
Oracle®
Transaction Manager for Microservices
Developer Guide

Release 22.3
F48194-05
May 2023

Oracle Transaction Manager for Microservices Developer Guide, Release 22.3

F48194-05

Copyright © 2022, 2023, Oracle and/or its affiliates.

Primary Author: Sylaja Kannan

Contributing Authors: Tulika Das

Contributors: Todd Little, Deepak Goel, Brijesh Kumar Deo, Bharath MC, Pruthvithej R, Satyanarayana
Chillale, Atul Dhiman, Tushar Shaily, Chandrashekar Venkatachar, Deepak Kesawani, Himanshu Gaur,
Shivanshu Singh

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Changes in MicroTx

New Features in 22.3.2 ix

Changes in the Previous Release x

1 About MicroTx

1.1 How MicroTx Works 1-2

1.2 Components of MicroTx 1-3

1.3 About the Distributed Transaction Protocols 1-4

1.3.1 XA Transaction Protocol 1-5

1.3.2 LRA Transaction Protocol 1-6

1.3.3 Try-Confirm/Cancel Transaction Protocol 1-8

1.4 Workflow to Install and Use MicroTx 1-10

2 Plan

2.1 Supported Container Platforms 2-1

2.2 Supported Languages 2-1

2.3 Supported Databases 2-2

2.4 Supported Identity Providers 2-2

2.5 Limits 2-2

2.6 Considerations for Deployment on Kubernetes 2-3

2.7 Select a Transaction Protocol 2-3

2.8 About Transaction Recovery 2-5

2.9 About Session Affinity 2-6

3 Prepare

3.1 Download the Installation Bundle 3-1

3.2 Create a Data Store 3-2

3.2.1 Get Autonomous Database Client Credentials 3-2

3.2.2 Generate RSA Certificates for etcd 3-3

3.3 About Authentication and Authorization 3-6

iii

3.3.1 About Authentication and Authorization 3-7

3.3.1.1 About Authorization and Refresh Tokens 3-7

3.3.1.2 About the Oracle_Tmm_Tx_Token Transaction Token 3-8

3.3.1.3 About Encrypting and Storing Tokens 3-8

3.3.2 Use Oracle Identity Providers 3-9

3.3.2.1 Use Oracle IAM as Identity Provider 3-9

3.3.2.2 Use Oracle IDCS as Identity Provider 3-11

3.3.3 Run the Discovery URL 3-12

3.3.4 Create an Access Token 3-13

4 Install on a Kubernetes Cluster

4.1 Create a Kubernetes Cluster 4-3

4.2 Prepare the Environment 4-3

4.3 Create a Kubernetes Secret to Access Docker Registry 4-5

4.4 Push Images to a Remote Docker Repository 4-6

4.5 Authenticate and Authorize 4-7

4.5.1 Generate a Kubernetes Secret for an Encryption Key 4-7

4.5.2 Create a Key Pair for Transaction Token 4-8

4.6 Create a Kubernetes Secret for Oracle Database Credentials 4-11

4.7 Create a Kubernetes Secret for etcd 4-11

4.8 Enable Session Affinity 4-13

4.9 Configure the values.yaml File 4-14

4.9.1 Environment Details 4-15

4.9.2 Image Properties 4-15

4.9.3 Transaction Coordinator Properties 4-16

4.9.4 Transaction Store Properties 4-18

4.9.5 Authorization Properties 4-20

4.9.6 Authentication Properties 4-21

4.9.7 Encryption Key Properties 4-22

4.9.8 Transaction Token Properties 4-23

4.10 Install MicroTx 4-23

4.11 Find IP Address of Istio Ingress Gateway 4-25

4.12 Access MicroTx 4-25

5 Install on Docker Swarm

5.1 Set Up Docker Swarm 5-2

5.2 Create a Registry 5-2

5.3 Push Image to a Docker Registry 5-3

5.4 Create Encryption Key and Key Pair 5-4

iv

5.5 Update YAML files with etcd Details 5-8

5.6 Create a Docker Secret for Oracle Database Credentials 5-10

5.7 Enable Session Affinity 5-12

5.8 Configure the tcs-docker-swarm.yaml File 5-13

5.8.1 Transaction Coordinator Properties 5-14

5.8.2 Transaction Store Properties 5-15

5.8.3 TLS Properties 5-18

5.8.4 Authorization Properties 5-19

5.8.5 Authentication Properties 5-19

5.8.6 Encryption Key Properties 5-20

5.8.7 Transaction Token Properties 5-21

5.9 Configure Secure Connection for Your Apps 5-22

5.10 Access MicroTx in Docker Swarm 5-23

5.11 Run MicroTx in a Docker Container 5-24

6 Post-Installation Tasks

6.1 Upgrade to 22.3.2 6-1

6.2 Verify 6-2

6.3 Install MicroTx Library Files 6-3

7 Deploy Sample Applications

7.1 Deploy XA Sample Application 7-1

7.1.1 Workflow to Run XA Sample Apps 7-2

7.1.2 About XA Sample Application 7-3

7.1.2.1 Scenario: Withdraw and Deposit an Amount 7-4

7.1.3 Identify a Sample App to Run 7-5

7.1.4 Set Up Resource Managers for Sample Apps 7-7

7.1.4.1 Set Up XA-Compliant Resource Manager 7-8

7.1.4.2 Set Up MongoDB as Resource Manager 7-9

7.1.4.3 Set Up MySQL for Teller Service 7-9

7.1.4.4 Set Up MySQL for Sample Participant Services 7-10

7.1.4.5 Configure PostgreSQL as Resource Manager 7-11

7.1.4.6 Enable Session Affinity for XA Participants 7-12

7.1.5 Run Sample XA Application in Kubernetes 7-12

7.1.5.1 Build Docker Images for Sample XA Application 7-13

7.1.5.2 Push XA Sample App Images 7-14

7.1.5.3 Update the values.yaml File for XA Sample App 7-15

7.1.5.4 Install XA Sample Application 7-16

7.1.5.5 Run an XA Transaction 7-16

v

7.1.6 Run Sample XA Application in Docker Swarm 7-18

7.1.6.1 Build and Push the Docker Images 7-18

7.1.6.2 Install XA Sample Application 7-20

7.1.6.3 Run an XA Transaction 7-21

7.2 Deploy LRA Sample Application 7-22

7.2.1 About the Sample LRA Application 7-22

7.2.1.1 Scenario: Book a Seat in a Cinema 7-24

7.2.2 Run Sample LRA Application in Kubernetes 7-25

7.2.2.1 Build Docker Images for Sample LRA Application 7-26

7.2.2.2 Push LRA Sample App Images 7-26

7.2.2.3 Update the values.yaml File for LRA 7-27

7.2.2.4 Install LRA Sample Application 7-28

7.2.2.5 Run an LRA Transaction 7-29

7.2.3 Run Sample LRA Application in Docker Swarm 7-31

7.2.3.1 Build and Push the Docker Images 7-31

7.2.3.2 Install LRA Sample Application 7-33

7.2.3.3 Run an LRA Transaction 7-34

7.3 Deploy TCC Sample Application 7-37

7.3.1 About the Sample TCC Application 7-37

7.3.2 Run Sample TCC Application in Kubernetes 7-39

7.3.2.1 Build Docker Images for Sample TCC Application 7-39

7.3.2.2 Push TCC Sample App Images 7-40

7.3.2.3 Update the values.yaml File for TCC 7-42

7.3.2.4 Install TCC Sample Application 7-42

7.3.2.5 Run a TCC Transaction 7-43

7.3.3 Run Sample TCC Application in Docker Swarm 7-46

7.3.3.1 Build Docker Images for Sample TCC Application 7-46

7.3.3.2 Install TCC Sample Application 7-48

7.3.3.3 Run the Sample TCC Application 7-49

8 Develop Applications with XA

8.1 Plan Your Resource Manager 8-2

8.1.1 Supported Resource Managers 8-3

8.1.2 Supported Drivers for Resource Managers 8-3

8.1.3 Optimizations for a Non-XA Resource 8-4

8.1.4 Common Resource Manager for Multiple Apps 8-5

8.1.5 Configure Multiple Resource Managers for a Single App 8-6

8.1.6 About Dynamic Recovery for XA Transactions 8-6

8.2 Configure PostgreSQL as Resource Manager 8-7

8.3 Set Transaction Timeout 8-7

vi

8.4 Subscribe to Receive XA Transaction Notifications 8-8

8.5 Configure Library Properties 8-11

8.6 Develop Java Apps with XA 8-12

8.6.1 Configure Java App as Transaction Initiator 8-13

8.6.2 Configure Java App as Transaction Participant 8-15

8.6.2.1 Configure Java App with an XA-Compliant Resource Manager 8-15

8.6.2.2 Configure Java App with Multiple XA-Compliant Resource Managers 8-18

8.6.2.3 Configure Java App with a Non-XA JDBC Resource 8-21

8.6.2.4 Configure Java App with a Non-XA and Non-JDBC Resource 8-24

8.6.3 Configure JPA or Hibernate App as Transaction Participant 8-26

8.6.3.1 Configure Hibernate or JPA App with an XA-Compliant Resource
Manager 8-27

8.7 Develop Node.js Apps with XA 8-32

8.7.1 Configure Node.js App as Transaction Initiator 8-32

8.7.2 Configure Node.js App as Transaction Participant 8-34

8.7.2.1 Configure Node.js Apps with an XA-Compliant Resource Manager 8-34

8.7.2.2 Configure Node.js Apps with a Non-XA Resource 8-37

8.8 Develop ORDS App as Transaction Participant 8-39

8.8.1 Prerequisites 8-39

8.8.2 Run MicroTx Library for SQL 8-40

8.8.3 Build the ORDS App 8-40

8.8.4 Run an XA Transaction 8-44

9 Develop Applications with LRA

9.1 Develop Java Apps with LRA 9-2

9.2 Configure Library Properties 9-3

9.3 Develop Node.js Apps with LRA 9-4

10

Develop Applications with TCC

10.1 Workflow to Develop Applications with TCC 10-2

10.2 Configure Library Properties 10-2

10.3 About Transaction Timeout 10-3

10.4 Develop Java Apps with TCC 10-4

10.4.1 Configure Java App as Transaction Initiator 10-4

10.4.2 Configure Java App as Transaction Participant 10-5

10.5 Develop Node.js Apps with TCC 10-7

10.5.1 Configure Node.js App as Transaction Initiator 10-7

10.5.2 Configure Node.js App as Transaction Participant 10-8

10.6 Develop Python Apps with TCC 10-10

10.6.1 Configure Python App as Transaction Initiator 10-11

vii

10.6.2 Configure Python App as Transaction Participant 10-13

11

Develop Tuxedo Apps with XA

11.1 Run Tuxedo App on Linux Host 11-1

11.1.1 Prepare the Environment 11-1

11.1.2 Install Patches 11-2

11.1.3 Verify the Set Up 11-4

11.2 Run Tuxedo App in Kubernetes Cluster 11-6

11.2.1 Start Tuxedo Sample App in a Docker Container 11-6

11.2.2 Update the YAML Files for Tuxedo App 11-7

12

Trace

12.1 Install Jaeger 12-2

12.2 Perform Distributed Tracing with Jaeger 12-3

12.3 Install Kiali 12-4

12.4 List of Trace Headers 12-5

A Manage Transaction Coordinator Using Helm

A.1 General Syntax of Commands A-1

A.2 Scale up or down A-2

A.3 Update A-3

A.4 Uninstall A-4

B Deploy Your Application

B.1 Build the Docker Image B-1

B.2 Push App Image to a Remote Repo B-2

B.3 Create Helm Files B-3

B.4 Install Your Application B-3

viii

Changes in MicroTx

The following are the changes in the Transaction Manager for Microservices (MicroTx) patch
22.3.2 and the previous release.

• New Features in 22.3.2
The following are the new features in the MicroTx release 22.3.2.

• Changes in the Previous Release
The following are the changes in MicroTx release 22.3.1.

New Features in 22.3.2
The following are the new features in the MicroTx release 22.3.2.

Last Resource Commit (LRC) Optimization for XA Transactions

In addition to Logging Last Resource (LLR) optimization, you can now use Last Resource
Commit (LRC) optimization to enable one non-XA resource to participate in a global XA
transaction. See Optimizations for a Non-XA Resource.

Support for Multiple Resource Managers for a Service

Based on your application's business logic, you can use multiple resource managers for a
single participant service. A participant service can connect to multiple XA-compliant
resource managers. However, only one non-XA resource is supported in a transaction. See
Configure Multiple Resource Managers for a Single App.

MicroTx library for Python Apps Using the TCC Transaction Protocol

The MicroTx library for Python provides the functionality to Python applications to initiate a
new TCC transaction or to participate in an existing TCC transaction. Earlier, the MicroTx
library for TCC transaction protocol supported only for Java and Node.js applications, TCC
library for Python apps is now available. See Develop Python Apps with TCC.

Subscribe to Receive XA Transaction Notifications

You can register your transaction initiator and participant services to receive notifications.
MicroTx notifies the registered services when the following events occur: before the prepare
phase and when MicroTx successfully commits or rolls back a transaction. You may want to
register your service, if based on the business logic your service performs additional tasks
when an event occurs. See Subscribe to Receive XA Transaction Notifications.

ix

Changes in the Previous Release
The following are the changes in MicroTx release 22.3.1.

Store Transaction Details in Oracle Database or etcd

In addition to internal memory, MicroTx now supports etcd or Oracle Database as a
data store for persistence of transaction state. See Supported Databases.

Support for Session Affinity

When there are multiple replicas of a participant service, the request may be directed
to different replicas in a single transaction. When you enable session affinity for a
participant service, all the requests for a unique transaction or session are routed to
the same endpoint or replica of the participant service that served the first request.
Depending on your business use case, you may have to enable session affinity for the
transaction participant service or the transaction coordinator. See About Session
Affinity.

Create Multiple Replicas of the Transaction Coordinator

You can run multiple replicas of Transaction Manager for Microservices pod at a time.
Oracle recommends a minimum of 3 replicas for production environments. See
Environment Details.

You can scale up or down the number of replicas based on the number of transactions.
When the number of transaction requests is low, scale down the number of replicas to
use the resources efficiently.

Optimize Transactions that Use a Common Resource Manager

Based on your business requirements, you may use a single resource manager for
multiple transaction participant services. When you use a common resource manager
for multiple participant services, you can optimize the transaction. See Common
Resource Manager for Multiple Apps.

Recover Transactions

In case the transaction coordinator server fails, Transaction Manager for Microservices
resumes the transactions that are in progress after the server restarts. See About
Transaction Recovery.

Changes in MicroTx

x

1
About MicroTx

Oracle Transaction Manager for Microservices (MicroTx) enables enterprise users to adopt
and increase use of microservices architecture for mission-critical applications by providing
capabilities that make it easier to develop, deploy, and maintain data consistency in such
applications.

Although microservice architecture provides many benefits, it is difficult to ensure data
consistency for requests that span multiple services. Currently, service developers can
include compensating transactions in their application code or use Saga for eventual
consistency. However, these solutions are error prone and require advanced coding skills. It
is also difficult to troubleshoot and manage transactions that span polyglot microservices. The
complexity increases further when each microservice uses an individual database to manage
their data.

As organizations rush to adopt microservices architecture, they often run into problems
associated with data consistency as each microservice typically has its own database. In
monolithic applications, local transactions were enough as there were no other sources of
data that needed to be consistent with the database. An application would start a local
transaction, perform some updates, and then commit the local transaction to ensure the
application moved from one consistent state to another. Once the application’s state is spread
across multiple sources of data, some factors need to be considered. What happens if
updates succeed in one microservice, but it fails in another microservice as part of the same
request? One solution is to use a distributed transaction that spans the sources of data used
by the microservices involved in a request. Oracle Transaction Manager for Microservices
provides a transaction coordination microservice and libraries to maintain consistency in the
state of microservices participating in a transaction.

MicroTx ensures consistency of transactions across distributed microservices applications
deployed in Kubernetes clusters. It performs the following actions:

• Manages transactions and provides consistency across polyglot microservices.

• Supports several distributed transaction protocols, such as XA, Eclipse MicroProfile Long
Running Actions (LRA) and Try-Confirm/Cancel (TCC). Based on your business
requirements and the level of consistency that's required, you can select a suitable
transaction protocol for your application.

• Addresses critical needs for enterprise customers to provide a highly-available, scalable,
and secure solution.

• Integrates with powerful cutting-edge technologies, such as Jaeger, Kiali, Prometheus,
and Grafana. It provides you with a variety of options for activities, such as data
visualization, data monitoring, transaction tracing, which enables advanced and efficient
troubleshooting and data management operations.

• Runs in a Kubernetes cluster along with microservices applications running in on-
premises, cloud, and hybrid environments.

• Works with popular programming languages and application frameworks, such as
Node.js and Java.

• Supports inclusion of Oracle Tuxedo services that are written in C, C++, and COBOL
languages.

1-1

• Supports inclusion of Oracle Database resident services, written in PL/SQL, in a
global XA transaction with other microservices.

• How MicroTx Works
To use MicroTx, install MicroTx and then integrate the MicroTx client libraries with
your application code to manage transactions.

• Components of MicroTx
MicroTx contains two components: the transaction coordinator and the MicroTx
library.

• About the Distributed Transaction Protocols
MicroTx supports the following distributed transaction protocols:

• Workflow to Install and Use MicroTx
Use the following workflow as a guide to install, configure, and use MicroTx to
manage transactions.

1.1 How MicroTx Works
To use MicroTx, install MicroTx and then integrate the MicroTx client libraries with your
application code to manage transactions.

About interceptors provided by the MicroTx client libraries

The MicroTx client libraries provide interceptors to intercept both incoming and
outgoing REST calls, as well as their requests and responses. These interceptors use
headers to propagate the transaction context which enable the participant
microservices to automatically enlist in a transaction. The interceptors also ensure that
the appropriate transaction headers are propagated in any outgoing REST call.

The following image shows the typical flow of request and responses and the role of
the interceptor provided by the MicroTx libraries.

When a microservice, that uses the MicroTx client libraries, makes an outbound REST
request, the library's interceptors add transaction headers to the outbound request if
the microservice has started a distributed transaction or is currently participating in a
distributed transaction. When a microservice receives a request, the interceptors in the
recipient service identify the transaction headers and automatically enlist as a
participant in the distributed transaction.

Here's a typical transaction workflow when you use MicroTx. The following figure
shows how MicroTx communicates with your application microservices to handle
transactions.

Chapter 1
How MicroTx Works

1-2

1. Application developers use functions present in the MicroTx library with their application
code.

2. When a microservice or client initiates a transaction, it calls functions in the MicroTx
library to start a distributed transaction.

3. MicroTx library includes headers that enable the participant services to automatically
enlist in the transaction.

4. After all the tasks associated the original request made by the initiator service are
complete, the initiator service requests the transaction coordinator to either commit or roll
back all the changes.

5. The transaction coordinator sends a call to each participant service to either commit or
roll back the changes made by the participants as part of the distributed transaction.

1.2 Components of MicroTx
MicroTx contains two components: the transaction coordinator and the MicroTx library.

MicroTx, a containerized microservice, runs along with your application microservices. The
following figure shows how the components of MicroTx interact with your application
microservices.

Chapter 1
Components of MicroTx

1-3

Transaction Coordinator Server

The transaction coordinator manages transactions amongst the participant services.

MicroTx supports internal memory, Oracle Database, and etcd as a data store for
persistence of transaction state.

MicroTx library

Application microservices provide the business logic and demarcate transaction
boundaries. These services participate in a distributed transaction. They use MicroTx
APIs to manage their distributed transactions.

Application developers use different parts of the MicroTx client library depending on
the following factors:

• The development framework of the microservice, such as Helidon or Node.js.

• The selected transaction protocol, such as XA, LRA, or TCC.

• Whether the application initiates a transaction or participates in the transaction.

– Transaction initiator service - These applications start and end a transaction.
In the preceding figure, Microservice 1 is the transaction initiator service and it
sends a request to MicroTx to begin the transaction.

– Transaction participant service - These applications only join the transaction.
They do not initiate the transaction. In the preceding figure, Microservice 2 and
Microservice 3 are the transaction participant services that are involved in the
transaction.

1.3 About the Distributed Transaction Protocols
MicroTx supports the following distributed transaction protocols:

• XA protocol, which is based upon The Open Group’s XA specification. For details
about the specification, see https://pubs.opengroup.org/onlinepubs/009680699/
toc.pdf.

Chapter 1
About the Distributed Transaction Protocols

1-4

https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
https://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

• Long Running Action (LRA) protocol, which is based on the Eclipse MicroProfile LRA
specification. For details about the specification, see https://download.eclipse.org/
microprofile/microprofile-lra-1.0-M1/microprofile-lra-spec.html.

• Try-Confirm/Cancel (TCC) protocol

Use XA when strong consistency is required, similar to consistency provided by the local
database transactions, where all the ACID properties of a transaction are present. For
example, financial applications. Use the LRA protocol for transactions that may take a long
time to complete. You can use the LRA protocol to mitigate locking issues. The TCC protocol
fits well for applications that use a reservation model, such as airline seats or hotel rooms.
Both LRA and TCC support long running transactions. LRA is far more general, but requires
application specific actions for both completing a successful LRA and compensating a failed
LRA. Whereas, compensation in TCC is performed by deleting the reservation, and then
returning whatever was reserved to the pool of available resources.

• XA Transaction Protocol
An application using XA, must demarcate the transactions boundaries. MicroTx commits
or rolls back the transaction.

• LRA Transaction Protocol

• Try-Confirm/Cancel Transaction Protocol
The Try-Confirm/Cancel (TCC) transaction protocol holds some resources in a reserved
state until the transaction is either confirmed or canceled. If the transaction is canceled,
the reserved resources are released and are available in the inventory.

1.3.1 XA Transaction Protocol
An application using XA, must demarcate the transactions boundaries. MicroTx commits or
rolls back the transaction.

In the XA protocol, participant microservices must use the MicroTx client libraries which
registers callbacks and provides implementation of the callbacks for the resource manager.
As shown in the following image, MicroTx communicates with the resource managers to
commit or roll back the transaction. MicroTx connects with each resource manager involved
in the transaction to prepare, commit, or rollback the transaction. The participant service
provides the credentials to the coordinator to access the resource manager. As shown in the
following figure, MicroTx client libraries provide a resource manager proxy (RM proxy). The
proxy eliminates the need for the coordinator to have resource manager specific libraries,
which would be the normal case in XA. When the transaction coordinator needs to prepare,
commit, or rollback the transaction for a participant's resource manager, it makes a callback
to the microservice and the proxy relays the request to the resource manager being used by
the microservice. These REST-based callbacks allow the transaction coordinator to be
agnostic to the resource manager used by the microservice.

Chapter 1
About the Distributed Transaction Protocols

1-5

https://download.eclipse.org/microprofile/microprofile-lra-1.0-M1/microprofile-lra-spec.html
https://download.eclipse.org/microprofile/microprofile-lra-1.0-M1/microprofile-lra-spec.html

1. Initiator starts the distributed transaction

2. Called microservices enlist in the transaction

3. Initiator asks transaction manager to commit or rollback the transaction

4. If the initiator decided to commit, the transaction manager asks each microservice
to prepare

a. If all participants successfully prepare, they are all asked to commit

b. If any of the participants fail to prepare, they are all asked to rollback

5. If the initiator decided to rollback the transaction, the transaction manager asks
each microservice to rollback

To understand how the communication takes place between the microservices,
MicroTx client libraries,and the coordinator, see About XA Sample Application.

1.3.2 LRA Transaction Protocol

The following image describes how the microservices communicate with each other
and with MicroTx when you use the Eclipse MicroProfile Long Running Actions (LRA)
transaction protocol.

Chapter 1
About the Distributed Transaction Protocols

1-6

Let's understand how the microservices communicate with each other to process a sample
transaction.

1. The transaction initiator service calls the MicroTx LRA coordinator and passes its
callback URIs to begin and enlist in the LRA transaction.

2. The transaction initiator service calls one or more participant services by passing the ID
of the LRA in headers.

3. The other participant services call MicroTx and enlist or join the LRA transaction. When
participants join the LRA, they provide callback URIs including ones for completing and
compensating their part of the LRA.

4. The transaction initiator service calls MicroTx to either complete or compensate the
transaction.

5. MicroTx calls each participant service's complete callback URI or compensate callback
URI depending upon whether the transaction initiator service asks to complete or
compensate the transaction.

Each participant uses local transactions that are independent from each other. Since the LRA
transaction protocol uses local transactions, there are periods when the overall state of the
system is inconsistent while the goal of the transaction is to achieve consistency at the end of
the transaction. This is because the local transactions complete or compensate
independently. As a result, there are periods when one or more local transactions are
completed or compensated while others have not. Because of the lack of locking and

Chapter 1
About the Distributed Transaction Protocols

1-7

isolation, other systems or users will be able to see these inconsistent states and
potentially make faulty decisions based upon those inconsistent states.

1.3.3 Try-Confirm/Cancel Transaction Protocol
The Try-Confirm/Cancel (TCC) transaction protocol holds some resources in a
reserved state until the transaction is either confirmed or canceled. If the transaction is
canceled, the reserved resources are released and are available in the inventory.

The TCC transaction protocol relies on the basic HTTP verbs: POST, PUT, and DELETE.
Ensure that your application conforms to the following guidelines:

• The transaction initiator service must use the POST HTTP method to create a new
reservation. As a response to this request, the transaction participant services
must return a URI representing the reservation. The MicroTx client libraries places
the URI in MicroTx specific headers to ensure that the URI is propagated up the
call stack.

• This protocol relies upon the participant services to ensure that all participant
services either confirm their reservations or cancel their reservations. The URIs
must respond to the PUT HTTP method to confirm a reservation, and to the DELETE
HTTP method to cancel a reservation.

The following image describes how microservices and MicroTx interact with each other
in a TCC transaction.

Microservice A is a transaction initiator service. It starts and ends a transaction. It
sends a request to participant services which indicates that the participant service
should be part of the transaction.

Chapter 1
About the Distributed Transaction Protocols

1-8

Microservice B and C are the participant services. These services only join an existing
transaction. They do not initiate a transaction.

Try Phase

In the TCC protocol, a transaction initiator services asks other participant microservices to
reserve resources. During the try phase, MicroTx library collects all the accepted
reservations. This includes reservations made by the participant services. By the time the
initiator (in the example image above, Microservice A) completes making reservations with
Microservice B and Microservice C, the MicroTx library collects all the reservations. At this
point the initiator can decide to confirm the reservations, cancel the reservations, or ignore
the reservations which would let timeouts eventually cancel the reservations.

Confirm/Cancel Phase

Based on the business logic provided in the initiator service, it can decide to either confirm all
the reservations or cancel all the reservations. When the initiator and all participants have
acquired the required reservations, the initiator service sends a request to MicroTx to confirm
all the reservations. Based on its business logic, if the initiator service decides that it does not
want or cannot use the reservations made, it requests the MicroTx to cancel all the
reservations. What constitutes a reservation is completely up to the application.

Let us look at a simple microservice that allows reserving and purchasing a seat for a
performance. Seats would have a state which could either be AVAILABLE, RESERVED, or SOLD.
The try phase would have changed the state of the seat to RESERVED from AVAILABLE. The
confirm phase would change the state from RESERVED to SOLD, assuming that payment was
made successfully. The cancel phase would change the state from RESERVED to AVAILABLE.
To prevent failure of the confirm step when a payment has not been completed successfully,
during the Try phase, the microservice should obtain payment authorization to ensure the
payment can be made.

Let us consider another example where an application reserves a certain quantity, such as
items in an inventory or funds from an account. In this case, during the Try phase the
application might deduct the reserved quantity from the available quantity and add a record of
the reservation to the database. During the confirm phase, the reservation record is deleted.
During the cancel phase, the amount in the reservation record is added back to the total
inventory and the reservation record is deleted.

The following steps describe the successful path of a TCC transaction among microservices
and MicroTx. In case of failures, the initiator service calls cancel instead of confirm.

1. The transaction initiator service, Microservice A, makes a MicroTx client library call to
begin the TCC transaction.

2. The transaction initiator service invokes POST on Microservice B, a participant service, to
reserve a resource X.

3. Microservice B reserves the required resources, and then returns a URI representing its
reservation to Microservice A, the transaction initiator.

4. The transaction initiator service invokes POST on Microservice C, a participant service, to
reserve a resource Y.

5. Microservice C reserves the required resources, and then returns a URI representing its
reservation to Microservice A, the transaction initiator.

6. Microservice A, the transaction initiator service, calls MicroTx to either confirm or cancel
the reservations.

Chapter 1
About the Distributed Transaction Protocols

1-9

7. MicroTx calls PUT to confirm or DELETE to cancel on all the URIs (reservations) to
complete the transaction.

8. The participant services confirm or cancel the resources, and then return the
HTTP response code 200 to MicroTx.

9. MicroTx returns a successful status to the transaction initiator, Microservice A. If
MicroTx does not receive 200 status from one or more participants, then it returns
an error message.

1.4 Workflow to Install and Use MicroTx
Use the following workflow as a guide to install, configure, and use MicroTx to manage
transactions.

Task Description See

Understand the requirements and
select a transaction protocol for your
application

Plan the installation and setup of
MicroTx based on your business
requirements.

Plan

Download the installation bundle The installation bundle contains the
MicroTx image and other required
files.

Download the Installation Bundle

Complete the authentication and
authorization requirements

Set up an identity provider and
create an access token.

About Authentication and
Authorization

Push the MicroTx image to Docker
registry, provide configuration
information, and then install MicroTx.

You can install MicroTx on a
Kubernetes cluster or Docker
Swarm. Provide configuration
information in the values.yaml file
for Kubernetes and the tcs-
docker-swarm.yaml file for Docker
Swarm.

Install on a Kubernetes Cluster or
Install on Docker Swarm

Access MicroTx Verify that MicroTx was installed
properly and access the service.

Post-Installation Tasks

Run Sample Applications Optional. Using samples is the
fastest way for you to get familiar with
MicroTx.

Deploy Sample Applications

Use MicroTx library with your
application code.

Perform this step for all the
transaction participant and
transaction initiator applications so
that your applications can access the
library which interacts with MicroTx.

Perform this task based on the
transaction protocol that you want to
use.
• Develop Applications with XA
• Develop Applications with LRA
• Develop Applications with TCC

Install and run your application After using the library files in your
application, install and run your
applications.

Deploy Your Application

Chapter 1
Workflow to Install and Use MicroTx

1-10

2
Plan

Consider the points discussed in this section to plan the installation and setup of Transaction
Manager for Microservices (MicroTx).

• Supported Container Platforms

• Supported Languages

• Supported Databases

• Supported Identity Providers

• Limits

• Considerations for Deployment on Kubernetes
Consider the following factors while deploying MicroTx on Kubernetes.

• Select a Transaction Protocol
Select a transaction protocol for your application based on your business requirements.

• About Transaction Recovery
From MicroTx release 22.3.1, the transaction coordinator server resumes the
transactions that were in progress when server the restarts after a failure.

• About Session Affinity
MicroTx release 22.3.1 supports session affinity. When you enable session affinity, all the
requests for a unique transaction or session are routed to the same endpoint or replica of
the participant service that served the first request.

2.1 Supported Container Platforms
You can deploy MicroTx on Docker or on Kubernetes cluster.

MicroTx is tested with Kubernetes 1.21.x. You can use any Kubernetes distribution
compatible with Kubernetes 1.21.x.

MicroTx is tested with Docker 20.10.x. You can use any operating system that supports
Docker 20.10.x or a compatible version.

2.2 Supported Languages
Use MicroTx to ensure transactional consistency across microservices application coded in
the following languages:

• TypeScript or JavaScript for Node.js

• Java (applications built with frameworks, such as Helidon, Spring Boot, and WebLogic
Server)

• Python 3.3 or later

2-1

MicroTx supports Node.js and Java for all the transaction protocols and supports
Python only for TCC.

Java applications must use REST APIs implemented with Jersey. MicroTx libraries
provides filters that are compatible with JAX-RS as implemented in Jersey.

2.3 Supported Databases
MicroTx release 22.3.1 supports the following databases:

• All supported versions of Oracle On-Premise Database

• Autonomous Database for Transaction Processing and Mixed Workloads - both
shared and dedicated

• Bare Metal and Virtual Machine DB Systems in Oracle Cloud Infrastructure

• Oracle Exadata Cloud Service

• Oracle Exadata Cloud@Customer

• etcd

You can connect to an Oracle Database in your on-premises environment or connect
to an Oracle Cloud Infrastructure Database service.

The transaction initiator service and transaction participant services may also use a
database to store application data. If you select the XA transaction protocol for your
application, see Supported Resource Managers for information about the resource
managers that MicroTx supports. In XA transactions, MicroTx client libraries need to
access the resource manager's client libraries.

If you select LRA or TCC as the transaction protocol, you can use any database to
store your application data. MicroTx does not interact with the application database in
LRA and TCC transaction protocols.

2.4 Supported Identity Providers
You can use the following identity providers to create the authentication information
and secure communication.

• Oracle IDCS

• Oracle IAM

• Keycloak

• Microsoft Azure Active Directory and Active Directory

This guide provides information about creating an access token using Oracle IAM and
Oracle IDCS.

If you want to use Keycloak or Microsoft AD as the identity provider, refer to their
product documentation for information about setting up the identity provider and
creating an access token.

2.5 Limits

Chapter 2
Supported Databases

2-2

MicroTx permits 4800 transactions per hour across all the transaction protocols and across
all replicas of the transaction coordinator. If you exceed this limit, the HTTP 429: Too Many
requests error is displayed. The time period is considered from the moment you start
MicroTx.

2.6 Considerations for Deployment on Kubernetes
Consider the following factors while deploying MicroTx on Kubernetes.

The installation bundle provides Helm charts and this document provides details for a sample
deployment of MicroTx in a Kubernetes cluster with Istio service mesh. If you are using
another service mesh in a Kubernetes cluster, create your own Helm charts.

Supported Kubernetes Platforms

Deploy MicroTx in a Kubernetes cluster that is running in your data center or your cloud
environment. MicroTx is tested with Kubernetes 1.21.x or compatible versions on the
following platforms:

• Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE). See Creating a
Kubernetes Cluster in Oracle Cloud Infrastructure documentation.

• Minikube

• Oracle Linux Container Native Environment

Deployment Across Multiple Kubernetes Clusters

You can deploy your application microservices and MicroTx within a single Istio service mesh
in a single Kubernetes cluster.

When your application microservices are distributed across multiple Kubernetes cluster, or if
you want MicroTx to communicate with Oracle Database or Tuxedo, then you can deploy
MicroTx in a separate Kubernetes cluster. In such a scenario, each Kubernetes cluster will
contain an Istio service mesh. You will have to configure ingress and egress gateways to
enable communication between multiple Istio services meshes.

2.7 Select a Transaction Protocol
Select a transaction protocol for your application based on your business requirements.

Different business use cases require different levels of consistency. For example, financial
applications that move funds require strong global consistency. The XA transaction protocol is
a good fit for such applications as XA offers the best transaction consistency with the least
amount of developer effort. On the other hand making travel reservations typically doesn't
require this level of consistency, so LRA may be a better fit. LRA transactions provide the
most flexibility at the cost of developer complexity.

The following table lists a few parameters to help you choose a transaction protocol for your
application.

Parameters XA LRA TCC

Transaction consistency
level

Strongest Eventual Strong

Dirty reads No Yes No

Chapter 2
Considerations for Deployment on Kubernetes

2-3

https://docs.oracle.com/iaas/Content/ContEng/Tasks/contengcreatingclusterusingoke.htm
https://docs.oracle.com/iaas/Content/ContEng/Tasks/contengcreatingclusterusingoke.htm

Parameters XA LRA TCC

App development
complexity

Low High Medium

Auto rollback on timeouts
or errors

Yes Yes Yes

Transaction performance Good Better Best

Locks held during the
transaction

Yes No No

XA participants hold locks for the duration of the transaction. LRA and TCC use local
transactions that only span the duration of the participant's business logic.

The XA Transaction Protocol

Use this protocol for applications when the programming model places minimal
requirements on the application, with the application only determining the boundaries
and outcome of a transaction. You can also use XA when the service must meet ACID
requirements, which requires all participants to move from one consistent state to
another, with complete isolation and serializability.

To ensure serializability, resource managers lock the resources that have been read,
written, or deleted while the transaction is in process. This means that other
transactions using those same resources must wait until those locks are released. This
serialization of requests waiting for these locks can significantly limit the performance
of an application.

Another potential performance issue with XA is the additional latency it adds to a
transaction. The impact depends upon the latency of the actual business request and
the latency of the XA operations. For example, if a business request spanning several
microservices takes 800 milliseconds and the XA operations add another 200
milliseconds, it may not have a major impact on the importance. However, if a
business request takes 50 milliseconds, but the latency of XA operations adds an
additional 200 milliseconds, that would have a significant impact on the application's
performance.

The LRA Transaction Protocol

Use this protocol for applications where it might not be feasible or appropriate to use
XA transaction protocol. As XA transactions involve locks on resources, it is
recommended that XA transactions are relatively short lived involving only machine-to-
machine interactions. LRA protocol is a better fit when users are involved in the
decision making process for a transaction or for long workflows that may execute over
minutes to hours or more.

Since LRA protocol does not lock resources, they offer a major advantage as they do
not introduce serialization performance issues. Avoiding serialization issues is great for
performance, however LRA places some significant burdens on the application. When
an LRA transaction is aborted or canceled, the application developer must provide the
code to perform the appropriate compensating action. This may sound easy as one
can trivially compensate a deposit with a withdrawal. Yet if another intervening
withdrawal has taken place, it is conceivable that there aren’t enough funds to make
the compensating withdrawal. In this case it is likely that the compensating action
would fail leaving the transaction with a heuristic outcome. Many other cases exist
where it may be extremely difficult or impractical to implement compensating actions. It

Chapter 2
Select a Transaction Protocol

2-4

is the responsibility of the application developer to create the compensating actions, and it
may be difficult to test the compensating actions under all failure scenarios.

To use the advantages offered by both LRA and XA transaction protocols, you can nest an
XA transaction within an LRA transaction. Let's consider an application which books movie
tickets. The microservices that reserve the seats, use the LRA transaction protocol. The
microservices that make the payment for the reserved seats, use XA transaction. In this way
you can utilize the advantages offered by both LRA and XA transaction protocols and
improve performance.

Try-Confirm/Cancel (TCC) Transaction Protocol

Use this protocol when application business model supports reservations. For example, a
travel agency application which books a flight, rental car, hotel.

The TCC transaction protocol guarantees the same global consistency that the XA
transaction protocol provides, yet with limits on the type of application that can leverage the
TCC transaction protocol. TCC works only with application resources that can be held in
reserve. For example, flight or hotel reservations. With each reservation, the system moves
from one consistent state to another. The protocol is completely scalable as there are no
imposed serialization constraints. Similar to XA, TCC is easy for the developer to utilize as
the developer only needs to demarcate the transaction boundaries and determine the
outcome of the transaction. The transaction coordinator handles the workflow to ensure all
participant services either confirm or cancel the transaction, which further minimizes the
responsibility placed on the application code.

2.8 About Transaction Recovery
From MicroTx release 22.3.1, the transaction coordinator server resumes the transactions
that were in progress when server the restarts after a failure.

Every time the transaction coordinator server restarts, it goes through all the in-progress
transactions stored in the transaction store and restarts the ongoing transactions. The
recovery depends on the data that is available in the transaction store. The transaction store
should retain information about the earlier transactions even after the transaction coordinator
crashes or restarts. If you have set up etcd or Oracle Database for MicroTx to store the
transaction data, then you can obtain information about the in-progress transactions and
transaction details after the coordinator restarts. However, if you haven't set up a separate
transaction store and are using internal memory to store the transaction details, then all the
stored information is lost after the coordinator crashes or restarts.

MicroTx recovers in-progress transactions, based on the data available in the transaction
store, for transactions which are in the following states:

Transaction
protocol

Transaction
status

As part of transaction recovery, the transaction coordinator...

XA Preparing rolls back the transactions

XA Rolling
back

rolls back the transactions

XA Committing resends the prepare and commit commands and retries to commit the
transactions successfully

LRA Closing reissues the close command to close the transaction

LRA Canceling reissues the cancel command to cancel the transaction

TCC Confirming reissues the confirm command to confirm the transaction

Chapter 2
About Transaction Recovery

2-5

Transaction
protocol

Transaction
status

As part of transaction recovery, the transaction coordinator...

TCC Canceling reissues the cancel command to cancel the transaction

Additionally, for XA transaction protocol, the transaction coordinator dynamically
recovers the transactions which are not committed. See About Dynamic Recovery for
XA Transactions.

2.9 About Session Affinity
MicroTx release 22.3.1 supports session affinity. When you enable session affinity, all
the requests for a unique transaction or session are routed to the same endpoint or
replica of the participant service that served the first request.

Use a sticky session to associate a service instance, a Kubernetes pod or a replica,
with an application based on the oracle-tmm-txn-id HTTP header. A consistent hash
is created based on the oracle-tmm-txn-id HTTP header, and then the sticky session
is established. The MicroTx library and transaction coordinator include the oracle-
tmm-txn-id HTTP header in all subsequent calls.

When the transaction initiator service calls the participant service, the MicroTx library
injects the oracle-tmm-txn-id HTTP header in the outgoing request. All subsequent
calls from MicroTx to the participant service also include this header. In this manner all
requests are routed to a single replica of the transaction participant service.

Based on your business use case, you will need to enable session affinity for a
participant service or for the transaction coordinator. If you enable session affinity
when it isn't required, it may have an adverse impact on the application's performance.

When should you enable session affinity for an XA participant service

Enable session affinity for an XA participant service in the following scenarios only if
there are multiple instances or replicas of the participant service, so that all requests
are routed to a single replica. You must enable session affinity or sticky sessions for an
XA participant service in the following scenarios.

• When a transaction participant uses a non-XA resource and the Logging Last
Resource (LLR) or Last Record Commit (LRC) optimization is enabled.

• When a transaction participant uses PostgreSQL as a resource manager, that
requires you to use the same session for initiating the XA transaction and for all
subsequent requests.

When should you enable session affinity for transaction coordinator

You must enable session affinity for the transaction coordinator in LRA and XA
transactions, when you use internal memory as data store and deploy the transaction
coordinator on more than one replica. This ensures that all requests are routed to a
single replica of the transaction coordinator. You don't need to enable session affinity
for TCC transactions.

The process to enable session affinity for the transaction coordinator and participant
service is similar. To enable session affinity for the transaction coordinator, you will
update the YAML files for the transaction coordinator.

Chapter 2
About Session Affinity

2-6

For information about enabling session affinity for a participant service or transaction
coordinator, see Enable Session Affinity.

For each participant service, you may run one or more replicas of the service. The session
affinity to a particular host is lost when you add or remove replicas for a participant service.
For more details, see https://istio.io/latest/docs/reference/config/networking/destination-rule/
#LoadBalancerSettings-ConsistentHashLB.

Chapter 2
About Session Affinity

2-7

https://istio.io/latest/docs/reference/config/networking/destination-rule/#LoadBalancerSettings-ConsistentHashLB
https://istio.io/latest/docs/reference/config/networking/destination-rule/#LoadBalancerSettings-ConsistentHashLB

3
Prepare

Before you begin installing Transaction Manager for Microservices (MicroTx), set up a
transaction store, identity provider, and optionally, a load balancer.

• Transaction store: MicroTx uses a data store for persistence of transaction state. You can
use an etcd cluster or an Oracle Database for storing transaction information.

• Identity provider: Use the OpenID Connect JWT tokens to authenticate and authorize
user access to MicroTx.

• Load balancer: Optionally, if you set up a load balancer, it must support header-based
routing and mTLS.

• Download the Installation Bundle
Perform the following steps to download the MicroTx installation bundle to your local
system:

• Create a Data Store
Create a data store to store the transaction tables for MicroTx.

• About Authentication and Authorization
Authentication ensures that only authorized individuals get access to Transaction
Manager for Microservices (MicroTx), the microservices, and data. Authorization provides
access control to system privileges and data. This builds on authentication to ensure that
individuals get appropriate access.

3.1 Download the Installation Bundle
Perform the following steps to download the MicroTx installation bundle to your local system:

1. Download the MicroTx installation bundle (.zip file) from https://www.oracle.com/
database/transaction-manager-for-microservices/.

2. Unzip the MicroTx installation bundle.

unzip otmm-<version>.zip

3. Run the following command to view the list of files that are extracted.

ls -lR otmm-<version>

The following folders are available.

• lib: This folder contains the MicroTx library files. You must use these library files in your
application code to use MicroTx to manage transactions amongst your application
microservices.

• otmm: This folder contains the MicroTx image and YAML files which you can use to install
and configure MicroTx.

3-1

https://www.oracle.com/database/transaction-manager-for-microservices/
https://www.oracle.com/database/transaction-manager-for-microservices/

• samples: This folder contains the source code for sample applications for different
transaction protocols: XA, LRA, and TCC. The source code of the sample
applications also includes the MicroTx libraries.

3.2 Create a Data Store
Create a data store to store the transaction tables for MicroTx.

You can use either etcd or Oracle Database as the data store. Before installing
MicroTx, you must install and configure the data store. Ensure that you set up the
required networking rules to allow communication between the transaction coordinator
and the data store.
For details about setting up the Oracle Database, refer to the documentation that is
specific to the database that you want to set up.

Ensure that you have the required permissions to create tables in the database. When
you install MicroTx, the service creates the required tables in the database. MicroTx
requires certain details about the database.

• Get Autonomous Database Client Credentials
MicroTx supports using Oracle Database as a persistent store to keep track of the
transaction information.

• Generate RSA Certificates for etcd
You must provide etcd credentials and etcd endpoints in the YAML file for the
transaction coordinator. MicroTx uses this information to establish a connection to
the database after the service is installed.

3.2.1 Get Autonomous Database Client Credentials
MicroTx supports using Oracle Database as a persistent store to keep track of the
transaction information.

Skip this task if you are not using an Autonomous Database instance. If you are using
an Autonomous Database instance, perform the following steps to get the Oracle client
credentials (wallet files):

1. Download the wallet from the Autonomous Database instance. See Download
Client Credentials (Wallets) in Using Oracle Autonomous Database on Shared
Exadata Infrastructure.
A ZIP file is downloaded to your local machine. Let's consider that the name of the
wallet file is Wallet_database.zip.

2. Unzip the wallet file.

unzip Wallet_database.zip

The files are extracted to a folder. Note down the name of this folder. You will need
to provide it in the next steps.

3. Create a configuration map to store the location of the folder where you have
extracted the wallet files.
Perform this step only if you want to deploy MicroTx in a Kubernetes cluster.

Chapter 3
Create a Data Store

3-2

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-B06202D2-0597-41AA-9481-3B174F75D4B1
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-B06202D2-0597-41AA-9481-3B174F75D4B1

Ensure that you create the configuration map in the namespace where you want to
deploy MicroTx.

kubectl create configmap db-wallet-configmap --from-file=/
Wallet_database_folder/ -n otmm

Where,

• db-wallet-configmap is the name of the configuration map that you want to create.
Note down this name as you will need to provide this name in the values.yaml file
while deploying MicroTx.

• Wallet_database_folder is the folder where you have extracted the contents of the
zipped wallet file.

• otmm is the namespace where you want to deploy MicroTx.

Replace these values with values that are specific to your environment.

4. Perform the following steps only if you want to deploy MicroTx in Docker Swarm.

a. Create the connection string to the data store in Oracle Database.

If you are using a non-autonomous Oracle Database (a database that does not use a
credential wallet), use the following format to enter the connection string:

<publicIP>:<portNumber>/<database unique name>.<host domain name>

For example, 123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com.

b. Append &wallet_location=/app/Wallet to the connection string that you have
created in the previous step. For example:

tcps://adb.us-ashburn-1.oraclecloud.com:1522/
bfeldfxbtjvtddi_brijeshadw1_medium.adb.oraclecloud.com?
retry_count=20&retry_delay=3&wallet_location=/app/Wallet

Where, /app/Wallet is the location where you have downloaded the wallet file.

Note down this connection string as you'll have to provide this value later in the tcs-
docker-swarm.yaml file.

Next, based on the environment in which you want to install MicroTx, create a Docker secret
or Kubernetes secret to provide the Oracle Database login details.

3.2.2 Generate RSA Certificates for etcd
You must provide etcd credentials and etcd endpoints in the YAML file for the transaction
coordinator. MicroTx uses this information to establish a connection to the database after the
service is installed.

Skip this step if you are not using etcd as the transaction store.

Before you begin, complete the following tasks:

Chapter 3
Create a Data Store

3-3

• Install CFSSL tool. See https://github.com/cloudflare/cfssl. This topic provides
sample commands to create certificates using the CFSSL tool. You can use this
tool or any other tool of your choice to generate certificates.

• Install and configure the etcd database. For information to create an etcd data
store, see https://etcd.io/docs/.

• Enable TLS on etcd for additional security and provide the certificate details in the
YAML file for the transaction coordinator.

To create certificates and identify the etcd endpoints:

1. Create a directory.

The following sample code creates a directory named, cfssl.

mkdir cfssl
cd cfssl

Note the path of this directory as you will create all the certificates inside it.

2. Run the following command to identify the external IP address of the etcd
database server.

Run the following command only if you want to install MicroTx in a Kubernetes
cluster.

kubectl get svc

Sample output

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE

etcd ClusterIP None <none> 4002/
TCP,4003/TCP 5h8m

etcd-client LoadBalancer 192.0.2.83 198.51.100.1
4002:32135/TCP 5h8m

3. Note down the external IP address.

You will provide this value to generate the server certificate and as the etcd
endpoints in the YAML file for the transaction coordinator.

4. Run the following command to initialize certificate authority.

echo '{"CN":"CA","key":{"algo":"rsa","size":2048}}' | cfssl gencert
-initca - | cfssljson -bare ca -

This command creates three files in the current working directory: ca-key.pem,
ca.csr, and ca.pem files.

5. Run the following command to configure the certificate authority options.

Chapter 3
Create a Data Store

3-4

https://github.com/cloudflare/cfssl
https://etcd.io/docs/

Sample command

echo '{"signing":{"default":{"expiry":"43800h","usages":["signing","key
encipherment","server auth","client auth"]}}}' > ca-config.json

Where, the output is written to the ca-config.json file.

You can modify values for expiry and usages. For more information about these
attributes, refer to the CFSSL documentation.

6. Generate the server certificate.

a. Run the following command to assign the IP address of the etcd database server to
the variable ADDRESS. When you run this command in your environment, replace the
sample value with a value specific to your environment.

export ADDRESS=192.0.2.82

b. Run the following command to assign the name of the etcd database server to the
variable NAME. This is the server Common Name (CN) that is required to generate the
server certificate. When you run this command in your environment, replace the
sample value with a value specific to your environment.

export NAME=server

c. Run the following command to generate the server certificate.

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}'
| cfssl gencert -config=ca-config.json -ca=ca.pem -ca-key=ca-key.pem -
hostname="$ADDRESS" - | cfssljson -bare $NAME

This command creates three files in the current working directory: server-key.pem,
server.csr, and server.pem files.

7. Add permissions to the server certificate. Perform this step only if you want to install
MicroTx in Docker Swarm. Skip this step if you want to install MicroTx in a Kubernetes
cluster.

sudo chmod 644 server-key.pem
sudo chmod 644 server.pem

8. Generate the client certificate. While generating the client certificate, you don't need to
specify an IP address for the client certificate host.

a. Run the following command to assign a name to the variable NAME. This is the server
Common Name (CN) that is required to generate the client certificate. You can
provide any value to identify the client certificate.

export NAME=client

b. Run the following command to generate the client certificate.

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}'
| cfssl gencert -config=ca-config.json -ca=ca.pem -ca-key=ca-key.pem -
hostname="$ADDRESS" - | cfssljson -bare $NAME

Chapter 3
Create a Data Store

3-5

This command creates three files in the current working directory: client-
key.pem, client.csr, and client.pem files.

9. Run the following command to protect the client certificate with a password.

openssl rsa -passout pass:<your_password> -aes256 -in client-
key.pem -out client-ekey.pem

Replace, <your_password> with a password for your client private key file.
Remember the password that you provide as you'll have to provide it in the next
step.

The client-ekey.pem file is created in the current working directory. You will need
to provide the contents of the client-ekey.pem file and password in the next step.

10. In any text editor, create a JSON file which contains the contents of the client-
ekey.pem, client.pem, and the password that you have used to protect the client
certificate.

The client.pem file contains the client certificate and the client-ekey.pem file
contains the key.

a. Copy the contents of the client.pem, the client public key file, as the value of
the cert field.

b. Copy the contents of the client-ekey.pem, the client private key file, as the
value of the key field.

c. Enter the password for the client private key file that you have provided in the
previous step as the value of the keyPassword field.

d. Replace all the new lines with the newline character \n.

e. Create a JSON file with the edited values. The following code shows a sample
JSON file. The sample values have been truncated with ellipses (...) for
readability.

