
Oracle® Tuxedo
Application Configuration Guide

Release 22c
F78151-01
July 2023

Oracle Tuxedo Application Configuration Guide, Release 22c

F78151-01

Copyright © 1996, 2023, Oracle and/or its affiliates.

Primary Author: Preeti Gandhe

Contributing Authors: Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Administrative Tasks and Tools

1.1 Tasks an Administrator Performs 1-1

1.1.1 Setup Tasks 1-1

1.1.2 Run-time Tasks 1-2

1.1.3 Differences Between the Oracle Tuxedo ATMI and CORBA Environments 1-3

1.2 Planning the Design of Your Application 1-4

1.3 Tools to Help You Administer Your Application 1-6

2 About the Configuration File

2.1 What Is the Configuration File? 2-1

2.1.1 Text and Binary Versions of the Configuration File 2-1

2.2 Contents of the Configuration File 2-2

2.3 CORBA Administrative Requirements and Performance 2-2

2.3.1 Configuring NameManager 2-3

2.3.2 Reliability Requirements 2-3

2.3.2.1 Managing Factory Entries 2-4

2.3.2.2 Configuring Multiple NameManagers and FactoryFinders 2-4

2.3.2.3 Designating a Master NameManager 2-4

2.3.3 Performance Hint 2-4

3 Creating the Configuration File

3.1 How to Create a Configuration File 3-3

3.2 How to Create the Configuration File for a Single-machine Application 3-3

3.3 How to Create the Configuration File for a Multiple-machine (Distributed) Application 3-4

3.4 How to Create the Configuration File for a Multiple-domain Application 3-6

3.5 How to Create the RESOURCES Section of the Configuration File 3-9

3.5.1 Sample RESOURCES Section 3-10

3.6 Defining the Application Type 3-11

3.6.1 Characteristics of the MODEL and OPTIONS Parameters 3-11

3.6.2 Example Settings 3-12

3.7 Controlling the Number of Buffer Types and Subtypes 3-12

iii

3.7.1 Example Settings 3-12

3.8 Controlling the Number of Conversations 3-12

3.8.1 Characteristics of the MAXCONV Parameter 3-13

3.8.2 Example Setting 3-13

3.9 Defining IPC Limits 3-13

3.9.1 Example Settings 3-15

3.10 Enabling Load Balancing 3-15

3.10.1 Characteristics of the LDBAL Parameter 3-16

3.10.2 Example Settings 3-16

3.11 Identifying the Master Machine 3-16

3.11.1 Characteristics of the MASTER Parameter 3-17

3.11.2 Example Settings 3-17

3.12 Specifying the Maximum Number of Network Groups 3-17

3.13 Specifying the Number of Sanity Checks and Blocking Timeouts 3-17

3.13.1 Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME
Parameters 3-18

3.13.2 Timeouts for Blocking ATMI Operations 3-18

3.13.3 Example Settings 3-18

3.14 Establishing Operating System-level Security 3-19

3.15 Specifying the Security Level 3-19

3.16 Defining the Security Attributes of a Server 3-21

3.17 Protecting Shared Memory 3-21

3.17.1 Example Settings 3-22

3.18 Setting the Address of the System Resources for an Application 3-22

3.18.1 Characteristics of the IPCKEY Parameter 3-22

3.18.2 Example Settings 3-22

3.19 Specifying How Clients Receive Unsolicited Notification 3-23

3.19.1 Characteristics of the NOTIFY and USIGNAL Parameters 3-23

3.20 How to Create the MACHINES Section of the Configuration File 3-24

3.20.1 Sample MACHINES Section 3-26

3.20.1.1 Sample MACHINES Parameters 3-27

3.20.1.2 How to Customize the Sample MACHINES Section 3-27

3.21 Specifying the Maximum Number of ACL Entries in the Cache 3-28

3.22 Defining an Additional Service Request Load 3-28

3.23 Reserving the Physical Address and Machine ID 3-28

3.23.1 Characteristics of the Address and the LMID Parameter 3-29

3.24 Setting the Number of Lock Spins 3-29

3.24.1 Characteristics of the SPINCOUNT Parameter 3-29

3.25 Specifying Machines as Types 3-30

3.25.1 Characteristics of the TYPE Parameter 3-30

3.26 Identifying the Location of the Configuration File 3-30

iv

3.26.1 Characteristics of the TUXCONFIG Parameter 3-30

3.27 Indicating the Size of the DTP Transaction Log 3-31

3.28 Defining the DTP Transaction Log Name 3-31

3.29 Specifying Environment Variable Settings 3-31

3.29.1 Characteristics of the ENVFILE Parameter 3-31

3.30 Defining the Oracle Tuxedo Filesystem Containing the TLOG 3-32

3.31 Specifying a Machine’s Maximum Number of Simultaneous Global Transactions 3-32

3.32 Defining the Number of Accesser Entries on a Workstation Client 3-32

3.33 Defining Space Limits for Messages Transmitted by the BRIDGE 3-33

3.34 Indicating the Offset for the DTP Transaction Log 3-33

3.35 Defining the Offset for TUXCONFIG 3-33

3.35.1 Characteristics of the TUXOFFSET Parameter 3-33

3.36 Identifying the Locations of the System Software and Application Server Software 3-34

3.36.1 Characteristics of the APPDIR and TUXDIR Parameters 3-34

3.37 Indicating a Threshold Message Size for Compression 3-34

3.37.1 Example 3-34

3.38 Specifying the Pathname for the ULOG 3-35

3.38.1 Characteristics of the ULOGPFX Parameter 3-35

3.39 How to Create the GROUPS Section of the Configuration File 3-35

3.39.1 Sample GROUPS Section for ATMI 3-36

3.39.2 Sample GROUPS Section for CORBA 3-37

3.40 Specifying a Group Name, Number, and LMID 3-38

3.40.1 Characteristics of the Group Name, Group Number, and LMID 3-38

3.41 Indicating a Transaction Manager Server Name and Numbers per Group 3-39

3.42 Identifying the Environment File Location for Servers in a Group 3-39

3.43 Defining Information Needed When Opening and Closing the Resource Manager 3-40

3.44 How to Create the NETWORK Section of the Configuration File 3-41

3.44.1 Sample NETWORK Section 3-42

3.45 Specifying a Device Name for the BRIDGE Process 3-42

3.46 Assigning a BRIDGE Network Address 3-43

3.47 Assigning Encryption Levels 3-43

3.47.1 Example 3-44

3.48 Assigning a tlisten Network Address 3-44

3.49 How to Create the NETGROUPS Section of the Configuration File 3-45

3.49.1 Sample Network Groups Configuration 3-45

3.49.2 Configuring a Sample UBBCONFIG File with Netgroups 3-47

3.50 Assigning a Name to a Network Group 3-47

3.51 Assigning a Network Group Number 3-48

3.52 Assigning a Priority to the Network Group 3-48

3.53 How to Create the SERVERS Section of the Configuration File 3-48

3.53.1 Sample SERVERS Section 3-50

v

3.53.1.1 Sample SERVERS Section Parameters 3-51

3.54 Specifying a Server as Conversational 3-52

3.54.1 Characteristics of the CONV Parameter 3-52

3.55 Setting the Order in Which Servers Are Booted 3-52

3.55.1 Required Order in Which to Boot CORBA C++ Servers 3-53

3.56 Characteristics of the SEQUENCE, MIN, and MAX Parameters 3-55

3.57 Specifying Server Command-line Options 3-56

3.57.1 Characteristics of the CLOPT Parameter 3-56

3.58 Identifying the Location of the Server Environment File 3-57

3.58.1 Characteristics of the Server Environment File 3-57

3.59 Defining Server Name, Group, and ID 3-57

3.59.1 Characteristics of the Server Name, SRVGRP, and SRVID Parameters 3-58

3.60 Identifying Server Queue Information 3-58

3.60.1 MSSQ Example 3-58

3.60.2 Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM
Parameters 3-59

3.61 Defining Server Restart Information 3-59

3.61.1 Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters 3-60

3.62 Defining Server Access to Shared Memory 3-60

3.62.1 Characteristics of the SYSTEM_ACCESS Parameter 3-60

3.63 Defining the Server Dispatch Threads 3-60

3.64 Setting Security Parameters for ISL Servers 3-61

3.65 How to Create the SERVICES Section of the Configuration File 3-61

3.65.1 Sample SERVICES Section 3-63

3.66 Specifying Automatic Starts and Timeout Intervals for Transactions 3-63

3.67 Specifying a List of Allowable Buffer Types for a Service 3-64

3.67.1 Examples of the BUFTYPE Parameter 3-64

3.68 Designating How Much Time to Process a Request 3-65

3.68.1 What Happens When a Timeout Occurs 3-65

3.68.2 How a Service Timeout Is Reported 3-65

3.68.2.1 How to Control a Service Timeout 3-66

3.69 Specifying Nontransactional Service-Level Blocktime 3-66

3.70 Enabling Load Balancing 3-67

3.70.1 Characteristics of the LDBAL Parameter 3-67

3.71 Defining the Name of the Routing Criteria 3-67

3.72 Specifying Service Parameters for Different Server Groups 3-67

3.73 Controlling the Flow of Data by Service Priority 3-68

3.73.1 Characteristics of the PRIO Parameter 3-68

3.73.2 Sample SERVICES Section Using Different Priorities 3-68

3.74 Indicating Service Processing Time 3-68

3.75 How to Create the INTERFACES Section of the Configuration File 3-69

vi

3.75.1 Specifying CORBA Interfaces in the INTERFACES Section 3-69

3.75.2 Specifying FACTORYROUTING Criteria 3-70

3.75.2.1 University Sample 3-71

3.75.2.2 Bankapp Sample 3-71

3.75.3 Enabling Load Balancing 3-72

3.75.4 Controlling the Flow of Data by Interface Priority 3-72

3.75.5 Specifying Different Interface Parameters for Different Server Groups 3-72

3.76 How to Create the ROUTING Section of the Configuration File 3-73

3.76.1 ROUTING Section Example 3-74

3.77 Defining the Routing Buffer Field and Field Type 3-74

3.78 Specifying Range Criteria 3-74

3.79 Defining Buffer Types 3-75

3.80 CORBA Factory-based Routing in the University Production Sample Application 3-75

3.81 CORBA Factory-based Routing in the Bankapp Sample Application 3-78

3.82 How to Configure the Oracle Tuxedo System to Take Advantage of Threads 3-78

3.83 How to Compile a Configuration File 3-79

4 About Transactions

4.1 What Is a Transaction? 4-1

4.1.1 What Are the ACID Properties? 4-2

4.1.2 How a Transaction Succeeds or Fails 4-2

4.2 Benefits of Using Transactions 4-3

4.3 Example of a Global Transaction 4-3

4.4 What Is the Oracle Tuxedo Transaction Manager (TM)? 4-4

4.5 How the System Tracks Distributed Transaction Processing 4-4

4.5.1 How the System Uses Global Transaction Identifiers (GTRIDs) for Tracking 4-5

4.5.2 How the System Uses a Transaction Log (TLOG) for Tracking 4-5

4.5.2.1 Writing TLOG to an Oracle Database 4-6

4.6 How the System Uses a Two-Phase Commit to Commit Transactions 4-7

4.6.1 How the System Handles Transaction Infection 4-8

4.6.2 How the ATMI Protects a Transaction’s Integrity Before a Two-Phase Commit 4-8

5 Configuring Your ATMI Application to Use Transactions

5.1 Modifying the UBBCONFIG File to Accommodate ATMI Transactions 5-1

5.2 Specifying Global Transaction Parameters in the RESOURCES Section 5-1

5.3 Creating a Transaction Log (TLOG) in the MACHINES Section 5-2

5.3.1 Creating the UDL 5-2

5.3.2 Defining Transaction-related Parameters in the MACHINES Section 5-3

5.3.2.1 Writing TLOG to an Oracle Database 5-4

vii

5.3.3 Creating the Domains Transaction Log 5-4

5.4 Defining Resource Managers and the Transaction Manager Server in the GROUPS
Section 5-5

5.4.1 Sample of the GROUPS Section 5-5

5.4.1.1 Description of Transaction Values in the Sample GROUPS Section 5-5

5.4.1.2 Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSEINFO Parameters 5-6

5.5 Enabling a Service to Begin a Transaction in the SERVICES Section 5-6

5.5.1 Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters 5-7

5.6 Modifying the Domains Configuration File to Support Transactions 5-7

5.6.1 Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRAPTRAN, and MAXTRAN Parameters 5-7

5.6.2 Characteristics of the AUTOTRAN and TRANTIME Parameters 5-8

5.7 Example: A Distributed Application with Transactions 5-9

5.7.1 Sample RESOURCES Section 5-9

5.7.2 Sample MACHINES Section 5-10

5.7.3 Sample GROUPS and NETWORK Sections 5-11

5.7.4 Sample SERVERS, SERVICES, and ROUTING Sections 5-12

6 Introduction to Using Tuxedo with Oracle Real Application Clusters
(RAC)

6.1 Instance Awareness 6-1

6.2 Using Tuxedo with XA Affinity 6-1

6.2.1 Overview 6-2

6.2.2 XA Affinity Priority 6-2

6.2.3 XA Affinity Policy 6-2

6.2.4 Prerequisites 6-3

6.2.4.1 Software Requirements 6-3

6.2.4.2 Installation Notes 6-3

6.2.5 Configurations 6-3

6.2.6 Limitations 6-4

6.3 Using Tuxedo with Common XID 6-4

6.3.1 Overview 6-4

6.3.1.1 Typical Scenario 6-5

6.3.2 Prerequisites 6-5

6.3.2.1 Software Requirements 6-5

6.3.2.2 Installation Notes 6-5

6.3.3 Configurations 6-5

6.3.4 Limitations 6-6

6.4 Using Tuxedo with Single Group Multiple Branches (SGMB) 6-6

6.4.1 Overview 6-6

viii

6.4.2 Prerequisites 6-7

6.4.2.1 Software Requirements 6-7

6.4.2.2 Installation Notes 6-7

6.4.3 Configurations 6-7

6.4.4 Limitations 6-8

6.5 Using Tuxedo with Fast Application Notification (FAN) 6-8

6.5.1 Overview 6-8

6.5.2 Prerequisites 6-8

6.5.2.1 Software Requirements 6-8

6.5.2.2 Installation Notes 6-9

6.5.3 Configurations 6-9

6.5.3.1 Configurations on DB 6-9

6.5.3.2 Configurations on Tuxedo 6-10

6.5.4 Limitations 6-11

6.6 Using Tuxedo with Oracle Real Application Clusters (RAC) 6-11

6.6.1 Overview 6-11

6.6.2 Limitations 6-12

6.6.3 Software Requirements 6-12

6.6.4 Configuring Tuxedo for Oracle RAC 6-12

6.6.4.1 Configuring Transaction Propagation 6-13

6.6.4.2 Configuring Transaction Recovery 6-28

7 Enabling IPv6

7.1 Overview 7-1

7.2 Enabling IPv6 7-1

7.2.1 IPv6 Address Format 7-1

7.2.2 Tuxedo Component IPv6 Support 7-2

7.3 IPv4 and IPv6 Interoperability 7-3

7.4 Oracle Tuxedo MP Mode Interoperability 7-3

8 Managing the Oracle Tuxedo Service Metadata Repository

8.1 Oracle Tuxedo Service Metadata Repository 8-1

8.1.1 MIB(5) Similarities and Differences 8-2

8.2 Creating The Oracle Tuxedo Service Metadata Repository 8-2

8.2.1 The Oracle Tuxedo Service Metadata Repository Input File 8-2

8.2.1.1 Using Service-Level Keywords and Values 8-3

8.2.1.2 Using Parameter-Level Keywords and Values 8-7

8.2.1.3 Parameter Occurrences 8-11

8.3 Configuring The Oracle Tuxedo Service Metadata Repository Server 8-12

ix

8.3.1 Configuring Multiple Oracle Tuxedo Service Metadata Repository Servers 8-13

8.4 Accessing The Oracle Tuxedo Service Metadata Repository File 8-13

9 Managing CORBA Interface Repositories

9.1 Overview 9-1

9.2 Administration Considerations 9-2

9.3 Using Administration Commands to Manage Interface Repositories 9-2

9.3.1 Prerequisites 9-3

9.3.2 Creating and Populating an Interface Repository 9-3

9.3.3 Displaying or Extracting the Content of an Interface Repository 9-3

9.3.4 Deleting an Object from an Interface Repository 9-4

9.4 Configuring the UBBCONFIG File to Start One or More Interface Repository Servers 9-4

10

Distributing ATMI Applications Across a Network

10.1 What Is a Distributed ATMI Application? 10-1

10.1.1 Example of a Distributed Application 10-1

10.1.2 Implementing a Distributed Application 10-3

10.2 Why Distribute an ATMI Application Across a Network? 10-3

10.2.1 Features of a Distributed Application 10-4

11

Creating the Configuration File for a Distributed Oracle Tuxedo ATMI
Application

11.1 Configuration File Requirements for a Distributed Oracle Tuxedo ATMI Application 11-1

11.2 Creating the RESOURCES Section 11-2

11.3 Creating the MACHINES Section 11-3

11.4 Creating the GROUPS Section 11-4

11.5 Creating the SERVICES Section 11-5

11.6 Creating the ROUTING Section 11-6

11.7 Example Configuration File for a Distributed Application 11-7

11.8 Modifying the Domain Gateway Configuration File to Support Routing 11-8

11.8.1 Description of ROUTING Section Parameters in DMCONFIG 11-8

11.8.1.1 Routing Field Description 11-9

11.8.1.2 Example of a 5-Site Domain Configuration Using Routing 11-10

12

Setting Up the Network for a Distributed Application

12.1 Configuring the Network for a Distributed Application 12-1

12.2 How Data Moves Over a Network 12-3

12.3 How Data Moves Over Parallel Networks 12-3

x

12.4 Example of a Network Configuration for a Simple Distributed Application 12-6

12.5 How Failover and Failback Work in Scheduling Network Data 12-6

12.6 Example Configuration of Multiple Netgroups 12-6

12.6.1 Configuration File for the Sample Network 12-8

12.6.2 Assigning Priorities for Each Network Group 12-8

12.6.2.1 Example Assignment of Priorities to Network Groups 12-9

12.6.2.2 Example NETGROUP and NETWORK Sections 12-9

13

Using Oracle Tuxedo Distributed Caching (TDC) with Oracle Coherence

13.1 Overview 13-1

13.1.1 Data Caching for Clients and Servers 13-2

13.1.2 Result Caching for Oracle Tuxedo Services 13-2

13.2 Configuring Oracle Coherence 13-4

13.2.1 tangosol-coherence-override.xml 13-4

13.2.2 coherence-cache-config.xml 13-5

13.3 Configuring Oracle Tuxedo Java Server 13-5

13.3.1 Configuring Oracle Tuxedo Java Server Configuration file 13-6

13.3.2 Configure Oracle Tuxedo Distributed Caching (TDC) Property File 13-7

13.4 Using Data Caching for Clients and Servers 13-7

13.4.1 Steps for Using Data Caching for Clients and Servers 13-7

13.4.1.1 Configure Oracle Coherence 13-8

13.4.1.2 Start Oracle Coherence Cluster 13-8

13.4.1.3 Configure Oracle Tuxedo Java Server 13-8

13.4.1.4 Configure UBBCONFIG 13-8

13.4.1.5 Put an Oracle Tuxedo buffer associated with a key into an Oracle
Tuxedo cache 13-8

13.4.1.6 Get an Oracle Tuxedo buffer from an Oracle Tuxedo cache according to
the key 13-9

13.4.2 Sample: Using Data Caching for Clients and Servers 13-9

13.4.2.1 Sample: Configure Oracle Coherence 13-10

13.4.2.2 Sample: Start Oracle Coherence cluster 13-11

13.4.2.3 Sample: Configure Oracle Tuxedo Java Server 13-11

13.4.2.4 Sample: Configure TMJAVASVR in UBBCONFIG 13-13

13.4.2.5 Sample: Put an Oracle Tuxedo buffer associated with a key into an
Oracle Tuxedo cache 13-13

13.4.2.6 Sample: Get an Oracle Tuxedo buffer from an Oracle Tuxedo cache
according to the key 13-14

13.5 Using Result Caching for Oracle Tuxedo Services 13-14

13.5.1 Steps for Using Result Caching for Oracle Tuxedo Services 13-14

13.5.1.1 Configure Oracle Coherence 13-15

13.5.1.2 Start Oracle Coherence Cluster 13-15

xi

13.5.1.3 Configure Oracle Tuxedo Java Server 13-15

13.5.1.4 Configure UBBCONFIG 13-15

13.5.1.5 Use MIB to Dynamically Make Changes for TDC 13-16

13.5.2 Sample: Using Result Caching for Oracle Tuxedo Services 13-16

13.5.2.1 Sample: Configure VIEWTABLE 13-17

13.5.2.2 Sample: Configure UBBCONFIG 13-17

13.5.2.3 Sample: Set on Server Side 13-18

13.5.2.4 Sample: Set on Client Side 13-18

13.6 Propagating Execution Context ID (ECID) to Oracle Coherence 13-19

13.6.1 Enabling ECID 13-19

13.6.2 Enabling ECID for TDC 13-20

13.7 Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs 13-21

13.7.1 tpgetcache(3c) 13-21

13.7.1.1 Name 13-21

13.7.1.2 Synopsis 13-21

13.7.1.3 Description 13-22

13.7.1.4 Return Values 13-22

13.7.1.5 Errors 13-22

13.7.2 tpcacheput(3c) 13-22

13.7.2.1 Name 13-23

13.7.2.2 Synopsis 13-23

13.7.2.3 Description 13-23

13.7.2.4 Return Values 13-23

13.7.2.5 Errors 13-23

13.7.3 tpcacheget(3c) 13-24

13.7.3.1 Name 13-24

13.7.3.2 Synopsis 13-24

13.7.3.3 Description 13-24

13.7.3.4 Return Values 13-24

13.7.3.5 Errors 13-25

13.7.4 tpcacheremove(3c) 13-25

13.7.4.1 Name 13-25

13.7.4.2 Synopsis 13-25

13.7.4.3 Description 13-26

13.7.4.4 Return Values 13-26

13.7.4.5 Errors 13-26

13.7.5 tpcachemremove(3c) 13-26

13.7.5.1 Name 13-27

13.7.5.2 Synopsis 13-27

13.7.5.3 Description 13-27

13.7.5.4 Return Values 13-27

xii

13.7.5.5 Errors 13-27

13.7.6 tpcacheremoveall(3c) 13-28

13.7.6.1 Name 13-28

13.7.6.2 Synopsis 13-28

13.7.6.3 Description 13-28

13.7.6.4 Return Values 13-28

13.7.6.5 Errors 13-28

13.8 Oracle Tuxedo Distributed Caching (TDC) Property File Properties 13-29

13.9 Oracle Tuxedo Distributed Caching (TDC) Related UBBCONFIG Parameters 13-30

13.10 UBBCONFIG SERVICES Section 13-30

13.10.1 UBBCONFIG CACHING Section 13-31

13.11 Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes 13-32

13.11.1 T_SERVICE Class Definition 13-32

13.11.2 T_CACHING Class Definition 13-33

14

Workstation Clients

14.1 What Is the Workstation Component? 14-1

14.2 Sample Application with Four Workstation Clients 14-1

14.3 How the Workstation Client Connects to an Application 14-3

15

Setting Up Workstation Clients

15.1 Defining Workstation Clients 15-1

15.2 Specifying the Maximum Number of Workstation Clients 15-2

15.3 Defining a Workstation Listener (WSL) as a Server 15-3

15.3.1 Passing Information to a WSL Process 15-3

15.3.2 Using Command-line Options Set with CLOPT 15-4

15.4 Detecting Network Failures 15-5

15.5 Using the Keep-alive Option 15-5

15.6 Using the Network Timeout Option 15-6

15.6.1 How Network Timeout Works 15-6

15.6.2 Limitations When Using the Network Timeout Option 15-7

15.6.3 Setting the Network Timeout Option 15-7

15.7 Sample Configuration File that Supports Workstation Clients 15-7

15.7.1 Modifying the MACHINES and SERVERS Sections 15-8

16

Managing Remote Oracle Tuxedo CORBA Client Applications

16.1 Introduction to Managing Remote Oracle Tuxedo CORBA Client Applications 16-1

16.2 CORBA Object Terminology 16-2

16.3 Remote CORBA Client Overview 16-4

xiii

16.3.1 Illustration of an Application with Remote CORBA Clients 16-4

16.3.2 How the Remote Client Connects to an Application 16-5

16.4 Setting Environment Variables for Remote CORBA Clients 16-5

16.5 Setting the Maximum Number of Remote CORBA Clients 16-6

16.6 Configuring a Listener for a Remote CORBA Client 16-7

16.6.1 Format of the CLOPT Parameter 16-7

16.7 Modifying the Configuration File to Support Remote CORBA Clients 16-7

16.8 Configuring Outbound IIOP for Remote Joint Client/Servers 16-8

16.8.1 Functional Description 16-9

16.8.1.1 Bidirectional Outbound IIOP 16-10

16.8.1.2 Asymmetric Outbound IIOP 16-11

16.8.1.3 Dual-paired Connection Outbound IIOP 16-12

16.8.1.4 How the Routing Code Finds an ISL 16-13

16.9 Using the ISL Command to Configure Outbound IIOP Support 16-14

16.9.1 Types of Object References 16-14

16.9.2 User Interface 16-14

16.10 Applying Service Version to Tuxedo Applications 16-15

16.10.1 Overview 16-15

16.10.2 Enabling and Disabling Application Service Versioning 16-15

16.10.2.1 Enable/Disable Application Service Version Using UBB Config File 16-15

16.10.2.2 Enable/Disable Application Service Versioning Using MIB 16-16

16.10.3 UBB Config File Application Service Version Configuration 16-16

16.10.4 Domain Configuration File Application Service Version Configuration 16-18

16.10.4.1 Version Based Routing 16-18

16.10.4.2 Resetting the User Configured Service Version Information Using MIB 16-19

17

Applying Service Version to Tuxedo Applications

17.1 Overview 17-1

17.2 Enabling and Disabling Application Service Versioning 17-1

17.2.1 Enable/Disable Application Service Versioning Using UBB Config File 17-2

17.2.2 Enable/Disable Application Service Versioning Using MIB 17-2

17.3 Application Service Version Configurations 17-3

17.3.1 UBB Config File Configuration 17-3

17.3.2 Domain Config File Configuration 17-4

17.4 Version Based Routing 17-5

17.5 Resetting the User Configured Service Version Information Using MIB 17-6

17.6 Interoperability 17-7

xiv

18

Oracle Tuxedo Applications Packing and Deployment

18.1 Overview 18-1

18.1.1 Components 18-1

18.1.2 Constraints 18-3

18.2 How to Deploy/Undeploy Tuxedo Applications 18-3

18.2.1 Introduction to Application Package Organization and Contents 18-3

18.2.2 Uploading/Deleting an Application Package 18-8

18.2.3 Creating and Deploying a Domain 18-8

18.2.3.1 deployment_plan 18-9

18.2.4 Undeploying a Domain 18-16

19

Configuring Tuxedo for Propagating ECID

19.1 Overview 19-1

19.1.1 Propagating ECID from Tuxedo to Database 19-2

19.1.2 Propagating ECID Between Tuxedo and WLS 19-2

19.1.3 Propagating ECID within Tuxedo 19-3

19.1.4 Generating ECID by Native/WS/Jolt clients and Domain Gateway 19-3

19.1.5 Interoperability 19-3

19.2 Configurations 19-4

19.2.1 Enabling and Disabling ECID Propagation 19-4

19.2.2 Configuring the Server to Propagate ECID via OCI 19-4

19.3 Tracing ECID with Tuxedo System 19-5

20

Logging Last Resource Transaction Optimization

20.1 Overview 20-1

20.2 Logging Last Resource Configurations 20-1

20.2.1 Configuring LLR Library in RM File 20-2

20.2.2 Configuring OPENINFO in UBBCONFIG File 20-2

20.2.3 Configuring LLR Options in UBBCONFIG File 20-3

20.2.4 Building LLR Server/TMS 20-3

20.2.5 Typical Configuration Example 20-3

20.3 Lazy Deletion on TLOG Records of Completed LLR Transactions 20-5

20.4 Constrains and Limitations 20-5

Index

xv

List of Figures

1-1 Administration Tools 1-6

3-1 How to Create the Configuration File for a Multiple-machine (Distributed) Application 3-4

3-2 how to create the section named in that area 3-6

3-3 Configuration Tasks for a Sample Multiple-domain Application 3-7

3-4 Configuring a Multiple-domain Application 3-8

3-5 Example of a Network Grouping 3-46

4-1 Transaction Management 4-5

4-2 Transactional Infection 4-8

6-1 (ORA1) Simple Configuration 6-16

6-2 (ORA2) Single Oracle RAC Instance with Multiple Groups 6-17

6-3 Multiple Oracle RAC Instances with Multiple Groups 6-19

6-4 Routing Transactional/Non-Transactional Requests 6-22

6-5 Assigning Transactions to Special Oracle RAC Instances 6-24

10-1 Sample of a Distributed Application 10-2

12-1 Flow of Data over the BRIDGE 12-5

12-2 Example Network Groups 12-7

12-3 Assigning Priorities to Network Groups 12-9

13-1 Result Caching for Oracle Tuxedo Services 13-3

14-1 Bank Application with Four Workstation Clients 14-2

14-2 Workstation Client 14-4

16-1 Bank Application with Remote Clients 16-5

16-2 Joint Client/Server IIOP Connections Supported 16-10

16-3 Bidirectional Connection 16-11

16-4 Asymmetric Outbound IIOP 16-12

16-5 Dual-paired Connections Outbound IIOP 16-13

18-1 Applications Packaging and Deployment Component Relationship 18-2

18-2 Application Package 18-4

19-1 ECID Propagation 19-1

xvi

List of Tables

1-1 Mandatory and Optional Tasks During the Setup Phase 1-1

1-2 Required and Optional Tasks During the Run-time Phase 1-2

1-3 Circumstances Needed in Intervention 1-3

2-1 Contents of the Configuration File 2-2

3-1 Description and Links to Reference Pages and Additional Information 3-9

3-2 Characteristics of the Model and OPTIONS Parameters 3-11

3-3 Characteristics of the MAXBUFTYPE and MAXBUFSTYPES Parameters 3-12

3-4 Characteristics of MAXACCESSERS, MAXSERVERS, MAXSERVICES,

MAXINTERFACES, and MAXOBJECTS Parameters 3-13

3-5 Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters 3-18

3-6 Characteristics of the UID, GID, and PERM Parameters 3-19

3-7 Characteristics of the SECURITY, AUTHSVC, and OPTIONS Parameters 3-20

3-8 Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE Parameters 3-22

3-9 How to Create the MACHINES Section of the Configuration File 3-24

3-10 Characteristics of the APPDIR and TUXDIR Parameters 3-34

3-11 How to Create the GROUPS Section of the Configuration File 3-36

3-12 How to Create the NETWORK Section of the Configuration File 3-41

3-13 How to Create the NETGROUPS Section of the Configuration File 3-45

3-14 Machines and Addresses for Groups 3-46

3-15 How to Create the SERVERS Section of the Configuration File 3-49

3-16 Specifying Server Command-line Options 3-56

3-17 How to Create the SERVICES Section of the Configuration File 3-62

3-18 Setting Parameters in the Configuration File to Use Threads 3-79

4-1 ACID Properties of Oracle Tuxedo Transactions 4-2

4-2 Actions Performed by the Transaction Manager 4-4

7-1 IPv4 and IPv6 interoperability 7-3

8-1 MIB(5) Similarities and Differences 8-2

8-2 Service-Level Keyword, Abbreviations, and Values 8-4

8-3 Parameter-Level Keyword, Abbreviations, and Values 8-8

8-4 Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case) Matching Table I 8-11

8-5 Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case) Matching Table II 8-12

8-6 Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case) Matching Table III 8-12

11-1 RESOURCES Section Parameters 11-2

11-2 MACHINES Section Parameters 11-3

11-3 GROUPS Section Parameters 11-4

xvii

11-4 SERVICES Section Parameters 11-5

11-5 ROUTING Section Parameters 11-6

12-1 Configuring the Network for a Distributed Application 12-1

13-1 Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs 13-21

13-2 Oracle Tuxedo Distributed Caching (TDC) Property File Properties 13-30

13-3 Oracle Tuxedo Distributed Caching (TDC) Related UBBCONFIG SERVICES Section

Parameters 13-30

13-4 Oracle Tuxedo Distributed Caching (TDC) Related UBBCONFIG Parameters 13-31

13-5 Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes 13-32

13-6 Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes 13-33

15-1 Defining Workstation Clients 15-1

15-2 Using Command-line Options Set with CLOPT 15-4

15-3 Using the Keep-alive Option 15-5

18-1 GROUPS Section Properties 18-5

18-2 RMS Section Properties 18-5

18-3 SERVERS Section Properties 18-5

18-4 SERVICES Section Properties 18-6

18-5 Description Information of the Package 18-7

20-1 LLR Library 20-2

20-2 OPENINFO Format 20-2

xviii

1
Administrative Tasks and Tools

This topic includes the following sections:

• Tasks an Administrator Performs

• Planning the Design of Your Application

• Tools to Help You Administer Your Application

1.1 Tasks an Administrator Performs
An administrator’s job can be viewed as two broadly defined tasks:

Setup tasks
All the tasks required to prepare your system before booting your application.

Run-time administration
Any tasks performed on an application that has been booted.

• Setup Tasks

• Run-time Tasks

• Differences Between the Oracle Tuxedo ATMI and CORBA Environments

1.1.1 Setup Tasks
During the setup phase, an administrator is responsible for the planning, design, installation,
security, and configuration of the Oracle Tuxedo system. The following table describes the
required and optional tasks during the setup phase.

Table 1-1 Mandatory and Optional Tasks During the Setup Phase

Setup Task Mandatory Optional

Collect information from designers, programmers, and business users of the
application

X -

Set up the hardware and software, and install the Oracle Tuxedo system and
the application (installation)

X -

Set up the Oracle Tuxedo system parameters that govern how the application
uses components (configuration)

X -

Configure transactions for domains, machines, groups, interfaces, services, and
other required components (configuration)

X -

Select and implement security methods for protecting the application and data X -

For CORBA environments, configure an Internet Inter-ORB Protocol (IIOP)
Listener/Handler and modify the machine configuration

X -

Set up distributed applications with routing tools: factory-based routing for
CORBA environments and data-dependent routing for ATMI environments

- X

Set up networked applications - X

1-1

Table 1-1 (Cont.) Mandatory and Optional Tasks During the Setup Phase

Setup Task Mandatory Optional

Configure local and remote domains - X

Set up Workstation clients: add environment tables and a workstation listener,
and modify the machine configuration

- X

Create an application queue space and modify the configuration to support
queued messages

- X

Apply service version to Oracle Tuxedo applications - X

After Tuxedo installation, deploy/undeploy the applications from a centralized
control platform using deployment/undeployment tool

- X

1.1.2 Run-time Tasks
With your Oracle Tuxedo system installed and your TUXCONFIG file loaded, you are
ready to boot your application. When your application is launched, you must start
monitoring its activities for problems—both actual and potential. The following table
describes the required and optional tasks during the run-time phase.

Table 1-2 Required and Optional Tasks During the Run-time Phase

Run-time Task Required Optional

Start up and shut down an application X -

Manage buffers X -

Administer the security of your application X -

Monitor the activities, problems, and performance of your application X -

For ATMI environments, manage transactions - X

For CORBA environments, manage interfaces - X

Manage networked applications - X

Manage remote Workstation clients - X

Subscribe to events - X

Use queued messaging - X

Identify and resolve problems as they occur (troubleshoot) - X

Reassign primary responsibility for your application from the MASTER machine
to an alternate (BACKUP) machine (migration) when problems occur on the
MASTER (migration)

- X

Change system parameters and the selection of services to meet evolving
needs (dynamic modification)

- X

Refine your application to reflect additional components, such as new machines
or servers (dynamic reconfiguration)

- X

During run time, you may need to respond quickly to potential problems or evolving
requirements of an application. To help you perform these functions, you have a
choice of three tools:

• the Oracle Tuxedo Administration Console

• the command-line interface

• the AdminAPI

Chapter 1
Tasks an Administrator Performs

1-2

The following table describes some of the circumstances in which your intervention may be
required.

Table 1-3 Circumstances Needed in Intervention

To... You May Want to...

Maximize performance Adds load balancing or set priorities for interfaces and
services.

Fix problems that may develop on the MASTER machine Replaces it with a designated BACKUP machine.

Change processing and resource usage requirements Adds machines, servers, clients, interfaces, services,
and so on.

Note:

• Planning the Design of Your Application

• Tools to Help You Administer Your Application

1.1.3 Differences Between the Oracle Tuxedo ATMI and CORBA
Environments

For the Oracle Tuxedo CORBA environment, the Oracle Tuxedo administration facilities
support the administration of applications running within the context of the Object Request
Broker (ORB) and the TP Framework.

The UBBCONFIG configuration file for Oracle Tuxedo CORBA environments supports the
configuration of client and server applications, as follows:

• The RESOURCES section provides application-wide defaults for the sizing of bulletin board
tables.

• The MACHINES section allows the specification of processor-specific values for sizing of
those tables.

• The INTERFACES, section allows the specification of information about CORBA interfaces
used by the application.

• The ROUTING section provides support for a different type of routing criteria used with
Tuxedo CORBA environments. Also, existing ROUTING sections that specify Oracle
Tuxedo ATMI data-dependent routing parameters continue to work without modification.

• In the Oracle Tuxedo ATMI environment, you configure workstation handlers and
listeners for connections from client applications to server applications. From an
administrative viewpoint, this task is similar in Oracle Tuxedo CORBA environments.
However, the Oracle Tuxedo CORBA environment uses a different communications
protocol to connect remote and foreign clients to Oracle Tuxedo server applications. The
protocol is the standard Internet Inter-ORB Protocol (IIOP). Instead of the Oracle Tuxedo
Workstation Handler (WSH) process and Workstation Listener (WSL) process, the
CORBA environment calls its gateway processes the IIOP Handler (ISH) and the IIOP
Listener (ISL). This results in a slight syntax difference, ISL instead of WSL, in the SERVERS
section of each application’s UBBCONFIG configuration file.

Chapter 1
Tasks an Administrator Performs

1-3

Overall, the administration tasks for the Oracle Tuxedo CORBA and ATMI
environments are similar. The following are a few principal differences between the
environments:

• In both environments, you use a routing criteria to distribute processing to specific
server groups. The routing mechanism in an Oracle Tuxedo CORBA environment
system is known as factory-based routing. It is fundamentally different than the
Oracle Tuxedo ATMI data-dependent routing mechanism.
In the Oracle Tuxedo ATMI environment, you can examine any FML field used for
a service invocation to determine the data-dependent routing criteria. In Oracle
Tuxedo CORBA environments, the system designer must personally communicate
the routing criteria of CORBA interfaces. For Oracle Tuxedo CORBA
environments, there is no service request message data or associated buffer
information available for routing. This occurs because CORBA routing is
performed at the factory, not on a method invocation on the target CORBA object.

• You cannot dynamically advertise CORBA interfaces at run time. However, you
can suspend or reactivate CORBA interfaces.

• No direct ACL control is provided for CORBA interfaces. No control over servants
is provided at the administrative level. In the UBBCONFIG configuration file, the
MANDATORY_ACL parameter to the SECURITY parameter is ignored.

• The LDAP single security administration feature is not supported by the CORBA
interface.

Note:

The Management Information Base (MIB) defines the set of classes through
which the fundamental aspects of an application can be configured and
managed. The MIB classes provide an administrative programming interface
to the Oracle Tuxedo CORBA and ATMI environments.

1.2 Planning the Design of Your Application
An administrator needs to know a customer’s business requirements and how the
software will be used. Once these needs are understood, administrators can work with
their system designers and application developers to make sure that the application’s
configuration can support its requirements.

Answers to the following preliminary questions may help in planning the design of your
application.

1. How many machines will be used? ____________________

2. Will client applications reside on machines that are remote from the server
applications? _____________________

3. For ATMI, which services will your application offer?

4. For CORBA, which interfaces will your client or server application use?

Chapter 1
Planning the Design of Your Application

1-4

5. What resource managers (database) will the application use and where will they be
located?

6. What “open” strings will the resource managers need?

7. What setup information will be needed for an RDBMS?

__

8. Will transactions be distributed? ________________

9. Will the application use global transactions? ________________

10. What buffer types will be used?
__

11. Will data be distributed across machines?

12. To which external domains will the application export services? From which external
domains will the application import services?

__

13. Will factory-based or data-dependent routing be used in your application?

14. What are the names of the CORBA interfaces or ATMI services?

__

15. In what order of priority should the interfaces or services be available?

__

16. What are the reliability requirements? Will redundant listener and handler ports be
needed? Will replicated server applications be needed?

17. For CORBA environments, will the domain need an Interface Repository (IR) database?
If so, will the domain benefit from having IR replicas, and how many IR server
applications should be defined?

18. Are there any conversational services? What resource managers do they access? What
buffer types do they use?

Chapter 1
Planning the Design of Your Application

1-5

See Also:

• Tools to Help You Administer Your Application

1.3 Tools to Help You Administer Your Application
The Oracle Tuxedo system gives you a choice of several methods for performing the
same set of administrative tasks for either Oracle Tuxedo ATMI or CORBA
environments. Whether you are more comfortable using a graphical user interface or
entering commands at a shell prompt, you will be able to find a comfortable method of
doing your job as the administrator of an Oracle Tuxedo application. The following
figure illustrates the tools you can use to write the configuration file and administer
your Oracle Tuxedo application during run time.

Figure 1-1 Administration Tools

Bulletin

Board

TLOG ULOG

MIB Events

MIB API Command-Line

Utilities

EventBroker

• Oracle Tuxedo MIB Application Programming Interface—an interface to a set of
procedures for accessing and modifying information in the MIBs.

Chapter 1
Tools to Help You Administer Your Application

1-6

• Command-line utilities—a set of commands used to manage, activate, configure, and
deactivate the application (that is, tmadmin(1), tmboot(1), tmconfig, wtmconfig(1),
tmshutdown(1), respectively). For more information, refer to the Oracle Tuxedo
Command Reference

If You Use This Tool... You Must...

Oracle Tuxedo MIB Application Programming
Interface

Write a program that modifies the TUXCONFIG file
for you.

Command-line interface 1. Create and edit the UBBCONFIG file (a text
version of TUXCONFIG) with a text editor.

2. Run tmloadcf to convert the UBBCONFIG file
into a TUXCONFIG (binary) file.

See Also:

• “Managing Operations Using the MIB” in Introducing Oracle Tuxedo ATMI

• “Managing Operations Using Command-Line Utilities” in Introducing Oracle
Tuxedo ATMI

• Tasks an Administrator Performs

• “Oracle Tuxedo ATMI Architecture” in Introducing Oracle Tuxedo ATMI

• “The Tuxedo CORBA Programming Environment,” in Getting Started with
Oracle Tuxedo CORBA Applications

• ACL_MIB(5), APPQ_MIB(5), EVENT_MIB(5), MIB(5), TM_MIB(5), WS_MIB(5), and
UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference File Formats, Data Descriptions, MIBs, and System
Processes Reference

• tmshutdown(1), tmloadcf(1), tmadmin(1), tmboot(1), tmconfig, and
wtmconfig(1), in the Oracle Tuxedo Command Reference

Chapter 1
Tools to Help You Administer Your Application

1-7

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html

2
About the Configuration File

This topic includes the following sections:

• What Is the Configuration File?

• Contents of the Configuration File

• CORBA Administrative Requirements and Performance

2.1 What Is the Configuration File?
Configuring each Oracle Tuxedo application is a central task of the administrator. By
configuring a file, you are describing your application using a set of parameters that the
software interprets to create a viable application. The configuration file is a repository that
contains all the information necessary to boot and run an application, such as specifications
for application resources, machines, machine groups, servers, available services, interfaces,
and so on.

• Text and Binary Versions of the Configuration File

2.1.1 Text and Binary Versions of the Configuration File
The configuration file exists in two versions:

• The UBBCONFIG file is a text version of the configuration file, created and edited with any
text editor. Except for sample configuration files distributed with Oracle Tuxedo sample
applications, no UBBCONFIG file is provided. You must create a UBBCONFIG file for each
new application. The syntax used for entries in the file is described in UBBCONFIG(5) in
the File Formats, Data Descriptions, MIBs, and System Processes Reference.

• The Oracle Tuxedo software provides three sample UBBCONFIG files—ubbshm, ubbmp, and
ubbsimple—as part of the bankapp and simpapp applications. (See Tutorials for
Developing Oracle Tuxedo ATMI Applications.)

• The TUXCONFIG file is a binary version of the configuration file, created from the text
version by the tmloadcf(1) command. Before tmloadcf is executed, the environment
variable TUXCONFIG must be set to the full pathname of the device or system file where
TUXCONFIG is to be loaded. If necessary, many parameters in TUXCONFIG can be changed
while the application is running by using tmconfig, wtmconfig (1) or the MIB.

See Also:

• UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

• tmconfig, wtmconfig (1), and tmloadcf(1) in the Section 1 - Commands

2-1

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html

2.2 Contents of the Configuration File
The following table lists the nine sections of the configuration file and describes the
purpose of each section.

Table 2-1 Contents of the Configuration File

Section Required or
Optional

Purpose

RESOURCES Required Defines all system parameters.

MACHINES Required Specifies all the machines in your application.

GROUPS Required Defines all groups, group names, and group IDs for your application.

SERVERS Optional Specifies the initial conditions for servers started in the system.

SERVICES Optional Provides information on services used by the application.

INTERFACES Optional For CORBA environments, provides information on application-wide, default
parameters for interfaces used by the application.

NETWORK Optional Describes the network configuration for a LAN environment.

NETGROUPS Optional Describes the network groups available to the application in the LAN
environment.

ROUTING Optional Provides information for data-dependent routing of service requests using FML
buffers and views.

The file must also contain a minimum of nine parameters. There are 80 different
parameters, and all sections but the first, may contain multiple entries, each with its
own selection of parameters. In all sections other than RESOURCES, you can use a
default to specify parameters that are included in multiple entries.

You can use the command-line interface to create the binary version of the
configuration file (TUXCONFIG). First you need to determine the type of configuration
you are defining in the file.

• A single-machine application—one or more local or remote clients communicate
with one or more servers residing on the same machine.

• A multiple-machine (distributed) application—one or more local or remote clients
communicate with one or more servers residing on several machines.

• A multiple-domain application—two or more applications communicate with each
other through the use of the Oracle Tuxedo Domains extension. Each application
included in such a configuration is called a domain.

2.3 CORBA Administrative Requirements and Performance
This section provides information to assist you in administering your CORBA
environment in the Oracle Tuxedo system.

• Configuring NameManager

• Reliability Requirements

• Performance Hint

Chapter 2
Contents of the Configuration File

2-2

2.3.1 Configuring NameManager
Adhering to the following requirements is fundamental to successful CORBA administration.

• NameManagers coordinates their activities with each other using the Oracle Tuxedo
EventBroker without administrative or operations intervention. The EventBroker is started
before any servers provide the NameManager service. If the EventBroker is not
configured into the application and is not running when the NameManager service is
booted, the NameManager aborts its startup and writes an error message to the user log.

• At least two servers must be configured to run the NameManager service as part of any
application. This requirement is to ensure that a working copy of the “name-to-IOR”
mapping is always available. If the servers are on different machines, and one machine
crashes, when the machine and application are restarted, the new NameManager obtains
the mapping from the other NameManager. If an application is solely contained on one
machine and the machine crashes, the NameManagers are rebooted as part of the
application startup because the application must be rebooted. If two NameManagers are
not configured in the application when a NameManager service is booted, the
NameManager aborts its startup and writes an error message to the user log.

• NameManagers can be designated as either master or slave, the default being slave. If a
master NameManager server is not configured in the application and is not running when
a slave NameManager server starts, the server terminates itself during boot and writes
an error message to the user log.

• If a NameManager service is not configured in the application when a FactoryFinder
service is booted, the FactoryFinder aborts its startup and writes an error message to the
user log. It is not necessary for the NameManager service to start before a FactoryFinder
service because the FactoryFinder only communicates with a NameManager when a
“find” request is received from an application. NameManagers, on the other hand,
attempt to communicate with each other when they boot. FactoryFinders do not
communicate with each other except when a request is received to find a factory that is in
a remote domain.

• Oracle Tuxedo EventBroker, NameManager, and FactoryFinder services must be started
before any of the application-specific servers. However, if more than one EventBroker is
to be configured in the application, all secondary EventBrokers must be started after all
application servers are started. There is no system protocol to enforce this in an
application server; therefore, you accomplish this by positioning all secondary
EventBrokers after the application servers.

• The Master NameManager is started and must be running before any application server
can register a reference to a factory object. The existence of an executing Slave
NameManager is not sufficient.

2.3.2 Reliability Requirements
This section contains information to improve CORBA reliability.

• Managing Factory Entries

• Configuring Multiple NameManagers and FactoryFinders

• Designating a Master NameManager

Chapter 2
CORBA Administrative Requirements and Performance

2-3

2.3.2.1 Managing Factory Entries
When application servers stops functioning, they often fail to unregister their factories
with the NameManager. In some cases, the FactoryFinder may give out object
references for factories that are no longer active. This occurs because the servers
containing those factories have become unavailable, have failed to unregister their
factories with the NameManager, and there is no other server capable of servicing the
interface for that factory.

In general, an application factory can restart shortly thereafter, and then offer the
factories. However, to ensure that factory entries are not kept indefinitely, the
NameManager is notified when application servers die. Upon receipt of this
notification, the NameManager may remove those factory entries that are not
supported in any currently active server.

2.3.2.2 Configuring Multiple NameManagers and FactoryFinders
At a minimum, two NameManagers, a master and a slave, must be configured in an
application, preferably on different machines, to provide querying capabilities for a
FactoryFinder. Multiple FactoryFinders can also be configured in an application.

2.3.2.3 Designating a Master NameManager
A Master NameManager must be designated in the UBBCONFIG file. All registration
activities are sent to the Master NameManager. The Master NameManager then
notifies the Slave NameManagers about the updates. If the Master NameManager is
down, registration/unregistration of factories is disabled until the Master restarts.

2.3.3 Performance Hint
You can optimize FactoryFinder and NameManager performance by running these
services on separate servers within the same machine rather than running these
services on different machines. This provides a quicker response because it eliminates
the need for machine-to-machine communication.

See Also:

• How to Create a Configuration File

• How to Create the Configuration File for a Multiple-machine (Distributed)
Application

• “Oracle Tuxedo Domains (Multiple-Domain) Servers” in Introducing
Oracle Tuxedo ATMI

• “How to Create the TUXCONFIG File” in Administering a Oracle Tuxedo
Application at Run Time

• For distributed Oracle Tuxedo CORBA applications, refer to the Scaling,
Distributing, and Tuning CORBA Applications guide.

