scaleout Example.

• It is essential to specify memory requests and limits to Kubernetes. TimesTen
recommends that CPU requests and limits be specified as well. See Specify CPU and
Memory Requests and Limits. To support this functionality, there are new datum added to
the .spec.ttspec fields of the TimesTenClassic and TimesTenScaleout object custom
resource definitions. See TimesTenClassicSpecSpec and TimesTenScaleoutSpecSpec.

• TimesTen container images use the Oracle Linux base image. Oracle Java is installed
into the TimesTen images using JDK script friendly URLs and Dockerfile techniques. For
details about setting up your environment, see Set Up the Environment . For specific
information about TimesTen container images, see About TimesTen Container Images.
For information about Dockerfile ARGS, see Dockerfile ARGs.

New features in Release 22.1.1.3.0
• The TimesTen Operator can deploy TimesTen Scaleout grids and their associated

TimesTen databases in your Kubernetes cluster. See Deploy TimesTen Scaleout
Databases.

The TimesTen Operator supports the TimesTenScaleout object type. This object type
provides the syntax you need to deploy a TimesTen Scaleout grid and database. See
About the TimesTenScaleout Object Type.

• In previous releases, the TimesTen Operator required the creation of two container
images, one for the Operator and one for TimesTen. In this release, one container image
is used for both the Operator and TimesTen. You can create this container image or pull it
from the Oracle Container Registry at container-registry.oracle.com. See Set Up the
Environment .

• When using the TimesTen Operator, the name of the Linux user that is created in the
container image is timesten with a numeric UID of 3429. The name of the Linux group
that is created in the container image is timesten with a GID of 3429. The timesten user
is the user who runs TimesTen and the timesten group is the TimesTen users group. You
can override these defaults. This lets you tailor attributes of the image to meet your
requirements. See Option 2b: Build with Customizations and Dockerfile ARGs.

• The TimesTen Operator supports the TimesTen Prometheus Exporter. You can configure
your TimesTenClassic and your TimesTenScaleout objects to use the Exporter. The
Exporter can then collect metrics from the TimesTen databases that are running in your
Kubernetes cluster, and expose these metrics to Prometheus. See Create Your Own
Oracle Wallet, Certificates, and Secrets for Exposing TimesTen Metrics.

The TimesTen Operator provides the prometheus object type as part of the
TimesTenClassic and TimesTenScaleout object type definitions. Use the prometheus
object type to configure the Exporter to meet your Prometheus requirements. See
TimesTenClassicSpecSpecPrometheus and TimesTenScaleoutSpecSpecPrometheus.

New features in Release 22.1.1.1.0
You can define a readiness probe to tell Kubernetes that a TimesTen (tt) container is ready.
See About Readiness Probes for TimesTen Containers.

What's New

xv

1
Overview of the Oracle TimesTen Kubernetes
Operator

This chapter provides an overview of containers and Kubernetes. It also gives an overview of
the TimesTen Kubernetes Operator. It discusses the TimesTenClassic and TimesTenScaleout
Custom Resource Definitions (CRDs) and the TimesTen Operator. The chapter details the
role the TimesTen Operator plays in deploying, managing, and monitoring active standby
pairs of TimesTen Classic databases as well as in deploying TimesTen Scaleout grids and
their associated databases in your Kubernetes cluster.

Topics:

• Overview of Containers and Kubernetes

• About the TimesTen Kubernetes Operator

• About TimesTenClassic and TimesTenScaleout Objects

• About Provisioning Active Standby Pairs

• About Deploying a TimesTenClassic Object

• About Deploying a TimesTen Scaleout Grid and Database

Overview of Containers and Kubernetes
A container is a lightweight virtual machine, running the Linux operating system. A container
usually runs one application that is started from an image. Files that are created and modified
are usually not persistent. However, persistent storage is available. Containers are a key
component of cloud computing environments.

Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation.
Kubernetes has the ability to manage the resources of multiple hosts (called Nodes) in a
cluster, and to run containers as required across these nodes. It can automatically spawn
containers to react to various failures. Kubernetes also manages the networking among the
containers and to the outside world. Kubernetes is portable across many cloud and on-
premises environments.

Key Kubernetes concepts include:

• Pod: One or more containers that share an IP address. For more information on Pods,
see:

https://kubernetes.io/docs/concepts/workloads/pods/pod/
• Deployment: A named collection of n identical Pods (where n is the number of Pods).

Kubernetes ensures that n identical Pods are running. For more information on
Deployments, see:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
• PersistentVolume: Storage that can be mounted to a Pod and is persistent beyond the

lifetime of Pod. For more information on Persistent Volumes, see:

1-1

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
• StatefulSet: Similar to a Deployment, but each Pod has an associated

PersistentVolume. For more information on StatefulSets, see:

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
• Service: A network endpoint for a Deployment or StatefulSet. It defines the set of

addresses and ports that should be exposed to applications in the Kubernetes
cluster. For more information on a Service, see:

https://kubernetes.io/docs/concepts/services-networking/service/
Kubernetes provides the facilities for the provisioning of Pods and other Kubernetes
resources that are required to deploy applications. Once deployed, the objects must
be monitored and managed.

Kubernetes does some monitoring and managing of applications, but not all. It does
handle problems at the Pod level automatically. For example, if a container fails,
Kubernetes restarts it automatically. If an entire Node fails, Kubernetes starts
replacement Pods on the other Nodes. However, Kubernetes has no knowledge about
problems inside a container. This is not problematic for stateless applications, but for
databases (which are stateful), Kubernetes needs help managing what is inside the
containers.

This help comes in the form of:

• Custom Resource Definition

• Kubernetes Operator

Custom Resource Definition
A Custom Resource Definition (commonly known as a CRD) extends the Kubernetes'
object model. It adds a new object type to the Kubernetes cluster, similar to the Pod,
the StatefulSet, and the Service object types that it natively supports.

Kubernetes Operator
A Kubernetes Operator (also called Operator) is the brains behind a CRD. An
Operator is an application that performs the functions of a human computer operator. It
starts, stops, monitors, and manages other applications.

An Operator runs in one or more Pods, one active and the others idle. The active
Operator performs the work. The remaining Operators are idle and remain idle until the
active Operator fails. The active Operator manages all objects of a particular type and
when combined with a CRD enables you to add custom facilities to Kubernetes.

About the TimesTen Kubernetes Operator
The TimesTen Kubernetes Operator provides the ability for you to deploy both active
standby pairs of TimesTen Classic databases as well as TimesTen Scaleout grids and
their associated databases in your Kubernetes cluster.

The TimesTen Kubernetes Operator consists of these interrelated components:

• Custom Resource Definitions (CRDs): There are two CRDs. The TimesTenClassic
CRD defines an object of type TimesTenClassic to Kubernetes. This

Chapter 1
About the TimesTen Kubernetes Operator

1-2

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/services-networking/service/

TimesTenClassic object type provides the metadata for deploying active standby pairs of
TimesTen Classic databases. The TimesTenScalout CRD defines an object of type
TimesTenScaleout to Kubernetes. This TimesTenScaleout object type provides the
metadata for deploying TimesTen Scaleout grids and their associated databases.

• TimesTen Operator: There is one TimesTen Operator. The Operator monitors the
TimesTenClassic and TimesTenScaleout objects and properly handles both. It deploys,
manages, and monitors active standby pairs of TimesTen Classic database. This same
Operator deploys TimesTen Scaleout grids and their associated databases.

• TimesTen Agent: There is one TimesTen agent. This agent runs inside each container
that runs TimesTen. The TimesTen Operator communicates with these agents both to
determine the state of TimesTen insides of the container as well as to create, start, stop,
and control TimesTen instances. The agent does not know how to manage TimesTen. It
gives information to the Operator and the Operator provides the instructions for the
agent. This agent knows how to work with TimesTen Classic and TimesTen Scaleout.

About TimesTenClassic and TimesTenScaleout Objects
The TimesTen Operator distribution provides the file you need to deploy the TimesTenClassic
and TimesTenScaleout CRDs in the Kubernetes cluster. Once deployed, Kubernetes
understands the TimesTenClassic and TimesTenScaleout object types, just as it understands
Pods, Secrets, and Services.

You can define objects of type TimesTenClassic or of type TimesTenScaleout or both. This
lets you define the specific attributes for your TimesTen configuration and TimesTen
database.

Objects in Kubernetes are named and typed. You can define a TimesTenClassic object
named sample and another TimesTenClassic object named sample2. Similarly, you can define
a TimesTenScaleout object named sample and another TimesTenScaleout object named
sample2. You can have as many of these Kubernetes objects as you want, limited only by the
available resources in your Kubernetes cluster.

Objects of different types have different meanings. For example, an object of type
TimesTenClassic has a different meaning than an object of type ConfigMap. Therefore, you
can define a sample TimesTenClassic object and a sample ConfigMap. The same is true for
TimesTenScaleout objects.

Kubernetes supports namespaces. Namespaces split a cluster into multiple independent
ones. Each namespace has a completely independent set of names. There can be an object
of type a called x in namespace1 and a different object of type a called x in namespace2. For
example, you can define an object of type TimesTenClassic called sample in the namespace1
namespace, and a different object of type TimesTenClassic called sample in the namespace2
namespace. The same is true for TimesTenScaleout objects.

Note:

CRDs are cluster-scoped, not namespace-scoped.

Kubernetes object definitions are expressed in JSON or YAML. The examples in this book
use YAML.

Chapter 1
About TimesTenClassic and TimesTenScaleout Objects

1-3

About Provisioning Active Standby Pairs
TimesTen Classic databases almost always run in active standby pairs. Figure 1-1
illustrates an active standby pair replication scheme. There are two databases. One
database is the active, and the second database is the standby. Applications update
the active database. The standby database is read-only and receives replicated
updates from the active database. Only one of the two databases function as the
active database at any one time. If the active database fails, the standby database is
promoted to be the active. After the failed (active) database is recovered, it becomes
the standby database. See Types of Replication Schemes in the Oracle TimesTen In-
Memory Database Replication Guide for more information on the active standby pair
replication scheme.

Figure 1-1 Active standby pair of TimesTen databases

Checkpoint and
Transaction Log Files

TimesTen IMDB

Standby

Application
Transactions

Application Reads on
Hot Standby

Checkpoint and
Transaction Log Files

TimesTen IMDB

Active

An active standby pair replication scheme is a good fit for Kubernetes. Specifically,
consider a pair of Pods, each with persistent storage, that are running an active
standby pair of TimesTen databases. If the Pod containing the active database fails,
Kubernetes automatically spawns another Pod to take its place, and attaches the
appropriate storage to it.

But, since Kubernetes doesn't know anything about TimesTen, it will not automatically
perform the necessary operations to cause the standby database on the surviving Pod
to become the active database. This is where the TimesTen Operator comes in.

TimesTen provides a CRD that adds the TimesTenClassic object type to Kubernetes
as well as an Operator for managing TimesTen databases. The Operator automates
setup and initial configuration, manages databases and replication, and automates
failover and recovery.

When you define a TimesTenClassic object, you can specify the configuration of your
TimesTen deployment using Kubernetes facilities. When you create a TimesTenClassic
object in a Kubernetes cluster, a pair of Pods are created, each running TimesTen.
Each Pod contains a TimesTen instance. Each instance provides one TimesTen
database. Database replication, through active standby pairs, is automatically

Chapter 1
About Provisioning Active Standby Pairs

1-4

configured. In short, you can deploy highly available replicated pairs of TimesTen databases
and manage them by issuing a small number of commands.

A Kubernetes Operator manages objects of a particular type. TimesTen provides an Operator
that manages Kubernetes objects of type TimesTenClassic. In so doing, TimesTen can be
deployed, monitored, managed, and controlled in an automated manner with no required
human intervention.

About Deploying a TimesTenClassic Object
When you create a TimesTenClassic object in the Kubernetes cluster, the process to create
and configure your active standby pair of databases begins. The Operator is invoked and
creates several Kubernetes objects that are required to run TimesTen. After the objects are
created and linked together, the TimesTen containers run a script to configure and start the
TimesTen agent. The Operator communicates with the TimesTen agent that is running in
each Pod in order to monitor and control TimesTen. The Operator configures one database
as the active database, copies the active database to the standby, and then configures the
active standby pair replication scheme. The process is described in detail in these sections:

• About Objects Created by the TimesTen Operator

• About the TimesTen Containers and the TimesTen Agent

• Simple Deployment

About Objects Created by the TimesTen Operator
The Operator creates a number of Kubernetes objects that are required to run TimesTen,
including a StatefulSet, a Service, and a Secret. These objects in turn create other objects.
All of these objects are linked together by Kubernetes and are associated with the
TimesTenClassic object you created. Figure 1-2 shows the objects that are created and how
they are linked together.

Chapter 1
About Deploying a TimesTenClassic Object

1-5

Figure 1-2 Creating the TimesTenClassic object

TimesTenClassic

Secret StatefulSet Service

Persistent Volume Pod Pod Persistent Volume

TimesTen Container

Log Container

Direct Mode
App Containers

TimesTen Container

Log Container

Direct Mode
App Containers

The objects that are created are described in the following sections:

• StatefulSet

• Service

• Secret

• Pods

• Events

StatefulSet
The Operator creates a StatefulSet consisting of two Pods to run TimesTen. Each Pod
has one or more PersistentVolumes (persistent storage), that are mounted in the
TimesTen containers. This is where your TimesTen databases are stored. Applications
running in the containers with PersistentVolumes mounted can create files that live
beyond the lifetime of the container. (By default, all files that containers create and
modify automatically vanish when the container exits. Containers are ephemeral.)

One attribute of a StatefulSet is the number of replicas that can be provisioned. Each
TimesTenClassic object has an associated StatefulSet with two replicas. If one Pod
fails, Kubernetes automatically creates a new one to replace it, and automatically
mounts the appropriate PersistentVolume(s) to it.

For example, for a TimesTenClassic object called sample, the Operator creates a
StatefulSet called sample, in the same Kubernetes namespace. The StatefulSet, in
turn, create two Pods in the namespace, called sample-0 and sample-1.

Chapter 1
About Deploying a TimesTenClassic Object

1-6

Service
A Kubernetes Service defines the set of network addresses and ports that should be exposed
to applications in the cluster.

The Operator automatically creates a headless Service when you create the
TimesTenClassic object. It automatically associates this Service with the StatefulSet. This
causes Kubernetes to define entries in the Kubernetes cluster's DNS for the Pods in the
StatefulSet, and to keep those DNS entries up to date.

A headless Service is used such that the DNS name/address entry for the active database is
different than the DNS name/address entry for the standby database. This enables incoming
client connections to be routed to the database that is active. For more information on a
headless Service, see:

https://kubernetes.io/docs/concepts/services-networking/service/#headless-
services/
For a TimesTenClassic object called sample, a headless Service called sample is also created
in the same Kubernetes namespace. This results in entries in the cluster's DNS for
sample-0.sample.namespace.svc.cluster.local and
sample-1.sample.namespace.svc.cluster.local.

Secret
The TimesTen Operator creates a Secret to inject an SSL certificate into the TimesTen
containers. This secures the communication between the TimesTen Operator and the
TimesTen Agent.

Pods
The StatefulSet creates two pods. Each Pod contains two containers:

• The tt container. This TimesTen container is always present in the Pods. It executes the
TimesTen agent and runs TimesTen.

• The daemonlog container: This container copies the contents of the TimesTen ttmesg.log
file to stdout, resulting in Kubernetes logging the file. This enables the daemon log of the
TimesTen instances to be recorded by the Kubernetes infrastructure.

Events
The Operator creates a Kubernetes event whenever important changes occur.

About the TimesTen Containers and the TimesTen Agent
After the objects are created, the TimesTen containers run a script that configures and starts
the TimesTen agent. The Operator communicates with the TimesTen agent running in each
Pod, in order to configure, manage, and monitor TimesTen in that Pod. The agent provides an
HTTPS endpoint in the Pod that the Operator uses to query and control the tt container in
the Pod. If the TimesTen agent fails, the tt container automatically terminates and is re-
spawned by Kubernetes. Figure 1-3 illustrates the two way communication between the
Operator and the TimesTen agent.

Chapter 1
About Deploying a TimesTenClassic Object

1-7

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services/

Figure 1-3 The Operator and the TimesTen agent

Checkpoint and
Transaction Log Files

TimesTen IMDB

Standby

Checkpoint and
Transaction Log Files

TimesTen IMDB

Active

TimesTen Agent TimesTen Agent

TimesTen Operator

The TimesTen agent starts TimesTen and thus runs as the instance administrator user.
It has full control over TimesTen.

Simple Deployment
The TimesTen Operator is designed for simple deployment of your active standby pairs
of TimesTen Classic databases and for automated failure detection and recovery. For
example,

• You decide you want to deploy a new replicated pair of TimesTen databases.

• You decide the attributes of those databases.

• You create the configuration files for those attributes.

• You use the kubectl create command to create a TimesTenClassic object to
represent the replicated pair.

• You use the kubectl get and kubectl describe commands to observe the
provisioning of the active standby pair.

• Applications that run in other Pods use TimesTen's standard client/server drivers
to access TimesTen databases.

You do not have to monitor the TimesTen databases continually, configure replication,
perform failover, or re-duplicate a database after failure. The TimesTen Operator
performs all these functions and works to keep the databases up and running with
minimal effort on your part.

About Deploying a TimesTen Scaleout Grid and Database
When you create a TimesTenScaleout object in the Kubernetes cluster, the process to
create and configure the TimesTen Scaleout grid and its associated database begins.
Kubernetes informs the TimesTen Operator that a TimesTenScaleout object has been

Chapter 1
About Deploying a TimesTen Scaleout Grid and Database

1-8

created. The Operator begins the process of creating several Kubernetes objects that are
required to deploy the grid.

Topics:

• StatefulSets

• Services

• Secret

• Persistent Volume Claims and Pods

• Password-less ssh

• Quick Rollout

StatefulSets
The TimesTen Operator creates the following StatefulSets:

• One StatefulSet that provides the management instance for the grid. The underlying Pod
for this management instance is also created.

• One StatefulSet that provides one or more ZooKeeper instances. There is one
StatefulSet replica for each Zookeeper instance. For example, if there are three
ZooKeeper instances, there is one StatefulSet and this one StatefulSet has three
replicas.

• One or more additional StatefulSets, the number of which is determined by your K-Safety
(k) value. For example, a k value of 2 means that there are two copies of your TimesTen
database. One copy of your database resides in data space one, and the second copy in
data space two. In the Kubernetes environment, the TimesTen Operator creates k
StatefulSets. Using the previous example, if k is set to 2, the Operator creates two
StatefulSets. Each of the k StatefulSets provides Pods to implement a single data space
in the resultant grid.

The number of replicas for each StatefulSet is determined by the number of replica sets
you want in your grid. A replica set contains k elements, where each element in the
replica set is an exact copy of the other elements in the replica set. For example, if you
want three replica sets in your grid, each StatefulSet has three replicas. Each replica
contains a Pod for one data instance. Therefore, in this example, one StatefulSet has
three Pods each of which contain one data instance. The second StatefulSet (assuming
k=2) also has three replicas and each replica also contains a Pod for one data instance.
Therefore, the second StatefulSet has three Pods each of which contain one data
instance.

In summary, in a case where k is set to 2 and the number of replica sets is 3, the
Operator creates two StatefulSets, each with three replicas. Each StatefulSet provides
the Pods to implement a single data space. There are a total of six Pods created for the
six data instances.

Services
The TimesTen Operator creates the following headless Services:

• One headless Service that provides DNS names for the Pods that contain the
management and data instances. This Service enables client/server access to the Pods
using the TimesTen client/server port 6625.

Chapter 1
About Deploying a TimesTen Scaleout Grid and Database

1-9

• One headless Service that provides DNS names for the Pods that contain the
ZooKeeper instances. This Service enables access to the Zookeeper internal ports
2888 and 3888, as well as the external port 2181.

Secret
The TimesTen Operator creates a Secret to inject an SSL certificate into the TimesTen
containers. This secures the communication between the TimesTen Operator and the
TimesTen Agent.

Persistent Volume Claims and Pods
The TimesTen Operator creates Persistent Volume Claims (PVCs) for the TimesTen
and ZooKeeper Pods. These PVCs cause persistent volumes to be allocated by
Kubernetes and attached to the TimesTen and ZooKeeper Pods. See Persistent
Storage.

Each Pod that runs a ZooKeeper instance consists of a single container called
zookeeper.

Each Pod that runs TimesTen consists of at least two containers:

• tt container: Runs the TimesTen Agent and TimesTen.

• daemonlog container: Writes the TimesTen daemonlog to stdout. This enables the
daemon log of the TimesTen instances to be recorded by the Kubernetes
infrastructure.

As the tt containers in the TimesTen Pods start, the Operator assembles them into a
working grid.

Password-less ssh
A TimesTen Scaleout grid relies on password-less ssh among the instances of the
grid. The TimesTen Operator automatically configures password-less ssh among the
tt containers in the grid in your Kubernetes environment. There is no intervention that
you need to do.

Quick Rollout
The TimesTen Kubernetes Operator provides the functionality for deploying TimesTen
Scaleout grids and their associated databases. The TimesTen Operator rolls out the
grid quickly and proficiently.

The Operator creates the StatefulSets and Services that are required to deploy the
grid. It creates the ZooKeeper Pods. When the TimesTen Agent in the management
Pod starts up, the Operator instructs the agent to create a TimesTen instance and grid.
The Operator waits for all of the TimesTen agents in all of the Pods to start. Once all of
the agents have started, the Operator instructs the agent in the management instance
to create the hosts, the installations, and the instances in the grid's model for the data
instances in the grid. The DbDef is created as are any direct and client/server
connectables. The model is applied and the data instances of the grid are created.

Chapter 1
About Deploying a TimesTen Scaleout Grid and Database

1-10

The Operator instructs the management instance to create the database and to create the
initial distribution map. The Operator then instructs the TimesTen agent in one data instance
to run the TimesTen ttIsql utility to create initial database users and objects.

The grid and databases are created. The TimesTen agent opens the database for
connections.

The grid rollout is quick and proficient with little or no intervention from you. Once the grid is
rolled out, the TimesTen Operator does not manage the grid or database or perform
maintenance operations.

Here is additional information:

• For information about TimesTen Scaleout: See Overview of TimesTen Scaleout in the
Oracle TimesTen In-Memory Database Scaleout User's Guide.

• For information about deploying a TimesTen Scaleout grid and database in Kubernetes:
See Deploy TimesTen Scaleout Databases in this book.

Chapter 1
About Deploying a TimesTen Scaleout Grid and Database

1-11

2
Set Up the Environment

This chapter describes the process for setting up the TimesTen Kubernetes Operator
(TimesTen Operator).

Topics:

• Prerequisites

• About TimesTen Container Images

• Option 1: Use the Official TimesTen Container Images

• Option 2: Build the TimesTen Container Image

• About Deploying the TimesTen Operator

• Create the Service Account and the TimesTen Custom Resource Definitions (CRDs)

• About Readiness and Liveness Probes

• Customize the TimesTen Operator

• Verify the TimesTen Operator is Running

Prerequisites
Review and complete the following prerequisites:

• Ensure you have a working Kubernetes cluster.

– Your cluster must provide a StorageClass that can be used to request Persistent
Volumes. You must know the name of this storage class. For example, in OKE, you
can use the oci-bv storage class. For more information on Storage Classes, see:

https://kubernetes.io/docs/concepts/storage/storage-classes/
– The nodes in your cluster must have their clocks synchronized through NTP, or

equivalent.

• Ensure you have a development host to access the Kubernetes cluster. This
development host must reside outside the Kubernetes cluster, and you must be able to
access and to control the Kubernetes cluster from this host. On it, you must install:

– The kubectl command line tool: You use the kubectl command line tool to control
and mange the Kubernetes cluster.

– The docker command line tool: You use the docker command line tool when working
with the TimesTen container image. For example, you use the docker command line
tool to build the TimesTen container image and to push it to your container registry.

Note:

For a list of supported Kubernetes releases, see the Oracle TimesTen In-Memory
Database Release Notes.

2-1

https://kubernetes.io/docs/concepts/storage/storage-classes/

About TimesTen Container Images
In order to use and deploy the TimesTen Operator and TimesTenClassic and
TimesTenScaleout objects in your Kubernetes cluster, a TimesTen container image is
required. This container image contains TimesTen and its prerequisites. The image
has everything that is needed to run the TimesTen Operator and to run TimesTen
containers in the TimesTen Pods created by this TimesTen Operator.

A TimesTen container image uses the Oracle Linux base image. Oracle Java is
installed into the TimesTen image using JDK script friendly URLs and Dockerfile
techniques.

You have two options for obtaining and then using the TimesTen container image. It is
your choice as to which option to use. The options are as follows:

• Option 1: Use a TimesTen container image located on the Oracle Container
Registry at https://container-registry.oracle.com. Before using this image, you must
accept the Oracle Standard Terms and Restrictions for the image. See Option 1:
Use the Official TimesTen Container Images.

• Option 2: Build the TimesTen container image: The TimesTen distribution contains
the TimesTen Operator distribution. The TimesTen Operator distribution provides a
Dockerfile that lets you build a TimesTen container image. See Option 2: Build the
TimesTen Container Image.

Option 1: Use the Official TimesTen Container Images
This option uses an official TimesTen container image on the Oracle Container
Registry located at https://container-registry.oracle.com. There are two TimesTen
repositories located on the Oracle Container Registry called timesten and timesten-
xe. The timesten repository contains official container images for Oracle TimesTen In-
Memory Database. The timesten-xe repository contains official container images for
Oracle TimesTen In-Memory Database Express Edition (TimesTen XE) TimesTen XE.

To view the list of TimesTen container images in these repositories, navigate to the
Oracle Container Registry at https://container-registry.oracle.com. In the Search
Oracle Container Registry field, enter timesten. Next press Enter. You can then
choose either the timesten or the timesten-xe repository. The examples in this
chapter and throughout the book use the timesten repository for the TimesTen
container images.

The predefined values in this image are as follows. You cannot change these values:

• timesten: The name of the Linux user and the Linux group that is created in the
container image. The Linux user is the user who runs TimesTen. The Linux group
is the TimesTen users group.

• 3429: The numeric UID and GID of the timesten user and the TimesTen users
group.

Let's walk through the tasks to obtain and use a TimesTen container image located in
the timesten repository on Oracle Container Registry.

• Accept the Oracle TimesTen License Agreement

• Obtain the TimesTen Operator Manifest Files from the Official TimesTen Image

Chapter 2
About TimesTen Container Images

2-2

https://container-registry.oracle.com
https://container-registry.oracle.com
https://container-registry.oracle.com
https://container-registry.oracle.com

Accept the Oracle TimesTen License Agreement
You need to complete the steps in this section one time. If you have previously accepted the
Oracle TimesTen license agreement and created your Kubernetes Secret, proceed to Obtain
the TimesTen Operator Manifest Files from the Official TimesTen Image.

The official TimesTen container images are located on the Oracle Container Registry at
https://container-registry.oracle.com/. To use a licensed Oracle software image such as
TimesTen, you must log into the Oracle Container Registry web interface and accept the
Oracle Standard Terms and Restrictions for the image. After you complete the following
steps, you can reference the official TimesTen container image in your YAML manifest files.

Note:

There are a list of TimesTen images available in the container-
registry.oracle.com/timesten repository. Choose the image you want to use.
The examples in this book use various images. An example of a TimesTen
container image is container-registry.oracle.com/timesten/
timesten:22.1.1.19.0.

1. In a web browser, using your Oracle Account, log into the Oracle Container Registry
located at https://container-registry.oracle.com/.

2. On the Oracle Container Registry page, in the Browse Containers section, click
TimesTen.

3. On the TimesTen Repositories page, in the Repository column, choose timesten.

4. On the Official container images for the Oracle TimesTen In-Memory Database
page, to the right of the Quick Reference Description, locate the Select Language
drop down list. In the Select Language drop down list, choose your language. Then,
review the text before the Continue button and click Continue.

The text that is displayed before the Continue button is similar to the following: "You
must agree to and accept the Oracle Standard Terms and Restrictions prior to
downloading from the Oracle Container Registry. Please read the license agreement on
the following page carefully."

5. On the Oracle Standard Terms and Restrictions page, review the information on the
page, then at the bottom of the page, click Accept.

The Official container images for the Oracle TimesTen In-Memory Database page
displays for a second time. To the right of the Quick Reference Description, look for a
green check mark with text similar to the following: "You last accepted the Oracle
Standard Terms and Restrictions on 01/08/2023 at 01:28 PM Coordinated Universal Time
(UTC)."

6. On your development host, use the docker login command to authenticate against the
Oracle Container Registry, using the same Oracle Account you used to log into the
Oracle Container Registry web interface.

docker login container-registry.oracle.com

You are prompted to enter your Oracle Account and password.

Chapter 2
Option 1: Use the Official TimesTen Container Images

2-3

https://container-registry.oracle.com/
https://container-registry.oracle.com/

The text is similar to the following:

Username (oracleuser@oracle.com):
Password:
WARNING! Your password will be stored unencrypted in /home/
oracleuser/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/
#credentials-store

Login Succeeded

7. Create the image pull secret for container-registry.oracle.com.

kubectl create secret generic sekret \
--from-file=.dockerconfigjson=$HOME/.docker/config.json \
--type=kubernetes.io/dockerconfigjson

Save the name of the image pull secret. You need it later when deploying your
TimesTenClassic or TimesTenScaleout objects. See Define and Create a
TimesTenClassic Object and Define and Deploy a TimesTenScaleout Object.

For more information about creating a Kubernetes Secret, see Pulling Images from
Registry during Deployment.

You have successfully logged into the Oracle Container Registry and accepted the
Oracle Standard Terms and Conditions for the official TimesTen container image. You
can now reference the TimesTen container image in your YAML manifest files.
Proceed to Obtain the TimesTen Operator Manifest Files from the Official TimesTen
Image.

Obtain the TimesTen Operator Manifest Files from the Official
TimesTen Image

The TimesTen Operator manifest files are included within the official TimesTen
container image. In this example, the official TimesTen container image is located in
the timesten repository on the Oracle Container Registry.

For information about how to navigate to the official TimesTen container images
location, see Option 1: Use the Official TimesTen Container Images.

The examples in this section use the container-registry.oracle.com/timesten/
timesten:22.1.1.19.0 image.

Let's walk through the steps to obtain the TimesTen Operator manifest files located
within the container-registry.oracle.com/timesten/timesten:22.1.1.19.0
container image.

Chapter 2
Option 1: Use the Official TimesTen Container Images

2-4

https://container-registry.oracle.com

1. On your development host, from the directory of your choice, create the subdirectories for
the TimesTen Operator files. This example creates the kube_files and kube_files/
deploy directories.

mkdir -p kube_files
cd kube_files
mkdir -p deploy

2. Create a new container from the container-registry.oracle.com/timesten/
timesten:22.1.1.19.0 image, supplying a name for the new container. In this example,
the name of the container is ttoper.

docker create --name ttoper container-registry.oracle.com/timesten/
timesten:22.1.1.19.0

The output is similar to the following.

Unable to find image 'container-registry.oracle.com/timesten/
timesten:22.1.1.19.0' locally
Trying to pull repository container-registry.oracle.com/timesten/
timesten:22.1.1.19.0 ...
20221215: Pulling from container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
...
Digest:
sha256:bb58e32d2e08a66c55fb09afd8958feb91300134fc7a019bcb39a241f48fd995
Status: Downloaded newer image for container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
d03a6e534e8bcce435b86795e8b3082487e5f18af64a522ebfbabff3baec321a

3. Copy the TimesTen Operator files from the ttoper container to the recently created
kube_files/deploy. In addition, copy the helm directory from the ttoper container.

docker cp ttoper:/timesten/operator/deploy/crd.yaml deploy/crd.yaml
docker cp ttoper:/timesten/operator/deploy/operator.yaml deploy/
operator.yaml
docker cp ttoper:/timesten/operator/deploy/service_account.yaml deploy/
service_account.yaml
docker cp ttoper:/timesten/operator/helm .

The crd.yaml, operator.yaml, and service_account.yaml files are copied to the
kube_files/deploy directory. The helm directory and its contents are copied to the
kube_files directory. These files are discussed later.

4. Remove the ttoper container.

docker rm ttoper

The output is the following.

ttoper

Chapter 2
Option 1: Use the Official TimesTen Container Images

2-5

5. Remove the TimesTen container image.

docker image rm container-registry.oracle.com/timesten/
timesten:22.1.1.19.0

The output is similar to the following.

Untagged: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
...

You successfully obtained the TimesTen Operator manifest files. Proceed to About
Deploying the TimesTen Operator to deploy the TimesTen Operator.

Option 2: Build the TimesTen Container Image
The following example assumes you want to build a TimesTen container image from a
TimesTen distribution. If instead you want to use an official TimesTen container image
located on Oracle Container Registry, see Option 1: Use the Official TimesTen
Container Images.

The base image used in this Dockerfile is container-registry.oracle.com/os/
oraclelinux:8. The Dockerfile supports a number of ARGs that let you override
various attributes of the TimesTen container image. For example, you can specify a
custom TimesTen user and TimesTen users group to run TimesTen instead of using
the default timesten user and the default timesten group. You can also specify which
TimesTen release to embed in the TimesTen container image. For the supported
Dockerfile ARGs, see Dockerfile ARGs.

To build the TimesTen container image, complete these steps::

• Unpack the TimesTen and the TimesTen Operator Distributions

• Copy the TimesTen Distribution

• Choose How to Build

Unpack the TimesTen and the TimesTen Operator Distributions
To unpack the TimesTen distribution and the TimesTen Operator distribution, complete
the following steps:

1. On your development host, from the directory of your choice:

• Create one subdirectory for the TimesTen distribution. This example creates
the installation_dir subdirectory.

• Create a second subdirectory for the TimesTen Operator distribution. This
example creates the kube_files subdirectory.

mkdir -p installation_dir
mkdir -p kube_files

Chapter 2
Option 2: Build the TimesTen Container Image

2-6

https://container-registry.oracle.com

2. Change to the TimesTen distribution subdirectory.

cd installation_dir

3. Copy the TimesTen distribution that you previously downloaded into this TimesTen
distribution directory.

cp download_location/timesten2211190.server.linux8664.zip .

4. Unpack the TimesTen distribution.

unzip timesten2211190.server.linux8664.zip

The output is similar to the following:

Archive: timesten2211190.server.linux8664.zip
 creating: tt22.1.1.19.0/
 ...
 creating: tt22.1.1.19.0/kubernetes/
 extracting: tt22.1.1.19.0/kubernetes/operator.zip
 ...

The TimesTen Operator distribution is installation_dir/tt22.1.1.19.0/kubernetes/
operator.zip.

Do not delete the TimesTen distribution (installation_dir/tt22.1.1.19.0, in this
example). You need it later.

5. Change to the TimesTen Operator subdirectory you created in a previous step. (In this
example, kube_files.)

cd kube_files

6. Unpack the TimesTen Operator distribution.

unzip installation_dir/tt22.1.1.19.0/kubernetes/operator.zip

The output is similar to the following:

Archive: installation_dir/tt22.1.1.19.0/kubernetes/operator.zip
 creating: operator/
 ...
 creating: deploy/
 inflating: deploy/service_account.yaml
 inflating: deploy/crd.yaml
 inflating: deploy/operator.yaml
 inflating: README.md
 creating: helm/
 creating: helm/ttcrd/
 inflating: helm/ttcrd/Chart.yaml
 creating: helm/ttcrd/templates/
 inflating: helm/ttcrd/templates/NOTES.txt
 inflating: helm/ttcrd/templates/crd.yaml

Chapter 2
Option 2: Build the TimesTen Container Image

2-7

 inflating: helm/ttcrd/templates/_helpers.tpl
 inflating: helm/ttcrd/.helmignore
 creating: helm/ttclassic/
 inflating: helm/ttclassic/Chart.yaml
 inflating: helm/ttclassic/values.yaml
 creating: helm/ttclassic/templates/
 inflating: helm/ttclassic/templates/dbconfigmap.yaml
 inflating: helm/ttclassic/templates/pdb.yaml
 inflating: helm/ttclassic/templates/NOTES.txt
 inflating: helm/ttclassic/templates/classic.yaml
 inflating: helm/ttclassic/templates/dbsecret.yaml
 inflating: helm/ttclassic/templates/customservice.yaml
 creating: helm/ttclassic/templates/tests/
 inflating: helm/ttclassic/templates/tests/verify.yaml
 inflating: helm/ttclassic/templates/_helpers.tpl
 inflating: helm/ttclassic/.helmignore
 creating: helm/ttoperator/
 inflating: helm/ttoperator/Chart.yaml
 inflating: helm/ttoperator/values.yaml
 creating: helm/ttoperator/templates/
 inflating: helm/ttoperator/templates/pdb.yaml
 inflating: helm/ttoperator/templates/service_account.yaml
 inflating: helm/ttoperator/templates/NOTES.txt
 inflating: helm/ttoperator/templates/operator.yaml
 creating: helm/ttoperator/templates/tests/
 inflating: helm/ttoperator/templates/tests/verify.yaml
 inflating: helm/ttoperator/templates/_helpers.tpl
 inflating: helm/ttoperator/.helmignore
 creating: image/
 inflating: image/Dockerfile
...

The TimesTen Operator distribution format includes the following directories:

• helm: Contains the directories and files needed to deploy the TimesTen
Custom Resource Definitions (CRDs), the TimesTen Operator, and
TimesTenClassic objects using Helm charts. For more information, see Use
Helm to Deploy the TimesTen Kubernetes Operator and TimesTenClassic
Objects.

• deploy: Contains the YAML manifest files that are used to create the required
Kubernetes service account, role, and rolebinding objects and the TimesTen
CRDs. The deploy directory also contains the YAML manifest file that you use
to deploy the TimesTen Operator in the Kubernetes cluster. These files are
discussed in Create the Service Account and the TimesTen Custom Resource
Definitions (CRDs) and Customize the TimesTen Operator.

• operator: Contains the timesten-operator TimesTen Operator binary as well
as the TimesTen Agent and the support files the TimesTen Agent uses at
runtime. You do not need to use or make any modifications to the files in this
directory.

• image: Contains the Dockerfile file that is used to create the TimesTen
container image. If you are building the TimesTen container image, you use
this Dockerfile.

Chapter 2
Option 2: Build the TimesTen Container Image

2-8

Make a note of these directories. You need to work with files in the deploy and the image
directories later in this chapter. If you are using Helm and Helm charts, you need to work
with the directories and files in the helm directory in Use Helm to Deploy the TimesTen
Kubernetes Operator and TimesTenClassic Objects.

You successfully unpacked the TimesTen and TimesTen Operator distributions.

Copy the TimesTen Distribution
The files that you need to build the TimesTen container image are provided in the unzipped
TimesTen Operator distribution. In this example, the directory that contains the unzipped
TimesTen Operator distribution is kube_files. See Unpack the TimesTen and the TimesTen
Operator Distributions.

To build the TimesTen container image, complete the following steps:

1. On your development host, change to the image directory of the unzipped TimesTen
Operator distribution (kube_files/image, in this example).

cd kube_files/image

2. Copy the TimesTen distribution into the directory. In a previous example, you created the
installation_dir directory. This directory contains the TimesTen distribution.

cp installation_dir/timesten2211190.server.linux8664.zip .

For information on installation_dir, see Unpack the TimesTen and the TimesTen
Operator Distributions.

3. Create the image pull secret for container-registry.oracle.com.

kubectl create secret generic sekret \
--from-file=.dockerconfigjson=$HOME/.docker/config.json \
--type=kubernetes.io/dockerconfigjson

Save the name of the image pull secret. You need it later when deploying your
TimesTenClassic or TimesTenScaleout objects. See Define and Create a
TimesTenClassic Object and Define and Deploy a TimesTenScaleout Object.

For more information about creating a Kubernetes Secret, see Pulling Images from
Registry during Deployment.

You successfully copied the TimesTen distribution to the kube_files/image directory and
created the image pull secret.

Choose How to Build
You can choose to build the TimesTen image with the defaults specified in Dockerfile ARGs
or you can choose to customize the TimesTen container image by overriding the defaults
specified in Dockerfile ARGs.

Choose one of the following options:

• Option 2a: Build with Defaults

• Option 2b: Build with Customizations

Chapter 2
Option 2: Build the TimesTen Container Image

2-9

Option 2a: Build with Defaults
The following example assumes you want to build the TimesTen container image with
the defaults specified in Dockerfile ARGs.

1. On your development host, change to the kube_files/image directory (if not
already in this directory).

2. Use the docker build command to build the TimesTen image. You must specify
the following Dockerfile ARGs on the command line:

• TT_DISTRO: The name of the file containing the TimesTen distribution
(timesten2211190.server.linux8664.zip, in this example).

• TT_RELEASE: The name of the TimesTen release in dotted format
(22.1.1.19.0, in this example).

docker build -t tt2211190image:1 \
--build-arg TT_DISTRO=timesten2211190.server.linux8664.zip \
--build-arg TT_RELEASE=22.1.1.19.0 .

The output is similar to the following:

Sending build context to Docker daemon 461.6MB
Step 1/35 : ARG TT_BASE=container-registry.oracle.com/os/
oraclelinux:8
Step 2/35 : ARG UNZIP_BASE=container-registry.oracle.com/os/
oraclelinux:8
Step 3/35 : FROM $UNZIP_BASE as unzipper
...
Successfully built a0d9e74ad31f
Successfully tagged tt2211190image:1

3. Tag the TimesTen container image. Replace the following:

• tt2211190image:1 with the name you chose in the previous step.

• phx.ocir.io/youraccount with the location of your image registry.

docker tag tt2211190image:1 phx.ocir.io/youraccount/tt2211190image:1

4. Push the TimesTen container image to your registry. Replace the following:

• phx.ocir.io/youraccount with the location of your image registry.

• tt2211190image:1 with the name you chose previously.

docker push phx.ocir.io/youraccount/tt2211190image:1

The output is similar to the following:

The push refers to repository [phx.ocir.io/youraccount/
tt2211190image]
5f494d8654f2: Pushed
cf1cdb416e24: Pushed

Chapter 2
Option 2: Build the TimesTen Container Image

2-10

511cc991c8e6: Pushed
a9abe4002691: Pushed
8894990e5ffe: Pushed
c94f317a0997: Pushed
7774e1cbdcf4: Pushed
d8c569c85182: Pushed
1: digest:
sha256:8d280bd65059f089a9ca0f2131c9f2928f71f79b0708ed6920fd4df1ea7cfd68
size: 2007

Note:

To reduce the size of the final TimesTen container image, the Dockerfile uses a
multi-stage build. This results in a dangling image left behind. To locate dangling
images, use the docker command with the -f filter flag with a value of
dangling=true. Once you locate the dangling image, you can use the docker image
prune command to remove it. For example,

docker images -f dangling=true
docker image prune

You successfully built the TimesTen container image. It is pushed to your image registry.
Proceed to About Deploying the TimesTen Operator to deploy the TimesTen Operator.

Option 2b: Build with Customizations
The following example assumes you want to customize the TimesTen container image by
overriding the defaults specified in Dockerfile ARGs. If you instead want to use these
defaults, see Option 2a: Build with Defaults.

This example creates a custom TimesTen user and a custom TimesTen users group to run
TimesTen in the TimesTen containers.

1. On your development host, change to the kube_files/image directory (if not already in
this directory).

2. Use the docker build command to build the TimesTen image. To customize the image
with a custom user and a custom TimesTen users group, specify the following Dockerfile
ARGs on the command line:

• TT_USER: The name of the Linux operating system user created in the container
image. This is the user that runs TimesTen. In this example, the name of the user is
customuser.

• TT_UID: The numeric UID of $TT_USER. In this example, the UID is 9876.

• TT_GROUP: The name of the Linux group created in the container image. This is the
name of the TimesTen users group. In this example, the name of the group is
customgroup.

• TT_GID: The numeric GID of $TT_GROUP. In this example, the GID is 9876.

In addition, specify these required Dockerfile ARGs:

Chapter 2
Option 2: Build the TimesTen Container Image

2-11

• TT_DISTRO: The name of the file containing the TimesTen distribution
(timesten2211210.server.linux8664.zip, in this example).

• TT_RELEASE: The name of the TimesTen release in dotted format
(22.1.1.21.0, in this example).

docker build -t tt2211190customimage:1 \
--build-arg TT_USER=customuser --build-arg TT_UID=9876 \
--build-arg TT_GROUP=customgroup --build-arg TT_GID=9876 \
--build-arg TT_DISTRO=timesten2211190.server.linux8664.zip \
--build-arg TT_RELEASE=22.1.1.19.0 .

The output is similar to the following:

Sending build context to Docker daemon 461.6MB
Step 1/35 : ARG TT_BASE=container-registry.oracle.com/os/
oraclelinux:8
Step 2/35 : ARG UNZIP_BASE=container-registry.oracle.com/os/
oraclelinux:8
Step 3/35 : FROM $UNZIP_BASE as unzipper
...
Successfully built 49101e32b5d5
Successfully tagged tt2211190customimage:1

3. Tag the TimesTen container image. Replace the following:

• tt2211190customimage:1 with the name you chose in the previous step.

• phx.ocir.io/youraccount with the location of your image registry.

docker tag tt2211190customimage:1 phx.ocir.io/youraccount/
tt2211190customimage:1

4. Push the TimesTen container image to your registry. Replace the following:

• phx.ocir.io/youraccount with the location of your image registry.

• tt2211190customimage:1 with the name you chose previously.

docker push phx.ocir.io/youraccount/tt2211190customimage:1

The output is similar to the following:

The push refers to repository [phx.ocir.io/youraccount/
tt2211190customimage]
3b5c7ba355aa: Pushed
30047b487811: Pushed
aa10ef33fac5: Pushed
7290609fca00: Pushed
676cb8be497d: Pushed
57a50dacb378: Pushed
d59ca9ca76e7: Pushed
d8c569c85182: Layer already exists
1: digest:

Chapter 2
Option 2: Build the TimesTen Container Image

2-12

sha256:616cbbb94f1a8b003a45865b51d401bc5f2b48d4f99bbe7584bcbb6304d6b75b
size: 2007

Note:

To reduce the size of the final TimesTen container image, the Dockerfile uses a
multi-stage build. This results in a dangling image left behind. To locate dangling
images, use the docker command with the -f filter flag with a value of
dangling=true. Once you locate the dangling image, you can use the docker image
prune command to remove it. For example,

docker images -f dangling=true
docker image prune

You successfully built the TimesTen container image. It is pushed to your image registry.
Proceed to About Deploying the TimesTen Operator to deploy the TimesTen Operator.

About Deploying the TimesTen Operator
The TimesTen Operator manages and monitors TimesTenClassic and TimesTenScaleout
objects that are deployed in your namespace. You deploy the TimesTen Operator in your
namespace as a Kubernetes Deployment. Before deploying the TimesTen Operator, review
the Expose Metrics from the TimesTen Kubernetes Operator chapter. This chapter discusses
how the TimesTen Operator, by default, automatically exposes metrics about its own
functionality as well as the status of TimesTenClassic and TimesTenScaleout objects to
Prometheus or any other scraping mechanism. You have several options when considering if
and how TimesTen Operator metrics are exposed. Although we recommend accepting the
default behavior, you can decide which option works best for your environment.

The TimesTen Operator provides liveness and readiness probes that allow Kubernetes to
determine the health of the TimesTen Operator. There are default values for the attributes of
these probes. See About Readiness and Liveness Probes.

You have two options when deploying the TimesTen Operator:

• Use the procedures in the upcoming sections in this chapter: These procedures show
you how to deploy the TimesTen Operator by using the kubectl command.

• Use TimesTen Helm charts: The TimesTen Operator provides Helm charts specific to
TimesTen. These charts give you the ability to deploy the TimesTen Operator and
TimesTenClassic objects using Helm. If you choose this option, proceed to Use Helm to
Deploy the TimesTen Kubernetes Operator and TimesTenClassic Objects. This chapter
provides all the information you need to use TimesTen Helm charts.

The following sections should you how to deploy the TimesTen Operator using the kubectl
command.

• Create the Service Account and the TimesTen Custom Resource Definitions (CRDs)

• About Readiness and Liveness Probes

• Customize the TimesTen Operator

• Verify the TimesTen Operator is Running

Chapter 2
About Deploying the TimesTen Operator

2-13

Create the Service Account and the TimesTen Custom
Resource Definitions (CRDs)

The TimesTen Operator requires a Kubernetes service account in order to run
properly. This service account requires permissions and privileges in your namespace.
These permissions and privileges are granted through a role. The role is assigned to
the service account through a role binding.

In addition, the TimesTen Operator provides TimesTen CRDs. These CRDs define the
TimesTenClassic and the TimesTenScaleout object types to the Kubernetes cluster.

When you unpacked the TimesTen Operator distribution, one of the directories that
was created was the /deploy directory. This directory contains the following YAML
manifest files:

• service_account.yaml: Defines the role, the role binding, and the service account
for the Operator.

• crd.yaml: Defines the TimesTenClassic and the TimesTenScaleout object types.

The following example creates the TimesTen Operator's service account and the
TimesTen CRDs to the Kubernetes cluster:

1. On your development host, change to the kube_files/deploy directory.

cd kube_files/deploy

2. Create the service account.

kubectl create -f service_account.yaml

The output is the following:

role.rbac.authorization.k8s.io/timesten-operator created
serviceaccount/timesten-operator created
rolebinding.rbac.authorization.k8s.io/timesten-operator created

3. Create the TimesTen CRDs.

kubectl create -f crd.yaml

The output is the following:

customresourcedefinition.apiextensions.k8s.io/
timestenclassics.timesten.oracle.com created
timestenscaleouts.timesten.oracle.com created

You successfully created the TimesTen Operator's service account and TimesTen
CRDs.

Chapter 2
Create the Service Account and the TimesTen Custom Resource Definitions (CRDs)

2-14

About Readiness and Liveness Probes
The TimesTen Operator provides readiness and liveness probes so that Kubernetes can
determine the health of the TimesTen Operator.

The readiness and liveness probes are defined in the operator.yaml YAML manifest file.

Here is a snippet of the operator.yaml file, showing the readiness and liveness probes:

Copyright (c) 2019 - 2023, Oracle and/or its affiliates.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: timesten-operator
spec:
...
 ports:
 - name: probes
 containerPort: 8081
 protocol: TCP
 ...
 readinessProbe:
 httpGet:
 scheme: HTTP
 path: /healthz
 port: probes
 initialDelaySeconds: 10
 periodSeconds: 10
 timeoutSeconds: 10
 successThreshold: 1
 failureThreshold: 1
 livenessProbe:
 httpGet:
 scheme: HTTP
 path: /healthz
 port: probes
 initialDelaySeconds: 10
 periodSeconds: 30
 timeoutSeconds: 10
 successThreshold: 1
 failureThreshold: 3
 env:
 ...
 - name: EXPOSE_PROBES
 value: "1"
 ...

The TimesTen Operator exposes these probes to applications in the Kubernetes cluster by
creating the timesten-operator Kubernetes Service.

Although we do not recommend it, you can choose to not expose these probes by setting the
TimesTen Operator EXPOSE_PROBES environment variable to "0".

Chapter 2
About Readiness and Liveness Probes

2-15

Note:

If you do set EXPOSE_PROBES to "0", helm test will not work properly. For
information about using Helm to test the TimesTen Operator deployment, see
Test the TimesTen Operator.

For information about the TimesTen Operator environment variables, see TimesTen
Kubernetes Operator Environment Variables.

The operator.yaml file that is provided by the TimesTen Operator is discussed in the
upcoming Customize the TimesTen Operator section. This section shows you how to
customize the TimesTen Operator and shows you the liveness and readiness probes
entries in the operator.yaml file.

Customize the TimesTen Operator
You can customize the TimesTen Operator by specifying the number of replicas
(copies) of the TimesTen Operator that you want running in your Kubernetes cluster.
You also must provide the image pull secret, and the location and name of the
TimesTen container image for the TimesTen Operator.

1. On your development host, change to the kube_files/deploy directory (if not
already in this directory).

cd kube_files/deploy

2. Use a text editor to modify the operator.yaml file, making changes to these fields:

• replicas: 1
Replace 1 with the number of copies of the TimesTen Operator. A value of 1 is
acceptable for development and testing. However, you can specify more than
one replica for high availability purposes.

Note:

TimesTen Operator metrics are accurate when you have one
TimesTen Operator defined in your TimesTen Operator Deployment.
For more information about exposing TimesTen Operator metrics,
see Expose Metrics from the TimesTen Kubernetes Operator.

• Replace sekret with the name of the image pull secret that Kubernetes uses
to pull images from your registry.

For the TimesTen container image:

• Replace container-registry.oracle.com/timesten with the location of your
image registry. You determined this location in a previous step. See About
TimesTen Container Images. This example uses container-
registry.oracle.com/timesten.

Chapter 2
Customize the TimesTen Operator

2-16

• Replace timesten:22.1.1.19.0 with the name of the TimesTen container image. You
determined this name in a previous step. See About TimesTen Container Images.
This example uses timesten:22.1.1.19.0.

vi operator.yaml

Copyright (c) 2019 - 2023, Oracle and/or its affiliates.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: timesten-operator
spec:
 replicas: 1
 selector:
 matchLabels:
 name: timesten-operator
 template:
 metadata:
 labels:
 name: timesten-operator
 spec:
 serviceAccountName: timesten-operator
 imagePullSecrets:
 - name: sekret
 containers:
 - name: timesten-operator
 image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 command:
 - /timesten/operator/operator/timesten-operator
 ports:
 - name: probes
 containerPort: 8081
 protocol: TCP
 - name: metrics
 containerPort: 8080
 protocol: TCP
 readinessProbe:
 httpGet:
 scheme: HTTP
 path: /healthz
 port: probes
 initialDelaySeconds: 10
 periodSeconds: 10
 timeoutSeconds: 10
 successThreshold: 1
 failureThreshold: 1
 livenessProbe:
 httpGet:
 scheme: HTTP
 path: /healthz
 port: probes
 initialDelaySeconds: 10
 periodSeconds: 30
 timeoutSeconds: 10

Chapter 2
Customize the TimesTen Operator

2-17

 successThreshold: 1
 failureThreshold: 3
 env:
 - name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: OPERATOR_NAME
 value: "timesten-operator"
 - name: TT_DEBUG
 value: "0"
 - name: EXPOSE_METRICS
 value: "1"
 - name: METRICS_SCHEME
 value: "https"
 - name: EXPOSE_PROBES
 value: "1"
 - name: CREATE_SERVICEMONITOR
 value: "1"
 resources:
 requests:
 cpu: "250m"
 memory: "1G"
 limits:
 cpu: "250m"
 memory: "1G"
 securityContext:
 runAsNonRoot: true
 privileged: false
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - all
...

Let's take a look at some of the fields in this operator.yaml file.

• The name of the TimesTen Operator Deployment is timesten-operator.

• The default value for replicas is 1. The value is not changed in the example.

• The image pull Secret is sekret. The value is not changed in the example.

• The image is container-registry.oracle.com/timesten/
timesten:22.1.1.19.0. This example uses the container-
registry.oracle.com/timesten repository. The name of the offical TimesTen
container image is timesten:22.1.1.19.0 to reflect the 22.1.1.19.0
TimesTen release.

• The TimesTen Operator's readiness and liveness probes are included in the
operator.yaml file. These probes allow Kubernetes to determine the health of
the TimesTen Operator. See About Readiness and Liveness Probes.

Chapter 2
Customize the TimesTen Operator

2-18

• The following TimesTen Operator environment variables are included in the
operator.yaml file.

– EXPOSE_METRICS: A value of "1" indicates that TimesTen Operator metrics are
exposed. This is the default. For more information about TimesTen Operator
metrics, see Expose Metrics from the TimesTen Kubernetes Operator and
TimesTen Kubernetes Operator Environment Variables.

– METRICS_SCHEME: A value of "https" indicates TimesTen Operator metrics are
exposed using https. This is the default. For more information about TimesTen
Operator metrics, see Expose Metrics from the TimesTen Kubernetes Operator
and TimesTen Kubernetes Operator Environment Variables.

– EXPOSE_PROBES: A value of "1" indicates that TimesTen Operator probes are
exposed. This is the default. For more information, see About Readiness and
Liveness Probes and TimesTen Kubernetes Operator Environment Variables.

– CREATE_SERVICEMONITOR: A value of "1" indicates that the TimesTen Operator
creates a SERVICEMONITOR object. This is the default. For more information, see
Expose Metrics from the TimesTen Kubernetes Operator and TimesTen
Kubernetes Operator Environment Variables.

• There are default CPU and memory requests and limits provided in the
operator.yaml file.

Note:

The operator.yaml file can change from release to release.

3. Deploy the TimesTen Operator in the namespace of your Kubernetes cluster.

% kubectl create -f operator.yaml
deployment.apps/timesten-operator created

You successfully deployed the TimesTen Operator. The TimesTen Operator should now be
running.

Verify the TimesTen Operator is Running
Use the kubectl get pods command to verify that the TimesTen Operator is running. If the
STATUS field has a value of Running, the TimesTen Operator is running.

kubectl get pods

The output is similar to the following:

NAME READY STATUS RESTARTS AGE
timesten-operator-5c7558cd75-dfbd7 1/1 Running 0 13s

You successfully verified that the TimesTen Operator is running.

Chapter 2
Verify the TimesTen Operator is Running

2-19

3
Use Configuration Metadata

This chapter gives an overview of the configuration metadata that is supported in the
TimesTen Operator. It also discusses the Kubernetes facilities that you can use to get the
configuration metadata into your TimesTen containers. The chapter then discusses additional
configuration options. There are examples throughout.

Topics:

• Overview of Configuration Metadata and Kubernetes Facilities

• List of Configuration Metadata

• About Configuration Metadata Details

• Populate the /ttconfig Directory

• Additional Configuration Options

Overview of Configuration Metadata and Kubernetes Facilities
Configuration metadata lets you define the attributes of your TimesTen database and how
that database is to interact with other applications and components. The TimesTen Operator
supports several metadata files that contain the configuration metadata. Each metadata file
has a specific name. You use a text editor to create the metadata file with the specific name
and then add the appropriate metadata to it. For example, the TimesTen Operator supports
the db.ini metadata file. You use your editor to create the db.ini file and in it you define
attributes for you database.

There is configuration metadata for the following TimesTen Operator deployments:

• Active standby pair of TimesTen databases in TimesTen Classic

• Active standby pair of TimesTen databases with TimesTen Cache in TimesTen Classic

• TimesTen Scaleout grid and the database within the grid

Kubernetes supports various facilities that places the metadata files into the /ttconfig
directory of the TimesTen containers. See Populate the /ttconfig Directory.

List of Configuration Metadata
Table 3-1 lists the metadata files that are supported by the TimesTen Operator. The table
provides a description for each of the metadata files and indicates if the metadata file is
supported in TimesTen Classic, in TimesTen Scaleout, or in both.

3-1

Table 3-1 TimesTen Operator metadata files

Name Description TimesTen
Classic
support

TimesTen
Scaleout
support

adminUser Defines an initial user in the database and
assigns this user ADMIN privileges.

Optional.

Yes Yes

cachegroups.sql Defines the cache groups in the database.
This file is specific to TimesTen Cache.

Required if using TimesTen Cache.

Yes No

cacheUser Defines the cache administration user in the
database. This file is specific to TimesTen
Cache.

Required if using TimesTen Cache.

Yes No

csWallet Defines the credentials that are used for
Transport Layer Security (TLS) encryption of
client/server communications.

Required if using TLS.

Yes Yes

db.ini Defines the connection attributes of the
database. See List of Connection Attributes
in the Oracle TimesTen In-Memory Database
Reference.

Required if using TimesTen Cache.
Otherwise, optional.

Yes Yes

epilog.sql Performs operations after the replication
scheme is created.

Optional.

Yes No

replicationWallet Defines the credentials that are used for
Transport Layer Security (TLS) encryption of
replication traffic between the TimesTen
databases.

Required if using TLS.

Yes No

schema.sql Defines an initial schema for the database.

Optional.

Yes Yes

sqlnet.ora Defines how client applications communicate
with an Oracle database. This file is specific
to TimesTen Cache.

Optional.

Yes No

testUser Defines a test user in the database. This
user is used for testing TimesTen using
Helm. The user is assigned CONNECT
privileges.

Optional.

Yes No

tnsnames.ora Defines the Oracle Database service that
TimesTen Cache uses to connect to Oracle
Database.

Required if using TimesTen Cache.

Yes No

Chapter 3
List of Configuration Metadata

3-2

Table 3-1 (Cont.) TimesTen Operator metadata files

Name Description TimesTen
Classic
support

TimesTen
Scaleout
support

*.connect Defines one or more direct connectables for
the database in TimesTen Scaleout.

Optional.

No Yes

*.csconnect Defines one or more client/server
connectables for the database in TimesTen
Scaleout.

Optional.

No Yes

About Configuration Metadata Details
Metadata files let you specify the attributes and the metadata for your TimesTen database.
After you create these files, and you choose a facility to get these files in your TimesTen
containers, TimesTen accesses them to determine the attributes and the metadata that is
specific to your database.

adminUser
The adminUser file creates an initial user with ADMIN privileges in the TimesTen database. If
you provide this file, this user is created after the database is created. This file must contain
one line of the form:

user/password

cachegroups.sql
The cachegroups.sql file contains the create cache group definitions and the cache group
operations for your database. You can specify the following cache group definitions and
cache operations in this file:

• (Required): CREATE CACHE GROUP statements to create TimesTen cache groups

• (Optional): LOAD CACHE GROUP statements to load data from the Oracle database into your
cache groups

• (Optional): ttOptUpdateStats or ttOptEstimateStats TimesTen built-in procedures to
update statistics on the cache tables

The cachegroups.sql file is required if you are using TimesTen Cache in your
TimesTenClassic deployment. This requirement ensures cache groups are created before
replication is configured. Note: The instance administrator uses the ttIsql utility to run the
cachegroups.sql file.

See:

• CREATE CACHE GROUP and LOAD CACHE GROUP in the Oracle TimesTen In-
Memory Database SQL Reference

• Cache Group Types in the Oracle TimesTen In-Memory Database Cache Guide

Chapter 3
About Configuration Metadata Details

3-3

• ttOptUpdateStats and ttOptEstimateStats in the Oracle TimesTen In-Memory
Database Reference

Here is an example of a cachegroups.sql file. The file defines two cache groups and
loads data into one cache group.

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (
 pk NUMBER NOT NULL PRIMARY KEY,
 attr VARCHAR2(40)
);

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
 INTERVAL 5 SECONDS
FROM oratt.readtab (
 keyval NUMBER NOT NULL PRIMARY KEY,
 str VARCHAR2(32)
);

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

cacheUser
The cacheUser file lets you create the TimesTen cache manager user. This user must
have the same name as the cache administration user in the Oracle database, and
must already exist in the Oracle database. See Create the Oracle Database Users and
Default Tablespace in the Oracle TimesTen In-Memory Database Cache Guide.

This file must contain one line of the form,

cacheUser/ttPassword/oraPassword

where cacheUser is the TimesTen cache manager user, ttPassword is the TimesTen
password for the TimesTen cacheUser user, and oraPassword is the Oracle database
password you specified when you created the cacheUser user in the Oracle database.

For example, assume you have created the cacheuser2 cache administration user in
the Oracle Database with password oraclepwd. Assume you designate this
cacheuser2 user as the TimesTen cache manager user with a TimesTen password of
ttpwd. In this example, the cacheUser metadata file contains this one line:

cacheuser2/ttpwd/oraclepwd

The TimesTen Operator creates the cacheuser2 user with the ttpwd in the TimesTen
database. This cacheuser2 user then serves as the cache manager user in your
TimesTen database. You do not need to create this TimesTen user. The Operator does
it for you.

See Create the TimesTen Users in the Oracle TimesTen In-Memory Database Cache
Guide.

The Operator grants privileges to the TimesTen cacheUser user (cacheuser2, in this
example) that are appropriate for this user's role as the cache manager. These
privileges are:

• CREATE SESSION
• CACHE MANAGER

Chapter 3
About Configuration Metadata Details

3-4

• CREATE ANY TABLE
• LOAD ANY CACHE GROUP
• REFRESH ANY CACHE GROUP
• FLUSH ANY CACHE GROUP
• DROP ANY CACHE GROUP
• ALTER ANY CACHE GROUP
• UNLOAD ANY CACHE GROUP
• SELECT ANY TABLE
• INSERT ANY TABLE
• UPDATE ANY TABLE
• DELETE ANY TABLE

csWallet
In a TimesTen Client/Server environment, data is transmitted between your client applications
and your TimesTen database unencrypted by default. However, you can configure TLS for
Client/Server to ensure secure network communication between TimesTen clients and
servers. To encrypt Client/Server traffic, specify the /ttconfig/csWallet file. This file
contains the Oracle wallet for the server, which contains the credentials that are used for
configuring TLS encryption between your TimesTen database and your Client/Server
applications. The file will be available in the containers of your TimesTen databases in the
directory /tt/home/timesten/csWallet. You can reference this directory in your db.ini file
(by specifying the wallet connection attribute). See Create TLS Certificates for Replication
and Client/Server and Create TLS Certificates for Replication and Client/Server.

The client wallet must also be available to your client applications. See Create TLS
Certificates for Replication and Client/Server and Configure TLS for Client/Server.

db.ini
The db.ini file contains the TimesTen DSN definition for your database.

In TimesTen Classic, the db.ini file contains the connection attributes for your database.
This file is used to to generate the sys.odbc.ini file for the instances. You can specify data
store attributes, first connection attributes, and general connection attributes in the db.ini
file. The name of the DSN is the name of the TimesTenClassic object. For example, if your
TimesTenClassic object is called sample, the name of your DSN is sample.

In TimesTenScaleout, the db.ini file contains the connection attributes for each element of
your database in the grid. The database definition file (dbDef) and its contents are used to
create a TimesTen Scaleout database definition. The name of the database definition is the
name of the TimesTenScaleout object. For example, if the name of your TimesTenScaleout
object is sample, the name of the database definition is sample. The TimesTen Scaleout
database is created based on the database definition. For information about creating a
database and creating a database definition in TimesTen Scaleout, see Creating a Database
in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

If you are using TimesTen Cache in your TimesTenClassic deployment, you must specify the
OracleNetServiceName and the DatabaseCharacterSet connection attributes in the db.ini

Chapter 3
About Configuration Metadata Details

3-5

file. The DatabaseCharacterSet value must match the value of the database character
set in the Oracle Database.

Do not specify the the DataStore or the LogDir connection attributes in the db.ini file.
The Operator sets these attributes, placing the database files in Kubernetes Persistent
Volumes.

See List of Connection Attributes in the Oracle TimesTen In-Memory Database
Reference for information on the TimesTen connection attributes.

Note:

If the /ttconfig/db.ini file is not present in a TimesTen container,
TimesTen creates a default sys.odbc.ini file. For this default sys.odbc.ini,
the connection attributes are: Permsize=200 and
DatabaseCharacterSet=AL32UTF8.

This example shows a sample db.ini file that contains various connection attributes
for TimesTen databases in TimesTen Classic or TimesTen Scaleout.

PermSize=500
LogFileSize=1024
LogBufMB=1024
DatabaseCharacterSet=AL32UTF8

Here is an example that shows a sample db.ini file that contains the
OracleNetServiceName for TimesTen databases that use TimesTen Cache in
TimesTen Classic.

PermSize=500
LogFileSize=1024
LogBufMB=1024
DatabaseCharacterSet=AL32UTF8
OracleNetServiceName=OraCache

epilog.sql
In TimesTen Classic, the epilog.sql file includes operations that occur after the
replication scheme has been created and the replication agent has been started. For
example, if you want to create replicated bookmarks in XLA, you can include the
ttXlaBookmarkCreate TimesTen built-in procedure in this file.

The Operator instructs the instance administrator to run the epilog.sql file using the
ttIsql utility.

Here is an example of an epilog.sql file. The example calls the
ttXlaBookmarkCreate TimesTen built-in procedure to create XLA bookmarks.

call ttXlaBookmarkCreate('mybookmark',0x01);

For information about replicated bookmarks, see the ttXlaBookmarkCreate TimesTen
built-in procedure in the Oracle TimesTen In-Memory Database Reference.

Chapter 3
About Configuration Metadata Details

3-6

replicationWallet
In TimesTen Classic, TimesTen replication transmits data between your TimesTen databases
unencrypted by default. However, you can configure TLS for replication to ensure secure
network communication between your replicated TimesTen databases. To do this, specify
the /ttconfig/replicationWallet file. This file contains an Oracle wallet, which contains the
credentials that are used by TimesTen replication for configuring TLS encryption between
your active standby pair of TimesTen databases. See Create TLS Certificates for Replication
and Client/Server and Configure TLS for Replication.

If you specify this file, you must include the replicationCipherSuite field and optionally
include the replicationSSLMandatory field in your TimesTenClassic object definition. See
the replicationCipherSuite entry and the replicationSSLMandatory entry in
TimesTenClassicSpecSpec and Configure TLS for Replication.

schema.sql
The TimesTen Operator can automatically initialize your database with schema objects, such
as users, tables, and sequences. To have the Operator do this, create the schema.sql file.

The Operator directs the instance administrator to use the ttIsql utility to run the
schema.sql file immediately after the database is created. This operation occurs before the
Operator configures replication or cache in your TimesTen database.

In TimesTen Cache, one or more cache table users own the cache tables. If this cache table
user is not the cache manager user, then you must specify the schema.sql file and in it you
must include the schema user and assign the appropriate privileges to this schema user. For
example, if the oratt schema user was created in the Oracle database, and this user is not
the TimesTen cache manager user, you must create the TimesTen oratt user in this file. See
Create the Oracle Database Users.

Do not include cache definitions in this file. Instead, use the cachegroups.sql metadata file.
See cachegroups.sql.

sqlnet.ora
The Oracle Database sqlnet.ora file defines the options for how client applications
communicate with the Oracle Database. To use TimesTen Cache or to use tools like
ttLoadFromOracle, define a sqlnet.ora file. This file describes how applications, including
TimesTen, can connect to your Oracle database. Note: If you define a sqlnet.ora file, you
must define a tnsnames.ora file. See tnsnames.ora.

This is an example of a sqlnet.ora file:

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

testUser
The testUser file defines a test user. This user is used for testing TimesTen with the helm
test command. The user is granted CONNECT privileges. The test connects to a TimesTen

Chapter 3
About Configuration Metadata Details

3-7

database as the test user. The test verifies that both the active and standby
databases are up and running and that replication between them is functional.

The testUser file must contain one line of the form:

testuser/testuserpassword

where testuser is the name of your test user and testuserpassword is the password
for this test user.

For more information about using Helm and using the helm test command to test
TimesTen, see Use Helm to Deploy the TimesTen Kubernetes Operator and
TimesTenClassic Objects and Test TimesTen.

tnsnames.ora
The Oracle Database tnsnames.ora file defines Oracle Net Services to which
applications connect. You need to use tnsnames.ora (and perhaps a sqlnet.ora file,
described in sqlnet.ora) if you are using:

• TimesTen Cache

• SQL APIs, such as Pro*C, OCI, or ODPI-C

• The ttLoadFromOracle feature

For information about the ttLoadFromOracle TimesTen built-in procedure, see
ttLoadFromOracle in the Oracle TimesTen In-Memory Database Reference.

Here is an example of a tnsnames.ora file:

OraTest =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.mynamespace.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraTest.my.sample.com)))
OraCache =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.mynamespace.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraCache.my.sample.com)))

*.connect
Files with names that end with the .connect extension define one or more direct
connectables for direct mode access to a database in TimesTen Scaleout. You can
create as many direct connectables as you like. A direct connectable specifies a set of
general connection attribute settings for the database. You can choose any name for
the direct connectable as long as it is a valid DSN name. The TimesTen Operator
creates one direct connectable for each direct connectable file you create.
The .connect extension denotes a direct connectable. Ensure the .connect extension
is in lowercase.

Chapter 3
About Configuration Metadata Details

3-8

The following example creates one direct connectable. The name of the file is
sample.connect. The TimesTen Operator creates the sample direct connectable based on the
contents of the sample.connect file.

ConnectionCharacterSet=AL32UTF8

For more information about direct connectables, see Connectable Operations in the Oracle
TimesTen In-Memory Database Reference and Connecting to a Database in the Oracle
TimesTen In-Memory Database Scaleout User's Guide.

*.csconnect
Files with names that end with the .csconnect extension define one or more client/server
connectables for client/server access to a database in TimesTen Scaleout. You can create as
many client/server connectables as you like. A client/server connectable specifies a set of
general connection attribute settings for the database. You can choose any name for the
client/server connectable as long as it is a valid DSN name. The TimesTen Operator creates
one client/server connectable for each client/server connectable file you create.
The .csconnect extension denotes a client/server connectable. Ensure the .csconnect
extension is in lowercase.

The following example creates one client/server connectable. The name of the file is
samplecs.csconnect. The TimesTen Operator creates the samplecs client/server connectable
based on the contents of the samplecs.csconnect file.

ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

For more information about client/server connectables, see Connectable Operations in the
Oracle TimesTen In-Memory Database Reference and Connecting to a Database in the
Oracle TimesTen In-Memory Database Scaleout User's Guide.

Populate the /ttconfig Directory
You can use different methods to ensure metadata files are placed in the /ttconfig directory
of TimesTen containers. There is no requirement as to which method to use. Kubernetes
provides such facilities as ConfigMaps, Secrets, and init containers for you to consider.

• Using ConfigMaps and Secrets

• Using an init container

Using ConfigMaps and Secrets
You can use one or more ConfigMaps and one or more Secrets to incorporate metadata files
into the TimesTen containers. This lets you specify different TimesTen metadata for different
deployments. In addition, you can use Secrets for metadata that contains sensitive data, like
passwords and certificates.

The use of a ConfigMap to populate the metadata into Pods is a standard Kubernetes
technique. One benefit is that you can modify the ConfigMap after it is created, which results
in the immediate update of the files that are in the Pod.

Chapter 3
Populate the /ttconfig Directory

3-9

Note:

TimesTen may not immediately notice and act on the changed content of the
files.

When you use ConfigMaps and Secrets to hold your metadata and then reference
them in the TimesTenClassic object definition, the TimesTen Operator creates a
Projected Volume called tt-config. This tt-config volume contains the contents of
all the ConfigMaps and all the Secrets specified in the dbConfigMap and the dbSecret
fields of your TimesTenClassic or your TimesTenScaleout object. This volume is
mounted as /ttconfig in the TimesTen containers.

Note:

You can specify one or more ConfigMaps and/or Secrets in your
TimesTenClassic or TimesTenScaleout object using the dbConfigMap and
dbSecret datum. The result is that these ConfigMaps and/or Secrets are
mounted read-only at /ttconfig. Since such a mount is read-only, you
cannot write into it from an init container. Alternatively, you can use an
emptydir volume and use an init container to write files into it. However, you
cannot combine ConfigMaps and Secrets with an init container. For
information about using an init container, see Using an init container.

To use ConfigMaps and Secrets, follow this process:

• Decide what facilities will contain what metadata files. For example, you can use
one ConfigMap for all the metadata files. Or, for example, you can use one
ConfigMap for the db.ini metadata file and one Secret for the adminUser and the
schema.sql metadata files. There is no specific requirement.

• Create the directory (or directories) that will contain the metadata files.

• Use the kubectl create command to create the ConfigMap and the Secrets in the
Kubernetes cluster.

• Include the ConfigMaps and Secrets in your TimesTenClassic or your
TimesTenScaleout object definition.

The following examples illustrate how to use ConfigMaps and Secrets for a
TimesTenClassic or a TimesTenScaleout object.

• Example Using One ConfigMap

• Example Using One ConfigMap and One Secret

• Example Using One ConfigMap for a TimesTenScaleout Object

Example Using One ConfigMap
This example uses one ConfigMap (called sample) for the db.ini, the adminUser, and
the schema.sql metadata files.

You can use this ConfigMap for a TimesTenClassic or a TimesTenScaleout object.

Chapter 3
Populate the /ttconfig Directory

3-10

1. On your development host, from the directory of your choice, create an empty
subdirectory for the metadata files. This example creates the cm_sample subdirectory.
(The cm_sample directory is used in the remainder of this example to denote this
directory.)

mkdir -p cm_sample
2. Change to the ConfigMap directory.

cd cm_sample
3. Create the db.ini file. In this db.ini file, define the PermSize and

DatabaseCharacterSet connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

4. Create the adminUser file. In this adminUser file, create the sampleuser user with the
samplepw password.

vi adminUser

sampleuser/samplepw
5. Create the schema.sql file. In this schema.sql file, define the s sequence and the emp

table for the sampleuser user. The Operator automatically initializes your database with
these object definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
 id number not null primary key,
 name char(32)
);

6. Create the ConfigMap. The files in the cm_sample directory are included in the
ConfigMap. These files are later available in the TimesTen containers.

In this example:

• The name of the ConfigMap is sample. Replace sample with a name of your
choosing.

• This example uses cm_sample as the directory where the files that will be copied into
the ConfigMap reside. If you use a different directory, replace cm_sample with the
name of your directory.

kubectl create configmap sample --from-file=cm_sample

The output is the following:

configmap/sample created

7. Verify the contents of the ConfigMap.

kubectl describe configmap sample

Chapter 3
Populate the /ttconfig Directory

3-11

The output is the following:

Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
adminUser:

sampleuser/samplepw

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

schema.sql:

create sequence sampleuser.s;
create table sampleuser.emp (
 id number not null primary key,
 name char(32)
);

Events: <none>

8. Include the ConfigMap in the object definition. In the dbConfigMap field, specify the
name of the your ConfigMap (sample, in this example).

Note this example uses a storageSize of 250Gi (suitable for a production
environment). For demonstration purposes, a storageSize of 50Gi is adequate.

This is an example of using the ConfigMap for a TimesTenClassic object.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 dbConfigMap:
 - sample

This is an example of using the ConfigMap for a TimesTenScaleout object.

apiVersion: timesten.oracle.com/v1
kind: TimesTenScaleout
metadata:
 name: sample
spec:

Chapter 3
Populate the /ttconfig Directory

3-12

 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 k: 2
 nReplicaSets: 3
 nZookeeper: 3
 dbConfigMap:
 - sample

The sample ConfigMap holds the metadata files. The tt-config volume contains the
contents of the sample ConfigMap.

Example Using One ConfigMap and One Secret
This example uses one ConfigMap (called myconfig) for the db.ini metadata file and one
Secret (called mysecret) for the adminUser and the schema.sql metadata files.

You can use this ConfigMap and Secret for a TimesTenClassic or a TimesTenScaleout object.

1. On your development host, from the directory of your choice:

• Create one empty subdirectory for the ConfigMap. This example creates the
cm_myconfig subdirectory. (The cm_myconfig directory is used in the remainder of
this example to denote this directory.) This directory will contain the db.ini metadata
file.

• Create a second empty subdirectory for the Secret. This example creates the
secret_mysecret subdirectory. (The secret_mysecret directory is used in the
remainder of this example to denote this directory.) This directory will contain the
adminUser and the schema.sql metadata files.

mkdir -p cm_myconfig
mkdir -p secret_mysecret

2. Change to the ConfigMap directory.

cd cm_myconfig
3. Create the db.ini file in this ConfigMap directory (cm_myconf, in this example). In this

db.ini file, define the PermSize and DatabaseCharacterSet connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

4. Change to the Secret directory.

cd secret_mysecret
5. Create the adminUser file in this Secret directory (secret_mysecret in this example). In

this adminUser file, create the sampleuser user with the samplepw password.

vi adminUser

sampleuser/samplepw

Chapter 3
Populate the /ttconfig Directory

3-13

6. Create the schema.sql file in this Secret directory (secret_mysecret in this
example). In this schema.sql file, define the s sequence and the emp table for the
sampleuser user. The Operator automatically initializes your database with these
object definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
 id number not null primary key,
 name char(32)
);

7. Create the ConfigMap. The files in the cm_myconfig directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

• The name of the ConfigMap is myconfig. Replace myconfig with a name of
your choosing.

• This example uses cm_myconfig as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace
cm_myconfig with the name of your directory.

Create the ConfigMap.

kubectl create configmap myconfig --from-file=cm_myconfig

The output is the following:

configmap/myconfig created

8. Verify the contents of the ConfigMap.

kubectl describe configmap myconf

The output is the following:

Name: myconfig
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

Events: <none>

9. Create the Secret. The files in the secret_mysecret directory are included in the
Secret and, later, will be available in the TimesTen containers.

In this example:

Chapter 3
Populate the /ttconfig Directory

3-14

• The name of the Secret is mysecret. Replace mysecret with a name of your
choosing.

• This example uses secret_mysecret as the directory where the files that will be
copied into the Secret reside. If you use a different directory, replace
secret_mysecret with the name of your directory.

kubectl create secret generic mysecret --from-file=secret_mysecret

The output is the following:

secret/mysecret created

10. Verify the Secret. Note the contents of the adminUser and the schema.sql files are not
displayed.

kubectl describe secret mysecret

The output is the following:

Name: mysecret
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
adminUser: 12 bytes
schema.sql: 98 bytes

11. Include the ConfigMap and the Secret in the object definition.

• In the dbConfigMap field, specify the name of the your ConfigMap.

• In the dbSecret field, specify the name of the your Secret.

This is an example of using the ConfigMap and the Secret for a TimesTenClassic object.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 dbConfigMap:
 - myconfig
 dbSecret:
 - mysecret

Chapter 3
Populate the /ttconfig Directory

3-15

This is an example of using the ConfigMap and the Secret for a TimesTenScaleout
object.

apiVersion: timesten.oracle.com/v1
kind: TimesTenScaleout
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 imagePullSecret: sekret
 k: 2
 nReplicaSets: 3
 nZookeeper: 3
 dbConfigMap:
 - myconfig
 dbSecret:
 - mysecret

The myconfig ConfigMap and the mysecret Secret holds the metadata files. The
tt-config volume contains the contents of the myconfig ConfigMap and the
mysecret Secret.

Example Using One ConfigMap for a TimesTenScaleout Object
This example shows you how to create a metadata file for a direct connectable and a
metadata file for a client/server connectable. It then shows you how to include these
connectables in a ConfigMap for a TimesTenScaleout object. The ConfigMap also
includes the db.ini, adminUser, and schema.sql metadata files.

1. On your development host, from the directory of your choice, create an empty
subdirectory for the metadata files. This example creates the cm_samplescaleout
subdirectory. (The cm_samplescaleout directory is used in the remainder of this
example to denote this directory.)

mkdir -p cm_samplescaleout
2. Change to the ConfigMap directory.

cd cm_samplescaleout
3. Create the direct connectable.

vi samplescaleout.connect

ConnectionCharacterSet=AL32UTF8

4. Create the client/server connectable.

vi samplecsscaleout.csconnect

Chapter 3
Populate the /ttconfig Directory

3-16

ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

5. Create the db.ini file. In this db.ini file, define the PermSize and
DatabaseCharacterSet connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

6. Create the adminUser file. In this adminUser file, create the sampleuser user with the
samplepw password.

vi adminUser

sampleuser/samplepw
7. Create the schema.sql file. In this schema.sql file, define the s sequence and the emp

table for the sampleuser user. The Operator automatically initializes your database with
these object definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
 id number not null primary key,
 name char(32)
);

8. Create the ConfigMap. The files in the cm_samplescaleout directory are included in the
ConfigMap. These files are later available in the TimesTen containers.