{
"cert":"-----BEGIN CERTIFICATE-----
\nMIIDOjCC...\nBQAwD..jHPs=\n-----END CERTIFICATE-----",
"key":"-----BEGIN RSA PRIVATE KEY-----\nProc-Type: 4,ENCRYPTED\nDEK-
Info: AES-256-CBC,1870...\n\nNb...\n-----END RSA PRIVATE KEY-----",
"keyPassword":"<your_password>"
}

11. Validate and then save the JSON file. Remember the name of the JSON file as
you have to provide the name of the file and its location. Let's consider that you
save the JSON file as etcdecred.json.

3.3 About Authentication and Authorization
Authentication ensures that only authorized individuals get access to Transaction
Manager for Microservices (MicroTx), the microservices, and data. Authorization
provides access control to system privileges and data. This builds on authentication to
ensure that individuals get appropriate access.

Chapter 3
About Authentication and Authorization

3-6

• About Authentication and Authorization
Use authorization and refresh tokens to ensure secure communication between the
transaction initiator service and MicroTx. Store the access and refresh tokens to support
asynchronous calls. Use token propagation to ensure secure communication between
participant services and MicroTx.

• Use Oracle Identity Providers
You can use Oracle Identity Cloud Service (IDCS) or Oracle IAM as an identity provider
to manage access to your application.

• Run the Discovery URL
After setting up the identity provider, run the Discovery URL in any browser to note down
the values that you must provide in the values.yaml file for authentication purposes.

• Create an Access Token
This topic provides details to create an access token when you use Oracle IDCS or
Oracle IAM as the identity provider.

3.3.1 About Authentication and Authorization
Use authorization and refresh tokens to ensure secure communication between the
transaction initiator service and MicroTx. Store the access and refresh tokens to support
asynchronous calls. Use token propagation to ensure secure communication between
participant services and MicroTx.

• About Authorization and Refresh Tokens
Use authorization and refresh tokens to ensure secure communication between the
transaction initiator service and MicroTx. Use an identity provider to create an
authorization token and a refresh token. When you send a new REST API request, such
as a request to book a trip, you must pass the authorization and refresh tokens in the
request header.

• About the Oracle_Tmm_Tx_Token Transaction Token
Enable the creation and propagation of the transaction token to ensure secure
communication between the participant services and MicroTx. When you set
transactionTokenEnabled to true in the YAML file, MicroTx creates a new token called
Oracle_Tmm_Tx_Token, which is a signed transaction token.

• About Encrypting and Storing Tokens
To support asynchronous calls, MicroTx stores the authorization and refresh tokens, and
then uses it in asynchronous calls.

3.3.1.1 About Authorization and Refresh Tokens
Use authorization and refresh tokens to ensure secure communication between the
transaction initiator service and MicroTx. Use an identity provider to create an authorization
token and a refresh token. When you send a new REST API request, such as a request to
book a trip, you must pass the authorization and refresh tokens in the request header.

Authorization Token

When you enable authentication, you must pass the access token in the authorization
header with every request. MicroTx enforces JWT-based authentication and validates the
authentication token in all incoming requests against the public key. It also validates all the
calls sent from the MicroTx library to the transaction coordinator. MicroTx checks that the
user who passes the authorization token has the required system privileges to perform the
operation. This ensures that only validated users can access the MicroTx APIs.

Chapter 3
About Authentication and Authorization

3-7

When you enable authorization in the YAML file and if you do not provide the
authorization token when you send the request, the transaction is rejected as there is
no authorization token.

Refresh Token

Refresh token is used to refresh an expired access token. Asynchronous calls or
transactions could span a few minutes or hours. For example, you use the LRA
transaction protocol to book a hotel and flight. It can take a few minutes for the user to
complete the bookings. However, the authentication token could expire before the user
completes the transaction. When you specify the URL and client ID of the identity
provider in the YAML file, MicroTx provides the refresh token to the identity provider
and gets a new access token.

3.3.1.2 About the Oracle_Tmm_Tx_Token Transaction Token
Enable the creation and propagation of the transaction token to ensure secure
communication between the participant services and MicroTx. When you set
transactionTokenEnabled to true in the YAML file, MicroTx creates a new token
called Oracle_Tmm_Tx_Token, which is a signed transaction token.

The following steps describe how MicroTx creates the Oracle_Tmm_Tx_Token
transaction token and propagates it in the subsequent communication between the
participant services and MicroTx.

1. When a user begins a transaction, the transaction initiator service sends a request
to MicroTx.

2. MicroTx responds to the transaction initiator and returns Oracle_Tmm_Tx_Token in
the response header.
The MicroTx library creates this token based on the private-public key pair that you
provide. You don't have to create the Oracle_Tmm_Tx_Token transaction token or
pass it in the request header.

MicroTx works with multiple headers and token. For the sake of simplicity, we are
limiting our discussion to the Oracle_Tmm_Tx_Token transaction token in this
section.

3. To secure calls from the participant services to the transaction coordinator, the
MicroTx library passes Oracle_Tmm_Tx_Token in the request header for all the
subsequent calls.

To enable propagation of the transaction token in a Kubernetes Cluster, see
Transaction Token Properties.

To enable propagation of the transaction token in Docker Swarm, see Transaction
Token Properties.

3.3.1.3 About Encrypting and Storing Tokens
To support asynchronous calls, MicroTx stores the authorization and refresh tokens,
and then uses it in asynchronous calls.

To store the tokens, you have to encrypt it as you can't store the token directly. To
encrypt the tokens, create encryption keys. MicroTx encrypts the tokens and stores it.
When there is an asynchronous call from MicroTx to a participant service, MicroTx
fetches the encrypted token, decrypts it, and then attaches the token to the request
header.

Chapter 3
About Authentication and Authorization

3-8

MicroTx encrypts the access and refresh tokens, and then uses it later while making calls to
participant services. For each transaction, MicroTx generates a new value for the initialization
vectors. Each transaction record contains the encrypted metadata information, such as key
version and initialization vector value.

3.3.2 Use Oracle Identity Providers
You can use Oracle Identity Cloud Service (IDCS) or Oracle IAM as an identity provider to
manage access to your application.

If you want to use Keycloak or Microsoft AD as the identity provider, refer to their product
documentation for information about setting up the identity provider and creating an access
token.

Oracle Cloud Infrastructure previously used Oracle IDCS as the identity provider. Now,
Oracle Cloud Infrastructure uses Oracle IAM as the identity provider.

To identify if your Oracle Cloud Infrastructure tenancy uses Oracle IDCS or Oracle IAM:

1. Log in to the Oracle Cloud Infrastructure console.

2. Open the navigation menu and click Identity & Security.

• Under Identity, if you see Users and Groups, your tenancy has not been migrated
to Oracle IAM. Your tenancy uses Oracle IDCS.

• Under Identity, if you see Domains, your tenancy has been migrated to Oracle IAM.

Based on whether your tenancy uses Oracle IDCS or Oracle IAM, you can use the relevant
information to create a confidential application and activate it.

• Use Oracle IAM as Identity Provider
You can use Oracle IAM as identity provider to manage access to your application.

• Use Oracle IDCS as Identity Provider
You can use Oracle IDCS as identity provider to manage access to your application.

3.3.2.1 Use Oracle IAM as Identity Provider
You can use Oracle IAM as identity provider to manage access to your application.

1. In the Oracle Cloud Infrastructure console, add your application as a confidential
application. See Adding a Confidential Application in Oracle Cloud Infrastructure
documentation.

Chapter 3
About Authentication and Authorization

3-9

https://cloud.oracle.com/
https://docs.oracle.com/en-us/iaas/Content/Identity/applications/overview.htm#add-confidential-application

While adding a confidential application, perform the following tasks:

a. On the Configure OAuth pane, under Resource server configuration, click
Skip for later.

b. On the Configure OAuth pane, click Configure this application as a client
now, and then select the following options:

• Resource owner

• Client credentials

• JWT assertion

• Refresh token

• Authorization code

• Allow HTTP URLs: Optional. Select this option only if you want to add a
redirect URL without HTTPS. If you don't select this option, only HTTPS
URLs are supported.

• Add Redirect URL: Enter the application URL where the user is
redirected after authentication.

c. Skip web tier policy configuration.

The application is created.

2. Click Activate to activate the application.

3. Under General Information, note down the values for Client ID and Client
secret.

4. Click Users, and then assign users to the application. See Assigning Users to
Custom Applications in Oracle Cloud Infrastructure documentation.

5. Open the navigation menu and click Identity & Security. Under Identity, click
Domains. Select the identity domain you want to work in.

The Domain information tab of the identity domain is displayed.

6. From this tab, copy the Domain URL. For example, https://idcs-
a83e4de370ea4db1b8c703a0b742ce74.identity.oraclecloud.com. You'll need
this information while running the Discovery URL.

Chapter 3
About Authentication and Authorization

3-10

https://docs.oracle.com/en-us/iaas/Content/Identity/applications/overview.htm#assign-users-custom-applications
https://docs.oracle.com/en-us/iaas/Content/Identity/applications/overview.htm#assign-users-custom-applications

7. Enable client access for the signing certificate. By default, access is restricted to only the
signed-in users. To access this certificate in Docker, Kubernetes, and Istio, you must
enable client access.

a. Select the identity domain you want to work in and click Settings and then Domain
settings.

b. Turn on the switch under Access Signing Certificate to enable clients to access the
tenant signing certificate without logging in to IAM.

c. Click Save to save the default settings.

d. To check if you can access the certificate without logging in, type the following link in
a new browser window.

https://<yourtenant>.identity.oraclecloud.com/admin/v1/SigningCert/jwk

Where, <yourtenant> are the details of your Oracle Cloud Infrastructure tenancy.

You should be able to open the link without logging in to Oracle Cloud Infrastructure.

3.3.2.2 Use Oracle IDCS as Identity Provider
You can use Oracle IDCS as identity provider to manage access to your application.

1. In the Oracle Cloud Infrastructure console, add your application as a confidential
application. See Adding a Confidential Application in Administering Oracle Identity Cloud
Service.

While adding a confidential application, perform the following tasks:

a. On the Add Confidential Application wizard's Client page, click Configure this
application as a client now.

b. In the Authorization section, select the following options:

• Resource owner

• Client credentials

• JWT assertion

• Refresh token

• Authorization code

• Redirect URL: Enter the application URL where the user is redirected after
authentication.

c. Skip the next steps. Use the default selections, and then click Finish. The application
has been added in a deactivated state.

d. Record the Client ID and Client Secret that appear in the Application Added dialog
box. You will need to provide this information later.

e. Click Close.
The new application's details page is displayed.

f. At the top of the page, to the right of the application name, click Activate to activate
the application.

g. In the Activate Application? dialog box, click Activate Application.

Chapter 3
About Authentication and Authorization

3-11

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/add-confidential-application.html

2. Click Users, and then assign users to the application. See Assign Applications to
the User Account in Administering Oracle Identity Cloud Service.

3. Enable client access for the signing certificate. By default, access is restricted to
only the signed-in users. To allow clients to access the tenant signing certificate
and the SAML metadata without logging in to Oracle Identity Cloud Service,
perform the following steps.

a. In the Identity Cloud Service console, expand the Navigation Drawer, click
Settings, and then click Default Settings.

b. Turn on the Access Signing Certificate option.

c. Click Save to save the default settings.

3.3.3 Run the Discovery URL
After setting up the identity provider, run the Discovery URL in any browser to note
down the values that you must provide in the values.yaml file for authentication
purposes.

For more information, see Token Validation in REST API for Oracle Identity Cloud
Service.

To run the Discovery URL and note down the required information:

1. Run the Discovery URL in any browser.

Syntax of Discovery URL

https://<tenant-base-url>/.well-known/openid-configuration

Example Discovery URL

https://idcs-
a83e4de370ea4db1c703a0b742ce74.identity.oraclecloud.com/.well-known/
openid-configuration

A list of values is displayed.

2. Note down the values for the issuer and jwksUri fields. You will need to provide
these values in the values.yaml file. For example:

issuer: "https://identity.oraclecloud.com"
jwksUri: "https://idcs-
a83e4de370ea4db8c703a0b742ce74.identity.oraclecloud.com:443/
admin/v1/SigningCert/jwk"

3. Note down the value for audience.

Chapter 3
About Authentication and Authorization

3-12

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/assign-applications-user-account.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/assign-applications-user-account.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/TokenValidation.html

3.3.4 Create an Access Token
This topic provides details to create an access token when you use Oracle IDCS or Oracle
IAM as the identity provider.

If you want to use Keycloak or Microsoft AD as the identity provider, refer to their product
documentation for information about setting up the identity provider and creating an access
token.

API calls to the service require a valid authentication token. Create an access token which
you can specify in subsequent API calls to the service. In addition to the access token, you
can also specify the refresh token in subsequent API calls to the service. MicroTx uses the
refresh token to refresh an expired access token.

Before you begin, ensure that you have set up your identity provider and noted down the
values for client ID, client secret, and the domain URL.

1. Launch a terminal and enter the following command.

echo -n "clientid:clientsecret" | base64 -w 0

Where, replace clientid:clientsecret with the values in your environment. -w 0 is
added for Linux to the command to remove line breaks.

The base64 encoded value of the client ID and client secret is returned. Note down this
value as you will need to provide it later.

Based on your environment, you can use any base64 client to encode the
clientid:clientsecret.

2. Copy the value that is returned. You'll have to provide this value every time you want to
create an authentication token.

3. Get an authentication token using the base64-encoded value, as shown in the following
cURL command example. Run one of the following commands based on whether you
want to generate only the access token or the refresh token as well.

• The following command creates the access token.

Command syntax

curl -i
-H "Authorization:Basic {base64 encoded value of
clientid:clientsecret}"
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
--request POST https://domain-url/oauth2/v1/token
-d
"grant_type=password&username=username&password&scope=urn:opc:idm:__my
scopes__"

Example

curl -i
-H "Authorization:Basic ZWY1N2E1OWUyZjY..."
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8"
--request POST https://idcs-

Chapter 3
About Authentication and Authorization

3-13

a83e4de370ea4db1b8c703a0b742ce74.identity.oraclecloud.com/
oauth2/v1/token
-d
"grant_type=password&username=acme@example.com&password&scope=urn
:opc:idm:__myscopes__"

• The following command creates the access token and the refresh token.

Command syntax

curl -i
-H "Authorization:Basic {base64 encoded value of
clientid:clientsecret}"
-H "Content-Type: application/x-www-form-
urlencoded;charset=UTF-8"
--request POST https://domain-url/oauth2/v1/token
-d
"grant_type=password&scope=urn:opc:idm:__myscopes__+offline_acces
s&username=username&password=password"

Example

curl -i
-H "Authorization:Basic ZWY1N2E1OWUyZjY..."
-H "Content-Type: application/x-www-form-
urlencoded;charset=UTF-8"
--request POST https://idcs-
a83e4de370ea4db1b8c703a0b742ce74.identity.oraclecloud.com/
oauth2/v1/token
-d
"grant_type=password&scope=urn:opc:idm:__myscopes__+offline_acces
s&username=acme@example.com&password=password"

4. Copy the access_token value from the response as shown in the following
example.

Example output

{
 "access_token":"eyJ4Lm...",
 "expires_in": 300,
 "refresh_expires_in": 1800,
 "refresh_token": "ey5Gkr...",
 "token_type": "Bearer",
 "not-before-policy": 0,
 "session_state": "c966d...",
 "scope": "profile email"
}

The example response has been truncated with ellipses (...) for readability.

Make sure to copy only the actual token, which is the access_token and
refresh_token values between the quotation marks.

Chapter 3
About Authentication and Authorization

3-14

5. Store the authentication token and refresh tokens in environment variables, as shown in
the following example for a Linux host.

export TOKEN="eyJ4Lm..."
export REFRESH_TOKEN="ey5Gkr..."

6. Store the authentication cookie in an environment variable, as shown in the following
example for a Linux host.

export OTMM_COOKIE="eyJh...x_THw"

The example value has been truncated with ellipses (...) for readability.

After you obtain the OAuth 2.0 tokens, use the tokens in the authorization and refresh-
token headers while making subsequent API calls to the service.

Chapter 3
About Authentication and Authorization

3-15

4
Install on a Kubernetes Cluster

You can install Transaction Manager for Microservices (MicroTx) on Docker or on a
Kubernetes cluster.

If you want to install MicroTx on a Kubernetes cluster, skip this section and see Install on
Docker Swarm.

In Kubernetes, you can install MicroTx within a service mesh or without it. The installation
bundle provides Helm charts and this section provides instructions to install MicroTx on a
Kubernetes cluster with Istio service mesh. You can create a similar configuration to install
MicroTx in other supported environments. If you are using another service mesh in a
Kubernetes cluster, create your own Helm charts.

The following image shows a sample deployment where MicroTx is installed in a Kubernetes
cluster within an Istio service mesh along with other microservices.

Istio is a service mesh that provides a separate infrastructure layer to handle inter-service
communication. Network communication is abstracted from the services themselves and is
handled by proxies. Istio uses a sidecar design, which means that the communication proxies
run in their own containers beside every service container. Envoy is the proxy that is
deployed as a sidecar inside the microservices container. All communication inside the
service mesh is done through the Envoy proxies.

Before you begin, ensure that you have completed the prerequisites. See Prepare.

4-1

Perform the following steps to install MicroTx:

1. Create a Kubernetes Cluster

2. Prepare the Environment

3. Create a Kubernetes Secret to Access Docker Registry

4. Push Images to a Remote Docker Repository

5. Authenticate and Authorize

6. Configure the values.yaml File

7. Install MicroTx

• Create a Kubernetes Cluster
Create a Kubernetes cluster or use an existing one. You will install MicroTx onto
this cluster.

• Prepare the Environment
Before installing MicroTx, you must install the required software on your local
machine and configure the environment on your local machine.

• Create a Kubernetes Secret to Access Docker Registry
When you install the application using Helm, use a Kubernetes secret to provide
the authentication details to pull an image from the remote repository.

• Push Images to a Remote Docker Repository
The installation bundle that you have downloaded to your local system contains a
Docker image of MicroTx.

• Authenticate and Authorize
Authentication ensures that only authorized individuals get access to the system
and data. Authorization provides access control to system privileges and data.
This builds on authentication to ensure that individuals get appropriate access.

• Create a Kubernetes Secret for Oracle Database Credentials
MicroTx supports using Oracle Database as a persistent store to keep track of the
transaction information.

• Create a Kubernetes Secret for etcd
You must provide etcd credentials and etcd endpoints in the values.yaml file.
MicroTx uses this information to establish a connection to etcd after the service is
installed.

• Enable Session Affinity
When you enable session affinity, all the requests for a unique transaction or
session are routed to the same endpoint or replica of the participant service that
served the first request.

• Configure the values.yaml File
The installation bundle contains values.yaml file, the manifest file of the
application, which contains the deployment configuration details for MicroTx.

• Install MicroTx
Use Helm to install MicroTx onto a Kubernetes cluster.

• Find IP Address of Istio Ingress Gateway
Before you start a transaction, you must note down the external IP address of the
Istio ingress gateway.

Chapter 4

4-2

• Access MicroTx
To access MicroTx, specify the port number, host name, and protocol that you want to
use to access. Oracle recommends that you use HTTP protocol only in test or
development environments. In production environments, you must use HTTPS protocol.

4.1 Create a Kubernetes Cluster
Create a Kubernetes cluster or use an existing one. You will install MicroTx onto this cluster.

Before you begin, you must plan the environment in the following way:

• Decide if you require a single-node or a multinode Kubernetes cluster to host MicroTx.
Oracle recommends that you create at least a single-node cluster in development
environments and at least a three-node cluster in production environments.

• Identify the different components in your environment. If your microservices are running
in a Kubernetes cluster, you can install MicroTx in the same cluster or a different cluster.
If your microservices are distributed across multiple Kubernetes clusters or if you want
MicroTx to communicate with components such as Oracle Database or Tuxedo, which
are not part of any Kubernetes cluster, create a Kubernetes cluster to host MicroTx.

4.2 Prepare the Environment
Before installing MicroTx, you must install the required software on your local machine and
configure the environment on your local machine.

Perform the following steps to install the required software and configure the environment in
your local machine:

1. Install and configure Kubernetes command-line interface (Kubectl), 1.21.x or later
versions, to work with your Kubernetes cluster. See https://kubernetes.io/docs/tasks/
tools/.

Use Kubectl to create and manage your deployments. Kubectl uses the Kubernetes
APIs to interact with the cluster.

2. Install the latest version of Helm 3.x on your local machine. For more information, see
https://helm.sh/docs/intro/install/.

Use Helm to make deployments easier as you can run a single command to install
applications and resources into Kubernetes clusters. Helm interacts with the Kubernetes
API server to install, upgrade, query, and remove Kubernetes resources.

3. Install Istio, 1.12.1 or later versions, onto the Kubernetes cluster with the default Istio
profile.

a. Run the following command to download Istio.

curl -sL https://istio.io/downloadIstioctl | sh -

b. Move to the Istio package directory. For example, if the package is istio-1.12.1:

cd istio-1.12.1

Chapter 4
Create a Kubernetes Cluster

4-3

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/

c. Add the istioctl client tool which is located in the bin folder to the PATH for
your workstation. The following example specifies the a sample value. Provide
the path based on your environment.

export PATH=$PWD/bin:$PATH

d. Run prerequisite checks to validate if the cluster meets Istio install
requirements.

istioctl x precheck

The following message is displayed. You can proceed with the next step and
install Istio if there are no issues.

No issues found when checking the cluster. Istio is safe to
install or upgrade!

e. Install Istio on the Kubernetes cluster with the default Istio profile. Oracle
recommends using the default Istio profile for production environments.
Additionally, enable distributed tracing and proxy access to logs in JSON
format at the mesh level, using the following command:

istioctl install --set meshConfig.accessLogFile=/dev/stdout \
 --set meshConfig.accessLogEncoding=JSON \
 --set meshConfig.enableTracing=true \
 --set meshConfig.defaultConfig.tracing.sampling=100.0

This creates access logs which you can use for audit. Enable distributed tracing to
monitor and troubleshoot microservices-based distributed systems, such as
monitoring distributed transactions, analyzing the root cause, analyze service
dependency, and optimize performance or latency.

For more information, see https://istio.io/latest/docs/setup/additional-setup/config-
profiles/.

4. Create a namespace to deploy Transaction Manager for Microservices in the
Kubernetes cluster. The following command creates a namespace with the name
otmm, where otmm is the name of the namespace that you want to create:

Sample Command

kubectl create ns otmm

Sample Response

namespace/otmm created

5. Label the namespace that you have created with istio-injection=enabled to put
automatic sidecar injection into effect. The following command labels the otmm
namespace:

Sample Command

kubectl label namespace otmm istio-injection=enabled

Chapter 4
Prepare the Environment

4-4

https://istio.io/latest/docs/setup/additional-setup/config-profiles/
https://istio.io/latest/docs/setup/additional-setup/config-profiles/

Sample Response

namespace/otmm labeled

4.3 Create a Kubernetes Secret to Access Docker Registry
When you install the application using Helm, use a Kubernetes secret to provide the
authentication details to pull an image from the remote repository.

The Kubernetes Secret contains all the login details you provide if you were manually logging
in to the remote Docker registry using the docker login command, including your
credentials.

1. Create a secret by providing the credentials on the command-line by using the following
command.

kubectl create secret docker-registry NAME --docker-server=SERVER --
docker-username=USERNAME --docker-password=PASSWORD --docker-email=EMAIL
--namespace=NAMESPACE

Where,

• NAME: Name of the Kubernetes secret that you want to create. Note down this name
as you will use this name later in the manifest file to refer to the secret.

• SERVER: Name of your private Docker registry. The format varies based on your
Kubernetes platform. For example, the format of the user name in Oracle Cloud
Infrastructure environment is <region-key>.ocir.io.

• USERNAME: User name to access the remote Docker registry. The format varies based
on your Kubernetes platform. For example, the format of the user name in Oracle
Cloud Infrastructure environment is <tenancy-namespace>/<oci-username>.

• PASSWORD: Password to access the remote Docker registry.

• EMAIL: Email ID for your Docker registry.

• NAMESPACE: Namespace where you want to deploy MicroTx.

Example

Use the following command to create a Kubernetes secret with the name regcred in the
otmm namespace.

kubectl create secret docker-registry regcred --docker-server=iad.ocir.io
--docker-username=mytenancy/myuser --docker-password=pwd --docker-
email=myuser@example.com --namespace=otmm

2. Note down the name of the secret that you have created. You will need to provide this
value later.

3. Close the terminal.

When you type secrets at the command line, the command line may store the secrets in
your shell history unprotected. The secrets might also be visible to other users on your
PC during the time that kubectl is running. To overcome this issue, you can close the
terminal after creating the secret.

Chapter 4
Create a Kubernetes Secret to Access Docker Registry

4-5

You can also create a secret based on existing credentials. See https://kubernetes.io/
docs/tasks/configure-pod-container/pull-image-private-registry/#registry-secret-
existing-credentials.

4.4 Push Images to a Remote Docker Repository
The installation bundle that you have downloaded to your local system contains a
Docker image of MicroTx.

Load these image to your local repository, and then push the images to a remote
Docker repository. Kubernetes pulls these images from the remote repository to install
MicroTx.

If you are using Oracle Cloud Infrastructure Registry, see Push an Image to Oracle
Cloud Infrastructure Registry. If you are using other Kubernetes platforms, use the
instructions provided in this section.

Before you begin, complete the following tasks:

• Identify a remote private repository to which you want to upload the container
image. You can create a new remote Docker repository or use an existing one.
Use a private repository to limit access. When you use a remote Docker
repository, you have to push images to the remote Docker repository only once,
while you can pull an image multiple times onto any Kubernetes cluster that you
create.

• Create a Kubernetes secret to access the remote Docker repository. See Create a
Kubernetes Secret to Access Docker Registry.

Perform the following steps to push the Docker image of MicroTx to a remote Docker
repository:

1. Provide credentials to log in to the remote private repository to which you want to
push the image.

docker login <repo>

Provide the login credentials based on the Kubernetes platform that you are using.

2. Load the MicroTx image to the local Docker repository. The MicroTx image is
located at installation_directory/otmm-<version>/otmm/image/tmm-
<version>.tgz.

cd installation_directory/otmm-<version>/otmm
docker load < image/tmm-<version>.tgz

The following message is displayed when the image is loaded.

Loaded image: tmm:<version>

3. Use the following commands to specify a unique tag for the images that you want
to push to the remote Docker repository.

Syntax

docker tag local_image[:tag] remote_image[:tag]

Where,

Chapter 4
Push Images to a Remote Docker Repository

4-6

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#registry-secret-existing-credentials
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#registry-secret-existing-credentials
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#registry-secret-existing-credentials
https://www.oracle.com/webfolder/technetwork/tutorials/obe/oci/registry/index.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/oci/registry/index.html

• local_image[:tag] is the tag with which the image is identified in your local repository.

• remote_image[:tag] is the tag with which you want to identify the image in the remote
Docker repository.

Sample Commands

docker tag tmm:<version> <region-key>.ocir.io/otmmrepo/tmm:<version>

Where, <region-key>.ocir.io/otmmrepo is the remote Docker registry to which you
want to push the image file, tmm:<version>. Provide the registry details based on your
environment.

4. Push the Docker image from your local repository to the remote Docker repository.

Syntax

docker push remote_image[:tag]

Sample Commands

docker push <region-key>.ocir.io/otmmrepo/tmm:<version>

Note down the tag of the Docker image in the remote Docker repository. You'll need to enter
this tag while pulling the image from the remote Docker repository.

4.5 Authenticate and Authorize
Authentication ensures that only authorized individuals get access to the system and data.
Authorization provides access control to system privileges and data. This builds on
authentication to ensure that individuals get appropriate access.

• Generate a Kubernetes Secret for an Encryption Key
To support asynchronous calls, MicroTx stores the authorization and refresh tokens. To
store the tokens, you have to encrypt it as you can't store the token directly. To encrypt
the tokens, create encryption keys.

• Create a Key Pair for Transaction Token
The application supports including a MicroTx signed transaction token which is unique to
each MicroTx transaction.

4.5.1 Generate a Kubernetes Secret for an Encryption Key
To support asynchronous calls, MicroTx stores the authorization and refresh tokens. To store
the tokens, you have to encrypt it as you can't store the token directly. To encrypt the tokens,
create encryption keys.

MicroTx encrypts the tokens using the encryption keys that you provide. When there is an
asynchronous call from MicroTx to participant services, MicroTx fetches the encrypted token,
decrypts it, and then attaches the token to the authorization header.

You must generate an encryption key, and then add the key to a Docker secret if you have
enabled the authTokenPropagationEnabled property under authorization. The encryption
key that you generate must have the following attributes.

• Symmetric algorithm: AES-256

• Cipher mode: AES in GCM mode

Chapter 4
Authenticate and Authorize

4-7

• Key length: 32 bytes

• Length of initialization vectors: 96 bits

MicroTx encrypts the access and refresh tokens, and then uses it later while making
calls to participant services. For each transaction, MicroTx generates a new value for
the initialization vectors. Each transaction record contains the encrypted metadata
information, such as key version and initialization vector value.

1. Run the following command to generate an encryption key with a key length of 32
bytes.

openssl rand -hex 16

Note down the value that is generated. For example,
e9f0adab17c0180425147166c2ff1cd3.

2. Create a Kubernetes secret while using the encrypted key that you have
generated as the value. You must create this secret in the namespace where you
want to install MicroTx.

The following sample command creates a Kubernetes secret with the name
encryption-secret-key1 in the otmm namespace.

kubectl create secret generic encryption-secret-key1 \ --from-
literal=secret='e9f0adab17c0180425147166c2ff1cd3' -n otmm

3. Note down the name of the Kubernetes secret and its version. You will provide
these values to for the secretKeyName and version fields in the values.yaml file.

The following code snippet provides sample values for the encryption field in the
values.yaml file. The sample values in this example are based on the values used
in the sample commands in this topic.

encryption:
 encryptionSecretKeyVersion: "1"
 encryptionSecretKeys:
 - secretKeyName: "encryption-secret-key0"
 version: "0"
 - secretKeyName: " encryption-secret-key1"
 version: "1"

4.5.2 Create a Key Pair for Transaction Token
The application supports including a MicroTx signed transaction token which is unique
to each MicroTx transaction.

When you set transactionTokenEnabled to true, MicroTx creates a new token called
tmm-tx-token, which is a signed transaction token. When transaction initiator begins a
request, the MicroTx responds with the tmm-tx-token. To secure calls from the
participant services to MicroTx, the MicroTx library passes tmm-tx-token in the
request header. You don't have to create the tmm-tx-token transaction token or pass it
in the request header. The MicroTx library creates this token based on the private-
public key pair that you provide.

Chapter 4
Authenticate and Authorize

4-8

The transaction token that you generate must have the following attributes:

• Asymmetric algorithm: RSA 3072

• Key length: 3072 bits

• Hash algorithm: SHA256

Before you begin, ensure that you have installed OpenSSL.

1. Create RSA private key with key length as 3072 bits by using the following command:

openssl genrsa -aes256 -out private.pem 3072

2. Enter a pass phrase at the command prompt, and then press enter. Remember the pass
phrase as you will have to provide it later.

A new file called private.pem is created in the current working folder. This file contains
the RSA private key value.

3. Create a RSA public key for the private key that you have generated. Use the following
command:

The following command creates a new file called public.pem in the current working
folder. This file contains the RSA public key value.

openssl rsa -in private.pem -outform PEM -pubout -out public.pem

4. Run the following command to base64 encode the private.pem file.

Example command

base64 private.pem

The base64-encoded value of the private.pem file is returned.

Example response

LS0tLS...LS0tLQo=

The example response has been truncated with ellipses (...) for readability.

Note down the base64-encoded value of the private.pem file.

5. Create a Kubernetes secret with the base64-encoded value of the private.pem file.

The following command creates a Kubernetes secret with the name TMMPRIVKEY1 in the
otmm namespace, where you want to install MicroTx.

kubectl create secret generic TMMPRIVKEY1 \ --from-
literal=secret='LS0tLS...LS0tLQo=' -n otmm

Note down the name of the Kubernetes secret. You will need to provide this value later in
the values.yaml file.

6. Run the following command to base64 encode the public.pem file.

Chapter 4
Authenticate and Authorize

4-9

Example command

base64 public.pem

The base64-encoded value of the public.pem file is returned.

Example response

LS0tLS...LS0tCg==

The example response has been truncated with ellipses (...) for readability.

Note down the base64-encoded value of the public.pem file.

7. Create a Kubernetes secret with the base64-encoded value of the public.pem file.

The following command creates a Kubernetes secret with the name TMMPUBKEY1 in
the otmm namespace.

kubectl create secret generic TMMPUBKEY1 \ --from-
literal=secret='LS0tLS...LS0tCg==' -n otmm

Note down the name of the Kubernetes secret. You will need to provide this value
later in the values.yaml file.

8. Create Kubernetes secret with the value as private key password.

The following command creates a Kubernetes secret with the name
TMMPRIVKEYPASSWD1 and key password as Welcome1 in the otmm namespace.

kubectl create secret generic TMMPRIVKEYPASSWD1 \ --from-
literal=secret='Welcome1' -n otmm

Where, pwd... is the private key password. Replace this with a value specific to
your environment.

Note:

Do not base64-encode the key password, as you must enter the key
password in plain-text format.

Note down the name of the Kubernetes secret. You will need to provide this value
later in the values.yaml file.

Chapter 4
Authenticate and Authorize

4-10

4.6 Create a Kubernetes Secret for Oracle Database
Credentials

MicroTx supports using Oracle Database as a persistent store to keep track of the transaction
information.

You must provide the Oracle Database credentials in the values.yaml file. MicroTx uses the
credentials to establish a connection to the database after the service is installed.

If you are using an Autonomous Database instance, ensure that you have downloaded the
wallet and created a configuration map before you begin with the following steps. See Get
Autonomous Database Client Credentials.

To create a Kubernetes secret to provide the Oracle Database login details:

1. Create a Kubernetes secret with the Oracle Database login details. Ensure that you
create the Kubernetes secret in the namespace where you want to deploy MicroTx.

The following command creates a Kubernetes secret with the name db-secret in the
otmm namespace with the password of user acme. When you run this command in your
environment, replace these values with values specific to your environment.

kubectl create secret generic db-secret \
 --from-literal=secret='{"password":"*****", "username":"acme"}' -n
otmm

2. Note down the name of the Kubernetes secret that you have created. You will need to
provide this name in the values.yaml file while deploying MicroTx.

Update the values.yaml with the name of the Kubernetes secret that you have created to
store the Oracle Database credentials and the connection string. Additionally, provide the
name of the configuration map if you are using an Autonomous Database instance.

4.7 Create a Kubernetes Secret for etcd
You must provide etcd credentials and etcd endpoints in the values.yaml file. MicroTx uses
this information to establish a connection to etcd after the service is installed.

Before you begin, generate RSA certificates for etcd and create a JSON file with the contents
of the generated certificates. See Generate RSA Certificates for etcd.

If you plan to deploy etcd and MicroTx within the same Kubernetes cluster, then it is optional
for you to configure etcd with TLS. When etcd is configured with TLS, you must provide the
certificate details in the values.yaml file for the transaction coordinator.

To create Kubernetes secret and Kubernetes configuration map:

1. Create a Kubernetes secret with the content available in the JSON file that you have
created. Ensure that you create the Kubernetes secret in the namespace where you want
to deploy MicroTx.

kubectl create secret generic etcd-cert-secret \
 --from-file=location of etcdecred.json -n otmm

Chapter 4
Create a Kubernetes Secret for Oracle Database Credentials

4-11

Where,

• etcd-cert-secret is the name of the Kubernetes secret that you want to
create. Note down this name as you will need to provide this name in the YAML
file to install MicroTx.

• location of etcdecred.json is the location of the JSON file that you have
created in the previous step.

• otmm is the namespace where you want to deploy MicroTx.

2. Create a configuration map for the ca.pem file, which you had created previously
while initializing the certificate authority. Ensure that you create the configuration
map in the namespace where you want to deploy MicroTx.

kubectl create configmap etcd-ca-cert-map --from-file=location of
ca.pem -n otmm

Where,

• etcd-ca-cert-map is the name of the configuration map that you want to
create. Note down this name as you will have provide this name in the
values.yaml file for MicroTx.

• location of ca.pem is the location of the ca.pem file.

• otmm is the namespace where you want to deploy MicroTx.

You will need to provide the etcd endpoints, certificate, Kubernetes secret, and
Kubernetes configuration map that you have created in the values.yaml file. The
following code snippet provides sample value which are based on the values used in
the commands in this topic.

storage:
 type: etcd
 etcd:
 endpoints: "https://198.51.100.1:4002"
 skipHostNameVerification: "false"
 credentialSecret:
 secretName: "etcd-cert-secret"
 secretFileName: "etcdecred.json"
 cacertConfigMap:
 configMapName: "etcd-ca-cert-map"
 configMapFileName: "ca.pem"

If you do not provide the correct IP address for the endpoints field, then host
verification fails when you install MicroTx. To bypass the host verification in
development environments, you can set skipHostNameVerification to true in the
values.yaml file of MicroTx.

Caution:

You must set the skipHostNameVerification field to false in production
environments.

Chapter 4
Create a Kubernetes Secret for etcd

4-12

4.8 Enable Session Affinity
When you enable session affinity, all the requests for a unique transaction or session are
routed to the same endpoint or replica of the participant service that served the first request.

Use the instructions provided in this section to enable session affinity or sticky sessions if you
have deployed the participant service or transaction coordinator within an Istio service mesh.
The steps provided in this section are specific to enabling session affinity for a participant
service. You can enable session affinity for the transaction coordinator in a similar manner. To
enable session affinity for the transaction coordinator, update the YAML files and Helm Chart
that are specific to the transaction coordinator.

Before you begin, complete the following tasks:

1. Ensure that you have deployed the transaction participant service within an Istio service
mesh.

2. Identify if you need to enable session affinity for your participant service or for the
transaction coordinator. See About Session Affinity.

To enable session affinity for a participant service:

1. Create a networking rule for the application in the namespace where you want to deploy
it. The traffic policy must use a load balancer with consistent hash that uses the HTTP
request header, oracle-tmm-txn-id.

2. In the Helm Chart of the participant application, specify the oracle-tmm-txn-id HTTP
header in Istio's DestinationRule resource. Use a load balancer that is based on
consistent hash to provide session affinity based on the oracle-tmm-txn-id HTTP
header.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: sticky-participant
 namespace: otmm
spec:
 host: sticky-participant.otmm.svc.cluster.local
 trafficPolicy:
 loadBalancer:
 consistentHash:
 httpHeaderName: oracle-tmm-txn-id

Where,

• sticky-participant is the name of the participant application.

• otmm is the namespace in which you want to deploy your participant application.

• host: Specify the fully qualified name of your application inside the Kubernetes
cluster. For example, dept1.otmm.svc.cluster.local.

3. In the values.yaml file of the participant service, add the following line of code:

sessionAffinity: true

Chapter 4
Enable Session Affinity

4-13

4. In the networking.yaml file of the participant service, add the following lines of
code:

spec:
 host: {{$val.host}}
 trafficPolicy:
 loadBalancer:
 consistentHash:
 httpHeaderName: oracle-tmm-txn-id

4.9 Configure the values.yaml File
The installation bundle contains values.yaml file, the manifest file of the application,
which contains the deployment configuration details for MicroTx.

Replace the sample values in the values.yaml file to provide the environment details,
image details, and configuration details to deploy MicroTx.

While deploying MicroTx to a Kubernetes cluster, Helm pulls the MicroTx image from
the remote Docker registry. In the values.yaml file, specify the image to pull and the
credentials to use when pulling the images.

To provide configuration details for MicroTx:

1. Open the values.yaml file in any code editor. This file is located in the
installation_directory\otmm-RELEASE\otmm\helmcharts folder. This file
contains the sample values.

2. Replace the sample values with values that are specific to your environment.

The tables in this section describe the properties for the environment, storage,
authorization, authentication, and other configuration details that are required to
install MicroTx.

3. Save your changes.

• Environment Details
In the values.yaml file, provide information about the environment details in which
you want to install MicroTx.

• Image Properties
Under tmmImage, provide information about the MicroTx Docker image. It is
mandatory to provide values for these properties.

• Transaction Coordinator Properties
Under tmmConfiguration, provide information to configure MicroTx.

• Transaction Store Properties
MicroTx uses a data store for persistence of transaction state.

• Authorization Properties
MicroTx supports authorization across participant services and coordinator by
propagating the JWT token in every request. Use the
authTokenPropagationEnabled field to control this function. Configure your
identity providers to auto-refresh the expired access tokens at the coordinator.

Chapter 4
Configure the values.yaml File

4-14

• Authentication Properties
Under authentication, enter values for the issuer and jwksUri parameters of the
JSON Web Token (JWT) which is used for authentication. To find information for these
fields, use the Discover URL.

• Encryption Key Properties
Under encryption, specify the encryption key that MicroTx uses to encrypt the access
and refresh tokens. You must provide values for these properties if you have enabled
authTokenPropagationEnabled under tmmConfiguration.authorization.

• Transaction Token Properties
Under transactionToken, specify the key pair that you want to use for transaction token.

4.9.1 Environment Details
In the values.yaml file, provide information about the environment details in which you want
to install MicroTx.

Property Description

istioSystemNameSpace The namespace in which you have installed Istio. The default
namespace is istio-system. If you have installed Istio in
another namespace, run the following command to find all the
namespaces in the cluster.

kubectl get ns

istioIngressGateway Enter the name of the Istio ingress gateway that you have
created. For example, ingressgateway. To find the name of
the Istio ingress gateway, run the following command and from
the response note down the value for the istio label.

kubectl describe service/istio-ingressgateway -
n istio-system

applicationNameSpace Specify the namespace in which you want to deploy MicroTx.
For example, otmm.

tmmReplicaCount Enter 1 as you can only create a single replica of the MicroTx
pod.

4.9.2 Image Properties
Under tmmImage, provide information about the MicroTx Docker image. It is mandatory to
provide values for these properties.

Property Description

image Enter the tag of the MicroTx image that you have pushed to the
remote repository. For example, oracle-tmm:RELEASE.

imagePullPolicy Enter Always to ensure that the image is pulled during the
installation.

Chapter 4
Configure the values.yaml File

4-15

Property Description

imagePullSecret Specify the name of the Kubernetes secret that you have
created. This secret is used to pull the Docker images from the
remote repository. For example, regcred.

tmmImage:
 image: oracle-tmm:RELEASE
 imagePullPolicy: Always
 imagePullSecret: regcred

4.9.3 Transaction Coordinator Properties
Under tmmConfiguration, provide information to configure MicroTx.

Property Description

tmmAppName Enter the name of the MicroTx application that you want to
create. When you install MicroTx, Helm creates the MicroTx
application with the name that you specify. Note down this
name as you will need to provide it later. For example, tmm-
app.

tmmid Enter a value to uniquely identify each instance of MicroTx that
you install. The unique identifier must have 5-characeters and
can contain only alphanumeric characters (a-z, A-Z, and 0-9).
For example, TMM01.
Use this ID to identify MicroTx when there are multiple
installations. You cannot use this ID to differentiate between
replicas of a single instance of MicroTx installation as all the
replicas have the same ID. You can't change this value after
installing MicroTx.

port Enter the port over which you want to internally access MicroTx
within the Kubernetes cluster where you will install this service.
Create the required networking rules to permit inbound and
outbound traffic on this port. Note down this number as you will
need to provide it later. For example, 9000.

tmmExternalURL Enter the external URL to access MicroTx from outside the
Kubernetes cluster where you have deployed the service. See
Access MicroTx.

xaCoordinator,
lraCoordinator, or
tccCoordinator

Set enabled: "true" for the transaction protocols that you
want to use. MicroTx supports three distribution transaction
protocols: XA, LRA, and TCC. If you want to use nest an XA
transaction within an LRA transaction, set enabled: "true"
for both xaCoordinator and lraCoordinator.

txMaxTimeout Only for the XA transaction protocol. Specify the maximum
amount of time, in milliseconds, for which the transaction
remains active. If a transaction is not committed or rolled back
within the specified time period, the transaction is rolled back.
The default value is 600000 ms.

Chapter 4
Configure the values.yaml File

4-16

Property Description

narayanaLraCompatibilit
yMode

Only for the LRA transaction protocol. Set enabled to true
only when you want to use LRA participant applications that
were implemented to work with the Narayana LRA Coordinator
and now would participate in LRA transactions using MicroTx.
Enable this mode to ensure that the MicroTx LRA APIs return
the same response data that Narayana LRA Coordinator APIs
return.

logging.level Enter one of the following types to specify the log level for
MicroTx:
• info: Logs events that occur during the normal operation

of the MicroTx. This setting logs the least amount of
information. This is the default setting.

• warning: Logs events that may cause potentially harmful
situations.

• error: Logs events to indicate that there is an issue that
requires troubleshooting.

• debug: Logs all the events. Use this setting when you want
to debug an issue.

logging.httpTraceEnable
d

Set this to True to log all the HTTP request and responses in
MicroTx when you want to debug. If you set this to True, you
must also set the logging: level: to debug.

maxRetryCount The maximum number of times that the transaction coordinator
retries sending the same request again in case of any failures.
For example, 10.

minRetryInterval The minimum interval, in milliseconds, after which the
transaction coordinator retries sending the same request again
in case of any failures. The default value is 1000 ms.

maxRetryInterval The maximum retry interval, in milliseconds, before which the
transaction coordinator retries sending the same request again
in case of any failures. For example, 10000.

skipVerifyInsecureTLS Oracle recommends that you set this value to false and set up
a valid certificate signed by trusted authorities for secure
access. When you set this value to false, the transaction
coordinator accesses the participant applications over the
HTTPS protocol with a valid certificate signed by trusted
authorities. The default value is false.

If you set this value to true, the transaction coordinator can
access the participant application's callback URL, without a
valid SSL certificate, in an insecure manner.

Caution:

Do not set this value to true in
production environments.

Chapter 4
Configure the values.yaml File

4-17

4.9.4 Transaction Store Properties
MicroTx uses a data store for persistence of transaction state.

You can use an etcd cluster, Oracle Database, or internal memory for storing
transaction information. When you want to use multiple replicas of the transaction
coordinator or in production environments, you must set up an etcd cluster or Oracle
database as the data store. Use internal memory only for development environments
as all the transaction details are lost every time you restart MicroTx. If you use internal
memory, you can't create multiple replicas of the transaction coordinator.

Type of Transaction Store

Under tmmConfiguration.storage, specify the type of transaction store that MicroTx
uses for persistence of transaction state. After specifying the type of transaction store,
you can provide additional details to connect to the external data store.

Property Description

type Enter one of the following values to specify the persistent data that
you want MicroTx to use to track the transaction information.

• etcd to use etcd as the data store. You must provide details
to connect to the etcd data store in the storage: etcd:
field.

• db to use Oracle Database as the data store. You must
provide details to connect to the Oracle data store in the
storage: db: field.

• memory to skip entering details to connect to either etcd or
Oracle Database and use the internal memory instead. When
you use internal memory, all the transaction details are lost
every time you restart MicroTx. If you want to use multiple
replicas of the transaction coordinator while using the internal
memory as data store, you must enable session affinity.

completedTransactionT
TL

The time to live (TTL) in seconds for a completed transaction
record in the transaction data store. The permissible range of
values is 60 to 1200 seconds. When the specified time period
expires, the completed transaction entry is removed from the data
store.

Oracle Database as Transaction Store

Under tmmConfiguration.storage.db, specify the details to connect to an Oracle
Database. Skip this section and do not provide these values if you are connecting to
an etcd database or using internal memory.

Chapter 4
Configure the values.yaml File

4-18

Property Description

connectionString Enter the connection string to the data store in Oracle Database.

• If you are using a non-autonomous Oracle Database (a database
that does not use a credential wallet), use the following format to
enter the connection string:

jdbc:oracle:thin:@<publicIP>:<portNumber>/
<database unique name>.<host domain name>

For example:

jdbc:oracle:thin:@123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.orac
levcn.com

• If you are using Oracle Database Cloud Service with Oracle Cloud
Infrastructure, see Create the Oracle Database Classic Cloud
Service Connection String in Using Oracle Blockchain Platform.

• If you are using Oracle Autonomous Transaction Processing, use
the following format to enter the connection string:

jdbc:oracle:thin:@tcps://<host>:<port>/
<service_name>?wallet_location=<wallet_dir>

You can find the required details, such as host, port, and service
name in the tnsnames.ora file, which is located in folder where
you have extracted the wallet. See Download Client Credentials
(Wallets) in Using Oracle Autonomous Database on Shared
Exadata Infrastructure.

For example:

jdbc:oracle:thin:@tcps://adb.us-
phoenix-1.oraclecloud.com:7777/
unique_connection_string_low.adb.oraclecloud.com?
wallet_location=Database_Wallet

credentialSecretName Enter the name of the Kubernetes secret that contains the credentials
to connect to the Oracle Database. Example, db-secret. See Create a
Kubernetes Secret for Oracle Database Credentials.

walletConfigMap.config
MapName

Enter the name of the configuration map that you have created for the
wallet of the Autonomous Database instance. Example, db-wallet-
configmap. You must provide a value for this field only if you are using
an Autonomous Database instance. See Get Autonomous Database
Client Credentials.

etcd Database as Transaction Store

Under tmmConfiguration.storage.etcd, specify the details to connect to an etcd database.
Skip this section and do not provide these values if you are connecting to an Oracle database
or using internal memory.

Chapter 4
Configure the values.yaml File

4-19

https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50
https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-B06202D2-0597-41AA-9481-3B174F75D4B1
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-B06202D2-0597-41AA-9481-3B174F75D4B1

Property Description

endpoints Enter the external IP address of the etcd database server. If you
have installed the etcd cluster in the Kubernetes cluster where you
will install MicroTx, then provide the Kubernetes service name and
the port of the etcd cluster (nodes) as values. Otherwise, enter a
comma-separated list of host names or IP addresses of the etcd
cluster nodes along with the ports, such as
198.51.100.1:4002,198.51.100.2:4002,198.51.100.3:40
02.

skipHostNameVerificat
ion

Set this to false to verify the IP address of the etcd database
server. If you set this to true, then the server host name or IP
address is not verified. You can set this field to true only for test
or development environments.

Caution:

You must set this field to false in
production environments.

credentialSecret.secr
etName

Enter the path to the Kubernetes secret in the container. The
secret contains the client credentials, client key, and the password
that you have used to protect the client certificate. For
example, /etc/otmm/etcd-cert-secret.

credentialSecret.secr
etFileName

Enter the location of the JSON file, that contains client credentials,
client key, and the password that you have used to protect the
client certificate. For example, /etc/otmm/etcdecred.json.

cacertConfigMap.confi
gMapName

Enter the name of the configuration map file, which you had
created while initializing the certificate authority. For example,
etcd-ca-cert-map.

cacertConfigMap.confi
gMapFileName

Enter the name of the PEM file that you had created while
initializing the certificate authority. For example, ca.pem.

4.9.5 Authorization Properties
MicroTx supports authorization across participant services and coordinator by
propagating the JWT token in every request. Use the authTokenPropagationEnabled
field to control this function. Configure your identity providers to auto-refresh the
expired access tokens at the coordinator.

Under tmmConfiguration.authorization, specify the details of the identity provider
which you want to use for authorization.

Chapter 4
Configure the values.yaml File

4-20

Property Description

enabled Set this to true to enable MicroTx check the subject in the incoming
JWT token. MicroTx then tags the subject or user against the
transaction ID, and further changes to the transaction is allowed only by
the tagged subject or user. If you set this field to false, you don't have
to provide values for the other properties under
tmmConfiguration.authorization.

Caution:

You must set this field to true in
production environments.

authTokenPropagationEn
abled

Set this to true to enable token propagation to ensure secure
communication between participant services and MicroTx. When you
enable token propagation, you must provide the details for the
encryption keys under the encryption property in the values.yaml
file.

identityProviderName Specify the identity provider that you are using. Permitted values are:
IDCS for Oracle IDCS and Oracle IAM, KEYCLOAK for Keycloak,
AZURE_AD for Azure Active Directory, and MICROSOFT_AD for Microsoft
Active Directory.

identityProviderUrl Specify the URL of the identity provider. This information is required to
create a new access token by using the refresh token. If you do not
provide this information, expired access tokens are not auto-refreshed.

identityProviderClient
Id

Specify the client ID of the identity provider. This information is required
to create a new access token by using the refresh token. If you do not
provide this information, expired access tokens are not auto-refreshed.

4.9.6 Authentication Properties
Under authentication, enter values for the issuer and jwksUri parameters of the JSON
Web Token (JWT) which is used for authentication. To find information for these fields, use
the Discover URL.

Property Description

requestsWithNoJWT Enter ALLOW to bypass JWT authentication. This permits
requests that do not have JWT tokens. Enter DENY if you want
all requests to have a JWT token. MicroTx validates the token
provided in the request and denies access if the token is invalid.

Caution:

You must set this field to DENY in
production environments.

jwt.issuer Identifies the JWT token issuer.