Chapter 2
CORBA Administrative Requirements and Performance

2-4

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ada/adboot.html

3
Creating the Configuration File

This topic includes the following sections:

• How to Create a Configuration File

• How to Create the Configuration File for a Single-machine Application

• How to Create the Configuration File for a Multiple-machine (Distributed) Application

• How to Create the Configuration File for a Multiple-domain Application

• How to Create the RESOURCES Section of the Configuration File

• Defining the Application Type

• Controlling the Number of Buffer Types and Subtypes

• Controlling the Number of Conversations

• Defining IPC Limits

• Enabling Load Balancing

• Identifying the Master Machine

• Specifying the Maximum Number of Network Groups

• Specifying the Number of Sanity Checks and Blocking Timeouts

• Establishing Operating System-level Security

• Specifying the Security Level

• Defining the Security Attributes of a Server

• Protecting Shared Memory

• Setting the Address of the System Resources for an Application

• Specifying How Clients Receive Unsolicited Notification

• How to Create the MACHINES Section of the Configuration File

• Specifying the Maximum Number of ACL Entries in the Cache

• Defining an Additional Service Request Load

• Reserving the Physical Address and Machine ID

• Setting the Number of Lock Spins

• Specifying Machines as Types

• Identifying the Location of the Configuration File

• Indicating the Size of the DTP Transaction Log

• Defining the DTP Transaction Log Name

• Specifying Environment Variable Settings

• Defining the Oracle Tuxedo Filesystem Containing the TLOG

• Specifying a Machine’s Maximum Number of Simultaneous Global Transactions

3-1

• Defining the Number of Accesser Entries on a Workstation Client

• Defining Space Limits for Messages Transmitted by the BRIDGE

• Indicating the Offset for the DTP Transaction Log

• Defining the Offset for TUXCONFIG

• Identifying the Locations of the System Software and Application Server Software

• Indicating a Threshold Message Size for Compression

• Specifying the Pathname for the ULOG

• How to Create the GROUPS Section of the Configuration File

• Specifying a Group Name, Number, and LMID

• Indicating a Transaction Manager Server Name and Numbers per Group

• Identifying the Environment File Location for Servers in a Group

• Defining Information Needed When Opening and Closing the Resource Manager

• How to Create the NETWORK Section of the Configuration File

• Specifying a Device Name for the BRIDGE Process

• Assigning a BRIDGE Network Address

• Assigning Encryption Levels

• Assigning a tlisten Network Address

• How to Create the NETGROUPS Section of the Configuration File

• Assigning a Name to a Network Group

• Assigning a Network Group Number

• Assigning a Priority to the Network Group

• How to Create the SERVERS Section of the Configuration File

• Specifying a Server as Conversational

• Setting the Order in Which Servers Are Booted

• Characteristics of the SEQUENCE, MIN, and MAX Parameters

• Specifying Server Command-line Options

• Identifying the Location of the Server Environment File

• Defining Server Name, Group, and ID

• Identifying Server Queue Information

• Defining Server Restart Information

• Defining Server Access to Shared Memory

• Defining the Server Dispatch Threads

• Setting Security Parameters for ISL Servers

• How to Create the SERVICES Section of the Configuration File

• Specifying Automatic Starts and Timeout Intervals for Transactions

• Specifying a List of Allowable Buffer Types for a Service

• Designating How Much Time to Process a Request

Chapter 3

3-2

• Specifying Nontransactional Service-Level Blocktime

• Enabling Load Balancing

• Defining the Name of the Routing Criteria

• Specifying Service Parameters for Different Server Groups

• Controlling the Flow of Data by Service Priority

• Indicating Service Processing Time

• How to Create the INTERFACES Section of the Configuration File

• How to Create the ROUTING Section of the Configuration File

• Defining the Routing Buffer Field and Field Type

• Specifying Range Criteria

• Defining Buffer Types

• CORBA Factory-based Routing in the University Production Sample Application

• CORBA Factory-based Routing in the Bankapp Sample Application

• How to Configure the Oracle Tuxedo System to Take Advantage of Threads

• How to Compile a Configuration File

3.1 How to Create a Configuration File
Configuration file requirements are determined by the needs of your application. Following
are instructions for several types of configurations:

• How to Create the Configuration File for a Single-machine Application

• How to Create the Configuration File for a Multiple-machine (Distributed) Application

• How to Create the Configuration File for a Multiple-domain Application

• How to Configure the Oracle Tuxedo System to Take Advantage of Threads

See Also:

• About the Configuration File

• UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

3.2 How to Create the Configuration File for a Single-machine
Application

For a single-machine configuration, you require to create the following sections of the
configuration file. Click on each task for instructions on completing that task.

1. How to Create the RESOURCES Section of the Configuration File

2. How to Create the MACHINES Section of the Configuration File

Chapter 3
How to Create a Configuration File

3-3

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

3. How to Create the GROUPS Section of the Configuration File

4. How to Create the SERVERS Section of the Configuration File

5. How to Create the SERVICES Section of the Configuration File

6. How to Create the INTERFACES Section of the Configuration File

7. How to Create the ROUTING Section of the Configuration File

The following diagram illustrates how to create the section named in that area.

Figure 3-1 How to Create the Configuration File for a Multiple-machine
(Distributed) Application

*Resources (application-wide infomration)

*Machines (machine-wide information)

*Groups (group-wide information)

*Servers (server-specific information)

*Services (services-specific information)

svr1

svc1

svr2

svc2

svr3

3.3 How to Create the Configuration File for a Multiple-
machine (Distributed) Application

For a distributed ATMI application, you need to create the following sections of the
configuration file. Click any of the following tasks for instructions on completing that
task.

Chapter 3
How to Create the Configuration File for a Multiple-machine (Distributed) Application

3-4

1. How to Create the RESOURCES Section of the Configuration File

2. How to Create the MACHINES Section of the Configuration File

3. How to Create the GROUPS Section of the Configuration File

4. How to Create the NETWORK Section of the Configuration File

5. How to Create the NETGROUPS Section of the Configuration File

6. How to Create the SERVERS Section of the Configuration File

7. How to Create the SERVICES Section of the Configuration File

8. How to Create the ROUTING Section of the Configuration File

Note:

For detailed information about creating a configuration file for a distributed CORBA
application in the Oracle Tuxedo system, refer to the Scaling, Distributing, and
Tuning CORBA Applications guide.

The following diagram illustrates how to create the section named in that area.

Chapter 3
How to Create the Configuration File for a Multiple-machine (Distributed) Application

3-5

Figure 3-2 how to create the section named in that area

*Resources (application-wide infomration)

*Machines (machine-wide information)

*Groups (group-wide information)

*Network (networking
information)

*Netgroups (network
groups information)

*Services (services-specific
information)

svc1 svc2

*Servers (server-specific
information)

svr1 svr2 svr3

3.4 How to Create the Configuration File for a Multiple-
domain Application

For a multiple-domain configuration, you need to create two configuration files for each
participating domain:

• UBBCONFIG—the application configuration file

• DMCONFIG—the domains configuration file

For an application that consists of two domains (for example, lapp and rapp for local
and remote domains, respectively), the following tasks are required.

Click on each task for instructions on completing that task.

The following figure illustrates the configuration tasks for a sample multiple-domain
application.

Chapter 3
How to Create the Configuration File for a Multiple-domain Application

3-6

Figure 3-3 Configuration Tasks for a Sample Multiple-domain Application

The following figure illustrates which sections of the UBBCONFIG and DMCONFIG files you need
to configure for a two-domain application. One domain represents the local domain; the other,
the remote domain.

The following diagram describes the instructions on creating that section of the configuration
file.

Chapter 3
How to Create the Configuration File for a Multiple-domain Application

3-7

Figure 3-4 Configuring a Multiple-domain Application

See Also:

• About Domains in Using the Oracle Tuxedo Domains Component

• Planning and Configuring ATMI Domains” in Using the Oracle Tuxedo
Domains Component

• DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

Chapter 3
How to Create the Configuration File for a Multiple-domain Application

3-8

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

3.5 How to Create the RESOURCES Section of the
Configuration File

The first section of every configuration file must be the RESOURCES section. The parameters
defined in this section control the application as a whole and serve as system-wide defaults.
The values of RESOURCES parameters can be overridden, however, on a per-machine basis by
assigning other values in the MACHINES section.

For each parameter in the RESOURCES section, the following table provides a description and
links to reference pages and additional information.

Table 3-1 Description and Links to Reference Pages and Additional Information

To Specify This Information in the RESOURCES Section Set This
Parameter
(Required/
Optional)

For More
Information, Click
the Following

Unique address of interprocess communication (IPC) resources IPCKEY
(Required)

Shared memory
address

Security access UID, GID, and
PERM (Optional)

Security access

Maximum number of processes that can be simultaneously connected to
a bulletin board

MAXACCESSERS
(Optional)

IPC limits

Maximum number of server table entries in a bulletin board MAXSERVERS
(Optional)

IPC limits

Maximum number of service table entries in a bulletin board MAXSERVICES
(Optional)

IPC limits

Maximum number of CORBA interfaces MAXINTERFACE
S (Optional)

IPC limits

Maximum number of CORBA objects MAXOBJECTS
(Optional)

IPC limits

Distinguished Bulletin Board Liaison (DBBL) location at which booting,
shutdown, and other administrative tasks are performed

MASTER
(Required)

Master processor

Bulletin board architecture MODEL, SHM or
MP, and LAN or
MIGRATE
options
(Required)

Application type

Security level SECURITY,
AUTHSVC
(Optional)

Security levels

Principal name of the process used for identification, location of private
key of principal user, and the environment variable containing the
password

SEC_PRINCIPA
L_NAME,
SEC_PRINCIPA
L_LOCATION,
and
SEC_PRINCIPA
L_PASSVAR

Security attributes

Chapter 3
How to Create the RESOURCES Section of the Configuration File

3-9

Table 3-1 (Cont.) Description and Links to Reference Pages and Additional Information

To Specify This Information in the RESOURCES Section Set This
Parameter
(Required/
Optional)

For More
Information, Click
the Following

Default method for clients to detect unsolicited messages NOTIFY,
USIGNAL
(Optional)

Unsolicited
notification

Protecting shared memory SYSTEM_ACCES
S (Optional)

Shared memory
protection

Whether server load balancing is enabled LDBAL
(Optional)

Load balancing

Maximum number of buffer types and subtypes MAXBUFTYPE,
MAXBUFSTYPES
(Optional)

Buffer types/subtypes

Maximum number of conversations allowed on a machine MAXCONV
(Optional)

Conversation limits

Maximum number of network groups MAXNETGROUPS
(Optional)

Network groups

Sanity check frequency and amount of time allowed for blocking calls SCANUNIT,
SANITYSCAN,
BLOCKTIME
(Optional)

Sanity check
frequency and
blocking timeouts

• Sample RESOURCES Section

3.5.1 Sample RESOURCES Section
The following is a sample RESOURCES section of a configuration file.

* RESOURCES
IPCKEY 39211
UID 0
GID 1
PERM 0660
MAXACCESSERS 75
MAXSERVERS 40
MAXSERVICES 55
MASTER SITE1, SITE2
MODEL MP
OPTIONS LAN, MIGRATE
SECURITY APP_PW
AUTHSVC "AUTHSVC"
NOTIFY DIPIN
SYSTEM_ACCESS PROTECTED, NO_OVERRIDE
LDBAL Y

Chapter 3
How to Create the RESOURCES Section of the Configuration File

3-10

See Also:

• UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

• How to Create the MACHINES Section of the Configuration File

3.6 Defining the Application Type
Among the architectural decisions needed for an Oracle Tuxedo application are the following:

• Must this application run on a single processor or multiprocessor with global shared
memory?

• Will the application be networked?

• Will server migration be supported?

Use the MODEL and OPTIONS parameters to define the application type.

The MODEL parameter specifies whether an application runs on a single processor. It is set to
SHM for uniprocessors and also for multiprocessors with global shared memory. A MODEL value
of MP is used for multiprocessors that do not have global shared memory, as well as for
networked applications. This is a required parameter.

The OPTIONS parameter is a comma-separated list of application configuration options. Two
available options are LAN (indicating a networked configuration) and MIGRATE (indicating that
application server migration is allowed).

• Characteristics of the MODEL and OPTIONS Parameters

• Example Settings

3.6.1 Characteristics of the MODEL and OPTIONS Parameters
The following the characteristics of the model and OPTIONS parameters.

Table 3-2 Characteristics of the Model and OPTIONS Parameters

Parameter Characteristics

MODEL It is a required parameter. A value of SHM indicates a single machine with global shared memory.
A value of MP indicates either multiple machines without global shared memory, or a networked
application.

OPTIONS It is a comma-separated list of application configuration options. A value of LAN indicates a local
area network. A value of MIGRATE enables server migration.
In the sample RESOURCES section, MODEL is set to MP; OPTIONS is set to LAN and MIGRATE.

Chapter 3
Defining the Application Type

3-11

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

3.6.2 Example Settings
The following is a sample setting in the RESOURCES section of a configuration file.

*RESOURCES
 MODEL MP
 OPTIONS LAN, MIGRATE

3.7 Controlling the Number of Buffer Types and Subtypes
You can control the number of buffer types and subtypes allowed in the application
with the MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. Unless you are
creating many user-defined buffer types, you can omit MAXBUFTYPE. If you intend to use
many different VIEW types, you may want to set MAXBUFSTYPE to a value higher than its
current default.

Table 3-3 Characteristics of the MAXBUFTYPE and MAXBUFSTYPES Parameters

Parameter Characteristics

MAXBUFTYPE Maximum number of buffer types allowed in the system. Use only if you create 8 or more user-
defined buffer types. The value of MAXBUFTYPE must be greater than 0 and less than 32,768. If
not specified, the default is 16.
Example: MAXBUFTYPE 20

MAXBUFSTYPE Maximum number of buffer subtypes allowed in the system. The value of MAXBUFSTYPE must be
greater than 0 and less than 32,768. If not specified, the default is 32.
Example: MAXBUFSTYPE 4

• Example Settings

3.7.1 Example Settings
In this example, the maximum number of buffer types is 20; the maximum number of
subtypes is 40.

*RESOURCES
MAXBUFTYPE 20
MAXBUFSTYPE 40

3.8 Controlling the Number of Conversations
You can specify the maximum number of simultaneous conversations on a machine
with the MAXCONV parameter. The value of MAXCONV must be greater than 0 and less
than 32,768.

• Characteristics of the MAXCONV Parameter

• Example Setting

Chapter 3
Controlling the Number of Buffer Types and Subtypes

3-12

3.8.1 Characteristics of the MAXCONV Parameter
The MAXCONV parameter has the following characteristics:

• It defines the maximum number of simultaneous conversations allowed on each machine.

• The default for an application that has conversational servers listed in the SERVERS
section is 10; otherwise, the default is 1.

• You can overwrite this parameter for any machine by specifying a different value in the
MACHINES section.

3.8.2 Example Setting
In this example, the maximum number of simultaneous conversations allowed on each
machine is 15.

*RESOURCES
 MAXCONV 15

3.9 Defining IPC Limits
It is extremely imperative to tune interprocess communication (IPC) and shared memory
bulletin board tables correctly since most of them are statically allocated for speedy
processing. If they are sized too generously, memory and IPC resources are wasted;
otherwise, processes fail when the limits are exceeded. You can use the tmloadcf -c
command to find out the maximum IPC resources required by a specific application. (See
tmloadcf(1) in the Oracle Tuxedo Command Reference.)

MAXACCESSERS, MAXSERVERS, MAXSERVICES, MAXINTERFACES, and MAXOBJECTS are the tunable
parameters that control IPC sizing. The amount of shared memory allocated in an application
is controlled by the MAXGTT and MAXCONV parameters.

Table 3-4 Characteristics of MAXACCESSERS, MAXSERVERS, MAXSERVICES,
MAXINTERFACES, and MAXOBJECTS Parameters

Parameter Characteristics

MAXACCESSERS Maximum number of overall processes that can be simultaneously connected to the bulletin
board at any particular site in the Oracle Tuxedo application. This number includes all clients and
system-supplied and application servers, but does not include administrative processes such as
the Bulletin Board Liaison (BBL) and tmadmin(), which have reserved access slots to the
bulletin board.
The value of MAXACCESSERS must be greater than 0 and less than 32,768. If not specified, the
default is 50. You can overwrite MAXACCESSERS, on a per-machine basis, in the MACHINES
section.

MAXSERVERS Maximum number of server processes available to the application. This number includes all
system-supplied and application servers. The value of MAXSERVERS must be greater than 0 and
less than 8,192. If not specified, the default is 50.

Chapter 3
Defining IPC Limits

3-13

Table 3-4 (Cont.) Characteristics of MAXACCESSERS, MAXSERVERS, MAXSERVICES,
MAXINTERFACES, and MAXOBJECTS Parameters

Parameter Characteristics

MAXSERVICES Maximum number of different Oracle Tuxedo services that can be advertised in the application.
The value of MAXSERVICES must be greater than 0 and less than 1,048,574. If not specified, the
default is 100.

Note:

For CORBA environments, each CORBA interface is mapped to an
Oracle Tuxedo service. Ensure you account for the number of
services generated.

MAXINTERFACE
S

For CORBA environments, the maximum number of CORBA interfaces that can be advertised in
the application. The value of MAXINTERFACES must be greater than 0 and less than 32,766. If not
specified, the default is 100.

Note:

All instances of an interface occupy and reuse the same slot in the
interface table in the bulletin board. For example, if server SVR1
advertises interfaces IF1 and IF2, server SVR2 advertises
interfaces IF2 and IF3, and server SVR3 advertises interfaces IF3
and IF4, the interface count is 4 (not 6) when calculating
MAXINTERFACES.

MAXOBJECTS For CORBA environments, the maximum number of active CORBA objects in the application.
The value of MAXOBJECTS must be greater than 0 and less than 32,766. If not specified, the
default is 100.

Note:

Examples of system-supplied servers are AUTHSVR , TMQUEUE, TMQFORWARD,
TMUSREVT, TMSYSEVT , TMS, TMS_QM, GWTDOMAIN, and WSL.

The cost incurred by increasing MAXACCESSERS is one additional semaphore per site
per client or server process (accesser—see note that follows). There is a small fixed
semaphore overhead for system processes in addition to that added by the
MAXACCESSERS value. The cost of increasing MAXSERVERS and MAXSERVICES is a small
amount of shared memory that is kept for each server, service, and client entry,
respectively. The general idea for these parameters is to allow for future growth of the
application. It is more important to scrutinize MAXACCESSERS.

Chapter 3
Defining IPC Limits

3-14

Note:

The system allocates one semaphore for each access slot to the bulletin board. A
semaphore is a latch circuit that prevents more than one process from accessing
the same shared memory in the bulletin board at the same time.

For Oracle Tuxedo releases prior to release 7.1, both the MAXACCESSERS and MAXSERVERS
parameters for an application play a part in the user license checking scheme. Specifically, a
machine is not allowed to boot if the number of MAXACCESSERS for that machine + the number
of MAXACCESSERS for the machine (or machines) already running in the application is greater
than the number of MAXSERVERS + user licenses for the application. Thus, the total number of
MAXACCESSERS for an application must be less than or equal to the number of MAXSERVERS +
user licenses for the application.

The user license checking scheme in Oracle Tuxedo release 7.1 or later considers only the
following two factors when performing its checks: the number of user licenses for an
application and the number of licenses currently in use for the application. When all user
licenses are in use, no new clients are allowed to join the application.

• Example Settings

3.9.1 Example Settings
In this example, at most 75 processes (clients and servers) can access the system at any
one time. There is room for 40 servers advertising 55 services in the bulletin board.

*RESOURCES
MAXACCESSERS 75
MAXSERVERS 40
MAXSERVICES 55

3.10 Enabling Load Balancing
You can control whether a load balancing algorithm is used on the Oracle Tuxedo application
as a whole. When load balancing is used, a load factor is applied to each service within the
system, allowing you to track the total load on every server. Every service request is sent to
the qualified server that is least loaded.

To specify whether load balancing should be used, set the LDBAL parameter to Y (Yes) or N
(No). By default, it is set to N.

You must use load balancing only if necessary; that is, whenever a service is offered by
servers that use more than one queue. Load balancing is not appropriate for services offered
by only one server, or by servers in an MSSQ (Multiple Server, Single Queue) set. If you have
only these types of services in your configuration, set the LDBAL parameter to N. If LDBAL is set
to N and multiple queues offer the same service, the first available queue is selected.

• Characteristics of the LDBAL Parameter

• Example Settings

Chapter 3
Enabling Load Balancing

3-15

3.10.1 Characteristics of the LDBAL Parameter
The LDBAL parameter has the following characteristics:

• If LDBAL is set to Y, then load balancing is used.

• If LDBAL is set to Y and the application is networked, you can use TMNETLOAD for
local preference.

• If LDBAL is set to N, the server assigned is the first available server.

• The default is N.

• Because LDBAL incurs overhead, use it only when necessary.

• Do not use load balancing if every Oracle Tuxedo service is offered by only one
server.

• Do not use load balancing if every Oracle Tuxedo service is offered by one MSSQ
server set.

3.10.2 Example Settings
In this example, load balancing is enabled for the application.

*RESOURCES
 LDBAL Y

See Also:

• “What Is Load Balancing?” in Introducing Oracle Tuxedo ATMI

3.11 Identifying the Master Machine
The MASTER machine controls the booting and administration of the entire application.
You must specify a MASTER machine for every application by setting the MASTER
parameter. The value of MASTER is the Logical Machine Identifier (LMID) for the
appropriate computer. The LMID, in turn, is defined as an alphanumeric string, chosen
by the administrator, that is assigned to the LMID parameter in the MACHINES section.
Therefore, for example, if the value of the LMID parameter is SITE1, then the value of
MASTER must also be SITE1.

If you want to be able to bring down the MASTER machine without shutting down the
application, you must be able to migrate the MASTER. To enable migration, you must
specify two values for LMID: the primary MASTER and the backup MASTER.

• Characteristics of the MASTER Parameter

• Example Settings

Chapter 3
Identifying the Master Machine

3-16

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/int/intatm.html

3.11.1 Characteristics of the MASTER Parameter
The MASTER parameter has the following characteristics:

• It is required and it controls booting and administration.

• Two LMIDs are required for migration to back up the master machine.

• In the sample RESOURCES section, the master site is SITE1; the backup site is SITE2.

3.11.2 Example Settings
Site1 is the MASTER machine; SITE2 is the backup machine.

*RESOURCES
 MASTER SITE1, SITE2

3.12 Specifying the Maximum Number of Network Groups
To specify the maximum number of configured network groups, set the MAXNETGROUPS
parameter. The value must be greater than or equal to 1 and less than 8192. The default is 8.
This parameter is optional.

3.13 Specifying the Number of Sanity Checks and Blocking
Timeouts

Periodically (every 120 seconds, by default) the Bulletin Board Liaison (BBL) checks the
sanity of the servers on its machine. You can change the frequency of these checks,
however, by setting the SCANUNIT and SANITYSCAN parameters.

Use the SANITYSCAN parameter to specify how many SCANUNITs elapse between sanity
checks of the servers. Its current default is set so that SANITYSCAN * SCANUNIT is
approximately 120 seconds.

In addition, you can specify the number of timeout periods for blocking messages,
transactions, and other system activities by setting the BLOCKTIME parameter.

Note:

Nontransactional blocking time values can be set on a per service, per ATMI call,
and per context basis. These blocktime values override the system-wide default
BLOCKTIME values set in the RESOURCES section of the UBBCONFIG file. For further
information, see Specifying Nontransactional Service-Level Blocktime.

• Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters

• Timeouts for Blocking ATMI Operations

• Example Settings

Chapter 3
Specifying the Maximum Number of Network Groups

3-17

3.13.1 Characteristics of the SCANUNIT, SANITYSCAN, and
BLOCKTIME Parameters

Table 3-5 Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters

Parameter Characteristics

SCANUNIT Controls the granularity of check intervals and timeouts. SCANUNIT must be a multiple of 2or 5
between 0 and 60 seconds.
Example: SCANUNIT 10.

The default is 10.

SANITYSCAN Specifies how many scan units elapse between sanity checks of the servers.
SANITYSCAN may be any number up to 32,767.

The default is such that SCANUNIT * SANITYSCAN is approximately 120 seconds.

BLOCKTIME Controls how long a message can block before it times out.
SCANUNIT * BLOCKTIME must not exceed 32,767.

The default is such that SCANUNIT * BLOCKTIME is approximately 60 seconds.

3.13.2 Timeouts for Blocking ATMI Operations
The term timeout is used to refer, collectively, to the amount of time that elapses while
a client:

• Waits to send a message into the request queue

• Waits to receive a message from the reply queue

• Is processed by the server

• Travels on the network

The term blocking timeout refers to the amount of time spent by a client request
waiting for a blocking condition to clear up. Block timeouts for asynchronous service
requests and conversations apply to individual send and receive operations. When a
process sends a message using tpacall (3c), tpconnect (3c), or tpsend (3c), the
timeout applies only to the period during which the request waits to get on the queue if
the queue is full. When a client process issues a tpgetrply (3c) or tprecv(3c) call to
receive a message, the timeout specifies how long the client may wait for the incoming
message if its queue is empty.

3.13.3 Example Settings
In this example, sanity scans are performed every 30 seconds and requests block for
no more than 10 seconds. A SCANUNIT of 10 and a SANITYSCAN of 3 allow 3 blocks of
10 seconds or 30 seconds to elapse before the BBL scans.

*RESOURCES
 SCANUNIT 10
 SANITYSCAN 3
 BLOCKTIME 1

Chapter 3
Specifying the Number of Sanity Checks and Blocking Timeouts

3-18

3.14 Establishing Operating System-level Security
You can restrict access to Oracle Tuxedo administrative functions to authorized
administrators only, by setting three parameters: UID, GID, and PERM.

The defaults of UID and GID are the user ID and group ID, respectively, of the person who
runs the tmloadcf(1) command on the configuration, unless overriding values have been
specified in the MACHINES section.

Table 3-6 Characteristics of the UID, GID, and PERM Parameters

Parameter Characteristics

UID The user ID of the administrator. The value is a numeric string corresponding to the UNIX system
user ID of the person who boots and shuts down the system. The default is the user ID of the
person who runs tmloadcf(1).
Example: UID=3002

Note:

On Windows, this value must be set to 0.

GID The numeric group ID of the administrator. The default is the group ID of the person who runs
tmloadcf(1).
Example: GID=100

Note:

On Windows, this value must be set to 0.

PERM The value is an octal number that specifies permissions for the IPC resources created when the
application is booted. This parameter provides the first level of defense of the Oracle Tuxedo
system IPC structures against unauthorized access. These values should be specified for
production applications. The default is 0600, which gives read/write access to all. Example:
PERM=0660

Note:

You can overwrite the values assigned to these parameters for remote machines.
The user and group IDs on a remote machine are not required to be the same as
the user and group IDs on the MASTER machine. You can override the defaults by
specifying different user and group IDs in the MACHINES section of the configuration
file. If not specified, values specified in the RESOURCES section are used.

3.15 Specifying the Security Level
You can set the following three levels of security:

Chapter 3
Establishing Operating System-level Security

3-19

• PERM parameter—provides minimal security by restricting, through permissions, the
ability to write to the application queues.

• SECURITY parameter—provides greater security. When this parameter is set, a
client must supply a password when joining the application. This password is
checked against the password supplied by the administrator when the TUXCONFIG
file is generated from the UBBCONFIG file

• AUTHSVC parameter—sets the maximum level of security. When this parameter is
set, any client request to join the application is sent to an authentication service.
The authentication service may be the default service supplied by the Oracle
Tuxedo system or a third-party vendor service, such as a Kerberos service. This
level of security cannot be used unless the SECURITY parameter is set.

Note:

LAUTHSVR must be set in the SERVERS section of the UBBCONFIG file to enable
LDAP single security administration.

XAUTHSVR must be set in the SERVERS section of the UBBCONFIG file to enable the
extensible security administration of authentication and authorization.

Table 3-7 Characteristics of the SECURITY, AUTHSVC, and OPTIONS Parameters

Parameter Characteristics

SECURITY Security level that requires a password to join an application. Accepted values are: NONE
(default), APP_PW, USER_AUTH, ACL, and MANDATORY_ACL.
To enable the LDAP single security administration or the extensible security administration, the
SECURITY level must be set to USER_AUTH, MANDATORY_ACL, or ACL.

Default is NONE.
Example: SECURITY APP_PW

AUTHSVC The name of the authentication service.
SECURITY APP_PW or higher must be specified.

Default is no authentication service.

Client authentication with Kerberos is possible.

Example: AUTHSVC “AUTHSVC’’

OPTIONS To enable the extensible security administration, OPTIONS should be set to EXT_AA.

See Also:

• Introducing ATMI Security” in Using Security in ATMI Applications

• Using Security in CORBA Applications

• File Formats, Data Descriptions, MIBs, and System Processes
Reference

• Oracle Tuxedo Command Reference

Chapter 3
Specifying the Security Level

3-20

3.16 Defining the Security Attributes of a Server
You can use the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters to identify the security attributes of any servers used for
authentication.

• SEC_PRINCIPAL_NAME—defines the principal name used by the server for various security
operations.

• SEC_PRINCIPAL_LOCATION—specifies the location of the private key of the principal user.

• SEC_PRINCIPAL_PASSVAR—specifies the environment variable that contains the password
used to open the private key of the principal user.

If Specified in
This Section

This Parameter Defines And Overrides
Parameter
Settings in
This Section

RESOURCES All system booted in the domain. -

MACHINES All system booted on a machine. RESOURCES
GROUPS All system and interoperating application servers booted within a group. MACHINES
SERVERS All system and interoperating application services booted within a server. GROUPS

Note:

These policies apply to the Workstation handler, Domains gateway processes, and
interoperating application servers.

See Also:

• “Introducing ATMI Security” in Using Security in ATMI Applications

• “Administering Security” in Using Security in CORBA Applications

3.17 Protecting Shared Memory
You can shield system tables kept in shared memory from application clients and/or servers
using the SYSTEM_ACCESS parameter. This parameter is useful when applications are being
developed because faulty application code can inadvertently corrupt shared memory with a
bad pointer. Once an application is fully debugged and tested, the value of this parameter can
be changed to allow for faster responses. Following are valid values for this parameter:

• PROTECTED—Oracle Tuxedo libraries compiled with application code do not attach to
shared memory while executing system code.

• FASTPATH—Oracle Tuxedo libraries attach to shared memory at all times.

Chapter 3
Defining the Security Attributes of a Server

3-21

Once you select a value, you can specify NO_OVERRIDE, which means that the selected
option cannot be changed either by the client, in the TPINIT structure of the tpinit ()
call, or by the administrator, in the SERVERS section for servers.

Table 3-8 Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE Parameters

Parameter Characteristics

PROTECTED Internal structures in shared memory are not corrupted inadvertently by
application processes.

FASTPATH(Default) Application processes join the application with access to shared memory at all
times.

NO_OVERRIDE The specified option (either PROTECTED or FASTPATH) cannot be changed.

• Example Settings

3.17.1 Example Settings

SYSTEM_ACCESS PROTECTED, NO_OVERRIDE

3.18 Setting the Address of the System Resources for an
Application

To set the address of shared memory, set the IPCKEY parameter. This parameter is
used by the Oracle Tuxedo system to allocate application IPC resources such that
they may be located easily by new processes joining the application. This key and its
variations are used internally to allocate the bulletin board, message queues, and
semaphores that must be available to new application processes. In single processor
mode, this key names the bulletin board; in multiprocessor mode, this key names the
message queue of the DBBL.

• Characteristics of the IPCKEY Parameter

• Example Settings

3.18.1 Characteristics of the IPCKEY Parameter
The IPCKEY parameter has the following characteristics:

• It is required.

• It is used to access the bulletin board and other IPC resources.

• Its value must be an integer in the range 32,769 to 262,144.

• No other application on the system may use this specific value for its IPCKEY. Its
value must be unique among all applications.

3.18.2 Example Settings

*RESOURCES
 IPCKEY 39211

Chapter 3
Setting the Address of the System Resources for an Application

3-22

3.19 Specifying How Clients Receive Unsolicited Notification
You can select the default method by which clients receive unsolicited messages by setting
the NOTIFY parameter. The client, however, can override this choice when calling tpinit().

Following are four possible methods:

• IGNORE—clients ignore unsolicited messages.

• DIPIN—clients receive unsolicited messages only when they call tpchkunsol () or when
they make an ATMI call.

• SIGNAL—clients receive unsolicited messages by having the system generate a signal
that has the signal handler call the function, that is, set with tpsetunsol ().

Note:

This method is not allowed for multithreaded or multicontexted applications.

• THREAD—unsolicited messages are handled by a separate thread managed by the Oracle
Tuxedo system for this purpose.

The USIGNAL parameter specifies the signal to be used if SIGNAL-based notification is used.
Two types of signals can be generated: SIGUSR1 and SIGUSR2. The default is SIGUSR2. This
method has the advantage of immediate notification, but is limited when you are running a
native client. In that case, you must have the same user ID as the sending process.
Workstation clients do not have this limitation.

Note:

This method is not available on all platforms.

• Characteristics of the NOTIFY and USIGNAL Parameters

3.19.1 Characteristics of the NOTIFY and USIGNAL Parameters

Parameter Characteristics

NOTIFY Value of IGNORE means clients must ignore unsolicited messages.
Value of DIPIN means clients must receive unsolicited messages only when they
call tpchkunsol() or when they make an ATMI call.

Value of SIGNAL means clients must receive unsolicited messages by signals.

Default is DIPIN
Example: NOTIFY SIGNAL

USIGNAL Value of SIGUSR1 and SIGUSR2 means notify clients with this type of signal.
Default is SIGUSR2
Example: USIGNAL SIGUSR1

Chapter 3
Specifying How Clients Receive Unsolicited Notification

3-23

3.20 How to Create the MACHINES Section of the
Configuration File

The second section of every configuration file must be the MACHINES section. The
MACHINES section defines parameters for each machine in an application. These
parameters provide the following information:

• The mapping of the machine address to a logical identifier (LMID)

• The location of the configuration file (TUXCONFIG)

• The location of the installed Oracle Tuxedo software (TUXDIR)

• The location of the application servers (APPDIR)

• The location of the application log file (ULOGPFX)

• The location of the environment file (ENVFILE)

Note:

For a particular machine, you can override the following system-wide
parameters: UID, GID, PERM, MAXACCESSERS, MAXOBJECTS, MAXCONV, and
MAXGTT. Each parameter, except MAXGTT, is described in the RESOURCES
section.

For each parameter in the MACHINES section, the following table provides a description
and links to reference pages and additional information.

Table 3-9 How to Create the MACHINES Section of the Configuration File

To Specify This Information in the MACHINES Section Set This
Parameter
(Required/
Optional)

For More
Information,
Click the
following

The number of entries in the cache used for ACL entries when SECURITY is set
to ACL or MANDATORY_ACL.

MAXACLCACHE
(Optional)

ACL entries in
the cache

The additional load to be added when computing the cost of sending a service
request from this machine to another machine.

NETLOAD
(Optional)

Additional loads

The address is the name of the physical processor, which all other entries
describe. The LMID parameter specifies the logical name of the computer.

LMID
(Required)

Address and
machine ID

The number of attempts that should be made at user level to lock the bulletin
board before blocking processes on a UNIX semaphore.

SPINCOUNT
(Optional)

Bulletin board
locking limit

A value used for grouping machines into classes. TYPE (Optional) Class grouping
value

Chapter 3
How to Create the MACHINES Section of the Configuration File

3-24

Table 3-9 (Cont.) How to Create the MACHINES Section of the Configuration File

To Specify This Information in the MACHINES Section Set This
Parameter
(Required/
Optional)

For More
Information,
Click the
following

The absolute pathname of the file or device where the binary TUXCONFIG file is
found on this machine.

Note:

The pathname specified for this parameter must
match exactly (including case) the pathname
specified for the TUXCONFIG environment
variable. Otherwise, tmloadcf(1) cannot be run
successfully.

TUXCONFIG
(Required)

Configuration
file location

The maximum number of simultaneous conversations in which processes on a
particular machine can be involved.

MAXCONV
(Optional)

Conversation
limits

The numeric size, in pages, of the DTP transaction log for this machine. TLOGSIZE
(Optional)

DTP TLOG size

The name of the DTP transaction log for this machine. TLOGNAME
(Optional)

DTP
transaction log
name

A value that specifies that all clients and servers on the machine are to be
executed with the environment specified in the named file.

ENVFILE
(Optional)

Environment
variable
settings

The Oracle Tuxedo filesystem that contains the DTP transaction log (TLOG) for
this machine.

TLOGDEVICE
(Optional)

Filesystem
containing the
TLOG

The maximum number of processes that can have access to the bulletin board
on this processor at any one time.

MAXACCESSERS
(Optional)

IPC limits

For CORBA environments, the maximum number of CORBA objects that can
be accommodated in the Active Object Table on this processor at any one time.

MAXOBJECTS
(Optional)

IPC limits

The maximum number of simultaneous global transactions in which a particular
machine can be involved.

MAXGTT
(Optional)

Limit of
simultaneous
global
transactions

The number of accesser entries on this processor to be reserved for
Workstation clients. The parameter is only used when the Oracle Tuxedo
system Workstation component is used.

MAXWSCLIENTS
(Optional)

Limit of
workstation
accesser
entries

A limit for the amount of space that can be allocated for messages waiting to be
transmitted by the bridge process.

MAXPENDINGBY
TES (Optional)

Message space
limits

The numeric offset in pages (from the beginning of the device) to the start of the
Oracle Tuxedo filesystem that contains the DTP transaction log for this
machine.

TLOGOFFSET
(Optional)

Numeric offset
containing the
DTP TLOG

The numeric offset in pages (from the beginning of the device) to the start of the
Oracle Tuxedo filesystem that contains the TUXCONFIG file for this machine.

TUXOFFSET
(Optional)

Numeric offset
containing the
TUXCONFIG

Chapter 3
How to Create the MACHINES Section of the Configuration File

3-25

Table 3-9 (Cont.) How to Create the MACHINES Section of the Configuration File

To Specify This Information in the MACHINES Section Set This
Parameter
(Required/
Optional)

For More
Information,
Click the
following

The numeric group ID to be associated with the IPC structures created for the
bulletin board. The valid range is 0-2147483647. If not specified, the default is
the value specified in the RESOURCES section.

GID (Optional) Security access

The numeric permissions associated with the IPC structures that implement the
bulletin board. This parameter is used to specify the read/write permissions for
processes in the usual UNIX system fashion (that is, with an octal number such
as 0600). The value can be between 0001 and 0777, inclusive. If not specified,
the default is the value specified in the RESOURCES section.

PERM (Optional) Security access

The numeric user ID to be associated with the IPC structures created for the
bulletin board. The valid range is 0-2147483647. If not specified, the default is
the value specified in the RESOURCES section.

UID (Optional) Security access

Principal name of the process used for identification, location of private key of
principal user, and the environment variable containing the password

SEC_PRINCIPA
L_NAME,
SEC_PRINCIPA
L_LOCATION,
SEC_PRINCIPA
L_PASSVAR

Security
attributes

The absolute pathname of the application directory (APPDIR), which is the
current directory for all application and administrative servers booted on this
machine; and the absolute pathname of the directory where the Oracle Tuxedo
system software is found on this machine.

TUXDIR
(Required)

System and
application
software
locations

The threshold message size for messages—bound to remote processes
(string_value1) and local processes (string_value2), respectively—on
which automatic data compression will be performed.

CMPLIMIT
(Optional)

Threshold
message size

The full pathname to be used as the prefix of the name of the userlog(3c)
message file on this machine.

ULOGPFX
(Optional)

ULOG pathname

• Sample MACHINES Section

3.20.1 Sample MACHINES Section
Following is a sample MACHINES section of a configuration file in an ATMI environment.

*MACHINES
gumby LMID=SITE1
 TUXDIR=”/tuxdir”
 APPDIR=”/home/apps/mortgage”
 TUXCONFIG=”/home/apps/mortgage/tuxconfig”
 ENVFILE=”/home/apps/mortgage/ENVFILE”
 ULOGPFX=”/home/apps/mortgage/logs/ULOG”
 MAXACCESSERS=100
 MAXCONV=15

Chapter 3
How to Create the MACHINES Section of the Configuration File

3-26

Following is a sample MACHINES section of a configuration file in a CORBA environment.

*MACHINES
gumby LMID=SITE1
 TUXDIR=”/tuxdir”
 APPDIR=”/home/apps/mortgage”
 TUXCONFIG=”/home/apps/mortgage/tuxconfig”
 ENVFILE=”/home/apps/mortgage/ENVFILE”
MAXOBJECTS=700
 ULOGPFX=”/home/apps/mortgage/logs/ULOG”
 MAXACCESSERS=100

• Sample MACHINES Parameters

• How to Customize the Sample MACHINES Section

3.20.1.1 Sample MACHINES Parameters
In the preceding sample MACHINES section, the following parameters and values are specified.

Parameter Meaning

gumby The machine name obtained with the command uname -n on UNIX systems. On a
Windows system, the value can be set using the Computer Name value in the Network
Control Panel and must be specified in uppercase.

LMID=SITE1 The logical machine identifier of the machine gumby.

TUXDIR The full path to the installed Oracle Tuxedo software (shown in double quotation
marks).

APPDIR The full path to the application directory (shown in double quotation marks).

TUXCONFIG The full pathname of the configuration file (shown in double quotation marks).

Note:

The pathname specified for this parameter must match
exactly (including case) the pathname specified for the
TUXCONFIG environment variable. Otherwise,
tmloadcf(1) cannot be run successfully.

ENVFILE The full pathname of a file containing environment information (shown in double
quotation marks).

ULOGPEX The full pathname to be used as the prefix of the name of the log file (shown in double
quotation marks).

MAXACCESSER
S

For this machine, override the system-wide value (defined in the RESOURCES section)
with 100.

MAXOBJECTS (For the CORBA example.) For this machine, override the system-wide value (defined
in the RESOURCES section) with 700.

MAXCONV For this machine, override the system-wide value (defined in the RESOURCES section)
with 15.

3.20.1.2 How to Customize the Sample MACHINES Section
You can customize the MACHINES section by indicating the following:

Chapter 3
How to Create the MACHINES Section of the Configuration File

3-27

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ads/adfig.html#1253793

• Your machine name for gumby

• On a Windows system, the machine name must be specified in UPPERCASE.

• The full path of your Oracle Tuxedo software directory as the value of TUXDIR
• The full path of your application directory as the value of APPDIR
• The full pathnames for ENVFILE, TUXCONFIG, and ULOGPFX on your system

See Also:

• UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and
System Processes ReferenceFile Formats, Data Descriptions, MIBs, and
System Processes Reference

• How to Create the GROUPS Section of the Configuration File

3.21 Specifying the Maximum Number of ACL Entries in the
Cache

You can use the MAXACLCACHE parameter to specify the number of ACL entries in the
cache when SECURITY is set to ACL or MANDATORY_ACL. By setting of this parameter to
an appropriate value, you can:

• Help conserve shared memory resources

• Reduce the number of disk accesses performed in order to do ACL checking

The value must be a number greater than or equal to 10, and less than or equal to
30,000. The default is 100.

3.22 Defining an Additional Service Request Load
You can use the NETLOAD parameter to specify a load to be added when computing the
cost of sending a service request from one machine to another. The value must be a
number greater than or equal to 0, and less than 32,768. The default is 0.

See Also:

• “What Is Load Balancing?” in Introducing Oracle Tuxedo ATMI

3.23 Reserving the Physical Address and Machine ID
You initially define the address of your MASTER machine in the address portion, which is
the basis for a MACHINES section entry. All other parameters in the entry describe the
machine specified by this address. You must set the address to the value printed by

Chapter 3
Specifying the Maximum Number of ACL Entries in the Cache

3-28

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

calling uname -n on UNIX systems. On Windows systems, see the Computer Name value in
the Network Identification dialog from the Network Control Panel.

The LMID parameter is mandatory. It specifies a logical name used to designate the computer
for which an address has just been provided. It may be any alphanumeric value, but it must
be unique among other machines in the application.

• Characteristics of the Address and the LMID Parameter

3.23.1 Characteristics of the Address and the LMID Parameter
The address and machine ID have the following characteristics:

• The address and machine ID are specified as follows:

address LMID=logical_machine_name

The address identifies the physical processor name.

• The LMID is specified as follows:

LMID=logical_machine_name

The LMID is the logical machine name for a physical processor. It may be any
alphanumeric string, but it must be unique within the MACHINES section.

3.24 Setting the Number of Lock Spins
For some Oracle Tuxedo system operations (such as service name lookups and
transactions), the bulletin board must be locked for exclusive access: that is, it must be
accessible by only one process. If a process or thread finds that the bulletin board is locked
by another process or thread, it retries, or spins on the lock for SPINCOUNT number of times
before giving up and going to sleep on a waiting queue. Because sleeping is a costly
operation, it is efficient to do some amount of spinning before sleeping.

• Characteristics of the SPINCOUNT Parameter

3.24.1 Characteristics of the SPINCOUNT Parameter
Though the value of the SPINCOUNT parameter is application- and system-dependent, it may
be helpful to keep the following basic guidelines in mind:

• A process on a uniprocessor system should not spin. If the bulletin board is locked when
a uniprocessor process tries to access it, then the process with the lock should be
allowed to run as quickly as possible. This is possible only if the newcomer process gives
up immediately.

• A SPINCOUNT value of 1 is appropriate for uniprocessors.

• On multiprocessors, a good starting value is 5,000, but some customers have benefited
from a SPINCOUNT value as high as 100,000.

• Set the SPINCOUNT value and observe your application throughput. Because you can tune
the SPINCOUNT value using the TMIB, you can adjust it while the system is running.

Chapter 3
Setting the Number of Lock Spins

3-29

3.25 Specifying Machines as Types
You can use the TYPE parameter to group machines into classes. You can set TYPE to
any string that contains 15 or fewer characters.

• Characteristics of the TYPE Parameter

3.25.1 Characteristics of the TYPE Parameter
• If two machines have the same TYPE value, data encoding/decoding is not

performed when data is sent between the machines.

• TYPE can be given any string value. It is used simply for comparisons.

• The TYPE parameter should be used when the application involves a
heterogeneous network of machines or when different compilers are used on the
machines in the network.

• If a value not specified, the default is the null string, which matches any other entry
for which a value has not been specified.

3.26 Identifying the Location of the Configuration File
To identify the configuration file location and filename for an entry that identifies a
machine, set TUXCONFIG, a required parameter. The value of the TUXCONFIG parameter
is enclosed in double quotes and represents a full pathname, which may contain up to
64 characters.

Note:

The pathname specified for this parameter must match exactly (including
case) the pathname specified for the TUXCONFIG environment variable.
Otherwise, tmloadcf(1) cannot be run successfully.

• Characteristics of the TUXCONFIG Parameter

3.26.1 Characteristics of the TUXCONFIG Parameter
The TUXCONFIG parameter has the following characteristics:

• The syntax of the TUXCONFIG parameter is TUXCONFIG= ”full_path_of_tuxconfig”.

• This parameter identifies the location and name of the configuration file.

• The value of TUXCONFIG can include up to 64 characters.

• The value of TUXCONFIG must match the value of the TUXCONFIG environment
variable.

Chapter 3
Specifying Machines as Types

3-30

3.27 Indicating the Size of the DTP Transaction Log
Use the TLOGSIZE parameter to indicate the size, in pages, of the DTP transaction log for this
machine. The value must be a number greater than 0, and less than or equal to 2048, subject
to the amount of space available on the operating system filesystem. The default is 100
pages.

3.28 Defining the DTP Transaction Log Name
Use the TLOGNAME parameter to define the name of the DTP transaction log for this machine.
The default is TLOG. If more than one TLOG exists on the same TLOGDEVICE, each must have a
unique name. The value of TLOGNAME must be different from the name of any other table in
the VTOC (Volume Table of Contents) on the TLOGDEVICE where the TLOG table is created. The
value of TLOGNAME must be an alphanumeric string containing 30 or fewer characters.

3.29 Specifying Environment Variable Settings
With the ENVFILE parameter, you can specify a file that contains environment variable
settings for all processes to be booted by the Oracle Tuxedo system. The system sets TUXDIR
and APPDIR for each process, so these parameters should not be specified in this file.

You can, however, specify settings for the following parameters because they affect an
application’s operation:

• FIELDTBLS, FLDTBLDIR
• VIEWFILES, VIEWDIR
• TMCMPLIMIT
• TMNETLOAD
• Characteristics of the ENVFILE Parameter

3.29.1 Characteristics of the ENVFILE Parameter
ENVFILE is an optional parameter with the following characteristics:

• The syntax of the value of the ENVFILE parameter is a string enclosed in double quotes:
ENVFILE=”envfile".

• ENVFILE is the file containing environment variable settings for all processes booted by
the Oracle Tuxedo system. (The UBBCONFIG file issues warnings in a similar way, that is,
using fully qualified pathnames.)

• Set FIELDTBLS, FLDTBLDIR, and so on, but do not set TUXDIR and APPDIR.

• All settings must be hard coded. No evaluations such as FLDTBLDIR=$APPDIR are allowed.

• The format for entries in the file is VARIABLE = string.

For more information about setting environment variables, refer to tuxenv (5) in File
Formats, Data Descriptions, MIBs, and System Processes Reference.

Chapter 3
Indicating the Size of the DTP Transaction Log

3-31

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

3.30 Defining the Oracle Tuxedo Filesystem Containing the
TLOG

Use the TLOGDEVICE parameter to specify the Oracle Tuxedo filesystem that contains
the DTP transaction log (TLOG) for this machine. The TLOG is stored as an Oracle
Tuxedo system VTOC table on the specified device. The value of TLOGDEVICE must be
a string containing a maximum of 64 characters.

If this parameter is not specified, then it is assumed that the machine does not have a
TLOG.

3.31 Specifying a Machine’s Maximum Number of
Simultaneous Global Transactions

Use the MAXGTT parameter to indicate the maximum number of simultaneous global
transactions in which a particular machine can be involved. The value must be a
number greater than or equal to 0, and less than 32,768. You can override the value
specified in the RESOURCES section with a value specified in the MACHINES section for an
individual machine.

3.32 Defining the Number of Accesser Entries on a
Workstation Client

Use the MAXWSCLIENTS parameter to define the number of entries on a machine to be
reserved for Workstation clients. Set the number of accesser slots reserved for
MAXWSCLIENTS cautiously, since this number takes a portion of the total accesser slots
specified with MAXACCESSERS for this machine; the accesser slots reserved for
MAXWSCLIENTS are unavailable for use by other clients and servers on this machine. By
setting this parameter to an appropriate value, you can help conserve IPC resources
because Workstation client access to the system is multiplexed through an Oracle
Tuxedo system-supplied surrogate, the Oracle Tuxedo Workstation Handler (WSH).

The value of MAXWSCLIENTS must be greater than or equal to 0 and less than 32,768. If
not specified, the default is 0. It is an error to set this parameter to a number greater
than MAXACCESSERS.

Note:

The value of MAXWSCLIENTS is constrained by the number of your licensed
users.

Chapter 3
Defining the Oracle Tuxedo Filesystem Containing the TLOG

3-32

3.33 Defining Space Limits for Messages Transmitted by the
BRIDGE

Use the MAXPENDINGBYTES parameter to define a limit for the amount of space that can be
allocated for messages waiting to be transmitted by the BRIDGE process. This number must
be between 100,000 and MAXLONG.

There are two situations when MAXPENDINGBYTES is significant:

• When the BRIDGE requests an asynchronous connection

• When all circuits are busy

You can configure larger computers that have more memory and disk space, with larger
MAXPENDINGBYTES, and smaller computers with smaller MAXPENDINGBYTES

3.34 Indicating the Offset for the DTP Transaction Log
Every Oracle Tuxedo filesystem has a Volume Table of Contents (VTOC): a list of the files on
the devices named in the Universal Device List (UDL). The UDL specifies the location of the
physical storage space for Oracle Tuxedo system tables. In an Oracle Tuxedo system
application, all system files might be stored together on the same raw disk slice or operating
system filesystem file.

Use the TLOGOFFSET parameter to indicate the offset in pages (from the beginning of the
device) to the start of the Oracle Tuxedo filesystem that contains the DTP transaction log for
this machine. The offset must be a number greater than or equal to 0, and less than the
number of pages on the device. The default is 0.

3.35 Defining the Offset for TUXCONFIG
Every Oracle Tuxedo filesystem has a Volume Table of Contents (VTOC): a list of the files on
the devices named in the Universal Device List (UDL). The UDL specifies the location of the
physical storage space for Oracle Tuxedo system tables. In an Oracle Tuxedo system
application, all system files might be stored together on the same raw disk slice or operating
system filesystem file.

Use the TUXOFFSET parameter to define the offset in pages (from the beginning of the device)
to the start of the Oracle Tuxedo filesystem that contains the TUXCONFIG for this machine. (For
information on how this value is used in the environment, see the ENVFILE parameter in the
MACHINES section.)

• Characteristics of the TUXOFFSET Parameter

3.35.1 Characteristics of the TUXOFFSET Parameter
• The offset must be a number greater than or equal to 0, and less than the number of

pages on the device.

• The default offset is 0.

• The value of TUXOFFSET, if non-zero, is placed in the environment of all servers booted on
a machine.

Chapter 3
Defining Space Limits for Messages Transmitted by the BRIDGE

3-33

3.36 Identifying the Locations of the System Software and
Application Server Software

Each machine in an application that supports servers must have a copy of the Oracle
Tuxedo system software and application software. You identify the location of system
software with the TUXDIR parameter. You identify the location of the application
software with the APPDIR parameter. Both parameters are mandatory. The APPDIR
parameter becomes the current working directory of all server processes. The Oracle
Tuxedo software looks in TUXDIR/bin and APPDIR for executables.