In this example:

• The name of the ConfigMap is samplescaleout. Replace samplescaleout with a
name of your choosing.

• This example uses cm_samplescaleout as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace
cm_samplescaleout with the name of your directory.

kubectl create configmap samplescaleout --from-file=cm_samplescaleout

The output is the following:

configmap/samplescaleout created

9. Verify the contents of the ConfigMap.

kubectl describe configmap samplescaleout

The output is the following:

Name: samplescaleout
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====

Chapter 3
Populate the /ttconfig Directory

3-17

adminUser:

sampleuser/samplepw

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

sampleconnectable.connect:

ConnectionCharacterSet=AL32UTF8

samplecsconnectable.csconnect:

ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

schema.sql:

create sequence sampleuser.s;
create table sampleuser.emp (
 id number not null primary key,
 name char(32)
);

Events: <none>

10. Include the ConfigMap in the object definition.

Note this example uses a storageSize of 250Gi (suitable for a production
environment). For demonstration purposes, a storageSize of 50Gi is adequate.

apiVersion: timesten.oracle.com/v1
kind: TimesTenScaleout
metadata:
 name: samplescaleout
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 imagePullSecret: sekret
 k: 2
 nReplicaSets: 3
 nZookeeper: 3
 dbConfigMap:
 - samplescaleout

Using an init container
You can use an init container to place your metadata files into the /ttconfig directory
of the TimesTen containers. An init container lets you to create your own scripts to

Chapter 3
Populate the /ttconfig Directory

3-18

populate the /ttconfig directory. You can use an init container for TimesTenClassic and for
TimesTenScaleout objects. For more information about init containers, see:

https://kubernetes.io/docs/concepts/workloads/pods/init-containers

Note:

You can specify one or more ConfigMaps and/or Secrets in your TimesTenClassic
or TimesTenScaleout object using the dbConfigMap and dbSecret datum. The result
is that these ConfigMaps and/or Secrets are mounted read-only at /ttconfig.
Since such a mount is read-only, you cannot write into it from an init container.
Alternatively, you can use an emptydir volume and use an init container to write
files into it. However, you cannot combine ConfigMaps and Secrets with an init
container. For information about using ConfigMaps and Secrets, see Using
ConfigMaps and Secrets.

Here is an example that illustrates how to use an init container for a TimesTenClassic object.
The template element is required. This element is applied to Pods that contain the TimesTen
Classic instances. The example shows you where to specify the script that populates the /
ttconfig directory. It also uses the tt-config volume name in the volumes field of the
TimesTenClassic object. If you specify a volume with the tt-config name, it is automatically
mounted at /ttconfig in your TimesTen containers.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: init1
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 template:
 spec:
 imagePullSecrets:
 - name: sekret
 initContainers:
 - name: initclassic
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 command:
 - sh
 - "-c"
 - |
 /bin/bash <<'EOF'
 Your script to populate /ttconfig goes here
 EOF
 volumeMounts:
 - name: tt-config
 mountPath: /ttconfig
 volumes:
 - name: tt-config
 emptyDir: {}

When using an init container for a TimesTenScaleout object, the metadata files must be
placed in both the dataTemplate and the mgmtTemplate elements.

Chapter 3
Populate the /ttconfig Directory

3-19

https://kubernetes.io/docs/concepts/workloads/pods/init-containers

Additional Configuration Options
This section discusses additional configuration options. These are optional
configurations for your environment:

• Persistent Storage

• Additional Resource Specifications

Persistent Storage
When you create a TimesTenClassic object, the Operator automatically creates one or
two Persistent Volume Claims (PVCs) per Pod. These PVCs cause Persistent
Volumes (PVs) to be allocated by Kubernetes and to be attached to the TimesTen
Pods. TimesTen uses the PVs to hold the TimesTen instance and the TimesTen
database. If you specify two PVCs, one PV holds the instance and the checkpoint files
and the second PV holds the transaction log files.

When you create a TimesTenScaleout object, the same mechanism is used to
provision persistent storage for the data instances, the management instance, and the
ZooKeeper instances:

• For the data instances: The Operator creates one or two PVCs per Pod. TimesTen
uses the PVs to hold the TimesTen instance and the TimesTen database. If you
specify two PVCs, one PV holds the instance and the checkpoint files and the
second PV holds the transaction log files.

• For the management instance: The Operator creates one PVC for the Pod that
contains the management instance. The PV holds the the TimesTen management
instance and the grid database.

• For the ZooKeeper instances: The Operator creates one PVC for each Pod that
runs a ZooKeeper instance. The PV holds ZooKeeper's persistent data.

When you create a TimesTenClassic object, you must specify storageClassName and
you may specify storageSize. These attributes determine the characteristics of the
Persistent Volumes. The storageClassName must be one that is provided in your
Kubernetes environment. For example, in Oracle Kubernetes Environment (OKE), you
may use oci-bv.

The default storage is 50Gi. Use the storageSize attribute to request a different size.
A storage size of 50Gi may be adequate for demonstration purposes, but in production
environments, you should consider greater storage.

TimesTen places the TimesTen installation, the instance, and the database in this
storage. It is mounted in each container, in each Pod, as /tt. The TimesTen instance
is located at /tt/home/timesten/instances/instance1.

When you create a TimesTenScaleout object, the following attributes are supported:

• Storage class name:

– dataStorageClassName: Name of the storage class that is used to request
persistent volumes for the elements of the TimesTen database in the grid. If
not specified, the default is the value of storageClassName.

Chapter 3
Additional Configuration Options

3-20

– mgmtStorageClassName: Name of the storage class that is used to request persistent
volumes for the database of the management instance. If not specified, the default is
the value of storageClassName.

– zookeeperStorageClassName: Name of the storage class that is used to request
persistent volumes for ZooKeeper's persistent data. If not specified, the default is the
value of storageClassName.

– storageClassName: If the data storage class name, the management storage class
name, and the zookeeper storage class name are the same, you can just specify
storageClassName.

• Storage size:

– dataStorageSize: Amount of storage to be provisioned for each element of the
TimesTen database in the grid. The default is 50Gi.

– mgmtStorageSize: Amount of storage to be provisioned for the database of the
management instance. The default is 50Gi.

– zookeeperStorageSize: Amount of storage to be provisioned for ZooKeeper's
persistent data. The default is 50Gi.

– storageSize: If the data storage size, the management storage size, and the
zookeeper storage size are the same, you can just specify storageSize. For
example, if the dataStorageSize is 75Gi, and the mgmtStorageSize is 75Gi, and the
zookeeperStorageSize is 75Gi, you can specify storageSize with a value of 75Gi.
The value for dataStorageSize, for mgmtStorageSize, and for
zookeeperStorageSize is set to the value of storageSize.

For the TimesTen databases (using TimesTen Classic) and for the TimesTen database (using
TimesTen Scaleout):

• TimesTen best practices recommends that the transaction log files associated with a
TimesTen database be located on a different storage volume than the checkpoint files for
the database. This provides separate paths to storage for the checkpoint and the
transaction log operations. For example, you can store the transaction log files in a high
performance storage, while storing the checkpoint files in a slower storage. See Locate
Checkpoint and Transaction Log Files on Separate Physical Device in the Oracle
TimesTen In-Memory Database Operations Guide for more information.

• To locate the checkpoint files and the transaction log files on a separate path of storage,
provide a value for a second persistent storage that is used only for the transaction log
files. Use the logStorageSize attribute for this and control its placement by using the
logStorageClassName attribute. This causes a second PVC to be created for each Pod,
which will then be available in each container at /ttlog. (This second storage volume
has a /ttlog mount point.)

Here is an example for a TimesTenClassic object. The same example can be used for a
TimesTenScaleout object:

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: slower
 storageSize: 750Gi

Chapter 3
Additional Configuration Options

3-21

 logStorageClassName: faster
 logStorageSize: 200G

Additional Resource Specifications
Kubernetes supports affinity and anti-affinity settings that let applications control their
placement within the Kubernetes cluster. These settings can be used to ensure all
replicas do not reside on a single physical host.

You can specify affinity settings, node selectors, additional containers, tolerations,
resource requirements, and other Kubernetes attributes for the TimesTen Pods and
the containers within these Pods that are created by the TimesTen Operator.

In a TimesTenClassic deployment, you specify these resource specifications in the
TimesTenClassic object's .spec.template datum. The TimesTen Operator passes this
template to the StatefulSet. For example, when you deploy a TimesTenClassic object,
the Operator configures a replicated pair of TimesTen databases that provide high
availability. However, since the Operator does not control the placement of Pods, you
can achieve an even greater level of high availability by controlling the placement of
the TimesTen Pods. TimesTen Pods can then be available in different availability
zones or are on different Kubernetes nodes. To do this, you specify the affinity
option in the .spec.template datum for the TimesTenClassic object.

Similar to a TimesTenClassic deployment, you can specify the same resource
specifications for a TimesTenScaleout object. The TimesTenScaleout object supports
the .spec.mgmtTemplate, .spec.dataTemplate and .spec.zookeeperTemplate
attributes. You can use these attributes to pass affinity and other settings to
Kubernetes. These are of type PodTemplateSpec:

• mgmtTemplate: Applied to the Pod that contains the TimesTen Scaleout
management instance. Consists of a single PodTemplateSpec.

• dataTemplate: Applied to the Pods that contain the TimesTen Scaleout data
instances. Consists of an array of PodTemplateSpec. If specified, there must be
one entry in the array for each data space in the grid (k entries in the array). This
lets you specify a different placement for each data space. For example, you can
have data space one reside in availability zone 1 and data space two reside in
availability zone 2.

• zookeeperTemplate: Applied to the Pods that contain the ZooKeeper instances
used by Scaleout. Consists of a single PodTemplateSpec.

For information about PodTemplateSpec see, https://kubernetes.io/docs/
reference/kubernetes-api/
Here is an example of specifying the affinity setting for a TimesTenClassic object.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 …
 template:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 podAffinityTerm:

Chapter 3
Additional Configuration Options

3-22

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/

 labelSelector:
 matchExpressions:
 - key: "app"
 operator: In
 values:
 - ds1
 topologyKey: "kubernetes.io/hostname"

About Readiness Probes for TimesTen Containers
Kubernetes readiness probes allow Kubernetes to determine whether a particular application
is ready. For example, consider an application that, when it starts, has to perform a lengthy
startup procedure. When the application is started by Kubernetes, it is not immediately ready.
It cannot handle requests or workloads until the startup procedure is complete.

The TimesTen Kubernetes Operator (TimesTen Operator) provides two readiness probes for
two different definitions of the term readiness. In order to determine if a TimesTen container is
ready to Kubernetes in each of these different situations, the TimesTen Operator creates and
manages two files in TimesTen containers. The presence or absence of one or more of these
files indicates if TimesTen in that container is ready or not.

Let's take a look at these two definitions and the specific TimesTen readiness probe file that is
applicable for each definition. After reviewing the definitions, choose if either of these
definitions is applicable to your situation and is useful for you. You can only choose one of
these definitions.

• The first definition defines readiness for both TimesTen Classic and TimesTen Scaleout
databases. In a TimesTen Classic active standby pair, the tt container providing the
active database is considered ready. In TimesTen Scaleout, all instances with elements
that are up and usable are considered ready.

For this definition of readiness, the TimesTen Operator creates and manages the /tmp/
active file, which is located in the TimesTen container's file system. If this file exists in
the container, the container is. Otherwise, the container is not ready.

• The second definition defines readiness specifically for TimesTen Classic databases. In
TimesTen Classic, a TimesTen instance that is created by the TimesTen Operator and is
running in the tt container of a Pod is ready if the database inside of that Pod is loaded,
replication is configured, and the database is either a fully functional active or a fully
functional standby. A database that is down or in the process of being created or
duplicated is not ready.

For this definition of readiness, the TimesTen Operator creates and manages the /tmp/
readiness file, which is located in the TimesTen container's file system. If the file exists in
the container, the container is ready to Kubernetes. Otherwise, the container is not ready.

Here is a code snippet that illustrates the use of a TimesTen readiness probe. The sample
TimesTenClassic object definition includes a TimesTen readiness probe. Kubernetes runs the
cat command in the tt container every 10 seconds. If the command exits with a return code
of 0, the container is ready. If the command returns any other value, the container is not
ready.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:

Chapter 3
About Readiness Probes for TimesTen Containers

3-23

 ttspec:
…
 template:
 spec:
…
 containers:
 - name: tt
 readinessProbe:
 exec:
 command:
 - cat
 - /tmp/readiness
 failureThreshold: 1
 periodSeconds: 10
 successThreshold: 1

Let's discuss these readiness probes in more detail and let's look at specific use
cases.

• About /tmp/active Readiness Probes

• About /tmp/readiness Readiness Probes

About /tmp/active Readiness Probes
In a TimesTen Classic active standby pair, the /tmp/active file is present in the
container providing the active TimesTen database. In TimesTen Scaleout, the file is
present on all instances with elements that are up and usable. In short, in TimesTen
Classic and TimesTen Scaleout, the file is present in containers that have databases
that can be used to run workloads.

Let's look at a use case for this type of readiness probe.

If you are using TimesTen client/server from applications within your Kubernetes
cluster, you could list all the TimesTen Pods in your connection string, and the
TimesTen Operator automatically routes client connections to ready instances.
However, to avoid listing all TimesTen Pods in your connection string, you could create
a Service that routes incoming client connections to ready instances. For this Service
to work correctly, you need to use a /tmp/active readiness probe. This causes
Kubernetes to only route incoming connections to appropriate TimesTen instances.

If you are using TimesTen client/server from applications outside your Kubernetes
cluster, you must create such a Service. In this case, you must use a NodePort
Service type. For this Service to work correctly, you need to use a /tmp/active
readiness probe.

For information on a Kubernetes Service, see https://kubernetes.io/docs/concepts/
services-networking/service/. For information on the NodePort Service type, see
https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport.

About /tmp/readiness Readiness Probes
Readiness probes can also be useful if you want to replace one or more Nodes in your
Kubernetes cluster. In this case, you can cause Kubernetes to drain the workload
from the Node. This causes Kubernetes to evict any Pods that are running on that

Chapter 3
About /tmp/active Readiness Probes

3-24

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport

Node and create new Pods on other Nodes in the cluster to replace them. Kubernetes
supports a Pod disruption budget whereby you specify a budget for your application. This
budget tells Kubernetes how many evicted Pods in a given Deployment can be tolerated. For
example, assume you configure a Deployment with 20 replicas of your application. You could
tell Kubernetes to tolerate up to 5 of the replicas being down at a time. When moving a
workload from one Node to another, Kubernetes is careful not to delete more than 5 replicas
at a time, and waits for their replacements to become ready before deleting more.

In the case of the TimesTen Operator, you can use the /tmp/readiness readiness probe to
prevent Kubernetes from terminating both the active and standby TimesTen Classic
databases simultaneously while draining Kubernetes Nodes.

If you use a Pod disruption budget of 1 on TimesTen, you can drain the workload from one or
more Nodes without creating a total TimesTen outage. When Kubernetes deletes a Pod that
is running TimesTen in TimesTen Classic, Kubernetes does not know if the Pod contains an
active or a standby database. Therefore, it may choose to delete the Pod that contains the
active database. This causes a failover to the standby, which disrupts applications if
performed during normal hours. There is no way to prevent this. However, Kubernetes does
not proceed to delete the other database until the one that was deleted comes back up and is
completely in the Healthy state.

For more information on the health of a Pod and the Healthy state, see About Monitoring the
Health of Each Pod in an Active Standby Pair.

For information on Kubernetes Pod disruption budgets, see https://kubernetes.io/docs/
concepts/workloads/pods/disruptions/ and https://kubernetes.io/docs/tasks/run-
application/configure-pdb/.

Chapter 3
About /tmp/readiness Readiness Probes

3-25

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/

4
Specify CPU and Memory Requests and
Limits

This chapter discusses the importance of specifying CPU and memory requests and limits for
TimesTen Classic and TimesTenScaleout objects. It also provides an understanding of Linux
cgroups and gives background information about the Linux out of memory (OOM) killer.

Topics:

• About Resource Requests and Limits

• About TimesTen Containerized Deployments

• About Specifying Requests and Limits for TimesTen Containers

• Approach 1: Use Specific Datum for Requests and Limits

• Approach 2: Use Templates for Requests and Limits

• About Specifying Requests and Limits to Kubernetes

• About Verifying databaseMemorySize

• About Runtime Memory Monitoring

About Resource Requests and Limits
One of the core Linux technologies that is used to implement containers is cgroups. Cgroups
can be used to enforce CPU and memory use limitations on a process or processes.

Kubernetes provides facilities that let you specify the amount of CPU and memory that a
container consumes. When specified, Kubernetes uses your requests to do the following:

• Determine the node a particular Pod should be created on: Kubernetes determines which
nodes have enough free resources to satisfy your request.

• Enforce these limits at runtime: Kubernetes ensures that applications do not exceed their
requests.

Kubernetes chooses which node of the cluster to run a Pod on based on the Pod's resource
requests, and the resources available on each node in the cluster. But once a Pod is
scheduled onto a node, Kubernetes does not directly enforce limits at runtime. Rather,
Kubernetes passes requests to Linux through cgroups. The node's Linux kernel then
enforces the limits on Kubernetes behalf.

Let's look at an example of a Pod with the following definition:

apiVersion: v1
kind: Pod
metadata:
 name: samplePod
spec:
 containers:
 - image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0

4-1

 name: sample
 resources:
 limits:
 cpu: 20
 memory: 41Gi
 requests:
 cpu: 20
 memory: 41Gi

Kubernetes determines which node it will run the Pod on. It does this by examining the
Pod's resources requests to determine which node has enough free resources to
accommodate the Pod.

Once the node is determined, Kubernetes creates a cpu cgroup for the container
(sample in this example) and configures the cgroup to have a limit of 20 CPUs.
Kubernetes also creates a memory cgroup for the container and configures it to have a
limit of 200 gigabytes. Kubernetes then forks off the lead process of the newly created
container, and associates the initial process with the cpu and memory cgroups.

Since the lead process is associated with or running under these cgroups, that
process and all its children are subject to the limits that the cgroups define. The Linux
kernel on the node where the container is running automatically enforces these limits
without any involvement from Kubernetes.

CPU limits are easily enforced by Linux. If an application wants to use more CPU than
its limit, the kernel can choose not to dispatch the application for a period of time to
keep its usage under control.

Memory limit enforcement is different than CPU enforcement. Linux has a component
called the out of memory (OOM) killer. If processes exceed their intended memory
usage, or if the system gets stressed, the OOM killer terminates processes abruptly.

Next, let's consider a Pod with this definition:

apiVersion: v1
kind: Pod
metadata:
 name: samplePod
spec:
 containers:
 - image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 name: sample

In this Pod, there are no specified memory limits. The container runs in default
cgroups with infinite limits. This cgroup is shared by all processes on the node that
have no specified memory limit, whether the processes are running in containers or
not. In this case, if the Linux node becomes memory constrained, the OOM killer
chooses processes from the entire node to terminate. The victim might be TimesTen, it
might be the Kubernetes kubelet, it might be some other process, or it might be all of
them.

Chapter 4
About Resource Requests and Limits

4-2

About TimesTen Containerized Deployments
As an in-memory database, TimesTen uses a large amount of memory by design. Processes
that run TimesTen may be the largest memory users on a given node. If the operating system
gets stressed, TimesTen is likely a prime candidate to get terminated by the Linux OOM killer.
Therefore, it is crucial that memory requests and limits be specified for your TimesTen
containers. TimesTen also recommends that CPU requests and limits be specified.

Note:

Ensure the value of a request and the value of a limit for a resource is the same.
For example, if the memory request for the daemonlog container has a value of 30Mi
ensure the memory limit for this daemonlog container also has a value of 30Mi. There
are examples later in the chapter that illusrate this.

The memory request and memory limit for the tt container is the most essential and crucial to
specify. The value is dependent on the memory required to hold the TimesTen database as
well as the memory required for the TimesTen daemon, subdaemons, cache and replication
agents, Client/Server server, and so on. The memory required to hold the database is
dependent on the size of your database.

The TimesTen Operator provides functionality to accurately size your TimesTen database.
This functionality is discussed later. The additional memory required for the TimesTen
daemon, subdaemons, Client/Server server is dependent on your SQL and PL/SQL usage
and the memory requirements vary with your workload. The TimesTen Operator provides a
default of 2Gi for this additional memory. You can use this default or change it. How to
change it is discussed later.

Let’s take a look at the defaults for the TimesTen containers. In all cases, you have the option
of changing the default.

• tt container:

– memory: This value is discussed in detail throughout this chapter.

– cpu: The value is dependent on how much CPU the tt container requires. This
includes CPU used by the TimesTen daemon, subdaemons, replication agents,
cache agents, and by the Client/Server server. The Client/Server server executes
SQL on behalf of your applications, so the value depends on the workload. There is
no default.

• daemonlog container:

– memory: The default is 200Mi.

– cpu: The default is 200m.

• exporter container (if provisioned):

– memory: The default is 200Mi.

– cpu: The default is 200m.

In addition, if you are using TimesTen Scaleout, there are additional TimesTen containers to
consider:

Chapter 4
About TimesTen Containerized Deployments

4-3

• tt container of the management instance:

– memory: The default is 3Gi.

– cpu: The default is 1.

• zookeeper container:

– memory: The default is 1Gi.

– cpu: The default is 500m.

About Specifying Requests and Limits for TimesTen
Containers

For TimesTen Classic and TimesTen Scaleout, the TimesTen Operator provides default
values for memory and CPU requests for the daemonlog and exporter containers. For
TimesTen Scaleout specifically, the TimesTen Operator provides default values for
CPU and memory requests for the tt container of the management instance and for
the zookeeper container. You can override these defaults by specifying specific datum
in the .spec.ttspec section of your TimesTenClassic and TimesTenScaleout object
definitions.

These datum are as follows:

• daemonLogMemoryRequest
• daemonLogCPURequest
• exporterMemoryRequest
• exporterCPURequest
• mgmtMemoryRequest: (TimesTen Scaleout)

• mgmtCPURequest: (TimesTenScaleout)

• zookeeperMemoryRequest: (TimesTen Scaleout)

• zookeeperCPURequest: (TimesTen Scaleout)

The TimesTen Operator does not provide a default value for the CPU request of a tt
container. If you want to specify a value for this CPU request, use
the .spec.ttspec.databaseCPURequest datum in your TimesTenClassic and
TimesTenScaleout object definitions.

For details about these datum, see TimesTenClassicSpecSpec and
TimesTenScaleoutSpecSpec.

Let's explore how the TimesTen Operator gathers information for memory and CPU
requests and limits and passes the information to Kubernetes. There are two
approaches:

• Use specific datum in .spec.ttspec for requests and limits: This is the default
approach and the approach we recommend. The TimesTen Operator provides
specific datum in the .spec.ttspec section of your TimesTenClassic and
TimesTenScaleout object definitions and passes the information in these datum to
Kubernetes. The TimesTen Operator also automatically determines an appropriate
memory request and limit for your tt containers.

Chapter 4
About Specifying Requests and Limits for TimesTen Containers

4-4

• Use templates for requests and limits: This approach uses memory and CPU requests
and limits information in templates. In this approach, you specify values for memory and
CPU requests for the TimesTen containers. The TimesTen Operator passes this
information to Kubernetes.

The specific datum are discussed in detail in subsequent sections in this chapter.

Here is a summary list of the datum:

• automaticMemoryRequests
• databaseCPURequest
• databaseMemorySize
• additionalMemoryRequest
• memoryWarningPercent
For details about these datum, see TimesTenClassicSpecSpec and
TimesTenScaleoutSpecSpec.

Approach 1: Use Specific Datum for Requests and Limits
In this approach, the TimesTen Operator automatically determines the appropriate memory
request and limit for the tt containers. This is the default behavior
(.spec.ttspec.automaticMemoryRequests is set to true by default) for a TimesTenClassic or
TimesTenScaleout object.

For the remaining TimesTen containers, the TimesTen Operator uses specific datum in
the .spec.ttspec section of the TimesTenClassic and TimesTenScaleout object definitions to
determine the memory request and limit and the CPU request and limit for each of the
TimesTen containers. The TimesTen Operator either uses the default values for the datum or
uses a value that you specify. The exception is the CPU request and limit for the tt container.
Since there is no default, if you want to define a CPU request and limit, you must manually
specify a value in the .spec.ttspec.databaseCPURequest datum of your TimesTenClassic
and TimesTenScaleout objects. The TimesTen Operator then supplies all this information for
memory and CPU requests and limits to Kubernetes.

For details about these datum, including defaults, see TimesTenClassicSpecSpec and
TimesTenScaleoutSpecSpec.

It is essential that the value for the memory request for the tt container that holds the
TimesTen database be accurate.

Recall that the memory request for the tt container is based on:

• Shared memory for the database: This is dependent on the size of the database.

• Additional memory: This is the memory required in addition to the database. It includes
memory that is used for the TimesTen daemon, subdaemons, agents, Client/Server
server.

The TimesTen Operator provides the .spec.ttspec.databaseMemorySize
and .spec.ttspec.additionalMemoryRequest datum for these specific memory
requirements. The .spec.ttspec.databaseMemorySize is used to specify the size of the
database and the .spec.ttspec.additionalMemoryRequest is used for the additional
memory.

Chapter 4
Approach 1: Use Specific Datum for Requests and Limits

4-5

The TimesTen Operator adds the value of .spec.ttspec.additionalMemoryRequest to
the value of .spec.ttspec.databaseMemorySize. The sum is the memory request and
memory limit to Kubernetes.

You do not have to specifically specify the .spec.ttspec.databaseMemorySize datum
for a TimesTenClassic or TimesTenScaleout object. If not specified, the TimesTen
Operator attempts to determine the appropriate value.

TimesTen provides the ttShmSize utility to determine the shared memory requirements
of a database, given its sys.odbc.ini entry. For information about ttShmSize, see
ttShmSize in the Oracle TimesTen In-Memory Database Reference.

The equivalent for a TimesTen sys.odbc.ini file is the TimesTen Operator db.ini
metadata file. You can provide the db.ini file in several ways:

• Embed in a ConfigMap referenced in .spec.ttspec.dbConfigMap.

• Embed in a Secret referenced in .spec.ttspec.dbSecret.

• Use an init container.

For details about the facilities that you can use to provide metadata files, see Populate
the /ttconfig Directory.

TimesTen recommends that you provide the db.ini metadata file in either a
ConfigMap or a Secret. The TimesTen Operator examines the Configmaps and
Secrets, if any, in your TimesTenClassic or TimesTenScaleout objects. If the db.ini is
found in a Configmap or Secret, the TimesTen Operator uses the TimesTen ttShmSize
utility to determine the appropriate amount of shared memory to request based on
your database definition. This value is then used for
the .spec.ttspec.databaseMemorySize value. With this approach, the TimesTen
Operator does the database sizing for you.

Let's look at an example:

kind: ConfigMap
metadata:
 name: resource9
data:
 adminUser: |
 adminuser/adminuserpwd
 schema.sql: |
 create user sampleuser identified by sampleuserpwd;
 grant admin to sampleuser;
 create table sampleuser.a (b number not null primary key, c
number, d timestamp);
 insert into sampleuser.a values(-1, -1, sysdate);
 db.ini: |
 Permsize=32768
 TempSize=4096
 LogBufMB=1024
 Connections=2048
 DatabaseCharacterSet=AL32UTF8

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:

Chapter 4
Approach 1: Use Specific Datum for Requests and Limits

4-6

 name: recommendedoption
spec:
 ttspec:
 dbConfigMap:
 - option1
 storageClassName: standard
 storageSize: 200Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 prometheus:
 insecure: true

In this case, the TimesTen Operator runs ttShmSize against your provided db.ini file and
determines the value for .spec.ttspec.databaseMemorySize automatically. The TimesTen
Operator then adds this value to the value for .spec.ttspec.additionalMemoryRequest. The
sum is the memory request and memory limit to Kubernetes.

If you provide the db.ini file by using an init container or other mechanism, the TimesTen
Operator cannot determine the value for .spec.ttspec.databaseMemorySize. By the time the
Pod is provisioned and the init container is executed, the Pod has already been created and
its memory requirements defined. In such cases, you must manually provide
the .spec.ttspec.databaseMemorySize as part of your YAML.

TimesTen recommends that you use the ttShmSize utility in a TimesTen instance outside of
Kubernetes to determine the appropriate value for .spec.ttspec.databaseMemorySize. You
do not need to create the database.

This example assumes you have created a TimesTen instance outside of Kubernetes and
have created a DSN in your sys.odbc.ini file with the name database1. Use the
ttShmSize utility based on provided values for the PermSize, TempSize, LogBufMB, and
Connections connection attributes.

ttShmSize -connstr
"DSN=database1;PermSize=32768;TempSize=4096;LogBufMB=1024;Connections=2048"
The required shared memory size is 39991547720 bytes.

Specify this value in the .spec.ttspec.databaseMemorySize datum.

Let's look at an example that uses an init container and uses the calculated value
for .spec.ttspec.databaseMemorySize.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: init1
spec:
 ttspec:
 databaseMemorySize: 41Gi
 storageClassName: standard
 storageSize: 200Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 prometheus:
 insecure: true

Chapter 4
Approach 1: Use Specific Datum for Requests and Limits

4-7

 template:
 spec:
 initContainers:
 - name: init1a
 command:
 - sh
 - "-c"
 - |
 /bin/bash <<'EOF'
 echo adminuser/adminuserpwd > /ttconfig/adminUser
 echo PermSize=32768 > /ttconfig/db.ini
 echo TempSize=4096 > /ttconfig/db.ini
 echo LogBufMB=1024 > /ttconfig/db.ini
 echo Connections=2048 > /ttconfig/db.ini
 echo DatabaseCharacterSet=AL32UTF8 >> /ttconfig/db.ini
 ls -l /ttconfig
 EOF
 volumeMounts:
 - name: tt-config
 mountPath: /ttconfig
 volumes:
 - name: tt-config
 emptyDir: {}

In this case, the TimesTen Operator uses the value you specified
for .spec.ttspec.databaseMemorySize to determine the size of the shared memory
segment to hold the TimesTen database. The TimesTen Operator then adds this value
to the value for .spec.ttspec.additionalMemoryRequest. The sum is the memory
request and memory limit to Kubernetes.

Note:

In TimesTen Scaleout, the sys.odbc.ini file (and corresponding db.ini
file) define the size of a single element of the database, not the entire
database. When provisioning a TimesTenScaleout object, the TimesTen
Operator uses the provided data in the same manner as it does for a
TimesTenClassic object.

Approach 2: Use Templates for Requests and Limits
This approach uses a template for specifying resource requests and limits. To enable
this behavior, set the .spec.ttspec.automaticMemoryRequests datum to false for
your TimesTenClassic or TimesTenScaleout object.

In your YAML for TimesTenClassic and TimesTenScaleout objects, you can specify a
template for Pods. In this template, you specify attributes of various containers in the
Pods, including the tt container. If you specify a template for one or more containers,
the resource requests and limits for the containers are used by Kubernetes.

TimesTen recommends that you use the ttShmSize utility in a TimesTen instance
outside of Kubernetes to determine the appropriate value for the memory request and
limit for the tt container. You do not need to create the database.

Chapter 4
Approach 2: Use Templates for Requests and Limits

4-8

This example assumes you have created a TimesTen instance outside of Kubernetes and
have created a DSN in your sys.odbc.ini file with the name database1. Use the
ttShmSize utility based on provided values for the PermSize, TempSize, LogBufMB, and
Connections connection attributes.

ttShmSize -connstr
"DSN=database1;PermSize=32768;TempSize=4096;LogBufMB=1024;Connections=2048"
The required shared memory size is 39991547720 bytes.

For information about ttShmSize, see ttShmSize in the Oracle TimesTen In-Memory
Database Reference.

Let's look at an example:

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: resource1
spec:
 ttspec:
 storageClassName: standard
 storageSize: 100Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 prometheus:
 insecure: true
 template:
 spec:
 containers:
 - name: tt
 resources:
 requests:
 memory: "41Gi"
 cpu: "20"
 limits:
 memory: "41Gi"
 cpu: "20"
 - name: daemonlog
 resources:
 requests:
 memory: "30Mi"
 cpu: "210"
 limits:
 memory: "30Mi"
 cpu: "210"
 - name: exporter
 resources:
 requests:
 memory: "22Mi"
 cpu: "310m"
 limits:
 memory: "22Mi"
 cpu: "310m"

Chapter 4
Approach 2: Use Templates for Requests and Limits

4-9

In this example, cpu and memory requests and limits for the tt, daemonlog, and
exporter containers are included in the template. These resources are specified to
Kubernetes.

About Specifying Requests and Limits to Kubernetes
The TimesTen Operator follows a specific order in determining the cpu and memory
request and limits to Kubernetes:

• For the tt container that holds your TimesTen database, the TimesTen Operator
looks for the following in this order:

– If you specify a template, the TimesTen Operator uses the values in it.

– If you specify .spec.ttspec.databaseMemorySize, the TimesTen Operator
uses its value.

– If there is a db.ini file, the TimesTen Operator uses the values in it.

– If none of the above are true, the TimesTen Operator uses the default.

In addition, if you specified a value for .spec.ttspec.databaseCPURequest, that
value is used as the cpu request and cpu limit to Kubernetes.

• If you specify resource requests or limits for the daemonlog container in your
container templates in your TimesTenClassic or TimesTenScaleout object, the
TimesTen Operator honors those requests. If you do not, the TimesTen Operator
uses the values you supply in your
object's .spec.ttspec.daemonLogMemoryRequest
and .spec.ttspec.daemonLogCPURequest datum.

• If you specify resource requests or limits for the exporter container in your
container templates in your TimesTenClassic or TimesTenScaleout object, the
TimesTen Operator honors those requests. If you do not, the TimesTen Operator
uses the values you supply in your
object's .spec.ttspec.exporterMemoryRequest
and .spec.ttspec.exporterCPURequest datum.

• If you specify a template for the tt container in the mgmtTemplate in a
TimesTenScaleout object, the TimesTen Operator uses the resource data in that
template. If you do not, the TimesTen Operator uses the values you supply in your
object's .spec.ttspec.mgmtMemoryRequest and .spec.ttspec.mgmtCPURequest
datum.

• If you specify a template for the zookeeper container in the zookeeperTemplate in
a TimesTenScaleout object, the TimesTen Operator uses the resource data in that
template. If you do not, the TimesTen Operator uses the values you supply in your
object's .spec.ttspec.zookeeperMemoryRequest
and .spec.ttspec.zookeeperCPURequest datum.

About Verifying databaseMemorySize
Whether specified by you or determined by the TimesTen Operator, before a database
is created, the TimesTen Operator and the TimesTen agent checks that the tt
containers in the relevant TimesTen Pods have the memory resources required to
create the database. The TimesTen Operator accomplishes this by running the

Chapter 4
About Specifying Requests and Limits to Kubernetes

4-10

TimesTen ttShmSize utility and comparing it with the memory quotas in the tt container's
cgroup.

If the required resources are not available, the TimesTen Operator returns an error message
(as an Event) and moves the TimesTenClassic or TimesTenScaleout object to the Failed
state.

This checking is performed even if the value of .spec.ttspec.automaticMemoryRequests is
false.

About Runtime Memory Monitoring
The TimesTen Operator monitors the memory usage of TimesTen Pods at runtime. It informs
you of the following:

• If any tt containers are approaching their specified memory limits.

• If any TimesTen containers have been terminated by the Linux OOM killer.

Kubernetes Events are generated to report on these conditions.

Every .spec.ttspec.pollingInterval seconds, the TimesTen agent in each tt container
queries the container's underlying Linux cgroup to determine the cgroup's
memory.limit_in_bytes and memory.usage_in_bytes and reports these values to the
TimesTen Operator. The Kubernetes status of each container is similarly queried. The
TimesTen Operator uses this data to generate appropriate Events as needed.

If the usage is greater than .spec.ttspec.memoryWarningPercent of the limit, an Event is
generated to notify you. In addition, if the TimesTen Operator observes that one or more of
the TimesTen related containers have been terminated or restarted (by the OOM killer or
otherwise), the TimesTen Operator reports the observation by using appropriate Events.

Chapter 4
About Runtime Memory Monitoring

4-11

5
Deploy TimesTen Classic Databases

You can deploy TimesTen Classic databases by using Helm or by using the procedures in this
chapter. If you are using Helm to deploy TimesTen Classic databases, see Use Helm to
Deploy the TimesTen Kubernetes Operator and TimesTenClassic Objects.

This chapter discusses the process for deploying active standby pairs of TimesTen
databases. It describes the process for creating TimesTenClassic objects in your
environment. It also provides examples that demonstrate how to monitor the provisioning of
the active standby pair of TimesTen databases. The chapter concludes with examples that
show you how to connect to the database and run operations in it.

Topics:

• About the Deployment Process

• Define and Create a TimesTenClassic Object

• Monitor Progress of an Active Standby Pair Deployment

About the Deployment Process
The TimesTen Operator extends the Kubernetes API to provide the TimesTenClassic object
type. This type provides the definitions you need to successfully deploy your TimesTen
databases to the Kubernetes cluster. You customize these definitions for your particular
environment. Specifically, you create a YAML file and, in it, you specify the required
TimesTenClassic definitions for the TimesTenClassic object. By assigning values to the fields
of these definitions, you customize and define your deployment environment. For example,
when you supply the oci-bv value for the storageClassName field, you are telling the
Operator the name of the storage class you want to use. See "The TimesTen Kubernetes
Operator Object Types" for the object definitions, and the fields that you define in your YAML
file.

Examples of the YAML file were introduced previously when discussing ConfigMaps and
Secrets, an init container, and other configuration options. (See "Using ConfigMaps and
Secrets" for information on ConfigMaps and Secrets. Also see "Using an init container" and
"Additional Configuration Options" for other configuration options.) However, "Define and
Create a TimesTenClassic Object" shows you how to define the TimesTenClassic object in
detail.

After specifying your configuration in the YAML file, you use the kubectl create command
from your Linux development host to create the corresponding TimesTenClassic object in
your cluster. After you issue this command, the process for deploying your active standby pair
of TimesTen databases begins. You can view this process by issuing kubectl get and
kubectl describe commands, such as, kubectl get pods and kubectl describe
timestenclassic. Once your databases are deployed, you can then connect to your active
database, issue queries, and perform other operations to verify your database is working as it
should.

5-1

Define and Create a TimesTenClassic Object
Defining your environment involves creating TimesTenClassic objects with attributes
customized for your environment. The fields include the name of the image pull secret,
the name of your TimesTen image, and the other definitions required to successfully
deploy your TimesTen databases. See "About the TimesTenClassic Object Type" for
information on defining objects of type TimesTenClassic.

Perform these steps to define and create the TimesTenClassic object:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenClassic object. (In this
example, sample.) The YAML file contains the definitions for the TimesTenClassic
object. See "TimesTenClassicSpecSpec" for information on the fields that you
must specify in this YAML file as well as the fields that are optional.

In this example, replace the following. (The values you can replace are
represented in bold.)

• name: Replace sample with the name of your TimesTenClassic object.

• storageClassName: Replace oci-bv with the name of the storage class used
to allocate PersistentVolumes to hold TimesTen.

• storageSize: Replace 250Gi with the amount of storage that should be
requested for each Pod to hold TimesTen. (This example assumes a
production environment and uses 250Gi for storage. For demonstration
purposes, you can use 50Gi of storage. See the storageSize and the
logStorageSize entries in "Table 17-3" for information.)

• image: Replace container-registry.oracle.com/timesten/
timesten:22.1.1.19.0 with the location and name of your image. In this
example, container-registry.oracle.com/timesten is the location of the
image registry and timesten:22.1.1.19.0 is the name of the image.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes
should use to fetch the TimesTen image.

• dbConfigMap: This example uses one ConfigMap (called sample) for the
db.ini, the adminUser, and the schema.sql metadata files. This ConfigMap
will be included in the ProjectedVolume. This volume is mounted as /ttconfig
in the TimesTen containers. See "Using ConfigMaps and Secrets" and
"Example Using One ConfigMap" for information on ConfigMaps.

% vi sample.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 dbConfigMap:
 - sample

Chapter 5
Define and Create a TimesTenClassic Object

5-2

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, sample.yaml). Doing so begins the process of
deploying your active standby pair of TimesTen databases in the Kubernetes cluster.

% kubectl create -f sample.yaml
timestenclassic.timesten.oracle.com/sample created

You successfully created the TimesTenClassic object in the Kubernetes cluster. The process
of deploying your TimesTen databases begins, but is not yet complete.

Monitor Progress of an Active Standby Pair Deployment
You can use various kubectl commands to monitor the progress of the active standby pair
deployment. After the deployment is complete and successful, you can connect to the
database and run operations in it to verify it is working as it should.

• Monitor the State of a TimesTenClassic Object

• Verify Underlying Objects Exist

• Verify Connection to Active Database

Monitor the State of a TimesTenClassic Object
Use the kubectl get and the kubectl describe commands to monitor the progress of the
active standby pair as it is provisioned.

Note:

For the kubectl get timestenclassic and kubectl describe timestenclassic
commands, you can alternatively specify kubectl get ttc and kubectl describe
ttc respectively. timestenclassic and ttc are synonymous when used in these
commands, and return the same results. The first kubectl get and the first kubectl
describe examples in this chapter use timestenclassic. The remaining examples
in this book use ttc for simplicity.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet complete.

% kubectl get timestenclassic sample
NAME STATE ACTIVE AGE
sample Initializing None 11s

2. Use the kubectl describe command to view the initial provisioning in detail.

% kubectl describe timestenclassic sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2023-04-30T15:35:12Z
 Generation: 1

Chapter 5
Monitor Progress of an Active Standby Pair Deployment

5-3

 Resource Version: 20231755
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: 517a8646-a354-11ea-a9fb-0a580aed5e4a
Spec:
 Ttspec:
 Db Config Map:
 sample
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci-bv
 Storage Size: 250Gi
Status:
 Active Pods: None
 High Level State: Initializing
 Last Event: 3
 Pod Status:
 Cache Status:
 Cache Agent: Down
 Cache UID Pwd Set: false
 N Cache Groups: 0
 Db Status:
 Db: Unknown
 Db Id: 0
 Db Updatable: Unknown
 Initialized: true
 Pod Status:
 Agent: Down
 Last Time Reachable: 0
 Pod IP:
 Pod Phase: Pending
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Down
 Rep Peer P State: Unknown
 Rep Scheme: Unknown
 Rep State: Unknown
 Times Ten Status:
 Daemon: Down
 Instance: Unknown
 Release: Unknown
 Admin User File: false
 Cache User File: false
 Cg File: false
 High Level State: Down
 Intended State: Active
 Name: sample-0
 Schema File: false
 Cache Status:
 Cache Agent: Down
 Cache UID Pwd Set: false
 N Cache Groups: 0
 Db Status:
 Db: Unknown
 Db Id: 0
 Db Updatable: Unknown
 Initialized: true
 Pod Status:
 Agent: Down

Chapter 5
Monitor Progress of an Active Standby Pair Deployment

5-4

 Last Time Reachable: 0
 Pod IP:
 Pod Phase: Pending
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Down
 Rep Peer P State: Unknown
 Rep Scheme: Unknown
 Rep State: Unknown
 Times Ten Status:
 Daemon: Down
 Instance: Unknown
 Release: Unknown
 Admin User File: false
 Cache User File: false
 Cg File: false
 High Level State: Unknown
 Intended State: Standby
 Name: sample-1
 Schema File: false
 Rep Create Statement: create active standby pair "sample" on
 "sample-0.sample.mynamespace.svc.cluster.local", "sample" on
 "sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
 "sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
 store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 50s ttclassic Secret tt517a8646-a354-11ea-a9fb-0a580aed5e4a
created
 - Create 50s ttclassic Service sample created
 - Create 50s ttclassic StatefulSet sample created

3. Use the kubectl get command again to see if value of the STATE field has changed. In
this example, the value is Normal, indicating the active standby pair of databases are now
provisioned and the process is complete.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 3m5s

4. Use the kubectl describe command again to view the active standby pair provisioning in
detail.

Note: In this example, the now Normal line displays on its own line. In the actual output,
this line does not display as its own line, but at the end of the StateChange previous line.

% kubectl describe ttc sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2023-04-30T15:35:12Z
 Generation: 1
 Resource Version: 20232668
 Self Link:

Chapter 5
Monitor Progress of an Active Standby Pair Deployment

5-5

/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: 517a8646-a354-11ea-a9fb-0a580aed5e4a
Spec:
 Ttspec:
 Db Config Map:
 sample
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci-bv
 Storage Size: 250Gi
Status:
 Active Pods: sample-0
 High Level State: Normal
 Last Event: 35
 Pod Status:
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 26
 Db Updatable: Yes
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1590939597
 Pod IP: 192.0.2.1
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 High Level State: Healthy
 Intended State: Active
 Name: sample-0
 Schema File: true
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 26
 Db Updatable: No
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1590939597
 Pod IP: 192.0.2.2

Chapter 5
Monitor Progress of an Active Standby Pair Deployment

5-6

 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 1590939496
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 High Level State: Healthy
 Intended State: Standby
 Name: sample-1
 Schema File: true
 Rep Create Statement: create active standby pair "sample" on
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
"sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 4m43s ttclassic Secret tt517a8646-a354-11ea-
a9fb-0a580aed5e4a created
 - Create 4m43s ttclassic Service sample created
 - Create 4m43s ttclassic StatefulSet sample created
 - StateChange 3m47s ttclassic Pod sample-0 Daemon Unknown
 - StateChange 3m47s ttclassic Pod sample-0 CacheAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-0 RepAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-1 Daemon Unknown
 - StateChange 3m47s ttclassic Pod sample-1 CacheAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-1 RepAgent Unknown
 - StateChange 3m26s ttclassic Pod sample-0 Agent Up
 - StateChange 3m26s ttclassic Pod sample-0 Release 22.1.1.19.0
 - StateChange 3m26s ttclassic Pod sample-0 Daemon Down
 - StateChange 3m26s ttclassic Pod sample-1 Agent Up
 - StateChange 3m26s ttclassic Pod sample-1 Release 22.1.1.19.0
 - StateChange 3m26s ttclassic Pod sample-1 Daemon Down
 - StateChange 3m26s ttclassic Pod sample-0 Daemon Up
 - StateChange 3m25s ttclassic Pod sample-1 Daemon Up
 - StateChange 2m13s ttclassic Pod sample-0 RepState IDLE
 - StateChange 2m13s ttclassic Pod sample-0 Database Updatable
 - StateChange 2m13s ttclassic Pod sample-0 CacheAgent Not Running
 - StateChange 2m13s ttclassic Pod sample-0 RepAgent Not Running
 - StateChange 2m13s ttclassic Pod sample-0 RepScheme None
 - StateChange 2m13s ttclassic Pod sample-0 Database Loaded
 - StateChange 2m11s ttclassic Pod sample-0 RepAgent Running
 - StateChange 2m10s ttclassic Pod sample-0 RepScheme Exists
 - StateChange 2m10s ttclassic Pod sample-0 RepState ACTIVE
 - StateChange 113s ttclassic Pod sample-1 Database Loaded
 - StateChange 113s ttclassic Pod sample-1 Database Not Updatable
 - StateChange 113s ttclassic Pod sample-1 CacheAgent Not Running
 - StateChange 113s ttclassic Pod sample-1 RepAgent Not Running
 - StateChange 113s ttclassic Pod sample-1 RepScheme Exists

Chapter 5
Monitor Progress of an Active Standby Pair Deployment

5-7

 - StateChange 113s ttclassic Pod sample-1 RepState IDLE
 - StateChange 106s ttclassic Pod sample-1 RepAgent Running
 - StateChange 101s ttclassic Pod sample-1 RepState STANDBY
 - StateChange 101s ttclassic TimesTenClassic was Initializing, now
Normal

Your active standby pair of TimesTen databases are successfully deployed (as
indicated by Normal.) There are two TimesTen databases, configured as an active
standby pair. One database is active. (In this example, sample-0 is the active
database, as indicated by Rep State ACTIVE). The other database is standby. (In this
example, sample-1 is the standby database as indicated by Rep State STANDBY). The
active database can be modified and queried. Changes made on the active database
are replicated to the standby database. If the active database fails, the Operator
automatically promotes the standby database to be the active. The formerly active
database will be repaired or replaced, and will then become the standby.

Verify Underlying Objects Exist
The Operator creates other underlying objects automatically. Verify that these objects
are created.

1. StatefulSet:

% kubectl get statefulset sample
NAME READY AGE
sample 2/2 8m21s

2. Service:

% kubectl get service sample
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
sample ClusterIP None <none> 6625/TCP 9m28s

3. Pods:

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 10m
sample-1 2/2 Running 0 10m
timesten-operator-5d7dcc7948-8mnz4 1/1 Running 0 11h

4. PersistentVolumeClaims (PVCs):

% kubectl get pvc
NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
tt-persistent-sample-0 Bound
ocid1.volume.oc1.phx.abyhqljrbxcgzyixa4pmmcwiqxgqclc7gxvdnoty367w2qn26tij6kfp
x
6qq
250Gi RWO oci-bv 10m
tt-persistent-sample-1 Bound
ocid1.volume.oc1.phx.abyhqljtt4qxxoj5jqiskriskh66hakaw326rbza4uigmuaezdnu53qh
h
oaa
250Gi RWO oci-bv 10m

Verify Connection to Active Database
You can run the kubectl exec command to invoke shells in your Pods and control
TimesTen, which is running in those Pods. By default, TimesTen runs in the Pods as

Chapter 5
Monitor Progress of an Active Standby Pair Deployment

5-8

the timesten user. Once you have established a shell in the Pod, verify you can connect to
the sample database, and that the information from the metadata files is correct. You can
optionally run queries against the database or any other operations.

1. Establish a shell in the Pod.

% kubectl exec -it sample-0 -c tt -- /bin/bash
2. Connect to the sample database. Verify the information in the metadata files is in the

database correctly. For example, attempt to connect to the database as the sampleuser
user. Check that the PermSize value of 200 is correct. Check that the sampleuser.emp
table exists.

 % ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)

Command> connect adding "uid=sampleuser;pwd=samplepw" as sampleuser;
Connection successful:
DSN=sample;UID=sampleuser;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)
sampleuser: Command> tables;
 SAMPLEUSER.EMP
1 table found.

Chapter 5
Monitor Progress of an Active Standby Pair Deployment

5-9

6
Deploy TimesTen Scaleout Databases

The TimesTen Operator supports the deployment of a TimesTen Scaleout grid and associated
databases in your Kubernetes cluster.

This chapter provides background information about the deployment process. It summarizes
the planning process for configuring a grid and shows you how to apply that plan when
configuring a grid in the Kubernetes environment. It describes the steps the TimesTen
Operator takes to deploy and provision a grid based on the information you provide. Use this
information to gain an understanding of how the Operator functions when deploying your
TimesTen Scaleout grid.

The second part of the chapter provides you with an end-to-end example that shows you the
steps to deploy your grid in the Kubernetes cluster.

If you want to advance directly to the example, see Deploy a Grid.

The TimesTen Operator also supports TimesTen Cache in TimesTen Scaleout. See Work with
TimesTen Cache.

Note:

You cannot use Helm to deploy TimesTen Scaleout databases. Instead, use the
procedures in this chapter.

Topics:

• About Deploying a Grid

• Deploy a Grid

About Deploying a Grid
The information in this section provides background information about configuring and
deploying a grid in the Kubernetes environment.

Topics:

• About Planning a Grid

• About Configuring a Grid

• About Provisioning a Grid

• About ssh

• About Creating a Grid

6-1

About Planning a Grid
One of the features of the TimesTen Operator is the ability for it to provision a
TimesTen Scaleout grid and its database in the Kubernetes cluster. Just like in any
other TimesTen Scaleout environment, you must do some planning for your grid.

Here are some considerations:

• K-Safety (represented by k): How many copies of your TimesTen database? The
K-Safety factor determines the number of data spaces in your grid. For example, if
you set k to 2, there are two copies of your database: one copy resides in data
space one and the second copy in data space two.

• Replica sets: How many replica sets in your grid? A replica set contains k
elements, where each element in the replica set is an exact copy of the other
elements in the replica set. The value of k, combined with the number of replica
sets, determines the number of data instances in the grid. For example, if you set
k to 2, and replica sets to 3, then there are six data instances in the grid.

• ZooKeeper instances: How many ZooKeeper instances for the grid?

• Database definition file (DbDef): What data store and first connection attributes are
needed for the database in the grid?

• Direct connectable: What general connection attributes are needed for the
database when using direct access?

• Client/server connectable: What general connection attributes are needed for the
database when using client/server access?

After you define your configuration, you provide that information to the TimesTen
Operator. The Operator takes over from there. It automatically does the provisioning
and the deployment of the grid and database for you.

About Configuring a Grid
The TimesTen Operator provides the TimesTenScaleout object type and configuration
metadata so that you can define and then deploy your TimesTen Scaleout grid and
database. The TimesTenScaleout object type provides the syntax for configuring your
grid. The configuration metadata lets you define the connection attributes for your
database. Taken together, the Operator has the necessary information to provision
your grid and database in the Kubernetes cluster.

Based on your planned configuration in About Planning a Grid, you can apply that
configuration to the Kubernetes environment:

• K-Safety (k): The Operator provides the .spec.ttspec.k element as part of the
syntax for the TimesTenScaleout object type. You specify k in the YAML manifest
file for your TimesTenScaleout object.

• Replica sets: The Operator provides the .spec.ttspec.nReplicaSets element as
part of the syntax for the TimesTenScaleout object type. You specify nReplicaSets
in the YAML manifest file for your TimesTenScaleout object.

• ZooKeeper instances: The Operator provides the .spec.ttspec.nZookeeper
element as part of the syntax for the TimesTenScaleout object type. You specify
nZookeeper in the YAML manifest file for your TimesTenScaleout object.

Chapter 6
About Deploying a Grid

6-2

• Database definition file (DbDef): The Operator creates a DbDef from the contents of the
db.ini metadata file. You create this metadata file and then use a Kubernetes facility (or
some other means) to place this file in the /ttconfig directory of the tt containers.

• One or more direct connectables: The Operator creates one or more direct connectables
from the contents of the *.connect metadata files. You create one or more of these
*.connect files and then use a Kubernetes facility (or some other means) to place the
files in the /ttconfig directory of the tt containers.

• One or more client/server connectables: The Operator creates one or more client/server
connectables from the contents of the *.csconnect metadata files. You create one or
more of these *.csconnect files and then use a Kubernetes facility (or some other
means) to place the files in the /ttconfig directory of the tt containers.

See TimesTenScaleoutSpecSpec, List of Configuration Metadata, and Populate the /ttconfig
Directory.

After the metadata files are placed in the /ttconfig directory of the tt containers, and you
configure and then deploy your TimesTenScaleout object in the Kubernetes cluster,
Kubernetes informs the Operator that a TimesTenScaleout object has been created. The
Operator begins the process of creating additional Kubernetes objects in order to implement
your grid.

About Provisioning a Grid
The TimesTen Operator gathers the information from the TimesTenScaleout object and
begins instantiating the TimesTen Scaleout grid and database. It creates the following
StatefulSets:

• One StatefulSet that provides the management instance for the grid. The Operator
supports one management instance. The underlying Pod for this management instance is
also created.

• One StatefulSet that provides one or more ZooKeeper instances. The Operator
determines the number of ZooKeeper instances by the value you specified for the
nZookeeper field in your TimesTenScaleout object definition. For example, if you specified
a value of 3 for nZookeeper, the Operator creates one StatefulSet with three replicas. The
underlying Pods for these ZooKeeper instances are also created. There is one Pod per
ZooKeeper instance.

• Additional StatefulSets, the number of which is determined by the value you specified for
the k field in your TimesTenScaleout object definition. For example, if you specified a
value of 2 for k, the Operator creates two StatefulSets. These StatefulSets provide data
instances for the grid. Each of the k StatefulSets provides Pods to implement a single
data space in the resultant grid. The StatefulSet has M replicas, the number of which is
determined by the value you specified for the nReplicaSets field in your
TimesTenScaleout object definition. For example, if you set nReplicaSets to 3, each
StatefulSet has three replicas. This number of replicas determines the number of replica
sets in the resultant grid.

In the preceding example, one StatefulSet has three replicas. This one StatefulSet
contains three data instances in data space one. A Pod is created for each data instance,
so there are three Pods created. The second StatefulSet contains three data instances in
data space two. A Pod is created for each data instance, so there are three Pods
created. There are a total of six total Pods created for the six data instances.

In addition, the Operator creates the following Kubernetes headless Services:

Chapter 6
About Deploying a Grid

6-3

• One headless Service that provides DNS names for the Pods that contain the
management and data instances. This service enables client/server access to the
Pods using the TimesTen client/server port 6625.

• One headless Service that provides DNS names for the Pods that contain the
ZooKeeper instances. This service enables access to the ZooKeeper internal ports
2888 and 3888, as well as the external port 2181.

There is an example of these StatefulSets and headless Services in Verify Underlying
Objects.

The Operator also creates Persistent Volume Claims (PVCs) for the Pods. These
PVCs cause persistent volumes to be allocated by Kubernetes and attached to the
TimesTen Pods and ZooKeeper Pods. See Persistent Storage.

Pods that run ZooKeeper consists of a single container called zookeeper. Each Pod
that is running TimesTen consists of at least two containers. The tt container runs the
TimesTen agent and TimesTen. The daemonlog container writes the TimesTen daemon
log to stdout.

As the tt containers in the TimesTen Pods start, the Operator assembles them into a
working grid. The grid's model is configured with several objects, including:

• Hosts for the data instances in each of the data space groups

• Each host configured with an installation of TimesTen

• Each host configured with a single TimesTen instance

• A DbDef (the contents of which are from the db.ini file)

• Direct mode connectables, if any, (the contents of which are from the *.connect
files)

• Client/server connectables, if any, (the contents of which are from the *.csconnect
files)

About ssh
A TimesTen Scaleout grid relies on password-less ssh among the instances of the
grid. The TimesTen Operator automatically configures password-less ssh among the
tt containers in the grid in your Kubernetes environment. There is no intervention that
you need to do.

About Creating a Grid
When creating the grid, the TimeTen Operator transitions to and from various High
Level states. Here is an explanation of these states:

After you create your TimesTenScaleout object in the Kubernetes cluster, the
TimesTen Operator creates the StatefulSets and Services that are required to deploy
your TimesTenScaleout grid and database. The Operator assigns a High Level state of
Initializing to the TimesTenScaleout object.

The Operator periodically polls the status of the StatefulSets' objects and their
underlying Pods. When the ZooKeeper Pods are ready, the TimesTenScaleout object
transitions from the Initializing state to the ZooKeeperReady state.

Chapter 6
About Deploying a Grid

6-4

When the TimesTen agent in the management Pod starts up, the Operator instructs the agent
to create a TimesTen instance and grid. The TimesTenScaleout object transitions to the
GridCreated state.

The Operator waits for all of the TimesTen agents in all of the Pods to start. Once all have
started, the Operator instructs the TimesTen agent in the management instance to create the
hosts, the installations, and the instances in the grid's model for the data instances in the grid.

The DbDef is then created from the contents of the db.ini file. The direct connectables are
created from the contents of the *.connect files. The client/server connectables are created
from the contents of the *.csconnect files.

The model is applied and the data instances of the grid are created. The TimesTenScaleout
object transitions to the InstanceCreated state.

The Operator then instructs the management instance to create the database (by using the
TimesTen ttGridAdmin utility with the dbCreate option) and to create the initial distribution
map (by using the TimesTen ttGridAdmin utility with the dbDistribute -add all -apply
options). The TimesTenScaleout object then transitions to the DbCreated state.

The Operator then instructs the TimesTen agent in one data instance to run the TimesTen
ttIsql utility to create the user in the adminUser file and run the schema.sql file (if you
provided these files). The TimesTenScaleout object transitions to the Normal state.

The grid and databases are created. The TimesTen agent then opens the database for
connections.

The Operator manages and monitors the TimesTenScaleout objects after they are deployed
in your Kubernetes cluster. The Operator also detects, repairs, and recovers from failures in
your grid and associated databases. See Manage TimesTen Scaleout.

There is an example showing the Operator transitioning to and from these High Level states
in Monitor the High Level State of a TimesTenScaleout Object.

Deploy a Grid
This section provides a step by step walk-through that shows you how to create and deploy a
TimesTen Scaleout grid and database in your Kubernetes cluster. The walk-through starts
with an example that shows you how to create metadata files and create a Kubernetes
ConfigMap. It continues with an example that shows you how to create a YAML file that
contains the definitions for your TimesTenScaleout object. It shows you how to deploy that
YAML file in your Kubernetes cluster. You learn how to monitor the provisioning of the
TimesTen grid and database, and verify the underlying Kubernetes objects were created by
the TimesTen Operator. The walk-through completes with one example that shows you how
to connect to the TimesTen database and run operations in it. The final example shows you
how to connect to the management instance to verify the health of the database and its
elements.

• Create Configuration Metadata and a Kubernetes ConfigMap for a Grid

• Define and Deploy a TimesTenScaleout Object

• Monitor the High Level State of a TimesTenScaleout Object

• Verify Underlying Objects

• Connect to the Database

• Manage a Grid and Its Database

Chapter 6
Deploy a Grid

6-5

Create Configuration Metadata and a Kubernetes ConfigMap for a
Grid

The following example creates the db.ini, the adminUser, and the schema.sql
metadata files for the TimesTen grid and the database. The example also creates a
direct and a client/server connectable. The example creates a Kubernetes ConfigMap
to place these metadata files into the /ttConfig directory of the TimesTen containers.

Note:

You can use any Kubernetes mechanism to place these metadata files into
the /ttConfig directory of the TimesTen containers. See Populate the /
ttconfig Directory.

On your development host, complete the following steps:

1. From the directory of your choice, create an empty subdirectory for the metadata
files. This example creates the cm_scaleout subdirectory. (The cm_scaleout
directory is used in the remainder of this example to denote this directory.)

mkdir -p cm_scaleout
2. Change to this ConfigMap directory.

cd cm_scaleout
3. Create the db.ini file in this ConfigMap directory. In this example, define the

PermSize and the DatabaseCharacterSet connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

4. Create the adminUser file.

vi adminUser

adminuser/adminuserpwd

5. Create the schema.sql file. In this schema.sql file, create the sampleuser user,
create the s sequence for the sampleuser user, and the emp table for the
sampleuser user. The Operator automatically initializes each element of the
TimesTen database with these object definitions.

vi schema.sql

create user sampleuser identified by sampleuserpwd;
grant admin to sampleuser;
create sequence sampleuser.s;

Chapter 6
Deploy a Grid

6-6

create table sampleuser.emp (id number not null primary key, name char
(32));

6. Create the sampledirect direct connectable.

vi sampledirect.connect

ConnectionCharacterSet=AL32UTF8

7. Create the sampleclient client/server connectable.

vi sampleclient.csconnect

ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

8. Optional: Verify the metadata files are present in the cm_scaleout ConfigMap directory.

ls

The output is the following:

adminUser
db.ini
sampleclient.csconnect
sampledirect.connect
schema.sql

9. From the cm_scaleout directory, create the samplescaleout ConfigMap. The files in the
cm_scaleout directory are included in the ConfigMap. These files are later available in
the TimesTen containers. Replace samplescaleout with a name of your choosing.

kubectl create configmap samplescaleout --from-file .

The output is the following:

configmap/samplescaleout created

10. Use the kubectl describe command to verify the contents of the samplescaleout
ConfigMap.

kubectl describe configmap samplescaleout

The output is the following:

Name: samplescaleout
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====

Chapter 6
Deploy a Grid

6-7

adminUser:

adminuser/adminuserpwd

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

sampleclient.csconnect:

ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

sampledirect.connect:

ConnectionCharacterSet=AL32UTF8

schema.sql:

create user sampleuser identified by sampleuserpwd;
grant admin to sampleuser;
create sequence sampleuser.s;
create table sampleuser.emp (id number not null primary key, name
char (32));

Events: <none>

You successfully created the metadata files and the ConfigMap.

Define and Deploy a TimesTenScaleout Object
Defining your environment involves creating your TimesTenScaleout object with
attributes customized for your environment. These attributes are described in the steps
below. For additional information on defining objects of type TimesTenScaleout, see
TimesTen Scaleout.

To define and create the TimesTenScaleout object, complete the following steps:

1. Create a YAML file. You can choose any name for this YAML file, but you may
want to use the same name you used for the name of the TimesTenScaleout
object. (This example uses samplescaleout.) The YAML file contains the
definitions for the TimesTenScaleout object. In this example, the fields that are
specific to a TimesTenScaleout object are as follows:

• k: Set the value of k to the number of copies of data for your TimesTen
database. This value determines the number of StatefulSets that the TimesTen
Operator creates. A StatefulSet provides the Pods that are used to implement
a single data space in the grid. For example, if you set k to 2, the Operator
creates two StatefulSets. One StatefulSet provides the Pods for the data
instances in data space one. The second StatefulSet provides the Pods for the
data instances in data space two.

This example sets k to 2.

Chapter 6
Deploy a Grid

6-8

For information on K-safety and determining an appropriate value for k, see K-Safety
in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

• nReplicaSets: Set the value to the number of replica sets in the grid. A replica set
contains k elements (where each element is an exact copy of the other elements in
the replica set). The nReplicaSets value determines the number of replicas for each
StatefulSet. For example, if you set k to 2, the TimesTen Operator creates two
StatefulSets for the data instances. If you set nReplicaSets to 3, each StatefulSet
contains three replicas, and the total number of replica sets in the database is three.

This example sets nReplicaSets to 3.

For information on replica sets, see Understanding Replica Sets in the Oracle
TimesTen In-Memory Database Scaleout User's Guide.

• nZookeeper: Set the value to the number of ZooKeeper Pods to provision in a
StatefulSet. Your options are 1 or 3 or 5.

This example sets nZookeeper to 3.

You also need to specify the following fields:

• name: Replace samplescaleout with the name of your TimesTenScaleout object.

• storageClassName: Replace oci-bv with the name of the storage class in your
Kubernetes cluster that is used to allocate Persistent Volumes to hold the TimesTen
database.

• storageSize: Replace 250Gi with the amount of storage that should be requested for
each Pod to hold TimesTen. (This example assumes a production environment and
uses 250Gi for storage. For demonstration purposes, you can use 50Gi of storage.)
See the storageSize and the logStorageSize entries in Table 17-7.

• image: Replace container-registry.oracle.com/timesten/timesten:22.1.1.19.0
with the location of the image registry and the name of the image. If you are using the
Oracle container-registry.oracle.com/timesten registry as the image registry
and the timesten:22.1.1.19.0 image as the container image, no replacement is
necessary.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes should
use to fetch the TimesTen image.

• dbConfigMap: This example uses one ConfigMap (called samplescaleout) for the
db.ini, the adminUser, the schema.sql, the sampledirect.connect, and the
sampleclient.csconnect metadata files. This ConfigMap is included in the Projected
Volume. The volume is mounted as /ttconfig in the TimesTen containers. See
Using ConfigMaps and Secrets.

vi samplescaleout.yaml

kind: TimesTenScaleout
metadata:
 name: samplescaleout
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret

Chapter 6
Deploy a Grid

6-9

 dbConfigMap:
 - samplescaleout
 k: 2
 nReplicaSets: 3
 nZookeeper: 3

2. Create the TimesTenScaleout object from the contents of the YAML file. Doing so
begins the process of creating and provisioning a TimesTen grid and database in
your Kubernetes cluster.

kubectl create -f samplescaleout.yaml

The output is the following:

timestenscaleout.timesten.oracle.com/samplescaleout created

You successfully created the TimesTenScaleout object in the Kubernetes cluster. The
process of provisioning your TimesTen grid and database begins, but is not yet
complete.

Monitor the High Level State of a TimesTenScaleout Object
Use the kubectl get and the kubectl describe commands to monitor the progress of
the grid and database creation.

Note:

For the kubectl get timestenscaleout command, you can alternatively
specify kubectl get tts. When used in the kubectl get command,
timestenscaleout and tts are synonymous, and return the same results.
The first kubectl get examples in this chapter use timestenscaleout. For
simplicity, the remaining examples in this book use tts.

1. Review the High Level state of the TimesTenScaleout object. Use the kubectl get
command and observe the STATE field. Notice that the value is Initializing. The
Operator has created the Kubernetes StatefulSets and Services. The process to
deploy and provision your grid and database has begun, but is not yet complete.
As you issue additional kubectl get commands, observe how the
TimesTenScaleout object transitions to different states. For more information on
these states, see About Creating a Grid.

kubectl get tts samplescaleout

Chapter 6
Deploy a Grid

6-10

The output is similar to the following:

NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout Initializing 20s

kubectl get tts samplescaleout

The output is similar to the following:

NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout ZookeeperReady 2m48s

kubectl get tts samplescaleout

The output is similar to the following:

NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout GridCreated 3m58s

kubectl get tts samplescaleout

The output is similar to the following:

NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout InstancesCreated 6m4s

kubectl get tts samplescaleout

The output is similar to the following:

NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout DatabaseCreated
6m10s

2. Use the kubectl get command again to observe if the High Level state has transitioned
from DatabaseCreated to Normal. A Normal state indicates the grid and database are
provisioned and the process is complete.

kubectl get tts samplescaleout

The output is similar to the following:

NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout Normal Normal created loaded-complete open
6m52s

Chapter 6
Deploy a Grid

6-11

Your TimesTen Scaleout grid and database are successfully created and provisioned
in your Kubernetes cluster. The database is open for connections.

Verify Underlying Objects
The TimesTen Operator creates the following objects for the samplescaleout
TimesTenScaleout object.

1. StatefulSets:

kubectl get statefulsets

The output is the following:

NAME READY AGE
samplescaleout-data-1 3/3 26m
samplescaleout-data-2 3/3 26m
samplescaleout-mgmt 1/1 26m
samplescaleout-zk 3/3 26m

The Operator creates the samplescaleout-data-1 and the samplescaleout-
data-2 StatefulSets. Two StatefulSets are created because the value of k is set to
2. Each StatefulSet provides the Pods for a single data space. There are two data
spaces in the grid. Each of the StatefulSets has three replicas (nReplicaSets is
set to 3). Therefore, the number of replica sets in the grid is three. There are three
data instances in data space one and three data instances in data space two.

The samplescaleout-mgmt StatefulSet provides the Pod for the management
instance. There is one management instance.

The samplscaleout-zk StatefulSet provides the Pods for the ZooKeeper
instances. There are three ZooKeeper instances (nZookeeper is set to 3).

2. Pods:

kubectl get pods

The output is the following:

NAME READY STATUS RESTARTS
AGE
samplescaleout-data-1-0 2/2 Running 0
27m
samplescaleout-data-1-1 2/2 Running 0
27m
samplescaleout-data-1-2 2/2 Running 0
27m
samplescaleout-data-2-0 2/2 Running 0
27m
samplescaleout-data-2-1 2/2 Running 0
27m
samplescaleout-data-2-2 2/2 Running 0
27m
samplescaleout-mgmt-0 2/2 Running 0

Chapter 6
Deploy a Grid

6-12

27m
samplescaleout-zk-0 1/1 Running 0 27m
samplescaleout-zk-1 1/1 Running 0 26m
samplescaleout-zk-2 1/1 Running 0 25m
timesten-operator-7677964df9-sp2zp 1/1 Running 0 3d20h

The samplescaleout-data-1 StatefulSet contains the data instances in data space one.
This StatefulSet creates the samplescaleout-data-1-0, samplescaleout-data-1-1, and
samplescaleout-data-1-2 Pods. The samplescaleout-data-2 contains the data
instances in data space two. This StatefulSet creates the samplescaleout-data-2-0,
samplescaleout-data-2-1, and samplescaleout-data-2-2 Pods.

The samplescaleout-mgmt-0 StatefulSet contains the management instance for the grid.
This StatefulSet creates the samplescaleout-mgmt-0 Pod.

Each of the Pods previously mentioned run TimesTen. Each Pod contains at least two
containers. In this example, each Pod contains two containers. The tt container runs the
TimesTen agent and TimesTen. The daemonlog container writes the TimesTen daemon
log to stdout.

The samplescaleout-zk StatefulSet contains the three ZooKeepers instances. This
StatefulSet creates the samplescaleout-zk-1, samplescaleout-zk-2, and
samplescaleout-zk-3 Pods. Each of these Pods contain a single container called
zookeeper.

The TimesTen Operator is running in the timesten-operator-554887b4c-48zwk Pod.

3. Headless Services:

kubectl get services

The output is the following:

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
samplescaleout ClusterIP None <none>
6625/TCP 28m
samplescaleout-zk ClusterIP None <none> 2181/
TCP,2888/TCP,3888/TCP 28m

The Operator creates the samplescaleout Headless Service. This Service provides the
DNS names for the Pods that contain the TimesTen management and data instances.
The Service allows client/server access to the Pods that use the client/server port (6625).
The DNS names are in the format:
podname.samplescaleout.namespace.svc.cluster.local.

The following example shows the DNS names for the samplescaleout Headless Service:

samplescaleout-mgmt-0.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-1-0.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-1-1.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-1-2.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-2-0.samplescaleout.mynamespace.svc.cluster.local

Chapter 6
Deploy a Grid

6-13

samplescaleout-data-2-1.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-2-2.samplescaleout.mynamespace.svc.cluster.local

The Operator creates a second Headless Service called samplescaleout-zk. This
Service allows access to the ZooKeeper internal ports (2888 and 3888) as well as
the external port (2181). The DNS names are in the format: samplescaleout-zk-
n.samplescaleout-zk.namespace.svc.cluster.local.

The following example shows the DNS names for the samplescaleout-zk
Headless Service:

samplescaleout-zk-0.samplescaleout-zk.mynamespace.svc.cluster.local
samplescaleout-zk-1.samplescaleout-zk.mynamespace.svc.cluster.local
samplescaleout-zk-2.samplescaleout-zk.mynamespace.svc.cluster.local

4. Persistent Volume Claims (PVCs):

kubectl get pvc

The output is the following:

NAME STATUS
VOLUME
 CAPACITY ACCESS MODES STORAGECLASS AGE
tt-persistent-samplescaleout-data-1-0 Bound
ocid1.volume.oc1.phx.abyhqljtl63wgaxd3nvengilkaxs5h2b23kmtinpzmmqt7b
kzjdpnfu2c2fq 53687091200 RWO oci-bv 14m
tt-persistent-samplescaleout-data-1-1 Bound
ocid1.volume.oc1.phx.abyhqljthxuwtpqx7rjtwvwsxjjkbgr25amjk7wtk26untb
qrealcqhe324q 53687091200 RWO oci-bv 14m
tt-persistent-samplescaleout-data-1-2 Bound
ocid1.volume.oc1.phx.abyhqljthtm6frcjtttp6ye7hq4w5vm3jxyay54f4xtcbol
v2ercjeca5khq 53687091200 RWO oci-bv 14m
tt-persistent-samplescaleout-data-2-0 Bound
ocid1.volume.oc1.phx.abyhqljtxgzm3raxj5sfoe56aonlh2mqqjre4quva4k3q3z
bbe7lftwqk3xa 53687091200 RWO oci-bv 14m
tt-persistent-samplescaleout-data-2-1 Bound
ocid1.volume.oc1.phx.abyhqljtk3htdair4akll5dfrwpkipv3acjtww5hx3x2fz4
6af7zdew7gsiq 53687091200 RWO oci-bv 14m
tt-persistent-samplescaleout-data-2-2 Bound
ocid1.volume.oc1.phx.abyhqljtiekgulpbadtwigehsuml75sngcuqjgqmx77lfpi
3wdeecbecavfa 53687091200 RWO oci-bv 14m
tt-persistent-samplescaleout-mgmt-0 Bound
ocid1.volume.oc1.phx.abyhqljtacxwop7r2wqx6hsvun4haaydnco3y6g3rkgbwp5
hq35alay7uwaq 53687091200 RWO oci-bv 14m
tt-persistent-samplescaleout-zk-0 Bound
ocid1.volume.oc1.phx.abyhqljtyoa5hdchax4sus652jtp665ckaef2cq3lakac2l
q52vfbls6kkcq 53687091200 RWO oci-bv 14m
tt-persistent-samplescaleout-zk-1 Bound
ocid1.volume.oc1.phx.abyhqljtongpcoggzpg2is25vmumijmah5gustwc3avgnij
rjigtqphtrana 53687091200 RWO oci-bv 13m
tt-persistent-samplescaleout-zk-2 Bound

Chapter 6
Deploy a Grid

6-14

ocid1.volume.oc1.phx.abyhqljttmgoljskb2ruawzv365uit7lsln2sbfno5e4vhh6plbgh
4tiblfq 53687091200 RWO oci-bv 10m

The Operator automatically creates one or two Persistent Volume Claims (PVCs) per
Pod. These PVCs cause Persistent Volumes (PVs) to be allocated by Kubernetes and
attached to the TimesTen Pods. TimesTen uses these PVs to hold the TimesTen instance
and database. If you specify two PVCs, one PV holds the TimesTen instance and the
checkpoint files and the second PV holds the TimesTen transaction logs. In this example,
the Operator creates one PVC for each Pod for a total of six PVCs. Each of the six PVs
hold the TimesTen instance and an element of the database.

The Operator creates one PVC for the Pod that contains the management instance.

The Operator creates one PVC for each Pod that runs a ZooKeeper instance. This PVC
causes a PV to be allocated by Kubernetes and attached to the ZooKeeper Pod. Each
PV holds ZooKeeper's persistent data. In this example, since there are three ZooKeeper
instances, the Operator created three PVCs.

Connect to the Database
You can establish a shell in a TimesTen Pod and connect to the TimesTen database in the
grid. You can then run operations in this TimesTen database.

1. Establish a shell in the TimesTen samplescaleout-data-1-0 Pod.

kubectl exec -it samplescaleout-data-1-0 -c tt -- /bin/bash

2. Connect to the samplescaleout database. Verify the information from the metadata files
is in the database. This example connects to the database as the sampleuser user. (This
user was created in the schema.sql file). The example then calls the ttConfiguration
built-in procedure to check that the PermSize connection attribute has a value of 200 for
this element of the database. The example then verifies the sampleuser.emp table exists.

ttisql -connstr "DSN=samplescaleout;uid=sampleuser;pwd=sampleuserpwd";

The output is similar to the following:

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=samplescaleout;uid=sampleuser;pwd=********";
Connection successful:
DSN=samplescaleout;Durability=0;UID=sampleuser;DataStore=/tt/home/
timesten/datastore/samplescaleout;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200
;
Connections=100;
(Default setting AutoCommit=1)
Command> call ttConfiguration ('PermSize');
< PermSize, 200 >
1 row found.

Chapter 6
Deploy a Grid

6-15

Command> tables;
 SAMPLEUSER.EMP
1 table found.

Manage a Grid and Its Database
You can establish a shell in the TimesTen Pod of the management instance. You can
then use the ttGridAdmin utility to manage and monitor the grid, including the health
of the TimesTen database and its elements.

1. Establish a shell in the TimesTen samplescaleout-management-0 Pod.

kubectl exec -it samplescaleout-mgmt-0 -c tt -- /bin/bash

2. Run the ttGridAdmin dbStatus -all to check the status of the TimesTen
database.

ttGridAdmin dbStatus -all

The output is the following:

Database samplescaleout summary status as of Sun Jan 15 17:00:11
UTC 2023

created,loaded-complete,open
Completely created elements: 6 (of 6)
Completely loaded elements: 6 (of 6)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 3 (of 3)

Open elements: 6 (of 6)

Database samplescaleout element level status as of Sun Jan 15
17:00:11 UTC 2023

Host Instance Elem Status Cache Agent Date/Time
of Event Message
----------------------- --------- ---- ------ -----------
------------------- -------
samplescaleout-data-1-0 instance1 1 opened stopped
2023-01-15 16:28:57
samplescaleout-data-1-1 instance1 2 opened stopped
2023-01-15 16:28:57
samplescaleout-data-1-2 instance1 3 opened stopped
2023-01-15 16:28:56
samplescaleout-data-2-0 instance1 4 opened stopped
2023-01-15 16:28:57
samplescaleout-data-2-1 instance1 5 opened stopped
2023-01-15 16:28:56
samplescaleout-data-2-2 instance1 6 opened stopped
2023-01-15 16:28:56

Database samplescaleout Replica Set status as of Sun Jan 15

Chapter 6
Deploy a Grid

6-16

17:00:11 UTC 2023

RS DS Elem Host Instance Status Cache Agent Date/Time
of Event Message
-- -- ---- ----------------------- --------- ------ -----------
------------------- -------
 1 1 1 samplescaleout-data-1-0 instance1 opened stopped
2023-01-15 16:28:57
 1 2 4 samplescaleout-data-2-0 instance1 opened stopped
2023-01-15 16:28:57
 2 1 2 samplescaleout-data-1-1 instance1 opened stopped
2023-01-15 16:28:57
 2 2 5 samplescaleout-data-2-1 instance1 opened stopped
2023-01-15 16:28:56
 3 1 3 samplescaleout-data-1-2 instance1 opened stopped
2023-01-15 16:28:56
 3 2 6 samplescaleout-data-2-2 instance1 opened stopped
2023-01-15 16:28:56

Database samplescaleout Data Space Group status as of Sun Jan 15 17:00:11
UTC 2023

DS RS Elem Host Instance Status Cache Agent Date/Time
of Event Message
-- -- ---- ----------------------- --------- ------ -----------
------------------- -------
 1 1 1 samplescaleout-data-1-0 instance1 opened stopped
2023-01-15 16:28:57
 1 2 2 samplescaleout-data-1-1 instance1 opened stopped
2023-01-15 16:28:57
 1 3 3 samplescaleout-data-1-2 instance1 opened stopped
2023-01-15 16:28:56
 2 1 4 samplescaleout-data-2-0 instance1 opened stopped
2023-01-15 16:28:57
 2 2 5 samplescaleout-data-2-1 instance1 opened stopped
2023-01-15 16:28:56
 2 3 6 samplescaleout-data-2-2 instance1 opened stopped
2023-01-15 16:28:56

Chapter 6
Deploy a Grid

6-17

7
Use Helm to Deploy the TimesTen
Kubernetes Operator and TimesTenClassic
Objects

You can use Helm to deploy TimesTen-specific Helm charts. These charts allow you to deploy
TimesTen Custom Resource Definitions (CRDs), the TimesTen Operator, and TimesTen
Classic objects.