Chapter 4
Configure the values.yaml File

4-21

Property Description

jwt.jwksUri The URL of the identity provider's publicly hosted jwksUri,
which is used to validate signature of the JWT. The JSON Web
Key Set (JWKS) contains the cryptographic keys which are used
to verify the incoming JWT tokens.

The following code snippet provides sample values for the authentication field in the
values.yaml file. The sample values in this example are based on the values used in
the sample commands in Run the Discovery URL.

authentication:
 requestsWithNoJWT: DENY
 jwt:
 issuer: "https://identity.oraclecloud.com"
 jwksUri: "https://idcs-
a83e4de370ea4db8c703a0b742ce74.identity.oraclecloud.com:443/admin/v1/
SigningCert/jwk"

4.9.7 Encryption Key Properties
Under encryption, specify the encryption key that MicroTx uses to encrypt the access
and refresh tokens. You must provide values for these properties if you have enabled
authTokenPropagationEnabled under tmmConfiguration.authorization.

Property Description

encryptionSec
retKeyVersion

Specify the version of the key that you want to use for encrypting the
transaction tokens.

encryptionSec
retKeys.Secre
tKeyName

Specify the name and version of the Kubernetes secrets that contain
encryption key as the value. To support the encryption keys rotation, you
can specify multiple encryption keys and their versions.

encryptionSec
retKeys.versi
on

Enter the version of the Kubernetes secrets that you want to use.

If you create a new Kubernetes secret key, do not delete the entry for the previous
secret key immediately. You may delete the old key and the corresponding entry in the
values.yaml file after a few days because existing transactions may be using the older
versions of the key. After a few days, you can update the values.yaml file, and then
update MicroTx.

The following code snippet provides sample values for the encryption field in the
values.yaml file. The sample values in this example are based on the values used in
the sample commands in Generate a Kubernetes Secret for an Encryption Key.

encryption:
 encryptionSecretKeyVersion: "1"
 encryptionSecretKeys:
 - secretKeyName: "encryption-secret-key0"
 version: "0"

Chapter 4
Configure the values.yaml File

4-22

 - secretKeyName: " encryption-secret-key1"
 version: "1"

4.9.8 Transaction Token Properties
Under transactionToken, specify the key pair that you want to use for transaction token.

If you set transactionTokenEnabled to true, it is mandatory to provide values listed in the
following table.

Property Description

transactionTokenEnabled Set this to true when you want MicroTx to include a signed transaction
token, tmm-tx-token, in the request header. You don't have to create
the tmm-tx-token transaction token or pass it in the request header.
The MicroTx library creates this token based on the private-public key
pair that you provide. For more information about creating the key pair,
see Create a Key Pair for Transaction Token.

transactionTokenKeyPair
Version

Enter the version of the key pair that you want to use for signing and
verification of the transaction token. When there are multiple key pairs,
you must specify the version of the key pair that you want to use.

transactionTokenKeyPair
s.keyPairs.privateKeyNa
me

Enter the name of the Kubernetes secret which has the base64-
encoded value of the private key.

transactionTokenKeyPair
s.keyPairs.publicKeyNam
e

Enter the name of the Kubernetes secret which has the base64-
encoded value of the public key.

transactionTokenKeyPair
s.keyPairs.privateKeyPa
sswordName

Enter the name of the Kubernetes secret which has the value of the
pass phrase that you had provided while generating the private key.

transactionTokenKeyPair
s.keyPairs.version

Enter the version of the private-public key pair that you want to use.

The following code snippet provides sample values for the transactionToken field.

transactionToken:
 transactionTokenEnabled: "true"
 transactionTokenKeyPairVersion: "1"
 transactionTokenKeyPairs:
 keyPairs:
 - privateKeyName: "TMMPRIVKEY1"
 publicKeyName: "TMMPUBKEY1"
 privateKeyPasswordName: "TMMPRIVKEYPASSWD1"
 version: "1"
 - privateKeyName: "TMMPRIVKEY2"
 publicKeyName: "TMMPUBKEY2"
 privateKeyPasswordName: "TMMPRIVKEYPASSWD2"
 version: "2"

4.10 Install MicroTx
Use Helm to install MicroTx onto a Kubernetes cluster.

Chapter 4
Install MicroTx

4-23

1. Navigate to the helmcharts folder for MicroTx.

cd installation_directory/otmm-RELEASE/otmm/helmcharts

2. Deploy MicroTx using the configuration details provided in the values.yaml file.

Syntax

helm install <release name> --namespace <namespace> <chart
directory> --values <values.yaml>

Example

Use the following command to install MicroTx as an application named tmm-app in
the otmm namespace.

helm install tmm-app --namespace otmm tmm --values tmm/values.yaml

Where,

• tmm-app is the name of the application that you want to create.

• otmm is the namespace in Kubernetes cluster, where you want to install
MicroTx.

• installation_directory/otmm-RELEASE/otmm/helmcharts/tmm is the folder
that contains the chart.yaml file for MicroTx.

• installation_directory/otmm-RELEASE/otmm/helmcharts/tmm/values.yaml
is the location of the values.yaml file, the application's manifest file, in your
local machine. This file contains the deployment configuration details for
MicroTx.

The following message is displayed.

NAME: otmm
LAST DEPLOYED: Tue Apr 19 21:14:25 2022
NAMESPACE: otmm
STATUS: deployed
REVISION: 1
TEST SUITE: None

3. Verify that all resources, such as pods and services, are ready. Use the following
command to retrieve the list of resources in the namespace otmm and their status.

kubectl get all -n otmm

Sample response

Some of the values may be truncated with … for the sake of readability. When you
run this command in your environment, you will see the entire value.

NAME READY STATUS RESTARTS AGE
pod/otmm-tcs-0 2/2 Running 0 38s

NAME TYPE CLUSTER-IP EXTERNAL-IP

Chapter 4
Install MicroTx

4-24

PORT(S) AGE
service/otmm-tcs ClusterIP 10.110........ <none> 9000/TCP
38s

NAME READY AGE
statefulset.apps/otmm-tcs 1/1 38s

After the installation is complete, you can access MicroTx.

The next chapter provides instructions to install and run sample applications in your
environment. See Deploy Sample Applications.

4.11 Find IP Address of Istio Ingress Gateway
Before you start a transaction, you must note down the external IP address of the Istio
ingress gateway.

You need this information to access the applications.

1. Run the following command to find the external IP address of the Istio ingress gateway.

Command

kubectl get svc istio-ingressgateway -n istio-system

Sample Output

kubectl get svc istio-ingressgateway -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
istio-ingressgateway LoadBalancer 10.109........ 192.0.2.1
15021:31695/TCP,80:32333/TCP,443:7777/TCP 44h

2. From the output note down the value of EXTERNAL-IP, which is the external IP address of
the Istio ingress gateway, and the port associated with the HTTP or HTTPS traffic, based
on the access protocol that you have configured. For example: https://192.0.2.1:443.

3. Store the external IP address of the Istio ingress gateway in an environment variable
named CLUSTER_IPADDR as shown in the following command.

export CLUSTER_IPADDR=192.0.2.1

Note that, if you don't do this, then you must explicitly specify the IP address in the
commands when required.

4.12 Access MicroTx
To access MicroTx, specify the port number, host name, and protocol that you want to use to
access. Oracle recommends that you use HTTP protocol only in test or development
environments. In production environments, you must use HTTPS protocol.

Use the internal URL or external URL to access MicroTx. You will use different URLs
depending on whether you want to access MicroTx from within the Kubernetes cluster where
you have deployed the service or from a different Kubernetes cluster.

Chapter 4
Find IP Address of Istio Ingress Gateway

4-25

Internal URL to access MicroTx

Use the internal URL to access MicroTx from within the Kubernetes cluster where you
have deployed the service. For example, when you have deployed the transaction
initiator application and MicroTx in the same Kubernetes cluster.

To access MicroTx, create the URL in the following format:

http://internalHostname:internalPort/api/v1

Where,

• internalHostname: Name that you have entered for the tmmAppName property in
the values.yaml of the MicroTx. For example, tmm-app.

• internalPort: Port number that you have entered for the port property in the
values.yaml of the MicroTx. For example, 9090. Ensure that you have set up the
required networking rules to permit HTTPS traffic on this port.

Based on the example values provided above, the example MicroTx URL is https://
tmm-app:9000/api/v1.

All communication within a container uses the HTTP protocol as the communication
goes through the Envoy proxy, which uses mTLS.

External URL to access MicroTx

Use the external URL to access MicroTx from outside the Kubernetes cluster where
you have deployed the service. For example, when you deploy the transaction initiator
application and MicroTx in different Kubernetes cluster. In such a scenario, the
transaction initiator application uses the external URL to access MicroTx.

To access MicroTx externally, create the URL in the following format:

https://externalHostname:externalPort/api/v1

Where,

• externalHostname: The IP address of the load balancer of the Istio ingress
gateway. See Find IP Address of Istio Ingress Gateway. For example, 192.0.2.1.

• externalPort: Port number of the load balancer of the Istio ingress gateway. You
must create the required networking rules to permit inbound and outbound traffic
on this port. For example, 443.

Based on the example values provided above, the example MicroTx URL is https://
192.0.2.1:443/api/v1.

Chapter 4
Access MicroTx

4-26

5
Install on Docker Swarm

You can install Transaction Manager for Microservices (MicroTx) in Docker Swarm or in a
Kubernetes cluster.

Follow the instructions in this section to install MicroTx in Docker Swarm and run sample
applications. You can create a similar configuration to install MicroTx in other supported
environments. If you want to install MicroTx on a Kubernetes cluster, skip this section and
see Install on a Kubernetes Cluster.

Note:

The instructions provided in this section are specific to test or development
environments. Do not use these instructions to set up and use Transaction Manager
for Microservices in production environments.

• Set Up Docker Swarm

• Create a Registry
Because a swarm consists of multiple Docker Engines, a registry is required to distribute
images to all of them.

• Push Image to a Docker Registry
The installation bundle that you have downloaded to your local system contains a Docker
image of MicroTx. Push this image to the registry that you have created in Docker.

• Create Encryption Key and Key Pair
Perform this task only if you want to enable the authTokenPropagationEnabled and
transactionTokenEnabled properties in the tcs-docker-swarm.yaml file. This file is
located in the installation_directory/otmm-<version>/samples/docker folder.

• Update YAML files with etcd Details
You must provide etcd credentials and etcd endpoints in the YAML files for the transaction
coordinator. MicroTx uses this information to establish a connection to etcd after the
service is installed.

• Create a Docker Secret for Oracle Database Credentials
MicroTx supports using Oracle Database as a persistent store to keep track of the
transaction information. You must provide the Oracle Database credentials in the YAML
file. MicroTx uses the credentials to establish a connection to the database after the
service is installed.

• Enable Session Affinity
When you enable session affinity, all the requests for a unique transaction or session are
routed to the same endpoint or replica of the participant service that served the first
request.

• Configure the tcs-docker-swarm.yaml File
The installation bundle contains tcs-docker-swarm.yaml file, the manifest file of the
application, which contains the deployment configuration details for MicroTx.

5-1

• Configure Secure Connection for Your Apps

• Access MicroTx in Docker Swarm

• Run MicroTx in a Docker Container
Additionally, you can use MicroTx in a separate Docker container. Follow the steps
in this section to run MicroTx locally on a HTTPS port.

5.1 Set Up Docker Swarm
1. Download and install Docker Desktop. See https://docs.docker.com/get-started/.

2. Run the following command in a shell prompt to ensure that the Docker engine is
running in Swarm mode.

docker system info

In the response, scroll and search for the following message:

Swarm: active

If Swarm is not enabled, run the following command in a shell prompt to enable it.

docker swarm init

3. Install a current version of Docker Compose. See https://docs.docker.com/
compose/install/.

5.2 Create a Registry
Because a swarm consists of multiple Docker Engines, a registry is required to
distribute images to all of them.

1. Run the following command to start the registry as a service on your swarm.

docker service create --name registry --publish
published=5000,target=5000 registry:2

2. Run the following command to check the status of the registry.

docker service ls

In the response, look for 1/1 under REPLICAS, which indicates that the registry is
running. If the response is 0/1, it is probably still pulling the image. Check the
status again after some time.

ID NAME MODE REPLICAS
IMAGE PORTS
tjc0u55yavu4 registry replicated 1/1
registry:2 *:5000->5000/tcp

Chapter 5
Set Up Docker Swarm

5-2

https://docs.docker.com/get-started/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

3. Verify that you can use cURL to access the registry.

curl http://localhost:5000/v2/

5.3 Push Image to a Docker Registry
The installation bundle that you have downloaded to your local system contains a Docker
image of MicroTx. Push this image to the registry that you have created in Docker.

Perform the following steps to push the Docker image of MicroTx to the registry in Docker:

1. Load the MicroTx image to the local Docker repository. The MicroTx image is located at
installation_directory/otmm-<version>/image/tmm-<version>.tgz.

cd installation_directory/otmm-<version>/otmm
docker load < image/tmm-<version>.tgz

The following message is displayed when the image is loaded.

Loaded image: tmm:<version>

2. Create a tag for the image that you have loaded.

3. Use the following commands to specify a unique tag for the images that you want to push
to the remote Docker repository.

Syntax

docker tag local_image[:tag] remote_image[:tag]

Where,

• local_image[:tag] is the tag with which the image is identified in your local repository.

• remote_image[:tag] is the tag with which you want to identify the image in the remote
Docker repository.

Sample Commands

docker tag tmm:<version> 198.51.100.1:5000/tmm

Where, 198.51.100.1:5000 is the Docker registry to which you want to push the image
file, tmm:<version>. Provide the registry details based on your environment.

4. Push the Docker image with the new tag to the Docker registry.

Syntax

docker push remote_image[:tag]

Sample Commands

docker push 198.51.100.1:5000/tmm

Chapter 5
Push Image to a Docker Registry

5-3

5.4 Create Encryption Key and Key Pair
Perform this task only if you want to enable the authTokenPropagationEnabled and
transactionTokenEnabled properties in the tcs-docker-swarm.yaml file. This file is
located in the installation_directory/otmm-<version>/samples/docker folder.

If the authTokenPropagationEnabled and transactionTokenEnabled properties in the
tcs-docker-swarm.yaml file need not be enabled, then you must comment a few lines
in the two YAML files.

Comment the following lines in the tcs-docker-swarm.yaml file.

secretKeys: '{"secretKeys":[{"secretKeyName":"TMMSECRETKEY",
"version":"1"}]}'
EncryptionSecretKeyVersion: 1
...
keyPairs: '{"keyPairs":[{"privateKeyName":"TMMPRIKEY",
"publicKeyName":"TMMPUBKEY", "version":"1",
"privateKeyPasswordName":"TMMPRIKEYPASSWD"}]}'
transactionTokenKeyPairVersion: 1

Comment the following lines in the tmm-stack-compose.yaml file. This file is located in
the installation_directory/otmm-<version>/samples/docker folder.

secrets:
TMMSECRETKEY:
external: true
TMMPRIKEY:
external: true
TMMPUBKEY:
external: true
TMMPRIKEYPASSWD:
external: true

...
#entrypoint: ['/bin/sh', '-c', 'export TMMSECRETKEY=$$(cat /run/
secrets/TMMSECRETKEY); export TMMPRIKEY=$$(cat /run/secrets/
TMMPRIKEY); export TMMPUBKEY=$$(cat /run/secrets/TMMPUBKEY); export
TMMPRIKEYPASSWD=$$(cat /run/secrets/TMMPRIKEYPASSWD); /app/tcs']

secrets:
 # - TMMSECRETKEY
 # - TMMPRIKEY
 # - TMMPUBKEY
 # - TMMPRIKEYPASSWD

Skip this section as you don't need to create encryption keys and transaction token as
you have disabled these options.

You must generate an encryption key, and then add the key to a Docker secret if you
have enabled the authTokenPropagationEnabled property under authorization in the

Chapter 5
Create Encryption Key and Key Pair

5-4

tcs-docker-swarm.yaml file. The encryption key that you generate must have the following
attributes.

• Symmetric algorithm: AES-256

• Cipher mode: AES in GCM mode

• Key length: 32 bytes

• Length of initialization vectors: 96 bits

You must generate a key pair for transaction token, when you set transactionTokenEnabled
to true under transactionToken in the tcs-docker-swarm.yaml file. The transaction token
that you generate must have the following attributes:

• Asymmetric algorithm: RSA 3072

• Key length: 3072 bits

• Hash algorithm: SHA256

You can reuse an existing RSA key, if you know the pass phrase. Otherwise, create a new
RSA key.

Before you begin, ensure that you have installed OpenSSL.

For details about how the encryption token and transaction token are used, see About
Authentication and Authorization.

To create an encryption key and a RSA key pair:

1. Run the following command to generate an encryption key with a key length of 32 bytes,
and then create a secret while using the encrypted key.

openssl rand -hex 16 | docker secret create TMMSECRETKEY

Where, TMMSECRETKEY is the name of the secret that you want to create. If there is
existing key with the same name that key is overwritten.

2. Create an RSA private key with key length as 3072 bits. Use the following command:

openssl genrsa -aes256 -out private.pem 3072

3. Enter a pass phrase at the command prompt, and then press enter. Remember the pass
phrase as you will have to provide it later.

A new file called private.pem is created in the current working folder. This file contains
the RSA private key value.

4. Create a RSA public key for the private key that you have generated.

The following command creates a new file called public.pem in the current working
folder. This file contains the RSA public key value.

openssl rsa -in private.pem -outform PEM -pubout -out public.pem

5. Base-64 encode the private and public keys, and then add them to Docker secrets.

base64 private.pem | docker secret create TMMPRIKEY -
base64 public.pem | docker secret create TMMPUBKEY -

Chapter 5
Create Encryption Key and Key Pair

5-5

Where, TMMPRIKEY and TMMPUBKEY are the names of the Docker secrets that you
want to create.

6. Store the pass phrase for the RSA key as a Docker secret. In the following
command, replace pass_phrase with the pass phrase for RSA key.

printf "<pass_phrase>"| docker secret create TMMPRIKEYPASSWD -

7. View the names of the Docker secrets that you have created.

docker secret ls

Sample output

ID NAME DRIVER CREATED UPDATED
ricw56x6sehy... TMMPRIKEY 20 hours ago 20
hours ago
c0hw2nhu0sh1... TMMPRIKEYPASSWD 20 hours ago 20
hours ago
mr91c79nwzne... TMMPUBKEY 20 hours ago 20
hours ago
wp112txjki46... TMMSECRETKEY 20 hours ago 20
hours ago

Note down the names of the keys as you'll need to provide it later.

8. Update the tmm-stack-compose.yaml file which is located in the
installation_directory/otmm-<version>/samples/docker folder. Export the
secrets that you have created as environment variables within the Swarm by
providing details just below the configs section as shown in the following
example.

version: "3.9"

configs:
 my_tcs_config:
 file: ./tcs-docker-swarm.yaml

secrets:
 TMMPRIKEY:
 external: true
 TMMPRIKEYPASSWD:
 external: true
 TMMPUBKEY:
 external: true
 TMMSECRETKEY:
 external: true

9. Add the following to the services.otmm-tcs section in the tmm-stack-
compose.yaml file:

• Names of the secrets that you have created.

• Create an entrypoint to export the secrets that you have created as
environment variables. To improve readability the following example uses

Chapter 5
Create Encryption Key and Key Pair

5-6

same name for the secret and the environment variable. You can provide any other
name for the environment variable. Note down the names of the environment
variables as you will have to provide it in the next step.

services:
 otmm-tcs:
 image: "127.0.0.1:5000/tmm"
 ports:
 - "9000:9000"
 entrypoint: ['/bin/sh', '-c', 'export TMMPRIKEY=$$(cat /run/secrets/
TMMPRIKEY); export TMMPRIKEYPASSWD=$$(cat /run/secrets/TMMPRIKEYPASSWD);
export TMMPUBKEY=$$(cat /run/secrets/TMMPUBKEY); export TMMSECRETKEY=$$
(cat /run/secrets/TMMSECRETKEY); /app/tcs']
 deploy:
 replicas: 1
 configs:
 - source: my_tcs_config
 target: /tcs_config.yaml
 environment:
 - CONFIG_FILE=/tcs_config.yaml
 secrets:
 - TMMPRIKEY
 - TMMPRIKEYPASSWD
 - TMMPUBKEY
 - TMMSECRETKEY

10. Update the tcs-docker-swarm.yaml file with the names of the environment variables that
you have created. This YAML file is located in the installation_directory/otmm-
<version>/samples/docker folder.

Sample values for encryption and transactionToken properties

encryption:
 secretKeys: '{"secretKeys":[{"secretKeyName":"TMMSECRETKEY",
"version":"1"}]}'
 #TMMSECRETKEY is the environment variable for the Docker secret that
contains the encryption key
 EncryptionSecretKeyVersion: 1
transactionToken:
 transactionTokenEnabled: true
 keyPairs: '{"keyPairs":[{"privateKeyName":"TMMPRIKEY",
"publicKeyName":"TMMPUBKEY", "version":"1",
"privateKeyPasswordName":"TMMPRIKEYPASSWD"}]}'
 #TMMPRIKEY is the environment variable for the Docker secret that
contains the base64-encoded private key
 #TMMPUBKEY is the environment variable for the Docker secret that
contains the base64-encoded public key
 #TMMPRIKEYPASSWD is the environment variable for the Docker secret
that contains the private key password
 transactionTokenKeyPairVersion: 1

Chapter 5
Create Encryption Key and Key Pair

5-7

5.5 Update YAML files with etcd Details
You must provide etcd credentials and etcd endpoints in the YAML files for the
transaction coordinator. MicroTx uses this information to establish a connection to etcd
after the service is installed.

Skip this step if you are not using etcd to store the transaction logs of MicroTx.

Before you begin, generate RSA certificates for server and client. Create a JSON file
with the contents of the generated certificates. See Generate RSA Certificates for
etcd.

To create Docker secret with details to access etcd:

1. Update the tcs-docker-swarm.yaml file, provide the etcd endpoint, path to the
credentials for etcd, and path to the RSA certificates for etcd. The following code
snippet provides sample values used in Generate RSA Certificates for etcd.
Replace these sample values with the actual values in your environment.

storage:
 type: etcd
 etcd:
 endpoints: https://etcd:2379
 credentialsFilePath: "/app/etcd/etcdecred.json"
 cacertFilePath: "/app/etcd/ca.pem"
 skipHostNameVerification: false

For reference information about each field, see Transaction Store Properties.

2. Update the tcs-stack-compose.yaml file with details about etcd under services.

Sample values

The following code snippet provides sample values used in Generate RSA
Certificates for etcd and it considers that etcd and the transaction coordinator are
in the same network in a Docker Swarm.

Replace these sample values with the actual values in your environment.

services:
 etcd:
 image: "bitnami/etcd"
 ports:
 - "2379:2379"
 - "2380:2380"
 volumes:
 - <PATH_TO_CFSSL_DIRECTORY>/cfssl:/etcdssl
 environment:
 - ETCD_ROOT_PASSWORD=password
 - ETCD_CERT_FILE=/etcdssl/server.pem
 - ETCD_KEY_FILE=/etcdssl/server-key.pem
 - ETCD_LISTEN_CLIENT_URLS=https://0.0.0.0:2379
 - ETCD_ADVERTISE_CLIENT_URLS=https://127.0.0.1:2379

Where,

Chapter 5
Update YAML files with etcd Details

5-8

• image is the path to the etcd image file.

• ports are the ports through which etcd communicates with the transaction
coordinator.

• volumes is the unique path to the etcd volume in Docker Swarm. Each service in
Docker Swarm uses its own volume. MicroTx creates this volume during the
installation process and copies the certificate files from your local directory to the
volume. Specify the name in the following format:
<absolute_path_to_certificate_directory_in_your_local_machine>:/
<unique_name_of_etcd_volume>. For example, <PATH_TO_CFSSL_DIRECTORY>/
cfssl:/etcdssl.

• ETCD_ROOT_PASSWORD is an environment variable required by etcd. It is the password
to access etcd.

• ETCD_CERT_FILE is an environment variable required by etcd. It is the path to the
server public key file in the etcd service volume in Docker Swarm. Specify the name
in the following format: <unique_name_of_etcd_volume>/
<name_of_server_certificate>. For example, /etcdssl/server.pem.

• ETCD_KEY_FILE is an environment variable required by etcd. It is the path to the
server private key file in the etcd service volume in Docker Swarm. Specify the name
in the following format: <unique_name_of_etcd_volume>/
<name_of_server_private_key_file>. For example, /etcdssl/server-key.pem.

• ETCD_LISTEN_CLIENT_URLS is an environment variable required by etcd. Specify the
value in the following format: <etcd_IP_address>/<etcd_port>. For example,
https://0.0.0.0:2379 if etcd and the transaction coordinator are in the same
network in Docker Swarm. In case, you have set up etcd is a separate network,
specify the IP address of etcd. 2379 is the port used for communication with etcd. You
have specified the ports that etcd uses under ports.

• ETCD_ADVERTISE_CLIENT_URLS= is an environment variable required by etcd. Specify
the value in the following format: <etcd_IP_address>/<etcd_port>. For example,
https://127.0.0.1:2379. In case, you have set up etcd is a separate network,
specify the IP address of etcd in place of 127.0.0.1. 2379 is the port used for
communication with etcd. You have specified the ports that etcd uses under ports.

3. Add details about the absolute path to the directory that contains the certificates under
otmm-tcs in the tcs-stack-compose.yaml file.

The following sample code shows a snippet of the entries under otmm-tcs.

otmm-tcs:
 volumes:
 - <PATH_TO_CFSSL_DIRECTORY>/cfssl:/app/etcd

Where, /app/etcd is the unique path to the transaction coordinator volume in Docker
Swarm. Each service in Docker Swarm uses its own volume. MicroTx creates this volume
during the installation process, and then copies the certificate files from your local
directory to the volume. Specify the name in the following format:
<absolute_path_to_certificate_directory_in_your_local_machine>:/
<unique_name_of_transaction_coordinator_volume>. For example,
<PATH_TO_CFSSL_DIRECTORY>/cfssl:/app/etcd.

4. Save the changes.

Chapter 5
Update YAML files with etcd Details

5-9

5.6 Create a Docker Secret for Oracle Database Credentials
MicroTx supports using Oracle Database as a persistent store to keep track of the
transaction information. You must provide the Oracle Database credentials in the YAML
file. MicroTx uses the credentials to establish a connection to the database after the
service is installed.

Skip this step if you are not using Oracle Database to store the transaction details of
MicroTx.

If you are using an Autonomous Database instance, ensure that you have downloaded
the wallet and noted the connection string before you begin with the following steps.
See Get Autonomous Database Client Credentials.

To create a Docker secret to provide the Oracle Database login details:

1. Enter the Oracle Database credentials in the following format in any text editor,
such as Notepad. Replace the sample values with values that are specific to your
environment.

{
 "password": "enter_your_Database_password",
 "username": "enter_the_username_to_access_the_Database"
}

2. Save the file with a TXT format. For example, database_secret.txt. Note down
the path and name of this file as you'll need to provide it in the next step.

3. Create a Docker secret with the Oracle Database login details.

Command syntax

docker secret create <name_of_the_secret> </path_to_text_file>/
<name_of_text_file

Sample command

The following commands creates a Docker secret with the name
STORAGE_DB_CREDENTIAL.

docker secret create STORAGE_DB_CREDENTIAL /database_secret.txt

4. Run the following command to verify that the secret has been created.

docker secret ls

Sample response

ID NAME DRIVER CREATED
UPDATED
ovn1x... STORAGE_DB_CREDENTIAL 11 seconds ago 11
seconds ago

Chapter 5
Create a Docker Secret for Oracle Database Credentials

5-10

To improve readability, the sample value in the response is truncated with When you
run this command in your environment, you'll see the complete value.

Note down the name of the Docker secret that you have created. You will need to provide
this name later.

5. Open the tmm-stack-compose.yaml file in any text editor. This file is located in the
installation_directory/otmm-<version>/samples/docker folder.

6. Update the otmm-tcs service and secrets sections with the details of the Docker secret
that you have created. The following code snippet shows sample values.

secrets:
 STORAGE_DB_CREDENTIAL:
 external: true
services:
 otmm-tcs:
 image: "127.0.0.1:5000/tmm"
 ports:
 - "9000:9000"
 deploy:
 replicas: 1
 configs:
 - source: my_tcs_config
 target: /tcs.yaml
 # Create an environment variable that points to the Docker secret
that you have created.
 entrypoint: ['/bin/sh', '-c', 'export STORAGE_DB_CREDENTIAL=$$
(cat /run/secrets/STORAGE_DB_CREDENTIAL); /app/tcs']
 environment:
 - CONFIG_FILE=/tcs.yaml
 secrets:
 - STORAGE_DB_CREDENTIAL

Where, STORAGE_DB_CREDENTIAL is the name of the Docker secret that you have created.
Add an entrypoint to create an environment variable that points to the Docker secret
that you have created. The name of the environment variable and the Docker secret are
the same in the sample code snippet.

7. Enter the database connection string. Only if you are using an Autonomous Database
instance, you must also specify the wallet details in the volumes parameter. For details
about the format of the connection string for Autonomous Database instance, see Get
Autonomous Database Client Credentials.

secrets:
 STORAGE_DB_CREDENTIAL:
 external: true
services:
 otmm-tcs:
 image: "127.0.0.1:5000/tmm"
 ports:
 - "9000:9000"
 deploy:
 replicas: 1
 configs:
 - source: my_tcs_config

Chapter 5
Create a Docker Secret for Oracle Database Credentials

5-11

 target: /tcs.yaml
 volumes:
 - /<PATH_TO_DOWNLOADED_WALLET>/<WALLET_FOLDER_NAME>:/app/
Wallet
 entrypoint: ['/bin/sh', '-c', 'export STORAGE_DB_CREDENTIAL=$$
(cat /run/secrets/STORAGE_DB_CREDENTIAL); /app/tcs']
 environment:
 - CONFIG_FILE=/tcs.yaml
 secrets:
 - STORAGE_DB_CREDENTIAL
storage:
 type: db
 #Allowed types - etcd/db/memory
 db:
 connectionString: tcps://adb.us-
ashburn-1.oraclecloud.com:1522/
bfeldfxbtjvtddi_brijeshadw1_medium.adb.oraclecloud.com?
retry_count=20&retry_delay=3&wallet_location=/app/Wallet

5.7 Enable Session Affinity
When you enable session affinity, all the requests for a unique transaction or session
are routed to the same endpoint or replica of the participant service that served the
first request.

Use the instructions provided in this section to enable session affinity or sticky
sessions if you have deployed the participant service or transaction coordinator within
an Istio service mesh. The steps provided in this section are specific to enabling
session affinity for a participant service. You can enable session affinity for the
transaction coordinator in a similar manner. To enable session affinity for the
transaction coordinator, update the YAML files and Helm Chart that are specific to the
transaction coordinator.

Before you begin, complete the following tasks:

1. Ensure that you have deployed the transaction participant service within an Istio
service mesh.

2. Identify if you need to enable session affinity for your participant service or for the
transaction coordinator. See About Session Affinity.

To enable session affinity for a participant service:

1. Create a networking rule for the application in the namespace where you want to
deploy it. The traffic policy must use a load balancer with consistent hash that
uses the HTTP request header, oracle-tmm-txn-id.

2. In the Helm Chart of the participant application, specify the oracle-tmm-txn-id
HTTP header in Istio's DestinationRule resource. Use a load balancer that is
based on consistent hash to provide session affinity based on the oracle-tmm-
txn-id HTTP header.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: sticky-participant
 namespace: otmm

Chapter 5
Enable Session Affinity

5-12

spec:
 host: sticky-participant.otmm.svc.cluster.local
 trafficPolicy:
 loadBalancer:
 consistentHash:
 httpHeaderName: oracle-tmm-txn-id

Where,

• sticky-participant is the name of the participant application.

• otmm is the namespace in which you want to deploy your participant application.

• host: Specify the fully qualified name of your application inside the Kubernetes
cluster. For example, dept1.otmm.svc.cluster.local.

3. In the values.yaml file of the participant service, add the following line of code:

sessionAffinity: true

4. In the networking.yaml file of the participant service, add the following lines of code:

spec:
 host: {{$val.host}}
 trafficPolicy:
 loadBalancer:
 consistentHash:
 httpHeaderName: oracle-tmm-txn-id

5.8 Configure the tcs-docker-swarm.yaml File
The installation bundle contains tcs-docker-swarm.yaml file, the manifest file of the
application, which contains the deployment configuration details for MicroTx.

Replace the sample values in the tcs-docker-swarm.yaml file to provide the environment
details, image details, and configuration details. The details that you provide are used to
deploy MicroTx in Docker Swarm.

To provide configuration details for MicroTx:

1. Open the tcs-docker-swarm.yaml file in any code editor. This file is located in the
installation_directory/otmm-<version>/samples/docker folder. This file contains
sample values.

2. Replace the sample values with values that are specific to your environment.

The tables in this section describe the properties for the environment, storage,
authorization, authentication, and other configuration details that are required to deploy
MicroTx.

3. Save your changes.

• Transaction Coordinator Properties
Provide information to configure MicroTx.

• Transaction Store Properties
MicroTx uses a transaction store for persistence of transaction state.

Chapter 5
Configure the tcs-docker-swarm.yaml File

5-13

• TLS Properties
Run MicroTx using the HTTP or HTTPS protocol.

• Authorization Properties
MicroTx supports authorization across participant services and coordinator by
propagating the JWT token in every request. Use the
authTokenPropagationEnabled field to control this function. Configure your
identity providers to auto-refresh the expired access tokens at the coordinator.

• Authentication Properties
Enter values for the issuer and jwksUri parameters of the JSON Web Token
(JWT) which is used for authentication. To find information for these fields, use the
Discover URL.

• Encryption Key Properties
Under encryption, specify the encryption key that MicroTx uses to encrypt the
access and refresh tokens. You must provide values for these properties if you
have enabled the authTokenPropagationEnabled property under
tmmConfiguration.authorization.

• Transaction Token Properties
Under transactionToken, specify the key pair that you want to use for transaction
token.

5.8.1 Transaction Coordinator Properties
Provide information to configure MicroTx.

Property Description

tmmAppName Enter the name of the MicroTx application that you want to create. When
you install MicroTx, the MicroTx application is created with the name that
you specify. Note down this name as you will need to provide it later. For
example, tmm-app.

listenAddr Enter the port over which you want to access MicroTx. Create the required
networking rules to permit inbound and outbound traffic on this port. Note
down this number as you will need to provide it later. For example,
0.0.0.0:9000. Specify the listener address in the format,
<IP_address>:<port>, as provided in the example.

internalAddr Enter the internal URL to access MicroTx from within the Docker repository
where you will install the service. See Access MicroTx in Docker Swarm.

externalUrl Enter the external URL to access MicroTx from outside the Docker
repository where you will install the service. See Access MicroTx in Docker
Swarm.

xaCoordinator
.enabled,
lraCoordinato
r.enabled, or
tccCoordinato
r.enabled

Set enabled: true for the transaction protocols that you want to use.
MicroTx supports three distribution transaction protocols: XA, LRA, and
TCC. If you want to use nest an XA transaction within an LRA transaction,
set enabled: true for both xaCoordinator and lraCoordinator.

xaCoordinator
.txMaxTimeout

Only for the XA transaction protocol. Specify the maximum amount of time,
in milliseconds, for which the transaction remains active. If a transaction is
not committed or rolled back within the specified time period, the
transaction is rolled back. The default value is 600000 ms.

Chapter 5
Configure the tcs-docker-swarm.yaml File

5-14

Property Description

narayanaLraCo
mpatibilityMo
de.enabled

Only for the LRA transaction protocol. Set this property to true when you
want to use LRA participant applications that were implemented to work
with the Narayana LRA Coordinator and now would participate in LRA
transactions using MicroTx. Enable this mode to ensure that the MicroTx
LRA APIs return the same response data that Narayana LRA Coordinator
APIs return.

logging.level Enter one of the following types to specify the log level for MicroTx:
• info: Logs events that occur during the normal operation of the

MicroTx. This setting logs the least amount of information. This is the
default setting.

• warning: Logs events that may cause potentially harmful situations.

• error: Logs events to indicate that there is an issue that requires
troubleshooting.

• debug: Logs all the events. Use this setting when you want to debug an
issue.

logging.httpT
raceEnabled

Set this to True to log all the HTTP request and responses in MicroTx
when you want to debug. If you set this to True, you must also set the
logging: level: to debug.

logging.devMo
de

Set this to True only in test environments to get more details for debugging
purposes. You must set this to False in production environments.

maxRetryCount The maximum number of times that the transaction coordinator retries
sending the same request again in case of any failures. For example, 10.

minRetryInter
val

The minimum interval, in milliseconds, after which the transaction
coordinator retries sending the same request again in case of any failures.
The default value is 1000 ms.

maxRetryInter
val

The maximum retry interval, in milliseconds, before which the transaction
coordinator retries sending the same request again in case of any failures.
For example, 10000.

skipVerifyIns
ecureTLS

Oracle recommends that you set this value to false and set up a valid
certificate signed by trusted authorities for secure access. When you set
this value to false, the transaction coordinator accesses the participant
applications over the HTTPS protocol with a valid certificate signed by
trusted authorities. The default value is false.

If you set this value to true, the transaction coordinator can access the
participant application's callback URL, without a valid SSL certificate, in an
insecure manner.

Caution:

Do not set this value to true in production
environments.

5.8.2 Transaction Store Properties
MicroTx uses a transaction store for persistence of transaction state.

You can use an etcd cluster, Oracle Database, or internal memory for storing transaction
information. When you want to use multiple replicas of the transaction coordinator or in

Chapter 5
Configure the tcs-docker-swarm.yaml File

5-15

production environments, you must set up an etcd cluster or Oracle database as the
transaction store. Use internal memory only for development environments as all the
transaction details are lost every time you restart MicroTx. If you use internal memory,
you can't create multiple replicas of the transaction coordinator.

Type of Transaction Store

Under tmmConfiguration.storage, specify the type of transaction store that MicroTx
uses for persistence of transaction state. After specifying the type of transaction store,
you can provide additional details to connect to the external transaction store.

Property Description

type Enter one of the following values to specify the persistent data that
you want MicroTx to use to track the transaction information.

• etcd to use etcd as the transaction store. You must provide
details to connect to the etcd transaction store in the
storage: etcd: field.

• db to use Oracle Database as the transaction store. You must
provide details to connect to the Oracle transaction store in
the storage: db: field.

• memory to skip entering details to connect to either etcd or
Oracle Database and use the internal memory instead. When
you use internal memory, all the transaction details are lost
every time you restart MicroTx. If you want to use multiple
replicas of the transaction coordinator while using the internal
memory as transaction store, you must enable session
affinity.

Oracle Database as Transaction Store

Under tmmConfiguration.storage.db, specify the details to connect to an Oracle
Database. Skip this section and do not provide these values if you are connecting to
an etcd database or using internal memory.

For details about creating the required Docker secret, see Create a Docker Secret for
Oracle Database Credentials.

Chapter 5
Configure the tcs-docker-swarm.yaml File

5-16

Property Description

connectionString Enter the connection string to the transaction store in Oracle Database.

If you are using a non-autonomous Oracle Database (a database that
does not use a credential wallet), use the following format to enter the
connection string:

<publicIP>:<portNumber>/<database unique name>.<host
domain name>

For example, 123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.
com.

If you are using Oracle Database Cloud Service with Oracle Cloud
Infrastructure, see Create the Oracle Database Classic Cloud Service
Connection String in Using Oracle Blockchain Platform.

If you are using Oracle Autonomous Database, then enter a connection
string similar to the following example: jdbc:oracle:thin:@tcps://
adb.us-phoenix-1.oraclecloud.com:7777/
unique_connection_string_low.adb.oraclecloud.com&wallet
_location=/app/Wallet.

netServiceName Enter the name of the Docker secret that contains the credentials to
connect to the Oracle Database. Example, db-secret.

etcd Database as Transaction Store

Under tmmConfiguration.storage.etcd, specify the details to connect to an etcd database.
Skip this section and do not provide these values if you are connecting to an Oracle database
or using internal memory.

Property Description

endpoints Enter the URL to access etcd as a Docker Swarm service. For example,
https://etcd:2379 if etcd and the transaction coordinator are in the
same network in Docker Swarm. Where, 2379 is the port used for
communication with etcd. In case, you have set up etcd is a separate
network, specify the IP address of etcd.

skipHostNameVerificati
on

Set this to false to verify the IP address of the etcd database server. If
you set this to true, then the server host name or IP address is not
verified. You can set this field to true only for test or development
environments.

Caution:

You must set this field to false in
production environments.

cacertFilePath Enter the path to the ca.pem file, certificate that you have created
earlier. For example, /app/etcd/ca.pem.

Chapter 5
Configure the tcs-docker-swarm.yaml File

5-17

https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50
https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50

Property Description

credentialsFilePath Enter the location of the JSON file, that contains client credentials,
client key, and the password that you have used to protect the client
certificate. For example, /app/etcd/etcdecred.json.

5.8.3 TLS Properties
Run MicroTx using the HTTP or HTTPS protocol.

For secure access to MicroTx over HTTPS, create a self-signed certificate and note
down location of the certificate and private key. For information about creating an SSL
certificate, see Guidelines for Generating Self-Signed Certificate and Private Key using
OpenSSL in Security Guide.

If you enable TLS in the tcs-docker-swarm.yaml file, then you must import the SSL
certificate into the trust store of the sample applications so that sample applications
can securely access MicroTx.

Under tmmConfiguration.serveTLS, specify the details of the SSL certificate that you
want to use for authorization.

Property Description

enabled Set this to true to enable TLS to ensure secure communication
between participant services and MicroTx. You must provide details for
the certificate and key file under certFile and keyFile properties.
When you enable TLS, you can access the transaction coordinator
over HTTPS.
If you set this field to false, you don't have to provide values for the
certFile and keyFile properties. When you disable TLS, you can
access the transaction coordinator over HTTP. You must provide the
internalAddr and externalUrl using HTTP protocol. For example,
http://localhost:9000.

Caution:

You must set this field to true in
production environments.

certFile Path to the TLS certificate, in PEM format, on your local machine.

keyFile Path to the private key file, in PEM format, which is associated with the
certificate on your local machine.

The following code snippet provides sample values for the serveTLS field in the tcs-
docker-swarm.yaml file.

tmmConfiguration:
 serveTLS:
 enabled: true
 certFile: /users/john.doe/self-signed/tcs/certificate.pem
 keyFile: /users/john.doe/self-signed/tcs/key.pem

Chapter 5
Configure the tcs-docker-swarm.yaml File

5-18

https://docs.oracle.com/en/database/other-databases/nosql-database/21.1/security/ssl-using-openssl.html
https://docs.oracle.com/en/database/other-databases/nosql-database/21.1/security/ssl-using-openssl.html

5.8.4 Authorization Properties
MicroTx supports authorization across participant services and coordinator by propagating
the JWT token in every request. Use the authTokenPropagationEnabled field to control this
function. Configure your identity providers to auto-refresh the expired access tokens at the
coordinator.

Property Description

enabled Set this to true to enable MicroTx check the subject in the incoming JWT
token. MicroTx then tags the subject or user against the transaction ID, and
further changes to the transaction is allowed only by the tagged subject or
user. If you set this field to false, you don't have to provide values for the
other properties under tmmConfiguration.authorization.

Caution:

You must set this field to true in production
environments.

authTokenPropagatio
nEnabled

Set this to true to enable token propagation to ensure secure
communication between participant services and MicroTx. When you enable
token propagation, you must provide the details for the encryption keys
under the encryption property in the tcs-docker-swarm.yaml file.

IdentityProviderNam
e

Specify the identity provider that you are using. Permitted values are: IDCS
for Oracle IDCS and Oracle IAM, KEYCLOAK for Keycloak, AZURE_AD for
Azure Active Directory, and MICROSOFT_AD for Microsoft Active Directory.

IdentityProviderUrl Specify the URL of the identity provider. This information is required to
create a new access token by using the refresh token. If you do not provide
this information, expired access tokens are not auto-refreshed.

IdentityProviderCli
entId

Specify the client ID of the identity provider. This information is required to
create a new access token by using the refresh token. If you do not provide
this information, expired access tokens are not auto-refreshed.

5.8.5 Authentication Properties
Enter values for the issuer and jwksUri parameters of the JSON Web Token (JWT) which is
used for authentication. To find information for these fields, use the Discover URL.

When you enable authentication, the transaction coordinator enforces JWT-based
authentication and validates the authentication token against the public key. You must pass
the access token in the authorization header.

Chapter 5
Configure the tcs-docker-swarm.yaml File

5-19

Property Description

enabled Set to false to bypass JWT authentication. This permits
requests that do not have JWT tokens. Enter true if you
want all requests to have a JWT token. MicroTx validates
the token provided in the request and denies access if the
token is invalid. If you set enabled as true, then you must
provide values for the issuer and jwksUri parameters of
the JWT.

Caution:

You must set this property to
true in production
environments.

jwt.issuer Identifies the JWT token issuer.

jwt.jwksUri The URL of the identity provider's publicly hosted jwksUri,
which is used to validate signature of the JWT. The JSON
Web Key Set (JWKS) contains the cryptographic keys
which are used to verify the incoming JWT tokens.

The following code snippet provides sample values for authentication field in the
tcs-docker-swarm.yaml file. The sample values in this example are based on the
values used in the sample commands in Run the Discovery URL.

authentication:
 enabled: true
 jwt:
 issuer: "https://identity.oraclecloud.com"
 jwksUri: "https://idcs-
a83e4de370ea4db8c703a0b742ce74.identity.oraclecloud.com:443/admin/v1/
SigningCert/jwk"

5.8.6 Encryption Key Properties
Under encryption, specify the encryption key that MicroTx uses to encrypt the access
and refresh tokens. You must provide values for these properties if you have enabled
the authTokenPropagationEnabled property under
tmmConfiguration.authorization.

Property Description

EncryptionSec
retKeyVersion

Specify the version of the key that you want to use for encrypting the
transaction tokens.

secretKeys.se
cretKeyName

Specify the name of the environment variable which points to the Docker
secret that contains the encryption key. To support the encryption keys
rotation, you can specify multiple encryption keys and their versions.

secretKeys.ve
rsion

Enter the version of the Docker secret that you want to use.

Chapter 5
Configure the tcs-docker-swarm.yaml File

5-20

If you create a new Docker secret, do not delete the entry for the previous secret immediately.
You may delete the old secret and the corresponding entry in the tcs-docker-swarm.yaml file
after a few days because existing transactions may be using the older versions of the key.
After a few days, you can update the tcs-docker-swarm.yaml file, and then update MicroTx.

The following code snippet provides sample values for the encryption field in the tcs-
docker-swarm.yaml file. The sample values in this example are based on the values used in
the sample commands in Create Encryption Key and Key Pair.

encryption:
 secretKeys: '{"secretKeys":[{"secretKeyName":"TMMSECRETKEY",
"version":"1"}]}'
 #TMMSECRETKEY is the environment variable that points to the Docker secret
that contains the encryption key.
 EncryptionSecretKeyVersion: 1

5.8.7 Transaction Token Properties
Under transactionToken, specify the key pair that you want to use for transaction token.

If you set transactionTokenEnabled to true in tcs-docker-swarm.yaml, you must provide
values for the properties listed in the following table.

Property Description

transactionTokenEnabled Set this to true when you want MicroTx to include a signed transaction
token, tmm-tx-token, in the request header. You don't have to create
the tmm-tx-token transaction token or pass it in the request header.
The MicroTx library creates this token based on the private-public key
pair that you provide. For more information about creating the key pair,
see Create Encryption Key and Key Pair.

transactionTokenKeyPair
Version

Enter the version of the key pair that you want to use for signing and
verification of the transaction token. When there are multiple key pairs,
you must specify the version of the key pair that you want to use.

keyPairs.keyPairs.priva
teKeyName

Enter the name of the Docker secret which has the base64-encoded
value of the private key.

keyPairs.keyPairs.publi
cKeyName

Enter the name of the Docker secret which has the base64-encoded
value of the public key.

keyPairs.keyPairs.versi
on

Enter the version of the private-public key pair that you want to use.

keyPairs.keyPairs.priva
teKeyPasswordName

Enter the name of the Docker secret which has the value of the pass
phrase that you had provided while generating the private key.

The following code snippet provides sample values for the transactionToken field.

transactionToken:
 transactionTokenEnabled: false
 keyPairs: '{"keyPairs":[{"privateKeyName":"TMMPRIKEY",
"publicKeyName":"TMMPUBKEY", "version":"1",
"privateKeyPasswordName":"TMMPRIKEYPASSWD"}]}'
 #TMMPRIKEY is the environment variable for the Docker secret that
contains the base64-encoded private key
 #TMMPUBKEY is the environment variable for the Docker secret that

Chapter 5
Configure the tcs-docker-swarm.yaml File

5-21

contains the base64-encoded public key
 #TMMPRIKEYPASSWD is the environment variable for the Docker
secret that contains the private key password
 transactionTokenKeyPairVersion: 1

5.9 Configure Secure Connection for Your Apps
1. Provide configuration information for the MicroTx library properties for all

participant and initiator applications.

Open the tmm.properties file in any code editor, and then enter values for the
following parameters to configure the MicroTx library.

• oracle.tmm.TcsUrl: Enter the URL to access the MicroTx application. See
Access MicroTx. You must enter this value for the transaction initiator
application. You don't have to specify this value for the transaction participant
applications.

• oracle.tmm.CallbackUrl: Enter the URL of your participant service which
MicroTx calls back. Provide this value in the following format:

http://HostNameofApp:PortofApp/

Where,

– HostNameofApp: The host name of your initiator or participant service. For
example, host.docker.internal.

– PortofApp: The port number over which you can access your participant
service. For example, 8080.

The following example provides sample values for the environment variables.
Provide the values based on your environment.

oracle.tmm.TcsUrl = https://localhost:9000/api/v1
oracle.tmm.CallbackUrl = http://host.docker.internal:8080

2. For your Java microservices to access the transaction coordinator over TLS, you
must import the TLS certificate into the JRE Keystore using keytool.

export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk-11.0.11.jdk/
Contents/Homesudo keytool -import -trustcacerts -alias tcs-
localhost -file localhost.pem -keystore $JAVA_HOME/lib/security/
cacerts

3. For your Node.js microservices to access the transaction coordinator over TLS,
set the NODE_EXTRA_CA_CERTS environment variable to the path a root certificate, in
PEM format.

export NODE_EXTRA_CA_CERTS=./rootCA.crt

For information about creating an SSL certificate, see Guidelines for Generating
Self-Signed Certificate and Private Key using OpenSSL in Security Guide.

Chapter 5
Configure Secure Connection for Your Apps

5-22

https://docs.oracle.com/en/database/other-databases/nosql-database/21.1/security/ssl-using-openssl.html
https://docs.oracle.com/en/database/other-databases/nosql-database/21.1/security/ssl-using-openssl.html

5.10 Access MicroTx in Docker Swarm
Use the internal URL or external URL to access MicroTx. You will use different URLs
depending on whether you want to access MicroTx from within the Docker registry where you
have deployed the service or from outside the Docker registry.

When you enable TLS, use the HTTPS protocol to access the service. When you disable
TLS, use the HTTP protocol to access the service.

Internal URL to access MicroTx

Use the internal URL to access MicroTx from within the Docker registry where you have
deployed the service.

To access MicroTx internally, create the URL in the following format:

http://internalHostname:listenAddr/api/v1

Where,

• internalHostname: Name that you have entered for the tmmAppName property in the tcs-
docker-swarm.yaml file. For example, tmm-app.

• listenAddr: Port number that you have entered for the listenAddr property in the tcs-
docker-swarm.yaml file. For example, 9000. Ensure that you have set up the required
networking rules to permit HTTPS or HTTP traffic over this port.

Based on the example values provided above, the example MicroTx URL is http://tmm-
app:9000/api/v1 or http://localhost:9000/api/v1.

All communication within a Docker registry uses the HTTP protocol.

External URL to access MicroTx

Use the external URL to access MicroTx from outside the Docker registry where you have
deployed the service. For example, when you deploy the transaction initiator application and
MicroTx in different Docker registries. In such a scenario, the transaction initiator application
uses the external URL to access MicroTx.

To access MicroTx externally, create the URL in the following format:

https://externalHostname:listenAddr/api/v1

Where,

• externalHostname: The IP address of the Docker registry that you have created. For
example, 198.51.100.1.

• listenAddr: Port number that you have entered for the listenAddr property in the tcs-
docker-swarm.yaml of the MicroTx. For example, 5000. Ensure that you have set up the
required networking rules to permit inbound and outbound HTTPS or HTTP traffic over
this port.

Based on the example values provided above, the example MicroTx URL is https://
198.51.100.1:5000/api/v1.

Chapter 5
Access MicroTx in Docker Swarm

5-23

Store the IP address of the Docker registry in an environment variable named
REGISTRY_IPADDR as shown in the following command.

export REGISTRY_IPADDR=192.0.2.1

Note that, if you don't do this, then you must explicitly specify the IP address in the
commands when required.

5.11 Run MicroTx in a Docker Container
Additionally, you can use MicroTx in a separate Docker container. Follow the steps in
this section to run MicroTx locally on a HTTPS port.