• Characteristics of the APPDIR and TUXDIR Parameters

3.36.1 Characteristics of the APPDIR and TUXDIR Parameters

Table 3-10 Characteristics of the APPDIR and TUXDIR Parameters

Parameter Characteristics

APPDIR The syntax requires a full pathname enclosed in double quotes: APPDIR=“APPDIR”.
APPDIR identifies the location of application software.

APPDIR is a required parameter.

APPDIR becomes the current working directory of server processes.

TUXDIR The syntax requires a full pathname enclosed in double quotes: TUXDIR=“TUXDIR”.
TUXDIR identifies the location of the Oracle Tuxedo software.

TUXDIR is a required parameter.

3.37 Indicating a Threshold Message Size for Compression
Use the CMPLIMIT parameter to define the threshold message sizes at which automatic
data compression is performed for messages bound to remote processes
(string_value1) and local processes (string_value2), respectively.

Both values must be either a non-negative numeric value or the string MAXLONG. If not
specified, the default is MAXLONG,MAXLONG.

Note:

Set the CMPLIMIT value and observe your application throughput. Because
you can tune the CMPLIMIT value using the TMIB, you can adjust it while the
system is running.

• Example

3.37.1 Example

CMPLIMIT=string_value1,string_value2

Chapter 3
Identifying the Locations of the System Software and Application Server Software

3-34

3.38 Specifying the Pathname for the ULOG
Set the ULOGPFX parameter to specify the full pathname to be used as the prefix of the name
of the userlog(3c) message file on this machine. The value of ULOGPFX for a given machine is
used to create the userlog(3c) message file for all servers, clients, and administrative
processes executed on that machine. If this parameter is not specified, the path specified by
the APPDIR environment variable is used. mmddyy (month, day, year) is appended to the
prefix to form the full name of the log file.

• Characteristics of the ULOGPFX Parameter

3.38.1 Characteristics of the ULOGPFX Parameter
The ULOGPFX parameter has the following characteristics:

• The syntax of the value of the ULOGPFX parameter is a string enclosed in double quotes:
ULOGPFX=“ULOGPFX”.

• The application log contains all messages for TPESYSTEM and TPEOS errors.

• You can use the user log to log application errors.

• The ULOGPFX defaults to APPDIR /ULOG.

• For the sample filename BANKLOG.022667, the prefix of the name of the userlog is
specified as follows. ULOGPFX=“/mnt/usr/appdir/logs/BANKLOG”

See Also:

• How to Create the GROUPS Section of the Configuration File

3.39 How to Create the GROUPS Section of the Configuration
File

Use the GROUPS section to designate logically grouped sets of servers, which can later be
used to access resource managers, and facilitate server group migration. The GROUPS section
of the configuration file contains definitions of server groups. You must define at least one
server group for a machine to have application servers running on it. If no group is defined for
a machine, the group can still be part of the application and you can run the administrative
command tmadmin(1) from that site.

For nontransactional, nondistributed systems, groups are relatively simple. You only need to
map the group name to the number and logical machine ID for each group. Additional
flexibility is available to support distributed transactional systems.

For each parameter in the GROUPS section, the following table provides a description and links
to reference pages and additional information.

Chapter 3
Specifying the Pathname for the ULOG

3-35

Table 3-11 How to Create the GROUPS Section of the Configuration File

To Specify This Information in the GROUPS Section Set This
Parameter
(Required/
Optional)

For More
Information,
Click the
Following

The logical name of the group. GROUPNAME
(Required)

Group name

The group number associated with this server group. This number must be
greater than 0 and less than 30000, and must be unique among all entries in
the GROUPS section.

GRPNO
(Required)

Group number

The resource manager dependent information needed when closing the
resource manager.

CLOSEINFO
(Optional)

Information for
closing the
resource
manager

The resource manager dependent information needed when opening the
resource manager.

OPENINFO
(Optional)

Information for
opening the
resource
manager

The number of transaction manager servers to start for the associated group, if
TMSNAME is specified.

TMSCOUNT
(Optional)

Number of TMS
servers in the
group

Principal name of the process used for identification, location of private key of
principal user, and the environment variable containing the password.

SEC_PRINCIPA
L_NAME,
SEC_PRINCIPA
L_LOCATION,
SEC_PRINCIPA
L_PASSVAR

Security
attributes

A value that specifies that all servers in the group are to be executed with the
environment specified in the named file.

ENVFILE
(Optional)

Server group
environment

A value that specifies that this group of servers resides on the machine
symbolically named by string_value1 in the MACHINES section (or the default
in SHM mode).

LMID
(Required)

Server group
location

The name of the transaction manager server process associated with this
group.

TMSNAME
(Optional)

Transaction
manager server
for group

• Sample GROUPS Section for ATMI

• Sample GROUPS Section for CORBA

3.39.1 Sample GROUPS Section for ATMI
Following is a sample GROUPS section of a configuration file in an ATMI environment.

##EVBGRP1 LMID=SITE1 GRPNO=104

DEFAULT:TMSNAME=TMS_SQL TMSCOUNT=2 LMID=SITE1
BANKB1GRPNO=1 OPENINFO="TUXEDO/SQL:APPDIR1/bankdl1:bankdb:readwrite"
BANKB2GRPNO=2 OPENINFO="TUXEDO/SQL:APPDIR1/bankdl2:bankdb:readwrite"
BANKB3GRPNO=3 OPENINFO="TUXEDO/SQL:APPDIR1/bankdl3:bankdb:readwrite"

Chapter 3
How to Create the GROUPS Section of the Configuration File

3-36

3.39.2 Sample GROUPS Section for CORBA
The following sample GROUPS section is from the UBBCONFIG file in the Tuxedo CORBA
University sample Production application. In this sample, the groups specified by the RANGES
identifier in the ROUTING section of the UBBCONFIG file need to be identified and configured.

The Production sample specifies four groups: ORA_GRP1, ORA_GRP2, APP_GRP1, and
APP_GRP2. These groups must be configured, and the machines on which they run on must be
identified.

*GROUPS

APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS

APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS

ORA_GRP1
 LMID = SITE1
 GRPNO = 4

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SesTm=100+LogDir=.+MaxCur=5"

 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

ORA_GRP2
 LMID = SITE1
 GRPNO = 5

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SesTm=100+LogDir=.+MaxCur=5"

CLOSEINFO = ""
TMSNAME = "TMS_ORA"

The preceding example shows how the ORA_GRP1, ORA_GRP2,APP_GRP1, and APP_GRP2
groups are configured. See the section CORBA Factory-based Routing in the University
Production Sample Application to understand how the names in the GROUPS section match the
group names specified in the ROUTING section. This match is critical for the routing function to
work correctly. Also, any change in the way groups are configured in an application must be
reflected in the ROUTING section.

Chapter 3
How to Create the GROUPS Section of the Configuration File

3-37

Note:

The Production sample application packaged with the Oracle Tuxedo
software is configured to run entirely on one machine. However, you can
easily configure this application to run on multiple machines by specifying the
other machines in the LMID parameter. This step assumes that you specify
the MODEL MP parameter in the RESOURCES section.

See Also:

• How to Create the SERVERS Section of the Configuration File

3.40 Specifying a Group Name, Number, and LMID
The group name, which is the basis for a GROUPS section entry, is an alphanumeric
name by which the group is identified; it specifies the logical name (string_value) of the
group. It is given a mandatory, unique group number (GRPNO). Each group must reside
wholly on one logical machine (LMID).

The LMID specifies that this group of servers resides on the machine symbolically
named by string_value1 in the MACHINES section.

• Characteristics of the Group Name, Group Number, and LMID

3.40.1 Characteristics of the Group Name, Group Number, and LMID

Parameter Characteristics

Group_name required_ parameters
[optional_ parameters]

It is required.
It is an alphanumeric name by which the group
is identified.

It is unique and specifies the logical name of
the group.

GRPNO (Group Number) It is required and is unique.

LMID=string_value1 [,string_value2] It is required.
Each LMID value must be an alphanumeric
string containing 30 or fewer characters.

Up to two logical machine names can be
specified. If a second logical name is given
and server group migration is enabled, the
machine with which the server group is
associated can be migrated.

Chapter 3
Specifying a Group Name, Number, and LMID

3-38

See Also:

• UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

• How to Create the NETWORK Section of the Configuration File

3.41 Indicating a Transaction Manager Server Name and
Numbers per Group

The name of the transaction manager server (TMS) must be specified in the entry for any
group with servers that will participate in distributed transactions (transactions across multiple
resource managers—and possibly machines). To specify a TMS, set the TMSNAME parameter.
This parameter specifies the file (string_value) to be executed by tmboot(1) when booting
the server group.

The value TMS is reserved to indicate use of the null XA interface. This interface can be used
for server groups that do not have resource managers. If you do not have a resource
manager, you may not need a TMS. This server group may be infected with transactional
messages. If a non-empty value other than TMS is specified, then a TLOGDEVICE must be
specified for the machine(s) associated with the LMID value(s) for this entry. A unique server
identifier is selected automatically for each TM server. Servers are restartable an unlimited
number of times.

If TMSNAME is specified, TMSCOUNT= number must also be specified to indicate the number of
transaction manager servers to start for the associated group. The default for TMSCOUNT is 3. If
specified and the value is non-zero, the minimum value is 2 and the maximum value is 256.
The servers are set up in an MSSQ set automatically.

3.42 Identifying the Environment File Location for Servers in a
Group

If the value of the ENVFILE environment variable (ENVFILE= string_value) is an invalid
filename, no values are added to the environment. Lines must be of the form ident = value
where ident contains only underscores or alphanumeric characters.

Within value, strings of the form ${env} are expanded when the file is processed using
variables already defined for the environment. (Forward referencing is not supported. If a
value is not set, the variable is replaced with an empty string.) You can use a back slash (\) to
escape dollar signs and other back slashes. All other shell quoting and escape mechanisms
are ignored and the expanded value is placed in the environment.

Environment files are provided in at least two sections of the configuration file. The Oracle
Tuxedo system reads them in the following order:

1. MACHINES section ENVFILE
2. GROUPS section ENVFILE
3. SERVERS section ENVFILE (Optional)

Chapter 3
Indicating a Transaction Manager Server Name and Numbers per Group

3-39

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Values in the SERVERS section override values in the GROUPS section. Values in the
GROUPS section override values in the MACHINES section.

3.43 Defining Information Needed When Opening and
Closing the Resource Manager

The values of both the OPENINFO and CLOSEINFO parameters must be alphanumeric
strings that contain a maximum of 256 characters, and are enclosed in double
quotation marks. These settings specify the resource manager dependent information
needed when opening and closing the resource manager for this group (that is, for this
group name).

This value is ignored if the TMSNAME parameter for this group is not set or is set to TMS.
If the TMSNAME parameter is set to a value other than TMS but the OPENINFO string is set
to the null string ("") or is not specified, a resource manager exists for the group but
does not require any information for executing an open operation. If the TMSNAME
parameter is set to a value other than TMS but the CLOSEINFO string is set to the null
string ("") or is not specified, a resource manager exists for the group but does not
require any information for executing a close operation.

The format of the OPENINFO string is dependent on the requirements of the vendor
providing the underlying resource manager. The information required by the vendor
must be prefixed with the published name of the vendor’s transaction (XA) interface,
followed immediately by a colon (:).

For Oracle Tuxedo /Q databases, the format of OPENINFO is as follows:

• On UNIX

OPENINFO = "TUXEDO/QM: qmconfig : qspace "

• On Windows

OPENINFO = "TUXEDO/QM: qmconfig ; qspace "

In all these settings, TUXEDO/QM is the published name of the Oracle Tuxedo /Q XA
interface, qmconfig is replaced with the name of the QMCONFIG (see qmadmin(1) in the
Oracle Tuxedo Command Reference) on which the queue space resides, and qspace
is replaced with the name of the queue space. For Windows, the separator after
qmconfig must be a semicolon (;).

Note:

The CLOSEINFO string is not used for Oracle Tuxedo /Q databases.

For other vendors’ databases, the format of the OPENINFO string is specific to the
particular vendor providing the underlying resource manager. As an example, the

Chapter 3
Defining Information Needed When Opening and Closing the Resource Manager

3-40

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html

following OPENINFO string demonstrates the type of information needed when opening the
Oracle resource manager.

OPENINFO="Oracle_XA: Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp"

Oracle_XA is the published name of the Oracle XA interface. The series of five asterisks (*) in
the OPENINFO string pertains to the encrypting of a password, which is described in the
paragraphs that follow.

Passwords passed to a resource manager in the OPENINFO string can be stored in either clear
text or encrypted form. To encrypt a password, first enter a series of five or more continuous
asterisks in the OPENINFO string at the place where you want the password to go. Then load
the UBBCONFIG file by running tmloadcf(1). When tmloadcf() encounters the string of
asterisks, it prompts you to create a password. For example:

tmloadcf -y /usr5/apps/bankapp/myubbconfig
Password for OPENINFO (SRVGRP=BANKB3):
password

tmloadcf() stores the password in the TUXCONFIG file in encrypted form. If you then
regenerate the UBBCONFIG file from the TUXCONFIG file using tmunloadcf(1), the password is
printed in the regenerated UBBCONFIG file in encrypted form with @@ as delimiters. For
example:

OPENINFO="Oracle_XA: Oracle_XA+Acc=P/Scott/@@A0986F7733D4@@+SesTm=30+LogDit=/
tmp"

When tmloadcf() encounters an encrypted password in a UBBCONFIG file generated by
tmunloadcf(), it does not prompt the user to create a password.

3.44 How to Create the NETWORK Section of the Configuration
File

If you have more than one machine in your distributed application, you need to create a
NETWORK section in your configuration file. This section sets up communications among your
machines. You can configure network groups in both the NETGROUPS and NETWORK sections of
an application’s UBBCONFIG file.

For each parameter in the NETWORK section, the following table provides a description and
links to reference pages and additional information.

Table 3-12 How to Create the NETWORK Section of the Configuration File

To Specify This Information in the NETWORK Section Set This
Parameter
(Required/
Optional)

For More
Information
Click the
Following

The device name to be used by the BRIDGE process placed on that LMID to
access the network.

BRIDGE
(Optional)

BRIDGE device
name

Chapter 3
How to Create the NETWORK Section of the Configuration File

3-41

Table 3-12 (Cont.) How to Create the NETWORK Section of the Configuration File

To Specify This Information in the NETWORK Section Set This
Parameter
(Required/
Optional)

For More
Information
Click the
Following

The complete network address to be used by the BRIDGE process; that is, the
listening address on the LMID.

NADDR
(Required)

BRIDGE
network
address

The minimum level of encryption required when a network link to this machine
is being established.

MINENCRYPTBI
TS (Optional)

Encryption
levels

The maximum level of encryption allowed when a network link is being
established.

MAXENCRYPTBI
TS (Optional)

Encryption
levels

The network group associated with this network entry. If unspecified, then the
default, DEFAULTNET, is assumed. (If not set to DEFAULTNET, this parameter
must be defined as a group name in the NETGROUPS section.)

NETGROUP
(Optional)

Network group

The network address used by the tlisten(1) process servicing the network
on the node identified by the LMID.

NLSADDR
(Optional)

tlisten network
address

• Sample NETWORK Section

3.44.1 Sample NETWORK Section
The following configuration file excerpt shows a NETWORK section for a two-site
configuration.

*NETWORK
 SITE1 NADDR="//mach1:80952"
 NLSADDR="//mach1:serve"
SITE2 NADDR="//mach386:80952"
 NLSADDR="//mach386:serve"

See Also:

• UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and
System Processes Reference

• How to Create the NETGROUPS Section of the Configuration File

3.45 Specifying a Device Name for the BRIDGE Process
To specify the device name to be used by the BRIDGE process placed on the LMID to
access the network, set the BRIDGE parameter as follows:

BRIDGE=string_value

If you are using TCP/IP, you do not need to specify the device name for the BRIDGE.

Chapter 3
Specifying a Device Name for the BRIDGE Process

3-42

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

The pathname for the network transport endpoint file has the following form:

/dev/provider_name

3.46 Assigning a BRIDGE Network Address
To specify the complete network address to be used by the BRIDGE process placed on the
LMID as its listening address, set the NADDR parameter as follows:

NADDR = string_value

The listening address for a BRIDGE is the location at which it is contacted by other BRIDGE
processes participating in the application.

The listening address for a BRIDGE may also be specified in one of the following three forms:

• //host.name:port_number
• //#.#.#.#:port_number

• 0xhex-digits or \\xhex-digits

In the first of these formats, host.name is resolved to the address of the TCP/IP host address
at the time the address is bound. This format is based on locally configured name resolution
facilities accessed via an operating system command. The value of port_number can be a
symbolic name or a decimal number.

In the second format, the string #.#.#.# represents four decimal numbers (each of which is
between 0 and 255), separated by periods. The value of port_number is a decimal number in
the range 0 to 65,535 (the hexadecimal representations of the string specified). The value of
port_number can be a symbolic name or a decimal number.

In the third format, the string 0xhex-digits or \\ xhex-digits must contain an even number
of valid hex digits. A string in either of these forms is translated internally into a character
array containing TCP/IP addresses.

Note:

On some platforms lower numbers may be reserved for the system.

3.47 Assigning Encryption Levels
To set up the minimum level of encryption required when establishing a network link to the
machine, set the MINENCRYPTBITS parameter. Valid values are 0, 56, and 128. 0 means no
encryption, while 56, and 128 specify the encryption key length (in bits). If this minimum level
of encryption cannot be met, link establishment fails. The default is 0.

To set up a maximum level of encryption when establishing a network link, set the
MAXENCRYPTBITS parameter. Valid values are 0, 56, and 128. 0 means no encryption, while
56, and 128 specify the encryption key length (in bits). The default is 128.

• Example

Chapter 3
Assigning a BRIDGE Network Address

3-43

3.47.1 Example

MAXENCRYPTBITS=128
MINENCRYPTBITS=0

See Also:

• “Link-Level Encryption” in Using Security in CORBA Applications

3.48 Assigning a tlisten Network Address
To specify the network address used by the tlisten(1) process servicing the network
on the machine identified by the LMID, set the NLSADDR parameter as follows:

NLSADDR=string_value
The value of string is a network address in the same format as that specified for the
NADDR parameter.

The tlisten address for NLSADDR may be specified in one of the following three forms:

• //host.name:port_number

• //#.#.#.#:port_number

• 0xhex-digits or \\xhex-digits

In the first of these formats, host.name is resolved to the address of the TCP/IP host
address at the time the address is bound. This format is based on locally configured
name resolution facilities accessed via an operating system command. The value of
port_number can be a symbolic name or a decimal number.

In the second format, the string #.#.#.# represents four decimal numbers (each of
which is between 0 and 255), separated by periods. The value of port_number is a
decimal number in the range 0 to 65,535 (the hexadecimal representations of the
string specified). The value of port_number can be a symbolic name or a decimal
number.

In the third format, the string 0xhex-digits or \\ xhex-digits must contain an even
number of valid hex digits. A string in either of these forms is translated internally into
a character array containing TCP/IP addresses.

tmloadcf(1) prints an error if NLSADDR is missing from an entry for any machine
besides the MASTER LMID, for which it prints a warning. If NLSADDR is missing from the
MASTER LMID, tmadmin(1)cannot run in administrator mode on remote machines; it is
limited to read-only operations. In addition, the backup site cannot reboot the MASTER
site after failure.

Chapter 3
Assigning a tlisten Network Address

3-44

3.49 How to Create the NETGROUPS Section of the
Configuration File

The NETGROUPS section of the UBBCONFIG file describes the network groups available to an
application in a LAN environment. There is no limit to the number of network groups to which
you can assign a pair of machines. The method of communication to be used by members of
different networks in a network group is determined by the priority mechanism (NETPRIO).

Every LMID must be a member of the default network group (DEFAULTNET). The network group
number for this group (that is, the value of NETGRPNO) must be zero. However, you can modify
the default priority of DEFAULTNET. Networks defined in the Oracle Tuxedo system prior to
release 6.4 are assigned to the DEFAULTNET network group.

For each parameter in the NETGROUPS section, the following table provides a description and
links to reference pages and additional information.

Table 3-13 How to Create the NETGROUPS Section of the Configuration File

To Specify This Information in the NETGROUPS Section (Optional) Set This
Parameter
(Required/
Optional)

For More
Information
Click the
Following

Allow more netgroups to be defined than the default (8). This value is specified
in the RESOURCES section.

MAXNETGROUPS
(Optional)

Maximum
netgroups

The maximum size of data waiting for the network to become available. This
value is specified in the MACHINES section.

MAXPENDINGBY
TES (Optional)

Message space
limits

The network group associated with this network entry. NETGROUP
(Required)

Network group
name

A unique network group number that you must assign to use in failover and
failback situations

NETGRPNO
(Required)

Network group
number

The priority of this network group. NETPRIO
(Optional)

Network group
priority

• Sample Network Groups Configuration

• Configuring a Sample UBBCONFIG File with Netgroups

3.49.1 Sample Network Groups Configuration
You can associate network addresses with a network group. The following example illustrates
how this capability may be useful.

First State Bank has a network of five machines (A-E). Each machine belongs to two or three
of four netgroups that you have defined in the following way:

• DEFAULTNET (the default network, which is the corporate WAN)

• MAGENTA_GROUP (a LAN)

• BLUE_GROUP (a LAN)

• GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point links between
member machines)

Chapter 3
How to Create the NETGROUPS Section of the Configuration File

3-45

Every machine belongs to DEFAULTNET (the corporate WAN). In addition, each machine
is associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally, some
machines in the MAGENTA_GROUP LAN also belong to the private GREEN_GROUP. The
following figure illustrates machines A through E in the networks for which they have
addresses.

Figure 3-5 Example of a Network Grouping

The following table shows which machines belong to which groups.

Table 3-14 Machines and Addresses for Groups

This Machine Has Addresses for These Groups

A and B DEFAULTNET (the corporate WAN) MAGENTA_GROUP (LAN) GREEN_GROUP(LAN)

C DEFAULTNET (the corporate WAN) MAGENTA_GROUP (LAN)

D and E DEFAULTNET (the corporate WAN) BLUE_GROUP (LAN)

Note:

Because the local area networks are not routed among locations, machine D
(in the BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP LAN)
only by using the single address they have in common: the corporate WAN
network address.

Chapter 3
How to Create the NETGROUPS Section of the Configuration File

3-46

3.49.2 Configuring a Sample UBBCONFIG File with Netgroups
To set up the configuration just described, the First State Bank system administrator defines
each group in the NETGROUPS section of the UBBCONFIG file, as shown in the following listing.

Listing Sample NETGROUPS and NETWORK Sections

*NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRIO = 100 #default
BLUE_GROUP NETGRPNO = 9 NETPRIO = 200
MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200
GREEN_GROUP NETGRPNO = 13 NETPRIO = 300

*NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”
A NETGROUP=MAGENTA_GROUP NADDR="//A_MAGENTA:5724"
A NETGROUP=GREEN_GROUP NADDR="//A_GREEN:5725"
B NETGROUP=DEFAULTNET NADDR="//B_CORPORATE:5723"
B NETGROUP=MAGENTA_GROUP NADDR="//B_MAGENTA:5724"
B NETGROUP=GREEN_GROUP NADDR="//B_GREEN:5725"
C NETGROUP=DEFAULTNET NADDR="//C_CORPORATE:5723"
C NETGROUP=MAGENTA_GROUP NADDR="//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR="//D_CORPORATE:5723"
D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"
E NETGROUP=DEFAULTNET NADDR="//E_CORPORATE:5723"
E NETGROUP=BLUE_GROUP NADDR="//E_BLUE:5726"

See Also:

• UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

• How to Create the SERVERS Section of the Configuration File

• Configuring the Network for a Distributed Application

3.50 Assigning a Name to a Network Group
To assign a name to a network group, set the NETGROUP parameter as follows:

NETGROUP required_parameters [optional_parameters]

If you set NETGROUP to DEFAULTNET, then the entry describes the default network group. All
network entries with a NETGROUP parameter of DEFAULTNET are represented in the T_MACHINE
class of the TM_MIB, while NETWORK entries associated with any other NETGROUP are

Chapter 3
Assigning a Name to a Network Group

3-47

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

represented in the T_NETMAP class of the TM_MIB, so they can interoperate with
previous releases.

3.51 Assigning a Network Group Number
To accommodate circumstances in which you may need to use failover and failback,
you must set the NETGRPNO parameter as follows:

NETGRPNO=numeric_value

If this entry describes DEFAULTNET, the value of NETGRPNO must be zero.

3.52 Assigning a Priority to the Network Group
A pair of machines in multiple network groups of the same priority can communicate
simultaneously over the circuits with the highest priority. To assign network group
priorities, use the NETPRIO parameter. If all network circuits of a certain priority are torn
down by an administrator or by network conditions, the next lower priority circuit is
used. Retries of the higher priority circuits are attempted. The value of the NETPRIO
parameter must be a number greater than zero and less than 8,192. The default is
100.

3.53 How to Create the SERVERS Section of the
Configuration File

The SERVERS section of the configuration file contains information specific to a server
process. While this section is not required, an application without this section has no
application servers and little functionality. Each entry in this section represents a server
process to be booted in the application and includes the following information:

• The name, group, and numeric identifier for a server (SRVGRP, SRVID)

• Server command-line options defined by servopts (CLOPT)

• Parameters to determine the booting order and number of servers to boot
(SEQUENCE, MIN, MAX)

• A server-specific environment file (ENVFILE)

• Server queue-related information (RQADDR, RQPERM, REPLYQ, RPPERM)

• Restart information (RESTART, RCMD, MAXGEN, GRACE)

• Designation as a conversational server (CONV)

• Overriding of system-wide shared memory access (SYSTEM_ACCESS)

• Setting security parameters for IIOP Listener (ISL) servers

Chapter 3
Assigning a Network Group Number

3-48

Note:

Command-line options supported by the Oracle Tuxedo system are described in
servopts(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference.

For each parameter in the SERVERS section, the following table provides a description and
links to reference pages and additional information.

Table 3-15 How to Create the SERVERS Section of the Configuration File

To Specify This Information in the SERVERS Section (Optional) Set This
Parameter
(Required/
Optional)

For More
Information,
Click the
Following

Whether the server is a conversational server. Connections can be made only
to conversational servers, and rpc requests (via tpacall(3c) or tpcall (3c))
can be made only to non-conversational servers.

CONV (optional
run-time
parameter)

Conversational
server

Principal name of the process used for identification, location of the principal
user’s private key, and the environment variable containing the password

SEC_PRINCIPA
L_NAME,
SEC_PRINCIPA
L_LOCATION,
SEC_PRINCIPA
L_PASSVAR

Security
attributes

When this server should be booted or shut down relative to other servers. SEQUENCE
(Optional boot
parameter)

Server boot
order

The minimum number of occurrences of the server to be booted by tmboot. MIN (Optional
boot parameter)

Server boot
order

The maximum number of occurrences of the server that can be booted. MAX (Optional
boot parameter)

Server boot
order

A list of servopts(5) options to be passed to a server process at boot time. If
none are specified, the default is -A. string_value may contain up to 256
characters

CLOPT
(Optional boot
parameter)

Server
command-line
options

A request for the addition of the values in this file to the environment of the
server during its initialization. If a server is associated with a server group that
can be migrated to a second machine, the ENVFILE must be in the same
location on both machines.

ENVFILE
(Optional run-
time parameter)

Server
environment file

The name of the group in which the server is to run. string_value must be
the logical name associated with a server group in the GROUPS section.

SRVGRP
(Required)

Server group

An integer that uniquely identifies a server within a group. Identifiers must be
between 1 and 30,000 inclusive.

SRVID
(required)

Server ID

The symbolic name of the request queue for the process. RQADDR
(Optional run-
time parameter)

Server queue
information

The numeric permissions on the request queue. RQPERM
(Optional run-
time parameter)

Server queue
information

The command that must be executed when the process abnormally terminates,
if the process is restartable.

RCMD (Optional
run-time
parameter)

Server restart
information

Chapter 3
How to Create the SERVERS Section of the Configuration File

3-49

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Table 3-15 (Cont.) How to Create the SERVERS Section of the Configuration File

To Specify This Information in the SERVERS Section (Optional) Set This
Parameter
(Required/
Optional)

For More
Information,
Click the
Following

The maximum number minus one time that the process can be restarted within
the period specified by GRACE, if the process is restartable.

MAXGEN
(Optional run-
time parameter)

Server restart
information

A parameter that specifies that the process can have up to MAXGEN lives within
the specified number of seconds, if the process is restartable.

GRACE
(Optional run-
time parameter)

Server restart
information

Whether the process is restartable. Default is N. If server migration is specified,
RESTART must be set to Y. (A server terminated with a SIGTERM signal must be
rebooted.)

RESTART
(Optional run-
time parameter)

Server restart
information

The default mode used by Oracle Tuxedo system libraries within application
processes to gain access to Oracle Tuxedo system internal tables.

SYSTEM_ACCES
S (Optional
run-time
parameter)

System access
to servers

The minimum number of server dispatch threads started on initial server boot.
The separate dispatched thread that is used when MAXDISPATCHTHREADS>1 is
not counted as part of the MAXDISPATCHTHREADS value. It is required that
MINDISPATCHTHREADS<=MAXDISPATCHTHREADS. The default for this
parameter is 0.

MINDISPATCHT
HREADS

Threads

The maximum number of concurrently dispatched threads that each server
process may spawn. If MAXDISPATCHTHREADS>1, then a separate dispatcher
thread is used and does not count against this limit. It is required that
MINDISPATCHTHREADS<=MAXDISPATCHTHREADS. The default for this
parameter is 1.

MAXDISPATCHT
HREADS

Threads

The stack size in bytes for each server thread after the initial thread. If not
specified or specified as 0, the operating system default is used. This option
has an affect on the server only when a value greater than 1 is specified for
MAXDISPATCHTHREADS.

THREADSTACKS
IZE

Threads

The WebLogic Server embedded LDAP-based authentication server. It is a
System /T provided server that offers the authentication service while the user
security information is located in WebLogic Server. This server may be used in
a secure application to provide per-user authentication when clients join the
application.
SECURITY USER_AUTH or higher must be specified.

Default uses the file $TUXDIR/udataobj/tpldap to get LDAP configuration
information.

Example: LAUTHSVR SRVGRP= “AUTH’’SRVID=100 CLOPT=”-A-- -f/usr/
tuxedo/udataobj/tpldap”

LAUTHSVR
(Optional)

LAUTHSVR(5)

• Sample SERVERS Section

3.53.1 Sample SERVERS Section
Following is a sample SERVERS section of a configuration file.

*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 GRACE=3600

Chapter 3
How to Create the SERVERS Section of the Configuration File

3-50

 REPLYQ=N CLOPT=”-A”
 ENVFILE=”/usr/home/envfile”
 SYSTEM_ACCESS=PROTECTED

RINGUP1 SRVGRP=GROUP1 SRVID=1 MIN=3
 RQADDR=”ring1"
RINGUP2 SRVGRP=GROUP1 SRVID=4 MIN =3
 RQADDR=”ring2"

Note:

Omitted from this sample are SEQUENCE (the order of booting is 1 to 6), REPLYQ and
RPPERM (the server does not receive replies), RCMD (no special commands are
desired on restart), and CONV (servers are not conversational). Defaults are applied
to all servers unless a different setting is specified for a specific server.

• Sample SERVERS Section Parameters

3.53.1.1 Sample SERVERS Section Parameters
In the preceding sample SERVERS section, the following parameters and values are specified.

Parameter Meaning

RESTART-Y
(default)

Restart the servers.

MAXGEN=5
(default)

The MAXGEN parameter specifies a number greater than 0 and less than 256 that
controls the number of times a server can be started within the period specified by the
GRACE parameter. The default is 1. If the server is to be restartable, MAXGEN must be
>= 2. The number of restarts is at most number - 1 times. RESTART must be Y or
MAXGEN is ignored.

GRACE=3600
(default)

If RESTART is Y, the GRACE parameter specifies the time period (in seconds) during
which this server can be restarted as MAXGEN - 1 times. The number assigned must
be equal to or greater than 0. The maximum is 2,147,483,648 seconds (or a little more
than 68 years). If GRACE is not specified, the default is 86,400 seconds (24 hours). As
soon as one GRACE period is over, the next grace period begins. Setting the grace
period to 0 removes all limitations; the server can be restarted an unlimited number of
times.

REPLYQ=N
(default)

There is no reply queue.

CLOPT=”-A”
(default)

Specify -A on the command line of each server.

ENVFILE=”/u
sr/home/
envfile”
(default)

Read environment settings from the file ENVFILE.

SYSTEM_ACCE
SS=PROTECTE
D (default)

Deny access to internal tables outside system code.

RINGUP1 Sample name of the first server to be booted.

Chapter 3
How to Create the SERVERS Section of the Configuration File

3-51

Parameter Meaning

SRVGRP=GROU
P1 SRVID=1
MIN=3
RQADDR=”rin
g1"

Three instances of the sample server will be booted in group GROUP1 with server IDs of
1, 2, and 3, respectively. The three servers will form an MSSQ set and will read
requests from queue ring1 .

Note:

RQADDR assigns a symbolic name to the request queue of
this server. MSSQ sets are established by using the
same symbolic queue name for more than one server, as
well as same executable name for all the servers (and by
specifying a value greater than 1 for MIN).

RINGUP2 Name of the second sample server to be booted.

See Also:

• UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and
System Processes Reference

• How to Create the SERVICES Section of the Configuration File

3.54 Specifying a Server as Conversational
If a server is conversational (that is, if it establishes a two-way connection between a
client and a dedicated server), the CONV parameter is required and must be set to Y.
The default is N, indicating that the server will not be part of a conversation.

• Characteristics of the CONV Parameter

3.54.1 Characteristics of the CONV Parameter
The CONV parameter has the following characteristics:

• A Y value indicates a server is conversational; an N value indicates a server is not
conversational.

• A Y value is required if the server is to receive conversational requests.

• The default is N.

3.55 Setting the Order in Which Servers Are Booted
To specify the sequence of servers to be booted, set the SEQUENCE parameter for each
server. The value of SEQUENCE can be any number between 1 and 10,000. A server
with a smaller SEQUENCE value is booted before a server with a larger value. If the
SEQUENCE parameter is not set for any servers, the servers are booted in the order in

Chapter 3
Specifying a Server as Conversational

3-52

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

which they are listed in the SERVERS section. If some, but not all servers are sequenced, the
sequenced servers are booted first. The order in which servers are shut down is the reverse
of the order in which they were booted.

The SEQUENCE parameter is optional. It may be helpful in a large application in which control
over boot order is important.

Note:

Warning: In CORBA environments, there is a strict order in which the system
EventBroker, the FactoryFinder object, and the application factories must be
booted. A CORBA application program will not boot if the order is changed. See the
section Required Order in Which to Boot CORBA C++ Servers for details.

To boot multiple servers, set the MIN parameter, which provides a shortcut to booting. All
servers share the same options. If you specify RQADDR, the servers form an MSSQ set. The
default for MIN is 1.

To specify the maximum number of servers that can be booted, set the MAX parameter. The
tmboot(1) command boots MIN servers at run time. Additional servers can be booted up to
MAX. The default is MIN.

The MIN and MAX parameters are helpful in keeping the size of the configuration files for large
applications manageable. Allowances for MAX values must be made in the IPC resources. The
MIN and MAX parameters are also used for conversational services and automatic server
spawning.

• Required Order in Which to Boot CORBA C++ Servers

3.55.1 Required Order in Which to Boot CORBA C++ Servers
The following is the correct order in which to boot the servers In an Oracle Tuxedo CORBA
environment. A CORBA application program will not boot if the order is changed.

1. The system EventBroker, TMSYSEVT.

2. The TMFFNAME server with the -N option and the-M option, which starts the NameManager
service (as a Master). This service maintains a mapping of application-supplied names to
object references.

3. The TMFFNAME server with the -N option only, to start a Slave NameManager service.

4. The TMFFNAME server with the -F option, to start the FactoryFinder object.

5. The application C++ servers that are advertising factories.

The following Listing shows the order in which servers are booted for the Oracle Tuxedo
CORBA University Basic application, which is one of the sample applications included with
the Oracle Tuxedo software. This SERVERS section is excerpted from an edited version of the
ubb_b.nt configuration file.

Listing Edited SERVERS Section from a University Sample UBBCONFIG

*SERVERS
 # By default, restart a server if it crashes, up to 5 times
 # in 24 hours.

Chapter 3
Setting the Order in Which Servers Are Booted

3-53

 #
 DEFAULT:
 RESTART = Y
 MAXGEN = 5

 # Start the Oracle Tuxedo System EventBroker. This event broker
 # must be started before any servers providing the
 # NameManager Service
 #
 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

 # TMFFNAME is a Oracle Tuxedo CORBA provided server that
 # runs the NameManager and FactoryFinder services.
 # The NameManager service is a Oracle Tuxedo CORBA-specific
 # service that maintains a mapping of application-supplied names
 # to object references.

 # Start the NameManager Service (-N option). This name
 # manager is being started as a Master (-M option).
 #
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

 # Start a slave NameManager Service
 #
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

 # Start the FactoryFinder (-F) service
 #
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

 # Start the interface repository server
 #
 TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 5

 # Start the university server
 #
 univb_server
 SRVGRP = ORA_GRP
 SRVID = 6
 RESTART = N

 # Start the listener for IIOP clients

Chapter 3
Setting the Order in Which Servers Are Booted

3-54

 #
 # Specify the host name of your server machine as
 # well as the port. A typical port number is 2500
 # ISL
 SRVGRP = SYS_GRP
 SRVID = 7
 CLOPT = "-A -- -n //TRIXIE:2500"

In the example, after the TMSYSEVT and TMFFNAME servers are started, servers are started for:

• An Interface Repository. For information about this feature and the command-line options
(CLOPT parameter), see Managing CORBA Interface Repositories

• The univb_server, for the University Basic sample application. For details about the
sample applications, see the Guide to the CORBA University Sample Applications
<Default > ? Font>.

• An Internet Inter-ORB Protocol (IIOP) Server Listener (also known as an ISL). For
information about this feature and the CLOPT parameter, refer to Managing Remote
Oracle Tuxedo CORBA Client Applications

Note:

When migrating or shutting down and restarting groups or machines for any reason,
if there are active slave NameManagers in other groups, be sure to organize your
UBBCONFIG file so that a FactoryFinder or a slave NameManager is never restarted
before the master NameManager is active. For example, if you have a
FactoryFinder in the same group as the master NameManager, arrange the order of
these servers in the UBBCONFIG file so the master NameManager is started first.

3.56 Characteristics of the SEQUENCE, MIN, and MAX
Parameters

Parameter Characteristics

SEQUENCE It is an optional parameter with a numeric range of 1 - 10,000.
Smaller values are booted before larger values.

Servers for which this parameter is not set are booted in the order in which they are listed in the
SERVERS section.

All sequenced servers are booted before any unsequenced servers.

MIN It represents the minimum number of servers to boot during run time.
If RQADDR is specified and MIN>1, an MSSQ set is created.

All instances have the same server options.

The range of values is 0 to 1000.

The default is 1.

MAX It represents the maximum number of servers to boot.
The range of values for MAX is 0 to 1000. If MAX is not specified, the default is the value of MIN.

Chapter 3
Characteristics of the SEQUENCE, MIN, and MAX Parameters

3-55

3.57 Specifying Server Command-line Options
The Oracle Tuxedo system allows you to specify options that are used when a server
processes a request. These options are defined in servopts, which lists the run-time
options for server processes. The server may need to obtain information from the
command line. The CLOPT parameter allows you to specify command-line options that
can change some defaults in the server, or pass user-defined options to the
tpsvrinit() function.

The standard main() of a server parses one set of options ending with the argument
--, and passes the remaining options to tpsvrinit(). The default for CLOPT is -A, which
tells the server to advertise all the services built into it with buildserver(1) or
buildobjserver(1). The following table provides a partial list of the available options.

Table 3-16 Specifying Server Command-line Options

Use This
Option

To

-o filename Redirect standard output to file filename.
-e filename Redirect standard error to file filename.
-s services Advertise services. For example, -s x,y,z to advertise services x, y, and z.

-s
x,y,z:funcna
me

Advertise services x, y, and z, but process requests for those services with function funcname.
This is called aliasing a function name.

-r Specify that the server should log the services performed.

-v Print out the list of the service name/function name to standard output. This option cannot be
used in the CLOPT in the UBBCONFIG. It must be used when manually invoking the server.

Note:

You can find other standard main() options listed on servopts(5) in the File
Formats, Data Descriptions, MIBs, and System Processes Reference.

• Characteristics of the CLOPT Parameter

3.57.1 Characteristics of the CLOPT Parameter
• The syntax is CLOPT=” servopts -- application_opts" .

• This is an optional parameter with a default of -A.

• Bothmain() and tpsvrinit() use server command-line options.

• servopts(5) options are passed tomain().

• Application options are passed totpsvrinit().

In the BANKAPP sample application, command-line options are specified as follows:

CLOPT=”-A -- -T 10"

Chapter 3
Specifying Server Command-line Options

3-56

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

The server is given the option of advertising all services (-A) and teller ID of 10 so it can
update a specific teller record with each operation. The use of this option, especially the
options passed to tpsvrinit(), require communication between the system administrator
and the application programmer.

See Also:

• servopts(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

3.58 Identifying the Location of the Server Environment File
Use the ENVFILE parameter in the MACHINES section to specify environment settings. You can
also specify the same parameter for a specific server process; the semantics are the same. If
both the MACHINES section ENVFILE and the SERVERS section ENVFILE are specified, both go
into effect. For any overlapping variable defined in both the MACHINES and SERVERS sections,
the setting in the SERVERS section prevails.

• Characteristics of the Server Environment File

3.58.1 Characteristics of the Server Environment File
ENVFILE, the parameter that defines the server environment file, has the following
characteristics:

• It is an optional parameter that contains the same semantics as the ENVFILE parameter in
the MACHINES section, but defines only one server.

• For overlapping variables, the setting in the SERVERS section ENVFILE overrides the
setting in the MACHINES and GROUPS sections ENVFILE.

For more information about setting environment variables, refer to tuxenv(5) in File Formats,
Data Descriptions, MIBs, and System Processes Reference.

3.59 Defining Server Name, Group, and ID
You initially assign a name to a server in the SERVERS section. The name you specify must be
the name of an executable file built with one of the following commands:

• buildserver(1) for ATMI applications

• buildobjserver(1) for CORBA C++ server applications

You must also specify a group identifier (SRVGRP) for each server. The value of SRVGRP must
be the name specified in the beginning of a GROUPS section entry. Finally, you must also
provide each server process in a given group with a unique numeric identifier (SRVID). Every
server entry must include the SRVGRP and SRVID parameters. Because the entries describe
machines to be booted and not just applications, it is possible that in some cases the same
server name will be displayed in many entries.

• Characteristics of the Server Name, SRVGRP, and SRVID Parameters

Chapter 3
Identifying the Location of the Server Environment File

3-57

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

3.59.1 Characteristics of the Server Name, SRVGRP, and SRVID
Parameters

Parameter Characteristics

Server_name It identifies the executable to be booted.
It is built with buildserver(1) for ATMI.

It is built with buildobjserver(1) for CORBA.

It is required, but may not be unique within a server group.

SRVGRP
(Server
Group)

It identifies the group affiliation.
The group name begins with a GROUPS section entry.

It is required.

SRVID (Server
ID)

It is numeric.
It is required and unique within a server group.

3.60 Identifying Server Queue Information
Server queue information controls the creation and access of server message queues.
On an Oracle Tuxedo system, you can create Multiple Server, Single Queue (MSSQ)
sets by using the RQADDR parameter. For any given server, you can set this parameter
to an alphanumeric value. By specifying the same value for RQADDR on all servers that
offer the same services, you can consolidate those services under one message
queue, thus creating an MSSQ set and establishing load balancing.

• MSSQ Example

• Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters

3.60.1 MSSQ Example
An MSSQ set is similar to a bank staff. Four tellers may be available to handle the
business requests of many customers who wait in a single line. All customers are
assured of an equitable wait in line. Understandably, a loan officer is not included in
the group of tellers handling requests from customers in that line. The loan officer
cannot handle requests for deposits and withdrawals (as the tellers can), and not all
customers want loans. Similarly, a server cannot join an MSSQ set if the services it
offers are not the same as the services offered by the servers in an MSSQ set.

The RQPERM parameter allows you to specify the permissions for server request
queues, along the lines of the UNIX system convention (for example, 0666). This
setting allows services to control access to the request queue.

If the service routines within an MSSQ server perform service requests, they must
receive replies to their requests on a reply queue. You can set up such a reply queue
by specifying REPLYQ=Y. By default, REPLYQ is set to N. If REPLYQ is set to Y, you can
also assign permissions to it with the RPPERM parameter.

Chapter 3
Identifying Server Queue Information

3-58

3.60.2 Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM
Parameters

Parameter Characteristics

RQADDR It is an alphanumeric value that allows MSSQ sets to be created. The value is the same for all
members of an MSSQ set. All members of an MSSQ set must offer the same set of services and
the servers in an MSSQ set should have the same executable name. In order to boot multiple
servers, set the value greater than 1 for Min parameter.

RQPERM Represents the permissions on a request queue. If no parameter is specified, the permissions of
the bulletin board, as specified by PERM in the RESOURCES section, are used. If no value is
specified there, the default of 0666 is used. When the default is used, your application is available
to anyone with a login on the system.

REPLYQ Specifies whether a reply queue, separate from the request queue, is to be set up for this server.
If only one server is using the request queue, replies can be picked up from the request queue
without causing problems. On an Oracle Tuxedo system, if the server is a member of an MSSQ
set and contains services programmed to receive reply messages, REPLYQ must be set to Y so
that an individual reply queue is created for this server. If not, the reply is sent to the request
queue shared by all servers of the MSSQ set, and there is no way of assuring that it will be
picked up by the server that is waiting for it. Multithreaded servers automatically create REPLYQs
even if this parameter is not set.

RPERM Assigns permissions to the reply queue. This parameter is useful only when REPLYQ=Y. If
requests and replies are read from the same queue, only RQPERM is needed; RPPERM is ignored.

3.61 Defining Server Restart Information
A properly debugged server should not terminate on its own. By default, servers that do
terminate while the application is running are not restarted by the Oracle Tuxedo system. You
can set the RESTART parameter to Y if you want the server to restart. The RCMD, MAXGEN, and
GRACE parameters are relevant to a server if RESTART=Y .

The RCMD parameter lets you specify a command to be performed in parallel with restarting a
server. For example, you may want to have e-mail sent to the developer of the server or to
someone who is auditing such activity.

The MAXGEN parameter represents the total number of lives to which a server is entitled within
the period specified by GRACE. The server can then be restarted MAXGEN-1 times during GRACE
seconds. If GRACE is set to zero, there is no limit on server restarts. MAXGEN defaults to 1 and
may not exceed 256. GRACE must be greater than or equal to zero and must not exceed
2,147,483,647 (231 - 1).

Note:

A fully debugged server should not need to be restarted. RESTART and associated
parameters should have two settings: one for the testing phase, and another for
production.

• Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters

Chapter 3
Defining Server Restart Information

3-59

3.61.1 Characteristics of the RESTART, RCMD, MAXGEN, and
GRACE Parameters

Parameter Characteristics

RESTART A setting of Y enables a server to restart.
The default is N.

RCMD Specifies an executable file to be run at restart time.
Allows you to take an action when a server is restarted.

MAXGEN Represents the maximum number of server lives in a specific interval.
The default is 1; the maximum is 256.

GRACE Represents the interval used by MAXGEN.
Zero represents unlimited restart.

It must be between 0 and 2147,483,647 (231 - 1).

The default is 24 hours.

3.62 Defining Server Access to Shared Memory
The SYSTEM_ACCESS parameter determines whether a server process may attach to
shared memory and thus have access to internal tables outside system code. During
application development, we recommend that such access be denied (PROTECTED).
When the application is fully tested, you can change the value of SYSTEM_ACCESS to
FASTPATH to yield better performance.

This parameter setting overrides the value specified in the RESOURCES section unless
the NO_OVERRIDE value has been specified. In this case, the parameter is ignored. The
NO_OVERRIDE value may not be used in this section.

• Characteristics of the SYSTEM_ACCESS Parameter

3.62.1 Characteristics of the SYSTEM_ACCESS Parameter
The SYSTEM_ACCESS parameter has the following characteristics:

• A value of PROTECTED indicates that the server may not attach to shared memory
outside of system code.

• A value ofFASTPATH indicates that the server will attach to shared memory at all
times.

• If NO_OVERRIDE is specified in the RESOURCES section, this parameter is ignored.

• The default is the value of the SYSTEM_ACCESS parameter in the RESOURCES section.

• The Oracle Tuxedo system runs more slowly when a value of PROTECTED is set.

3.63 Defining the Server Dispatch Threads
MAXDISPATCHTHREADS is the maximum number of concurrently dispatched threads that
each server process may spawn. If MAXDISPATCHTHREADS>1, then a separate
dispatcher thread is used and does not count against this limit. It is required that

Chapter 3
Defining Server Access to Shared Memory

3-60

MINDISPATCHTHREADS<=MAXDISPATCHTHREADS. If not specified, the default for this parameter is
1.

MINDISPATCHTHREADS is the minimum number of server dispatch threads started on initial
server boot. The separate dispatched thread that is used when MAXDISPATCHTHREADS>1 is not
counted as part of the MAXDISPATCHTHREADS value. It is required that
MINDISPATCHTHREADS<=MAXDISPATCHTHREADS. The default for this parameter is 0.

You must specify the stack size in bytes for each server thread after the initial thread. If not
specified or specified as 0, the operating system default is used. This option has an affect on
the server only when a value greater than 1 is specified for MAXDISPATCHTHREADS.

3.64 Setting Security Parameters for ISL Servers
In CORBA environments the IIOP Listener (ISL) process listens for remote clients requesting
a connection. The ISL process is specified in one entry as a server supplied by the Oracle
Tuxedo system.

The Secure Socket Layer (SSL) protocol defines how processes can communicate in a
secure manner over IIOP. Use the -s option on the ISL command to set the required
parameters. You only need to set these parameters if you are using the SSL protocol, which
is installed in the Oracle Tuxedo Security Pack.

The following table lists the SSL parameters characteristics.

Paramet
er

Characteristics

SEC_PRI
NCIPAL_
NAME

Specifies the identity of the IIOP Listener/Handler.

SEC_PRI
NCIPAL_
LOCATIO
N

Specifies the location of the private key for the IIOP Listener/Handler.

SEC_PRI
NCIPAL_
PASSWOR
D

Specifies the phrase for the private key of the IIOP Listener/Handler.

For more information about setting these parameters, see Using Security in CORBA
Applications.

3.65 How to Create the SERVICES Section of the Configuration
File

Detailed information about the services in your application can be entered in the SERVICES
section of the configuration file. For nontransactional, nondistributed applications, such
information is relatively simple. The SERVICES section includes the following types of
information:

• Load balancing information (SRVGRP)

• Assignment of priorities to services

Chapter 3
Setting Security Parameters for ISL Servers

3-61

• Different service parameters for different server groups

• Buffer type checking information (BUFTYPE)

• Nontransactional service-level blocktime values

There are no required parameters for services. You need to list services only if you are
setting optional parameters.

For each parameter in the SERVICES section, the following table provides a description
and links to reference pages and additional information.

Table 3-17 How to Create the SERVICES Section of the Configuration File

To Specify This Information in the SERVICES Section Set This
Parameter
(Required/
Optional)

For More
Information,
Click the
Following

Whether a transaction should be started automatically when a request
message is received that is not already in transaction mode.

AUTOTRAN (For
DTP
applications
only)

Specifying
Automatic
Starts and
Timeout
Intervals for
Transactions

A list of types and subtypes of data buffers accepted by this service. This
parameter may contain up to 256 characters with a maximum of 32 type/
subtype combinations.

BUFTYPE
(Optional)

Specifying a
List of
Allowable
Buffer Types for
a Service

A load factor to be imposed on the system by SVCNAM. LOAD (Optional) Enabling Load
Balancing

The name of the routing criteria used for this service when data- dependent
routing is used.