The techniques for using Helm with the TimesTen Operator are optional. If you do not want to
use Helm, you can deploy the TimesTen CRDs, the TimesTen Operator, and
TimesTenClassic objects using alternative techniques. For more information, see About
Deploying the TimesTen Operator and Deploy TimesTen Classic Databases.

This chapter provides an overview of Helm and discusses how you use Helm charts to install
releases of software. The chapter details the charts that the TimesTen Operator provides. In
addition, it illustrates how you use these charts to deploy the TimesTen-specific Custom
Resource Definitions (CRDs), the TimesTen Operator, and one or more TimesTenClassic
objects in your Kubernetes cluster.

Topics:

• Overview of Helm

• About a Helm Chart

• About Helm Charts for TimesTen

• About Versions in a Chart.yaml File

• About the Helm Substitution Engine and Language

• About Installing and Testing a Release

• Install the TimesTen Custom Resource Definitions (CRDs)

• Install the TimesTen Operator

• Test the TimesTen Operator

• Install TimesTen Databases

• Test TimesTen

• Upgrade the TimesTen Custom Resource Definitions (CRDs)

• Upgrade the TimesTen Operator

• Upgrade TimesTen

• Roll Back a TimesTen Upgrade

• Roll Back a TimesTen Operator Upgrade

• Roll Back a TimesTen Custom Resource Definitions (CRDs) Upgrade

• About Uninstalling a Release

• Delete TimesTen Databases

7-1

• Delete the TimesTen Operator

• Delete the TimesTen Custom Resource Definitions (CRDs)

Overview of Helm
Helm is the package manager for Kubernetes. It is an open source project by the
Cloud Native Computing Foundation (CNCF).

Kubernetes provides a rich interface for deploying applications through an extensible
object model. Typically, you write manifest YAML files describing objects and then use
the kubectl command to feed the YAML files to Kubernetes. Kubernetes then
configures the Kubernetes cluster to match. Built-in object types include include Pod,
Service, and Persistent Volume. The TimesTen Operator extends the Kubernetes
object type system by adding objects of type TimesTenClassic and TimesTen Scaleout.

Helm is an optional layer on top of this architecture. Rather than manually creating
YAML files and using kubectl to apply the files, Helm gives application developers the
ability to package a set of YAML files into a single entity called a chart. Such a chart
can be installed into a Kubernetes cluster using a single command.

The YAML files provided in a chart are templates. When installing a chart, you can
specify a set of values to replace into the chart. Helm processes the YAML in the chart,
substituting values provided by you, and submits the final version to Kubernetes
through the kubectl command.

Helm also provides advanced facilities to manage applications:

• Charts can depend on other charts. Helm can assist in maintaining the
dependency relationships. Helm can install an application and its dependencies as
a unit.

• You can list charts that have been installed in your Kubernetes cluster and refer to
them by name.

• You can use the helm test command to verify the functioning of the application.

• You can upgrade an installed application by applying a new version of the chart
that installed the application.

• You can delete charts by name.

For more information about Helm, see https://helm.sh/docs/.

About a Helm Chart
A Helm chart is a collection of files in a directory. A chart consists of at minimum the
following:

• Chart.yaml: This file contains metadata about the chart, including its name and
version.

• templates: This is a directory containing one or more YAML file templates. A
sophisticated templating language allows variables to be substituted into these
files. Ultimately, when the chart is installed, Helm substitutes values into these
templates and presents the result to Kubernetes with the kubectl command.

• values.yaml: This file contains default values for the variables, which are used in
the chart's templates.

Chapter 7
Overview of Helm

7-2

https://www.cncf.io/
https://helm.sh/docs/

About Helm Charts for TimesTen
Helm charts that are used to deploy the TimesTen Operator and TimesTen are included in
each TimesTen release.

Each TimesTen release contains a TimesTen Operator distribution. The distribution is located
in a file called kubernetes/operator.zip. When unzipped, this file expands into the
TimesTen Operator distribution. There is a directory called helm that is included in the
TimesTen Operator distribution. The Helm charts that TimesTen publishes are included in
separate directories in the helm directory. For more information about the helm directory, see
Set Up the Environment .

The following charts are included in the TimesTen Operator distribution:

• ttcrd: Deploys the TimesTen Custom Resource Definitions (CRDs) into the Kubernetes
cluster.

• ttoperator: Deploys the TimesTen Operator.

• ttclassic: Creates a TimesTenClassic object, thus deploying an active standby pair of
TimesTen databases.

Each chart requires a different level of authority. As a result, the charts are packaged as
separate charts so they can be installed with appropriate privileges. In addition, a single
TimesTen Operator can simultaneously create and manage multiple TimesTen databases
and/or multiple TimesTen active standby pairs. Because the relationship between TimesTen
Operators and TimesTen databases is not one to one, there is a chart (ttoperator) to deploy
the TimesTen Operator and a separate chart (ttclassic) to deploy a TimesTen active
standby pair.

Note:

The TimesTen Operator does not provide a chart for TimesTen Scaleout.

About Versions in a Chart.yaml File
Each chart contains metadata in its Chart.yaml file.

Let's take a look at the Chart.yaml file for the ttoperator chart. In particular, let's look at the
appVersion and version metadata.

apiVersion: v2
appVersion: 22.1.1.19.0
description: A Helm chart for Kubernetes
name: ttoperator
type: application
version: 2211190.1.0

The value of appVersion is the TimesTen release number of the distribution that includes the
charts. For example, consider a TimesTen 22.1.1.19.0 release. When you unzip the
operator.zip file that is included in the 22.1.1.19.0 release, there are several charts in the

Chapter 7
About Helm Charts for TimesTen

7-3

operator.zip's helm directory. The value of appVersion in each chart's Chart.yaml
file is 22.1.1.19.0.

Similarly, the value of version is set to the TimesTen release number without dots (.)
followed by .1.0. For a TimesTen 22.1.1.19.0 release, the value of version in each
chart's Chart.yaml file is 2211190.1.0.

About the Helm Substitution Engine and Language
Helm has a robust substitution engine and language that lets you specify your own
values for variables in a chart's template YAML manifest files. For more information
about chart templates, see https://helm.sh/docs/chart_template_guide/getting_started/.

For each chart, the TimesTen Operator provides variables specific to the chart. For
example, the ttoperator chart has variables and default values specific to the
TimesTen Operator deployment. Similarly, the ttclassic chart has variables and
default values specific to the deployment of an active standby pair of TimesTen Classic
databases. You can change the default values for the provided variables.

You can define variables and values for those variables either on the helm command
line or by providing a YAML file with the values. The values may be strings, lists,
arbitrary YAML, or entire files.

For information about the variables for the TimesTen-specific Helm charts, see Helm
Charts for the TimesTen Kubernetes Operator.

About Installing and Testing a Release
The TimesTen Operator provides specific Helm charts for the TimesTen Custom
Resource Definitions (CRDs), the TimesTen Operator, and TimesTenClassic objects.
You use Helm to install these charts.

The installation of each chart serves a different purpose. For example:

• The ttcrd chard defines the TimesTen CRDs to your Kubernetes cluster.

• The ttoperator chart deploys the TimesTen Operator in your namespace.

• The ttclassic chart deploys a TimesTenClassic object in your namespace, which
results in the deployment of an active standby pair of TimesTen Classic databases.

The examples in the upcoming sections show you how to install these charts.

Before you install the charts, ensure you have completed the following:

• Unpacked the TimesTen Operator distribution. This distribution contains the
directories for the TimesTen-specific Helm charts. See Set Up the Environment .

• Installed Helm on your development host. See https://helm.sh/docs/intro/install/ in
the Helm documentation.

After you install a chart, you can test it with the helm test command. The helm test
command creates a test Pod. The Pod runs a command specific to the chart being
tested. If the command finishes with exit code 0, the test succeeds and the test Pod is
deleted. Any other error code indicates failure. In the case of failure, the test Pod is
not deleted.

Chapter 7
About the Helm Substitution Engine and Language

7-4

https://helm.sh/docs/chart_template_guide/getting_started/
https://helm.sh/docs/intro/install/

The examples in the upcoming sections show you how to use helm test to test the
ttoperator and ttclassic charts.

Install the TimesTen Custom Resource Definitions (CRDs)
The TimesTen Operator provides two Custom Resource Definitions (CRDs) called
timestenclassics.timesten.oracle.com and timestenscaleouts.timesten.oracle.com.
These CRDs define the TimesTenClassic and TimesTenScaleout object types.

Let's use Helm to install the TimesTen CRDs into your Kubernetes cluster. Since CRDs are
cluster-wide, the CRDs are available to all namespaces after they are installed. Let's install
the CRDs by installing the TimesTen Operator's ttcrd chart. You cannot customize the ttcrd
chart. Therefore, let's install the chart as is.

For more information about using Helm to install a chart, see https://helm.sh/docs/intro/
using_helm/.

1. On your development host, change to the helm directory. For more information about the
helm directory, see Set Up the Environment .

cd kube_files/helm

2. Install the ttcrd chart.

helm install ttcrd ./ttcrd

Output.

NAME: ttcrd
LAST DEPLOYED: Tue Oct 17 22:00:53 2023
NAMESPACE: mynamespace
STATUS: deployed
REVISION: 1
NOTES:
Version 2211190.1.0 of the ttcrd chart has been installed.

This release is named "ttcrd".

To learn more about the release, try:

 $ helm status ttcrd
 $ helm get all ttcrd
 $ helm history ttcrd

To rollback to a previous version of the chart, run:

 $ helm rollback ttcrd <REVISION>
 - run 'helm history ttcrd' for a list of revisions.

The ttcrd release is installed in your namespace.

Chapter 7
Install the TimesTen Custom Resource Definitions (CRDs)

7-5

https://helm.sh/docs/intro/using_helm/
https://helm.sh/docs/intro/using_helm/

3. Confirm the CRDs are defined in your Kubernetes cluster.

 kubectl get crds | grep timesten

Output.

timestenclassics.timesten.oracle.com
2023-10-17T22:00:53Z
timestenscaleouts.timesten.oracle.com
2023-10-17T22:00:53Z

The TimesTenClassic and TimesTenScaleout CRDs are defined in your Kubernetes
cluster.

Install the TimesTen Operator
The ttoperator chart contains all the information necessary to deploy the TimesTen
Operator in your namespace. The chart contains a default configuration for deploying
the TimesTen Operator. You have the option of customizing the chart to meet your
preferred configuration. Specifically, the TimesTen Operator provides several variables
whose values you can change to meet your configuration needs. For information about
these variables, see The ttoperator Chart.

After you decide the variables you want to customize, you have two options:

• Create a YAML file that defines the variables that you want to use to configure
your environment. Next, to install the chart, pass this YAML file to the helm
install command by specifying the -f option.

• Specify the variables on the command line by running the helm install command
with the --set option.

For more information about these options, see https://helm.sh/docs/intro/using_helm/.

The examples in the section use a YAML file.

Let's walk through an example illustrating how to install the ttoperator chart, which
deploys the TimesTen Operator. In this example, let's make the following modifications:

• imagePullSecret: Let's assume that sekret is the name of the Secret used to pull
images from the repository. Therefore, let's specify sekret for the
imagePullSecret variable.

• Container image: Rather that use a container image in container-
registry.oracle.com/timesten, let's assume you built you own container image
as discussed in Option 2: Build the TimesTen Container Image. Let's assume the
name of the container image you built and want to use is phx.ocir.io/
youraccount/tt2211190image:1. Based on this container image, let's modify the
following variables:

– repository: For the repository variable, specify a value of phx.ocir.io/
youraccount/tt2211190image.

– tag: For the tag variable, specify a value of 1.

Let's also assume you have created a kube_files/helm/customyaml directory for your
customized YAML files.

Chapter 7
Install the TimesTen Operator

7-6

https://helm.sh/docs/intro/using_helm/

Note:

By default, the ttoperator chart creates timesten-operator ServiceAccount, Role,
and RoleBinding Kubernetes objects. The Role and RoleBinding objects grant the
timesten-operator ServiceAccount the privileges needed to run the TimesTen
Operator. See The ttoperator Chart.

1. On your development host, change to the helm directory. For more information about the
helm directory, see Set Up the Environment .

cd kube_files/helm

2. Create a YAML file that defines the variables for your configuration.

vi customyaml/samplettop.yaml

image:
 repository: phx.ocir.io/youraccount/tt2211190image
 tag: "1"
 pullPolicy: Always
imagePullSecrets:
 - name: sekret

The customizations are as follows:

• Since the container image you built and want to use is phx.ocir.io/youraccount/
tt2211190image:1, the value of the repository variable is phx.ocir.io/
youraccount/tt2211190image and the value of the tag variable is 1.

• The image pull Secret is sekret.

3. To install the TimesTen Operator in your namespace, install the ttoperator chart.

helm install -f customyaml/samplettop.yaml samplettop ./ttoperator

Let's look at this helm install command:

• The -f option is used to pass the customized YAML file to the helm install
command.

• The name of the file that contains the customizations is samplettop.yaml, which is
located in the customyaml directory.

• The name of the release is samplettop.

• The name of the chart that installs the TimesTen Operator is ttoperator, which is
located in the helm/ttoperator directory.

Let's look at the output from the helm install command.

NAME: samplettop
LAST DEPLOYED: Mon Oct 23 23:04:40 2023
NAMESPACE: mynamespace
STATUS: deployed

Chapter 7
Install the TimesTen Operator

7-7

REVISION: 1
NOTES:
Version 2211190.1.0 of the ttoperator chart has been installed.

This release is named "samplettop".

To learn more about the release, try:

 $ helm status samplettop
 $ helm get all samplettop
 $ helm history samplettop

To rollback to a previous version of the chart, run:

 $ helm rollback samplettop <REVISION>
 - run 'helm history samplettop' for a list of revisions.

To test the operator, run:

 $ helm test samplettop

Note the following:

• The ttoperator chart version is 2211190.1.0 corresponding to the
22.1.1.19.0 TimesTen release.

• The release name is samplettop.

• The status of the release is deployed.

4. (Optional) Verify the release.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettop mynamespace 1 2023-10-23
23:04:40.492890589 +0000 UTC deployed
ttoperator-2211190.1.0 22.1.1.19.0
ttcrd mynamespace 1 2023-10-17
22:00:53.530832896 +0000 UTC deployed
ttcrd-2211190.1.0 22.1.1.19.0

The helm list command shows the samplettop release exists and is installed in
your namespace.

5. Confirm the TimesTen Operator is running in your namespace.

kubectl get pods

Chapter 7
Install the TimesTen Operator

7-8

Output.

NAME READY STATUS RESTARTS AGE
timesten-operator-65ddf9cfbb-jkqbn 1/1 Running 0 12s

6. Confirm the ServiceAccount, Role, and RoleBinding objects are created.

kubectl get serviceaccount timesten-operator
NAME SECRETS AGE
timesten-operator 0 25s

kubectl get role timesten-operator
NAME CREATED AT
timesten-operator 2023-10-23T22:04:43Z

kubectl get rolebinding timesten-operator
NAME ROLE AGE
timesten-operator Role/timesten-operator 10s

By default, the ttoperator chart created the timesten-operator ServiceAccount, Role,
and RoleBinding objects.

Congratulations! You successfully installed the ttoperator chart. The TimesTen Operator is
running in your namespace.

Test the TimesTen Operator
To test the TimesTen Operator, the test Pod uses the curl command to access the TimesTen
Operator's readiness probe endpoint. If the TimesTen Operator self-reports that it is ready,
the test succeeds.

The TimesTen Operator's readiness endpoint is exposed to the Kubernetes cluster through
the TimesTen Operator's EXPOSE_PROBES manifest variable. In the default configuration
(EXPOSE_PROBES=1), the TimesTen Operator creates a Kubernetes Service. This Service
makes the endpoint available from within the cluster. You can prevent this Service from being
created by setting probes.expose=0 in your customized YAML file. See The ttoperator Chart.

To test the TimesTen Operator, you test the ttoperator chart release running in your
namespace. Let's test the TimesTen Operator.

1. Examine the ttoperator chart release.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettop mynamespace 1 2023-10-23
23:04:40.492890589 +0000 UTC deployed ttoperator-2211190.1.0
22.1.1.19.0

Chapter 7
Test the TimesTen Operator

7-9

ttcrd mynamespace 1 2023-10-17
22:00:53.530832896 +0000 UTC deployed
ttcrd-2211190.1.0 22.1.1.19.0

The samplettop release of the ttoperator chart is installed in your namespace.
You installed this release in Install the TimesTen Operator.

2. Test the release.

 helm test samplettop

Output.

NAME: samplettop
LAST DEPLOYED: Mon Oct 23 23:04:40 2023
NAMESPACE: mynamespace
STATUS: deployed
REVISION: 1
TEST SUITE: samplettop-ttoperator-test
Last Started: Mon Oct 23 23:14:12 2023
Last Completed: Mon Oct 23 23:14:16 2023
Phase: Succeeded
NOTES:
Version 2211190.1.0 of the ttoperator chart has been installed.

This release is named "samplettop".

To learn more about the release, try:

 $ helm status samplettop
 $ helm get all samplettop
 $ helm history samplettop

To rollback to a previous version of the chart, run:

 $ helm rollback samplettop <REVISION>
 - run 'helm history samplettop' for a list of revisions.

To test the operator, run:

 $ helm test samplettop

The test for the samplettop release succeeded.

Congratulations! You successfully tested the TimesTen Operator. The test succeeded
and the TimesTen Operator is successfully running in your namespace.

Install TimesTen Databases
The ttclassic chart contains all the information necessary to deploy an active
standby pair of TimesTen Classic databases in your namespace. The chart contains a
default configuration for deploying TimesTen. You have the option of customizing the
chart to meet your preferred configuration. Specifically, the TimesTen Operator

Chapter 7
Install TimesTen Databases

7-10

provides several variables whose values you can change to meet your configuration needs.
For information about these variables, see The ttclassic Chart.

When customizing your environment, consider the following:

• The method you are using to place metadata files into the /ttconfig directory of
TimesTen containers. If you are using Kubernetes ConfigMaps or Secrets:

– You do not need to create them. The ttclassic chart installation generates
ConfigMaps and Secrets for you.

– You must create a directory in the helm/ttclassic directory tree of the ttclassic
chart. Place all your metadata files in this directory. All of the files in this directory are
added to the generated ConfigMap or Secret.

– You must specify the dbConfigMap (if using a ConfigMap) or dbSecret (if using a
Secret) variable in your customized YAML manifest file. For more information about
these variables, see The ttclassic Chart.

The example in this section illustrates how to use a ConfigMap for your metadata files.
For more information about using ConfigMaps or Secrets, see Populate the /ttconfig
Directory.

• If you are using helm test to test TimesTen:

– You must define a test user. The test connects to the TimesTen database as this
user.

– The TimesTen Operator provides a metadata file called testUser. Use this metadata
file to define the test user. This file must contain one line of the form:

testuser/testuserpassword

where testuser is the name of your test user and testuserpassword is the password
for this test user.

For more information about testing TimesTen using Helm, see Test TimesTen.

After you decide the variables you want to customize, you have two options:

• Create a YAML file that defines the variables that you want to use to configure your
environment. Next, to install the chart, pass this YAML file to the helm install command
by specifying the -f option.

• Specify the variables on the command line by running the helm install command with
the --set option.

For more information about these options, see https://helm.sh/docs/intro/using_helm/.

The examples in the section use a YAML file.

Let's walk through an example illustrating how to install the ttclassic chart, which deploys
an active standby pair of TimesTen Classic databases. In this example, let's do the following:

• Create a directory for the metadata files. In this example, the ttclassic chart installation
generates a ConfigMap from the files in this directory.

• Create the testUser metadata file. This file defines a test user. This user must be
defined in order to test TimesTen using Helm.

• Make modifications to the following ttclassic chart's variables:

Chapter 7
Install TimesTen Databases

7-11

https://helm.sh/docs/intro/using_helm/

– imagePullSecret: Let's assume that sekret is the name of the Secret used to
pull images from the repository. Therefore, let's specify sekret for the
imagePullSecret variable.

– Container image: Rather that use a container image in container-
registry.oracle.com/timesten, let's assume you built you own container
image as discussed in Option 2: Build the TimesTen Container Image. Let's
assume the name of the container image you built and want to use is
phx.ocir.io/youraccount/tt2211190image:1. Based on this container
image, let's modify the following variables:

* repository: For the repository variable, specify a value of phx.ocir.io/
youraccount/tt2211190image.

* tag: For the tag variable, specify a value of 1.

– storageClassName: Let's specify oci-bv for the storage class name. Since
there is no default for this variable, you must specify it.

– storageSize: Rather than use the default value of 50Gi, let's specify a value of
10Gi for the storage size.

– dbConfigMap: Since you are using a ConfigMap for the metadata files, you
must specify the dbConfigMap variable. This variable requires that you specify
a name for the ConfigMap as well as the directory where the metadata files
are located. The use of this variable is shown later in this example.

In addition, lets' assume you have created a kube_files/helm/customyaml directory
for your customized YAML files.

1. On your development host, change to the helm directory. For more information
about the helm directory, see Set Up the Environment .

cd kube_files/helm

2. Create a directory for the metadata files. The directory must be created in the
directory tree of the /ttclassic chart.

mkdir -p ttclassic/cm

The cm directory is the directory that will contain the metadata files. When you
install the ttclassic chart, a ConfigMap will be created and will contain the
metadata files located in the directory. There are steps in this example that later
illustrate this.

3. Create the testUser metadata file.

vi ttclassic/cm/testUser

sampletestuser/sampletestuserpwd1

In this example, the sampletestuser is the name of the test user that is used for
testing TimesTen with the helm test command. The password for sampletestuser
is sampletestuserpwd1. See Test TimesTen.

Chapter 7
Install TimesTen Databases

7-12

4. (Optional) Create additional metadata files as needed.

vi ttclassic/cm/adminUser

adminuser/adminuserpwd

vi ttclassic/cm/db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

vi ttclassic/cm/schema.sql

create table adminuser.emp (id number not null primary key, name char
(32));

The cm directory contains the testUser, adminUser, db.ini, and schema.sql metadata
files. A ConfigMap is the facility that will be used to place these metadata files in the /
ttconfig directory of the TimesTen containers. For more information about metadata
files and using a ConfigMap, see About Configuration Metadata Details and Populate
the /ttconfig Directory.

5. Create a YAML file that defines the variables for your configuration.

vi customyaml/samplettc.yaml

storageClassName: oci-bv
storageSize: 10Gi
image:
 repository: phx.ocir.io/youraccount/tt2211190image
 tag: "1"
 pullPolicy: Always
imagePullSecret: sekret
dbConfigMap:
 - name: samplettc
 directory: cm

The customizations are as follows:

• The storage class name is oci-bv.

• The storage size is 10Gi.

• Since the container image you built and want to use is phx.ocir.io/youraccount/
tt2211190image:1, the value of the repository variable is phx.ocir.io/
youraccount/tt2211190image and the value of the tag variable is 1.

• The image pull Secret is sekret.

• The name of the Kubernetes ConfigMap is samplettc. The location of the metadata
files is the cm directory. This directory is located within the kube_files/helm/
ttclassic directory tree.

Chapter 7
Install TimesTen Databases

7-13

6. To deploy an active standby pair of TimesTen databases, install the ttclassic
chart.

helm install -f customyaml/samplettc.yaml samplettc ./ttclassic

Let's look at this helm install command:

• The -f option is used to pass the customized YAML file to the helm install
command.

• The name of the file that contains the customizations is samplettc.yaml,
which is located in the customyaml directory.

• The name of the release is samplettc.

• The name of the chart that installs the TimesTen Operator is ttclassic, which
is located in the helm/ttclassic directory.

Let's look at the output from the helm install command.

NAME: samplettc
LAST DEPLOYED: Mon Oct 23 23:18:03 2023
NAMESPACE: mynamespace
STATUS: deployed
REVISION: 1
NOTES:
Version 2211190.1.0 of the ttclassic chart has been installed.

This release is named "samplettc".

To learn more about the release, try:

 $ helm status samplettc
 $ helm get all samplettc
 $ helm history samplettc

To rollback to a previous version of the chart, run:

 $ helm rollback samplettc <REVISION>
 - run 'helm history samplettc' for a list of revisions.

Note the following:

• The ttclassic chart version is 2211190.1.0 corresponding to the
22.1.1.19.0 TimesTen release.

• The release name is samplettc.

• The status of the release is deployed.

7. (Optional) Verify the release.

helm list

Chapter 7
Install TimesTen Databases

7-14

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettc mynamespace 1 2023-10-23
23:18:03.740512897 +0000 UTC deployed ttclassic-2211190.1.0
22.1.1.19.0
samplettop mynamespace 1 2023-10-23
23:04:40.492890589 +0000 UTC deployed ttoperator-2211190.1.0
22.1.1.19.0
ttcrd mynamespace 1 2023-10-17
22:00:53.530832896 +0000 UTC deployed ttcrd-2211190.1.0
22.1.1.19.0

The helm list command shows the samplettc release exists and is installed in your
namespace.

8. Wait a few minutes, then confirm the TimesTenClassic object is deployed in your
namespace and is in the Normal state.

kubectl get ttc samplettc

Output.

NAME STATE ACTIVE AGE
samplettc Normal samplettc-0 114s

The samplettc TimesTenClassic object is deployed and is in the Normal state.

9. Confirm the ConfigMap was created and the metadata files are in the ConfigMap.

kubectl get configmap samplettc

Output.

NAME DATA AGE
samplettc 4 2m17s

Check metadata files.

kubectl describe configmap samplettc

Output.

Name: samplettc
Namespace: mynamespace
Labels: app.kubernetes.io/managed-by=Helm
Annotations: meta.helm.sh/release-name: samplettc
 meta.helm.sh/release-namespace: mynamespace

Data

Chapter 7
Install TimesTen Databases

7-15

====
adminUser:

adminuser/adminuserpwd

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

schema.sql:

create table adminuser.emp (id number not null primary key, name
char (32));

testUser:

sampletestuser/sampletestuserpwd1

BinaryData
====

Events: <none>

The samplettc ConfigMap was created and the metadata files are included in the
ConfigMap. Since the testUser is defined, you can use Helm to test TimesTen.
See Test TimesTen.

10. (Optional) Confirm the active and standby Pods are running.

kubectl get pods

Output.

NAME READY STATUS RESTARTS
AGE
samplettc-0 3/3 Running 0
2m51s
samplettc-1 3/3 Running 0
2m41s
timesten-operator-65ddf9cfbb-jkqbn 1/1 Running 0
12m

The samplettc-0 and samplettc-1 Pods are running in your namespace.

Congratulations! You successfully installed the ttclassic chart. An active standby pair
of TimesTen Classic databases is deployed in your namespace. Both the active and
standby databases are up and running.

Chapter 7
Install TimesTen Databases

7-16

Test TimesTen
To test TimesTen, the test Pod runs a script that attempts to connect to the TimesTen
database by using TimesTen's client/server access. If the script can connect to the database,
the script then looks at internal metadata to verify that the database is functioning properly.

The test connects to the database as the test user. The TimesTen Operator provides the
testUser metadata file that lets you define this test user. For more information about the
testUser metadata file and this test user, see testUser and Install TimesTen Databases.

If you do not define a test user, the test fails. If you do define a test user, the user only has
CONNECT privileges. This limits the test and the test user's access to the database.

The test verifies that the active standby pair of TimesTen Classic databases are up and
running and that replication between them is functional.

To test TimesTen, you test the ttclassic chart release running in your namespace. Let's test
TimesTen.

1. Confirm the ttclassic release.

 helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettc mynamespace 1 2023-10-23
23:18:03.740512897 +0000 UTC deployed ttclassic-2211190.1.0
22.1.1.19.0
samplettop mynamespace 1 2023-10-23
23:04:40.492890589 +0000 UTC deployed ttoperator-2211190.1.0
22.1.1.19.0
ttcrd mynamespace 1 2023-10-17
22:00:53.530832896 +0000 UTC deployed ttcrd-2211190.1.0
22.1.1.19.0

The samplettc release is installed in your namespace. You installed this release in Install
TimesTen Databases.

2. Confirm the TimesTenClassic object is running in your namespace.

 kubectl get ttc samplettc

Output.

NAME STATE ACTIVE AGE
samplettc Normal samplettc-0 10m

The samplettc TimesTenClassic object is deployed in your namespace.

Chapter 7
Test TimesTen

7-17

3. Test TimesTen.

 helm test samplettc

Output.

NAME: samplettc
LAST DEPLOYED: Mon Oct 23 23:18:03 2023
NAMESPACE: mynamespace
STATUS: deployed
REVISION: 1
TEST SUITE: samplettc-ttclassic-test
Last Started: Mon Oct 23 23:29:27 2023
Last Completed: Mon Oct 23 23:29:32 2023
Phase: Succeeded
NOTES:
Version 2211190.1.0 of the ttclassic chart has been installed.

This release is named "samplettc".

To learn more about the release, try:

 $ helm status samplettc
 $ helm get all samplettc
 $ helm history samplettc

To rollback to a previous version of the chart, run:

 $ helm rollback samplettc <REVISION>
 - run 'helm history samplettc' for a list of revisions.

The test for the samplettc release succeeded. Since the test succeeded, the test
Pod is deleted.

Congratulations! You successfully tested TimesTen. The active and standy databases
are up and running and replication between them is functional.

Upgrade the TimesTen Custom Resource Definitions
(CRDs)

To upgrade the TimesTen Custom Resource Definitions (CRDs) in your cluster, use the
ttcrd chart from the new release.

This example upgrades from TimesTen release 22.1.1.19.0 to 22.1.1.20.0. For
more information about TimesTen releases, see Overview of release numbers in the
Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

Let's assume you previously created the new_kube_files directory and unpacked the
new release of the TimesTen Operator distribution into this directory.

Chapter 7
Upgrade the TimesTen Custom Resource Definitions (CRDs)

7-18

1. Review the current ttcrd release that is deployed in your namespace.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettc mynamespace 1 2023-10-23
23:18:03.740512897 +0000 UTC deployed ttclassic-2211190.1.0
22.1.1.19.0
samplettop mynamespace 1 2023-10-23
23:04:40.492890589 +0000 UTC deployed ttoperator-2211190.1.0
22.1.1.19.0
ttcrd mynamespace 1 2023-10-17
22:00:53.530832896 +0000 UTC deployed ttcrd-2211190.1.0
22.1.1.19.0

The ttcrd chart version is 2211190.1.0 and appversion is 22.1.1.19.0 corresponding
to the TimesTen 22.1.1.19.0 release.

2. On your development host, change to the new_kube_files/helm directory.

cd new_kube_files/helm

This directory contains the new release of the charts. For more information about the
helm directory, see Set Up the Environment .

3. Upgrade to the new release.

helm upgrade ttcrd ./ttcrd

Output.

Release "ttcrd" has been upgraded. Happy Helming!
NAME: ttcrd
LAST DEPLOYED: Tue Oct 24 16:00:21 2023
NAMESPACE: mynamespace
STATUS: deployed
REVISION: 2
NOTES:
Version 2211200.1.0 of the ttoperator chart has been installed.

This release is named "ttcrd".

To learn more about the release, try:

 $ helm status ttcrd
 $ helm get all ttcrd
 $ helm history ttcrd

To rollback to a previous version of the chart, run:

Chapter 7
Upgrade the TimesTen Custom Resource Definitions (CRDs)

7-19

 $ helm rollback ttcrd <REVISION>
 - run 'helm history ttcrd' for a list of revisions.

The TimesTen CRDs are upgraded to the new release. The ttcrd chart's version
is 2211200.1.0.

Congratulations! You successfully upgraded the TimesTen CRDs.

Upgrade the TimesTen Operator
You can upgrade the TimesTen Operator to a new release. You can perform the
upgrade while there are TimesTenClassic or TimesTenScaleout objects deployed in
your namespace.

To upgrade the TimesTen Operator in your namespace, use the ttoperator chart from
the new release.

This example upgrades from TimesTen release 22.1.1.19.0 to 22.1.1.20.0. For
more information about TimesTen releases, see Overview of release numbers in the
Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

Let's assume you previously created the new_kube_files directory and unpacked the
new release of the TimesTen Operator distribution into this directory.

The ttoperator chart contains all the information necessary to upgrade the TimeTen
Operator in your namespace. The chart contains a default configuration for deploying
a new release of the TimesTen Operator. In addition, if the default container image is
not the image you want to upgrade to, you can modify the ttoperator's chart default
image variable to reference your new container image. For example, if the default
container image for the new release is container-registry.oracle.com/timesten/
timesten/22.1.1.20.0 and instead you want to use your newly built phx.ocir.io/
youraccount/tt2211200image:2 container image, you modify the image variable as
follows:

image:
 repository: phx.ocir.io/youraccount/tt2211200image
 tag: "2"

Let's walk through an example illustrating how to upgrade the TimesTen Operator to a
new release. In the example, let's assume you want to use your phx.ocir.io/
youraccount/tt2211200image:2 container image.

The example uses a customized YAML file to define the container image that contains
the new release. Let's assume you have previously created a new_kube_files/helm/
customyaml directory for your customized YAML files.

1. Verify the TimesTen Operator that is deployed in your namespace is running the
expected image.

Review Pods.

kubectl get pods
NAME READY STATUS RESTARTS
AGE

Chapter 7
Upgrade the TimesTen Operator

7-20

samplettc-0 3/3 Running 0 14h
samplettc-1 3/3 Running 0 14h
timesten-operator-65ddf9cfbb-jkqbn 1/1 Running 0 15h

Verify the TimesTen Operator is running the expected image.

kubectl get pod timesten-operator-65ddf9cfbb-jkqbn -o yaml | grep image

Output.

 image: phx.ocir.io/youraccount/tt2211190image:1
 imagePullPolicy: Always
...

The TimesTen Operator is running the expected image. See Install the TimesTen
Operator.

2. On your development host, change to the helm directory of the new release.

cd new_kube_files/helm

This directory contains the new release of the charts. For more information about the
helm directory, see Set Up the Environment .

3. Create a YAML file that references the new container image.

vi customyaml/upgradeoperator.yaml

image:
 repository: phx.ocir.io/youraccount/tt2211200image
 tag: "2"
imagePullSecrets:
 - name: sekret

The customizations are as follows:

• Since the container image you built and want to use for the upgrade is phx.ocir.io/
youraccount/tt2211200image:2, the value of the repository variable is
phx.ocir.io/youraccount/tt2211200image and the value of the tag variable is 2.

• The image pull Secret is sekret.

4. Confirm the name of the TimesTen Operator release.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettc mynamespace 1 2023-10-23
23:18:03.740512897 +0000 UTC deployed ttclassic-2211190.1.0

Chapter 7
Upgrade the TimesTen Operator

7-21

22.1.1.19.0
samplettop mynamespace 1 2023-10-23
23:04:40.492890589 +0000 UTC deployed
ttoperator-2211190.1.0 22.1.1.19.0
ttcrd mynamespace 2 2023-10-24
16:00:21.530832896 +0000 UTC deployed
ttcrd-2211200.1.0 22.1.1.20.0

The helm list command shows the samplettop release exists and is installed in
your namespace. For more information about installing the TimesTen Operator,
see Install the TimesTen Operator.

5. Upgrade the TimesTen Operator to the new release. To upgrade the TimesTen
Operator, use the ttoperator chart from the new release and use the customized
YAML file that references the new image.

helm get values samplettop --all > prev-values-ttop.yaml && helm
upgrade -f prev-values-ttop.yaml -f customyaml/
upgradeoperator.yaml samplettop ./ttoperator

Let's look at this helm upgrade command:

• The get values samplettop Helm command retrieves the values for the
current release, including existing customizations. The result of this command
is piped into the prev-values-ttop.yaml file. You can choose any name for
this file.

• The helm upgrade command uses the prev-values-ttop.yaml file with the
customized upgradeoperator.yaml file to do the upgrade.

Note:

We recommend this syntax. This ensures existing customizations are
preserved.

Let's look at the output from the helm upgrade command.

Release "samplettop" has been upgraded. Happy Helming!
NAME: samplettop
LAST DEPLOYED: Tue Oct 24 16:15:21 2023
NAMESPACE: mynamespace
STATUS: deployed
REVISION: 2
NOTES:
Version 2211200.1.0 of the ttoperator chart has been installed.

This release is named "samplettop".

To learn more about the release, try:

 $ helm status samplettop
 $ helm get all samplettop
 $ helm history samplettop

Chapter 7
Upgrade the TimesTen Operator

7-22

To rollback to a previous version of the chart, run:

 $ helm rollback samplettop <REVISION>
 - run 'helm history samplettop' for a list of revisions.

To test the operator, run:

 $ helm test samplettop

Note the following:

• The samplettop release is upgraded. The release revision is 2.

• The status of the release is deployed.

• The ttoperator chart version is 2211200.1.0 corresponding to the 22.1.1.20.0
TimesTen release.

6. Verify the TimesTen Operator is running in your namespace.

kubectl get pods
NAME READY STATUS RESTARTS AGE
samplettc-0 3/3 Running 0 17h
samplettc-1 3/3 Running 0 17h
timesten-operator-767b8f9477-l297n 1/1 Running 0 2m53s

7. Verify the TimesTen Operator is running the new image.

 kubectl get pod timesten-operator-767b8f9477-l297n -o yaml | grep image

Output.

 image: phx.ocir.io/youraccount/tt2211200image:2
 imagePullPolicy: Always
...

The TimesTen Operator is running the new image.

8. (Optional): Test the ttoperator release.

 helm test samplettop

Output.

NAME: samplettop
LAST DEPLOYED: Tue Oct 24 16:15:21 2023
NAMESPACE: mynamespace
STATUS: deployed
REVISION: 2
TEST SUITE: samplettop-ttoperator-test
Last Started: Tue Oct 24 16:32:15 2023
Last Completed: Tue Oct 24 16:32:18 2023
Phase: Succeeded

Chapter 7
Upgrade the TimesTen Operator

7-23

NOTES:
Version 2211200.1.0 of the ttoperator chart has been installed.

This release is named "samplettop".

To learn more about the release, try:

 $ helm status samplettop
 $ helm get all samplettop
 $ helm history samplettop

To rollback to a previous version of the chart, run:

 $ helm rollback samplettop <REVISION>
 - run 'helm history samplettop' for a list of revisions.

To test the operator, run:

 $ helm test samplettop

The test succeeded.

Congratulations! You successfully upgraded the ttoperator chart. The TimesTen
Operator that is running in your namespace is using the new image.

Upgrade TimesTen
You can upgrade a TimesTenClassic object and its active standby pair of TimesTen
Classic databases to a new TimesTen release.

To upgrade TimesTen, use the ttclassic chart from the new release.

This example upgrades from TimesTen release 22.1.1.19.0 to 22.1.1.20.0. For
more information about TimesTen releases, see Overview of release numbers in the
Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

Let's assume you previously created the new_kube_files directory and unpacked the
new release of the TimesTen Operator distribution into this directory.

The ttclassic chart contains all the information necessary to upgrade an active
standby pair of TimesTen Classic databases that are deployed in your namespace.
The chart contains a default configuration for deploying a new release of TimesTen. In
addition, if the default container image is not the image you want to upgrade to, you
can modify the ttclassic's chart default image variable to reference your new
container image. For example, if the default container image for the new release is
container-registry.oracle.com/timesten/timesten/22.1.1.20.0 and instead you
want to use your newly built phx.ocir.io/youraccount/tt2211200image:2 container
image, you modify the image variable in the following way:

image:
 repository: phx.ocir.io/youraccount/tt2211200image
 tag: "2"

Chapter 7
Upgrade TimesTen

7-24

Let's walk through an example illustrating how to upgrade the ttclassic chart, which
upgrades an active standby pair of TimesTen databases to a new release. In the example,
let's assume you want to use your phx.ocir.io/youraccount/tt2211200image:2 container
image.

The example uses a customized YAML file to define the container image that contains the
new release. Let's assume you have previously created a new_kube_files/helm/customyaml
directory for your customized YAML files.

Note:

When an upgrade is performed, the standby is terminated first. It takes some time
for the standby to come back up. During this wait period, the standby is upgraded to
the new release. During the upgrade of the standby, depending on your replication
configuration, there may be disruption on the active database. This may impact your
applications. Next, the failover from the active to the standby occurs. The active is
terminated. There is a wait period for the former active to come back up. During this
wait period, the active is upgraded to the new release. The standby database is
promoted to the active and the former active becomes the standby.

Ensure you perform an upgrade at the appropriate time. We recommend that you
do not perform upgrades at the busiest time of a production day. Applications see
shortages and perhaps reduced performance as a result of the upgrade procedure.

1. Review the TimesTenClassic object is deployed and is in the Normal state.

kubectl get ttc samplettc

Output.

NAME STATE ACTIVE AGE
samplettc Normal samplettc-0 20h

2. Verify the TimesTenClassic object is running the expected image.

kubectl get ttc samplettc -o yaml | grep image

Output.

 image: phx.ocir.io/youraccount/tt2211190image:1
 imagePullPolicy: Always
 imagePullSecret: sekret
 imageUpdatePending: false

The TimesTenClassic object is running the expected image.

3. On your development host, change to the helm directory of the new release.

cd new_kube_files/helm

Chapter 7
Upgrade TimesTen

7-25

This directory contains the new release of the charts. For more information about
the helm directory, see Set Up the Environment .

4. Create a YAML file that references the new container image.

vi customyaml/samplettc.yaml

image:
 repository: phx.ocir.io/youraccount/tt2211200image
 tag: "2"
imagePullSecret: sekret

The customizations are as follows:

• Since the container image you built and want to use for the upgrade is
phx.ocir.io/youraccount/tt2211200image:2, the value of the repository
variable is phx.ocir.io/youraccount/tt2211200image and the value of the
tag variable is 2.

• The image pull Secret is sekret.

5. Confirm the name of the release for the ttclassic chart.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettc mynamespace 1 2023-10-23
23:18:03.740512897 +0000 UTC deployed
ttclassic-2211190.1.0 22.1.1.19.0
samplettop mynamespace 2 2023-10-24
16:15:24.896107706 +0000 UTC deployed
ttoperator-2211200.1.0 22.1.1.20.0
ttcrd mynamespace 2 2023-10-24
16:10:21.530832896 +0000 UTC deployed
ttcrd-2211200.1.0 22.1.1.20.0

The helm list command shows the samplettc release exists and is installed in
your namespace.

6. Upgrade the TimesTenClassic object and its active standby pair of databases to a
new release. To upgrade, use the ttclassic chart from the new release and use
the customized YAML file that references the new image.

helm get values samplettc --all > prev-values-ttc.yaml && helm
upgrade -f prev-values-ttc.yaml -f customyaml/upgradettc.yaml
samplettc ./ttclassic

Let's look at this helm upgrade command:

• The get values samplettc Helm command retrieves the values for the
current release, including existing customizations. The result of this command

Chapter 7
Upgrade TimesTen

7-26

is piped into the prev-values-ttc.yaml file. You can choose any name for this file.

• The helm upgrade command uses the prev-values-ttc.yaml file with the
customized upgradettc.yaml file to do the upgrade.

Note:

We recommend this syntax. This ensures existing customizations are
preserved.

Let's look at the output from the helm upgrade command.

Release "samplettc" has been upgraded. Happy Helming!
NAME: samplettc
LAST DEPLOYED: Tue Oct 24 19:55:45 2023
NAMESPACE: mynamespace
STATUS: deployed
REVISION: 2
NOTES:
Version 2211200.1.0 of the ttclassic chart has been installed.

This release is named "samplettc".

To learn more about the release, try:

 $ helm status samplettc
 $ helm get all samplettc
 $ helm history samplettc

To rollback to a previous version of the chart, run:

 $ helm rollback samplettc <REVISION>
 - run 'helm history samplettc' for a list of revisions.

Note the following:

• The samplettc release is upgraded. The release revision is 2.

• The status of the release is deployed.

• The ttclassic chart version is 2211200.1.0 corresponding to the 22.1.1.20.0
TimesTen release.

• The TimesTenClassic object will be replaced by one that is using the new image. This
causes the TimesTen Operator to automatically upgrade both databases in the active
standby pair to the new release.

7. Observe the automatic upgrade.

 kubectl describe ttc samplettc

Chapter 7
Upgrade TimesTen

7-27

Output.

Name: samplettc
Namespace: mynamespace
Labels: app.kubernetes.io/managed-by=Helm
Annotations: meta.helm.sh/release-name: samplettc
 meta.helm.sh/release-namespace: mynamespace
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Upgrade 7m44s timesten Image updated, automatic
upgrade started
 Normal Upgrade 7m44s timesten Deleted standby pod
samplettc-1 during upgrade
 Normal Info 6m43s timesten Pod samplettc-1 Agent Down
 Normal Info 6m42s timesten Pod samplettc-1 Agent Up
 Normal Info 6m42s timesten Pod samplettc-1 Instance
Exists
 Normal Info 6m42s timesten Pod samplettc-1 Daemon Down
 Normal StateChange 6m42s timesten Pod samplettc-1 is Not
Ready
 Warning StateChange 6m42s timesten TimesTenClassic was
Normal, now ActiveTakeover
 Normal StateChange 6m42s timesten TimesTenClassic was
ActiveTakeover, now StandbyDown
 Normal Info 6m42s timesten Pod samplettc-1 Agent Down
 Normal Info 6m37s timesten Pod samplettc-1 Agent Up
 Normal Info 6m37s timesten Pod samplettc-1 Instance
Exists
 Normal Info 6m37s timesten Pod samplettc-1 Daemon Down
 Normal Info 6m37s timesten Pod samplettc-1 Daemon Up
 Normal Info 6m37s timesten Pod samplettc-1 Database
Unloaded
 Normal Info 6m35s timesten Pod samplettc-1 Database
None
 DEBUG Info 6m32s timesten pollAsyncStatus: Async
polling for RepDuplicate, timeout in 597 secs
 DEBUG Info 6m29s timesten pollAsyncStatus: Async
polling for RepDuplicate, timeout in 594 secs
 DEBUG Info 6m26s timesten pollAsyncStatus: Async
polling for RepDuplicate, timeout in 591 secs
 DEBUG Info 6m23s timesten pollAsyncStatus: Async
polling for RepDuplicate, timeout in 588 secs
 Normal Info 6m20s timesten Pod samplettc-1 Database
Loaded
 Normal Info 6m19s timesten Pod samplettc-1 RepAgent
Not Running
 Normal Info 6m19s timesten Pod samplettc-1 RepScheme
Exists
 Normal StateChange 6m19s timesten Pod samplettc-1 RepState
IDLE
 Normal Info 6m14s timesten Pod samplettc-1 RepAgent
Running
 Normal StateChange 6m14s timesten TimesTenClassic was

Chapter 7
Upgrade TimesTen

7-28

StandbyDown, now StandbyStarting
 Normal StateChange 6m13s timesten TimesTenClassic was
StandbyStarting, now StandbyCatchup
 Normal StateChange 5m36s timesten Pod samplettc-1 RepState STANDBY
 Normal Upgrade 5m36s timesten Upgrade of standby complete
 Normal StateChange 5m36s timesten TimesTenClassic was
StandbyCatchup, now Normal
 Normal Upgrade 5m4s timesten Deleted active pod samplettc-0
during upgrade
 Normal Info 5m4s timesten Pod samplettc-0 Agent Down
 Normal StateChange 4m59s timesten Pod samplettc-0 is Not Ready
 Normal StateChange 4m59s timesten Pod samplettc-0 is Not Active
Ready
 Normal StateChange 4m59s timesten Pod samplettc-1 is Ready
 Warning StateChange 4m59s timesten TimesTenClassic was Normal, now
ActiveDown
 Normal Info 4m57s timesten Pod samplettc-1 Database
Updatable
 Normal StateChange 4m57s timesten Pod samplettc-1 RepState ACTIVE
 Normal StateChange 4m57s timesten Pod samplettc-1 is Not Ready
 Normal StateChange 4m57s timesten TimesTenClassic was ActiveDown,
now ActiveTakeover
 Normal StateChange 4m56s timesten Pod samplettc-1 is Ready
 Normal StateChange 4m56s timesten Pod samplettc-1 is Active Ready
 Normal StateChange 4m56s timesten TimesTenClassic was
ActiveTakeover, now StandbyDown
 Normal Info 4m6s timesten Pod samplettc-0 Agent Up
 Normal Info 4m6s timesten Pod samplettc-0 Instance Exists
 Normal Info 4m6s timesten Pod samplettc-0 Daemon Down
 Normal Info 4m6s timesten Pod samplettc-0 Daemon Up
 Normal Info 4m6s timesten Pod samplettc-0 Database Unloaded
 Normal Info 4m4s timesten Pod samplettc-0 Database None
 DEBUG Info 4m1s timesten pollAsyncStatus: Async polling
for RepDuplicate, timeout in 597 secs
 DEBUG Info 3m58s timesten pollAsyncStatus: Async polling
for RepDuplicate, timeout in 594 secs
 DEBUG Info 3m55s timesten pollAsyncStatus: Async polling
for RepDuplicate, timeout in 591 secs
 DEBUG Info 3m52s timesten pollAsyncStatus: Async polling
for RepDuplicate, timeout in 588 secs
 Normal Info 3m48s timesten Pod samplettc-0 Database Loaded
 Normal Info 3m48s timesten Pod samplettc-0 RepAgent Not
Running
 Normal Info 3m48s timesten Pod samplettc-0 RepScheme Exists
 Normal StateChange 3m48s timesten Pod samplettc-0 RepState IDLE
 Normal Info 3m43s timesten Pod samplettc-0 RepAgent Running
 Normal StateChange 3m43s timesten TimesTenClassic was StandbyDown,
now StandbyStarting
 Normal StateChange 3m42s timesten TimesTenClassic was
StandbyStarting, now StandbyCatchup
 Normal StateChange 2m56s timesten Pod samplettc-0 RepState STANDBY
 Normal Upgrade 2m56s timesten Upgrade of active complete
 Normal Upgrade 2m56s timesten Upgrade completed in 288 secs
 Normal StateChange 2m56s timesten TimesTenClassic was
StandbyCatchup, now Normal

Chapter 7
Upgrade TimesTen

7-29

8. Confirm the TimesTenClassic object is in the Normal state.

kubectl get ttc samplettc

Output.

NAME STATE ACTIVE AGE
samplettc Normal samplettc-1 20h

The TimesTenClassic object is in the Normal state. The samplettc-1 is now the
active.

9. Confirm the TimesTenClassic object is running the new image.

kubectl get ttc samplettc -o yaml | grep image

Output.

 image: phx.ocir.io/youraccount/tt2211200image:2
 imagePullPolicy: Always
 imagePullSecret: sekret
 imageUpdatePending: false

The TimesTenClassic object is running the new image.

10. (Optional): Test the ttclassic release.

 helm test samplettc

Output.

NAME: samplettc
LAST DEPLOYED: Tue Oct 24 19:55:45 2023
NAMESPACE: mynamespace
STATUS: deployed
REVISION: 2
TEST SUITE: samplettc-ttclassic-test
Last Started: Tue Oct 24 20:12:30 2023
Last Completed: Tue Oct 24 20:12:35 2023
Phase: Succeeded
NOTES:
Version 2211200.1.0 of the ttclassic chart has been installed.

This release is named "samplettc".

To learn more about the release, try:

 $ helm status samplettc
 $ helm get all samplettc
 $ helm history samplettc

To rollback to a previous version of the chart, run:

Chapter 7
Upgrade TimesTen

7-30

 $ helm rollback samplettc <REVISION>
 - run 'helm history samplettc' for a list of revisions.

The test for revision 2 of the samplettc release succeeded.

11. Confirm the samplettc release is upgraded.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettc mynamespace 2 2023-10-24
19:55:45.303709067 +0000 UTC deployed ttclassic-2211200.1.0
22.1.1.20.0
samplettop mynamespace 2 2023-10-24
16:15:35.896107706 +0000 UTC deployed ttoperator-2211200.1.0
22.1.1.20.0
ttcrd mynamespace 2 2023-10-24
16:00:21.530832896 +0000 UTC deployed ttcrd-2211200.1.0
22.1.1.20.0

The ttclassic chart version is 2211200.1.0 corresponding to the 22.1.1.20.0
TimesTen release.

Congratulations! You successfully performed the upgrade. The TimesTenClassic object is
upgraded and is in the Normal state. The associated active standby pair of TimesTen Classic
databases are upgraded. Both databases are up and running.

Roll Back a TimesTen Upgrade
You can use Helm to roll back a TimesTen upgrade. This reverts the TimesTenClassic object
and its associated active standby pair of TimesTen Classic databases to the initial release.

Let's assume you upgraded TimesTen as discussed in Upgrade TimesTen. However, you now
want to roll back the upgrade. Here's how to perform the rollback using Helm.

This example downgrades from TimesTen release 22.1.1.20.0 to 22.1.1.19.0. For more
information about TimesTen releases, see Overview of release numbers in the Oracle
TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

Note:

Ensure you perform a downgrade at the appropriate time. We recommend that you
do not perform a downgrade at the busiest time of a production day. Applications
see shortages and perhaps reduced performance as a result of the downgrade
procedure.

Chapter 7
Roll Back a TimesTen Upgrade

7-31

1. Review the current release of the ttclassic chart that is deployed in your
namespace.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettc mynamespace 2 2023-10-24
19:55:45.303709067 +0000 UTC deployed
ttclassic-2211200.1.0 22.1.1.20.0
samplettop mynamespace 2 2023-10-24
16:15:21.79683595 +0000 UTC deployed
ttoperator-2211200.1.0 22.1.1.20.0
ttcrd mynamespace 2 2023-10-24
16:00:21.530832896 +0000 UTC deployed
ttcrd-2211200.1.0 22.1.1.20.0

The samplettc release that is deployed is revision 2. The ttclassic chart version
is 2211200.1.0 corresponding to the 22.1.1.20.0 TimesTen release.

2. Review the ttclassic chart's revision history.

helm history samplettc

Output.

REVISION UPDATED STATUS
CHART APP VERSION DESCRIPTION
1 Mon Oct 23 23:18:03 2023 superseded
ttclassic-2211190.1.0 22.1.1.19.0 Install complete
2 Tue Oct 24 19:55:45 2023 deployed
ttclassic-2211200.1.0 22.1.1.20.0 Upgrade complete

Revision 2 of the samplettc ttclassic chart is currently deployed. The ttclassic
chart version for revision 1 is 2211190.1.0 corresponding to TimesTen release
22.1.1.19.0.

3. Roll back to revision 1.

helm rollback samplettc 1

Output.

Rollback was a success! Happy Helming!

Chapter 7
Roll Back a TimesTen Upgrade

7-32

4. Review the revision history.

helm history samplettc

Output.

REVISION UPDATED STATUS
CHART APP VERSION DESCRIPTION
1 Mon Oct 23 23:18:03 2023 superseded
ttclassic-2211190.1.0 22.1.1.19.0 Install complete
2 Tue Oct 24 19:55:45 2023 superseded
ttclassic-2211200.1.0 22.1.1.20.0 Upgrade complete
3 Tue Oct 24 21:31:06 2023 deployed
ttclassic-2211190.1.0 22.1.1.19.0 Rollback to 1

Revision 3 of the samplettc release is now deployed in your namespace. The ttclassic
chart version is 2211190.1. The TimesTenClassic object is replaced, which triggers the
TimesTen Operator to initiate an downgrade to TimesTen release 22.1.1.19.0.

5. Observe the downgrade.

 kubectl describe ttc samplettc

Output.

Name: samplettc
Namespace: mynamespace
Labels: app.kubernetes.io/managed-by=Helm
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Upgrade 6m38s timesten Image updated, automatic upgrade
started
 Normal Upgrade 6m38s timesten Deleted standby pod samplettc-0
during upgrade
 Normal Info 6m34s timesten Pod samplettc-0 Agent Down
 Normal StateChange 6m34s timesten Pod samplettc-0 is Not Ready
 Warning StateChange 6m34s timesten TimesTenClassic was Normal, now
ActiveTakeover
 Normal StateChange 6m33s timesten TimesTenClassic was
ActiveTakeover, now StandbyDown
 Normal Info 5m38s timesten Pod samplettc-0 Agent Up
 Normal Info 5m38s timesten Pod samplettc-0 Instance Exists
 Normal Info 5m38s timesten Pod samplettc-0 Daemon Down
 Normal Info 5m37s timesten Pod samplettc-0 Daemon Up
 Normal Info 5m37s timesten Pod samplettc-0 Database Unloaded
 Normal Info 5m35s timesten Pod samplettc-0 Database None
 DEBUG Info 5m32s timesten pollAsyncStatus: Async polling
for RepDuplicate, timeout in 597 secs
 DEBUG Info 5m29s timesten pollAsyncStatus: Async polling
for RepDuplicate, timeout in 594 secs
 DEBUG Info 5m26s timesten pollAsyncStatus: Async polling

Chapter 7
Roll Back a TimesTen Upgrade

7-33

for RepDuplicate, timeout in 591 secs
 DEBUG Info 5m23s timesten pollAsyncStatus: Async
polling for RepDuplicate, timeout in 588 secs
 DEBUG Info 5m20s timesten pollAsyncStatus: Async
polling for RepDuplicate, timeout in 585 secs
 Normal Info 5m16s timesten Pod samplettc-0 Database
Loaded
 Normal Info 5m16s timesten Pod samplettc-0 RepAgent
Not Running
 Normal Info 5m16s timesten Pod samplettc-0 RepScheme
Exists
 Normal StateChange 5m16s timesten Pod samplettc-0 RepState
IDLE
 Normal Info 5m11s timesten Pod samplettc-0 RepAgent
Running
 Normal StateChange 5m11s timesten Pod samplettc-0 RepState
STANDBY
 Normal StateChange 5m11s timesten Pod samplettc-0 is Ready
 Normal Upgrade 5m10s timesten Upgrade of standby complete
 Normal StateChange 5m10s timesten TimesTenClassic was
StandbyDown, now Normal
 Normal Upgrade 4m39s timesten Deleted active pod
samplettc-1 during upgrade
 Normal Info 3m38s timesten Pod samplettc-1 Agent Down
 Normal StateChange 3m38s timesten Pod samplettc-1 is Not
Ready
 Normal StateChange 3m38s timesten Pod samplettc-1 is Not
Active Ready
 Warning StateChange 3m38s timesten TimesTenClassic was
Normal, now ActiveDown
 Normal Info 3m37s timesten Pod samplettc-0 Database
Updatable
 Normal StateChange 3m37s timesten Pod samplettc-0 RepState
ACTIVE
 Normal StateChange 3m37s timesten Pod samplettc-0 is Not
Ready
 Normal StateChange 3m37s timesten TimesTenClassic was
ActiveDown, now ActiveTakeover
 Normal StateChange 3m36s timesten Pod samplettc-0 is Ready
 Normal StateChange 3m36s timesten Pod samplettc-0 is Active
Ready
 Normal StateChange 3m36s timesten TimesTenClassic was
ActiveTakeover, now StandbyDown
 Normal Info 3m33s timesten Pod samplettc-1 Agent Up
 Normal Info 3m33s timesten Pod samplettc-1 Instance
Exists
 Normal Info 3m33s timesten Pod samplettc-1 Daemon Down
 Normal Info 3m33s timesten Pod samplettc-1 Daemon Up
 Normal Info 3m33s timesten Pod samplettc-1 Database
Unloaded
 Normal Info 3m31s timesten Pod samplettc-1 Database
None
 DEBUG Info 3m28s timesten pollAsyncStatus: Async
polling for RepDuplicate, timeout in 597 secs
 DEBUG Info 3m25s timesten pollAsyncStatus: Async

Chapter 7
Roll Back a TimesTen Upgrade

7-34

polling for RepDuplicate, timeout in 594 secs
 DEBUG Info 3m22s timesten pollAsyncStatus: Async polling
for RepDuplicate, timeout in 591 secs
 DEBUG Info 3m19s timesten pollAsyncStatus: Async polling
for RepDuplicate, timeout in 588 secs
 Normal Info 3m15s timesten Pod samplettc-1 Database Loaded
 Normal Info 3m15s timesten Pod samplettc-1 RepAgent Not
Running
 Normal Info 3m15s timesten Pod samplettc-1 RepScheme Exists
 Normal StateChange 3m15s timesten Pod samplettc-1 RepState IDLE
 Normal Info 3m10s timesten Pod samplettc-1 RepAgent Running
 Normal StateChange 3m10s timesten TimesTenClassic was StandbyDown,
now StandbyStarting
 Normal StateChange 3m9s timesten TimesTenClassic was
StandbyStarting, now StandbyCatchup
 Normal StateChange 2m31s timesten Pod samplettc-1 RepState STANDBY
 Normal Upgrade 2m30s timesten Upgrade completed in 248 secs
 Normal StateChange 2m30s timesten TimesTenClassic was
StandbyCatchup, now Normal

6. Confirm the TimesTenClassic object is in the Normal state.

kubectl get ttc samplettc

Output.

NAME STATE ACTIVE AGE
samplettc Normal samplettc-0 22h

The TimesTenClassic object is in the Normal state. The samplettc-0 is now the active.

7. Confirm the TimesTenClassic object is running the original image.

kubectl get ttc samplettc -o yaml | grep image

Output.

 image: phx.ocir.io/youraccount/tt2211190image:1
 imagePullPolicy: Always
 imagePullSecret: sekret
 imageUpdatePending: false

The TimesTenClassic object is running the new image.

8. Confirm the samplettc release is downgraded.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS

Chapter 7
Roll Back a TimesTen Upgrade

7-35

CHART APP VERSION
samplettc mynamespace 3 2023-10-24
21:31:06.866255824 +0000 UTC deployed
ttclassic-2211190.1.0 22.1.1.19.0
samplettop mynamespace 2 2023-10-24
16:15:21.896107706 +0000 UTC deployed
ttoperator-2211200.1.0 22.1.1.20.0
ttcrd mynamespace 2 2023-10-24
16:10:21.530832896 +0000 UTC deployed
ttcrd-2211200.1.0 22.1.1.20.0

The ttclassic chart version is 2211190.1.0 corresponding to the 22.1.1.19.0
TimesTen release.

Congratulations! You successfully completed the rollback.

Roll Back a TimesTen Operator Upgrade
You can use Helm to roll back a TimesTen Operator upgrade.

Let's assume you upgraded the TimesTen Operator as discussed in Upgrade the
TimesTen Operator. However, you now want to roll back the upgrade. Here's how to
perform the rollback using Helm.

This example downgrades from TimesTen release 22.1.1.20.0 to 22.1.1.19.0. For
more information about TimesTen releases, see Overview of release numbers in the
Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

1. Review the current release of the ttoperator chart that is deployed in your
namespace.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettc mynamespace 3 2023-10-23
21:31:06.740512897 +0000 UTC deployed
ttclassic-2211190.1.0 22.1.1.19.0
samplettop mynamespace 2 2023-10-24
16:15:21.79683595 +0000 UTC deployed
ttoperator-2211200.1.0 22.1.1.20.0
ttcrd mynamespace 2 2023-10-24
16:00:21.530832896 +0000 UTC deployed
ttcrd-2211200.1.0 22.1.1.20.0

The samplettop release that is deployed is revision 2. The ttoperator chart
version is 2211200.1.0 corresponding to the 22.1.1.20.0 TimesTen release.

Chapter 7
Roll Back a TimesTen Operator Upgrade

7-36

2. Review the ttoperator chart's revision history.

helm history samplettop

Output.

REVISION UPDATED STATUS
CHART APP VERSION DESCRIPTION
1 Mon Oct 23 23:04:40 2023 superseded
ttoperator-2211190.1.0 22.1.1.19.0 Install complete
2 Tue Oct 24 16:15:21 2023 deployed
ttoperator-2211200.1.0 22.1.1.20.0 Upgrade complete

Revision 2 of the samplettop ttoperator chart is currently deployed. The ttoperator
chart version for revision 1 is 2211190.1.0 corresponding to TimesTen release
22.1.1.19.0.

3. Roll back to revision 1.

helm rollback samplettop 1

Output.

Rollback was a success! Happy Helming!

4. Review the revision history.

helm history samplettop

Output.

REVISION UPDATED STATUS
CHART APP VERSION DESCRIPTION
1 Mon Oct 23 23:04:40 2023 superseded
ttoperator-2211190.1.0 22.1.1.19.0 Install complete
2 Tue Oct 24 16:15:21 2023 superseded
ttoperator-2211200.1.0 22.1.1.20.0 Upgrade complete
3 Tue Oct 24 22:31:06 2023 deployed
ttoperator-2211190.1.0 22.1.1.19.0 Rollback to 1

Revision 3 of the samplettop release is now deployed in your namespace. The
ttoperator chart version is 2211190.1.

5. Verify the new TimesTen Operator is running in your namespace.

kubectl get pods

Output.

NAME READY STATUS RESTARTS AGE
samplettc-0 3/3 Running 0 17h

Chapter 7
Roll Back a TimesTen Operator Upgrade

7-37

samplettc-1 3/3 Running 0
17h
timesten-operator-65ddf9cfbb-cplhl 1/1 Running 0
3m26s

6. Verify the TimesTen Operator is running the original image.

kubectl get pod timesten-operator-65ddf9cfbb-cplhl -o yaml | grep
image

Output.

 image: phx.ocir.io/youraccount/tt2211190image:1
 imagePullPolicy: Always
...

The TimesTen Operator is running the original image.

Congratulations! You successfully completed the rollback. The TimesTen Operator that
is running in your namespace is using the original image.

Roll Back a TimesTen Custom Resource Definitions (CRDs)
Upgrade

You can use Helm to roll back the TimesTen Custom Resource Definitions (CRDs) in
your cluster.

Let's assume you upgraded the TimesTen CRDs in your cluster as discussed in
Upgrade the TimesTen Custom Resource Definitions (CRDs). However, you now want
to roll back the upgrade. Here's how to perform the rollback using Helm.

This example downgrades from TimesTen release 22.1.1.20.0 to 22.1.1.19.0. For
more information about TimesTen releases, see Overview of release numbers in the
Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

1. Review the current ttcrd release that is deployed in your namespace.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
...
ttcrd mynamespace 2 2023-10-24
16:00:21.530832896 +0000 UTC deployed
ttcrd-2211200.1.0 22.1.1.20.0

The ttcrd release that is deployed is revision 2. The ttcrd chart version is
2211200.1.0 corresponding to the 22.1.1.20.0 TimesTen release.

Chapter 7
Roll Back a TimesTen Custom Resource Definitions (CRDs) Upgrade

7-38

2. Roll back to the previous revision.

helm rollback ttcrd 1

Output.

Rollback was a success! Happy Helming!

3. Confirm the ttcrd release is at revision 3.

helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
...
ttcrd mynamespace 3 2023-10-24
23:31:21.530832896 +0000 UTC deployed ttcrd-2211190.1.0
22.1.1.19.0

Revision 3 of the ttcrd release is now deployed. The ttcrd chart version is 2211190.1.

Congratulations! You successfully completed the rollback.

About Uninstalling a Release
You can uninstall a release by using the helm uninstall command. This command deletes
the Kubernetes objects created by the helm install command. Uninstalling a release results
in TimesTen databases being deleted or being unmanaged or both.

Delete TimesTen Databases
To delete a TimesTenClassic object and the active standby pair of TimesTen Classic
databases associated with this TimesTenClassic object, you uninstall the ttclassic release
that your previously installed.

1. List the releases.

 helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettop mynamespace 3 2023-10-17
22:31:06.530832896 +0000 UTC deployed ttoperator-2211190.1.0
22.1.1.19.0

Chapter 7
About Uninstalling a Release

7-39

samplettc mynamespace 3 2023-10-17
21:31:06.164158714 +0000 UTC deployed
ttclassic-2211190.1.0 22.1.1.19.0
ttcrd mynamespace 3 2023-10-17
23:31:06.530832896 +0000 UTC deployed
ttcrd-2211190.1.0 22.1.1.19.0

The samplettc release is installed in your namespace. The chart is ttclassic.

2. Confirm the TimesTenClassic object is deployed in your namespace.

kubectl get ttc samplettc

Output.

NAME STATE ACTIVE AGE
samplettc Normal samplettc-0 2d1h

3. Uninstall the samplettc release. This operation deletes the samplettc
TimesTenClassic object, deletes the active standby pair of TimesTen Classic
databases associated with the samplettc TimesTenClassic object, and deletes
any other relevant Kubernetes objects. Since the Persistent Volume Claims
(PVCs) are not automatically deleted, you must manually delete them. A later step
shows you how to do this.

helm uninstall samplettc

Output.

release "samplettc" uninstalled

The samplettc release is uninstalled.

4. Confirm the TimesTenClassic object is deleted.

kubectl get ttc samplettc

Output.

Error from server (NotFound): timestenclassics.timesten.oracle.com
"samplettc" not found

5. Confirm the ConfigMap is deleted.

kubectl get configmap samplettc

Output.

Error from server (NotFound): configmaps "samplettc" not found

Chapter 7
Delete TimesTen Databases

7-40

6. Delete the Persistent Volume Claims.

kubectl get pvc

Output.

NAME STATUS
VOLUME
 CAPACITY ACCESS MODES STORAGECLASS AGE
tt-persistent-samplettc-0 Bound
ocid1.volume.oc1.phx.abyhqljswsjqkcbdo2om3gvfinqs7bfjoaup22uurjjil5q3o5kk6
5expxjq 10Gi RWO oci-bv 43m
tt-persistent-samplettc-1 Bound
ocid1.volume.oc1.phx.abyhqljt5ql4xiof6t6hbwaoaiol7w5zyobagexpoapxkoq3wcq2n
sftehvq 10Gi RWO oci-bv 43m

Delete.

kubectl delete pvc tt-persistent-samplettc-0
kubectl delete pvc tt-persistent-samplettc-1

The samplettc TimesTenClassic object, the samplettc ConfigMap, the TimesTen databases
associated with the samplettc TimesTenClassic object, and all other Kubernetes objects
created by the helm install samplettc command are deleted. Since the Persistent Volume
Claims on which the databases are stored are not automatically deleted, you deleted them
manually.

Delete the TimesTen Operator
To stop running the TimesTen Operator in your namespace, you uninstall the ttoperator
release that your previously installed.

1. List the releases.

 helm list

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
samplettop mynamespace 3 2023-10-24
22:31:06.530832896 +0000 UTC deployed ttoperator-2211190.1.0
22.1.1.19.0
ttcrd mynamespace 3 2023-10-24
23:31:06.530832896 +0000 UTC deployed ttcrd-2211190.1.0
22.1.1.19.0

The samplettop release is installed in your namespace. The chart is ttoperator.

Chapter 7
Delete the TimesTen Operator

7-41

2. Uninstall the samplettop release. This operation stops the running of the
TimesTen Operator and deletes the TimesTen Operator Deployment.

helm uninstall samplettop

Output.

release "samplettop" uninstalled

The samplettop release is uninstalled.

3. Confirm the TimesTen Operator Pod is deleted.

kubectl get pod timesten-operator-65ddf9cfbb-cplhl

Output.

Error from server (NotFound): pods "timesten-operator-65ddf9cfbb-
cplhl" not found

4. Confirm the TimesTen Operator Deployment is deleted.

kubectl get deployment timesten-operator

Output.

Error from server (NotFound): deployments.apps "timesten-operator"
not found

The TimesTen Operator is no longer running in your namespace. The TimesTen
Operator Deployment that is used to run the TimesTen Operator is deleted.

Delete the TimesTen Custom Resource Definitions (CRDs)
To delete the TimesTen Custom Resource Definitions (CRDs) from your cluster, you
uninstall the ttcrd release that you previously installed.

Note:

Use caution when deleting the TimesTen CRDs. This action may cause the
immediate deletion of any TimesTen databases that are deployed.

1. Confirm the ttcrd release.

 helm list

Chapter 7
Delete the TimesTen Custom Resource Definitions (CRDs)

7-42

Output.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
ttcrd mynamespace 3 2023-10-24
23:31:06.530832896 +0000 UTC deployed ttcrd-2211190.1.0
22.1.1.19.0

The ttcrd release is installed. The chart is ttcrd.

2. Uninstall the ttcrd release. This operation deletes the TimesTen CRDs.

helm uninstall ttcrd

Output.

release "ttcrd" uninstalled

You successfully deleted the TimesTen CRDs.

Chapter 7
Delete the TimesTen Custom Resource Definitions (CRDs)

7-43

8
Use TimesTen Databases

This chapter explains how to use direct mode applications and Client/Server drivers to
access and use TimesTen Classic databases in an active standby pair configuration and a
TimesTen Scaleout database in the grid.

Topics:

• About Using Direct Mode Applications

• About Using Client/Server Drivers

About Using Direct Mode Applications
You can run direct mode applications inside of the Pods in your TimesTenClassic and
TimesTenScaleout deployments.

When configured in your TimesTenClassic deployment, each Pod in your active standby pair
runs two or more containers. When configured in your TimesTenScaleout deployment, each
Pod containing a data instance runs two or more containers. One container in each Pod runs
TimesTen and the TimesTen agent and the other container(s) run whatever applications you
choose. The applications that are running in your containers can use TimesTen in direct
mode. For information on direct mode applications, see Managing TimesTen Databases in
the Oracle TimesTen In-Memory Database Operations Guide.

TimesTen Pods are created with the Kubernetes shareProcessNamespace option. This
option allows direct mode applications running in other containers within the same Pod to
function properly.

Note:

The standard security issues that surround direct mode apply in this environment as
in a non-Kubernetes environment. Segregating your applications into separate
containers from TimesTen is intended for ease of management and ease of
upgrade. It is not intended as a security barrier and provides no additional security.

Use the .spec.template.spec.containers attribute of your TimesTenClassic object or
the .spec.dataTemplate.spec.containers of your TimesTenScaleout object to cause one or
more containers to be created within each of the TimesTen Pods that runs the tt container.
Such containers are created in addition to the tt container that runs TimesTen.

This example illustrates how to include the .spec.template.spec.containers attribute in
your TimesTenClassic object definition. For a TimesTenScaleout object, replace template
with one or more dataTemplates.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:

8-1

 name: directmode
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 dbConfigMap:
 - directmode
 template:
 spec:
 containers:
 - name: yourapp
 image: phx.ocir.io/youraccount/yourapplication:2
 command: ["/bin/yourapp"]
 - name: anotherapp
 image: phx.ocir.io/youraccount/anotherapplication:2
 command: ["/bin/anotherapp"]

You can specify any other Kubernetes configuration for these containers.

The Operator automatically adds appropriate mounts to the containers. This gives your
containers the ability to access TimesTen.

To use TimesTen in direct mode, your application containers must know how TimesTen
is configured in the tt container. You must configure your application containers
similarly.

In particular:

• You must know the name of the TimesTen users group. If you are using a
container image located at container-registry.oracle.com/timesten, the name
of the TimesTen users group is timesten. If you built the TimesTen container
image, and changed the timesten default, ensure you use the name you used
when you built the container image. See Option 2b: Build with Customizations and
Dockerfile ARGs.

• You must know the name of the Linux operating system user that runs TimesTen.
The default is timesten. As was mentioned in the previous bullet, if you changed
this default, ensure you use the name you used when you built the container
image.

• You must configure your application containers to run your applications as a
member of the TimesTen users group. Only members of this group can run
TimesTen in direct mode.

• You can run your direct mode applications as a user with the same UID as that of
the TimesTen user that runs TimesTen (3429 is the default) . However, this grants
the application instance administrator permissions on the TimesTen instance.
Alternatively, you can create a group with the same GID as that of the TimesTen
users group of and then create a user whose primary or secondary group is that
group, but with a UID that is not the UID of the TimesTen user that is running
TimesTen. In this case, you can run your application as this user and also use
TimesTen in direct mode. You can then grant this user privileges up to and
including the ADMIN privilege. For more information on primary and secondary
groups, see Creating an Installation on Linux/UNIX in the Oracle TimesTen In-
Memory Database Installation, Migration, and Upgrade Guide. For information on
TimesTen privileges, see System Privileges and Object Privileges in the Oracle
TimesTen In-Memory Database SQL Reference.

Chapter 8
About Using Direct Mode Applications

8-2

• The direct mode application must use the TimesTen instance that is configured at /tt/
home/timesten/instances/instance1. The scripts to configure the TimesTen
environment variables are located at /tt/home/timesten/instances/instance1/bin/
ttenv.*.

• Do not modify any file that is located in the TimesTen instance. In addition, ensure you do
not create any new files in the $TIMESTEN_HOME directory tree of the instance.

• Do not add entries to the /tt/home/timesten/instances/instance1/conf/
sys.odbc.ini file. These files can be overwritten by the Operator. However, you can
store your own DSN entries in the $HOME/.odbc.ini file located in your application
container.

• Do not create additional TimesTen databases.

Kubernetes, not the Operator, is responsible for monitoring and managing the life cycle of the
direct mode containers. In particular:

• Applications are started by Kubernetes regardless of the state of TimesTen (located in its
own container). Kubernetes manages the life cycle of containers individually. It does not
sequence. Your application must know how to wait for TimesTen to become available.

• For a TimesTenClassic object, a direct mode application runs in the Pod containing the
active TimesTen database and in the Pod containing the standby TimesTen database.
The application may need to use the ttRepStateGet built-in procedure to determine
whether it is running on the active or on the standby and perhaps quiesce itself on the
standby. For more information on the ttRepStateGet built-in procedure, see
ttRepStateGet in the Oracle TimesTen In-Memory Database Reference.

• Kubernetes may start the application before the TimesTen database exists or before it is
loaded into memory and ready for use. It is the responsibility of the direct mode
application to verify the state of the TimesTen database in its Pod and to use it
appropriately.

• If your application exits, the container terminates, and Kubernetes spawns another
container. This does not impact TimesTen that is running in the tt container.

About Using Client/Server Drivers
Applications that are running in other Pods in your Kubernetes cluster can use your TimesTen
database by using the standard TimesTen Client/Server drivers. You must configure your
application containers with a TimesTen client instance. That instance must contain a
configured $TIMESTEN_HOME/conf/sys.odbc.ini file, or your application must use an
appropriate Client/Server connection string.

In TimesTen Classic, if you chose to configure a sys.odbc.ini file, the contents of
sys.odbc.ini contains a client DSN definition that references the Pods that are running your
TimesTen databases. In TimesTen Scaleout, you can export a sys.odbc.ini file for use by
client/server clients outside of the grid. Use the ttGridAdmin utility with the
gridClientExport or gridClientExportAll for this purpose. See ttGridAdmin in the Oracle
TimesTen In-Memory Database Reference.

This example creates the sample DSN and references the sample TimesTenClassic object in
the mynamespace namespace.

% vi $TIMESTEN_HOME/conf/sys.odbc.ini

[sample]

Chapter 8
About Using Client/Server Drivers

8-3

TTC_SERVER_DSN=sample
TTC_SERVER1=sample-0.sample.mynamespace.svc.cluster.local
TTC_SERVER2=sample-1.sample.mynamespace.svc.cluster.local

Applications connect to the TimesTen database using this DSN. In the TimesTen
Classic active standby pair configuration, TimesTen automatically routes application
connections to the active database. (sample-0 and sample-1 are used for example
purposes.)

Client/Server applications must connect to the database using a defined username
and password. The Operator can create such a user with ADMIN privileges. You can
then connect to the database, as that user, to create other users and grant these users
the CREATE SESSION privilege. See Overview of Configuration Metadata and
Kubernetes Facilities.

In this example, use a connection string to connect to the sample database as the
sampleuser user. (If you use a connection string that requires all the required
connection attributes, you do not need to define them in the sys.odbc.ini file.) The
sampleuser user was created by the Operator and already exists in the sample
database. After connecting, you can verify that the sampleuser.emp table exists. (The
Operator also previously created this table. See schema.sql for information on how the
Operator created this table.)

% ttIsqlCS -connstr "TTC_SERVER1=sample-0.sample.mynamespace.svc.cluster.local;
TTC_SERVER2=sample-1.sample.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=sample;UID=sampleuser;PWD=samplepw";

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "TTC_SERVER1=sample-0.sample.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=sample;uid=sampleuser;pwd=********";
Connection successful:
DSN=;TTC_SERVER=sample-0.sample.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=sample;UID=sampleuser;DATASTORE=/tt/home/timesten/datastore/
sample;
DATABASECHARACTERSET=AL32UTF8;CONNECTIONCHARACTERSET=AL32UTF8;PERMSIZE=200;
DDLREPLICATIONLEVEL=3;
(Default setting AutoCommit=1)
Command> tables;
 SAMPLEUSER.EMP
1 table found.

Chapter 8
About Using Client/Server Drivers

8-4

9
Manage and Monitor Active Standby Pairs

This chapter discusses how to monitor the health of each Pod in your active standby pair as
well as the health of the active standby pairs themselves. It details the BothDown and the
ManualInterventionRequired states with an emphasis of how the Operator behaves in each
of these states. The chapter discusses how to suspend the management of your
TimesTenClassic object by the Operator. It concludes with various manual operations you can
perform on your TimesTen databases.

Topics:

• About Monitoring the Health of Each Pod in an Active Standby Pair

• About Monitoring the Health of an Active Standby Pair of Databases

• About the BothDown State

• About the ManualInterventionRequired State

• About Bringing Up One Database

• Suspend Management of a TimesTenClassic Object

• Locate the Operator

• Manage the TimesTen Databases

About Monitoring the Health of Each Pod in an Active Standby
Pair

The Operator keeps track of the individual health and state of each Pod in the active standby
pair. How often the Operator checks the health is defined by the value of the
pollingInterval. See "TimesTenClassicSpecSpec" for information on pollingInterval.

Each Pod is assigned a high level state based on the state of various components of
Kubernetes and the state of TimesTen. These states are:

• CatchingUp

• Down

• Healthy

• HealthyActive

• HealthyStandby

• OtherDown

• Terminal

• Unknown

• UpgradeFailed

9-1

CatchingUp
The standby has completed the process of duplicating the database from the active.
The newly created standby is catching up to any transactions that ran on the active
while the duplicate operation was running.

Down
Either the Pod or the TimesTen components within the Pod (or both) are not
functioning properly, given this Pod's role in the active standby pair.

Healthy
The Pod and the TimesTen components within the Pod are in a healthy state, given
this Pod's role in the active standby pair.

HealthyActive
When a TimesTenClassic object is in the Reexamine state, the Operator examines the
state of both TimesTen instances. The Operator does not know which instance (if any)
contains a properly configured active database (or a properly configured standby
database). The Operator must examine both instances to see. If a healthy instance is
found and that instance contains a properly configured active database, the state of
the Pod is reported as HealthyActive.

HealthyStandby
When a TimesTenClassic object is in the Reexamine state, the Operator examines the
state of both TimesTen instances. The Operator does not know which instance (if any)
contains a properly configured standby database (or a properly configured active
database). The Operator must examine both instances to see. If a healthy instance is
found and that instance contains a properly configured standby database, the state of
the Pod is reported as HealthyStandby.