To run MicroTx along with a sample application on Docker Swarm, see Run Sample
LRA Application in Docker Swarm.

Before you begin, ensure that you have loaded the MicroTx Docker image and
updated the tcs.yaml file. The tcs.yaml file is located at installation_directory/
otmm-<version>/otmm/image in your local machine. This file contains the deployment
configuration details for MicroTx. The properties in the tcs.yaml and tcs-docker-
swarm.yaml files are similar. For information about the configuration details, see
Configure the tcs-docker-swarm.yaml File.

1. Place the tcs.yaml file in the current directory along with certificate and key files.
If you have set tmmConfiguration.serveTLS.enabled to true in the tcs.yaml file
to enable TLS, you must copy the certificate and key files into the current directory.

2. Run MicroTx using the configuration details provided in the tcs.yaml file.

Sample Command

docker container run --name otmm -v "$(pwd)":/app/config \
-w /app/config -p 9000:9000/tcp --env CONFIG_FILE=tcs.yaml \
--add-host host.docker.internal:host-gateway -d tmm:<version>

Where,

• otmm is the name of the container that you want to create.

• tmm:<version> is the MicroTx Docker image that you have loaded to the local
Docker repository.

3. After the installation is complete, you can access MicroTx. Run the following
command to verify that you can access MicroTx.

curl --cacert localhost.pem \
 -v -X POST \
 -H "Content-Type: application/json" \
 https://localhost:9000/api/v1/xa-transaction

The next chapter provides instructions to install and run sample applications in your
environment. See Deploy Sample Applications.

Chapter 5
Run MicroTx in a Docker Container

5-24

6
Post-Installation Tasks

After installing Transaction Manager for Microservices (MicroTx), complete the following tasks
to verify that the installation was successful and access MicroTx.

• Upgrade to 22.3.2
MicroTx 22.3.2 provides additional features.

• Verify
After installing MicroTx, run the following command to validate that the installation was
completed successfully.

• Install MicroTx Library Files
The MicroTx library for Java provides the functionality for your Java applications to initiate
a new XA, LRA, or TCC transaction or to participate in an existing transaction. You must
perform this task only once to install the library files on your system.

6.1 Upgrade to 22.3.2
MicroTx 22.3.2 provides additional features.

Skip this procedure if you have installed MicroTx 22.3.2.

Run these steps only if you have already installed MicroTx 22.3 or 22.3.1 and you want to
avail the latest features in 22.3.2. For information about the new features, see Changes in
MicroTx.

To upgrade to 22.3.2:

1. On https://www.oracle.com/database/transaction-manager-for-microservices/, click
Download MicroTx Free, and then download the MicroTx installation bundle (.zip file).

2. Create a new directory in your local machine.

3. Extract the contents of the ZIP file to the new directory that you have created.

unzip otmm-22.3.2.zip

Ensure that you do not overwrite the installer files for earlier versions of MicroTx.

4. Run the following command to view the list of files that are extracted.

ls -lR otmm-22.3.2

This contains the updated image of the transaction coordinator at
installation_directory/otmm-22.3.2/otmm/image/tmm-22.3.2.tgz. In the next steps,
you will use this file to update the existing transaction coordinator image.

5. Load the transaction coordinator image to the local repository, tag the image, and then
push the image.

6-1

https://www.oracle.com/database/transaction-manager-for-microservices/

• If you have installed MicroTx in a Kubernetes cluster, see Push Images to a
Remote Docker Repository.

• If you have installed MicroTx in Docker Swarm, see Push Image to a Docker
Registry.

6. Update the YAML file for the transaction coordinator with the name of the latest
image in the repo. If you want to use the latest features, complete the required
tasks to use these features, and then update the YAML file with the property
values.

• If you have installed MicroTx in a Kubernetes cluster, see Configure the
values.yaml File.

• If you have installed MicroTx in Docker Swarm, see Configure the tcs-docker-
swarm.yaml File.

7. If you have installed MicroTx in a Kubernetes cluster, run the following command
to complete the upgrade.

Syntax

helm upgrade <release name> --namespace <namespace> <chart
directory> --values <path_to_updated_values.yaml>

The following sample command upgrades the MicroTx application named tmm-app
in the otmm namespace.

helm upgrade tmm-app --namespace otmm tmm --values tmm/values1.yaml

Where,

• tmm-app is the name of the MicroTx application that you want to upgrade.

• otmm is the namespace in Kubernetes cluster, where you have installed
MicroTx.

• installation_directory/otmm-22.3.2/otmm/helmcharts/tmm is the folder
that contains the chart.yaml file for MicroTx.

• installation_directory/otmm-22.3.2/otmm/helmcharts/tmm/values1.yaml
is the location of the values1.yaml file, the application's updated manifest file,
in your local machine. This file contains the updated deployment configuration
details for MicroTx.

8. Install the latest MicroTx client library files for Java. See Install MicroTx Library
Files.

6.2 Verify
After installing MicroTx, run the following command to validate that the installation was
completed successfully.

curl --location --request POST -H "Authorization:Bearer access_token"
https://externalHostname:externalPort/api/v1/xa-transaction

Chapter 6
Verify

6-2

To identify values for the externalHostname and externalPort, see Access MicroTx. To
create an access token, see Create an Access Token.

A HTTPS response with status 201 displays the internal and external URL to access MicroTx
XA coordinator. A sample response is provided below.

{
 "internal": "http://otmm-tcs:9000/api/v1/xa-transaction/d369...",
 "external": "http://192.0.2.1/api/v1/xa-transaction/d3693..."
}

This indicates that you have successfully deployed MicroTx and the service is available to
coordinate XA transactions.

Some values have been truncated with ellipses (...) for readability in this example. When you
run the command in your environment, you will see the entire response.

In the example response, you see the URL for XA coordinator as you have set enabled:
"true" for the xaCoordinator field in the YAML file for MicroTx. If you enable the
lraCoordinator or tccCoordinator fields, you will also get the URL for LRA and TCC
coordinator.

6.3 Install MicroTx Library Files
The MicroTx library for Java provides the functionality for your Java applications to initiate a
new XA, LRA, or TCC transaction or to participate in an existing transaction. You must
perform this task only once to install the library files on your system.

Before you begin, ensure that you have installed Maven version 3.6 or later on your system.
See https://maven.apache.org/download.cgi.

Run the following commands to install the MicroTx library files for Java. These files are
available in the installation_directory/otmm-<version>/lib/java folder.

1. Install the TmmLib-<version>.jar file.

mvn install:install-file \
 -Dfile=./lib/java/TmmLib-<version>.jar \
 -DgroupId=com.oracle.tmm.jta \
 -DartifactId=TmmLib \
 -Dversion=<version> \
 -Dpackaging=jar

2. Install the TmmLib-<version>.pom file.

mvn install:install-file \
 -Dfile=./lib/java/TmmLib-<version>.pom \
 -DgroupId=com.oracle.tmm.jta \
 -DartifactId=TmmLib \
 -Dversion=<version> \
 -Dpackaging=pom

Chapter 6
Install MicroTx Library Files

6-3

https://maven.apache.org/download.cgi

7
Deploy Sample Applications

Code for the sample applications is available in the Transaction Manager for Microservices
(MicroTx) installation bundle. Using samples is the fastest way for you to get familiar with
MicroTx.

The installation_directory/otmm-RELEASE/samples folder contains a sub-folder for each
transaction protocol: XA, LRA, and TCC. Each sub-folder contains the sample application
source code and files required by Helm.

Sample applications are microservices that demonstrate how you can develop your services
for participating in different transaction protocols using MicroTx. The code of the sample
applications includes the MicroTx libraries. You can use the sample applications as a
reference while using the MicroTx libraries with your application.

Deployment Details for Sample Microservices

Independently develop, test, and deploy the microservices. The applications must meet ACID
requirements.

Deploy the sample microservices in the same namespace in which you have installed
MicroTx.

Associate all the microservices with a single identity domain to share user definitions and
authentication by using a common identity provider.

The MicroTx uses a data store to maintain data about global transactions and transaction
logs.

For XA sample applications, the participant microservices connect to resource managers,
which are external services for the participant microservices.

• Deploy XA Sample Application
Let us understand how MicroTx manages transactions for applications that use the XA
transaction protocol by using the sample XA application.

• Deploy LRA Sample Application

• Deploy TCC Sample Application

7.1 Deploy XA Sample Application
Let us understand how MicroTx manages transactions for applications that use the XA
transaction protocol by using the sample XA application.

The XA sample application is available in the installation bundle in the
installation_directory/otmm-<version>/samples/xa folder. This folder contains the code
for three microservices, YAML files, and Helm charts for sample Java and Node.js sample
applications. The sample application code is already configured to use the MicroTx libraries.

• Workflow to Run XA Sample Apps
Use the following workflow as a guide to run the XA sample applications.

7-1

• About XA Sample Application
The sample XA application implements a scenario where a Teller application
initiates the transfer of an amout from one department to another by creating an
XA transaction. The two departments in the organization are Department One
(Dept 1) and Department Two (Dept 2).

• Identify a Sample App to Run
The sample application code files are already updated to use the MicroTx client
libraries. You can use these files as a reference when you are integrating MicroTx
library code with your custom application.

• Set Up Resource Managers for Sample Apps
Set up resource managers for Department One and Department Two in your
sample XA application.

• Run Sample XA Application in Kubernetes

• Run Sample XA Application in Docker Swarm

7.1.1 Workflow to Run XA Sample Apps
Use the following workflow as a guide to run the XA sample applications.

Task Description More Information

Create an access token Download the installation bundle, set
up a transaction store and identity
provider.

Prepare

Install MicroTx This guide provides instructions for
you to install MicroTx in a
Kubernetes cluster or Docker
Swarm.

Install MicroTx in one of the following
environments:
• Install on a Kubernetes Cluster
• Install on Docker Swarm

Learn about the components of the
sample XA application

Sample applications are available for
trying out different use cases. Identify
the sample app that you want to run
and note down the location of the
source code for the sample
application.

About XA Sample Application

Identify the XA sample application
that you want to try out

Sample applications are available for
trying out different use cases. Identify
the sample app that you want to run
and note down the location of the
source code for the sample
application.

Identify a Sample App to Run

Set up resource manager for your
transaction participant applications

Identify the type of resource
manager that you want to use, such
as XA-compliant or non-XA
compliant.

Set Up Resource Managers for
Sample Apps

Build, install, and run the sample
application

This guide provides instructions for
you to run the sample applications in
a Kubernetes cluster or Docker
Swarm.

Run the sample apps in one of the
following environments:
• Run Sample XA Application in

Kubernetes
• Run Sample XA Application in

Docker Swarm

Chapter 7
Deploy XA Sample Application

7-2

7.1.2 About XA Sample Application
The sample XA application implements a scenario where a Teller application initiates the
transfer of an amout from one department to another by creating an XA transaction. The two
departments in the organization are Department One (Dept 1) and Department Two (Dept 2).

MicroTx implements the XA transaction. Within the XA transaction, all actions such as
withdraw and deposit either succeed, or they all are rolled back in case of a failure of any one
or more actions.

The following image shows a sample XA application deployment which consists of polyglot
participant microservices.

• MicroTx coordinator manages transactions amongst the participant services.

• Teller microservice initiates the transactions, so it is called an XA transaction initiator
service. The user interacts with this microservice to transfer money between departments
One and Two. When a new request is created, the helper method that is exposed in the
MicroTx library runs the begin() method for XA transaction to start the XA transaction at
the Teller microservice. This microservice also contains the business logic to issue the
XA commit and roll back calls.

Chapter 7
Deploy XA Sample Application

7-3

• Department One and Department Two participate in the transactions, so they are
called as XA participant services. The MicroTx library includes headers that enable
the participant services to automatically enlist in the transaction. These
microservices expose REST APIs to get the account balance and to withdraw or
deposit money from a specified account. They also use resources from resource
manager.

Resource managers manage stateful resources such as databases, queuing or
messaging systems, and caches.

The service must meet ACID requirements, so an XA transaction is initiated and both
withdraw and deposit are called in the context of this transaction.

The next topic describes how the microservices and MicroTx communicate during an
XA transaction.

• Scenario: Withdraw and Deposit an Amount
The following steps describe an example sequence for the successful path of an
XA transaction when you run the sample application. Let us consider a scenario,
where a user places a request to withdraw an amount from Department One and
deposit that amount into Department Two. In case of failures, the initiating
application calls a rollback instead of a commit.

7.1.2.1 Scenario: Withdraw and Deposit an Amount
The following steps describe an example sequence for the successful path of an XA
transaction when you run the sample application. Let us consider a scenario, where a
user places a request to withdraw an amount from Department One and deposit that
amount into Department Two. In case of failures, the initiating application calls a
rollback instead of a commit.

It is assumed that Department One and Department Two use XA-compliant resource
managers.

1. User places a request to transfer an amount from Department One to Department
Two.

2. The Teller service initiates the transaction, when a user places a request to
withdraw an amount from Department One. The transaction initiator service, Teller,
makes a call to MicroTx to begin an XA transaction.
MicroTx creates a new global transaction ID (GTRID) to track the transaction,
writes the GTRID to the data store, and returns the GTRID to the transaction
initiator service.

3. The Teller sends a request to Department One to withdraw an amount.

4. The transaction participant service, Department One enlists to MicroTx with the
same GTRID. MicroTx may have to interact with multiple participant services to
successfully complete a transaction. MicroTx also creates a branch ID that is
unique to each participant service. The XID contains both the GTRID and branch
ID, so the XID is unique for each participant service.

5. In XA protocol, MicroTx manages the commnication between participant
microservices, such as Department One, and the resource manager. Department
One must use the MicroTx client libraries which registers callbacks and provides
implementation of the callbacks for the resource manager.

6. Department One performs the DML operation to withdraw the amount, and then
returns a response.

Chapter 7
Deploy XA Sample Application

7-4

7. The Teller service initiates another request to deposit an amount to Department Two.

8. The transaction participant service, Department Two enlists to MicroTx with the same
GTRID. MicroTx coordinator creates a branch ID that is unique to Department Two.

9. Department Two communicates with the resource manager using the integrated MicroTx
library.

10. Department Two performs the DML operation to deposit the amount, and then returns a
response.

11. The Teller service commits the transaction only if the both the requests, that is, the
request to Department One and the request to Department Two, are executed
successfully. In case of any failure, the Teller service calls rollback instead of commit.
Teller tracks the commit transaction using the same GTRID that was used by Department
One and Two.

12. MicroTx coordinator prepares the participant service, Department One, to commit the
transaction.

13. MicroTx coordinator calls Department One. The participant microservice in turn uses the
integrated MicroTx library to send a request to prepare the resource manager.

14. MicroTx coordinator prepares the participant service, Department Two, to commit the
transaction.

15. Coordinator send a request to Department Two. The participant microservice in turn uses
the integrated MicroTx library to send a request to prepare the resource manager.

16. The coordinator sends a commit request to the participant services after the prepare
phase is completed successfully. The participant services in turn send a request to the
resource manager using the integrated MicroTx library. The coordinator returns a
response to the Teller service which completes the transaction.

7.1.3 Identify a Sample App to Run
The sample application code files are already updated to use the MicroTx client libraries. You
can use these files as a reference when you are integrating MicroTx library code with your
custom application.

The following table lists the combination of the XA sample applications that you can use to try
out different scenarios. You'll need this information when you build images of the sample
microservices and configure them. The table lists the relative path of the sample XA
application code files within the installation_directory/otmm-<version>/samples/xa
folder and .. indicates this folder. Identify the scenario that you want to try out, and then note
down the location of the source code for the sample application.

The Teller service is a transaction initiator service. Dept 1 and Dept 2 services are transaction
participants services. You must set up a resource manager for all the transaction participant
services. For more details, see About XA Sample Application.

Scenario Location of Sample Code Notes

Run Java sample applications using
only XA-compliant resource
managers. The Teller service only
initiates the transaction and does not
participate in it, so it does not require
a resource manager.

Initiator app: ../java/teller
Dept 1: ../java/department-
helidon
Dept 2: ../java/department-
spring

Set up XA-compliant resource
managers for Dept 1 and Dept 2.
See Set Up XA-Compliant Resource
Manager.

Chapter 7
Deploy XA Sample Application

7-5

Scenario Location of Sample Code Notes

Run Java sample applications using
only XA-compliant resource
managers. The Teller service
initiates, and then participates in the
transaction, so it also requires a
resource manager.

Initiator app: ../java/teller-as-
participant
Dept 1: ../java/department-
helidon
Dept 2: ../java/department-
spring

Set up XA-compliant resource
managers for Teller, Dept 1, and
Dept 2 services. See Set Up XA-
Compliant Resource Manager.

Run Node.js sample applications
using only XA-compliant resource
managers. The Teller app only
initiates the transaction and does not
participate in it, so it does not require
a resource manager.

Initiator app: ../nodejs/teller
Dept 1: ../java/department-
helidon
Dept 2: ../nodejs/department

Set up XA-compliant resource
managers for Dept 1 and Dept 2.
See Set Up XA-Compliant Resource
Manager.

Run Java sample applications using
an XA-compliant resource manager
for Dept 1 and a resource that does
not support XA and JDBC for Dept 2.
The Teller service only initiates the
transaction, so it does not require a
resource manager.

Initiator app: ../java/teller
Dept 1: ../java/department-
helidon
Dept 2: ../java/department-
nonxa-ds

MySQL is a JDBC resource which is
not XA-compliant. Use Logging Last
Resource (LLR) optimization to
enable MySQL to participate in a
distributed transaction. Set up
MySQL as a resource manager for
Dept 2. See Set Up MySQL for
Sample Participant Services.

Run Java sample applications using
an XA-compliant resource manager
for Dept 1 and MongoDB or
PostgreSQL as resource manager for
Dept 2. The Teller service only
initiates the transaction, so it does
not require a resource manager.

Initiator app: ../java/teller
Dept 1: ../java/department-
helidon
Dept 2: ../java/department-
nonxa

Mongo DB is a non-XA and non-
JDBC resource. Use LLR
optimization to enable MongoDB to
participate in a distributed
transaction. See Set Up MySQL for
Sample Participant Services.
PostgreSQL is an XA-compliant
resource. To use PostgreSQL as a
resource manager, you must make
additional changes to your
application code. See Configure
PostgreSQL as Resource Manager.

Run Java sample applications using
XA-compliant resource managers for
Dept 1 and Dept 2 services. The
Teller service initiates, and then
participates in the transaction, so you
must set up a resource manager for
the Teller service.

Initiator app: ../java/teller-as-
participant-nonxa-ds
Dept 1: ../java/department-
helidon
Dept 2: ../java/department-
spring

MySQL is a JDBC resource which is
not XA-compliant. Use LLR
optimization to enable MySQL to
participate in a distributed
transaction. Set up MySQL as a
resource manager for the Teller
service. See Set Up MySQL for
Teller Service.

Run Java sample applications using
an XA-compliant resource manager
for Dept 1 and MySQL as resource
manager for Dept 2. The Teller
service only initiates the transaction,
so it does not require a resource
manager.

Initiator app: ../java/teller
Dept 1: ../java/department-
helidon
Dept 2: ../java/department-
nonxa-lrc-ds

MySQL is a JDBC resource which is
not XA-compliant. Use Last
Resource Commit (LRC)
optimization to enable MySQL to
participate in a distributed
transaction. Set up MySQL as a
resource manager for Dept 2. See
Set Up MySQL for Sample
Participant Services.

Chapter 7
Deploy XA Sample Application

7-6

Scenario Location of Sample Code Notes

Run Java sample applications using
an XA-compliant resource manager
for Dept 1 and MongoDB as resource
manager for Dept 2. The Teller
service only initiates the transaction,
so it does not require a resource
manager.

Initiator app: ../java/teller
Dept 1: ../java/department-
helidon
Dept 2: ../java/department-
nonxa-lrc

Mongo DB is a non-XA and non-
JDBC resource. Use LRC
optimization to enable MongoDB to
participate in a distributed
transaction. See Set Up MongoDB
as Resource Manager.

7.1.4 Set Up Resource Managers for Sample Apps
Set up resource managers for Department One and Department Two in your sample XA
application.

For Department One, you can use any XA-compliant database as a resource manager. For
example, Autonomous Transaction Processing (ATP) Database instances in Oracle Cloud.

For Department Two, set up one of the following as a resource manager based on the use
case that you want to implement:

• XA-compliant database

• Non-XA compliant data stores, such as MongoDB and MySQL

• PostgreSQL as database

In the use case where the Teller service initiates and then participates in a transaction, you
must set up a resource manager for the Teller service.

• Set Up XA-Compliant Resource Manager
Set up XA-compliant resource managers for your sample XA application, and then create
tables with sample values.

• Set Up MongoDB as Resource Manager
MicroTx supports MongoDB 4.1 or later as a resource manager. Mongo DB is a non-XA
and non-JDBC resource. Use Logging Last Resource (LLR) or Last Resource Commit
(LRC) optimization to enable MongoDB to participate in a distributed transaction.

• Set Up MySQL for Teller Service
MySQL is a JDBC resource which is not XA-compliant. Use Logging Last Resource
(LLR) or Last Resource Commit (LRC) optimization to enable MySQL to participate in a
distributed transaction as the data store for the Teller service, the transaction initiator
service.

• Set Up MySQL for Sample Participant Services
MySQL is a JDBC resource which is not XA-compliant. Use Logging Last Resource
(LLR) or Last Resource Commit (LRC) optimization to enable MySQL to participate in a
distributed transaction.

• Configure PostgreSQL as Resource Manager
To use PostgreSQL as resource manager for Dept 2 in the XA sample application, you
must update a few YAML files and enable session affinity.

• Enable Session Affinity for XA Participants
When there are multiple replicas of a participant service, the request may be directed to
different replicas in a single transaction. When you enable session affinity for a participant
service, all the requests for a unique transaction or session are routed to the same
endpoint or replica of the participant service that served the first request.

Chapter 7
Deploy XA Sample Application

7-7

7.1.4.1 Set Up XA-Compliant Resource Manager
Set up XA-compliant resource managers for your sample XA application, and then
create tables with sample values.

You can use any Oracle Database. For example, Autonomous Transaction Processing
(ATP) Database instances in Oracle Cloud, an Oracle Database running inside a
Kubernetes cluster, or an on-premises database. Ensure that MicroTx and the
application, when it is deployed, can access the database.

Only if you use an Autonomous Database instance, perform the following steps to get
the Oracle client credentials (wallet files):

1. Download the wallet from the Autonomous Database instance. See Download
Client Credentials (Wallets) in Using Oracle Autonomous Database on Shared
Exadata Infrastructure.

A ZIP file is downloaded to your local machine. Let's consider that the name of the
wallet file is Wallet_database.zip.

2. Unzip the wallet file.

unzip Wallet_database.zip

The files are extracted to a folder. Note down the name of this folder.

3. Copy the wallet files to the following folders that contain the source code for the
participant applications.

• installation_directory/otmm-RELEASE/samples/xa/java/department-
helidon/Database_Wallet

• installation_directory/otmm-RELEASE/samples/xa/java/department-
spring/Database_Wallet

Create database and tables with sample values

To test the sample XA applications, create database and tables with sample values for
both the department applications. The MicroTx installation bundle includes the SQL
script file that you can run to create the required tables. Run the SQL script using a
client tool with which you connect to the database. You'll need to provide database
credentials to establish a connection with the database and run the SQL script.

To use the SQL script to create a database, a table, and populate it with sample
values:

1. Run the <installation_directory/otmm-RELEASE/samples/xa/java/
department-helidon/department.sql file by connecting to Oracle Database by
using SQL developer or SQL plus.
This creates a database with the name department_helidon and a table with the
name accounts. It also populates the accounts table with sample values.

2. Run the <installation_directory/otmm-RELEASE/samples/xa/java/
department-spring/department.sql file by connecting to Oracle Database by
using SQL developer or SQL plus.
This creates a database with the name department_spring and a table with the
name accounts. It also populates the accounts table with sample values as
provided in the following table.

Chapter 7
Deploy XA Sample Application

7-8

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-B06202D2-0597-41AA-9481-3B174F75D4B1
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html#GUID-B06202D2-0597-41AA-9481-3B174F75D4B1

Account_ID Amount

account1 1000

account2 2000

account3 3000

account4 4000

account5 5000

7.1.4.2 Set Up MongoDB as Resource Manager
MicroTx supports MongoDB 4.1 or later as a resource manager. Mongo DB is a non-XA and
non-JDBC resource. Use Logging Last Resource (LLR) or Last Resource Commit (LRC)
optimization to enable MongoDB to participate in a distributed transaction.

1. Set up MongoDB with transaction capability. To support transactions, you must set up
MongoDB replication. See https://www.mongodb.com/docs/manual/replication/
#transactions.

2. Run the following commands to create a table in MongoDB with seed data for the sample
XA application.

db.createCollection("accounts")
db.accounts.insertMany([{"accountId":"111", "name":"account1",
"amount":1000.00},{"accountId":"222", "name":"account2",
"amount":2000.00},{"accountId":"333", "name":"account3",
"amount":3000.00}])

3. Create the commitRecords collection for storing the committed records.

db.createCollection("commitRecords")

Skip this step if you are running the sample app for Last Resource Commit (LRC)
optimization.

4. Enable session affinity or sticky sessions for the participant service. See Enable Session
Affinity for XA Participants.

7.1.4.3 Set Up MySQL for Teller Service
MySQL is a JDBC resource which is not XA-compliant. Use Logging Last Resource (LLR) or
Last Resource Commit (LRC) optimization to enable MySQL to participate in a distributed
transaction as the data store for the Teller service, the transaction initiator service.

In this scenario, the transaction initiator and participant applications are Java applications.
Use XA-compliant resource managers for Dept 1 and Dept 2 application. Set up MySQL as
resource manager for the Teller application.

Set up a resource manager for the Teller application only when you want to try out the
scenario where you use an initiator application as a participant as well. The banking teller
application transfers an amount from one department to another. For every transaction, the
teller application charges an amount as commission. Here, the teller application initiates the
transaction and participates in it. A database instance must be attached to the teller
application to save the transaction information.

Chapter 7
Deploy XA Sample Application

7-9

https://www.mongodb.com/docs/manual/replication/#transactions
https://www.mongodb.com/docs/manual/replication/#transactions

Perform the following steps to set up a resource manager for the Teller application:

1. Set up MySQL. For information about installation and configuration, refer to the
MySQL documentation.

2. Run the following sample commands to create a table in MySQL with seed data
for the sample XA application. Use the fee table to demonstrate the commission
charged by the Teller application.

create database transfer_fee;
use transfer_fee;
create table fee
(
 account_id VARCHAR(10) not null,
 amount decimal(10,2) not null,
 PRIMARY KEY (account_id)
);
insert into fee values('account1', 10.00);
insert into fee values('account2', 20.00);
insert into fee values('account3', 30.00);
insert into fee values('account4', 40.00);
insert into fee values('account5', 50.00);

3. Create a table for storing the committed records.

CREATE TABLE LLR_COMMIT_RECORD (
 GTRID varchar(255) NOT NULL,
 DATE_COMMITED TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 RECORDSTR text,
 PRIMARY KEY (GTRID)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Skip this step if you are running the sample app for Last Resource Commit (LRC)
optimization.

4. Enable session affinity or sticky sessions for the participant service. See Enable
Session Affinity for XA Participants.

7.1.4.4 Set Up MySQL for Sample Participant Services
MySQL is a JDBC resource which is not XA-compliant. Use Logging Last Resource
(LLR) or Last Resource Commit (LRC) optimization to enable MySQL to participate in
a distributed transaction.

1. Set up MySQL. For information about installation and configuration, refer to the
MySQL documentation.

2. Run the following commands to create a table in MySQL with seed data for the
sample XA application.

create database department_nonxa_ds;
use department_nonxa_ds;
create table accounts
(
 account_id VARCHAR(10) not null,
 name VARCHAR(60) not null,

Chapter 7
Deploy XA Sample Application

7-10

 amount decimal(10,2) not null,
 PRIMARY KEY (account_id)
);
insert into accounts values('account1', 'account1', 1000.00);
insert into accounts values('account2', 'account2', 2000.00);
insert into accounts values('account3', 'account3', 3000.00);
insert into accounts values('account4', 'account4', 4000.00);
insert into accounts values('account5', 'account5', 5000.00);

3. Create a table for storing the committed records.

CREATE TABLE LLR_COMMIT_RECORD (
 GTRID varchar(255) NOT NULL,
 DATE_COMMITED TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 RECORDSTR text,
 PRIMARY KEY (GTRID)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Skip this step if you are running the sample app for Last Resource Commit (LRC)
optimization.

4. Enable session affinity or sticky sessions for the participant service. See Enable Session
Affinity for XA Participants.

7.1.4.5 Configure PostgreSQL as Resource Manager
To use PostgreSQL as resource manager for Dept 2 in the XA sample application, you must
update a few YAML files and enable session affinity.

Skip this section if you don't want to use PostgreSQL as a resource manager.

To configure PostgreSQL as a resource manager:

1. In any code editor, open the Configuration.java file located in the
installation_directory/otmm-RELEASE/samples/xa/java/department-spring/src/
main/java/com/oracle/mtm/sample folder.

2. Remove comments from all the lines of code which have the following comment:
Uncomment when the application uses PostgreSQL.

3. In any code editor, open the pom.xml file located in the installation_directory/otmm-
RELEASE/samples/xa/java/department-spring folder.

4. Remove comments from all the lines of code which have the following comment:
Uncomment when the application uses PostgreSQL, so that the following details about
the driver are no longer commented.

<dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>RELEASE</version>
</dependency>

5. Enable session affinity or sticky sessions for the transaction participant service that uses
PostgreSQL as resource manager. When you enable session affinity, all the requests for
a unique transaction or session are routed to the same endpoint or replica of the

Chapter 7
Deploy XA Sample Application

7-11

participant service that served the first request. See Enable Session Affinity for XA
Participants.

7.1.4.6 Enable Session Affinity for XA Participants
When there are multiple replicas of a participant service, the request may be directed
to different replicas in a single transaction. When you enable session affinity for a
participant service, all the requests for a unique transaction or session are routed to
the same endpoint or replica of the participant service that served the first request.

You must enable session affinity or sticky sessions for the transaction participant
service in the following scenarios:

• When the participant service uses PostgreSQL as a resource manager.

• When the participant service uses a non-XA resource as a resource manager.

To enable session affinity for a participant service:

1. Create a networking rule for the participant service in the namespace where you
have deployed the service. The traffic policy must use a load balancer with
consistent hash that uses the HTTP request header, oracle-tmm-txn-id.

2. Update the networking.yaml file located in the installation_directory/otmm-
RELEASE/samples/xa/helmcharts/sampleapps/templates folder. Specify the
oracle-tmm-txn-id HTTP header in Istio's DestinationRule resource to enable
session affinity or create sticky sessions. Use a load balancer that is based on
consistent hash to provide session affinity based on the oracle-tmm-txn-id HTTP
header.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
spec:
 host: {{$val.host}}
 trafficPolicy:
 loadBalancer:
 consistentHash:
 httpHeaderName: oracle-tmm-txn-id

Where,

• host: Specify the fully qualified name of your application inside the Kubernetes
cluster. For example, dept1.otmm.svc.cluster.local.

3. In any code editor, open the values.yaml file located in the
installation_directory/otmm-RELEASE/samples/xa/helmcharts/sampleapps
folder.

4. In the values.yaml file, under Dept2, search for the sessionAffinity property and
set the value to true.

sessionAffinity: true

7.1.5 Run Sample XA Application in Kubernetes

Chapter 7
Deploy XA Sample Application

7-12

• Build Docker Images for Sample XA Application
Before you begin building the Docker images, ensure that you have completed the
following tasks.

• Push XA Sample App Images
Push the Docker image of the sample applications, that you have built, to a remote
repository.

• Update the values.yaml File for XA Sample App
The sample application files also contain the values.yaml file, the manifest file of the
sample application, which contains the deployment configuration details for the XA
sample application.

• Install XA Sample Application
Install the XA sample application in the Kubernetes cluster where you have installed
MicroTx.

• Run an XA Transaction

7.1.5.1 Build Docker Images for Sample XA Application
Before you begin building the Docker images, ensure that you have completed the following
tasks.

1. Installed MicroTx.

2. Identified the sample application that you want to try out and noted down the location of
the code files. See Identify a Sample App to Run.

3. Set up resource managers for participant services. Copied the wallet files to the sample
application folders if you are using an Autonomous Database instances as resource
manager.

The code samples in the following procedure use the location of a Java sample application
which uses XA-compliant resource managers. Update the path to the sample application
code file based on the scenario that you want to try out.

Perform the following steps to build Docker images for each microservice in the sample:

1. Run the following commands to build the Docker image for the Teller application.

Sample command

cd installation_directory/otmm-<version>/samples/xa/java/teller
docker image build -t teller:1.0 .

2. Run the following commands to build the Docker image for the Department 1 application.

Sample command

cd installation_directory/otmm-<version>/samples/xa/java/department-helidon
docker image build -t department-helidon:1.0 .

3. Run the following commands to build the Docker image for the Department 2 application.

Sample command

cd installation_directory/otmm-<version>/samples/xa/java/department-spring
docker image build -t department-spring:1.0 .

Chapter 7
Deploy XA Sample Application

7-13

The Docker images that you have created are available in your local Docker container
registry. Note down the names of the images as you will provide this information in the
next step.

7.1.5.2 Push XA Sample App Images
Push the Docker image of the sample applications, that you have built, to a remote
repository.

The container image that you have built is available in your local repository. You must
push this image to a remote repository, so that you can access this image using Helm.
Later, you will use Helm to install the sample application.

1. Provide credentials to log in to the remote private repository to which you want to
push the image.

docker login <repo>

Provide the login credentials based on the Kubernetes platform that you are using.

2. Use the following command to specify a unique tag for the image that you want to
push to the remote Docker repository.

Syntax

docker tag local_image[:tag] remote_image[:tag]

Where,

• local_image[:tag] is the tag with which the image is identified in your local
repository.

• remote_image[:tag] is the tag with which you want to identify the image in the
remote Docker repository.

Sample commands

The following sample commands tag the images of the Teller, department 1, and
department 2 XA applications. Provide the image names based on your
environment.

Sample Code

docker tag teller:1.0 <region-key>.ocir.io/otmmrepo/teller:1.0
docker tag dept1:1.0 <region-key>.ocir.io/otmmrepo/dept1:1.0
docker tag dept2:1.0 <region-key>.ocir.io/otmmrepo/dept2:1.0

Where, <region-key>.ocir.io/otmmrepo is the Oracle Cloud Infrastructure
Registry to which you want to push the image file. If you are using other
Kubernetes platforms, then provide the details based on your environment.

3. Push the Docker image from your local repository to the remote Docker repository.

Syntax

docker push remote_image[:tag]

Sample commands

Chapter 7
Deploy XA Sample Application

7-14

The the following sample commands push the tagged images of Teller, department 1, and
department 2 applications. Provide the image names based on your environment.

Sample Code

docker push <region-key>.ocir.io/otmmrepo/teller:1.0
docker push <region-key>.ocir.io/otmmrepo/dept1:1.0
docker push <region-key>.ocir.io/otmmrepo/dept2:1.0

Note down the tag of the Docker image in the remote Docker repository. You'll need to enter
this tag while pulling the image from the remote Docker repository.

7.1.5.3 Update the values.yaml File for XA Sample App
The sample application files also contain the values.yaml file, the manifest file of the sample
application, which contains the deployment configuration details for the XA sample
application.

While deploying the sample application to a Kubernetes cluster, Helm pulls the sample
application images from the remote Docker registry. In the values.yaml file of the sample
application, specify the image to pull and the credentials to use when pulling the images. Also
provide details to access the resource managers.

To provide the configuration and environment details in the values.yaml file:

1. Open the values.yaml file, which is located in the installation_directory/otmm-
<version>/samples/xa/java/helmcharts/transfer folder, in any code editor.

This file contains sample values. Use this file as a reference to create your own YAML file
to run and manage microservices in Kubernetes.

2. Provide details to access the resource manager for Department 1 and Department 2
microservices.

• connectString: Enter the public URL to access the database. It can be the public IP
address of the database node or the IP address of the cluster.

– If you are using a non-autonomous Oracle Database (a database that does not
use a credential wallet), use the following format to enter the connection string:

jdbc:oracle:thin:@<publicIP>:<portNumber>/<database unique
name>.<host domain name>

For example:

jdbc:oracle:thin:@123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com

– If you are using Oracle Database Cloud Service with Oracle Cloud Infrastructure,
see Create the Oracle Database Classic Cloud Service Connection String in
Using Oracle Blockchain Platform.

– If you are using Oracle Autonomous Transaction Processing, use the following
format to enter the connection string:

jdbc:oracle:thin:@tcps://<host>:<port>/<service_name>?
wallet_location=<wallet_dir>

Chapter 7
Deploy XA Sample Application

7-15

https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50

You can find the required details, such as host, port, and service name in
the tnsnames.ora file, which is located in folder where you have extracted
the wallet.

For example:

jdbc:oracle:thin:@tcps://adb.us-
phoenix-1.oraclecloud.com:7777/
unique_connection_string_low.adb.oraclecloud.com?
wallet_location=Database_Wallet

• databaseUser: Enter the user name to access the database, such as SYS.

• databasePassword: Enter the password to access the database for the specific
user.

3. Provide details of all the sample application images that you have uploaded to the
docker container. For example, iad.ocir.io/mytenancy/xa/teller:1.0.

4. Save your changes.

7.1.5.4 Install XA Sample Application
Install the XA sample application in the Kubernetes cluster where you have installed
MicroTx.

1. Navigate to the folder that contains the Helm Charts. Provide the path for the
sample application that you want to try out.

Sample Code

cd installation_directory/otmm-<version>/otmm/samples/xa/helmcharts

2. Run the following command to install the XA sample application.

helm install sample-xa-app --namespace otmm transfer/ \
--values transfer/values.yaml

Where, sample-xa-app is the name of the application that is installed.

3. Verify that all resources, such as pods and services, are ready. Use the following
command to retrieve the list of resources in the namespace otmm and their status.

kubectl get all -n otmm

4. Verify that the application is installed.

helm list --namespace otmm

7.1.5.5 Run an XA Transaction

Before you start a transaction, you must create an access token, install the MicroTx
library files, and note down the external IP address of the Istio ingress gateway.

Chapter 7
Deploy XA Sample Application

7-16

1. Before starting the transaction, run the following commands to check the balance in
department 1 and department 2.

curl --location --request GET -H "Authorization:Bearer $TOKEN"
'http://$CLUSTER_IPADDR/dept1/account1' | jq
curl --location --request GET -H "Authorization:Bearer $TOKEN"
'http://$CLUSTER_IPADDR/dept2/account2' | jq

Where,

• CLUSTER_IPADDR is the name of the variable in which you stored the external IP
address of the Istio ingress gateway. For information about finding the external IP
address of the Istio ingress gateway and storing it in a variable, see Find IP Address
of Istio Ingress Gateway.

• TOKEN is the name of the variable in which you stored the authentication token earlier.
For information about retrieving the authentication token and storing it in a variable,
see Create an Access Token. You don't have to create and specify an authentication
token only if your test environment is a Minikube cluster in which you perform the
operations in a single cluster that's available on your local machine.

2. Transfer an amount of 50 from department 1 to department 2.

curl --location --request POST -H "Authorization:Bearer $TOKEN"
'http://$CLUSTER_IPADDR/transfers' --header 'Content-Type: application/
json' --data-raw '{"from" : "account1", "to" : "account2", "amount" : 50}'

Based on the business logic, the Teller service commits the transaction only if the both
the requests, that is, the request to Department One and the request to Department Two,
are executed successfully. MicroTx prepares the participant services, Department One
and Department Two, and then commits the transactions.

3. Check balances in department 1 and department 2 to verify that the amounts reflect
correctly after the transaction. Run the following commands to confirm the transaction.

curl --location --request GET -H "Authorization:Bearer $TOKEN"
'http://$CLUSTER_IPADDR/dept1/account1' | jq
curl --location --request GET -H "Authorization:Bearer $TOKEN"
'http://$CLUSTER_IPADDR/dept2/account2' | jq

4. Run the following command to check the balance in department 1, and note down the
balance. You will compare the account balance after a few steps.

curl --location --request GET -H "Authorization:Bearer $TOKEN"
'http://$CLUSTER_IPADDR/dept1/account1' | jq

5. To test how MicroTx handles failures and performs rollback, transfer an amount of 100
from department 1 to department 2, but specify an account number which does not exist,
such as account10.

curl --location --request POST -H "Authorization:Bearer $TOKEN"
'http://$CLUSTER_IPADDR/transfers' --header 'Content-Type: application/
json' --data-raw '{"from" : "account1", "to" : "account10", "amount" :
100}'

Chapter 7
Deploy XA Sample Application

7-17

You will receive the 500 Internal server error. The transaction participant
service will receive an error message that account10 does not exist.

In case of any failure, the Teller service calls rollback instead of commit.

6. Run the following command to check the balance in department 1.

curl --location --request GET -H "Authorization:Bearer $TOKEN"
'http://$CLUSTER_IPADDR/dept1/account1' | jq

Check if there is any change in the balance. If the balance remains the same, it
indicates that the amount was not withdrawn from department 1.

7.1.6 Run Sample XA Application in Docker Swarm

• Build and Push the Docker Images
Before you begin building the Docker images, ensure that you have copied the
wallet files to the sample application folders if you are using an Autonomous
Database instances as resource manager.

• Install XA Sample Application
Install the XA sample application in Docker Swarm.

• Run an XA Transaction
Before you start a transaction, you must install the Transaction Manager for
Microservices library files and push the Docker image of the services to the
Docker registry.

7.1.6.1 Build and Push the Docker Images
Before you begin building the Docker images, ensure that you have copied the wallet
files to the sample application folders if you are using an Autonomous Database
instances as resource manager.

1. Installed MicroTx.

2. Identified the sample application that you want to try out and noted down the
location of the code files. See Identify a Sample App to Run.

3. Set up resource managers for participant services. Copied the wallet files to the
sample application folders if you are using an Autonomous Database instances as
resource manager.

It is important that you tag the Docker images that you build with the address of the
registry that you have created. For example, 192.0.2.1:5000. This is required while
distributing the apps to the Swarm.

The code samples in the following procedure use the location of a Java sample
application which uses XA-compliant resource managers. Update the path to the
sample application code file based on the scenario that you want to try out.

Perform the following steps to build Docker images for each microservice in the
sample:

Chapter 7
Deploy XA Sample Application

7-18

1. Store the location of the Docker registry in an environment variable named
REGISTRY_LOCATION as shown in the following command.

export REGISTRY_LOCATION=192.0.2.1:5000

Where,

• 192.0.2.1 is the IP address of the Docker registry that you have created.

• 5000 is the port number over which the Docker registry container communicates.
Ensure that you have set up the required networking rules to permit inbound and
outbound HTTPS or HTTP traffic over this port.

Note that, if you don't do this, then you must explicitly specify the IP address in the
commands when required.

2. Run the following commands to build the Docker image for the Teller application.

Sample command

cd installation_directory/otmm-<version>/samples/xa/java/teller
docker image build -t $REGISTRY_LOCATION/teller:1.0 .

3. Run the following commands to build the Docker image for the Department 1 application.

Sample command

cd installation_directory/otmm-<version>/samples/xa/java/department-helidon
docker image build -t $REGISTRY_LOCATION/department-helidon:1.0 .

4. Run the following commands to build the Docker image for the Department 2 application.

Sample command

cd installation_directory/otmm-<version>/samples/xa/java/department-spring
docker image build -t $REGISTRY_LOCATION/department-spring:1.0 .

5. Push the tagged Docker image to the Docker registry that you have created.

Syntax

docker push image[:tag]

Sample commands

The the following sample commands push the tagged images of hotel, flight, and trip
manager applications.

docker push $REGISTRY_LOCATION/teller:1.0
docker push $REGISTRY_LOCATION/department-helidon:1.0
docker push $REGISTRY_LOCATION/department-spring:1.0

When you build the Docker images, they are available in your local Docker container
registry. When you push the Docker image, it becomes available in the Docker registry
that you have created for the Swarm.

Chapter 7
Deploy XA Sample Application

7-19

7.1.6.2 Install XA Sample Application
Install the XA sample application in Docker Swarm.

All Swarm objects are described in manifests called stack files. The tmm-stack-
compose.yaml stack file is located at installation_directory/otmm-<version>/
samples/docker. This is a sample YAML file which describes all the components and
configurations of the XA sample application and transaction coordinator. Use this file
as a reference to create your own YAML file to run and manage microservices in
Docker Swarm.

To run XA sample application:

1. Edit the tmm-stack-compose.yaml stack file in any code editor.

This file contains the configuration details for the XA sample applications.
Uncomment the section for XA sample applications.

2. Provide details to access the resource manager for Department 1 and Department
2 microservices.

• DEPARTMENTDATASOURCE_URL: Enter the public URL to access the resource
manager. It can be the public IP address of the database node or the IP
address of the cluster.

• DEPARTMENTDATASOURCE_USER: Enter the user name to access the resource
manager, such as SYS.

• DEPARTMENTDATASOURCE_PASSWORD: Enter the password to access the resource
manager for the specificied user.

For information about identifying values for these fields, see Distributed
Transactions in JDBC Developer's Guide and Reference.

3. Provide details of all the sample application images that you have uploaded to the
Docker registry. For example, 198.51.100.1:5000/teller:1.0.

4. Save your changes.

5. Deploy the tmm-stack-compose.yaml stack file.

cd installation_directory/otmm-<version>/samples/docker
docker stack deploy -c tmm-stack-compose.yaml tmmdemo

Where, tmmdemo is the name of the Docker stack that you want to install. You can
specify any other name.

Output:
Creating network tmmdemo_default
Creating config tmmdemo_my_tcs_config
Creating service tmmdemo_dept1
Creating service tmmdemo_dept2
Creating service tmmdemo_teller
Creating service tmmdemo_otmm-tcs

Chapter 7
Deploy XA Sample Application

7-20

6. Verify that all services are ready. Use the following command to retrieve the list of
services and their status.

docker service ls

The following sample output shows that all the services are ready.

ID NAME MODE REPLICAS
IMAGE PORTS
tjc0u55yavu4 registry replicated 1/1
registry:2 *:5000->5000/tcp
varg9g3astj4 tmmdemo_dept1 replicated 1/1
198.51.100.1:5000/department-helidon:1.0 *:8086->8080/tcp
ovtkx3677ypa tmmdemo_dept2 replicated 1/1
198.51.100.1:5000/department-spring:1.0 *:8087->8082/tcp
ilkvx4emyv8c tmmdemo_otmm-tcs replicated 1/1
198.51.100.1:5000/tmm:latest *:9000->9000/tcp
jv80wxsehbd2 tmmdemo_teller replicated 1/1
198.51.100.1:5000/teller:1.0 *:8085->8080/tcp

Note down the port numbers on which the applications are running as you will need to
provide the port number when you run the sample application.

When the services are ready, you can run an XA transaction.

7.1.6.3 Run an XA Transaction
Before you start a transaction, you must install the Transaction Manager for Microservices
library files and push the Docker image of the services to the Docker registry.

1. Before starting the transaction, run the following commands to check the balance in
Department 1 and Department 2.

curl --location --request GET http://$REGISTRY_IPADDR:8086/accounts/
account1 | jq
curl --location --request GET http://$REGISTRY_IPADDR:8087/accounts/
account2 | jq

Where,

• REGISTRY_IPADDR is the name of the variable in which you stored the IP address of
the Docker registry to which you have pushed the Docker images. For information
about storing the IP address of the Docker registry in a variable, see Access MicroTx
in Docker Swarm.

• 8086 and 8087 are the port numbers on which the Department 1 and Department 2
services are running respectively.

Provide these details based on your environment.

Chapter 7
Deploy XA Sample Application

7-21

2. Transfer an amount of 50 from Department 1 to Department 2.

curl --location --request POST http://$REGISTRY_IPADDR:8085/
transfers --header 'Content-Type: application/json' --data-raw
'{"from" : "account1", "to" : "account2", "amount" : 50}'

Where, 8085 is the port number on which the Teller service is running. Provide the
port number information based on your environment.

3. Check the balance in Department 1 and Department 2 to verify that the account
balance are updated correctly after the transaction. Run the following commands
to confirm the transaction.

curl --location --request GET http://$REGISTRY_IPADDR:8086/accounts/
account1 | jq
curl --location --request GET http://$REGISTRY_IPADDR:8087/accounts/
account2 | jq

7.2 Deploy LRA Sample Application
• About the Sample LRA Application

The LRA sample application is available in the installation bundle in the
installation_directory/otmm-<version>/samples/lra/lrademo folder. This
folder contains the code for three sample microservices, YAML files, and Helm
charts.

• Run Sample LRA Application in Kubernetes

• Run Sample LRA Application in Docker Swarm

7.2.1 About the Sample LRA Application
The LRA sample application is available in the installation bundle in the
installation_directory/otmm-<version>/samples/lra/lrademo folder. This folder
contains the code for three sample microservices, YAML files, and Helm charts.

Microservices in Sample LRA Application

The following figure shows a sample LRA application, which contains several
microservices, to demonstrate how you can use MicroTx to manage LRA transactions.

Use the sample application to book a trip, which consists of booking a hotel room and
a flight. Each microservice in the sample application performs a different task. One
microservice books a trip, another books a flight, and a third microservice books a
hotel. MicroTx coordinates the transactions between these microservices.

Chapter 7
Deploy LRA Sample Application

7-22

The sample LRA application consists of the following polyglot microservices:

• MicroTx (LRA Coordinator) coordinates the transaction between the sample
microservices.

• Trip Manager service is the transaction initiator service, where the LRA transaction starts.
While booking a trip, this service calls the flight and hotel services for booking a flight and
hotel respectively. The Trip Manager exposes the APIs to book both the hotel and flight
and to cancel the booking. Either both hotel and flight are booked successfully or both
bookings are canceled if there is a failure. This Java application is located at
installation_directory/otmm-<version>/samples/lra/lrademo/trip-manager.

• Hotel Booking service exposes APIs to book a hotel room and also to cancel the booking
in case of any failure. It is called by the Trip Manager service to reserve a room. As it is
called within the context of an existing LRA, it enlists itself and provides callback URIs
that the LRA coordinator uses to complete or compensate the room reservation. This
Java application is located at installation_directory/otmm-<version>/samples/lra/
lrademo/hotel.

• Flight Booking service exposes APIs to book a flight ticket and also to cancel the booking
in case of any failure. It is called by the Trip Manager service to book a flight ticket. As it
is called within the context of an existing LRA, it enlists itself and provides callback URIs
that the LRA coordinator uses to complete or compensate the flight reservation. This
TypeScript application is located at installation_directory/otmm-<version>/
samples/lra/lrademo/flight.

• Trip client is the user interface which you can use to confirm or cancel the booking. It
does not participate in the LRA transaction. It is provided as sample client service which
calls microservices to perform a distributed transaction that uses the LRA protocol. This

Chapter 7
Deploy LRA Sample Application

7-23

Java application is located at installation_directory/otmm-<version>/
samples/lra/lrademo/trip-client.

MicroTx libraries are included in the code of the sample application microservices. The
services communicate with each other through the exposed REST endpoints while
using the MicroTx libraries.

When you run the application, it makes a provisional booking by reserving a hotel
room and flight ticket. Only when you provide approval to confirm the booking, the
booking of the hotel room and flight ticket is confirmed. If you cancel the provisional
booking, the hotel room and flight ticket that was blocked is released and the booking
is canceled. By default, the flight service permits only two confirmed bookings. To
enable you to test the failure scenario, the flight service sample application rejects any
additional booking requests that are made after two confirmed bookings. This leads to
the cancellation (compensation) of a provisionally booked hotel within the trip and the
trip is not booked.

• Scenario: Book a Seat in a Cinema
MicroTx supports a single level of nesting. You can only nest an XA transaction
within an LRA transaction.

7.2.1.1 Scenario: Book a Seat in a Cinema
MicroTx supports a single level of nesting. You can only nest an XA transaction within
an LRA transaction.

Let's understand how XA transactions are nested within an LRA transaction by using a
sample application that books a cinema ticket. This sample application is not available
in the installation bundle.

Microservices in the Sample Nested Transaction

The sample application which nests an XA transaction within an LRA transaction
consists of the following polyglot microservices:

• MicroTx (LRA coordinator and XA coordinator)

• Seat booking service: This is the transaction initiator service, where the LRA
transaction starts. This service reserves a seat and calls the payment service to
handle the payment for the reserved seat.

• Payment service: This service is called within the context of an existing LRA, it
enlists itself and provides callback URIs that the LRA coordinator uses to complete
or compensate the seat reservation.
It also initiates an XA transaction by initiating the money transfer from the
customer's bank to the cinema's bank.

• Customer's bank service: This service participates in the XA transaction and
withdraws an amount from the customer's bank account.

• Cinema's bank service: This service participates in the XA transaction and
withdraws an amount from the customer's bank account.

Example Sequence of Transaction Flow in a Nested Transaction

The following steps describe the successful path of LRA and XA transactions among
the sample microservices. In case of failures, Payment service calls rollback instead of
commit. If the payment fails, the Seat booking service removes the reservation on the
cinema seat and makes it available for booking once more.