ROUTING
(Optional)

Defining the
Name of the
Routing Criteria

The dequeuing priority of SVCNM. SRVGRP
(Optional)

Specifying
Service
Parameters for
Different Server
Groups

Set the nontransactional blocking time value, in seconds, of the indicated
service.

PRIO (Optional) Controlling the
Flow of Data by
Service Priority

Set the nontransactional blocking time value, in seconds, of the indicated
service.

BLOCKTIME
(Optional)

Specifying
Nontransaction
al Service-
Level Blocktime

The amount of time, in seconds, that is allowed for processing of the indicated
service.

SVCTIMEOUT
(Optional)

Indicating
Service
Processing
Time

The default timeout interval, in seconds, for a transaction automatically started
for the associated service.

TRANTIME (For
DTP
applications
only)

Specifying
Automatic
Starts and
Timeout
Intervals for
Transactions

• Sample SERVICES Section

Chapter 3
How to Create the SERVICES Section of the Configuration File

3-62

3.65.1 Sample SERVICES Section
Following is a sample of the SERVICES section of a configuration file.

*SERVICES
#
DEFAULT: LOAD=50 PRIO=50
RINGUP BUFTYPE=”VIEW:ringup”

In this example, the default load and priority of a service are 50; the one service declared is a
RINGUP service that accepts a RINGUP VIEW as its required buffer type.

See Also:

• UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

• How to Create the ROUTING Section of the Configuration File

3.66 Specifying Automatic Starts and Timeout Intervals for
Transactions

You can determine whether a transaction should be started automatically if a request
message is already in transaction mode by coding the AUTOTRAN ={Y|N} parameter. The
default is N.

You can specify a timeout interval between the time at which a transaction for a service
begins and the time at which it is rolled back if not completed. To specify a timeout interval
that will be used automatically, set the TRANTIME parameter as follows:

TRANTIME=number

The default is 30 seconds. A value of 0, the maximum timeout value for the computer, means
a transaction will never time out.

An additional transaction timeout property named MAXTRANTIME is available from the
RESOURCES section of the UBBCONFIG file. If the MAXTRANTIME timeout value is less than the
TRANTIME timeout value or the timeout value passed in a tpbegin(3c) call to start a
transaction, the timeout for a transaction is reduced to the MAXTRANTIME value.

Chapter 3
Specifying Automatic Starts and Timeout Intervals for Transactions

3-63

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Note:

MAXTRANTIME has no effect on a transaction started on a machine running
Oracle Tuxedo 8.0 or earlier, except that when a machine running Oracle
Tuxedo 8.1 or later is infected by the transaction, the transaction timeout
value is capped—reduced if necessary—to the MAXTRANTIME value
configured for that node.

See Also:

• Using the Oracle Tuxedo Domains Component

• For more information about MAXTRANTIME, see MAXTRANTIME in the
RESOURCES section in UBBCONFIG(5) or TA_MAXTRANTIME in the T_DOMAIN
class in TM_MIB(5).

3.67 Specifying a List of Allowable Buffer Types for a
Service

With the BUFTYPE parameter, you can tune a service to check buffer types
independently of the service code. Set this parameter with a list of allowable buffer
types for a service in the following format:

type[:subtype[,subtype]]

To allow all subtypes, set the value of subtype to *.

If the value of the BUFTYPE parameter for a service is ALL, this service accepts all buffer
types. The default is ALL.

• Examples of the BUFTYPE Parameter

3.67.1 Examples of the BUFTYPE Parameter

BUFTYPE
Example

Meaning

BUFTYPE=”FML
;VIEW:aud,au
d2"

FML and VIEW buffer types with subtypes aud and aud2 are allowed.

BUFTYPE=”FML
;VIEW:*”

All FML and VIEW buffer types are allowed.

BUFTYPE=ALL All buffer types are allowed (the default).

Chapter 3
Specifying a List of Allowable Buffer Types for a Service

3-64

3.68 Designating How Much Time to Process a Request
Sometimes an unexpected system error occurs, freezing a service or causing it to run out of
control while it is processing a request. Obviously, it is a good idea to remove these
processes, but it is difficult to detect them or determine how they developed errors. The
Oracle Tuxedo system provides a mechanism for terminating such processes even when you
cannot identify them. To use this mechanism, set the SVCTIMEOUT parameter.

The SVCTIMEOUT parameter allows you to designate an amount of time (in seconds) in which
a service should be able to process a request. If the interval defined by this parameter
elapses and a service has not finished processing a request, the process for that request is
killed. In essence, the service timeout mechanism acts like a scavenger for frozen or out of
control application servers. By default, the Oracle Tuxedo system does not terminate any
service process; you must set the SVCTIMEOUT parameter to activate this feature.

You can assign a value to the SVCTIMEOUT parameter in the UBBCONFIG file or by dynamically
changing the TA_SVCTIMEOUT attribute in TM_MIB. We recommend that you set the value of
SVCTIMEOUT or TA_SVCTIMEOUT to at least two to three times the number of seconds it takes
for your longest running service to process a request. Setting the service timeout in this way
guarantees that the Oracle Tuxedo system removes only frozen processes.

This section describes the causes and results of service timeout errors, and explains how the
Oracle Tuxedo system reports such errors. Advice about how to handle errors is also
provided.

• What Happens When a Timeout Occurs

• How a Service Timeout Is Reported

3.68.1 What Happens When a Timeout Occurs
When a timeout occurs, the Oracle Tuxedo system terminates the server process running the
frozen service (but not its child processes, if any). It then returns a TPESVCERR error, indicating
that an unknown problem occurred during processing. In a conversational service, the
conversation event TPEV_SVCERR is returned.

3.68.2 How a Service Timeout Is Reported
The Oracle Tuxedo system reports a service timeout through the following three
mechanisms:

• TPED_SVCTIMEOUT—timeout error detail that provides more information than
tpstrerror(3c)

• .SysServiceTimeout—a system event

• ULOG information about .SysServiceTimeout
Because the SVCTIMEOUT value is configurable, it is important for clients to be able to easily
distinguish between a TPESVCERR caused by exceeding the value set for SVCTIMEOUT, and a
TPESVCERR caused by other situations. Although the ULOG contains this information, it is
difficult for client programs to extract it. To differentiate a service timeout TPESVCERR from
others, a program can include a call to the tperrordetail (3c) routine (after a TPESVCERR
has been detected), which yields TPED_SVCTIMEOUT when a service timeout occurs.

Chapter 3
Designating How Much Time to Process a Request

3-65

In addition, a system event, .SysServiceTimeout, is generated when a service timeout
occurs. When a .SysServiceTimeout event occurs, it is reflected in the ULOG in the
following way:

ERROR: .SysServiceTimeout: %TA_SERVERNAME, group %TA_SRVGRP, id
%TA_SRVID server killed due to a service timeout

• How to Control a Service Timeout

3.68.2.1 How to Control a Service Timeout
• Application administrators may control the service timeout by changing the

SVCTIMEOUT parameter in the SERVICES section of the UBBCONFIG file, or by
modifying the TA_SVCTIMEOUT attribute of the T_SERVER or T_SERVICE class of the
TM_MIB. They may also monitor the ULOG file for service timeout activity.

• In addition to monitoring the ULOG file for service timeout activity, application
operators can subscribe to the .SysServiceTimeout event, which alerts them
when a service timeout occurs.

• Application programmers can use the tperrordetail(3c) and tpstrerrordetail
(3c) functions, and the TPED_SVCTIMEOUT error detail code. They may want to add
one or more subscriptions to the .SysServiceTimeout system event, which is
generated when a service timeout occurs.

3.69 Specifying Nontransactional Service-Level Blocktime
Different services take different amounts of time and need individual BLOCKTIME
values. Sometimes, an application needs or desires to override the default blocktime
value for an individual client or for an individual service call.

The UBBCONFIG file SERVICES section BLOCKTIME parameter allows you to designate the
blocking time value, per second, for individual nontransactional services. It overrides
the default RESOURCES section BLOCKTIME parameter value for the designated service.
Per service BLOCKTIME parameter values can also be set for remote services using the
DMCONFIG file. For more information, see UBBCONFIG(5), SERVICES section and
DMCONFIG(5), DM_IMPORT section.

Unlike the SVCTIMEOUT parameter, the BLOCKTIME parameter does not terminate a
service application. Instead, it lets the client know that (after a specified time in
seconds), no reply has been received by the server while the service request is still
processing.

Note:

Application programmers can also set nontransactional blocktime requests
and retrieve blocktime values by using the tpsblktime(3c) and
tpgblktime(3c) functions.

Chapter 3
Specifying Nontransactional Service-Level Blocktime

3-66

3.70 Enabling Load Balancing
To activate load balancing, set the RESOURCES section parameter LDBAL to Y. A load factor is
assigned to each service performed (via the LOAD parameter) and the Oracle Tuxedo system
keeps track of the total load of services that each server has performed. Each service request
is routed to the server with the smallest total load. The routing of that request causes the
server’s total to be increased by the LOAD factor of the service requested.

Load information is stored only on the site originating the service request. It would be
inefficient for the Oracle Tuxedo system to make continuous attempts to propagate load
information to all sites in a distributed application. When performing load balancing in such an
environment, each site knows only about the load it originated and performs load balancing
accordingly. This means that each site has different load statistics for a given server (or
queue). The server perceived as being the least busy differs from site to site.

When load balancing is not activated, and multiple servers offer the same service, the first
available queue receives the request.

• Characteristics of the LDBAL Parameter

3.70.1 Characteristics of the LDBAL Parameter
The LDBAL parameter has the following characteristics:

• Load balancing is used if the RESOURCES LDBAL parameter is set to Y.

• The load factor is added to a server’s total load.

• The load is relative to other services.

3.71 Defining the Name of the Routing Criteria
When using data-dependent routing, you need to specify the routing criteria to be used for a
service. To specify such criteria, set the ROUTING parameter as follows:

ROUTING=string_value

If this parameter is not set, the service does not perform data-dependent routing.

The maximum value of string is 15 characters. No more than one value may be assigned to
the ROUTING parameter for a given service. Even if you have multiple entries for one service
and those entries contain different SRVGRP parameters, the value of ROUTING must be the
same in all entries.

3.72 Specifying Service Parameters for Different Server Groups
You can assign the same service to multiple groups and assign different values to the various
service-specific parameters you set for the service entries for the different groups. To do this,
create a separate entry for the service for each group, specifying a group-specific value for
the SRVGRP parameter.

Chapter 3
Enabling Load Balancing

3-67

3.73 Controlling the Flow of Data by Service Priority
You can exert significant control over the flow of data in an application by assigning
service priorities using the PRIO parameter. The value of PRIO must be a number
between 0 and 100. The higher the number, the higher the priority of the service to
which it is assigned. Higher priority services are dequeued before lower priority
services, but the system dequeues every tenth request in FIFO order to prevent a
message from waiting indefinitely on the queue.

For instance, Server 1 offers Services A, B, and C. Services A and B have a priority of
50 and Service C has a priority of 70. A service requested for C will always be
dequeued before a request for A or B. Requests for A and B are dequeued equally
with respect to one another.

Note:

A priority can also be changed dynamically with the tpsprio() call.

• Characteristics of the PRIO Parameter

• Sample SERVICES Section Using Different Priorities

3.73.1 Characteristics of the PRIO Parameter
The PRIO parameter has the following characteristics:

• It determines the priority of a service on the server’s queue.

• The highest assigned priority gets first preference.

• Every tenth request is dequeued FIFO.

3.73.2 Sample SERVICES Section Using Different Priorities
The following sample from the SERVICES section of a configuration file shows how
priorities are assigned to services:

*SERVICES
A SRVGRP=GRP1 PRIO=50 LOAD=60
A SRVGRP=GRP2 PRIO=70 LOAD=30

In this example, different service-specific parameters are assigned to two server
groups. Service A is assigned a priority of 50 and a load of 60 in server group GRP1,
and a priority of 70 and a load of 30 in server group GRP2.

3.74 Indicating Service Processing Time
To indicate the maximum amount of time, in seconds, allowed for processing a service,
set the SVCTIMEOUT parameter as follows:

SVCTIMEOUT=number

Chapter 3
Controlling the Flow of Data by Service Priority

3-68

The value must be greater than or equal to 0. A value other than 0 indicates that the service
will be timed out: the server processing the server request will be terminated with a SIGKILL
signal. The default for this parameter is 0.

3.75 How to Create the INTERFACES Section of the
Configuration File

Note:

This section applies only to the CORBA environments.in Oracle Tuxedo.

The INTERFACES section in the configuration file is used to define parameters for CORBA
environments in the Oracle Tuxedo system. In this section, you define application-wide
default parameters for CORBA interfaces used by the application. For a CORBA interface
participating in factory-based routing, you define the interface names and specify the name of
the routing criteria that the Tuxedo CORBA environment should apply to each interface.
Factory-based routing is a feature that lets you distribute processing to specific server
groups.

In addition to defining the INTERFACES section, you must specify routing criteria in the ROUTING
section and the names of groups in the GROUPS section when you implement factory-based
routing. For details about the parameters and more information about factory-based routing,
see the section How to Create the ROUTING Section of the Configuration File in this chapter.

• Specifying CORBA Interfaces in the INTERFACES Section

• Specifying FACTORYROUTING Criteria

• Enabling Load Balancing

• Controlling the Flow of Data by Interface Priority

• Specifying Different Interface Parameters for Different Server Groups

3.75.1 Specifying CORBA Interfaces in the INTERFACES Section
You indicate specific information about CORBA interfaces used by your application in the
INTERFACES section of the configuration file. There are no required parameters. CORBA
interfaces need not be listed if no optional parameters are desired. The INTERFACES section
includes the following types of information:

• Whether transactions should be started automatically (AUTOTRAN) (CORBA only)

• The routing criteria to be used for factory-based routing for this CORBA interface
(FACTORYROUTING) (CORBA only)

• Load balancing information (LOAD)

• Assignment of priorities to interfaces (PRIO)

• Different service parameters for different server groups (SRVGRP)

• Timeout value for transactions associated with this CORBA interface (TRANTIME)

• Timeout value for transactions associated with this CORBA interface (TRANTIME)

Chapter 3
How to Create the INTERFACES Section of the Configuration File

3-69

• Timeout value for processing a method for this CORBA interface (TIMEOUT)

The following table lists the AUTOTRAN, FACTORYROUTING, LOAD, PRIO, SRVGRP, TRANTIME,
and TIMEOUT parameters characteristics.

Parameter Characteristics

AUTOTRAN =
{Y | N }

For each CORBA interface, set AUTOTRAN to Y if you want a transaction to start automatically
when an operation invocation is received. AUTOTRAN=Y has no effect if the interface is already
in transaction mode. The default is N.
The effect of specifying a value for AUTOTRAN is dependent on the transactional policy specified
by the system designer in the implementation configuration file (ICF) or Server Description File
(XML) for the interface. This transactional policy will become the transactional policy attribute of
the associated T_IFQUEUE MIB object at run time. The only time this value actually affects the
behavior of the application is if the system designer specified a transaction policy of optional.

Note:

To work properly, this feature may be dependent on personal
communication between the system designer and the system
administrator. If the system administrator sets this value to Y
without prior knowledge of the ICF or XML parameters set by the
programmer, the actual run-time effort of the parameter might be
unknown.

FACTORYROUTI
NG =
criterion-
name

Specify the name of the routing criteria to be used for factory-based routing for this CORBA
interface. You must specify a FACTORYROUTING parameter for interfaces requesting factory-
based routing.

LOAD =
number

This is an arbitrary number between 1 and 100 that represents the relative load that the CORBA
interface is expected to impose on the system. The numbering scheme is relative to the LOAD
numbers assigned to other CORBA interfaces used by this application. The default is 50. The
number is used by the Oracle Tuxedo system to select the best server to route the request.

PRIO =
number

Specify the dequeuing priority number for all methods of the CORBA interface. The value must
be greater than 0 and less than or equal to 100. 100 is the highest priority. The default is 50.

SRVGRP =
server-
group-name

Use SRVGRP to indicate that any parameter defined in this portion of the INTERFACES section
applies to the interface within the specified server group. For a given CORBA interface, this
feature lets you define different parameter values in different server groups.

TRANTIME =
number

If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which is the transaction timeout in
seconds, for the transactions to be computed. The value must be greater than or equal to zero
and must not exceed 2,147,483,647 (231 - 1), or about 70 years. A value of 0 (zero) implies there
is no timeout for the transaction. (The default is 30 seconds.)

TIMEOUT=numb
er

The amount of time, in seconds, to allow for processing of a method for this CORBA interface.
The values must be greater than or equal to 0. A value of 0 indicates that the interface cannot
time out. A timed-out method causes the server processing the method for the interface to
terminate with a SIGKILL event. You should consider specifying a timeout value for the longest-
running method for the interface.

3.75.2 Specifying FACTORYROUTING Criteria
For each CORBA interface, the INTERFACES section specifies what kinds of criteria the
interface routes on. The INTERFACES section specifies the routing criteria through an
identifier, FACTORYROUTING.

Chapter 3
How to Create the INTERFACES Section of the Configuration File

3-70

• University Sample

• Bankapp Sample

3.75.2.1 University Sample
The University Production sample application demonstrates how to code factory-based
routing (see the following Listing). You can find the UBBCONFIG files (ubb_p.nt or ubb_p.mk) for
this sample in the directory where the Oracle Tuxedo software is installed. Look in the
\samples\corba\university\production sub-directory.

Listing Production Sample INTERFACES Section

*INTERFACES

 "IDL:beasys.com/UniversityP/Registrar:1.0"
 FACTORYROUTING = STU_ID

 "IDL:beasys.com/BillingP/Teller:1.0"
 FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two interfaces in the
University Production sample. The FACTORYROUTING identifier specifies the names of the
routing values, which are STU_ID and ACT_NUM, respectively.

To understand the connection between the INTERFACES FACTORYROUTING parameter and the
ROUTING section, see the section CORBA Factory-based Routing in the University Production
Sample Application.

3.75.2.2 Bankapp Sample
The following Listing shows how factory-based routing is specified in the Bankapp sample
application.

Listing Bankapp Sample Factory-based Routing

*INTERFACES
 "IDL:BankApp/Teller:1.0"
 FACTORYROUTING=atmID

*ROUTING
 atmID
 TYPE = FACTORY
 FIELD = "atmID"
 FIELDTYPE = LONG
 RANGES = "1-5:BANK_GROUP1,
 6-10: BANK_GROUP2,
 *:BANK_GROUP1

In this example, the IDL:Bankapp/Teller interface uses a factory-based routing scheme
called atmID, as defined in the ROUTING section. In the ROUTING section, the sample indicates
that the processing will be distributed across two groups. BANK_GROUP1 processes interfaces
used by the application when the atmID field is between 1 and 5, or greater than 10.

Chapter 3
How to Create the INTERFACES Section of the Configuration File

3-71

BANK_GROUP2 processes interfaces used by the application when the atmID field is
between 6 and 10, inclusive.

3.75.3 Enabling Load Balancing
In Oracle Tuxedo CORBA environments, load balancing is always enabled.

A LOAD factor is assigned to each CORBA interface invoked, which keeps track of the
total load of CORBA interfaces that each server process has performed. Each
interface request is routed to the server with the smallest total load. The routing of that
request causes the server’s total to be increased by the LOAD factor of the CORBA
interface requested. When load balancing is not activated, and multiple servers offer
the same CORBA interface, the first available queue receives the request.

For more information about load balancing in Oracle Tuxedo CORBA environments,
refer to “Enabling System-controlled Load Balancing,” in the Scaling, Distributing, and
Tuning CORBA Applications manual.

Support for parallel objects in CORBA environments has been added for release 8.0 of
Oracle Tuxedo, which introduces load balancing across multiple servers in a local
domain. For more information about parallel objects in Oracle Tuxedo CORBA
environments, refer to the “Using Parallel Objects” section in Scaling, Distributing, and
Tuning CORBA Applications.

3.75.4 Controlling the Flow of Data by Interface Priority
You can control the flow of data in a Oracle Tuxedo client or server application by
assigning interface priorities using the PRIO parameter. For instance, Server 1 offers
Interfaces A, B, and C. Interfaces A and B have a priority of 50 and Interface C has a
priority of 70. An interface requested for C will always be dequeued before a request
for A or B. Requests for A and B are dequeued equally with respect to one another.
The system dequeues every tenth request in FIFO order to prevent a message from
waiting indefinitely on the queue.

The PRIO parameter has the following characteristics:

• It determines the priority of a CORBA interface on the server’s queue.

• The highest assigned priority gets first preference.

• Every tenth request is dequeued FIFO.

3.75.5 Specifying Different Interface Parameters for Different Server
Groups

You can specify different load, priority, or other interface-specific parameters for
different server groups. To do this, you should repeat the interface’s entry for each
group with different values for the SRVGRP parameter.

Chapter 3
How to Create the INTERFACES Section of the Configuration File

3-72

3.76 How to Create the ROUTING Section of the Configuration
File

The ROUTING section of UBBCONFIG allows you to provide a full definition of the routing criteria
named in the SERVICES section (for ATMI data-dependent routing) or in the INTERFACES
section (for CORBA factory-based routing).

Note:

For more information about configuring factory-based routing for CORBA
environments, refer to the Scaling, Distributing, and Tuning CORBA Applications
guide.

For each parameter in the ROUTING section, the following table provides a description and
links to reference pages and additional information.

To Specify This Information in the ROUTING Section (Optional) Set This
Parameter
(Required/
Optional)

For More
Information,
Click the
Following

Ranges and associated server groups for the routing field. RANGES
(Required)

Specifying
Range Criteria

The value must be a string with a maximum length of 15 characters.
For ATMI, the routing criteria name specified as the value of the ROUTING
parameter in the SERVICES section for data-dependent routing.

For CORBA, the routing criteria name specified in the INTERFACES section as
the FACTORYROUTING parameter factory-based routing.

criterion_na
me (required)

-

Specifies the routing type.
For ATMI, the default is TYPE=SERVICE to ensure that existing UBBCONFIG files
used in Tuxedo ATMI environments continue to work properly.

For CORBA, use TYPE=FACTORY when implementing factory-based routing for
a CORBA interface.

TYPE -

Name of the routing field, which is assumed to be an FML buffer, XML element or
element attribute, view field name identified in an FML field table (using
FLDTBLDIR and FIELDTBLS environment variables), or an FML view table
(using the VIEWDIR and VIEWFILES environment variables), respectively. This
information is used to obtain the associated field value for data-dependent
routing when sending a message.
In CORBA factory-based routing, this value specifies the name of the routing
field. The maximum length is 30 characters. It must correspond to a field name
specified for factory-based routing in a factory’s call to:
TP::create_object_reference (C++) or
com.beasys.Tobj.TP::create_object_reference (Java) for the interface.

FIELD
(Required)

Defining the
Routing Buffer
Field and Field
Type

A list of types and subtypes of data buffers for which this routing entry is valid.
This parameter may contain up to 256 characters with a maximum of 32 type/
subtype combinations

BUFTYPE
(Required)

Defining Buffer
Types

• ROUTING Section Example

Chapter 3
How to Create the ROUTING Section of the Configuration File

3-73

3.76.1 ROUTING Section Example
The following is a sample ROUTING section from a configuration file:

BRNCH FIELD=B_FLD
RANGES="0-2:DBG1,3-5:DBG2,6-9:DBG3"
BUFTYPE="FML"

3.77 Defining the Routing Buffer Field and Field Type
The following table describes the routing buffer field and field type.

Parameter Characteristics

FIELD The name of the buffer field on which the routing is performed. It may contain up to 30
characters.
In Oracle Tuxedo data-dependent routing, the value of this parameter is one of the following: the
name of an FML field (for FML buffers); an XML element or attribute; a VIEW field name identified in
an FML field table (using the FLDTBLDIR and FIELDTBLS environment variables); or an FML view
table (using the VIEWDIR and VIEWFILES environment variables). This information is used to
obtain the associated field value for data-dependent routing during message processing. If a field
in an FML32 buffer is used for routing, it must have a field number less than or equal to 8191.

In routing XML documents, the FIELD syntax contains either a routing element type (or name) or
a routing element attribute name. You must define the FIELD parameter with the following syntax:

root_element[/child_element][/child_element][/. . .][/@attribute_name]

The element is assumed to be an element type (or name) or an element attribute name of an
XML document or datagram. This information is used to obtain the associated element content or
element attribute value for data-dependent routing when a document or datagram is being sent.
Because indexing is not supported, the Oracle Tuxedo system recognizes only the first
occurrence of a given element type when processing an XML buffer for data-dependent routing.

In CORBA factory-based routing, this value specifies the name of the routing field. The maximum
length is 30 characters. It must correspond to a field name specified for factory-based routing in a
factory’s call to: TP::create_object_reference(C++) or
com.beasys.Tobj.TP::create_object_reference (Java) for the interface.

FIELDTYPE This parameter is used only for routing XML buffers. It indicates the type of the routing field
specified in FIELD. The syntax is as follows:

FIELDTYPE=type

where type is one of the following: string, char, short, long, float, or double.
The default type of the routing field is string.

3.78 Specifying Range Criteria
The RANGES parameter allows you to map field values to a group name as follows:

RANGES=”[val1[-val2]:group1] [,val3[-val4]:group2]...[,*:groupn]”

Chapter 3
Defining the Routing Buffer Field and Field Type

3-74

where val1, val2, and so on, are values of a field and groupn may be either a group name or
the wildcard character (*) denoting that any group may be selected. The * character
occupying the place of val at the end is a catch-all choice, that is, it specifies if the data
does not fall into any range that has been specified then it goes to the default group on the
other hand if the data fall into the range but there is no viable server in the group associated
with the range entry, then the service request is forwarded to the default group specified on
the wildcard “*” range entry. The value of val1 may be:

• A number (when it is used in a numeric field)

• A STRING or CARRAY buffer (enclosed in single quotation marks)

• MIN or MAX, to show a machine minimum or maximum data value

There is no limit to the number of ranges that may be specified, but routing information incurs
a cost because it is stored in shared memory.

Note:

Overlapping ranges are allowed, but values that belong to both ranges map to the
first group. For example, if RANGES is specified as
RANGES=”0-5:Group1,3-5:Group2", then a range value of 4 routes to Group1.

3.79 Defining Buffer Types
For Oracle Tuxedo data-dependent routing, the BUFTYPE parameter determines the buffer
type allowed. This parameter is similar to its SERVICES section counterpart in that it restricts
the routing criteria to a specific set of buffer types and subtypes. Only FML, XML and VIEW
types can be used for routing. The syntax is the same as the syntax in the SERVICES section,
a semicolon-separated list of type:subtype[,subtype]. You can specify only one type for
routing criteria. This restriction limits the number of buffer types allowed in routing services.

3.80 CORBA Factory-based Routing in the University
Production Sample Application

The CORBA University Production sample application demonstrates how to implement
factory-based routing in Oracle Tuxedo. You can find the ubb_p.nt or ubb_p.mk UBBCONFIG
files for this sample in the directory where the Oracle Tuxedo software is installed. Look in the
\samples\corba\university\production sub-directory.

The following INTERFACES, ROUTING, and GROUPS sections from the ubb_b.nt configuration
file show how you can implement factory-based routing in a CORBA application in Oracle
Tuxedo.

The INTERFACES section lists the names of the interfaces for which you want to enable
factory-based routing. For each interface, this section specifies what kinds of criteria the
interface routes on. This section specifies the routing criteria via an identifier,
FACTORYROUTING, as in the example in the following Listing

Chapter 3
Defining Buffer Types

3-75

Listing Production Sample INTERFACES Section

*INTERFACES

"IDL:beasys.com/UniversityP/Registrar:1.0"
 FACTORYROUTING = STU_ID

"IDL:beasys.com/BillingP/Teller:1.0"
 FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two interfaces
in the Production sample in which factory-based routing is used. The FACTORYROUTING
identifier specifies the names of the routing values, which are STU_ID and ACT_NUM,
respectively.

The ROUTING section specifies the following data for each routing value:

• The TYPE parameter, which specifies the type of routing. In the Production sample,
the type of routing is factory-based routing. Therefore, this parameter is defined to
FACTORY.

• The FIELD parameter, which specifies the variable name that the factory inserts as
the routing value. In the Production sample, the field parameters are student_id
and account_number, respectively.

• The FIELDTYPE parameter, which specifies the data type of the routing value. In
the Production sample, the field types for student_id and account_number are
long.

• The RANGES parameter, which associates a server group with a subset of the valid
ranges for each routing value.

The following Listing shows the ROUTING section of the UBBCONFIG file used in the
Production sample application.

Listing Production Sample ROUTING Section

*ROUTING

 STU_ID
 FIELD = "student_id"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"

 ACT_NUM
 FIELD = "account_number"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

The preceding example shows that Registrar objects for students with IDs in one
range are instantiated to one server group, and Registrar objects for students with IDs
in another range are instantiated in another group. Likewise, Teller objects for
accounts in one range are instantiated to one server group, and Teller objects for
accounts in another range are instantiated in another group.

Chapter 3
CORBA Factory-based Routing in the University Production Sample Application

3-76

The groups specified by the RANGES identifier in the ROUTING section of the UBBCONFIG file
need to be identified and configured. For example, the Production sample specifies four
groups: ORA_GRP1, ORA_GRP2, APP_GRP1, and APP_GRP2. These groups need to be configured,
and the machines where they run need to be identified.

The following Listing shows the GROUPS section of the Production sample UBBCONFIG file.
Notice how the names in the GROUPS section match the group names specified in the ROUTING
section; this is critical for factory-based routing to work correctly. Furthermore, any change in
the way groups are configured in an application must be reflected in the ROUTING section.
(Note that the Production sample packaged with the Oracle Tuxedo software is configured to
run entirely on one machine. However, you can easily configure this application to run on
multiple machines.)

Listing Production Sample GROUPS Section

*GROUPS

APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS

APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS

ORA_GRP1
 LMID = SITE1
 GRPNO = 4

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SesTm=100+LogDir=.+MaxCur=5"
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

ORA_GRP2
 LMID = SITE1
 GRPNO = 5

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SesTm=100+LogDir=.+MaxCur=5"
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

Chapter 3
CORBA Factory-based Routing in the University Production Sample Application

3-77

3.81 CORBA Factory-based Routing in the Bankapp Sample
Application

The following Listing shows how the INTERFACES section extends the Bankapp sample
application to use factory-based routing. The sample included with the Oracle Tuxedo
software does not contain these parameter settings.

Listing Bankapp Sample INTERFACES Section

*INTERFACES
 "IDL:BankApp/Teller:1.0"
 FACTORYROUTING=atmID
*ROUTING
 atmID
 TYPE = FACTORY
 FIELD = "atmID"
 FIELDTYPE = LONG
 RANGES = "1-5:BANK_GROUP1,
 6-10: BANK_GROUP2,
 *:BANK_GROUP1
*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
BANK_GROUP1
 LMID = SITE1
 GRPNO = 2
BANK_GROUP2
 LMID = SITE1
 GRPNO = 3

In this example, the IDL:Bankapp/Teller interface employs a factory-based routing
scheme called atmID, as defined in the ROUTING section. The example indicates that
the processing will be distributed across the following two server groups:

• BANK_GROUP1 processes interfaces used by the application when the atmID field is
between 1 and 5 (inclusive), or greater than 10.

• BANK_GROUP2 processes interfaces used by the application when the atmID is
between 6 and 10, inclusive.

3.82 How to Configure the Oracle Tuxedo System to Take
Advantage of Threads

To configure a multicontexted application, edit your UBBCONFIG file as usual and add
those parameters, listed in the following table, that are required for your application.
Use a text editor or the Oracle Tuxedo Administration Console.

Chapter 3
CORBA Factory-based Routing in the Bankapp Sample Application

3-78

Table 3-18 Setting Parameters in the Configuration File to Use Threads

In This
Section

Set These
Parameters

With These Considerations

RESOURCES MAXACCESSERS Optional parameter, but you must assign a value to it you want more than 50
accessers (the default number).
Each context of a multicontexted client is counted separately for licensing
purposes.

MACHINES NOTIFY Optional parameter that defines the default method to be used for unsolicited
notification. Valid values for multicontexted applications are:
• DIPIN
• THREAD
• IGNORE

MAXACCESSERS Optional parameter, but you must assign a value to it you want more than 50
accessers (the default number).
Each context of a multicontexted client is counted separately for licensing
purposes.

SERVERS MAXWSCLIENTS Optional parameter.
Each context of a multicontexted Workstation client is counted separately for
licensing purposes.

Because the default is 0, this parameter must be set if any Workstation clients
are to access the system via the machine being defined.

MINDISPATCHT
HREADS

Optional parameter.

MAXDISPATCHT
HREADS

Required parameter in multithreaded servers.
When making an existing server multithreaded, an experienced programmer
must verify that the source code for the server has been written in a thread-safe
manner. In other words, it is not possible to convert a single-threaded server,
written with static variables, to a multithreaded server simply by increasing the
value of MAXDISPATCHTHREADS in the configuration file. This server must also
be built for multithreading.

THREADSTACKS
IZE

Optional parameter.
You may need to set it if your server dispatch threads require an especially
large stack.

The default, 0, should be sufficient for most applications. (Keep in mind that
when 0 is passed to the operating system, the operating system invokes its own
default.)

3.83 How to Compile a Configuration File
Compiling a configuration file means generating a binary version of the file (TUXCONFIG) from
the text version (UBBCONFIG). To compile a configuration file, run the tmloadcf command.
tmloadcf parses a UBBCONFIG file and loads the binary file.

tmloadcf reads a file (or standard input written in UBBCONFIG syntax), checks the syntax, and
optionally loads a binary configuration file called TUXCONFIG. The TUXCONFIG and (optionally)
TUXOFFSET environment variables point to the TUXCONFIG file and (optional) offset where the
information should be stored. You can run tmloadcf only on the machine designated as
MASTER in the RESOURCES section of the UBBCONFIG file, unless the -c or -n option is specified.

Chapter 3
How to Compile a Configuration File

3-79

Note:

The user identifier (UID) of the person running tmloadcf must match the UID,
if specified, in the RESOURCES section of the UBBCONFIG file. The pathname
specified for the TUXCONFIG environment variable must match exactly
(including case) the pathname specified for TUXCONFIG parameter within the
MACHINES section of the UBBCONFIG file. Otherwise, tmloadcf(1) cannot be
run successfully.

Chapter 3
How to Compile a Configuration File

3-80

4
About Transactions

This topic includes the following sections:

Note:

For information about using transactions in an Oracle Tuxedo CORBA environment,
refer to Using CORBA Transactions.

• What Is a Transaction?

• Benefits of Using Transactions

• Example of a Global Transaction

• What Is the Oracle Tuxedo Transaction Manager (TM)?

• How the System Tracks Distributed Transaction Processing

• How the System Uses a Two-Phase Commit to Commit Transactions

4.1 What Is a Transaction?
A transaction is a set of related actions. A global transaction is a set of related actions that
span multiple programs and resource managers. In this topic, whenever we use the term
transaction, we are referring to a global transaction.

A simple example of a transaction is a withdrawal from a bank account, which can be
described as a set of actions that changes the state of an account balance (by reducing it).
For this transaction, the system must execute a procedure that consists of three operations:

Procedure for Any Transaction Procedure for Bank Withdrawal Example

1. Verify the activity to be performed 1. Verify that a withdrawal will be made

2. Perform the work of the transaction 2. Withdraw a specified amount from the account

3. Create a permanent record of the completed work 3. Update the record of the balance of the account

These steps are performed by a discrete software module created expressly for the purpose
of executing this transaction. The module must also include or use code that launches and
ends the transaction. If the code sections that launch and end the transaction are not part of
the main transaction software module, then they are usually packaged together in a separate
module.

A transaction coordinator is a software module that executes the logic to manage a
transaction among all participating resources.

• What Are the ACID Properties?

• How a Transaction Succeeds or Fails

4-1

4.1.1 What Are the ACID Properties?
When a transaction such as a bank withdrawal is performed, it is imperative that all its
constituent operations either succeed or fail together. Consider the problems that can
occur if one operation in a transaction succeeds while another operation in the same
transaction fails: a bank that allows a customer to withdraw money without recording
the reduced balance in an updated account record will not stay in business for long!

A transaction that adheres to the rule that all constituent operations either succeed or
fail is characterized by atomicity. The Oracle Tuxedo system requires all transactions
to be characterized by atomicity and three related attributes: consistency, isolation,
and durability. These four attributes are known collectively as the ACID properties of
transactions performed within the Oracle Tuxedo system.

The following table shows the ACID of Oracle Tuxedo Transactions.

Table 4-1 ACID Properties of Oracle Tuxedo Transactions

This
Property...

Means That...

Atomicity A transaction is a discrete unit of work: all constituent operations must either succeed or fail.
These operations may include queuing messages, updating databases, and displaying the
results of a transaction on a screen.

Consistency A transaction must either (a) leave the system in a correct state or (b) abort. If a transaction
cannot achieve a stable state, it must return to its initial state.

Isolation The behavior of a transaction is not affected by other transactions being executed simultaneously.
A transaction must serialize all access to shared resources and guarantee that concurrent
programs do not corrupt each other’s operations.

Durability The effects of a committed transaction are permanent. Even if the system fails, the changes
resulting from a transaction are permanent and durable.

4.1.2 How a Transaction Succeeds or Fails
Whether a transaction succeeds or fails depends on the requirements of atomicity.

If... Then...

Any operation within the transaction fails for any
reason

• The transaction aborts, that is, it terminates abruptly.
• The transaction rolls back, that is, it undoes its own work

and restores the state of the enterprise to its pre-
transaction state. For example, after an attempt to
withdraw money from a bank account fails and is rolled
back, the bank account contains the same amount of
money it contained before the transaction, and the record
of the account balance shows the same amount that it
showed before the transaction.

All operations within the transaction succeed The client commits the transaction. In other words, it formally
signals that it is ready to terminate and the effects of the
transaction should be preserved: the order database is
updated permanently and the order sent to the shipping
department is kept as a permanent record in that
department’s queue.

Chapter 4
What Is a Transaction?

4-2

4.2 Benefits of Using Transactions
The Oracle Tuxedo system, including its communication APIs and protocols, is designed to
support the use of transactions. The Oracle Tuxedo communication calls, which make it easy
to create transactions, are indispensable tools for writing distributed applications.

By using transactions you can:

• Create distributed applications easily

• Commit the effects of your communications as a single unit

• Quickly manage potential problems that may occur in a distributed environment, such as
machine, program, or network failures

• Undo work, when errors occur, in a simple, programmatic way

4.3 Example of a Global Transaction
An e-retailer uses a service called CUST_ORDER. When a customer places an order through the
company’s Web site, the CUST_ORDER service performs two operations:

• It updates the company’s database of orders.

• It sends the new order to the shipping department, where it is put on a queue, awaiting
fulfillment.

The company wants to be sure that the CUST_ORDER service adheres to the principle of
atomicity: whenever CUST_ORDER is executed, both the database update and the enqueueing
of the customer request on the shipping department queue must be completed successfully.
To make sure that the CUST_ORDER service always handles customer orders with atomicity, the
client that invokes CUST_ORDER associates its request with a global transaction.

To associate a service with a global transaction, a client:

1. Calls tpbegin() to begin the transaction

2. Issues a service request

3. Calls tpcommit() to end the transaction

As part of a global transaction, the operation is performed as a single unit of work. When the
CUST_ORDER service is invoked, the server is propagated with the client’s transaction. The two
resulting operations, accessing the order database and enqueuing the order to the shipping
queue, become part of the client’s transaction.

If either operation fails for any reason, whether due to a system error or an application error,
the work of the transaction is undone or rolled back. In other words, the transaction is
returned to its initial state.

If both operations succeed, however, the client commits the transaction. In other words, it
formally signals that the effects of the transaction should be made permanent: the order
database is updated permanently and the order sent to the shipping department is kept in
that department’s queue.

Chapter 4
Benefits of Using Transactions

4-3

4.4 What Is the Oracle Tuxedo Transaction Manager (TM)?
A resource manager (RM) is a data repository, such as a database management
system or the Application Queuing Manager, with tools for accessing the data. The
Oracle Tuxedo system uses one or more RMs to maintain the state of an application.
For example, bank records in which account balances are maintained are kept in an
RM. When the state of the application changes through a service that allows a
customer to withdraw money from an account, the new balance in the account is
recorded in the appropriate RM.

The Oracle Tuxedo system helps you manage transactions involving resource
managers that support the XA interface. To coordinate all the operations performed
and all the modules affected by a transaction, the Oracle Tuxedo system plays the role
of the Transaction Manager (TM).

The TM coordinates global transactions involving system-wide resources. Local
resource managers (RMs) are responsible for individual resources. The Transaction
Manager Server (TMS) begins, commits, and aborts transactions involving multiple
resources. The application code uses the normal embedded SQL interface to the RM
to perform reads and updates. The TMS uses the XA interface to the RM to perform
the work of a global transaction.

The following table summarizes the actions taken by the Transaction Manager on
behalf of each transaction.

Table 4-2 Actions Performed by the Transaction Manager

When... The Transaction Manager...

The application launches a transaction Assigns a global transaction identifier (GTRID) to the
transaction.

Other processes communicate with the process that
launched the transaction

Tracks those communication partners .

The RM is accessed as part of the work of the
transaction

Passes the appropriate GTRID to the RM so the RM can
monitor which database records are being accessed for
the transaction.

The application signals that a transaction is to be
committed

Performs a two-phase commit protocol. Specifically, it:

1. contacts communication partners during Phase 1,

2. logs the successful outcome of Phase 1, and

3. contacts partners in Phase 2.

The application indicates that the transaction is to be
aborted

Executes a rollback procedure.

A failure occurs Executes a recovery procedure.

4.5 How the System Tracks Distributed Transaction
Processing

Oracle Tuxedo transactions can be used in a distributed architecture: a local machine
involved in a transaction can communicate with a remote machine which may, in turn,

Chapter 4
What Is the Oracle Tuxedo Transaction Manager (TM)?

4-4

communicate with another remote machine. The work of transactions executed in this type of
arrangement is referred to as distributed transaction processing.

Because the system must constantly maintain enough information about a transaction to be
able to roll it back (that is, to restore it to its initial state) at any moment, tracking distributed
transaction processing (DTP) can be a complex task. To perform this task successfully, the
Oracle Tuxedo system stores tracking information about all the participants in a transaction in
a dedicated file called a transaction log, or TLOG.

The following figure shows an application in which two Transaction Managers (TMs) are
being used. Both TMs record tracking data in the same TLOG.

Figure 4-1 Transaction Management

Before committing a transaction, the TM must repeatedly answer the question of whether to
proceed. If necessary, the TM makes the decision to roll back.

• How the System Uses Global Transaction Identifiers (GTRIDs) for Tracking

• How the System Uses a Transaction Log (TLOG) for Tracking

4.5.1 How the System Uses Global Transaction Identifiers (GTRIDs) for
Tracking

The Oracle Tuxedo system tracks the flow of all transactions being executed within a
distributed system, including those being executed concurrently. When it is time to commit a
transaction, the coordinator must know which RMs have participated in the transaction and,
therefore, needs to be able to distinguish among transactions. For this reason the Oracle
Tuxedo system assigns a global transaction identifier, or GTRID to each transaction.

The Oracle Tuxedo system communicates with any RM accessed by an application through
the XA interface. The RMs track transactions by assigning local transaction identifiers, and
map global identifiers to local identifiers.

4.5.2 How the System Uses a Transaction Log (TLOG) for Tracking
A global transaction is recorded in the transaction log (TLOG) only when it is in the process of
being committed. At the end of the first phase of a two-phase commit protocol, the TLOG
records the reply from the global transaction participants.

Chapter 4
How the System Tracks Distributed Transaction Processing

4-5

The existence of a TLOG record indicates that a global transaction should be
committed; no TLOG records are written for transactions that are to be rolled back.

In the first “pre-commit” phase, each resource manager must commit to performing the
transaction request. If all parties commit, transaction management performs the
second phase: it commits and completes the transaction. If either task fails because of
an application or system failure, both tasks fail and the work performed is undone or
“rolled back” to its initial state.

The TMS that coordinates global transactions uses the TLOG file. Each machine should
have its own TLOG.

If you are using the Domains component in your application, keep in mind that the
Domains gateway performs the functions of the TMS in Domains groups. However,
Domains uses its own transaction log containing information similar to that recorded in
the TLOG, in addition to Domains-specific information.

• Writing TLOG to an Oracle Database

4.5.2.1 Writing TLOG to an Oracle Database
If you want to write TLOG into an Oracle database, you must do the following steps:

1. Install Oracle database client, create link libclntsh.so for libclntsh.so.x.x (for
example,libclntsh.so.10.1) and set LD_LIBRARY_PATH for link libclntsh.so on
Linux platform.

2. Set UBBCONFIG(5) TLOGDEVICE or DMCONFIG(5) DMTLOGDEV using the following
format: "DB:Oracle_XA: ….". For example:

TLOGDEVICE="DB:Oracle_XA:ORACLE_XA+SqlNet=ORCL+ACC=P/scott/tiger"
DMTLOGDEV="DB:Oracle_XA:ORACLE_XA+SqlNet=ORCL+ACC=P/scott/tiger"

3. Run tmloadcf to generate TUXCONFIG.

4. Create TLOG using the tmadmin and dmadmin commands. Below is an example to
create TLOG using tmadmin. After TLOG command crlog is done, a table is created;
the value that TLOGNAME defines in UBBCONFIG becomes the table name.

$ tmadmin
$ crlog -m <Machine>

Chapter 4
How the System Tracks Distributed Transaction Processing

4-6

Note:

The following points:

• You can only write TLOG to an Oracle database. Third party databases are not
supported.

• There is no need for you to create TLOG using tmadmin command crdl.

• TLOGDEVICE/DMTLOGDEV points to Oracle database schema, which Tuxedo treats
it as a database storage device.

• Below are the rules for TLOGNAME in UBBCONFIG.

– TLOGNAME in UBBCONFIG must not be empty. If multiple TLOG files are stored
in the same schema of database, DBA should guarantee that TLOGNAME is
unique for each TLOG, and Tuxedo exclusively accesses the database table
that TLOGNAME specifies for the TLOG.

– TLOGNAME in UBBCONFIG must not be empty. If multiple TLOG files are stored
in the same schema of database, DBA should guarantee that TLOGNAME is
unique for each TLOG, and Tuxedo exclusively accesses the database table
that TLOGNAME specifies for the TLOG

– Different platforms should share different database schemas.

4.6 How the System Uses a Two-Phase Commit to Commit
Transactions

A two-phase commit is an algorithm used to ensure the integrity of a committing transaction.

To understand how this algorithm works, consider the following sample scenario. A group of
six friends wants to rent a house for a one-week vacation. No member of the group can afford
to pay more than one sixth of the rent; if any of the six cannot participate, then the house
cannot be rented.

1. In Phase 1 of this project, the organizer of the vacation contacts each person to verify
availability and collect a sixth of the rent. If the organizer learns that even one person
cannot participate, she contacts every member of the group, individually, to notify him or
her that the house cannot be rented. If, however, each member of the group confirms
availability and pays one sixth of the rent, the Phase 1 concludes successfully.

2. In Phase 2 of the project, the organizer notifies each member of the group that the
vacation will take place as planned.

A two-phase transaction commit works in much the same way as the vacation planning
project.

1. In Phase 1, the transaction coordinator contacts potential participants in the transaction.
The participants all agree to make the results of the transaction permanent, but do not do
so immediately. The participants log information to disk to ensure they can complete
Phase 2. If all the participants agree to commit, the coordinator logs that agreement and
the outcome is decided. The recording of this agreement in the log ends Phase 1.

2. In Phase 2, the coordinator informs each participant of the decision, and they
permanently update their resources.

Chapter 4
How the System Uses a Two-Phase Commit to Commit Transactions

4-7

• How the System Handles Transaction Infection

• How the ATMI Protects a Transaction’s Integrity Before a Two-Phase Commit

4.6.1 How the System Handles Transaction Infection
Any application module called by another module to participate in a transaction is said
to be transactionally infected. Once an application module is infected, the Oracle
Tuxedo system tracks all participants to determine which of them should be involved in
the two-phase commit. The following figure shows how the system tracks participants.

Figure 4-2 Transactional Infection

In the preceding figure, Client 1 begins the transaction and calls three services: A, B,
and C. Because they have been called into the transaction, Services A, B, and C are
transactionally infected. All work performed by servers A, B, and C is part of the
transaction begun by Client 1. All work is performed as one unit; either it is performed
together and is successful, or it fails and is rolled back by calling tpabort. If the
transaction fails, it returns to its initial state and its effects of the transaction on
resource managers are undone. (Resource managers that are not transactionally
aware and those that are accessed from outside the transaction cannot be rolled
back.)

4.6.2 How the ATMI Protects a Transaction’s Integrity Before a Two-
Phase Commit

All work performed by each resource involved in a transaction must be completed
before a two-phase commit is begun. The ATMI ensures that all the work of the
transaction is stopped when it is time for the two-phase commit protocol to begin.

The following step-by-step description of a transaction shows how the ATMI stops a
transaction process before a two-phase commit.

Chapter 4
How the System Uses a Two-Phase Commit to Commit Transactions

4-8

1. Client_1 initiates (with tpbegin()) a transaction.

2. Client_1 invokes (with tpcall()) Service_A, which:

a. Is infected with the transaction

b. Executes its operations

c. Calls tpreturn()
d. Completes its work for the transaction

3. Client_1 invokes (with tpcall()) Service_B, which:

a. Is infected with the transaction

b. Executes its operations

c. Calls tpreturn()
d. Completes its work for the transaction

4. Client_1 invokes (with tpcall()) Service_C, which:

a. Is infected with the transaction

b. Executes its operations

c. Calls tpreturn()
d. Completes its work for the transaction

5. Client_1 initiates (with tpcommit()) the commitment process.

If, during the transaction, an invoked service is performing another service, or is involved in
an open conversation, the ATMI tracks that activity and prevents the application from
proceeding to the commitment process until the activity is complete.

The ATMI guarantees that the transaction is committed only if all invoked services have
performed their transaction work successfully. When all work has been performed
successfully, the Transaction Manager informs the resource managers that all updates made
during the transaction are permanent.

See Also:

• Modifying the UBBCONFIG File to Accommodate ATMI Transactions

• Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRAPTRAN, and MAXTRAN Parameters

• Example: A Distributed Application with Transactions

• “Writing Global Transactions” in Programming Oracle Tuxedo ATMI Applications
Using C

• “What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

• For more information about using transactions in a Oracle Tuxedo CORBA
environment, refer to Using CORBA Transactions

Chapter 4
How the System Uses a Two-Phase Commit to Commit Transactions

4-9

5
Configuring Your ATMI Application to Use
Transactions

This topic includes the following sections:

Note:

For information about using transactions in an Oracle Tuxedo CORBA environment,
refer to Using CORBA Transactions.

• Modifying the UBBCONFIG File to Accommodate ATMI Transactions

• Specifying Global Transaction Parameters in the RESOURCES Section

• Creating a Transaction Log (TLOG) in the MACHINES Section

• Defining Resource Managers and the Transaction Manager Server in the GROUPS
Section

• Enabling a Service to Begin a Transaction in the SERVICES Section

• Modifying the Domains Configuration File to Support Transactions

• Example: A Distributed Application with Transactions

5.1 Modifying the UBBCONFIG File to Accommodate ATMI
Transactions

To accommodate transactions, you must modify the RESOURCES, MACHINES, GROUPS, and
SERVICES sections of the application UBBCONFIG file in the following ways.

In This
Section...

Specify...

RESOURCES The number of transactions allowed in the application, and the value of the commit control flag.

MACHINES The TLOG information for each machine.

GROUPS Information about each resource manager, and about the Transaction Manager Server.

SERVICES Enabling of the automatic transaction option.

5.2 Specifying Global Transaction Parameters in the
RESOURCES Section

The following table describes the transaction-related parameters in the RESOURCES section.

5-1

Set This
Parameter...

To...

MAXGTT Limit the total number of global transaction identifiers (GTRIDs) allowed on one machine at one
time. The maximum value allowed is 2048; the minimum, 0; and the default, 100. You can
override the value of MAXGTT on a per-machine basis in the MACHINES section.
Entries remain in the table only while a global transaction is active, so this parameter has the
effect of setting a limit on the number of simultaneous transactions.