OtherDown
The Pod and the TimesTen components within the Pod are in a healthy state, but
TimesTen in this Pod believes that TimesTen in the other Pod has failed. In particular,
the OtherDown state indicates that this Pod contains an active database, and the
database's peer has reached the failThreshold. The database in this Pod is no
longer keeping transaction logs for its peer, as the peer is too far behind. Recovering
the peer requires re-duplicating the active database (which the Operator will perform
automatically).

Terminal
TimesTen in the Pod cannot be repaired by the Operator.

Chapter 9
About Monitoring the Health of Each Pod in an Active Standby Pair

9-2

Unknown
The state of this Pod is unknown. Either the Pod is unreachable or the TimesTen agent
contained within the Pod has failed.

UpgradeFailed
An automated upgrade was attempted on TimesTen in this Pod and the upgrade failed. See
About Upgrading TimesTen Classic.

About Monitoring the Health of an Active Standby Pair of
Databases

The Operator monitors and manages the health of each of your active standby pairs. The
Operator assigns high level states to the TimesTenClassic object, which you can monitor and
review. For example, you can use the kubectl get command to return the high level state of
your TimesTenClassic object. Specifically, in this example, the value returned for the STATE
field is Normal, indicating that the active and the standby databases are up and running, and
working as they should.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 15h

The states:

• ActiveDown

• ActiveTakeover

• BothDown

• ConfiguringActive

• Failed

• Initializing

• ManualInterventionRequired

• Normal

• Reexamine

• StandbyCatchup

• StandbyDown

• StandbyStarting

• WaitingForActive

ActiveDown
If the Operator detects that TimesTen in the Pod containing the active database has failed,
then the TimesTenClassic object immediately enters the ActiveDown state.

Chapter 9
About Monitoring the Health of an Active Standby Pair of Databases

9-3

The unreachableTimeout timeout value controls how long the state of the Pod
containing the active database can be Unknown before the TimesTenClassic object's
state becomes ActiveDown.

When the TimesTenClassic object's state becomes ActiveDown, the standby database
immediately becomes the active, and the state of the TimesTenClassic object
becomes StandbyDown.

ActiveTakeover
When the TimesTenClassic object is in the Normal state, and the standby database
goes down, the state briefly changes to ActiveTakeover.

When AWT cache groups are used, the standby is normally responsible for pushing
updates from TimesTen to Oracle Database. However, if the standby fails, the active
database takes over this responsibility. This occurs during the ActiveTakeover state.

BothDown
Neither the active nor the standby database is functioning properly. The Operator
attempts to bring up the pair of databases.

If both Pods in the active standby pair fail, the Operator uses the information in
TimesTenClassicStatus to minimize data loss. See "About the BothDown State" for
details.

ConfiguringActive
When the TimesTenClassic object is in the WaitingForActive state, and when the
database that should be the active database comes up, the TimesTenClassic object
enters the ConfiguringActive state. The Operator then configures this database to be
the active. Once the database is configured as the active, the TimesTenClassic object
enters the StandbyDown state. See "About the BothDown State" for details.

Failed
If a problem occurs while Initializing a TimesTenClassic object, the object
transitions to the Failed state. Once in this state, the Operator does not attempt to
repair the object. You must delete it. Use the kubectl describe command to examine
the Operator logs to determine the cause of the problem and then recreate the object.

Initializing
This state is reported while the two Pods are starting up for the first time. In your active
standby pair configuration, the Pod whose name ends with -0 is initially configured as
the active database, and the Pod whose name ends with -1 is initially configured as
the standby database. Specifically, if you specified the name for TimesTenClassic as
sample, the sample-0 Pod is configured as the active database, and the sample-1 Pod
is configured as the standby database. Once the active/standby pair is completely
deployed, the TimesTenClassic object transitions to the Normal state.

Chapter 9
About Monitoring the Health of an Active Standby Pair of Databases

9-4

ManualInterventionRequired
When a TimesTenClassic object enters the ManualInterventionRequired state, the Operator
takes no further action for the object. It does not query the TimesTen agents associated with
the object to determine the state of TimesTen and it does not command TimesTen to do
anything. See "About the ManualInterventionRequired State" and "About Bringing Up One
Database" for details.

Normal
Both databases are up and running, and operating as they should.

Reexamine
When the TimesTenClassic object is in the ManualInterventionRequired state, you can
specify the .spec.ttspec.reexamine datum to cause the Operator to take over the
management of the object again. The Operator moves the object to the Reexamine state. The
Operator then examines the state of TimesTen. If you correctly repaired TimesTen, the
TimesTenClassic object may then enter the Normal or the StandbyDown state, depending on
the nature of your repair. If you did not correctly repair TimesTen, the TimesTenClassic object
re-enters the ManualInterventionRequired state. See "About the
ManualInterventionRequired State" for details.

StandbyCatchup
This state is entered after the StandbyStarting state. During the StandbyStarting state, the
standby copies the active database to the standby Pod. When the duplicate process is
complete, the state changes from StandbyStarting to StandbyCatchup. See
"StandbyStarting" for more information on the StandbyStarting state. In the StandbyCatchup
state, the duplicate process has completed. Transactions that ran during this duplicate
process must now be copied over to the standby. Thus the StandbyCatchup state is the state
when the newly created standby catches up to any transactions that ran on the active while
the duplicate operation was running. Applications can continue to use the active without
restriction.

StandbyDown
The active database is functioning properly, but the standby database is not. The Operator
automatically attempts to restart and reconfigure the standby database. Applications can
continue to use the active database without restriction.

StandbyStarting
The standby is duplicating the database from the active. The StandbyStarting state is
complete when the duplicate operation completes. The StandbyCatchup state is then entered.
See "StandbyCatchup" for more information on the StandbyCatchup state. Applications can
continue to use the active without restriction.

Chapter 9
About Monitoring the Health of an Active Standby Pair of Databases

9-5

WaitingForActive
When the TimesTenClassic object is in the BothDown state, if the Operator can
determine which database contains the most up-to-date data, the TimesTenClassic
object enters the WaitingForActive state. The object remains in this state until the
Pod that contains the database is running, and the TimesTen agent within the tt
container (within that Pod) is responding to the Operator. See "About the BothDown
State" for details.

About the BothDown State
The Operator provisions, monitors, and manages active standby pairs of TimesTen
databases. It detects and reacts to the failure of the active or the standby database.
For example, when one database in the active standby pair is down, the Operator
does the following:

• If the active database fails, the Operator promotes the standby to be the active.

• If the standby database fails, the Operator keeps the active running and repairs
the standby.

However, if both databases fail at the same time, it is essential that the databases are
brought back up appropriately. TimesTen replication does not atomically commit
transactions in both database simultaneously. Transactions are committed in one
database and then later are committed in the other database. (The database on which
transactions are committed first is considered the database that is ahead.) Depending
on how replication is configured, transactions on the active database may be ahead of
the standby or the standby may be ahead of the active. To avoid data loss, the
database that is ahead must become the active database after the failure is corrected.

In most cases, the Operator can determine which database was ahead at the time of
the failure. However, there are cases where the Operator cannot determine which
database was ahead. In particular, the Operator cannot determine which database is
ahead if all of the following conditions occur:

• Both databases failed during the polling interval. Specifically, the Operator
examined both databases and the TimesTen Pods were in the Healthy state. The
Operator waited pollingInterval seconds, and when the Operator examined the
databases again (after this pollingInterval), both databases were down and

• RETURN TWOSAFE replication was configured and

• DISABLE RETURN or LOCAL COMMIT ACTION COMMIT (or both) were configured.

See TimesTenClassicSpecSpec for more information on
the .spec.ttspec.pollingInterval datum and on the RETURN TWOSAFE and DISABLE
RETURN replication configurations options. Also, see CREATE ACTIVE STANDBY PAIR
in the Oracle TimesTen In-Memory Database SQL Reference and Defining an Active
Standby Pair Replication Scheme in the Oracle TimesTen In-Memory Database
Replication Guide for information on defining an active standby pair replication
scheme.

This combination of events indicates that some transactions may have committed on
the standby and not on the active and/or some transactions may have committed on
the active and not on the standby. The Operator takes no action in this case.

Chapter 9
About the BothDown State

9-6

When both databases fail, the TimesTenClassic object enters the BothDown state. See
BothDown for more information on the BothDown state. The Operator must then determine the
appropriate action to take. The Operator first examines the value of
the .spec.ttspec.bothDownBehavior datum to determine what to do. See
TimesTenClassicSpecSpec.

If .spec.ttspec.bothDownBehavior is set to Manual, the TimesTenClassic object immediately
enters the ManualInterventionRequired state. The Operator takes no further action even if
either TimesTen container subsequently becomes available. See About the
ManualInterventionRequired State for information on the ManualInterventionRequired state.

If .spec.ttspec.bothDownBehavior is set to Best (the default setting), the Operator attempts
to determine which database was ahead at the time of failure.

• If the Operator cannot determine which database is ahead, the TimesTenClassic object
immediately enters the ManualInterventionRequired state. See About the
ManualInterventionRequired State.

• If the Operator can determine which database is ahead:

– The TimesTenClassic object enters the WaitingForActive state. The object remains
in this state until the Pod containing that database is running and the TimesTen agent
located in the tt container within that Pod is responding to the Operator. At this point,
the TimesTenClassic object enters the ConfiguringActive state.

– While the TimesTenClassic object is in the ConfiguringActive state, TimesTen in
this Pod is started, the database is loaded and is configured for use as the new
active database. If there are any problems with these steps, the TimesTenClassic
object enters the ManualInterventionRequired state. If the database is successfully
loaded and successfully configured as the new active, the TimesTenClassic object
enters the StandbyDown state. See About Monitoring the Health of an Active Standby
Pair of Databases for information on the states of your TimesTenClassic object.

– You can specify the maximum amount of time (expressed in seconds) that the
TimesTenClassic object remains in the WaitingForActive state by specifying a value
for the spec.ttspec.waitingForActiveTimeout datum. After this period of time, if the
object is still in the WaitingForActive state, the object automatically transitions to the
ManualInterventionRequired state. The default is 0, which indicates that there is no
timeout, and the object will remain in this state indefinitely. See
TimesTenClassicSpecSpec for more information on the
spec.ttspec.waitingForActiveTimeout datum.

– The time to recover the database varies by the size of the database. You should
consider the size of your database when deciding the value for
spec.ttspec.waitingForActiveTimeout.

– If the database that is ahead cannot be loaded, the TimesTenClassic object enters
the ManualInterventionRequired state. See About the ManualInterventionRequired
State.

About the ManualInterventionRequired State
When a TimesTenClassic object enters the ManualInterventionRequired state, the Operator
takes no further action for this object. It does not query the TimesTen agents associated with
the object to determine the state of TimesTen and does not command TimesTen to do
anything. It is important for you to address why the TimesTenClassic object is in this state.

Chapter 9
About the ManualInterventionRequired State

9-7

If your TimesTenClassic object is in the ManualInterventionRequired state and it is
not the result of it first being in the BothDown state, perform the operations necessary
to manually repair one of the databases. Then, perform the steps to bring up this
database. These steps are covered in About Bringing Up One Database later in this
chapter.

If, however, the TimesTenClassic object is in the ManualInterventionRequired state
as a result of it first being in the BothDown state:

• It may be unclear which database, if either, is suitable to be the new active. There
may be transactions that have committed on the active database and not on the
standby database, and simultaneously there may be transactions that have
committed on the standby database and not on the active database.

• You need to manually examine both databases and may need to reconcile the
data before you can choose which database should be the new active.

• If you can reconcile the data, and can manually fix one of the databases, then you
can perform the steps to bring up one database. These steps are covered in About
Bringing Up One Database later in this chapter. If you cannot reconcile the data,
contact Oracle Support for further assistance.

In order for you to direct the Operator to move the TimesTenClassic object out of the
ManualInterventionRequired state, you must either:

• Bring up exactly one database: The Operator treats this database as the active
database. All of these conditions must be met:

– The TimesTen agent in the container is running.

– The TimesTen the instance in the container is running.

– The TimesTen database is loaded.

– There is no replication scheme in the database.

– The replication agent is not running.

– The replication state is IDLE.

If these conditions are met, the Operator moves the TimesTenClassic object to the
StandbyDown state. If any of these conditions are not met, the TimesTenClassic
object remains in the ManualInterventionRequired state. Note that when no
replication scheme exists in the database, the Operator will still create the
appropriate replication scheme based on how it is defined in the TimesTenClassic
object definition. See About Bringing Up One Database for an example of how you
can direct the Operator to take action once one database is up and running.

• Bring up both databases: In this case, you must configure the active standby pair.
Specifically, each database must meet all of the following conditions:

– The TimesTen agent in the container is running.

– The TimesTen instance in the container is running.

– The database is loaded.

– The replication scheme is defined in both databases.

– The replication agents are started and are running.

– One database must be in the ACTIVE state and the other database must be in
the STANDBY state.

Chapter 9
About the ManualInterventionRequired State

9-8

If these conditions are met, the Operator moves the TimesTenClassic object to the
Normal state. If any of these conditions are not met, the TimesTenClassic object remains
in the ManualInterventionRequired state.

If you cannot bring up either database, the TimesTenClassic object remains in the
ManualInterventionRequired state.

You direct the Operator to examine the databases by specifying the .spec.ttspec.reexamine
datum. Every .spec.ttspec.pollingInterval, the Operator examines the value
of .spec.ttspec.reexamine. If the value has changed since the last iteration for this
TimesTenClassic object, the Operator examines the state of the TimesTen containers for this
object. See TimesTenClassicSpecSpec for more information on
the .spec.ttspec.pollingInterval and the .spec.ttspec.reexamine datum.

The examination of the databases is performed exactly one time after you change
the .spec.ttspec.reexamine value. If the required conditions were not met, you may again
attempt to meet them. You must then modify the .spec.ttspec.reexamine value again to
cause the Operator to reexamine the databases.

Note that whenever a TimesTenClassic object changes state, a Kubernetes Event is created.
You can monitor these events with the kubectl describe command to be informed of such
state transitions.

About Bringing Up One Database
This section assumes you have manually repaired or have manually performed maintenance
on one of the databases associated with the TimesTenClassic object. The TimesTenClassic
object is currently in the ManualInterventionRequired state. You now want to direct the
Operator to treat the repaired database as the active, to perform the necessary steps to
duplicate this database to the standby, and to bring up both databases, such that both are
running and operating successfully.

Recall that all of these conditions must be met for the database:

• TimesTen agent in the container is running.

• TimesTen daemon (the instance) in the container is running.

• TimesTen database is loaded.

• There is no replication scheme in the database.

• The replication agent is not running.

• The replication state is IDLE.

These sections show you how to verify the conditions are met for the database and how to
set the reexamine value:

• Verify Conditions Are Met for the Database

• Set the reexamine Value

Verify Conditions Are Met for the Database
Perform these steps to ensure the conditions are met for the database (the database to be
the active). In this example, sample-1 will be the new active.

Chapter 9
About Bringing Up One Database

9-9

Note: These steps require you to use TimesTen utilities and TimesTen built-in
procedures. See Utilities and Built-In Procedures in the Oracle TimesTen In-Memory
Database Reference for details.

1. Confirm the TimesTenClassic object (sample, in this example) is in the
ManualInterventionRequired state (represented in bold).

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample ManualInterventionRequired sample-0 12h

2. Use the kubectl exec -it command to invoke the shell within the sample-1 Pod
that contains the TimesTen database. (This database will be the new active.)

The remaining procedures take place within this shell.

% kubectl exec -it sample-1 -c tt -- /bin/bash
3. Use the ttDaemonAdmin utility to start TimesTen daemon (if not already started).

Then use the ttAdmin utility to load the TimesTen database into memory (if not
already loaded).

% ttDaemonAdmin -start
TimesTen Daemon (PID: 5948, port: 6624) startup OK.
% ttAdmin -ramLoad sample
RAM Residence Policy : manual
Manually Loaded In RAM : True
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database State : Open

4. Use the ttIsql utility to connect to the sample database. Then, call the ttRepStop
built-in procedure to stop the replication agent.

% ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful: DSN=sample;UID=timesten;DataStore=/tt/home/timesten/
datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;
PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)
Command> call ttRepStop;

5. From within ttIsql, use the SQL DROP ACTIVE STANDBY PAIR statement to drop the
active standby pair replication scheme. Then use the ttIsql repschemes
command to verify there are no replication schemes in the database. Exit from
ttIsql.

Command> DROP ACTIVE STANDBY PAIR;
Command> repschemes;

0 replication schemes found.

6. Use the ttStatus utility to verify the TimesTen daemon is running and the
replication agent is not running.

Chapter 9
About Bringing Up One Database

9-10

% ttStatus
TimesTen status report as of Sat Apr 24 02:14:15 2023

Daemon pid 5948 port 6624 instance instance1
TimesTen server pid 5955 started on port 6625
--
--
Data store /tt/home/timesten/datastore/sample
Daemon pid 5948 port 6624 instance instance1
TimesTen server pid 5955 started on port 6625
There are 15 connections to the data store
Shared Memory KEY 0x0a100c60 ID 196609
PL/SQL Memory Key 0x0b100c60 ID 229378 Address 0x5000000000
Type PID Context Connection Name ConnID
Process 10418 0x000000000218a6e0 sample 2
Process 8338 0x0000000001cbb6e0 sample 1
Subdaemon 5953 0x00000000015075f0 Manager 2047
Subdaemon 5953 0x0000000001588540 Rollback 2046
Subdaemon 5953 0x0000000001607210 Checkpoint 2041
Subdaemon 5953 0x00007f132c0008c0 Flusher 2045
Subdaemon 5953 0x00007f132c080370 Log Marker 2040
Subdaemon 5953 0x00007f13340008c0 Monitor 2044
Subdaemon 5953 0x00007f133407f330 HistGC 2037
Subdaemon 5953 0x00007f13380008c0 Aging 2042
Subdaemon 5953 0x00007f133807f330 AsyncMV 2039
Subdaemon 5953 0x00007f133c0008c0 Deadlock Detector 2043
Subdaemon 5953 0x00007f133c07f330 IndexGC 2038
Subdaemon 5953 0x00007f135c0008c0 Garbage Collector 2035
Subdaemon 5953 0x00007f13600e8e20 XactId Rollback 2036
Open for user connections
RAM residence policy: Manual
Data store is manually loaded into RAM
Replication policy : Manual
Cache Agent policy : Manual
PL/SQL enabled.
--
Accessible by group timesten
End of report

You have successfully verified the conditions for the database. The database is up and
running. The Operator will treat this database as the active. You are now ready to set the
value for the .spec.ttspec.reexamine datum.

Set the reexamine Value
This example shows you how to set the reexamine value in the TimesTenClassic object
definition (sample, in this example). The example also illustrates the action the Operator takes
after the reexamine value has been changed.

1. Set the reexamine value. The value must be different than the current value for the
TimesTenClassic object. When the Operator examines this value and notices it has
changed since the last iteration, it will take appropriate action.

Use the kubectl edit command to edit the TimesTenClassic object.

• If there is a line for reexamine in the file, then modify its value. It must be different
than the current value.

• If there is no line for reexamine in the file, then add a line and specify a value.

Chapter 9
About Bringing Up One Database

9-11

In this example, there is no reexamine line. This example adds the reexamine line
and sets the value for reexamine to April22reexamine1 (represented in bold).

Note: Not all output is shown.

% kubectl edit timestenclassic sample
Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving
this
file will be reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
...
 name: sample
 namespace: mynamespace
...
repCreateStatement: |
 create active standby pair
 "{{tt-name}}" on "{{tt-node-0}}",
 "{{tt-name}}" on "{{tt-node-1}}"
 RETURN TWOSAFE
 store "{{tt-name}}" on "{{tt-node-0}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
 store "{{tt-name}}" on "{{tt-node-1}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
spec:
 ttspec:
 bothDownBehavior: Best
 dbConfigMap:
 - sample
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 storageClassName: oci-bv
 storageSize: 250Gi
 reexamine: April22reexamine1
...
timestenclassic.timesten.oracle.com/sample edited

2. Use the kubectl get command to assess the state of the sample TimesTenClassic
object. Observe how the state changes as you issue multiple kubectl get
commands. Also note that the Operator has successfully configured sample-1 to
be the active.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Reexamine None 68m
% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample ConfiguringActive None 68m
% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample StandbyDown sample-1 68m
% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-1 71m

3. Use the kubectl describe command to further review the actions of the Operator
(represented in bold).

Not all output is shown:

Chapter 9
About Bringing Up One Database

9-12

% kubectl describe ttc sample
Name: sample
Namespace: mynamespace
...
Kind: TimesTenClassic
...
Rep Create Statement: create active standby pair
 "{{tt-name}}" on "{{tt-node-0}}",
 "{{tt-name}}" on "{{tt-node-1}}"
RETURN TWOSAFE
store "{{tt-name}}" on "{{tt-node-0}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
store "{{tt-name}}" on "{{tt-node-1}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999

Spec:
 Ttspec:
 Both Down Behavior: Best
 Db Config Map:
 sample
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Reexamine: April22reexamine1
 Stop Managing: April21Stop1
 Storage Class Name: oci-bv
 Storage Size: 250Gi
Status:
 Classic Upgrade Status:
 Active Start Time: 0
 Active Status:
 Image Update Pending: false
 Last Upgrade State Switch: 0
 Prev Reset Upgrade State:
 Prev Upgrade State:
 Standby Start Time: 0
 Standby Status:
 Upgrade Start Time: 0
 Upgrade State:
 Active Pods: sample-1
 High Level State: Normal
 Last Event: 54
 Last High Level State Switch: 1619230912
 Pod Status:
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 475
 Db Updatable: No
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1619231126
 Pod IP: 10.244.7.89
 Pod Phase: Running
 Prev High Level State: Healthy

Chapter 9
About Bringing Up One Database

9-13

 Prev Image:
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Admin User File: false
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Standby
 Local Commit: false
 Name: sample-0
 Schema File: false
 Using Twosafe: false
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 476
 Db Updatable: Yes
 Initialized: true
 Last High Level State Switch: ?
 Pod Status:
 Agent: Up
 Last Time Reachable: 1619231126
 Pod IP: 10.244.6.149
 Pod Phase: Running
 Prev High Level State: Healthy
 Prev Image:
 Replication Status:
 Last Time Rep State Changed: 1619228670
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Admin User File: false
 Cache User File: false
 Cg File: false
 Disable Return: false
 High Level State: Healthy
 Intended State: Active
 Local Commit: false
 Name: sample-1
 Schema File: false
 Using Twosafe: false
 Prev High Level State: StandbyDown
 Prev Reexamine: April22reexamine1
 Prev Stop Managing: April21Stop1

Chapter 9
About Bringing Up One Database

9-14

 Rep Create Statement: create active standby pair "sample" on
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
"sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0 store
"sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - StateChange 58m ttclassic TimesTenClassic was Normal, now
ManualInterventionRequired
 - StateChange 46m ttclassic Pod sample-0 Daemon Down
 - StateChange 41m ttclassic Pod sample-1 Daemon Down
 - StateChange 41m ttclassic Pod sample-1 Daemon Up
 - StateChange 41m ttclassic Pod sample-1 Database Unloaded
 - StateChange 40m ttclassic Pod sample-1 Database Loaded
 - StateChange 40m ttclassic Pod sample-1 RepState IDLE
 - StateChange 40m ttclassic Pod sample-1 RepAgent Not Running
 - StateChange 17m ttclassic Pod sample-1 Database Updatable
 - StateChange 17m ttclassic Pod sample-1 RepScheme None
 - StateChange 4m21s ttclassic TimesTenClassic was
ManualInterventionRequired, now Reexamine
 - Error 4m16s ttclassic Active error: Daemon Down
 - StateChange 4m16s ttclassic TimesTenClassic was Reexamine, now
ConfiguringActive
 - StateChange 4m10s ttclassic Pod sample-1 RepState ACTIVE
 - StateChange 4m10s ttclassic Pod sample-1 RepScheme Exists
 - StateChange 4m10s ttclassic Pod sample-1 RepAgent Running
 - StateChange 4m8s ttclassic TimesTenClassic was ConfiguringActive, now
StandbyDown
 - StateChange 4m3s ttclassic Pod sample-0 Daemon Up
 - StateChange 4m3s ttclassic Pod sample-0 Database Unloaded
 - StateChange 3m56s ttclassic Pod sample-0 Database None
 - StateChange 3m42s ttclassic Pod sample-0 Database Loaded
 - StateChange 3m42s ttclassic Pod sample-0 Database Not Updatable
 - StateChange 3m42s ttclassic Pod sample-0 RepAgent Not Running
 - StateChange 3m42s ttclassic Pod sample-0 RepState IDLE
 - StateChange 3m36s ttclassic Pod sample-0 RepAgent Running
 - StateChange 3m36s ttclassic Pod sample-0 RepState STANDBY
 - StateChange 3m36s ttclassic TimesTenClassic was StandbyDown, now Normal

4. Use the kubectl exec -it command to invoke the shell within the sample-1 Pod that
contains the TimesTen database. Then, verify you can connect to the active database.

% kubectl exec -it sample-1 -c tt -- /bin/bash
$ ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful: DSN=sample;UID=timesten;DataStore=/tt/home/timesten/
datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;PermSize
=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)
Command> call ttRepStateGet;

Chapter 9
About Bringing Up One Database

9-15

< ACTIVE >
1 row found.

5. Use the kubectl exec -it command to invoke the shell within the sample-0 Pod
that contains the TimesTen database. Then, verify you can connect to the standby
database.

% kubectl exec -it sample-0 -c tt -- /bin/bash
% ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful: DSN=sample;UID=timesten;DataStore=/tt/home/timesten/
datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;
PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)
Command> call ttRepStateGet;
< STANDBY >
1 row found.

The Operator is now managing and monitoring your TimesTenClassic object. The
TimesTenClassic object is in the Normal state. Both databases are up and running and
ready for use.

Suspend Management of a TimesTenClassic Object
These sections discuss why you may want to suspend the management of your
TimesTenClassic object by the Operator and then how to do it:

• About Suspending Management

• Suspend Management

About Suspending Management
The Operator periodically examines the state of the TimesTen instances and the
databases associated with each TimesTenClassic object. It takes actions to repair
anything that is broken. You may have a situation in which you want to manually
perform maintenance operations. In such a situation, you do not want the Operator to
interfere and attempt to perform repair operations.

You could stop the Operator (by deleting the Deployment of the timesten-operator).
This action prevents the Operator from interfering. See "Revert to Manual Control" for
more information. However, if you have more than one TimesTenClassic object and
you delete the Operator, this interferes with the management of all the
TimesTenClassic objects, when perhaps only one of them needs manual intervention.

Alternatively, you can direct the Operator to take no action for one TimesTenClassic
object by specifying the .spec.ttspec.stopManaging datum for this TimesTenClassic
object. See "TimesTenClassicSpecSpec" for more information on this element. The
Operator examines the value of .spec.ttspec.stopManaging and if it has changed
since the last time the Operator examined it, the Operator changes the state of the
TimesTenClassic object to ManualInterventionRequired. This causes the Operator to

Chapter 9
Suspend Management of a TimesTenClassic Object

9-16

no longer examine the status of the TimesTen Pods, the containers, the instances, and the
databases associated with the TimesTenClassic object. The Operator takes no action on the
object or its Pods.

When you want the Operator to manage the TimesTenClassic object again, you change the
value of the .spec.ttspec.reexamine datum. See "About the ManualInterventionRequired
State" for more information on the ManualInterventionRequired state and
the .spec.ttspec.reexamine datum.

In this way, you can perform manual operations on TimesTen without deleting the
Deployment of the timesten-operator.

Suspend Management
This example illustrates how to use the .spec.ttspec.stopManaging datum to direct the
Operator to stop managing one of the TimesTenClassic objects running in your Kubernetes
cluster. In this example, there are two TimesTenClassic objects (sample and sample2) that are
running. There is a requirement for you to perform manual maintenance operations on the
TimesTen databases associated with one of the objects (sample, in this example). You want
the Operator to stop managing this sample TimesTenClassic object. However, you want the
Operator to continue managing the other TimesTenClassic object (sample2, in this example).

Perform these steps:

1. Review the Pods that are running.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 6m33s
sample-1 2/2 Running 0 6m32s
sample2-0 2/2 Running 0 6m32s
sample2-1 2/2 Running 0 6m32s
timesten-operator-846cb5c97c-cxbl2 1/1 Running 0 4d20h

2. Confirm the sample TimesTenClassic object is in the Normal state. Recall that you want to
perform maintenance on the TimesTen databases associated with this object.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 13m

3. Set the .spec.ttspec.stopManaging value. The value must be different than the current
value for the TimesTenClassic object. When the Operator examines this value and
notices it has changed since the last iteration, it will take appropriate action.

Use the kubectl edit command to edit the TimesTenClassic object.

• If there is a line for .spec.ttspec.stopManaging in the file, then modify its value. It
must be different than the current value.

• If there is no line for .spec.ttspec.stopManaging in the file, then add a line and
specify a value.

In this example, there is no .spec.ttspec.stopManaging line. This example adds
the .spec.ttspec.stopManaging line and sets the value for .spec.ttspec.stopManaging
to April21Stop1 (represented in bold).

Note: Not all output is shown:

% kubectl edit timestenclassic sample
Please edit the object below. Lines beginning with a '#' will be ignored,

Chapter 9
Suspend Management of a TimesTenClassic Object

9-17

and an empty file will abort the edit. If an error occurs while saving
this
file will be reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
...
 name: sample
 namespace: mynamespace
...
repCreateStatement: |
 create active standby pair
 "{{tt-name}}" on "{{tt-node-0}}",
 "{{tt-name}}" on "{{tt-node-1}}"
 RETURN TWOSAFE
 store "{{tt-name}}" on "{{tt-node-0}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
 store "{{tt-name}}" on "{{tt-node-1}}"
 PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
spec:
 ttspec:
 bothDownBehavior: Best
 dbConfigMap:
 - sample
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 storageClassName: oci-bv
 storageSize: 250Gi
 stopManaging: April21Stop1
...
timestenclassic.timesten.oracle.com/sample edited

4. Use the kubectl get command to check the state of the sample TimesTenClassic
object. Note that the sample TimesTenClassic object has transitioned to the
ManualInterventionRequired state. This is the expected behavior after changing
the .spec.ttspec.stopManaging value to a new value.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample ManualInterventionRequired sample-0 15m

The sample TimesTenClassic object is in the ManualInterventionRequired state. The
Operator has suspended the monitoring and the management of the sample
TimesTenClassic object. It will take no further action on this TimesTenClassic object or
its Pods. You can now perform manual operations on your TimesTen databases. When
you have completed such operations and are ready for the Operator to resume
management, proceed to About Bringing Up One Database.

Locate the Operator
The Operator is configured in your Kubernetes cluster using a Deployment.
Kubernetes automatically monitors the Operator and restarts it if it fails. The Operator
runs in a Pod and the name of the Operator begins with timesten-operator, followed
by arbitrary characters to make the name unique. If you specify multiple replicas when
you deploy the Operator, there are multiple Pods. Only one Pod is active at a time.
The remainder of the Pods wait for the active to fail, and if it does, then one of the
Pods becomes active. Active standby pairs of TimesTen databases, provisioned by the
Operator, continue to function if the Operator fails. When a new Operator is started by

Chapter 9
Locate the Operator

9-18

Kubernetes, it automatically monitors and manages all existing active standby pairs of
databases.

Use the kubectl get pods command to display the Pods that are running the Operator. In this
example, there is one Pod for the Operator. When you deployed the Operator, you specified
the value of 1 for the replicas field. Therefore, Kubernetes created one Pod. See About
Deploying the TimesTen Operator.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
timesten-operator-5d7dcc7948-8mnz4 1/1 Running 0 3m21s

Manage the TimesTen Databases
The Operator strives to keep your active standby pair of databases running once they are
deployed. Kubernetes manages the lifecycle of the Pods. It recreates the Pods if they fail. It
also recreates the Pods on available Kubernetes cluster nodes, if the nodes on which the
Pods are running fail. The Operator monitors TimesTen running in the Pods, and initiates the
appropriate operations to keep the pair of databases operational. These operations are done
automatically by the Operator, and should require minimal human intervention.

These sections discuss the manual operations you can perform:

• Manually Invoke TimesTen Utilities

• Modify TimesTen Connection Attributes

• Revert to Manual Control

• Delete an Active Standby Pair of TimesTen Databases

Manually Invoke TimesTen Utilities
You can use the kubectl exec -it command to manually invoke TimesTen utilities on your
TimesTen instances. This command invokes shells in the Pods and enables you to control the
running of TimesTen in the Pods.

TimesTen runs in the tt container, as the timesten user.

Note:

The Operator is still querying the status of the Pod, and the status of TimesTen
within the Pod. If you invoke a command that disrupts the functioning of either the
Pod or TimesTen, the Operator may act to try to fix what you did.

This example shows how to use the kubectl exec -it command to invoke the shell within the
sample-0 Pod that contains the TimesTen database. Then, you can run the ttIsql utility.

% kubectl exec -it sample-0 -c tt -- /bin/bash
% ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Chapter 9
Manage the TimesTen Databases

9-19

connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)

Modify TimesTen Connection Attributes
TimesTen uses connection attributes to define the attributes of a database. There are
three types of connection attributes:

• Data store attributes: Define the characteristics of a database that can only be
changed by destroying and recreating the database.

• First connection attributes: Define the characteristics of a database that can be
changed by unloading and reloading the database into memory.

• General connection attributes: Control how applications access the database.
These attributes persist for the duration of the connection.

For more information on TimesTen connection attributes, see List of Connection
Attributes in the Oracle TimesTen In-Memory Database Reference and Connection
Attributes for Data Manager DSNs or Server DSNs in the Oracle TimesTen In-Memory
Database Operations Guide.

In a Kubernetes environment:

• You can only modify data store attributes by deleting the TimesTenClassic object
and the PersistentVolumeClaims associated with the TimesTenClassic object.
Doing so results in the deletion of the TimesTen databases. See Delete an Active
Standby Pair of TimesTen Databases and Clean Up for information on the deletion
process.

• You can modify first connection and general connection attributes without deleting
the TimesTenClassic object (which deletes the databases) and the
PersistentVolumeClaims associated with the TimesTenClassic object. Note that
there are TimesTen restrictions when modifying some of the first connection
attributes.

To modify first or general connection attributes:

• You must first edit the db.ini file. Complete the procedure in the Manually Edit the
db.ini File section. This section must be completed first.

Then, take these steps:

• If you are modifying first connection attributes, follow the procedure in the Modify
First Connection Attributes section.

• If you are modifying general connection attributes, follow the procedure in the
Modify General Connection Attributes section.

Manually Edit the db.ini File
Complete this section if you are modifying first or general connection attributes or both.
This section must be completed before proceeding to the Modify First Connection
Attributes or the Modify General Connection Attributes sections.

Chapter 9
Manage the TimesTen Databases

9-20

To modify first or general connection attribute requires a change in the sys.odbc.ini file.

If you have already created your active standby pair of TimesTen databases by creating a
TimesTenClassic object, and you now want to change one or more first or general connection
attributes in your sys.odbc.ini file, you must change the db.ini file.

The details as to how you should modify your db.ini file depends on the facility originally
used to contain the db.ini file. (Possible facilities include ConfigMaps, Secrets, or init
containers. See Populate the /ttconfig Directory for details.)

In this example, the ConfigMap facility was originally used to contain the db.ini file and to
populate the /ttconfig directory of the TimesTen containers. The example modifies the
sample ConfigMap.

The steps are:

1. Use the kubectl describe command to review the contents of the db.ini file
(represented in bold) located in the original sample ConfigMap.

% kubectl describe configmap sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
adminUser:

sampleuser/samplepw

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

schema.sql:

create sequence sampleuser.s;
create table sampleuser.emp (id number not null primary key, name char (32));

Events: <none>

2. Use the kubectl edit command to modify the db.ini file in the original sample
ConfigMap. Change the PermSize first connection attribute to 600 (represented in bold).
Add the TempSize first connection attribute and set its value to 300 (represented in bold).
Add the ConnectionCharacterSet connection attribute.

% kubectl edit configmap sample
Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this
file will be reopened with the relevant failures.
#
apiVersion: v1
data:
 adminUser: |
 sampleuser/samplepw
 db.ini: |
 PermSize=600
 TempSize=300

Chapter 9
Manage the TimesTen Databases

9-21

 DatabaseCharacterSet=AL32UTF8
 ConnectionCharacterSet=AL32UTF8
 schema.sql: |
 create sequence sampleuser.s;
 create table sampleuser.emp (id number not null primary key, name char
(32));
kind: ConfigMap
metadata:
 creationTimestamp: "2023-04-30T19:23:59Z"
 name: sample
 namespace: mynamespace
 resourceVersion: "71907255"
 selfLink: /api/v1/namespaces/mynamespace/configmaps/sample
 uid: 0171ff7f-f789-11ea-82ad-0a580aed0453
...
configmap/sample edited

3. Use the kubectl describe command to verify the changes to the sample
ConfigMap. (The changes are represented in bold.)

% kubectl describe configmap sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
schema.sql:

create sequence sampleuser.s;
create table sampleuser.emp (id number not null primary key, name char (32));

adminUser:

sampleuser/samplepw

db.ini:

PermSize=600
TempSize=300
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

Events: <none>

You have successfully changed the sample ConfigMap. If you are modifying first
connection attributes, proceed to the Modify First Connection Attributes section. If you
are modifying only general connection attributes, proceed to the Modify General
Connection Attributes section.

Modify First Connection Attributes
If you have not modified the db.ini file, proceed to the Manually Edit the db.ini File
section. You must now delete the standby Pod and then delete the active Pod. When
you delete a Pod that contains a container running TimesTen, the Operator creates a
new Pod to replace the deleted Pod. This new Pod contains a new sys.odbc.ini file
which is created from the contents of the db.ini file located in the /ttconfig directory.

Perform these steps to delete the standby Pod.

Chapter 9
Manage the TimesTen Databases

9-22

1. Use the kubectl get command to determine which Pod is the standby Pod for the sample
TimesTenClassic object. The active Pod is the Pod represented in the ACTIVE column.
The standby Pod is the other Pod (not represented in the ACTIVE column). Therefore, for
the sample TimesTenClassic object, the active Pod is sample-0, (represented in bold)
and the standby Pod is sample-1.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 47h

2. Delete the standby Pod (sample-1, in this example). This results in the Operator creating
a new standby Pod to replace the deleted Pod. When the new standby Pod is created, it
will use the newly modified sample ConfigMap. (You modified this ConfigMap in the
Manually Edit the db.ini File section.)

% kubectl delete pod sample-1
pod "sample-1" deleted

3. Use the kubectl get command to verify the standby Pod is up and running and the state
is Normal.

Note that the state is StandbyDown (represented in bold).

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample StandbyDown sample-0 47h

Wait a few minutes, then run the command again. Note that the state has changed to
Normal (represented in bold).

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 47h

4. Use the kubectl exec -it command to invoke the shell in the standby Pod (sample-1, in
this example). Then, run the ttIsql utility to connect to the sample database. Note the
new PermSize value of 600 and the new TempSize value of 300 in the connection output
(represented in bold).

% kubectl exec -it sample-1 -c tt -- /bin/bash
% ttIsql sample
Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=600;TempSize=300;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

5. Fail over from the active Pod to the standby Pod. See "Fail Over" for details of the fail
over process. Before you begin this step, ensure you quiesce your applications and you
use the ttRepAdmin -wait command to wait until replication is caught up, such that all
transactions that were executed on the active database have been replicated to the
standby database. Once the standby is caught up, fail over from the active database to
the standby by deleting the active Pod. When you delete the active Pod, the Operator
automatically detects the failure and promotes the standby database to be the active.

Delete the active Pod (sample-0, in this example).

Chapter 9
Manage the TimesTen Databases

9-23

% kubectl delete pod sample-0
pod "sample-0" deleted

6. Wait a few minutes, then use the kubectl get command to verify the active Pod is
now sample-1 for the sample TimesTenClassic object and the state is Normal
(represented in bold).

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-1 47h

7. Use the kubectl exec -it command to invoke the shell in the active Pod
(sample-1, in this example). Then, run the ttIsql utility to connect to the sample
database. Note the new PermSize value of 600 and the new TempSize value of 300
in the connection output (represented in bold).

% kubectl exec -it sample-1 -c tt -- /bin/bash
Last login: Fri Apr 08 15:50:29 UTC 2023 on pts/0
[timesten@sample-1 ~]$ ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=600;TempSize=300;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

8. Use the kubectl exec -it command to invoke the shell in the standby Pod
(sample-0, in this example). Then, run the ttIsql utility to connect to the sample
database. Note the new PermSize value of 600 and the new TempSize value of 300
in the connection output (represented in bold).

% kubectl exec -it sample-0 -c tt -- /bin/bash
% ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=600;TempSize=300;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

You have successfully modified the PermSize and the TempSize first connection
attributes.

Modify General Connection Attributes
If you have not modified the db.ini file, proceed to the Manually Edit the db.ini File
section. You can either directly modify the sys.odbc.ini file for the active TimesTen

Chapter 9
Manage the TimesTen Databases

9-24

database and the sys.odbc.ini file for the standby TimesTen database or you can follow the
steps in the Modify First Connection Attributes section. The first approach (modifying the
sys.odbc.ini file directly) is less disruptive.

This section discusses the procedure for directly modifying the sys.odbc.ini files.

The sys.odbc.ini file is located in the TimesTen container of the Pod containing the active
TimesTen database and in the TimesTen container of the Pod containing the standby
TimesTen database. After you complete the modifications to the sys.odbc.ini files,
subsequent applications can connect to the database using these general connection
attributes.

This example illustrates how to edit the sys.odbc.ini files.

1. Use the kubectl exec -it command to invoke a shell in the active Pod. (In this example,
sample-0 is the active Pod.)

% kubectl exec -it sample-0 -c tt -- /bin/bash
Last login: Fri Apr 08 22:43:26 UTC 2023 on pts/8

2. Verify the current directory (/tt/home/timesten).

% pwd
/tt/home/timesten

3. Navigate to the directory where the sys.odbc.ini file is located. The sys.odbc.ini file is
located in the /tt/home/timesten/instances/instance1/conf directory. Therefore,
navigate to the instances/instance1/conf directory.

% cd instances/instance1/conf
4. Edit the sys.odbc.ini file, adding, modifying, or deleting the general connection

attributes for your DSN. (sample, in this example.)

Note:

Ensure that you only make modifications to the TimesTen general connection
attributes. Data store attributes and first connection attributes cannot be
modified by directly editing the sys.odbc.ini file.

This example modifies the sample DSN, adding the ConnectionCharacterSet general
connection attribute and setting its value equal to AL32UTF8 (represented in bold).

vi sys.odbc.ini

[ODBC Data Sources]
sample=TimesTen 22.1 Driver
tt=TimesTen 22.1 Driver

[sample]
Datastore=/tt/home/timesten/datastore/sample
PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
DDLReplicationLevel=3
AutoCreate=0
ForceDisconnectEnabled=1
...

Chapter 9
Manage the TimesTen Databases

9-25

5. Use the ttIsql utility to connect to the sample database and verify the value of the
ConnectionCharacterSet attribute is AL32UTF8 (represented in bold).

% ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

You have successfully modified the sys.odbc.ini file located in the TimesTen
container of the active Pod (in this example, sample-0). Use the same procedure to
modify the sys.odbc.ini file located in the TimesTen container of the standby Pod (in
this example, sample-1).

For example:

1. Use the kubectl exec -it command to invoke a shell in the standby Pod
(sample-1, in this example).

% kubectl exec -it sample-1 -c tt -- /bin/bash
Last login: Fri Apr 08 23:08:08 UTC 2023 on pts/0

2. Verify the current directory (/tt/home/timesten).

% pwd
/tt/home/timesten

3. Navigate to the directory where the sys.odbc.ini file is located. The
sys.odbc.ini file is located in the /tt/home/timesten/instances/instance1/
conf directory. Therefore, navigate to the instances/instance1/conf directory.

% cd instances/instance1/conf
4. Edit the sys.odbc.ini file, adding, modifying, or deleting the same general

connection attributes that you modified for the active database. Therefore, this
example modifies the sample DSN, adding the ConnectionCharacterSet general
connection attribute and setting its value equal to AL32UTF8 (represented in bold).

vi sys.odbc.ini

[ODBC Data Sources]
sample=TimesTen 22.1 Driver
tt=TimesTen 22.1 Driver

[sample]
Datastore=/tt/home/timesten/datastore/sample
PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
DDLReplicationLevel=3
AutoCreate=0
ForceDisconnectEnabled=1
...

Chapter 9
Manage the TimesTen Databases

9-26

5. Use the ttIsql utility to connect to the sample database and verify the value of the
ConnectionCharacterSet attribute is AL32UTF8 (represented in bold).

% ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

You have successfully modified the sys.odbc.ini file located in the TimesTen container of
the active Pod (sample-0) and the sys.odbc.ini file located in the TimesTen container of the
standby Pod (sample-1). The ConnectionCharacterSet general connection attribute has also
been modified.

Revert to Manual Control
If you want to manually operate your active standby pair, you can delete the timesten-
operator Deployment. The Operator stops, and does not restart. This affects all of the
TimesTenClassic objects that are running in your Kubernetes cluster. If you do not want the
Operator to stop managing all of the TimesTenClassic objects, you can suspend the
management of individual TimesTenClassic objects. See "Suspend Management of a
TimesTenClassic Object" for information.

The TimesTenClassic object, representing the active standby pair of TimesTen databases,
remains in Kubernetes, as do the other Kubernetes objects associated with them. You can
use the kubectl exec -it command to invoke shells in the Pods, and then you can control
Timesten that is running in those Pods.

If one or both Pods in your active standby pair fails, Kubernetes creates new ones to replace
them. This is due to the StatefulSet object that the Operator had previously created in
Kubernetes. However, since the Operator is not running the new Pods, it cannot
automatically start TimesTen. In this case, your active standby pair cannot be configured or
started. You are responsible for the operation of TimesTen in the Pods.

If you want the Operator to take control again, you must redeploy the Operator. Once the
Operator is redeployed, the Operator automatically identifies the TimesTenClassic objects in
your Kubernetes cluster, and will attempt to manage them again.

This example shows you how to manually control TimesTen.

1. Verify the Operator and the TimesTen databases are running.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 18h
sample-1 2/2 Running 0 18h
timesten-operator-5d7dcc7948-pzj58 1/1 Running 0 18h

2. Navigate to the /deploy directory where the operator.yaml resides. (kube_files/
deploy, in this example.)

% cd kube_files/deploy

Chapter 9
Manage the TimesTen Databases

9-27

3. Use the kubectl delete command to delete the Operator. The Operator is
stopped and no longer deployed.

% kubectl delete -f operator.yaml
deployment.apps "timesten-operator" deleted

4. Verify the Operator is no longer running, but the TimesTen databases are.

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 19h
sample-1 2/2 Running 0 19h

5. Use the kubectl exec -it command to invoke the shell in the Pod that runs
TimesTen.

% kubectl exec -it sample-0 -c tt -- /bin/bash
Last login: Fri Apr 8 14:30:45 UTC 2023 on pts/0

6. Run the ttStatus utility.

% ttStatus
TimesTen status report as of Fri Apr 8 14:36:31 2023

Daemon pid 183 port 6624 instance instance1
TimesTen server pid 190 started on port 6625
--
--
Data store /tt/home/timesten/datastore/sample
Daemon pid 183 port 6624 instance instance1
TimesTen server pid 190 started on port 6625
There are 20 connections to the data store
Shared Memory KEY 0x02200bbc ID 32769
PL/SQL Memory Key 0x03200bbc ID 65538 Address 0x5000000000
Type PID Context Connection Name ConnID
Replication 263 0x00007f99fc0008c0 LOGFORCE:140299698493184 2029
Replication 263 0x00007f9a040008c0 XLA_PARENT:140300350273280 2031
Replication 263 0x00007f9a080008c0 REPLISTENER:140300347123456 2030
Replication 263 0x00007f9a080acd60 RECEIVER:140299429472000 2028
Replication 263 0x00007f9a0c0008c0 FAILOVER:140300353423104 2032
Replication 263 0x00007f9a2c0009b0 TRANSMITTER(M):140299695343360
2034
Replication 263 0x00007f9a300008c0 REPHOLD:140300356572928
2033
Subdaemon 187 0x00000000023365b0 Manager
2047
Subdaemon 187 0x00000000023b57f0 Rollback
2046
Subdaemon 187 0x0000000002432cf0 Log Marker
2041
Subdaemon 187 0x000000000244fc00 Garbage Collector
2035
Subdaemon 187 0x00007f90c80008c0 Aging
2038
Subdaemon 187 0x00007f90d00008c0 Deadlock Detector
2044
Subdaemon 187 0x00007f90d001d7d0 HistGC
2039
Subdaemon 187 0x00007f90d40008c0 Checkpoint
2042
Subdaemon 187 0x00007f90d401d7d0 AsyncMV
2036
Subdaemon 187 0x00007f90d80008c0 Monitor

Chapter 9
Manage the TimesTen Databases

9-28

2043
Subdaemon 187 0x00007f90f808b360 IndexGC 2037
Subdaemon 187 0x00007f90fc0008c0 Flusher 2045
Subdaemon 187 0x00007f910004efd0 XactId Rollback 2040
Open for user connections
RAM residence policy: Always
Replication policy : Manual
Replication agent is running.
Cache Agent policy : Manual
PL/SQL enabled.
--
Accessible by group timesten
End of report

7. Run the ttIsql utility to connect to the sample database and perform various operations.

% ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)
Command> describe sampleuser.emp;

Table SAMPLEUSER.EMP:
 Columns:
 *ID NUMBER NOT NULL
 NAME CHAR (32)

1 table found.
(primary key columns are indicated with *)

Command> INSERT INTO sampleuser.emp VALUES (1,'This is a test.');
1 row inserted.
Command> SELECT * FROM sampleuser.emp;
< 1, This is a test. >
1 row found.

Delete an Active Standby Pair of TimesTen Databases
If you delete the TimesTenClassic object that represents the active standby pair of TimesTen
databases, Kubernetes automatically deletes all the Kubernetes objects and the resources it
is using. The StatefulSet, the Service, and the Pods, that are associated with the pair are all
deleted from Kubernetes. However, the PersistentVolumeClaims (that contain the TimesTen
databases) are not deleted. You must manually delete the PersistentVolumeClaims (PVCs)
after you delete the TimesTenClassic object. After you manually delete the PVCs, the
PersistentVolumes, holding the databases, are recycled by Kubernetes. (You may be able to
control this using the Kubernetes volume retention policy, but this is not controlled by the
Operator.)

As an example, use the kubectl delete command to delete the PVCs for the sample
databases.

Chapter 9
Manage the TimesTen Databases

9-29

% kubectl delete pvc tt-persistent-sample-0
persistentvolumeclaim "tt-persistent-sample-0" deleted
% kubectl delete pvc tt-persistent-sample-1
persistentvolumeclaim "tt-persistent-sample-1" deleted

Chapter 9
Manage the TimesTen Databases

9-30

10
Manage TimesTen Scaleout

This chapter discusses how the TimesTen Operator manages and repairs TimesTen
Scaleout.

Topics:

• About Managing TimesTen Scaleout

• About Single Data Instance Failure

• About Management Instance Failure

• About the waiting for seed State

• About Failure of All Data Instances

• About High Level States

• About Management States

• About Database and Element States

• About the ManualInterventionRequired State

• About Suspending Management

• Simulate Single Data Instance Failure

• Simulate Management Instance Failure

• Simulate Replica Set Failure with Restart

• Simulate Replica Set Failure with Manual

• Suspend Management

• Set reexamine Datum

About Managing TimesTen Scaleout
TimesTen Scaleout delivers high performance, fault tolerance, and scalability within a highly
available in-memory database that provides persistence and recovery. Since a database is
distributed across multiple hosts, some components of the database may fail while others
continue to operate.

TimesTen Scaleout supports error and failure detection with automatic recovery for many
error and failure situations in order to maintain a continuous operation for all applications.

The TimesTen Operator implements best practices for how to handle failures for TimesTen
Scaleout. For more information about how TimesTen Scaleout handles failures, see
Recovering from Failure in the Oracle TimesTen In-Memory Database Scaleout User's Guide

In particular, the Operator detects and handles the following failure cases:

• If a TimesTen instance or element fails, the Operator restarts it.

• If an entire replica set fails and if all elements in the replica set reach the waiting for
seed state, the Operator unloads and reloads the database to resolve it (by default). For

10-1

details about how TimesTen Scaleout recovers from a down replica set, see
Recovering from a Down Replica Set in the Oracle TimesTen In-Memory Database
Scaleout User's Guide.

• If all data instances fail, the Operator detects and reports the failure.

The Operator communicates to the TimesTen agent running in the tt container in each
Pod running TimesTen. The agent determines information about the state of TimesTen
running in the container and sends that information back to the Operator. The Operator
analyzes this information and determines the health and state of TimesTen. This
information is summarized in well-defined states. The Operator uses state machines to
determine the appropriate set of commands to be executed to detect failures and, if
possible, repair TimesTen. These states are discussed later in the chapter.

Let's take a deeper look at how the Operator detects and repairs TimesTen Scaleout.
Specifically, let's look at how the Operator handles single data instance failure,
management instance failure, entire replica set failure, and total database failure.

About Single Data Instance Failure
TimesTen Scaleout is intended to be resilient to single data instance failures. In your
Kubernetes environment, if a data instance fails, the TimesTen Operator starts it back
up. Once it is restarted, TimesTen Scaleout reloads the element of the database. See
Recovering When a Data Instance Is Down in the Oracle TimesTen In-Memory
Database Scaleout User's Guide.

About Management Instance Failure
The TimesTen Operator supports one management instance per TimesTenScaleout
object. If the management instance is down, the Operator ignores the state of the data
instances until the management instance is back up. Without a management instance,
the grid and TimesTen database continue to function. However, should a data instance
fail without a working management instance, it is not possible to repair the data
instance.

About the waiting for seed State
In TimesTen Scaleout, there could be a situation where an entire replica set fails
simulataneously. If all elements in a replica set fail at the same time, it may not be
possible to reload any of the elements without unloading the entire database and
reloading it. In addition, a reload may cause TimesTen Scaleout to discard transactions
against other replica sets that were committed prior to the unload operation.

For more information about replica set failure in TimesTen Scaleout, see Recovering
from a Down Replica Set in the Oracle TimesTen In-Memory Database Scaleout
User's Guide.

If this case occurs in your Kubernetes environment, the default behavior is for the
TimesTen Operator to detect this situation and forcibly unload and reload the database
when the situation occurs. This operation is triggered when the Operator notices that
all elements in a replica set are in the waiting for seed state.

You have the option of controlling the behavior of the Operator when all elements in a
replica set are in the waiting for seed state. You do this by using a TimesTenScaleout

Chapter 10
About Single Data Instance Failure

10-2

object's .spec.ttspec.replicaSetRecovery datum, and setting a particular value for the
datum. Accepted values are the following:

• Restart: The Operator forcibly unloads and reloads the database when a total replica set
failure occurs. This is the default.

• Manual: The Operator changes the state of the TimesTenScaleout object to
ManualInterventionRequired when a total replica set failure occurs. The Operator takes
no further action to repair the grid. You must repair it. See About the
ManualInterventionRequired State and Set reexamine Datum for details.

For more information on the .spec.ttspec.replicaSetRecovery datum for a
TimesTenScaleout object, see TimesTenScaleoutSpecSpec.

About Failure of All Data Instances
If all elements in a database fail simultaneously, there must be caution taken in reloading the
database. TimesTen Scaleout does not automatically reload a database if all data instances
fail. You must perform this reload. It is essential that all possible data instances are up before
a reload is attempted.

For more information about failure of all data instances in TimesTen Scaleout, see Database
Recovery in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

If this case occurs in a Kubernetes environment, the TimesTen Operator does not attempt to
reload the database after all data instances fail. However, the Operator does detect this case
and changes the state of a TimesTenScaleout object to ManualInterventionRequired. See
About the ManualInterventionRequired State and Set reexamine Datum.

About High Level States
The TimesTen Operator maintains a High Level state for TimesTenScaleout objects.

These High Level states are as follows:

• DatabaseDown

• DatabaseImpeded

• DatabasePartial

• DatabaseRestarting

• DatabaseRestartRequired

• Failed

• Initializing

• ManualInterventionRequired

• Normal

• Reexamine

• Unmanaged

Chapter 10
About Failure of All Data Instances

10-3

DatabaseDown
The database is unusable. The Operator attempts to fix it. If it cannot be fixed, the
Operator moves the object to the ManualInterventionRequired state.

DatabaseImpeded
The database within the grid is fully operational, but one or more elements are not
functional. All data in the database is available and all SQL is accepted.

DatabasePartial
The database is up, but some data is not available. One or more replica sets are not
available.

DatabaseRestarting
The database is in the process of being forcibly unloaded and reloaded after a
DatabaseRestartRequired condition.

DatabaseRestartRequired
While the database is up (at least partially), it must be stopped and restarted
(unloaded and reloaded) in order to restore functionality. This can occur when all
elements in a replica set fail simultaneously and all elements are unloadable due to a
waiting for seed condition. When this occurs, the database must be unloaded and
reloaded. During this time, committed transactions may be lost. See Database
Recovery and Recovering from a Down Replica Set in the Oracle TimesTen In-
Memory Database Scaleout User's Guide.

Failed
If a problem occurs while Initializing a TimesTenScaleout object, the object
transitions to the Failed state. Once in this state, the Operator does not attempt to
repair the object. You must delete it. Use the kubectl describe command to examine
the Operator logs to determine the cause of the problem and then recreate the object.

Initializing
After you create a TimesTenScaleout object in your Kubernetes cluster, the Operator
creates the StatefulSets and Services that are required to deploy a TimesTenScaleout
grid and database. The Operator assigns a High Level state of Initializing to the
TimesTenScaleout object.

ManualInterventionRequired
If the Operator encounters a problem that it does not know how to fix, the Operator
places a TimesTenScaleout object into this state. The Operator takes no further action
to fix the object. You can set the object's .spec.ttspec.reexamine datum to cause the

Chapter 10
About High Level States

10-4

Operator to re-engage with the object. For information about .spec.ttspec.reexamine, see
Set reexamine Datum.

Normal
The grid and database are up and operating as they should.

Reexamine
If a TimesTenScaleout object is in the ManualInterventionRequired state, and you modify
the object's .spec.ttspec.reexamine datum, the TimesTen Operator moves the object into
the Reexamine state. The Operator examines the state of grid and database. If healthy, the
Operator returns the object to the Normal state. Otherwise, the object re-enters the
ManualInterventionRequired state.

Unmanaged
The grid does not have a functional management instance. Until the management instance is
fixed, the grid cannot be further monitored, managed or controlled. The Operator will attempt
to fix the management instance.

About Management States
The Operator uses the TimesTen ttGridAdmin mgmtExamine utility to determine the health of
the management instance. The Operator also synthesizes a management state that
describes the status of the management instance in a single value.

For information about the TimesTen ttGridAdmin mgmtExamine utility, see Examine
Management Instances (mgmtExamine) in the Oracle TimesTen In-Memory Database
Reference.

For example, you can use the kubectl get tts command to observe the state of a
TimesTenScaleout object.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout Normal Normal created loaded-complete open 10m

Note that the management state is Normal. There are additional examples in the chapter
where you have the opportunity to observe the management state.

Here are the management states:

• ActiveAgentUp

• ActiveDaemonUp

• ActiveDown

• Error

• Normal

• Unknown

Chapter 10
About Management States

10-5

ActiveAgentUp
The TimesTen agent in the container that should be running the management instance
is up, but the management instance has not yet been started.

ActiveDaemonUp
The management instance has been started, but is not yet functional.

ActiveDown
The management instance is down.

Error
There is an unexpected error with the management instance.

Normal
The management instance is functioning normally.

Unknown
The state of the management instance cannot be determined.

About Database and Element States
TimesTen Scaleout defines a set of overall database and element status values to
detemine the status of a database or element. The TimesTen Operator uses these
status values to assess the state of the database represented by a TimesTenScaleout
object.

In TimesTen Scaleout, the overall database status is encoded in three strings:

• How created is the database?

• How loaded is the database?

• How open is the database?

This triplet of strings is returned as part of the output of the TimesTen ttGridAdmin
dbStatus utility.

For information about the database states, see Display the Status of the Database and
All Elements in the Oracle TimesTen In-Memory Database Scaleout User's Guide. For
information about the ttGridAdmin dbstatus utility, see Monitor the Status of a
Database (dbStatus) in the Oracle TimesTen In-Memory Database Reference.

The TimesTen Operator uses TimesTen Scaleout database states to report the state of
the database for a TimesTenScaleout object.

Chapter 10
About Database and Element States

10-6

For example, this code snippet uses the kubectl get command to return the status for a
deployed TimesTenScaleout object.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE
LOAD OPEN AGE
samplescaleout Normal Normal created loaded-
complete open 2d

Note the following:

• The High Level state of the TimesTenScaleout object is Normal (as indicated by the
OVERALL field).

• The management instance state is Normal (as indicated by the MGMT field).

• The database creation state is created (as indicated by the CREATE field).

• The database loaded state is loaded-complete (as indicated by the LOAD field).

• The database open state is open (as indicated by the OPEN field).

TimesTen Scaleout also keeps a state for each element in a database. See Troubleshooting
Based on Element Status in the Oracle TimesTen In-Memory Database Scaleout User's
Guide for details on element states.

The Operator does not monitor these element states. However, if all the elements in a replica
set are in the waiting for seed state, the Operator checks the value of a TimesTenScaleout
object's .spec.ttspec.replicaSetRecovery datum:

• If the value is Restart, the DatabaseRestartRequired High Level state is triggered.

• If the value is Manual, the Operator moves the TimesTenScaleout object to the
ManualInterventionRequired state.

About the ManualInterventionRequired State
If the TimesTen Operator determines it cannot repair a TimesTenScaleout object, the
Operator changes the High Level state of the object to ManualInterventionRequired. The
Operator does not further manage an object in this state. In addition, the Operator makes no
attempt to determine its state nor to repair it.

In TimesTen Scaleout, there are several troubleshooting scenarios that you can review to
identify and possibly fix the problem. For more information about the troubleshooting
scenarios, see Recovering from Failure in the Oracle TimesTen In-Memory Database
Scaleout User's Guide.

If you identify and fix the problem, you can cause the Operator to resume management of a
TimesTenScaleout object. You do this by specifying a TimesTenScaleout object's
spec.ttspec.reexamine datum. When this datum is specified, the Operator moves the object
to the Reexamine state. For information about the Reexamine state, see Set reexamine Datum.

About Suspending Management
There may be a situation in which you want to manually perform maintenance operations. In
such a situation, you do not want the Operator to interfere and attempt to perform repair or
recovery operations on your grid and database.

Chapter 10
About the ManualInterventionRequired State

10-7

One alternative is to stop the Operator (by deleting the timesten-operator
Deployment). This action prevents the Operator from interfering or performing repair/
recovery operations. However, if you have more than one TimesTenScaleout object
deployed in your Kubernetes environment and you delete the Operator, this interferes
with the management of all the TimesTenScaleout objects, when perhaps only one of
them needs manual intervention.

Another approach is to ask the Operator to take no action for one TimesTenScaleout
object. To do this, specify a TimesTenScaleout object's .spec.ttspec.stopManaging
datum. The Operator examines the value of .spec.ttspec.stopManaging and if it has
changed since the last time the Operator examined it, the Operator changes the state
of the TimesTenScaleout object to ManualInterventionRequired. This causes the
Operator to no longer examine the status of the grid and database. Nor does the
Operator examine the Pods, the containers, and the instances associated with this
particular TimesTenScaleout object. For an example showing how to set
the .spec.ttspec.stopManaging datum for a TimesTenScaleout object, see Suspend
Management.

To cause the Operator to resume management of the TimesTenScaleout object,
change the value of the object's .spec.ttspec.reexamine datum. See Set reexamine
Datum for details.

See TimesTenScaleoutSpecSpec for information about the TimesTenScaleout object
definition.

Simulate Single Data Instance Failure
Let's simulate a single data instance failure and observe how a TimesTenScaleout
object transitions through various state changes.

Note:

This example is for demonstration purposes only. Do not attempt this
example in a production environment.

In the example, there is a deployed TimesTenScaleout object that is functioning
properly.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD OPEN
AGE
samplescaleout Normal Normal created loaded-complete open
10m

Note the High Level state is Normal, the management state is Normal, and the
database state is created,loaded-complete,open.

To simulate a single data instance failure, let's delete a Pod that contains a data
instance. Here are the Pods:

kubectl get pods
NAME READY STATUS RESTARTS AGE

Chapter 10
Simulate Single Data Instance Failure

10-8

samplescaleout-data-1-0 2/2 Running 0 11m
samplescaleout-data-1-1 2/2 Running 0 11m
samplescaleout-data-1-2 2/2 Running 0 11m
samplescaleout-data-2-0 2/2 Running 0 11m
samplescaleout-data-2-1 2/2 Running 0 11m
samplescaleout-data-2-2 2/2 Running 0 11m
samplescaleout-mgmt-0 2/2 Running 0 11m
samplescaleout-zk-0 1/1 Running 0 11m
samplescaleout-zk-1 1/1 Running 0 10m
samplescaleout-zk-2 1/1 Running 0 9m35s
timesten-operator-7677964df9-sp2zp 1/1 Running 0 7d3h

Let's delete the samplescaleout-data-1-0 Pod and observe the behavior.

1. Delete the Pod.

kubectl delete pod samplescaleout-data-1-0
pod "samplescaleout-data-1-0" deleted

2. Use the kubectl get command to observe state transitions.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD
OPEN AGE
samplescaleout DatabaseImpeded Normal created loaded-functional
open 16m

The High Level state is DatabaseImpeded, indicating that the database within the grid is
fully operational, but one or more elements is not functional. The database loaded state
is loaded-functional, indicating loading is in progress and at least one element from
each replica set is loaded.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout Normal Normal created loaded-complete open 18m

The object transitioned to the Normal High Level state, indicating the grid and database
are functioning normally. The database state is loaded-complete, indicating the element
loaded successfully.

Even though there was a single data instance failure, TimesTen Scaleout fully recovered.
There was no manual intervention required.

Simulate Management Instance Failure
Let's simulate a management instance failure. Let's observe how a TimesTenScaleout object
transitions through various state changes.

Chapter 10
Simulate Management Instance Failure

10-9

Note:

This example is for demonstration purposes only. Do not attempt this
example in a production environment.

In the example, there is a deployed TimesTenScaleout object that is functioning
properly.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD OPEN
AGE
samplescaleout Normal Normal created loaded-complete open
68m

Note the High Level state is Normal, the management state is Normal, and the
database state is created,loaded-complete,open.

To simulate a management instance failure, let's delete the Pod that contains the
management instance. Here are the Pods:

kubectl get pods
NAME READY STATUS RESTARTS AGE
samplescaleout-data-1-0 2/2 Running 0 57m
samplescaleout-data-1-1 2/2 Running 0 73m
samplescaleout-data-1-2 2/2 Running 0 73m
samplescaleout-data-2-0 2/2 Running 0 73m
samplescaleout-data-2-1 2/2 Running 0 73m
samplescaleout-data-2-2 2/2 Running 0 73m
samplescaleout-mgmt-0 2/2 Running 0 73m
samplescaleout-zk-0 1/1 Running 0 73m
samplescaleout-zk-1 1/1 Running 0 72m
samplescaleout-zk-2 1/1 Running 0 71m
timesten-operator-7677964df9-sp2zp 1/1 Running 0 7d4h

Let's delete the samplescaleout-mgmt-0 Pod and observe the behavior.

1. Delete the Pod.

kubectl delete pod samplescaleout-mgmt-0
pod "samplescaleout-mgmt-0" deleted

2. Use the kubectl get command to observe state transitions.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE
LOAD OPEN AGE
samplescaleout Unmanaged ActiveDown created loaded-
complete open 79m

The High Level state is Unmanaged, indicating that the grid has no functional
management instance. As a result, the grid cannot be further managed, monitored,

Chapter 10
Simulate Management Instance Failure

10-10

or controlled. The management instance state is ActiveDown, indicating the management
instance is down. Note that since the management instance is down, the Operator
ignores the state of the data instances until the management instance is back up.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD
OPEN AGE
samplescaleout Unmanaged ActiveDaemonUp created loaded-complete
open 81m

The object remains in the Unmanaged High Level state. The management state transitions
to ActiveDaemonUp, indicating the management instance has been started, but is not yet
functional.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout Normal Normal created loaded-complete open 81m

The object transitioned to the Normal High Level state, indicating the grid and database
are functioning normally. The management state is Normal, indicating that management
instance is functioning normally.

Even though there was a management instance failure, TimesTen Scaleout fully recovered.
There was no manual intervention required.

Simulate Replica Set Failure with Restart
Let's simulate a replica set failure. In this example, a TimesTenScaleout
object's .spec.ttspec.replicaSetRecovery datum has not been specified. The default of
Restart is assumed, indicating that the TimesTen Operator forcibly unloads and reloads the
database when a total replica set failure occurs.

Let's observe how a TimesTenScaleout object transitions through various state changes.

Note:

This example is for demonstration purposes only. Do not attempt this example in a
production environment.

In the example, there is a deployed TimesTenScaleout object that is functioning properly.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout Normal Normal created loaded-complete open 99m

Note the High Level state is Normal, the management state is Normal, and the database state
is created,loaded-complete,open.

Chapter 10
Simulate Replica Set Failure with Restart

10-11

In this example, there are three replica sets.

kubectl get pods
NAME READY STATUS RESTARTS AGE
samplescaleout-data-1-0 2/2 Running 0 11m
samplescaleout-data-1-1 2/2 Running 0 11m
samplescaleout-data-1-2 2/2 Running 0 11m
samplescaleout-data-2-0 2/2 Running 0 11m
samplescaleout-data-2-1 2/2 Running 0 11m
samplescaleout-data-2-2 2/2 Running 0 11m
samplescaleout-mgmt-0 2/2 Running 0 11m
samplescaleout-zk-0 1/1 Running 0 11m
samplescaleout-zk-1 1/1 Running 0 10m
samplescaleout-zk-2 1/1 Running 0 9m35s
timesten-operator-7677964df9-sp2zp 1/1 Running 0 7d3h

Let's delete the samplescaleout-data-1-0 and samplescaleout-data-2-0 Pods that
belong to one of the replica sets.

1. Delete the Pods.

kubectl delete pod samplescaleout-data-1-0;kubectl delete pod
samplescaleout-data-2-0
pod "samplescaleout-data-1-0" deleted
pod "samplescaleout-data-2-0" deleted

2. Use the kubectl get command to observe state transitions.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE
LOAD OPEN AGE
samplescaleout DatabasePartial Normal created loaded-
incomplete open 111m

The High Level state is DatabasePartial indicating that the database is up, but
some data is not available. One or more replica sets have failed completely. The
database loaded state is loaded-incomplete, indicating that at least one replica
set has no elements that finished loading successfully.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE
LOAD OPEN AGE
samplescaleout DatabaseRestartRequired Normal created
loading-incomplete open 112m

The object transitions to the DatabaseRestartRequired High Level state. This
state indicates that while the database is up (at least partially), the database must
be stopped and restarted (unloaded and reloaded) in order to restore functionality.
This can occur when all elements in a replica set fail simultaneously and such
elements are unloadable due to a waiting for seed condition. When this happens

Chapter 10
Simulate Replica Set Failure with Restart

10-12

the database must be unloaded and reloaded. At that time, committed transactions may
be lost.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE
LOAD OPEN AGE
samplescaleout DatabaseRestarting Normal created loading-
incomplete open 114m

The object transitions to the DatabaseRestarting High Level state. This state indicates
that the database is being forcibly unloaded and reloaded after a
DatabaseRestartRequired condition.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD OPEN
AGE
samplescaleout Normal Normal created loaded-complete closed
114m

The object transitions to the Normal High Level state, indicating that the grid and
database are functioning normally. The database loaded state changed to loaded-
complete, indicating every element was loaded successfully. The database open state is
closed, indicating the database is closed for connections.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout Normal Normal created loaded-complete open
114m

The object remains in the Normal High Level state. The database open state changed to
open, indicating the database is now open for connections.

Even though there was a total replica set failure, TimesTen Scaleout forcibly unloaded and
reloaded the database. The Operator returned the grid and database to a Normal state,
indicating both are functioning normally. There was no manual intervention required.

Simulate Replica Set Failure with Manual
Let's simulate a total replica set failure where a TimesTenScaleout
object's .spec.ttspec.replicaSetRecovery datum has a value of Manual.

Note:

This example is for demonstration purposes only. Do not attempt this example in a
production environment.

Let's take a look at the TimesTenScaleout object definition.

cat samplescaleout2.yaml
apiVersion: timesten.oracle.com/v1

Chapter 10
Simulate Replica Set Failure with Manual

10-13

kind: TimesTenScaleout
metadata:
 name: samplescaleout2
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250G
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 replicaSetRecovery: Manual
 dbConfigMap:
 - samplescaleout2
 k: 2
 nReplicaSets: 3
 nMgmt: 1
 nZookeeper: 3

Note the .spec.ttspec.replicaSetRecovery datum for the object has a value of
Manual, indicating that the Operator will set this TimesTenScaleout object's High Level
state to ManualInterventionRequired when a total replica set failure occurs.

Let's simulate a total replica set failure with this object. Before we begin, let's do a
quick check of the state of the object.

kubectl get tts samplescaleout2
NAME OVERALL MGMT CREATE LOAD
OPEN AGE
samplescaleout2 Normal Normal created loaded-complete
open 11m

Note the High Level state is Normal, the management state is Normal, and the
database state is created,loaded-complete,open.

In this example, there are three replica sets.

kubectl get pods
NAME READY STATUS RESTARTS AGE
samplescaleout2-data-1-0 2/2 Running 0 12m
samplescaleout2-data-1-1 2/2 Running 0 12m
samplescaleout2-data-1-2 2/2 Running 0 12m
samplescaleout2-data-2-0 2/2 Running 0 12m
samplescaleout2-data-2-1 2/2 Running 0 12m
samplescaleout2-data-2-2 2/2 Running 0 12m
samplescaleout2-mgmt-0 2/2 Running 0 13m
samplescaleout2-zk-0 1/1 Running 0 13m
samplescaleout2-zk-1 1/1 Running 0 12m
samplescaleout2-zk-2 1/1 Running 0 11m
timesten-operator-7677964df9-sp2zp 1/1 Running 0 7d6h

Let's delete the samplescaleout2-data-1-0 and samplescaleout2-data-2-0 Pods
that belong to one of the replica sets.

Chapter 10
Simulate Replica Set Failure with Manual

10-14

1. Delete the Pods.

kubectl delete pod samplescaleout2-data-1-0;kubectl delete pod
samplescaleout2-data-2-0
pod "samplescaleout2-data-1-0" deleted
pod "samplescaleout2-data-2-0" deleted

2. Use the kubectl get command to observe state transitions.

kubectl get tts samplescaleout2
NAME OVERALL MGMT CREATE
LOAD OPEN AGE
samplescaleout2 DatabasePartial Normal created loaded-
incomplete open 18m

The High Level state is DatabasePartial indicating that the database is up, but some
data is not available. One or more replica sets have failed completely. The database
loaded state is loaded-incomplete, indicating that at least one replica set has no
elements that finished loading successfully.

kubectl get tts samplescaleout2
NAME OVERALL MGMT CREATE
LOAD OPEN AGE
samplescaleout2 ManualInterventionRequired Normal created loading-
incomplete open 20m

The object transitions to the ManualInterventionRequired High Level state. The
Operator takes no further action to fix the object. The database loaded state remains
loading-incomplete. Recall that you can set the .spec.ttspec.reexamine datum to
cause the Operator to re-engage with the object. See Set reexamine Datum for details.

There was a total replica set failure. Because the TimesTen Scaleout
object's .spec.ttspec.replicaSetRecovery datum had a value of Manual, the Operator set
the object to the ManualInterventionRequired state. Review the information in Recovering
from a Down Replica Set in the Oracle TimesTen In-Memory Database Scaleout User's
Guide for details about how to fix this failure. Next, review Set reexamine Datum in this book
to give control back to the Operator.

Suspend Management
Let's walk through an example that shows you how to suspend management of a
TimesTenScaleout object.

In the example, there is a deployed TimesTenScaleout object that is functioning properly.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD OPEN AGE
samplescaleout Normal Normal created loaded-complete open 3h33m

Note the High Level state is Normal, the management state is Normal, and the database state
is created,loaded-complete,open.

Chapter 10
Suspend Management

10-15

1. Use the kubectl edit command to edit the TimesTenScaleout object, making the
following changes:

• If there is a line for .spec.ttspec.stopManaging in the file, then modify its
value. It must be different than the current value.

• If there is no line for .spec.ttspec.stopManaging in the file, then add a line
and specify a value.

In this example, there is no .spec.ttspec.stopManaging line. This example adds
the .spec.ttspec.stopManaging line and adds a value of Suspend.

kubectl edit timestenscaleout samplescaleout
Please edit the object below. Lines beginning with a '#' will be
ignored,
and an empty file will abort the edit. If an error occurs while
saving this file will be
reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v1
kind: TimesTenScaleout
metadata:
 creationTimestamp: "2023-01-18T23:57:56Z"
 generation: 1
...
spec
...
 ttspec:
 ...
 dbConfigMap:
 - samplescaleout
 ...
 k: 2
 ...
 nReplicaSets: 3
 nZookeeper: 3
 replicaSetRecovery: Restart
 stopManaging: Suspend
...
timestenscaleout.timesten.oracle.com/samplescaleout edited

2. Use the kubectl get command to observe the behavior..

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE
LOAD OPEN AGE
samplescaleout ManualInterventionRequired Normal created
loaded-complete open 3h33m

The Operator sets the TimesTenScaleout object to the ManualInterventionRequired
High Level state. The Operator takes no further action on the object. You can now
perform manual operations on your grid and database. When you have completed
such operations and are ready for the Operator to resume management, you can set
the .spec.ttspec.rexamine datum for the object. For an example that shows you how
to set a TimesTenScaleout object's .spec.ttspec.rexamine datum, see Set
reexamine Datum.

Chapter 10
Suspend Management

10-16

Set reexamine Datum
If a TimesTenScaleout object is in the ManualInterventionRequired state, you can set/
modify the object's .spec.ttspec.reexamine datum to instruct the TimesTen Operator to
move the object into the Reexamine state. In the Reexamine state, the Operator examines the
state of TimesTen and the database. If both are healthy, the Operator returns the object to the
High Level Normal state. If not healthy, the object re-enters the ManualInterventionRequired
state.

Let's walk through an example that shows you how to reexamine a TimesTenScaleout object.

1. Verify a TimesTenScaleout object is in the ManualInterventionRequired state.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE
LOAD OPEN AGE
samplescaleout ManualInterventionRequired Normal created loaded-
complete open 3h48m

2. Use the kubectl edit command to edit the TimesTenScaleout object, making the
following changes:

• If there is a line for .spec.ttspec.reexamine in the file, then modify its value. It must
be different than the current value.

• If there is no line for .spec.ttspec.reexamine in the file, then add a line and specify
a value.

In this example, there is no .spec.ttspec.reexamine line. This example adds
the .spec.ttspec.reexamine line and assigns a value of Reexamine1.

kubectl edit timestenscaleout samplescaleout
Please edit the object below. Lines beginning with a '#' will be
ignored,
and an empty file will abort the edit. If an error occurs while saving
this file will be
reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v1
kind: TimesTenScaleout
metadata:
 creationTimestamp: "2023-01-18T23:57:56Z"
 generation: 1
...
spec
...
 ttspec:
 ...
 dbConfigMap:
 - samplescaleout
 ...
 k: 2
 ...
 nReplicaSets: 3

Chapter 10
Set reexamine Datum

10-17

 nZookeeper: 3
 replicaSetRecovery: Restart
 reexamine: Reexamine1
...
timestenscaleout.timesten.oracle.com/samplescaleout edited

3. Use the kubectl get command to observe the behavior..

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD
OPEN AGE
samplescaleout Reexamine Normal created loaded-complete
open 3h52m

The object is in the Reexamine High Level state. The Operator examines the state
of TimesTen and the database. If healthy, the Operator moves the object to the
High Level Normal state. If not healthy, the object re-enters the
ManualInterventionRequired state.

kubectl get tts samplescaleout
NAME OVERALL MGMT CREATE LOAD
OPEN AGE
samplescaleout Normal Normal created loaded-complete
open 3h53m

The object transitioned to the Normal High Level state, indicating the grid and
database are functioning normally.

Chapter 10
Set reexamine Datum

10-18

11
Expose TimesTen Metrics with the TimesTen
Kubernetes Operator

The TimesTen Kubernetes Operator (TimesTen Operator) can expose TimesTen metrics to
Prometheus or any other scraping mechanism. This chapter shows you how.

Topics:

• Overview of TimesTen Metrics

• Overview of the TimesTen Kubernetes Operator and the TimesTen Exporter

• About the Prometheus Operator

• About Exposing TimesTen Metrics

• About Using http or https for TimesTen Metrics

• About Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics

• About Creating PodMonitor Objects

• About the TimesTen Metrics Service

• About Choosing to Expose TimesTen Metrics

• Expose TimesTen Metrics Automatically

Overview of TimesTen Metrics
There are several TimesTen metrics that can be exposed to Prometheus or another scraping
mechanism. These metrics are collected from a variety of sources, including TimesTen
system tables and views and TimesTen built-in procedures and utilities. For more information
about TimesTen metrics, see The Metrics Supported by the TimesTen exporter in the Oracle
TimesTen In-Memory Database Monitoring and Troubleshooting Guide.

Prometheus is an open source monitoring and alerting toolkit. It collects and stores metrics
from monitored targets by scraping the http (or https) metrics endpoint on these targets.

TimesTen exports TimesTen metrics to Prometheus by using the TimesTen ttExporter
(TimesTen exporter) utility. The TimesTen exporter presents itself as an http or https server.
When the TimesTen exporter receives an http or https request to the /metrics endpoint, it
retrieves the TimesTen metrics from each database that it monitors and prepares a plain text
http or https response with the metrics.

The TimesTen exporter converts TimesTen metrics into a form supported by Prometheus.
This simple integration lets you monitor the health and operation of your TimesTen
databases.

The TimesTen exporter is supported in TimesTen Classic and in TimesTen Scaleout. In
TimesTen Scaleout, the TimesTen exporter is deployed on each data instance and on the
management instance.

11-1

For information about Prometheus and the TimesTen exporter, see About Prometheus
and About the TimesTen exporter in the Oracle TimesTen In-Memory Database
Monitoring and Troubleshooting Guide.

Overview of the TimesTen Kubernetes Operator and the
TimesTen Exporter

The TimesTen Operator supports the TimesTen exporter and lets you configure
TimesTenClassic and TimesTenScaleout objects to use this TimesTen exporter. Once
configured, the TimesTen Operator starts, stops, and manages the TimesTen exporter.
As the TimesTen exporter collects metrics from the TimesTen databases running in
your Kubernetes environment, the TimesTen Operator works to expose these metrics
to Prometheus.