Chapter 7
Deploy LRA Sample Application

7-24

1. The Seat booking service initiates a new LRA transaction, when a user places a request
to book a seat. The transaction initiator service, Seat booking, makes a call to MicroTx to
start an LRA transaction.

2. After reserving the seat, the Seat booking service calls the Payment service to handle the
payment.

3. Payment service, joins the existing LRA transaction, as a transaction participant.

4. Next, the Payment service acts as an XA initiator service to start an XA transaction by
making a call to MicroTx. It initiates the transfer of money from the customer's bank
service to the cinema's bank service.

5. Customer's bank service enlists to the XA transaction, performs a DML operation to
withdraw the amount, and then returns a response.

6. The Payment service initiates another request to deposit an amount to Cinema's bank
service.

7. The XA transaction participant service, Cinema's bank enlists to the XA transaction,
performs a DML operation to deposit the amount, and then returns a response.

8. The Payment service commits the XA transaction only if the both the requests, that is, the
request to Customer's bank and the request to Cinema's bank, are executed
successfully. In case of any failure, the Payment service calls rollback instead of commit.

9. After committing the XA transaction, the Payment service returns the payment status to
the Seat booking service.

10. The Seat booking service calls the MicroTx to complete the LRA transaction if the
payment is successful.

11. Transaction Manager for Microservices calls the complete callback URI of Payment
service and Seat booking service to complete the LRA transaction and book the seat in
cinema.

12. The Seat booking service returns details of the booked seat to the user.

7.2.2 Run Sample LRA Application in Kubernetes

• Build Docker Images for Sample LRA Application
The LRA sample application is available in the installation bundle in the
installation_directory/otmm-<version>/samples/lra/lrademo folder. This folder
contains the code for three microservices, YAML file, and Helm charts.

• Push LRA Sample App Images
Push the Docker image of the sample applications, that you have built, to a remote
repository.

• Update the values.yaml File for LRA
The sample application files also contain the values.yaml file, the manifest file of the
sample application, which contains the deployment configuration details for the LRA
sample application.

• Install LRA Sample Application
Install the LRA sample application in the Kubernetes cluster where you have installed
MicroTx.

• Run an LRA Transaction

Chapter 7
Deploy LRA Sample Application

7-25

7.2.2.1 Build Docker Images for Sample LRA Application
The LRA sample application is available in the installation bundle in the
installation_directory/otmm-<version>/samples/lra/lrademo folder. This folder
contains the code for three microservices, YAML file, and Helm charts.

For details about the sample LRA application, see About the Sample LRA Application.

Perform the following steps to build Docker images for each microservice in the
sample:

1. Run the following commands to build the Docker image for the hotel application.

cd installation_directory/otmm-<version>/samples/lra/lrademo/hotel
docker image build -t hotel:1.0 .

When the image is successfully built, the following message is displayed.

Successfully tagged hotel:1.0

2. Run the following commands to build the Docker image for the flight application.

cd installation_directory/otmm-<version>/samples/lra/lrademo/flight
docker image build -t flight:1.0 .

When the image is successfully built, the following message is displayed.

Successfully tagged flight:1.0

3. Run the following commands to build the Docker image for the trip manager
application.

cd installation_directory/otmm-<version>/samples/lra/lrademo/trip-
manager
docker image build -t trip-manager:1.0 .

When the image is successfully built, the following message is displayed.

Successfully tagged trip-manager:1.0

The Docker images that you have created are available in your local Docker container
registry.

7.2.2.2 Push LRA Sample App Images
Push the Docker image of the sample applications, that you have built, to a remote
repository.

The container image that you have built is available in your local repository. You must
push this image to a remote repository, so that you can access this image using Helm.
Later, you will use Helm to install the sample application.

1. In a terminal window on the client machine running Docker, log in to Oracle Cloud
Infrastructure Registry, to which you want to push the image, by entering:

docker login <region-key>.ocir.io

Chapter 7
Deploy LRA Sample Application

7-26

where <region-key> is the key for the Oracle Cloud Infrastructure Registry region you're
using. For example, phx. See the Availability by Region topic in the Oracle Cloud
Infrastructure Registry documentation.

2. Use the following command to specify a unique tag for the image that you want to push to
the remote Docker repository.

Syntax

docker tag local_image[:tag] remote_image[:tag]

Where,

• local_image[:tag] is the tag with which the image is identified in your local repository.

• remote_image[:tag] is the tag with which you want to identify the image in the remote
Docker repository.

Sample commands

The following sample commands tag the images of hotel, flight, and trip manager
applications.

docker tag hotel:1.0 <region-key>.ocir.io/otmmrepo/hotel:1.0
docker tag trip-manager:1.0 <region-key>.ocir.io/otmmrepo/trip-
manager:1.0
docker tag flight:1.0 <region-key>.ocir.io/otmmrepo/flight:1.0

Where, <region-key>.ocir.io/otmmrepo is the Oracle Cloud Infrastructure Registry to
which you want to push the image file. If you are using other Kubernetes platforms, then
provide the details based on your environment.

3. Push the Docker image from your local repository to the remote Docker repository.

Syntax

docker push remote_image[:tag]

Sample commands

The the following sample commands push the tagged images of hotel, flight, and trip
manager applications.

docker push <region-key>.ocir.io/otmmrepo/hotel:1.0
docker push <region-key>.ocir.io/otmmrepo/trip-manager:1.0
docker push <region-key>.ocir.io/otmmrepo/flight:1.0

Note down the tag of the Docker image in the remote Docker repository. You'll need to enter
this tag while pulling the image from the remote Docker repository.

7.2.2.3 Update the values.yaml File for LRA
The sample application files also contain the values.yaml file, the manifest file of the sample
application, which contains the deployment configuration details for the LRA sample
application.

While deploying the sample application to a Kubernetes cluster, Helm pulls the sample
application images from the remote Docker registry. In the values.yaml file, specify the
image to pull and the credentials to use when pulling the images.

Chapter 7
Deploy LRA Sample Application

7-27

https://docs.cloud.oracle.com/iaas/Content/Registry/Concepts/registryprerequisites.htm#Availab

To provide configuration and environment details in the values.yaml file:

1. Open the values.yaml file, which is located at installation_directory/otmm-
RELEASE/samples/lra/helmcharts/sampleappslra/values.yaml, in any code
editor. This file contains sample values.

2. Provide details of all the sample application images that you have uploaded to the
docker container. For example, iad.ocir.io/mytenancy/lra/trip-manager-
lra:v1.

3. Save your changes.

7.2.2.4 Install LRA Sample Application
Install the LRA sample application in the Kubernetes cluster where you have installed
MicroTx.

1. Run the following commands to install the LRA sample application.

cd installation_directory/otmm-RELEASE/samples/lra/helmcharts

helm install sample-lra-app --namespace otmm sampleappslra/ \
--values sampleappslra/values.yaml

Where sample-lra-app is the name of the application that is installed.

The following output is displayed.

NAME: sample-lra-app
LAST DEPLOYED: Wed Apr 20 17:12:32 2022
NAMESPACE: otmm
STATUS: deployed
REVISION: 1
TEST SUITE: None

2. Verify that all resources, such as pods and services, are ready. Use the following
command to retrieve the list of resources in the namespace otmm and their status.

kubectl get all -n otmm

The following sample output shows that all the pods are ready and in the Running
state.

NAME READY STATUS RESTARTS
AGE
pod/flight-95db44488-h4br8 2/2 Running 0
17h
pod/hotel-75bd8c59cb-hxgj5 2/2 Running 0
17h
pod/otmm-tcs-84b87b66bd-9mntz 2/2 Running 1 (20h ago)
37h
pod/trip-manager-6df68db55b-sdhcg 2/2 Running 0
17h

Chapter 7
Deploy LRA Sample Application

7-28

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
service/flight ClusterIP 10.100........ <none>
8080/TCP 17h
service/hotel ClusterIP 10.101........ <none>
8080/TCP 17h
service/otmm-tcs ClusterIP 10.109........ <none>
9000/TCP 37h
service/trip-manager ClusterIP 10.97......... <none>
8080/TCP 17h

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/flight 1/1 1 1 17h
deployment.apps/hotel 1/1 1 1 17h
deployment.apps/otmm-tcs 1/1 1 1 37h
deployment.apps/trip-manager 1/1 1 1 17h

NAME DESIRED CURRENT READY AGE
replicaset.apps/flight-95db44488 1 1 1 17h
replicaset.apps/hotel-75bd8c59cb 1 1 1 17h
replicaset.apps/otmm-tcs-84b87b66bd 1 1 1 37h
replicaset.apps/trip-manager-6df68db55b 1 1 1 17h

3. Verify that the application is installed.

helm list --namespace otmm

The following sample output displays details of the applications installed in the otmm
namespace. Where, sample-lra-app is the LRA sample application that you have
installed.

NAME NAMESPACE REVISION
UPDATED STATUS
CHART APP VERSION
otmm otmm 1 2022-04-19
21:14:25.1941414 +0530 IST deployed otmm-RELEASE RELEASE
sample-lra-app otmm 1 2022-04-20
17:12:32.8553506 +0530 IST deployed sampleappslra-1.0.1 1.0.1

7.2.2.5 Run an LRA Transaction

Before you start a transaction, you must create an access token, install the MicroTx library
files, and note down the external IP address of the Istio ingress gateway.

1. Run the following command to book a hotel and flight.

Command Syntax

curl
-H "Authorization:Bearer $TOKEN"
-X POST
-d '' external-IP-address-Istio-ingress-gateway:Istio port number/
application-specific-URI-for-transaction

Chapter 7
Deploy LRA Sample Application

7-29

Sample Command

curl
-H "Authorization:Bearer $TOKEN"
-X POST
-d '' "https://192.0.2.1:443/trip-service/api/trip?
hotelName=Mercury&flightNumber=A123" | jq

Where,

• 192.0.2.1 is the external IP address of the Istio ingress gateway.

• 443 is the Istio port number.

• TOKEN is the name of the variable in which you stored the authentication token
earlier. For information about retrieving the authentication token and storing it
in a variable, see Create an Access Token.

Sample Response

{
 "cancelPending": false,
 "details": [
 {
 "cancelPending": false,
 "details": [

],
 "encodedId": "http%3A%2F%2Fomtm-tcs%3A9000%2Fapi%2Fv1%2Flra-
coordinator%2F011899ca-20f3-4d8c-9e92-76de355921fe",
 "id": "http://otmm-tcs:9000/api/v1/lra-coordinator/
011899ca-20f3-4d8c-9e92-76de355921fe",
 "name": "Mercury",
 "status": "PROVISIONAL",
 "type": "Hotel"
 },
 {
 "cancelPending": false,
 "details": [

],
 "encodedId": "http%3A%2F%2Fomtm-tcs%3A9000%2Fapi%2Fv1%2Flra-
coordinator%2F011899ca-20f3-4d8c-9e92-76de355921fe",
 "id": "http://otmm-tcs:9000/api/v1/lra-coordinator/
011899ca-20f3-4d8c-9e92-76de355921fe",
 "name": "A123",
 "status": "PROVISIONAL",
 "type": "Flight"
 }
],
 "encodedId": "http%3A%2F%2Fomtm-tcs%3A9000%2Fapi%2Fv1%2Flra-
coordinator%2F011899ca-20f3-4d8c-9e92-76de355921fe",
 "id": "http://otmm-tcs:9000/api/v1/lra-coordinator/
011899ca-20f3-4d8c-9e92-76de355921fe",
 "name": "Aggregate Booking",
 "status": "PROVISIONAL",

Chapter 7
Deploy LRA Sample Application

7-30

 "type": "Trip"
}

2. Note down the value of the encodedId and id. You will need to provide this information.

3. Run the following command to confirm the transaction.

Command Syntax

curl --location
-H "Authorization:Bearer $TOKEN"
-H "Long-Running-Action: LRA-ID"
--request PUT
-d '' http://external-ip-Istio-ingress-gateway/trip-service/api/trip/url-
encoded-LRA-ID

Where, LRA-ID is the value of the id attribute and url-encoded-LRA-ID is the value of the
encodedId attribute that you have noted down.

Sample Command

curl --location
-H "Authorization:Bearer $TOKEN"
-H "Long-Running-Action: http://otmm-tcs:9000/lra-coordinator/
011899ca-20f3-4d8c-9e92-76de355922fe"
--request PUT
-d '' "https://192.0.2.1:443/trip-service/api/trip/http%3A%2F%2Fotmm-
tcs%3A9000%2Flra-coordinator%2F011899ca-20f3-4d8c-9e92-76de355921fe"

4. Run the following commands to see the status of the booking.

curl -X GET -H "Authorization:Bearer $TOKEN" https://192.0.2.1:443/
hotelService/api/hotel | jq
curl -X GET -H "Authorization:Bearer $TOKEN" https://192.0.2.1:443/
flightService/api/flight | jq

7.2.3 Run Sample LRA Application in Docker Swarm

• Build and Push the Docker Images
The LRA sample application is available in the installation bundle in the
installation_directory/otmm-<version>/samples/lra/lrademo folder. This folder
contains the application code for three sample microservices which are used to book a
hotel and flight ticket.

• Install LRA Sample Application
Install the LRA sample application in Docker Swarm.

• Run an LRA Transaction

7.2.3.1 Build and Push the Docker Images
The LRA sample application is available in the installation bundle in the
installation_directory/otmm-<version>/samples/lra/lrademo folder. This folder contains

Chapter 7
Deploy LRA Sample Application

7-31

the application code for three sample microservices which are used to book a hotel
and flight ticket.

For details about the sample LRA application, see About the Sample LRA Application.
It is important that you tag the Docker images that you build with the address of the
registry that you have created. For example, 198.51.100.1:5000. This is required
while distributing the apps to the swarm.

Perform the following steps to build Docker images for each microservice in the
sample:

1. Run the following commands to build the Docker image for the hotel application.

cd installation_directory/otmm-<version>/samples/lra/lrademo/hotel
docker image build -t 198.51.100.1:5000/hotel:1.0 .

Where, 198.51.100.1:5000 is the address of the Docker registry that you have
created.

2. Run the following commands to build the Docker image for the flight application.

cd installation_directory/otmm-<version>/samples/lra/lrademo/flight
docker image build -t 198.51.100.1:5000/flight:1.0 .

3. Run the following commands to build the Docker image for the trip manager
application.

cd installation_directory/otmm-<version>/samples/lra/lrademo/trip-
manager
docker image build -t 198.51.100.1:5000/trip-manager:1.0 .

4. Push the tagged Docker image to the Docker registry that you have created.

Syntax

docker push image[:tag]

Sample commands

The the following sample commands push the tagged images of hotel, flight, and
trip manager applications.

docker push 198.51.100.1:5000/hotel:1.0
docker push 198.51.100.1:5000/trip-manager:1.0
docker push 198.51.100.1:5000/flight:1.0

When you build the Docker images, they are available in your local Docker
container registry. When you push the Docker image, it becomes available in the
docker registry that you have created for the swarm.

5. Ensure that Java Development Kit (JDK) is installed on your local system, and
then run the following commands in the Bash shell to set the following
environment variables.

export JAVA_HOME=jdk-install-dir
export PATH=$JAVA_HOME/bin:$PATH

Chapter 7
Deploy LRA Sample Application

7-32

6. Build the Trip client application which you can use to send a request to book a new trip.

cd installation_directory/otmm-<version>/samples/lra/lrademo/trip-client
mvn clean package

7.2.3.2 Install LRA Sample Application
Install the LRA sample application in Docker Swarm.

All Swarm objects are described in manifests called stack files. The tmm-stack-compose.yaml
stack file is located at installation_directory/otmm-<version>/samples/docker. This
YAML file describes all the components and configurations of the LRA sample application and
transaction coordinator. Use this file to run and manage the microservices in Docker Swarm.

To run LRA sample application:

1. Deploy the tmm-stack-compose.yaml stack file.

cd installation_directory/otmm-<version>/samples/docker
docker stack deploy -c tmm-stack-compose.yaml tmmdemo

Where, tmmdemo is the name of the Docker stack that you want to install. You can specify
any other name.

Output:
Creating network tmmdemo_default
Creating config tmmdemo_my_tcs_config
Creating service tmmdemo_hotel
Creating service tmmdemo_flight
Creating service tmmdemo_trip-manager
Creating service tmmdemo_otmm-tcs

2. Verify that all services are ready. Use the following command to retrieve the list of
services and their status.

docker service ls

The following sample output shows that all the services are ready.

ID NAME MODE REPLICAS
IMAGE PORTS
tjc0u55yavu4 registry replicated 1/1
registry:2 *:5000->5000/tcp
qvzeovz8729y tmmdemo_flight replicated 1/1
198.51.100.1:5000/flight:1.0 *:8083->8083/tcp
ifmqd521im28 tmmdemo_hotel replicated 1/1
198.51.100.1:5000/hotel:1.0 *:8082->8082/tcp
ilkvx4emyv8c tmmdemo_otmm-tcs replicated 1/1
198.51.100.1:5000/tmm:latest *:9000->9000/tcp
m069vayql490 tmmdemo_trip-manager replicated 1/1
198.51.100.1:5000/trip-manager:1.0 *:8081->8081/tcp

Chapter 7
Deploy LRA Sample Application

7-33

Note down the port numbers on which the applications are running as you will
need to provide the port number when you run the sample application.

When the services are ready, you can run an LRA transaction.

7.2.3.3 Run an LRA Transaction

To run the sample LRA application to book a hotel room and flight ticket.

1. Set the URL for the Trip Manager service.

Syntax

export TRIP_SERVICE_URL=<IP-address-of-Docker-registry>:<port-of-
sample-app>/trip-service/api/trip

Example

export TRIP_SERVICE_URL=http://198.51.100.1:8081/trip-service/api/
trip

Where,

• 198.51.100.1 is the IP address of the Docker registry to which you have
pushed the Docker images.

• 8081 is the port number on which the Trip Manager service is running.

Provide these details based on your environment.

2. Run the Trip Client application.

cd installation_directory/otmm-<version>/samples/lra/lrademo/trip-
client
java -jar target/trip-client.jar

The Trip Booking Service console is displayed.

3. Type y to confirm that you want to run the LRA sample application, and then press
Enter.

The sample application provisionally books a hotel room and a flight ticket and
displays the details of the provisional booking.

4. Type y to confirm the provisional booking, and then press Enter.

Your booking is confirmed and information about your confirmed booking is
displayed.

5. To retrieve the details of your booking, run the following command.

curl --location --request GET http://198.51.100.1:8081/trip-
service/api/trip | jq

Where,

• 198.51.100.1 is the IP address of the Docker registry to which you have
pushed the Docker images.

Chapter 7
Deploy LRA Sample Application

7-34

• 8081 is the port number on which the Trip Booking service is running.

Sample Response

[
 {
 "details": [
 {
 "encodedId": "http%3A%2F%2Fotmm-tcs%3A9000%2Fapi%2Fv1%2Flra-
coordinator%2F9c44a549-9047-41d3-a3f0-623da46c6b2b",
 "id": "http://otmm-tcs:9000/api/v1/lra-coordinator/
9c44a549-9047-41d3-a3f0-623da46c6b2b",
 "name": "Acme",
 "status": "CONFIRMED",
 "type": "Hotel"
 },
 {
 "details": [],
 "encodedId": "http%3A%2F%2Fotmm-tcs%3A9000%2Fapi%2Fv1%2Flra-
coordinator%2F9c44a549-9047-41d3-a3f0-623da46c6b2b",
 "id": "http://otmm-tcs:9000/api/v1/lra-coordinator/
9c44a549-9047-41d3-a3f0-623da46c6b2b",
 "name": "A123",
 "status": "CONFIRMED",
 "type": "Flight"
 }
],
 "encodedId": "http%3A%2F%2Fotmm-tcs%3A9000%2Fapi%2Fv1%2Flra-
coordinator%2F9c44a549-9047-41d3-a3f0-623da46c6b2b",
 "id": "http://otmm-tcs:9000/api/v1/lra-coordinator/9c44a549-9047-41d3-
a3f0-623da46c6b2b",
 "name": "Trip",
 "status": "CONFIRMED",
 "type": "Trip"
 }
]

6. Run the following commands to see the list of hotel bookings.

Sample Command

curl --location --request GET http://198.51.100.1:8082/hotelService/api/
hotel | jq

Where,

• 198.51.100.1 is the IP address of the Docker registry to which you have pushed the
Docker images.

• 8082 is the port number on which the Hotel Booking service is running.

Provide these details based on your environment.

Sample Response

[
 {

Chapter 7
Deploy LRA Sample Application

7-35

 "encodedId": "http%3A%2F%2Fotmm-tcs%3A9000%2Fapi%2Fv1%2Flra-
coordinator%2F9c44a549-9047-41d3-a3f0-623da46c6b2b",
 "id": "http://otmm-tcs:9000/api/v1/lra-coordinator/
9c44a549-9047-41d3-a3f0-623da46c6b2b",
 "name": "Acme",
 "status": "CONFIRMED",
 "type": "Hotel"
 }
]

Note down the encoded ID. You will need to provide this value if you want to
retrieve details of a specific flight or hotel booking.

7. Run the following commands to see the list of flight bookings.

Sample Commands

curl --location --request GET http://198.51.100.1:8083/
flightService/api/flight | jq

Where,

• 198.51.100.1 is the IP address of the Docker registry to which you have
pushed the Docker images.

• 8083 is the port number on which the Flight Booking service is running
respectively.

Provide these details based on your environment.

Sample Response

[
 {
 "details": [],
 "encodedId": "http%3A%2F%2Fotmm-tcs%3A9000%2Fapi%2Fv1%2Flra-
coordinator%2F9c44a549-9047-41d3-a3f0-623da46c6b2b",
 "id": "http://otmm-tcs:9000/api/v1/lra-coordinator/
9c44a549-9047-41d3-a3f0-623da46c6b2b",
 "name": "A123",
 "status": "CONFIRMED",
 "type": "Flight"
 }
]

Note down the encoded ID. You will need to provide this value if you want to
retrieve details of a specific flight or hotel booking.

8. Run the following commands to see the details of a specific trip, hotel, or flight
booking. You can specify the encoded ID of the booking for which you want to
retrieve the details.

Command Syntax

curl --location --request GET http://198.51.100.1:8081/trip-
service/api/trip/<encodedId> | jq
curl --location --request GET http://198.51.100.1:8082/

Chapter 7
Deploy LRA Sample Application

7-36

hotelService/api/hotel/<encodedId> | jq
curl --location --request GET http://198.51.100.1:8083/flightService/api/
flight/<encodedId> | jq

Sample Command

The following command retrieves the trip details of the specified encoded ID.

curl --location --request GET http://198.51.100.1:8081/trip-service/api/
trip/http%3A%2F%2Fotmm-tcs%3A9000%2Fapi%2Fv1%2Flra-
coordinator%2F9c44a549-9047-41d3-a3f0-623da46c6b2b | jq

7.3 Deploy TCC Sample Application
• About the Sample TCC Application

Let's use the sample TCC application that's available in the installation bundle to
understand how microservices and MicroTx interact with each other in a TCC transaction.

• Run Sample TCC Application in Kubernetes

• Run Sample TCC Application in Docker Swarm

7.3.1 About the Sample TCC Application
Let's use the sample TCC application that's available in the installation bundle to understand
how microservices and MicroTx interact with each other in a TCC transaction.

The TCC sample application files are available in the installation bundle in the
installation_directory/otmm-<version>/samples/tcc folder. This folder contains the code
for three microservices, YAML file, and Helm charts.
The sample application uses the TCC transaction protocol and MicroTx to coordinate the
transactions. The MicroTx libraries are already integrated with the sample application code.

The sample TCC application implements a scenario where the travel agent microservice
books a trip, flight booking service books a flight, and the hotel booking microservice books a
hotel. The travel agent service accesses both the flight and hotel booking services. When a
customer books a flight and a hotel, the booking is reserved until either the customer
completes the payment and confirms the booking. In case of any failure, the reserved
resources are canceled and the resources are returned back to the inventory.

The following figure shows a sample TCC application, which contains several microservices,
to demonstrate how you can use MicroTx to manage TCC transactions.

Chapter 7
Deploy TCC Sample Application

7-37

The sample TCC application consists of the following microservices:

• MicroTx (TCC Coordinator)

• Travel Agent service is the transaction initiator service, where the TCC transaction
starts. It provides APIs to book and cancel a hotel room and a flight ticket. While
booking a trip, this service calls the flight booking and hotel booking services. It
also sends the confirm or cancel call to the transaction participant services to
finalize the transaction. The Java application is located at
installation_directory/otmm-<version>/samples/tcc/java/travel-agent and
the Node.js application is located at installation_directory/otmm-<version>/
samples/tcc/nodejs/travel-agent.

• Hotel Booking service participates in the transactions, so it is also called a
transaction participant service. It provides APIs to confirm and cancel a hotel room
booking. The Java application is located at installation_directory/otmm-
<version>/samples/tcc/java/hotel-booking and the Node.js application is
located at installation_directory/otmm-<version>/samples/tcc/nodejs/
hotel-booking.

• Flight Booking service participates in the transactions, so it is also called a
transaction participant service. It provides APIs to confirm and cancel a flight ticket
booking. The Java application is located at installation_directory/otmm-
<version>/samples/tcc/java/flight-booking and the Node.js application is
located at installation_directory/otmm-<version>/samples/tcc/nodejs/
flight-booking.

The sample TCC application code is available in Node.js and Java. When you run the
sample application, build all the three sample microservices of either Node.js or Java.
Don't try to run the Travel Agent service in Java with Hotel Booking service in Node.js.

Chapter 7
Deploy TCC Sample Application

7-38

7.3.2 Run Sample TCC Application in Kubernetes

• Build Docker Images for Sample TCC Application
The TCC sample application is available in the installation bundle in the
installation_directory/otmm-RELEASE/samples/tcc folder.

• Push TCC Sample App Images
Push the Docker image of the sample applications, that you have built, to a remote
repository.

• Update the values.yaml File for TCC
The sample application folder also contain the values.yaml file, the manifest file of the
sample application, which contains the deployment configuration details for the TCC
sample application.

• Install TCC Sample Application
Install the TCC sample application in the Kubernetes cluster where you have installed
MicroTx.

• Run a TCC Transaction
When you run the application, it makes a provisional booking by reserving a hotel room
and flight ticket.

7.3.2.1 Build Docker Images for Sample TCC Application
The TCC sample application is available in the installation bundle in the
installation_directory/otmm-RELEASE/samples/tcc folder.

This folder contains individual folders for the sample code written in the Java, Node.js, and
Python language. The folder for sample application in each language contains code files for
the three microservices, YAML file, and Helm charts. Decide which sample application you
would like to run, and then build the Docker images for the language that you have chosen.
For details about the sample TCC application, see About the Sample TCC Application.

Perform only one of the following steps to build the sample code to create Docker image for
each microservice in the sample.

• Run the following commands to build the Docker images for the Java sample application.

– Run the following command to build the flight application.

cd installation_directory/otmm-RELEASE/samples/tcc/java/flight-booking
docker image build -t flight-booking:1.0 .

– Run the following command to build the hotel application.

cd installation_directory/otmm-RELEASE/samples/tcc/java/hotel-booking
docker image build -t hotel-booking:1.0 .

– Run the following command to build the travel agent application.

cd installation_directory/otmm-RELEASE/samples/tcc/java/travel-agent
docker image build -t travel-agent:1.0 .

Chapter 7
Deploy TCC Sample Application

7-39

• Run the following commands to build the Docker images for the Python sample
application.

– Run the following command to build the flight application.

cd installation_directory/otmm-RELEASE/samples/tcc/python/flight-
booking-py
docker image build -t flight-booking-py:1.0 .

– Run the following command to build the hotel application.

cd installation_directory/otmm-RELEASE/samples/tcc/python/
hotel_booking-py
docker image build -t hotel-booking-py:1.0 .

– Run the following command to build the travel agent application.

cd installation_directory/otmm-RELEASE/samples/tcc/python/travel-
agent-py
docker image build -t travel-agent-py:1.0 .

• Run the following commands to build the Docker images for the Node.js sample
application.

– Run the following command to build the flight application.

cd installation_directory/otmm-RELEASE/samples/tcc/nodejs/flight
docker image build -t flight:1.0 .

– Run the following command to build the hotel application.

cd installation_directory/otmm-RELEASE/samples/tcc/nodejs/hotel
docker image build -t hotel:1.0 .

– Run the following command to build the travel agent application.

cd installation_directory/otmm-RELEASE/samples/tcc/nodejs/travel-
agent
docker image build -t travel-agent:1.0 .

The Docker images that you have created are available in your local Docker container
registry. Note down the names of the Docker images that you have created as you will
have to provide these names in the next step.

7.3.2.2 Push TCC Sample App Images
Push the Docker image of the sample applications, that you have built, to a remote
repository.

The container image that you have built is available in your local repository. You must
push this image to a remote repository, so that you can access this image using Helm.
Later, you will use Helm to install the sample application.

1. Provide credentials to log in to the remote private repository to which you want to
push the image.

Chapter 7
Deploy TCC Sample Application

7-40

docker login <repo>

Provide the login credentials based on the Kubernetes platform that you are using.

2. Specify a unique tag for the image that you want to push to the remote Docker repository.

Syntax

docker tag local_image[:tag] remote_image[:tag]

Where,

• local_image[:tag] is the tag with which the image is identified in your local repository.
Provide the name of the Docker images in your local repository which you have noted
down in the previous task.

• remote_image[:tag] is the tag with which you want to identify the image in the remote
Docker repository.

Based on the language of the sample language, run one of the following commands.

• The following sample commands tag the images of the hotel, flight, and trip manager
Java applications.
Sample commands

docker tag hotel-booking:1.0 <region-key>.ocir.io/otmmrepo/hotel-
booking:1.0
docker tag flight-booking:1.0 <region-key>.ocir.io/otmmrepo/flight-
booking:1.0
docker tag travel-agent:1.0 <region-key>.ocir.io/otmmrepo/travel-
agent:1.0

• The following sample commands tag the images of the hotel, flight, and trip manager
Python applications.
Sample commands

docker tag hotel_booking-py:1.0 <region-key>.ocir.io/otmmrepo/
hotel_booking-py:1.0
docker tag flight_booking-py:1.0 <region-key>.ocir.io/otmmrepo/
flight_booking-py:1.0
docker tag travel-agent-py:1.0 <region-key>.ocir.io/otmmrepo/travel-
agent-py:1.0

• The following sample commands tag the images of the hotel, flight, and trip manager
Node.js applications.
Sample commands

docker tag hotel:1.0 <region-key>.ocir.io/otmmrepo/hotel:1.0
docker tag flight:1.0 <region-key>.ocir.io/otmmrepo/flight:1.0
docker tag travel:1.0 <region-key>.ocir.io/otmmrepo/travel-agent:1.0

Where, <region-key>.ocir.io/otmmrepo is the Oracle Cloud Infrastructure Registry to
which you want to push the image file. If you are using other Kubernetes platforms, then
provide the details based on your environment.

3. Push the Docker image from your local repository to the remote Docker repository.

Syntax

docker push remote_image[:tag]

Chapter 7
Deploy TCC Sample Application

7-41

Sample commands

The the following sample commands push the tagged images of hotel, flight, and
trip manager applications. Provide the names of the remote images based on the
information that you have entered in the previous step.

docker push <region-key>.ocir.io/otmmrepo/hotel-booking:1.0
docker push <region-key>.ocir.io/otmmrepo/travel-agent:1.0
docker push <region-key>.ocir.io/otmmrepo/flight-booking:1.0

Note down the tag of the Docker image in the remote Docker repository. You'll need to
enter this tag while pulling the image from the remote Docker repository.

7.3.2.3 Update the values.yaml File for TCC
The sample application folder also contain the values.yaml file, the manifest file of the
sample application, which contains the deployment configuration details for the TCC
sample application.

When you use Helm to deploy the sample application to a Kubernetes cluster, Helm
pulls the sample application images from the remote Docker registry based on the
details provided in the values.yaml file. Update the values.yaml file to specify the
names of the Docker images.

To update the names of the Docker images that you have pushed to the remote
repository in the values.yaml file:

1. Open the values.yaml file in any code editor. This file contains sample values.

For the Java sample application, the file is located at installation_directory/
otmm-RELEASE/samples/tcc/java/helmcharts/sampleappstcc/values.yaml.

For the Node.js sample application, the file is located at
installation_directory/otmm-RELEASE/samples/tcc/nodejs/helmcharts/
sampleappstccnode/values.yaml.

For the Python sample application, the file is located at installation_directory/
otmm-RELEASE/samples/tcc/python/helmcharts/sampleappstccpy/values.yaml.

2. Provide details of all the sample application images that you have uploaded to the
remote Docker repository. For example, iad.ocir.io/mytenancy/tcc/flight-
booking-tcc:v1.

3. Save your changes.

7.3.2.4 Install TCC Sample Application
Install the TCC sample application in the Kubernetes cluster where you have installed
MicroTx.

1. Install the TCC sample application.

• Run the following commands to install the Java sample application.

cd installation_directory/otmm-RELEASE/otmm/samples/tcc/java/
helmcharts

Chapter 7
Deploy TCC Sample Application

7-42

helm install sample-tcc-app --namespace otmm sampleappstcc/ \
--values sampleappstcc/values.yaml

• Run the following commands to install the Node.js sample application.

cd installation_directory/otmm-RELEASE/otmm/samples/tcc/nodejs/
helmcharts

helm install sample-tcc-app --namespace otmm sampleappstccnode/ \
--values sampleappstccnode/values.yaml

• Run the following commands to install the Python sample application.

cd installation_directory/otmm-RELEASE/otmm/samples/tcc/python/
helmcharts

helm install sample-tcc-app --namespace otmm sampleappstccpy/ \
--values sampleappstccpy/values.yaml

Where sample-tcc-app is the name of the application that is installed.

2. Verify that all resources, such as pods and services, are ready. Use the following
command to retrieve the list of resources in the namespace otmm and their status.

kubectl get all -n otmm

3. Verify that the application is installed.

helm list --namespace otmm

7.3.2.5 Run a TCC Transaction
When you run the application, it makes a provisional booking by reserving a hotel room and
flight ticket.

Only when you provide approval to confirm the booking, the booking of the hotel room and
flight ticket is confirmed. If you cancel the provisional booking, the provisional booking of the
hotel room and flight ticket is canceled. In case of a cancellation, your application must
include the code for releasing the provisionally blocked hotel and flight and making these
resources available.

Before you start a transaction, you must create an access token, install the MicroTx library
files, and note down the external IP address of the Istio ingress gateway.

To run the TCC sample application:

1. Run the following command to reserve a hotel and flight booking.

Sample Command

curl -H "Authorization:Bearer $TOKEN" \
 --header 'Accept: application/json' \
 -X POST \
 -d '' "https://$CLUSTER_IPADDR/travel-agent/api/bookings/reserve?
hotelName=Acme&flightNumber=AA2250"

Chapter 7
Deploy TCC Sample Application

7-43

Where,

• CLUSTER_IPADDR is the name of the variable in which you stored the external IP
address of the Istio ingress gateway. For information about finding the external
IP address of the Istio ingress gateway and storing it in a variable, see Find IP
Address of Istio Ingress Gateway.

• TOKEN is the name of the variable in which you stored the authentication token
earlier. For information about retrieving the authentication token and storing it
in a variable, see Create an Access Token.

Sample Response

{
 "tripBookingId": "840c7f0c-d87e-4694-aba5-0846e716ce99",
 "message": "Successfully booked the trip",
 "status": "RESERVED",
 "flightBooking": {
 "bookingId": "e32e1cbf-4d6d-431a-a5af-d48570e02666",
 "bookingUri": "http://$CLUSTER_IPADDR/travel-agent/api/
bookings/e32e1cbf-4d6d-431a-a5af-d48570e02666",
 "expires": 120000,
 "name": "AA2250",
 "startTime": 1677146471233,
 "type": "FLIGHT"
 },
 "hotelBooking": {
 "bookingId": "e140cdba-30a6-44c0-b7c2-c168f763641c",
 "bookingUri": "http://$CLUSTER_IPADDR/travel-agent/api/
bookings/e140cdba-30a6-44c0-b7c2-c168f763641c",
 "expires": 120000,
 "name": "Acme",
 "startTime": 1677146471209,
 "type": "HOTEL"
 }
}

This commands reserves a hotel and flight booking and the status is RESERVED.

2. Note down the values of tripBookingId and the link response header. You will
need to provide this information in the next step.

3. You can choose to either confirm or cancel the reservation. Run one of the
following commands to confirm or cancel the transaction.

• To confirm a transaction, run the following command:
Command Syntax

curl --location --request PUT -H "Authorization:Bearer $TOKEN" \
 -d '' http://$CLUSTER_IPADDR/travel-agent/api/confirm/
tripBookingId

Sample Command

curl -H "Authorization:Bearer $TOKEN" \
 --header 'Accept: application/json' \

Chapter 7
Deploy TCC Sample Application

7-44

 -H "link: <http://192.0.4.1:9000/api/v1/tcc-transaction/4e6dc225-
d8af-4988-8446-a70e4cbd1e44>; rel=\"https://otmm.oracle.com/tcc-
transaction\""
 -X PUT \
 -d '' "https://$CLUSTER_IPADDR/travel-agent/api/confirm/840c7f0c-
d87e-4694-aba5-0846e716ce99"

• To cancel a transaction, run the following command:
Command Syntax

curl --location --request PUT -H "Authorization:Bearer $TOKEN" \
 -d '' https://external-IP-address-Istio-ingress-gateway/travel-
agent/api/cancel/tripBookingId

Sample Command

curl -H "Authorization:Bearer $TOKEN" \
 --location \
 --header 'Accept: application/json' \
 -H "link: <http://192.0.4.1:9000/api/v1/tcc-transaction/4e6dc225-
d8af-4988-8446-a70e4cbd1e44>; rel=\"https://otmm.oracle.com/tcc-
transaction\""
 -X DELETE \
 -d '' "https://$CLUSTER_IPADDR/travel-agent/api/cancel/840c7f0c-
d87e-4694-aba5-0846e716ce99"

4. View the status and details of a single booking by provide its tripBookingId.

Command Syntax

curl --location --request GET -H "Authorization:Bearer $TOKEN" \
 https://external-IP-address-Istio-ingress-gateway/travel-agent/api/
bookings/tripBookingId

Sample Command

curl -H "Authorization:Bearer $TOKEN" \
 --location \
 --header 'Accept: application/json' \
 -X GET \
 "https://$CLUSTER_IPADDR/travel-agent/api/bookings/840c7f0c-
d87e-4694-aba5-0846e716ce99"

5. Run the following command to view the status and details of all bookings.

Command Syntax

curl --location --request GET -H "Authorization:Bearer $TOKEN" \
 https://external-IP-address-Istio-ingress-gateway/travel-agent/api/
bookings

Chapter 7
Deploy TCC Sample Application

7-45

Sample Command

curl -H "Authorization:Bearer $TOKEN" \
 --location \
 --header 'Accept: application/json' \
 -X GET \
 "https://$CLUSTER_IPADDR/travel-agent/api/bookings"

7.3.3 Run Sample TCC Application in Docker Swarm

• Build Docker Images for Sample TCC Application
The TCC sample application is available in the installation bundle in the
installation_directory/otmm-RELEASE/samples/tcc folder.

• Install TCC Sample Application
Install the TCC Sample Application in Docker Swarm.

• Run the Sample TCC Application
When you run the application, it makes a provisional booking by reserving a hotel
room and flight ticket.

7.3.3.1 Build Docker Images for Sample TCC Application
The TCC sample application is available in the installation bundle in the
installation_directory/otmm-RELEASE/samples/tcc folder.

This folder contains individual folders for the sample code written in the Java, Node.js,
and Python languages. The folder for sample application in each language contains
code files for the three microservices, YAML file, and Helm charts. Decide which
sample application you would like to run, and then build the Docker images for the
language that you have chosen. For details about the sample TCC application, see
About the Sample TCC Application.

1. Store the location of the Docker registry in an environment variable named
REGISTRY_LOCATION as shown in the following command.

export REGISTRY_LOCATION=192.0.2.1:5000

Where,

• 192.0.2.1 is the IP address of the Docker registry that you have created.

• 5000 is the port number over which the Docker registry container
communicates. Ensure that you have set up the required networking rules to
permit inbound and outbound HTTPS or HTTP traffic over this port.

Note that, if you don't do this, then you must explicitly specify the IP address in the
commands when required.

2. Based on whether you want to try out the Python, Java, or Node.js sample app,
perform only one of the following steps to build the sample code to create Docker
image for each microservice in the sample.

• Run the following commands to build the Docker images for the Java sample
application.

Chapter 7
Deploy TCC Sample Application

7-46

– Run the following command to build the flight application.

cd installation_directory/otmm-RELEASE/samples/tcc/java/flight-
booking
docker image build -t $REGISTRY_LOCATION/flight-booking:1.0 .

– Run the following command to build the hotel application.

cd installation_directory/otmm-RELEASE/samples/tcc/java/hotel-
booking
docker image build -t $REGISTRY_LOCATION/hotel-booking:1.0 .

– Run the following command to build the travel agent application.

cd installation_directory/otmm-RELEASE/samples/tcc/java/travel-agent
docker image build -t $REGISTRY_LOCATION/travel-agent:1.0 .

• Run the following commands to build the Docker images for the Python sample
application.

– Run the following command to build the flight application.

cd installation_directory/otmm-RELEASE/samples/tcc/python/flight-
booking-py
docker image build -t $REGISTRY_LOCATION/flight-booking-py:1.0 .

– Run the following command to build the hotel application.

cd installation_directory/otmm-RELEASE/samples/tcc/python/hotel-
booking-py
docker image build -t $REGISTRY_LOCATION/hotel-booking-py:1.0 .

– Run the following command to build the travel agent application.

cd installation_directory/otmm-RELEASE/samples/tcc/python/travel-
agent-py
docker image build -t $REGISTRY_LOCATION/travel-agent-py:1.0 .

• Run the following commands to build the Docker images for the Node.js sample
application.

– Run the following command to build the flight application.

cd installation_directory/otmm-RELEASE/samples/tcc/nodejs/flight
docker image build -t $REGISTRY_LOCATION/flight:1.0 .

– Run the following command to build the hotel application.

cd installation_directory/otmm-RELEASE/samples/tcc/nodejs/hotel
docker image build -t $REGISTRY_LOCATION/hotel:1.0 .

Chapter 7
Deploy TCC Sample Application

7-47

– Run the following command to build the travel agent application.

cd installation_directory/otmm-RELEASE/samples/tcc/nodejs/
travel-agent
docker image build -t $REGISTRY_LOCATION/travel-agent:1.0 .

3. Push the tagged Docker image to the Docker registry that you have created. Run
one of the following commands based on the language of the sample application
that you want to try out.

When you build the Docker images, they are available in your local Docker
container registry. When you push the Docker image, it becomes available in the
docker registry that you have created for the swarm.

Syntax

docker push image[:tag]

• The following sample commands tag the images of the hotel, flight, and trip
manager Java applications.
Sample commands

docker push $REGISTRY_LOCATION/hotel-booking:1.0
docker push $REGISTRY_LOCATION/flight-booking:1.0
docker push $REGISTRY_LOCATION/travel-agent:1.0

• The following sample commands tag the images of the hotel, flight, and trip
manager Python applications.
Sample commands

docker push $REGISTRY_LOCATION/hotel-booking-py:1.0
docker push $REGISTRY_LOCATION/flight-booking-py:1.0
docker push $REGISTRY_LOCATION/travel-agent-py:1.0

• The following sample commands tag the images of the hotel, flight, and trip
manager Node.js applications.
Sample commands

docker push $REGISTRY_LOCATION/hotel:1.0
docker push $REGISTRY_LOCATION/flight:1.0
docker push $REGISTRY_LOCATION/travel-agent:1.0

Note down the names of the Docker images that you have created as you will have to
update the names of the images in the YAML file in the next step.

7.3.3.2 Install TCC Sample Application
Install the TCC Sample Application in Docker Swarm.

All Swarm objects are described in manifests called stack files. The tmm-stack-
compose.yaml stack file is located at installation_directory/otmm-<version>/
samples/docker. This YAML file describes all the components and configurations of
the TCC sample application and transaction coordinator. Use this file to run and
manage the microservices in Docker Swarm.

To install the TCC sample application:

Chapter 7
Deploy TCC Sample Application

7-48

1. Provide details of all the sample application images that you have uploaded to the remote
Docker repository. For example, $REGISTRY_LOCATION/travel-agent:1.0.

2. Save your changes.

3. Deploy the tmm-stack-compose.yaml stack file.

cd installation_directory/otmm-<version>/samples/docker
docker stack deploy -c tmm-stack-compose.yaml tmmtccdemo

Where, tmmtccdemo is the name of the Docker stack that you want to install. You can
specify any other name.

4. Verify that all services are ready. Use the following command to retrieve the list of
services and their status.

docker service ls

When the services are ready, you can run a TCC transaction.

7.3.3.3 Run the Sample TCC Application
When you run the application, it makes a provisional booking by reserving a hotel room and
flight ticket.

Only when you provide approval to confirm the booking, the booking of the hotel room and
flight ticket is confirmed. If you cancel the provisional booking, the provisional booking of the
hotel room and flight ticket is canceled. Your application must include the code for releasing
the provisionally blocked hotel and flight and making these resources available in case of a
cancellation.

1. Run the following command to reserve a hotel and flight booking.

Sample Command

curl -H "Authorization:Bearer $TOKEN" \
 --header 'Accept: application/json' \
 -X POST \
 -d '' "https://$REGISTRY_LOCATION/travel-agent/api/bookings/reserve?
hotelName=Acme&flightNumber=AA2250"

Where,

• REGISTRY_LOCATION is the name of the variable in which you stored the location of the
Docker registry.

• TOKEN is the name of the variable in which you stored the authentication token earlier.
For information about retrieving the authentication token and storing it in a variable,
see Create an Access Token.

Sample Response

{
 "tripBookingId": "840c7f0c-d87e-4694-aba5-0846e716ce99",
 "message": "Successfully booked the trip",
 "status": "RESERVED",
 "flightBooking": {

Chapter 7
Deploy TCC Sample Application

7-49

 "bookingId": "e32e1cbf-4d6d-431a-a5af-d48570e02666",
 "bookingUri": "http://$REGISTRY_LOCATION/travel-agent/api/
bookings/e32e1cbf-4d6d-431a-a5af-d48570e02666",
 "expires": 120000,
 "name": "AA2250",
 "startTime": 1677146471233,
 "type": "FLIGHT"
 },
 "hotelBooking": {
 "bookingId": "e140cdba-30a6-44c0-b7c2-c168f763641c",
 "bookingUri": "http://$REGISTRY_LOCATION/travel-agent/api/
bookings/e140cdba-30a6-44c0-b7c2-c168f763641c",
 "expires": 120000,
 "name": "Acme",
 "startTime": 1677146471209,
 "type": "HOTEL"
 }
}

This commands reserves a hotel and flight booking and the status is RESERVED.

2. Note down the values of tripBookingId and the link response header. You will
need to provide this information in the next step.

3. You can choose to either confirm or cancel the reservation. Run one of the
following commands to confirm or cancel the transaction.

• To confirm a transaction, run the following command:
Command Syntax

curl --location --request PUT -H "Authorization:Bearer $TOKEN" \
 -d '' http://$REGISTRY_LOCATION/travel-agent/api/confirm/
tripBookingId

Sample Command

curl -H "Authorization:Bearer $TOKEN" \
 --header 'Accept: application/json' \
 -H "link: <http://192.0.4.1:9000/api/v1/tcc-transaction/
4e6dc225-d8af-4988-8446-a70e4cbd1e44>; rel=\"https://
otmm.oracle.com/tcc-transaction\""
 -X PUT \
 -d '' "https://$REGISTRY_LOCATION/travel-agent/api/confirm/
840c7f0c-d87e-4694-aba5-0846e716ce99"

• To cancel a transaction, run the following command:
Command Syntax

curl --location --request PUT -H "Authorization:Bearer $TOKEN" \
 -d '' https://REGISTRY_LOCATION/travel-agent/api/cancel/
tripBookingId

Chapter 7
Deploy TCC Sample Application

7-50

Sample Command

curl -H "Authorization:Bearer $TOKEN" \
 --location \
 --header 'Accept: application/json' \
 -H "link: <http://192.0.4.1:9000/api/v1/tcc-transaction/4e6dc225-
d8af-4988-8446-a70e4cbd1e44>; rel=\"https://otmm.oracle.com/tcc-
transaction\""
 -X DELETE \
 -d '' "https://$REGISTRY_LOCATION/travel-agent/api/cancel/
840c7f0c-d87e-4694-aba5-0846e716ce99"

4. View the status and details of a single booking by provide its tripBookingId.

Command Syntax

curl --location --request GET -H "Authorization:Bearer $TOKEN" \
 https://REGISTRY_LOCATION/travel-agent/api/bookings/tripBookingId

Sample Command

curl -H "Authorization:Bearer $TOKEN" \
 --location \
 --header 'Accept: application/json' \
 -X GET \
 "https://$REGISTRY_LOCATION/travel-agent/api/bookings/840c7f0c-
d87e-4694-aba5-0846e716ce99"

5. Run the following command to view the status and details of all bookings.

Command Syntax

curl --location --request GET -H "Authorization:Bearer $TOKEN" \
 https://REGISTRY_LOCATION/travel-agent/api/bookings

Sample Command

curl -H "Authorization:Bearer $TOKEN" \
 --location \
 --header 'Accept: application/json' \
 -X GET \
 "https://$REGISTRY_LOCATION/travel-agent/api/bookings"

Chapter 7
Deploy TCC Sample Application

7-51

8
Develop Applications with XA

To use Transaction Manager for Microservices (MicroTx) to manage the transactions of your
microservices, you need to make a few changes to your existing application code to integrate
the functionality provided by the MicroTx libraries.

The MicroTx library is available for Java, Node.js, ORM, ORDS, Tuxedo, and WebLogic
Server apps.

1. Before you begin, ensure that you have installed MicroTx and you can access it.

2. Include the MicroTx client libraries in your microservice implementation.

3. Use CDI annotations or MicroTx client libraries APIs to register the required interceptors
and callbacks.

4. Use CDI annotations or MicroTx client library APIs in participant microservices to obtain
the connection to their XA compliant resource manager.

5. Use MicroTx client libraries API to delineate transaction boundaries indicating an XA
transaction has started, and then commit or roll back the transaction.

Use the following workflow as a guide to develop your applications to use MicroTx to manage
XA transactions.

Task Description More Information

Set up resource manager for your
transaction participant applications

Identify the type of resource
manager that you want to use, such
as XA-compliant or non-XA
compliant.

Plan Your Resource Manager

Provide configuration information for
the MicroTx library properties.

Perform this step for all the
transaction participant and
transaction initiator applications so
that your applications can access the
library.

Configure Library Properties

Integrate MicroTx library with your
application code.

Select a suitable procedure to
integrate the library based on the
following factors:
• the development framework for

your application
• whether an application initiates

the transaction or participates in
the transaction

Based on your app, perform one of
the following tasks:
• Develop Java Apps with XA
• Develop Node.js Apps with XA
• Configure JPA or Hibernate App

as Transaction Participant
• Develop ORDS App as

Transaction Participant
• Develop Tuxedo Apps with XA

Deploy your application Develop, test, and deploy your
microservices independently. After
using the library files in your
application, the application in your
environment.

Deploy Your Application

8-1

• Plan Your Resource Manager
Consider the points discussed in this section to plan the resource manager. Based
on the resource manager that you select and how you use it, the configuration
requirements varies for your application.

• Configure PostgreSQL as Resource Manager
To use PostgreSQL as resource manager for XA transactions, you must enable
prepared transactions and session affinity.

• Set Transaction Timeout
Specify the time period for which a request sent from the XA participant services
remains active. If a transaction is not committed or rolled back within the specified
time period, the transaction is rolled back.

• Subscribe to Receive XA Transaction Notifications
From the MicroTx release 22.3.2, you can register your transaction initiator and
participant services to receive notifications. MicroTx notifies the registered
services when the following events occur: before the prepare phase and when
MicroTx successfully commits or rolls back a transaction.

• Configure Library Properties
Provide configuration information for the MicroTx library properties for every
participant and initiator application.

• Develop Java Apps with XA
Use the MicroTx library with your Java applications.

• Develop Node.js Apps with XA

• Develop ORDS App as Transaction Participant
This section provides the detailed steps to configure a database application as an
XA participant in the context of deploying and running the Oracle Database
sample application.

8.1 Plan Your Resource Manager
Consider the points discussed in this section to plan the resource manager. Based on
the resource manager that you select and how you use it, the configuration
requirements varies for your application.

• Supported Resource Managers
The transaction participant services may use a resource manager to store
application data.

• Supported Drivers for Resource Managers
It is the application developer's responsibility to select the correct JDBC driver and
UCP version, if required, that works with the resource manager that you want to
use.