CMTRET Indicate the initial setting of the TP_COMMIT_CONTROL characteristic as one of the following:
• LOGGED—the TP_COMMIT_CONTROL characteristic is set to TP_CMT_LOGGED, which means

that tpcommit() returns when all the participants have successfully pre-committed.

• COMPLETE—the TP_COMMIT_CONTROL characteristic is set to TP_CMT_COMPLETE, which
means that tpcommit() does not return until all the participants have successfully
committed.

The default is COMPLETE.
To determine the appropriate setting, consult your resource manager (RM) vendors. If any RM in
the application uses the late commit implementation of the XA standard, the setting should be
COMPLETE. If all RMs use the early commit implementation, the setting should be LOGGED for
performance reasons. (You can override this setting with tpscmt().)

MAXTRANTIME Specify the maximum length of the timeout for the transactions. Valid values are between 0 and
2,147,483,647 inclusive. 0 represents no limitation on transaction timeout value occurs.
Default is 0.

Note:

For more information about MAXTRANTIME, see MAXTRANTIME in
the RESOURCES section in UBBCONFIG(5) or TA_MAXTRANTIME in
the T_DOMAIN class in TM_MIB(5).

5.3 Creating a Transaction Log (TLOG) in the MACHINES
Section

To create a TLOG, complete the following tasks:

• Create a Universal Device List (UDL).

• Define transaction-related parameters in the MACHINES section.

• Create a Domains transaction log.

• Creating the UDL

• Defining Transaction-related Parameters in the MACHINES Section

• Creating the Domains Transaction Log

5.3.1 Creating the UDL
The Universal Device List (UDL) is a map of the Oracle Tuxedo filesystem. The UDL
gets loaded into shared memory when an application is booted. The TLOG refers to a
log in which information about transactions is kept until the transaction is completed.

Chapter 5
Creating a Transaction Log (TLOG) in the MACHINES Section

5-2

To create an entry in the UDL for the TLOG device, create a UDL on each machine using
global transactions. (If the TLOGDEVICE is mirrored between two machines, it is unnecessary
to do this on the paired machine.) The Bulletin Board Liaison (BBL) then initializes and opens
the TLOG during the boot process.

To create a UDL, enter the following command before the application is booted:

tmadmin -c crdl -z config -b blocks

Note:

The command fails if the device already exists.

The value of config must be the full pathname of the device on which you create the UDL. It
should match the value of the TLOGDEVICE parameter in the MACHINES section of the
configuration file. The value of blocks must be the number of blocks to be allocated on the
device.

Note:

If the value of blocks is less than the value of TLOGSIZE, you risk a performance
degradation. Therefore, you should specify a value for blocks that is greater than
that of TLOGSIZE. For example, if TLOGSIZE is specified as 200 blocks, specifying -b
500 does not cause a degradation.

For more information about storing the TLOG, see Installing the Oracle Tuxedo System.

5.3.2 Defining Transaction-related Parameters in the MACHINES Section
To define a global transaction log (TLOG), you must set several parameters in the MACHINES
section of the UBBCONFIG file.

For one of these parameters, TLOGDEVICE, you must manually create a device list entry for the
TLOGDEVICE on each machine where a TLOG is needed. You can do this either before or after
TUXCONFIG has been loaded, but you must complete this step before the system is booted.

The following table describes the transaction-related parameters in the MACHINES section.

Set This
Parameter...

To Specify...

TLOGNAME The name of the DTP transaction log for the machine.

TLOGDEVICE The Oracle Tuxedo filesystem that contains the DTP transaction log (TLOG) for the machine. If this
parameter is not specified, it is assumed that there is no TLOG on the machine. The value may
contain a maximum of 64 characters.

TLOGSIZEE The size, in physical pages, of the TLOG file. The value must be between 1 and 2048; the default,
100. Assign a value that is large enough to hold the number of outstanding transactions on the
machine at a given time. One transaction is logged per page. The default should be enough for
most applications.

Chapter 5
Creating a Transaction Log (TLOG) in the MACHINES Section

5-3

Set This
Parameter...

To Specify...

TLOGOFFSET The offset, in pages, from the beginning of the TLOGDEVICE to the start of the VTOC that contains
the transaction log for the machine. The value must be greater than or equal to 0, and less than
the number of pages on the device. The default is 0.
TLOGOFFSET is rarely necessary. However, if two VTOCs share the same device, or if a VTOC is
stored on a device (such as a filesystem) that is shared with another application, you can use
TLOGOFFSET to indicate a starting address relative to the address of the device.

• Writing TLOG to an Oracle Database

5.3.2.1 Writing TLOG to an Oracle Database
If you want to write tlog into an Oracle database, you do not need to create a UDL.

You must do the following steps:

1. Install Oracle database client, create link libclntsh.so for libclntsh.so.x.x (for
example,libclntsh.so.10.1) and set LD_LIBRARY_PATH for linklibclntsh.so on
Linux platform.

2. Set UBBCONFIG(5) TLOGDEVICE or DMCONFIG(5)DMTLOGDEV using the following
format: "DB:Oracle_XA: ….".

3. Create tlog using thetmadmin and dmadmin commands.

Note:

You can only write tlog to an Oracle database. Third party databases are
unsupported.

5.3.3 Creating the Domains Transaction Log
Before starting a Domains gateway group, you must create a Domains transaction log.
Specifically, you must create a Domains transaction log for the named local domain on
the current machine (that is, the machine on which DMADM is running). To create a log,
enter the following command:

dmadmin crdmlog crdlog -d local_domain_name

The command uses the parameters specified in the DMCONFIG file. This command fails
if the named local domain is active on the current machine or if a log already exists. If
a transaction log has not been created, the Domains gateway group creates one when
that group starts.

Chapter 5
Creating a Transaction Log (TLOG) in the MACHINES Section

5-4

See Also:

• What Is the Transaction Log (TLOG)? in Administering an Oracle Tuxedo
Application at Run Time

5.4 Defining Resource Managers and the Transaction Manager
Server in the GROUPS Section

The parameters available for GROUPS section entries allow you to define the attributes of
transaction manager servers (TMSs) and resource managers (RMs) for a particular group.

• For a TMS, a server that performs most of the work that controls global transactions, you
can define the following parameters:

– TMSNAME contains the name of the executable for the transaction manager server
associated with the group defined in the entry. The Oracle Tuxedo system provides a
null transaction manager server called TMS, which is used by groups that participate
in transactions, but do not use an RM. This TMS server does not communicate with
any resource manager; it simply manages transactions without communicating with
an RM.

– TMSCOUNT contains the number of TMSs to be booted (minimum of 2, maximum of 10,
default of 3).

• For each resource manager you can define the OPENINFO and CLOSEINFO parameters.
The value of each is a string that contains information needed to open or close a
resource manager, respectively. Appropriate values for these parameters are supplied by
RM vendors. For example, if you are using an Oracle database as your RM, you might
supply the value shown in the following entry:

OPENINFO=”ORACLE_XA:
Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp”

• Sample of the GROUPS Section

5.4.1 Sample of the GROUPS Section
The following sample entry is from the GROUPS section in bankapp, the sample banking
application you received with the Oracle Tuxedo system.

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPENINFO=”TUXEDO/SQL:APPDIR/bankdl1:bankdb:readwrite”

• Description of Transaction Values in the Sample GROUPS Section

• Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO
Parameters

5.4.1.1 Description of Transaction Values in the Sample GROUPS Section
This table describes the transaction values shown in the sample GROUPS entry.

Chapter 5
Defining Resource Managers and the Transaction Manager Server in the GROUPS Section

5-5

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ada/admon.html

Transaction Value Purpose

BANKB1 GRPNO=1
TMSNAME=TMS_SQL
TMSCOUNT=2

Contains the name of the transaction manager server (TMS_SQL), and the number (2) of
these servers to be booted in the group BANKB1

TUXEDO/SQL Published name of the resource manager

APPDIR/bankdl1 Device name

bankdb Database name

readwrite Access mode

5.4.1.2 Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSEINFO Parameters

The following table lists the characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSEINFO parameters.

Set This
Parameter

To Specify The...

TMSNAME Name of the transaction manager server executable.
Required parameter for applications with transactions.

TMS is a null transactional manager server.

TMSCOUNT Number of transaction manager servers (must be between 2 and 10). Default is 3. This
parameter is optional.

OPENINFO,
CLOSEINFO

Information needed to open or close a resource manager.
Content depends on the resource manager.

Value starts with the name of the resource manager.

Omission means the RM needs no information to open or close.

5.5 Enabling a Service to Begin a Transaction in the
SERVICES Section

In certain situations, you may want to set three transaction-related parameters—
AUTOTRAN, TRANTIME, and ROUTING—in the SERVICES section.

• If you want a transaction to be started by a service instead of a client, you must set
the AUTOTRAN flag to Y. This setting is useful if a service is not needed as part of
any larger transaction, and if the application wants to relieve the client of making
transaction decisions. If the service is called when a transaction already exists,
this call becomes part of it. (The default is N.)

Note:

Generally, clients are the best initiators of transactions because a service
can participate in a larger transaction.

• If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which is the length of
the timeout for transactions to be created. The value must be greater than or equal

Chapter 5
Enabling a Service to Begin a Transaction in the SERVICES Section

5-6

to 0, and must not exceed 2,147,483,647 (that is, 2 31 - 1, or about 70 years). A value of
zero implies there is no timeout for the transaction. (The default is 30 seconds.)

• You must define the ROUTING parameter for transactions that use data-dependent routing.

• Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters

5.5.1 Characteristics of the AUTOTRAN, TRANTIME, and ROUTING
Parameters

The following table lists the characteristics of the AUTOTRAN, TRANTIME, and ROUTING
parameters.

Set This
Parameter...

To...

AUTOTRAN Make a service the initiator of a transaction.
To work properly, may be dependent on personal communication between the application
designer and the application administrator. If the administrator sets this value to Y without prior
knowledge of the ICF parameters set by the developer, the wrong application behavior, or failure
of the application might be observed.

If a transaction already exists, a new one is not started.

Default is N.

TRANTIME Specify the length of the timeout for the AUTOTRAN transactions.
Valid values are between 0 and 2,147,483,647 inclusive.

0 represents no timeout.

Default is 30 seconds.

ROUTING Point to an entry in the ROUTING section where data-dependent routing is specified for
transactions that request this service.

5.6 Modifying the Domains Configuration File to Support
Transactions

To enable transactions across domains, you require to set parameters in both the DM_LOCAL
and the DM_IMPORT sections of the Domains configuration file (DMCONFIG). Entries in the
DM_LOCAL section define local domain characteristics. Entries in the DM_IMPORT section define
services that are imported, or available from remote domains.

• Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRAPTRAN,
and MAXTRAN Parameters

• Characteristics of the AUTOTRAN and TRANTIME Parameters

5.6.1 Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRAPTRAN, and MAXTRAN Parameters

The DM_LOCAL section of the Domains configuration file identifies local domains and the
gateway groups associated with them. For each gateway group (Local Domain), you must
create an entry that specifies the parameters required for the Domains gateway processes
running in that group.

Chapter 5
Modifying the Domains Configuration File to Support Transactions

5-7

The following table describes the five transaction-related parameters in this section:
DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRAPTRAN, and MAXTRAN.

Set This
Parameter...

To Specify...

DMTLOGDEV The Oracle Tuxedo filesystem that contains the Domains transaction log (DMTLOG) for this
machine. The DMTLOG is stored as an Oracle Tuxedo VTOC table on the TLOGDEVICE (an Oracle
Tuxedo filesystem). If this parameter is not specified, the Domains gateway group is not allowed
to process requests in transaction mode. Local domains running on the same machine can share
the same DMTLOGDEV filesystem, but a separate log (a table in the DMTLOGDEV) must be created
for each local domain. The name of each log is determined by the DMTLOGNAME parameter.

DMTLOGNAME The name of the Domains transaction log for this domain. If this domain resides on the same
filesystem as other local domains (as reflected by a common value for DMTLOGDEV), then the
value of DMTLOGNAME must be unique for each log. The value may contain a maximum of 30
characters. The default is DMTLOG.

DMTLOGSIZE The size, in pages, of the Domains transaction log for this machine. The value must be greater
than zero and less than the amount of available space on the Oracle Tuxedo filesystem. The
default is 100 pages.

Note:

The number of domains in a transaction determines the number of
pages you must specify in the DMTLOGSIZE parameter. There is no
one-to-one mapping between transactions and log pages.

MAXRAPTRAN The maximum number of domains that can be involved in a transaction. It must be greater than
zero and less than 32,768. The default is 16.

MAXTRAN The maximum number of simultaneous global transactions allowed in this local domain. It must
be greater than or equal to zero, and less than or equal to the MAXGTT parameter (which is
defined in the configuration file). The default is the value of MAXGTT.

5.6.2 Characteristics of the AUTOTRAN and TRANTIME Parameters
The DM_IMPORT section of the Domains configuration file provides information about
services that are imported and thus available from remote domains. Each remote
service is associated with a particular remote domain.

You have the option of setting two parameters in the DM_IMPORT section that support
transactions: AUTOTRAN and TRANTIME.

The following table describes these parameters.

This
Parameter...

Is Used...

AUTORAN By gateways to automatically start and terminate transactions for remote services. This capability
is required if you want to enforce reliable network communication with remote services. To
request this capability, set the AUTOTRAN parameter to Y in the entry for the appropriate remote
service.

TRANTIME To specify the default timeout, in seconds, for a transaction automatically started for the service
being defined. The value must be greater than or equal to zero, and less than 2147483648. A
value of zero implies the maximum timeout value for the machine. The default is 30 seconds.

Chapter 5
Modifying the Domains Configuration File to Support Transactions

5-8

An additional transaction-timeout property named MAXTRANTIME from the RESOURCES section of
the UBBCONFIG file is also available. If the MAXTRANTIME timeout value is less than the
TRANTIME timeout value or the timeout value passed in a tpbegin(3c) call to start a
transaction, the timeout for a transaction is reduced to the MAXTRANTIME value. MAXTRANTIME
has no effect on a transaction started on a machine running Oracle Tuxedo 8.0 or earlier,
except that when a machine running Oracle 8.1 or later is infected by the transaction, the
transaction timeout value is capped—reduced if necessary—to the MAXTRANTIME value
configured for that node.

For a Domains configuration, the following transaction-handling scenarios are possible:

• If an interdomain transaction infects a node that does not understand the MAXTRANTIME
parameter, or the node understands the MAXTRANTIME parameter but the parameter is not
set, the timeout value for the transaction is determined by TRANTIME or by the timeout
value passed in the tpbegin() call that started the transaction. If the TRANTIME or
tpbegin() timeout value is exceeded, all Oracle nodes infected with the transaction—
including the node that started the transaction—generate a TMS timeout message.

• If an interdomain transaction infects a node that understands the MAXTRANTIME parameter
and the parameter is set for that node, the timeout value for the transaction is reduced to
no greater than the MAXTRANTIME value on that node. If the TRANTIME or tpbegin()
timeout value is less than or equal to MAXTRANTIME, the transaction-handling scenario
becomes the one previously described. If the TRANTIME or tpbegin() timeout value is
greater than MAXTRANTIME, the infected node reduces the timeout value for the transaction
to MAXTRANTIME. If the MAXTRANTIME timeout value is exceeded, the infected node
generates a TMS timeout message.

For more information about MAXTRANTIME, see MAXTRANTIME in the RESOURCES section in
UBBCONFIG(5) or TA_MAXTRANTIME in the T_DOMAIN class in TM_MIB(5).

5.7 Example: A Distributed Application with Transactions
This section provides sample entries from a configuration file that defines bankapp as an
application that supports transactions and is distributed over three sites. The application is
characterized by the following:

• Data-dependent routing on ACCOUNT_ID
• Data distributed over three databases

• BRIDGE processes communicating with the system via the ATMI interface

• Application administration from one site

The file includes seven sections: RESOURCES, MACHINES, GROUPS, NETWORK, SERVERS, SERVICES,
and ROUTING.

• Sample RESOURCES Section

• Sample MACHINES Section

• Sample GROUPS and NETWORK Sections

• Sample SERVERS, SERVICES, and ROUTING Sections

5.7.1 Sample RESOURCES Section
The following listing shows a sample RESOURCES section.

Chapter 5
Example: A Distributed Application with Transactions

5-9

Listing Sample RESOURCES Section

*RESOURCES
#
IPCKEY 99999
UID 1
GID 0
PERM 0660
MAXACCESSERS 25
MAXSERVERS 25
MAXSERVICES 40
MAXGTT 20
MASTER SITE3, SITE1
SCANUNIT 10
SANITYSCAN 12
BBLQUERY 180
BLOCKTIME 30
DBBLWAIT 6
OPTIONS LAN, MIGRATE
MODEL MP
LDBAL Y

In the preceding listing, note the following:

• MAXSERVERS, MAXSERVICES, and MAXGTT are set to values that are smaller than the
defaults, which reduces the size of the bulletin board.

• The MASTER is SITE3 and the backup master is SITE1.

• It is possible to use a networked configuration with migration because MODEL is set
to MP and OPTIONS is set to LAN, MIGRATE.

• Because BBLQUERY is set to 180 and SCANUNIT is set to 10, the DBBL will check the
remote BBL s every 1800 seconds (that is, every half hour).

5.7.2 Sample MACHINES Section
The following listing shows a sample MACHINES section.

Listing Sample MACHINES Section

*MACHINES
 giselle LMID=SITE1
 TUXDIR=”/usr/tuxedo”
 APPDIR=”/usr/home”
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”3B600”

 romeo LMID=SITE2
 TUXDIR=”/usr/tuxedo”
 APPDIR=”/usr/home”
 ENVFILE=”/usr/home/ENVFILE”

Chapter 5
Example: A Distributed Application with Transactions

5-10

 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”SEQUENT”

 juliet LMID=SITE3
 TUXDIR=”/usr/tuxedo”
 APPDIR=’/usr/home”
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”AMDAHL”

In the preceding listing, note the following:

• TLOGDEVICE and TLOGNAME are specified, which implies that transactions will be done.

• The TYPE parameters are all different, which indicates that all messages sent between
machines will be encoded and decoded.

5.7.3 Sample GROUPS and NETWORK Sections
The following listing shows sample GROUPS and NETWORK sections.

Listing Sample GROUPS and NETWORK Sections

*GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1 GRPNO=1
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl3:bankdb:readwrite”

*NETWORK
SITE1 NADDR=”0X0002ab117B2D4359”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4359”

SITE2 NADDR=”0X0002ab117B2D4360”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4360”

SITE3 NADDR=”0X0002ab117B2D4361”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4361”

In the preceding listing, note the following:

• The TMSCOUNT is set to 2, which means that only two TMS_SQL transaction manager
servers will be booted per group.

• The OPENINFO string indicates that the application will perform database access.

Chapter 5
Example: A Distributed Application with Transactions

5-11

5.7.4 Sample SERVERS, SERVICES, and ROUTING Sections
The following listing shows sample SERVERS, SERVICES, and ROUTING sections.

Listing Sample SERVERS, SERVICES, and ROUTING Sections

*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=N CLOPT=”-A”
TLR SRVGRP=BANKB1 SRVID=1 CLOPT=”-A -- -T 100"
TLR SRVGRP=BANKB2 SRVID=3 CLOPT=”-A -- -T 400"
TLR SRVGRP=BANKB3 SRVID=4 CLOPT=”-A -- -T 700"
XFER SRVGRP=BANKB1 SRVID=5 REPLYQ=Y
XFER SRVGRP=BANKB2 SRVID=6 REPLYQ=Y
XFER SRVGRP=BANKB3 SRVID=7 REPLYQ=Y

*SERVICES
DEFAULT: AUTOTRAN=N
WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
TRANSFER ROUTING=ACCOUNT_ID
INQUIRY ROUTING=ACCOUNT_ID

*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”
 RANGES=”MON - 9999:*,
 10000 - 39999:BANKB1
 40000 - 69999:BANKB2
 70000 - 100000:BANKB3
 “”

In the preceding listing, note the following:

• Calls to the tpsvrinit() function by TLR servers will include a number (100, 400,
or 700) specified with the -T option.

• All service requests are routed on the ACCOUNT_ID field.

• No services are performed in AUTOTRAN mode.

See Also:

• About Transactions

• Using Tuxedo with Oracle Real Application Clusters (RAC)

• Writing Global Transactions in Programming Oracle Tuxedo ATMI
Applications Using C

• “What You Can Do Using the ATMI” in Introducing Oracle Tuxedo ATMI

• For more information about using transactions in an Oracle Tuxedo
CORBA environment, refer to Using CORBA Transactions

Chapter 5
Example: A Distributed Application with Transactions

5-12

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/pgc/pgglob.html

6
Introduction to Using Tuxedo with Oracle Real
Application Clusters (RAC)

This chapter includes the following sections.

This release also supports the following RAC features added in previous releases.

• Using Tuxedo with Oracle Real Application Clusters (RAC)

• Instance Awareness

• Using Tuxedo with XA Affinity

• Using Tuxedo with Common XID

• Using Tuxedo with Single Group Multiple Branches (SGMB)

• Using Tuxedo with Fast Application Notification (FAN)

• Using Tuxedo with Oracle Real Application Clusters (RAC)

6.1 Instance Awareness
For the servers associated with Oracle Database, Tuxedo uses customized callback to
retrieve Oracle Database instance information.

XA Server
Tuxedo uses customized callback to retrieve Oracle Database instance information by static
callback registration for XA servers.

Non-XA Server
Tuxedo uses customized callback to retrieve Oracle Database instance information by
dynamic callback registration for non-XA servers with the following requirements.

• $TUXDIR/lib/tuxociucb.so.1.0 package should be deployed in $ORACLE_HOME/lib.

• ORA_OCI_UCBPKG environment variable must include the package name.

It is necessary to deploy the package into $ORACLE_HOME/lib before running a non-XA server
that needs instance awareness; otherwise, the server that uses dynamic callback registration
will fail.

Non-XA server tries to automatically set the environment variable ORA_OCI_UCBPKG when
booting up. If the server fails to do so, an error message will occur in ULOG and the instance
awareness will be disabled in the server.

6.2 Using Tuxedo with XA Affinity
This section contains the following topics.

• Overview

• XA Affinity Priority

6-1

• XA Affinity Policy

• Prerequisites

• Configurations

• Limitations

6.2.1 Overview
Oracle RAC environments have a one-to-many relationship between database and
instances. Servers or groups of a Tuxedo application running on an Oracle RAC may
connect to different instances.

It is XA Affinity that ensures all database operations to connect the same RAC
instance when possible (no matter if those operations are in one global transaction
branch or in different branches of one global transaction) and automatically exchanges
the affinity information between Tuxedo domain and WebLogic Server via WTC
(WebLogic Tuxedo Connector).

6.2.2 XA Affinity Priority
Tuxedo server selection rules are listed as below, in high to low priority order.

• GWTDOMAIN Transaction routing

• Oracle RAC routing for transaction affinity using RAC instances

• Service versioning

• Client/server affinity routing

• XA Affinity

• Load balance based on Oracle RAC LBA (Load Balancing Advisor)

• Tuxedo load balance

If XA Affinity is enabled, the Oracle RAC routing rule that environment variable
TUXRACGROUPS specifies will be disabled.

Note:

XA Affinity has no impact on domain routing. Only when a request arrives at
a domain and starts to be routed to a service in that domain, XA Affinity
affects server routing.

6.2.3 XA Affinity Policy
Tuxedo selects the server that is associated with the same instance name, DB name,
and service name. If this attempt fails, Tuxedo follows the following policies to find the
server.

• Tuxedo tries to find the server which is associated with both the same DB name
and the same service name. The server's group must not be involved in the
current global transaction.

Chapter 6
Using Tuxedo with XA Affinity

6-2

• If the above attempt fails, Tuxedo tries to find the server which is associated with both the
same DB name and the same instance name.

• If the above attempt fails, Tuxedo tries to find the server which is associated with the
same DB name.

• If the above attempt fails, Tuxedo finds the server according to Tuxedo normal load
balance.

Note:

If Tuxedo finds multiple servers that are at the same priority, Tuxedo will find the
server according to Tuxedo normal load balance.

6.2.4 Prerequisites
• Software Requirements

• Installation Notes

6.2.4.1 Software Requirements
The feature can be run on all Oracle Tuxedo supported platforms, except for Oracle Tuxedo
32-bit on Microsoft Windows platforms.

For specific platform software requirements, refer to Oracle Tuxedo Platform Data Sheets.

6.2.4.2 Installation Notes
• The Oracle Tuxedo must be 12 c Release 2 (12.1.3) or above.

• The Oracle Database must be 11.2.0.2.0 or above.

6.2.5 Configurations
As long as the option XPP in OPTIONS of UBBCONFIG *RESOURCES section is specified, XA
Affinity feature is enabled by default.

Note:

On Oracle Exalogic and Oracle SPARC SuperCluster platforms, the OPTIONS
parameter must be set to EECS.

A new option, NO_XAAFFINITY, is introduced to RMOPTIONS of UBBCONFIG *RESOURCES section
to explicitly disable XA Affinity.

RMOPTIONS {[...|NO_XAAFFINITY],*}

The following Listing shows an example to configure EECS; the following Listing depicts an
example to explicitly disable XA Affinity.

Chapter 6
Using Tuxedo with XA Affinity

6-3

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxpd/

Listing Example to Configure EECS

* RESOURCES
OPTIONS EECS

Listing Example to Explicitly Disable XA Affinity

* RESOURCES
OPTIONS EECS
RMOPTIONS NO_XAAFFINITY

This flag can also be specified in T_DOMAIN class via TM_MIB, when the tuxedo
application is inactive. For more information, see File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Note:

XA Affinity requires Tuxedo servers to retrieve Oracle Database instance
information. Users can query a server’s instance information through Tuxedo
TM_MIB T_SERVER class's TA_INSTSTR field. For more information, see
T_SERVER Class Definition.

6.2.6 Limitations
• Groups with MRM (multiple RM) are not supported.

• The max number of affinity context (database name+instance name+service
name) in one transaction is 16.

• XA Affinity does not support multi-server single queue.

• XA Affinity does not support multi-threaded server.

• XA Affinity does not support cross-domain services.

6.3 Using Tuxedo with Common XID
This section contains the following topics.

• Overview

• Prerequisites

• Configurations

• Limitations

6.3.1 Overview
In general, for global transactions, each participating group has its own transaction
branch, and a distinguished transaction branch identifier (XID) identifies each branch.
If a global transaction involves multiple groups, Oracle Tuxedo adopts two-phase
commit on each branch, taking the first participating group as the coordinator.

Chapter 6
Using Tuxedo with Common XID

6-4

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#wp1513899

However, with common XID feature in this release, Oracle Tuxedo shares the coordinator
group transaction branch with all other groups within the same transaction. The groups that
connect to the same Oracle Database instance through the same service use the coordinator
branch directly. For those groups, XA committing operations are not required and are saved.

In the most extreme case, where all groups in a global transaction use the coordinator branch
directly, Oracle Tuxedo adopts one-phase commit instead of two-phase commit; no TLOG is
written.

• Typical Scenario

6.3.1.1 Typical Scenario
Assume there are two groups GRP1 and GRP2 in a Tuxedo application domain DOM1. Server
SERV1 belongs to GRP1 and offers service SVC1 while server SERV2 belongs to GRP2 and offers
service SVC2. Both SERV1 and SERV2 connect to the same instance.

Then a native client begins a global transaction at first, invokes SVC1 followed by SVC2, and
commits the transaction.

If common XID functionality is enabled in the above case, Tuxedo invokes one-phase commit
on the transaction and no TLOG is written; otherwise, two-phase commit is invoked.

Users are allowed to trace the above behaviors through TMTRACE. Please refer to TMTRACE for
more information in the Section 5 - Files Formats, Data Descriptions, MIBs, and System
Processes Reference

6.3.2 Prerequisites
• Software Requirements

• Installation Notes

6.3.2.1 Software Requirements
The feature can be run on all Oracle Tuxedo supported platforms, except for Oracle Tuxedo
32-bit on Microsoft Windows platforms.

For specific platform software requirements, refer to Oracle Tuxedo Platform Data Sheets.

6.3.2.2 Installation Notes
• The Oracle Tuxedo must be 12c Release 2 (12.1.3) or above.

• The Oracle Database must be 11.2.0.2.0 or above.

6.3.3 Configurations
As long as the option XPP in OPTIONS of UBBCONFIG * RESOURCES section is specified,
common XID feature is enabled by default. A new option, NO_COMMONXID, is introduced to
RMOPTIONS of UBBCONFIG *RESOURCES section to explicitly disable common XID.

RMOPTIONS {[...|NO_COMMONXID],*}
The following Listing shows an example to configure XPP; the following Listing lists an
example to explicitly disable common XID.

Chapter 6
Using Tuxedo with Common XID

6-5

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#wp1529614
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#wp1529614
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxpd/

Listing Example to Explicitly Disable Common XID

* RESOURCES
 OPTIONS XPP

 RMOPTIONS NO_COMMONXID

This flag can also be specified in T_DOMAIN class via TM_MIB, when the tuxedo
application is inactive. For more information, see File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Note:

Common XID requires Tuxedo servers to retrieve Oracle Database instance
information. Users can query a server’s instance information through Tuxedo
TM_MIB T_SERVER class's TA_INSTSTR field. For more information, see
T_SERVER Class Definition.

6.3.4 Limitations
• Groups with MRM (multiple RM) are not supported.

• Multi-threaded servers do not provide instance information via MIB; however,
common XID still performs well on server-dispatched threads.

• In two-phase commit scenarios, GWTDOMAIN is always involved to do prepare
and/or commit.

• If the coordinator group is the group where GWTDOMAIN locates, common XID does
not work.

6.4 Using Tuxedo with Single Group Multiple Branches
(SGMB)

This section contains the following topics.

• Overview

• Prerequisites

• Configurations

• Limitations

6.4.1 Overview
In previous releases, servers in the same participated group use the same transaction
branch in a global transaction. However the transaction branch would fail if these
serves connect to different instances of a RAC. An XA error, XAER_AFFINITY, will be
reported, meaning one branch cannot go through different instances. For this reason,
the RAC service used by a Tuxedo group must be a singleton RAC service. A DTP
service (if the DTP option, -x in srvctl modify service, is specified) or a service
offered by only one instance could be a singleton RAC service.

Chapter 6
Using Tuxedo with Single Group Multiple Branches (SGMB)

6-6

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#wp1513899

In this release, using different transaction branches on different instances in a single group
will solve the issue. The Tuxedo group can then use non-singleton service and take
advantage of its benefits, such as load balance.

6.4.2 Prerequisites
• Software Requirements

• Installation Notes

6.4.2.1 Software Requirements
The feature can be run on all Oracle Tuxedo supported platforms, except for Oracle Tuxedo
32-bit on Microsoft Windows platforms.

For specific platform software requirements, refer to Oracle Tuxedo Platform Data Sheets.

6.4.2.2 Installation Notes
• The Oracle Tuxedo must be 12c Release 2 (12.1.3) or above.

• The Oracle Database must be 11.2.0.2.0 or above.

6.4.3 Configurations
As long as the option EECS in OPTIONS of UBBCONFIG *RESOURCES section is specified, SGMB
feature is enabled by default. A new option, SINGLETON, is introduced to RMOPTIONS of
UBBCONFIG *RESOURCES section to explicitly disable SGMB.

RMOPTIONS {[...|SINGLETON],*}
This option indicates all RAC services used in the domain are singleton, so the SGMB feature
is not necessary to work.

The following Listing shows an example to configure EECS; the following Listing depicts an
example to explicitly disable SGMB.

Listing Example to Explicitly Disable SGMB

* RESOURCES
OPTIONS EECS

RMOPTIONS SINGLETON

This flag can also be specified in T_DOMAIN class via TM_MIB, when the tuxedo application is
inactive. For more information, see File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Note:

SGMB requires Tuxedo servers to retrieve Oracle Database instance information.
Users can query a server’s instance information through Tuxedo TM_MIB T_SERVER
class's TA_INSTSTR field. For more information, see T_SERVER Class Definition.

Chapter 6
Using Tuxedo with Single Group Multiple Branches (SGMB)

6-7

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxpd/
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#wp1513899

6.4.4 Limitations
• Groups with MRM (multiple RM) are not supported.

• A transaction fails if more than 16 instances are involved in a single group.

• Read-Only optimization for XA does not work in a transaction if the preferred
reserved group is a multi-branch group. If GWTDOMAIN is not the coordinator, the
preferred reserved group is the coordinator group; otherwise, the preferred
reserved group is the participated group coming next in the coordinator domain.

• Multi-threaded servers do not provide instance information through MIB; however,
SGMB still performs well on server-dispatched threads.

6.5 Using Tuxedo with Fast Application Notification (FAN)
This section contains the following topics.

• Overview

• Prerequisites

• Configurations

• Limitations

6.5.1 Overview
Tuxedo uses Fast Application Notification (FAN) to

• Provide rapid failure detection.

• Remove invalid DB connections from Tuxedo server and create valid DB
connection. If Tuxedo server cannot create valid DB connection, Tuxedo removes
these servers from the routing list.

• Perform graceful shutdown for planned and unplanned Oracle RAC node outages.

• Adapt to changes in topology, such as adding or removing a node.

• Distribute runtime work requests to all active Oracle RAC instances, including
those rejoining a cluster.

6.5.2 Prerequisites
• Software Requirements

• Installation Notes

6.5.2.1 Software Requirements
The feature can be run on all Oracle Tuxedo supported platforms, except for Oracle
Tuxedo 32-bit on Microsoft Windows platforms.

For specific platform software requirements, refer to Oracle Tuxedo Platform Data
Sheets.

Chapter 6
Using Tuxedo with Fast Application Notification (FAN)

6-8

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxpd/
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxpd/

6.5.2.2 Installation Notes
• The Oracle Tuxedo must be 12c Release 2 (12.1.3) or above.

• The Oracle Database must be 11.2.0.2.0 or above.

• Using the connection steering requires Oracle client 11.2.0.2.0 or Oracle client 12.1.0.1.0
with a specific patch (contact Oracle Support for the patch, or higher release of Oracle
client).

6.5.3 Configurations
• Configurations on DB

• Configurations on Tuxedo

6.5.3.1 Configurations on DB
DB configuration includes the following topics.

• ONS

• Load Balancing Advisor (LBA)

• TAF

6.5.3.1.1 ONS
On Oracle server side, ONS daemon must be enabled.

If Tuxedo is taken as a native client, ONS daemon on the client side must also be enabled.
The ONS daemon configuration file is located in $ORACLE_HOME/opmn/conf/ons.config. After
configuring ONS, start ONS daemon with onsctl start command. Please make sure that
ONS daemon is running all the time.

If Tuxedo is taken as a remote client, ONS daemon on the client side is not used. It is the
preferred mode.

Note:

On the Oracle client side, if the Oracle version is lower than 12.1.0.1.0, ONS
daemon must be enabled.

6.5.3.1.2 Load Balancing Advisor (LBA)
The ONS may publish LBA about a service if the service has load balancing advisory goal.
You can use -B option to specify the goal through srvctl when creating or modifying the
service.

6.5.3.1.3 TAF
If TAF is enabled, all Tuxedo servers can automatically do the reconnection by TAF;
otherwise, only XA servers can automatically do the reconnection.

Reconnection is finished by TAF with the following requirements for user code.

Chapter 6
Using Tuxedo with Fast Application Notification (FAN)

6-9

XA server
OPENINFO must include threads=t.

Non-XA server
To monitor FAN event for the instance associated with the specific non-XA application
server, $TUXDIR/lib/tuxociucb.so.1.0 must be deployed in $ORACLE_HOME/lib, and
the name of this binary must be specified in ORA_OCI_UCBPKG environment variable.

-L option in the servopts must be used for a non-XA server to indicate that the server
will connect to the Oracle Database. Since the ECID is enabled when -L is specified,
a new option -F is introduced into servopts to close ECID. The usage is -F noECID.
The example is below.

*SERVERS
server1
SRVGRP=GRP1 SRVID=1 ClOPT="-L libclntsh.so -F noECID"

For TAF support, the OCI environment must be created in OCI_THREADED mode.

Pro*C users should be able to precompile with threads=yes and use the embedded
SQL statement as below before creating the first executable embedded SQL
statement; otherwise, only XA servers can do the reconnection.

EXEC SQL ENABLE THREADS;

6.5.3.2 Configurations on Tuxedo
It is required to configure TMFAN server in UBBCONFIG *SERVERS section and configure
the option XPP in OPTIONS of UBBCONFIG *RESOURCES section. A new option, NO_FAN, is
introduced to RMOPTIONS of UBBCONFIG *RESOURCES section to explicitly disable FAN.

RMOPTIONS {[...|NO_FAN],*}
The following Listing shows an example to configure XPP and the following Listing
depicts an example to explicitly disable FAN.

Listing Example to Explicitly Disable FAN

* RESOURCES
 OPTIONS XPP
 RMOPTIONS NO_FAN

This flag can also be specified in T_DOMAIN class via TM_MIB, when the tuxedo
application is inactive. For more information, see File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Chapter 6
Using Tuxedo with Fast Application Notification (FAN)

6-10

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Note:

FAN requires Tuxedo servers to retrieve Oracle Database instance information.
Users can query a server’s instance information through Tuxedo TM_MIB T_SERVER
class's TA_INSTSTR field. For more information, see T_SERVER Class Definition.

6.5.4 Limitations
• Groups with MRM (multiple RM) are unsupported.

• If the customized server is going to use OCI to connect Oracle database, OCI_NO_UCB
should not be set at OCI initialization time.

• Load balance based on Oracle RAC LBA (Load Balancing Advisor) does not support
multi-server single queue.

• Load balance based on Oracle RAC LBA (Load Balancing Advisor) does not support
cross-domain services.

6.6 Using Tuxedo with Oracle Real Application Clusters (RAC)
This section contains the following topics.

• Overview

• Limitations

• Software Requirements

• Configuring Tuxedo for Oracle RAC

6.6.1 Overview
The Oracle Real Application Clusters (RAC) feature supports clustering of machines that
utilize replicated Oracle database services accessing the same Oracle database. Oracle RAC
provides the ability to concurrently access the same Oracle database from instances
physically located on multiple Oracle server machines, and offers the ability to failover
unsuccessful database instances to alternate locations.

However, specific support for Oracle RAC is required by the Transaction Monitor in order to
take advantage of these replication and failover features in an XA transaction environment or
to obtain optimal RAC performance. This is because Oracle 10g does not allow the same
database to be accessed from multiple RAC instances within the same XA transaction.

Note:

Oracle 12c does allow the same database to be accessed from multiple RAC
instances within the same XA transaction, but performance may be better if all
accesses within a particular XA transaction occur from the same RAC instance.

In addition, Oracle 10gR1 requires Transaction Monitor involvement when prepared
transactions failover from one RAC instance to another.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-11

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Tuxedo provides Transaction Monitor support for Oracle RAC by allowing an
administrator to specify lists of groups associated with different RAC instances. This
allows Tuxedo to ensure that groups associated with different instances of the same
RAC database do not participate in the same transaction. The Tuxedo Oracle RAC
support feature also provides a way for Tuxedo transaction manager server (TMS)
processes to be notified of RAC failover events which is required when using Oracle
10gR1.

Consequently, this allows the TMS to re-obtain a list of Oracle 10gR1 prepared
transactions from Oracle as required for RAC failover recovery.

Note:

When using Oracle 10gR2, administrators should use an Oracle DTP
Service to access the Oracle RAC system. This DTP service name
should be specified in the OPENINFO string for the associated Tuxedo
groups. Oracle 10gR2 verifies the service name, and migrates it to an
alternate instance if required.

Note:

When using Oracle 12c or later release, the service name is transparently
and automatically migrated to an alternate instance, if required, without any
specific configuration.

6.6.2 Limitations
• Tuxedo supports Oracle RAC only when using Oracle 10g or later release, and

does not support Oracle RAC when using Oracle 9i.

• In some instances, using Oracle RAC with the Dynamic XA switch enabled may
generate a core dump and cause a system crash. Please contact Oracle Support
directly if you encounter this issue and provide the following information:

– BUG 4644880 - Oracle bug fix identification number

– the patch set version for the 10g release you are using

6.6.3 Software Requirements
For specific platform software requirements, refer to Oracle Tuxedo Platform Data
Sheets.

6.6.4 Configuring Tuxedo for Oracle RAC
Tuxedo support for Oracle RAC requires two steps:

• Configuring Transaction Propagation

• Configuring Transaction Recovery

The following command and environment variables are used to exclusively configure
Tuxedo for Oracle RAC support:

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-12

https://docs.oracle.com/en/database/oracle/tuxedo/22/otxpd/
https://docs.oracle.com/en/database/oracle/tuxedo/22/otxpd/

• Three environment variables
– TUXRACGROUPS (required for Oracle 10gR1 and 10gR2, optional for Oracle 11g

and later releases)

– XARETRYDURATIONSECONDS (required only for Oracle 10gR1)

– XARETRYINTERVAL (required only for Oracle 10gR1)

• One Command

– TMS_rac_refresh(1) (required only for Oracle 10gR1)

• Configuring Transaction Propagation

• Configuring Transaction Recovery

6.6.4.1 Configuring Transaction Propagation
Oracle 10gR1 does not allow the same database to be accessed from multiple RAC
instances within the same XA transaction. In addition, Oracle 10gR1 requires Transaction
Monitor involvement when prepared transactions failover from one RAC instance to another.

Oracle 10gR2 permits different RAC instances to operate on different transaction branches in
RAC, but if transaction branches are on different instances, then they are loosely coupled and
do not share locks. Also, for optimum commit performance, it is important to use only a single
RAC instance within a given XA transaction.

For this reason, it is still important to associate an XA transaction with a single RAC instance
in Oracle 10gR2. (For further information on using Oracle XA with RAC, refer to the
"Developing Applications with Oracle XA" chapter in the Oracle Database Application
Developer's Guide - Fundamentals.

The TUXRACGROUPS environment variable is used to associate Tuxedo groups with specific
instances of Oracle RAC configurations so that Tuxedo does not include groups from multiple
instances of the same RAC configuration within the same XA transaction.

Note:

When using Oracle 10g, a single transaction should not span multiple Oracle RAC
instances. The groups that participate in a particular transaction are determined at
the time the transaction is started. Each transaction is assigned to one particular
instance of each RAC configuration such that the groups in each instance of a
particular RAC configuration are assigned to an equal number of transactions.

Oracle 12c permits different RAC instances to operate on different transaction branches in
RAC, and if transaction branches are on different instances, then they are tightly coupled and
share locks and resources. So the TUXRACGROUPS environment variable is not necessary when
using Oracle 12c. This environment variable still works in Oracle 12c and you can use it to
associate Tuxedo groups with specific instances of Oracle RAC configurations.

TUXRACGROUPS
The TUXRACGROUPS environment variable specifies the groups that are associated with a
particular RAC configuration, and will disallow sending service calls in the same transaction
to two or more groups identified as different instances of the same RAC configuration.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-13

WARNING:

If the TUXRACGROUPS environment variable is used, it must be set on all
machines in a configuration, and must have the same sets of groups
specified in the same order on all machines.
If this restriction is not followed, then inconsistent sets of groups can be
included within a transaction. The coordinating group will notice the
inconsistency at commit time, roll back the transaction, and send an error
message to the userlog.

• TUXRACGROUPS Syntax

• TUXRACGROUPS Examples

• Transaction Creation Behavior Using TUXRACGROUPS

• Data Dependent Routing Using TUXRACGROUPS

• Assigning Transactions to Special Oracle RAC Instances

• TUXRAGROUPS Transaction Use Cases

6.6.4.1.1 TUXRACGROUPS Syntax
The TUXRACGROUPS environment variable is used to define Oracle RAC group
configurations. Its syntax is as follows:

TUXRACGROUPS="G1,G2,…,Gm;H1,H2,…,Hn[;…]:I1,I2,…,Io;J1,J2,…,Jp[;…][:…]"

Comma (,) separated list
Used to specify groups in the same instance of an Oracle RAC configuration. Multiple
groups from a comma separated list can be used together in the same transaction.

Note:

Typically, most users place all of the services associated with one database
instance in a single group, therefore commas are not needed in the
TUXRACGROUPS value.

Semicolon (;) separated list
Used to specify sets of groups in different instances of an oracle RAC configuration.
Groups from different RAC instances from the same RAC database configuration
cannot be used together in the same transaction.

Since the purpose of the TUXRACGROUPS environment variable is to specify groups
associated with different instances of the same Oracle RAC configuration, all
applications using theTUXRACGROUPS variable should have at least one semicolon in
the environment variable value.

Colon (:) separated list
Used to separate information about one Oracle RAC configuration from information
about a different Oracle RAC configuration. The colon indicates that multiple Oracle
RAC database configurations are totally independent of each other.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-14

Note:

Typically, most users specify only one RAC database configuration, therefore
colons are not needed in the TUXRACGROUPS value.

6.6.4.1.2 TUXRACGROUPS Examples
This section describes four different examples for defining Oracle RAC group configurations:

• Example 1: Simple Configuration

• Example 2: Oracle RAC Single Instance with Multiple Groups

• Example 3: Multiple Oracle RAC Instances with Multiple Groups

Example 1: Simple Configuration

TUXRACGROUPS="G1;G2"

The following figure shows a simple Oracle RAC configuration.

In this example, there is one Oracle database, (ORA1), two Oracle RAC instances with 1
group per each instance.

The same transaction request to both GROUP1 and GROUP2 cannot be sent because they
access database services through different instances that map to the same Oracle RAC
database configuration.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-15

Figure 6-1 (ORA1) Simple Configuration

Example 2: Oracle RAC Single Instance with Multiple Groups

TUXRACGROUPS="GROUP1;GROUP2:GROUP3;GROUP4,GROUP5"

The following Figure shows an example of adding multiple groups to a single instance.

In this example, there are two Oracle databases: ORA1 and ORA2. ORA1 offers machine-
specific services ORA1SITE1 and ORA1SITE2, and ORA2 offers machine-specific services
ORA2SITE1 and ORA2SITE2. The objective is to assign an approximately equal number
of transactions and configure the same services to the groups associated with each
instance of an Oracle RAC configuration.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-16

The same transaction request to both GROUP1 and GROUP2 cannot be sent because they
access database services through different instances that map to the same Oracle RAC
database configuration. The same applies to GROUP3 and GROUP4 or GROUP3 GROUP5, the same
transaction cannot be sent to both these groups.

GROUP4 and GROUP5 both access the same database service of the same Oracle RAC
database configuration, so these groups would be permitted together. GROUP1 and GROUP4
would be permitted together, because they access different RAC database configurations. If
there is also a GROUP6 in this configuration, it would be permitted with any other group,
because GROUP6 is not an Oracle RAC group.

Note:

The number of groups in each Oracle RAC instance does not have to be the same.

Figure 6-2 (ORA2) Single Oracle RAC Instance with Multiple Groups

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-17

The *GROUPS and *SERVERS sections of the UBBCONFIG file for this configuration might
look as follows in Listing:

Listing UBBCONFIG File *GROUPS and *SERVERS Sections Example

*GROUPS
DEFAULT: TMSNAME=TMS_ORA TMSCOUNT=2
GROUP1 LMID=SITE1 GRPNO=1
OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SqlNet=ORA1SITE1+SesTm=100+LogDir=.+MaxCur=5"

GROUP2 LMID=SITE2 GRPNO=2
OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SqlNet=ORA1SITE2+SesTm=100+LogDir=.+MaxCur=5"

GROUP3 LMID=SITE1 GRPNO=3
OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SqlNet=ORA2SITE1+SesTm=100+LogDir=.+MaxCur=5"

GROUP4 LMID=SITE2 GRPNO=4
OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SqlNet=ORA2SITE2+SesTm=100+LogDir=.+MaxCur=5"

GROUP5 LMID=SITE2 GRPNO=5
OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/
tiger+SqlNet=ORA2SITE2+SesTm=100+LogDir=.+MaxCur=5"

GROUP6 LMID=SITE1 GRPNO=6 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM:/home/myapplication/QUE:QSPACE"

*SERVERS

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"
EMPLOYEE_SVR SRVGRP=GROUP1 SRVID=1
EMPLOYEE_SVR SRVGRP=GROUP2 SRVID=2
BANKING_SVR SRVGRP=GROUP3 SRVID=3
BANKING_SVR SRVGRP=GROUP4 SRVID=4
BANKING_SVR SRVGRP=GROUP5 SRVID=5

Note:

GROUP4 and GROUP5 have the same OPENINFO strings, because they both use
the same database service from the same database. The specification of the
OPENINFO string for Oracle groups in the *GROUPS section is the same as
when using Oracle without RAC. For information on how to specify an
OPENINFO string for an Oracle group, refer to the Developing Applications
with Oracle XA chapter in the Oracle Database Application Developer's
Guide - Fundamentals.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-18

Example 3: Multiple Oracle RAC Instances with Multiple Groups

TUXRACGROUPS="GROUP11,GROUP12,GROUP13;GROUP21,GROUP22:GROUP3;GROUP4, GROUP5"

The following figure shows an example of adding multiple groups to multiple instances.

This example is similar to the previous example — except that GROUP11, GROUP12, and
GROUP13 are all associated with the first RAC instance of the first RAC configuration, and
GROUP21 and GROUP22 are both associated with the second RAC instance.

If the first service call in a transaction in this configuration goes to GROUP12, then it would be
possible to send other service calls in this transaction to GROUP11, GROUP12, or GROUP13, but
not to GROUP21 or GROUP22.

If a transactional service call is made to a service that is not advertised in any permitted
groups but is available in one or more prohibited groups, the result is:

• the call fails

• tperrno is set to TPENOENT
• tperrordetail is set to the new value TPED_GROUP_FORBIDDEN

Figure 6-3 Multiple Oracle RAC Instances with Multiple Groups

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-19

For each RAC configuration defined as part of the TUXRACGROUPS environment variable,
Tuxedo determines which RAC group(s) in that configuration participate in a particular
transaction when that transaction is started.

6.6.4.1.3 Transaction Creation Behavior Using TUXRACGROUPS
Transactions are a pinned to Oracle RAC instances for as long as they exist. This is
true independently, whether the call flow for such a transaction ever reaches a Tuxedo
service associated with Oracle RAC or not.

There are two ways that transactions can be created:

• Transactions created in a group listed inside TUXRACGROUPS are pinned to the
Oracle RAC instance configured via TUXRACGROUPS.

• Transactions created in groups not listed inside TUXRACGROUPS are pinned to one of
the available Oracle RAC instances in a load-balancing-like algorithm.

6.6.4.1.4 Data Dependent Routing Using TUXRACGROUPS
Data dependent routing has been extended to support Oracle RAC configurations. It is
possible to define multiple groups for the same routing range in the UBBCONFIG
*ROUTING section. The following Listing shows an example of different Tuxedo groups
with the same range of values.

Listing Tuxedo Groups with Same Range Values

RANGES="1-5:GROUP1A, 1-5:GROUP1B, 6-10:GROUP2B, 6-10:GROUP2A, *:*"

In this example, GROUP1A and GROUP1B are responsible for the same data range and
GROUP2A and GROUP2B are responsible for the same data range. Tuxedo routes the
service request to the group associated with the Oracle RAC instance that the
transaction belongs to.

Data dependent routing for transactional services offered in RAC groups achieves the
desired result only if:

• Each Oracle RAC Instance configuration offers a service instance that can
process each data value.
Since all but one of the instances in a RAC configuration are disallowed in a
particular transaction, each data value must be specified for a service in each RAC
instance. Otherwise, that data value will not be processed by any service in the
RAC configuration for some transactions.

• Different service instances connected to the same Oracle RAC Instance process
different data values.
If all data values are processed by the same set of service instances, then there is
no need to use data dependent routing.

• Multiple RANGES entries for each routing value must be created for each RAC
instance offering the service.
If a routing was not configured for a special RAC instance a service calls for a
transaction pinned to that Oracle RAC Instance will fail with tperrno set to
TPENOENT and tperror detail set to TPED_GROUP_FORBIDDEN.

When transactional routing occurs, any groups that are not permitted for the current
transaction are ignored. The routing decision only considers:

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-20

• Groups associated with the allowable RAC instance.

• Groups not associated with a RAC configuration.