The TimesTen exporter runs in its own exporter container. This container exists in the
same TimesTen Pods as the tt and the daemonlog containers. These TimesTen Pods
run in your Kubernetes cluster.

The TimesTen Operator creates the Pods that are running TimesTen with the
Kubernetes shareProcessNamespace Pod attribute. This attribute allows the TimesTen
exporter that is running in the exporter container to access TimesTen that is running
in the tt container, both of which are in the TimesTen Pod. For more information about
the shareProcessNamespace attribute, see Share Process Namespace between
Containers in a Pod in the Kubernetes documentation.

The TimesTen Operator configures the exporter container with the same TimesTen
container image as the tt and the daemonlog containers. If the TimesTen exporter fails
or exits, Kubernetes destroys the exporter container and creates another one to take
its place. Kubernetes monitors and manages the exporter container. Because the
lifecycle of individual containers in a Pod are independent, the TimesTen Operator
ensures that the ttExporter command starts after TimesTen. The TimesTen Operator
waits until the TimesTen agent creates the TimesTen instance and waits until the
TimesTen main daemon is running in the tt container of the TimesTen Pod. The
Operator then starts the TimesTen exporter in the exporter container of the same
TimesTen Pod.

Once configured, the TimesTen exporter functions as an http or https server. It listens
for incoming GET requests and responds to them by gathering a set of metrics from
TimesTen. It then returns these metrics as the response to the GET request.

To facilitate the listening process, the TimesTen Operator creates a Kubernetes
headless Service. This Service exposes the port on which the TimesTen exporter is
listening to the remainder of the Kubernetes cluster. This lets a Prometheus server
running in the cluster to fetch the TimesTen metrics from TimesTen and process them.

About the Prometheus Operator
In Overview of the TimesTen Kubernetes Operator and the TimesTen Exporter, we
discussed how the TimesTen Operator and the TimesTen exporter work together to
collect and export TimesTen metrics. Now let's look at how we can expose these
metrics to Prometheus.

Chapter 11
Overview of the TimesTen Kubernetes Operator and the TimesTen Exporter

11-2

https://kubernetes.io/docs/tasks/configure-pod-container/share-process-namespace/
https://kubernetes.io/docs/tasks/configure-pod-container/share-process-namespace/

Note:

You can expose TimesTen metrics to any scraping target. Our documentation
focuses on Prometheus.

There are several ways to configure Prometheus in Kubernetes. One of the most popular is
the Prometheus Operator. The Prometheus Operator simplifies the deployment, monitoring,
and management of Prometheus in Kubernetes.

Similar to the TimesTen Kubernetes Operator, the Prometheus Operator add several custom
resource definitions (CRDs) to Kubernetes. Just as you deploy TimesTen by creating an
object of type TimesTenClassic or type TimesTenScaleout, deploying Prometheus in
Kubernetes involves creating an object of type Prometheus. The Prometheus Operator
automatically detects the creation of such an object and responds by starting a server using
the configuration included in the object.

Note:

It is beyond the scope of this book to detail how to create an object of type
Prometheus. Refer to the Prometheus Operator documentation.

The Prometheus Operator also simplifies the configuration of Prometheus servers that it
deploys. The Prometheus Operator can automatically edit the Prometheus server's
configuration files to include data sources that should be scraped from the /metrics
endpoint. This is done through the creation of Kubernetes objects of type ServiceMonitor and
of type PodMonitor. (The ServiceMonitor object type is discussed in About Creating
ServiceMonitor Objects.)

For details on these object types, see Prometheus Operator API Reference.

Let's look at a basic example of a PodMonitor object:

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
 name: sample
spec:
 selector:
 matchLabels:
 app: sample
 podMetricsEndpoints:
 - port: metrics

If you create such a PodMonitor object, the Prometheus Operator automatically responds by
editing the Prometheus server's configuration files to cause the Prometheus server to scrape
metrics from any Pod created with a label of app: sample. All Pods with the specified label
automatically appear as scrape targets in Kubernetes. As Pods matching the selector are
created or deleted, the Prometheus configuration is automatically kept in synchronization.

Using a Prometheus Operator offers a simplified approach to not only deploying, managing,
and monitoring Prometheus, but also configuring Prometheus servers.

Chapter 11
About the Prometheus Operator

11-3

About Exposing TimesTen Metrics
The TimesTen Operator supports the TimesTen exporter, providing the ability for
TimesTen databases deployed in your Kubernetes cluster to have TimesTen metrics
exported. In addition, the Prometheus Operator configures and stands up Prometheus
servers and creates and manages configuration files associated with these
Prometheus servers. However, there are additional tasks that Prometheus requires to
scrape TimesTen metrics.

For example:

• If you are using https to serve TimesTen metrics, an Oracle Wallet and certificates
must be created.

• The certificates must be made available to Prometheus.

• Prometheus configuration files must be edited to cause Prometheus to scrape
metrics from TimesTen. This is true whether TimesTen metrics are served using
https or http.

Let's look at these tasks, examine our options for completing these tasks, and discuss
how the TimesTen Operator can automatically perform these tasks for you.

Startung with TimesTen release 22.1, the TimesTen Operator automatically exports
and exposes TimesTen metrics. In addition, if the Prometheus Operator is installed in
your Kubernetes cluster, the TimesTen Operator provides Prometheus with all the
information it needs to scrape TimesTen metrics from TimesTen databases.

Let's look at how the TimesTen Operator does this.

By default, the TimesTen Operator does the following:

• Exports and exposes TimesTen metrics from TimesTen databases deployed in
your Kubernetes cluster.

• Uses https/Transport Layer Security (mutual TLS) to make these metrics available.

• If the Prometheus Operator is installed, creates the necessary objects to cause
Prometheus to be automatically modified, which then causes Prometheus to
scrape TimesTen metrics from the TimesTen databases.

• Exposes TimesTen metrics outside of the TimesTen Pods.

Although this default behavior is recommended, you have the option of changing the
default behavior. Let's examine our options:

• https or http?: TimesTen metrics are available by https (default) or http.

• Create a Kubernetes PodMonitor object?: If the Prometheus Operator is installed
in your Kubernetes cluster, the TimesTen Operator can create a PodMonitor
object. This object contains the information needed by the Prometheus Operator to
configure TimesTen databases as a scrape target. If the Prometheus Operator has
been installed in your Kubernetes cluster, then by default the TimesTen Operator
attempts to create a PodMonitor object.

• Expose TimesTen metrics outside of the TimesTen Pods?: The TimesTen exporter
listens on and accepts GETs on the
sampleobject.mynamespace.svc.cluster.local:8080/metrics endpoint (where
sampleobject is the name of a TimesTenClassic or TimesTenScaleout object and
mynamespace is the name of your namespace). By default, the TimesTen Operator

Chapter 11
About Exposing TimesTen Metrics

11-4

deploys a Kubernetes Service that makes this endpoint available to other Pods in the
Kubernetes cluster.

Note:

Having the TimesTen Operator automatically expose TimesTen metrics is not
available in TimesTen release 18.1. This functionality is available in TimesTen
release 22.1 and above.

Now let's look at how we can change this default behavior.

A TimesTenClassic or TimesTenScaleout object that is deployed in your namespace has
specific datum associated with the object. These datum define the characteristics of a
TimesTenClassic or TimesTenScaleout object, including the TimesTen databases associated
with the object. You have the option of customizing a TimesTenClassic or TimesTenScaleout
object by specifying values for particular datum in the object's YAML manifest file.

For exposing TimesTen metrics, the TimesTen Operator provides
the .spec.ttspec.prometheus datum/clause and provides specific datum for use within this
clause. This clause and its associated datum determine if and how the TimesTen Operator
exports and exposes TimesTen metrics.

Let's look at the specific datum in the .spec.ttspec.prometheus clause in greater detail:

• .spec.ttspec.prometheus.publish: Determines if the TimesTen Operator provisions an
exporter container for the TimesTen exporter. The default is true. We discuss this in
About Choosing to Expose TimesTen Metrics.

• .spec.ttspec.prometheus.insecure: Determines if TimesTen metrics are served using
https or http. If the value is false or not specified, TimesTen metrics are served using
https. If the value is true, TimesTen metrics are served using http. For more information,
see About Using http or https for TimesTen Metrics.

• .spec.ttspec.prometheus.certSecret: If specified, contains a Kubernetes Secret that
you have previously created. This Secret contains an Oracle Wallet and the necessary
certificates for https. If not specified, the TimesTen Operator automatically creates an
Oracle Wallet, the necessary certificates, and the Kubernetes Secrets.

We recommend that you do not specify .spec.ttspec.prometheus.certSecret and
instead let the TimesTen Operator automate this process for you. For more information,
see About Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics. If you
want to specify .spec.ttspec.prometheus.certSecret, see Create Your Own Oracle
Wallet, Certificates, and Secrets for Exposing TimesTen Metrics.

• .spec.ttspec.prometheus.createPodMonitors: Determines if the TimesTen Operator
should create a PodMonitor object. The default is true. We discuss this in About Creating
PodMonitor Objects.

For additional information about .spec.ttspec.prometheus and its associated datum, see
TimesTenClassicSpecSpecPrometheus for a TimesTenClassic object and
TimesTenScaleoutSpecSpecPrometheus for a TimesTen Scaleout object.

About Using http or https for TimesTen Metrics
TimesTen metrics are available by http or https.

Chapter 11
About Using http or https for TimesTen Metrics

11-5

The default behavior is https and is discussed in About Transport Layer Security
(mutual TLS) Certificates for TimesTen Metrics.

To cause the TimesTen Operator to use http for TimesTen metrics, specify
the .spec.ttspec.prometheus.insecure datum in a TimesTenClassic or
TimesTenScaleout object YAML manifest file.

Here is a code snippet of a TimesTenClassic object YAML manifest file showing you
how to do this:

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: usehttp
spec:
 ttspec:
…
 prometheus:
 insecure: true
 port: 7777

Note the following:

• The .spec.ttspec.insecure datum is specified in the .spec.ttspec.prometheus
clause of the TimesTenClassic object. This causes the TimesTen Operator to
configure the TimesTen exporter to serve TimesTen metrics using http.

The .spec.ttspec.port datum is specified. This is the port on which the
TimesTen exporter listens. The causes the TimesTen Operator to set up the http
server on TCP port 7777 in each TimesTen Pod.

About Transport Layer Security (mutual TLS) Certificates for
TimesTen Metrics

When https is used, the TimesTen Operator automatically creates self-signed
certificates. The TimesTen Operator also creates two Kubernetes Secrets to hold
these certificates.

As an example, for a TimesTen object called sample, these Secrets are automatically
created:

• sample-metrics: This Secret is automatically mounted in the TimesTen exporter
containers of the TimesTen Pods. It contains an Oracle Wallet, which contains all
certificates needed by the TimesTen exporter for https.

• sample-metrics-client: This Secret contains files that a Prometheus server (or
other scraper) requires to scrape TimesTen metrics. This Secret contains the
following three files:

– ca.crt: The Certificate Authority certificate needed by the client to
authenticate the self-signed certificate used by the TimesTen exporter.

– client.crt: The client certificate that the TimesTen exporter uses to
authenticate any clients that try to scrape metrics from it.

Chapter 11
About Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics

11-6

– client.key: The private key that is associated with the client.crt client certificate.

Both Secrets are created with appropriate Kubernetes owner references. If you delete the
associated TimesTenClassic or TimesTenScaleout object, these Secrets are automatically
deleted.

Although not recommended, you have the option of creating your own certificates to serve
TimesTen metrics using https. See Create Your Own Oracle Wallet, Certificates, and Secrets
for Exposing TimesTen Metrics.

Note:

If TimesTen metrics are served by using either http or https whereby you create
your own self-signed certificates, then the TimesTen Operator does not
automatically create certificates, Oracle Wallets, or Kubernetes Secrets.

About Creating PodMonitor Objects
By default, if the Prometheus Operator has been installed in your Kubernetes cluster, the
TimesTen Operator automatically creates PodMonitor objects when it provisions TimesTen in
your namespace. Specifically, the TimesTen Operator automatically creates a PodMonitor
object for each deployed TimesTenClassic or TimesTenScaleout object.

This automates all of the steps required to get TimesTen metrics into Prometheus. As
TimesTen objects are created and deleted, the appropriate scrape targets are automatically
provisioned and removed from the Prometheus configuration without any intervention by you.

Although recommended, this is an optional capability. If you choose not to use the
Prometheus Operator, you can export TimesTen metrics into Prometheus yourself. The
Prometheus Operator is not a prerequisite for using the TimesTen Operator.

If you have installed the Prometheus Operator and you do not want the TimesTen Operator to
automatically create PodMonitor objects, set
the .spec.ttspec.prometheus.createPodMonitors datum of your TimesTenClassic or
TimesTenScaleout object to false.

This capability is available whether a TimesTenClassic or TimesTenScaleout object is using
http or https. It is also available with TimesTen Operator-created certificates and Secrets.

However, this capability is not available if you specify
the .spec.ttspec.prometheus.certSecret datum in a TimesTenClassic or
TimesTenScaleout object definition. If you provide your own Kubernetes Secret that contains
your own Oracle Wallet (and this Oracle Wallet contains the necessary certificates for using
https), the TimesTen Operator cannot automatically produce a PodMonitor object with
sufficient information to allow Prometheus to access TimesTen. In this case, you must create
your own PodMonitor objects, or otherwise edit Prometheus configuration files to access
TimesTen and have TimesTen metrics scraped.

If the TimesTen Operator attempts to create a PodMonitor object and is unable to do so, the
TimesTen Operator generates an appropriate Event and continues on with provisioning and
other normal operations. This can happen if the Prometheus Operator is not installed in your
Kubernetes cluster or if the TimesTen Operator has not been granted appropriate role-based
access control (RBAC) privileges in your Kubernetes cluster. For more information about
RBAC privileges, see https://kubernetes.io/docs/reference/access-authn-authz/rbac/.

Chapter 11
About Creating PodMonitor Objects

11-7

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

A PodMonitor object created by the TimesTen Operator has an owner reference to the
appropriate TimesTenClassic or TimesTenScaleout object. This ensures that the
PodMonitor object is automatically deleted if the TimesTenClassic or
TimesTenScaleout object is deleted.

Note:

The .spec.ttspec.prometheus.createPodMonitors datum can be added to
new TimesTenClassic and TimesTenScaleout objects, but cannot be added
to existing TimesTenClassic and TimesTenScaleout objects (by using the
kubectl upgrade or the kubectl patch commands or by other means).

For more information about PodMonitor objects, see https://prometheus-operator.dev/
docs/operator/design/#podmonitor.

About the TimesTen Metrics Service
The TimesTen Operator automatically creates a Kubernetes Service for the TimesTen
exporter. This Service exposes the port on which the TimesTen exporter listens to the
Pods in the Kubernetes cluster. This Service exposes the port at
sample.mynamespace.svc.cluster.local:port/metrics where:

• sample is the name of a TimesTenClassic or TimesTenScaleout object.

• mynamespace is the name of your namespace.

• port is the port number on which the TimesTen exporter listens.

The default port is 8888.

You can change the port on which the TimesTen exporter listens by specifying
the .spec.ttspec.prometheus.port datum in a TimesTenClassic or
TimesTenScaleout object YAML manifest file.

Here is a code snippet of a TimesTenClassic object YAML manifest file showing
the .spec.ttspec.prometheus.port datum.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
…
 prometheus:
 port: 7777

In this snippet, the TimesTen exporter listens on port 7777.

About Choosing to Expose TimesTen Metrics
By default, the TimesTen Operator exposes TimesTen metrics for TimesTenClassic
and TimesTenScaleout objects.

Chapter 11
About the TimesTen Metrics Service

11-8

https://prometheus-operator.dev/docs/operator/design/#podmonitor
https://prometheus-operator.dev/docs/operator/design/#podmonitor

You have the option of not exposing TimesTen metrics by setting
the .spec.ttspec.prometheus.publish datum to false in a TimesTenClassic or
TimesTenScaleout object YAML manifest file. Doing so causes the TimesTen Operator to not
provision an exporter container for the TimesTen exporter. If an exporter container is not
provisioned, the TimesTen exporter is not configured, started, or managed. In this case,
TimesTen metrics for the databases associated with this TimesTenClassic or
TimesTenScaleout object are not exported or exposed.

Here is a code snippet showing how to set the value of
the .spec.ttspec.prometheus.publish datum to false in a TimesTenClassic object YAML
manifest file:

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
…
 prometheus:
 publish: false

In this example, the TimesTen Operator does not provision an exporter container for the
sample TimesTenClassic object.

The default value for the .spec.ttspec.prometheus.publish datum is true. If you want the
TimesTen Operator to provision an exporter container, you can choose the default or you
can specify a value of true for the .spec.ttspec.prometheus.publish datum.

If you do not specify the publish datum, and any other datum is specified in
the .spec.ttspec.prometheus clause, the default value for the publish datum is true.

If you do not specify the .spec.ttspec.prometheus clause and the TimesTen release is 22.1
or greater, the default value for the publish datum is dependent on the value of the
EXPOSE_METRICS TimesTen Operator environment variable:

• If EXPOSE_METRICS is "1" (or not specified), the TimesTen Operator treats the publish
datum as true.

• If EXPOSE_METRICS is "0", the TimesTen Operator treats the publish datum as false.

For more information about the .spec.ttspec.prometheus clause of a TimesTenClassic or
TimesTenScaleout object, see TimesTenClassicSpecSpecPrometheus or
TimesTenScaleoutSpecSpecPrometheus respectively.

For information about TimesTen Operator environment variables, see TimesTen Kubernetes
Operator Environment Variables.

We recommend that you let the TimesTen Operator automatically export, expose, and publish
TimesTen metrics. For a complete example, see Expose TimesTen Metrics Automatically.

Expose TimesTen Metrics Automatically
Let's walk through an example showing how the TimesTen Operator automatically exports
and exposes TimesTen metrics. In this example, let's create a TimesTenClassic object and

Chapter 11
Expose TimesTen Metrics Automatically

11-9

observe how the TimesTen Operator automatically creates the objects needed to
automatically export and expose TimesTen metrics to Prometheus.

Let's assume you have installed the Prometheus Operator in your Kubernetes cluster
and there is a Prometheus server running in your namespace. Let's also assume you
have started the TimesTen Operator following the steps in About Deploying the
TimesTen Operator and there are no TimesTenClassic or TimesTenScaleout objects
deployed in your namespace.

1. Create a TimesTenClassic object.

vi samplepublish.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: samplepublish
spec:
 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 imagePullSecret: sekret
 prometheus:
 port: 6666

In this example, the port on which the TimesTen exporter listens is 6666.

2. Deploy the TimesTenClassic object.

kubectl create -f samplepublish.yaml

The output is the following:

timestenclassic.timesten.oracle.com/samplepublish created

3. Wait a few minutes, then confirm the TimesTenClassic object is in the Normal
state.

kubectl get ttc samplepublish

The output is similar to the following:

NAME STATE ACTIVE AGE
samplepublish Normal samplepublish-0 3m56s

4. Confirm the TimesTen Operator provisioned an exporter container in each
TimesTen Pod

kubectl get pods

Chapter 11
Expose TimesTen Metrics Automatically

11-10

The output is similar to the following:

NAME READY STATUS RESTARTS AGE
...
samplepublish-0 3/3 Running 0 7m33s
samplepublish-1 3/3 Running 0 7m33s
...

The TimesTen Operator automatically provisioned 3 containers in each TimesTen Pod.
One of these containers is the exporter container, which is running the TimesTen
exporter.

5. Confirm the TimesTen Operator automatically created the appropriate Kubernetes
Secrets.

kubectl get secrets

The output is similar to the following:

NAME
TYPE DATA AGE
...
samplepublish-metrics
Opaque 1 15m
samplepublish-metrics-client
Opaque 3 15m

By default, TimesTen metrics are served using https. As a result, the TimesTen Operator
automatically created an Oracle Wallet, the certificates, and the Kubernetes Secrets
needed for https. For more information, see About Transport Layer Security (mutual TLS)
Certificates for TimesTen Metrics.

6. Confirm the appropriate files are in the samplepublish-metrics-client Kubernetes
Secret.

kubectl describe secret samplepublish-metrics-client

The output is similar to the following:

Name: samplepublish-metrics-client
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
ca.crt: 1461 bytes
client.crt: 1273 bytes
client.key: 1675 bytes

Chapter 11
Expose TimesTen Metrics Automatically

11-11

The TimesTen Operator automatically created the ca.crt, client.crt, and
client.key files. The samplepublish-metrics-client Kubernetes Secret holds
these files. See About Transport Layer Security (mutual TLS) Certificates for
TimesTen Metrics.

7. Confirm the TimesTen Operator automatically created the samplepublish
PodMonitor object.

kubectl describe podmonitor samplepublish

The output is similar to the following:

Name: samplepublish
Namespace: mynamespace
Labels: app=samplepublish
 database.timesten.oracle.com=samplepublish
Annotations: <none>
API Version: monitoring.coreos.com/v1
Kind: PodMonitor
Metadata:
 Creation Timestamp: 2023-09-25T15:36:08Z
 Generation: 1
 Owner References:
 API Version: timesten.oracle.com/v1
 Block Owner Deletion: true
 Controller: true
 Kind: TimesTenClassic
 Name: samplepublish
 UID: d0f46bf7-b1d8-4499-876c-51410a469772
 Resource Version: 284346942
 UID: 5a61ec9e-df7d-4a98-be47-dce1e7c3d217
Spec:
 Namespace Selector:
 Pod Metrics Endpoints:
 Bearer Token Secret:
 Key:
 Interval: 15s
 Path: /metrics
 Port: exporter
 Scheme: https
 Tls Config:
 Ca:
 Secret:
 Key: ca.crt
 Name: samplepublish-metrics-client
 Cert:
 Secret:
 Key: client.crt
 Name: samplepublish-metrics-client
 Key Secret:
 Key: client.key
 Name: samplepublish-metrics-client
 Server Name:
samplepublish.samplepublish.mynamespace.svc.cluster.local

Chapter 11
Expose TimesTen Metrics Automatically

11-12

 Selector:
 Match Labels:
 database.timesten.oracle.com: samplepublish
Events: <none>

Let's look at the important information in this PodMonitor object:

• There is an app=samplepublish label. If there are Pods with a label that matches
app=samplepublish, Prometheus scrapes metrics from them. The TimesTen Pods
contain the app=samplepublish label. Prometheus will therefore scrape metrics from
these Pods. We will see this later.

• Prometheus scrapes metrics from the /metrics endpoint.

• Metrics are exposed using https.

• The TimesTen Operator placed the samplepublish-metrics and samplepublish-
metrics-client Kubernetes Secrets in the PodMonitor object. These Secrets and
their contents are used by the Prometheus Operator.

The Prometheus Operator edits the Prometheus server configuration files based on the
information in this PodMonitor object.

8. Confirm the TimesTen Operator automatically created the appropriate Kubernetes
Service.

kubectl describe service samplepublish

The output is similar to the following:

Name: samplepublish
Namespace: mynamespace
Labels: app=samplepublish
Annotations: <none>
Selector: app=samplepublish
Type: ClusterIP
IP Family Policy: SingleStack
IP Families: IPv4
IP: None
IPs: None
Port: cs 6625/TCP
TargetPort: 6625/TCP
Endpoints: 10.244.0.120:6625,10.244.1.144:6625
Port: exporter 6666/TCP
TargetPort: 6666/TCP
Endpoints: 10.244.0.120:6666,10.244.1.144:6666
Session Affinity: None
Events: <none>

The TimesTen exporter listens on port 6666.

9. Confirm there is a Prometheus server running in your namespace.

kubectl get pods

Chapter 11
Expose TimesTen Metrics Automatically

11-13

The output is similar to the following:

NAME READY STATUS RESTARTS
AGE
prometheus-sampleprometheusserver-0 2/2 Running 2
18d
...

The prometheus-sampleprometheusserver-0 Prometheus server is running in
your namespace.

10. Confirm the Prometheus Operator edited the Prometheus server configuration file
based on the information in the samplepublish PodMonitor object.

 kubectl exec prometheus-sampleprometheusserver-0 -c prometheus --
cat /etc/prometheus/config_out/prometheus.env.yaml

The output is similar to the following:

global:
 evaluation_interval: 30s
 scrape_interval: 30s
 external_labels:
 prometheus: mynamespace/sampleprometheusserver
 prometheus_replica: prometheus-sampleprometheusserver-0
scrape_configs:
- job_name: podMonitor/mynamespace/samplepublish/0
 honor_labels: false
 kubernetes_sd_configs:
 - role: pod
 namespaces:
 names:
 - mynamespace
 scrape_interval: 15s
 metrics_path: /metrics
 scheme: https
 tls_config:
 insecure_skip_verify: false
 ca_file: /etc/prometheus/certs/secret_mynamespace_samplepublish-
metrics-client_ca.crt
 cert_file: /etc/prometheus/certs/
secret_mynamespace_samplepublish-metrics-client_client.crt
 key_file: /etc/prometheus/certs/
secret_mynamespace_samplepublish-metrics-client_client.key
 server_name:
samplepublish.samplepublish.mynamespace.svc.cluster.local
 relabel_configs:
 - source_labels:
 - job
 target_label: __tmp_prometheus_job_name
 - action: drop
 source_labels:
 - __meta_kubernetes_pod_phase
 regex: (Failed|Succeeded)

Chapter 11
Expose TimesTen Metrics Automatically

11-14

 - action: keep
 source_labels:
 - __meta_kubernetes_pod_label_database_timesten_oracle_com
 - __meta_kubernetes_pod_labelpresent_database_timesten_oracle_com
 regex: (samplepublish);true
 - action: keep
 source_labels:
 - __meta_kubernetes_pod_container_port_name
 regex: exporter
 - source_labels:
 - __meta_kubernetes_namespace
 target_label: namespace
 - source_labels:
 - __meta_kubernetes_pod_container_name
 target_label: container
 - source_labels:
 - __meta_kubernetes_pod_name
 target_label: pod
 - target_label: job
 replacement: mynamespace/samplepublish
 - target_label: endpoint
 replacement: exporter
 - source_labels:
 - __address__
 target_label: __tmp_hash
 modulus: 1
 action: hashmod
 - source_labels:
 - __tmp_hash
 regex: 0
 action: keep
 metric_relabel_configs: []

Prometheus has the information it needs to scrape TimesTen metrics.

11. Review some of the TimesTen metrics: In your browser, go to your Prometheus server.

a. In the Prometheus server search bar, type a TimesTen metric. For example,
timesten_databases. Next, click Execute.

The output is similar to the following:

timesten_databases{container="exporter", endpoint="exporter",
instance="10.244.0.120:6666", instancename="instance1",
job="mynamespace/samplepublish",
namespace="mynamespace", pod="samplepublish-0"} 1

timesten_databases{container="exporter", endpoint="exporter",
instance="10.244.1.144:6666", instancename="instance1",
job="mynamespace/samplepublish",
namespace="mynamespace", pod="samplepublish-1"} 1

There is one TimesTen database in the samplepublish-0 Pod and one TimesTen
database in the samplepublish-1 Pod as evidenced by the value of 1 for the metric.

Chapter 11
Expose TimesTen Metrics Automatically

11-15

b. In the Prometheus server search bar, type a second TimesTen metric. For
example, timesten_database_loaded. Next, click Execute.

The output is similar to the following:

timesten_database_loaded{container="exporter",
dsn="samplepublish",
endpoint="exporter", instance="10.244.0.120:6666",
instancename="instance1",
job="mynamespace/samplepublish", namespace="mynamespace",
pod="samplepublish-0"} 1

timesten_database_loaded{container="exporter",
dsn="samplepublish",
endpoint="exporter", instance="10.244.1.144:6666",
instancename="instance1",
job="mynamespace/samplepublish", namespace="mynamespace",
pod="samplepublish-1"} 1

The samplepublish database in the samplepublish-0 Pod and the
samplepublish database in the samplepublish-1 Pod are both loaded into
memory as evidenced by the value of 1 for the metric.

Congratulations! You successfully created TimesTen databases whose metrics are
collected by Prometheus.

Chapter 11
Expose TimesTen Metrics Automatically

11-16

12
Expose Metrics from the TimesTen
Kubernetes Operator

The TimesTen Kubernetes Operator (TimesTen Operator) can expose metrics about its own
functionality as well as the status of TimesTenClassic and TimesTenScaleout objects to
Prometheus or any other scraping mechanism.

This chapter shows you how.

Topics:

• About Exposing Metrics from the TimesTen Kubernetes Operator

• About Using http or https

• About Transport Layer Security (mutual TLS) Certificates

• About Creating ServiceMonitor Objects

• About the TimesTen Kubernetes Operator's Metrics Service

• About TimesTen Operator Metrics

• Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

About Exposing Metrics from the TimesTen Kubernetes
Operator

By default, the TimesTen Kubernetes Operator exposes metrics about its own functionality as
well as the status of TimesTenClassic and TimesTenScaleout objects it manages.

Let's look at how the TimesTen Operator does this. Let's examine the default behavior and
let's determine how you can change the default behavior if you choose to do so.

By default, the TimesTen Operator does the following:

• Exports and exposes metrics about its own functionality and the overall status of the
TimesTenClassic and TimesTenScaleout objects that it manages.

• Uses https/Transport Layer Security (mutual TLS) to make these metrics available.

• Automatically creates certificates, Oracle Wallets, and Kubernetes Secrets required for
TLS.

• If the Prometheus Operator is installed, creates the appropriate objects to cause
Prometheus to be automatically modified, which then causes Prometheus to scrape
metrics from the TimesTen Operator.

• Exposes metrics outside of the TimesTen Operator Pods.

Although this default behavior is recommended, you have the option of changing the default
behavior. Let's examine our options:

• https or http?: TimesTen Operator metrics are available by https (default) or http.

12-1

• Create a Kubernetes ServiceMonitor object?: If the Prometheus Operator is
installed in your Kubernetes cluster, the TimesTen Operator can create a
Kubernetes ServiceMonitor object. This object contains the information needed by
the Prometheus Operator to configure the TimesTen Operator as a scrape target.
If the Prometheus Operator has been installed in your Kubernetes cluster, then by
default the TimesTen Operator creates a ServiceMonitor object.

• Expose TimesTen Operator metrics outside of the TimesTen Operator Pods?: The
TimesTen Operator listens on and accepts GETs on the timesten-
operator.mynamespace.svc.cluster.local:8080/metrics endpoint (where
mynamespace is the name of your namespace). By default, the TimesTen Operator
deploys a Kubernetes Service that makes this endpoint available to other Pods in
the Kubernetes cluster. You can choose not to create this Service.

Now, let's look at how we can change the default behavior.

The TimesTen Operator is deployed in your namespace as a Kubernetes Deployment.
We provide an operator.yaml YAML manifest file that lets you customize this
Deployment. The file is located in the deploy directory of the TimesTen Operator
distribution. For more information, see About Deploying the TimesTen Operator.

The operator.yaml file contains various environment variables. Three of these
variables govern if and how the TimesTen Operator exports and exposes metrics
about its own operation and the status of the TimesTenClassic and TimesTenScaleout
objects that it manages.

• METRICS_SCHEME: Determines if metrics should be made available by https or http.
A setting of "https" (default) indicates https should be used. A setting of "http"
indicates http should be used.

• CREATE_SERVICEMONITOR: Determines if the TimesTen Operator should create a
Kubernetes ServiceMonitor object (discussed in a later section). A setting of "1"
(default) indicates the TimesTen Operator should create a ServiceMonitor object. A
setting of "0" indicates the TimesTen Operator should not create a ServiceMonitor
object.

• EXPOSE_METRICS: Determines if metrics are exposed outside of the TimesTen
Operator Pods. A setting of "1" (default) indicates metrics should be exposed
outside of the TimesTen Operator Pods. A setting of "0" indicates metrics should
not be exposed outside of the TimesTen Operator Pods.

Let's look at a snippet of an operator.yaml file that shows the existence of these
environment variables and the default settings.

Copyright (c) 2019 - 2023, Oracle and/or its affiliates.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: timesten-operator
spec:
...
 env:
 ...
 - name: EXPOSE_METRICS
 value: "1"
 - name: METRICS_SCHEME
 value: "https"

Chapter 12
About Exposing Metrics from the TimesTen Kubernetes Operator

12-2

 - name: EXPOSE_PROBES
 value: "1"
 - name: CREATE_SERVICEMONITOR
 value: "1"
...

For reference information about these variables, see TimesTen Kubernetes Operator
Environment Variables.

Note:

TimesTen Operator metrics are accurate when you have one TimesTen Operator
defined in your TimesTen Operator Deployment (replicas:1 in your operator.yaml
file).

About Using http or https
TimesTen Operator metrics are available by http or https.

The default behavior is https. To cause the TimesTen Operator to use http instead of https,
set the METRICS_SCHEME environment variable to "http" in your operator.yaml YAML
manifest file.

Note:

In TimesTen release 18.1, if you specify https for the METRICS_SCHEME environment
variable, the TimesTen Operator acts as though you specified http.

About Transport Layer Security (mutual TLS) Certificates
When https is used, the TimesTen Operator automatically creates self-signed certificates. The
TimesTen Operator also creates two Kubernetes Secrets to hold these certificates:

• timesten-operator-metrics: This Secret is used internally by the TimesTen Operator. It
contains all the certificates needed by the TimesTen Kubernetes Operator for https/TLS.
You do not need to use or examine this Secret.

• timesten-operator-metrics-client: This Secret contains files that a Prometheus
server (or other scraper) requires to scrape metrics from the TimesTen Operator. This
Secret contains the following three files:

– ca.crt: The Certificate Authority certificate needed by the client to authenticate the
self-signed certificate used by the TimesTen Operator.

– client.crt: The client certificate that the TimesTen Operator uses to authenticate
any clients that try to scrape metrics from it.

– client.key: The private key that is associated with the client.crt client certificate.

Both Secrets are created with appropriate Kubernetes owner references. If you delete the
TimesTen Operator deployment, these Secrets are automatically deleted.

Chapter 12
About Using http or https

12-3

Note:

When http is used, these certificates, Wallets, and Secrets are not created.

About Creating ServiceMonitor Objects
By default, if the Prometheus Operator is installed in your Kubernetes cluster, the
TimesTen Operator attempts to create a Kubernetes ServiceMonitor object called
timesten-operator. This object includes the information needed by Prometheus to
configure the TimesTen Operator as a scrape target. If installed in your cluster, the
Prometheus Operator responds to the creation of this object by editing the
Prometheus configuration files to scrape metrics from the corresponding Service. For
more information about ServiceMonitor objects, see https://prometheus-operator.dev/
docs/operator/design/#servicemonitor.

A ServiceMonitor object created by the TimesTen Operator has an owner reference to
the appropriate TimesTen Operator deployment. This ensures that the ServiceMonitor
object is automatically deleted if the TimesTen Operator deployment is deleted.

The CREATE_SERVICEMONITOR environment variable determines if the TimesTen
Operator creates a ServiceMonitor object. If you do not want the TimesTen Operator to
create a ServiceMonitor object, then set CREATE_SERVICEMONITOR to "0" in your
operator.yaml YAML manifest file..

About the TimesTen Kubernetes Operator's Metrics Service
The TimesTen Operator always makes metrics available. However, you can limit
access to the TimesTen Operator's /metrics endpoint. By default, the TimesTen
Operator's /metrics endpoint is available to other Pods in the Kubernetes cluster.
Specifically, the TimesTen Operator automatically creates a Kubernetes Service called
timesten-operator. This Service exposes the metrics port in the active TimesTen
Operator Pod to the rest of the cluster at timesten-
operator.mynamespace.svc.cluster.local:8080/metrics (where mynamespace is the
name of your namespace).

If you choose not to expose TimesTen Operator metrics outside of the TimesTen
Operator's Pods, set the EXPOSE_METRICS environment variable to "0" in your
operator.yaml YAML manifest file. In this case, the metrics port is not exposed by a
Kubernetes Service. (You could still fetch metrics by using the kubectl exec command
to run curl or a similar tool within the TimesTen Operator Pod itself.)

If you set the EXPOSE_METRICS environment variable to "0" and the
CREATE_SERVICEMONITOR environment variable is set to "1" (default), the
CREATE_SERVICEMONITOR environment variable is treated as though it was set to "0".

In addition, if you set the EXPOSE_METRICS environment variable to "0", the value of the
METRICS_SCHEME environment variable is ignored and http is always used.

Chapter 12
About Creating ServiceMonitor Objects

12-4

About TimesTen Operator Metrics
The TimesTen Operator publishes metrics about its own functionality as well as the status of
TimesTenClassic and TimesTenScaleout objects that it manages.

These are the metrics that we have customized specifically for the TimesTen Operator:

• timesten_classic_state_normal
• timesten_classic_state_not_normal
• timesten_classic_state
• timesten_scaleout_state_normal
• timesten_scaleout_state_not_normal
• timesten_scaleout_state
For details about these metrics, see TimesTen Kubernetes Operator Metrics.

Demonstrate How to Expose TimesTen Kubernetes Operator
Metrics

Let's walk through an example illustrating how the TimesTen Kubernetes Operator exposes
metrics about its own functionality as well as the status of TimesTenClassic or
TimesTenScaleout objects. Let's assume Prometheus is installed in your Kubernetes cluster
and you have a Prometheus server running in your namespace.

Let's make the following decisions:

• https or http?: Let's choose https. The METRICS_SCHEME environment variable determines
if metrics should be made available by https or http. A setting of "1" (default) indicates
https.

• Create a ServiceMonitor object?: Let's have the TimesTen Operator create a
ServiceMonitor object. This object contains the information needed by Prometheus to
configure the TimesTen Operator as a scrape target. The CREATE_SERVICEMONITOR
environment variable determines if the TimesTen Operator should create a
ServiceMonitor object. A setting of "1" (default) indicates the TimesTen Operator should
create the object.

• Expose TimesTen Operator metrics outside of the TimesTen Operator Pods?: Let's have
the metrics exposed outside of the TimesTen Operator Pods so that Prometheus can
scrape metrics from it. The EXPOSE_METRICS environment variable determines if metrics
are exposed outside of the TimesTen Operator Pods. A setting of "1" (default) indicates
metrics should be exposed. This means that the TimesTen Operator will create a
Kubernetes Service (called timesten-operator) that allows the /metrics endpoint to be
available to other Pods in the Kubernetes cluster.

Since we have chosen the defaults for the TimesTen Operator environment variables, you do
not have to modify these variables in the operator.yaml YAML manifest file. For more
information about the operator.yaml YAML manifest file, see Customize the TimesTen
Operator.

1. Start the TimesTen Operator following the steps in About Deploying the TimesTen
Operator.

Chapter 12
About TimesTen Operator Metrics

12-5

2. (Optional) Review the TimesTen Operator deployment running in your namespace.

kubectl describe deployment timesten-operator

Output.

Name: timesten-operator
Namespace: mynamespace
CreationTimestamp: Sat, 23 Sep 2023 20:48:48 +0000
Labels: <none>
Annotations: deployment.kubernetes.io/revision: 1
Selector: name=timesten-operator
Replicas: 1 desired | 1 updated | 1 total | 1
available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: name=timesten-operator
 Service Account: timesten-operator
 Containers:
 timesten-operator:
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Ports: 8081/TCP, 8080/TCP
 Host Ports: 0/TCP, 0/TCP
 Command:
 /timesten/operator/operator/timesten-operator
 Liveness: http-get http://:probes/healthz delay=10s
timeout=10s period=30s #success=1 #failure=3
 Readiness: http-get http://:probes/healthz delay=10s
timeout=10s period=10s #success=1 #failure=1
 Environment:
 WATCH_NAMESPACE: (v1:metadata.namespace)
 POD_NAME: (v1:metadata.name)
 OPERATOR_NAME: timesten-operator
 EXPOSE_METRICS: 1
 METRICS_SCHEME: https
 EXPOSE_PROBES: 1
 CREATE_SERVICEMONITOR: 1
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: timesten-operator-7f77c749fd (1/1 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 73s deployment-controller Scaled up
replica set timesten-operator-7f77c749fd to 1

Chapter 12
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

12-6

The EXPOSE_METRICS and CREATE_SERVICEMONITOR TimesTen Operator environment
variables are set to 1 (defaults) and the METRICS_SCHEME is set to https (default).

3. Confirm the TimesTen Operator created the appropriate Kubernetes Secrets.

 kubectl get secrets

Output:

NAME
TYPE DATA AGE
...
timesten-operator-metrics
Opaque 1 11m
timesten-operator-metrics-client
Opaque 3 11m

The TimesTen Operator created the timesten-operator-metrics Kubernetes Secret.
This Secret contains the certificates needed by the TimesTen Operator for https/TLS.
This Secret is used internally by the TimesTen Operator.

The TimesTen Operator also created the timesten-operator-metrics-client
Kubernetes Secret. This Secret contains the files that a Prometheus server needs to
scrape metrics from the TimesTen Operator Pods.

4. Confirm the appropriate files are in the timesten-operator-metrics-client Kubernetes
Secret.

kubectl describe secret timesten-operator-metrics-client

Output:

Name: timesten-operator-metrics-client
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
ca.crt: 1465 bytes
client.crt: 1277 bytes
client.key: 1675 bytes

The Secret contains the following files:

• ca.crt: The Certificate Authority file needed by the client to authenticate the self-
signed certificate used by the TimesTen Operator.

• client.crt: The client certificate that the TimesTen Operator uses to authenticate
clients that are attempting to scrape metrics from it.

• client.key: The private key that is associated with the client.crt file.

Chapter 12
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

12-7

5. Confirm the TimesTen Operator created the timesten-operator ServiceMonitor
object.

kubectl describe servicemonitor timesten-operator

Output:

Name: timesten-operator
Namespace: mynamespace
Labels: app=timesten-operator
 database.timesten.oracle.com=timesten-operator
Annotations: deployment.kubernetes.io/revision: 1
API Version: monitoring.coreos.com/v1
Kind: ServiceMonitor
Metadata:
 Creation Timestamp: 2023-09-23T20:49:33Z
 Generation: 1
 Owner References:
 API Version: apps/v1
 Block Owner Deletion: true
 Controller: true
 Kind: Deployment
 Name: timesten-operator
 UID: 3084af2d-90ca-49d1-874a-cde1174f50b5
 Resource Version: 282625424
 UID: 6337b813-9d62-43b0-8594-60e387e7a30d
Spec:
 Endpoints:
 Bearer Token Secret:
 Key:
 Interval: 15s
 Path: /metrics
 Port: metrics
 Scheme: https
 Tls Config:
 Ca:
 Secret:
 Key: ca.crt
 Name: timesten-operator-metrics-client
 Cert:
 Secret:
 Key: client.crt
 Name: timesten-operator-metrics-client
 Key Secret:
 Key: client.key
 Name: timesten-operator-metrics-client
 Server Name: timesten-operator.mynamespace.svc.cluster.local
 Namespace Selector:
 Selector:
 Match Labels:
 App: timesten-operator
Events: <none>

Let's look at the important information in this ServiceMonitor object:

Chapter 12
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

12-8

• There is an app=timesten-operator label. If there are Pods with a label that matches
app=timesten-operator, Prometheus scrapes metrics from them. The TimesTen
Operator Pod contains the app=timesten-operator label. Prometheus will therefore
scrape metrics from it. We will see this later.

• Prometheus scrapes metrics from the /metrics endpoint.

• Metrics are exposed using https.

• The TimesTen Operator placed the timesten-operator-metrics and timesten-
operator-metrics-client Kubernetes Secrets in the ServiceMonitor object. These
Secrets are used by the Prometheus Operator.

The Prometheus Operator edits the Prometheus server configuration files based on the
information in this ServiceMonitor object.

6. Confirm the TimesTen Operator created the appropriate Kubernetes Service.

kubectl describe service timesten-operator

Output:

Name: timesten-operator
Namespace: mynamespace
Labels: app=timesten-operator
 database.timesten.oracle.com=timesten-operator
Annotations: deployment.kubernetes.io/revision: 1
Selector: name=timesten-operator
Type: ClusterIP
IP Family Policy: SingleStack
IP Families: IPv4
IP: 10.96.169.59
IPs: 10.96.169.59
Port: metrics 8080/TCP
TargetPort: 8080/TCP
Endpoints: 10.244.8.180:8080
Port: probe 8081/TCP
TargetPort: 8081/TCP
Endpoints: 10.244.8.180:8081
Session Affinity: None
Events: <none>

7. Confirm there is a Prometheus server running in your namespace.

kubectl get pods

Output.

NAME READY STATUS RESTARTS AGE
prometheus-sampleprometheusserver-0 2/2 Running 0 10d
...

The prometheus-sampleprometheusserver-0 Prometheus server is running in your
namespace.

Chapter 12
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

12-9

8. Confirm the Prometheus Operator edited the Prometheus server configuration file
based on the information in the timesten-operator ServiceMonitor object.

 kubectl exec prometheus-sampleprometheusserver-0 -c prometheus --
cat /etc/prometheus/config_out/prometheus.env.yaml

Output.

global:
 evaluation_interval: 30s
 scrape_interval: 30s
 external_labels:
 prometheus: mynamespace/sampleprometheusserver
 prometheus_replica: prometheus-sampleprometheusserver-0
scrape_configs:
- job_name: serviceMonitor/mynamespace/timesten-operator/0
 honor_labels: false
 kubernetes_sd_configs:
 - role: endpoints
 namespaces:
 names:
 - mynamespace
 scrape_interval: 15s
 metrics_path: /metrics
 scheme: https
 tls_config:
 insecure_skip_verify: false
 ca_file: /etc/prometheus/certs/secret_mynamespace_timesten-
operator-metrics-client_ca.crt
 cert_file: /etc/prometheus/certs/secret_mynamespace_timesten-
operator-metrics-client_client.crt
 key_file: /etc/prometheus/certs/secret_mynamespace_timesten-
operator-metrics-client_client.key
 server_name: timesten-operator.mynamespace.svc.cluster.local
 relabel_configs:
 - source_labels:
 - job
 target_label: __tmp_prometheus_job_name
 - action: keep
 source_labels:
 - __meta_kubernetes_service_label_app
 - __meta_kubernetes_service_labelpresent_app
 regex: (timesten-operator);true
 - action: keep
 source_labels:
 - __meta_kubernetes_endpoint_port_name
 regex: metrics
 - source_labels:
 - __meta_kubernetes_endpoint_address_target_kind
 - __meta_kubernetes_endpoint_address_target_name
 separator: ;
 regex: Node;(.*)
 replacement: ${1}
 target_label: node

Chapter 12
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

12-10

 - source_labels:
 - __meta_kubernetes_endpoint_address_target_kind
 - __meta_kubernetes_endpoint_address_target_name
 separator: ;
 regex: Pod;(.*)
 replacement: ${1}
 target_label: pod
 - source_labels:
 - __meta_kubernetes_namespace
 target_label: namespace
 - source_labels:
 - __meta_kubernetes_service_name
 target_label: service
 - source_labels:
 - __meta_kubernetes_pod_name
 target_label: pod
 - source_labels:
 - __meta_kubernetes_pod_container_name
 target_label: container
 - action: drop
 source_labels:
 - __meta_kubernetes_pod_phase
 regex: (Failed|Succeeded)
 - source_labels:
 - __meta_kubernetes_service_name
 target_label: job
 replacement: ${1}
 - target_label: endpoint
 replacement: metrics
 - source_labels:
 - __address__
 target_label: __tmp_hash
 modulus: 1
 action: hashmod
 - source_labels:
 - __tmp_hash
 regex: 0
 action: keep
 metric_relabel_configs: []

Prometheus has the information it needs to scrape TimesTen Operator metrics.

9. Review then deploy a TimesTenClassic object.

Review.

cat sample.yaml

Output.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:

Chapter 12
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

12-11

 ttspec:
 storageClassName: oci
 storageSize: 250G
 image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 imagePullSecret: sekret

Deploy:

kubectl create -f sample.yaml

Output:

timestenclassic.timesten.oracle.com/sample created

10. Wait a few minutes, then confirm the sample TimesTenClassic object is in the
Normal state.

kubectl get ttc sample

Output:

NAME STATE ACTIVE AGE
sample Normal sample-0 2m37s

11. Review some of the TimesTen Operator metrics. In your browser, go to your
Prometheus server.

a. In the Prometheus server search bar, type a TimesTen Operator metric. For
example, timesten_classic_state_normal. Next, click Execute.

Output.

timesten_classic_state_normal{container="timesten-operator",
endpoint="metrics", instance="10.244.8.180:8080", job="timesten-
operator",
name="sample", namespace="mynamespace", pod="timesten-
operator-7f77c749fd-2lt5x",
service="timesten-operator"} 1

There is one TimesTenClassic object (sample) and it is in the Normal state.

b. In the Prometheus server search bar, type a second TimesTen Operator
metric. For example, timesten_classic_state_not_normal. Next, click
Execute.

Output.

timesten_classic_state_not_normal{container="timesten-operator",
endpoint="metrics", instance="10.244.8.180:8080", job="timesten-
operator",
name="sample", namespace="mynamespace", pod="timesten-
operator-7f77c749fd-2lt5x",
service="timesten-operator"} 0

Chapter 12
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

12-12

There is one TimesTenClassic object (sample) and it is in either Normal or
Initializing state. A value of 0 indicates it is not in any other state.

c. In the Prometheus server search bar, type a third TimesTen Operator metric. For
example, timesten_classic_state. Next, click Execute.

Output.

timesten_classic_state{container="timesten-operator",
endpoint="metrics",
instance="10.244.8.180:8080", job="timesten-operator", name="sample",
namespace="mynamespace", pod="timesten-operator-7f77c749fd-2lt5x",
service="timesten-operator", state="Initializing"} 0

timesten_classic_state{container="timesten-operator",
endpoint="metrics",
instance="10.244.8.180:8080", job="timesten-operator", name="sample",
namespace="mynamespace", pod="timesten-operator-7f77c749fd-2lt5x",
service="timesten-operator", state="Normal"} 1

The sample TimesTenClassic object is no longer in the Initializing state. It is now
in the Normal state.

Congratulations! You successfully walked through an example demonstrating how TimesTen
Operator metrics are exposed, scraped, and published.

Chapter 12
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

12-13

13
Work with TimesTen Cache

The TimesTen Operator supports the use of TimesTen Cache with TimesTen Classic and
TimesTen Scaleout in your Kubernetes environment.

About Using TimesTen Cache
The TimesTen Operator provides interfaces that you can use in TimesTen Classic and
TimesTen Scaleout to configure cache groups.

These are the cache-related metadata files that you can provide:

• cacheUser: This file contains the TimesTen cache manager user. Its format is user/
ttpwd/orapwd, containing the username, TimesTen password, and Oracle password for
the user. The Oracle user (called the cache administration user in Oracle Database) must
exist prior to creating and deploying TimesTen Classic or TimesTen Scaleout. The
Operator creates the TimesTen user in the the TimesTen database with the given name
and password. The Operator also grants this user the appropriate privileges.

Here is an example:

cachemanageruser/ttmgrpwd/oramgrpwd

See cacheUser for more information.

• cachegroups.sql: This file may contain CREATE CACHE GROUP statements as well as LOAD
CACHE GROUP statements for the Operator to automatically run when the TimesTen
database is created. The file also contains TimesTen built-in procedures to update
statistics on the cache group tables (such as, ttOptEstimateStats and
ttOptUpdateStats).

Here is an example:

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
 INTERVAL 5 SECONDS
FROM oratt.readtab (
 keyval NUMBER NOT NULL PRIMARY KEY,
 str VARCHAR2(32)
);

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

See cachegroups.sql for more information.

If you provide the cacheUser and cachegroups.sql files, the Operator uses them to provision
TimesTen Cache when a new database is created.

The following metadata files are also relevant for TimesTen Cache:

13-1

• tnsnames.ora: This file is required. It defines Oracle Net Services that applications
connect to. For TimesTen Cache, this file configures the connectivity between the
TimesTen and the Oracle Database (from which data is being cached). In this
context, TimesTen is the application that is the connection to the Oracle Database.
See tnsnames.ora for details.

• sqlnet.ora: This file is optional. However, it may be necessary depending on your
Oracle Database configuration. The file defines options for how client applications
communicate with the Oracle Database. In this context, TimesTen is the
application. The tnsnames.ora and sqlnet.ora files together define how an
application communicates with the Oracle Database.

See sqlnet.ora for details.

• db.ini: This file is required. Its contents contain TimesTen connection attributes
for your TimesTen database. The files are included in TimesTen's sys.odbc.ini
file in TimesTen Classic or in the database definition file (dbDef) in TimesTen
Scaelout. You must specify the OracleNetServiceName and the
DatabaseCharacterSet connection attributes in this file. The
DatabaseCharacterSet value must match the value of the Oracle database
character set value.

See db.ini for details.

• schema.sql: This file may be required. In TimesTen Cache, one or more cache
table users own the cache tables. If this cache table user is not the cache
manager user, then you must specify the schema.sql file and in it include the
schema user. You must also assign the appropriate privileges to this schema user.
For example, if the oratt schema user was created in the Oracle Database, and
this user is not the TimesTen cache manager user, you must create the TimesTen
oratt user in this file.

The instance administrator uses the ttIsql utility to run this file immediately after
the database is created. This file is run before the Operator configures TimesTen
Cache, so ensure there are no cache definitions in this file.

See Create the Oracle Database Users for more information on the schema users
in the Oracle Database. See schema.sql for details about the schema.sql file.

In TimesTen Classic, the contents of the cachegroups.sql file runs on the active
database before it is duplicated to the standby. If there are autorefresh cache groups
specified in the cachegroups.sql file, they are paused by the agent prior to duplicating
the active database to the standby. After the duplication process completes, these
autorefresh cache groups are re-enabled.

In TimesTen Scaleout, the contents of the cachegroups.sql file runs during database
creation.

Once created and rolled out, the Operator does not monitor or manage TimesTen
Cache. Specifically, the Operator does not monitor the health of the cache agents, nor
does it take further action to start or stop them. In addition, the Operator does not
verify that data is propagating correctly between the TimesTen database and the
Oracle Database.

If you delete your TimesTenClassic or TimesTenScaleout object, the Operator
automatically cleans up the Oracle Database metadata. If, however, you want to retain
the Oracle Database metadata, specify the cacheCleanUp datum in your
TimesTenClassic or TimesTen Scaleout object definition and set its value to false.

Chapter 13
About Using TimesTen Cache

13-2

See cacheCleanup datum in TimesTenClassicSpecSpec and TimesTenScaleoutSpecSpec.

For complete examples, see the following:

• For TimesTen Classic deployments: See TimesTen Cache in TimesTen Classic Example.

• For TimesTen Scaleout deployments: See TimesTen Cache in TimesTen Scaleout
Example.

Chapter 13
About Using TimesTen Cache

13-3

14
Use Encryption for Data Transmission

TimesTen replication and TimesTen Client/Server support the use of Transport Layer Security
(TLS) for communication between TimesTen instances.

This chapter details the process for configuring and using TLS in your Kubernetes
environment. This enables encrypted data transmission between your replicated TimesTen
databases and, if in a Client/Server environment, between your TimesTen client applications
and your TimesTen Server (your TimesTen database).

Topics include:

• Create TLS Certificates for Replication and Client/Server

• Configure TLS for Replication

• Configure TLS for Client/Server

Create TLS Certificates for Replication and Client/Server
By default, TimesTen replication transmits data between your TimesTen databases
unencrypted. In addition, in a TimesTen Client/Server environment, by default data is
transmitted unencrypted between your application and your TimesTen database.

You can choose to enable encryption for replication and for Client/Server through the use of
Transport Layer Security (TLS). TimesTen provides the ttCreateCerts utility to generate self-
signed certificates for TLS. For more information on TLS certificates and wallets, see About
Using Certificates with Client/Server in the Oracle TimesTen In-Memory Database Security
Guide.

Note:

Java must be installed on your development host in order for you to use the
ttCertsCreate utility. The utility searches for Java according to the JRE_HOME,
JAVA_HOME, and PATH settings.

The ttCreateCerts utility is located in the /bin directory of a TimesTen instance. The utility
creates three wallets: rootWallet, clientWallet, and serverWallet.

From your Linux development host, perform these steps to create the certificates.

1. Navigate to the bin directory of the installation and run the ttInstanceCreate utility
interactively to create an instance. Recall that the installation_dir directory was
created when you unpacked the TimesTen distribution. See "Unpack the TimesTen and
the TimesTen Operator Distributions" for information on unpacking the TimesTen
distribution.

14-1

You have to create a TimesTen instance as the ttCreateCerts utility is run from a
TimesTen instance. For more information on the ttInstanceCreate utility, see
ttInstanceCreate in the Oracle TimesTen In-Memory Database Reference.

Create the instance directory (/scratch/ttuser/instance_dir, in this example),
then run the ttInstanceCreate utility, supplying the -name and the -location
parameters. This example uses instance1 as the name of the instance and uses /
scratch/ttuser/instance_dir as the location of the instance.

% mkdir /scratch/ttuser/instance_dir

% installation_dir/tt22.1.1.19.0/bin/ttInstanceCreate -name instance1
-location /scratch/ttuser/instance_dir
Creating instance in /scratch/ttuser/instance_dir/instance1 ...
INFO: Mapping files from the installation to /scratch/ttuser/
instance_dir/instance1/install

NOTE: The TimesTen daemon startup/shutdown scripts have not been installed.

The startup script is located here :
 '/scratch/ttuser/instance_dir/instance1/startup/tt_instance1'

Run the 'setuproot' script :
 /scratch/ttuser/instance_dir/instance1/bin/setuproot -install
This will move the TimesTen startup script into its appropriate location.

The 22.1 Release Notes are located here :
 'installation_dir/tt22.1.1.19.0/README.html'

2. Set the TIMESTEN_HOME environment variable. This variable must be set before you
run the ttCertsCreate utility. From the bin directory of the instance, source the
ttenv.csh or the ttenv.sh script.

This example uses the bash Bourne-type shell. (Not all output is shown.)

% . /scratch/ttuser/instance_dir/instance1/bin/ttenv.sh
LD_LIBRARY_PATH set to
...
PATH set to
...
CLASSPATH set to
TIMESTEN_HOME set to /scratch/ttuser/instance_dir/instance1

3. Run the ttCreateCerts utility from the bin directory of the instance. This example
uses the -verbose qualifier to show detailed output. See Using TLS for Client/
Server in TimesTen Classic in the Oracle TimesTen In-Memory Database Security
Guide for more information on the ttCreateCerts utility.

The default wallet directory is timesten_home/conf, where timesten_home is the
TimesTen instance home directory. This example uses this default wallet directory.

% /scratch/ttuser/instance_dir/instance1/bin/ttCreateCerts -verbose
Requested Certificates:
User Certificates:
Subject: CN=server1,C=US
Trusted Certificates:
Subject: CN=ecRoot,C=US
Requested Certificates:
User Certificates:
Subject: CN=client1,C=US
Trusted Certificates:

Chapter 14
Create TLS Certificates for Replication and Client/Server

14-2

Subject: CN=ecRoot,C=US
ttCreateCerts : certificates created in /scratch/ttuser/instance_dir/
instance1/conf

4. Review the wallet locations and the certificates (represented in bold). The cwallet.sso
in the serverWallet directory is the file you will supply as the replicationWallet
metadata file for replication and for the server in a Client/Server environment. The
cwallet.sso in the clientWallet directory is the file you will use for the client in a Client/
Server environment. See "About Configuration Metadata Details" for information on the
replicationWallet and the clientWallet metadata files. Also see "Configure TLS for
Replication" and "Configure TLS for Client/Server" for information on using these
metadata files.

(These cwallet.sso files are also represented in bold).

% ls $TIMESTEN_HOME/conf
client1.cert root.cert server1.cert snmp.ini sys.ttconnect.ini
clientWallet rootWallet serverWallet sys.odbc.ini timesten.conf

% ls $TIMESTEN_HOME/conf/*Wallet*
/scratch/ttuser/instance_dir/instance1/conf/clientWallet:
cwallet.sso cwallet.sso.lck

/scratch/ttuser/instance_dir/instance1/conf/rootWallet:
cwallet.sso cwallet.sso.lck

/scratch/ttuser/instance_dir/instance1/conf/serverWallet:
cwallet.sso cwallet.sso.lck

You have successfully created the certificates that can be used for TLS for both replication
and TimesTen Client/Server. You are now ready to configure and use TLS for replication, for
Client/Server, or for both replication and Client/Server.

Configure TLS for Replication
You can configure TLS for replication to ensure secure network communication between your
replicated TimesTen databases. See Transport Layer Security for TimesTen Replication in the
Oracle TimesTen In-Memory Database Security Guide for detailed information.

These sections describe how to configure and use TLS for replication:

• Create Metadata Files and Kubernetes Facilities

• Create a TimesTenClassic Object

• Monitor Deployment of a TimesTenClassic Object

• Verify TLS Is Being Used for Replication

Create Metadata Files and Kubernetes Facilities
The /ttconfig/replicationWallet metadata file is required for TLS support for replication.
(The /ttconfig directory is located in the containers of your TimesTen databases.) This file
must contain the cwallet.sso file (the Oracle wallet) that was generated when you created
the TLS certificates. Recall that this file was located in the /scratch/ttuser/instance_dir/
instance1/conf/serverWallet directory. See Create TLS Certificates for Replication and
Client/Server for information on creating these certificates. This wallet contains the
credentials that are used by TimesTen replication for configuring TLS encryption between
your active standby pair of TimesTen databases.

Chapter 14
Configure TLS for Replication

14-3

In addition to the /ttconfig/replicationWallet metadata file, you may use the other
supported metadata files. See About Configuration Metadata Details for information on
these supported metadata files.

You can include these metadata files in one or more Kubernetes facilities (for example,
in a Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the
metadata files are populated in the /ttconfig directory of the TimesTen containers.
Note that there is no requirement as to how to get the metadata files into this /
ttconfig directory. See Populate the /ttconfig Directory for more information.

The example in the following sections illustrates how to include the
replicationWallet metadata file in a Kubernetes Secret. It also creates the db.ini,
the adminUser, and the schema.sql metadata files and includes these metadata files in
a ConfigMap:

• Create a Kubernetes Secret

• Create a ConfigMap

Create a Kubernetes Secret
This section creates the repl-tls Kubernetes Secret. The repl-tls Secret will
contain the replicationWallet metadata file.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory. This example
creates the serverWallet subdirectory. (The serverWallet directory is used in the
remainder of this example to denote this directory.)

% mkdir -p serverWallet
2. Copy the /scratch/ttuser/instance_dir/instance1/conf/serverWallet/

cwallet.sso file into the serverWallet directory that you just created. Recall that
this file was generated when you used the ttCreateCerts utility to create the TLS
certificates. See "Create TLS Certificates for Replication and Client/Server" for
information.

% cp /scratch/ttuser/instance_dir/instance1/conf/serverWallet/cwallet.sso
serverWallet/cwallet.sso

3. Create the Kubernetes Secret.

In this example:

• The name of the Secret is repl-tls. Replace repl-tls with a name of your
choosing. (repl-tls is represented in bold.)

• The name of the metadata file required for TLS replication is
replicationWallet (represented in bold).

• The location of the wallet directory is serverWallet (in this example,
represented in bold). If you use a different directory, replace serverWallet
with the name of your directory.

• The name of the Oracle wallet is cwallet.sso (represented in bold).

Use the kubectl create command to create the Secret:

% kubectl create secret generic repl-tls
--from-file=replicationWallet=serverWallet/cwallet.sso
secret/repl-tls created

Chapter 14
Configure TLS for Replication

14-4

You have successfully created and deployed the repl-tls Kubernetes Secret. The
replicationWallet/cwallet.sso file will later be available in the /ttconfig directory of the
TimesTen containers. In addition, the file will be available in the /tt/home/timesten/
replicationWallet directory of the TimesTen containers.

Create a ConfigMap
This section creates the repl-tls ConfigMap. This ConfigMap contains the db.ini, the
adminUser, and the schema.sql metadata files.

These metadata files are not required for TLS, but are included as additional attributes for
your TimesTen databases. See "Overview of Configuration Metadata and Kubernetes
Facilities" for information on the metadata files and the ConfigMap facility.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata files.
This example creates the cm_replTLS subdirectory. (The cm_replTLS directory is used in
the remainder of this example to denote this directory.)

% mkdir -p cm_replTLS
2. Navigate to the ConfigMap directory.

% cd cm_replTLS
3. Create the db.ini file in this ConfigMap directory (cm_replTLS, in this example). In this

db.ini file, define the PermSize and DatabaseCharacterSet connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

4. Create the adminUser file in this ConfigMap directory (cm_replTLS, in this example). In
this adminUser file, create the sampleuser user with the samplepw password.

vi adminUser

sampleuser/samplepw

5. Create the schema.sql file in this ConfigMap directory (cm_replTLS, in this example). In
this schema.sql file, define the s sequence and the emp table for the sampleuser user.
The Operator will automatically initialize your database with these object definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
 id number not null primary key,
 name char(32)
);

6. Create the ConfigMap. The files in the cm_replTLS directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

Chapter 14
Configure TLS for Replication

14-5

• The name of the ConfigMap is repl-tls. Replace repl-tls with a name of
your choosing. (repl-tls is represented in bold in this example.)

• This example uses cm_replTLS as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace
cm_replTLS with the name of your directory. (cm_replTLS is represented in
bold in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap repl-tls --from-file=cm_replTLS
configmap/repl-tls created

7. Use the kubectl describe command to verify the contents of the ConfigMap.
(repl-tls, in this example.)

% kubectl describe configmap repl-tls
Name: repl-tls
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
adminUser:

sampleuser/samplepw

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

schema.sql:

create sequence sampleuser.s;
create table sampleuser.emp (id number not null primary key, name char (32));

Events: <none>

You have successfully created and deployed the repl-tls ConfigMap.

Create a TimesTenClassic Object
This section creates the TimesTenClassic object. See "Define and Create a
TimesTenClassic Object" and "About the TimesTenClassic Object Type" for detailed
information on the TimesTenClassic object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenClassic object. (In this
example, repltls.) The YAML file contains the definitions for the TimesTenClassic
object. See "TimesTenClassicSpecSpec" for information on the fields that you
must specify in this YAML file as well as the fields that are optional.

In this example, the fields of particular interest for TLS replication are:

• dbSecret: This example uses one Kubernetes Secret (called repl-tls) for the
replicationWallet metadata file.

Chapter 14
Configure TLS for Replication

14-6

• replicationCipherSuite: This field is required for TLS for replication. In this
example, the value is SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256. See Task 3:
Configure TLS for Replication in the Oracle TimesTen In-Memory Database Security
Guide and see the replicationCipherSuite entry in "Table 17-3" in this book for
more information.

• replicationSSLMandatory: This field is optional. In this example, set
replicationSSLMandatory equal to 1. See Task 3: Configure TLS for Replication in
the Oracle TimesTen In-Memory Database Security Guide and see the
replicationSSLMandatory entry in Table 17-3 in this book for more information.

In addition, this example includes:

• name: Replace repltls with the name of your TimesTenClassic object.

• storageClassName: Replace oci-bv with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

• storageSize: Replace 250Gi with the amount of storage that should be requested for
each Pod to hold TimesTen. Note: This example assumes a production environment
and uses a value of 250Gi for storageSize. For demonstration purposes, a value of
50Gi is adequate. See the storageSize and the logStorageSize entries in
"Table 17-3" for information.

• image: Replace container-registry.oracle.com/timesten/timesten:22.1.1.19.0
with the location and the name of image.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes should
use to fetch the TimesTen image.

• dbConfigMap: This example uses one ConfigMap (called repl-tls) for the db.ini,
the adminUser, and the schema.sql metadata files.

% vi repltls.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: repltls
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 dbConfigMap:
 - repl-tls
 dbSecret:
 - repl-tls
 replicationCipherSuite: SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 replicationSSLMandatory: 1

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, repltls.yaml). Doing so begins the process
of deploying your active standby pair of TimesTen databases in the Kubernetes cluster.

% kubectl create -f repltls.yaml
timestenclassic.timesten.oracle.com/repltls created

You have successfully created the TimesTenClassic object in the Kubernetes cluster. The
process of deploying your TimesTen databases begins, but is not yet complete.

Chapter 14
Configure TLS for Replication

14-7

Monitor Deployment of a TimesTenClassic Object
Use the kubectl get and the kubectl describe commands to monitor the progress of
the active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet
complete.

% kubectl get ttc repltls
NAME STATE ACTIVE AGE
repltls Initializing None 50s

2. Use the kubectl get command again to see if value of the STATE field has
changed. In this example, the value is Normal, indicating the active standby pair of
databases are now provisioned and the process is complete.

% kubectl get ttc repltls
NAME STATE ACTIVE AGE
repltls Normal repltls-0 3m45s

3. Use the kubectl describe command to view the active standby pair provisioning
in detail.

Note the following have been correctly set in the repltls TimesTenClassic object
definition:

• The repl-tls Secret has been correctly referenced in the dbSecret field
(represented in bold).

• The repl-tls Configmap has been correctly referenced in the dbConfigMap
field (represented in bold).

• The replicationCipherSuite field has been correctly set to
SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (represented in bold).

• The replicationSSLMandatory field has been correctly set to 1 (represented
in bold).

Note: Not all of the output is shown in this example.

% kubectl describe ttc repltls
Name: repltls
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2023-04-30T18:51:43Z
 Generation: 1
 Resource Version: 75029797
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/repltls
 UID: a2915ef3-0fe0-11eb-8b9a-aaa0151611fe
Spec:
 Ttspec:
 Db Config Map:
 repl-tls
 Db Secret:
 repl-tls

Chapter 14
Configure TLS for Replication

14-8

 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Replication Cipher Suite: SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 Replication SSL Mandatory: 1
 Storage Class Name: oci-bv
 Storage Size: 250Gi
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 4m17s ttclassic Secret tta2915ef3-0fe0-11eb-8b9a-
aaa0151611fe created
 - Create 4m17s ttclassic Service repltls created
 - Create 4m17s ttclassic StatefulSet repltls created
 - StateChange 3m10s ttclassic Pod repltls-1 Agent Up
 - StateChange 3m10s ttclassic Pod repltls-1 Release 22.1.1.19.0
 - StateChange 3m10s ttclassic Pod repltls-1 Daemon Up
 - StateChange 2m3s ttclassic Pod repltls-0 Agent Up
 - StateChange 2m3s ttclassic Pod repltls-0 Release 22.1.1.19.0
 - StateChange 2m1s ttclassic Pod repltls-0 Daemon Up
 - StateChange 68s ttclassic Pod repltls-0 Database Loaded
 - StateChange 68s ttclassic Pod repltls-0 Database Updatable
 - StateChange 68s ttclassic Pod repltls-0 CacheAgent Not Running
 - StateChange 68s ttclassic Pod repltls-0 RepAgent Not Running
 - StateChange 67s ttclassic Pod repltls-0 RepState IDLE
 - StateChange 67s ttclassic Pod repltls-0 RepScheme None
 - StateChange 66s ttclassic Pod repltls-0 RepAgent Running
 - StateChange 66s ttclassic Pod repltls-0 RepScheme Exists
 - StateChange 66s ttclassic Pod repltls-0 RepState ACTIVE
 - StateChange 47s ttclassic Pod repltls-1 Database Loaded
 - StateChange 47s ttclassic Pod repltls-1 Database Not Updatable
 - StateChange 47s ttclassic Pod repltls-1 CacheAgent Not Running
 - StateChange 47s ttclassic Pod repltls-1 RepAgent Not Running
 - StateChange 47s ttclassic Pod repltls-1 RepScheme Exists
 - StateChange 47s ttclassic Pod repltls-1 RepState IDLE
 - StateChange 41s ttclassic Pod repltls-1 RepAgent Running
 - StateChange 36s ttclassic Pod repltls-1 RepState STANDBY
 - StateChange 36s ttclassic TimesTenClassic was Initializing, now Normal

Your active standby pair of TimesTen databases are successfully deployed (as indicated by
Normal.) You are now ready to verify that TLS is being used for replication.

Verify TLS Is Being Used for Replication
To verify TLS is being used for replication, perform the following steps:

1. Review the active (repltls-0, in this example) pod and the standby pod (repltls-1, in
this example).

% kubectl get pods
NAME READY STATUS RESTARTS AGE
repltls-0 2/2 Running 0 6m35s
repltls-1 2/2 Running 0 6m34s
timesten-operator-f84766548-tch7s 1/1 Running 0 28d

2. Optional: Use the kubectl exec -it command to invoke the shell in the active Pod
(repltls-0, in this example).

% kubectl exec -it repltls-0 -c tt -- /bin/bash

Chapter 14
Configure TLS for Replication

14-9

3. Optional: From the shell in the active pod, verify the cwallet.sso file is located in
the /tt/home/timesten/replicationWallet directory.

% ls /tt/home/timesten/replicationWallet
cwallet.sso

4. Optional: From the shell in the active pod, verify that the TLS replication-specific
values are correct in the timesten.conf configuration file. (This file is located in
the /tt/home/timesten/instances/instance1/conf directory.)

In particular, note that:

• replication_wallet is correctly set to /tt/home/timesten/
replicationWallet (represented in bold).

• replication_cipher_suite is correctly set to
SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (represented in bold).

• replication_ssl_mandatory is correctly set to 1 (represented in bold).

See Task 3: Configure TLS for Replication in the Oracle TimesTen In-Memory
Database Security Guide for more information on these timesten.conf attributes.

% cat /tt/home/timesten/instances/instance1/conf/timesten.conf
admin_uid=3429
admin_user=timesten
daemon_port=6624
group_name=timesten
hostname=repltls-0
instance_guid=48AC5964-56A1-4C66-AB89-5646A2431EA3
instance_name=instance1
replication_cipher_suite=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
replication_ssl_mandatory=1
replication_wallet=/tt/home/timesten/replicationWallet
server_port=6625
show_date=1
timesten_release=22.1.1
tns_admin=/ttconfig
verbose=1

5. From the shell in the active pod, run the ttRepAdmin utility with the -showstatus -
detail options to verify the replication agent transmitters and receivers are using
TLS (as indicated by SSL, represented in bold). See ttRepAdmin in the Oracle
TimesTen In-Memory Database Reference for information on this utility.

Note: Not all output is shown in this example.

% ttRepAdmin -showstatus -detail repltls

Replication Agent Status as of: 2023-04-30 19:01:55

DSN : repltls
...
TRANSMITTER thread(s) (TRANSMITTER(M):139870727366400):
 For : REPLTLS (track 0) (SSL)
 Start/Restart count : 1
 Current state : STATE_META_PEER_INFO

RECEIVER thread(s) (RECEIVER:139870719887104):
 For : REPLTLS (track 0) (SSL)
 Start/Restart count : 1

Chapter 14
Configure TLS for Replication

14-10

 Current state : STATE_RCVR_READ_NETWORK_LOOP
...

You have successfully verified that TLS for replication is being used.

Configure TLS for Client/Server
You can configure TLS for Client/Server to ensure secure network communication between
TimesTen clients and servers. See Transport Layer Security for TimesTen Client/Server in the
Oracle TimesTen In-Memory Database Security Guide for detailed information.

There are both server-side and client-side configuration requirements for using TLS for
Client/Server. These requirements are detailed in these sections:

• Configuration Requirements for the Server

• Configuration Requirements for the Client

Configuration Requirements for the Server
These sections discuss the configuration requirements for the server. The sections also
include an example of how to configure TLS for the server in your Kubernetes cluster.

• Overview of Metadata Files and Kubernetes Facilities

• Create a Kubernetes Secret for the csWallet Metadata File

• Create a ConfigMap for the Server-Side Attributes

• Create a TimesTenClassic Object

• Monitor Deployment of the TimesTenClassic Object

Overview of Metadata Files and Kubernetes Facilities
The /ttconfig/csWallet metadata file is required for TLS support for Client/Server. (The /
ttconfig directory is located in the containers of your TimesTen databases.) This file must
contain the cwallet.sso file (the Oracle wallet) that was generated when you created the
TLS certificates. This file is the Oracle wallet required for the server. Recall that this file was
located in the /scratch/ttuser/instance_dir/instance1/conf/serverWallet directory.
See Create TLS Certificates for Replication and Client/Server for information on creating
these certificates. This wallet contains the credentials that are used for configuring TLS
encryption between your TimesTen database and your Client/Server applications.

There are also server-side connection attributes that must be set. You can define these
attributes in the db.ini metadata file. After the db.ini file is placed in the /ttconfig
directory of the TimesTen containers, the Operator copies the contents of the db.ini file to
the timesten_home/conf/sys.odbc.ini file located in the TimesTen containers. (Note that
timesten_home is the TimesTen instance directory. This instance directory is /tt/home/
timesten/instances/instance1 in your TimesTen containers.)

These required server-side attributes are: Wallet, CipherSuites, and Encryption. See
Create a ConfigMap for the Server-Side Attributes for information on these attributes. Also
see Server Attributes for TLS in the Oracle TimesTen In-Memory Database Security Guide.

In addition to the csWallet and the db.ini metadata files, you may use other supported
metadata files. See About Configuration Metadata Details for information on these supported
metadata files.

Chapter 14
Configure TLS for Client/Server

14-11

You can include these metadata files in one or more Kubernetes facilities (for example,
in a Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the
metadata files are populated in the /ttconfig directory of the TimesTen containers.
Note that there is no requirement as to how to get the metadata files into this /
ttconfig directory. See Populate the /ttconfig Directory.

The following example includes the csWallet metadata file in a Kubernetes Secret. It
also creates the db.ini, the adminUser, and the schema.sql metadata files and
includes these metadata files in a ConfigMap.

Create a Kubernetes Secret for the csWallet Metadata File
This section creates the cs-tls Kubernetes Secret. The cs-tls Secret will contain the
csWallet metadata file.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory. This example
creates the serverWallet subdirectory. (The serverWallet directory is used in the
remainder of this example to denote this directory.)

% mkdir -p serverWallet
2. Copy the cwallet.sso file into the serverWallet directory that you just created.

Recall that the cwallet.sso file was generated when you used the ttCreateCerts
utility to create the TLS certificates. Also recall that this file was located in the /
scratch/ttuser/instance_dir/instance1/conf/serverWallet directory. See
"Create TLS Certificates for Replication and Client/Server" for information.

% cp /scratch/ttuser/instance_dir/instance1/conf/serverWallet/cwallet.sso
serverWallet/cwallet.sso

3. Create the Kubernetes Secret.

In this example:

• The name of the Secret is cs-tls. Replace cs-tls with a name of your
choosing. (cs-tls is represented in bold.)

• The name of the metadata file required for TLS for Client/Server is csWallet
(represented in bold).

• The location of the wallet directory is serverWallet (in this example,
represented in bold). If you use a different directory, replace serverWallet
with the name of your directory.

• The name of the Oracle wallet: cwallet.sso (represented in bold).

Use the kubectl create command to create the Secret:

% kubectl create secret generic cs-tls
--from-file=csWallet=serverWallet/cwallet.sso
secret/cs-tls created

You have successfully created and deployed the cs-tls Kubernetes Secret. The
csWallet/cwallet.sso file will later be available in the /ttconfig directory of the
TimesTen containers. In addition, the file will be available in the /tt/home/timesten/
csWallet directory of the TimesTen containers.

Chapter 14
Configure TLS for Client/Server

14-12

Create a ConfigMap for the Server-Side Attributes
This section creates the cs-tls ConfigMap. This ConfigMap contains the db.ini, the
adminUser, and the schema.sql metadata files.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata files.
This example creates the cm_csTLS subdirectory. (The cm_csTLS directory is used in the
remainder of this example to denote this directory.)

% mkdir -p cm_csTLS
2. Navigate to the ConfigMap directory.

% cd cm_csTLS
3. Create the db.ini file in this ConfigMap directory (cm_csTLS, in this example). In this

db.ini file, define the server-side attributes for TLS for Client/Server. These server-side
attributes will later be included in the sys.odbc.ini file located in the timesten_home/
conf directory in your TimesTen containers. (Note that timesten_home is the TimesTen
instance directory. This instance directory is tt/home/timesten/instances/instance1 in
your TimesTen containers.)

These are the required server-side attributes for TLS for Client/Server:

• wallet: This is the directory in your TimesTen containers that contains the server
wallet. Specify /tt/home/timesten/csWallet.

• ciphersuites: This is the cipher suite setting. Valid values are
SSL_ECDHE_ECDSA_WITH_AES_128_GCM_256 or
SSL_ECDHE_ECDSA_WITH_AES_256_GCM_384, or both, comma separated and in order of
preference. There is no default setting. For TLS to be used, the server and the client
settings must include at least one common suite. This example specifies
SSL_ECDHE_ECDSA_WITH_AES_128_GCM_256. See Server Attributes for TLS in the
Oracle TimesTen In-Memory Database Security Guide for information on the cipher
suite settings.

• encryption: This is the encryption setting for the server. This example specifies the
required setting. See Server Attributes for TLS in the Oracle TimesTen In-Memory
Database Security Guide for information on the valid encryption settings.

This example also specifies the PermSize and the DatabaseCharacterSet connection
attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8
wallet=/tt/home/timesten/csWallet
ciphersuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
encryption=required

4. Create the adminUser file in this ConfigMap directory (cm_csTLS, in this example). In this
adminUser file, create the sampleuser user with the samplepw password.

Chapter 14
Configure TLS for Client/Server

14-13

vi adminUser

sampleuser/samplepw
5. Create the schema.sql file in this ConfigMap directory (cm_csTLS, in this example).

In this schema.sql file, define the s sequence and the emp table for the sampleuser
user. The Operator will automatically initialize your database with these object
definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
 id number not null primary key,
 name char(32)
);

6. Create the ConfigMap. The files in the cm_csTLS directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

• The name of the ConfigMap is cs-tls. Replace cs-tls with a name of your
choosing. (cs-tls is represented in bold in this example.)

• This example uses cm_csTLS as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace
cm_csTLS with the name of your directory. (cm_csTLS is represented in bold in
this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap cs-tls --from-file=cm_csTLS
configmap/cs-tls created

7. Use the kubectl describe command to verify the contents of the ConfigMap. (cs-
tls, in this example.)

% kubectl describe configmap cs-tls
Name: cs-tls
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8
wallet=/tt/home/timesten/csWallet
ciphersuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
encryption=required

schema.sql:

create sequence sampleuser.s;
create table sampleuser.emp (id number not null primary key, name char (32));

adminUser:

sampleuser/samplepw

Chapter 14
Configure TLS for Client/Server

14-14

Events: <none>

You have successfully created and deployed the cs-tls ConfigMap.

Create a TimesTenClassic Object
This section creates the TimesTenClassic object. See Define and Create a TimesTenClassic
Object and About the TimesTenClassic Object Type for detailed information on the
TimesTenClassic object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use the
same name you used for the name of the TimesTenClassic object. (In this example,
cstls.) The YAML file contains the definitions for the TimesTenClassic object. See
TimesTenClassicSpecSpec for information on the fields that you must specify in this
YAML file as well as the fields that are optional.