• Optimizations for a Non-XA Resource
Use the Logging Last Resource (LLR) or Last Resource Commit (LRC)
optimization to enable one non-XA resource to participate in a global transaction.

• Common Resource Manager for Multiple Apps
From the MicroTx release 22.3.1, you can optimize transactions where multiple
transaction participant services use a single resource manager.

Chapter 8
Plan Your Resource Manager

8-2

• Configure Multiple Resource Managers for a Single App
From the MicroTx release 22.3.2, you can use multiple resource managers for a single
participant service. Based on the business logic, a participant service can connect to
multiple XA-compliant resource managers. However, only one non-XA resource is
supported in a transaction.

• About Dynamic Recovery for XA Transactions
From MicroTx release 22.3.1, the transaction coordinator server resumes the
transactions that were in progress when server the restarts after a failure.

8.1.1 Supported Resource Managers
The transaction participant services may use a resource manager to store application data.

In XA transactions, the MicroTx libraries need to access the resource manager's client
libraries.

For Java XA transaction participant applications, the MicroTx library is tested with the
following resource managers:

• Oracle Database 19c

• PostgreSQL 14.2

• MySQL and Microsoft SQL Server

For Node.js XA transaction participant applications, Transaction Manager for Microservices
library is tested with Oracle Database v19.x.

XA transaction participant applications can use non-XA compliant resource managers, such
as MongoDB 4.1 or later. For more information, see Optimizations for a Non-XA Resource.

8.1.2 Supported Drivers for Resource Managers
It is the application developer's responsibility to select the correct JDBC driver and UCP
version, if required, that works with the resource manager that you want to use.

Working with Oracle Database as resource manager

You must use a supported JDBC driver and UCP version that works with Oracle Database.
The MicroTx library accesses the XAResource object to perform various XA operations on the
resource manager. This XAResource object is provided by the JDBC driver.

For the MicroTx Java library, Universal Connection Pool (UCP) is used along with the Oracle
JDBC driver for improved performance.

The MicroTx libraries for Java is tested with Oracle Database drivers version 21.3.0.0.

If you use Oracle Database as the resource manager and MicroTx Node.js library, you must
use node-oracledb 5.3.0 or above in the participant application.

There are no additional requirements for database drivers if you are using Logging Last
Resource (LLR) transactions.

Working with resource managers other than Oracle Database

You must use a supported JDBC driver that implements the XADataSource and XAResource
interfaces. The MicroTx library accesses the XAResource object to perform various XA
operations on the resource manager.

Chapter 8
Plan Your Resource Manager

8-3

8.1.3 Optimizations for a Non-XA Resource
Use the Logging Last Resource (LLR) or Last Resource Commit (LRC) optimization to
enable one non-XA resource to participate in a global transaction.

Your microservice may contain several participant applications, where each application
may be connected to a different resource manager. For example, a microservice
contains a transaction initiator application which uses Oracle Database as the
resource manager and a transaction participant application which uses MongoDB as
the resource manager. MongoDB does not support the XA protocol. However, both
MongoDB and Oracle Database need to participate in a global transaction. With
MicroTx, you can use the XA transaction protocol for such a microservice when you
enable LLR or LRC optimization.

About Logging Last Resource (LLR) Optimization

Use the LLR optimization to enable one non-XA resource to participate in a global
transaction with the same ACID guarantee as XA.

XA resources can handle the XA requests sent by the transaction coordinator, such as
prepare, commit, and rollback. Non-native or non-XA resources cannot handle such
requests. The LLR and LRC optimizations enable a single non-XA resource to
participate in an XA transaction. The transaction coordinator prepares all the other
branches of the transaction, and then attempts to perform a local transaction commit
to the LLR or LRC branch. Assuming that all the other branches are prepared without
an issue, the outcome of the local commit determines the outcome of the transaction.
If the local commit takes place successfully, the transaction is committed successfully,
otherwise the transaction is rolled back.

Before performing a local commit, the transaction coordinator creates a commit record
in the LLR branch. In case of any failure, the transaction coordinator tries to recover
the list of transactions by calling xa_recover on the LLR branch. If the LLR branch had
successfully committed its local transaction, the commitRecord returns the list of
prepared participants. If the LLR branch failed to commit its local transaction, the
recover() method returns an indication that no participants were recorded.

If the LLR branch succeeds in committing the local transaction that also includes the
commit record for the transaction coordinator, then recover() returns the commit
record.

About Last Resource Commit (LRC) Optimization

From the MicroTx release 22.3.2, you can use the LRC optimization to enable one
non-XA resource to participate in a global transaction without the same ACID
guarantee as XA.

In LRC, the sequence of flow of the transaction is nearly identical to LLR. When the
initiator calls commit on the transaction coordinator, the transaction coordinator
prepares all the XA branches, and then calls commit() on the LRC branch. The only
difference is that you can't recover the transaction details in case of any failure as the
commit() method returns NULL as the value for commitRecord in LRC. In LLR, the
commit() method returns a list of prepared participants in response. When commit() is
called in LRC, the local transaction is committed and the outcome is returned to the
transaction coordinator, but information about the prepared participants is not stored.

Chapter 8
Plan Your Resource Manager

8-4

As information about the transaction log details is not stored, LRC optimization works with all
supported resource managers. However, the possibility of heuristic outcomes increases as
there is no way for the transaction coordinator to check if the local commit was completed
successfully. Also, you can't use the recover() methods in LRC, so you can't recover the
transaction in case of any failure.

Choose between LLR and LRC

Oracle strongly recommends that you use the LLR optimization for your non-XA resource as
you can recover details in case of a failure. Use the LRC optimization only when your non-XA
resource cannot store the commitRecord details or transaction log details.

Limitations

• MicroTx supports only one participant application with a non-XA resource to participate in
XA transactions with LLR or LRC optimization. If your microservice has multiple non-XA
resources, then MicroTx does not support the XA transaction protocol for this
microservice. For example, the following error message is displayed if you try to use
multiple LLR or LRC participants: Only one LLR or LRC participant is allowed to
enlist.

If the initiator application participates in the transaction after starting the transaction, then you
can use an LLR or LRC resource with this initiator application.

8.1.4 Common Resource Manager for Multiple Apps
From the MicroTx release 22.3.1, you can optimize transactions where multiple transaction
participant services use a single resource manager.

When you use a common resource manager for multiple participant services, you can specify
a value for the ORACLE_TMM_XA_RMID environment variable to optimize the transaction. The
transaction is optimized as only one branch is created for all the participant services that
share a resource manager.

Let us consider that Dept A, Dept B, and Dept C are three participant services that share a
resource manager, but have different ORACLE_TMM_XA_RMID values. MicroTx creates a new
branch for each department. In all MicroTx creates three branches to track the transactions.

To optimize the transaction, specify a unique value, such as ORCL1, for the
ORACLE_TMM_XA_RMID environment variable in the Dept A, Dept B, and Dept C services.

When you specify a value for the ORACLE_TMM_XA_RMID environment variable, MicroTx creates
a single branch for all the services that use a single resource manager. Since multiple
branches are not created, the transaction is optimized. In this scenario, MicroTx optimizes the
transaction and creates a single branch to track the transactions that involve the common
resource manager and multiple participants. When you don't provide a value for this variable,
MicroTx does not optimize the transaction and creates three branches, one for each
participant service.

Limitations

• You can only share an XA-compliant resource manager with multiple participant services.
You cannot share a non-XA resource with multiple participants services.

• You can use a common resource manager for all transaction participant services,
including an initiator application which participates in the transaction. A transaction

Chapter 8
Plan Your Resource Manager

8-5

initiator service, which initiates the transaction but does not participate in the
transaction, does not require a resource manager.

• You must use unique RMIDs for different resource managers. The transaction fails
if you use same RMID for different resource managers.

8.1.5 Configure Multiple Resource Managers for a Single App
From the MicroTx release 22.3.2, you can use multiple resource managers for a single
participant service. Based on the business logic, a participant service can connect to
multiple XA-compliant resource managers. However, only one non-XA resource is
supported in a transaction.

Note:

This feature is available only in the MicroTx client libraries for Java
applications. JPA or Hibernate applications support only XA-compliant
resource managers.

8.1.6 About Dynamic Recovery for XA Transactions
From MicroTx release 22.3.1, the transaction coordinator server resumes the
transactions that were in progress when server the restarts after a failure.

Every time transaction coordinator restarts, it recovers transactions for all protocols
(XA, LRA, and TCC) based on the data available in the transaction store. See About
Transaction Recovery.

Additionally, for XA transaction protocol, the transaction coordinator dynamically
recovers the transactions which are not committed. The transaction coordinator
checks for any transactions that were in progress when the coordinator failed, then the
coordinator issues a commit or roll back command to complete the transaction. If the
transaction is not found or it has already been completed, then the coordinator
removes the transaction record from the resource manager.

Dynamic recovery is performed based on the resource manager ID (RMID) that you
specify. Ensure that the RMID that you specify for each resource manager is unique.

The transaction coordinator performs dynamic recovery once for each resource
manager based on the RMID. If the transaction coordinator instance restarts, then the
recovered information is not lost but and the mapping of the recovered RMID list is
lost. During dynamic recovery xa_recover is called once for every RMID. The
recovered information about the resource manager is kept in memory. Every time
participants enlist, the transaction coordinator checks the RMID against recovered
resource manager mapping which is kept in memory. This ensures that only if an
RMID does not exist in the already recovered list, then xa_recover is called. If the
RMID exists in the recovered list, xa_recover is not called. Since the resource
manager mapping is kept in memory, if the transaction coordinator restarts, the list of
recovered RMID list is lost. In such a scenario, the recovery is called again when each
unique RMID enlists.

If you have set up etcd or Oracle Database for MicroTx to store the transaction data,
then you can obtain information about the in-progress transactions and transaction
details after the coordinator restarts. However, if you haven't set up a separate

Chapter 8
Plan Your Resource Manager

8-6

transaction store and are using internal memory to store the transaction details, then all the
stored information is lost after the coordinator crashes or restarts. Since XA supports
dynamic recovery, all the dynamically recovered (xa_recover) XA transactions are rolled
back and followed by xa_forget in case you are using internal memory.

8.2 Configure PostgreSQL as Resource Manager
To use PostgreSQL as resource manager for XA transactions, you must enable prepared
transactions and session affinity.

Skip this section if you don't want to use PostgreSQL as a resource manager.

By default, the value of max_prepared_transactions is set to 0 and prepared transactions
are disabled. If you do not enable prepared transactions for PostgreSQL, you will receive the
following error message when you start an XA transaction.

Exception: org.postgresql.util.PSQLException: ERROR: prepared transactions
are disabled

1. Connect to the database using pgAdmin 4 or any another PostgreSQL tool, and then run
the following SQL statements. Set the value of max_prepared_transactions to a positive
number, such as 100.

SHOW max_prepared_transactions;
ALTER SYSTEM SET max_prepared_transactions = 100;

2. Restart the PostgreSQL service as shown in the following command.

brew services restart postgresql

3. Enable session affinity or sticky sessions for the transaction participant service that uses
PostgreSQL as resource manager. When you enable session affinity, all the requests for
a unique transaction or session are routed to the same endpoint or replica of the
participant service that served the first request. See Enable Session Affinity for XA
Participants.

8.3 Set Transaction Timeout
Specify the time period for which a request sent from the XA participant services remains
active. If a transaction is not committed or rolled back within the specified time period, the
transaction is rolled back.

Specify this value only for the transaction initiator application. If you specify this value for a
participant application, it is ignored.

To set transaction timeout for requests sent from participants services:

1. For the txMaxTimeout parameter in the values.yaml file of the MicroTx, specify the
maximum amount of time, in milliseconds, for which a transaction remains active. The
default value is 60000 ms.

The values.yaml file of the MicroTx is located in the installation_directory/otmm-
RELEASE/otmm/helmcharts folder.

Chapter 8
Configure PostgreSQL as Resource Manager

8-7

2. For the ORACLE_TMM_TRANSACTION_TIMEOUT parameter in the tmm.properties file
of the transaction initiator service, specify the amount of time, in milliseconds, for
which the transaction remains active. If a transaction is not committed or rolled
back within the specified time period, the transaction is rolled back. The default
value and minimum value is 60000.

The value of ORACLE_TMM_TRANSACTION_TIMEOUT can override the value of
txMaxTimeout, but it cannot exceed the value of txMaxTimeout. For example, if the
value of txMaxTimeout is 70000 and the value of ORACLE_TMM_TRANSACTION_TIMEOUT is
80000, then the maximum timeout is set to 70000 milliseconds. If the value of
txMaxTimeout is 90000 and the value of ORACLE_TMM_TRANSACTION_TIMEOUT is 80000,
then the maximum timeout is set to 80000 milliseconds.

8.4 Subscribe to Receive XA Transaction Notifications
From the MicroTx release 22.3.2, you can register your transaction initiator and
participant services to receive notifications. MicroTx notifies the registered services
when the following events occur: before the prepare phase and when MicroTx
successfully commits or rolls back a transaction.

The MicroTx coordinator notifies the services that you register. You may want to
register your service, if based on the business logic your service performs additional
tasks when an event occurs. For every resource that you register, you must create a
callback resource and declare two methods which MicroTx calls to send the
notification when an event occurs.

Note:

This feature is available only for Java services.

Perform the following task for the transaction participant and initiator services that you
want to register to receive event notifications.

1. Within your application code, add code to create a callback resource that the
MicroTx coordinator can call when an event occurs.

Create a JAX-RS class with two methods. It is mandatory for you to declare the
beforeCompletion and afterCompletion methods. Within these methods, provide
code that is specific to your application's business logic. The MicroTx coordinator
calls the beforeCompletion method before sending a request to the participants to
prepare. The afterCompletion method returns the final status of the event after
the transaction is complete. The status of the can be STATUS_COMMITTED or
STATUS_ROLLEDBACK.

In the following sample code, EventListenerResource is the name of the JAX-RS
class and transaction-sync is the name of the callback resource. You can
provide any name of your choice for the class and callback resource. Note down
the name of this resource as you will provide it later.

Sample code

@Path("transaction-sync")
public class EventListenerResource {

Chapter 8
Subscribe to Receive XA Transaction Notifications

8-8

 /**
 * The MicroTx coordinator calls the beforeCompletion method before
 * the two-phase transaction commit process starts. This call is
executed with
 * the transaction context of the transaction that is being committed.
 **/
 @POST
 @Path("/{gtrid}/beforecompletion")
 @Produces(MediaType.APPLICATION_JSON)
 public Response beforeCompletion(@PathParam("gtrid") String gtrid) {
 ...
 //tasks to be done before the transaction is completed
 //enter the code based on your application's business logic
 return Response.status(Response.Status.OK).build();
 }

 /**
 * The MicroTx coordinator calls the afterCompletion method after the
 * transaction is committed or rolled back.
 **/
 @POST
 @Path("/{gtrid}/aftercompletion/{status}")
 @Produces(MediaType.APPLICATION_JSON)
 public Response afterCompletion(@PathParam("gtrid") String gtrid,
@PathParam("status") String status) {
 ...
 //tasks to be done after the transaction is completed
 //enter the code based on your application's business logic
 return Response.status(Response.Status.OK).build();
 }
}

2. Register the initiator service to receive event notifications based on your application's
business logic.

The following sample code describes that you call the
TrmRegisterSynchronization.register() method after calling begin(), but before
calling commit() or rollback(). When you call the
TrmRegisterSynchronization.register() method, you must pass the name of the
callback resource that you have created in the previous step.

Sample code

import oracle.tmm.jta.TrmUserTransaction;
/**
* Initiator method which initiates the transaction
*/
transactionMethod() {
 TrmUserTransaction transaction = new TrmUserTransaction();
 transaction.begin();
 //
 TrmRegisterSynchronization.register(transaction.getTransactionID(), "/
transaction-sync");
 ...
 // code that is specific to the application's business logic

Chapter 8
Subscribe to Receive XA Transaction Notifications

8-9

 transaction.commit();
}

Where,

• transaction-sync is the name of the callback resource that you have created
in the previous step. Replace this value based on your environment.

• transaction.getTransactionID() is the GTRID of the current transaction.
Use the TrmUserTransaction class object to retrieve the GTRID of the current
transaction.

3. Register one or more transaction participant services to receive event notifications.
Based on your application's business logic, you can decide whether your
application requires to receive event notifications.

The following sample code demonstrates how you can call the
TrmRegisterSynchronization.register() method by explicitly passing the
GTRID value and the name of the callback resource that you have previously
created.

Sample code

import oracle.tmm.jta.TrmRegisterSynchronization;
/**
* Participant method which is in transaction context.
* Transaction event registration using GTRID
*/
participantMethod1(){
 TrmXaContext trmXaContext = ThreadLocalXaContext.get();
 if (trmXaContext != null) {
 String currentTransactionGTRID = new
String(trmXaContext.trmXid.getGlobalTransactionId());

TrmRegisterSynchronization.register(currentTransactionGTRID, "/
transaction-sync");
 }
 ...
 // code that is specific to the application's business logic
}

Where,

• transaction-sync is the name of the callback resource that you have
previously created. Replace this value based on your environment.

• currentTransactionGTRID is the GTRID of the current transaction. To retrieve
the GTRID of the current transaction from ThreadLocal, use TrmXaContext.
This applies to transaction initiator as participant services as well.

Chapter 8
Subscribe to Receive XA Transaction Notifications

8-10

8.5 Configure Library Properties
Provide configuration information for the MicroTx library properties for every participant and
initiator application.

Open the tmm.properties file in any code editor, and then enter values for the following
parameters to configure the MicroTx library.

• oracle.tmm.TcsUrl: Enter the URL to access the MicroTx application. See Access
MicroTx. You must enter this value for the transaction initiator application. You don't have
to specify this value for the transaction participant applications.

• oracle.tmm.TcsConnPoolSize: Enter the number of connections to the MicroTx library to
MicroTx. The default and minimum number of connections is 10. The maximum value is
20. You can change this value depending on the number of queries that your services
run. Specify this value for both initiator and participant applications.

• oracle.tmm.CallbackUrl: Enter the URL of your participant service. MicroTx uses the
URL that you provide to connect to the participant service. Provide this value in the
following format:

https://externalHostnameOfApp:externalPortOfApp/

Where,

– externalHostnameOfApp: The external host name of your initiator or participant
service. For example, bookTicket-app.

– externalPortOfApp: The port number over which you can access your participant
service remotely. For example, 8081.

You must specify this value for the transaction participant applications. You don't have to
specify this value for the transaction initiator application.

• oracle.tmm.TransactionTimeout: Specify the maximum amount of time, in milliseconds,
for which the transaction remains active. If a transaction is not committed or rolled back
within the specified time period, the transaction is rolled back. The default value and
minimum value is 60000. Specify this value for both initiator and participant applications.

• oracle.tmm.PropagateTraceHeaders: Set this to true when you want to trace the
transaction from end-to-end. This propagates the trace headers for all incoming and
outgoing requests. For Helidon-based microservices, set this property to false to avoid
propagating the trace headers twice as Helidon framework propagates trace headers by
default. You can set this property to true if propagation of trace headers is disabled in
Helidon configuration and you want to enable distributed tracing with MicroTx. For other
microservices, set this property to true.

• oracle.tmm.xa.Rmid: From MicroTx release 22.3.1, you must specify a unique string
value for each resource manager that you use in the XA transaction. This value is not
related to any properties of the data store. The unique value that you provide as RMID is
used by MicroTx to identify the resource manager. If more than one participant uses the
same resource manager, then specify the same resource manager ID for the participants
that share a resource manager.

• oracle.tmm.xa.XaSupport: Set this to true when you use XA-compliant resources. Set
this to false only for the single transaction participant service that uses a non-XA

Chapter 8
Configure Library Properties

8-11

resource. The default value is true. When oracle.tmm.xa.XaSupport is set to
true, the values set for oracle.tmm.xa.LLRSupport and
oracle.tmm.xa.LRCSupport are ignored.

• oracle.tmm.xa.LLRSupport: Set this to true to enable the Logging Last Resource
(LLR) optimization. Set this value only for the transaction participant service that
uses a non-XA resource as a resource manager. The default value is false. When
oracle.tmm.xa.LLRSupport is set to true, the value set for
oracle.tmm.xa.LRCSupport is ignored.

• oracle.tmm.xa.LRCSupport: Set this to true to enable the Last Resource Commit
(LRC) optimization. Set this value only for the transaction participant service that
uses a non-XA resource as a resource manager. The default value is false.

For example,

oracle.tmm.TcsUrl = http://tmm-app:9000/api/v1
oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl = https://bookTicket-app:8081
oracle.tmm.PropagateTraceHeaders = true
oracle.tmm.TransactionTimeout = 60000
oracle.tmm.xa.XaSupport = true
oracle.tmm.xa.LLRSupport = false
oracle.tmm.xa.LRCSupport = false
oracle.tmm.xa.Rmid = ORCL1

You can use the HTTP protocol if your application and MicroTx are in the same
Kubernetes cluster, otherwise use the HTTPS protocol.

You can also provide these configuration values as environment variables. Note that if
you specify values in both the application.properties file as well as the
environment variables, then the values set in the environment variables override the
values in the properties file.

The following example provides sample values to configure the environment variables.

export ORACLE_TMM_TCS_URL= http://tmm-app:9000/api/v1
export ORACLE_TMM_CALLBACK_URL = http://bookTicket-app:8081
export ORACLE_TMM_PROPAGATE_TRACE_HEADERS = true
export ORACLE_TMM_TCS_CONN_POOL_SIZE = 15
export ORACLE_TMM_TRANSACTION_TIMEOUT = 60000
export ORACLE_TMM_XA_XASUPPORT = true
export ORACLE_TMM_XA_LLRSUPPORT = false
export ORACLE_TMM_XA_LRC_SUPPORT = false
export ORACLE_TMM_XA_RMID = ORCL1

Note that the environment variables names are case-sensitive.

8.6 Develop Java Apps with XA
Use the MicroTx library with your Java applications.

The MicroTx library for Java performs the following functions:

• Enlists the participant service with the Transaction Coordinator in the transaction.

Chapter 8
Develop Java Apps with XA

8-12

• Injects an XADataSource object for the participant application code to use through
dependency injection, and then calls start() on the associated XAResource. Participant
microservices, those microservices called in the context of an XA transaction, must use
an XA-compliant data source. In Java this means using an XADataSource object.
The MicroTx libraries automatically inject the configured data source into the participant
services, so the application developer must add the @Inject or @Context annotation to
the application code. The application code runs the DML using this connection.

• Calls the resource managers to perform operations.

• Configure Java App as Transaction Initiator
A transaction initiator service initiates or starts a transaction. Based on your application's
business logic, a transaction initiator service may only start the transaction or start the
transaction and participate in the transaction as well.

• Configure Java App as Transaction Participant
Based on whether the resource manager is compliant with XA or not, set environment
variables and implement different classes from the MicroTx library to configure your
participant application.

• Configure JPA or Hibernate App as Transaction Participant
Based on whether the resource manager is compliant with XA or not, set environment
variables and implement different classes from the MicroTx library to configure your
participant application.

8.6.1 Configure Java App as Transaction Initiator
A transaction initiator service initiates or starts a transaction. Based on your application's
business logic, a transaction initiator service may only start the transaction or start the
transaction and participate in the transaction as well.

Before you begin, identify if your application only initiates the transaction or initiates and
participates in the transaction. Configure your application accordingly as the requirements
vary slightly for the two scenarios.

Let us consider two scenarios to understand if your application only initiates the transaction
or participates in the transaction as well.

• Scenario 1: A banking teller application transfers an amount from one department to
another. Here, the teller application only initiates the transaction and does not participate
in it. Based on the business logic, the teller application calls different services to complete
the transaction. A database instance may or may not be attached to the teller application.

• Scenario 2: A banking teller application transfers an amount from one department to
another. For every transaction, the teller application charges 1% as commission. Here,
the teller application initiates the transaction and participates in it. A database instance
must be attached to the teller application to save the transaction information.

To configure your Java application as a transaction initiator:

1. Specify property values for the MicroTx library. See Configure Library Properties.

2. Include the MicroTx library as a maven dependency in the application's pom.xml file. The
following sample code is for the 22.3 release. Provide the correct version, based on the
release that you want to use.

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>

Chapter 8
Develop Java Apps with XA

8-13

 <version>22.3</version>
</dependency>

3. Add the following code to the application code to include the oracle.tmm.jta
package.

package oracle.tmm.jta;

4. Initialize an object of the TrmUserTransaction class for all new transactions to
demarcate transaction boundaries in the application code, such as to begin,
commit, or roll back transactions.

In the following code sample, you have created an instance UserTransaction of
the TrmUserTransaction class. Define the methods for this object.

public class TrmUserTransaction implements UserTransaction {
// Define the methods for this object
}

5. Add the following lines of code just before your application logic initiates or begins
a transaction. The following code samples demonstrate how to create and begin a
new XA transaction called ut by creating an instance of the UserTransaction
object.

• If your application only initiates the transaction and does not participate in the
transaction, add the following lines to your application code.

UserTransaction ut = new oracle.tmm.jta.TrmUserTransaction();
ut.begin();
... // Implement the business logic to begin a transaction.

• If your application initiates the transaction and participates in it, add the
following lines to your application code.

UserTransaction ut = new oracle.tmm.jta.TrmUserTransaction();
ut.begin(true);
... // Implement the business logic to begin a transaction.

6. Create a REST client.

The following command creates a new client called svcClient.

Client svcClient = ClientBuilder.newClient();

Use this REST client to call the endpoints of the transaction participant services to
perform the transaction. The transaction initiator service begins the transaction. To
complete the transaction, the initiator service may have to make calls to one or
more participant services. While calling the participant services, use the REST
client that you have created.

7. Based on your business logic, commit or rollback the transaction.

Chapter 8
Develop Java Apps with XA

8-14

• To commit a transaction:

ut.commit();

• To rollback a transaction:

ut.rollback();

The sample XA application code for transaction initiator service is located at
installation_directory\otmm-RELEASE\samples\xa\java\accounts. This provides an
example of how you can use MicroTx Java libraries with the business logic of your Java
initiator application. This sample application is called Teller. It initiates a transaction between
two departments. It calls Dept A to withdraw an amount and it calls Dept B to deposit the
amount.
If the initiator service also participates in the transaction in addition to initiating the
transaction, you must make additional configurations for the application to participate in the
transaction and communicate with the resource manager. See Configure Java App as
Transaction Participant .

8.6.2 Configure Java App as Transaction Participant
Based on whether the resource manager is compliant with XA or not, set environment
variables and implement different classes from the MicroTx library to configure your
participant application.

• Configure Java App with an XA-Compliant Resource Manager

• Configure Java App with a Non-XA JDBC Resource

• Configure Java App with a Non-XA and Non-JDBC Resource

• Configure Java App with an XA-Compliant Resource Manager
Use the information provided in this section to configure your Java participant
applications when you use an XA-compliant resource manager.

• Configure Java App with Multiple XA-Compliant Resource Managers
Use the information provided in this section to configure your Java participant
applications when you use multiple XA-compliant resource managers.

• Configure Java App with a Non-XA JDBC Resource
Use the information provided in this section to configure your Java participant
applications when you use a JDBC resource that does not support XA.

• Configure Java App with a Non-XA and Non-JDBC Resource
Use the information provided in this section to configure your Java participant
applications when you use a resource that does not support XA and JDBC.

8.6.2.1 Configure Java App with an XA-Compliant Resource Manager
Use the information provided in this section to configure your Java participant applications
when you use an XA-compliant resource manager.

1. Configure property values for the MicroTx client library.

Chapter 8
Develop Java Apps with XA

8-15

The following example provides sample values for the properties. Provide the
values based on your environment.

oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl = https://bookTicket-app:8081
oracle.tmm.PropagateTraceHeaders = true
oracle.tmm.TransactionTimeout = 60000
oracle.tmm.xa.XaSupport = true

Ensure that oracle.tmm.xa.XaSupport is set to true.

For details about each property and other optional properties, see Configure
Library Properties.

2. Include the MicroTx library as a maven dependency in the application's pom.xml
file. The following sample code is for the 22.3 release. Provide the correct version,
based on the release that you want to use.

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>
 <version>22.3</version>
</dependency>

3. Initialize an XADatasource object.

The MicroTx client library needs to access an XADatasource object. It uses this
object to create XAConnection and XAResource objects to connect with a resource
manager or database server. The following code describes how you can define the
XADatasource object at the beginning of the application code when you create the
connection object.

class oracle.tmm.jta.TrmConfig
static void initXaDataSource(XADataSource xaDs)

For more information about XADataSource, see https://docs.oracle.com/javase/8/
docs/api/javax/sql/XADataSource.html.

4. In the transaction participant function or block, specify the XADatasource object
which is used by the MicroTx client library. Provide the credentials and other
details to connect to the resource manager.

//Example for a participant using an Oracle Database:
OracleXADataSource dataSource = new
oracle.jdbc.xa.client.OracleXADataSource();
dataSource.setURL(url); //database connection string
dataSource.setUser(user); //username to access database
dataSource.setPassword(password); //password to access database
TrmConfig.initXaDataSource((XADataSource)dataSource);

It is the responsibility of the application developer to ensure that an XA-compliant
JDBC driver and required parameters are set up while allocating XADataSource.

The MicroTx client library uses the XADatasource object to create database
connections.

Chapter 8
Develop Java Apps with XA

8-16

https://docs.oracle.com/javase/8/docs/api/javax/sql/XADataSource.html
https://docs.oracle.com/javase/8/docs/api/javax/sql/XADataSource.html

5. In the transaction participant function or block, add the following line of code only once
after you have initialized the XADatasource object.

oracle.tmm.jta.TrmConfig.initXaDataSource((XADataSource)xaDs);

XADatasource is an interface defined in JTA whose implementation is provided by the
JDBC driver.

The MicroTx client library uses this object to connect to database to start XA transactions
and perform various operations such as prepare, commit, and rollback. The MicroTx
library also provides a SQL connection object to the application code to execute DML
using dependency injection.

6. Insert the following line in the code of the participant service so that the application uses
the connection passed by the MicroTx client library. The following code in the participant
application injects the connection object that is created by the MicroTx client library.

@Inject
@TrmSQLConnection
private Connection connection;

7. Insert the following lines in the code of the participant service so that the service uses the
injected connection object whenever the participant service performs a DML operation.

Statement stmt1 = connection.createStatement();
stmt1.execute(query);
stmt1.close();

Where, connection is the name of the Connection object that you have injected in the
previous step.

Insert these lines of code for every DML operation that your participant service performs.
Create a new statement object, such as stmt1 or stmt2 for every DML operation, but use
the same connection object that is created by the MicroTx client library.

8. Only for a participant microservice based on Spring Boot, register the
XAResourceCallbacks (prepare/commit/rollback) and various filters as:

@Component
public class JerseyConfig extends ResourceConfig
{
 public JerseyConfig()
 {
 register(XAResourceCallbacks.class);
 register(TrmTransactionResponseFilter.class);
 register(TrmTransactionRequestFilter.class);
 register(new AbstractBinder() {
 @Override
 protected void configure() {

bindFactory(TrmXAConnectionFactory.class).to(XAConnection.class);
 }
 });

Chapter 8
Develop Java Apps with XA

8-17

 }
}

This is in addition to registering the resource endpoint that participates in the XA
transaction.

9. Save the changes.

If there are multiple Java transaction participant services complete these steps for all
the participant services.

8.6.2.2 Configure Java App with Multiple XA-Compliant Resource Managers
Use the information provided in this section to configure your Java participant
applications when you use multiple XA-compliant resource managers.

Your application can connect to multiple XA-compliant resource managers. However,
only a single non-XA resource can be a part of the transaction. If you are using
multiple XA-compliant resource managers for your application, create a .java file to
define property values and a DataSourceInfo object for each resource manager.

1. Create a .java file in the folder that contains your application code to provide
values for the MicroTx client library properties.

The following example provides the definition for the DataSourceInfo class in the
oracle.tmm.jta.common.DataSourceInfo package with sample values.

When you use a single resource manager, provide values for all the MicroTx client
library properties in a single file, such as tmm.properties file. When you use
multiple resource managers, you must specify values for the following MicroTx
client library properties in a .java while initializing each data source.

public class DataSourceInfo {
 String resourceManagerId = ORCL1-8976-9776-9873; //maps to the
oracle.tmm.xa.Rmid property
 String dataSourceName = creditDataSource; // name of the data
source
 boolean XaSupport = true; // maps to the oracle.tmm.xa.XaSupport
property
 boolean LLRSupport = false; // maps to the
oracle.tmm.xa.LLRSupport property
 boolean LRCSupport = false; // maps to the
oracle.tmm.xa.LRCSupport property
}

Note down the value you provide for the dataSourceName, as you will need to
provide this name later when you inject a connection object for an XA-compliant
resource manager.

For details about each property and other optional properties, see Configure
Library Properties.

Chapter 8
Develop Java Apps with XA

8-18

2. Include the MicroTx library as a maven dependency in the application's pom.xml file. The
following sample code is for the 22.3 release. Provide the correct version, based on the
release that you want to use.

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>
 <version>22.3</version>
</dependency>

3. Initialize an XADatasource object. If you are using multiple resource managers with your
application, initialize the XADatasource object in the following way for every XA-compliant
resource manager.

The MicroTx client library needs to access an XADatasource object. It uses this object to
create XAConnection and XAResource objects to connect with a resource manager or
database server. The following code describes how you can define the XADatasource
object at the beginning of the application code when you create the connection object.

class oracle.tmm.jta.TrmConfig
static void initXaDataSource(XADataSource xaDS, DataSourceInfo
creditDataSource)

Where, creditDataSource is the DataSourceInfo object that you have previously
created.

For more information about XADataSource, see https://docs.oracle.com/javase/8/docs/api/
javax/sql/XADataSource.html.

4. In the transaction participant function or block, specify the XADatasource object which is
used by the MicroTx client library. Provide the credentials and other details to connect to
the resource manager.

//Example for a participant using an Oracle Database:
OracleXADataSource dataSource = new
oracle.jdbc.xa.client.OracleXADataSource();
dataSource.setURL(url); //database connection string
dataSource.setUser(user); //username to access database
dataSource.setPassword(password); //password to access database

It is the responsibility of the application developer to ensure that an XA-compliant JDBC
driver and required parameters are set up while allocating XADataSource.

The MicroTx client library uses the XADatasource object to create database connections.

5. In the transaction participant function or block, add the following line of code only once
after you have initialized the XADatasource object.

oracle.tmm.jta.TrmConfig.initXaDataSource(XADataSource xaDS,
DataSourceInfo creditDataSource)

Where, creditDataSource is the DataSourceInfo object that you have previously
created.

Chapter 8
Develop Java Apps with XA

8-19

https://docs.oracle.com/javase/8/docs/api/javax/sql/XADataSource.html
https://docs.oracle.com/javase/8/docs/api/javax/sql/XADataSource.html

The MicroTx client library uses this object to connect to database to start XA
transactions and perform various operations such as prepare, commit, and
rollback. The MicroTx library also provides a SQL connection object to the
application code to execute DML using dependency injection.

6. Insert the following line in the code of the participant service so that the application
uses the connection passed by the MicroTx client library. The following code in the
participant application injects the connection object that is created by the MicroTx
client library.

If you are using multiple resource managers with your application, inject a
connection object in the following way for every XA-compliant resource manager.

@Inject
@TrmSQLConnection(name = "creditDataSource")
private Connection creditConnection;

Where, creditDataSource is the value that you have provided for the
dataSourceName string in the DataSourceInfo class of the
oracle.tmm.jta.common.DataSourceInfo package.

7. Insert the following lines in the code of the participant service so that the service
uses the injected connection object whenever the participant service performs a
DML operation.

Statement stmt1 = creditConnection.createStatement();
stmt1.execute(query);
stmt1.close();

Where, creditConnection is the name of the Connection object that you have
injected in the previous step.

Insert these lines of code for every DML operation that your participant service
performs. Create a new statement object, such as stmt1 or stmt2 for every DML
operation, but use the same creditConnection object that is created by the
MicroTx client library.

8. Only for a participant microservice based on Spring Boot, register the
XAResourceCallbacks (prepare/commit/rollback) and various filters as:

@Component
public class JerseyConfig extends ResourceConfig
{
 public JerseyConfig()
 {
 register(XAResourceCallbacks.class);
 register(TrmTransactionResponseFilter.class);
 register(TrmTransactionRequestFilter.class);
 register(new AbstractBinder() {
 @Override
 protected void configure() {

bindFactory(TrmXAConnectionFactory.class).to(XAConnection.class);
 }
 });

Chapter 8
Develop Java Apps with XA

8-20

 }
}

This is in addition to registering the resource endpoint that participates in the XA
transaction.

9. Save the changes.

If there are multiple Java transaction participant services complete these steps for all the
participant services.

8.6.2.3 Configure Java App with a Non-XA JDBC Resource
Use the information provided in this section to configure your Java participant applications
when you use a JDBC resource that does not support XA.

Your application can connect to multiple XA-compliant resource managers. However, only a
single non-XA resource can participate in a transaction.

1. When you use a single resource manager, provide values for all the MicroTx client library
properties in a single file, such as tmm.properties file. When you use multiple resource
managers, you must specify values for certain MicroTx client library properties in a .java
while initializing a data source and other values in a .properties file for the application.

Ensure that oracle.tmm.xa.XaSupport is set to false and oracle.tmm.xa.LLRSupport
or oracle.tmm.xa.LRCSupport is set to true.

• If you are using a single resource manager with your application, configure property
values for the MicroTx client library in the following way.

– To enable the Logging Last Resource (LLR) optimization, set the following values
for the environment variables.

oracle.tmm.xa.XaSupport = false
oracle.tmm.xa.LLRSupport = true
oracle.tmm.xa.LRCSupport = false
oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl = https://bookHotel-app:8081
oracle.tmm.PropagateTraceHeaders = true
oracle.tmm.TransactionTimeout = 60000

– To enable the Last Resource Commit (LRC) optimization, set the following values
for the environment variables.

oracle.tmm.xa.XaSupport = false
oracle.tmm.xa.LLRSupport = false
oracle.tmm.xa.LRCSupport = true
oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl = https://bookHotel-app:8081
oracle.tmm.PropagateTraceHeaders = true
oracle.tmm.TransactionTimeout = 60000

• If you are using a multiple resource managers with your application, configure
property values for the MicroTx client library in the following way. Create a .java file
in the folder that contains your application code to provide values for the MicroTx
client library properties listed below.

Chapter 8
Develop Java Apps with XA

8-21

The following example provides the definition for the DataSourceInfo class in
the oracle.tmm.jta.common.DataSourceInfo package with sample values.

public class DataSourceInfo {
 String resourceManagerId = ORCL1-8976-9776-9873; //maps to
the oracle.tmm.xa.Rmid property
 String dataSourceName = creditDataSource; // name of the data
source
 boolean XaSupport = false; // maps to the
oracle.tmm.xa.XaSupport property
 boolean LLRSupport = false; // maps to the
oracle.tmm.xa.LLRSupport property
 boolean LRCSupport = true; // maps to the
oracle.tmm.xa.LRCSupport property
}

2. Create a .properties file in the folder that contains your application code to
provide values for the following MicroTx client library properties for the application.
The following example provides sample values for other MicroTx client library
properties.

oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl = https://bookTaxi-app:8081
oracle.tmm.PropagateTraceHeaders = true
oracle.tmm.TransactionTimeout = 60000

For details about each property and other optional properties, see Configure
Library Properties.

3. Include the MicroTx library as a maven dependency in the application's pom.xml
file. The following sample code is for the 22.3 release. Provide the correct version,
based on the release that you want to use.

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>
 <version>22.3</version>
</dependency>

4. Enable session affinity. See Enable Session Affinity.

5. Initialize a Datasource object.

The MicroTx library needs to access a data source object. It uses the data source
object to create java.sql.Connection objects to connect with a resource
manager. The following code describes how you can define a data source object.

You must provide this code at the start of the application, so that the
initNonXaDataSource method is called immediately after the server starts and
before any other requests are served.

Chapter 8
Develop Java Apps with XA

8-22

• If you are using a single resource manager with your application, initialize a data
source in the following way.

class oracle.tmm.jta.TrmConfig
static void initNonXaDataSource(DataSource NonXaDs)

• If you are using multiple resource managers with your application, initialize the data
source object in the following way for the Non-XA JDBC resource. A participant
service can connect to multiple XA-compliant resource managers, but only one non-
XA resource is supported in a transaction.

class oracle.tmm.jta.TrmConfig
static void initNonXaDataSource(DataSource dataSource, DataSourceInfo
dataSourceInfo)

Where, dataSourceInfo is the object that you have created in the first step.

6. In the transaction participant function or block, specify the DataSource object which is
used by the MicroTx library. Provide the credentials and database driver details to
connect to the resource manager. The following example shows the details that you must
provide when you use MySQL database as an LLR. Similarly, you can provide credentials
and database driver information for other databases.

//Example for a participant using a MySQL database as resource manager
this.dataSource = PoolDataSourceFactory.getPoolDataSource();
this.dataSource.setURL(url); //Database connection string
this.dataSource.setUser(user); //User name to access the database
this.dataSource.setPassword(password); //Password to access the database
//Database driver information for the MySQL database.
//Provide the JDBC driver information that is specific to your database.
this.dataSource.setConnectionFactoryClassName("com.mysql.cj.jdbc.MysqlData
Source");
this.dataSource.setMaxPoolSize(15);

It is the application developer's responsibility to ensure that a database-specific JDBC
driver and required parameters are set up while allocating DataSource.

MicroTx library uses the DataSource object to create database connections.

7. In the transaction participant function or block, add the following line of code only once
after you have initialized the Datasource object. The MicroTx library uses this object to
start a database transaction. The MicroTx library also provides a SQL connection object
to the application code to execute DML using dependency injection.

oracle.tmm.jta.TrmConfig.initNonXaDataSource((DataSource) NonXaDs);

Where, Datasource is an interface defined in JTA whose implementation is provided by
the JDBC driver.

8. Insert the following line in the code of the participant service so that the application uses
the connection passed by the MicroTx library. The following code in the participant
application injects the connection object that is created by the MicroTx library.

@Inject @TrmNonXASQLConnection private Connection connection;

Chapter 8
Develop Java Apps with XA

8-23

9. Insert code in the participant service so that the service uses the injected
connection object whenever the participant service performs a DML operation.
You can create code to use the injected connection object based on your
business scenario. Here's an example code snippet.

Statement stmt1 = connection.createStatement();
stmt1.execute(query);
stmt1.close();

Insert these lines of code for every DML operation that your participant service
performs. Create a new statement object, such as stmt1 or stmt2 for every DML
operation, but use the same connection object that's created by the MicroTx
library.

10. Only for a participant microservice based on Spring Boot, register the XAResource
callbacks, such as prepare, commit, rollback, and various filters as:

@Component
public class JerseyConfig extends ResourceConfig
{
 public JerseyConfig()
 {
 register(XAResourceCallbacks.class);
 register(TrmTransactionResponseFilter.class);
 register(TrmTransactionRequestFilter.class);
 register(new AbstractBinder() {
 @Override
 protected void configure() {

bindFactory(TrmXAConnectionFactory.class).to(XAConnection.class);
 }
 });
 }
}

This is in addition to registering the resource endpoint that participates in the XA
transaction.

11. Save the changes.

8.6.2.4 Configure Java App with a Non-XA and Non-JDBC Resource
Use the information provided in this section to configure your Java participant
applications when you use a resource that does not support XA and JDBC.

Your application can connect to multiple XA-compliant resource managers. However,
only a single non-XA resource can participate in a transaction.

1. Before you begin, ensure that you have configured the property values for the
MicroTx library. See Configure Library Properties.

Ensure that oracle.tmm.xa.XaSupport is set to false and
oracle.tmm.xa.LLRSupport or oracle.tmm.xa.LRCSupport is set to true.

Chapter 8
Develop Java Apps with XA

8-24

• To enable the Logging Last Resource (LLR) optimization, set the following values for
the environment variables.

oracle.tmm.xa.XaSupport = false
oracle.tmm.xa.LLRSupport = true
oracle.tmm.xa.LRCSupport = false

• To enable the Last Resource Commit (LRC) optimization, set the following values for
the environment variables.

oracle.tmm.xa.XaSupport = false
oracle.tmm.xa.LLRSupport = false
oracle.tmm.xa.LRCSupport = true

2. Include the MicroTx library as a maven dependency in the application's pom.xml file. The
following sample code is for the 22.3 release. Provide the correct version, based on the
release that you want to use.

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>
 <version>22.3</version>
</dependency>

3. Enable session affinity. See Enable Session Affinity.

4. Implement the NonXAResource interface.

public class MongoDbNonXAResource implements NonXAResource {
// Provide application-specific code for all the methods in the
NonXAResource interface.
}

For information about the NonXAResource interface, see Transaction Manager for
Microservices Java API Reference.

If you have enabled the LRC optimization, you don't have to implement the recover()
method in the NonXAResource interface as the commit() method returns NULL for
commitRecord in LRC.

5. After implementing the NonXAResource interface, import the MicroTx library files, and then
produce a non-XA resource. Annotate the non-XA resource that you create with @NonXa
annotation. The MicroTx library consumes the object that you annotate.

The following example shows a sample implementation for a MongoDB resource. Create
code for your application based on your business requirements. In this example, the
NonXaResourceFactory class supplies the NonXAResource. It produces a non-XA
resource, and then the MicroTx library consumes the non-XA resource.

package com.oracle.mtm.sample.nonxa;

import oracle.tmm.jta.nonxa.NonXAResource;
import oracle.tmm.jta.nonxa.NonXa;

import javax.enterprise.inject.Produces;

Chapter 8
Develop Java Apps with XA

8-25

https://docs.oracle.com/en/database/oracle/transaction-manager-for-microservices/22.3/tmmjd/
https://docs.oracle.com/en/database/oracle/transaction-manager-for-microservices/22.3/tmmjd/

import javax.inject.Inject;
import javax.ws.rs.ext.Provider;
import java.util.function.Supplier;

@Provider
public class NonXaResourceFactory implements
Supplier<NonXAResource> {

 @Inject
 MongoDbNonXAResource nonXAResource;

 @Produces
 @NonXa
 public NonXAResource getNonXAResource() {
 return nonXAResource;
 }

 @Override
 public NonXAResource get() {
 return getNonXAResource();
 }
}

6. Save the changes.

8.6.3 Configure JPA or Hibernate App as Transaction Participant
Based on whether the resource manager is compliant with XA or not, set environment
variables and implement different classes from the MicroTx library to configure your
participant application.

Configuring a JPA or Hibernate app as a transaction participant is similar to configuring
a Java app as a transaction participant.

To configure a Java app as a transaction participant, you create a custom data source
object and then pass this object to the MicroTx library. In your Java application code, a
connection object was injected from the MicroTx library, and then the application code
uses the injected object.

To configure a JPA or Hibernate app as a transaction participant, you create an entity
manager factory object, and then pass this object to the MicroTx library. In your
application code, the MicroTx library injects the entity manager factory object and your
application code uses the injected object.

• Configure Hibernate or JPA App with an XA-Compliant Resource Manager
Use the information provided in this section to configure your Hibernate or JPA
applications as a participant when you use an XA-compliant resource manager.

Chapter 8
Develop Java Apps with XA

8-26

8.6.3.1 Configure Hibernate or JPA App with an XA-Compliant Resource Manager
Use the information provided in this section to configure your Hibernate or JPA applications
as a participant when you use an XA-compliant resource manager.

Your application can connect to multiple XA-compliant resource managers. If you are using
multiple XA-compliant resource managers for your application, complete the following steps
for each resource manager.

1. Configure property values for the MicroTx client library properties.

The following example provides sample values for the properties. Provide the values
based on your environment.

oracle.tmm.TcsConnPoolSize = 15
oracle.tmm.CallbackUrl = https://bookTicket-app:8081
oracle.tmm.PropagateTraceHeaders = true
oracle.tmm.TransactionTimeout = 60000
oracle.tmm.xa.XaSupport = true

Ensure that oracle.tmm.xa.XaSupport is set to true.

For details about each property and other optional properties, see Configure Library
Properties.

2. Include the MicroTx library as a maven dependency in the application's pom.xml file. The
following sample code is for the 22.3 release. Provide the correct version, based on the
release that you want to use.

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>
 <version>22.3</version>
</dependency>

3. Create a .java file in the folder that contains your application code to initialize an
XADataSourceConfig object. The XADataSourceConfig class contains methods to create
custom data source and entity manager factory objects.

The following example code shows how you can initialize the library in within the
XADataSourceConfig class, create a custom data source named ucpXADataSource, and
create an entity manager factory object named emf. You can create a similar code for
your application.

The custom data source object contains details to connect with the resource manager. It
is the responsibility of the application developer to ensure that an XA-compliant JDBC
driver and required parameters are set up while creating a custom data source object.

package com.oracle.mtm.sample;

import oracle.tmm.common.TrmConfig;
import
oracle.tmm.jta.jpa.hibernate.HibernateXADataSourceConnectionProvider;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolXADataSource;
import org.hibernate.jpa.HibernatePersistenceProvider;

Chapter 8
Develop Java Apps with XA

8-27

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;
import
org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import
org.springframework.transaction.annotation.EnableTransactionManageme
nt;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.sql.SQLException;
import java.util.Properties;

@Configuration
@EnableTransactionManagement
public class XADataSourceConfig {
 @Value("${spring.xads.datasource.url}")
 private String url;
 @Value("${spring.xads.datasource.username}")
 private String username;
 @Value("${spring.xads.datasource.password}")
 private String password;
 @Value("${spring.xads.datasource.oracleucp.min-pool-size}")
 private String minPoolSize;
 @Value("${spring.xads.datasource.oracleucp.initial-pool-
size:10}")
 private String initialPoolSize;

 @Value("${spring.xads.datasource.oracleucp.max-pool-size}")
 private String maxPoolSize;

 @Value("${spring.xads.datasource.oracleucp.data-source-name}")
 private String dataSourceName;

 @Value("${spring.xads.datasource.oracleucp.connection-pool-
name}")
 private String connectionPoolName;

 @Value("${spring.xads.datasource.oracleucp.connection-factory-
class-name:oracle.jdbc.xa.client.OracleXADataSource}")
 private String connectionFactoryClassName;

 //Create a custom data source object. Provide credentials and
other details to connect to the resource manager.
 @Bean(name = "ucpXADataSource")
 @Primary
 public DataSource getDataSource() {
 DataSource pds = null;
 try {
 pds = PoolDataSourceFactory.getPoolXADataSource();

 ((PoolXADataSource)

Chapter 8
Develop Java Apps with XA

8-28

pds).setConnectionFactoryClassName(connectionFactoryClassName);
 ((PoolXADataSource) pds).setURL(url);
 ((PoolXADataSource) pds).setUser(username);
 ((PoolXADataSource) pds).setPassword(password);
 ((PoolXADataSource)
pds).setMinPoolSize(Integer.valueOf(minPoolSize));
 ((PoolXADataSource) pds).setInitialPoolSize(10);
 ((PoolXADataSource)
pds).setMaxPoolSize(Integer.valueOf(maxPoolSize));

 ((PoolXADataSource) pds).setDataSourceName(dataSourceName);
 ((PoolXADataSource)
pds).setConnectionPoolName(connectionPoolName);

 System.out.println("XADataSourceConfig: XADataSource
created");
 } catch (SQLException ex) {
 System.err.println("Error connecting to the database: " +
ex.getMessage());
 }
 return pds;
 }

 // Create an entity manager factory object
 @Bean(name = "entityManagerFactory")
 public EntityManagerFactory createEntityManagerFactory() throws
SQLException {
 LocalContainerEntityManagerFactoryBean entityManagerFactoryBean =
new LocalContainerEntityManagerFactoryBean();

 entityManagerFactoryBean.setDataSource(getDataSource());
 entityManagerFactoryBean.setPackagesToScan(new String[]
{ "com.oracle.mtm.sample.entity" });
 entityManagerFactoryBean.setJpaVendorAdapter(new
HibernateJpaVendorAdapter());

entityManagerFactoryBean.setPersistenceProviderClass(HibernatePersistenceP
rovider.class);
 entityManagerFactoryBean.setPersistenceUnitName("mydeptxads");
 Properties properties = new Properties();
 properties.setProperty("javax.persistence.transactionType",
"RESOURCE_LOCAL"); // change this to resource_local
 properties.put("hibernate.show_sql", "true");
 properties.put("hibernate.dialect",
"org.hibernate.dialect.Oracle12cDialect");
 properties.put("hibernate.format_sql", "true");
 properties.put("hbm2ddl.auto", "validate");
 properties.put("hibernate.connection.provider_class",
"oracle.tmm.jta.jpa.hibernate.HibernateXADataSourceConnectionProvider");
 entityManagerFactoryBean.setJpaProperties(properties);
 entityManagerFactoryBean.afterPropertiesSet();
 EntityManagerFactory emf = (EntityManagerFactory)
entityManagerFactoryBean.getObject();
 System.out.println("entityManagerFactory = " + emf);

Chapter 8
Develop Java Apps with XA

8-29

 // Pass the entity manager factory object to the MicroTx
Library

 // If you are using a single resource manager with your
application,
 //pass the entity manager factory object to the MicroTx
library in the following way.
 TrmConfig.initEntityManagerFactory(emf);
 // If you are using multiple resource managers with your
application,
 // pass the entity manager factory object to the MicroTx
library in the following way.
 TrmConfig.initEntityManagerFactory(emf, ucpXADataSource,
ORCL1-8976-9776-9873);

 return emf;
 }
}

To initialize the Entity Manager Factory object, pass the required parameters to
TrmConfig.initEntityManagerFactory() based on whether your application
connects to a single resource manager or multiple resource managers.