If routing is performed for a non-transactional request, all groups can participate. The service
is routed to the first group matching the data value listed in the UBBCONFIG file *ROUTING
section RANGES field. All non-transactional requests for a special range of values are handled
by one Oracle RAC instance only.

If routing is performed for a mixture of transactional and non-transactional requests, some
applications may not require non-transactional request load balancing. You can vary the RAC
instances listed first in your application for different data values so that non-transactional
requests are balanced accordingly among services offered by different RAC instances.

There is no way to enforce load balancing between all groups associated with the same
routing range for non-transactional requests. If you want to enforce one-by-one load
balancing, try the following:

• Varying the RAC instance listed first for each data value so that each RAC instance
occurs first for approximately equal amounts of data, or

• Calling an intermediate AUTOTRAN service (in the UBBCONFIG file *SERVICES section)
to enforce that each service call is associated with a transaction.

Figure shows an example of routing transactional and non-transactional requests in an
Oracle RAC configuration.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-21

Figure 6-4 Routing Transactional/Non-Transactional Requests

The configuration shown in the example consists of 2 Oracle RAC instances. If 1,000
transactions are created in a group not listed in TUXRACGROUPS, around 500
transactions will be pinned to Oracle RAC instance 1 and can only access GROUP1A
and GROUP2A. The other 500 transactions will be pinned to Oracle RAC instance 2 and
can only access GROUP1B and GROUP2B.

The following Listing shows an example of how the *SERVICES and *ROUTING sections
of the UBBCONFIG file for this configuration might look:

Listing UBBCONFIG File *SERVICES and *ROUTING Sections Example

*SERVICES

DEPOSIT SRVGRP=GROUP1A ROUTING=MYROUTE

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-22

DEPOSIT SRVGRP=GROUP2A ROUTING=MYROUTE
DEPOSIT SRVGRP=GROUP1B ROUTING=MYROUTE
DEPOSIT SRVGRP=GROUP2B ROUTING=MYROUTE

*ROUTING

MYROUTE FIELD=”BRANCH_ID”
RANGES=”1-5:GROUP1A, 1-5:GROUP1B, 6-10:GROUP2B, 6-10:GROUP2A, *:*”
BUFTYPE=”FML32”

GROUP1A and GROUP2A belong to Oracle RAC instance 1. GROUP1B and GROUP2B belong to
Oracle RAC instance 2. Requests with a BRANCH_ID 1 through 5 must be handled by GROUP1A
or GROUP1B . Requests with a BRANCH_ID 6 through 10 must be handled by GROUP2A or
GROUP2B.

For transactional requests, all transactions pinned to Oracle RAC instance 1; branches 1-5
map to GROUP1A and branches 6-10 map to GROUP2A. The other half is assigned to Oracle
RAC instance 2; branches 1-5 map to GROUP1B and branches 6-10 map to GROUP2B.

For non-transactional requests, branches 1-5 map to GROUP1A, and branches 6-10 map to
GROUP2B. These are the first groups specified that match the respective routing ranges.
Requests with an invalid BRANCH_ID are mapped to any permitted group.

Note:

Oracle RAC instance 1 is specified first for one data range and RAC instance 2 is
specified first for the other data range in an attempt to achieve some non-
transactional load balancing between RAC instances.

6.6.4.1.5 Assigning Transactions to Special Oracle RAC Instances
You may want to split your environment into multiple machines. For example, you may want a
Tuxedo domain with some machines only accessing Oracle RAC instance 1 and other
machines only accessing Oracle RAC instance 2 in order to enforce regional independency if
Tuxedo installations and Oracle RAC installations are distributed over different buildings. The
environment may be configured so that as few as possible calls should be sent outside of a
building.

The following Figure shows an example with, machine 1 serving GROUP1A and GROUP2A;
machine 2 serving GROUP1B and GROUP2B. In addition, calls might be made and transactions
might be created from a Tuxedo /Domain Gateway, for Tuxedo /WS clients, Tuxedo Native
Clients, Tuxedo /Q, or any server linked with another Resource Manager such as MQ Series.

Whenever a request is sent, the transaction should be pinned to the local machine and avoid
hopping between different machines as much as possible.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-23

Figure 6-5 Assigning Transactions to Special Oracle RAC Instances

The following Listing shows a UBBCONFIG file example with two physical machines,
TUXM1 and TUXM2, running Tuxedo. Both machines have two groups connecting to an
Oracle RAC. Groups GROUP1A and GROUP2A are running on machine TUXM1 connecting
to RAC instance 1. Groups GROUP1B and GROUP2B are running on machine TUXM2
connecting to RAC instance 2.

Listing UBBCONFIG File Example

*MACHINES
DEFAULT:
 APPDIR="/path/to/appdir"
 ENVFILE="/path/to/oracle.env"
 TUXDIR="/path/to/tuxdir"
 TUXCONFIG="/path/to/tuxconfig"
 TLOGDEVICE="/path/to/TLOG"

"machine1" LMID=TUXM1

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-24

"machine2" LMID=TUXM2

*GROUPS
ADMGRPA LMID=TUXM1 GRPNO=10 OPENINFO=NONE
ADMGRPB LMID=TUXM2 GRPNO=20 OPENINFO=NONE

GROUP1A LMID=TUXM1 GRPNO=101 TMSNAME=TMS_ORA

OPENINFO="Oracle_XA:Oracle_XA+ACC=P/user/password+Sqlnet=ORA1SITE1+SesTm=1
00+LogDir=.+MaxCur=5"
GROUP1B LMID=TUXM2 GRPNO=102 TMSNAME=TMS_ORA

OPENINFO="Oracle_XA:Oracle_XA+ACC=P/user/password+Sqlnet=ORA1SITE2+SesTm=1
00+LogDir=.+MaxCur=5"

GROUP2A LMID=TUXM1 GRPNO=201 TMSNAME=TMS_ORA

OPENINFO="Oracle_XA:Oracle_XA+ACC=P/user/password+Sqlnet=ORA1SITE1+SesTm=1
00+LogDir=.+MaxCur=5"
GROUP2B LMID=TUXM2 GRPNO=202 TMSNAME=TMS_ORA

OPENINFO="Oracle_XA:Oracle_XA+ACC=P/user/password+Sqlnet=ORA1SITE2+SesTm=1
00+LogDir=.+MaxCur=5"

GROUP_TDOM_A LMID=TUXM1 GRPNO=301
GROUP_TDOM_B LMID=TUXM2 GRPNO=302

GROUP_CLIENT_A LMID=TUXM1 GRPNO=401 TMSNAME=TMS
GROUP_CLIENT_B LMID=TUXM2 GRPNO=402 TMSNAME=TMS

*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"

TMSYSEVT SRVGRP="ADMGRPA" SRVID=10
TMUSREVT SRVGRP="ADMGRPA" SRVID=20

TMSYSEVT SRVGRP="ADMGRPB" SRVID=10 CLOPT="-A -- -S "
TMUSREVT SRVGRP="ADMGRPB" SRVID=20 CLOPT="-A -- -S "

EMPLOYEE_SVR SRVGRP=GROUP1A SRVID=1
EMPLOYEE_SVR SRVGRP=GROUP1B SRVID=2
BANKING_SVR SRVGRP=GROUP2A SRVID=3
BANKING_SVR SRVGRP=GROUP2B SRVID=4

DMADM SRVGRP="GROUP_TDOM_A" SRVID=100
GWADM SRVGRP="GROUP_TDOM_A" SRVID=110
GWTDOMAIN SRVGRP="GROUP_TDOM_A" SRVID=111 REPLYQ=Y
RQADDR="GWGRP_M1"
GWADM SRVGRP="GROUP_TDOM_B" SRVID=110
GWTDOMAIN SRVGRP="GROUP_TDOM_B" SRVID=111 REPLYQ=Y
RQADDR="GWGRP_M2"

Additionally, there is a group for administrative services, as well as one group for Tuxedo /
Domain gateways and one group for native Tuxedo clients on both machines. All transactions
are created by GWTDOMAIN and native clients. Even if GWTDOMAIN and the native Tuxedo

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-25

clients never connect to an Oracle RAC directly, they must be included in
TUXRACGROUPS as shown in the following Listing to ensure that the opened transactions
belong to the correct RAC instance and are handled locally.

Note:

Native clients must set tpinfo->grpname to the local group to ensure the
right behavior. For more information, see, Avoiding Transactions Created by
Tuxedo Native Clients Being Sent to a Remote Machine

Listing TUXGROUPS

TUXRACGROUPS="GROUP_TDOM_A,GROUP_CLIENT_A,GROUP1A,GROUP2A;GROUP_TDOM_B,
GROUP_CLIENT_B,GROUP1B,GROUP2B"

6.6.4.1.6 TUXRAGROUPS Transaction Use Cases

Dealing with Service Calls that are Made Outside of Transactions
As long as no transaction is involved, Tuxedo will try to handle as many requests as
possible on the local machine as long as the load allows and requests will only go to
remote machines if no local services are idle according to the load balancing
algorithm. Summarized this means one does not have to care about requests sent to
remote machines if all services are available on all machines.

What an administrator always has to ensure is that he includes all service groups into
the TUXRACGROUPS environment variable that are accessed during the call flow and that
are candidates for opening a new transaction even if they are not linked with the
Oracle RM and/or are not physically associated with any Oracle RAC instance. The
environment variable TUXRACGROUPS does not have any impact for non-transactional
service calls.

Avoiding Transactions Created by a Group Handling an External Resource
Manager Being Sent to a Remote Machine
If you have a Tuxedo server built with another RM such as MQSeries or another
database, you can force newly started transactions to be pinned to your local machine
by including this group into the TUXRACGROUPS environment variable as well.

Listing MQSeries Example

TUXRACGROUPS="MQSGROUPA,GROUP1A,GROUP2A;MQSGROUPB,GROUP1B,GROUP2B"

In this example MQSGROUPA, GROUP1A and GROUP2A are located on machine 1 and
MQSGROUPB, GROUP1B and GROUP2B are located on machine 2.

If a server inside group MQSGROUPA creates a transaction, all Tuxedo service calls for
services under groups GROUP1A, GROUP2A, GROUP1B and GROUP2B will only go to GROUP1A
and GROUP2A. GROUP1B and GROUP2B are ignored as they belong to RAC instance 2 and
the transaction was already created for RAC instance 1 via group MQSGROUPA.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-26

Avoiding Transactions Created by GWTDOMAIN Being Sent to a Remote Machine?
Create on local Tuxedo /Domain Gateway on each machine. Set the TUXRACGROUPS
environment variable as shown in the following Listing .

Listing GWTDOMAIN Example

TUXRACGROUPS="GWTGROUPA,GROUP1A,GROUP2A;GWTGROUPB,GROUP1B,GROUP2B"

In this example GWTGROUPA, GROUP1A and GROUP2A are located on machine 1 and GWTGROUPB,
GROUP1B and GROUP2B are located on machine 2.

If GWTDOMAIN on machine 1 creates a new transaction because it receives an external
request, all Tuxedo service calls for services under groups GROUP1A, GROUP2A, GROUP1B and
GROUP2B will only go to GROUP1A and GROUP2A. GROUP1B and GROUP2B are ignored as they
belong to RAC instance 2 and the transaction was already created for RAC instance 1 via
group GWTGROUPA.

Avoiding Transactions created by TMQFORWARD Being Sent to a Remote Machine
Create a local Tuxedo /Q configuration on each machine. Set your TUXRACGROUPS
environment variable as shown in the following Listing.

Listing TMQFORWARD Example

TUXRACGROUPS="QUEUEGROUPA,GROUP1A,GROUP2A;QUEUEGROUPB,GROUP1B,GROUP2B"

In this example QUEUEGROUPA, GROUP1A and GROUP2A are located on machine 1 and
QUEUEGROUPB, GROUP1B and GROUP2B are located on machine 2.

If TMQFORWARD on machine 1 transactionally forwards a new message to such an Oracle
service, all Tuxedo service calls for services under groups GROUP1A, GROUP2A, GROUP1B and
GROUP2B will only go to GROUP1A and GROUP2A. GROUP1B and GROUP2B are ignored as they
belong to RAC instance 2 and the transaction was already created for RAC instance 1 via
group QUEUEGROUPA.

Avoiding Transactions Created by Tuxedo Native Clients Being Sent to a Remote
Machine
You can also bind native clients to a special server group. You just have to build the client
using the command buildclient -r <RM_of_the_group> -f <source_file> -o
<binary_file> and initiate tpinit()with the group name that you want to use.

For example, you can create two additional groups CLIENTGROUPA and CLIENTGROUPB,and
start at least two TMS in each group. Set your TUXRACGROUPS environment variable as shown
in the following Listing.

Listing Remote Machine Example

TUXRACGROUPS="CLIENTGROUPA,GROUP1A,GROUP2A;CLIENTGROUPB,GROUP1B,GROUP2B"

Whenever you initiate tpinit(TPINIT *tpinfo) with a TPINIT structure where tpinfo-
<grpname is set to CLIENTGROUPA the client is associated with CLIENTGROUPA. When tpinfo-
<grpname is set to CLIENTGROUPB, the client is associated with CLIENTGROUPB.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-27

Native clients on machine 1 must always call tpinit() with tpinfo-<grpname =
CLIENTGROUPA; native clients on machine 2 should always call tpinit() with tpinfo-
<grpname = CLIENTGROUPB if CLIENTGROUPA is running on machine 1 and
CLIENTGROUPB is running on machine 2. When a Tuxedo Native Client calls tpbegin(),
the transaction is associated with RAC instance 1 in case of CLIENTGROUPA and with
RAC instance 2 in case of CLIENTGROUPB

Avoiding Sending Transactions Created by Tuxedo /WS Clients to Remote
Machines
The grpname value must be the NULL string (0-length string) for Workstation
clients. You cannot set any group name and you cannot pin /WS clients to special
groups. tpbegin() inside the Tuxedo /WS clients is always unspecified and the
opened transaction is distributed in equal parts over all RAC instances.

The best practice to use with Tuxedo /WS Clients is to avoid transaction handling on
the client side, and start the transaction with the first server that is called by the
Tuxedo /WS Client. For example, you can automatically force creating a transaction
when setting the AUTOTRAN parameter for the called service in the UBBCONFIG file
*SERVICES section.

6.6.4.2 Configuring Transaction Recovery
TMS_rac_refresh(1), XARETRYDURATIONSECONDS, and XARETRYINTERVAL specifically
handle transaction recovery issues.

TMS_rac_refresh(1)is called when an Oracle RAC group fails over to an alternate
group. TMS_rac_refresh(1) must not be executed manually from the command line;
the proper way to invoke TMS_rac_refresh(1) is to use Oracle Fast Application
Notification (FAN).

Note:

For more details on configuring Oracle FAN, refer to Oracle 10g
documentation.

The XARETRYDURATIONSECONDS and XARETRYINTERVAL environment variables are used
to retry transaction recovery operations (xa_recover()) as required by Oracle RAC.

XARETRYDURATIONSECONDS
Specifies the time interval during which the Tuxedo Transaction Manager Server
(TMS) retries xa_recover() operations when TMS_rac_refresh(1) is called. If it is not
set or set to 0, then xa_recover() is performed once only.

The default value for XARETRYDURATIONSECONDS is 0.

Note:

For Oracle 10.1, it is recommended that XARETRYDURATIONSECONDS is set to
120.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-28

XARETRYINTERVAL
Specifies the interval in seconds that xa_recover() operations are retried during the
XARETRYDURATIONSECONDS interval. The XARETRYINTERVAL value is relevant only if
XARETRYDURATIONSECONDS is set to a value greater than 0.

The default value for XARETRYINTERVAL is 30.

• Configuring Oracle 10g Fast Application Notification (FAN)

• Configuring Transaction Recovery for Oracle 10gR2

• Configuring Transaction Recovery for Oracle 12c and Above

• Specifying Environment Variables in the UBBCONFIG File

6.6.4.2.1 Configuring Oracle 10g Fast Application Notification (FAN)
A key process in configuring Tuxedo for Oracle RAC is setting up Oracle FAN to invoke
TMS_rac_refresh(1) with the appropriate group parameter on group failover. (More group
parameter and group failover information is provided in Configuring Transaction Propagation.)

More information regarding Oracle FAN can be found in the Workload Management with
Oracle Real Application Clusters (PDF) White Paper

Oracle FAN Script Example
The following Listing is an example of an Oracle FAN script.

Listing Oracle FAN Script Example

//This File should be placed at ORA_CRS_HOME/racg/usrco//
------------------------------calout.sh-------------------------
#! /bin/ksh

#parse the event

AWK=awk
NOTIFY_EVENTTYPE=$1 # Event type is handled differently

for ARGS in $*
do
 PROPERTY=`echo $ARGS|$AWK -F"=" '{print $1}'`
 VALUE=`echo $ARGS|$AWK -F"=" '{print $2}'`
 case ${PROPERTY} in
 VERSION|version) NOTIFY_VERSION=$VALUE;;
 SERVICE|service) NOTIFY_SERVICE=$VALUE;;
 DATABASE|database) NOTIFY_DATABASE=$VALUE;;
 INSTANCE|instance) NOTIFY_INSTANCE=$VALUE;;
 HOST|host) NOTIFY_HOST=$VALUE ;;
 STATUS|status) NOTIFY_STATUS=$VALUE;;
 REASON|reason) NOTIFY_REASON=$VALUE;;
 CARD|card) NOTIFY_CARDINALITY=$VALUE ;;
 TIMESTAMP|timestamp) NOTIFY_LOGDATE=$VALUE;; # catch event
 ??:??:??) NOTIFY_LOGTIME=$PROPERTY;; # catch event time (hh24:mi:ss)
 esac
done

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-29

http://www.oracle.com/technetwork/database/clustering/overview/awm11gr2-130711.pdf
http://www.oracle.com/technetwork/database/clustering/overview/awm11gr2-130711.pdf

#Set the REFRESH_DIR environment variable.
. /home/oracle/callout.env

#Make a log to record events.
FAN_LOGFILE=/home/oracle/app/products/10.1.0.3.0/db_1/calloutlog/
`hostname`_uptime.log
touch ${FAN_LOGFILE}
echo ${1} >>${FAN_LOGFILE}

#invoke the TMS_rac_refresh command.
if [${NOTIFY_EVENTTYPE} = "INSTANCE" -a ${NOTIFY_STATUS} = "down"]
then
${REFRESH_DIR}/rac_refresh >> ${FAN_LOGFILE} 2>&1
fi
-----------------------------callout.sh
end-----------------------------

callout.env----------------------------------
#! /bin/ksh
#TUXEDO and Oracle RAC server are not one the same machine.
export REFRESH_DIR=/tmp
-----------------------------callout.env
end------------------------------

rac_refresh----------------------------------
#! /bin/ksh
#If TUXEDO and Oracle RAC server on different machine
. /home/oracle/callout.env

rsh -l ${LOGNAME} ${TUX_MASTER_MACHINE} ${REFRESH_DIR}/rac_refresh
>/tmp/run1.log 2>&1

rsh -l ${LOGNAME} ${TUX_NONMASTER_MACHINE}
${REFRESH_DIR}/rac_refresh >/tmp/run1.log 2>&1

#If TUXEDO and Oracle RAC server are on same machine
#set up environment variable
#export APPDIR=/tmp
#export ORACLE_HOME=/home/oracle/Ora10g
#export TUXDIR=/nfs/users/libo/r902/BJ/bld
#export PATH=.:${PATH}:${TUXDIR}/bin
#. $TUXDIR/tux.env
#export TUXCONFIG=${APPDIR} /tuxconfig
#invoke TMS_rac_refresh
#TMS_rac_refresh RACDBGRP1
#TMS_rac_refresh RACDBGRP3
-----------------------------rac_refresh
end-----------------------------

6.6.4.2.2 Configuring Transaction Recovery for Oracle 10gR2
For Oracle 10gR2, it is much simpler to configure transaction recovery. The database
services specified in the OPENINFO string for each group associated with Oracle RAC
must be declared in Oracle as DTP services.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-30

For example, in the following Listing, GROUP1 accessed Oracle via service ORA1SITE1 and
GROUP2 accessed Oracle via service ORA1SITE2. In Oracle 10gR2, service ORA1SITE1 must be
declared with DTP=TRUE, with preferred instance SITE1, and with available instance SITE2.
Service ORA1SITE2 must be declared with DTP=TRUE, with preferred instance SITE2, and with
available instance SITE1. A similar process must be followed for groups GROUP3, GROUP4, and
GROUP5.

By declaring different preferred instances, the application will be able to get the benefit of
load balancing during normal operation when both instances are available.

The setting of the TUXRACGROUPS environment variable ensures that different instances of the
RAC configuration are not combined in the same transaction in order to obtain optimal
performance. If one of the RAC instances goes down, Oracle transfers the DTP service to the
non-preferred instance while maintaining transactional integrity.

When using Oracle 10gR2 DTP services, it is not necessary and is not recommended to
configure Oracle FAN, use TMS_rac_refresh(1) or set the XARETRYDURATIONSECONDS or
XARETRYINTERVAL environment variables.

6.6.4.2.3 Configuring Transaction Recovery for Oracle 12c and Above
For Oracle Database release 12c and above, no specific configuration is required; transaction
recovery is transparent.

6.6.4.2.4 Specifying Environment Variables in the UBBCONFIG File
Although the Tuxedo Oracle RAC environment variables can be initiated at the operating
system command line, it is highly recommended that you use the ENVFILE parameter
specified in the *MACHINES section of the UBBCONFIG file to initiate these environment
variables.

Apply the following syntax considerations when setting the environment variables for Oracle
RAC.

• When Tuxedo environment variables are set using ENVFILE, which is the preferred
method, quotation marks are not permitted around the environment variable value.

• If environment variables are set at the command line, quotation marks are required if
environment variable values contain characters that could be interpreted as special by
the command line interpreter. An example of a special character is a semicolon.

• Ensure that the Tuxedo Oracle RAC environment variables are set consistently on all
nodes in a RAC configuration.

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-31

See Also:

• buildtms(1) in Section 1 - Commands

• UBBCONFIG(5) in Section 5 - File Formats, Data Descriptions, MIBs, and
System Processes Reference

• About Transactions

• Configuring Your ATMI Application to Use Transactions

• Writing Global Transactions in Programming an Oracle Tuxedo ATMI
Application Using C

• Oracle Real Application Clusters Home Page

• Oracle Application Server Adapters for Tuxedo

• Best Practices for Using XA with RAC

Chapter 6
Using Tuxedo with Oracle Real Application Clusters (RAC)

6-32

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://www.oracle.com/database/real-application-clusters/
https://docs.oracle.com/cd/E15523_01/doc.1111/e16089/toc.htm
http://www.oracle.com/technetwork/database/enterprise-edition/bestpracticesforxaandrac-128676.pdf

7
Enabling IPv6

This topic includes the following sections:

• Overview

• Enabling IPv6

• IPv4 and IPv6 Interoperability

• Oracle Tuxedo MP Mode Interoperability

7.1 Overview
IPv6 is the next generation internet protocol. It fixes a number of problems in IPv4, such as
the limited number of available IPv4 addresses. It also adds many improvements to IPv4 in
areas such as routing and network autoconfiguration. IPv6 has strong mobile device support,
and has attractive features for ISPs or Telecom companies, such as QoS and security. IPv6 is
expected to gradually replace IPv4, with the two coexisting for a number of years during a
transition period.

Note:

Oracle Tuxedo 11g Release 1 (11.1.1.0) only supports IPv6 basic functionality in
this release. Advanced IPv6 features (for example, QoS and flow control) are not
supported.

7.2 Enabling IPv6
A Tuxedo process can only supports one IP version at the same time. In order to switch
between IPv4 and IPv6, you must use the TMUSEIPV6 environment variable. For more
information, see tuxenv(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference in the Tuxedo 11g Release 1 (11.1.1.0) Reference Guide.

The default value is n|N (IPv4). If TMUSEIPV6 is set to y|Y IPv6 is used as the network
protocol.

TMUSEIPV6 can be set in the*MACHINES, *GROUPS, *SERVERS sections in the UBBCONFIG file,
or you can set it before booting Tuxedo.

• IPv6 Address Format

• Tuxedo Component IPv6 Support

7.2.1 IPv6 Address Format
The following are valid IPv6 formats:

• fe80:0:0:0:202:55ff:fecf:50b

7-1

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/index.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/index.html

• fe80::202:55ff:fecf:50b
Tuxedo support two formats of V6 address:

//[IPv6 address]:port
//hostname:port

The IPv6 address in the URL is enclosed by square brackets. For hostname, it does
not need to be enclosed by square brackets. For example: //
[fe80::202:55ff:fecf:50b]:9010 or//bjaix5:9010
You can use[::] or [0:0:0:0:0:0:0:0] as IPv6 wildcard addresses. For example:

For a server booted on bjaix5 (a dual stack machine), the wildcard address can be //
[::]:60120
or //[0:0:0:0:0:0:0:0]:60120
The server listens on 60120 on all bjaix5 interfaces (172.22.34.45 and
fe80::202:55ff:fecf:50b). It can accept IPv6 and IPv4 protocol.

7.2.2 Tuxedo Component IPv6 Support
Following Tuxedo components support IPv6:

• BRIDGE & BSBRIDGE

• tlisten
• GWTDOMAIN

• WSL/WSH

• WS

• CERT-C

• Jolt

• ISL/ISH

• CORBA client

• SNMP

• SALT

• CORBA & ATMI SSL LDAP

Note:

Tuxedo invokes database XA call back to operate with database. For XA
IPv6 depends on the database vendor support.

WEBGUI is unsupported IPv6

Chapter 7
Enabling IPv6

7-2

7.3 IPv4 and IPv6 Interoperability
Tuxedo supports the following TCP/IP address formats:

• IPv4 only

• IPv6 only

• IPv4 and IPv6 mixed environment

Note:

Windows 2000, 20003, and XP platforms do not support dual stack.

The following table summarizes IPv4 and IPv6 interoperability.

Table 7-1 IPv4 and IPv6 interoperability

IPv4 Server
IPv4 Host
Only

IPv6 Server
IPv6 Host
Only

IPv4 Server
Dual Host
Stack

IPv6
Server
Dual Host
Stack

IPv4 client, IPv4-only host IPv4 No IPv4 IPv4(1)

IPv6 client, IPv6-only host No IPv6 No IPv6

IPv4 client, dual-stack host IPv4 No IPv4 IPv4(1)

IPv6 client, dual-stack host IPv4 IPv6 IPv4(2) IPv6

1. On Linux and UNIX platforms, the server must listen using the IPv6 wildcard address (::).

2. IPv6 client can connect to an IPv4 server on Dual-stack host with textual V4 IP address
only (for example, //10.130.5.144:10002).

7.4 Oracle Tuxedo MP Mode Interoperability
If a master uses IPv6 and NADDR & NLSADDR are configured as //[IPv6 address]:port,
all slave nodes must use IPv6 as well. Slave nodes using IPv4 cannot start.

If master is using IPv4, all slave nodes must use IPv4 as well. Slave nodes using IPv6 cannot
start.

Note:

Oracle Tuxedo MP mode cannot be configured using a wildcard address ([::]) in
UBBCONFIG. If you use a wildcard address in MP mode, tmloadcf fails and an
ERROR message is sent to ULOG.

Chapter 7
IPv4 and IPv6 Interoperability

7-3

8
Managing the Oracle Tuxedo Service
Metadata Repository

This topic includes the following sections:

• Oracle Tuxedo Service Metadata Repository

• Creating The Oracle Tuxedo Service Metadata Repository

• Configuring The Oracle Tuxedo Service Metadata Repository Server

• Accessing The Oracle Tuxedo Service Metadata Repository File

8.1 Oracle Tuxedo Service Metadata Repository
The Oracle Tuxedo service metadata repository contains Oracle Tuxedo service definitions
that allow Oracle Tuxedo clients to access Oracle Tuxedo service parameter information. It
provides Oracle Tuxedo application developers and administrators the ability to store and
retrieve detailed service parameter information on any or all Oracle Tuxedo application
services.

The Oracle Tuxedo service metadata repository is designed to process interactive queries by
developers and administrators during application development or modification. It is not
designed to process high volumes of automated queries during the application production
phase.

Five utilities are used in conjunction with the Oracle Tuxedo service metadata repository

• TMMETADATA(5): Oracle Tuxedo service metadata repository server. It provides one
service, .TMMETAREPOS, which uses an FML32 input and output buffer format
described in METAREPOS(5).

Note:

The .TMMETAREPOS buffer format is similar to MIB(5).

• tmloadrepos(1): creates or updates the binary metadata repository file and loads it with
service parameter information.

• tmunloadrepos(1): displays service information from the Oracle Tuxedo service
metadata repository. Output can be optionally specified as plain text format, WSDL
format, or C pseudocode.

• tpgetrepos(3c): programmatically uses FML32 buffers to output service information
from the Oracle Tuxedo service metadata repository.

• tpsetrepos(3c): programmatically uses FML32 buffers to add, delete, or update service
parameter information to the metadata repository file.

• MIB(5) Similarities and Differences

8-1

See Also:

• TMMETADATA(5), METAREPOS(5), and MIB(5) in the Section 5 - File
Formats, Data Descriptions, MIBs, and System Processes Reference

• tmloadrepos(1) and tmunloadrepos(1) in the Section 1 - Commands

• tpgetrepos(3c) and tpsetrepos(3c) in the Section 3c - C Functions

8.1.1 MIB(5) Similarities and Differences
Programmatic access to the Oracle Tuxedo System Metadata Repository is
accomplished through the use of a FML32 buffer format that is very similar to the
Oracle Tuxedo MIB format. However, there are also some distinct difference as noted
in the following table:

Table 8-1 MIB(5) Similarities and Differences

MIB(5) METAREPOS(5)
Input/out buffers FML32 FML32

Generic MIB fields Yes Yes, but with some limitations. See METAREPOS(5)

Authentic MIB class entities Many No authentic MIB class entities, but uses similar type

Service entry .TMIB in BBL .TMMETAREPOS in TMMETADA server

8.2 Creating The Oracle Tuxedo Service Metadata
Repository

The metadata repository file contains all the service parameter information that is
accessed in the Oracle Tuxedo service metadata repository. The tmloadrepos
command is used to create a metadata repository file. Metadata repository file service
parameter information is input directly from the computer console (standard input) if a
repository input file is not specified or from a specified plain text repository input file.
For example:

tmloadrepos-i /usr/tuxedo/repository_input_file
/usr/tuxedo/service_metatdata_repository.

• The Oracle Tuxedo Service Metadata Repository Input File

8.2.1 The Oracle Tuxedo Service Metadata Repository Input File
The repository_input_file contains service parameter keywords and their
associated values. Keywords are divided into two categories: service-level and
parameter-level.

Chapter 8
Creating The Oracle Tuxedo Service Metadata Repository

8-2

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Note:

Keyword abbreviations are also supported. Both keywords and abbreviations are
case sensitive. For more information on keywords, abbreviations, and values, see
Using Service-Level Keywords and Values and Using Parameter-Level Keywords
and Values.

No more than one keyword/value combination can be specified per line. The maximum line
character length is 1024 bytes. String parameter values do not need to be set off with
quotation marks.

The repository_input file uses the following syntax:<keyword><=value> and has the
following input conventions:

“(”and“)”
When a parameter must define a sub-parameter, a line consisting of a single left parenthesis
'('and a line consisting of a single right parenthesis ') ' denotes the beginning and end of the
embedded sub-parameter portion of the parameter. The left and right parentheses can be
used recursively.

\ and “\”
You can include blank lines in the repository_input file as needed for readability. A new
line is preceded by a \ character. To use an actual '\' character it must be written as '\\'.

#
Lines starting with a '#' are interpreted as comment lines. Unlike comments specified via the
svcdescription or paramdescription keywords, comments are not stored in the binary
repository_file or output by tmunloadrepos.

The repository_input file can consist of zero or more service parameter definitions. Each
service definition starts with a line beginning with the <service> keyword followed by zero or
more lines beginning with one of the other service-level keywords, followed by parameter-
level keywords. A particular service-level keyword may not be repeated for a particular
service.

• Using Service-Level Keywords and Values

• Using Parameter-Level Keywords and Values

• Parameter Occurrences

8.2.1.1 Using Service-Level Keywords and Values
A service definition must begin with the keyword service<=NAME> or the abbreviation
sv<=NAME>. Services usingCARRAY, STRING, or XML buffer types can have only one parameter
per service. The Oracle Tuxedo service metadata repository service-level keywords are in the
following table:

Chapter 8
Creating The Oracle Tuxedo Service Metadata Repository

8-3

Table 8-2 Service-Level Keyword, Abbreviations, and Values

Service-Level
Keyword

Keyword
Abbreviation

Value

service sv Any Oracle Tuxedo service name

Note:

This key valued can only be once per Metadata
Repository instance. It cannot be duplicated within
the same Metadata Repository.

tuxservice tsv Actual Oracle Tuxedo service name

Note:

The difference between the service and
tuxservice keywords is:
• service represents the service entry stored

in the Metadata Repository.
• tuxservice represents the actual Oracle

Tuxedo service name. Two or more service
definitions can have the same value as
tuxservice.

When used together, these two keywords make it possible to have multiple
service definitions for one Oracle Tuxedo service. By default, tuxservice has
the same value as service.

servicetype st Service invocation type. Legal values are:
• request - response - the service is a synchronous

• oneway - the service will not send response to the client

• queue - the service is a /Q related application

• conv - the service is conversional

SNAISC ISC Enables outbound Tuxedo service requests to map to APPC transaction
programs or CICS programs. It is only valid when the value of servicemode is
"sna". Its valid value list is: APPC,ATI, DPL, DTP. The default value APPC
indicates the remote service is a transaction program that may or may not be
running under CICS. The DPL value indicates the remote service maps to a
program running under CICS.

Chapter 8
Creating The Oracle Tuxedo Service Metadata Repository

8-4

Table 8-2 (Cont.) Service-Level Keyword, Abbreviations, and Values

Service-Level
Keyword

Keyword
Abbreviation

Value

servicemode sm Type of service origination(Optional). Legal values are:
• tuxedo - the service is an Oracle Tuxedo originated service

• webservice - proxy service converted from external Web Service
Interface

• sna - import service for SNA gateway. For export service, tuxedo is the
default value. If not specified, tuxedo is the default value.

Note:

Do not specify webservice for any Oracle
Tuxedo service, webservice is reserved for SALT
proxy service only.

export ex Y (default) or N.
This keyword is used to determine service availability to the Oracle Jolt client.

In the Oracle Tuxedo repository, this keyword does not have any meaning, but is
nevertheless accepted to maintain compatibility with existing Oracle Jolt bulk
loader files.

Note:

If export is set to N, the service will not be
exported for C pseudo-code or text format.

inbuf bt Oracle Tuxedo service request (input) buffer type. Select one of the following
type values (case sensitive): FML, FML32, VIEW, VIEW32, STRING,
CARRAY, XML, X_OCTET, X_COMMON, X_C_TYPE, MBSTRING or other
arbitrary string representing an application defined custom buffer type.

Note:

The "inbuf" value of each service definition
cannot be NULL.

Chapter 8
Creating The Oracle Tuxedo Service Metadata Repository

8-5

Table 8-2 (Cont.) Service-Level Keyword, Abbreviations, and Values

Service-Level
Keyword

Keyword
Abbreviation

Value

outbuf BT Oracle Tuxedo service response (output) buffer type with TPSUCCESS. Select
one of the following type values (case sensitive): FML, FML32, VIEW,
VIEW32, STRING, CARRAY, XML, X_OCTET, X_COMMON, X_C_TYPE,
MBSTRING or other arbitrary string representing an application defined custom
buffer type.

Note:

The "outbuf" value of each service definition
cannot be NULL for a "service" typed service or
a "queue" typed service.

errbuf ebt Oracle Tuxedo service response (error) buffer type with TPFAIL. Select one of
the following type values (case sensitive): FML, FML32, VIEW, VIEW32,
STRING, CARRAY, XML, X_OCTET,X_COMMON, X_C_TYPE, MBSTRING or
other arbitrary string representing an application defined custom buffer type.

inview vn View name for input buffer(Optional)

Note:

This keyword is mandatory only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON, X_C_TYPE, FML and FML32.

outview VN View name for output buffer (Optional)

Note:

This keyword is mandatory only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON, X_C_TYPE, FML and FML32.

errview evn View name for error buffer (Optional)

Note:

This keyword is mandatory only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON,X_C_TYPE.

Chapter 8
Creating The Oracle Tuxedo Service Metadata Repository

8-6

Table 8-2 (Cont.) Service-Level Keyword, Abbreviations, and Values

Service-Level
Keyword

Keyword
Abbreviation

Value

inbufschema isc Customized message schema association for input buffer (Optional). Value
format is: XSD_E:@namespaceURI For example, XSD_E:Book@http://
example.org represents the input buffer is associated with a XML element
defined in the XML namespace “http://example.org”.

Note:

This keyword is introduced for supporting Oracle
SALT extensible message mapping and
conversion feature. For more information about
SALT message conversion, see Data Type
Mapping and Message Conversion in Oracle
SALT Programming Web Services

outbufschema osc Customized message schema association for output buffer (Optional). Value
format is: XSD_E:@namespaceURI

errbufschema esc Customized message schema association for error buffer (Optional). Value
format is: XSD_E:@namespaceURI

svcdescripti
on

sd Any string value. A new-line break can be used to improve readability if the
string is too long.

sendqspace sqs Send queue space name. Optional for a "queue" typed service

sendqueue sqn Send queue name. Optional for a "queue" typed service.

rplyqueue rqn Reply queue name. Optional for a "queue" typed service.

errqueue eqn Error queue name. Optional for a "queue" typed service.

rcvqspace RQS Receive queue space name. Optional for a "queue" typed service.

rcvqueue RQN Receive queue name. Optional for a "queue" typed service

version vs This parameter is exclusive to the Oracle Tuxedo service metadata repository
and accommodates any string value used by the application. Oracle Tuxedo
does not interpret this parameter

attributes att This parameter is exclusive to the Oracle Tuxedo service metadata repository
and accommodates any string value used by the application. Oracle Tuxedo
does not interpret this parameter

fieldtbls ftb This parameter is optional and specifies a comma-separated list of field tables
where the FML or FML32 fields used by this service can be found. The
fieldtbls parameter is intended for reference use by application developers.

8.2.1.2 Using Parameter-Level Keywords and Values
A parameter begins with the keyword <param>=NAME? or the abbreviation <pn><=NAME>
followed by a listing of parameter keywords. It ends with another <param> or <service>
keyword, or when end-of-file is encountered. The parameters can be listed in any order after
<param><=NAME>.

Chapter 8
Creating The Oracle Tuxedo Service Metadata Repository

8-7

Note: A particular service can specify multiple occurrences of the <param> keyword.
That is to say, more than one parameter can exist for a particular service. For
example, a parameter with an FML or VIEW buffer.

The Oracle Tuxedo service metadata repository parameter-level keywords are in the
following table:

Table 8-3 Parameter-Level Keyword, Abbreviations, and Values

Parameter-
Level
Keyword

Metadata
Repository
Abbreviation

Value

param pn Any parameter name

type pt
byte, short, integer, float, double, string, carray,
dec_t, xml, ptr, fml32, view32, mbstring

Note:

The parameter type must be consistent with its
service buffer type. For example, an FML16 buffer
only allow parameters with the following type:
byte (char), short, integer, long,
float, double, string, carray. All other
type parameters are not permitted. See following
buffer type/parameter type matching table.

subtype pst A view name for a view32 typed parameter

access pa
in, out, err, inout, inerr, outerr, inouterr, noaccess

• in- indicates a parameter that is used for input only.

• out- indicates a parameter that is used for output only.

• err- indicates a parameter that is used for error output only.

• inout - indicates a parameter that is used for both input and output.

• inerr - indicates a parameter that is used for both input and error output.

• outerr - indicates a parameter that is used for both output and error
output.

• inouterr - indicates a parameter that is used for input, output and error
output.

• noacesss - indicates a parameter that must be provided on input but which
is not referenced in the server, such as an obsolete parameter or a
parameter that must be provided as a filler field in a view.

The set of parameters expected on input is those specified with in, inout,
inerr, inouterr, or noaccess access

The set of parameters returned on output is those specified with out, inout,
outerr, or inouterr access.

The set of parameters returned on error output is those specified with err,
inerr, outerr, or inouterr access.

Chapter 8
Creating The Oracle Tuxedo Service Metadata Repository

8-8

Table 8-3 (Cont.) Parameter-Level Keyword, Abbreviations, and Values

Parameter-
Level
Keyword

Metadata
Repository
Abbreviation

Value

count po Maximum number of occurrences (default is 1). The value for unlimited
occurrences is 0. The value range is [0, 32767]. In the Oracle Tuxedo
repository, this parameter is stored for display and is also used by
tmunloadrepos(1) pseudocode generation options.

paramdescrip
tion

pd Any string value. A new-line break can be used to improve readability if the
string is too long.

size p1 This optional parameter indicates the number of bytes allocated for the
parameter. It is used in pseudo code generation for non-numeric parameters
and can be used for programmer reference purposes.
The following parameter types expect this value: carray, string, xml,
mbstring.

requiredcoun
t

ro Minimum number of times that the parameter must be specified. The value
range is [0, 32767].

fieldindex fi The occurrence number of the field. This applies to FML/FML32 only. It only
supports Jolt client.

fieldname fn FML's field name. This applies to FML/FML32 only. It only supports Jolt client.

Note:

For FML/FML32, you should use this
"fieldname" to specify the field name instead of
another parameter-level keyword "param".

fldnum fno This optional parameter indicates the field number of the parameter if it is a
FML/FML32 field.

Note:

It is not recommended that you use this
information if the fieldtbl files have already
been defined by indicating field table directories
using environment FLDTBLDIR(32) and
indicating field table files using environment
FIELDTBLS(32) or fieldtbl service-level
keyword. If you configured the fldnum field, you
will receive the responding fldid according to
the fldnum value instead of the param value.

vfbname vfb This parameter is optional for view structure members. It is used to indicate the
field name in the fielded buffer. Please reference viewfile(5)

vflag vf1 This parameter is optional for view structure members. Legal values are
combination of the following options: 'C', 'F','L', 'N', 'P', 'S'. Please
reference viewfile(5).

Chapter 8
Creating The Oracle Tuxedo Service Metadata Repository

8-9

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Table 8-3 (Cont.) Parameter-Level Keyword, Abbreviations, and Values

Parameter-
Level
Keyword

Metadata
Repository
Abbreviation

Value

vnull vnu This parameter is optional for view structure members. It indicates the view
member default null value.

paramschema psc This parameter is optional to save the XML Schema information for the
decomposed FML32 field.

Note:

This parameter keyword is introduced especially
for “servicemode=webservice” typed service
definition, i.e. SALT proxy service for outbound
call. The parameter value is generated by Oracle
SALT wsdlcvt utility from converting an external
WSDL file. Do not manually specify or modify this
keyword value.

primetype pxt This parameter is optional to save the original XML primitive data type for the
decomposed FML32 field.

Note:

This parameter keyword is introduced especially
for “servicemode=webservice” typed service
definition, i.e. SALT proxy service for outbound
call. The parameter value is generated by Oracle
SALT wsdlcvt utility from converting an external
WSDL file. Do not manually specify or modify this
keyword value.

isarray arr This parameter is optional for SALT RESTful service. If it set to "Y", SALT
REST/JSON service maps Tuxedo buffer to JSON array type - even if there is
only one occurrence of a field.
Currently, only FML/FML32 buffer types are supported.

inheader - Retrieved from the SOAP header portion of the SOAP envelope message
received. Message can be a request (native Tuxedo service) or reply (external
web service call).

outheader - Added to the SOAP header portion of the SOAP envelope message sent.
Message can be a reply (native Tuxedo service) or request (external web
service call).

inoutheader - Combination of inheader and outheader. This parameter is both added to and
retrieved from the SOAP header portion of the SOAP message.

Chapter 8
Creating The Oracle Tuxedo Service Metadata Repository

8-10

Table 8-3 (Cont.) Parameter-Level Keyword, Abbreviations, and Values

Parameter-
Level
Keyword

Metadata
Repository
Abbreviation

Value

whitespace ws If this parameter is set to collapse, and the type is string, when GWWS is doing
Tuxedo buffer-to-XML-data mapping, the white space is collapsed, which
causes:
• The string removes white space characters.
• The line feeds, tabs, spaces, and carriage returns are replaced with

spaces.
• The leading and trailing spaces are removed.
• The multiple spaces are reduced to a single space.

(- Indicates the beginning of the description of the parameters contained in an
embedded FML32 or VIEW32 buffer field.
It contains no associated value and is specified separately on a line by itself. It
is valid only if a previous type keyword has been specified for this parameter
with a FML32 or VIEW32 value.

A closing right parenthesis ')' ends the embedded parameter description.

) - Ends an embedded FML32 or VIEW32 parameter definition of that began with
an opening matching left parenthesis '('.
It contains no associated value and is specified separately on a line by itself. It
is valid only if a previous only if there is a previous matching '(' keyword.

In addition, the maximum embedded level depends on the upper limit of
embedded FML32 nesting level (18 at present).

8.2.1.3 Parameter Occurrences
As a generally applied Oracle Tuxedo rule, only FML/FML32, VIEW/VIEW32, X_COMMON, and
X_C_TYPE typed buffers can specify multiple parameters (due to their information structure).
All other typed buffers have only one parameter with the corresponding parameter type. For
example, a CARRAY type buffer has only one CARRAY typed parameter to describe the
necessary information that it contains. You must follow this rule to define application services.

Table 8-4 Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case) Matching
Table I

byte
(char)

short integer long float double string

CARRAY - - - - - - -

FML X X X X X X X

FML32 X X X X X X X

STRING - - - - - - X

VIEW X X X X X X X

VIEW32 X X X X X X X

X_COMMON - X - X - - X

X_C_TYPE X X X X X X X

XML - - - - - - X

X_OCTET - - - - - - -

Chapter 8
Creating The Oracle Tuxedo Service Metadata Repository

8-11

Table 8-4 (Cont.) Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case)
Matching Table I

byte
(char)

short integer long float double string

MBSTRING - - - - - - -

Table 8-5 Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case) Matching
Table II

bool Unsigne
d char

Signed
char

Wchart Unsigne
d int

Unsigne
d long

Long
long

Unsigne
d long
long

Long
double

VIEW X X X X X X X X X

VIEW32 X X X X X X X X X

Table 8-6 Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case) Matching
Table III

carray dec_t xml ptr fml32 view32 mbstring
CARRAY X - - - - - -

FML X - - - - - -

FML32 X - - X X X X

STRING - - - - - - -

VIEW X X - - - - -

VIEW32 X X - - - X X

X_COMMON - - - - - - -

X_C_TYPE - - - - - - -

XML - - X - - - -

X_OCTET X - - - - - -

MBSTRING X - - - - - X

8.3 Configuring The Oracle Tuxedo Service Metadata
Repository Server

To configure the Oracle Tuxedo service metadata repository you must:

• add TMMETADATA to the *SERVERS section of the UBBCONFIG(5).

• run tmloadcf(1) on the UBBCONFIG file.

• use tmloadrepos(1) to create and enter service parameter information into the
metadata repository file.

• boot the server.

Chapter 8
Configuring The Oracle Tuxedo Service Metadata Repository Server

8-12

Once the Oracle Tuxedo metadata server is running, the.TMMETAREPOS service is
automatically activated. .TMMETAREPOS is an Oracle Tuxedo system service and cannot be
modified.

All requests made to the server are responded to on a first-come-first-served basis.

• Configuring Multiple Oracle Tuxedo Service Metadata Repository Servers

See Also:

• UBBCONFIG(5) in the Section 5 - File Formats, Data Descriptions, MIBs, and
System Processes Reference

• tmloadcf(1) in the Section 1 - Commands

8.3.1 Configuring Multiple Oracle Tuxedo Service Metadata Repository
Servers

Setting up multiple TMMETADATA servers on a particular Oracle Tuxedo node requires
adherence to two crucial configuration rules:

• Each TMMETADATA server must be configured to access the same metadata repository file
or an exact copy of the file to provide consistent request results. Therefore, it is strongly
recommended that a stable version of the metadata repository is made available for
multiple TMMETADATA server access.

• Permission settings must be consistently applied (either read only or read/write) for
multiple TMMETADATA servers on a particular node.

8.4 Accessing The Oracle Tuxedo Service Metadata Repository
File

The Oracle Tuxedo service metadata repository facilitates native and remote client access in
order to view, update, add, or delete service metadata repository parameter information.

• For native clients exclusively, tpgetrepos(3c), and tpsetrepos(3c)are used for Oracle
Tuxedo service metadata repository access.
t pgetrepos(3c) and tpsetrepos(3c) can access the Oracle Tuxedo service metadata
repository whether the server is booted or not.

• For remote and native clients, TMMETADATA(5) can be used.

Chapter 8
Accessing The Oracle Tuxedo Service Metadata Repository File

8-13

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html

See Also:

• TMMETADATA(5) and METAREPOS(5) in the Section 5 - File Formats, Data
Descriptions, MIBs, and System Processes Reference

• tmloadrepos(1) and tmunloadrepos(1) in the Section 1 - Commands

• tpgetrepos(3c) and tpsetrepos(3c) in the Section 3c - C Functions

Chapter 8
Accessing The Oracle Tuxedo Service Metadata Repository File

8-14

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html

9
Managing CORBA Interface Repositories

The following sections provide information about Oracle Tuxedo CORBA environments:

Note:

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client
ORB were deprecated since Tuxedo 8.1 and are no longer supported since Tuxedo
9.x. All Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client
ORB text references, associated code samples, etc. must only be used:

• to help implement/run third party Java ORB libraries, and

• for programmer reference only.
Technical support for third party CORBA Java ORBs should be provided by
their respective vendors. Oracle Tuxedo does not provide any technical support
or documentation for third party CORBA Java ORBs.

• Overview

• Administration Considerations

• Using Administration Commands to Manage Interface Repositories

• Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

9.1 Overview
An Interface Repository contains the interface descriptions of the CORBA objects that are
implemented within the Oracle Tuxedo domain. Administration of the Interface Repository is
done using tools specific to Oracle Tuxedo CORBA servers. These tools allow you to create
an Interface Repository, populate it with definitions specified in Object Management Group
Interface Definition Language (OMG IDL), and then delete interfaces. You may need to
configure the system to include an Interface Repository server by adding entries in the
application’s UBBCONFIG file.

For related programming information, see the CORBA Programming Reference.

See Also:

• Administration Considerations

• Using Administration Commands to Manage Interface Repositories

• Configuring the UBBCONFIG File to Start One or More Interface Repository
Servers

9-1

9.2 Administration Considerations
As an administrator, you need to determine whether an Interface Repository is
required. Not all systems require it. If an Interface Repository is required, you need to
create and populate a repository database. The repository database is created and
populated using the idl2ir command. If an Interface Repository is required, you need
to answer the following questions:

• How many Interface Repository servers will be required?

• Will the Interface Repository database(s) be replicated?

• Will there be shared access to the Interface Repository database(s)?

• What procedures will be followed for updating the Interface Repository?

You can configure the system to have one or more Interface Repository servers. At
least one Interface Repository server needs to be configured if any of the clients use
Dynamic Invocation Interface (DII) .

There are two reasons to have more than one server: performance and fault tolerance.
From a performance point of view, the number of Interface Repository servers is a
function of the number of DII clients. From a fault tolerance point of view, the number
of Interface Repository servers needed is determined by the configuration of the
system, and the degree of failure protection required.

In systems with more then one Interface Repository server, you must decide whether
to have replicated databases, shared databases, or a combination of the two. There
are advantages and disadvantages to each configuration. Replicated Interface
Repository databases allow for local file access that can potentially increase
performance.

The main problem with replicated databases is updating them. All the databases must
be identical and this requires the starting and stopping of Interface Repository servers.
Having the Interface Repository database mounted and shared eliminates this
problem, but this has performance implications and introduces a single point of failure.
A combination of the two alternatives is also possible.