In this example, the fields of particular interest for TLS Client/Server are:

• dbSecret: This example uses one Kubernetes Secret (called cs-tls) for the
csWallet metadata file.

• dbConfigMap: This example uses one ConfigMap (called cs-tls). The db.ini file is
contained in the cs-tls ConfigMap. Recall that the db.ini file contains the server-
side attributes for TLS for Client/Server.

In addition, this example includes:

• name: Replace cstls with the name of your TimesTenClassic object.

• storageClassName: Replace oci-bv with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

• storageSize: Replace 250Gi with the amount of storage that should be requested for
each Pod to hold TimesTen. Note: This example assumes a production environment
and uses a value of 250Gi for storageSize. For demonstration purposes, a value of
50Gi is adequate. See the storageSize and the logStorageSize entries in
"Table 17-3" for information.

• image: Replace container-registry.oracle.com/timesten/timesten:22.1.1.19.0
with the location and name of your image.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes should
use to fetch the TimesTen image.

% vi cstls.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: cstls
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 dbConfigMap:
 - cs-tls

Chapter 14
Configure TLS for Client/Server

14-15

 dbSecret:
 - cs-tls

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, cstls.yaml). Doing so begins the
process of deploying your active standby pair of TimesTen databases in the
Kubernetes cluster.

% kubectl create -f cstls.yaml
timestenclassic.timesten.oracle.com/cstls created

You have successfully created the TimesTenClassic object in the Kubernetes cluster.
The process of deploying your TimesTen databases begins, but is not yet complete.

Monitor Deployment of the TimesTenClassic Object
Use the kubectl get and the kubectl describe commands to monitor the progress of
the active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet
complete.

% kubectl get ttc cstls
NAME STATE ACTIVE AGE
cstls Initializing None 15s

2. Use the kubectl get command again to see if value of the STATE field has
changed. In this example, the value is Normal, indicating the active standby pair of
databases are now provisioned and the process is complete.

% kubectl get ttc cstls
NAME STATE ACTIVE AGE
cstls Normal cstls-0 3m30s

3. Use the kubectl describe command to view the active standby pair provisioning
in detail.

Note the following have been correctly set in the cstls TimesTenClassic object
definition:

• The cs-tls Secret has been correctly referenced in the dbSecret field
(represented in bold).

• The cs-tls Configmap has been correctly referenced in the dbConfigMap field
(represented in bold).

Note: Note all of the output is shown in this example.

% kubectl describe ttc cstls
Name: cstls
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2021-10-17T19:08:03Z
 Generation: 1
 Resource Version: 75491472
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/cstls

Chapter 14
Configure TLS for Client/Server

14-16

 UID: 150128b3-10ac-11eb-b019-d681454a288b
Spec:
 Ttspec:
 Db Config Map:
 cs-tls
 Db Secret:
 cs-tls
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci
 Storage Size: 250Gi
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 4m21s ttclassic Service cstls created
 - Create 4m21s ttclassic StatefulSet cstls created
 - Create 4m21s ttclassic Secret tt150128b3-10ac-11eb-b019-
d681454a288b created
 - StateChange 3m5s ttclassic Pod cstls-1 Daemon Up
 - StateChange 3m5s ttclassic Pod cstls-0 Agent Up
 - StateChange 3m5s ttclassic Pod cstls-0 Release 22.1.1.19.0
 - StateChange 3m5s ttclassic Pod cstls-1 Agent Up
 - StateChange 3m5s ttclassic Pod cstls-1 Release 22.1.1.19.0
 - StateChange 3m5s ttclassic Pod cstls-0 Daemon Up
 - StateChange 116s ttclassic Pod cstls-0 Database Loaded
 - StateChange 116s ttclassic Pod cstls-0 Database Updatable
 - StateChange 116s ttclassic Pod cstls-0 CacheAgent Not Running
 - StateChange 116s ttclassic Pod cstls-0 RepAgent Not Running
 - StateChange 116s ttclassic Pod cstls-0 RepState IDLE
 - StateChange 116s ttclassic Pod cstls-0 RepScheme None
 - StateChange 115s ttclassic Pod cstls-0 RepAgent Running
 - StateChange 115s ttclassic Pod cstls-0 RepScheme Exists
 - StateChange 115s ttclassic Pod cstls-0 RepState ACTIVE
 - StateChange 96s ttclassic Pod cstls-1 Database Loaded
 - StateChange 96s ttclassic Pod cstls-1 Database Not Updatable
 - StateChange 96s ttclassic Pod cstls-1 CacheAgent Not Running
 - StateChange 96s ttclassic Pod cstls-1 RepAgent Not Running
 - StateChange 96s ttclassic Pod cstls-1 RepScheme Exists
 - StateChange 96s ttclassic Pod cstls-1 RepState IDLE
 - StateChange 90s ttclassic Pod cstls-1 RepAgent Running
 - StateChange 84s ttclassic Pod cstls-1 RepState STANDBY
 - StateChange 84s ttclassic TimesTenClassic was Initializing, now Normal

Your active standby pair of TimesTen databases are successfully deployed (as indicated by
Normal.)

Configuration Requirements for the Client
These sections cover the client requirements for TLS.

• Copy a Client Wallet

• Configure Client-Side Attributes

Chapter 14
Configure TLS for Client/Server

14-17

Copy a Client Wallet
When you used the ttCreateCerts utility to create TLS certificates, the cwallet.sso
wallet file located in the /scratch/ttuser/instance_dir/instance1/conf/
clientWallet directory was generated. This file must be copied to the application
container that is running your TimesTen client instance. See "Create TLS Certificates
for Replication and Client/Server" for information on creating the TLS certificates.

This example uses the kubectl cp command to copy the /scratch/ttuser/
instance_dir/instance1/conf/clientWallet/cwallet.sso file from your Linux
development host to the application container running your TimesTen client instance.

1. Use the kubectl exec -it command to invoke the shell in the application
container that contains your TimesTen client instance. (cstls-0, in this example).

% kubectl exec -it cstls-0 -c tt -- /bin/bash
2. From the shell just invoked, and from the directory of your choice, create an empty

subdirectory. This example creates the clientWallet subdirectory.

% mkdir -p clientWallet
3. From your Linux development host, use the kubectl cp command to copy the

cwallet.sso file from the /scratch/ttuser/instance_dir/instance1/conf/
clientWallet directory on your Linux development host to the clientWallet
directory that you just created. (This directory is located in the application
container that is running your TimesTen client instance.) Recall that the
cwallet.sso file was generated when you used the ttCreateCerts utility to create
the TLS certificates. See Create TLS Certificates for Replication and Client/Server
for information.

% kubectl cp /scratch/ttuser/instance_dir/instance1/conf/clientWallet/
cwallet.sso cstls-0:clientWallet/cwallet.sso -c tt

4. From your shell, verify the cwallet.sso file is located in the clientWallet
directory.

% ls clientWallet
cwallet.sso

You have successfully copied the cwallet.sso client wallet file to the application
container that is running your TimesTen client instance.

Configure Client-Side Attributes
You must set client-side attributes for TLS for Client/Server. The attributes can be set
in the client DSN definition in timesten_home/conf/sys.odbc.ini or in an appropriate
Client/Server connection string. See About Using Client/Server Drivers for additional
information.

These are the required client-side attributes for TLS for Client/Server:

• wallet: This is the directory that contains the cwallet.sso client wallet file. This
directory is located in your application container that is running the TimesTen client
instance. There is no default directory. In this example, recall that the
clientWallet directory was created to denote this directory. (See Copy a Client
Wallet for information.) For purposes of this example, the full path to the

Chapter 14
Configure TLS for Client/Server

14-18

clientWallet directory is /tt/home/timesten/clientWallet. Therefore, in this
example, /tt/home/timesten/clientWallet is used to denote this directory.

• ciphersuites: This is the cipher suite setting. Valid values are
SSL_ECDHE_ECDSA_WITH_AES_128_GCM_256 or SSL_ECDHE_ECDSA_WITH_AES_256_GCM_384,
or both, comma separated and in order of preference. There is no default setting. For
TLS to be used, the server and the client settings must include at least one common
suite. This example specifies SSL_ECDHE_ECDSA_WITH_AES_128_GCM_256. See
Configuration for TLS for Client/Server in the Oracle TimesTen In-Memory Database
Security Guide for information on the cipher suite settings.

• encryption: This is the encryption setting for the client. This example specifies the
required setting. See Configuration for TLS for Client/Server in the Oracle TimesTen In-
Memory Database Security Guide for information on the valid encryption settings.

This example uses a connection string to connect to the cstsl database as the sampleuser
user. The sampleuser user was created by the Operator and already exists in the cstsl
database. The example then uses the sqlgetconnectattr command from ttIsqlCS on the
client to verify TLS is configured correctly on the Server and on the Client and TLS is being
used.

1. Connect to the database.

% ttIsqlcs -connstr "TTC_SERVER1=cstls-0.cstls.mynamespace.svc.cluster.local;
TTC_SERVER2=cstls-1.cstls.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=cstls;UID=sampleuser;PWD=samplepw;
WALLET=tt/home/timesten/clientWallet;
CIPHERSUITES=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;
ENCRYPTION=required";

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "TTC_SERVER1=cstls-0.cstls.mynamespace.svc.cluster.local;
TTC_SERVER2=cstls-1.cstls.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=cstls;UID=sampleuser;PWD=********;
WALLET=tt/home/timesten/clientWallet;
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;
ENCRYPTION=REQUIRED;";
Connection successful:
DSN=;TTC_SERVER=cstls-0.cstls.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=cstls;UID=sampleuser;
DATASTORE=/tt/home/timesten/datastore/cstls;DATABASECHARACTERSET=AL32UTF8;
CONNECTIONCHARACTERSET=AL32UTF8;AUTOCREATE=0;PERMSIZE=200;
DDLREPLICATIONLEVEL=3;FORCEDISCONNECTENABLED=1;(SERVER)ENCRYPTION=Required;
(SERVER)WALLET=file:/tt/home/timesten/csWallet;(client)Encryption=Required;
(client)Wallet=/tt/home/timesten/clientWallet;
(client)CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;
(Default setting AutoCommit=1)

2. Use the sqlgetconnectattr command in ttIsqlCS to verify TLS is being used. A return
value of 1 indicates TLS is being used.

Command> sqlgetconnectattr tt_tls_session;
TT_TLS_SESSION = 1 (SQL_TRUE)

You have successfully connected to the database and verified that TLS for Client/Server is
being used.

Chapter 14
Configure TLS for Client/Server

14-19

15
Handle Failover and Recovery in TimesTen
Classic

This chapter is specific to active standby pair of Classic TimesTen databases. It illustrates
how the TimesTen Operator recovers from failure.

• About Handling Failover and Recovery

• Illustrate the Failover and Recovery Process

About Handling Failover and Recovery
The Operator automatically detects failures of the active TimesTen database and the standby
TimesTen database and works to fix any failures. When the Operator detects a failure of the
active database, it promotes the standby TimesTen database to be the active. Client/server
applications that are using the database are automatically reconnected to the new active
database. Transactions in flight are rolled back. Prepared statements need to be re-prepared
by the applications. The Operator will configure a new standby database.

Illustrate the Failover and Recovery Process
This example simulates a failure of the active TimesTen database. This is for demonstration
purposes only. Do not do this in a production environment.

1. Use the kubectl delete pod command to delete the active database (sample-0 in this
case)

% kubectl delete pod sample-0
2. Use the kubectl describe command to observe how the Operator recovers from the

failure. The Operator promotes the standby database (sample-1) to be active. Any
applications that were connected to the sample-0 database are automatically
reconnected to the sample-1 database by TimesTen. After a brief outage, the applications
can continue to use the database. See "About Monitoring the Health of an Active Standby
Pair of Databases" for information on the health and states of the active standby pair.

Note: In this example, the text for the Message column displays on two lines for three
state changes. However, the actual output displays on one line for each of these three
state changes.

% kubectl describe ttc sample
Name: sample
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - StateChange 2m1s ttclassic TimesTenClassic sample: was Normal, now
ActiveDown
 - StateChange 115s ttclassic Pod sample-1 Database Updatable: Yes
 - StateChange 115s ttclassic TimesTenClassic sample:was ActiveDown, now
StandbyDown

15-1

 - StateChange 115s ttclassic Pod sample-1 RepState ACTIVE
 - StateChange 110s ttclassic Pod sample-0 High Level State Unknown
 - StateChange 63s ttclassic Pod sample-0 Pod Phase Running
 - StateChange 63s ttclassic Pod sample-0 Agent Up
 - StateChange 63s ttclassic Pod sample-0 Instance Exists
 - StateChange 63s ttclassic Pod sample-0 Daemon Up
 - StateChange 63s ttclassic Pod sample-0 Database None
 - StateChange 42s ttclassic Pod sample-0 Database Loaded
 - StateChange 42s ttclassic Pod sample-0 Database Updatable: No
 - StateChange 42s ttclassic Pod sample-0 RepAgent Running
 - StateChange 42s ttclassic Pod sample-0 CacheAgent Not Running
 - StateChange 42s ttclassic Pod sample-0 RepScheme Exists
 - StateChange 42s ttclassic Pod sample-0 RepState IDLE
 - StateChange 36s ttclassic Pod sample-0 High Level State Healthy
 - StateChange 36s ttclassic Pod sample-0 RepState STANDBY
 - StateChange 36s ttclassic TimesTenClassic sample:was
StandbyDown,now Normal

Kubernetes has automatically respawned a new sample-0 Pod to replace the Pod
you deleted. The Operator configured TimesTen within that Pod, bringing the
database in the Pod up as the new standby database. The replicated pair of
databases are once again functioning normally.

Chapter 15
Illustrate the Failover and Recovery Process

15-2

16
Perform Upgrades

If you deployed the TimesTen Operator and TimesTenClassic objects using Helm, you must
upgrade using Helm. For information about using Helm, see Use Helm to Deploy the
TimesTen Kubernetes Operator and TimesTenClassic Objects.

This chapter shows you how to upgrade the TimesTen Operator. It also shows you how to
upgrade TimesTen Classic to a new patch or patchset. The process also applies to
downgrades.

For information on TimesTen releases and patches, see Overview of release numbers in the
Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

Topics include:

• About New TimesTen Container Images

• Upgrade the Operator

• About Upgrading TimesTen Classic

• Perform an Automated Upgrade

• Perform a Manual Upgrade

• Verify the Active Standby Pair of Databases Are Upgraded

• About Upgrading Direct Mode Applications

• About Failures During an Upgrade

About New TimesTen Container Images
The TimesTen Kubernetes Operator lets you upgrade the TimesTen Operator and TimesTen
Classic to a new patch or patch set release. There are separate procedures in place for
upgrading the Operator and for upgrading TimesTen Classic.

Both the Operator as well as each TimesTenClassic and TimesTenScaleout object require a
TimesTen container image. You tell the Operator the location of the image registry and the
name of the container image when you initially deploy the Operator and a TimesTenClassic or
a TimesTenScaleout object.

When you upgrade the Operator to a new patch or patch set, you need to decide if you want
to use a TimesTen container image that is located in a timesten repository on container-
registry.oracle.com or if you want to build your own TimesTen container image. It is your
choice as to which option you choose. For information about TimesTen container images, see
About TimesTen Container Images.

Option 1: Use container-registry.oracle.com/timesten or container-
registry.oracle.com/timesten-xe.

There are multiple container images available on the container-registry.oracle.com/
timesten and container-registry.oracle.com/timesten-xe repositories. Browse the
repositories and choose a container image that you want to use for the upgrade.

16-1

For example, if you want to upgrade to TimesTen release 22.1.1.19.0, a suitable
TimesTen container image is:

container-registry.oracle.com/timesten/timesten:22.1.1.19.0

After you choose the container image, you must obtain the Operator manifest files
from it.

For information about how to use a TimesTen container image located in a container-
registry.oracle.com timesten repository, and how to obtain the Operator manifest
files from it, see Option 1: Use the Official TimesTen Container Images.

Option 2: Build a TimesTen container image

The TimesTen distribution contains the TimesTen Operator distribution. The TimesTen
Operator distribution provides a Dockerfile for building a TimesTen container image.
For the upgrade, choose the pertinent TimesTen patch or patchset distribution.
Download and unpack it. Next, unpack the Operator distribution. The Operator
distribution not only includes the Dockerfile to build your container image, but also
contains the Operator manifest files.

For example, if you want to upgrade to TimesTen release 22.1.1.19.0, a suitable
TimesTen distribution is:

timesten2211190.server.linux8664.zip

For information about building a TimesTen container image, see Option 2: Build the
TimesTen Container Image.

After you complete the tasks for either Option 1 or Option 2, you should know the
following:

• Name of image registry

For example, container-registry.oracle.com/timesten or phx.ocir.io/
youraccount

• Name of image

For example, timesten:22.1.1.19.0
• Directory that contains the Operator manifest files

For example, new_kube_files
The Operator manifest files include the new crd.yaml and the new
service_account.yaml files. You update your Kubernetes cluster with these files.
There is also a new operator.yaml file. You edit this file with the location and
name of the new TimesTen container image. These tasks are described in
Upgrade the Operator.

For the examples in the upcoming sections, let's assume:

• Location of the image registry is container-registry.oracle.com/timesten.

• Name of the image is timesten:22.1.1.19.0.

• Operator manifest files reside in the new_kube_files directory on your
development host.

Chapter 16
About New TimesTen Container Images

16-2

Upgrade the Operator
The tasks in this section show you how to upgrade the Operator to a new patch or patchset.
You can perform an Operator upgrade while there are TimesTenClassic and
TimesTenScaleout objects deployed in your namespace.

Let's first update the Kubernetes cluster with the new CRD and service account.

1. On your development host, change to the new_kube_files directory. Next, replace the
CRD running in your Kubernetes cluster.

cd new_kube_files

kubectl replace -f crd.yaml

The output is the following.

customresourcedefinition.apiextensions.k8s.io/
timestenclassics.timesten.oracle.com/
timestenscaleouts.timesten.oracle.com replaced

2. Replace the service account.

kubectl replace -f service_account.yaml

The output is the following.

role.rbac.authorization.k8s.io/timesten-operator replaced
serviceaccount/timesten-operator replaced
rolebinding.rbac.authorization.k8s.io/timesten-operator replaced

Next, let's upgrade the Operator.

3. (Optional): Confirm there is an Operator running.

kubectl get pods

The output is similar to the following.

NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 14h
sample-1 2/2 Running 0 14h
sample2-0 2/2 Running 0 14h
sample2-1 2/2 Running 0 14h
timesten-operator-778878dc6b-4mc77 1/1 Running 0 15h

The name of the Operator is timesten-operator-778878dc6b-4mc77. The other Pods are
associated with sample and sample2 TimesTenClassic objects in your namespace.

4. Upgrade the timesten-operator Deployment.

Chapter 16
Upgrade the Operator

16-3

Edit these fields in the operator.yaml file:

• replicas: 1
Replace 1 with the number of copies of the Operator that you want to run. A
value of 1 is acceptable for development and testing. However, you can run
more than one replica for high availability purposes.

• Replace sekret with the name of the image pull secret that you want
Kubernetes to use to pull images from your registry.

• Replace the image line to reference the new TimesTen container image. In this
example, the new image is container-registry.oracle.com/timesten/
timesten:22.1.1.19.0.

vi operator.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: timesten-operator
spec:
 replicas: 1
 selector:
 matchLabels:
 name: timesten-operator
 template:
 metadata:
 labels:
 name: timesten-operator
 spec:
 serviceAccountName: timesten-operator
 imagePullSecrets:
 - name: sekret
 containers:
 - name: timesten-operator
 image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 command:
 - /timesten/operator/operator/timesten-operator
 imagePullPolicy: Always
 env:
 - name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: OPERATOR_NAME
 value: "timesten-operator"
 securityContext:
 runAsNonRoot: true
 privileged: false
 allowPrivilegeEscalation: false

Chapter 16
Upgrade the Operator

16-4

 capabilities:
 drop:
 - all

5. Update the timesten-operator Deployment.

kubectl replace -f operator.yaml

The output is the following.

deployment.apps/timesten-operator replaced

6. Verify that the new Operator is running.

kubectl get pods

The output is similar to the following.

NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 15h
sample-1 2/2 Running 0 15h
sample2-0 2/2 Running 0 15h
sample2-1 2/2 Running 0 15h
timesten-operator-6f9d96bdfc-h22lm 1/1 Running 0 9s

The name of the new Operator is timesten-operator-6f9d96bdfc-h22lm.

7. Review the new timesten-operator Deployment.

kubectl describe deployment timesten-operator

The output is similar to the following.

Name: timesten-operator
Namespace: mynamespace
CreationTimestamp: Sun, 08 Jan 2023 01:22:28 +0000
Labels: <none>
Annotations: deployment.kubernetes.io/revision: 3
Selector: name=timesten-operator
Replicas: 1 desired | 1 updated | 1 total | 1 available | 0
unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: name=timesten-operator
 Service Account: timesten-operator
 Containers:
 timesten-operator:
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Port: <none>

Chapter 16
Upgrade the Operator

16-5

 Host Port: <none>
 Command:
 /timesten/operator/operator/timesten-operator
 Environment:
 WATCH_NAMESPACE: (v1:metadata.namespace)
 POD_NAME: (v1:metadata.name)
 OPERATOR_NAME: timesten-operator
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: timesten-operator-6f9d96bdfc (1/1 replicas created)
Events:
 ...

You have successfully updated the timesten-operator Deployment. The new
Operator is using the container-registry.oracle.com/timesten/
timesten:22.1.1.19.0 container image, and is automatically managing any existing
TimesTenClassic and TimesTenScaleout objects in your namespace.

About Upgrading TimesTen Classic
The TimesTen Kubernetes Operator supports the upgrade of TimesTen Classic to a
new patch or patchset.

There are two options for upgrading:

• Auto (default): The Operator does the upgrade for you.

• Manual: You do the upgrade manually.

The .spec.ttspec.imageUpgradeStrategy datum for a TimesTenClassic object lets
you choose the type of upgrade. You set a value for this datum when you initially
create and deploy a TimesTenClassic object. For more information about the
imageUpgradeStrategy datum, see TimesTenClassicSpecSpec.

No matter what type of upgrade you choose, what happens during the upgrade is
similar. The standby is terminated first. It takes some time for the standby to come
back up. During this wait period, the standby is upgraded to the new release. During
this upgrade of the standby, depending on your replication configuration, there may be
disruption on the active database. This may impact your applications. Next, the failover
from the active to the standby occurs. The active is terminated. There is a wait period
for the former active to come back up. During this wait period, the active is upgraded
to the new release. The standby database is promoted to be the active and the former
active becomes the standby.

There are examples illustrating both types of upgrades later in Perform an Automated
Upgrade and Perform a Manual Upgrade.

Chapter 16
About Upgrading TimesTen Classic

16-6

Note:

If you are using AWT cache groups, the standby is normally responsible for
transmitting committed transactions from TimesTen to the Oracle Database. While
the standby is being upgraded, the active takes on this responsibility. This may
increase the load on the active. In addition, part of the upgrade process involves
copying the database from the active to the standby. This also increases the
workload on the active. These increases may temporarily reduce the performance
of the active database.

Ensure you perform an upgrade at the appropriate time. TimesTen recommends
that you do not perform upgrades at the busiest time of a production day.
Applications see shortages and perhaps reduced performance as a result of the
upgrade procedure.

Perform an Automated Upgrade
The .spec.ttspec.imageUpgradeStrategy datum of a TimesTenClassic object determines
the upgrade strategy. You can use the kubectl get ttc -o yaml command to determine the
value of this datum for any TimesTenClassic object. For example, let's assume there is a
sample TimesTenClassic object in our namespace. Let's review the setting for
the .spec.ttspec.imageUpgradeStrategy datum for sample.

kubectl get ttc sample -o yaml

The output is similar to the following. Note: Not all output is shown.

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 ...
 name: sample
 namespace: mynamespace
 resourceVersion: "74826407"
 uid: 76038b9b-4635-4974-88cf-385739499ec4
spec:
 ...
 ttspec:
 additionalMemoryRequest: 1Gi
 automaticMemoryRequests: true
 daemonLogCPURequest: 200m
 daemonLogMemoryRequest: 20Mi
 dbConfigMap:
 - sample
 exporterCPURequest: 200m
 exporterMemoryRequest: 200Mi
 ...
 imageUpgradeStrategy: Auto
 memoryWarningPercent: 90
...

Chapter 16
Perform an Automated Upgrade

16-7

The value for .spec.ttspec.imageUpgradeStrategy is Auto.

Let's walk through the steps for an automated upgrade.

Note:

Recall that when you do an automated upgrade, your databases are taken
down, restarted, and failed over immediately. Do not perform this procedure
at the busiest time of your production day. Applications see short outages
and perhaps reduced performance as a result of the upgrade procedure.

Modify a TimesTenClassic Object: Automated Upgrade
The automated upgrade process requires you to modify the .spec.ttspec.image
datum of a TimesTenClassic object to reference the new TimesTen container image.
After you modify the TimesTenClassic object to reference the new TimesTen image,
the Operator notices the change and modifies the StatefulSet that it created. The
Operator then starts the upgrade process. You can use the kubectl describe
command to monitor this upgrade process.

1. On your development host, edit the sample TimesTenClassic object, changing
the .spec.ttspec.image datum to reference the new TimesTen container image.
In this example, the location and name of the new container image is container-
registry.oracle.com/timesten/timesten:22.1.1.19.0.

Note: Not all output is shown.

kubectl edit timestenclassic sample

Please edit the object below. Lines beginning with a '#' will be
ignored,
and an empty file will abort the edit. If an error occurs while
saving this file will be
reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 ...
 name: sample
 namespace: mynamespace
 resourceVersion: "74909603"
 uid: 76038b9b-4635-4974-88cf-385739499ec4
spec:
...
 ttspec:
 additionalMemoryRequest: 1Gi
 automaticMemoryRequests: true
 daemonLogCPURequest: 200m
 daemonLogMemoryRequest: 20Mi
 dbConfigMap:
 - sample

Chapter 16
Perform an Automated Upgrade

16-8

 exporterCPURequest: 200m
 exporterMemoryRequest: 200Mi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullPolicy: Always
 imagePullSecret: sekret
 imageUpgradeStrategy: Auto
 memoryWarningPercent: 90
 storageClassName: oci-bv
 storageSize: 250G

The output is the following.

timestenclassic.timesten.oracle.com/sample edited

2. Verify that the Operator has modified the sample StatefulSet and replaced the image with
the new image.

kubectl describe statefulset sample

The output is similar to the following.

Name: sample
Namespace: mynamespace
...
Replicas: 2 desired | 2 total
Update Strategy: OnDelete
Pods Status: 1 Running / 1 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=sample
 database.timesten.oracle.com=sample
 Annotations: TTC: 76038b9b-4635-4974-88cf-385739499ec4
 Init Containers:
 ttinit:
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Ports: 8443/TCP, 6624/TCP, 6625/TCP, 4444/TCP
 Host Ports: 0/TCP, 0/TCP, 0/TCP, 0/TCP
 Environment:
 TT_OPERATOR_MANAGED: 1
 TIMESTEN_HOME: /tt/home/timesten/instances/instance1
 LD_LIBRARY_PATH: /tt/home/timesten/instances/instance1/
ttclasses/lib:/tt/home/timesten/instances/instance1/install/lib:/tt/home/
timesten/instances/instance1/install/ttoracle_home/instantclient_11_2:/tt/
home/timesten/instances/instance1/install/ttoracle_home/instantclient
 TT_REPLICATION_TOPOLOGY: activeStandbyPair
 TT_INIT_CONTAINER: 1
 TTC_UID: 76038b9b-4635-4974-88cf-385739499ec4
 Mounts:
 /tt from tt-persistent (rw)
 /ttagent from tt-agent (rw)
 /ttconfig from tt-config (rw)
 Containers:
 tt:

Chapter 16
Perform an Automated Upgrade

16-9

 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Ports: 8443/TCP, 6624/TCP, 6625/TCP, 4444/TCP
 Host Ports: 0/TCP, 0/TCP, 0/TCP, 0/TCP
 Environment:
 TT_OPERATOR_MANAGED: 1
 TIMESTEN_HOME: /tt/home/timesten/instances/
instance1
 LD_LIBRARY_PATH: /tt/home/timesten/instances/
instance1/ttclasses/lib:/tt/home/timesten/instances/instance1/
install/lib:/tt/home/timesten/instances/instance1/install/
ttoracle_home/instantclient_11_2:/tt/home/timesten/instances/
instance1/install/ttoracle_home/instantclient
 TT_REPLICATION_TOPOLOGY: activeStandbyPair
 Mounts:
 /tt from tt-persistent (rw)
 /ttagent from tt-agent (rw)
 /ttconfig from tt-config (rw)
 daemonlog:
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Port: <none>
 Host Port: <none>
 Command:
 sh
 -c
 /bin/bash <<'EOF'
 while [1] ; do tail --follow=name /tt/home/timesten/
instances/instance1/diag/ttmesg.log --max-unchanged-stats=5; sleep
1; done
 exit 0
 EOF
 Requests:
 cpu: 100m
 memory: 20Mi
 Environment:
 TIMESTEN_HOME: /tt/home/timesten/instances/instance1
 TT_OPERATOR_MANAGED: 1
 LD_LIBRARY_PATH: /tt/home/timesten/instances/instance1/
ttclasses/lib:/tt/home/timesten/instances/instance1/install/lib:/tt/
home/timesten/instances/instance1/install/ttoracle_home/
instantclient_11_2:/tt/home/timesten/instances/instance1/install/
ttoracle_home/instantclient
 Mounts:
 /tt from tt-persistent (rw)
 Volumes:
 tt-agent:
 Type: Secret (a volume populated by a Secret)
 SecretName: tt76038b9b-4635-4974-88cf-385739499ec4
 Optional: false
 tt-config:
 Type: Projected (a volume that contains injected
data from multiple sources)
 ConfigMapName: sample
 ConfigMapOptional: <nil>

Chapter 16
Perform an Automated Upgrade

16-10

Volume Claims:
 Name: tt-persistent
 StorageClass: oci-bv
 Labels: <none>
 Annotations: <none>
 Capacity: 50G
 Access Modes: [ReadWriteOnce]
Events:
 Type Reason Age From
Message
 ---- ------ ---- ----

 Normal SuccessfulCreate 22s (x2 over 18h) statefulset-controller
create Pod sample-1 in StatefulSet sample successful

You have modified the sample TimesTenClassic object to use the new TimesTen container
image. You are now ready to monitor the automated upgrade process performed by the
Operator.

Monitor an Automated Upgrade
You can monitor the automated upgrade process performed by the Operator. These steps are
optional.

1. Use the kubectl get command to assess the state of the sample TimesTenClassic
object.

kubectl get ttc sample

Note that the initial state is StandbyDown.

NAME STATE ACTIVE AGE
sample StandbyDown sample-0 18h

Wait a few minutes, then run the command again.

kubectl get ttc sample

Note that the state has changed to Normal.

NAME STATE ACTIVE AGE
sample Normal sample-1 18h

The Operator promoted sample-1 to be the active.

2. Use the kubectl describe command to observe how the Operator promoted the standby
database (sample-1) to be the active.

kubectl describe ttc sample

Chapter 16
Perform an Automated Upgrade

16-11

The output is similar to the following.

Name: sample
Namespace: mynamespace

Kind: TimesTenClassic
Metadata:
 ...
Spec:
 ...
 Ttspec:
 Additional Memory Request: 1Gi
 Automatic Memory Requests: true
 Daemon Log CPU Request: 200m
 Daemon Log Memory Request: 20Mi
 Db Config Map:
 sample
 Exporter CPU Request: 200m
 Exporter Memory Request: 200Mi
 Image: container-registry.oracle.com/
timesten/timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Image Upgrade Strategy: Auto
 Memory Warning Percent: 90
 Storage Class Name: oci-bv
 Storage Size: 250G
Status:
 ...
 Pod Status:
 Active: false
 Admin User File: true
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Cache User File: false
 Cg File: false
 Db Status:
 Db: Loaded
 ...
 Disable Return: false
 Has Been Seen: true
 High Level State: Healthy
 Initialized: true
 Intended State: Standby
 Last High Level State Switch: 1673208466
 Local Commit: false
 Name: sample-0
 Pod Status:
 Agent: Up
 Last Time Reachable: 1673208466
 Pod IP: 192.0.2.1
 Pod Phase: Running
 Prev Active: false

Chapter 16
Perform an Automated Upgrade

16-12

 Prev High Level State: Healthy
 Prev Image: container-registry.oracle.com/timesten/
timesten:22.1.1.9.0
 Prev Intended State: Active
 Prev Ready: true
 Ready: true
 Replication Status:
 Last Time Rep State Changed: 1673208234
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Scaleout Status:
 Instance Type: classic
 Schema File: true
 Timesten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Tt Pod Type: Database
 Using Twosafe: false
 Active: true
 Admin User File: true
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Cache User File: false
 Cg File: false
 Db Status:
 Db: Loaded
 ...
 Name: sample-1
 Pod Status:
 Agent: Up
 Last Time Reachable: 1673208466
 Pod IP: 192.0.2.2
 Pod Phase: Running
 Prev Active: true
 Prev High Level State: Healthy
 Prev Image: container-registry.oracle.com/timesten/
timesten:22.1.1.9.0
 Prev Intended State: Standby
 Prev Ready: true
 Ready: true
 Replication Status:
 Last Time Rep State Changed: 1673208191
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Scaleout Status:
 Instance Type: classic
 Schema File: true
 Timesten Status:

Chapter 16
Perform an Automated Upgrade

16-13

 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Tt Pod Type: Database
 Using Twosafe: false
 Prev High Level State: StandbyDown
 Prev Reexamine:
 Prev Stop Managing:
 Rep Create Statement: create active standby pair "sample" on
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store
"sample" on "sample-0.sample.mynamespace.svc.cluster.local" PORT
4444 FAILTHRESHOLD 0 store "sample" on
"sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Rep Start Fail Count: 0
 Standby Cache Agent: Not Running
 Standby Down Standby AS:
 Async Id: 5f083b21-20a9-4b93-93bf-8a42a160a0bc
 Destroy Db: true
 Id: 8bd89bbd-fb69-4249-822d-4dd729443e4b
 Pod Name: sample-0
 Rep Duplicate: true
 Start Rep Agent: true
 Status: complete
 Standby Perm In Use: 17134
 Standby Perm Size: 200
 Standby Rep Agent: Running
 Status Version: 1.0
 Using Twosafe: false
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Upgrade 6m41s timesten Image updated, automatic
upgrade started
 Normal Upgrade 6m41s timesten Deleted standby pod
sample-1 during upgrade
 Normal Info 6m29s timesten Pod sample-1 Agent Down
 Normal StateChange 6m29s timesten Pod sample-1 is Not Ready
 Warning StateChange 6m29s timesten TimesTenClassic was
Normal, now ActiveTakeover
 Normal StateChange 6m23s timesten TimesTenClassic was
ActiveTakeover, now StandbyDown
 Normal Info 5m4s timesten Pod sample-1 Agent Up
 Normal Info 5m4s timesten Pod sample-1 Instance
Exists
 Normal Info 5m4s timesten Pod sample-1 Daemon Down
 Normal Info 5m3s timesten Pod sample-1 Daemon Up
 Normal Info 5m3s timesten Pod sample-1 Database
Unloaded
 Normal Info 5m1s timesten Pod sample-1 Database None
 Normal StateChange 4m46s timesten Pod sample-1 RepState IDLE
 Normal Info 4m46s timesten Pod sample-1 Database
Loaded

Chapter 16
Perform an Automated Upgrade

16-14

 Normal Info 4m46s timesten Pod sample-1 RepScheme Exists
 Normal Info 4m46s timesten Pod sample-1 RepAgent Not Running
 Normal Info 4m40s timesten Pod sample-1 RepAgent Running
 Normal StateChange 4m40s timesten TimesTenClassic was StandbyDown,
now StandbyStarting
 Normal StateChange 4m40s timesten TimesTenClassic was
StandbyStarting, now StandbyCatchup
 Normal StateChange 4m35s timesten Pod sample-1 RepState STANDBY
 Normal StateChange 4m34s timesten TimesTenClassic was
StandbyCatchup, now Normal
 Normal Upgrade 4m3s timesten Deleted active pod sample-0
during upgrade
 Normal Info 3m52s timesten Pod sample-0 Agent Down
 Normal StateChange 3m52s timesten Pod sample-0 is Not Ready
 Normal StateChange 3m52s timesten Pod sample-0 is Not Active Ready
 Warning StateChange 3m52s timesten TimesTenClassic was Normal, now
ActiveDown
 Normal StateChange 3m52s timesten Pod sample-1 is Ready
 Normal Info 3m50s timesten Pod sample-1 Database Updatable
 Normal StateChange 3m50s timesten Pod sample-1 RepState ACTIVE
 Normal StateChange 3m50s timesten Pod sample-1 is Not Ready
 Normal StateChange 3m50s timesten TimesTenClassic was ActiveDown,
now ActiveTakeover
 Normal StateChange 3m45s timesten Pod sample-1 is Ready
 Normal StateChange 3m45s timesten Pod sample-1 is Active Ready
 Normal StateChange 3m45s timesten TimesTenClassic was
ActiveTakeover, now StandbyDown
 Normal Info 3m1s timesten Pod sample-0 Agent Up
 Normal Info 3m1s timesten Pod sample-0 Instance Exists
 Normal Info 3m1s timesten Pod sample-0 Daemon Down
 Normal Info 3m1s timesten Pod sample-0 Daemon Up
 Normal Info 3m1s timesten Pod sample-0 Database Unloaded
 Normal Info 2m58s timesten Pod sample-0 Database None
 Normal Info 2m43s timesten Pod sample-0 Database Loaded
 Normal Info 2m43s timesten Pod sample-0 RepAgent Not Running
 Normal Info 2m43s timesten Pod sample-0 RepScheme Exists
 Normal StateChange 2m43s timesten Pod sample-0 RepState IDLE
 Normal Info 2m37s timesten Pod sample-0 RepAgent Running
 Normal StateChange 2m37s timesten Pod sample-0 RepState STANDBY
 Normal StateChange 2m37s timesten Pod sample-0 is Ready
 Normal Upgrade 2m37s timesten Upgrade of active complete
 Normal Upgrade 2m37s timesten Upgrade completed in 244 secs
 Normal StateChange 2m37s timesten TimesTenClassic was StandbyDown,
now Normal

The automated upgrade is successful. The active and standby Pods are running the new
TimesTen image, which contains the new TimesTen release.

Perform a Manual Upgrade
This section describes the process for performing a manual upgrade of your TimesTenClassic
objects and includes the following subsections:

• Modify a TimesTenClassic Object: Manual Upgrade

Chapter 16
Perform a Manual Upgrade

16-15

• Upgrade the Standby Database

• Fail Over

Modify a TimesTenClassic Object: Manual Upgrade
The manual upgrade process requires you to modify the .spec.ttspec.image datum of
a TimesTenClassic object to reference the new TimesTen container image. After you
modify the TimesTenClassic object to reference the new TimesTen image, the
Operator notices the change and modifies the StatefulSet that it created.

Let's modify the TimesTenClassic sample2 object to reference the new TimesTen
image. Let's assume the sample2 object's .spec.ttspec.imageUpgradeStrategy is
Manual.

1. On your development host, edit the sample TimesTenClassic object, changing
the .spec.ttspec.image datum to reference the new TimesTen container image.
In this example, the location and name of the new container image is container-
registry.oracle.com/timesten/timesten:22.1.1.19.0.

Note: Not all output is shown.

kubectl edit timestenclassic sample2

Please edit the object below. Lines beginning with a '#' will be
ignored,
and an empty file will abort the edit. If an error occurs while
saving this file will be
reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 ...
 name: sample2
 namespace: mynamespace
 resourceVersion: "74928067"
 uid: e6d49f75-05ed-4b4b-9412-4a577ad19bbe
spec:
...
 ttspec:
 additionalMemoryRequest: 1Gi
 automaticMemoryRequests: true
 daemonLogCPURequest: 200m
 daemonLogMemoryRequest: 20Mi
 dbConfigMap:
 - sample2
 exporterCPURequest: 200m
 exporterMemoryRequest: 200Mi
 image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 imagePullPolicy: Always
 imagePullSecret: sekret
 imageUpgradeStrategy: Manual
 memoryWarningPercent: 90
 storageClassName: oci-bv

Chapter 16
Perform a Manual Upgrade

16-16

 storageSize: 250G
...

The output is the following.

timestenclassic.timesten.oracle.com/sample2 edited

2. Verify that the Operator has modified the sample2 StatefulSet and replaced the image
with the new image.

kubectl describe statefulset sample2

The output is similar to the following.

Name: sample2
Namespace: mynamespace
...
Replicas: 2 desired | 2 total
Update Strategy: OnDelete
Pods Status: 2 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=sample2
 database.timesten.oracle.com=sample2
 Annotations: TTC: e6d49f75-05ed-4b4b-9412-4a577ad19bbe
 Init Containers:
 ttinit:
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Ports: 8443/TCP, 6624/TCP, 6625/TCP, 4444/TCP
 Host Ports: 0/TCP, 0/TCP, 0/TCP, 0/TCP
 Environment:
 TT_OPERATOR_MANAGED: 1
 TIMESTEN_HOME: /tt/home/timesten/instances/instance1
 LD_LIBRARY_PATH: /tt/home/timesten/instances/instance1/
ttclasses/lib:/tt/home/timesten/instances/instance1/install/lib:/tt/home/
timesten/instances/instance1/install/ttoracle_home/instantclient_11_2:/tt/
home/timesten/instances/instance1/install/ttoracle_home/instantclient
 TT_REPLICATION_TOPOLOGY: activeStandbyPair
 TT_INIT_CONTAINER: 1
 TTC_UID: e6d49f75-05ed-4b4b-9412-4a577ad19bbe
 Mounts:
 /tt from tt-persistent (rw)
 /ttagent from tt-agent (rw)
 /ttconfig from tt-config (rw)
 Containers:
 tt:
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Ports: 8443/TCP, 6624/TCP, 6625/TCP, 4444/TCP
 Host Ports: 0/TCP, 0/TCP, 0/TCP, 0/TCP
 Environment:
 TT_OPERATOR_MANAGED: 1
 TIMESTEN_HOME: /tt/home/timesten/instances/instance1

Chapter 16
Perform a Manual Upgrade

16-17

 LD_LIBRARY_PATH: /tt/home/timesten/instances/
instance1/ttclasses/lib:/tt/home/timesten/instances/instance1/
install/lib:/tt/home/timesten/instances/instance1/install/
ttoracle_home/instantclient_11_2:/tt/home/timesten/instances/
instance1/install/ttoracle_home/instantclient
 TT_REPLICATION_TOPOLOGY: activeStandbyPair
 Mounts:
 /tt from tt-persistent (rw)
 /ttagent from tt-agent (rw)
 /ttconfig from tt-config (rw)
 daemonlog:
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.9.0
 Port: <none>
 Host Port: <none>
 Command:
 sh
 -c
 /bin/bash <<'EOF'
 while [1] ; do tail --follow=name /tt/home/timesten/
instances/instance1/diag/ttmesg.log --max-unchanged-stats=5; sleep
1; done
 exit 0
 EOF
 Requests:
 cpu: 100m
 memory: 20Mi
 Environment:
 TIMESTEN_HOME: /tt/home/timesten/instances/instance1
 TT_OPERATOR_MANAGED: 1
 LD_LIBRARY_PATH: /tt/home/timesten/instances/instance1/
ttclasses/lib:/tt/home/timesten/instances/instance1/install/lib:/tt/
home/timesten/instances/instance1/install/ttoracle_home/
instantclient_11_2:/tt/home/timesten/instances/instance1/install/
ttoracle_home/instantclient
 Mounts:
 /tt from tt-persistent (rw)
 Volumes:
 tt-agent:
 Type: Secret (a volume populated by a Secret)
 SecretName: tte6d49f75-05ed-4b4b-9412-4a577ad19bbe
 Optional: false
 tt-config:
 Type: Projected (a volume that contains injected
data from multiple sources)
 ConfigMapName: sample2
 ConfigMapOptional: <nil>
Volume Claims:
 Name: tt-persistent
 StorageClass: oci-bv
 Labels: <none>
 Annotations: <none>
 Capacity: 50G
 Access Modes: [ReadWriteOnce]
Events: <none>

Chapter 16
Perform a Manual Upgrade

16-18

You successfully modified the sample2 TimesTenClassic object to use the new TimesTen
container image. Let's continue the manual upgrade by upgrading the standby database.

Upgrade the Standby Database
Perform these steps to upgrade the standby database.

Note:

Even though you are upgrading the standby database, depending on your
replication configuration, this may result in disruption on your active database. This
may impact your applications. Perform the upgrade at the appropriate time.

1. Use the kubectl get ttc command to:

• Determine which Pod is the standby. The active Pod is the Pod represented in the
ACTIVE column. The standby Pod is the other Pod (not represented in the ACTIVE
column). Therefore, for the sample2 TimesTenClassic object, the active Pod is
sample2-0 and the standby Pod is sample2-1.

• Ensure the state for the TimesTenClassic object (sample2, in this example) is Normal.

kubectl get ttc sample2

The output is the following.

NAME STATE ACTIVE AGE
sample2 Normal sample2-0 19h

2. To upgrade the standby to the new TimesTen image, delete the standby Pod (sample2-1,
in this example).

kubectl delete pod sample2-1

The output is the following.

pod "sample2-1" deleted

Kubernetes automatically creates a new sample2-1 Pod to replace the deleted Pod. The
Operator configures the new sample2-1 Pod as the standby Pod. This new Pod will now
run the newly created TimesTen image.

3. Verify the standby is up and running and the state is Normal.

kubectl get ttc sample2

Chapter 16
Perform a Manual Upgrade

16-19

Note that the state is initially StandbyDown.

NAME STATE ACTIVE AGE
sample2 StandbyDown sample2-0 19h

Wait a few minutes, then run the command again.

kubectl get ttc sample2

Note that the state has changed to Normal.

NAME STATE ACTIVE AGE
sample2 Normal sample2-0 19h

4. Verify that the standby is up and running again and that the active standby pair
health is Normal. During the upgrade of the standby, your applications are not
disrupted. Your applications can continue to use the active database.

kubectl describe ttc sample2

The output is similar to the following.

Name: sample2
Namespace: mynamespace
...
Kind: TimesTenClassic
...
Spec:
 ...
 Ttspec:
 Additional Memory Request: 1Gi
 Automatic Memory Requests: true
 Daemon Log CPU Request: 200m
 Daemon Log Memory Request: 20Mi
 Db Config Map:
 sample2
 Exporter CPU Request: 200m
 Exporter Memory Request: 200Mi
 Image: container-registry.oracle.com/
timesten/timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Image Upgrade Strategy: Manual
 Memory Warning Percent: 90
 Storage Class Name: oci-bv
 Storage Size: 250G
Status:
 ...
 Classic Upgrade Status:
 ...
 High Level State: Normal
 ...

Chapter 16
Perform a Manual Upgrade

16-20

 Pod Status:
 Active: true
 Admin User File: true
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Cache User File: false
 Cg File: false
 Db Status:
 ...
 Name: sample2-0
 Pod Status:
 Agent: Up
 Last Time Reachable: 1673213068
 Pod IP: 192.0.2.3
 Pod Phase: Running
 Prev Active: true
 Prev High Level State: Healthy
 Prev Image: container-registry.oracle.com/timesten/
timesten:22.1.1.9.0
 Prev Intended State:
 Prev Ready: true
 Ready: true
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Scaleout Status:
 Instance Type: classic
 Schema File: true
 Timesten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.9.0
 Tt Pod Type: Database
 Using Twosafe: false
 Active: false
 Admin User File: true
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Cache User File: false
 Cg File: false
 Db Status:
 ...
 Name: sample2-1
 Pod Status:
 Agent: Up
 Last Time Reachable: 1673213068
 Pod IP: 192.0.2.4
 Pod Phase: Running

Chapter 16
Perform a Manual Upgrade

16-21

 Prev Active: false
 Prev High Level State: Healthy
 Prev Image: container-registry.oracle.com/timesten/
timesten:22.1.1.9.0
 Prev Intended State:
 Prev Ready: true
 Ready: true
 Replication Status:
 Last Time Rep State Changed: 1673212993
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Scaleout Status:
 Instance Type: classic
 Schema File: true
 Timesten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Tt Pod Type: Database
 Using Twosafe: false
 Prev High Level State: StandbyCatchup
 Prev Reexamine:
 Prev Stop Managing:
 Rep Create Statement: create active standby pair "sample2" on
"sample2-0.sample2.mynamespace.svc.cluster.local", "sample2" on
"sample2-1.sample2.mynamesoace.svc.cluster.local" NO RETURN store
"sample2" on "sample2-0.sample2.mynamespace.svc.cluster.local" PORT
4444 FAILTHRESHOLD 0 store "sample2" on
"sample2-1.sample2.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Rep Start Fail Count: 0
 Standby Cache Agent: Not Running
 Standby Down Standby AS:
 Async Id: c3cf41af-61c2-438c-a4d0-f3dfbdb6043d
 Destroy Db: true
 Id: 8a9a22ee-deaa-4eb6-8e00-c0d8932af623
 Pod Name: sample2-1
 Rep Duplicate: true
 Start Rep Agent: true
 Status: complete
 Standby Perm In Use: 15291
 Standby Perm Size: 200
 Standby Rep Agent: Running
 Status Version: 1.0
 Using Twosafe: false
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Upgrade 4m15s timesten Image updated, automatic
upgrade disabled
 Normal Info 3m24s timesten Pod sample2-1 Agent Down
 Normal StateChange 3m24s timesten Pod sample2-1 is Not Ready

Chapter 16
Perform a Manual Upgrade

16-22

 Warning StateChange 3m19s timesten TimesTenClassic was Normal, now
ActiveTakeover
 Normal StateChange 3m14s timesten TimesTenClassic was
ActiveTakeover, now StandbyDown
 Normal Info 2m19s timesten Pod sample2-1 Agent Up
 Normal Info 2m19s timesten Pod sample2-1 Instance Exists
 Normal Info 2m19s timesten Pod sample2-1 Daemon Down
 Normal Info 2m19s timesten Pod sample2-1 Daemon Up
 Normal Info 2m19s timesten Pod sample2-1 Database Unloaded
 Normal Info 2m12s timesten Pod sample2-1 Database None
 Normal Info 116s timesten Pod sample2-1 Database Loaded
 Normal Info 116s timesten Pod sample2-1 RepAgent Not
Running
 Normal Info 116s timesten Pod sample2-1 RepScheme Exists
 Normal StateChange 116s timesten Pod sample2-1 RepState IDLE
 Normal Info 111s timesten Pod sample2-1 RepAgent Running
 Normal StateChange 111s timesten TimesTenClassic was StandbyDown,
now StandbyStarting
 Normal StateChange 110s timesten TimesTenClassic was
StandbyStarting, now StandbyCatchup
 Normal StateChange 75s timesten Pod sample2-1 RepState STANDBY
 Normal StateChange 75s timesten TimesTenClassic was
StandbyCatchup, now Normal
 Normal StateChange 70s timesten Pod sample2-1 is Ready

Note the following:

• The image is upgraded to the new release.

• The active database (sample2-0) is not upgraded to the new release.

• The standby database (sample2-1) is upgraded to the new release.

You have successfully upgraded the standby database. You are now ready to fail over from
the active database to the standby.

Fail Over
You must now fail over from the active database to the standby.

Note:

When you fail over, your active database will be taken down, and failed over
immediately. Do not perform this procedure at the busiest time of your production
day.

Before failing over, quiesce your applications on the active database. (You can also use the
ttAdmin -close and the ttAdmin -disconnect commands. See Opening and Closing the
Database for User Connections and Disconnecting from a Database in the Oracle TimesTen
In-Memory Database Operations Guide.

To avoid potential data loss, use the ttRepAdmin -wait command to wait until replication is
caught up, such that all transactions that were executed on the active database have been

Chapter 16
Perform a Manual Upgrade

16-23

replicated to the standby database. See ttRepAdmin in the Oracle TimesTen In-
Memory Database Reference.

Once the standby is caught up, fail over from the active database to the standby by
deleting the active Pod. When you delete the active Pod, the Operator automatically
detects the failure and promotes the standby database to be the active. Client/server
applications that are using the active database (sample2-0, in this example) are
automatically reconnected to the new active database (sample2-1, in this example).
Transactions in flight are rolled back. Prepared SQL statements will need to be re-
prepared by the applications. See About Handling Failover and Recovery for more
information about client/server failover.

Kubernetes automatically creates a new sample2-0 Pod to replace the deleted Pod.
The Operator will configure the new Pod as the standby Pod. This new Pod will run the
newly created TimesTen image.

Note:

You may want to perform this operation during a scheduled production
outage.

1. Use the kubectl delete command to delete the active Pod (sample2-0, in this
example).

kubectl delete pod sample2-0

The output is the following.

pod "sample2-0" deleted

2. Use the kubectl get command to assess the state of the sample2
TimesTenClassic object.

kubectl get ttc sample2

Note that the state is initially ActiveDown.

NAME STATE ACTIVE AGE
sample2 ActiveDown None 19h

Wait a few minutes, then run the command again.

kubectl get ttc sample2

Note that the state has changed to Normal.

NAME STATE ACTIVE AGE
sample2 Normal sample2-1 19h

Chapter 16
Perform a Manual Upgrade

16-24

The Operator promoted sample-1 to be the active.

3. Use the kubectl describe command to observe how the Operator recovers from the
failure. The Operator promotes the standby database (sample2-1) to be active. Any
applications that were connected to the sample2-0 database are automatically
reconnected to the sample2-1 database by TimesTen. After a brief outage, the
applications can continue to use the database. See About Monitoring the Health of an
Active Standby Pair of Databases for information on the health and states of the active
standby pair.

kubectl describe ttc sample2

The output is similar to the following.

Name: sample2
Namespace: mynamespace
...
Kind: TimesTenClassic
...
Spec:
 ...
 Ttspec:
 Additional Memory Request: 1Gi
 Automatic Memory Requests: true
 Daemon Log CPU Request: 200m
 Daemon Log Memory Request: 20Mi
 Db Config Map:
 sample2
 Exporter CPU Request: 200m
 Exporter Memory Request: 200Mi
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Image Upgrade Strategy: Manual
 Memory Warning Percent: 90
 Storage Class Name: oci-bv
 Storage Size: 250G
Status:
 ...
 Classic Upgrade Status:
 ...
 High Level State: Normal
 Last Event: 0
 Last High Level State Switch: 1673214034
 Last Reconcile: 1673214897250
 Last Reconciling Operator: timesten-operator-6f9d96bdfc-h22lm
 Observed Generation: 2
 Pod Status:
 Active: false
 Admin User File: true
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true

Chapter 16
Perform a Manual Upgrade

16-25

 N Cache Groups: 0
 Cache User File: false
 Cg File: false
 Db Status:
 Db: Loaded
 ...
 Name: sample2-0
 Pod Status:
 Agent: Up
 Last Time Reachable: 1673214897
 Pod IP: 192.0.2.3
 Pod Phase: Running
 Prev Active: false
 Prev High Level State: Healthy
 Prev Image: container-registry.oracle.com/timesten/
timesten:22.1.1.9.0
 Prev Intended State: Active
 Prev Ready: true
 Ready: true
 Replication Status:
 Last Time Rep State Changed: 1673213965
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Scaleout Status:
 Instance Type: classic
 Schema File: true
 Timesten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Tt Pod Type: Database
 Using Twosafe: false
 Active: true
 Admin User File: true
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Cache User File: false
 Cg File: false
 Db Status:
 Db: Loaded
 ...
 High Level State: Healthy
 Initialized: true
 Intended State: Active
 Last High Level State Switch: 1673214897
 Local Commit: false
 Name: sample2-1
 Pod Status:
 Agent: Up
 Last Time Reachable: 1673214897
 Pod IP: 192.0.2.4

Chapter 16
Perform a Manual Upgrade

16-26

 Pod Phase: Running
 Prev Active: true
 Prev High Level State: Healthy
 Prev Image: container-registry.oracle.com/timesten/
timesten:22.1.1.9.0
 Prev Intended State: Standby
 Prev Ready: true
 Ready: true
 Replication Status:
 Last Time Rep State Changed: 1673212993
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Scaleout Status:
 Instance Type: classic
 Schema File: true
 Timesten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Tt Pod Type: Database
 Using Twosafe: false
 Prev High Level State: StandbyDown
 Prev Reexamine:
 Prev Stop Managing:
 ...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 ...
 Warning StateChange 15m timesten TimesTenClassic was Normal, now
ActiveDown
 Normal Info 15m timesten Pod sample2-0 Agent Down
 Normal StateChange 15m timesten Pod sample2-0 is Not Ready
 Normal StateChange 15m timesten Pod sample2-0 is Not Active Ready
 Normal Info 15m timesten Pod sample2-1 Database Updatable
 Normal StateChange 15m timesten Pod sample2-1 RepState ACTIVE
 Normal StateChange 15m timesten Pod sample2-1 is Not Ready
 Normal StateChange 15m timesten TimesTenClassic was ActiveDown,
now ActiveTakeover
 Normal StateChange 15m timesten Pod sample2-1 is Ready
 Normal StateChange 15m timesten TimesTenClassic was
ActiveTakeover, now StandbyDown
 Normal StateChange 15m timesten Pod sample2-1 is Active Ready
 Normal Info 14m timesten Pod sample2-0 Agent Up
 Normal Info 14m timesten Pod sample2-0 Instance Exists
 Normal Info 14m timesten Pod sample2-0 Daemon Down
 Normal Info 14m timesten Pod sample2-0 Daemon Up
 Normal Info 14m timesten Pod sample2-0 Database Unloaded
 Normal Info 14m timesten Pod sample2-0 Database None
 Normal Info 14m timesten Pod sample2-0 Database Loaded
 Normal Info 14m timesten Pod sample2-0 RepAgent Not Running
 Normal Info 14m timesten Pod sample2-0 RepScheme Exists
 Normal StateChange 14m timesten Pod sample2-0 RepState IDLE

Chapter 16
Perform a Manual Upgrade

16-27

 Normal Info 14m timesten Pod sample2-0 RepAgent
Running
 Normal StateChange 14m timesten Pod sample2-0 RepState
STANDBY
 Normal StateChange 14m timesten Pod sample2-0 is Ready
 Normal StateChange 14m timesten TimesTenClassic was
StandbyDown, now Normal

You successfully upgraded to a new release of TimesTen. The active and the standby
Pods are running the new TimesTen image, which contains the new TimesTen release.

In this example, the sample and the sample2 TimesTenClassic objects are now
upgraded. The upgrade process is complete. Let's verify the active and the standby
databases are running the new release of TimesTen.

Verify the Active Standby Pair of Databases Are Upgraded
After the upgrade process is complete for your TimesTenClassic objects, you can
verify the active and standby databases are running the new release of TimesTen.

1. For the sample TimesTenClassic object, invoke a shell in the active Pod (sample-1,
in this example). Then, run the TimesTen ttVersion utility to verify the release is
the new release (22.1.1.19.0, in this example).

kubectl exec -it sample-1 -c tt -- /bin/bash

Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following.

TimesTen Release 22.1.1.19.0 (64 bit Linux/x86_64) (instance1:6624)
2023-09-29T07:40:22Z
 Instance admin: timesten
 Instance home directory: /tt/home/timesten/instances/instance1
 Group owner: timesten
 Daemon home directory: /tt/home/timesten/instances/instance1/info
 PL/SQL enabled.

Exit from the shell.

exit

2. Invoke a shell in the standby Pod (sample-0, in this example). Then, run the
ttVersion utility to verify the release is the new release (22.1.1.19.0, in this
example).

kubectl exec -it sample-0 -c tt -- /bin/bash

Chapter 16
Verify the Active Standby Pair of Databases Are Upgraded

16-28

Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following.

TimesTen Release 22.1.1.19.0 (64 bit Linux/x86_64) (instance1:6624)
2023-09-29T07:40:22Z
 Instance admin: timesten
 Instance home directory: /tt/home/timesten/instances/instance1
 Group owner: timesten
 Daemon home directory: /tt/home/timesten/instances/instance1/info
 PL/SQL enabled.

Exit from the shell.

exit

3. For the sample2 TimesTenClassic object, invoke a shell in the active Pod (sample2-1, in
this example). Then, use the ttVersion utility to verify the release is the new release
(22.1.1.19.0, in this example).

 kubectl exec -it sample2-1 -c tt -- /bin/bash

Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following.

TimesTen Release 22.1.1.19.0 (64 bit Linux/x86_64) (instance1:6624)
2023-09-29T07:40:22Z
 Instance admin: timesten
 Instance home directory: /tt/home/timesten/instances/instance1
 Group owner: timesten
 Daemon home directory: /tt/home/timesten/instances/instance1/info
 PL/SQL enabled.

Exit from the shell.

exit

4. Invoke a shell in the standby Pod (sample2-0, in this example). Then, use the ttVersion
utility to verify the release is the new release (22.1.1.19.0, in this example).

kubectl exec -it sample2-0 -c tt -- /bin/bash

Chapter 16
Verify the Active Standby Pair of Databases Are Upgraded

16-29

Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following.

TimesTen Release 22.1.1.19.0 (64 bit Linux/x86_64) (instance1:6624)
2023-09-29T07:40:22Z
 Instance admin: timesten
 Instance home directory: /tt/home/timesten/instances/instance1
 Group owner: timesten
 Daemon home directory: /tt/home/timesten/instances/instance1/info
 PL/SQL enabled.

Exit from the shell.

exit

The upgrade to a new release of TimesTen is successful for the sample and the
sample2 TimesTenClassic objects. The active and the standby Pods for each
TimesTenClassic object are running the new TimesTen image, which contains the new
TimesTen release.

About Upgrading Direct Mode Applications
You cannot use this automated upgrade process to upgrade direct mode applications
that are running in their own containers. The Operator does propagate the changes
from a TimesTenClassic object to the associated StatefulSet, but the changes do not
initiate the automated upgrade process. You must manually terminate the applications
that are running in their containers. In so doing, StatefulSet spawns new containers to
replace the original containers. These new containers run the newly specified
TimesTen image. For more information about direct mode applications, see About
Using Direct Mode Applications.

About Failures During an Upgrade
If there are failures in any step of the upgrade process, a TimesTenClassic object
enters the ManualInterventionRequired state. The remaining steps of the upgrade
process are cancelled. You must manually fix the active/standby pair to return the pair
to management by the Operator. Even when the pair is returned to automatic
management, the remaining steps in the upgrade process are not automatically
performed. See About the ManualInterventionRequired State.

Chapter 16
About Upgrading Direct Mode Applications

16-30

17
The TimesTen Kubernetes Operator Object
Types

This chapter gives an overview of the TimesTenClassic and the TimesTenScaleout object
types. The chapter describes the syntax for each object type.

Topics:

• Overview of the TimesTen Kubernetes Operator Object Types

• About the TimesTenClassic Object Type

• About the TimesTenScaleout Object Type

Overview of the TimesTen Kubernetes Operator Object Types
The TimesTen Kubernetes Operator (TimesTen Operator) installation defines the
TimesTenClassic and the TimesTenScaleout object types to the Kubernetes cluster. An object
of type TimesTenClassic describes the metadata for an active standby pair of TimesTen
databases using TimesTen Classic. An object of type TimesTenScaleout describes the
metadata for a TimesTen grid and a TimesTen database within the grid using TimesTen
Scaleout. You can create as many of these TimesTenClassic and TimesTenScaleout objects
as you like.

The definition of the TimesTenClassic and the TimesTenScaleout object types use the same
basic format that the formal Kubernetes documentation uses to define objects that are built-in
to Kubernetes. The facilities available in any given Kubernetes cluster depend on what
release of Kubernetes the cluster is using. For information on the Kubernetes API
documentation, see:

https://kubernetes.io/docs/reference/kubernetes-api/
The Kubernetes API reference documentation refers to a number of built-in Kubernetes types
used in the definition of the TimesTenClassic and the TimesTenScaleout object types. A
Kubernetes StatefulSet is of particular importance. The TimesTenClassic and the
TimesTenScaleout object types are basically a wrapper around a StatefulSet type. For more
information, see:

https://kubernetes.io/docs/reference/kubernetes-api/

Note:

All of the metadata is passed from the object to the StatefulSet.

About the TimesTenClassic Object Type
The definition of the TimesTenClassic object type uses the following object definitions:

17-1

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/

• TimesTenClassic

• TimesTenClassicSpec

• TimesTenClassicSpecSpec

• TimesTenClassicSpecSpecPrometheus

• TimesTenClassicStatus

TimesTenClassic
An object of type TimesTenClassic describes the metadata for an active standby pair
of TimesTen databases in TimesTen Classic.

The following table describes the syntax for the TimesTenClassic object type:

Table 17-1 TimesTenClassic syntax

Field Type Description

apiVersion string Versioned schema of this representation of an
object.

The value must be timesten.oracle.com/v1.

kind string Type of object (in this example, TimesTenClassic).

metadata ObjectMeta Metadata about the object, such as its name. For
information on ObjectMeta, see:

https://kubernetes.io/docs/reference/
kubernetes-api/

spec TimesTenClassicSpec Desired configuration of the TimesTen Pods and
databases.

status TimesTenClassicStatus Current status of the Pods in this TimesTenClassic
object as well as the status of various TimesTen
components within those Pods. This data may be
out of date by some window of time.

TimesTenClassicSpec
TimesTenClassicSpec appears in TimesTenClassic. The following table describes the
syntax for TimesTenClassicSpec:

Table 17-2 TimesTenClassicSpec syntax

Field Type Description

ttspec TimesTenClassicSpecSpec TimesTen specific attributes.

Chapter 17
TimesTenClassic

17-2

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/

Table 17-2 (Cont.) TimesTenClassicSpec syntax

Field Type Description

template PodTemplateSpec Describes the Pods provisioned for the
TimesTenClassic object. In addition to Pods
specified by template, there are the tt and
daemonlog containers that are automatically
included in each Pod. TimesTen runs in the
tt container. If you configure and use
Prometheus, the exporter container is also
included. For information on
PodTemplateSpec, see:

https://kubernetes.io/docs/
reference/kubernetes-api/

volumeClaimTemplates PersistentVolumeClaim TimesTen automatically provisions
PersistentVolumeClaims (PVCs) for /tt (and
for /ttlog, if specified). If you have
applications that are running in containers in
the TimesTen Pods, and those applications
require additional PVCs, specify them in this
field. For information on
PersistentVolumeClaim, see:

https://kubernetes.io/docs/
reference/kubernetes-api/

TimesTenClassicSpecSpec
TimesTenClassicSpecSpec appears in TimesTenClassicSpec.

The following table describes the syntax for TimesTenClassicSpecSpec. There are some
fields of type quantity. The specified value is of the same format as Kubernetes resource
limits. For example, 200Gi, 200G, 1000Mi, 1000M, and so on.

Note:

There are datum that are reserved for internal use and are not documented in this
table. The names of these datum typically begin with zz. For example, zzTestInfo
is reserved for internal use.

Chapter 17
TimesTenClassicSpecSpec

17-3

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/

Table 17-3 TimesTenClassicSpecSpec syntax

Field Type Description

additionalMemoryRequest quantity The amount of memory to request in
addition to whatever is required for the
TimesTen database.

This memory is used for the TimesTen
daemon, subdaemons, agents, and the
Client/Server server.

This value is added to
databaseMemorySize that was either
specified by you or calculated. The sum
is the memory request to Kubernetes.

The default is 2Gi.

agentAsyncTimeout integer At times the TimesTen Operator needs
to perform operations on a TimesTen
instance or database. When the
TimesTen Operator needs to perform
such operations, it asks the TimesTen
Agent running in the tt container of the
appropriate Pod to perform the
operation. The Agent issues TimesTen
commands and utilities and, using the
TimesTen ttIsql utility, runs SQL
operations on the appropriate instance
or database.

The Agent runs the operation either
synchronously (while the TimesTen
Operator waits) or asynchronously
(while the TimesTen Operator is not
waiting and can perform other
operations for other TimesTen objects).

The only operation that is performed
asynchronously is duplicate, where a
TimesTen Classic database is copied
from the active Pod to the standby Pod.
This is done as part of the initial rollout
of an active standby pair, and at various
times during its lifecycle.

These duplicate operations can take a
long time, and the amount of time
increases as the size of the database
increases. If an asynchronous operation
does not complete within
agentAsyncTimeout seconds, the
TimesTen Operator decides that it has
failed and acts accordingly.

If your database is large, you may need
to increase the default value for
agentAsyncTimeout.

The default is 600 and is expressed in
seconds.

Chapter 17
TimesTenClassicSpecSpec

17-4

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

agentGetTimeout integer Time in seconds that the TimesTen
Operator waits for an https GET request
to be processed by the TimesTen agent.
This includes the TCP and the TLS
times as well as the time it takes for the
TimesTen agent to implement the GET
request.

The default is 60. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the TimesTen Operator
considers the agent to be down.

agentPostTimeout integer Time in seconds that the TimesTen
Operator waits for an https POST request
to be processed by the TimesTen agent.
This includes the TCP and the TLS
times as well as the time it takes for the
TimesTen agent to implement the POST
request. The POST requests may take a
long time and the time may be
proportional to the size of the database.
(An example is a POST request to
duplicate a database from the active to
the standby.)

The default is 600. A value of 0
indicates that there is no timeout. If the
timeout is exceeded, the TimesTen
Operator considers the POST request to
have failed.

agentTcpTimeout integer Time in seconds that the TimesTen
Operator waits for a TCP handshake
when communicating with the TimesTen
agent.

The default is 10. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the TimesTen Operator
considers the agent to be down.

agentTlsTimeout integer Time in seconds that the TimesTen
Operator waits for a TLS (https)
credential exchange when
communicating with the TimesTen
agent.

The default is 10. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the TimesTen Operator
considers the agent to be down.

Chapter 17
TimesTenClassicSpecSpec

17-5

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

automaticMemoryRequests boolean Determines if the TimesTen Operator
attempts to set appropriate memory
limits and requests for TimesTen Pods.

Valid values:
• true (default): The TimesTen

Operator attempts to set memory
limits and requests.

• false: The TimesTen Operator
does not set memory limits and
requests.

bothDownBehavior string If the TimesTenClassic object enters the
BothDown state, the TimesTen Operator
examines the bothDownBehavior
setting to determine what to do.
Acceptable values are Best (default) or
Manual. See BothDown.

cacheCleanup boolean Determines if the metadata in the
Oracle Database should be cleaned up
when this TimesTenClassic object is
deleted. Use for TimesTen Cache only.

Valid values:

• true (or not specified): The
metadata is cleaned up.

• false: The metadata is not
cleaned up.

See Dropping Oracle Database Objects
Used by Cache Groups with Autorefresh
in the Oracle TimesTen In-Memory
Database Cache Guide.

daemonLogCPURequest quantity The amount of CPU requested for the
daemonlog container.

The default is 200m (one-fifth of a CPU).

daemonLogMemoryRequest quantity The amount of memory requested for
the daemonlog container.

The default is 200Mi.

daemonLogSidecar boolean Determines if a daemon log container is
created in each TimesTen Pod. This
container writes the TimesTen daemon
logs (from ttmesg.log) to stdout.
This causes Kubernetes to record these
logs.

Valid values:

• true (or not specified): A daemon
log container is created.

• false: A daemon log container is
not created.

Chapter 17
TimesTenClassicSpecSpec

17-6

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

databaseCPURequest quantity Specify this value to tell the TimesTen
Operator how much CPU your tt
containers require. This includes CPU
used by the TimesTen daemon,
subdaemons, replication agents, cache
agents, and the Client/Server server.

There is no default.

databaseMemorySize quantity You can specify this value to tell the
TimesTen Operator how much shared
memory your database requires.

If you specify a value, that value will be
used. If you do not specify a value, the
TimesTen Operator attempts to
determine the required size from the
provided db.ini file.

If the TimesTen Operator cannot
determine the database size, the value
580911104 is used. This is the size
required for a default database with a
PermSize of 200Mbyte, rounded up to
2Mi. This may be useful for
experimentation, but is likely insufficient
for production purposes.

TimesTen recommends that you provide
a db.ini file to the TimesTen Operator
by using a Configmap or Secret, and
that you not specify
databaseMemorySize.

Note:

If you
provide a
db.ini
file by
using an
init
container,
you must
specify
database
MemorySi
ze.

Chapter 17
TimesTenClassicSpecSpec

17-7

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

dbConfigMap array of strings Name of one or more ConfigMaps to be
included in a projected volume. This
projected volume is mounted as /
ttconfig in the TimesTen containers. If
you do not specify dbConfigMap or
dbSecret, you must place the
metadata files into the /ttconfig
directory by using other means. See
Populate the /ttconfig Directory.

dbSecret array of strings Name of one or more Secrets to be
included in a projected volume. This
projected volume is mounted as /
ttconfig in the TimesTen containers. If
you do not specify dbSecret or
dbConfigMap, you must place the
metadata files into the /ttconfig
directory by using other means. See
Populate the /ttconfig Directory.

exporterCPURequest quantity The amount of CPU requested for the
exporter container (if provisioned).

The default is 200m (one-fifth of a CPU).

exporterMemoryRequest quantity The amount of memory requested for
the exporter container (if provisioned).

The default is 200Mi.

image string Name of the TimesTen image that is
executed in the created containers.

There is no default. You must specify
the name of the image.

imagePullPolicy string Determines if and when Kubernetes
pulls the TimesTen image from the
image repository.

Valid values:

• Always
• IfNotPresent (default)

• Never
Note: Values are case sensitive.

imagePullSecret string Image pull secret that is used to
authenticate and give permission to
Kubernetes to fetch the specified
TimesTen image from its image
repository.

There is no default. You must specify
the name of the image pull secret.

Chapter 17
TimesTenClassicSpecSpec

17-8

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

imageUpgradeStrategy string Determines if the TimesTen Operator
performs automated upgrades.

Valid values:

• Auto (or not specified): The
TimesTen Operator performs
automated upgrades.

• Manual: The TimesTen Operator
does not perform an automated
upgrade.

Values are case sensitive. See Perform
Upgrades.

logStorageClassName string Name of the storage class that is used
to request persistent volumes for the
TimesTen database transaction log files.
This field is optional.

logStorageSelector metav1.LabelSelector When choosing to use a persistent
volume to store the TimesTen
transaction logs, the primary
determinant of what volumes to use is
the logStorageClassName datum that
you specify. You can optionally specify a
label selector by using the
logStorageSelector datum. This
label selector further filters the set of
volumes. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

logStorageSize string Amount of storage to be provisioned for
the TimesTen transaction logs. For
information on determining the amount
of storage needed for the transaction log
files, see Storage Provisioning for
TimesTen in the Oracle TimesTen In-
Memory Database Operations Guide

The default is 50Gi. This default value
may be suitable when you are
experimenting with the product or using
it for demonstration purposes. However,
in a production environment, consider
choosing a value greater than 50Gi.
The examples in this book assume a
production environment and use a value
of 250Gi.

Chapter 17
TimesTenClassicSpecSpec

17-9

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

memoryWarningPercent integer At runtime, if a container's memory
usage is more than its percentage of its
limit (both as reported by cgroups), the
TimesTen Operator generates Events to
inform you of this occurrence.

The memory usage refers to the
container's memory allocation.

The default is 90.

pollingInterval integer Determines how often (expressed in
seconds) that the TimesTen Operator
checks the status of the
TimesTenClassic active standby pair
object. For example, if you set this value
to 10, the TimesTen Operator checks
the status of the TimesTenClassic object
every ten seconds.

This value interacts with
unreachableTimeout. The
pollingInterval value should be
smaller than the unreachableTimeout
value.

The value must be a positive integer
(greater than 0). The default is 5.

prometheus TimesTenClassicSpecSpecPr
ometheus

Determines if the TimesTen Exporter is
deployed. If specified, the Exporter is
deployed. The datum for the
prometheus object are defined in
TimesTenClassicSpecSpecPrometheus.

reexamine string When a TimesTenClassic object is in
the ManualInterventionRequired
state, the TimesTen Operator examines
the reexamine value every
pollingInterval seconds. If the
value has changed since the last
iteration for this object, the TimesTen
Operator examines the state of the
TimesTen containers for this object. See
About the ManualInterventionRequired
State and About Bringing Up One
Database.

Chapter 17
TimesTenClassicSpecSpec

17-10

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

repCreateStatement string The repReturnServiceAttribute
and the repStoreAttribute datum
provide some control over the CREATE
ACTIVE STANDBY statement that you
use to configure your active standby pair
replication scheme. However, these
datum do not provide a mechanism to
set all the replication options.

The repCreateStatement datum
provides more control over the active
standby pair replication configuration. If
you choose to define a replication
scheme, you must choose either the
repCreateStatement approach or the
repReturnServiceAttribute and
the repStoreAttribute approach.
You cannot use both approaches
simultaneously in a single
TimesTenClassic object definition. For
example, you cannot use the
repCreateStatement datum and the
repReturnServiceAttribute datum
in a single TimesTenClassic object
definition. However, you can use the
repReturnServiceAttribute and
the repStoreAttribute datum in a
single TimesTenClassic object
definition.

Example of using the
repCreateStatement datum:

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 repCreateStatement: |
 create active standby pair
 "{{tt-name}}" on "{{tt-
node-0}}",
 "{{tt-name}}" on "{{tt-
node-1}}"
 RETURN TWOSAFE
 store "{{tt-name}}" on
"{{tt-node-0}}"
 PORT {{tt-rep-port}}
FAILTHRESHOLD 10 TIMEOUT 5
 DISABLE RETURN ALL 10
 store "{{tt-name}}" on
"{{tt-node-1}}"
 PORT {{tt-rep-port}}
FAILTHRESHOLD 10 TIMEOUT 5
 DISABLE RETURN ALL 10

Chapter 17
TimesTenClassicSpecSpec

17-11

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

The TimesTen Operator does the
substitutions for you.

• {{tt-name}}: The name of the
TimesTenClassic object. (For
example, sample.)

• {{tt-node-0}}: The fully qualified
DNS name of the -0 Pod for the
TimesTenClassic object. (For
example,
sample-0.sample.mynamespace
.svc.cluster.local.)

• {{tt-node-1}}: The fully qualified
DNS name of the -1 Pod for the
TimesTenClassic object. (For
example,
sample-1.sample.mynamespace
.svc.cluster.local.)

• {{tt-rep-port}}: The TCP port
either chosen by the TimesTen
Operator or specified in the
repPort datum.

When you use the
repCreateStatement datum, you
have nearly complete control over the
replication configuration. The TimesTen
Operator executes the statement you
define (after substituting a number of
values into it). Since the TimesTen
Operator is using the CREATE statement
that you define, ensure that the
statement you specify is correct and
appropriate. If the creation of your active
standby pair replication scheme fails,
your TimesTenClassic object transitions
from the Initializing state to the
Failed state. You must then delete the
TimesTenClassic object to clean up the
resources it holds. See About
Monitoring the Health of an Active
Standby Pair of Databases.

The configuration has the following
restrictions:

• Must be an active standby pair.
• Must not be configured with

subscribers.
See CREATE ACTIVE STANDBY PAIR
in the Oracle TimesTen In-Memory
Database SQL Reference and Defining
an Active Standby Pair Replication
Scheme in the Oracle TimesTen In-
Memory Database Replication Guide.

Chapter 17
TimesTenClassicSpecSpec

17-12

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

replicationCipherSuite string Determines the encryption algorithm to
be used by TimesTen replication. If
specified, replication traffic is encrypted.

You can specify one or more values.
Possible values include the following:

• SSL_ECDHE_ECDSA_WITH_AES_12
8_GCM_SHA256

• SSL_ECDHE_ECDSA_WITH_AES_25
6_GCM_SHA384

See About Using Certificates with
Client/Server in the Oracle TimesTen In-
Memory Database Security Guide for
more information.

replicationSSLMandatory integer Determines if SSL encryption is
mandatory for replication.

Valid values:

• 0 (or not specified): SSL encryption
is not mandatory for replication.

• 1: SSL encryption is mandatory for
replication.

This value is only examined if
replicationCipherSuite is
specified.

See About Using Certificates with
Client/Server in the Oracle TimesTen In-
Memory Database Security Guide for
more information.

repPort integer TCP port used for replication. The
default is 4444.

Chapter 17
TimesTenClassicSpecSpec

17-13

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

repReturnServiceAttribute string You can use the
repReturnServiceAttribute datum
to specify the
ReturnServiceAttribute clause.
This clause is part of the syntax for the
CREATE ACTIVE STANDBY PAIR
statement. The information you specify
is included in your active standby pair's
CREATE ACTIVE STANDBY PAIR
statement by the TimesTen Operator.
Do not specify the
repReturnServiceAttribute datum
if you have specified the
repCreateStatement datum.

If you do not specify the
repReturnServiceAttribute datum
(or the repCreateStatement datum),
the default is NO RETURN.

See CREATE ACTIVE STANDBY PAIR
in the Oracle TimesTen In-Memory
Database SQL Reference and Defining
an Active Standby Pair Replication
Scheme in the Oracle TimesTen In-
Memory Database Replication Guide for
information on the CREATE ACTIVE
STANDBY PAIR statement and the
ReturnServiceAttribute clause.

repStateTimeout integer Time in seconds a replicated database
remains in the recovering replication
state as reported by the TimesTen
ttRepStateGet built-in procedure. The
recovering replication state indicates
the database is in the process of
synchronizing updates with the active
database after a failure. See
ttRepStateGet in the Oracle TimesTen
In-Memory Database Reference.

The default is 30.

Chapter 17
TimesTenClassicSpecSpec

17-14

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

repStoreAttribute string You can use the repStoreAttribute
datum to specify the StoreAttribute
clause. This clause is part of the
CREATE ACTIVE STANDBY PAIR
statement. The information you specify
is included in your active standby pair's
CREATE ACTIVE STANDBY PAIR
statement by the TimesTen Operator.
Do not specify the
repStoreAttribute datum if you have
specified the repCreateStatement
datum.

If you do not specify the
repStoreAttribute datum (or the
repCreateStatement datum), the
default is: PORT repPort
FAILTHRESHOLD 0.

If you specify the repStoreAttribute,
you must specify the port. This port is
used by replication. The port must
match the port provided in the repPort
datum (or must match the default value
if repPort is not specified). If the ports
do not match, the TimesTenClassic
object enters the Failed state.

See CREATE ACTIVE STANDBY PAIR
in the Oracle TimesTen In-Memory
Database SQL Reference and Defining
an Active Standby Pair Replication
Scheme in the Oracle TimesTen In-
Memory Database Replication Guide for
information on the CREATE ACTIVE
STANDBY PAIR statement and the
StoreAttribute clause.

resetUpgradeState string The resetUpgradeState datum allows
an online upgrade to be canceled.

stopManaging string If you change the value of
stopManaging for the TimesTenClassic
object, the TimesTen Operator places
the object in the
ManualInterventionRequired state.
See About the
ManualInterventionRequired State and
About Bringing Up One Database.

storageClassName string Name of the storage class that is used
to request persistent volumes for the
TimesTen database.