• When your application connects to a single resource manager, create an entity
manager factory object and then pass it to the MicroTx library. In the following
sample code, emf is the name of the entity manager factory object.

TrmConfig.initEntityManagerFactory(emf);

• When your application connects with multiple resource managers, you must
pass the following parameters while calling
TrmConfig.initEntityManagerFactory().

TrmConfig.initEntityManagerFactory(emf, ucpXADataSource,
ORCL1-8976-9776-9873);

Where,

– emf is the entity manager factory object that you have created, and then
you pass it to the MicroTx library.

– ucpXADataSource is the name of the data source that you have created in
the above sample code before calling
TrmConfig.initEntityManagerFactory().

– ORCL1-8976-9776-9873 is the resource manager ID (RMID).

4. Insert the following line in the code of the participant service so that the application
uses the connection passed by the MicroTx client library. The following code in the
participant application injects the connection object that is created by the MicroTx
client library.

Chapter 8
Develop Java Apps with XA

8-30

• If you use a single resource manager with a single application, inject an
EntityManager object as shown in the following code sample.

@Inject
@TrmEntityManager
private EntityManager emf;

• When you use multiple resource managers with your application, inject an
EntityManager object as shown in the following code sample.

@Inject
@TrmEntityManager(name = "ucpXADataSource")
private EntityManager emf;

Where, emf is the entity manager factory object and ucpXADataSource is the data
source object that you have created in the previous step.

5. In your application code, inject the entity manager object that you have passed to the
MicroTx library. Use the entity manager object in your application code based on your
business logic, and then use this object to connect to the database.

The following example code shows how the entity manager object is injected and used.

@POST
 @Path("{accountId}/withdraw")
 public Response withdraw(@PathParam("accountId") String accountId,
@QueryParam("amount") double amount, @Context EntityManager
entityManager) {
 // Application code or business logic
 if(amount == 0){
 return Response.status(422,"Amount must be greater than
zero").build();
 }
 try {
 if (this.accountService.getBalance(accountId, entityManager)
< amount) {
 return Response.status(422, "Insufficient balance in the
account").build();
 }
 if(this.accountService.withdraw(accountId, amount,
entityManager)) {
 config.getLogger().log(Level.INFO, amount + " withdrawn
from account: " + accountId);
 return Response.ok("Amount withdrawn from the
account").build();
 }
 } catch (SQLException | IllegalArgumentException e) {
 config.getLogger().log(Level.SEVERE, e.getLocalizedMessage());
 return
Response.status(Response.Status.INTERNAL_SERVER_ERROR).build();
 }
 return Response.serverError().entity("Withdraw failed").build();
 }

Chapter 8
Develop Java Apps with XA

8-31

6. Only for a participant microservice based on Spring Boot, register the XAResource
callbacks (prepare/commit/rollback) and various filters as:

@Component
public class JerseyConfig extends ResourceConfig
{
 public JerseyConfig()
 {
 register(XAResourceCallbacks.class);
 register(TrmTransactionResponseFilter.class);
 register(TrmTransactionRequestFilter.class);
 register(new AbstractBinder() {
 @Override
 protected void configure() {

bindFactory(TrmXAConnectionFactory.class).to(XAConnection.class);
 }
 });
 }
}

This is in addition to registering the resource endpoint that participates in the XA
transaction.

7. Save the changes.

If there are multiple transaction participant services, then complete these steps for all
the participant services.

8.7 Develop Node.js Apps with XA

• Configure Node.js App as Transaction Initiator
A transaction initiator service initiates or starts a transaction. Based on your
application's business logic, a transaction initiator service may only start the
transaction or start the transaction and participate in the transaction as well.

• Configure Node.js App as Transaction Participant
Depending on whether your resource manager is compliant with XA or not, set
environment variables and implement different classes from the library.

8.7.1 Configure Node.js App as Transaction Initiator
A transaction initiator service initiates or starts a transaction. Based on your
application's business logic, a transaction initiator service may only start the
transaction or start the transaction and participate in the transaction as well.

Before you begin, identify if your application only initiates the transaction or initiates
and participates in the transaction. Configure your application accordingly as the
requirements vary slightly for the two scenarios.

Let us consider two scenarios to understand if your application only initiates the
transaction or participates in the transaction as well.

Chapter 8
Develop Node.js Apps with XA

8-32

• Scenario 1: A banking teller application transfers an amount from one department to
another. Here, the teller application only initiates the transaction and does not participate
in it. Based on the business logic, the teller application calls different services to complete
the transaction. A database instance may or may not be attached to the teller application.

• Scenario 2: A banking teller application transfers an amount from one department to
another. For every transaction, the teller application charges 1% as commission. Here,
the teller application initiates the transaction and participates in it. A database instance
must be attached to the teller application to save the transaction information.

To configure your Node.js application as a transaction initiator:

1. Add the MicroTx library for Node.js as a dependency in the package.json file.

"dependencies": {
 "tmmlib-node": "file:tmmlib-node-<version>.tgz"
 }

2. Specify property values for the MicroTx library.

3. Configure the MicroTx library properties for the microservice by passing the
tmm.properties file in which you have defined the values.

TrmConfig.init('./tmm.properties');

4. Edit the application code to:

a. Create a TrmUserTransaction object.

b. To begin a transaction, call begin() on the TrmUserTransaction object that you have
created. The parameters that you pass when you call begin() depend on whether
your application only initiates the transaction or also participates in it.

c. To commit or rollback the transaction, call commit() or rollback() on the
TrmUserTransaction object that you have created.

The following example shows how to create a TrmUserTransaction object named ut, and
then begin, commit or rollback a transaction. Here req represents the request.

//Step 3(a): Create a TrmUserTransaction object
let ut: TrmUserTransaction = newTrmUserTransaction();
try {
 //Step 3(b): Transaction demarcation - (start)
 await ut.begin(req); //If your application only initiates the
transaction and does not participate in it.
 await ut.begin(req, true); //If your application initiates the
transaction and participates in it.

 ... // implement business logic

 await ut.commit(req); //Step 3(c): Transaction demarcation - commit
(end)

 resp.status(200).send("Transaction complete.");
}
catch (e) {
 console.log("Transaction Failed: ", e);
 let message = e.message;

Chapter 8
Develop Node.js Apps with XA

8-33

 try {
 console.log("Rollback on transaction failure.");
 await ut.rollback(req); //Step 3.c: Transaction rollback (end)
 message = message + ". Transaction rolled back. ";
 } catch (ex) {
 console.log("Error in rollback for transfer failure: ", ex);
 }
 resp.status(500).send(message);
}

The example code is implemented in a try-catch statement, so that errors, if any,
are handled gracefully. You can also implement your sample code without using a
try-catch statement.

5. Save the changes, and then deploy your application. See Deploy Your Application.

If the initiator service also participates in the transaction in addition to initiating the
transaction, you must make additional configurations for the application to participate
in the transaction and communicate with the resource manager. See Configure
Node.js App as Transaction Participant .

8.7.2 Configure Node.js App as Transaction Participant
Depending on whether your resource manager is compliant with XA or not, set
environment variables and implement different classes from the library.

• Configure Node.js Apps with an XA-Compliant Resource Manager

• Configure Node.js Apps with a Non-XA Resource

• Configure Node.js Apps with an XA-Compliant Resource Manager
Use the information provided in this section to configure your Node.js transaction
participant applications when you use an XA-compliant resource manager.

• Configure Node.js Apps with a Non-XA Resource
Use the information provided in this section to configure your Node.js transaction
participant applications when you use a non-XA resource, such as MongoDB.

8.7.2.1 Configure Node.js Apps with an XA-Compliant Resource Manager
Use the information provided in this section to configure your Node.js transaction
participant applications when you use an XA-compliant resource manager.

1. Add the MicroTx library for Node.js as a dependency in the package.json file.

"dependencies": {
 "tmmlib-node": "file:tmmlib-node-<version>.tgz"
 }

2. Configure the property values for the MicroTx library. See Configure Library
Properties.

Chapter 8
Develop Node.js Apps with XA

8-34

Ensure that you set the value of oracle.tmm.xa.XaSupport as true and the value of
oracle.tmm.xa.LLRSupport as false.

oracle.tmm.xa.XaSupport = true
oracle.tmm.xa.LLRSupport = false

3. Configure the MicroTx library properties for the microservice by passing the
tmm.properties file in which you have defined the values.

TrmConfig.init('./tmm.properties');

4. Import the MicroTx libraries.

import {Request, Response, Router} from 'express';
import {XATransactionMethod, XAConfig, XADataSource, TrmXAResource} from
"tmmlib-node/xa/xa";
import {TrmConfig} from "tmmlib-node/util/trmutils";
import {asyncHandler} from "tmmlib-node/util/asynchandler";

5. If you are using Oracle Database as the resource manager, additionally import the
following library.

import {OracleXADataSource} from "tmmlib-node/xa/oraxa";

6. Create a router object.

For example, the following code creates a router object named bankSvcRouter. Provide a
unique name for the router.

const bankSvcRouter = Router();

7. Use the following format to provide the database connection details in a parameter.

dbConfig = export default {
user : "database_user",
password : "database_password",
connectString : "database_connection_string"
};

Where,

• dbConfig is the name of the parameter that you want to create.

• database_user and database_password are the username and password to access
the XA-compliant resource manager.

• connectionString: Enter the connection string to the data store in Oracle Database.

– If you are using a non-autonomous Oracle Database (a database that does not
use a credential wallet), use the following format to enter the connection string:

jdbc:oracle:thin:@<publicIP>:<portNumber>/<database unique
name>.<host domain name>

Chapter 8
Develop Node.js Apps with XA

8-35

For example:

jdbc:oracle:thin:@123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com

– If you are using Oracle Database Cloud Service with Oracle Cloud
Infrastructure, see Create the Oracle Database Classic Cloud Service
Connection String in Using Oracle Blockchain Platform.

– If you are using Oracle Autonomous Transaction Processing, use the
following format to enter the connection string:

jdbc:oracle:thin:@tcps://<host>:<port>/<service_name>?
wallet_location=<wallet_dir>

You can find the required details, such as host, port, and service name in
the tnsnames.ora file, which is located in folder where you have extracted
the wallet.

For example:

jdbc:oracle:thin:@tcps://adb.us-
phoenix-1.oraclecloud.com:7777/
unique_connection_string_low.adb.oraclecloud.com?
wallet_location=Database_Wallet

8. Pass the parameter that contains the database connection details and create a
OracleXADataSource object.

const xaPds: XADataSource = new OracleXADataSource(dbConfig);

9. Pass the OracleXADataSource object that you have created to the
TrmXAResource.init method.

TrmXAResource.init(xaPds);

10. Call the getXaConnection method to initialize the database connection.

xaPds.getXAConnection();

11. Initialize XAConfig for all the REST API endpoints in the participant service that
can participate in an XA transaction. There can be more than one endpoint
methods that can participate in an XA transaction. Create an instance of
XATransactionMethod for each endpoint, and then pass an array of
XATransactionMethod into the XAConfig object.

The following code sample describes how you can initialize the objects for the /
deposit end point.

const xaTransactionDeposit : XATransactionMethod = new
XATransactionMethod("/deposit");
const xaTransactionMethods : XATransactionMethod[] =
[xaTransactionDeposit];

Chapter 8
Develop Node.js Apps with XA

8-36

https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50
https://docs.oracle.com/en/database/other-databases/blockchain-enterprise/21.1/user/create-rich-history-database.html#GUID-21A8D3B6-7FDB-4FCB-AD1B-78609DEB5D50

const xaConfig: XAConfig = new XAConfig(bankSvcRouter, '/',
xaTransactionMethods);

12. This is setting up our interceptors in order to infect calls to these endpoints with any
current global transaction. The following code sample describes how the Express.js
router, bankSvcRouter, routes incoming requests for the specified endpoint, /deposit to
the functions you specify.

//This is an endpoint that can participate in an XA transaction.
bankSvcRouter.post('/deposit', (req, resp) => {
 doDeposit(req, resp); //business logic
});

async function doDeposit(req: Request, resp: Response) {
 console.log(`Nodejs department Service deposit() called`);
//The following sample code demonstrates how you can use the connection
object within your business logic.
 let amount = 10;
 if (req.query.amount != null && typeof req.query.amount === 'string')
{
 amount = parseInt(req.query.amount, 10);
 }
 // XA connection pool is created and managed by the MicroTx library
 // and is present in the context property of req object.
 // This is available on endpoints that are part of a XA transaction.
 try {
 await req.context.xaConnection.connection.execute('UPDATE
accounts SET amount = amount + :1 where account_id = :2', [amount,
req.params.id]);
 resp.status(200).send();
 } catch (e: any) {
 resp.status(500).send();
 }
}

8.7.2.2 Configure Node.js Apps with a Non-XA Resource
Use the information provided in this section to configure your Node.js transaction participant
applications when you use a non-XA resource, such as MongoDB.

You can use a non-XA resource as a resource manager only for a transaction participant
service that has a single replica. If the transaction participant service has multiple replicas,
you can't use a non-XA resource.

1. Add the MicroTx library for Node.js as a dependency in the package.json file.

"dependencies": {
 "tmmlib-node": "file:tmmlib-node-<version>.tgz"
 }

2. Configure the property values for the MicroTx library. See Configure Library Properties.

Chapter 8
Develop Node.js Apps with XA

8-37

Ensure that you set the value of oracle.tmm.xa.XaSupport as false and the
value of oracle.tmm.xa.LLRSupport as true.

oracle.tmm.xa.XaSupport = false
oracle.tmm.xa.LLRSupport = true

3. Configure the MicroTx library properties for the microservice by passing the
tmm.properties file in which you have defined the values.

TrmConfig.init('./tmm.properties');

4. Import the MicroTx libraries.

import {Request, Response, Router} from 'express';
import {XATransactionMethod, XAConfig, TrmConfig, NonXAResource,
TrmNonXAResource} from "../trmlib/xa";

5. Create a router object.

For example, the following code creates a router object named bankSvcRouter.
Provide a unique name for the router.

const bankSvcRouter = Router();

6. Implement the NonXAResource interface.

For example, in the following code sample the MongoDbNonXAResource class
implements the NonXAResource interface.

public class MongoDbNonXAResource implements NonXAResource {
// Provide application-specific code for all the methods in the
NonXAResource interface.
}

7. Register the class, which implements the NonXAResource interface, with the
MicroTx library for processing the XA operations.

The following example describes how you can register the MongoDbNonXAResource
class, which implements the NonXAResource interface, with the MicroTx library.

const nonxaResource: NonXAResource = new MongoNonXAResource();

8. Use the TrmNonXAResource.init() function to specify the NonXAResource object
that the MicroTx library uses.

TrmNonXAResource.init(nonxaResource)

9. Save the changes.

Chapter 8
Develop Node.js Apps with XA

8-38

8.8 Develop ORDS App as Transaction Participant
This section provides the detailed steps to configure a database application as an XA
participant in the context of deploying and running the Oracle Database sample application.

You can configure an Oracle Database application as a transaction participant in a
transaction with MicroTx. The Oracle Database application, that you have built using Oracle
Apex and Oracle REST Data Services (ORDS), is supported only as an XA transaction
participant.

A database application is an Oracle APEX and ORDS application which uses an Oracle
Database. You can run the database application in a managed APEX service in Oracle Cloud
Infrastructure or in an Oracle RAD stack stack deployed in a Kubernetes cluster, or in an
Oracle RAD stack deployed within a VM or a physical host. The Oracle RAD stack is an
inclusive technology stack based on three core components: Oracle REST Data Services
(ORDS), Oracle APEX, and Oracle Database.

• Prerequisites

• Run MicroTx Library for SQL
The MicroTx library in PL/SQL for XA provides a set of functions and stored procedures
for an Oracle Database application to participate in an XA transaction that is coordinated
by MicroTx.

• Build the ORDS App

• Run an XA Transaction
Let's understand how to run an XA transaction by using the XA sample application as an
example.

8.8.1 Prerequisites

Before you begin, complete the following tasks.

• Create or identify a working stack comprising of Oracle REST Data Services (ORDS),
Oracle APEX, and Oracle Database. This stack can run in the same Kubernetes cluster
in which MicroTx runs or it can run in any other environment.

• Ensure that there is network access or connectivity between MicroTx and the database
application if you have not deployed them in the same Kubernetes cluster.

• Use an existing schema or create a new schema in Oracle Database. Ensure that you
register the schema with ORDS. See https://docs.oracle.com/en/database/oracle/
application-express/21.1/aeutl/accessing-RESTful-services.html.

• Ensure that the ORDS service is available for the schema you have registered. For
example, http://localhost:50080/ords. Log in to your APEX workspace using the user
credentials of the schema.

• Add permissions by creating an access control list (ACL) if outbound REST calls are not
allowed by default.

The MicroTx library makes an outbound REST call to the MicroTx transaction coordinator
for enlisting the participant service into an XA transaction.

Chapter 8
Develop ORDS App as Transaction Participant

8-39

https://docs.oracle.com/en/database/oracle/application-express/21.1/aeutl/accessing-RESTful-services.html
https://docs.oracle.com/en/database/oracle/application-express/21.1/aeutl/accessing-RESTful-services.html

Create the required ACL, and then add it to the database. You will need sysdba
permissions to add an ACL. The following example shows a sample ACL. For
more information about adding the required ACL, see the APEX documentation.

/
BEGIN
DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
host => '#TMM_HOST_NAME',
lower_port => null,
upper_port => null,
ace => xs$ace_type(privilege_list => xs$name_list('connect',
'resolve', 'http'),
principal_name => '#PRINCIPAL_NAME',
principal_type => xs_acl.ptype_db));
END;
/

Where, you must replace the following values with values that are specific to your
environment.

– #TMM_HOST_NAME: Enter the host name or the external IP Address of MicroTx.

– #PRINCIPAL_NAME Enter the name of the principal user of APEX.

8.8.2 Run MicroTx Library for SQL
The MicroTx library in PL/SQL for XA provides a set of functions and stored
procedures for an Oracle Database application to participate in an XA transaction that
is coordinated by MicroTx.

The library is available as a SQL file that you must run before executing the application
code. You must perform this one-time task to install the library.

1. Connect to the Oracle Database using the schema user that you have registered
with ORDS.

You can connect using SQL Developer or SQLPlus.

2. Run the tmmxa.sql file using SQL Developer or SQL Plus.

This file is located in the installation_directory/otmm-RELEASE/samples/xa/
plsql/lib folder.

This creates a set of PL/SQL functions and stored procedures.

8.8.3 Build the ORDS App

The TmmStart function enables the XA transaction to be coordinated by MicroTx. It
makes a REST call to MicroTx to enlist the participant in the XA transaction and
register the callback REST APIs.

The TmmStart function returns an object, which provides an attribute, proceed, that
indicates whether the TmmStart function was successfully executed and that the
transaction can proceed ahead.

Chapter 8
Develop ORDS App as Transaction Participant

8-40

Proceed
value

Indicates that...

0 the TmmStart function was called within an XA transaction, but the XA initialization
was not successful. So the application code must not proceed with the XA transaction.

1 the TmmStart function was called within an XA transaction and the XA initialization
was successful. So the application code must proceed with the XA transaction.

2 there is no MicroTx XA transaction and the function has been executed within a local
transaction. So the application code should proceed as normal.

Call the TmmEnd function after the business logic has been completely executed.

1. Create DDLs for tables and other database objects required for your application.

2. Add required DMLs to insert default data.

3. Create or define a new REST module for your application.

4. Create the required PL/SQL functions and stored procedures for your application.

5. For every REST API, define a template and a handler.

a. Enter a name and base path for the REST service module. The following code
example provides accounts as a value. Replace this value with information that is
specific to your environment.

DECLARE
 //Provide a name for the REST service module
 restModuleName VARCHAR2(256):= 'accounts';
 //Provide a base path for the REST service
 restModuleBasePath VARCHAR2(256):= 'accounts';

b. Set value for the l_callBackUrl. For example, http://localhost:50080/ords/
ordstest/accounts. Also initialize parameters for TmmReturn.

DECLARE
//Set up the callBackUrl correctly. This is generally the base URL or
path of the module.
l_callBackUrl VARCHAR2(256) := OWA_UTIL.get_cgi_env(''X-APEX-BASE'')
|| ''accounts'';
l_tmmReturn TmmReturn;
l_tmmReturn2 TmmReturn;

c. Call TmmStart.
The following code sample demonstrates how you can call the TmmStart function.
Pass all the parameters as shown in the following example. You must pass the value
for the l_callBackUrl when you call TmmStart. The values of all the other
parameters are automatically obtained from the incoming request headers and
passed.

//Call TmmStart. Specify value for callBackUrl.
l_tmmReturn := TmmStart(callBackUrl => l_callBackUrl, linkUrl
=> :linkUrl, requestId => :requestId, authorizationToken
=> :authorization, tmmTxToken => :tmmTxToken);

Chapter 8
Develop ORDS App as Transaction Participant

8-41

The TmmStart function returns an object, which provides an attribute, proceed,
that indicates whether the TmmStart function was successfully executed and
that the transaction can proceed ahead.

d. Check if the XA transaction should proceed further (value of
l_tmmReturn.proceed is greater than 0) or not (value of l_tmmReturn.proceed
is 0). Execute your business logic only if the XA transaction can proceed
further, otherwise the TmmStart function must return a HTTP error status code
as shown in the following code sample. Call the TmmEnd function after the
business logic has been completely executed.

IF (l_tmmReturn.proceed > 0) THEN
//Execute your business logic only if the XA transaction can
proceed further.
//Execute SQLs statements or call other functions or stored
procedures.
 doWithdraw(p_amount => :amount, p_account_id
=> :accountId);

 //Call TmmEnd at the end of the REST function.
 l_tmmReturn2 := TmmEnd(p_xid => l_tmmReturn.xid);
 :status_code := 200;
ELSE
 :status_code := 400; --bad request
END IF;

e. Create MicroTx callback APIs.

createTMMCallbacks(moduleName => restModuleName);

f. Register all the method handlers that will participate in the XA transaction.

registerXaHandler(moduleName => restModuleName,
 handlerPattern => ':accountId/withdraw',
 handlerMethod => 'POST');

The following code sample demonstrates how you can implement the handler.

DECLARE
 //Provide a name for the REST service module
 restModuleName VARCHAR2(256):= 'accounts';
 //Provide a base path for the REST service
 restModuleBasePath VARCHAR2(256):= 'accounts';

BEGIN
 ORDS.define_module(
 p_module_name => restModuleName,
 p_base_path => restModuleBasePath,
 p_items_per_page => 0);

 ORDS.define_template(
 p_module_name => restModuleName,
 p_pattern => ':accountId/withdraw');

 ORDS.define_handler(

Chapter 8
Develop ORDS App as Transaction Participant

8-42

 p_module_name => restModuleName,
 p_pattern => ':accountId/withdraw',
 p_method => 'POST',
 p_source_type => ORDS.source_type_plsql,
 p_source => '
 DECLARE
 //Set up the callBackUrl correctly. This is
generally the base URL or path of the module.
 //Example: http://localhost:50080/ords/ordstest/
accounts
 l_callBackUrl VARCHAR2(256) :=
OWA_UTIL.get_cgi_env(''X-APEX-BASE'') || ''accounts'';
 l_tmmReturn TmmReturn;
 l_tmmReturn2 TmmReturn;

 BEGIN
 //Call TmmStart. Pass all the other
parameters than the callBackUrl.
 l_tmmReturn := TmmStart(callBackUrl =>
l_callBackUrl, linkUrl => :linkUrl, requestId => :requestId,
authorizationToken => :authorization, tmmTxToken => :tmmTxToken);

 //Check if the transaction should proceed
further
 //(value of l_tmmReturn.proceed is greater
than 0)
 //or not (value of l_tmmReturn.proceed is 0).
 //Execute your business logic only if
transaction can proceed further.
 //If not, then return with an HTTP error code.
 IF (l_tmmReturn.proceed > 0)
THEN

 //Execute your business logic.
 //Execute SQLs statements or call other
functions or stored procedures.
 doWithdraw(p_amount => :amount,
p_account_id => :accountId);

 //Call TmmEnd at the end of the REST
function.
 l_tmmReturn2 := TmmEnd(p_xid =>
l_tmmReturn.xid);

 :status_code := 200;

 ELSE
 :status_code := 400; --bad request

 END IF;

 exception
 when others then
 :status_code := 500;

Chapter 8
Develop ORDS App as Transaction Participant

8-43

 END;',
 p_items_per_page => 0);

 //Create MicroTx callback APIs.
 createTMMCallbacks(moduleName => restModuleName);

 //Register all method handlers that will participate in the XA
transaction.
 registerXaHandler(moduleName => restModuleName,
 handlerPattern => ':accountId/withdraw',
 handlerMethod => 'POST');

COMMIT;
END;
/

8.8.4 Run an XA Transaction
Let's understand how to run an XA transaction by using the XA sample application as
an example.

Code for the sample applications is available in the MicroTx installation bundle.

1. Run the sample application, ordsapp.sql file using SQL Developer or SQL Plus.

This file is located in the installation_directory/otmm-RELEASE/samples/xa/
plsql/databaseapp folder. Connect to the Oracle Database using the schema
user that you have registered with ORDS. You can connect using SQL Developer
or SQLPlus.

This creates all database objects such as tables, a set of PL/SQL functions and
stored procedures. Also, a REST module will be created along with all the REST
APIs. The application is ready to serve REST API calls at this point.

2. Run the following commands to test the sample application. The calls to the
withdraw and deposit REST APIs in the following sample code are executed
locally within the application without being part of an XA transaction. Use these
sample commands only to test that the sample application works as designed. In
these sample commands, account is 222 and the port is 50080. Replace these
values with information specific to your environment.

a. Check balance for account 222.

curl --location --request GET 'http://localhost:50080/ords/
ordstest/accounts/222'

b. Call the withdraw REST API for account 222 with an amount of 10.

curl --location --request POST 'http://localhost:50080/ords/
ordstest/accounts/222/withdraw?amount=10'

Chapter 8
Develop ORDS App as Transaction Participant

8-44

c. Check balance for account 222 to verify if the withdraw function was successful.

curl --location --request GET 'http://localhost:50080/ords/ordstest/
accounts/222'

d. Call the deposit REST API for account 222 with an amount of 10.

curl --location --request POST 'http://localhost:50080/ords/ordstest/
accounts/222/deposit?amount=10'

e. Check balance for account 222 to verify if the deposit function was successful. Use
the correct account in place of 222 if you used some other account in the transfer
request.

curl --location --request GET 'http://localhost:50080/ords/ordstest/
accounts/222'

3. Configure the ORDS application as an XA participant in the initiator application. To use
this database application as a participant in an XA Transaction with MicroTx involving the
other XA sample applications, make the changes as shown below.

//In the deployment descriptor for the accounts service,
//modify the env variable departmentTwoEndpoint value to the
//ORDS application URL "https://host:port/ords/schema/accounts".
 name: departmentTwoEndpoint
 value: https://host:port/ords/schema/accounts

Where, schema is the schema that you have registered with ORDS.

4. Run an XA transaction. See Run an XA Transaction.

Chapter 8
Develop ORDS App as Transaction Participant

8-45

9
Develop Applications with LRA

The Transaction Manager for Microservices (MicroTx) library for Node.js provides the
functionality to initiate a new LRA transaction or to participate in an existing LRA transaction.

Before you begin, ensure that you have installed MicroTx and access it.

Develop, test, and deploy your microservices independently. To use MicroTx to manage the
transactions in your application, you need to make a few changes to your existing application
code to integrate the functionality provided by the MicroTx libraries.

Use the following workflow as a guide to develop your applications to use MicroTx to manage
LRA transactions.

Task Description More Information

Provide configuration information for
the MicroTx library properties.

Perform this step for all the
transaction participant and
transaction initiator Node.js
applications, so that your Node.js
applications can access the library.

Configure Library Properties

Integrate MicroTx library with your
application code.

Select a suitable procedure to
integrate the library based on the
following factors:
• the development framework for

your application
• whether an application initiates

the transaction or participates in
the transaction

The library is available for Java and
Node.js apps. Perform one of the
following tasks:
• Develop Java Apps with LRA
• Develop Node.js Apps with LRA

Enable session affinity When you use internal memory as
data store and deploy the transaction
coordinator on more than one
replica, then you must enable
session affinity for LRA and XA
transactions. You don't need to
enable session affinity for TCC
transactions.

Enable Session Affinity

Deploy your application After using the library files in your
application, install the application.

Deploy Your Application

• Develop Java Apps with LRA
Eclipse MicroProfile provides the LRA specification for Java applications.

• Configure Library Properties
Provide configuration information for the MicroTx library properties. You must perform this
step for all the Node.js applications which participate or initiate the transaction.

• Develop Node.js Apps with LRA
The MicroTx library for Node.js provides the functionality to initiate a new LRA transaction
or to participate in an existing LRA transaction. You must integrate this library into your
Node.js application code.

9-1

9.1 Develop Java Apps with LRA
Eclipse MicroProfile provides the LRA specification for Java applications.

For more information, see https://download.eclipse.org/microprofile/microprofile-
lra-1.0-M1/microprofile-lra-spec.html.

Helidon provides the implementation for LRA client specifications. For information, see
https://helidon.io/docs/v2/#/mp/lra/01_introduction. For information about the
implementation for applications, see https://danielkec.github.io/blog/helidon/lra/saga/
2021/10/12/helidon-lra.html.

When the business logic of your application spawns across multiple API calls to
complete a transaction

This section explains how the Oracle_Tmm_Tx_Token token is propagated when the
business logic of your application spawns across multiple API calls to complete a
transaction. If you have set transactionTokenEnabled to true in the YAML file and the
business logic of your application spawns across multiple API calls to complete a
transaction, you must retrieve the value of Oracle_Tmm_Tx_Token and pass it in the
request header for all the subsequent API calls that the user makes.

Skip these steps if the business logic of your application requires only a single API call
from a user to complete the entire transaction. To understand how the
Oracle_Tmm_Tx_Token token is propagated when the business logic of your application
requires only a single API call from a user, see About the Oracle_Tmm_Tx_Token
Transaction Token.

Let's consider a trip booking application, which requires two calls from a user. The first
call is to initiate a transaction and make a provisional booking. The application requires
a second API call from the user to confirm or cancel the booking. In such scenarios,
when your application's business logic spawns across multiple API calls from a user to
complete a single transaction, you must include Oracle_Tmm_Tx_Token in the request
header of the subsequent API call from the user to confirm or cancel the booking.

The following steps describe how MicroTx creates the Oracle_Tmm_Tx_Token
transaction token and propagates it for the first call and how you need to include
Oracle_Tmm_Tx_Token in the subsequent API calls from a user.

1. When a user begins a transaction, the transaction initiator service sends a request
to MicroTx.

2. MicroTx responds to the transaction initiator and returns Oracle_Tmm_Tx_Token in
the response header.
The MicroTx library creates this token based on the private-public key pair that you
provide. You don't have to create the Oracle_Tmm_Tx_Token transaction token or
pass it in the request header.

MicroTx works with multiple headers and token. For the sake of simplicity, we are
limiting our discussion to the Oracle_Tmm_Tx_Token transaction token in this
section.

3. To secure calls from the participant services to the transaction coordinator, the
MicroTx library passes Oracle_Tmm_Tx_Token in the request header for all the
subsequent calls.

Chapter 9
Develop Java Apps with LRA

9-2

https://download.eclipse.org/microprofile/microprofile-lra-1.0-M1/microprofile-lra-spec.html
https://download.eclipse.org/microprofile/microprofile-lra-1.0-M1/microprofile-lra-spec.html
https://helidon.io/docs/v2/#/mp/lra/01_introduction
https://danielkec.github.io/blog/helidon/lra/saga/2021/10/12/helidon-lra.html
https://danielkec.github.io/blog/helidon/lra/saga/2021/10/12/helidon-lra.html

4. MicroTx returns Oracle_Tmm_Tx_Token in the response header while responding to the
first call from the user. Retrieve the value of Oracle_Tmm_Tx_Token from the response
header.

5. In all the subsequent API calls that the user makes, you must manually include the
Oracle_Tmm_Tx_Token in the request header. Provide the value that you have retrieved in
the previous step.

This ensures that the multiple API calls from a user are linked together and all the calls are
considered as part of a single transaction.

9.2 Configure Library Properties
Provide configuration information for the MicroTx library properties. You must perform this
step for all the Node.js applications which participate or initiate the transaction.

Open the tmm.properties file in any code editor, and then enter values for the following
parameters to configure the MicroTx library.

• oracle.tmm.TcsUrl: Enter the URL to access the MicroTx application. See Access
MicroTx. You must enter this value for the transaction initiator application. You don't have
to specify this value for the transaction participant applications.

• oracle.tmm.CallbackUrl: Enter the URL of your participant service. MicroTx uses the
URL that you provide to connect to the participant service. Provide this value in the
following format:

https://externalHostnameOfApp:externalPortOfApp/

Where,

– externalHostnameOfApp: The external host name of your initiator or participant
service. For example, bookTicket-app.

– externalPortOfApp: The port number over which you can access your participant
service remotely. For example, 8081.

You must specify this value for the transaction participant applications. You don't have to
specify this value for the transaction initiator application.

• oracle.tmm.PropagateTraceHeaders: Set this to true when you want to trace the
transaction from end-to-end. This propagates the trace headers for all incoming and
outgoing requests. For Helidon-based microservices, set this property to false to avoid
propagating the trace headers twice as Helidon framework propagates trace headers by
default. You can set this property to true if propagation of trace headers is disabled in
Helidon configuration and you want to enable distributed tracing with MicroTx. For other
microservices, set this property to true.

For example,

oracle.tmm.TcsUrl = http://tmm-app:9000/api/v1
oracle.tmm.CallbackUrl = https://bookTicket-app:8081
oracle.tmm.PropagateTraceHeaders = true

You can use the HTTP protocol if your application and MicroTx are in the same Kubernetes
cluster, otherwise use the HTTPS protocol.

Chapter 9
Configure Library Properties

9-3

You can also provide these configuration values as environment variables. Note that if
you specify values in both the application.properties file as well as the
environment variables, then the values set in the environment variables override the
values in the properties file.

The following example provides sample values to configure the environment variables.

export ORACLE_TMM_TCS_URL = http://tmm-app:9000/api/v1
export ORACLE_TMM_CALLBACK_URL = http://bookTicket-app:8081
export ORACLE_TMM_PROPAGATE_TRACE_HEADERS = true

Note that the environment variables names are case-sensitive.

9.3 Develop Node.js Apps with LRA
The MicroTx library for Node.js provides the functionality to initiate a new LRA
transaction or to participate in an existing LRA transaction. You must integrate this
library into your Node.js application code.

Before you begin, ensure that you have configured the property values for the MicroTx
library.

1. Add the MicroTx library for Node.js as a dependency in the package.json file. The
library file is located in the installation_directory/otmm-RELEASE/otmm/nodejs
folder.

"dependencies": {
 "tmmlib-node": "file:tmmlib-node-RELEASE.tgz"
 }

2. Configure the MicroTx library properties for the microservice by passing the
tmm.properties file in which you have defined the values.

TrmConfig.init('./tmm.properties');

3. Import the MicroTx and Express libraries.

import { Request, Response, Router } from 'express';
import { getLRAId, LRA, LRAConfig, LRAType, ParticipantStatus,
cancelLRA, LRA_HTTP_CONTEXT_HEADER, LRA_HTTP_ENDED_CONTEXT_HEADER }
from "tmmlib-node/lra/lra";
import { getHeaderValue } from 'tmmlib-node/util/trmutils';

4. Create a router object to handle requests in your program.

Use the following code to create a router object named flightSvcRouter.

const flightSvcRouter = Router();

5. Enter the URL of the MicroTx LRA Coordinator. To get this attribute value,
append /lra-coordinator to the URL that you use to access MicroTx. For

Chapter 9
Develop Node.js Apps with LRA

9-4

example, if https://tmm-app:9000/api/v1 is the MicroTx URL, then lraCoordinatorUrl
is https://tmm-app:9000/api/v1/lra-coordinator.

const lraCoordinateUrl = process.env.ORACLE_TMM_TCS_URL

6. Add the following code to initialize the LRAConfig object for the REST endpoints of the
transaction initiator and transaction participant services. The services may expose many
REST API endpoints, but you have to initialize LRAConfig object only for the REST API
endpoints which need to participate in the LRA transaction.

const lra: LRA = new LRA("/flight", LRAType.REQUIRES_NEW);
lra.end = false;
lra.timeLimitInMilliSeconds = 100000;
new LRAConfig(lraCoordinateUrl, flightSvcRouter, "/flightService/api",
lra, "/complete", "/compensate", "/status", "/after", "", "", "");

Where,

• /flight is the REST API endpoint which the transaction initiator application exposes
to participate in the LRA transaction.

• LRAType.REQUIRES_NEW determines if the service participates in an existing LRA
transaction or creates a new one. When you set LRAType as REQUIRES_NEW, a new
transaction is created. When you set LRAType as MANDATORY, the service participates
in an existing transaction. For details about the LRAType values, see Transaction
Manager for Microservices TypeScript API Reference.

• flightSvcRouter is the router object that you have created previously.

• /flightService/api is the mount point of the flightSvcRouter router. This is the
value for the applRouterMountPath field of the LRAConfig object.

• timeLimitInMilliSeconds is the time period, in milliseconds, within which the
transaction must be completed or compensated. If the transaction is not completed
within the specified time period, MicroTx compensates the transaction. Decide the
time limit based on your business requirement.

• "/complete", "/compensate", "/status", "/after" are the REST API endpoints
for which you want to define your application's business logic.

During the LRA transaction, MicroTx adds a link header for all the outgoing requests from
the REST API endpoints that you have specified.

7. Define the business logic for all the REST API endpoints that you have mentioned while
creating the LRAConfig object.

flightSvcRouter.put('/complete', async (req, resp) => {
//application business logic
});

flightSvcRouter.put('/compensate', async (req, resp) => {
//application business logic
});

flightSvcRouter.put('/status', async (req, resp) => {
//application business logic
});

Chapter 9
Develop Node.js Apps with LRA

9-5

https://docs.oracle.com/en/database/oracle/transaction-manager-for-microservices/22.3/tmmjs/modules/lra_lra.html
https://docs.oracle.com/en/database/oracle/transaction-manager-for-microservices/22.3/tmmjs/modules/lra_lra.html

flightSvcRouter.put('/after', (req, resp) => {
//application business logic
});

Where, flightSvcRouter is the router object that you have created previously.
Although the sample code mentions only put, you can use any HTTP verb based
on your business logic.

8. Save your changes.

Chapter 9
Develop Node.js Apps with LRA

9-6

10
Develop Applications with TCC

In the TCC protocol, a transaction initiator services asks other participant microservices to
reserve resources. When the initiator and all participants have acquired the required
reservations, the initiator then sends a request to MicroTx to confirm all the reservations.

Guidelines to develop custom applications that use the TCC transaction protocol

Based on its business logic, if the initiator service decides that it does not want or cannot use
the reservations made, it requests the MicroTx to cancel all the reservations. What
constitutes a reservation is completely up to the application.

The TCC transaction protocol relies on the basic HTTP verbs: POST, PUT, and DELETE. Ensure
that your application conforms to the following guidelines:

• The transaction initiator service must use the POST HTTP method to create a new
reservation. As a response to this request, the transaction participant services must
return a URI representing the reservation. The MicroTx client libraries places the URI in
MicroTx specific headers to ensure that the URI is propagated up the call stack.

• This protocol relies upon the participant services to ensure that all participant services
either confirm their reservations or cancel their reservations. The URIs must respond to
the PUT HTTP method to confirm a reservation, and to the DELETE HTTP method to
cancel a reservation.

• Workflow to Develop Applications with TCC
Use the following workflow as a guide to develop your applications to use MicroTx to
manage TCC transactions.

• Configure Library Properties
Provide configuration information for the MicroTx client library properties. You must
perform this step for all participant and initiator applications.

• About Transaction Timeout
Specify the time period for which a request remains active. This value is specific to each
microservice that participates in a TCC transaction. If a transaction is not confirmed or
canceled by a microservice within the specified time period, the transaction is canceled.

• Develop Java Apps with TCC
The MicroTx library intercepts the incoming HTTP calls using JAX-RS filters, and then
initiates a new TCC transaction or joins an existing transaction.

• Develop Node.js Apps with TCC

• Develop Python Apps with TCC
From the MicroTx release 22.3.2, MicroTx client libraries for Python applications provides
the functionality to initiate a new TCC transaction or to participate in an existing TCC
transaction.

10-1

10.1 Workflow to Develop Applications with TCC
Use the following workflow as a guide to develop your applications to use MicroTx to
manage TCC transactions.

Task Description More Information

Install MicroTx Install MicroTx and ensure that you
can access it.

Workflow to Install and Use MicroTx

Provide configuration information for
the MicroTx library properties.

Perform this step for all the
transaction participant and
transaction initiator applications so
that your applications can access the
library.

Configure Library Properties

Integrate the MicroTx library with
your application code.

Select a suitable procedure to
integrate the library based on the
following factors:
• the development framework for

your application
• whether an application initiates

the transaction or participates in
the transaction

The library is available for Java,
Node.js, and Python apps. Perform
one of the following tasks:
• Develop Java Apps with TCC
• Develop Node.js Apps with TCC
• Develop Python Apps with TCC

Deploy your application Develop, test, and deploy your
microservices independently. After
integrating the library files with your
application, deploy the application.

Deploy Your Application

10.2 Configure Library Properties
Provide configuration information for the MicroTx client library properties. You must
perform this step for all participant and initiator applications.

Open the tmm.properties file in any code editor, and then enter values for the
following parameters to configure the MicroTx library.

• oracle.tmm.TcsUrl: Enter the URL to access the MicroTx application. See Access
MicroTx. You must enter this value for the transaction initiator application. You
don't have to specify this value for the transaction participant applications.

• oracle.tmm.PropagateTraceHeaders: Set this to true when you want to trace the
transaction from end-to-end. This propagates the trace headers for all incoming
and outgoing requests. For Helidon-based microservices, set this property to
false to avoid propagating the trace headers twice as Helidon framework
propagates trace headers by default. You can set this property to true if
propagation of trace headers is disabled in Helidon configuration and you want to
enable distributed tracing with MicroTx. For other microservices, set this property
to true.

• server.port: Enter the port over which you want to access the microservice.
Create the required networking rules to permit inbound and outbound traffic on this
port. For example, 8080.

Chapter 10
Workflow to Develop Applications with TCC

10-2

• oracle.tmm.CallbackUrl: Enter the URL of your participant service. MicroTx uses the
URL that you provide to connect to the participant service. Provide this value in the
following format:

https://externalHostnameOfApp:externalPortOfApp/

Where,

– externalHostnameOfApp: The external host name of your initiator or participant
service. For example, bookTicket-app.

– externalPortOfApp: The port number over which you can access your participant
service remotely. For example, 8081.

You must specify this value for the transaction participant applications. You don't have to
specify this value for the transaction initiator application.

If the MicroTx coordinator is running inside a Docker container, in Ubuntu 20 or Docker
Engine 20, with the network setting as {--add-host host.docker.internal:host-
gateway}, then the callback URL is http://host.docker.internal:{server.port}.

In other Docker environments, the structure of URL may vary depending on the operating
system and its version.

For example,

oracle.tmm.TcsUrl = http://tmm-app:9000/api/v1
oracle.tmm.PropagateTraceHeaders = true
oracle.tmm.CallbackUrl = https://bookTicket-app:8081
server.port = 8081

You can use the HTTP protocol if your application and MicroTx are in the same Kubernetes
cluster, otherwise use the HTTPS protocol.

You can also provide these configuration values as environment variables. Note that if you
specify values in both the application.properties file as well as the environment variables,
then the values set in the environment variables override the values in the properties file.

The following example provides sample values to configure the environment variables.

export ORACLE_TMM_TCS_URL = http://tmm-app:9000/api/v1
export ORACLE_TMM_PROPAGATE_TRACE_HEADERS = true

Note that the environment variables names are case-sensitive.

10.3 About Transaction Timeout
Specify the time period for which a request remains active. This value is specific to each
microservice that participates in a TCC transaction. If a transaction is not confirmed or
canceled by a microservice within the specified time period, the transaction is canceled.

In a TCC transaction, the transaction initiator service collects the status of reservations of all
the participant services and decides whether the transaction should be confirmed or
canceled, MicroTx ensures that all participant services either confirm or cancel the
reservation. When MicroTx sends a request to confirm the transaction, some participant

Chapter 10
About Transaction Timeout

10-3

services may confirm the transaction while the transaction may time out for other
participant services. It is the responsibility of the application developer to provide the
required code to cancel the reservations and release the resources in case the
transaction times out. MicroTx sends a request to all participant services to either
confirm or cancel the reservation based on the decision taken by the transaction
initiator's business logic.

10.4 Develop Java Apps with TCC
The MicroTx library intercepts the incoming HTTP calls using JAX-RS filters, and then
initiates a new TCC transaction or joins an existing transaction.

Use the following annotation to add TCC functionality to your application code and
enlist the participant services.

• @TCC(timeLimit = 120, timeUnit = ChronoUnit.SECONDS)
Use this to annotate the application-specific REST resource that you want MicroTx
to call to initiate a new TCC transaction or join an existing transaction.

When you add an annotation to a class, the JAX-RS filters look for the annotation to
identify the class that participates in the TCC transaction. If the request header does
not contain a value for link, then the MicroTx library creates a value for link in the
request header and a unique transaction ID. You can use the unique transaction ID to
identify, trace, or debug the transaction.

If the request header contains value for link, then the application participates in the
existing TCC transaction. All the applications that participate in the transaction share a
unique TCC transaction ID. Here's an example value for link in the request header:

link=[<http://tmm-app:9000/api/v1/tcc-transaction/7ff...>;
rel="https://otmm.oracle.com/tcc-transaction/internal",<http://tmm-
app:9000/api/v1/tcc-transaction/7ff...>; rel="https://otmm.oracle.com/
tcc-transaction/external"]

Where, 7ff... is the unique transaction ID. Example values have been truncated
with ... to improve readability. When you view the header in your environment, you'll
see the entire value.

• Configure Java App as Transaction Initiator

• Configure Java App as Transaction Participant

10.4.1 Configure Java App as Transaction Initiator

Before you begin, ensure that you have configured the property values for the MicroTx
library.

1. Include the MicroTx library as a maven dependency in the application's pom.xml
file. The following sample code is for the 22.3 release. Provide the correct version,
based on the release that you want to use.

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>

Chapter 10
Develop Java Apps with TCC

10-4

 <version>22.3</version>
</dependency>

2. Add @TCC annotation before the initiator application resource class. This initiates a new
TCC transaction and adds a header for all the outgoing REST API requests from the
transaction initiator.

Use the following code to initiate a new TCC transaction when a call is made to the
transaction initiator service. In the following example, the class
myTransactionInitiatorApp contains the code that initiates the service. Replace the
name of the class based on your environment.

import oracle.trm.tcc.annotation.TCC;
@TCC(timeLimit = 120, timeUnit = ChronoUnit.SECONDS) //Add @TCC
annotation before the initiator application resource class to start a TCC
transaction
public class myTransactionInitiatorApp {
 // Service code that is specific to the transaction initiator service.
}

You can specify the following optional parameters with the @TCC annotation.

• timeLimit: Specify the time period, as a whole number, for which you want the
transaction initiator service to reserve the resources. It is the responsibility of the
application developer to provide the required code to release the resources and
cancel the their part of the TCC transaction after the time limit expires. Decide the
time limit based on your business requirement.

• timeUnit: Specify the unit in which you have mentioned the time limit, such
asChronoUnit.SECONDS and ChronoUnit.MINUTES. Permissible values are all the
enum values from the java.time.temporal.ChronoUnit class. See https://
docs.oracle.com/javase/8/docs/api/java/time/temporal/ChronoUnit.html.

10.4.2 Configure Java App as Transaction Participant

Before you begin, ensure that you have configured the property values for the MicroTx library.

1. Include the MicroTx library as a maven dependency in the application's pom.xml file. The
following sample code is for the 22.3 release. Provide the correct version, based on the
release that you want to use.

<dependency>
 <groupId>com.oracle.tmm.jta</groupId>
 <artifactId>TmmLib</artifactId>
 <version>22.3</version>
</dependency>

2. Inject TCC annotation in the transaction participant application code.

To enable participant services join an existing TCC transaction, add @TCC annotation
before the resource class of the transaction participant service.

Chapter 10
Develop Java Apps with TCC

10-5

https://docs.oracle.com/javase/8/docs/api/java/time/temporal/ChronoUnit.html
https://docs.oracle.com/javase/8/docs/api/java/time/temporal/ChronoUnit.html

Insert the following code in the transaction participant code. In the following
example, the myTransactionParticipantApp class contains code for the
transaction participant service. Replace the name of the class based on your
environment.

import oracle.trm.tcc.annotation.TCC;
import javax.ws.rs.core.Application;

@Path("/")
@TCC(timeLimit = 120, timeUnit = ChronoUnit.SECONDS)
//Add @TCC annotation so that the transaction participant service
joins an existing TCC transaction
//The transaction initiator service passes the TCC context in the
request header.
public class myTransactionParticipantApp extends Application {
 // Service code that is specific to the transaction participant
service.
}

3. In the transaction participant application code, call the addTccParticipant(String
uri) method to register a participant service with the TCC transaction. The
participant service exposes a URI which MicroTx uses to confirm or cancel the
transaction. MicroTx calls the PUT method to confirm the transaction and the
DELETE method to cancel the transaction and release the reserved resource.
Ensure that these methods are present and the confirm and cancel logic is
implemented. To confirm or cancel the transaction, MicroTx sends a call to the
exposed URI of all the participant services.

The following code example describes the changes that you need to make to the
participant application code.

public class myTransactionParticipantApp extends Application {
 // Service code that is specific to the transaction participant
service.

 @POST
 //The REST endpoint of the transaction participant service.
 @Path("bookings")
 @Consumes(MediaType.APPLICATION_JSON)
 public Response create() throws TccUnknownTransactionException
 // Business logic to create a booking.
 String bookingUri;
 // Register participant service with the TCC transaction
 TccClient.addTccParticipant(bookingUri.toString());
 }

 @PUT
 @Path("bookings/{bookingId}")
 @Consumes(MediaType.APPLICATION_JSON)
 public Response confirm() throws TccUnknownTransactionException
{
 //Application-specific code to confirm the booking.
 }

Chapter 10
Develop Java Apps with TCC

10-6

 @DELETE
 @Path("bookings/{bookingId}")
 @Consumes(MediaType.APPLICATION_JSON)
 public Response cancel() throws TccUnknownTransactionException {
 //Application-specific code to cancel the booking.
 }
}

Where,

• myTransactionParticipantApp is a class that contains code for the transaction
participant service. This class already contains user-defined methods that the
participant service uses to confirm or cancel a transaction.

• bookings is the REST endpoint of the transaction participant service. The transaction
initiator service calls this endpoint to perform a task, such as creating a hotel
booking.

• bookingUri contains the resource URI that the participant service exposes and which
MicroTx uses to confirm or cancel the transaction.

• bookingId is the unique ID of the booking that you want to confirm or cancel.

4. Save the changes.

Ensure that you make these changes in the code of all transaction participant services.

10.5 Develop Node.js Apps with TCC
Use the following TCC helper methods to confirm or cancel the transaction. Both initiator and
participant services can access the helper methods.

Helper Method Description

ConfirmTCC(req.headers); Confirms the current TCC transaction.

CancelTCC(req.headers); Cancels the current TCC transaction.

GetTCCId(req.headers) Get the current TCC transaction ID.

• Configure Node.js App as Transaction Initiator

• Configure Node.js App as Transaction Participant

10.5.1 Configure Node.js App as Transaction Initiator

Before you begin, ensure that you have configured the property values for the MicroTx library.

1. Add the MicroTx library for Node.js as a dependency in the package.json file.

"dependencies": {
 "tmmlib-node": "file:tmmlib-node-<version>.tgz"
 }

Chapter 10
Develop Node.js Apps with TCC

10-7

2. Configure the MicroTx library properties for the microservice by passing the
tmm.properties file in which you have defined the values.

TrmConfig.init('./tmm.properties');

3. Import the MicroTx libraries and the express module files.

import {HttpMethod, TrmConfig} from "tmmlib-node/util/trmutils";
import {TCCConfig} from "tmmlib-node/tcc/tcc";
import {NextFunction, request, Request, Response, Router} from
'express';

4. Create a router object.

Use the following code to create a router object named svcRouter.

const svcRouter = Router();

5. Add the following code to initialize the TCCConfig object for the REST endpoints of
the transaction initiator service. The transaction initiator may expose many REST
API endpoints, but you have to initialize TCCConfig object only for the REST API
endpoints which need to participate in the TCC transaction.