9.3 Using Administration Commands to Manage Interface
Repositories

Use the following commands to manage the Interface Repository for an Oracle Tuxedo
domain:

• idl2ir
• ir2idl
• irdel
• Prerequisites

• Creating and Populating an Interface Repository

• Displaying or Extracting the Content of an Interface Repository

• Deleting an Object from an Interface Repository

Chapter 9
Administration Considerations

9-2

9.3.1 Prerequisites
Before executing a command, you must ensure that the bin directory is in your defined path,
as follows:

On Windows
set path=%TUXDIR%\bin;%path%

On UNIX
For c shell (csh): set path = ($TUXDIR/bin $path)

For Bourne (sh) or Korn (ksh): PATH=$TUXDIR/bin:$PATH export PATH
To set environment variables:

On Windows
set var=value

On UNIX
For c Shell: setenv var value

For Bourne and Korn (sh/ksh):

var=value
export var

9.3.2 Creating and Populating an Interface Repository
Use the idl2ir command to create an Interface Repository and load interface definitions into
it. If no repository file exists, the command creates it. If the repository file does exists, the
command loads the specified interface definitions into it. The format of the command is as
follows:

idl2ir [options] definition-filename-list

For a detailed description of this command, see the File Formats, Data Descriptions, MIBs,
and System Processes Reference in the Oracle Tuxedo online documentation.

Note:

It is necessary to restart the Interface Repository servers in order for changes to be
visible.

9.3.3 Displaying or Extracting the Content of an Interface Repository
Use the ir2idl command to display the content of an Interface Repository. You can also
extract the OMG IDL statements of one or more interfaces to a file. The format of the
command is as follows:ir2idl [options] [interface-name]. For a detailed description of
this command, see the Section 5 - File Formats, Data Descriptions, MIBs, and System
Processes Reference in the Oracle Tuxedo online documentation.

Chapter 9
Using Administration Commands to Manage Interface Repositories

9-3

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

9.3.4 Deleting an Object from an Interface Repository
Use the irdel command to delete the specified object from the Interface Repository.
Only interfaces not referenced from another interface can be deleted. By default, the
repository file is repository.ifr. The format of the command is as follows:

irdel [-f repository-name] [-i id] object-name

. For a detailed description of this command, see the Section 5 - File Formats, Data
Descriptions, MIBs, and System Processes Reference in the Oracle Tuxedo online
documentation.

Note:

It is necessary to restart the Interface Repository servers in order for
changes to be visible.

9.4 Configuring the UBBCONFIG File to Start One or More
Interface Repository Servers

For each application that uses one or more Interface Repositories, you must start one
or more of the Interface Repository servers provided by Tuxedo CORBA. The server
name is TMIFRSVR.You can add one or more entries for TMIFRSVR to the SERVERS
section of the application’s UBBCONFIG file. By default, the TMIFRSVR server uses the
Interface Repository file repository.ifr in the first pathname specified in the APPDIR
environment variable. You can override this default setting by specifying the -f
filename option on the command-line options (CLOPT) parameter. The following
example shows a SERVERS section from a sample UBBCONFIG file. Instead of using the
default file repository.ifr in the default directory ($APPDIR) where the application
resides, the example specifies an alternate file and location, /usr/repoman/
myrepo.ifr.

Chapter 9
Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

9-4

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Note:

Other server entries are shown in the following sample to emphasize that the order
in which servers are started for Oracle Tuxedo CORBA applications is critical. An
Oracle Tuxedo CORBA application will not boot if the order is changed.
For more information, see the section Required Order in Which to Boot CORBA C+
+ Servers in Creating the Configuration File

Notice that the TMIFRSVR Interface Repository server is the fifth server started.

*SERVERS
Start the Oracle Tuxedo System Event Broker
TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

Start the NameManager (master)
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

Start the NameManager (slave)
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

Start the FactoryFinder (-F)
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"
Start the interface repository server
TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 5
 RESTART=Y
 MAXGEN=5
 GRACE=3600
 CLOPT="-A -- -f/usr/repoman/myrepo.ifr"

For a description of the TMIFRSVR -f filename parameter, refer to the File Formats, Data
Descriptions, MIBs, and System Processes Reference. In addition to the CLOPT -f filename
parameter, the TMIFRSVR parameter can contain other parameters (those that are not specific
to the Oracle Tuxedo system) in the SERVERS section of an application’s UBBCONFIG
configuration file.

See the section How to Create the SERVERS Section of the Configuration File in Creating
the Configuration File for details about parameters such as SRVGRP, SRVID, RESTART,
MAXGEN, and GRACE.

Chapter 9
Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

9-5

10
Distributing ATMI Applications Across a
Network

This topic includes the following sections:

Note:

For detailed information about distributing Oracle Tuxedo CORBA applications
across a network, refer to the Scaling, Distributing, and Tuning CORBA Applications
guide.

• What Is a Distributed ATMI Application?

• Why Distribute an ATMI Application Across a Network?

10.1 What Is a Distributed ATMI Application?
A distributed application consists of one or more local or remote clients that communicate
with one or more servers on several machines linked through a network. With this type of
application, business operations can be conducted from any geographical location. For
example, a corporation may distribute the following types of operations across a large region,
or even across international boundaries:

• Forecasting sales

• Ordering supplies

• Manufacturing, shipping, and billing for goods

• Updating corporate databases

State of the art telecommunications and data networks are making distributed operations of
this sort increasingly common. Applications developed to implement this type of strategy
allow businesses to reduce costs and enhance their offerings of services to customers
around the world. The Oracle Tuxedo system supports this type of architecture by simplifying
the task of managing a distributed application. Whether an application comprises only one
computer or thousands of computers working together over a network, all the elements of
that application, including clients, servers, and the networks that connect them, are managed
through a single Oracle Tuxedo configuration file.

• Example of a Distributed Application

• Implementing a Distributed Application

10.1.1 Example of a Distributed Application
The following figure illustrates the basic parts of an application distributed across three
machines.

10-1

Figure 10-1 Sample of a Distributed Application

Machine 1 (Master) Machine 2

Machine 3

Client Client

Client

BB Servers

Services

BB Servers

Services

BB Servers

Services

DBBL BBL BBL

BBL

Server Server

Server

Network

Bridge Bridge

Bridge

Application Code Application Code

Application Code

Application Code Application Code

Application Code

ATMI ATMI

ATMI

ATMI ATMI

ATMI

Oracle Tuxedo Oracle Tuxedo

Oracle Tuxedo

Oracle Tuxedo Oracle Tuxedo

Oracle Tuxedo

Chapter 10
What Is a Distributed ATMI Application?

10-2

10.1.2 Implementing a Distributed Application
A distributed application is implemented on a network defined in the NETWORK (and optionally
NETGROUPS) section(s) of the configuration file. It frequently uses data-dependent routing,
defined in the ROUTING section of the configuration file. A critical part of the design of a
distributed application is the arrangement between server groups, processes, transaction
manager servers (TMSs), and resource managers (RMs).

To set up a distributed application over a network, the application administrator must work
with the network administrator. In most instances, the application administrator writes the
configuration file for a distributed application (defining parameters in the RESOURCES,
MACHINES, GROUPS, SERVICES, and ROUTING sections), and the network administrator or MIS
representative writes or contributes to the networking sections.

See Also:

• Creating the Configuration File for a Distributed ATMI Application

• Setting Up the Network for a Distributed Application

• Managing the Network in a Distributed Application in Administering an Oracle
Tuxedo Application at Run Time

• Scaling, Distributing, and Tuning CORBA Applications

10.2 Why Distribute an ATMI Application Across a Network?
Distributed applications provide several important benefits. Early business applications were
developed to run on one large mainframe computer. Because all computing was performed
on a single machine, a failure could bring down an entire system. With the increasing
popularity of distributed applications, this threat of system failure is declining.

Another advantage is that by distributing an application, you can group parts of an application
logically and position these logical groups in the most effective locations. By creating groups
of servers, for example, you can partition a large application into separate, business-specific
components of manageable size and optimal location.

A distributed application allows you to do the following:

• Perform data-dependent partitioning

• Manage multiple resources

• Enlarge the client and/or server model

• Obtain transparent access to Oracle Tuxedo system services

• Establish multiple server groups

• Use multiple computers simultaneously to do the work of one application, providing better
throughput and response time

• Provide for replicated resources for increased availability

• Features of a Distributed Application

Chapter 10
Why Distribute an ATMI Application Across a Network?

10-3

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ads/adsdis.html#1044772
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ads/adsnet.html#1049186
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ads/adsnet.html#1049186

10.2.1 Features of a Distributed Application
• Coordination of autonomous actions—autonomous actions are actions that involve

multiple server groups and/or multiple resource manager interfaces. The Oracle
Tuxedo system enables you to coordinate autonomous actions among separate
applications as a single logical unit of work.

• Resilience—when one of many machines fails, the remaining machines continue
to operate. Similarly, when one server in a server group fails, the remaining
servers continue the work.

• Scalability—application load or capacity can be increased by:

– Placing more servers in a group.

– Adding machines to an application and redistributing groups across machines.

– Adding machines to an application and redistributing groups across machines.

– Replicating a server group that resides on one machine, on other machines,
and using load balancing.

– Segmenting a database using data-dependent routing for groups that meet
specific criteria.

See Also:

• How to Create the Configuration File for a Multiple-machine (Distributed)
Application.

• What Is Load Balancing? in Introducing Oracle Tuxedo ATMI

• What Is Data-Dependent Routing? in Introducing Oracle Tuxedo ATMI

• Scaling, Distributing, and Tuning CORBA Applications

Chapter 10
Why Distribute an ATMI Application Across a Network?

10-4

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ads/adfig.html#1253022
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ads/adfig.html#1253022

11
Creating the Configuration File for a
Distributed Oracle Tuxedo ATMI Application

This section includes the following topics:

Note:

For detailed information about creating a configuration file for a distributed Oracle
Tuxedo CORBA application, refer to the Scaling, Distributing, and Tuning CORBA
Applications guide.

• Configuration File Requirements for a Distributed Oracle Tuxedo ATMI Application

• Creating the RESOURCES Section

• Creating the MACHINES Section

• Creating the GROUPS Section

• Creating the SERVICES Section

• Creating the ROUTING Section

• Example Configuration File for a Distributed Application

• Modifying the Domain Gateway Configuration File to Support Routing

11.1 Configuration File Requirements for a Distributed Oracle
Tuxedo ATMI Application

A distributed Oracle Tuxedo ATMI application consists of one or more local or remote clients
that communicate with one or more servers residing on several machines linked through a
network, all of which are administered as a single entity in one Oracle Tuxedo configuration
file. To set up a distributed configuration, you must create a configuration file that includes the
following sections:

• RESOURCES section

• MACHINES section

• GROUPS section

• NETGROUPS section (optional)

• NETWORK section

• SERVICES section

• ROUTING section (if data-dependent routing is used)

If your configuration spans multiple domains and uses data-dependent routing, you must also
modify the domain gateway configuration file (DMCONFIG) to support routing functionality.

11-1

11.2 Creating the RESOURCES Section
In the RESOURCES section you define governing parameters for system-wide resources,
such as the maximum number of servers allowed in the application. All parameter
settings in this section apply to the entire application.

Note:

The parameters described in the tables in this topic are used only for
distributed applications. For a description of the basic parameters that are
available for any kind of Oracle Tuxedo application, see UBBCONFIG(5) in
the File Formats, Data Descriptions, MIBs, and System Processes
Reference.

The following table shows the resources section parameters.

Table 11-1 RESOURCES Section Parameters

Parameter Description

BBLQUERY
(Optional)

BBLQUERY sets a multiplier of the basic SCANUNIT between status checks by the DBBL of all
BBLs. The DBBL checks to ensure that all BBLs have reported in within the BBLQUERY cycle. If a
BBL has not been heard from, the DBBL sends a message to that BBL asking for status. If no
reply is received, the BBL is partitioned.
The value of BBLQUERY must be greater than 0. If this parameter is not specified, the default is
set so that (SCANUNIT * BBLQUERY) is approximately 300 seconds.

BLOCKTIME
(Optional)

BLOCKTIME sets a multiplier of the basic SCANUNIT after which a blocking call (for example,
receiving a reply) times out.
The value of BLOCKTIME must be greater than 0. If this parameter is not specified, the default is
set so that (SCANUNIT * BLOCKTIME) is approximately 60 seconds.

DBBLWAIT
(Optional)

DBBLWAIT sets a multiplier of the basic SCANUNIT for the maximum amount of wall time a DBBL
should wait for replies from all its BBLs before timing out. Every time the DBBL forwards a
request to its BBLs, it waits for all of them to reply with a positive acknowledgment before replying
to the requester. This option can be used for detecting dead or insane BBLs in a timely manner.
The value of DBBLWAIT must be greater than 0. If this parameter is not specified, the default is
set so that (SCANUNIT * DBBLWAIT) is the greater of SCANUNIT or 20 seconds.

IPCKEY(Requir
ed)

IPCKEY specifies the numeric key for the bulletin board. In a single-processor environment, this
key names the bulletin board. In a multiprocessor environment, this key names the message
queue of the DBBL. This key is also used as a basis for deriving the names of resources other
than this well-known address, such as the names for bulletin boards throughout a multiprocessor.
The value of IPCKEY must be greater than 32,768 and less than 262,143.

MASTER(Requir
ed)

MASTER (string_value1[,string_value2]) specifies the LMID of the machine on which the master
copy of TUXCONFIG is located. Also, if the application is run in MP mode, MASTER indicates the
machine on which the DBBL is run. string_value2 names an alternate LMID location used during
process relocation and booting. If the primary location is not available, the DBBL is booted at the
alternate location and the alternate TUXCONFIG file found there is used.
The value of both string_value1 and string_value2 must be LMIDs of machines defined in the
MACHINES section. Each string may contain up to 30 characters.

Chapter 11
Creating the RESOURCES Section

11-2

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Table 11-1 (Cont.) RESOURCES Section Parameters

Parameter Description

MAXGROUPS
(Optional)

MAXGROUPS specifies the maximum number of configured server groups to be accommodated in
the group table of the bulletin board.
The value of MAXGROUPS must be greater than or equal to 100 and less than 32,768. The default
is 100.

MAXSERVERS
(Optional)

MAXSERVERS specifies the maximum number of servers to be accommodated in the server table
of the bulletin board.
The value of MAXSERVERS must be greater than 0 and less than 8192. The default is 50.

MAXSERVICES
(Optional)

MAXSERVICES specifies the maximum number of services to be accommodated in the services
table of the bulletin board.
The value of MAXSERVICES must be greater than 0 and less than 1,048,575. The default is 100.

SANITYSCAN
(Optional)

SANITYSCAN sets a multiplier of the basic SCANUNIT between sanity checks of the system.
The value of SCANUNIT must be greater than 0. The default is set so that (SCANUNIT *
SANITYSCAN) is approximately 120 seconds.

Sanity checks are performed on servers as well as on the bulletin board data structure itself.

SCANUNIT
(Optional)

SCANUNIT sets the time interval (in seconds) between scans by the bulletin board liaison for
timed-out transactions and blocking calls within service requests. This value is used as the basic
unit of scanning by the BBL. It affects the granularity with which transaction timeout values can
be specified on tpbegin(3c) and the blocking timeout value specified with the BLOCKTIME
parameter. The SANITYSCAN, BBLQUERY, DBBLWAIT, and BLOCKTIME parameters are multipliers
of this unit for other timed operations within the system.
The value of SCANUNIT must be a multiple of 2 or 5 greater than 0 and less than or equal to 60
seconds. The default is 10 seconds.

11.3 Creating the MACHINES Section
In the MACHINES section you assign logical names to all the physical machines in your
configuration (including all the processing elements in multiprocessor machines) and define
other parameters for individual machines. The following table describes the parameters
available for defining machine names and other machine-specific parameters for each
machine that participates in a distributed application.

Table 11-2 MACHINES Section Parameters

Parameter Description

ENVFILE
(Optional)

ENVFILE specifies a file that defines the environment with which all clients and servers on the
machine are to be executed.
Lines must be in the form ident=value where ident contains only underscores and/or
alphanumeric characters, and begins with an underscore or a letter of the alphabet.

If the value of ENVFILE is an invalid filename, no values are added to the environment.

MAXACCESSERS
(Optional)

MAXACCESSERS specifies the maximum number of processes that can access the bulletin board
on this processor at any one time. When calculating the appropriate number, you are not required
to count system administration processes, such as the BBL and tmadmin, but you must count all
application servers and clients, and TMS servers.
The value of MAXACCESSERS must be greater than 0 and less than 32,768. The default is the
value specified in the RESOURCES section.

Chapter 11
Creating the MACHINES Section

11-3

Table 11-2 (Cont.) MACHINES Section Parameters

Parameter Description

MAXCONV
(Optional)

MAXCONV specifies the maximum number of simultaneous conversations allowed for processes
on a particular machine.
The value of MAXCONV must be greater than 0 and less than 32,768. The maximum number of
simultaneous conversations per server is 64. The default is the value specified in the RESOURCES
section.

MAXWSCLIENTS
(Optional)

MAXWSCLIENTS specifies the number of accesser entries on this processor to be reserved for
Workstation clients only. This parameter is used only when the Oracle Tuxedo System
Workstation component is used. This number takes a portion of the total accesser slots specified
with MAXACCESSERS. The appropriate setting of this parameter helps conserve IPC resources
because Workstation client access to the system is multiplexed through an Oracle Tuxedo
system-supplied surrogate, the workstation handler.
The value of MAXWSCLIENTS must be greater than or equal to 0, and less than 32,768; it may not
be greater than the value of MAXACCESSERS. (Assigning a value to MAXWSCLIENTS that is higher
than the value of MAXACCESSERS is an error.) The default is 0.

11.4 Creating the GROUPS Section
In the GROUPS section you identify each server group in your application so that the
Oracle Tuxedo system can route requests to the member servers of specific groups.

The GROUPS section is populated with the number of server groups required for the
application. Server groups can all reside on the same site (SHM mode) or, in a
distributed application, they can reside on different sites (MP mode).

Parameters in the GROUPS section implement two important aspects of distributed
transaction processing:

• They associate a group of servers with a particular LMID and a particular instance
of a resource manager.

• By allowing a second LMID to be associated with the server group, they name an
alternate machine to which a group of servers can be migrated if the MIGRATE
option is specified.

The following table describes the parameters in the GROUPS section.

Table 11-3 GROUPS Section Parameters

Parameter Description

ENVFILE ENVFILE specifies a file that defines the environment with which all servers in the group are
executed.
Lines must be in the form ident=value where ident contains only underscores and/or
alphanumeric characters.

If the value of ENVFILE is an invalid filename, no values are added to the environment.

GRPNO
(Required)

GRPNO associates a number with a particular server group.
The number must be greater than 0 and less than 30,000. It must be unique among entries in the
GROUPS section.

Chapter 11
Creating the GROUPS Section

11-4

Table 11-3 (Cont.) GROUPS Section Parameters

Parameter Description

LMID
(Required)

LMID identifies the machine on which the server group being defined runs. A second LMID value
can be specified (separated from the first by a comma) for an alternate machine to which this
server group can be migrated if the MIGRATE option has been specified. Servers in the group can
be migrated if RESTART=Y to migrate is specified in the GROUPS section.
The values of LMID must be the values assigned to the LMID parameter in the MACHINES section.

11.5 Creating the SERVICES Section
The SERVICES section contains parameters that determine how application services are
handled. Every line of every entry in this section is associated with a service by its identifier
name.

You must identify the service provided by each server group in the SERVICES section.
Because the same service can be link edited with more than one server, the SRVGRP
parameter is provided to tie the parameters for an instance of a service to a particular group
of servers.

The following table describes the parameters in the SERVICES section that are available for
defining distributed applications.

Table 11-4 SERVICES Section Parameters

Parameter Description

LOAD (Optional) LOAD specifies the size of the load imposed by SVCNM on the system.
The value of LOAD must be a number between 1 and 32,767, inclusive. A higher number
indicates a greater load. The default is 50.

PRIO (Optional) PRIO specifies the dequeuing priority of SVCNM.
The value of PRIO must be greater than 0 and less than or equal to 100, with 100 being the
highest priority. The default is 50

ROUTING
(Optional)

ROUTING specifies the name of the routing criteria used for this service when data-dependent
routing is being performed. If this parameter is not specified, data-dependent routing is not
performed for this service.
The value of ROUTING may contain up to 127 characters. If multiple entries exist for the same
service name but with different SRVGRP parameters, the ROUTING parameter must be the same
for all entries.

SRVGRP
(Optional)

SRVGRP specifies the host server group for the service that is specified by SVCNM and controlled
by the parameters set in this section.
By setting SRVGRP, you can assign different parameter settings to the same service when it is
offered by different server groups. For example, suppose your application provides two server
groups, GROUP1 and GROUP2, that offer a service called WITHDRAW. By setting SRVGRP you can
assign different load factors to each copy of the service, as follows:

WITHDRAW ROUTING=123 LOAD=60 SRVGRP=GROUP1
WITHDRAW ROUTING=123 LOAD=60 SRVGRP=GROUP2

The value of SRVGRP may contain up to 30 characters.

Chapter 11
Creating the SERVICES Section

11-5

Table 11-4 (Cont.) SERVICES Section Parameters

Parameter Description

SVCTIMEOUT
(Optional)

SVCTIMEOUT specifies the amount of time, in seconds, that is allowed for processing of the
indicated service. A timed-out service causes the server processing the service request to be
terminated with a SIGKILL signal.
The value of SVCTIMEOUT must be greater than or equal to 0. A value of 0 indicates that the
service will not be timed out. The default is 0.

If your application includes transaction processing, you may also want to set three
other parameters in the SERVICES section: AUTOTRAN, ROUTING, and TRANTIME. These
parameters are described in Configuring Your ATMI Application to Use Transactions.

The following listing shows a sample of the SERVICES section.

*SERVICES

WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
OPEN_ACCT ROUTING=BRANCH_ID

11.6 Creating the ROUTING Section
In the ROUTING section you specify the criteria to be used when data-dependent routing
is performed. If a service is listed in multiple entries, each with a different SRVGRP
parameter, the ROUTING section must be set with the same value in all entries.
Otherwise, routing cannot be done consistently for that service. Because a service can
be routed on one field only, the value of that field must be the same in all entries for
the same service.

You can add a ROUTING section to the configuration file to show mappings between
data ranges and groups. The information in this section enables the system to send a
request to a server in a specific group. Each ROUTING section item contains an
identifier that is used in the SERVICES section.

Lines within the ROUTING section have the following form.

CRITERION_NAME required_parameters
where CRITERION_NAME is the name of the routing entry specified in the SERVICES
section for data-dependent routing. The value of CRITERION_NAME must be a string
with a maximum of 15 characters.

The following table describes the parameters in the ROUTING section.

Table 11-5 ROUTING Section Parameters

Parameter Description

RANGES Ranges and associated server groups for the routing field.

Chapter 11
Creating the ROUTING Section

11-6

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ads/adtran.html#1031878

Table 11-5 (Cont.) ROUTING Section Parameters

Parameter Description

FIELD Name of the routing field, which is assumed to be one of the following: an FML buffer, an XML
element or element attribute, a view field name identified in an FML field table (using the
FLDTBLDIR and FIELDTBLS environment variables), or an FML view table (using the VIEWDIR
and VIEWFILES environment variables). This information is used to obtain the associated field
value for data-dependent routing when sending a message.

BUFTYPE A list of types and subtypes of data buffers for which this routing entry is valid.
The value of this parameter may contain up to 256 characters with a maximum of 32 type/
subtype combinations.

See Also:

• How to Create the Configuration File for a Multiple-machine (Distributed)
Application

• UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

• Scaling, Distributing, and Tuning CORBA Applications

11.7 Example Configuration File for a Distributed Application
The following excerpt from a sample UBBCONFIG file shows the GROUPS, SERVICES, and
ROUTING sections, which support data-dependent routing in an Oracle Tuxedo application.

*GROUPS
BANKB1 GRPNO=1
BANKB2 GRPNO=2
BANKB3 GRPNO=3
#
*SERVICES
WITHDRAW ROUTING=BY_ACCOUNT_ID
DEPOSIT ROUTING=BY_ACCOUNT_ID
INQUIRY ROUTING=BY_ACCOUNT_ID
OPEN_ACCT ROUTING=BY_BRANCH_ID
CLOSE_ACCT ROUTING=BY_BRANCH_ID
#
*ROUTING
BY_ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”
 RANGES=”MIN - 9999:*,
 10000-49999:BANKB1,
 50000-79999:BANKB2,
 80000-109999:BANKB3,
 :”
BY_BRANCH_ID FIELD=BRANCH_ID BUFTYPE=”FML”
 RANGES=”MIN - 0:*,
 1-4:BANKB1,

Chapter 11
Example Configuration File for a Distributed Application

11-7

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

 5-7:BANKB2,
 8-10:BANKB3,
 :”

11.8 Modifying the Domain Gateway Configuration File to
Support Routing

All domain gateway configuration information is stored in a binary file called
BDMCONFIG. This file is created by first writing a text configuration file called DMCONFIG
and then compiling it into a binary version called BDMCONFIG. The compiled BDMCONFIG
file can be updated while the system is running by using the dmadmin(1) command.
Although the Oracle Tuxedo documentation refers to these configuration files as
DMCONFIG and BDMCONFIG, you can give these files any names.

You must have one BDMCONFIG file for each Oracle Tuxedo application to which you
want to add Domains functionality. System access to the BDMCONFIG file is provided
through the Domains administrative server, DMADM(5). When a gateway group is
booted, the gateway administrative server, GWADM(5), requests from the DMADM server a
copy of the configuration required by that group. The GWADM server and the DMADM
server also ensure that run-time changes to the configuration are reflected in the
corresponding domain gateway groups.

Note:

For more information about the DMCONFIG file, refer to DMCONFIG(5) in the
File Formats, Data Descriptions, MIBs, and System Processes Reference.

• Description of ROUTING Section Parameters in DMCONFIG

11.8.1 Description of ROUTING Section Parameters in DMCONFIG
The DM_ROUTING section provides information for data-dependent routing of service
requests using FML, XML, VIEW, X_C_TYPE, and X_COMMON typed buffers. Lines within the
DM_ROUTING section have the following form.

CRITERION_NAME required_parameters

where CRITERION_NAME is the name of the routing entry specified in the SERVICES
section. The value of CRITERION_NAME must be a string with a maximum of 15
characters.

The following table describes the parameters in the DM_ROUTING section.

Chapter 11
Modifying the Domain Gateway Configuration File to Support Routing

11-8

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Parameter Description

FIELD
(Optional)

Specifies the name of the routing field, which is assumed to be one of the following: an FML
buffer, an XML element or element attribute, a view field name identified in an FML field table
(using the FLDTBLDIR and FIELDTBLS environment variables), or an FML view table (using the
VIEWDIR and VIEWFILES environment variables). This information is used to obtain the
associated field value for data-dependent routing when sending a message.
If a field in an FML32 buffer is used for routing, it must have a field number less than or equal to
8191.

RANGES
(Optional)

Specifies the ranges and associated remote domain names (RACCESSPOINT) for the routing field.
The value of RANGES must be a string enclosed in double quotes. The enclosed string, in turn,
must consist of a comma-separated ordered list of range/RACCESSPOINT pairs.
The value of range may be either a single value (a signed numeric value or a character string
enclosed in single quotes), or a range of the form lower - upper (where lower and upper are
both signed numeric values or character strings in single quotes).

The value of lower must be less than or equal to upper. A single quote embedded in a
character string value, as in “O’Brien,” for example, must be preceded by two back slashes: “O\
\’Brien”.
Use MIN to indicate the minimum value for the data type of the associated FIELD. For strings and
carrays, it is the null string; for character fields, it is 0; for numeric values, it is the minimum
numeric value that can be stored in the field.

Use MAX to indicate the maximum value for the data type of the associated FIELD. For strings
and carrays, it is effectively an unlimited string of octal-255 characters; for a character field, it is a
single octal-255 character; for numeric values, it is the maximum numeric value that can be
stored in the field. Thus, MIN - -5 is all numbers less than or equal to -5, and 6 - MAX is all
numbers greater than or equal to 6.
The metacharacter * (wildcard) in the position of a range indicates any values not covered by
other ranges previously seen in the entry. Only one wildcard range is allowed per entry and it
should be listed last (ranges following it are ignored).

BUFTYPE
(Optional)

BUFTYPE provides a list of types and subtypes of data buffers for which this routing entry is valid.
Valid types are FML, VIEW, X_C_TYPE, and X_COMMON. No subtype can be specified for type FML,
and subtypes are required for the other types (* is not allowed). Duplicate type/subtype pairs
cannot be specified for the same routing criteria name; more than one routing entry can have the
same criteria name as long as the type/subtype pairs are unique.
If multiple buffer types are specified for a single routing entry, the data types of the routing field
for each buffer type must be the same. If the field value is not set (for FML buffers), or does not
match any specific range, and a wildcard range has not been specified, an error is returned to the
application process that requested the execution of the remote service.

• Routing Field Description

• Example of a 5-Site Domain Configuration Using Routing

11.8.1.1 Routing Field Description
The value in the routing field can be any data type supported in FML or VIEW; it may be a
numeric range or a string range. The following rules apply to string range values for string,
carray, and character field types:

• They must be enclosed by single quotation marks and cannot be preceded by a plus or
minus sign.

• A short or long integer value must be a string of digits, optionally preceded by a plus or
minus sign.

Chapter 11
Modifying the Domain Gateway Configuration File to Support Routing

11-9

• Floating point numbers must be written in the form required by the C compiler or
atof(): a plus or minus sign, followed by a string of digits (optionally containing a
decimal point), then an optional e or E followed by an optional sign or space,
followed by an integer.

• When a field value matches a range, the associated RACCESSPOINT value specifies
the remote domain to which the request should be routed. An RACCESSPOINT value
of * indicates that the request may be sent to any remote domain known by the
gateway group. Within a range/RACCESSPOINT pair, the range must be separated
from the RACCESSPOINT by a: (colon).

11.8.1.2 Example of a 5-Site Domain Configuration Using Routing
The following sample configuration file defines a two-domain application distributed
across five sites. The five sites include a Central Bank Office and four bank branches.
Three of the branches belong to an Oracle Tuxedo domain. The fourth branch belongs
to another TP domain, and OSI-TP is used to communicate with that domain.

The following Listing shows the Oracle Tuxedo system domain gateway configuration
file from the Central Bank point of view. In the DM_TDOMAIN section, this example shows
a mirrored gateway for b01.

Listing Domains Configuration File for Five Sites

TUXEDO DOMAIN CONFIGURATION FILE FOR THE CENTRAL BANK
#
#
*DM_LOCAL
local_domain_name Gateway_Group_name domain_type domain_ID log_device
[audit log] [blocktime]
[log name] [log offset] [log size]
[maxaccesspoint] [maxraptran] [maxtran]
[maxdatalen] [security]
[tuxconfig] [tuxoffset]

#
#
DEFAULT: SECURITY = NONE
c01 GWGRP = bankg1
 TYPE = TDOMAIN
 ACCESSPOINTID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C01"
c02 GWGRP = bankg2
 TYPE = OSITP
 ACCESSPOINTID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C02"
 NWDEVICE = "OSITP"
 URCH = "ABCD"
#
*DM_REMOTE
#remote_domain_name domain_type domain_ID
#
b01 TYPE = TDOMAIN

Chapter 11
Modifying the Domain Gateway Configuration File to Support Routing

11-10

 ACCESSPOINTID = "BA.BANK01"
b02 TYPE = TDOMAIN
 ACCESSPOINTID = "BA.BANK02"
b03 TYPE = TDOMAIN
 ACCESSPOINTID = "BA.BANK03"
b04 TYPE = OSITP
 ACCESSPOINTID = "BA.BANK04"
 URCH = "ABCD"
#
*DM_TDOMAIN
#
local_or_remote_domain_name network_address [nwdevice]
#
Local network addresses
c01 NWADDR = "//newyork.acme.com:65432" NWDEVICE ="/dev/tcp"
c02 NWADDR = "//192.76.7.47:65433" NWDEVICE ="/dev/tcp"
Remote network addresses: second b01 specifies a mirrored gateway
b01 NWADDR = "//192.11.109.5:1025" NWDEVICE = "/dev/tcp"
b01 NWADDR = "//194.12.110.5:1025" NWDEVICE = "/dev/tcp"
b02 NWADDR = "//dallas.acme.com:65432" NWDEVICE = "/dev/tcp"
b03 NWADDR = "//192.11.109.156:4244" NWDEVICE = "/dev/tcp"
#
*DM_OSITP
#
#local_or_remote_domain_name apt aeq
[aet] [acn] [apid] [aeid]
[profile]
#
c02 APT = "BA.CENTRAL01"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.3},{1}"
 ACN = "XATMI"
b04 APT = "BA.BANK04"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.4},{1}"
 ACN = "XATMI"
*DM_EXPORT
#service_name [Local_Domain_name] [access_control] [exported_svcname]
[inbuftype] [outbuftype]
#
open_act ACL = branch
close_act ACL = branch
credit
debit
balance
loan LACCESSPOINT = c02 ACL = loans
*DM_IMPORT
#service_name [Remote_domain_name] [local_domain_name]
[remote_svcname] [routing] [conv]
[trantime] [inbuftype] [outbuftype]
#
tlr_add LACCESSPOINT = c01 ROUTING = ACCOUNT
tlr_bal LACCESSPOINT = c01 ROUTING = ACCOUNT
tlr_add RACCESSPOINT = b04 LACCESSPOINT = c02 RNAME ="TPSU002"
tlr_bal RACCESSPOINT = b04 LACCESSPOINT = c02 RNAME ="TPSU003"

Chapter 11
Modifying the Domain Gateway Configuration File to Support Routing

11-11

*DM_ROUTING
routing_criteria field typed_buffer ranges
#
ACCOUNT FIELD = branchid BUFTYPE ="VIEW:account"
 RANGES ="MIN - 1000:b01, 1001-3000:b02, *:b03"
*DM_ACCESS_CONTROL
#acl_name Remote_domain_list
#
branch ACLIST = b01, b02, b03
loans ACLIST = b04

See Also:

• “Understanding the Domains Configuration File” in Using the Oracle
Tuxedo Domains Component

• “Setting Up a Domains Configuration” in Using the Oracle Tuxedo
Domains Component

• Scaling, Distributing, and Tuning CORBA Applications

Chapter 11
Modifying the Domain Gateway Configuration File to Support Routing

11-12

12
Setting Up the Network for a Distributed
Application

This topic includes the following sections:

• Configuring the Network for a Distributed Application

• How Data Moves Over a Network

• How Data Moves Over Parallel Networks

• Example of a Network Configuration for a Simple Distributed Application

• How Failover and Failback Work in Scheduling Network Data

• Example Configuration of Multiple Netgroups

12.1 Configuring the Network for a Distributed Application
A distributed application is an application that runs on multiple computers, each of which
supports an installation of the Oracle Tuxedo system. These computers are connected and
can communicate with each other through a network that includes hardware, software,
access methods, and communication protocols. The Oracle Tuxedo system encodes, routes,
and decodes messages, and uses the network to ship those messages between machines.
The system performs these tasks automatically.

To configure the networking functionality required to support a distributed application, include
the following entries in the configuration file of the following table.

Table 12-1 Configuring the Network for a Distributed Application

In This
Section...

Set This
Parameter...

To...

RESOURCES MODEL(Require
d)

MP. This parameter enables all other networking parameters. It is used only for
networked machines. SHM is used for a single-machine configuration, even if the
machine is a multiprocessor.

OPTIONS(Requi
red)

LAN (Local Area Network) to indicate that communication will take place
between separate machines, rather than between separate processes on the
same machine.

MAXNETGROUPS
(Optional)

Designate a limit on the number of NETGROUPS that can be defined. The default
is 8; the upper limit, 8192.

12-1

Table 12-1 (Cont.) Configuring the Network for a Distributed Application

In This
Section...

Set This
Parameter...

To...

MACHINES TYPE=string
(Optional)

Determine whether encoding is required when messages are exchanged by two
machines. The TYPE parameter specifies the data representation being used on
each machine being defined. If a message is being sent from a machine on
which one type of data representation is being used to a machine on which a
different type of data representation is being used, the message to be sent must
be encoded before transmission and decoded upon arrival.
If the machines in question both use the same type of data representation,
however, the system skips the encoding/decoding process. Example 1

LMID_1 TYPE = “abc”
LMID_2 TYPE = “abc”

Encoding is not used in this case. Example 2

LMID_1 TYPE = “HP”
LMID_2 TYPE = “SUN”

Encoding is used in this case.

You do not need to set this parameter if the same type of data representation is
used on all machines that will exchange messages. The parameter must be set
only for a machine on which a different type is used. For example, if you have
nine SPARC machines and one HP machine, you must specify TYPE= string
only for the HP. For the SPARC machines, the default null string identifies them
as the same type.

CMPLIMIT=
remote[,loca
l](Optional)

Specify the compression threshold, that is, the minimum byte size for a
message to be compressed before being sent to a remote and/or local
destination. The value of both remote and local is a number between 0 and
MAXLONG. If CMPLIMIT is set to only one value, it is assumed that the specified
value is the remote argument and that messages sent to local destinations are
never compressed.
For example, if you set CMPLIMIT=1024, than any message greater than 1024
bytes bound for a remote location is compressed.

Compression thresholds can also be specified with the variable TMCMPLIMIT.
See the discussion, in tuxenv(5), about the variable TMCMPPRFM,which sets
the degree of compression in a range of 1 to 9.

NETLOAD=numb
er (Optional)

Add an application-specific number to the value of LOAD for a remote service.
The result is used by the system to evaluate whether a request must be
processed locally or sent to a remote machine. A higher NETLOAD results in less
traffic being sent to a remote machine.

NETGROUPS(Op
tional)

NETGROUP(Req
uired)

Specify the name assigned by the application to a particular group of machines.
The name may contain up to 30 characters. One group, consisting of all the
machines on the network, must be named DEFAULTNET.

NETGRPNO=
number
(Required)

Specify a number by which the system can identify a group of machines. The
value can be any number between 1 and 8192. For DEFAULTNET, the value of
NETGRPNO must be 0.

Chapter 12
Configuring the Network for a Distributed Application

12-2

Table 12-1 (Cont.) Configuring the Network for a Distributed Application

In This
Section...

Set This
Parameter...

To...

NETPRIO=numb
er (Optional)

Assign a priority to a NETGROUP. This parameter helps the system determine
which network connection to use. The number must be between 0 and 8192.
Assign a higher priority to your faster circuits; give your lowest priority to
DEFAULTNET.

NETWORK(Optio
nal)

LMID Map the specified machine to one of the entries in the MACHINES section.

NADDR=string
(Required)

Specify the listening address for the BRIDGE process on this LMID. There are
four valid formats for specifying this network address. See the NETWORK section
of UBBCONFIG(5) for details.

NLSADDR=stri
ng (Required)

Specify the network address for the tlisten process on this LMID. Valid formats
are the same as the valid formats for NADDR.

NETGROUP=str
ing (Required)

Specify a NETWORK group name. The value of string must be a group name
specified in the NETGROUPS section. The default is DEFAULTNET.

12.2 How Data Moves Over a Network
In a distributed application, data is sent across the network as follows:

• At the sending end—the BRIDGE sends a message to destination_machine by writing the
message to a virtual circuit and delegating, to the operating system, responsibility for
sending it. The operating system retains a copy of every pending message. If a network
error occurs, however, pending messages are lost.

• At the receiving end—the BRIDGE process listens on a particular network address for
incoming messages.

12.3 How Data Moves Over Parallel Networks
In a distributed application there are several advantages to using parallel data circuits for
sending data across the network:

• By listening at more than one address, the BRIDGE achieves higher availability.

• By sending data simultaneously on parallel data circuits, the BRIDGE can achieve a higher
throughput, if the network was the limiting factor before.

• When you configure parallel data circuits, the software does not necessarily fail to deliver
a message if the original destination circuit is busy. The system attempts to schedule
traffic over the circuit with the highest network group number (NETGRPNO). If this circuit is
busy, the traffic is automatically scheduled over the circuit with the next (that is, the
second highest) network group number. When all circuits are busy, data is queued until a
circuit is available.

Before making a decision to use parallel data circuits, however, you should determine
whether it will be important, in your application, for messages to be kept in sequence. The
system guarantees that conversational messages are kept in the correct sequence by binding
the conversation connection to one particular data circuit.

Chapter 12
How Data Moves Over a Network

12-3

If your application will require all messages to be kept in sequence, you must program
the application to keep track of the sequence for non conversational messages. If you
are using this approach, you may not want to configure parallel data circuits.

The following figure describes how data flows when one machine tries to contact
another. The figure is based on a sample scenario involving two machines: machine A
and machine B. First, the BRIDGE identifies the network groups that are common to
both machines: the MAGENTA_GROUP, the GREEN_GROUP, and the DEFAULTNET.

Data flows in parallel on network groups with the same priority (that is, groups for
which the same value is assigned to the NETPRIO parameter). Network groups with
different priorities are used for failover.

Chapter 12
How Data Moves Over Parallel Networks

12-4

Figure 12-1 Flow of Data over the BRIDGE

Chapter 12
How Data Moves Over Parallel Networks

12-5

12.4 Example of a Network Configuration for a Simple
Distributed Application

The following example shows how to configure a simple network:

The following configuration file excerpt shows a NETWORK

section for a 2-site configuration.

*NETWORK
 SITE1 NADDR="//mach1:51669”
 NLSADDR="//mach1:31669"
#
 SITE2 NADDR="//mach386:51669"
 NLSADDR="//mach386:31669"

12.5 How Failover and Failback Work in Scheduling Network
Data

Data flows over the highest available priority circuit. If all network groups have the
same priority, data travels over all networks simultaneously. If all circuits at the current
priority fail, data is sent over the next lower priority circuit. This process is called
failover. When failover occurs, the failed connections are retried periodically.

When higher priority network connections are reestablished, failback occurs and no
further data is scheduled for the lower priority connection. The lower priority
connection is disconnected in an orderly fashion.

If attempts to connect to all network addresses have been made and have failed, new
attempts to connect are made the next time application or system data needs to be
sent between machines.

12.6 Example Configuration of Multiple Netgroups
The hypothetical First State Bank has a network of five machines (A-E). These
machines are configured in four network groups and each machine is used in two or
three groups.

Note:

The hardware and system software prerequisites for configuring multiple
network groups (NETGROUPS) are beyond the scope of this document. For
example, machines are frequently required to belong to more than one
physical network. Each TCP/IP symbolic address must be identified in
the /etc/hosts file or in the DNS (Domain Name Services).

Chapter 12
Example of a Network Configuration for a Simple Distributed Application

12-6

In the following example, it is assumed that in addresses written in the form //
A_CORPORATE:5345, the string A_CORPORATE is specified in the /etc/hosts file or in DNS.

The four groups in the First State Bank network include:

• DEFAULTNET (the default network, which is the corporate WAN)

• MAGENTA_GROUP (a LAN)

• BLUE_GROUP (a LAN)

• GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point links between
member machines)

All machines belong to DEFAULTNET (the corporate WAN). In addition, each machine is
associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally, some machines in the
MAGENTA_GROUP also belong to the GREEN_GROUP. The following figure illustrates group
assignments for the network.

Figure 12-2 Example Network Groups

In this example, machines A and B have addresses for the following:

• DEFAULTNET (the corporate WAN)

• MAGENTA_GROUP (LAN)

• GREEN_GROUP (LAN)

Machine C has addresses for the following:

• DEFAULTNET (the corporate WAN)

• MAGENTA_GROUP (LAN)

Machines D and E have addresses for the following:

• DEFAULTNET (the corporate WAN)

• BLUE_GROUP (LAN)

Chapter 12
Example Configuration of Multiple Netgroups

12-7

Because the local area networks are not routed to all locations, machine D (in the
BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP LAN) only by using the
single address they have in common: the corporate WAN network address.

• Configuration File for the Sample Network

• Assigning Priorities for Each Network Group

12.6.1 Configuration File for the Sample Network
To set up the configuration described in the preceding section, the First State Bank
administrator defines each group in the NETGROUPS and NETWORK sections of the
UBBCONFIG file as follows:

*NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRIO = 100 #default
BLUE_GROUP NETGRPNO = 9 NETPRIO = 200
MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200
GREEN_GROUP NETGRPNO = 13 NETPRIO = 300

*NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”
A NETGROUP=MAGENTA_GROUP NADDR="//A_MAGENTA:5724"
A NETGROUP=GREEN_GROUP NADDR="//A_GREEN:5725"

B NETGROUP=DEFAULTNET NADDR="//B_CORPORATE:5723"
B NETGROUP=MAGENTA_GROUP NADDR="//B_MAGENTA:5724"
B NETGROUP=GREEN_GROUP NADDR="//B_GREEN:5725"

C NETGROUP=DEFAULTNET NADDR="//C_CORPORATE:5723"
C NETGROUP=MAGENTA_GROUP NADDR="//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR="//D_CORPORATE:5723"
D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

E NETGROUP=DEFAULTNET NADDR="//E_CORPORATE:5723"
E NETGROUP=BLUE_GROUP NADDR="//E_BLUE:5726"

12.6.2 Assigning Priorities for Each Network Group
Assigning priorities appropriately for each NETGROUP enables you to maximize the
capability of network BRIDGE processes. When determining NETGROUPpriorities, keep in
mind the following considerations:

• Data flows over only the highest available priority circuit.

• If all network groups have the same priority, data travels over all circuits
simultaneously.

• If all circuits at the current priority fail, data is sent over the next lower priority
circuit.

• When a higher priority circuit becomes available, data flows over it.

Chapter 12
Example Configuration of Multiple Netgroups

12-8

• All unavailable higher priority circuits are retried periodically.

• After connections to all network addresses have been tried and have failed, connections
are tried again the next time data needs to be sent between machines.

• The default value of NETPRIO is 100.

• Example Assignment of Priorities to Network Groups

• Example NETGROUP and NETWORK Sections

12.6.2.1 Example Assignment of Priorities to Network Groups
The following figure shows how the First State Bank administrator assigns priorities to the
available network groups.

Figure 12-3 Assigning Priorities to Network Groups

The following priorities are assigned:

• BLUE_GROUP=200

• DEFAULTNET=100

• GREEN_GROUP=300

• MAGENTA_GROUP=200

12.6.2.2 Example NETGROUP and NETWORK Sections
The lowest priority among network groups is reserved for the default network group, that is,
the group that is not used unless all others are unavailable. Therefore, if you want to limit the
use of a particular network, such as a satellite link for which per-minute fees are incurred,
designate that network as the default network group.

Chapter 12
Example Configuration of Multiple Netgroups

12-9

You can assign a network priority to the default network group by setting the NETPRIO
parameter for DEFAULTNET just as you do for any other group. If you do not specify a
priority for DEFAULTNET, a default of 100 is used, as shown in the following example:

*NETGROUP
DEFAULTNET NETGRPNO = 0 NETPRIO = 100

For DEFAULTNET, the value of the network group number (NETGRPNO) must be zero; any
other number is invalid. The value of NETGRPNO must be unique for each entry.

On the other hand, the same value of NETPRIO may be assigned to multiple network
groups. For example, in the First State Bank configuration file, the same network
priority (NETPRIO=200) is assigned to both the MAGENTA_GROUP and the GREEN_GROUP.

Each network address (NETWORK) is associated by default with the DEFAULTNET network
group. This parameter may be specified explicitly for either of two reasons: to maintain
uniformity among entries, or to associate the network address being defined with a
second network group.

*NETWORK
D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

Chapter 12
Example Configuration of Multiple Netgroups

12-10

13
Using Oracle Tuxedo Distributed Caching
(TDC) with Oracle Coherence

This topic contains the following sections:

For a quick start, see the following samples.

• Sample: Using Data Caching for Clients and Servers

• Sample: Using Result Caching for Oracle Tuxedo Services

For more information about the Oracle Tuxedo ATMI APIs that relates to this feature, see
Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs.

• Overview

• Configuring Oracle Coherence

• Configuring Oracle Tuxedo Java Server

• Using Data Caching for Clients and Servers

• Using Result Caching for Oracle Tuxedo Services

• Propagating Execution Context ID (ECID) to Oracle Coherence

• Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs

• Oracle Tuxedo Distributed Caching (TDC) Property File Properties

• Oracle Tuxedo Distributed Caching (TDC) Related UBBCONFIG Parameters

• UBBCONFIG SERVICES Section

• Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes

13.1 Overview
This feature leverages Oracle Coherence, and Oracle Tuxedo java server, which is working
as a client of Oracle Coherence, assuring you taking all advantages that Oracle Coherence
has for caching.

This feature supports the following caching strategies.

• Data Caching for Clients and Servers

• Result Caching for Oracle Tuxedo Services

As Oracle Coherence and TMJAVASVR are used, it requires you to configure them both before
actually using TDC.

• Configuring Oracle Coherence

• Configuring Oracle Tuxedo Java Server

After these configurations, you can use Oracle Tuxedo Distributed Caching.

• Using Data Caching for Clients and Servers

13-1

• Using Result Caching for Oracle Tuxedo Services

• Data Caching for Clients and Servers

• Result Caching for Oracle Tuxedo Services

13.1.1 Data Caching for Clients and Servers
When you enable data caching, you can store data in cache, and clients on other
servers can retrieve the data from the cache. This offers you a new way of sharing
data between clients and servers, especially sharing data for or from other servers.

This feature provides you

High performance
Unlike storing and retrieving data through queues, files or databases which usually
means occupying a large amount of sources and wasting time, storing and retrieving
through cache is faster and lighter.

Oracle Tuxedo also adopts other ways to achieve high performance, such as
minimizing local buffer copies (ideally providing some zero copy use cases) and
focusing on primarily read intensive operations (for example, make 2:1 read/write ratio
or higher).

Various buffer types support
This feature supports many Oracle Tuxedo buffer types so that you do not need to
manage to match your data with the data types that Oracle Tuxedo supports. The
supported Tuxedo buffer types are CARRAY, FML, FML32, MBSTRING, STRING, VIEW,
VIEW32, XML, RECORD, X_C_TYPE, and X_COMMON.

Easy approach
This feature can be transparent for you so you can use it without making any code
changes, providing you an easy approach. Oracle Tuxedo encapsulates Oracle
Coherence functions in java server container so that you can just use java server to
implement all functions that pertain to this feature.

13.1.2 Result Caching for Oracle Tuxedo Services
When you enable result caching, Oracle Tuxedo first reaches the result from the cache
entry instead of reaching the backend service; if it fails to reach it or if the cache or
cache entry is expired, Oracle Tuxedo reaches the backend service and the result is
stored in the cache for Oracle Tuxedo to reach it next time.

This feature provides you

High performance
Synchronous services that return results that do not change often are good
candidates to have their results cached by Oracle Tuxedo. This can improve
performance by reducing network overhead to access the backend service.

Oracle Tuxedo also adopts other ways to achieve high performance, such as
minimizing local buffer copies (ideally providing some zero copy use cases) and
focusing on primarily read intensive operations (for example, make 2:1 read/write ratio
or higher).

Chapter 13
Overview

13-2

High availability and scalability
By integrating with Oracle Coherence, Oracle Tuxedo takes advantage of its specialized
scalable protocol and its creation of a cluster. A cluster can be seamlessly expanded to add
more memory, processing power or both, and can avoid single point of failure as it
transparently fails over if a cluster member fails. As a result this feature provides you a highly
availability and scalability.

Also, taking advantage of Oracle Coherence, any cache entry can be replicated across two
or more machines, and the data processing can be farmed out to where the data is and
return results to you. This assures your data to be scalable.

Various buffer types support
This feature supports many Oracle Tuxedo buffer types so that you do not need to manage
to match your data with the data types that Oracle Tuxedo supports. The supported Tuxedo
buffer types are CARRAY, FML, FML32, MBSTRING, STRING, VIEW, VIEW32, XML, RECORD, X_C_TYPE,
and X_COMMON.

Easy approach
This feature can be transparent for you so you can use it without making any code changes,
providing you an easy approach. Oracle Tuxedo encapsulates Oracle Coherence functions
in java server container so that you can just use java server to implement all functions that
pertain to this feature.

The following figure illustrates a typical deployment in an Oracle Tuxedo MP domain to use
TDC based on Oracle Coherence.

Figure 13-1 Result Caching for Oracle Tuxedo Services

As you can see from this figure, Oracle Tuxedo java server is taken as Oracle Coherence's
client (member). You can directly use Oracle Tuxedo java server to cache results from
multiple machines without worrying about how cluster members located in different machines
communicate with each other.

Chapter 13
Overview

13-3

13.2 Configuring Oracle Coherence
Configure the following files just like you configure on Oracle Coherence. See Oracle
Fusion Middleware Developing Applications with Oracle Coherence for detailed
instruction.