There is no default. You must specify
the name of the storage class.

Chapter 17
TimesTenClassicSpecSpec

17-15

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

storageSelector metav1.LabelSelector When choosing to use a persistent
volume to store a TimesTen database,
the primary determinant of what
volumes to use is the
StorageClassName that you specify.
You can optionally specify a label
selector by using the
storageSelector field. This label
selector further filters the set of
volumes. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

storageSize string Amount of storage to be provisioned for
TimesTen and the database. For
information on determining the amount
of storage needed for TimesTen, see
Storage Provisioning for TimesTen in
the Oracle TimesTen In-Memory
Database Operations Guide .

The default is 50Gi. This default value
may be suitable when you are
experimenting with the product or using
it for demonstration purposes. However,
in a production environment, consider
choosing a value greater than 50Gi.
The examples in this book assume a
production environment and use a value
of 250Gi.

unreachableTimeout integer Number of seconds that a TimesTen
instance or TimesTen database is
unavailable before the TimesTen
Operator takes action to fail over or
otherwise recover from the issue.

This value interacts with
pollingInterval. The
pollingInterval value should be
smaller than the unreachableTimeout
value.

The value must be a positive integer
(greater than 0). The default is 30.

Chapter 17
TimesTenClassicSpecSpec

17-16

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

Table 17-3 (Cont.) TimesTenClassicSpecSpec syntax

Field Type Description

upgradeDownPodTimeout integer Maximum amount of seconds that the
TimesTenClassic object remains in the
WaitingForActive state. After this
period of time, if the TimesTenClassic
object is still in the WaitingForActive
state, it transitions to the
ManualInterventionRequired state.

The default is 0 (which means there is
no timeout. The TimesTenClassic object
waits forever, if required).

For information on the
WaitingForActive and the
ManualInterventionRequired
states, see About Monitoring the Health
of an Active Standby Pair of Databases.

TimesTenClassicSpecSpecPrometheus
TimesTenClassicSpecSpecPrometheus appears in TimesTenClassicSpecSpec. The following
table describes the syntax for TimesTenClassicSpecSpecPrometheus.

Table 17-4 TimesTenClassicSpecSpecPrometheus syntax

Field Type Description

certSecret string When using https to serve TimesTen
metrics, a Kubernetes Secret is
required.

If you create your own Kubernetes
Secret, use the certSecret datum to
specify the name of this Secret. This
Secret contains an Oracle Wallet that
holds the necessary certificates used by
the TimesTen exporter for serving
TimesTen metrics by https. See Create
Your Own Oracle Wallet, Certificates,
and Secrets for Exposing TimesTen
Metrics.

If you want the TimesTen Operator to
automatically create an Oracle Wallet,
certificates, and Kubernetes Secrets
that are required for https, do not specify
the certSecret datum. We
recommend this approach. See About
Transport Layer Security (mutual TLS)
Certificates for TimesTen Metrics.

Chapter 17
TimesTenClassicSpecSpecPrometheus

17-17

Table 17-4 (Cont.) TimesTenClassicSpecSpecPrometheus syntax

Field Type Description

createPodMonitors boolean Determines if the TimesTen Kubernetes
Operator creates PodMonitors.

Valid values:

• true (or not specified): The
TimesTen Operator creates
PodMonitors.

• false: The TimesTen Operator
does not create PodMonitors.

See Expose TimesTen Metrics with the
TimesTen Kubernetes Operator.

insecure boolean Determines if the TimesTen exporter is
started with no authentication or with
Transport Layer Security (mutual TLS).

Valid values:

• true: The TimesTen exporter is
started with no authentication and
serves data by http.

• false (or not specified): The
TimesTen exporter is started with
mutual TLS and serves data by
https.

For more information, see About Using
http or https for TimesTen Metrics.

For information about the TimesTen
exporter, see About the TimesTen
exporter in the Oracle TimesTen In-
Memory Database Monitoring and
Troubleshooting Guide.

limitRate integer Determines the limit of GET requests
per minute that the TimesTen exporter
accepts. The value can be any integer
value from 1 to 15.

The default is 10.

port integer Port on which the TimesTen exporter
listens.

The default is 8888.

Chapter 17
TimesTenClassicSpecSpecPrometheus

17-18

Table 17-4 (Cont.) TimesTenClassicSpecSpecPrometheus syntax

Field Type Description

publish boolean Determines if the TimesTen Operator
provisions a TimesTen exporter
container.

Valid values:

• true (or not specified): The
TimesTen Operator provisions a
TimesTen exporter container.

• false: The TimesTen Operator
does not provision a TimesTen
exporter container.

If you do not specify the publish
datum, and any other datum is specified
in the .spec.ttspec.prometheus
clause, the default value for the
publish datum is true.

If you do not specify
the .spec.ttspec.prometheus
clause and the TimesTen release is 22.1
or greater, the default value for the
publish datum is dependent on the
value of the EXPOSE_METRICS
TimesTen Operator environment
variable:
• If EXPOSE_METRICS is "1" (or not

specified), the TimesTen Operator
treats the publish datum as true.

• If EXPOSE_METRICS is "0", the
TimesTen Operator treats the
publish datum as false.

For more information, see Expose
TimesTen Metrics with the TimesTen
Kubernetes Operator and TimesTen
Kubernetes Operator Environment
Variables.

TimesTenClassicStatus
TimesTenClassicStatus appears in TimesTenClassic. The Operator stores various persistent
information in TimesTenClassicStatus.

The output of the kubectl get and kubectl describe commands display information in
TimesTenClassicStatus. This information includes the following:

• awtBehindMb: a field that is present only if AWT (Asynchronous WriteThrough) is in use.
The field represents how many megabytes of log is present in TimesTen that has not yet
been pushed to Oracle Database. For more information on AWT cache group, see
Overview of Cache Groups in the Oracle TimesTen In-Memory Database Cache Guide.

• High Level state of the Active Standby Pair: a string that describes the High Level state of
the active standby pair.

• Detailed state of TimesTen in each Pod, which includes the following:

Chapter 17
TimesTenClassicStatus

17-19

– Is the TimesTen agent running?

– Is the TimesTen main daemon running?

– Is the TimesTen replication agent running?

– Is the TimesTen cache agent running?

– Is there a database in the instance?

– Is the database loaded?

– Is the database updatable or read only?

– Is there a replication scheme in the database?

– What is the replication state of this database?

– What does this database think the replication state of its peer is?

– What is the role for TimesTen in this Pod (active or standby)?

– What is the High Level state of the Pod?

Note:

Unknown values can occur if, for example, the agent is not running or a Pod
is unavailable.

About the TimesTenScaleout Object Type
The TimesTenScaleout object type is defined using the following object definitions:

• TimesTen Scaleout

• TimesTenScaleoutSpec

• TimesTenScaleoutSpecSpec

• TimesTenScaleoutSpecSpecPrometheus

• TimesTenScaleoutStatus

TimesTen Scaleout
An object of type TimesTenScaleout describes the metadata for a TimesTen grid and
the TimesTen database within the grid in TimesTen Scaleout.

The following table describes the syntax for the TimesTenScaleout object type:

Table 17-5 TimesTenScaleout syntax

Field Type Description

apiVersion string Versioned schema of this representation of an
object.

The value must be timesten.oracle.com/v1.

Chapter 17
About the TimesTenScaleout Object Type

17-20

Table 17-5 (Cont.) TimesTenScaleout syntax

Field Type Description

kind string Type of object (in this example,
TimesTenScaleout).

metadata ObjectMeta Metadata about the object, such as its name. For
information on ObjectMeta, see:

https://kubernetes.io/docs/reference/
kubernetes-api/

spec TimesTenScaleoutSpec Desired configuration of the TimesTen Scaleout
grid and the databases within the grid.

status TimesTenScaleoutStatus Current status of the Pods in this
TimesTenScaleout object as well as the status of
various TimesTen components within those Pods.
This data may be out of date by some window of
time.

TimesTenScaleoutSpec
TimesTenScaleoutSpec appears in TimesTenScaleout. The following table describes the
syntax for TimesTenScaleoutSpec:

Table 17-6 TimesTenScaleoutSpec syntax

Field Type Description

ttspec TimesTenScaleoutSpecSpec Specific TimesTen attributes for deploying a
grid in TimesTen Scaleout.

dataTemplate Array of PodTemplateSpec Array of specifications for the Pods that
contain the TimesTen Scaleout data
instances. This field is optional. If specified,
there must be k entries in the array. Each
entry is the template for the Pods in a
different data space. For example, if k is set
to 2, then the first entry is for data space 1,
and the second entry is for data space 2.

Use dataTemplate to pass affinity and
other settings to Kubernetes. For information
about PodTemplateSpec, see:

https://kubernetes.io/docs/
reference/kubernetes-api/

dataVolumeClaimTemplate
s

Array of arrays of
PersistentVolumeClaim

Array of arrays of Volume Claim Templates to
be added to just the data instance Pods.
There is one list (of lists) per data space.

mgmtTemplate PodTemplateSpec Specification for the Pod that contains the
TimesTen Scaleout management instance.
Use mgmtTemplate to pass affinity and
other settings to Kubernetes. For information
about PodTemplateSpec, see:

https://kubernetes.io/docs/
reference/kubernetes-api/

Chapter 17
TimesTenScaleoutSpec

17-21

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/

Table 17-6 (Cont.) TimesTenScaleoutSpec syntax

Field Type Description

mgmtVolumeClaimTemplate
s

Array of PersistentVolumeClaim Array of Volume Claim Templates to be
added to just the management instance Pod.

volumeClaimTemplates PersistentVolumeClaim TimesTen automatically provisions
PersistentVolumeClaims (PVCs) for /tt (and
for /ttlog, if specified). If you have
applications that are running in containers in
the TimesTen Pods, and those applications
require additional PVCs, specify them in this
field. For information on
PersistentVolumeClaim, see:

https://kubernetes.io/docs/
reference/kubernetes-api/

zookeeperTemplate Array of PodTemplateSpec Specification for the Pods that contains the
TimesTen Scaleout ZooKeeper instances.
Use zookeeperTemplate to pass affinity
and other settings to Kubernetes. For
information about PodTemplateSpec, see:

https://kubernetes.io/docs/
reference/kubernetes-api/

zookeeperVolumeClaimTem
plates

Array of PersistentVolumeClaim Array of Volume Claim Templates to be
added to just the ZooKeeper Pods.

TimesTenScaleoutSpecSpec
TimesTenScaleoutSpecSpec appears in TimesTenScaleoutSpec.

The following table describes the syntax for TimesTenScaleoutSpecSpec. There are
some fields of type quantity. The specified value is of the same format as Kubernetes
resource limits. For example, 200Gi, 200G, 1000Mi, 1000M, and so on.

Note:

There are datum that are reserved for internal use and are not documented
in this table. The names of these datum typically begin with zz. For example,
zzTestInfo is reserved for internal use.

Chapter 17
TimesTenScaleoutSpecSpec

17-22

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/

Table 17-7 TimesTenScaleoutSpecSpec

Field Type Description

additionalMemoryRequest quantity The amount of memory to request in
addition to whatever is required for an
element of the TimesTen database.

This memory is used for the TimesTen
daemon, subdaemons, agents, and the
Client/Server server.

This value is added to
databaseMemorySize that was either
specified by you or calculated. The sum
is the memory request to Kubernetes.

The default is 2Gi.

agentGetTimeout integer Time in seconds that the Operator waits
for an https GET request to be
processed by the TimesTen agent. This
includes the TCP and the TLS times as
well as the time it takes for the
TimesTen agent to implement the GET
request.

The default is 60. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the Operator considers the
agent to be down.

agentPostTimeout integer Time in seconds that the Operator waits
for an https POST request to be
processed by the TimesTen agent. This
includes the TCP and the TLS times as
well as the time it takes for the
TimesTen agent to implement the POST
request. The POST requests may take a
long time and the time may be
proportional to the size of the database.
(An example is a POST request to
duplicate a database from the active to
the standby.)

The default is 600. A value of 0
indicates that there is no timeout. If the
timeout is exceeded, the Operator
considers the POST request to have
failed.

agentTcpTimeout integer Time in seconds that the Operator waits
for a TCP handshake when
communicating with the TimesTen
agent.

The default is 10. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the Operator considers the
agent to be down.

Chapter 17
TimesTenScaleoutSpecSpec

17-23

Table 17-7 (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

agentTlsTimeout integer Time in seconds that the Operator waits
for a TLS (https) credential exchange
when communicating with the TimesTen
agent.

The default is 10. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the Operator considers the
agent to be down.

automaticMemoryRequests boolean Determines if the Operator attempts to
set appropriate memory limits and
requests for TimesTen Pods.

Valid values:
• true (default): The Operator

attempts to set memory limits and
requests.

• false: The Operator does not set
memory limits and requests.

cacheCleanup boolean Determines if the metadata in the
Oracle Database should be cleaned up
when this TimesTenClassic object is
deleted. Use for TimesTen Cache only.

Valid values:

• true (or not specified): The
metadata is cleaned up.

• false: The metadata is not
cleaned up.

See Dropping Oracle Database Objects
Used by Cache Groups with Autorefresh
in the Oracle TimesTen In-Memory
Database Cache Guide.

daemonLogCPURequest quantity The amount of CPU requested for the
daemonlog container.

The default is 200m (one-fifth of a CPU).

daemonLogMemoryRequest quantity The amount of memory requested for
the daemonlog container.

The default is 200Mi.

daemonLogSidecar boolean Determines if a daemon log container is
created in each TimesTen Pod. This
container writes the TimesTen daemon
logs (from ttmesg.log) to stdout.
This causes Kubernetes to record these
logs.

Valid values:

• true (or not specified): A daemon
log container is created.

• false: A daemon log container is
not created.

Chapter 17
TimesTenScaleoutSpecSpec

17-24

Table 17-7 (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

databaseCPURequest Quantity Specify this value to tell the Operator
how much CPU your tt containers
require. This includes CPU used by the
TimesTen daemon, subdaemons,
replication agents, cache agents, and
the Client/Server server.

There is no default.

databaseMemorySize Quantity You can specify this value to tell the
Operator how much shared memory an
element of your database requires.

If you specify a value, that value will be
used. If you do not specify a value, the
Operator attempts to determine the
required size from the provided db.ini
file.

If the Operator cannot determine the
database size, the value 580911104 is
used. This is the size required for a
default database with a PermSize of
200Mbyte, rounded up to 2Mi. This may
be useful for experimentation, but is
likely insufficient for production
purposes.

TimesTen recommends that you provide
a db.ini file to the Operator by using
a Configmap or Secret, and that you not
specify databaseMemorySize.

Note:

If you
provide a
db.ini
file by
using an
init
container,
you must
specify
database
MemorySi
ze.

dataStorageClassName string Name of the storage class that is used
to request persistent volumes for the
elements of the TimesTen database in
the grid. If not specified, the default is
the value of storageClassName.

Chapter 17
TimesTenScaleoutSpecSpec

17-25

Table 17-7 (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

dataStorageSelector metav1.LabelSelector When choosing to use a persistent
volume to store the elements of a
TimesTen database in the grid, the
primary determinant of what volumes to
use is the dataStorageClassName
that you specify. You can optionally
specify a label selector by using the
dataStorageSelector field. This label
selector further filters the set of
volumes. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

dataStorageSize string Amount of storage to be provisioned for
each element of the TimesTen database
in the grid.

The default is 50Gi. This default value
may be suitable when you are
experimenting with the product or using
it for demonstration purposes. However,
in a production environment, consider
choosing a value greater than 50Gi.
The examples in this book assume a
production environment and use a value
of 250Gi.

dbConfigMap array of strings Name of one or more ConfigMaps to be
included in a projected volume. This
projected volume is mounted as /
ttconfig in the TimesTen containers. If
you do not specify dbConfigMap or
dbSecret, you must place the
metadata files into the /ttconfig
directory by using other means. See
Populate the /ttconfig Directory.

dbSecret array of strings Name of one or more Secrets to be
included in a projected volume. This
projected volume is mounted as /
ttconfig in the TimesTen containers. If
you do not specify dbSecret or
dbConfigMap, you must place the
metadata files into the /ttconfig
directory by using other means. See
Populate the /ttconfig Directory.

exporterCPURequest quantity The amount of CPU requested for the
exporter container (if provisioned).

The default is 200m (one-fifth of a CPU).

exporterMemoryRequest quantity The amount of memory requested for
the exporter container (if provisioned).

The default is 200Mi.

Chapter 17
TimesTenScaleoutSpecSpec

17-26

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

Table 17-7 (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

image string Name of the TimesTen image that is
executed in the created containers.

There is no default. You must specify
the name of the image.

imagePullPolicy string Determines if and when Kubernetes
pulls the TimesTen image from the
image repository.

Valid values:

• Always
• IfNotPresent (default)

• Never
Note: Values are case sensitive.

imagePullSecret string Image pull secret that is used to
authenticate and give permission to
Kubernetes to fetch the specified
TimesTen image from its image
repository.

There is no default. You must specify
the name of the image pull secret.

k integer K-Safety value for this TimesTen grid.
This value determines the number of
copies of data for your TimesTen
database. This value also determines
the number of StatefulSets that the
TimesTen Operator creates. A
StatefulSet provides the Pods that are
used to implement a single data space
in the grid. For example, if you set k to
2, the Operator creates two
StatefulSets. One StatefulSet provides
the Pods for the data instances in data
space one. The second StatefulSet
provides the Pods for the data instances
in data space two. The Operator also
creates a StatefulSet for the
management instance and a StatefulSet
for ZooKeeper.

The default is 2.

For more information on K-Safety, see
K-Safety in the Oracle TimesTen In-
Memory Database Scaleout User's
Guide.

logStorageClassName string Name of the storage class that is used
to request persistent volumes for the
TimesTen database transaction log files.
This field is optional and is valid only for
data instances.

Chapter 17
TimesTenScaleoutSpecSpec

17-27

Table 17-7 (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

logStorageSelector metav1.LabelSelector When choosing to use a persistent
volume to store the TimesTen
transaction log files, the primary
determinant of what volumes to use is
the logStorageClassName that you
specify. You can optionally specify a
label selector by using the
logStorageSelector field. This label
selector further filters the set of
volumes. Valid only for data instances.
See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

logStorageSize string Amount of storage to be provisioned for
the TimesTen transaction log files. This
value is for each element of the
TimesTen database in the grid. Valid
only for data instances.

memoryWarningPercent integer At runtime, if a container's memory
usage is more than its percentage of its
limit (both as reported by cgroups), the
Operator generates Events to inform
you of this occurrence.

The memory usage refers to the
container's memory allocation.

The default is 90.

mgmtCPURequest quantity The amount of cpu requested for the tt
container of management instances.

The default is 1.

mgmtMemoryRequest quantity The amount of memory requested for
the tt container of management
instances.

The default is 3Gi.

mgmtStorageClassName string Name of the storage class that is used
to request persistent volumes for the
database of the management instance.
If not specified, the default is the value
of storageClassName.

Chapter 17
TimesTenScaleoutSpecSpec

17-28

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

Table 17-7 (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

mgmtStorageSelector metav1.LabelSelector When choosing to use a persistent
volume to store the database of the
management instance, the primary
determinant of what volumes to use is
the mgmtStorageClassName that you
specify. You can optionally specify a
label selector by using the
mgmtstorageSelector field. This label
selector further filters the set of
volumes. If you do not specify
mgmtstorageSelector, the value is
the value of StorageSelector. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

mgmtStorageSize string Amount of storage to be provisioned for
the database of the management
instance.

The default is 50Gi.

nReplicaSets integer Number of replica sets in the grid. A
replica set contains k elements (where
each element is an exact copy of the
other elements in the replica set). The
nReplicaSets value also determines
the number of replicas for each
StatefulSet. For example, if you set k to
2, the TimesTen Operator creates two
StatefulSets for the data instances. If
you set nReplicaSets to 3, each
StatefulSet contains three replicas, and
the total number of replica sets in the
grid is three.

The default is 1.

For more information on replica sets,
see Understanding Replica Sets in the
Oracle TimesTen In-Memory Database
Scaleout User's Guide.

nZookeeper integer Number of ZooKeeper Pods to provision
in a StatefulSet.

Valid values:

• 1
• 3 (default)

• 5

Chapter 17
TimesTenScaleoutSpecSpec

17-29

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

Table 17-7 (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

pollingInterval integer Determines how often (expressed in
seconds) that the Operator checks the
status of the TimesTenScaleout object.
For example, if you set this value to 10,
the Operator checks the status of the
TimesTenScaleout object every ten
seconds.

The value must be a positive integer
(greater than 0). The default is 5.

prometheus TimesTenScaleoutSpecSpecP
rometheus

Determines if the TimesTen Exporter is
deployed. If specified, the Exporter is
deployed. The datum for the
prometheus object are defined in
TimesTenScaleoutSpecSpecPrometheu
s.

reexamine string When a TimesTenScaleout object is in
the ManualInterventionRequired
state, the Operator examines the
reexamine value every
pollingInterval seconds. If the
value has changed since the last
iteration for this object, the Operator
reexamines the TimesTenScaleout
object and attempts to resume
management of the object.

replicaSetRecovery string Controls the behavior of the Operator
when a total replica set failure occurs.

Valid values:

• Restart (default): The Operator
forcibly unloads and reloads the
database when a total replica set
failure occurs.

• Manual: The Operator changes the
state of the TimesTenScaleout
object to
ManualInterventionRequired
when a total replica set failure
occurs.

stopManaging string If you change the value of
stopManaging for the
TimesTenScaleout object, the Operator
places the object in the
ManualInterventionRequired state.

Chapter 17
TimesTenScaleoutSpecSpec

17-30

Table 17-7 (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

storageClassName string Name of the storage class that is used
to request persistent volumes for the
TimesTen database.

If the value for storageClassName is
the same as the value for
dataStorageClassName, for
mgmtStorageClassName, and for
zookeeperStorageClassName, you
can just specify storageClassName. In
this case, the value for
dataStorageClassName, for
mgmtStorageClassName, and for
zookeeperStorageClassName is set
to the value of storageClassName.

storageSelector metav1.LabelSelector When choosing to use a persistent
volume to store an element of a
TimesTen database in a grid, the
primary determinant of what volumes to
use is the StorageClassName that you
specify. You can optionally specify a
label selector by using the
storageSelector field. This label
selector further filters the set of
volumes.

If the value for storageSelector is the
same as the value for
dataStorageSelector, for
mgmtStorageSelector, and for
zookeeperStorageSelector, you can
just specify storageSelector. In this
case, the value for
dataStorageSelector, for
mgmtStorageSelector, and for
zookeeperStorageSelector is set to
the value of storageSelector. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

Chapter 17
TimesTenScaleoutSpecSpec

17-31

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

Table 17-7 (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

storageSize string Amount of storage to be used for each
element of a TimesTen database in the
grid.

If the value for storageSize is the
same as the value for
dataStorageSize, for
mgmtStorageSize, and for
zookeeperStorageSize, you can just
specify storageSize. In this case, the
value for dataStorageSize, for
mgmtStorageSize, and for
zookeeperStorageSize is set to the
value of storageSize.

The default is 50Gi.

For information on determining the
amount of storage needed for
TimesTen, see Storage Provisioning for
TimesTen in the Oracle TimesTen In-
Memory Database Operations Guide .

zookeeperCPURequest quantity The amount of cpu requested for the
zookeeper container of Zookeeper
Pods.

The default is 500m.

zookeeperMemoryRequest quantity The amount of memory requested for
the zookeeper container of Zookeeper
Pods.

The default is 1Gi.

zookeeperStorageClassName string Name of the storage class that is used
to request persistent volumes for
ZooKeeper's persistent data.

If not specified, the default is the value
of storageClassName.

zookeeperStorageSelector metav1.LabelSelector When choosing to use a persistent
volume to store ZooKeeper's persistent
data, the primary determinant of what
volumes to use is the
zookeeperStorageClassName that
you specify. You can optionally specify a
label selector by using the
zookeeperStorageSelector field.
This label selector further filters the set
of volumes. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

zookeeperStorageSize string Amount of storage to be provisioned for
ZooKeeper's persistent data .

The default is 50Gi.

Chapter 17
TimesTenScaleoutSpecSpec

17-32

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector

TimesTenScaleoutSpecSpecPrometheus
TimesTenScaleoutSpecSpecPrometheus appears in TimesTenScaleoutSpecSpec . The
following table describes the syntax for TimesTenScaleoutSpecSpecPrometheus.

Table 17-8 TimesTenScaleoutSpecSpecPrometheus syntax

Field Type Description

certSecret string When using https to serve TimesTen
metrics, a Kubernetes Secret is
required.

If you create your own Kubernetes
Secret, use the certSecret datum to
specify the name of this Secret. This
Secret contains an Oracle Wallet that
holds the necessary certificates used by
the TimesTen exporter for serving
TimesTen metrics by https. See Create
Your Own Oracle Wallet, Certificates,
and Secrets for Exposing TimesTen
Metrics.

If you want the TimesTen Operator to
automatically create an Oracle Wallet,
certificates, and Kubernetes Secrets
that are required for https, do not specify
the certSecret datum. We
recommend this approach. See About
Transport Layer Security (mutual TLS)
Certificates for TimesTen Metrics.

createPodMonitors boolean Determines if the TimesTen Kubernetes
Operator creates PodMonitors.

Valid values:

• true (or not specified): The
TimesTen Operator creates
PodMonitors.

• false: The TimesTen Operator
does not create PodMonitors.

See Expose TimesTen Metrics with the
TimesTen Kubernetes Operator for
details.

Chapter 17
TimesTenScaleoutSpecSpecPrometheus

17-33

Table 17-8 (Cont.) TimesTenScaleoutSpecSpecPrometheus syntax

Field Type Description

insecure boolean Determines if the TimesTen exporter is
started with no authentication or with
Transport Layer Security (mutual TLS).

Valid values:

• true: The TimesTen exporter is
started with no authentication and
serves data by http.

• false (or not specified): The
TimesTen exporter is started with
mutual TLS and serves data by
https.

For more information, see About Using
http or https for TimesTen Metrics.

For information about the TimesTen
exporter, see About the TimesTen
exporter in the Oracle TimesTen In-
Memory Database Monitoring and
Troubleshooting Guide.

limitRate integer Determines the limit of GET requests
per minute that the TimesTen exporter
accepts. The value can be any integer
value from 1 to 15.

The default is 10.

port integer Port on which the TimesTen exporter
listens.

The default is 8888.

Chapter 17
TimesTenScaleoutSpecSpecPrometheus

17-34

Table 17-8 (Cont.) TimesTenScaleoutSpecSpecPrometheus syntax

Field Type Description

publish boolean Determines if the TimesTen Operator
provisions a TimesTen exporter
container.

Valid values:

• true (or not specified): The
TimesTen Operator provisions a
TimesTen exporter container.

• false: The TimesTen Operator
does not provision a TimesTen
exporter container.

If you do not specify the publish
datum, and any other datum is specified
in the .spec.ttspec.prometheus
clause, the default value for the
publish datum is true.

If you do not specify
the .spec.ttspec.prometheus
clause and the TimesTen release is 22.1
or greater, the default value for the
publish datum is dependent on the
value of the EXPOSE_METRICS
TimesTen Operator environment
variable:
• If EXPOSE_METRICS is "1" (or not

specified), the TimesTen Operator
treats the publish datum as true.

• If EXPOSE_METRICS is "0", the
TimesTen Operator treats the
publish datum as false.

For more information, see Expose
TimesTen Metrics with the TimesTen
Kubernetes Operator and TimesTen
Kubernetes Operator Environment
Variables.

TimesTenScaleoutStatus
TimesTenScaleoutStatus appears in TimesTen Scaleout. The Operator stores various
persistent information in TimesTenScaleoutStatus.

The output of the kubectl get and kubectl describe commands display information in
TimesTenScaleoutStatus.

The information includes the following:

• High Level state of the TimesTen grid and the database within the grid.

• Detailed state of TimesTen in each Pod, including:

– Are the TimesTen agents running?

– Are the TimesTen daemons running?

Chapter 17
TimesTenScaleoutStatus

17-35

– Is there a database in the instance?

– Is the database loaded?

– Is the database updatable or read only?

– What is the High Level state of the Pods?

Note:

Unknown values can occur if, for example, the agent is not running or a Pod
is unavailable.

Chapter 17
TimesTenScaleoutStatus

17-36

18
Helm Charts for the TimesTen Kubernetes
Operator

Helm is the package manager for Kubernetes. The TimesTen Kubernetes Operator
(TimesTen Operator) provides Helm charts that allow you to deploy the TimesTen CRDs,
TimesTen Operator, and TimesTenClassic objects that the TimesTen Operator manages.

The TimesTen Operator supports the following charts:

• ttcrd: Deploys the TimesTen Custom Resource Definitions (CRDs) into the Kubernetes
cluster.

• ttoperator: Deploys the TimesTen Operator.

• ttclassic: Creates a TimesTenClassic object, thus deploying an active standby pair of
TimesTen databases.

Each chart contains variables and default values that are specific to the chart. For example,
the ttclassic chart contains the variables and default values that are specific to creating and
deploying a TimesTenClassic object. You have the option of defining your own values for the
variables in the charts. The exception is the ttcrd chart. You cannot change the values of the
variables in this chart.

The following sections describe the values and defaults values for the ttoperator and the
ttclassic charts:

• The ttoperator Chart

• The ttclassic Chart

For detailed information about using Helm, see Use Helm to Deploy the TimesTen
Kubernetes Operator and TimesTenClassic Objects.

The ttoperator Chart
The ttoperator chart deploys the TimesTen Operator.

The following table describes the variables and default values for the ttoperator chart.
Indentation and case sensitivity must be correct for each variable.

18-1

https://helm.sh/

Table 18-1 Variables for the ttoperator Chart

Variable Description Example

affinity Variable to define Kubernetes
nodeAffinity, podAffinity, and
podAntiAffinity parameters.

There is no default.

affinity:
 nodeAffinity:

requiredDuringSchedulingIgn
oredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key:
topology.kubernetes.io/zone
 operator: In
 values:
 - antarctica-
east1
 - antarctica-
west1

annotations A list of annotations to be applied to
a TimesTen Operator Deployment
and the Pods that the TimesTen
Operator manages.

There is no default.

annotations:
 x: y

image Parameters that affect container
images.

Default:
• repository: Location of the

container image. For example,
container-
registry.oracle.com/
timesten/timesten.

• tag: TimesTen release number
that contains the relevant Helm
charts. For example,
"22.1.1.19.0".

• pullPolicy: Pull policy for the
container image. For example,
Always.

image:
 repository: phx.ocir.io/
youraccount/tt2211190image
 tag: "1"
 pullPolicy: Always

imagePullSecrets A list of pull Secrets required to pull
container images.

Default: There is no default.
imagePullSecrets: sekret

labels A list of labels applied to a TimesTen
Operator Deployment and the Pods
that the TimesTen Operator
manages.

Default: There is no default.

labels:
 x: y

Chapter 18
The ttoperator Chart

18-2

Table 18-1 (Cont.) Variables for the ttoperator Chart

Variable Description Example

livenessFailureThreshold Variable that sets the
FailureThreshold attribute for the
TimesTen Operator's liveness probe.

Default: 3

livenessFailureThreshold: 2

livenessInitialDelaySeconds Variable that sets the
InitialDelaySeconds attribute for
the TimesTen Operator's liveness
probe.

Default: 10

livenessInitialDelaySeconds
: 15

livenessPeriodSeconds Variable that sets the
PeriodSeconds attribute for the
TimesTen Operator's liveness probe.

Default: 30

livenessPeriodSeconds: 20

livenessSuccessThreshold Variable that sets the
SuccessThreshold attribute for the
TimesTen Operator's liveness probe.

Default: 1

livenessSuccessThreshold: 2

livenessTimeoutSeconds Variable that sets the
TimeoutSeconds attribute for the
TimesTen Operator's liveness probe.

Default: 10

livenessTimeoutSeconds: 15

Chapter 18
The ttoperator Chart

18-3

Table 18-1 (Cont.) Variables for the ttoperator Chart

Variable Description Example

metrics Variable to determine if and how
TimesTen Operator metrics are
exposed.

Valid values are as follows:
• expose: 1 or expose: 0: If

you specify expose: 1 (or do
not specify it), TimesTen
Operator metrics are exposed. If
you specify expose: 0,
TimesTen Operator metrics are
not exposed.

• scheme: https or scheme:
http: If you specify scheme:
https (or do not specify it),
TimesTen Operator metrics are
available by using https/
Transport Layer Security (mutual
TLS). If you specify scheme:
http, TimesTen Operator
metrics are available by using
http.

• createServiceMonitor: 1 or
createServiceMonitor: 0: If
you specify
createServiceMonitor: 1
(or do not specify it), the
TimesTen Operator attempts to
create a ServiceMonitor object.
If you specify
createServiceMonitor: 0,
the TimesTen Operator does not
create a ServiceMonitor object.

Default:

 expose: 1
 scheme: https
 createServiceMonitor: 1

See Expose Metrics from the
TimesTen Kubernetes Operator.

metrics:
 expose: 0
 scheme: http
 createServiceMonitor: 0

name Name of the TimesTen Operator
Deployment.

Default: timesten-operator
name: timesten-operator2

Chapter 18
The ttoperator Chart

18-4

Table 18-1 (Cont.) Variables for the ttoperator Chart

Variable Description Example

podDisruptionBudget Variable that determines if a
podDisruptionBudget is created .
If created, uses the provided values.

Default: create: false
A podDisruptionBudget is not
created by default.

podDisruptionBudget:
 create: true
 pdbName: samplepdb
 maxUnvailable: 1
 minAvailable: 1
 matchLabels:
 "x": "y"

probes Variable to determine if TimesTen
Operator probes are exposed.

If you specify expose: 1 (or do not
specify it), TimesTen Operator
probes are exposed. If you specify
expose: 0, TimesTen Operator
probes are not exposed.

Default:

 expose: 1

See About Readiness and Liveness
Probes.

probes:
 expose: 0

readinessFailureThreshold Variable that sets the
FailureThreshold attribute for the
TimesTen Operator's readiness
probe.

Default: 1

readinessFailureThreshold:
2

readinessInitialDelaySeconds Variable that sets the
InitialDelaySeconds attribute for
the TimesTen Operator's readiness
probe.

Default: 10

readinessInitialDelaySecond
s: 15

readinessPeriodSeconds Variable that sets the
PeriodSeconds attribute for the
TimesTen Operator's readiness
probe.

Default: 10

readinessPeriodSeconds: 15

readinessSuccessThreshold Variable that sets the
SuccessThreshold attribute for the
TimesTen Operator's readiness
probe.

Default: 1

readinessSuccessThreshold:
2

readinessTimeoutSeconds Variable that sets the
TimeoutSeconds attribute for the
TimesTen Operator's readiness
probe.

Default: 10

readinessTimeoutSeconds: 15

Chapter 18
The ttoperator Chart

18-5

Table 18-1 (Cont.) Variables for the ttoperator Chart

Variable Description Example

replicas Number of replica Pods in a
TimesTen Operator Deployment.

Default: 1
replicas: 3

resources Variable used to define resource
requests and limits.

Default:

 requests:
 cpu: "250m"
 memory: "1G"
 limits:
 cpu: "250m"
 memory: "1G"

resources:
 requests:
 cpu: "300m"
 memory: "1G"
 limits:
 cpu: "300m"
 memory: "1G"

serviceAccount Variable to determine if a service
account is created and what
annotations to apply (if any).

Default: create: true
By default or if you specify create:
true, the chart creates a
Kubernetes ServiceAccount called
timesten-operator as well as a
Kubernetes Role object and a
Kubernetes RoleBinding object. The
Role and RoleBinding objects grant
the ServiceAccount the privileges
needed to run the TimesTen
Operator.

If you specify create: false, the
chart does not create the
ServiceAccount, Role, and
RoleBinding objects. You must create
these objects by running the
kubectl create
service_account.yaml command.
The service_account.yaml YAML
manifest file is included in the
TimesTen Operator distribution. See
Create the Service Account and the
TimesTen Custom Resource
Definitions (CRDs).

serviceAccount:
 create: false

Chapter 18
The ttoperator Chart

18-6

Table 18-1 (Cont.) Variables for the ttoperator Chart

Variable Description Example

testAffinity Variable to define Kubernetes
nodeAffinity, podAffinity, and
podAntiAffinity parameters.
These affinity configurations are only
applied to the Helm test Pod.

There is no default.

testAffinity:
 nodeAffinity:

requiredDuringSchedulingIgn
oredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key:
topology.kubernetes.io/zone
 operator: In
 values:
 - antarctica-
east1
 - antarctica-
west1

testAnnotations A list of annotations to be applied to
a Helm test Pod. This Pod is
created when you run the helm test
command.

Default:

helm.sh/hook-delete-
policy: hook-succeeded

testAnnotations:
 x: y

testLabels A list of labels to be applied to a
Helm test Pod. This Pod is created
when you run the helm test
command.

Default: There is no default.

testLabels:
 x: y

The ttclassic Chart
The ttclassic chart creates a TimesTen Classic object, which deploys a TimesTen active
standby pair.

The following table describes the variables and default values for the ttclassic chart.
Indentation and case sensitivity must be correct for each variable.

Chapter 18
The ttclassic Chart

18-7

Table 18-2 Variables for the ttclassic Chart

Variable Default Example

additionalMemoryRequest Amount of memory to request in
addition to what is required for the
TimesTen database. This memory is
used for the TimesTen daemon,
subdaemons, replication agents,
cache agents, and the server in a
client/server environment.

Default: 2Gi
See TimesTenClassicSpecSpec.

additionalMemoryRequest:
3Gi

affinity Variable to define Kubernetes
nodeAffinity, podAffinity, and
podAntiAffinity parameters.

There is no default.

affinity:
 nodeAffinity:

requiredDuringSchedulingIgn
oredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key:
topology.kubernetes.io/zone
 operator: In
 values:
 - antarctica-
east1
 - antarctica-
west1

agentTcpTimeout Variable that determines the time in
seconds that the TimesTen Operator
waits for a TCP handshake when
communicating with the TimesTen
agent.

The default is 10. A value of 0
indicates that there is no timeout. If
the timeout is exceeded, the
TimesTen Operator considers the
agent to be down.

See TimesTenClassicSpecSpec.

agentTcpTimeout: 20

agentTlsTimeout Variable that determines the time in
seconds that the Operator waits for a
TLS (https) credential exchange
when communicating with the
TimesTen agent.

The default is 10. A value of 0
indicates that there is no timeout. If
the timeout is exceeded, the
TimesTen Operator considers the
agent to be down.

See TimesTenClassicSpecSpec.

agentTlsTimeout: 20

Chapter 18
The ttclassic Chart

18-8

Table 18-2 (Cont.) Variables for the ttclassic Chart

Variable Default Example

annotations A list of annotations to be applied to
a TimesTenClassic object.

There is no default.
annotations:
 x: y

containers Variable to define a custom
container. This container is created
in each Pod in a TimesTenClassic
object. The provided YAML is copied
directly to
the .spec.template.spec.conta
iners section of a TimesTenClassic
object YAML manifest.

Default: There is no default.

See TimesTenClassicSpec.

containers:
 - name: sampleapp
 image: sample.com/
sample:latest
 command:
 - /bin/sample

customerService[1-5] Variable to create one or more
Services (up to 5). A Service maps
to your TimesTen database, which
allows applications outside of your
Kubernetes cluster to access
TimesTen through client/server.

You can define a maximun of five
custom Services, named
customService1,
customService2,
customService3,
customService4, and
customService5.

Note:

The
YAML
that
you
provide
for a
custom
Servic
e
definitio
n is
used
without
modific
ation.

Default: There is no default.

customService1:
 apiVersion: v1
 kind: Service
 metadata:
 name: sampleexternal
 spec:
 type: NodePort
 selector:

database.timesten.oracle.co
m: payroll
 ports:
 - port: 6625
 targetPort: 6625
 nodePort: 31625

customService2:
 apiVersion: v1
 kind: Service
 metadata:
 name: sampleinteral
 spec:
 type: NodePort
 selector:

database.timesten.oracle.co
m: payroll
 ports:
 - port: 6626
 targetPort: 6626
 nodePort: 31626

Chapter 18
The ttclassic Chart

18-9

Table 18-2 (Cont.) Variables for the ttclassic Chart

Variable Default Example

daemonLogCPURequest Amount of CPU requested for the
daemonlog container.

Default: 200m
See TimesTenClassicSpecSpec.

daemonlogCPURequest: 400m

daemonLogMemoryRequest Amount of memory requested for the
daemonlog container.

Default: 200Mi
See TimesTenClassicSpecSpec.

daemonLogMemoryRequest:
300Mi

databaseCPURequest Amount of CPU your tt containers
require. This includes the CPU used
by the TimesTen daemon,
subdaemons, replication agents,
cache agents, and the server in a
client/server environment.

Default: There is no default.

See TimesTenClassicSpecSpec.

databaseCPURequest: 2

databaseMemorySize Amount of shared memory your
database requires.

Default: There is no default.

See TimesTenClassicSpecSpec.

databaseMemorySize: 20Gi

dbConfigMap Variable that creates a Kubernetes
ConfigMap based on the provided
values and adds a dbConfigMap
entry to a TimesTenClassic object
definition.

Default: There is no default. By
default, a ConfigMap is not created
by a ttclassic chart.

See TimesTenClassicSpecSpec.

dbConfigMap:
 - name: sample
 directory: cm

Note: You must create a directory in
the /ttclassic directory of the
ttclassic chart. All files in the
directory are added to the generated
ConfigMap. This example assumes
you have created a cm directory in
the /ttclassic directory tree.

dbSecret Variable that creates a Kubernetes
Secret based on the provided values
and adds a dbSecret entry to a
TimesTenClassic object definition.

Default: There is no default. By
default, a Secret is not created by a
ttclassic chart.

See TimesTenClassicSpecSpec.

dbSecret:
 - name: sample
 directory: seekret

Note: You must create a directory in
the /ttclassic directory of the
ttclassic chart. All files in the
directory are added to the generated
Secret. This example assumes you
have created a seekret directory in
the /ttclassic directory tree.

Chapter 18
The ttclassic Chart

18-10

Table 18-2 (Cont.) Variables for the ttclassic Chart

Variable Default Example

exporterCPURequest Amount of CPU requested for the
exporter container (if provisioned).

Default: 200m
See TimesTenClassicSpecSpec.

exporterCPURequest: 400m

exporterMemoryRequest Amount of memory requested for the
exporter container (if provisioned).

Default: 200Mi
exporterMemoryRequest:
400Mi

image Parameters that affect container
images.

Default:
• repository: Location of the

container image. For example,
container-
registry.oracle.com/
timesten/timesten.

• tag: TimesTen release number
that contains the relevant Helm
charts. For example,
"22.1.1.19.0".

• pullPolicy: Pull policy for the
container image. For example,
Always.

image:
 repository: phx.ocir.io/
youraccount/tt2211190image
 tag: "1"
 pullPolicy: Always

imagePullSecret Pull Secret required to pull container
images.

Default: There is no default.

See TimesTenClassicSpecSpec.

imagePullSecret: sekret

imageUpgradeStrategy Variable to determine if the TimesTen
Operator performs automated
upgrades. If set to Manual, Helm
cannot automatically upgrade or
rollback a release.

Default: Auto
See TimesTenClassicSpecSpec.

imageUpgradeStrategy:
Manual

Chapter 18
The ttclassic Chart

18-11

Table 18-2 (Cont.) Variables for the ttclassic Chart

Variable Default Example

initContainers Variable used to define an init
container. This init container is
created in each Pod in a
TimesTenClassic object.

The provided YAML is copied directly
to the .spec.template.spec
section of a TimesTenClassic object
YAML manifest.

Default: There is no default.

initContainers:
- name: sample
 image:
 command:
 - sh
 - "-c"
 - |
 /bin/bash <<'EOF'
 echo test/user > /
ttconfig/testUser
 ls -l /ttconfig
 EOF
 volumeMounts:
 - name: tt-config
 mountPath: /ttconfig

labels A list of labels to be applied to a
TimesTenClassic object.

Default: There is no default.
labels:
 x: y

logStorageClassName Name of the storage class that is
used to request persistent volumes
for the TimesTen database
transaction log files.

Default: There is no default. If you do
not specify logStorageClassName,
a log volume is not allocated.

See TimesTenClassicSpecSpec.

logStorageClassName: fast

logStorageSize Amount of storage to be provisioned
for the TimesTen transaction log files.

Default: 50Gi
See TimesTenClassicSpecSpec.

logStorageSize: 100Gi

name Name of the TimesTenClassic object
to be created.

Default: releaseName
name: sample

podDisruptionBudget Variable that determines if a
podDisruptionBudget is created .
If created, uses the provided values.

Default: create: false
A podDisruptionBudget is not
created by default.

podDisruptionBudget:
 create: true
 pdbName: samplepdb
 maxUnvailable: 1
 minAvailable: 1
 matchLabels:
 "x": "y"

Chapter 18
The ttclassic Chart

18-12

Table 18-2 (Cont.) Variables for the ttclassic Chart

Variable Default Example

repStateTimeout Variable that indicates the time in
seconds a replicated database
remains in the recovering
replication state as reported by the
TimesTen ttRepStateGet built-in
procedure.

The recovering replication state
indicates that the database is in the
process of synchronizing updates
with the active database after a
failure. For more information about
the TimesTen ttRepStateGet built-
in procedure, see ttRepStateGet in
the Oracle TimesTen In-Memory
Database Reference.

Default: 30 (expressed in seconds).

For more information about
repStateTimeout, see
TimesTenClassicSpecSpec.

repStateTimeout: 40

securityContext Variable used to create an optional
securityContext definition. This
securityContext definition is
applied to TimesTenClassic at the
Pod level.

The provided YAML is copied directly
to the .spec.template.spec
section of a TimesTenClassic object
YAML manifest.

Default: There is no default.

securityContext
 runAsNonRoot: true

serviceAccountName Name of the service account that is
assigned to the Pods that are
created by the TimesTen Operator.

By default, when the TimesTen
Operator creates StatefulSets (which
in turn create Pods that run
TimesTen), the StatefulSets and
Pods have no service account.
Specifying serviceAccountName
lets you define a Kubernetes
ServiceAccount that the TimesTen
Pods run under.

Default: There is no default.

serviceAccountName: xyz

storageClassName Name of the storage class that is
used to request persistent volumes
for a TimesTen database.

Default: There is no default.
However, you must specify a value
for storageClassName.

See TimesTenClassicSpecSpec.

storageClassName: oci-bv

Chapter 18
The ttclassic Chart

18-13

Table 18-2 (Cont.) Variables for the ttclassic Chart

Variable Default Example

storageSize Amount of storage to be provisioned
for TimesTen and the TimesTen
database.

Default: 50Gi

storageSize: 250Gi

templateSpec Variable used to insert arbitrary
YAML into
the .spec.template.spec section
of a TimesTenClassic object.

Default: There is no default.

See TimesTenClassicSpec.

templateSpec:
 preemptionPolicy: Never

testAffinity Variable to define Kubernetes
nodeAffinity, podAffinity, and
podAntiAffinity parameters.
These affinity configurations are only
applied to the Helm test Pod.

There is no default.

testAffinity:
 nodeAffinity:

requiredDuringSchedulingIgn
oredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key:
topology.kubernetes.io/zone
 operator: In
 values:
 - antarctica-
east1
 - antarctica-
west1

testAnnotations A list of annotations to be applied to
a Helm test Pod. This Pod is
created when you run the helm test
command.

Default:

helm.sh/hook-delete-
policy: hook-succeeded

testAnnotations:
 x: y

testLabels A list of labels to be applied to a
Helm test Pod. This Pod is created
when you run the helm test
command.

Default: There is no default.

testLabels:
 x: y

Chapter 18
The ttclassic Chart

18-14

Table 18-2 (Cont.) Variables for the ttclassic Chart

Variable Default Example

tolerations Variable to define tolerations to be
applied to the Pods in a
TimesTenClassic object.

The provided YAML is copied directly
to the .spec.template.spec
section of a TimesTenClassic object
YAML manifest.

Default: There is no default.

tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"

ttspec Variable to insert arbitrary YAML into
the .spec.ttspec section of a
TimesTenClassic object. Use this
variable to specify additional datum
that are supported by the
TimesTenClassic object type, but are
not explicitly supported by the
ttclassic chart.

Default: There is no default.

See TimesTenClassicSpecSpec.

ttspec:
 agentGetTimeout: 10
 prometheus:
 port: 7777

volumes Variable used to create optional
volume definitions. These definitions
are applied to TimesTenClassic
objects.

The provided YAML is copied directly
to the .spec.template.spec
section of a TimesTenClassic object
YAML manifest.

Default: There is no default.

volumes:
 - name: tt-config
 emptyDir: {}

Chapter 18
The ttclassic Chart

18-15

19
TimesTen Kubernetes Operator Metrics

There are several TimesTen Kubernetes Operator (TimesTen Operator) metrics that can be
exposed and then published by Prometheus or some other scraper. These metrics include
information about the TimesTen Operator functionality as well as the overall status of
TimesTenClassic and TimesTenScaleout objects that it manages.

The following table details the TimesTen Operator metrics:

Table 19-1 TimesTen Operator Metrics

Metric Type Description

timesten_classic_state_norma
l

Gauge Number of TimesTenClassic objects
in Normal state.

timesten_classic_state_not_n
ormal

Gauge Number of TimesTenClassic objects
in states other than Normal or
Initializing.

timesten_classic_state Gauge The state of each TimesTenClassic
object. The specific state is reported
in the state label.

timesten_scaleout_state_norm
al

Gauge Number of TimesTenScaleout
objects in Normal state.

timesten_scaleout_state_not_
normal

Gauge Number of TimesTenScaleout
objects in states other than Normal
or Initializing.

timesten_scaleout_state Gauge The state of each TimesTenScaleout
object. The specific state is reported
in the state label.

Each metric has these labels:

• namespace: The namespace of the TimesTen object that the metric describes.

• name: The name of the TimesTen object that the metric describes.

In addition there are several other labels of secondary importance:

• container: The name of the container that generated the metric. For example, timesten-
operator.

• endpoint: The name of the endpoint that the metric came from. For example, metrics.

• instance: The IP address and port of the TimesTen Operator Pod that generated the
metric. For example, 10.244.1.111:8080

• job: The name of the job. For example, timesten-operator.

• pod: The name of the TimesTen Operator Pod that generated the metric. For example,
timesten-operator-5f4f4c69f6-z9h2k.

• service. The name of the Service. For example, timesten-operator.

19-1

Here is an example of a sample timesten_classic_state_normal metric:

timesten_classic_state_normal{container="timesten-operator",
endpoint="metrics", instance="10.244.1.111:8080", job="timesten-
operator",
name="sample", namespace="mynamespace", pod="timesten-
operator-5f4f4c69f6-z9h2k",
service="timesten-operator"}

The metric has a value of 1 or 0, depending on whether the TimesTenClassic object
(sample, in this case) is healthy or not.

Here is an example of a sample timesten_classic_state metric:

timesten_classic_state{container="timesten-operator",
endpoint="metrics", instance="10.244.1.111:8080", job="timesten-
operator",
name="sample", namespace="mynamespace", pod="timesten-
operator-5f4f4c69f6-z9h2k",
service="timesten-operator", state="Normal"}

The metric has a value of 1 or 0, depending on whether the TimesTenClassic object
(sample, in this case) is in the Normal state or not.

For details on how the TimesTen Operator exposes metrics, see Expose Metrics from
the TimesTen Kubernetes Operator.

Note:

The TimesTen Operator automatically exposes many other additional
metrics. We cannot guarantee these additonal metrics will exist from release
to release. In addition, these metrics may not be specifically pertinent or
useful for the TimesTen Operator.

Chapter 19

19-2

20
TimesTen Kubernetes Operator Environment
Variables

There are TimesTen Kubernetes Operator (TimesTen Operator) environment variables that
are used for TimesTen Operator metrics.

The environment variables are included in the operator.yaml file located in the deploy
directory of the TimesTen Kubernetes Operator distribution. The variables have default
settings. You can change them depending on your needs.

The following table describes these variables:

Table 20-1 TimesTen Operator Environment Variables

Environment Variable Description

CREATE_SERVICEMONITOR Determines if the TimesTen Operator should create a
Kubernetes ServiceMonitor object.

Valid values:
• "1" (default): The TimesTen Operator should create

a ServiceMonitor object.
• "0": The TimesTen Operator should not create a

ServiceMonitor object.

If EXPOSE_METRICS is set to "0" and
CREATE_SERVICEMONITOR is set to "1" (default),
CREATE_SERVICEMONITOR is treated as though it was
set to "0".

EXPOSE_METRICS Determines if TimesTen Operator metrics are exposed
outside of the TimesTen Operator's Pods.

Valid values:
• "1" (default): Metrics should be exposed outside of

the TimesTen Operator's Pods.
• "0": Metrics should not be exposed outside of the

TimesTen Operator's Pods.

If EXPOSE_METRICS is set to "0" and
CREATE_SERVICEMONITOR is set to "1" (default),
CREATE_SERVICEMONITOR is treated as though it was
set to "0".

In addition, if EXPOSE_METRICS is set to "0", the value
of METRICS_SCHEME is ignored and http is always used.

EXPOSE_PROBES Determines if liveness probes should be exposed
outside of the TimesTen Operator's Pods.

Valid values:
• "1" (default): Probes should be exposed.

• "0": Probes should not be exposed.

20-1

Table 20-1 (Cont.) TimesTen Operator Environment Variables

Environment Variable Description

METRICS_SCHEME Determines if TimesTen Operator metrics should be
made available by https or http.

Valid values:
• "https" (default): https should be used.

• "http": http should be used.

If EXPOSE_METRICS is set to "0", the value of
METRICS_SCHEME is ignored and http is always used.

For more information about the TimesTen Operator environment variables, see Expose
Metrics from the TimesTen Kubernetes Operator.

Chapter 20

20-2

21
Dockerfile ARGs

Images containing TimesTen and its prerequisites are available at container-
registry.oracle.com. You can use these images as is with the TimesTen Kubernetes
Operator. You also have the choice to build your own TimesTen container image by using the
Dockerfile provided in the /image directory of the operator.zip distribution. The
operator.zip distribution is located in the /kubernetes directory of the TimesTen distribution.
See Unpack the TimesTen and the TimesTen Operator Distributions.

The Dockerfile supports a number of ARGs. These ARGs let you override the attributes of the
Dockerfile (and its resultant image). You supply these ARGs on the docker build command
line.

Table 21-1 describes the supported ARGs:

Table 21-1 Dockerfile ARGs

ARG name Default value Description

TT_BASE container-
registry.oracle.com/os/
oraclelinux:8

Name of the base image.

UNZIP_BASE container-
registry.oracle.com/os/
oraclelinux:8

Name of the image that is used to
unzip the TimesTen distribution.

TT_DISTRO timesten2211190.server.linux
8664.zip

Name of the TimesTen distribution
that you are including in the
container image.

If you are building the TimesTen
container image, you must supply
this ARG on the docker build
command line.

TT_RELEASE 22.1.1.19.0 Release number (in dotted decimal
format) of the TimesTen release that
is included in $TT_DISTRO.

If you are building the TimesTen
container image, you must supply
this ARG on the docker build
command line.

TT_USER timesten Name of the Linux user that is
created in the container image. This
is the user who runs TimesTen.

To define a different user to run
TimesTen, supply this ARG on the
docker build command line.

21-1

Table 21-1 (Cont.) Dockerfile ARGs

ARG name Default value Description

TT_UID 3429 The numeric UID of $TT_USER.

To define a different UID
for $TT_USER, supply this ARG on
the docker build command line.

TT_GROUP timesten Name of the Linux group that is
created in the container image. This
is the name of the TimesTen users
group.

To define a different name for the
TimesTen group, supply this ARG on
the docker build command line.

TT_GID 3429 The numeric GID of $TT_GROUP.

To define a different GID
for $TT_GROUP, supply this ARG on
the docker build command line.

TT_EXTRA_LINUX_PACKAGES There is no default. Additional Linux packages that you
want installed in the container image
by the yum install command.

Chapter 21

21-2

A
Active Standby Pair Example

This appendix provides an example showing you the complete process for deploying and
running your active standby pair of TimesTen databases in the Kubernetes cluster. After the
databases are up and running, the example demonstrates how the Operator controls and
manages the databases. If the active database fails, the Operator performs the necessary
tasks to failover to the standby database, making that standby database the active one. The
example concludes with procedures to delete the TimesTen databases and to stop the
Operator.

Note:

You have the option of using Helm to deploy your active standby pair of TimesTen
databases. For more information about using Helm, see Use Helm to Deploy the
TimesTen Kubernetes Operator and TimesTenClassic Objects.

• Before You Begin

• Create a ConfigMap Object

• Create a TimesTenClassic Object

• Monitor Deployment

• Verify Existence of Underlying Objects

• Verify Connection to the Active TimesTen Database

• Recover from Failure

• Clean Up

Before You Begin
Review the following sections and complete if you have not already done so.

1. Prerequisites

2. Set Up the Environment

Create a ConfigMap Object
This section creates the sample ConfigMap. This ConfigMap contains the db.ini, the
adminUser, and the schema.sql metadata files. This ConfigMap will be referenced when you
define the TimesTenClassic object. See "Overview of Configuration Metadata and Kubernetes
Facilities" for information on the configuration files and the ConfigMap facility.

On your Linux development host:

A-1

1. From the directory of your choice, create an empty subdirectory for the metadata
files. This example creates the cm_sample subdirectory. (The cm_sample directory
is used in the remainder of this example to denote this directory.)

% mkdir -p cm_sample
2. Navigate to the ConfigMap directory.

% cd cm_sample
3. Create the db.ini file in this ConfigMap directory (cm_sample, in this example). In

this db.ini file, define the PermSize and DatabaseCharacterSet connection
attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

4. Create the adminUser file in this ConfigMap directory (cm_sample in this example).
In this adminUser file, create the sampleuser user with the samplepw password.

vi adminUser

sampleuser/samplepw
5. Create the schema.sql file in this ConfigMap directory (cm_sample in this example).

In this schema.sql file, define the s sequence and the emp table for the sampleuser
user. The Operator will automatically initialize your database with these object
definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
 id number not null primary key,
 name char(32)
);

6. Create the ConfigMap. The files in the cm_sample directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

• The name of the ConfigMap is sample. Replace sample with a name of your
choosing. (sample is represented in bold in this example.)

• This example uses cm_sample as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace
cm_sample with the name of your directory. (cm_sample is represented in bold
in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap sample --from-file=cm_sample
configmap/sample created

You successfully created and deployed the sample ConfigMap.

7. Use the kubectl describe command to verify the contents of the ConfigMap.
(sample, in this example.)

% kubectl describe configmap sample
Name: sample

Appendix A
Create a ConfigMap Object

A-2

Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
adminUser:

sampleuser/samplepw

db.ini:

PermSize=200
DatabaseCharacterSet=AL32UTF8

schema.sql:

create sequence sampleuser.s;
create table sampleuser.emp (
 id number not null primary key,
 name char(32)
);

Events: <none>

Create a TimesTenClassic Object
This section creates the TimesTenClassic object. See "Define and Create a TimesTenClassic
Object" and "About the TimesTenClassic Object Type" for detailed information on the
TimesTenClassic object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use the
same name you used for the name of the TimesTenClassic object. (In this example,
sample.) The YAML file contains the definitions for the TimesTenClassic object. See
"TimesTenClassicSpecSpec" for information on the fields that you must specify in this
YAML file as well as the fields that are optional.

In this example, replace the following. (The values you can replace are represented in
bold.)

• name: Replace sample with the name of your TimesTenClassic object.

• storageClassName: Replace oci-bv with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

• storageSize: Replace 250Gi with the amount of storage that should be requested for
each Pod to hold TimesTen. Note: This example assumes a production environment
and uses a value of 250Gi for storageSize. For demonstration purposes, a value of
50Gi is adequate. See the storageSize and the logStorageSize entries in
"Table 17-3" for information.

• image: Replace container-registry.oracle.com/timesten/timesten:22.1.1.19.0
with the location and name of your image.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes should
use to fetch the TimesTen image.

Appendix A
Create a TimesTenClassic Object

A-3

• dbConfigMap: This example uses one ConfigMap (called sample) for the
db.ini, the adminUser, and the schema.sql metadata files. This ConfigMap
will be included in the ProjectedVolume. This volume is mounted as /ttconfig
in the TimesTen containers. See "Using ConfigMaps and Secrets" and
"Example Using One ConfigMap" for information on ConfigMaps.

% vi sample.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: sample
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 dbConfigMap:
 - sample

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, sample.yaml). Doing so begins the
process of deploying your active standby pair of TimesTen databases in the
Kubernetes cluster.

% kubectl create -f sample.yaml
configmap/sample created
timestenclassic.timesten.oracle.com/sample created

You successfully created the TimesTenClassic object in the Kubernetes cluster. The
process of deploying your TimesTen databases begins, but is not yet complete.

Monitor Deployment
Use the kubectl get and the kubectl describe commands to monitor the progress of
the active standby pair as it is provisioned.

Note:

For the kubectl get timestenclassic and kubectl describe
timestenclassic commands, you can alternatively specify kubectl get ttc
and kubectl describe ttc respectively. timestenclassic and ttc are
synonymous when used in these commands, and return the same results.
The first kubectl get and the first kubectl describe examples in this
appendix use timestenclassic. The remaining examples in this appendix
use ttc for simplicity.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet
complete.

% kubectl get timestenclassic sample
NAME STATE ACTIVE AGE
sample Initializing None 11s

Appendix A
Monitor Deployment

A-4

2. Use the kubectl describe command to view the initial provisioning in detail.

% kubectl describe timestenclassic sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2021-05-31T15:35:12Z
 Generation: 1
 Resource Version: 20231755
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: 517a8646-a354-11ea-a9fb-0a580aed5e4a
Spec:
 Ttspec:
 Db Config Map:
 sample
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci-bv
 Storage Size: 250Gi
Status:
 Active Pods: None
 High Level State: Initializing
 Last Event: 3
 Pod Status:
 Cache Status:
 Cache Agent: Down
 Cache UID Pwd Set: false
 N Cache Groups: 0
 Db Status:
 Db: Unknown
 Db Id: 0
 Db Updatable: Unknown
 Initialized: true
 Pod Status:
 Agent: Down
 Last Time Reachable: 0
 Pod IP:
 Pod Phase: Pending
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Down
 Rep Peer P State: Unknown
 Rep Scheme: Unknown
 Rep State: Unknown
 Times Ten Status:
 Daemon: Down
 Instance: Unknown
 Release: Unknown
 Admin User File: false
 Cache User File: false
 Cg File: false
 High Level State: Down
 Intended State: Active
 Name: sample-0

Appendix A
Monitor Deployment

A-5

 Schema File: false
 Cache Status:
 Cache Agent: Down
 Cache UID Pwd Set: false
 N Cache Groups: 0
 Db Status:
 Db: Unknown
 Db Id: 0
 Db Updatable: Unknown
 Initialized: true
 Pod Status:
 Agent: Down
 Last Time Reachable: 0
 Pod IP:
 Pod Phase: Pending
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Down
 Rep Peer P State: Unknown
 Rep Scheme: Unknown
 Rep State: Unknown
 Times Ten Status:
 Daemon: Down
 Instance: Unknown
 Release: Unknown
 Admin User File: false
 Cache User File: false
 Cg File: false
 High Level State: Unknown
 Intended State: Standby
 Name: sample-1
 Schema File: false
 Rep Create Statement: create active standby pair "sample" on
 "sample-0.sample.mynamespace.svc.cluster.local", "sample" on
 "sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
 "sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
 store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 50s ttclassic Secret tt517a8646-a354-11ea-
a9fb-0a580aed5e4a created
 - Create 50s ttclassic Service sample created
 - Create 50s ttclassic StatefulSet sample created

3. Use the kubectl get command again to see if value of the STATE field has
changed. In this example, the value is Normal, indicating the active standby pair of
databases are now provisioned and the process is complete.

% kubectl get ttc sample
NAME STATE ACTIVE AGE
sample Normal sample-0 3m5s

4. Use the kubectl describe command again to view the active standby pair
provisioning in detail.

Note: In this example, the now Normal line displays on its own line. In the actual
output, this line does not display as its own line, but at the end of the StateChange
previous line.

Appendix A
Monitor Deployment

A-6

% kubectl describe ttc sample
Name: sample
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2021-05-31T15:35:12Z
 Generation: 1
 Resource Version: 20232668
 Self Link:
/apis/timesten.oracle.com/v1/namespaces/mynamespace/timestenclassics/sample
 UID: 517a8646-a354-11ea-a9fb-0a580aed5e4a
Spec:
 Ttspec:
 Db Config Map:
 sample
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci-bv
 Storage Size: 250Gi
Status:
 Active Pods: sample-0
 High Level State: Normal
 Last Event: 35
 Pod Status:
 Cache Status:
 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 26
 Db Updatable: Yes
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1590939597
 Pod IP: 192.0.2.1
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 High Level State: Healthy
 Intended State: Active
 Name: sample-0
 Schema File: true
 Cache Status:

Appendix A
Monitor Deployment

A-7

 Cache Agent: Not Running
 Cache UID Pwd Set: true
 N Cache Groups: 0
 Db Status:
 Db: Loaded
 Db Id: 26
 Db Updatable: No
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1590939597
 Pod IP: 192.0.2.2
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 1590939496
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Admin User File: true
 Cache User File: false
 Cg File: false
 High Level State: Healthy
 Intended State: Standby
 Name: sample-1
 Schema File: true
 Rep Create Statement: create active standby pair "sample" on
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on
"sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444
FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 4m43s ttclassic Secret tt517a8646-a354-11ea-
a9fb-0a580aed5e4a created
 - Create 4m43s ttclassic Service sample created
 - Create 4m43s ttclassic StatefulSet sample created
 - StateChange 3m47s ttclassic Pod sample-0 Daemon Unknown
 - StateChange 3m47s ttclassic Pod sample-0 CacheAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-0 RepAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-1 Daemon Unknown
 - StateChange 3m47s ttclassic Pod sample-1 CacheAgent Unknown
 - StateChange 3m47s ttclassic Pod sample-1 RepAgent Unknown
 - StateChange 3m26s ttclassic Pod sample-0 Agent Up
 - StateChange 3m26s ttclassic Pod sample-0 Release 22.1.1.19.0
 - StateChange 3m26s ttclassic Pod sample-0 Daemon Down
 - StateChange 3m26s ttclassic Pod sample-1 Agent Up
 - StateChange 3m26s ttclassic Pod sample-1 Release 22.1.1.19.0
 - StateChange 3m26s ttclassic Pod sample-1 Daemon Down
 - StateChange 3m26s ttclassic Pod sample-0 Daemon Up
 - StateChange 3m25s ttclassic Pod sample-1 Daemon Up
 - StateChange 2m13s ttclassic Pod sample-0 RepState IDLE
 - StateChange 2m13s ttclassic Pod sample-0 Database Updatable

Appendix A
Monitor Deployment

A-8

 - StateChange 2m13s ttclassic Pod sample-0 CacheAgent Not Running
 - StateChange 2m13s ttclassic Pod sample-0 RepAgent Not Running
 - StateChange 2m13s ttclassic Pod sample-0 RepScheme None
 - StateChange 2m13s ttclassic Pod sample-0 Database Loaded
 - StateChange 2m11s ttclassic Pod sample-0 RepAgent Running
 - StateChange 2m10s ttclassic Pod sample-0 RepScheme Exists
 - StateChange 2m10s ttclassic Pod sample-0 RepState ACTIVE
 - StateChange 113s ttclassic Pod sample-1 Database Loaded
 - StateChange 113s ttclassic Pod sample-1 Database Not Updatable
 - StateChange 113s ttclassic Pod sample-1 CacheAgent Not Running
 - StateChange 113s ttclassic Pod sample-1 RepAgent Not Running
 - StateChange 113s ttclassic Pod sample-1 RepScheme Exists
 - StateChange 113s ttclassic Pod sample-1 RepState IDLE
 - StateChange 106s ttclassic Pod sample-1 RepAgent Running
 - StateChange 101s ttclassic Pod sample-1 RepState STANDBY
 - StateChange 101s ttclassic TimesTenClassic was Initializing, now Normal

Your active standby pair of TimesTen databases are successfully deployed (as indicated by
Normal.) There are two TimesTen databases, configured as an active standby pair. One
database is active. (In this example, sample-0 is the active database, as indicated by Rep
State ACTIVE). The other database is standby. (In this example, sample-1 is the standby
database as indicated by Rep State STANDBY). The active database can be modified and
queried. Changes made on the active database are replicated to the standby database. If the
active database fails, the Operator automatically promotes the standby database to be the
active. The formerly active database will be repaired or replaced, and will then become the
standby.

Verify Existence of Underlying Objects
Use the kubectl describe commands to verify the underlying objects.

1. StatefulSet:

% kubectl get statefulset sample
NAME READY AGE
sample 2/2 8m21s

2. Service:

% kubectl get service sample
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
sample ClusterIP None <none> 6625/TCP 9m28s

3. Pods:

% kubectl get pods
NAME READY STATUS RESTARTS AGE
sample-0 2/2 Running 0 10m
sample-1 2/2 Running 0 10m
timesten-operator-5d7dcc7948-8mnz4 1/1 Running 0 11h

4. PersistentVolumeClaims (PVCs):

% kubectl get pvc
NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
tt-persistent-sample-0 Bound
ocid1.volume.oc1.phx.abyhqljrbxcgzyixa4pmmcwiqxgqclc7gxvdnoty367w2qn26tij6kfpx
6qq
250Gi RWO oci-bv 10m
tt-persistent-sample-1 Bound

Appendix A
Verify Existence of Underlying Objects

A-9

ocid1.volume.oc1.phx.abyhqljtt4qxxoj5jqiskriskh66hakaw326rbza4uigmuaezdnu53qh
h
oaa
250Gi RWO oci-bv 10m

Verify Connection to the Active TimesTen Database
You can run the kubectl exec command to invoke shells in your Pods and control
TimesTen, which is running in those Pods. By default, TimesTen runs in the Pods as
the timesten user. Once you have established a shell in the Pod, verify you can
connect to the sample database, and that the information from the metadata files is
correct. You can optionally run queries against the database or any other operations.

1. Establish a shell in the Pod.

% kubectl exec -it sample-0 -c tt -- /bin/bash
2. Connect to the sample database. Verify the information in the metadata files is in

the database correctly. For example, attempt to connect to the database as the
sampleuser user. Check that the PermSize value of 200 is correct. Check that the
sampleuser.emp table exists.

 % ttIsql sample

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)

Command> connect adding "uid=sampleuser;pwd=samplepw" as sampleuser;
Connection successful:
DSN=sample;UID=sampleuser;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)
sampleuser: Command> tables;
 SAMPLEUSER.EMP
1 table found.

Recover from Failure
This example simulates a failure of the active TimesTen database. This is for
demonstration purposes only. Do not do this in a production environment.

1. Use the kubectl delete pod command to delete the active database (sample-0 in
this case)

% kubectl delete pod sample-0
2. Use the kubectl describe command to observe how the Operator recovers from

the failure. The Operator promotes the standby database (sample-1) to be active.
Any applications that were connected to the sample-0 database are automatically

Appendix A
Verify Connection to the Active TimesTen Database

A-10

reconnected to the sample-1 database by TimesTen. After a brief outage, the applications
can continue to use the database. See "About Monitoring the Health of an Active Standby
Pair of Databases" for information on the health and states of the active standby pair.

Note: In this example, the text for the Message column displays on two lines for three
state changes. However, the actual output displays on one line for each of these three
state changes.

% kubectl describe ttc sample
Name: sample
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - StateChange 2m1s ttclassic TimesTenClassic sample: was Normal, now
ActiveDown
 - StateChange 115s ttclassic Pod sample-1 Database Updatable: Yes
 - StateChange 115s ttclassic TimesTenClassic sample:was ActiveDown, now
StandbyDown
 - StateChange 115s ttclassic Pod sample-1 RepState ACTIVE
 - StateChange 110s ttclassic Pod sample-0 High Level State Unknown
 - StateChange 63s ttclassic Pod sample-0 Pod Phase Running
 - StateChange 63s ttclassic Pod sample-0 Agent Up
 - StateChange 63s ttclassic Pod sample-0 Instance Exists
 - StateChange 63s ttclassic Pod sample-0 Daemon Up
 - StateChange 63s ttclassic Pod sample-0 Database None
 - StateChange 42s ttclassic Pod sample-0 Database Loaded
 - StateChange 42s ttclassic Pod sample-0 Database Updatable: No
 - StateChange 42s ttclassic Pod sample-0 RepAgent Running
 - StateChange 42s ttclassic Pod sample-0 CacheAgent Not Running
 - StateChange 42s ttclassic Pod sample-0 RepScheme Exists
 - StateChange 42s ttclassic Pod sample-0 RepState IDLE
 - StateChange 36s ttclassic Pod sample-0 High Level State Healthy
 - StateChange 36s ttclassic Pod sample-0 RepState STANDBY
 - StateChange 36s ttclassic TimesTenClassic sample:was StandbyDown, now
Normal

Kubernetes has automatically respawned a new sample-0 Pod to replace the Pod you
deleted. The Operator configured TimesTen inside of that Pod, bringing the database in
the Pod up as the new standby database. The replicated pair of databases are once
again functionally normally.

Clean Up
This example concludes with deleting the databases and all objects associated with
TimesTenClassic. These steps are used for example purposes only. Doing these steps
results in the termination of the Pods that are running the TimesTen databases as well as the
deletion of the TimesTen databases themselves.

1. Delete the ConfigMap object. (sample, in this example.)

% kubectl delete configmap sample
configmap "sample" deleted

2. Delete the TimesTenClassic object and the underlying objects.

% kubectl delete -f sample.yaml
timestenclassic.timesten.oracle.com "sample" deleted

3. Verify the Pods that were running the TimesTen databases no longer exist.

Appendix A
Clean Up

A-11

% kubectl get pods
NAME READY STATUS RESTARTS AGE
timesten-operator-5d7dcc7948-8mnz4 1/1 Running 0
5d23h

4. Delete the persistent storage used to hold your databases. You have to do this
manually.

% kubectl get pvc
NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
tt-persistent-sample-0 Bound
...

tt-persistent-sample-1 Bound
...
% kubectl delete pvc tt-persistent-sample-0
persistentvolumeclaim "tt-persistent-sample-0" deleted
% kubectl delete pvc tt-persistent-sample-1
persistentvolumeclaim "tt-persistent-sample-1" deleted

5. If you no longer want to run the Operator, you can stop it. Navigate to the /deploy
directory (kube_files/deploy, in this example) and use the kubectl delete
command to stop the operator.

% cd kube_files/deploy
% kubectl delete -f operator.yaml
deployment.apps "timesten-operator" deleted

Appendix A
Clean Up

A-12

B
TimesTen Cache in TimesTen Classic
Example

This appendix provides a working example for using TimesTen Cache with active standby
pair of TimesTen databases in your Kubernetes environment. This example should not be
used for production purposes. It assumes a test environment. Your Oracle Database should
be customized with the settings specific to your environment.

Topics:

• Set Up the Oracle Database to Cache Data

• Create Metadata Files and a Kubernetes Facility

• Create a TimesTenClassic Object

• Monitor Deployment of a TimesTenClassic Object

• Verify TimesTen Cache Configuration

• Perform Operations On Cache Group Tables

• Clean Up Cache Metadata on the Oracle Database

Set Up the Oracle Database to Cache Data
The following sections describe the tasks that must be performed in the Oracle Database:

• Create the Oracle Database Users

• Grant Privileges to the Cache Administration User

• Create the Oracle Database Tables to Be Cached

Create the Oracle Database Users
Before you can use TimesTen Cache, you must create the following users in your Oracle
database:

• A cache administration user. This user creates and maintains Oracle Database objects
that store information about the cache environment. This user also enforces predefined
behaviors of cache group types.

• One or more schema users who owns Oracle Database tables that are cached in a
TimesTen database.

See Create the Oracle Database Users and Default Tablespace in the Oracle TimesTen In-
Memory Database Cache Guide for information.

This example creates the cacheuser2 cache administration user and the oratt schema user
in the Oracle Database.

1. Create a shell from which you can access your Oracle Database and then use SQL*Plus
to connect to the Oracle Database as the sys user. Then, create a default tablespace to

B-1

store the TimesTen Cache management objects. See Create the Oracle Database
Users and Default Tablespace in the Oracle TimesTen In-Memory Database
Cache Guide for information.

This example creates the cachetablespace2 tablespace.

% sqlplus sys/syspwd@oracache as sysdba

SQL> CREATE TABLESPACE cachetablespace2 DATAFILE 'datatt2.dbf' SIZE 100M;

Tablespace created.

2. Use SQL*Plus to create the schema user. Grant this schema user the minimum
privileges required to create tables in the Oracle Database to be cached in your
TimesTen database.

This example creates the oratt schema user.

SQL> CREATE USER oratt IDENTIFIED BY oraclepwd;

User created.

SQL> GRANT CREATE SESSION, RESOURCE TO oratt;

Grant succeeded.

3. Use SQL*Plus to create the cache administration user. Assign the
cachetablespace2 tablespace to this user. You will later use the same name of
this Oracle cache administration user in the cacheUser metadata file.

This example creates the cacheuser2 user.

SQL> CREATE USER cacheuser2 IDENTIFIED BY oraclepwd
 DEFAULT TABLESPACE cachetablespace2
 QUOTA UNLIMITED ON cachetablespace2;

User created.

SQL> commit;

Commit complete.

SQL> exit

Grant Privileges to the Cache Administration User
The cache administration user must be granted a specific set of privileges depending
on the cache group types that will be created in the TimesTen databases and the
operations performed on those cache groups. TimesTen provides the
grantCacheAdminPrivileges.sql SQL*Plus script that you can run in your Oracle
Database to grant the cache administration user the minimum set of privileges
required to perform cache operations. See Grant Privileges to the Oracle Cache
Administration User and see Required Privileges for Cache Administration User for
Cache Operations in the Oracle TimesTen In-Memory Database Cache Guide.

Perform these steps to run the grantCacheAdminPrivileges.sql script:

1. Create a shell from which you can access your Oracle Database, and then from
the directory of your choice, create an empty subdirectory. This example creates
the oraclescripts subdirectory.

Appendix B
Set Up the Oracle Database to Cache Data

B-2

% mkdir -p oraclescripts
2. From your Linux development host, use the kubectl cp command to copy the

grantCacheAdminPrivileges.sql script from the installation_dir/oraclescripts
directory on your Linux development host to the oraclescripts directory that you just
created. Recall that the installation_dir directory was created when you unpacked the
TimesTen distribution. See Unpack the TimesTen and the TimesTen Operator
Distributions for information on unpacking the TimesTen distribution.

% cp /installation_dir/oraclescripts/grantCacheAdminPrivileges.sql
database-oracle:oraclescripts/grantCacheAdminPrivileges.sql

3. From your shell, verify the script is located in the oraclescripts directory.

% ls oraclescripts
grantCacheAdminPrivileges.sql

4. Use SQL*Plus to connect to the Oracle Database as the sys user. Then, run the
oraclescripts/grantCacheAdminPrivileges.sql script. This script grants the
cacheuser2 cache administration user the minimum set of privileges required to perform
cache group operations. See Grant Privileges to the Oracle Cache Administration User in
the Oracle TimesTen In-Memory Database Cache Guide for more information.

% sqlplus sys/syspwd@oracache as sysdba

SQL> @grantCacheAdminPrivileges "cacheuser2";

Please enter the administrator user id
The value chosen for administrator user id is cacheuser2

TT_CACHE_ADMIN_ROLE role already exists
***************** Initialization for cache admin begins ******************
0. Granting the CREATE SESSION privilege to CACHEUSER2
1. Granting the TT_CACHE_ADMIN_ROLE to CACHEUSER2
2. Granting the DBMS_LOCK package privilege to CACHEUSER2
3. Granting the DBMS_DDL package privilege to CACHEUSER2
4. Granting the DBMS_FLASHBACK package privilege to CACHEUSER2
5. Granting the CREATE SEQUENCE privilege to CACHEUSER2
6. Granting the CREATE CLUSTER privilege to CACHEUSER2
7. Granting the CREATE OPERATOR privilege to CACHEUSER2
8. Granting the CREATE INDEXTYPE privilege to CACHEUSER2
9. Granting the CREATE TABLE privilege to CACHEUSER2
10. Granting the CREATE PROCEDURE privilege to CACHEUSER2
11. Granting the CREATE ANY TRIGGER privilege to CACHEUSER2
12. Granting the GRANT UNLIMITED TABLESPACE privilege to CACHEUSER2
13. Granting the DBMS_LOB package privilege to CACHEUSER2
14. Granting the SELECT on SYS.ALL_OBJECTS privilege to CACHEUSER2
15. Granting the SELECT on SYS.ALL_SYNONYMS privilege to CACHEUSER2
16. Checking if the cache administrator user has permissions on the
 default tablespace
 Permission exists
18. Granting the CREATE TYPE privilege to CACHEUSER2
19. Granting the SELECT on SYS.GV$LOCK privilege to CACHEUSER2
20. Granting the SELECT on SYS.GV$SESSION privilege to CACHEUSER2
21. Granting the SELECT on SYS.DBA_DATA_FILES privilege to CACHEUSER2
22. Granting the SELECT on SYS.USER_USERS privilege to CACHEUSER2
23. Granting the SELECT on SYS.USER_FREE_SPACE privilege to CACHEUSER2
24. Granting the SELECT on SYS.USER_TS_QUOTAS privilege to CACHEUSER2
25. Granting the SELECT on SYS.USER_SYS_PRIVS privilege to CACHEUSER2
26. Granting the SELECT on SYS.V$DATABASE privilege to CACHEUSER2 (optional)
27. Granting the SELECT ANY TRANSACTION privilege to CACHEUSER2
********* Initialization for cache admin user done successfully *********

Appendix B
Set Up the Oracle Database to Cache Data

B-3

You have successfully run the grantCacheAdminPrivileges.sql script in the Oracle
Database.

Create the Oracle Database Tables to Be Cached
This example creates two tables in the oratt user schema. See "Create the Oracle
Database Users" for information on this user.

• readtab: This table will later be cached in a read-only cache group.

• writetab: This table will later be cached in an AWT cache group.

1. Create a shell from which you can access your Oracle Database and then use
SQL*Plus to connect to the Oracle Database as the sys user. Then create the
oratt.readtab and the oratt.writetab tables.