In the following code sample, the transaction initiator application exposes the /
bookings REST API endpoint.

// Initialize TCCConfig object for all the endpoints which need to
participant in the TCC transaction.
const tccConfig: TCCConfig = new TCCConfig("/bookings", svcRouter,
HttpMethod.POST, 30);

Where,

• svcRouter is the router object that you have created in the previous step.

• 30 is the time limit in seconds for the transaction initiator application to reserve
the resources. Specify the time period as a whole number. It is the
responsibility of the application developer to provide the required code to
release the resources and cancel the their part of the TCC transaction after
the time limit expires. Decide the time limit based on your business
requirement.

Replace these values with the values specific to your environment.

When this code is executed, TCC transaction is initiated and MicroTx adds a
header for all the outgoing requests from the REST API endpoint that you have
specified.

10.5.2 Configure Node.js App as Transaction Participant

Before you begin, ensure that you have configured the property values for the MicroTx
library.

Chapter 10
Develop Node.js Apps with TCC

10-8

1. Add the MicroTx library for Node.js as a dependency in the package.json file.

"dependencies": {
 "tmmlib-node": "file:tmmlib-node-<version>.tgz"
 }

2. Configure the MicroTx library properties for the microservice by passing the
tmm.properties file in which you have defined the values.

TrmConfig.init('./tmm.properties');

3. Import the MicroTx libraries and the express module files.

import {HttpMethod, TrmConfig} from "tmmlib-node/util/trmutils";
import {TCCConfig} from "tmmlib-node/tcc/tcc";
import {NextFunction, request, Request, Response, Router} from 'express';

4. Create a router object.

Use the following code to create a router object named svcRouter2.

const svcRouter2 = Router();

5. Add the following code to initialize the TCCConfig object for the confirm and cancel REST
API endpoints of the transaction participant service.

In the following code sample, the transaction participant application exposes the /
bookings REST API endpoint. The svcRouter2 is the router object that you have created
in the previous step. Replace these values with the values specific to your environment.

//Initialize TCCConfig object for all the endpoints which need to
participant in the TCC transaction
const tccConfig: TCCConfig = new TCCConfig("/bookings", svcRouter2,
HttpMethod.POST, 30);

Where,

• /bookings is the REST API endpoint that the transaction participant service exposes.

• svcRouter2 is the router object that you have created previously.

6. In the following code sample, the transaction participant service exposes the /
bookings/:bookingId REST API endpoint to confirm or cancel the transaction. Replace
these values with the values specific to your environment. Also ensure that these
endpoints are present in the transaction participant service and the confirm and cancel
logic is implemented in the code. The dohotelBooking(), doConfirmBooking(), and
doCancelBooking() methods contain the business logic for creating a resource,
confirming the transaction, and canceling the transaction respectively. Ensure that the
business logic is implemented in the code of the transaction participant service and the
endpoints are present.

Chapter 10
Develop Node.js Apps with TCC

10-9

You'll also mention the HTTP method that the REST API endpoint uses. MicroTx
uses the PUT method to confirm the transaction and the DELETE method to cancel
the transaction and release the resources that were reserved for the specified
resource URI.

svcRouter.post('/bookings', asyncHandler(async (req: Request, res:
Response) => {
 dohotelBooking(req, res); //app-specific code to create a
resource
}));

svcRouter.put('/bookings/:bookingId', asyncHandler(async (req:
Request, res: Response) => {
 doConfirmBooking(req, res); //app-specific code to confirm the
transaction
}));

svcRouter.delete('/bookings/:bookingId', asyncHandler(async (req:
Request, res: Response) => {
 doCancelBooking(req, res); //app-specific code to cancel the
transaction
}));

7. Use the TCCConfig object that you have created earlier to register participants
(reserved resource URI) to an existing TCC transaction by calling the
addTccParticipant method with the resource URI.

const bookingUri;
tccConfig.addTccParticipant(bookingUri);

When this code is executed, the participant service joins an existing TCC
transaction when the initiator service calls the participant service. Also the MicroTx
library enlists the participant service with the URIs you provide for the confirm and
cancel endpoints.

10.6 Develop Python Apps with TCC
From the MicroTx release 22.3.2, MicroTx client libraries for Python applications
provides the functionality to initiate a new TCC transaction or to participate in an
existing TCC transaction.

To use MicroTx to manage a TCC transaction, update your Python application code to
integrate the functionality provided by the MicroTx client libraries.

Use the following TCCClient helper methods to confirm or cancel the transaction. Both
initiator and participant services can access the helper methods.

Method Description

ConfirmTCC(incoming_reque
st_headers);

Confirms the current TCC transaction and returns the HTTP
response.

CancelTCC(incoming_reques
t_headers);

Cancels the current TCC transaction and returns the HTTP
response.

Chapter 10
Develop Python Apps with TCC

10-10

Method Description

GetTCCId(incoming_request
_headers)

Gets details of the current TCC transaction ID.

Where, incoming_request_headers is a dictionary of key-value pairs.

• Configure Python App as Transaction Initiator

• Configure Python App as Transaction Participant

10.6.1 Configure Python App as Transaction Initiator

You can select Flask or Django as the framework for your Python application. This section
provides instructions to integrate the MicroTx library with the application code of your Python
application with Flask framework.

1. Open a terminal in the virtual environment that you have created for your Python
application, and then run the following command to install the MicroTx library file for
Python which is available in the installation_directory/otmm-<version>/lib/python
folder.

pip3 install tmmpy-<version>.whl

2. Configure the property values for the MicroTx library. Create a new file and save it as
tmm.properties. You must provide values for the following properties.

The following example provides sample values for the properties. Provide the values
based on your environment.

oracle.tmm.TcsUrl = http://tmm-app:9000/api/v1
oracle.tmm.PropagateTraceHeaders = true
server.port = 8080
oracle.tmm.CallbackUrl = http://localhost:{server.port}

For details about each property, see Configure Library Properties.

Note down the name and location of this file as you will have to provide this later when
you initialize the tccConfig object.

3. Import the MicroTx libraries and exceptions. You can use tcclib.exception to handle
exceptions.

from tcclib.tcc import TCCClient, Middleware, http_request, TCCConfig
import tcclib.exception as ex

4. Create a Flask instance with middleware. Middleware helps to intercept all the incoming
requests received by the Flask instance.

The following sample code creates a Flask instance and a middleware object.

Create a Flask instance with the name of the current module.
app = Flask(__name__)
Middleware helps to intercept all the incoming requests received by the

Chapter 10
Develop Python Apps with TCC

10-11

Flask application.
app.wsgi_app = middleware(app.wsgi_app)

5. Add the following code to initialize the tccConfig object for the microservice.

Syntax

tccConfig = TCCConfig(filePath=<application_properties_file_path>,
timeLimitInSeconds=<integer>)

Sample

tccConfig = TCCConfig(filePath="./tmm.properties",
timeLimitInSeconds=300)

Where,

• ./tmm.properties is the location of the file in which you have previously
defined values for the MicroTx library properties for the transaction initiator
service.

• 300 is the time limit in seconds for the transaction initiator service to reserve
the resources. Specify the time period as a whole number. It is the
responsibility of the application developer to provide the required code to
release the resources and cancel the their part of the TCC transaction after
the time limit expires. Decide the time limit based on your business
requirement.

Replace these values with the values specific to your environment.

6. The TCC transaction protocol relies on the basic HTTP verbs: POST, PUT, and
DELETE. You must expose the REST API endpoints for each HTTP method and
map these endpoints to a specific function that executes the business logic. Your
application code already contains the business logic to make a new reservation
and confirm or cancel the reservation. Use the app.route decorator to bind a
function in your application to a HTTP verb and URL path.

In the following code sample for a transaction initiator service, the service exposes
the REST API endpoints for the different HTTP verbs.

//Mandatory. The transaction initiator service must use the
//POST HTTP method to create a new reservation.
@app.route('/travel-agent/api/bookings/reserve', methods=['POST'])
def do_trip_reserve():
 //app-specific code to create a booking

//Mandatory. Use the PUT HTTP method to confirm a reservation.
@app.route('/travel-agent/api/confirm/<trip_booking_id>',
methods=['PUT'])
def do_trip_confirm(trip_booking_id):
 //app-specific code to confirm the specified booking ID

//Mandatory. Use the DELETE HTTP method to cancel a reservation.
@app.route('/travel-agent/api/cancel/<trip_booking_id>',
methods=['DELETE'])

Chapter 10
Develop Python Apps with TCC

10-12

def do_trip_cancel(trip_booking_id):
 //app-specific code to delete the specified booking ID

Where,

• /travel-agent/api/bookings/reserve, /travel-agent/api/confirm/
<trip_booking_id>, and /travel-agent/api/cancel/<trip_booking_id> are the
REST API endpoints that the transaction initiator service exposes. Ensure that these
endpoints are present in the transaction initiator service and the confirm and cancel
logic is implemented in the code.

• do_trip_reserve(), do_trip_confirm(), and do_trip_cancel() methods contain
the business logic for creating a reservation, confirming a reservation, canceling a
reservation respectively. Ensure that the business logic is implemented in the code of
the transaction initiator service and the endpoints are present.

10.6.2 Configure Python App as Transaction Participant

You can select Flask or Django as the framework for your Python application. This section
provides instructions to integrate the MicroTx library with the application code of your Python
application with Flask framework.

1. Open a terminal in the virtual environment that you have created for your Python
application, and then run the following command to install the MicroTx library file for
Python which is available in the installation_directory/otmm-<version>/lib/python
folder.

pip3 install tmmpy-<version>.whl

2. Configure the property values for the MicroTx library. Create a new file and save it as
tmm.properties. You must provide values for the following properties.

The following example provides sample values for the properties. Provide the values
based on your environment.

oracle.tmm.PropagateTraceHeaders = true
server.port = 8080
oracle.tmm.CallbackUrl = http://localhost:{server.port}

For details about each property, see Configure Library Properties.

Note down the name of this file as you will have to provide this later.

3. Import the MicroTx libraries and exceptions. You can use tcclib.exception to handle
exceptions.

from tcclib.tcc import TCCClient, Middleware, http_request, TCCConfig
import tcclib.exception as ex

4. Create a Flask application and a middleware object.

Chapter 10
Develop Python Apps with TCC

10-13

The following sample code creates a Flask application named app and a
middleware object. The middleware object wraps around the Flask application and
intercepts all the incoming requests received by the Flask application.

Create an instance of the Flask class with the name of the
current module.
app = Flask(__name__)
Create a middleware object to wrap around the Flask application
that you have created.
The middleware object intercepts all the incoming requests
received by the Flask application.
app.wsgi_app = middleware(app.wsgi_app)

5. Add the following code to initialize the tccConfig object for the microservice.

Syntax

tccConfig = TCCConfig(filePath=<application_properties_file_path>,
timeLimitInSeconds=<integer>)

Sample

tccConfig = TCCConfig(filePath="./tmm.properties",
timeLimitInSeconds=300)

Where,

• ./tmm.properties is the location of the file in which you have defined values
for the MicroTx library properties for the transaction participant service.

• 300 is the time limit in seconds for the transaction participant service to
reserve the resources. Specify the time period as a whole number. It is the
responsibility of the application developer to provide the required code to
release the resources and cancel the their part of the TCC transaction after
the time limit expires. Decide the time limit based on your business
requirement.

Replace these values with the values specific to your environment.

6. Use the TCCConfig object that you have created earlier to register participants
(reserved resource URI) to an existing TCC transaction by calling the
addTccParticipant method with the resource URI.

const bookingUri;
tccConfig.addTccParticipant(bookingUri);

When this code is executed, the participant service joins an existing TCC
transaction when the initiator service calls the participant service. Also the MicroTx
library enlists the participant service with the URIs you provide for the confirm and
cancel endpoints.

Chapter 10
Develop Python Apps with TCC

10-14

11
Develop Tuxedo Apps with XA

Enable Transaction Manager for Microservices (MicroTx) interoperability in your Tuxedo or
SALT applications. You can only use the XA transaction protocol for your Tuxedo or SALT
applications.

• Run Tuxedo App on Linux Host

• Run Tuxedo App in Kubernetes Cluster

11.1 Run Tuxedo App on Linux Host
The environment contains at least two hosts:

• The Linux host in which the Tuxedo application runs.

• The physical or virtual host on which you have deployed the Kubernetes cluster in which
you have installed MicroTx.

• Prepare the Environment
Ensure that network connectivity is there between the Tuxedo application and MicroTx.

• Install Patches
Apply patches for Tuxedo and SALT on your Tuxedo host.

• Verify the Set Up
To verify that you have set up the Tuxedo environment properly, download the sample
Tuxedo application and run it in the Tuxedo environment.

11.1.1 Prepare the Environment
Ensure that network connectivity is there between the Tuxedo application and MicroTx.

Before you begin, complete the following tasks:

• Identify the Tuxedo environment that you want to use. You can use an existing Tuxedo
environment or create a new one.

– To create a new Tuxedo environment, install Tuxedo 12cR2 (12.2.2) on a 64-bit Linux
server. The default installation options also installs SALT, which is needed for
MicroTx interoperability. For information about the Linux platforms that Tuxedo
supports, see https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/install/
inspds.html.
You can download the installer from https://www.oracle.com/middleware/
technologies/tuxedo-downloads.html. For details about the installation steps, see
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/install/.

Skip this step if you are using an existing Tuxedo environment.

• Install MicroTx.

To verify bi-directional network connection between the Tuxedo application and MicroTx:

11-1

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/install/inspds.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/install/inspds.html
https://www.oracle.com/middleware/technologies/tuxedo-downloads.html
https://www.oracle.com/middleware/technologies/tuxedo-downloads.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/install/

1. Use SSH to login to the MicroTx host and the Linux host on which you have
installed the Tuxedo application.

2. Start a simple HTTP server on the MicroTx host.

python -m SimpleHTTPServer 2345

Where, 2345 is a port in the MicroTx host for which you have set up the required
networking rules to permit traffic.

Note down the host name of the HTTP server that is created. You will provide this
information in the next step.

3. On the Tuxedo host, run the following command to connect to the HTTP server
that is running on the MicroTx host.

Command Syntax

curl -vv Transaction_Manager_for_Microservices_host_name:2345

Where,

• Transaction_Manager_for_Microservices_host_name is the name of the
physical or virtual host, of the Kubernetes cluster or Docker container, on
which you have installed MicroTx.

• 2345 is a port in the MicroTx host for which you have set up the required
networking rules to permit traffic.

4. Start a simple HTTP server on the Tuxedo host.

python -m SimpleHTTPServer 2345

Where, 2345 is a port in the Tuxedo host for which you have set up the required
networking rules to permit traffic.

Note down the host name of the HTTP server that is created. You will provide this
information in the next step.

5. On the MicroTx host, run the following command to connect to the HTTP server
that is running on the Tuxedo host.

Command Syntax

curl -vv Tuxedo_host_name:2345

If the command is not successfully executed, it indicates that there is a networking
problem between the two hosts. Troubleshoot the networking issue. For example,
you may need to open the ports to permit traffic.

11.1.2 Install Patches
Apply patches for Tuxedo and SALT on your Tuxedo host.

To apply the Tuxedo and SALT patches:

1. Shutdown your Tuxedo application before applying a patch.

Chapter 11
Run Tuxedo App on Linux Host

11-2

2. To apply the Tuxedo patch:

a. Download the patch 24574032. For details about downloading the patch, see
Downloading Release Update Patches in Database Client Installation Guide for
Linux.

b. Unzip the patch file.

unzip p33664689_122200_Linux-x86-64.zip

c. Apply the patch.
Command syntax

cd $ORACLE_HOME/OPatch
./opatch apply fullpath_of_the_patch_file

Sample command

cd $ORACLE_HOME/OPatch/
./opatch apply 33664689.zip

3. To apply the SALT patch:

a. Ensure that your Tuxedo application is still shutdown.

b. Unzip the RP902.zip file that was supplied with the sample files.

unzip RP902.zip

c. Apply the patch.
Command syntax

cd $ORACLE_HOME/OPatch
./opatch apply fullpath_of_the_patch_file

Sample command

cd $ORACLE_HOME/OPatch/
./opatch apply 99999999.zip

4. Set the environment variable. For information about other Tuxedo environment variables
that you can set, see Setting Environment Variables.

Syntax

export SALT_TMM_CALLBACK_ADDR=http://IP_Address:GWWS Port

Where,

• IP_Address: Enter the IP address of the host on which the GWWS server is running.

• GWWS Port: You can find this value in the bankapp.dep file. The default value is 2345.
If you change the GWWS port, update the value in the bankapp.dep file as well.

Chapter 11
Run Tuxedo App on Linux Host

11-3

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/pgc/pgenv.html#1026302

Example

export SALT_TMM_CALLBACK_ADDR=http://192.0.2.6:2345

5. Run the following command to verify the patch installation.

wsadmin -v

The following information is displayed which verifies that the patch has been
applied.

INFO: Oracle SALT, Version 12.2.2.0.0, 64-bit, Patch Level 902
INFO: Oracle Tuxedo, Version 12.2.2.0.0, 64-bit, Patch Level 086

6. Start the Tuxedo application.

11.1.3 Verify the Set Up
To verify that you have set up the Tuxedo environment properly, download the sample
Tuxedo application and run it in the Tuxedo environment.

Before you run an XA transaction using MicroTx, you must run the sample Tuxedo
application in your Tuxedo environment to ensure that you have set up the
environment properly.

1. Download the sample code and application binaries (.zip file) from the link
provided to you by the Product team.

2. Unzip the sample code bundle in the parent directory of $TUXDIR.

unzip bankapp-env.zip

The following new files and folders are available: Dockerfile file,
install1222.rsp file, start.sh file, and bankapp folder.

3. Initialize the Tuxedo environment variables.

cd parent_directory_of_$TUXDIR
. tuxedo12.2.2.0.0/tux.env

This also sets the value for the TUXDIR environment variable.

4. Navigate to the bankapp folder.

cd bankapp

5. Run the bankvar file to set up the environment variables for the Tuxedo sample
application.

. ./bankvar

This also sets the value for the APPDIR environment variable.

Chapter 11
Run Tuxedo App on Linux Host

11-4

6. Run the following script to update the settings in different files.

now=$(date +%m%d%H%M%S)
for f in "bankapp.dep" "bankapp.mk" "bankvar" "ENVFILE" "TMUSREVT.ENV"
"ubbshm"
do
 cp $f $f.${now}
 test -e $TUXDIR && test -e $APPDIR && sed -i -e "s^/u01/data/bankapp^$
{APPDIR}^" -e "s^/u01/app/tuxedo12.2.2.0.0^${TUXDIR}^" $f
done

Set the two environment variables TUXDIR and APPDIR according to your environment. Set
the value for APPDIR to point to the directory that contains the files for the banking
application.

7. Run the following commands to rebuild and start the sample Tuxedo application.

rm -f TLOG GWTLOG tuxconfig saltconfig bankdl1 bankdl2 bankdl3
. ./bankvar
tmloadcf -y ubbshm
wsloadcf -y bankapp.dep
./crbank
./crtlog
tmboot -y
./populate

8. Run the following commands to verify that the sample Tuxedo application works and
returns the expected response.

Query account, readonly operation
curl -X POST -H "Content-type:application/json" http://
Tuxedo_host_name_or_IP_address:2345/INQUIRY -d '{"ACCOUNT_ID":10001}'

Withdrawal API
curl -X POST -H "Content-type:application/json" http://
Tuxedo_host_name_or_IP_address:2345/WITHDRAWAL -d
'{"ACCOUNT_ID":10001,"SAMOUNT":"1"}'

Deposit API
curl -X POST -H "Content-type:application/json" http://
Tuxedo_host_name_or_IP_address:2345/DEPOSIT -d
'{"ACCOUNT_ID":10001,"SAMOUNT":"1"}'

Transfer API
curl -X POST -H "Content-type:application/json" http://
Tuxedo_host_name_or_IP_address:2345/TRANSFER -d '{"ACCOUNT_ID":
[10001,10002],"SAMOUNT":"1"}'

Where, Tuxedo_host_name_or_IP_address is the IP address or the name of the host on
which you have installed Tuxedo. Run uname -n to find the name of the host. Run
ifconfig to get the IP address of the host.

You can change the value of the port and the ACCOUNT_ID based on your environment.

Chapter 11
Run Tuxedo App on Linux Host

11-5

For each Tuxedo application that you want to use with MicroTx, create separate
configuration files and use separate ports.

After your Tuxedo application is running, make changes to the initiator application in
the sample XA application. In the initiator application, configure the Tuxedo application
as a participant application. When you run an XA transaction using the sample app,
the initiator application sends requests to your Tuxedo participant application.

After installing the sample application, run an XA transaction. See Run an XA
Transaction.

After you successfully install and run the sample application, your environment is
ready for you to create and run your own Tuxedo applications.

11.2 Run Tuxedo App in Kubernetes Cluster
Run the Tuxedo application in the same Kubernetes cluster in which you have
deployed MicroTx.

• Start Tuxedo Sample App in a Docker Container

• Update the YAML Files for Tuxedo App
The sample application files also contain the sampleapps.yaml and values.yaml
file. Provide details about your Tuxedo application in these YAML files.

11.2.1 Start Tuxedo Sample App in a Docker Container

Before you begin, download the sample code and application binaries (.zip file) from
the link provided to you by the Product team. The sample Tuxedo application is a
banking application.

1. Build Docker images for your Tuxedo and SALT application.

cd parent_directory_of_$TUXDIR
docker build -t tmmbankapp_sample .

If you don't want to build a docker image for the Tuxedo sample application,
contact the Product team to get the Docker image and sample code.

2. Start the application in the Docker container.

docker run -d --env SALT_TMM_CALLBACK_ADDR=http://
Tuxedo_hostname:2345 -p 2345:2345 tmmbankapp_sample

Wait for about 15 seconds, until the Tuxedo application boots fully.

Ensure that the sample application is working correctly in the Tuxedo environment.
See Verify the Set Up.

Chapter 11
Run Tuxedo App in Kubernetes Cluster

11-6

11.2.2 Update the YAML Files for Tuxedo App
The sample application files also contain the sampleapps.yaml and values.yaml file. Provide
details about your Tuxedo application in these YAML files.

To provide the configuration and image details about the Tuxedo app in the YAML files:

1. Back up the sampleapps.yaml file, which is located in the installation_directory/
otmm-<version>/samples/xa/helmcharts/transfer/templates folder, in a different
location outside the templates folder.

2. Open the sampleapps.yaml file in any code editor to edit it.

3. Replace the dept2 service deployment descriptor with the sample code provided below.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: dept2
 labels:
 app: dept2
 version: v1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: dept2
 version: v1
 template:
 metadata:
 labels:
 app: dept2
 version: v1
 spec:
 containers:
 - name: dept2
 image: #TUXEDO-BANK-APP-IMAGE
 imagePullPolicy: Always
 ports:
 - containerPort: 2345
 env:
 - name: SALT_TMM_CALLBACK_ADDR
 value: http://dept2:2345
 imagePullSecrets:
 - name: regcred

Where, you can replace the following details with values specific to your environment.

• #TUXEDO-BANK-APP-IMAGE: Provide details of the Tuxedo application image that you
have uploaded to the docker container. For example, iad.ocir.io/mytenancy/xa/
tuxedo-app-xa:v1.

Chapter 11
Run Tuxedo App in Kubernetes Cluster

11-7

• 2345 is a port in the Tuxedo host for which you have set up the required
networking rules to permit traffic.

4. In the deployment descriptor for the accounts service, modify the value for the
departmentTwoEndpoint environment variable to the value you have specified for
the SALT_TMM_CALLBACK_ADDR environment variable.

name: departmentTwoEndpoint
value: http://dept2:2345

5. Save your changes.

6. Back up the values.yaml file, which is located in the installation_directory/
otmm-RELEASE/samples/xa/helmcharts/transfer folder, in a different location
outside the transfer folder.

7. Replace the values for dept2 with the content provided below.

dept2:
 name: dept2
 host: dept2
 version: v1
 gatewayUriPrefix: /dept2/
 rewriteUriPrefix: /
 destinationHost: dept2

8. Save your changes.

After modifying the sampleapps.yaml and values.yaml files, install the XA sample
application using Helm. See Install XA Sample Application. Helm deploys the Tuxedo
bank app container in the Kubernetes cluster along with the other sample apps for XA.

After installing the sample application, run an XA transaction. See Run an XA
Transaction.

After you successfully install and run the sample application, your environment is
ready for you to create and run your own Tuxedo applications.

Chapter 11
Run Tuxedo App in Kubernetes Cluster

11-8

12
Trace

Use distributed tracing to understand how requests flow between MicroTx and the
microservices. Use tools, such as Kiali and Jaeger, to track and trace distributed transactions
in MicroTx.

Istio is a service mesh that provides a separate infrastructure layer to handle inter-service
communication. Network communication is abstracted from the services themselves and is
handled by proxies. Istio uses a sidecar design, which means that the communication proxies
run in their own containers beside every service container. Envoy is the proxy that is
deployed as a sidecar inside the microservices container. All communication inside the
service mesh is done through the Envoy proxies. The Envoy proxies automatically generate
trace spans on behalf of the microservices they proxy, requiring only that the services forward
the appropriate request context. See https://istio.io/latest/docs/concepts/observability/. Istio
supports many tracing backends, such as Zipkin, Jaeger, Lightstep, and Datadog.

Note:

The steps provided in this section are specific to an environment where MicroTx
and Istio are deployed in a Kubernetes cluster. Use the instructions provided in this
section only for test or development environments. These instructions are not
meant for production environments.

For more information, refer to the Kiali and Jaeger documentation.

• Install Jaeger
When you download the Istio installation bundle, it contains jaeger.yaml, a basic sample
installation to quickly get Jaeger up and running. The jaeger.yaml file is available in the
samples/addons folder at the location where you have downloaded the Istio installation
files.

• Perform Distributed Tracing with Jaeger

• Install Kiali
When you download the Istio installation bundle, it contains kiali.yaml, a basic sample
installation to quickly get Kiali up and running. The kiali.yaml file is available in the
samples/addon folder at the location where you have downloaded the Istio installation
files.

• List of Trace Headers
When you want to trace the transaction from end-to-end, set
oracle.tmm.PropagateTraceHeaders to true. This propagates the trace headers for all
incoming and outgoing requests.

12-1

https://istio.io/latest/docs/concepts/observability/

12.1 Install Jaeger
When you download the Istio installation bundle, it contains jaeger.yaml, a basic
sample installation to quickly get Jaeger up and running. The jaeger.yaml file is
available in the samples/addons folder at the location where you have downloaded the
Istio installation files.

Alternatively, install Jaeger separately. See https://istio.io/latest/docs/ops/integrations/
jaeger/.

To install Jaeger using the YAML file that is available in the Istio package directory:

1. Move to the Istio package directory. For example, if the package is istio-1.15.0:

cd istio-1.15.0

2. Install Jaeger.

kubectl apply -f samples/addons/jaeger.yaml

Sample response

deployment.apps/jaeger created
service/tracing created
service/zipkin created
service/jaeger-collector created

3. Run the following command to verify that Jaeger was installed.

kubectl get all -n istio-system

Sample response

NAME READY STATUS
RESTARTS AGE
pod/istio-ingressgateway-6cc856bd7d-qcwk7 1/1 Running
0 10d
pod/istiod-945b9f699-frff5 1/1 Running
0 10d
pod/jaeger-c4fdf6674-wqxhb 1/1 Running
0 11m

NAME TYPE CLUSTER-IP EXTERNAL-
IP PORT(S) AGE
service/istio-ingressgateway LoadBalancer 10.97...
<pending> 15021:30651/TCP,80:31635/TCP,443:32196/TCP 10d
service/istiod ClusterIP 10.100...
<none> 15010/TCP,15012/TCP,443/TCP,15014/TCP 10d
service/jaeger-collector ClusterIP 10.110...
<none> 14268/TCP,14250/TCP,9411/TCP 11m
service/tracing ClusterIP 10.107...
<none> 80/TCP,16685/TCP 11m

Chapter 12
Install Jaeger

12-2

https://istio.io/latest/docs/ops/integrations/jaeger/
https://istio.io/latest/docs/ops/integrations/jaeger/

service/zipkin ClusterIP 10.106... <none>
9411/TCP 11m

NAME READY UP-TO-DATE AVAILABLE
AGE
deployment.apps/istio-ingressgateway 1/1 1 1
10d
deployment.apps/istiod 1/1 1 1
10d
deployment.apps/jaeger 1/1 1 1
11m

NAME DESIRED CURRENT
READY AGE
replicaset.apps/istio-ingressgateway-6cc856bd7d 1 1
1 10d
replicaset.apps/istiod-945b9f699 1 1
1 10d
replicaset.apps/jaeger-c4fdf6674 1 1
1 11m

NAME
REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE
horizontalpodautoscaler.autoscaling/istio-ingressgateway Deployment/
istio-ingressgateway <unknown>/80% 1 5 1 10d
horizontalpodautoscaler.autoscaling/istiod Deployment/
istiod <unknown>/80% 1 5 1 10d

12.2 Perform Distributed Tracing with Jaeger
To understand how to perform distributed tracing using Jaeger, let us consider the sample
application for XA.

The sample application implements a scenario where an Accounts department application
transfers money from one department to another by creating an XA transaction. The two
departments in the organization are Dept 1 and Dept 2. For more details about the sample
XA application that is available in the installation bundle, see XA Transaction Protocol.

Before you perform distributed tracing, ensure that you have deployed the application and
initiated a transaction.

1. Open the Jaeger UI using istioctl.

istioctl dashboard jaeger

2. Perform a transaction using your application.

In case of the sample XA application, use the Accounts service to withdraw an amount
from Dept 1 and deposit that amount to Dept 2.

3. In the Jaeger UI, click the Search tab.

4. In the Service drop-down list, select istio-ingressgateway.

Chapter 12
Perform Distributed Tracing with Jaeger

12-3

5. Click Find Traces, and then locate the trace that is time-stamped as a few
seconds ago.

The trace for your latest transaction using the sample XA application is displayed
as shown in the following figure.

6. Click the trace to view more details.

7. Under Service & Operation, view the flow of all the requests.

The Istio ingress gateway receives the request and forwards it to the Accounts
service, which is the initiator service. From Accounts service, a call was sent to
TCS to begin the transaction.

12.3 Install Kiali
When you download the Istio installation bundle, it contains kiali.yaml, a basic
sample installation to quickly get Kiali up and running. The kiali.yaml file is available
in the samples/addon folder at the location where you have downloaded the Istio
installation files.

Alternatively, install Kiali separately. See https://kiali.io/docs/installation/.

To install Kiali using the YAML file that is available in the Istio package directory:

1. Move to the Istio package directory. For example, if the package is istio-1.15.0:

cd istio-1.15.0

2. Install Kiali.

kubectl apply -f samples/addons/kiali.yaml

Sample response

serviceaccount/kiali created
configmap/kiali created
clusterrole.rbac.authorization.k8s.io/kiali-viewer created
clusterrole.rbac.authorization.k8s.io/kiali created

Chapter 12
Install Kiali

12-4

https://kiali.io/docs/installation/

clusterrolebinding.rbac.authorization.k8s.io/kiali created
role.rbac.authorization.k8s.io/kiali-controlplane created
rolebinding.rbac.authorization.k8s.io/kiali-controlplane created
service/kiali created
deployment.apps/kiali created

3. Run the following command to verify that Kiali was installed.

kubectl -n istio-system get svc kiali

Sample response

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kiali ClusterIP 10.100.214.26 <none> 20001/TCP,9090/TCP 62s

4. Open the Kiali dashboard.

istioctl dashboard kiali

12.4 List of Trace Headers
When you want to trace the transaction from end-to-end, set
oracle.tmm.PropagateTraceHeaders to true. This propagates the trace headers for all
incoming and outgoing requests.

The following table lists a few of the trace headers that are propagated.

Name of the
headers

Description

x-request-id
All applications must propagate this header. This header is included in access log
statements and it is used for consistent trace sampling and log sampling
decisions in Istio.

oracle-tmm-
tx-token
authorization
refresh-token
oracle-tmm-
authz-token

These MicroTx-specific headers must be propagated for running the MicroTx API
calls from the library.

end-user
This header is specific to the application and you can forward this header.

x-ot-span-
context

Propagate this header if you are using Lightstep tracing in Istio. See https://
istio.io/latest/docs/tasks/observability/distributed-tracing/lightstep/.

Chapter 12
List of Trace Headers

12-5

https://istio.io/latest/docs/tasks/observability/distributed-tracing/lightstep/
https://istio.io/latest/docs/tasks/observability/distributed-tracing/lightstep/

Name of the
headers

Description

x-datadog-
trace-id
x-datadog-
parent-id
x-datadog-
sampling-
priority

Propagate these headers if you are using Datadog tracing.

traceparent
tracestate

These are W3C trace context headers. They are compatible with OpenCensus
Agent and Stackdriver configurations for Istio.

x-cloud-
trace-context

This is a Cloud Trace context header. It is compatible with OpenCensus Agent
and Stackdriver configurations for Istio.

grpc-trace-
bin

This is a gRPC binary trace context header. It is compatible with OpenCensus
Agent and Stackdriver configurations for Istio.

x-b3-traceid
x-b3-spanid
x-b3-
parentspanid
x-b3-sampled
x-b3-flags

These are B3 trace context headers. They are compatible with Zipkin,
OpenCensus Agent, and Stackdriver configurations for Istio.

Chapter 12
List of Trace Headers

12-6

A
Manage Transaction Coordinator Using Helm

If you have installed Transaction Manager for Microservices (MicroTx) on a Kubernetes
cluster using Helm, you can use Helm commands to manage the transaction coordinator.

• General Syntax of Commands
The following is the general syntax of the Helm commands that you can run to manage
MicroTx.

• Scale up or down
Scale up the Kubernetes cluster on which you have installed MicroTx to handle a large
amount of requests. When the number of requests is low, scale down to use the
resources efficiently.

• Update

• Uninstall

A.1 General Syntax of Commands
The following is the general syntax of the Helm commands that you can run to manage
MicroTx.

helm action release_name --namespace namespace --reuse-values --values
file.yaml chart_directory

General Command Actions

The following table describes the general actions that you can perform to manage MicroTx.

Action Description

upgrade Updates one or more values that you have defined for MicroTx in its values.yaml file.

uninstall Removes MicroTx from the Kubernetes cluster.

Command Parameter

Parameter Description

release_nam
e

Enter the name of the MicroTx application on which you want to perform an action,
such as update. You provided this name while installing the application.

Command Options

The following table describes the general actions that you can perform on Transaction
Coordinating Server.

A-1

Option Description

namespace Enter the Kubernetes namespace where you have deployed MicroTx. Example,
otmm.

reuse-
values

Specify this option to modify only those values which you specify in the YAML file
while retaining all the other values as is.

values Enter the name of the YAML file that you have created which contains the values
that you want to modify. Example, file_updated_values.yaml.

chart_dire
ctory

Specify the location of the folder that contains the chart.yaml file for the
MicroTx application. Example, installation_directory\otmm-
RELEASE\otmm\helmcharts.

A.2 Scale up or down
Scale up the Kubernetes cluster on which you have installed MicroTx to handle a large
amount of requests. When the number of requests is low, scale down to use the
resources efficiently.

The replica count is the number of replicas of the MicroTx instance that you want to
run at a time.

Perform the following steps to scale the Kubernetes cluster on which you have
installed MicroTx:

1. In any text editor, create a YAML file with updated replicaCount value. In the
following example, the replicaCount value is mentioned as 3.

tmmReplicaCount: 3

2. Validate and save the YAML file.

3. Run the following command to upgrade the Kubernetes cluster on which you have
installed MicroTx based on the replicaCount value provided in the scale.yaml
file.

Syntax

helm upgrade <release name> --namespace <namespace> --reuse-values --
values scale.yaml <chart directory>

For information about the general command parameter and command options, see
General Syntax of Commands.

Example

The following command scales the Kubernetes cluster in the otmm namespace with the
details mentioned in the scale.yaml file.

helm upgrade otmm --namespace otmm --reuse-values --values scale.yaml
otmm-RELEASE\otmm\helmcharts\

Appendix A
Scale up or down

A-2

Usage Notes

When you run this command, the Kubernetes cluster is not recreated. Based on the replica
count that you specify, Kubernetes starts new replicas or stops existing replicas to match the
specified replica count.

Helm performs rolling upgrade. Old replicas are gradually removed, while new replicas are
started. Traffic is gradually shifted to the new replicas from old replicas and the old replicas
are terminated only when all the traffic has been shifted to the new replicas. This ensures that
there is no loss of in flight transactions.

A.3 Update

Use this command to update one or more property values that you have defined for MicroTx
in its values.yaml file. You can update the properties for the authorization, authentication,
transaction store, encryption key, and transaction token, transaction time out, and other
details.

1. In any text editor, create a YAML file. Specify the values that you want to update in the
YAML file.
The following code sample shows the updated value for logging level.

logging:
 level: warning

2. Run the following command to update the properties of the Kubernetes cluster on which
you have installed MicroTx.
Syntax

helm upgrade <release name> --namespace <namespace> --reuse-values --
values <file_name.yaml> <chart directory>

Specify the reuse-values option to modify only those values that you specify in the
YAML file, while retaining all the other values as is. For information about the general
command parameter and command options, see General Syntax of Commands.

Example

The following command updates the Kubernetes cluster in the omtm namespace with the
details mentioned in the update_log_level.yaml file.

helm upgrade omtm --namespace omtm --reuse-values --values
update_log_level.yaml omtm/

Usage Notes

Helm performs rolling upgrade. Old replicas are gradually removed, while new replicas are
started. Traffic is gradually shifted to the new replicas from old replicas and the old replicas
are terminated only when all the traffic has been shifted to the new replicas. This ensures that
there is no loss of in flight transactions.

Appendix A
Update

A-3

A.4 Uninstall
When you no longer want to use MicroTx, you can uninstall it from the Kubernetes
cluster.

Prerequisites

Before you run this command, ensure that you do not need to run MicroTx in your
deployment and that there are no active transactions in progress.

Syntax

helm uninstall release_name

Where,

release_name is the name of the application that you want to uninstall.

Usage Notes

When you run this command, it removes MicroTx from the Kubernetes cluster.
Communication between your applications microservices will continue, but any
requests sent by the application microservices to MicroTx will fail.

Examples

Use the following command to delete the tmm_app application.

helm uninstall tmm_app

Appendix A
Uninstall

A-4

B
Deploy Your Application

Before you begin, ensure that you have completed the following tasks:

1. Installed Transaction Manager for Microservices (MicroTx).

2. Integrated MicroTx library with your application code.

Workflow to deploy your application

Build your application code to create a Docker image for each application microservice, push
the Docker image to a remote repository, set up the required environment, enter the
configuration details in the YAML file, and then install the application.

1. Build the Docker Image

2. Push App Image to a Remote Repo

3. Create Helm Files

4. Install Your Application

• Build the Docker Image
Your application may consist of multiple microservices. Build the source code for each
microservice, so that you create an image for each microservice. For each microservice,
run the command discussed in this section from the root folder of the microservice for
building the Docker image.

• Push App Image to a Remote Repo
Push the Docker image of the applications, that you have built, to a remote repository.

• Create Helm Files
After integrating the MicroTx libraries with your application code, you can install the
application.

• Install Your Application

B.1 Build the Docker Image
Your application may consist of multiple microservices. Build the source code for each
microservice, so that you create an image for each microservice. For each microservice, run
the command discussed in this section from the root folder of the microservice for building the
Docker image.

1. Build the application source code to create a container image.

Use the following command to create a container image with the tag local_image_tag.

docker build -t local_image_tag .

When you run this command in your environment, you can specify any tag that you want
after the -t option.

B-1

2. Note down the tag that you have associated with this image. You will need to
specify this tag later.

The container image that you have created is available in your local Docker container
registry.

B.2 Push App Image to a Remote Repo
Push the Docker image of the applications, that you have built, to a remote repository.

The container image that you have built is available in your local repository. You must
push this image to a remote repository, so that you can access this image using Helm.
Later, you will use Helm to install your application.

If you are using Oracle Cloud Infrastructure Registry, see Push an Image to Oracle
Cloud Infrastructure Registry. If you are using other Kubernetes platforms, use the
instructions provided in this section.

Before you begin, complete the following tasks:

• Identify a remote private repository to which you want to upload the container
image. You can create a new remote Docker repository or use an existing one.
Use a private repository to limit access. When you use a remote Docker
repository, you have to push images to the remote Docker repository only once,
while you can pull an image multiple times onto any Kubernetes cluster that you
create.

• Create a Kubernetes secret to access the remote Docker repository. See Create a
Kubernetes Secret to Access Docker Registry.

1. Provide credentials to log in to the remote private repository to which you want to
push the image.

docker login <repo>

Provide the login credentials based on the Kubernetes platform that you are using.

2. In your local container registry, identify the tag of the image that you want to push.

Skip this step if you have noted the tag of this image.

a. Run the following command to list the Docker images.

docker images

b. Copy the tag of the image that you want to push. You'll need to provide this
information later.

3. Use the following command to specify a unique tag for the image that you want to
push to the remote Docker repository.

Syntax

docker tag local_image_tag remote_image_tag

Where,

• local_image_tag is the tag with which the image is identified in your local
repository.

• remote_image_tag is the tag with which you want to identify the image in the
remote Docker repository.

Appendix B
Push App Image to a Remote Repo

B-2

https://www.oracle.com/webfolder/technetwork/tutorials/obe/oci/registry/index.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/oci/registry/index.html

Example Command

docker tag myApp123 <region-key>.ocir.io/otmmrepo/myApp123

Where, <region-key>.ocir.io/otmmrepo is the Oracle Cloud Infrastructure Registry to
which you want to push the image file, myApp123. If you are using other Kubernetes
platforms, then provide the registry details based on your environment.

4. Push the Docker image from your local repository to the remote Docker repository.

Syntax

docker push remote_image_tag

Example Command

docker push <region-key>.ocir.io/otmmrepo/myApp123

Note down the tag of the Docker image in the remote Docker repository. You'll need to enter
this tag while pulling the image from the remote Docker repository.

B.3 Create Helm Files
After integrating the MicroTx libraries with your application code, you can install the
application.

If you want to use Helm to install the application, you must create the required YAML files and
charts. Each sample in the installation bundle contains the sample application code and the
required YAML files to install the sample application using Helm. Use these files as a
reference to create files for your application.

B.4 Install Your Application
1. Navigate to the folder that contains the Helm files for your application.

2. Deploy your application using the configuration details that you have provided in the
values.yaml file.

Syntax

helm install <release name> --namespace <namespace> <chart directory> --
values <values.yaml>

Example

Use the following commands to install your application with the name my-java-app-tcc-
tx in the otmm namespace.

helm install my-java-app-tcc-tx --namespace otmm .\ --values .\values.yaml

Where,

• my-java-app-tcc-tx is the name of the application that you want to create.

Appendix B
Create Helm Files

B-3

• otmm is the namespace in Kubernetes cluster, where you want to install your
application.

• .\ is the folder that contains the chart.yaml file for your application. Since,
you have already changed the directory to the helmchart folder on the
command-line, you can provide the relative path to the chart.yaml file.

• .\values.yaml is the location of the values.yaml file, the application's
manifest file, in your local machine. This file contains the deployment
configuration details for your application.

3. Verify that all resources, such as pods and services, are ready. Use the following
command to retrieve the list of resources in the namespace otmm and their status.

kubectl get all -n otmm

4. Verify that the application is installed.

helm list --namespace otmm

Appendix B
Install Your Application

B-4

	Contents
	Changes in MicroTx
	New Features in 22.3.2
	Changes in the Previous Release

	1 About MicroTx
	1.1 How MicroTx Works
	1.2 Components of MicroTx
	1.3 About the Distributed Transaction Protocols
	1.3.1 XA Transaction Protocol
	1.3.2 LRA Transaction Protocol
	1.3.3 Try-Confirm/Cancel Transaction Protocol

	1.4 Workflow to Install and Use MicroTx

	2 Plan
	2.1 Supported Container Platforms
	2.2 Supported Languages
	2.3 Supported Databases
	2.4 Supported Identity Providers
	2.5 Limits
	2.6 Considerations for Deployment on Kubernetes
	2.7 Select a Transaction Protocol
	2.8 About Transaction Recovery
	2.9 About Session Affinity

	3 Prepare
	3.1 Download the Installation Bundle
	3.2 Create a Data Store
	3.2.1 Get Autonomous Database Client Credentials
	3.2.2 Generate RSA Certificates for etcd

	3.3 About Authentication and Authorization
	3.3.1 About Authentication and Authorization
	3.3.1.1 About Authorization and Refresh Tokens
	3.3.1.2 About the Oracle_Tmm_Tx_Token Transaction Token
	3.3.1.3 About Encrypting and Storing Tokens

	3.3.2 Use Oracle Identity Providers
	3.3.2.1 Use Oracle IAM as Identity Provider
	3.3.2.2 Use Oracle IDCS as Identity Provider

	3.3.3 Run the Discovery URL
	3.3.4 Create an Access Token

	4 Install on a Kubernetes Cluster
	4.1 Create a Kubernetes Cluster
	4.2 Prepare the Environment
	4.3 Create a Kubernetes Secret to Access Docker Registry
	4.4 Push Images to a Remote Docker Repository
	4.5 Authenticate and Authorize
	4.5.1 Generate a Kubernetes Secret for an Encryption Key
	4.5.2 Create a Key Pair for Transaction Token

	4.6 Create a Kubernetes Secret for Oracle Database Credentials
	4.7 Create a Kubernetes Secret for etcd
	4.8 Enable Session Affinity
	4.9 Configure the values.yaml File
	4.9.1 Environment Details
	4.9.2 Image Properties
	4.9.3 Transaction Coordinator Properties
	4.9.4 Transaction Store Properties
	4.9.5 Authorization Properties
	4.9.6 Authentication Properties
	4.9.7 Encryption Key Properties
	4.9.8 Transaction Token Properties

	4.10 Install MicroTx
	4.11 Find IP Address of Istio Ingress Gateway
	4.12 Access MicroTx

	5 Install on Docker Swarm
	5.1 Set Up Docker Swarm
	5.2 Create a Registry
	5.3 Push Image to a Docker Registry
	5.4 Create Encryption Key and Key Pair
	5.5 Update YAML files with etcd Details
	5.6 Create a Docker Secret for Oracle Database Credentials
	5.7 Enable Session Affinity
	5.8 Configure the tcs-docker-swarm.yaml File
	5.8.1 Transaction Coordinator Properties
	5.8.2 Transaction Store Properties
	5.8.3 TLS Properties
	5.8.4 Authorization Properties
	5.8.5 Authentication Properties
	5.8.6 Encryption Key Properties
	5.8.7 Transaction Token Properties

	5.9 Configure Secure Connection for Your Apps
	5.10 Access MicroTx in Docker Swarm
	5.11 Run MicroTx in a Docker Container

	6 Post-Installation Tasks
	6.1 Upgrade to 22.3.2
	6.2 Verify
	6.3 Install MicroTx Library Files

	7 Deploy Sample Applications
	7.1 Deploy XA Sample Application
	7.1.1 Workflow to Run XA Sample Apps
	7.1.2 About XA Sample Application
	7.1.2.1 Scenario: Withdraw and Deposit an Amount

	7.1.3 Identify a Sample App to Run
	7.1.4 Set Up Resource Managers for Sample Apps
	7.1.4.1 Set Up XA-Compliant Resource Manager
	7.1.4.2 Set Up MongoDB as Resource Manager
	7.1.4.3 Set Up MySQL for Teller Service
	7.1.4.4 Set Up MySQL for Sample Participant Services
	7.1.4.5 Configure PostgreSQL as Resource Manager
	7.1.4.6 Enable Session Affinity for XA Participants

	7.1.5 Run Sample XA Application in Kubernetes
	7.1.5.1 Build Docker Images for Sample XA Application
	7.1.5.2 Push XA Sample App Images
	7.1.5.3 Update the values.yaml File for XA Sample App
	7.1.5.4 Install XA Sample Application
	7.1.5.5 Run an XA Transaction

	7.1.6 Run Sample XA Application in Docker Swarm
	7.1.6.1 Build and Push the Docker Images
	7.1.6.2 Install XA Sample Application
	7.1.6.3 Run an XA Transaction

	7.2 Deploy LRA Sample Application
	7.2.1 About the Sample LRA Application
	7.2.1.1 Scenario: Book a Seat in a Cinema

	7.2.2 Run Sample LRA Application in Kubernetes
	7.2.2.1 Build Docker Images for Sample LRA Application
	7.2.2.2 Push LRA Sample App Images
	7.2.2.3 Update the values.yaml File for LRA
	7.2.2.4 Install LRA Sample Application
	7.2.2.5 Run an LRA Transaction

	7.2.3 Run Sample LRA Application in Docker Swarm
	7.2.3.1 Build and Push the Docker Images
	7.2.3.2 Install LRA Sample Application
	7.2.3.3 Run an LRA Transaction

	7.3 Deploy TCC Sample Application
	7.3.1 About the Sample TCC Application
	7.3.2 Run Sample TCC Application in Kubernetes
	7.3.2.1 Build Docker Images for Sample TCC Application
	7.3.2.2 Push TCC Sample App Images
	7.3.2.3 Update the values.yaml File for TCC
	7.3.2.4 Install TCC Sample Application
	7.3.2.5 Run a TCC Transaction

	7.3.3 Run Sample TCC Application in Docker Swarm
	7.3.3.1 Build Docker Images for Sample TCC Application
	7.3.3.2 Install TCC Sample Application
	7.3.3.3 Run the Sample TCC Application

	8 Develop Applications with XA
	8.1 Plan Your Resource Manager
	8.1.1 Supported Resource Managers
	8.1.2 Supported Drivers for Resource Managers
	8.1.3 Optimizations for a Non-XA Resource
	8.1.4 Common Resource Manager for Multiple Apps
	8.1.5 Configure Multiple Resource Managers for a Single App
	8.1.6 About Dynamic Recovery for XA Transactions

	8.2 Configure PostgreSQL as Resource Manager
	8.3 Set Transaction Timeout
	8.4 Subscribe to Receive XA Transaction Notifications
	8.5 Configure Library Properties
	8.6 Develop Java Apps with XA
	8.6.1 Configure Java App as Transaction Initiator
	8.6.2 Configure Java App as Transaction Participant
	8.6.2.1 Configure Java App with an XA-Compliant Resource Manager
	8.6.2.2 Configure Java App with Multiple XA-Compliant Resource Managers
	8.6.2.3 Configure Java App with a Non-XA JDBC Resource
	8.6.2.4 Configure Java App with a Non-XA and Non-JDBC Resource

	8.6.3 Configure JPA or Hibernate App as Transaction Participant
	8.6.3.1 Configure Hibernate or JPA App with an XA-Compliant Resource Manager

	8.7 Develop Node.js Apps with XA
	8.7.1 Configure Node.js App as Transaction Initiator
	8.7.2 Configure Node.js App as Transaction Participant
	8.7.2.1 Configure Node.js Apps with an XA-Compliant Resource Manager
	8.7.2.2 Configure Node.js Apps with a Non-XA Resource

	8.8 Develop ORDS App as Transaction Participant
	8.8.1 Prerequisites
	8.8.2 Run MicroTx Library for SQL
	8.8.3 Build the ORDS App
	8.8.4 Run an XA Transaction

	9 Develop Applications with LRA
	9.1 Develop Java Apps with LRA
	9.2 Configure Library Properties
	9.3 Develop Node.js Apps with LRA

	10 Develop Applications with TCC
	10.1 Workflow to Develop Applications with TCC
	10.2 Configure Library Properties
	10.3 About Transaction Timeout
	10.4 Develop Java Apps with TCC
	10.4.1 Configure Java App as Transaction Initiator
	10.4.2 Configure Java App as Transaction Participant

	10.5 Develop Node.js Apps with TCC
	10.5.1 Configure Node.js App as Transaction Initiator
	10.5.2 Configure Node.js App as Transaction Participant

	10.6 Develop Python Apps with TCC
	10.6.1 Configure Python App as Transaction Initiator
	10.6.2 Configure Python App as Transaction Participant

	11 Develop Tuxedo Apps with XA
	11.1 Run Tuxedo App on Linux Host
	11.1.1 Prepare the Environment
	11.1.2 Install Patches
	11.1.3 Verify the Set Up

	11.2 Run Tuxedo App in Kubernetes Cluster
	11.2.1 Start Tuxedo Sample App in a Docker Container
	11.2.2 Update the YAML Files for Tuxedo App

	12 Trace
	12.1 Install Jaeger
	12.2 Perform Distributed Tracing with Jaeger
	12.3 Install Kiali
	12.4 List of Trace Headers

	A Manage Transaction Coordinator Using Helm
	A.1 General Syntax of Commands
	A.2 Scale up or down
	A.3 Update
	A.4 Uninstall

	B Deploy Your Application
	B.1 Build the Docker Image
	B.2 Push App Image to a Remote Repo
	B.3 Create Helm Files
	B.4 Install Your Application