% sqlplus sys/syspwd@oracache as sysdba

SQL> CREATE TABLE oratt.readtab (keyval NUMBER NOT NULL PRIMARY KEY,
 str VARCHAR2(32));

Table created.

SQL> CREATE TABLE oratt.writetab (pk NUMBER NOT NULL PRIMARY KEY,
 attr VARCHAR2(40));

Table created.

2. Use SQL*Plus to insert rows into the oratt.readtab and the oratt.writetab
tables. Then verify the rows have been inserted.

SQL> INSERT INTO oratt.readtab VALUES (1,'Hello');

1 row created.

SQL> INSERT INTO oratt.readtab VALUES (2,'World');

1 row created.

SQL> INSERT INTO oratt.writetab VALUES (100, 'TimesTen');

1 row created.

SQL> INSERT INTO oratt.writetab VALUES (101, 'Cache');

1 row created.

SQL> commit;

Commit complete.

Verify the rows have been inserted into the tables.

SQL> SELECT * FROM oratt.readtab;

 KEYVAL STR
---------- --------------------------------
 1 Hello
 2 World

SQL> SELECT * FROM oratt.writetab;

Appendix B
Set Up the Oracle Database to Cache Data

B-4

 PK ATTR
---------- --
 100 TimesTen
 101 Cache

3. Use SQL*Plus to grant the SELECT privilege on the oratt.readtab table and the SELECT,
INSERT, UPDATE, and DELETE privileges on the oratt.writetab table to the cache
administration user (cacheuser2, in this example).

SQL> GRANT SELECT ON oratt.readtab TO cacheuser2;

Grant succeeded.

SQL> GRANT SELECT ON oratt.writetab TO cacheuser2;

Grant succeeded.

SQL> GRANT INSERT ON oratt.writetab TO cacheuser2;

Grant succeeded.

SQL> GRANT UPDATE ON oratt.writetab TO cacheuser2;

Grant succeeded.

SQL> GRANT DELETE ON oratt.writetab TO cacheuser2;

Grant succeeded.

4. Use SQL*Plus to query the nls_database_parameters system view to determine the
Oracle Database database character set. The Oracle Database database character set
must match the TimesTen database character set. (The TimesTen database character set
will be set later. See "Create Metadata Files and a Kubernetes Facility" for details.)

In this example, the query returns the AL32UTF8 database character set.

SQL> SELECT value FROM nls_database_parameters WHERE
 parameter='NLS_CHARACTERSET';

VALUE
--
AL32UTF8

You have successfully created the Oracle Database tables that will be cached in the
TimesTen cache group tables.

Create Metadata Files and a Kubernetes Facility
There are metadata files that are specific to using TimesTen Cache:

• cacheUser: This file is required. The user in this file is created in the TimesTen databases
and serves as the cache manager. The name of this user must match the name of the
cache administration user that you created in the Oracle Database. See "Create the
Oracle Database Users" for information on the cache administration user in the Oracle
Database. Also see "cacheUser" for more information on the cacheUser metadata file.

• cachegroups.sql: This file is required. The contents of this file contain the CREATE CACHE
GROUP definitions. The file can also contain the LOAD CACHE GROUP statement and the built-
in procedures to update statistics on the cache group tables (such as,

Appendix B
Create Metadata Files and a Kubernetes Facility

B-5

ttOptEstimateStats and ttOptUpdateStats). See "cachegroups.sql" for more
information on this file.

• tnsnames.ora: This file is required. It defines Oracle Net Services to which
applications connect. For TimesTen Cache, this file configures the connectivity
between TimesTen and the Oracle Database (from which data is being cached). In
this context, TimesTen is the application that is the connection to the Oracle
Database. See "tnsnames.ora" for more information on this file.

• sqlnet.ora: This file may be required. It may be necessary depending on your
Oracle Database configuration. The file defines options for how client applications
communicate with the Oracle Database. In this context, TimesTen is the
application. The tnsnames.ora and sqlnet.ora files together define how an
application communicates with the Oracle Database. See "sqlnet.ora" for
information on this file.

• db.ini: This file is required if you are using TimesTen Cache. The contents of this
file contain TimesTen connection attributes for your TimesTen databases, which
will be included in TimesTen's sys.odbc.ini file. For TimesTen Cache, you must
specify the OracleNetServiceName and the DatabaseCharacterSet connection
attributes. The DatabaseCharacterSet connection attribute must match the Oracle
database character set. See "db.ini" for more information on this file.

• schema.sql: The contents of this file contain database objects, such as tables,
sequences, and users. The instance administrator uses the ttIsql utility to run
this file immediately after the database is created. This file is run before the
Operator configures TimesTen Cache or replication, so ensure there are no cache
definitions in this file.

In TimesTen Cache, one or more cache table users own the cache tables. If this
cache table user is not the cache manager user, then you must specify the
schema.sql file and in it you must include the schema user and assign the
appropriate privileges to this schema user. For example, if the oratt schema user
was created in the Oracle Database, and this user is not the TimesTen cache
manager user, you must create the TimesTen oratt user in this file. See "Create
the Oracle Database Users" for more information on the schema users in the
Oracle Database. Also see "schema.sql" for more information on the schema.sql
file.

In addition, you can use these other supported metadata files:

• adminUser: The user in this file is created in the TimesTen databases and is
granted ADMIN privileges. See "adminUser" for more information on this file.

• epilog.sql: The contents of this file contain operations that must be performed
after the Operator configures replication. For example, if you are using XLA, you
could create replicated bookmarks for XLA in this file. This file is run after cache
and replication have been configured. See "epilog.sql" for more information on this
file.

You can include these metadata files in one or more Kubernetes facilities (for example,
in a Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the
metadata files are populated in the /ttconfig directory of the TimesTen containers.
Note that there is no requirement as to how to get the metadata files into this /
ttconfig directory. See "Populate the /ttconfig Directory" for more information.

This example uses the ConfigMap facility to populate the /ttconfig directory in your
TimesTen containers. The adminUser, db.ini, schema.sql, cacheUser,

Appendix B
Create Metadata Files and a Kubernetes Facility

B-6

cachegroups.sql, tnsnames.ora, and sqlnet.ora metadata files are used in this example.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata files.
This example creates the cm_cachetest subdirectory. (The cm_cachetest directory is
used in the remainder of this example to denote this directory.)

% mkdir -p cm_cachetest
2. Navigate to the ConfigMap directory.

% cd cm_cachetest
3. Create the adminUser file in this ConfigMap directory (cm_cachetest, in this example). In

this adminUser file, create the sampleuser user with the samplepw password.

vi adminUser

sampleuser/samplepw
4. Create the db.ini file in this ConfigMap directory (cm_cachetest, in this example). In this

db.ini file, define the PermSize, DatabaseCharacterSet, and the OracleNetServiceName
connection attributes. The DatabaseCharacterSet value must match the database
character set value in the Oracle Database. See "Create the Oracle Database Tables to
Be Cached" for information on how to query the nls_database_parameters system view
to determine the Oracle Database database character set. In this example, the value is
AL32UTF8.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8
OracleNetServiceName=Oracache

5. Create the schema.sql file in this ConfigMap directory (cm_cachetest, in this example). In
this example, create the oratt user. Recall that this user was previously created in the
Oracle Database. See "Create the Oracle Database Users" for information on the oratt
user in the Oracle Database.

vi schema.sql

create user oratt identified by ttpwd;
grant admin to oratt;

6. Create the cacheUser metadata file in this ConfigMap directory (cm_cachetest, in this
example). The cacheUser file must contain one line of the form cacheuser/ttpassword/
orapassword, where cacheuser is the user you wish to designate as the cache manager
in the TimesTen database, ttpassword is the TimesTen password you wish to assign to
this user, and orapassword is the Oracle Database password that has already been
assigned to the Oracle Database cache administration user. Note that the cacheUser
name in this file must match the Oracle Database cache administration user that you
previously created. See "Create the Oracle Database Users" for more information on the
Oracle Database cache administration user.

In this example, the cacheuser2 user with password of oraclepwd was already created in
the Oracle Database. Therefore, supply cacheuser2 as the TimesTen cache manager
user. You can assign any TimesTen password to this TimesTen cache manager user. This
example assigns ttpwd.

Appendix B
Create Metadata Files and a Kubernetes Facility

B-7

vi cacheuser

cacheuser2/ttpwd/oraclepwd
7. Create the cachegroups.sql metadata file in this ConfigMap directory

(cm_cachetest, in this example). The cachegroups.sql file contains the cache
group definitions. In this example, a dynamic AWT cache group and a read-only
cache group are created. In addition, the LOAD CACHE GROUP statement is included
to load rows from the oratt.readtab cached table in the Oracle Database into the
oratt.readtab cache table in the TimesTen database.

vi cachegroups.sql

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (pk NUMBER NOT NULL PRIMARY KEY,attr VARCHAR2(40));

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
 INTERVAL 5 SECONDS
FROM oratt.readtab (keyval NUMBER NOT NULL PRIMARY KEY,str VARCHAR2(32));

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

8. Create the tnsnames.ora metadata file in this ConfigMap directory (cm_cachetest,
in this example).

vi tnsnames.ora

OraTest =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraTest.my.sample.com)))
OraCache =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraCache.my.sample.com)))

9. Create the sqlnet.ora metadata file in this ConfigMap directory (cm_cachetest, in
this example).

vi sqlnet.ora

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

10. Use the Linux ls command to verify the metadata files are in the ConfigMap
directory (cm_cachetest, in this example).

% ls
adminUser cacheUser schema.sql tnsnames.ora
cachegroups.sql db.ini sqlnet.ora

11. Create the ConfigMap. The files in the cm_cachetest directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

Appendix B
Create Metadata Files and a Kubernetes Facility

B-8

• The name of the ConfigMap is cachetest. Replace cachetest with a name of your
choosing. (cachetest is represented in bold in this example.)

• This example uses cm_cachetest as the directory where the files that will be copied
into the ConfigMap reside. If you use a different directory, replace cm_cachetest with
the name of your directory. (cm_cachetest is represented in bold in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap cachetest --from-file=cm_cachetest
configmap/cachetest created

12. Use the kubectl describe command to verify the contents of the ConfigMap.
(cachetest, in this example.) The metadata files are represented in bold.

% kubectl describe configmap cachetest;
Name: cachetest
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
tnsnames.ora:

OraTest =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraTest.my.sample.com)))
OraCache =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraCache.my.sample.com)))

adminUser:

sampleuser/samplepw

cacheUser:

cacheuser2/ttpwd/oraclepwd

cachegroups.sql:

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (
 pk NUMBER NOT NULL PRIMARY KEY,
 attr VARCHAR2(40)
);

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
 INTERVAL 5 SECONDS
FROM oratt.readtab (
 keyval NUMBER NOT NULL PRIMARY KEY,

Appendix B
Create Metadata Files and a Kubernetes Facility

B-9

 str VARCHAR2(32)
);

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

db.ini:

permSize=200
databaseCharacterSet=AL32UTF8
oracleNetServiceName=Oracache

schema.sql:

create user oratt identified by ttpwd;
grant admin to oratt;

sqlnet.ora:

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

Events: <none>

You have successfully created and deployed the cachetest ConfigMap.

Create a TimesTenClassic Object
This section creates a TimesTenClassic object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenClassic object. (In this
example, cachetest.) The YAML file contains the definitions for the
TimesTenClassic object. See TimesTenClassicSpecSpec for information on the
fields that you must specify in this YAML file as well as the fields that are optional.

In this example, note these fields:

• name: Replace cachetest with the name of your TimesTenClassic object
(represented in bold).

• storageClassName: Replace oci-bv with the name of the storage class used
to allocate PersistentVolumes to hold TimesTen.

• storageSize: Replace 250Gi with the amount of storage that should be
requested for each Pod to hold TimesTen. Note: This example assumes a
production environment and uses a value of 250Gi for storageSize. For
demonstration purposes, a value of 50Gi is adequate.

• image: Replace container-registry.oracle.com/timesten/
timesten:22.1.1.19.0 with the location and name of your image.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes
should use to fetch the TimesTen image.

• dbConfigMap: This example uses one ConfigMap (called cachetest) for the
metadata files (represented in bold).

Appendix B
Create a TimesTenClassic Object

B-10

% vi cachetest.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: cachetest
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/timesten:22.1.1.19.0
 imagePullSecret: sekret
 dbConfigMap:
 - cachetest

2. Use the kubectl create command to create the TimesTenClassic object from the
contents of the YAML file (in this example, cachetest.yaml). Doing so begins the
process of deploying your active standby pair of TimesTen databases in the Kubernetes
cluster.

% kubectl create -f cachetest.yaml
timestenclassic.timesten.oracle.com/cachetest created

You have successfully created the TimesTenClassic object in the Kubernetes cluster. The
process of deploying your TimesTen databases begins, but is not yet complete.

Monitor Deployment of a TimesTenClassic Object
Use the kubectl get and the kubectl describe commands to monitor the progress of the
active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet complete.

% kubectl get ttc cachetest
NAME STATE ACTIVE AGE
cachetest Initializing None 41s

2. Use the kubectl get command again to see if value of the STATE field has changed. In
this example, the value is Normal, indicating the active standby pair of databases are now
provisioned and the process is complete.

% kubectl get ttc cachetest
NAME STATE ACTIVE AGE
cachetest Normal cachetest-0 3m58s

3. Use the kubectl describe command to view the active standby pair provisioning in
detail.

Note the following:

• The cachetest Configmap has been correctly referenced in the dbConfigMap field
(represented in bold).

• The cache agent is running in the active and the standby Pods (represented in bold).

• The cache administration user UID and password have been set in the active and the
standby Pods (represented in bold).

• Two cache groups have been created in the active and the standby Pods
(represented in bold).

Appendix B
Monitor Deployment of a TimesTenClassic Object

B-11

• The replication agent is running in the active and standby Pods (represented
in bold).

% kubectl describe ttc cachetest
Name: cachetest
Namespace: mynamespace
Labels: <none>
Annotations: <none>
API Version: timesten.oracle.com/v1
Kind: TimesTenClassic
Metadata:
 Creation Timestamp: 2023-10-24T03:29:48Z
 Generation: 1
 Resource Version: 78390500
 Self Link: /apis/timesten.oracle.com/v1/namespaces/mynamespace/
timestenclassics/cachetest
 UID: 2b18d81d-15a9-11eb-b999-be712d29a81e
Spec:
 Ttspec:
 Db Config Map:
 cachetest
 Image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 Image Pull Policy: Always
 Image Pull Secret: sekret
 Storage Class Name: oci-bv
 Storage Size: 250Gi
Status:
 Active Pods: cachetest-0
 High Level State: Normal
 Last Event: 28
 Pod Status:
 Cache Status:
 Cache Agent: Running
 Cache UID Pwd Set: true
 N Cache Groups: 2
 Db Status:
 Db: Loaded
 Db Id: 30
 Db Updatable: Yes
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1603510527
 Pod IP: 10.244.7.92
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 0
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: ACTIVE
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Admin User File: true
 Cache User File: true
 Cg File: true
 High Level State: Healthy
 Intended State: Active

Appendix B
Monitor Deployment of a TimesTenClassic Object

B-12

 Name: cachetest-0
 Schema File: true
 Cache Status:
 Cache Agent: Running
 Cache UID Pwd Set: true
 N Cache Groups: 2
 Db Status:
 Db: Loaded
 Db Id: 30
 Db Updatable: No
 Initialized: true
 Pod Status:
 Agent: Up
 Last Time Reachable: 1603510527
 Pod IP: 10.244.8.170
 Pod Phase: Running
 Replication Status:
 Last Time Rep State Changed: 1603510411
 Rep Agent: Running
 Rep Peer P State: start
 Rep Scheme: Exists
 Rep State: STANDBY
 Times Ten Status:
 Daemon: Up
 Instance: Exists
 Release: 22.1.1.19.0
 Admin User File: true
 Cache User File: true
 Cg File: true
 High Level State: Healthy
 Intended State: Standby
 Name: cachetest-1
 Schema File: true
 Rep Create Statement: create active standby pair "cachetest" on
 "cachetest-0.cachetest.mynamespace.svc.cluster.local", "cachetest" on
 "cachetest-1.cachetest.mynamespace.svc.cluster.local" NO RETURN store
 "cachetest" on "cachetest-0.cachetest.mynamespace.svc.cluster.local"
 PORT 4444 FAILTHRESHOLD 0 store "cachetest" on
 "cachetest-1.cachetest.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
 Rep Port: 4444
 Status Version: 1.0
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 - Create 5m40s ttclassic Secret tt2b18d81d-15a9-11eb-b999-
be712d29a81e created
 - Create 5m40s ttclassic Service cachetest created
 - Create 5m40s ttclassic StatefulSet cachetest created
 - StateChange 4m28s ttclassic Pod cachetest-0 Agent Up
 - StateChange 4m28s ttclassic Pod cachetest-0 Release 22.1.1.19.0
 - StateChange 4m28s ttclassic Pod cachetest-0 Daemon Up
 - StateChange 3m18s ttclassic Pod cachetest-0 RepScheme None
 - StateChange 3m18s ttclassic Pod cachetest-0 RepAgent Not Running
 - StateChange 3m18s ttclassic Pod cachetest-0 RepState IDLE
 - StateChange 3m18s ttclassic Pod cachetest-0 Database Loaded
 - StateChange 3m18s ttclassic Pod cachetest-0 Database Updatable
 - StateChange 3m18s ttclassic Pod cachetest-0 CacheAgent Not Running
 - StateChange 2m57s ttclassic Pod cachetest-0 CacheAgent Running
 - StateChange 2m47s ttclassic Pod cachetest-1 Agent Up
 - StateChange 2m47s ttclassic Pod cachetest-1 Release 22.1.1.19.0
 - StateChange 2m46s ttclassic Pod cachetest-0 RepAgent Running

Appendix B
Monitor Deployment of a TimesTenClassic Object

B-13

 - StateChange 2m46s ttclassic Pod cachetest-0 RepScheme Exists
 - StateChange 2m46s ttclassic Pod cachetest-0 RepState ACTIVE
 - StateChange 2m46s ttclassic Pod cachetest-1 Daemon Up
 - StateChange 2m9s ttclassic Pod cachetest-1 CacheAgent Running
 - StateChange 2m9s ttclassic Pod cachetest-1 Database Not Updatable
 - StateChange 2m9s ttclassic Pod cachetest-1 Database Loaded
 - StateChange 2m9s ttclassic Pod cachetest-1 RepAgent Not Running
 - StateChange 2m9s ttclassic Pod cachetest-1 RepScheme Exists
 - StateChange 2m9s ttclassic Pod cachetest-1 RepState IDLE
 - StateChange 2m3s ttclassic Pod cachetest-1 RepAgent Running
 - StateChange 118s ttclassic Pod cachetest-1 RepState STANDBY
 - StateChange 118s ttclassic TimesTenClassic was Initializing, now
Normal

Your active standby pair of TimesTen databases are successfully deployed (as
indicated by Normal.) You are now ready to verify that TimesTen Cache is configured
correctly and is working properly.

Verify TimesTen Cache Configuration
To verify that TimesTen Cache is configured correctly and is working properly, perform
the following steps:

1. Review the active (cachetest-0, in this example) Pod and the standby Pod
(cachetest-1, in this example).

% kubectl get pods
NAME READY STATUS RESTARTS AGE
cachetest-0 2/2 Running 0 8m16s
cachetest-1 2/2 Running 0 8m15s
timesten-operator-f84766548-tch7s 1/1 Running 0 36d

2. Use the kubectl exec -it command to invoke the shell in the active Pod
(cachetest-0, in this example).

% kubectl exec -it cachetest-0 -c tt -- /bin/bash
3. Use ttIsql to connect to the cachetest database. Confirm the TimesTen

connection attributes are correct. In particular, note that the
OracleNetServiceName connection attribute is correctly set to Oracache
(represented in bold).

% ttIsql cachetest;

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=cachetest";
Connection successful: DSN=cachetest;UID=timesten;DataStore=/tt/home/
timesten/datastore/cachetest;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;
PermSize=200;OracleNetServiceName=Oracache;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

4. Use the ttIsql cachegroups to view the definition of the cacheuser2.readcache
and the cacheuser2.writecache cache groups.

Appendix B
Verify TimesTen Cache Configuration

B-14

Command> cachegroups;

Cache Group CACHEUSER2.READCACHE:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: On
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined

 Root Table: ORATT.READTAB
 Table Type: Read Only

Cache Group CACHEUSER2.WRITECACHE:

 Cache Group Type: Asynchronous Writethrough (Dynamic)
 Autorefresh: No
 Aging: LRU on

 Root Table: ORATT.WRITETAB
 Table Type: Propagate

2 cache groups found.

5. Use ttIsql to query the oratt.readtab cache table. Note that the data from the
oratt.readtab cached table in the Oracle Database is correctly loaded in the
oratt.readcache cache table in the TimesTen database. Recall that you specified the
LOAD CACHE GROUP statement in the cachegroups.sql metadata file. See Create Metadata
Files and a Kubernetes Facility for information on this cachegroups.sql metadata file.

Command> SELECT * FROM oratt.readtab;
< 1, Hello >
< 2, World >
2 rows found.

You have verified that the cache groups were created and data was correctly loaded in the
oratt.readtab table.

Perform Operations On Cache Group Tables
The examples in this section perform operations on the oratt.readtab and the
oratt.writetab tables to verify that TimesTen Cache is working properly.

• Perform Operations on the oratt.readtab Table

• Perform Operations on the oratt.writetab Table

Perform Operations on the oratt.readtab Table
This section performs operations on the oratt.readtab table.

1. Create a shell from which you can access your Oracle Database and then use SQL*Plus
to connect to the Oracle Database as the schema user (oratt, in this example). Then,
insert a new row, delete an existing row, and update an existing row in the
oratt.readtab table of the Oracle Database and commit the changes.

Appendix B
Perform Operations On Cache Group Tables

B-15

% sqlplus oratt/oraclepwd@oracache;

SQL> INSERT INTO oratt.readtab VALUES (3,'Welcome');

1 row created.

SQL> DELETE FROM oratt.readtab WHERE keyval=2;

1 row deleted.

SQL> UPDATE oratt.readtab SET str='Hi' WHERE keyval=1;

1 row updated.

SQL> COMMIT;

Commit complete.

Since the read-only cache group was created with an autorefresh interval of 5
seconds, the TimesTen oratt.readtab cache table in the readcache cache group
is automatically refreshed after 5 seconds with the committed updates from the
cached oratt.readtab table of the Oracle Database. The next step is to test that
the data was correctly propagated from the Oracle Database to the TimesTen
database.

2. Use the kubectl exec -it command to invoke the shell in the container of the Pod
that is running the TimesTen active database (cachetest-0, in this example).

% kubectl exec -it cachetest-0 -c tt -- /bin/bash
3. Use the TimesTen ttIsql utility to connect to the cachetest database. Query the

TimesTen oratt.readtab table to verify that the table has been updated with the
committed updates from the Oracle Database.

% ttIsql cachetest;

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=cachetest";
Connection successful: DSN=cachetest;UID=timesten;DataStore=/tt/home/
timesten/datastore/cachetest;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;
PermSize=200;OracleNetServiceName=Oracache;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

Command> SELECT * FROM oratt.readtab;
< 1, Hi >
< 3, Welcome >
2 rows found.

You have verified that TimesTen Cache is working correctly for the oratt.readtab
table and the readcache cachegroup.

Perform Operations on the oratt.writetab Table
This example performs operations on the oratt.writetab table.

Appendix B
Perform Operations On Cache Group Tables

B-16

1. Use the kubectl exec -it command to invoke the shell in the container of the Pod that is
running the TimesTen active database (cachetest-0, in this example).

% kubectl exec -it cachetest-0 -c tt -- /bin/bash
2. Use the TimesTen ttIsql utility to connect to the cachetest database as the cache

manager user (cacheuser2, in this example). Issue a SELECT statement on the TimesTen
oratt.writetab table. Recall that the writecache cache group is a dynamic cache
group. Thus by issuing the SELECT statement, the cache instance is automatically loaded
from the cached Oracle Database table, if the data is not found in the TimeTen cache
table.

% ttIsql "DSN=cachetest;UID=cacheuser2;PWD=ttpwd;OraclePWD=oraclepwd";

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=cachetest;UID=cacheuser2;PWD=********;OraclePWD=********";
Connection successful: DSN=cachetest;UID=cacheuser2;DataStore=/tt/home/timesten/
datastore/cachetest;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;
PermSize=200;OracleNetServiceName=Oracache;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

Command> SELECT * FROM oratt.writetab WHERE pk=100;
< 100, TimesTen >
1 row found.

3. Use ttIsql to insert a new row, delete an existing row, and update an existing row in the
TimesTen oratt.writetab cache table, and commit the changes.

Command> INSERT INTO oratt.writetab VALUES (102,'Cache');
1 row inserted.
Command> DELETE FROM oratt.writetab WHERE pk=101;
1 row deleted.
Command> UPDATE oratt.writetab SET attr='Oracle' WHERE pk=100;
1 row updated.
Command> COMMIT;

The committed updates on the TimesTen oratt.writetab cache table in the writecache
cache group should automatically be propagated to the oratt.writetab table in the
Oracle Database.

4. Create a shell from which you can access your Oracle Database and then use SQL*Plus
to connect to the Oracle database as the schema user (oratt, in this example). Then
query the contents of the oratt.writetab table in the Oracle Database to verify the
committed updates from the TimesTen database have been propagated to the
oratt.writetab table of the Oracle Database.

% sqlplus oratt/oraclepwd@orapcache;

SQL> SELECT * FROM oratt.writetab ORDER BY pk;

 PK ATTR
---------- --
 100 Oracle
 102 Cache

Appendix B
Perform Operations On Cache Group Tables

B-17

You have verified that TimesTen Cache is working correctly for the oratt.writetab
table and the writecache cachegroup.

Clean Up Cache Metadata on the Oracle Database
When you create certain types of cache groups in a TimesTen database, TimesTen
stores metadata about that cache group in the Oracle Database. If you later delete that
TimesTen database, TimesTen does not automatically delete the metadata in the
Oracle Database. As a result, metadata can accumulate on the Oracle Database. See
Dropping Oracle Database Objects Used by Cache Groups with Autorefresh in the
Oracle TimesTen In-Memory Database Cache Guide for more information.

However, in a Kubernetes environment, if you provide a cacheUser metadata file and a
cachegroups.sql metadata file when you initially create the TimesTenClassic object,
then, by default, the Operator automatically cleans up the Oracle Database metadata if
you delete that TimesTenClassic object.

If you do not want the Operator to automatically clean up the Oracle Database, you set
the cacheCleanup field in the TimesTenClassic object definition to false. See the
cacheCleanup entry in "Table 17-3" for more information. Also see "About
Configuration Metadata Details" for information on the cacheUser and the
cachegroups.sql files.

Appendix B
Clean Up Cache Metadata on the Oracle Database

B-18

C
TimesTen Cache in TimesTen Scaleout
Example

The TimesTen Operator supports the use of TimesTen Cache with TimesTen Scaleout in your
Kubernetes environment.

This appendix shows a complete example. The example should not be used for production
purposes. It assumes a test environment. Your Oracle Database should be customized with
the settings specific to your environment.

Topics:

• Set Up the Oracle Database to Cache Data

• Create Metadata Files and a Kubernetes Facility

• Create a TimesTenScaleout Object

• Monitor Deployment of a TimesTenScaleout Object

• Verify TimesTen Cache Configuration

• Perform Operations on the oratt_grid.readtab Table

• Clean Up Cache Metadata on the Oracle Database

Set Up the Oracle Database to Cache Data
You need to complete tasks in the Oracle database before using TimesTen Cache. The tasks
are described in the following sections:

• Create the Oracle Database Users

• Grant Privileges to the Cache Administration User

• Create the Oracle Database Table to Be Cached

Create the Oracle Database Users
Before you can use TimesTen Cache, you need to create the following users in your Oracle
database:

• A cache administration user. This user creates and maintains Oracle Database objects
that store information about the cache environment. This user also enforces predefined
behaviors of cache group types.

• One or more schema users who owns Oracle Database tables that are cached in a
TimesTen database.

See Create the Oracle Database Users and Default Tablespace in the Oracle TimesTen In-
Memory Database Cache Guide.

This example creates the cacheuser_grid cache administration user and the oratt_grid
schema user in the Oracle Database.

C-1

1. Create a shell from which you can access your Oracle Database and then use
SQL*Plus to connect to the Oracle Database as the sys user. Then, create a
default tablespace for the schema user and a default tablespace for the cache
admininstration user.

sqlplus sys/syspwd@oracache as sysdba

Create a tablespace for the schema user (oratt_grid).

CREATE TABLESPACE cachegridtablespace1 DATAFILE 'datattgrid1.dbf'
SIZE 100M;

The output is the following.

Tablespace created.

Create a tablespace for the cache administration user (cacheuser_grid).

CREATE TABLESPACE cachegridtablespace2 DATAFILE 'datattgrid2.dbf'
SIZE 100M;

The output is the following.

Tablespace created.

See Create the Oracle Database Users and Default Tablespace in the Oracle
TimesTen In-Memory Database Cache Guide.

2. Use SQL*Plus to create the schema user. Grant this schema user the minimum
privileges required to create tables in the Oracle Database to be cached in your
TimesTen database.

This example creates the oratt_grid schema user.

CREATE USER oratt_grid IDENTIFIED BY oraclepwd
DEFAULT TABLESPACE cachegridtablespace1 QUOTA UNLIMITED ON
cachegridtablespace1;

The output is the following.

User created.

GRANT CREATE SESSION, RESOURCE TO oratt_grid;

The output is the following.

Grant succeeded.

3. Use SQL*Plus to create the cache administration user. Later, you will use the
same name in the cacheUser metadata file.

Appendix C
Set Up the Oracle Database to Cache Data

C-2

This example creates the cacheuser_grid user.

CREATE USER cacheuser_grid IDENTIFIED BY oraclepwd
DEFAULT TABLESPACE cachegridtablespace2 QUOTA UNLIMITED ON
cachegridtablespace2;

The output is the following.

User created.

Commit and then exit SQL*Plus.

commit;

exit;

Exit the shell.

exit;

Grant Privileges to the Cache Administration User
The cache administration user needs a specific set of privileges to work with TimesTen cache
groups. TimesTen provides the grantCacheAdminPrivileges.sql SQL*Plus script as part of
the TimesTen installation distribution. You run this script in your Oracle database to grant the
cache administration user the minimum set of privileges required to perform cache
operations. See Grant Privileges to the Oracle Cache Administration User and see Required
Privileges for Cache Administration User for Cache Operations in the Oracle TimesTen In-
Memory Database Cache Guide.

Perform these steps to run the grantCacheAdminPrivileges.sql script:

1. Create a shell from which you can access your Oracle Database, and then from the
directory of your choice, create an empty subdirectory. This example creates the
oraclescripts subdirectory.

mkdir -p oraclescripts

2. From your Linux development host, use the kubectl cp command to copy the
grantCacheAdminPrivileges.sql script from the installation_dir/oraclescripts
directory on your Linux development host to the oraclescripts directory that you just
created.

Appendix C
Set Up the Oracle Database to Cache Data

C-3

Note:

You must unpack the TimesTen distribution to retrieve the
installation_dir/oraclescripts/grantCacheAdminPrivileges.sql
directory. See Unpack the TimesTen and the TimesTen Operator
Distributions.

kubectl cp /installation_dir/oraclescripts/
grantCacheAdminPrivileges.sql
database-oracle:oraclescripts/grantCacheAdminPrivileges.sql

3. (Optional): From your shell, verify the script is located in the oraclescripts
directory.

ls oraclescripts

The output is the following.

grantCacheAdminPrivileges.sql

4. Change to the database-oracle:oraclescripts directory. Next, use SQL*Plus to
connect to the Oracle Database as the sys user. Next, run the
grantCacheAdminPrivileges.sql script.

cd oraclescripts

sqlplus sys/syspwd@oracache as sysdba

In SQL*Plus, run the SQL script.

@grantCacheAdminPrivileges "cacheuser_grid";

The output is similar to the following.

Please enter the administrator user id
The value chosen for administrator user id is cacheuser_grid

TT_CACHE_ADMIN_ROLE role already exists
***************** Initialization for cache admin begins

0. Granting the CREATE SESSION privilege to CACHEUSER_GRID
1. Granting the TT_CACHE_ADMIN_ROLE to CACHEUSER_GRID
2. Granting the DBMS_LOCK package privilege to CACHEUSER_GRID
3. Granting the DBMS_DDL package privilege to CACHEUSER_GRID
4. Granting the DBMS_FLASHBACK package privilege to CACHEUSER_GRID
5. Granting the CREATE SEQUENCE privilege to CACHEUSER_GRID
6. Granting the CREATE CLUSTER privilege to CACHEUSER_GRID
7. Granting the CREATE OPERATOR privilege to CACHEUSER_GRID
8. Granting the CREATE INDEXTYPE privilege to CACHEUSER_GRID

Appendix C
Set Up the Oracle Database to Cache Data

C-4

9. Granting the CREATE TABLE privilege to CACHEUSER_GRID
10. Granting the CREATE PROCEDURE privilege to CACHEUSER_GRID
11. Granting the CREATE ANY TRIGGER privilege to CACHEUSER_GRID
12. Granting the GRANT UNLIMITED TABLESPACE privilege to CACHEUSER_GRID
13. Granting the DBMS_LOB package privilege to CACHEUSER_GRID
14. Granting the SELECT on SYS.ALL_OBJECTS privilege to CACHEUSER_GRID
15. Granting the SELECT on SYS.ALL_SYNONYMS privilege to CACHEUSER_GRID
16. Checking if the cache administrator user has permissions on the
default
tablespace
 Permission exists
18. Granting the CREATE TYPE privilege to CACHEUSER_GRID
19. Granting the SELECT on SYS.GV$LOCK privilege to CACHEUSER_GRID
20. Granting the SELECT on SYS.GV$SESSION privilege to CACHEUSER_GRID
21. Granting the SELECT on SYS.DBA_DATA_FILES privilege to CACHEUSER_GRID
22. Granting the SELECT on SYS.USER_USERS privilege to CACHEUSER_GRID
23. Granting the SELECT on SYS.USER_FREE_SPACE privilege to
CACHEUSER_GRID
24. Granting the SELECT on SYS.USER_TS_QUOTAS privilege to CACHEUSER_GRID
25. Granting the SELECT on SYS.USER_SYS_PRIVS privilege to CACHEUSER_GRID
26. Granting the SELECT on SYS.V$DATABASE privilege to CACHEUSER_GRID
(optional)
27. Granting the SELECT on SYS.GV$PROCESS privilege to CACHEUSER_GRID
(optional)
28. Granting the SELECT ANY TRANSACTION privilege to CACHEUSER_GRID
29. Creating the CACHEUSER_GRID.TT_07_ARDL_CG_COUNTER table
30. Granting SELECT privilege on CACHEUSER_GRID.TT_07_ARDL_CG_COUNTER
table to
PUBLIC
********* Initialization for cache admin user done successfully *********

Exit from SQL*Plus and the shell.

exit;

exit;

You successfully ran the script to grant privileges to the cache administration user.

Create the Oracle Database Table to Be Cached
This example creates the readtab table in the oratt_grid user schema. Later, the table is
cached in a read-only cache group.

Appendix C
Set Up the Oracle Database to Cache Data

C-5

1. Create a shell from which you can access your Oracle Database and then use
SQL*Plus to connect to the Oracle Database as the sys user. Then create the
oratt_grid.readtab table.

sqlplus sys/syspwd@oracache as sysdba

CREATE TABLE oratt_grid.readtab (keyval NUMBER NOT NULL PRIMARY
KEY,str VARCHAR2(32));

The output is the following.

Table created.

2. Use SQL*Plus to insert rows into the oratt_grid.readtab table. Next, verify the
rows have been inserted.

INSERT INTO oratt_grid.readtab VALUES (1,'Hello');

INSERT INTO oratt_grid.readtab VALUES (2,'World');

Commit.

commit;

Verify the rows have been inserted into the tables.

SELECT * FROM oratt_grid.readtab;

The output is the following.

KEYVAL STR
---------- --------------------------------
 1 Hello
 2 World

3. Use SQL*Plus to grant the SELECT privilege on the oratt_grid.readtab table.

GRANT SELECT ON oratt_grid.readtab TO cacheuser_grid;

The output is the following.

Grant succeeded.

4. Use SQL*Plus to query the nls_database_parameters system view to determine
the Oracle Database database character set. The Oracle Database database
character set must match the TimesTen database character set.

Appendix C
Set Up the Oracle Database to Cache Data

C-6

In this example, the query returns the AL32UTF8 database character set.

 SELECT value FROM nls_database_parameters WHERE
parameter='NLS_CHARACTERSET';

The output is the following.

VALUE
--

AL32UTF8

Exit from SQL*Plus and the shell.

exit;

exit;

You successfully created the Oracle Database table. Later, this table is cached in the
TimesTen cache group.

Create Metadata Files and a Kubernetes Facility
The following metadata files are specific to using TimesTen Cache:

• cacheUser: This file is required. The user in this file is created in the TimesTen databases
and serves as the cache manager. The name of this user must match the name of the
cache administration user that you created in the Oracle Database. See Create the
Oracle Database Users for information on the cache administration user in the Oracle
Database. See cacheUser for more information on the cacheUser metadata file.

• cachegroups.sql: This file is required. The contents of this file contain the CREATE CACHE
GROUP definitions. The file can also contain the LOAD CACHE GROUP statement and the built-
in procedures to update statistics on the cache group tables (such as,
ttOptEstimateStats and ttOptUpdateStats). See cachegroups.sql.

• tnsnames.ora: This file is required. It defines Oracle Net Services to which applications
connect. For TimesTen Cache, this file configures the connectivity between TimesTen
and the Oracle Database (from which data is being cached). In this context, TimesTen is
the application that is the connection to the Oracle Database. See tnsnames.ora.

• sqlnet.ora: This file may be required. It may be necessary depending on your Oracle
Database configuration. The file defines options for how client applications communicate
with the Oracle Database. In this context, TimesTen is the application. The tnsnames.ora
and sqlnet.ora files together define how an application communicates with the Oracle
Database. See sqlnet.ora.

• db.ini: This file is required if you are using TimesTen Cache. The contents of this file
contain TimesTen connection attributes for your TimesTen databases, which will be
included in TimesTen's sys.odbc.ini file. For TimesTen Cache, you must specify the
OracleNetServiceName and the DatabaseCharacterSet connection attributes. The
DatabaseCharacterSet connection attribute must match the Oracle database character
set. See db.ini.

Appendix C
Create Metadata Files and a Kubernetes Facility

C-7

• schema.sql: The contents of this file contain database objects, such as tables,
sequences, and users. The instance administrator uses the ttIsql utility to run
this file immediately after the database is created. This file is run before the
Operator configures TimesTen Cache or replication, so ensure there are no cache
definitions in this file.

In TimesTen Cache, one or more cache table users own the cache tables. If this
cache table user is not the cache manager user, then you must specify the
schema.sql file and in it you must include the schema user and assign the
appropriate privileges to this schema user. For example, if the oratt_grid schema
user was created in the Oracle Database, and this user is not the TimesTen cache
manager user, you must create the TimesTen oratt_grid user in this file. See
Create the Oracle Database Users for more information on the schema users in
the Oracle Database. Also see schema.sql for more information on the
schema.sql file.

In addition, use these metadata files for TimesTenScaleout objects:

• *.connect: A file with the .connect extension signifies a direct connectable that is
used for direct mode access to a database in TimesTen Scaleout. The * prefix is
the name you choose for the connectable. You can define more than one. See
*.connect.

• *.csconnect: A file with the .csconnect extension signifies a client/server
connectable that is used for client/server access to a database in TimesTen
Scaleout. The * prefix is the name you choose for the connectable. You can define
more than one. See *.csconnect.

• adminUser (Optional): The user in this file is created in the TimesTen databases
and is granted ADMIN privileges. See adminUser for more information on this file.

You can include these metadata files in one or more Kubernetes facilities (for example,
in a Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the
metadata files are populated in the /ttconfig directory of the TimesTen containers.
Note that there is no requirement as to how to get the metadata files into this /
ttconfig directory. See Populate the /ttconfig Directory for more information.

This example uses the ConfigMap facility to populate the /ttconfig directory in your
TimesTen containers.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata
files. This example creates the cm_cachegrid subdirectory.

mkdir -p cm_cachegrid

2. Change to the cm_cachegrid directory.

cd cm_cachegrid

3. Create the adminUser file in this ConfigMap directory.

vi adminUser

adminuser_grid/adminuserpwd

Appendix C
Create Metadata Files and a Kubernetes Facility

C-8

4. Create the db.ini file in this ConfigMap directory. In this db.ini file, define the PermSize,
DatabaseCharacterSet, and the OracleNetServiceName connection attributes. The
DatabaseCharacterSet value must match the database character set value in the Oracle
Database. See Create the Oracle Database Tables to Be Cached for information on how
to query the nls_database_parameters system view to determine the Oracle Database
database character set. In this example, the value is AL32UTF8.

vi db.ini

permSize=200
databaseCharacterSet=AL32UTF8
oracleNetServiceName=Oracache

5. Create the schema.sql file in this ConfigMap directory. In this example, create the
oratt_grid user. Recall that this user was previously created in the Oracle Database.
See Create the Oracle Database Users for information on the oratt_grid user in the
Oracle Database.

vi schema.sql

create user oratt_grid identified by ttpwd;
grant admin to oratt_grid;

6. Create the cacheUser metadata file in this ConfigMap directory. The cacheUser file must
contain one line of the form cacheuser_grid/ttpassword/orapassword, where
cacheuser_grid is the user you wish to designate as the cache manager in the TimesTen
database, ttpassword is the TimesTen password you wish to assign to this user, and
orapassword is the Oracle Database password that has already been assigned to the
Oracle Database cache administration user. Note that the name in this file must match
the Oracle Database cache administration user that you previously created. See Create
the Oracle Database Users for more information on the Oracle Database cache
administration user.

In this example, the cacheuser_grid user with password of oraclepwd was already
created in the Oracle Database. Therefore, supply cacheuser_grid as the TimesTen
cache manager user. You can assign any TimesTen password to this TimesTen cache
manager user. This example assigns ttpwd.

vi cacheuser_grid

cacheuser_grid/ttpwd/oraclepwd

7. Create the cachegroups.sql metadata file in this ConfigMap directory. The
cachegroups.sql file contains the cache group definitions. In this example, a read-only
cache group is created. In addition, the LOAD CACHE GROUP statement is included to load
rows from the oratt_grid.readtab table in the Oracle Database into the
oratt_grid.readtab cache table in the TimesTen database.

vi cachegroups.sql

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
 INTERVAL 5 SECONDS
FROM oratt_grid.readtab (

Appendix C
Create Metadata Files and a Kubernetes Facility

C-9

 keyval NUMBER NOT NULL PRIMARY KEY,
 str VARCHAR2(32)
);

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

8. Create the tnsnames.ora metadata file in this ConfigMap directory.

vi tnsnames.ora

OraTest =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST =
database.mynamespace.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraTest.my.sample.com)))
OraCache =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST =
database.mynamespace.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraCache.my.sample.com)))

9. Create the sqlnet.ora metadata file in this ConfigMap directory.

vi sqlnet.ora

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

10. Create the direct connectable.

vi cachegriddirect.connect

ConnectionCharacterSet=AL32UTF8

11. Create the client/server connectable.

vi cachegridclient.csconnect

ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

12. (Optional): Use the Linux ls command to verify the metadata files are in the
ConfigMap directory.

ls

Appendix C
Create Metadata Files and a Kubernetes Facility

C-10

The output is the following.

adminUser cachegroups.sql schema.sql
cachegridclient.csconnect cacheUser sqlnet.ora
cachegriddirect.connect db.ini tnsnames.ora

13. Create the ConfigMap.

In this example:

• The name of the ConfigMap is cachegrid. Replace cachegrid with a name of your
choosing.

• This example uses cm_cachegrid as the directory for the ConfigMap files. If you use
a different directory, replace cm_cachegrid with the name of your directory.

kubectl create configmap cachegrid --from-file .

The files in the cm_cachegrid directory are included in the ConfigMap and, later, will be
available in the TimesTen containers.

14. Use the kubectl describe command to verify the contents of the ConfigMap.

kubectl describe configmap cachegrid

The output is the following.

Name: cachegrid
Namespace: mynamespace
Labels: <none>
Annotations: <none>

Data
====
cachegroups.sql:

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
 INTERVAL 5 SECONDS
FROM oratt_grid.readtab (
 keyval NUMBER NOT NULL PRIMARY KEY,
 str VARCHAR2(32)
);

LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

db.ini:

permSize=200
databaseCharacterSet=AL32UTF8
oracleNetServiceName=Oracache

sqlnet.ora:

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}

Appendix C
Create Metadata Files and a Kubernetes Facility

C-11

SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

tnsnames.ora:

OraTest = (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST =
database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = Oratest.my.sample.com)))
OraCache = (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST =
database.myhost.svc.cluster.local)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraCache)))

adminUser:

adminuser_grid/adminuserpwd

cachegridclient.csconnect:

ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

cachegriddirect.connect:

ConnectionCharacterSet=AL32UTF8

cacheUser:

cacheuser_grid/ttpwd/oraclepwd

schema.sql:

create user oratt_grid identified by ttpwd;
grant admin to oratt_grid;

Events: <none>

You successfully created and deployed the cachegrid ConfigMap.

Create a TimesTenScaleout Object
This section creates the TimesTenScaleout object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use
the same name you used for the name of the TimesTenScaleout object. (In this

Appendix C
Create a TimesTenScaleout Object

C-12

example, cachegrid.) See TimesTenScaleoutSpecSpec for information on the fields that
you must specify in this YAML file as well as the fields that are optional.

Specify these TimesTen Scaleout specific fields:

• k: Set the value of k to the number of copies of data for your TimesTen database.
This value determines the number of StatefulSets that the TimesTen Operator
creates. A StatefulSet provides the Pods that are used to implement a single data
space in the grid. For example, if you set k to 2, the Operator creates two
StatefulSets. One StatefulSet provides the Pods for the data instances in data space
one. The second StatefulSet provides the Pods for the data instances in data space
two.

This example sets k to 2.

For information on K-safety and determining an appropriate value for k, see K-Safety
in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

• nReplicaSets: Set the value to the number of replica sets in the grid. A replica set
contains k elements (where each element is an exact copy of the other elements in
the replica set). The nReplicaSets value determines the number of replicas for each
StatefulSet. For example, if you set k to 2, the TimesTen Operator creates two
StatefulSets for the data instances. If you set nReplicaSets to 3, each StatefulSet
contains three replicas, and the total number of replica sets in the database is three.

This example sets nReplicaSets to 3.

For information on replica sets, see Understanding Replica Sets in the Oracle
TimesTen In-Memory Database Scaleout User's Guide.

• nZookeeper: Set the value to the number of ZooKeeper Pods to provision in a
StatefulSet. Your options are 1 or 3 or 5.

This example sets nZookeeper to 3.

Next, specify these fields:

• name: Replace cachegrid with the name of your TimesTenClassic object.

• storageClassName: Replace oci-bv with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

• storageSize: Replace 250Gi with the amount of storage that should be requested for
each Pod to hold TimesTen. Note: This example assumes a production environment
and uses a value of 250Gi for storageSize. For demonstration purposes, a value of
50Gi is adequate.

• image: Replace container-registry.oracle.com/timesten/timesten:22.1.1.19.0
with the location and name of your image.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes should
use to fetch the TimesTen image.

• dbConfigMap: This example uses one ConfigMap (called cachegrid) for the metadata
files.

vi cachetest.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenScaleout
metadata:

Appendix C
Create a TimesTenScaleout Object

C-13

 name: cachegrid
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250Gi
 image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 imagePullSecret: sekret
 dbConfigMap:
 - cachegrid
 k: 2
 nReplicaSets: 3
 nZookeeper: 3

2. Create the TimesTenScaleout object.

kubectl create -f cachegrid.yaml

The output is the following.

timestenscaleout.timesten.oracle.com/cachegrid created

You successfully created the TimesTenScaleout object. The process of deploying your
grid and associated databases begins, but is not yet complete.

Monitor Deployment of a TimesTenScaleout Object
Use the kubectl get and the kubectl describe commands to monitor the progress of
the grid and its associated databases. There is one database in this example.

1. Use the kubectl get command and review the OVERALL field. Observe the value is
Initializing.

kubectl get tts cachegrid

The output is similar to the following.

NAME OVERALL MGMT CREATE LOAD OPEN AGE
cachegrid Initializing 12s

kubectl get tts cachegrid

The output is similar to the following.

NAME OVERALL MGMT CREATE LOAD OPEN AGE
cachegrid ZookeeperReady 3m

kubectl get tts cachegrid

Appendix C
Monitor Deployment of a TimesTenScaleout Object

C-14

The output is similar to the following.

NAME OVERALL MGMT CREATE LOAD OPEN AGE
cachegrid GridCreated 3m54s

kubectl get tts cachegrid

The output is similar to the following.

NAME OVERALL MGMT CREATE LOAD OPEN AGE
cachegrid InstancesCreated 6m17s

kubectl get tts cachegrid

The output is similar to the following.

NAME OVERALL MGMT CREATE LOAD OPEN AGE
cachegrid DatabaseCreated 6m59s

2. Use the kubectl get command again to see if the TimesTenScaleout object has
transitioned to the Normal state. A Normal state indicates the grid and database are
provisioned, and the process is complete.

kubectl get tts cachegrid

The output is similar to the following.

NAME OVERALL MGMT CREATE LOAD OPEN AGE
cachegrid Normal Normal created loaded-complete open 8m29s

You successfully deployed your grid and database. Let's verify TimesTen Cache is configured
correctly, and is working properly.

Verify TimesTen Cache Configuration
To verify that TimesTen Cache is configured correctly and is working properly, perform the
following steps:

1. Review the Pods.

kubectl get pods

The output is similar to the following.

NAME READY STATUS RESTARTS AGE
cachegrid-data-1-0 2/2 Running 0 33m
cachegrid-data-1-1 2/2 Running 0 33m
cachegrid-data-1-2 2/2 Running 0 33m
cachegrid-data-2-0 2/2 Running 0 33m

Appendix C
Verify TimesTen Cache Configuration

C-15

cachegrid-data-2-1 2/2 Running 0
33m
cachegrid-data-2-2 2/2 Running 0
33m
cachegrid-mgmt-0 2/2 Running 0
33m
cachegrid-zk-0 1/1 Running 0
33m
cachegrid-zk-1 1/1 Running 0
32m
cachegrid-zk-2 1/1 Running 0
31m
timesten-operator-7677964df9-sp2zp 1/1 Running 0
4d16h

2. Use the kubectl exec -it command to invoke the shell in one of the data
instances (cachegrid-data-1-0, in this example).

kubectl exec -it cachegrid-data-1-0 -c tt -- /bin/bash

3. Use ttIsql to connect to the cachegrid database. Confirm the TimesTen
connection attributes are correct. In particular, note that the
OracleNetServiceName connection attribute is correctly set to Oracache.

ttIsql cachegrid

The output is similar to the following.

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=cachegrid";
Connection successful: DSN=cachegrid;Durability=0;UID=timesten;
DataStore=/tt/home/timesten/datastore/
cachegrid;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=200;Connections=100;
OracleNetServiceName=Oracache;
(Default setting AutoCommit=1)

4. Use the ttIsql cachegroups to view the cache group.

cachegroups;

The output is similar to the following.

Cache Group CACHEUSER_GRID.READCACHE:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental

Appendix C
Verify TimesTen Cache Configuration

C-16

 Autorefresh State: On
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined

 Root Table: ORATT_GRID.READTAB
 Table Type: Read Only

1 cache group found.

5. Use ttIsql to query the oratt_grid.readtab cache table. Note that the data from the
oratt_grid.readtab cached table in the Oracle Database is correctly loaded in the
oratt_grid.readcache cache table in the TimesTen database. Recall that you specified
the LOAD CACHE GROUP statement in the cachegroups.sql metadata file.

SELECT * FROM oratt_grid.readtab;

The output is similar to the following.

< 1, Hello >
< 2, World >
2 rows found.

Exit ttIsql and the shell.

exit;

exit;

You verified that the cache group was created and data was correctly loaded.

Perform Operations on the oratt_grid.readtab Table
This section performs operations on the oratt_grid.readtab table.

1. Create a shell from which you can access your Oracle Database and then use SQL*Plus
to connect to the Oracle Database as the schema user (oratt_grid, in this example).
Then, insert a new row, delete an existing row, and update an existing row in the
oratt_grid.readtab table of the Oracle Database and commit the changes.

sqlplus oratt_grid/oraclepwd@oracache;

INSERT INTO oratt_grid.readtab VALUES (3,'Welcome');

DELETE FROM oratt_grid.readtab WHERE keyval=2;

UPDATE oratt_grid.readtab SET str='Hi' WHERE keyval=1;

Appendix C
Perform Operations on the oratt_grid.readtab Table

C-17

Commit.

commit;

The output is the following.

Commit complete.

Since the read-only cache group was created with an autorefresh interval of 5
seconds, the TimesTen oratt_grid.readtab cache table in the readcache cache
group is automatically refreshed after 5 seconds with the committed updates from
the cached oratt_grid.readtab table of the Oracle Database. The next step is to
test that the data was correctly propagated from the Oracle Database to the
TimesTen database.

Exit ttIsql and exit the shell.

exit;
exit;

2. Use the kubectl exec -it command to invoke the shell in the container of the Pod
that is running a data instance.

kubectl exec -it cachegrid-data-1-0 -c tt -- /bin/bash

3. Use the TimesTen ttIsql utility to connect to the cachegrid database. Query the
TimesTen oratt_grid.readtab table to verify that the table has been updated with
the committed updates from the Oracle Database.

ttIsql cachegrid

The output is similar to the following.

Copyright (c) 1996, 2023, Oracle and/or its affiliates. All rights
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=cachegrid";
Connection successful: DSN=cachegrid;Durability=0;UID=timesten;
DataStore=/tt/home/timesten/datastore/cachegrid;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSi
ze=200;
Connections=100;OracleNetServiceName=Oracache;
(Default setting AutoCommit=1)

 SELECT * FROM oratt_grid.readtab;

Appendix C
Perform Operations on the oratt_grid.readtab Table

C-18

The output is the following.

< 1, Hi >
< 3, Welcome >
2 rows found.

Exit ttIsql and exit the shell.

exit;
exit;

You have verified that TimesTen Cache is working correctly.

Clean Up Cache Metadata on the Oracle Database
When you create certain types of cache groups in a TimesTen database, TimesTen stores
metadata about that cache group in the Oracle Database. If you later delete that TimesTen
database, TimesTen does not automatically delete the metadata in the Oracle Database. As a
result, metadata can accumulate on the Oracle Database. See Dropping Oracle Database
Objects Used by Cache Groups with Autorefresh in the Oracle TimesTen In-Memory
Database Cache Guide for more information.

However, in a Kubernetes environment, if you provide a cacheUser metadata file and a
cachegroups.sql metadata file when you initially create the TimesTenScaleout object, then,
by default, the Operator automatically cleans up the Oracle Database metadata if you delete
that TimesTenScaleout object.

If you do not want the Operator to automatically clean up the Oracle Database, set the
cacheCleanup field in the TimesTenScaleout object definition to false. See the cacheCleanup
datum in TimesTenScaleoutSpecSpec.

Appendix C
Clean Up Cache Metadata on the Oracle Database

C-19

D
Create Your Own Oracle Wallet, Certificates,
and Secrets for Exposing TimesTen Metrics

By default, the TimesTen Operator automatically exposes TimesTen metrics and uses
Transport Layer Security (mutual TLS)/https to serve these metrics. It exposes these metrics
to Prometheus or any other scrape target.

The TimesTen Operator works with the TimesTen exporter to expose these metrics. For more
information about the TimesTen exporter, see Overview of the TimesTen Kubernetes
Operator and the TimesTen Exporter.

If TimesTen metrics are served by https, then by default the TimesTen Operator automatically
creates an Oracle Wallet, all necessary certificates, and Kubernetes Secrets so that https can
be used to expose TimesTen metrics securely.

For more information about how the TimesTen Operator exposes TimesTen metrics, see
Expose TimesTen Metrics with the TimesTen Kubernetes Operator.

Although not recommended, you have the option of creating your own Oracle Wallet,
certificates, and Kubernetes Secrets for use in exporting these metrics.

This appendix shows you how.

Topics:

• About Creating Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

• Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

About Creating Your Own Oracle Wallet, Certificates, and
Kubernetes Secrets

You have the option of creating your own Oracle Wallet, certificates, and Kubernetes Secrets
to serve TimesTen metrics by https. If you choose this option, the TimesTen Operator cannot
create a PodMonitor object with sufficient information to allow Prometheus to access
TimesTen. You can create a PodMonitor object yourself or otherwise edit the Prometheus
configuration files to cause Prometheus to scrape TimesTen metrics.

After you create a Kubernetes Secret containing an Oracle Wallet (that contains the
necessary certificates), you must include this Secret in your TimesTenClassic or
TimesTenClassic object YAML manifest file. You do this by specifying
the .spec.ttspec.prometheus.certSecret datum in your object definition.

Here is a code snippet of a TimesTenClassic object YAML manifest file:

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: samplecertsecret
spec:

D-1

 ttspec:
…
 prometheus:
 certSecret: prometheuscert
 port: 7777

Note the following:

• The .spec.ttspec.prometheus datum is specified in the TimesTen Classic object
YAML manifest file. This causes the TimesTen Operator to automatically deploy
the TimesTen exporter in a separate container within each Pod running TimesTen.

• The certSecret datum is specified in the .spec.ttspec.prometheus clause of the
TimesTenClassic object. The wallet contained in the prometheusecert Kubernetes
Secret is used for Transport Layer Security (mutual TLS)/https.

The port datum is specified. This is the port on which the TimesTen exporter
listens. The causes the TimesTen Operator to set up the http server on TCP port
7777 in each TimesTen Pod.

Here is a summary of the tasks you need to complete to create your own Oracle
Wallet, certificates, and Kubernetes Secret. The summary also includes the tasks to
include the appropriate Kubernetes Secret in a TimesTenClassic or TimesTenScaleout
object YAML manifest file. There is a complete example in Create Your Own Oracle
Wallet, Certificates, and Kubernetes Secrets.

• Create a TimesTen instance. See Before You Begin.

• Use the TimesTen ttExporter utility to generate the certificates. One of the
certificates that is created is the self-signed server certificate. This certificate is
placed in an Oracle Wallet. See Create Certificates.

• Place the Oracle Wallet into a Kubernetes Secret. See Create a Kubernetes
Secret Containing an Oracle Wallet.

• Specify the name of the Secret in the spec.ttspec.prometheus.certSecret
datum of a TimesTenClassic or TimesTenScaleout object YAML manifest file. See
Define and Deploy a TimesTenClassic Object.

• Save the PEM formatted file containing the server certificate, the client certificate,
and the client private key that were created when you ran the TimesTen
ttExporter utility. You need these later to configure the Prometheus server. See
Create Certificates.

Here are additional references:

• For information about the spec.ttspec.prometheus.certSecret datum, see
TimesTenClassicSpecSpecPrometheus and
TimesTenScaleoutSpecSpecPrometheus.

• For information about the command line options for the ttExporter utility, see
ttExporter in the Oracle TimesTen In-Memory Database Reference.

Create Your Own Oracle Wallet, Certificates, and
Kubernetes Secrets

Let's look at an example that shows you how to create your own Oracle Wallet,
certificates, and Kubernetes Secrets. The example also shows you how to specify a

Appendix D
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

D-2

Kubernetes Secret that contains an Oracle Wallet in a TimesTenClassic object YAML
manifest file.

Note:

The steps are the same for a TimesTenScaleout object.

• Before You Begin

• Create Certificates

• Create a Kubernetes Secret Containing an Oracle Wallet

• Define and Deploy a TimesTenClassic Object

Before You Begin
The TimesTen ttExporter utility is located in the /bin directory of a TimesTen instance.
Since the ttExporter utility is located in the TimesTen instance, you are required to create a
TimesTen instance on your development host so that you have access to the ttExporter
utility. You create a TimesTen instance from a TimesTen installation. A TimesTen installation
is created when you unzip the TimesTen distribution.

You must download the TimesTen distribution and unzip it to create a TimesTen installation
before beginning these steps. You may have already completed this process if you chose to
build the TimesTen container image. See Unpack the TimesTen and the TimesTen Operator
Distributions.

1. If you have not already done so, download and unzip the TimesTen distribution into a
directory on your development host.

2. On your development host from a directory of your choice, create a directory for the
TimesTen instance. This example assumes you have previously created the /scratch/
ttuser directory. The example creates the /scratch/ttuser/instance1_exporter_dir
directory.

mkdir /scratch/ttuser/instance1_exporter_dir

3. Create the TimesTen instance located in the TimesTen installation directory. Replace the
following:

• installation_dir: Name of the TimesTen installation directory. This is the directory
where you unzipped the TimesTen distribution.

• tt22.1.1.19.0: TimesTen release number in ttdottedrelease format, where
dottedrelease is 22.1.1.19.0 in this example.

• instance1_exporter: Name of the TimesTen instance.

• /scratch/ttuser/instance1_exporter_dir: Location of the TimesTen instance. You
created this directory in the previous step.

./installation_dir/tt22.1.1.19.0/bin/ttInstanceCreate -name
instance1_exporter -location /scratch/ttuser/instance1_exporter_dir

Appendix D
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

D-3

The output is similar to the following:

Creating instance in /scratch/ttuser/instance1_exporter_dir/
instance1_exporter ...

NOTE: The TimesTen daemon startup/shutdown scripts have not been
installed.

The startup script is located here :
 '/scratch/ttuser/instance1_exporter_dir/instance1_exporter/
startup/tt_instance1_exporter'

Run the 'setuproot' script :
 /scratch/ttuser/instance1_exporter_dir/
instance1_exporter/bin/setuproot -install
This will move the TimesTen startup script into its appropriate
location.

The 22.1 Release Notes are located here :
 '/scratch/ttuser/installation_dir/tt22.1.1.19.0/README.html'

Instance created successfully.

4. Set the TIMESTEN_HOME environment variable. You must set this variable before
you run the ttExporter utility. This example uses the bash Bourne-type shell.

. /scratch/ttuser/instance1_exporter_dir/instance1_exporter/bin/
ttenv.sh

The output is similar to the following, with not all output shown:

LD_LIBRARY_PATH set to ...
...
PATH set to ...
...
CLASSPATH set to ...
TIMESTEN_HOME set to /scratch/ttuser/instance1_exporter_dir/
instance1_exporter

You successfully created the TimesTen instance on your development host. You are
now ready to use the ttExporter utility to create the certificates.

Create Certificates
There are certificates that are necessary in order to use Transport Layer Security
(mutual TLS)/https. They are as follows:

• Server certificate: A self-signed certificate that is stored in an Oracle Wallet. This
certificate is used by the TimesTen exporter. The name of the Oracle Wallet is
cwallet.sso.

• Exported server certificate: The self-signed server certificate in PEM format. This
certificate is required for your Prometheus configuration.

Appendix D
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

D-4

• Client certificate and client private key: The client certificate and the client private key
required for your Prometheus configuration.

The following steps show you how to create these certificates:

1. Check that the TIMESTEN_HOME environment variable is set. You set this environment
variable in a previous step. See Before You Begin.

echo $TIMESTEN_HOME

The output is the following:

/scratch/ttuser/instance1_exporter_dir/instance1_exporter

2. On your development host, from a directory of your choice, create a subdirectory to store
an Oracle Wallet. This example creates the exportercertdir directory.

mkdir -p exportercertdir

3. Create the self-signed server certificate. This certificate is stored as an Oracle Wallet.
The name of the file that contains the Oracle Wallet is cwallet.sso. It contains the
certificate information required by the TimesTen exporter. Later, you will use a
Kubernetes Secret to place the cwallet.sso Oracle Wallet file into the /ttconfig/
exporterWallet location of the exporter container.

ttExporter -create-server-certificate -certificate-common-name
*.samplecertsecret.mynamespace.svc.cluster.local -certificate-alt-names
*.samplecertsecret.mynamespace.svc.cluster.local -certificate-directory
exportercertdir

The -certificate-common-name and -certificate-alt-names ttExporter options are
required. For detailed information on these options, see ttExporter in the Oracle
TimesTen In-Memory Database Reference.

The -certificate-common-name option is the Common Name (CN) that is included in the
certificate. It matches the DNS name where the certificate is installed. This CN can
contain only one name. Single-level wildcards are acceptable. In this example, the CN
name is *.samplecertsecret.mynamespace.svc.cluster.local, where:

• * is a single level wildcard.

• samplecertsecret is the name of your TimesTenClassic or your TimesTenScaleout
object.

• mynamespace is the name of your namespace.

• svc.cluster.local completes the required format for the DNS name.

The -certificate-alt-names option is the Subject Alternative Name (SAN) that is
included in the certificate. This name includes the CN mentioned previously as well as
any other DNS names that need access to the TimesTen Exporter. Single level wildcards
are acceptable. In this example, the SAN name includes only the CN name. Specifically,
the SAN name is *.samplecertsecret.mynamespace.svc.cluster.local, where:

• * is a single level wildcard.

Appendix D
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

D-5

• samplecertsecret is the name of your TimesTenClassic or your
TimesTenScaleout object.

• mynamespace is the name of your namespace.

• svc.cluster.local completes the required format for the DNS name.

Since these options require you to specify the name of the TimesTenClassic (or
the TimesTenScaleout) object and the name of your namespace, you must know
these names before completing this step. In addition, you must use these same
names when defining your TimesTen Classic or your TimesTenScaleout object.

4. Export the server certificate.

ttExporter -export-server-certificate exportercertdir/server.crt -
certificate-directory exportercertdir

This command exports the server certificate in PEM format. In this example, the
name of the file that contains the certificate is server.crt. Save this file. You need
it later when configuring Prometheus.

5. Create and export the client certificate and the client private key.

ttExporter -export-client-certificate exportercertdir/client.crt -
export-client-private-key exportercertdir/key.crt -certificate-
directory exportercertdir

This command creates the client certificate. In this example, the contents of the
client certificate is stored in the client.crt file. The example also creates the
client private key and stores its contents in the key.crt file. Save these files. You
need them later when configuring Prometheus.

6. (Optional): Verify the certificates are created.

ls -a exportercertdir

The output is similar to the following:

. client.crt server.crt

.. key.crt .ttwallet.BA0F2D86-B6D2-4095-A4D0-CDF1FF89E9BF

Verify the ttExporter utility has created the Oracle Wallet.

ls -a exportercertdir/.ttwallet*

The output is the following:

. .. cwallet.sso

You have successfully created the server certificate, the client certificate, and the client
private key. Make a note of these files and their location. You need them later.
Specifically, you need to specify the cwallet.sso Oracle Wallet file when you create
the Kubernetes Secret. See Create a Kubernetes Secret Containing an Oracle Wallet.

Appendix D
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

D-6

In addition, you need to specify the server.crt, the client.crt, and the key.crt files later
when you configure Prometheus.

Note:

Configuring Prometheus is outside the scope of this book. For information on
configuring Prometheus, see About configuring the TimesTen exporter and
Prometheus with client certificate authentication in the Oracle TimesTen In-Memory
Database Monitoring and Troubleshooting Guide.

Create a Kubernetes Secret Containing an Oracle Wallet
The following steps show you how to create a Kubernetes Secret for an Oracle Wallet. This
Oracle Wallet contains the self-signed server certificate. You created the Oracle Wallet in
Create Certificates.

1. On your development host, from a directory of your choice, create an empty subdirectory
for the Oracle Wallet (the cwallet.sso file). This example creates the walletdir
subdirectory.

mkdir -p walletdir

2. Copy the cwallet.sso Oracle Wallet to the directory.

cp exportercertdir/.ttwallet*/cwallet.sso walletdir/cwallet.sso

In this example, the Oracle Wallet is located in the exportercertdir/.ttwallet*/
cwallet.sso walletdir directory. You created this directory in Create Certificates.

3. Create the Kubernetes Secret for the Oracle Wallet. Ensure to specify the /
exporterWallet directory.

kubectl create secret generic prometheuscert --from-
file=exporterWallet=walletdir/cwallet.sso

The kubectl create generic secret command does the following:

• Creates the prometheuscert Kubernetes Secret.

• Includes the exporterWallet metadata file. This file is required when including the
cwallet.sso file in the Secret.

• Defines walletdir as the location for the cwallet.sso file.

• Defines the cwallet.sso file as the name of the Oracle Wallet file.

The output is the following:

secret/prometheuscert created

You have successfully created the Kubernetes Secret. Make a note of the name of the
Secret. You use it later when you create your TimesTenClassic or TimesTenScaleout object.

Appendix D
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

D-7

Define and Deploy a TimesTenClassic Object
Let's define a TimesTenClassic object with the appropriate information such that the
TimesTen Operator automatically provisions the TimesTen exporter in a separate
container within each Pod that is running TimesTen. Let's use
the .spec.ttspec.prometheus.certSecret datum to instruct the TimesTen Operator
to use the Oracle Wallet located in the Kubernetes Secret that you previously created.
(You created this Secert in Create a Kubernetes Secret Containing an Oracle Wallet).

1. Define a TimesTenClassic object.

vi samplecertsecret.yaml

apiVersion: timesten.oracle.com/v1
kind: TimesTenClassic
metadata:
 name: samplecertsecret
spec:
 ttspec:
 storageClassName: oci-bv
 storageSize: 250G
 image: container-registry.oracle.com/timesten/
timesten:22.1.1.19.0
 imagePullSecret: sekret
 prometheus:
 certSecret: prometheuscert
 port: 7777
 dbConfigMap:
 - samplecertsecret

Note the following:

• The .spec.ttspec.prometheus clause is specified. The TimesTen Operator
provisions a TimesTen exporter container in each TimesTen Pod.

• The .spec.ttspec.prometheus.certSecret datum is specified. The value of
this datum is the name of the Kubernetes Secret containing the Oracle Wallet
you previously created.

• The TimesTen exporter is listening on port 7777.

2. Create the TimesTenClassic object from the contents of the YAML file.

kubectl create -f samplecertsecret.yaml

The output is the following:

configmap/samplecertsecret created
timestenclassic.timesten.oracle.com/samplecertsecret created

Appendix D
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

D-8

3. Wait a few minutes then confirm the TimesTenClassic object is in the Normal state.
Confirm also that the TimesTen Operator provisioned a TimesTen exporter container in
each TimesTen Pod.

kubectl get ttc samplecertsecret

Output.

NAME STATE ACTIVE AGE
samplecertsecret Normal samplecertsecret-0 6m19s

Confirm there is a TimesTen exporter container.

kubectl get pods

Output.

NAME READY STATUS RESTARTS AGE
samplecertsecret-0 3/3 Running 0 2m59s
samplecertsecret-1 3/3 Running 0 2m59s
timesten-operator-7f77c749fd-lkhtr 1/1 Running 0 60m

The TimesTen Operator provisioned three containers for each TimesTen Pod. One
container is running the TimesTen exporter. The TimesTen exporter is listening on port
7777 and functions as an https server.

Your next step is to edit the appropriate Prometheus configuration files to cause Prometheus
to scrape TimesTen metrics. For more information about configuring Prometheus, see https://
prometheus.io/docs/prometheus/latest/configuration/configuration/.

Appendix D
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

D-9

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

	Contents
	About This Content
	What's New
	New Features in Release 22.1.1.19.0
	New features in Release 22.1.1.9.0
	New features in Release 22.1.1.3.0
	New features in Release 22.1.1.1.0

	1 Overview of the Oracle TimesTen Kubernetes Operator
	Overview of Containers and Kubernetes
	Custom Resource Definition
	Kubernetes Operator

	About the TimesTen Kubernetes Operator
	About TimesTenClassic and TimesTenScaleout Objects
	About Provisioning Active Standby Pairs
	About Deploying a TimesTenClassic Object
	About Objects Created by the TimesTen Operator
	StatefulSet
	Service
	Secret
	Pods
	Events

	About the TimesTen Containers and the TimesTen Agent
	Simple Deployment

	About Deploying a TimesTen Scaleout Grid and Database
	StatefulSets
	Services
	Secret
	Persistent Volume Claims and Pods
	Password-less ssh
	Quick Rollout

	2 Set Up the Environment
	Prerequisites
	About TimesTen Container Images
	Option 1: Use the Official TimesTen Container Images
	Accept the Oracle TimesTen License Agreement
	Obtain the TimesTen Operator Manifest Files from the Official TimesTen Image

	Option 2: Build the TimesTen Container Image
	Unpack the TimesTen and the TimesTen Operator Distributions
	Copy the TimesTen Distribution
	Choose How to Build
	Option 2a: Build with Defaults
	Option 2b: Build with Customizations

	About Deploying the TimesTen Operator
	Create the Service Account and the TimesTen Custom Resource Definitions (CRDs)
	About Readiness and Liveness Probes
	Customize the TimesTen Operator
	Verify the TimesTen Operator is Running

	3 Use Configuration Metadata
	Overview of Configuration Metadata and Kubernetes Facilities
	List of Configuration Metadata
	About Configuration Metadata Details
	adminUser
	cachegroups.sql
	cacheUser
	csWallet
	db.ini
	epilog.sql
	replicationWallet
	schema.sql
	sqlnet.ora
	testUser
	tnsnames.ora
	*.connect
	*.csconnect

	Populate the /ttconfig Directory
	Using ConfigMaps and Secrets
	Example Using One ConfigMap
	Example Using One ConfigMap and One Secret
	Example Using One ConfigMap for a TimesTenScaleout Object

	Using an init container

	Additional Configuration Options
	Persistent Storage
	Additional Resource Specifications

	About Readiness Probes for TimesTen Containers
	About /tmp/active Readiness Probes
	About /tmp/readiness Readiness Probes

	4 Specify CPU and Memory Requests and Limits
	About Resource Requests and Limits
	About TimesTen Containerized Deployments
	About Specifying Requests and Limits for TimesTen Containers
	Approach 1: Use Specific Datum for Requests and Limits
	Approach 2: Use Templates for Requests and Limits
	About Specifying Requests and Limits to Kubernetes
	About Verifying databaseMemorySize
	About Runtime Memory Monitoring

	5 Deploy TimesTen Classic Databases
	About the Deployment Process
	Define and Create a TimesTenClassic Object
	Monitor Progress of an Active Standby Pair Deployment
	Monitor the State of a TimesTenClassic Object
	Verify Underlying Objects Exist
	Verify Connection to Active Database

	6 Deploy TimesTen Scaleout Databases
	About Deploying a Grid
	About Planning a Grid
	About Configuring a Grid
	About Provisioning a Grid
	About ssh
	About Creating a Grid

	Deploy a Grid
	Create Configuration Metadata and a Kubernetes ConfigMap for a Grid
	Define and Deploy a TimesTenScaleout Object
	Monitor the High Level State of a TimesTenScaleout Object
	Verify Underlying Objects
	Connect to the Database
	Manage a Grid and Its Database

	7 Use Helm to Deploy the TimesTen Kubernetes Operator and TimesTenClassic Objects
	Overview of Helm
	About a Helm Chart
	About Helm Charts for TimesTen
	About Versions in a Chart.yaml File
	About the Helm Substitution Engine and Language
	About Installing and Testing a Release
	Install the TimesTen Custom Resource Definitions (CRDs)
	Install the TimesTen Operator
	Test the TimesTen Operator
	Install TimesTen Databases
	Test TimesTen
	Upgrade the TimesTen Custom Resource Definitions (CRDs)
	Upgrade the TimesTen Operator
	Upgrade TimesTen
	Roll Back a TimesTen Upgrade
	Roll Back a TimesTen Operator Upgrade
	Roll Back a TimesTen Custom Resource Definitions (CRDs) Upgrade
	About Uninstalling a Release
	Delete TimesTen Databases
	Delete the TimesTen Operator
	Delete the TimesTen Custom Resource Definitions (CRDs)

	8 Use TimesTen Databases
	About Using Direct Mode Applications
	About Using Client/Server Drivers

	9 Manage and Monitor Active Standby Pairs
	About Monitoring the Health of Each Pod in an Active Standby Pair
	CatchingUp
	Down
	Healthy
	HealthyActive
	HealthyStandby
	OtherDown
	Terminal
	Unknown
	UpgradeFailed

	About Monitoring the Health of an Active Standby Pair of Databases
	ActiveDown
	ActiveTakeover
	BothDown
	ConfiguringActive
	Failed
	Initializing
	ManualInterventionRequired
	Normal
	Reexamine
	StandbyCatchup
	StandbyDown
	StandbyStarting
	WaitingForActive

	About the BothDown State
	About the ManualInterventionRequired State
	About Bringing Up One Database
	Verify Conditions Are Met for the Database
	Set the reexamine Value

	Suspend Management of a TimesTenClassic Object
	About Suspending Management
	Suspend Management

	Locate the Operator
	Manage the TimesTen Databases
	Manually Invoke TimesTen Utilities
	Modify TimesTen Connection Attributes
	Manually Edit the db.ini File
	Modify First Connection Attributes
	Modify General Connection Attributes

	Revert to Manual Control
	Delete an Active Standby Pair of TimesTen Databases

	10 Manage TimesTen Scaleout
	About Managing TimesTen Scaleout
	About Single Data Instance Failure
	About Management Instance Failure
	About the waiting for seed State
	About Failure of All Data Instances
	About High Level States
	DatabaseDown
	DatabaseImpeded
	DatabasePartial
	DatabaseRestarting
	DatabaseRestartRequired
	Failed
	Initializing
	ManualInterventionRequired
	Normal
	Reexamine
	Unmanaged

	About Management States
	ActiveAgentUp
	ActiveDaemonUp
	ActiveDown
	Error
	Normal
	Unknown

	About Database and Element States
	About the ManualInterventionRequired State
	About Suspending Management
	Simulate Single Data Instance Failure
	Simulate Management Instance Failure
	Simulate Replica Set Failure with Restart
	Simulate Replica Set Failure with Manual
	Suspend Management
	Set reexamine Datum

	11 Expose TimesTen Metrics with the TimesTen Kubernetes Operator
	Overview of TimesTen Metrics
	Overview of the TimesTen Kubernetes Operator and the TimesTen Exporter
	About the Prometheus Operator
	About Exposing TimesTen Metrics
	About Using http or https for TimesTen Metrics
	About Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics
	About Creating PodMonitor Objects
	About the TimesTen Metrics Service
	About Choosing to Expose TimesTen Metrics
	Expose TimesTen Metrics Automatically

	12 Expose Metrics from the TimesTen Kubernetes Operator
	About Exposing Metrics from the TimesTen Kubernetes Operator
	About Using http or https
	About Transport Layer Security (mutual TLS) Certificates
	About Creating ServiceMonitor Objects
	About the TimesTen Kubernetes Operator's Metrics Service
	About TimesTen Operator Metrics
	Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

	13 Work with TimesTen Cache
	About Using TimesTen Cache

	14 Use Encryption for Data Transmission
	Create TLS Certificates for Replication and Client/Server
	Configure TLS for Replication
	Create Metadata Files and Kubernetes Facilities
	Create a Kubernetes Secret
	Create a ConfigMap

	Create a TimesTenClassic Object
	Monitor Deployment of a TimesTenClassic Object
	Verify TLS Is Being Used for Replication

	Configure TLS for Client/Server
	Configuration Requirements for the Server
	Overview of Metadata Files and Kubernetes Facilities
	Create a Kubernetes Secret for the csWallet Metadata File
	Create a ConfigMap for the Server-Side Attributes
	Create a TimesTenClassic Object
	Monitor Deployment of the TimesTenClassic Object

	Configuration Requirements for the Client
	Copy a Client Wallet
	Configure Client-Side Attributes

	15 Handle Failover and Recovery in TimesTen Classic
	About Handling Failover and Recovery
	Illustrate the Failover and Recovery Process

	16 Perform Upgrades
	About New TimesTen Container Images
	Upgrade the Operator
	About Upgrading TimesTen Classic
	Perform an Automated Upgrade
	Modify a TimesTenClassic Object: Automated Upgrade
	Monitor an Automated Upgrade

	Perform a Manual Upgrade
	Modify a TimesTenClassic Object: Manual Upgrade
	Upgrade the Standby Database
	Fail Over

	Verify the Active Standby Pair of Databases Are Upgraded
	About Upgrading Direct Mode Applications
	About Failures During an Upgrade

	17 The TimesTen Kubernetes Operator Object Types
	Overview of the TimesTen Kubernetes Operator Object Types
	About the TimesTenClassic Object Type
	TimesTenClassic
	TimesTenClassicSpec
	TimesTenClassicSpecSpec
	TimesTenClassicSpecSpecPrometheus
	TimesTenClassicStatus
	About the TimesTenScaleout Object Type
	TimesTen Scaleout
	TimesTenScaleoutSpec
	TimesTenScaleoutSpecSpec
	TimesTenScaleoutSpecSpecPrometheus
	TimesTenScaleoutStatus

	18 Helm Charts for the TimesTen Kubernetes Operator
	The ttoperator Chart
	The ttclassic Chart

	19 TimesTen Kubernetes Operator Metrics
	20 TimesTen Kubernetes Operator Environment Variables
	21 Dockerfile ARGs
	A Active Standby Pair Example
	Before You Begin
	Create a ConfigMap Object
	Create a TimesTenClassic Object
	Monitor Deployment
	Verify Existence of Underlying Objects
	Verify Connection to the Active TimesTen Database
	Recover from Failure
	Clean Up

	B TimesTen Cache in TimesTen Classic Example
	Set Up the Oracle Database to Cache Data
	Create the Oracle Database Users
	Grant Privileges to the Cache Administration User
	Create the Oracle Database Tables to Be Cached

	Create Metadata Files and a Kubernetes Facility
	Create a TimesTenClassic Object
	Monitor Deployment of a TimesTenClassic Object
	Verify TimesTen Cache Configuration
	Perform Operations On Cache Group Tables
	Perform Operations on the oratt.readtab Table
	Perform Operations on the oratt.writetab Table

	Clean Up Cache Metadata on the Oracle Database

	C TimesTen Cache in TimesTen Scaleout Example
	Set Up the Oracle Database to Cache Data
	Create the Oracle Database Users
	Grant Privileges to the Cache Administration User
	Create the Oracle Database Table to Be Cached

	Create Metadata Files and a Kubernetes Facility
	Create a TimesTenScaleout Object
	Monitor Deployment of a TimesTenScaleout Object
	Verify TimesTen Cache Configuration
	Perform Operations on the oratt_grid.readtab Table
	Clean Up Cache Metadata on the Oracle Database

	D Create Your Own Oracle Wallet, Certificates, and Secrets for Exposing TimesTen Metrics
	About Creating Your Own Oracle Wallet, Certificates, and Kubernetes Secrets
	Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets
	Before You Begin
	Create Certificates
	Create a Kubernetes Secret Containing an Oracle Wallet
	Define and Deploy a TimesTenClassic Object