• tangosol-coherence-override.xml

• coherence-cache-config.xml

You can deploy the above configuration files into any path as long as this path is in the
java class path and prior to where coherence.jar is. For example, you can put the
configuration files into ${APPDIR}/config and then start Oracle Coherence server like
this:

Listing Oracle Coherence Cluster Deployment

java -server -showversion $JAVA_OPTS -Dtangosol.coherence.mode=prod -
cp
$APPDIR/config: ${COHERENCE_HOME}/lib/coherence.jar
com.tangosol.net.DefaultCacheServer

• tangosol-coherence-override.xml

• coherence-cache-config.xml

13.2.1 tangosol-coherence-override.xml
The following listing is an example; note the properties in bold. In this example,
coherence_tux is the name of the Oracle Coherence cluster whose multicast port
number is 51697 and unicast port number is 51687.

Listing tangosol-coherence-override.xml

<xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"

xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
operational-co
nfig coherence-operational-config.xsd">

 <cluster-config>

 <member-identity>
 <cluster-name
system-property="tangosol.coherence.cluster">coherence_tux</cluster-
name>

 </member-identity>

 <unicast-listener>

Chapter 13
Configuring Oracle Coherence

13-4

https://docs.oracle.com/middleware/1213/coherence/develop-applications/gs_config.htm#COHDG5002
https://docs.oracle.com/middleware/1213/coherence/develop-applications/gs_config.htm#COHDG5002

 <address
system-property="tangosol.coherence.localhost">localhost</address>

 <port system-property="tangosol.coherence.localport">51687</port>
 </unicast-listener>
 <multicast-listener>
 <port system-property="tangosol.coherence.clusterport">51697</
port>
 </multicast-listener>
 </cluster-config>
</coherence>

13.2.2 coherence-cache-config.xml
The following listing is an example; note the properties in bold. In this example, we create an
Oracle Coherence cache named tux_distributed.

Listing coherence-cache-config.xml

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"

xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">

 <caching-scheme-mapping>

 <cache-mapping>
 <cache-name>tux_distributed</cache-name>
 <scheme-name>distributed</scheme-name>
</cache-mapping>

</caching-scheme-mapping>

<caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
 </cache-config>

13.3 Configuring Oracle Tuxedo Java Server
• Configuring Oracle Tuxedo Java Server Configuration file

Chapter 13
Configuring Oracle Tuxedo Java Server

13-5

• Configure Oracle Tuxedo Distributed Caching (TDC) Property File

• Configuring Oracle Tuxedo Java Server Configuration file

• Configure Oracle Tuxedo Distributed Caching (TDC) Property File

13.3.1 Configuring Oracle Tuxedo Java Server Configuration file
Oracle Tuxedo Distributed Caching (TDC) introduces a new system-supplied Oracle
Tuxedo java server, which converts the caching request to Oracle Coherence and
sends back the reply. It works as a client of Oracle Coherence.

The java package used by this java server is com.oracle.tuxedo.tdcj.jar located
in ${TUXDIR}/udataobj/tuxj/tdc.

The following listing is an example of Oracle Tuxedo Java Server Configuration File
that enables TDC. For more information, see Java Server Configuration Schema File
for version 2.0.

• In general, you should not change the code lines in bold. The class
com.oracle.tuxedo.tdc.TCache4Coherence is the main class used by TDC which
is located in ${TUXDIR}/udataobj/tuxj/tdc/com.oracle.tuxedo.tdcj.jar.

• It is necessary to change the code lines in Italic due to different environment. Note
that <APPDIR> must be replaced with the real path to make the file work.

Listing Configuring Oracle Tuxedo Java Server Configuration File

<?xml version="1.0" encoding="UTF-8"?>

<TJSconfig version="2.0">

 <java-config>
 <jvm-options>-XX:MaxPermSize=192m</jvm-options>
 <jvm-options>-server</jvm-options>

<jvm-options>-Dtangosol.coherence.distributed.localstorage=false</jvm-
options>
 <jvm-options>-Dtangosol.coherence.mode=prod</jvm-options>
 </java-config>
<tux-config>
 <server-clopt>-f <APPDIR>/config/tdcsvr_coh.conf</server-clopt>
</tux-config>
<classpath-config>
</classpath-config>
<tux-resources>
</tux-resources>
<jdbc-resources>
</jdbc-resources>
<tux-server-config>

<classpath>${TUXDIR}/udataobj/tuxj/tdc/com.oracle.tuxedo.tdcj.jar</
classpath>
 <classpath>${TUXDIR}/udataobj/tuxj/tdc/dms.jar</classpath>
 <classpath>${TUXDIR}/udataobj/tuxj/tdc/ojdl.jar</classpath>
 <classpath>${APPDIR}/config</classpath>
 <classpath>${COHERENCE_HOME}/lib/coherence.jar</classpath>

Chapter 13
Configuring Oracle Tuxedo Java Server

13-6

 <server-class name="com.oracle.tuxedo.tdc.TCache4Coherence">
 </server-class>
 </tux-server-config>
</TJSconfig>

13.3.2 Configure Oracle Tuxedo Distributed Caching (TDC) Property File
It is required to add a new property file which specifies all properties about the caches for
TDC. Oracle Tuxedo java server advertises services using the name of these caches. You
can define many Oracle Tuxedo caches in a single property file.

The following listing shows a template of the property file. You can find this template
in $TUXDIR/udataobj/tuxj/tdc/tdcsvr_coh.conf.template. In this template, two Oracle
Tuxedo cache names are configured: tc1 and tc2. tc1 uses Oracle Coherence cache
tux_distributed and tc2 uses Oracle Coherence cache tux2_distributed.

See Oracle Tuxedo Distributed Caching (TDC) Property File Properties for more information
about its properties.

Listing TDC Property File Template

#* global option encoding setting
#options.encoding=no

#* configurations for Tuxedo cache "tc"

#* option encoding setting
#cache.options.encoding.tc=no
#* physical cache used in Oracle Coherence
coh.cache.name.tc=tux_distributed

#* configurations for Tuxedo cache "tc2"
#
#* option encoding setting
#cache.options.encoding.tc2=no
#* physical cache used in Oracle Coherence
#coh.cache.name.tc2=tux2_distributed

13.4 Using Data Caching for Clients and Servers
• Steps for Using Data Caching for Clients and Servers

• Sample: Using Data Caching for Clients and Servers

13.4.1 Steps for Using Data Caching for Clients and Servers
• Configure Oracle Coherence

• Start Oracle Coherence Cluster

• Configure Oracle Tuxedo Java Server

• Configure UBBCONFIG

• Put an Oracle Tuxedo buffer associated with a key into an Oracle Tuxedo cache

Chapter 13
Using Data Caching for Clients and Servers

13-7

• Get an Oracle Tuxedo buffer from an Oracle Tuxedo cache according to the key

13.4.1.1 Configure Oracle Coherence
For how to configure Oracle Coherence, see Configuring Oracle Coherence.

13.4.1.2 Start Oracle Coherence Cluster
If there is no Oracle Coherence Cluster is running, start your own cluster, making sure
you configure the path of the configuration files into the Java Class Path and ahead of
where coherence.jar is. See the following listing for an example.

13.4.1.3 Configure Oracle Tuxedo Java Server
See Configuring Oracle Tuxedo Java Server for instruction.

13.4.1.4 Configure UBBCONFIG
Configure TMJAVASVR on UBBCONFIG. TMJAVASVR uses multi-threaded configuration to
improve performance. Multi-instances configuration is also used to gain higher
availability.

Listing UBBCONFIG for TMJAVASVR

*RESOURCE
...
MODEL SHM
...
*MACHINES
"m1" LMID=L1
...
*GROUPS
JGRP1 LMID=L1 GRPNO=10

...
TMJAVASVR SRVGRP=JGRP1 SRVID=10
 MINDISPATCHTHREADS=4 MAXDISPATCHTHREADS=4 MIN=2 MAX=2
 CLOPT="-- -c /home/scott/tuxedo/dom1/config/
tdcsvr_coh.xml"
...

13.4.1.5 Put an Oracle Tuxedo buffer associated with a key into an Oracle
Tuxedo cache

On Oracle Tuxedo native client or workstation client, use TDC API tpgetcache and
tpcacheput to put an Oracle Tuxedo buffer associated with a key into an Oracle
Tuxedo cache. For more information about tpgetcache and tpcacheput, see Oracle
Tuxedo Distributed Caching (TDC) Related ATMI APIs.

Chapter 13
Using Data Caching for Clients and Servers

13-8

Listing Put an Oracle Tuxedo buffer associated with a key into an Oracle Tuxedo cache

...
 TCACHE* mycache = NULL;
 char mykey[128];
 char* databuf = NULL;

 tpinit(NULL);
 databuf = tpalloc("STRING", NULL, 256);

 mycache = tpgetcache("tc");
 strcpy(mykey, "myname");
 strcpy(databuf, "scott");
 tpcacheput(mycache, mykey, databuf, 0, 0L);

 tpfree(databuf);
...

13.4.1.6 Get an Oracle Tuxedo buffer from an Oracle Tuxedo cache according to the
key

On Oracle Tuxedo native client or workstation client, use TDC API tpgetcache and
tpcacheget to get an Oracle Tuxedo buffer associated with a key into an Oracle Tuxedo
cache. For more information about tpgetcache and tpcacheget, see Oracle Tuxedo
Distributed Caching (TDC) Related ATMI APIs.

Listing Get an Oracle Tuxedo buffer from an Oracle Tuxedo cache according to the key

...
 TCACHE* mycache = NULL;
 char mykey[128];
 char* databuf = NULL;

 tpinit(NULL);
 databuf = tpalloc("STRING", NULL, 256);

 mycache = tpgetcache("tc");
 strcpy(mykey, "myname");
 tpcacheget(mycache, mykey, &databuf, NULL, 0L);

 tpfree(databuf);
...

13.4.2 Sample: Using Data Caching for Clients and Servers
Suppose ${APPDIR} is /home/scott/tuxedo/dom1.

• Sample: Configure Oracle Coherence

• Sample: Start Oracle Coherence cluster

• Sample: Configure Oracle Tuxedo Java Server

• Sample: Configure TMJAVASVR in UBBCONFIG

Chapter 13
Using Data Caching for Clients and Servers

13-9

• Sample: Put an Oracle Tuxedo buffer associated with a key into an Oracle Tuxedo
cache

• Sample: Get an Oracle Tuxedo buffer from an Oracle Tuxedo cache according to
the key

13.4.2.1 Sample: Configure Oracle Coherence
• Prepare tangosol-coherence-override.xml in ${APPDIR}/config. See the

following listing.
Configure Oracle Coherence cluster coherence_tux whose multicast port number
is 51697 and unicast port number is 51687.

• Prepare coherence-cache-config.xml in ${APPDIR}/config. See the following
listing.
Configure Oracle Coherence cache tux_distributed.

Listing Prepare tangosol-coherence-override.xml

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"

xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
operational-co
nfig coherence-operational-config.xsd">
 <cluster-config>
 <member-identity>
 <cluster-name
system-property="tangosol.coherence.cluster">coherence_tux</cluster-
name>
 </member-identity>
 <unicast-listener>
 <address
system-property="tangosol.coherence.localhost">localhost</address>

 <port system-property="tangosol.coherence.localport">51687</
port>
 </unicast-listener>
 <multicast-listener>
 <port system-
property="tangosol.coherence.clusterport">51697</port>
 </multicast-listener>
 </cluster-config>
</coherence>

Listing Prepare coherence-cache-config.xml

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-
config"

Chapter 13
Using Data Caching for Clients and Servers

13-10

xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">

<caching-scheme-mapping>

 <cache-mapping>

 <cache-name>tux_distributed</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>DistributedCache</service-name>
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

13.4.2.2 Sample: Start Oracle Coherence cluster
If no Oracle Coherence cluster is running, you can start your own cluster.

java -server -showversion $JAVA_OPTS -Dtangosol.coherence.mode=prod -cp
${APPDIR}/config: ${COHERENCE_HOME}/lib/coherence.jar
com.tangosol.net.DefaultCacheServer

13.4.2.3 Sample: Configure Oracle Tuxedo Java Server
• Preparing tdcsvr_coh.xml for Oracle Tuxedo java server

• Prepare tdcsvr_coh.conf for TDC property file

13.4.2.3.1 Preparing tdcsvr_coh.xml for Oracle Tuxedo java server
Preparing tdcsvr_coh.xml for Oracle Tuxedo java server in ${APPDIR}/config.

See the following Listing, where the<server-clopt>-f /home/scott/tuxedo/dom1/config/
tdcsvr_coh.conf</server-clopt> property specifies the TDC property file.

Listing Configure Oracle Tuxedo Java Server Configuration File

<?xml version="1.0" encoding="UTF-8"?>

<TJSconfig version="2.0">
 <java-config>
 <jvm-options>-XX:MaxPermSize=192m</jvm-options>

Chapter 13
Using Data Caching for Clients and Servers

13-11

 <jvm-options>-server</jvm-options>
<jvm-options>-Dtangosol.coherence.distributed.localstorage=false</jvm-
options>
 <jvm-options>-Dtangosol.coherence.mode=prod</jvm-options>
 </java-config>
<tux-config>

 <server-clopt>-f
/home/scott/tuxedo/dom1/config/tdcsvr_coh.conf</server-clopt>

</tux-config>

<classpath-config>

</classpath-config>

<tux-resources>

</tux-resources>

<jdbc-resources>

</jdbc-resources>

<tux-server-config>

<classpath>${TUXDIR}/udataobj/tuxj/tdc/com.oracle.tuxedo.tdcj.jar</
classpath>
 <classpath>${TUXDIR}/udataobj/tuxj/tdc/dms.jar</classpath>
 <classpath>${TUXDIR}/udataobj/tuxj/tdc/ojdl.jar</classpath>
 <classpath>${COHERENCE_HOME}/lib/coherence.jar</classpath>
 <classpath>${APPDIR}/config</classpath>
 <server-class name="com.oracle.tuxedo.tdc.TCache4Coherence">
 </server-class>
 </tux-server-config>
</TJSconfig>

13.4.2.3.2 Prepare tdcsvr_coh.conf for TDC property file
Prepare tdcsvr_coh.conf for TDC property file in ${APPDIR}/config .

See the following Listing, where it configures Oracle Tuxedo cache tc, which actually
uses Oracle Coherence cache tux_distributed.

Listing Configure Oracle Tuxedo Distributed Caching (TDC) Property File

#* global option encoding setting

#options.encoding=no

#* configurations for Tuxedo cache "tc"

#* option encoding setting

Chapter 13
Using Data Caching for Clients and Servers

13-12

#cache.options.encoding.tc=no

#* physical cache used in Oracle Coherence

coh.cache.name.tc=tux_distributed

13.4.2.4 Sample: Configure TMJAVASVR in UBBCONFIG
Configure TMJAVASVR in UBBCONFIG.

See the following Listing, where multi-threaded configuration is enabled and TMJAVASVR
configuration file tdcsvr_coh.xml is set.

Listing Configure TMJAVASVR in UBBCONFIG

*RESOURCES
...
MODEL SHM
...
*MACHINES

"m1" LMID=L1
...
*GROUPS
JGRP1 LMID=L1 GRPNO=10

...
TMJAVASVR SRVGRP=JGRP1 SRVID=10
 MINDISPATCHTHREADS=4 MAXDISPATCHTHREADS=4 MIN=2 MAX=2
 CLOPT="-- -c /home/scott/tuxedo/dom1/config/tdcsvr_coh.xml"
...

13.4.2.5 Sample: Put an Oracle Tuxedo buffer associated with a key into an Oracle
Tuxedo cache

Put an Oracle Tuxedo STRING buffer associated with a key mykey into an Oracle Tuxedo
cache tc.

Listing Put an Oracle Tuxedo buffer

...
 TCACHE* mycache = NULL;
 char mykey[128];
 char* databuf = NULL;

 tpinit(NULL);
 databuf = tpalloc("STRING", NULL, 256);

 mycache = tpgetcache("tc");
 strcpy(mykey, "myname");
 strcpy(databuf, "scott");
 tpcacheput(mycache, mykey, databuf, 0, 0L);

Chapter 13
Using Data Caching for Clients and Servers

13-13

 tpfree(databuf);
...

13.4.2.6 Sample: Get an Oracle Tuxedo buffer from an Oracle Tuxedo cache
according to the key

Get an Oracle Tuxedo typed buffer from an Oracle Tuxedo cache tc according to a
key mykey.

Listing Get an Oracle Tuxedo buffer

...

 TCACHE* mycache = NULL;
 char mykey[128];
 char* databuf = NULL;

 tpinit(NULL);
 databuf = tpalloc("STRING", NULL, 256);

 mycache = tpgetcache("tc");
 strcpy(mykey, "myname");
 tpcacheget(mycache, mykey, &databuf, NULL, 0L);

 tpfree(databuf);
...

13.5 Using Result Caching for Oracle Tuxedo Services
• Steps for Using Result Caching for Oracle Tuxedo Services

• Sample: Using Result Caching for Oracle Tuxedo Services

13.5.1 Steps for Using Result Caching for Oracle Tuxedo Services
• Configure Oracle Coherence

• Start Oracle Coherence Cluster

• Configure Oracle Tuxedo Java Server

• Configure UBBCONFIG

You can also use MIB to dynamically make changes for TDC.

• Use MIB to Dynamically Make Changes for TDC

• Configure Oracle Coherence

• Start Oracle Coherence Cluster

• Configure Oracle Tuxedo Java Server

• Configure UBBCONFIG

Chapter 13
Using Result Caching for Oracle Tuxedo Services

13-14

• Use MIB to Dynamically Make Changes for TDC

13.5.1.1 Configure Oracle Coherence
See Configuring Oracle Coherence for instruction.

13.5.1.2 Start Oracle Coherence Cluster
If there is no Oracle Coherence Cluster is running, start your own cluster, making sure you
configure the path of the configuration files into the Java Class Path and ahead of where
coherence.jar is. See the following Listing for an example.

13.5.1.3 Configure Oracle Tuxedo Java Server
See Configuring Oracle Tuxedo Java Server for instruction.

13.5.1.4 Configure UBBCONFIG
Configure TDC on UBBCONFIG.

• SERVICES Section

• CACHING Section

• SERVICES Section

• CACHING Section

13.5.1.4.1 SERVICES Section
Specify CACHING=string_value as the name of the caching criteria used for caching for this
service. For more information, see Oracle Tuxedo Distributed Caching (TDC) Related
UBBCONFIG Parameters.

13.5.1.4.2 CACHING Section
Specify this CACHING section on UBBCONFIG. For more information, see Oracle Tuxedo
Distributed Caching (TDC) Related UBBCONFIG Parameters.

The following Listing shows an example, where

• Svccache1 uses Oracle Tuxedo cache tc1. Other configurations are default. (It means
KEY=$service+$request and KEY_BUFTYPE=STRING).

• Svccache2 uses Oracle Tuxedo cache tc1. The request is used to figure out the key
when caching the response data. Other configurations are default. (It means
KEY_BUFTYPE=STRING).

• Svccache3 uses Oracle Tuxedo cache tc1. The fixed string key1 is used as the key.
Other configurations are default.

• Svccache4 uses Oracle Tuxedo cache tc1. The buffer type of the request message to the
service is VIEW32 whose subtype is mystruct1. The value of the field name in the subtype
mystruct1 is used as the key.

• Svccache5 uses Oracle Tuxedo cache tc1. The buffer types of the FML32 and VIEW32:
mystruct1 have the same field1 and field2 (name and data type should be the same;

Chapter 13
Using Result Caching for Oracle Tuxedo Services

13-15

value can be different); the request message will use the values of field1 and
field2 as the key.

Listing UBBCONFIG CACHING Section Configuration

...
*CACHING
Svccache1
 CACHENAME="tc1"

Svccache2
 CACHENAME="tc1"
 KEY="$request"

Svccache3
 CACHENAME="tc1"
 KEY="key1"

Svccache4
 CACHENAME="tc1"
 KEY="$request"
 KEY_BUFTYPE="IEW32:mystruct1"
 KEY_FIELD="name"

Svccache5
 CACHENAME="tc1"
 KEY="mykey_$request"
 KEY_BUFTYPE="FML32;VIEW32:mystruct1"
 KEY_FIELD="field1+field2"

...

13.5.1.5 Use MIB to Dynamically Make Changes for TDC
You can use MIB to dynamically make changes for TDC.

For more information, see Oracle Tuxedo Distributed Caching (TDC) Related MIB
Attributes.

13.5.2 Sample: Using Result Caching for Oracle Tuxedo Services
• Sample: Configure VIEWTABLE

• Sample: Configure UBBCONFIG

• Sample: Set on Server Side

• Sample: Set on Client Side

• Sample: Configure VIEWTABLE

• Sample: Configure UBBCONFIG

• Sample: Set on Server Side

• Sample: Set on Client Side

Chapter 13
Using Result Caching for Oracle Tuxedo Services

13-16

13.5.2.1 Sample: Configure VIEWTABLE
Configure your VIEWTABLE. See the following Listing, where the buffer type is VIEW and the
subtype is mystruct1.

Listing Configure VIEWTABLE

...
VIEW mystruct1
type cname fbname count flag size null
string name - 1 - 31 -
string address - 1 - 255 -
char age - 1 - - -
END
...

13.5.2.2 Sample: Configure UBBCONFIG
Configure your UBBCONFIG. See the following Listing, where

TMJAVASVR is configured
Multi-threaded configuration is enabled and the configuration file tdcsvr_coh.xml is set.

Caching is enabled
Oracle Tuxedo service mysvc1 uses caching entry svccache1 to improve performance.
svccache1 uses Oracle Tuxedo cache tc1 to cache the service result. The corresponding
key of the response is the value of the request data.

Listing Configure UBBCONFIG

...
*GROUPS
JGRP1 LMID=L1 GRPNO=10

...
TMJAVASVR SRVGRP=JGRP1 SRVID=10
 MINDISPATCHTHREADS=4 MAXDISPATCHTHREADS=4 MIN=2 MAX=2
 CLOPT="-- -c /home/scott/tuxedo/dom1/config/tdcsvr_coh.xml"
...
*SERVICES
mysvc1
 ...
 CACHING="svccache1"
...
*CACHING
svccache1
 CACHENAME="tc1"
 KEY=$request
...

Chapter 13
Using Result Caching for Oracle Tuxedo Services

13-17

13.5.2.3 Sample: Set on Server Side
Configure on server side. See the following Listing, where the request of mysvc1 is set
as STRING and the response of mysvc1 is a VIEW32 mystruct1.

Listing Configure on Server Side

...
struct mystruct1* rsp;
int tpsvrinit(int argc, char *argv[])
{
 rsp = tpalloc("VIEW32", "mystruct1", sizeof(struct mystruct1));
}
...
void mysvc1(TPSVCINFO *rqst)
{
 int ret = 0;
 /*rqst->data is the name, getrsp will get data from the database
and
store into rsp*/
 ret = getrsp(rqst->data, rsp);
 if(ret < 0){
 tpreturn(TPFAIL, 0, NULL, 0L, 0);
 }
 tpreturn(TPSUCCESS, 0, rsp, 0L, 0);
}
...

13.5.2.4 Sample: Set on Client Side
Assume a data file is like this:

Listing Data File Example

...
Scott
Mike
Andy
Scott
Ben
Brian
Scott
Clark
...

Set on your client set like the following Listing.

At the first time where Scott is taken as the request, mysvc1 is invoked and the
response is sent back and the response is cached into Oracle Tuxedo cache tc1 with
a key Scott. As long as the data in the cache tc1 is not expired, all following requests
for Scott to service mysvc1 will get response from the cache tc1 instead of invoking
the service itself.

Chapter 13
Using Result Caching for Oracle Tuxedo Services

13-18

Listing Set on Client Set

...
struct mystruct1* rsp;
char* req;
int main(int argc, char *argv[])
{
 int ret;
 long olen = 0;
 rsp = tpalloc("VIEW32", "mystruct1", sizeof(struct mystruct1));
 req = tpalloc("STRING", NULL, 32);
 /*get name from the data file*/
 while(getname(req) == 0){
 tpcall("mysvc1",req, 0, &rsp, &olen,0);
}
}
...

13.6 Propagating Execution Context ID (ECID) to Oracle
Coherence

Oracle Coherence can use the Execution Context ID (ECID) in its logs. This globally unique
ID can be attached to requests between Oracle components. ECID allows you to track log
messages pertaining to the same request when multiple requests are processed in parallel.
Oracle Coherence logs will include ECID only if you already have an activated ECID prior to
calling Oracle Coherence operations. ECID may be passed from another component or
obtained in the client code.

Working as a client of Oracle Coherence, Oracle Tuxedo TDC enables you to propagate
ECID to Oracle Coherence.

• Enabling ECID

• Enabling ECID for TDC

13.6.1 Enabling ECID
• Enable ECID in Oracle Tuxedo

Oracle Tuxedo has two flags which you can add to OPTIONS in UBBCONFIG to control ECID.

– ECID_CREATE
Indicates that the ECID (Execution Context Identifier) creation function is enabled. In
this case, boundary nodes (including Native/WS/Jolt clients and domain gateways)
can generate the ECID.

– ECID_USERLOG
If the identifier ECID_USERLOG is set and the ECID is not a null string, ECID will be
appended to the userlog.

• Enable ECID in Oracle Coherence
See Oracle Coherence documentation for instructions.

Chapter 13
Propagating Execution Context ID (ECID) to Oracle Coherence

13-19

https://docs.oracle.com/middleware/1213/coherence/develop-applications/gs_debug.htm#COHDG5549

13.6.2 Enabling ECID for TDC
Prepare tangosol-coherence-override.xml in ${APPDIR}/config. More specifically,

• <destination> element is used to configure path and file name for emitting log
messages to a file. The specified path must already exist.

• Add ecid into < message-format > element to enable ECID.

• <severity-level> element can be used to change log level.

Listing

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"

xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
operational-co
nfig coherence-operational-config.xsd">

<cluster-config>
 <member-identity>

 <cluster-name
system-property="tangosol.coherence.cluster">coherence_tux</cluster-
name>
 </member-identity>
 <unicast-listener>
 <address
system-property="tangosol.coherence.localhost">localhost</address>
 <port system-property="tangosol.coherence.localport">51687</port>
 </unicast-listener>
 <multicast-listener>
 <port system-property="tangosol.coherence.clusterport">51697</
port>
 </multicast-listener>
</cluster-config>

<logging-config>

 <destination
system-property="tangosol.coherence.log">/tmp/coherence.log</
destination>
 <severity-level
system-property="tangosol.coherence.log.level">9</severity-level>

 <message-format>{date}/{uptime} {product} ecid={ecid} {version}
<{level}>(thread={thread},member={member}):{text}</message-
format>
</logging-config>
</coherence>

Chapter 13
Propagating Execution Context ID (ECID) to Oracle Coherence

13-20

13.7 Oracle Tuxedo Distributed Caching (TDC) Related ATMI
APIs
Table 13-1 Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs

Name Description

tpgetcache(3c) Get an Oracle Tuxedo Cache handle according to the configuration

tpcacheput(3c) Put an Oracle Tuxedo typed buffer into a cache, associating that buffer with a key

tpcacheget(3c) Get the Oracle Tuxedo typed buffer associated with the key from a cache

tpcacheremov
e(3c)

Remove the cache entry associated with the parameter key from a cache

tpcachemremo
ve(3c)

Remove cache entries associated with the parameter keyarray from a cache

tpcacheremove
all(3c)

Remove all cache entries from a cache

• tpgetcache(3c)

• tpcacheput(3c)

• tpcacheget(3c)

• tpcacheremove(3c)

• tpcachemremove(3c)

• tpcacheremoveall(3c)

13.7.1 tpgetcache(3c)
• Name

• Synopsis

• Description

• Return Values

• Errors

13.7.1.1 Name
tpgetcache - Get an Oracle Tuxedo Cache handle according to the configuration

13.7.1.2 Synopsis

#include "atmi.h"

TCACHE* tpgetcache(const char* name);

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs

13-21

13.7.1.3 Description
tpgetcache(3c) gets an Oracle Tuxedo cache handle according to Oracle Tuxedo
cache name, which indicates the name of Oracle Tuxedo cache to be retrieved. The
name must be 78 characters or less in length. tpgetcache(3c) is a thread-level API.
The return handle TCACHE can only be used in the same thread.

13.7.1.4 Return Values
Upon success, tpgetcache(3c) returns a handle typed TCACHE while is an internal
structure.

Upon failure, tpgetcache(3c) returns NULL and sets tperrno to indicate the error
condition. If a call fails with a particular tperrno value, a subsequent call to
tperrordetail(3c), with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the tperrordetail(3c) reference page
for more information.

13.7.1.5 Errors
[TPEINVAL]
Invalid arguments were given (for example, conf is NULL).

[TPENOENT]
The requested cache does not exist.

[TPETIME]
This error code indicates that a timeout has occurred

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is added
to the ULOG.

[TPEOS]
An operating system error has occurred.

[TPESVCFAIL]
The Oracle Tuxedo cache server meets an error. tpurcode contains the exact error
value. The possible values of tpurcode are list below:

TDC_ERR_CACHE_NOTEXIST
The error code indicates the requested Oracle Tuxedo cache does not exist.

TDC_ERR_CACHE_UNAVAIL
The error code indicates the requested Oracle Tuxedo cache is unavailable.

TDC_ERR_CACHENAME_INVALID
The error code indicates the requested Oracle Tuxedo cache is invalid.

13.7.2 tpcacheput(3c)
• Name

• Synopsis

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs

13-22

• Description

• Return Values

• Errors

13.7.2.1 Name
tpcacheput - put an Oracle Tuxedo typed buffer into a cache, associating that buffer with a
key

13.7.2.2 Synopsis

#include "atmi.h"
int tpcacheput(TCACHE* tc, char* key, char* data, long len, long flags);

13.7.2.3 Description
tpcacheput(3c) puts an Oracle Tuxedo typed buffer into a cache, associating that buffer with
a key. tc is returned by tpgetcache(3c). data points to the tuxedo typed buffer allocated by
tpalloc(3c). len is the length of the data. If the type of the data does not require a length to
be specified (for example, an FML fielded buffer), len is ignored (and may be 0). flags is
reserved and must be 0L.

13.7.2.4 Return Values
Upon success, tpcacheput(3c) returns 0.

Upon failure, tpcacheput(3c) returns -1 and sets tperrno to indicate the error condition. If a
call fails with a particular tperrno value, a subsequent call to tperrordetail(3c), with no
intermediate ATMI calls, may provide more detailed information about the generated error.
Refer to the tperrordetail(3c) reference page for more information.

13.7.2.5 Errors
[TPEINVAL]
Invalid arguments were given.

[TPENOENT]
The requested cache does not exist.

[TPETIME]
This error code indicates that a timeout has occurred

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is added to the
ULOG.

[TPEOS]
An operating system error has occurred.

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs

13-23

[TPESVCFAIL]
The Oracle Tuxedo cache server meets an error. tpurcode contains the exact error
value. The possible values of tpurcode are list below:

TDC_ERR_CACHE_NOTEXIST
The error code indicates the requested Oracle Tuxedo cache does not exist.

TDC_ERR_CACHE_UNAVAIL
The error code indicates the requested Oracle Tuxedo cache is unavailable.

TDC_ERR_CACHENAME_INVALID
The error code indicates the requested Oracle Tuxedo cache is invalid.

13.7.3 tpcacheget(3c)
• Name

• Synopsis

• Description

• Return Values

• Errors

13.7.3.1 Name
tpcacheget - get the Oracle Tuxedo typed buffer associated with the key from a cache

13.7.3.2 Synopsis

#include "atmi.h"
int tpcacheget(TCACHE* tc, char* key, char** odata, long* olen, long
flags);

13.7.3.3 Description
tpcacheget(3c) gets the Oracle Tuxedo typed buffer associated with the key from a
cache. tc is returned by tpgetcache(3c). odata is the address of a pointer to the
buffer where the data of the key is read into. It must point to a buffer originally
allocated by tpalloc(3c). olen points to the length of the data. flags is reserved and
must be 0L .

13.7.3.4 Return Values
Upon success, tpcacheget(3c) returns 0.

Upon failure, tpcacheget(3c) returns -1 and sets tperrno to indicate the error
condition. If a call fails with a particular tperrno value, a subsequent call to
tperrordetail(3c), with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the tperrordetail(3c) reference page
for more information.

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs

13-24

13.7.3.5 Errors
[TPEINVAL]
Invalid arguments were given.

[TPENOENT]
The requested cache does not exist.

[TPETIME]
This error code indicates that a timeout has occurred.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is added to the
ULOG.

[TPEOS]
An operating system error has occurred.

[TPESVCFAIL]
The Oracle Tuxedo cache server meets an error. tpurcode contains the exact error value.
The possible values of tpurcode are list below:

TDC_ERR_CACHE_NOTEXIST
The error code indicates the requested Oracle Tuxedo cache does not exist.

TDC_ERR_CACHE_UNAVAIL
The error code indicates the requested Oracle Tuxedo cache is unavailable.

TDC_ERR_CACHENAME_INVALID
The error code indicates the requested Oracle Tuxedo cache is invalid.

TDC_ERR_KEY_NOTEXIST
The error code indicates the requested entry does not exist according to the specified key.

13.7.4 tpcacheremove(3c)
• Name

• Synopsis

• Description

• Return Values

• Errors

13.7.4.1 Name
tpcacheremove - remove the cache entry associated with the parameter key from a cache

13.7.4.2 Synopsis

#include "atmi.h"
int tpcacheremove(TCACHE* tc, char* key, long flags);

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs

13-25

13.7.4.3 Description
tpcacheremove(3c) removes the cache entry associated with the parameter key from a
cache. tc is returned by tpgetcache(3c). flags is reserved and must be 0L.

13.7.4.4 Return Values
Upon success, tpcacheremove(3c) returns 0.

Upon failure, tpcacheremove(3c) returns -1 and sets tperrno to indicate the error
condition. If a call fails with a particular tperrno value, a subsequent call to
tperrordetail(3c), with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the tperrordetail(3c) reference page
for more information.

13.7.4.5 Errors
[TPEINVAL]
Invalid arguments were given.

[TPENOENT]
The requested cache does not exist.

[TPETIME]
This error code indicates that a timeout has occurred.

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is added
to the ULOG.

[TPEOS]
An operating system error has occurred.

[TPESVCFAIL]
The Oracle Tuxedo cache server meets an error. tpurcode contains the exact error
value. The possible values of tpurcode are list below:

TDC_ERR_CACHE_NOTEXIST
The error code indicates the requested Oracle Tuxedo cache does not exist.

TDC_ERR_CACHE_UNAVAIL
The error code indicates the requested Oracle Tuxedo cache is unavailable.

TDC_ERR_CACHENAME_INVALID
The error code indicates the requested Oracle Tuxedo cache is invalid.

13.7.5 tpcachemremove(3c)
• Name

• Synopsis

• Description

• Return Values

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs

13-26

• Errors

13.7.5.1 Name
tpcachemremove - remove cache entries associated with the parameter keyarray from a
cache

13.7.5.2 Synopsis

#include "atmi.h"
int tpcachemremove(TCACHE* tc, char* keyarray[], int size, long flags);

13.7.5.3 Description
tpcachemremove(3c) removes cache entries associated with the parameter keyarray from a
cache. tc is returned by tpgetcache(3c). keyarray is an array of keys to be removed. size
is the size of the keyarray. flags is reserved and must be 0L.

13.7.5.4 Return Values
Upon success, tpcachemremove(3c) returns 0.

Upon failure, tpcachemremove(3c) returns -1 and sets tperrno to indicate the error condition.
If a call fails with a particular tperrno value, a subsequent call to tperrordetail(3c), with no
intermediate ATMI calls, may provide more detailed information about the generated error.
Refer to the tperrordetail(3c) reference page for more information.

13.7.5.5 Errors
[TPEINVAL]
Invalid arguments were given.

[TPENOENT]
The requested cache does not exist.

[TPETIME]
This error code indicates that a timeout has occurred

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is added to the
ULOG.

[TPEOS]
An operating system error has occurred.

[TPESVCFAIL]
The Oracle Tuxedo cache server meets an error. tpurcode contains the exact error value.
The possible values of tpurcode are list below:

TDC_ERR_CACHE_NOTEXIST
The error code indicates the requested Oracle Tuxedo cache does not exist.

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs

13-27

TDC_ERR_CACHE_UNAVAIL
The error code indicates the requested Oracle Tuxedo cache is unavailable.

TDC_ERR_CACHENAME_INVALID
The error code indicates the requested Oracle Tuxedo cache is invalid.

13.7.6 tpcacheremoveall(3c)
• Name

• Synopsis

• Description

• Return Values

• Errors

13.7.6.1 Name
tpcacheremoveall - remove all cache entries from a cache

13.7.6.2 Synopsis

#include "atmi.h"
int tpcacheremoveall(TCACHE* tc, long flags);

13.7.6.3 Description
tpcacheremoveall(3c) removes all entries from a cache. tc is returned by
tpgetcache(3c). flags is reserved and must be 0L.

13.7.6.4 Return Values
Upon success, tpcacheremoveall(3c) returns 0.

Upon failure, tpcacheremoveall(3c) returns -1 and sets tperrno to indicate the error
condition. If a call fails with a particular tperrno value, a subsequent call to
tperrordetail(3c), with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the tperrordetail(3c) reference page
for more information.

13.7.6.5 Errors
[TPEINVAL]
Invalid arguments were given.

[TPENOENT]
The requested cache does not exist.

[TPETIME]
This error code indicates that a timeout has occurred.

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs

13-28

[TPESYSTEM]
An Oracle Tuxedo system error has occurred. The exact nature of the error is added to the
ULOG.

[TPEOS]
An operating system error has occurred.

[TPESVCFAIL]
The Oracle Tuxedo cache server meets an error. tpurcode contains the exact error value.
The possible values of tpurcode are list below:

TDC_ERR_CACHE_NOTEXIST
The error code indicates the requested Oracle Tuxedo cache does not exist.

TDC_ERR_CACHE_UNAVAIL
The error code indicates the requested Oracle Tuxedo cache is unavailable.

TDC_ERR_CACHENAME_INVALID
The error code indicates the requested Oracle Tuxedo cache is invalid.

13.8 Oracle Tuxedo Distributed Caching (TDC) Property File
Properties

Oracle Tuxedo TDC property file is a file in a simple line-oriented format.

Properties are processed in terms of lines. There are two kinds of line, natural lines and
logical lines.

A natural line is defined as a line of characters that is terminated either by a set of line
terminator characters (\\n or \\r or \\r\\n) or by the end of the stream. A natural line may
be either a blank line, a comment line, or hold all or some of a key-element pair.

A logical line holds all the data of a key-element pair, which may be spread out across
several adjacent natural lines by escaping the line terminator sequence with a backslash
character \\.

A natural line that contains only white space characters is considered blank and is ignored. A
comment line has an ASCII '#' or '!' as its first non-white space character; the key contains
all of the characters in the line starting with the first non-white space character and up to, but
not including, the first unescaped '=', ':'. Any white space after the key is skipped; if the
first non-white space character after the key is '=' or ':', then it is ignored and any white
space characters after it are also skipped. All remaining characters on the line become part of
the associated element string; if there are no remaining characters, the element is the empty
string "".

If there are several properties with the same key, the last property of them will be used.

The following table lists the supported TDC property file properties.

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Property File Properties

13-29

Table 13-2 Oracle Tuxedo Distributed Caching (TDC) Property File Properties

Property Description

options.enco
ding

Values can be:
• yes (all caching data must be encoded)

• no (default)

This value can be overridden by

cache.options.encode.[cachename]

.

cache.option
s.encoding.
[cachename]

yes indicates all caching data in Oracle Tuxedo cache [cachename] must be encoded. It should
be enabled when caching users are located in machines that have different data representation.
If this property is not set, options.encoding value is used.

coh.cache.na
me.
[cachename]

Indicates the used cache name in the Coherence cluster for the Oracle Tuxedo cache
[cachename].
This is necessary for TDC property file if Oracle Coherence is used for TDC.

Note:

[cachename] must be 78 characters or less in length.

13.9 Oracle Tuxedo Distributed Caching (TDC) Related
UBBCONFIG Parameters

13.10 UBBCONFIG SERVICES Section
Table 13-3 Oracle Tuxedo Distributed Caching (TDC) Related UBBCONFIG SERVICES Section
Parameters

Parameter Description

CACHING=string_v
alue(Mandatory)

Specifies the name of the caching criteria used for this service when caching the response.
The string_value must be the CACHING_CRITERIA_NAME defined in the CACHING
section. You must specify this parameter; otherwise, service caching is not be enabled. The
string_value must be 127 characters or less in length.

• UBBCONFIG CACHING Section

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related UBBCONFIG Parameters

13-30

13.10.1 UBBCONFIG CACHING Section

Table 13-4 Oracle Tuxedo Distributed Caching (TDC) Related UBBCONFIG Parameters

Parameter Description

CACHING_CRITERIA
_NAME
required_paramet
ers(Mandatory)

CACHING_CRITERIA_NAME (string_value) is the name assigned to the CACHING
parameter for a particular service entry in the SERVICES section.
CACHING_CRITERIA_NAME must be 127 characters or less in length.

CACHENAME=string
_value(Mandatory)

Specifies the name of Oracle Tuxedo cache to be used. string_value must be 78
characters or less in length.

KEY=string_value(
Optional)

Specifies how to compose the key associating the cached data. string_value must be
127 characters or less in length.
This parameter is optional. If not specified, the key is generated as a combination of the
service name and the serialized user data in the request. string_value can import the
built-in variables to compose key by $. The variable request indicates to use part of or
total user data in the request.

For example, mykey_$request indicates the key's format is mykey_servicename_[user
data in request].

KEY_BUFTYPE and KEY_FIELD parameters can help to specify which part of the user data
will be used.

KEY_BUFTYPE="typ
e1[:subtype1[,su
btype2 . . .]]
[;type2[:subtype
3[, . . .]]] .
. ."(Optional)

A list of types and subtypes of data buffers for which this caching entry is valid to use to
generate the key. This parameter can be up to 255 characters in length and a maximum of
32 type/subtype combinations.
The type must be one of the following: STRING, CARRAY, FML, FML32, XML, VIEW,
VIEW32, RECORD, MBSTRING, X_C_TYPE,or X_COMMON. No subtypes can be specified
for types STRING, CARRAY, FML, FML32, MBSTRING, or XML. Subtypes are required for
type VIEW, VIEW32, RECORD,X_C_TYPE,and X_COMMON (* is not allowed). Subtype name
must not contain semicolon, colon, comma, or asterisk characters. Duplicate type/subtype
pairs cannot be specified for the same caching criteria name; more than one caching entry
can have the same criteria name as long as the type/subtype pairs are unique. If multiple
buffer types are specified for a single caching entry, the data types of the caching field for
each buffer type must be the same.

STRING is used if this parameter is not specified.

This parameter is ignored if KEY is not set to request.

Chapter 13
UBBCONFIG SERVICES Section

13-31

Table 13-4 (Cont.) Oracle Tuxedo Distributed Caching (TDC) Related UBBCONFIG Parameters

Parameter Description

KEY_FIELD=
"field1[+field
2[+field3[+
¡]]]"

(Optional)

Specifies the name of the fields in the buffer used to generate the key. It must be 255
characters or less and a maximum of 8 fields are allowed.
Each field can be an XML element, element attribute, or field name in an FML field table
(using FLDTBLDIR and FIELDTBLS environment variables, or FLDTBLDIR32 and
FIELDTBLS32 environment variables), or an FML view table (using VIEWDIR and
VIEWFILES environment variables, or VIEWDIR32 and VIEWFILES32 environment
variables). This information is used to get the associated field value for service caching
when sending a message.

For XML element content or element attribute in the XML buffer, define the name of the
field with the following syntax:

root_element[/child_element][/child_element][/. . .]
[/@attribute_name]

The element name and attribute name combined may contain no more than 35 characters.
Oracle Tuxedo recognizes only the first occurrence of a given element type when
processing an XML buffer for service caching. XML strictly defines the set of characters
that may be used in an attribute name. An attribute name must be a string consisting of a
single letter, underscore, or colon followed by one or more name characters. Both element
names and attribute names are case-sensitive. See XML documentation for more
information.

If KEY_BUFTYPE is set to STRING or CARRAY, define the field with the following syntax:

[index1, index2]

Index1 indicates the beginning index of the field in the buffer and index2 indicates the
ending index of the field. The whole buffer is taken as the key if this parameter is not
defined. The index must be set from 1.

This parameter is ignored if KEYBUFTYPE is not set or KEY is not set to request.

13.11 Oracle Tuxedo Distributed Caching (TDC) Related
MIB Attributes

• T_SERVICE Class Definition

• T_CACHING Class Definition

13.11.1 T_SERVICE Class Definition

Table 13-5 Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes

Attribute Type Permission Values Default

TA_CACHING string rwxr--r-- string [0..127] ""

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes

13-32

TA_CACHING
This T_SERVICE object indicates the caching criteria name. Any updates on this attribute will
be reflected in all associated T_SVCGRP objects.

13.11.2 T_CACHING Class Definition
This T_CACHING class represents configuration attributes of caching specifications for an
application. These attribute values identify and characterize application caching criteria (such
as buffer types, field names and caching definitions).

Table 13-6 Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes

Attribute Type Permission Values Default

TA_CACHING_NAME(
r)(*)

string ru--r-- string[0..127] N/A

TA_CACHING_CACHE
NAME(r)

string rw-r--r-- string[1..78] N/A

TA_CACHING_KEY string rw-r--r-- string[0..127] ""
TA_CACHING_KEY_B
UFTYPE(*)

string ru--r-- string[0..255] "STRING"

TA_CACHING_KEY_F
IELD

string rw-r--r-- string[0..255] ""

TA_STATE(k) string rw-r--r-- GET: "VAL" N/A
SET: "{NEW |
INV}"

N/A

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes

13-33

Note:

• (k) GET key field

• (r) required field for object creation (SET TA_STATE NEW)

• (*) GET/SET key, one or more required for SET operations

• The specified u (uniqueness) permission means aht the combination of
TA_CACHING_NAME and TA_CACHING_KEY_BUFTYPE must be unique.

TA_CACHING_NAME: string[1..127]
Specifies the caching criteria name.

TA_CACHING_CACHENAME: string[1..78]
Specifies the name of the Oracle Tuxedo cache to be used.

TA_CACHING_KEY: string[0..127]
Specifies how to compose the key associating the cached data.

TA_CACHING_KEY_BUFTYPE: string[0..255]
Specifies a list of types and subtypes of data buffers for which this caching
entry is valid to use to generate the key. This parameter can be up to 255
characters in length and a maximum of 32 type/subtype combinations. The
type must be one of the following: STRING, CARRAY, FML, FML32, XML, VIEW,
VIEW32, RECORD, MBSTRING, X_C_TYPE, or X_COMMON. No subtypes can be
specified for types STRING, CARRAY, FML, FML32, MBSTRING, or XML. Subtypes
are required for type VIEW, VIEW32, RECORD, X_C_TYPE, and X_COMMON (* is
not allowed). Subtype name should not contain semicolon, colon, comma,
or asterisk characters. Duplicate type/subtype pairs cannot be specified for
the same routing caching criteria name; more than one routing caching
entry can have the same criteria name as long as the type/subtype pairs
are unique. If multiple buffer types are specified for a single caching entry,
the data types of the caching field for each buffer type must be the same.

TA_CACHING_KEY_FIELD: string[0..255]
Specifies the name of the fields in the buffer used to generate the key. It
must be 255 characters or less and a maximum of 8 fields are allowed.
Each field can be an XML element, element attribute, or field name in an
FML field table (using FLDTBLDIR and FIELDTBLS environment variables, or
FLDTBLDIR32 and FIELDTBLS32 environment variables), or an FML view
table (using VIEWDIR and VIEWFILES environment variables, or VIEWDIR32
and VIEWFILES32 environment variables). This information is used to get
the associated field value for service caching when sending a message.
For XML element content or element attribute in the XML buffer, define the
name of the field with the following syntax:

root_element[/child_element][/child_element][/. . .][/
@attribute_name]

The element name and attribute name combined may contain no more
than 35 characters. Oracle Tuxedo recognizes only the first occurrence of
a given element type when processing an XML buffer for service caching.

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes

13-34

XML strictly defines the set of characters that may be used in an attribute name.
An attribute name must be a string consisting of a single letter, underscore, or
colon followed by one or more name characters. Both element names and
attribute names are case-sensitive. See XML documentation for more
information. If KEY_BUFTYPE is set to STRING or CARRAY, define the field with the
following syntax:

[index1, index2]

Index1 indicates the beginning index of the field in the buffer and index2
indicates the ending index of the field. The whole buffer is taken as the key if this
parameter is not defined. The index should be set from 1.

TA_STATE

GET: "{VALid}"
A GET operation will retrieve configuration information for the selected
T_CACHING object(s). The following state indicates the meaning of a TA_STATE
returned in response to a GET request. States not listed will not be returned.
VALid: T_CACHING object is defined. Note that this is the only valid state for
this class.

SET: "{NEW | INValid}"
A SET operation will update configuration information for the selected
T_CACHING object. The following states indicate the meaning of a TA_STATE
set in a SET request. States not listed may not be set. NEW: Create T_CACHING
object for application. State change allowed only when in the INValid state.
Successful return leaves the object in the VALid state. INValid: Delete
T_CACHING object for application. State change allowed only when in the
VALid state. Successful return leaves the object in the INValid state.

Chapter 13
Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes

13-35

14
Workstation Clients

This topic includes the following sections:

• What Is the Workstation Component?

• Sample Application with Four Workstation Clients

• How the Workstation Client Connects to an Application

14.1 What Is the Workstation Component?
The Workstation component of the Oracle Tuxedo system allows application clients to reside
on a machine that does not have a full server-side installation, that is, a machine that does
not support any administration or application servers. All communication between the client
and the application servers takes place over the network.

A Workstation client process can run on a Windows XP or UNIX platform. The client has
access to the ATMI. The networking behind requests is transparent to the user. The
Workstation client registers with the system through a Workstation handler (WSH) and has
access to the same capabilities as a native client.

All communication between a Workstation client and application server is done through a
Workstation handler (WSH) process.

Workstation clients can perform almost all the same functions that can be performed by
network clients. They can, for example:

• Send and receive messages

• Begin, end, or commit transactions

• Send and receive unsolicited messages

• Take full advantage of any security mechanism offered to Oracle Tuxedo clients

14.2 Sample Application with Four Workstation Clients
The following figure shows an example of an application with four Workstation clients.

14-1

Figure 14-1 Bank Application with Four Workstation Clients

Chapter 14
Sample Application with Four Workstation Clients

14-2

Two workstation clients are running on a UNIX system; another two Workstation clients, on
Windows. All workstation clients initially joined the application through the Workstation
listener (WSL), which delegates subsequent communication to a Workstation handler. This
process differs from the process that occurs when native clients join an application: in the
latter case, the native clients attach directly to the bulletin board upon joining.

Administrative servers and application servers are located on SITE1 and SITE2. Any service
request by a Workstation client to the application is sent over the network to the WSH. This
process forwards the request to the appropriate server, gets a reply from the server, and
sends the reply to the Workstation client.

Note:

The term resource manager refers to an implementation of the XA standard
interfaces that provides transaction capabilities and permanence of actions for an
Oracle Tuxedo application. The most common example of a resource manager is a
database. A resource manager is accessed and controlled within a global
transaction.

However, the application is distributed across two machines in this example, it is running in MP
mode. The Workstation client sends a request to one Workstation handler, the Workstation
handler forwards the request to a BRIDGE process, and the BRIDGE process, in turn, forwards
the request to the correct machine.

14.3 How the Workstation Client Connects to an Application
The following flowchart shows how a Workstation client connects to an application.

Chapter 14
How the Workstation Client Connects to an Application

14-3

Figure 14-2 Workstation Client

Workstation Client
calls tpinit() or
tpchkauth()

tpinit() or
tpchkauth()

returns control to
application

Client connects to WSL
using known network
address

WSL assigns
appropriate WSH for
client

WSL returns address of
a WSH to the client

WSL connects to WSH

Performed by
Oracle Tuxedo
system on behalf
of the application

All communication
between the WSL and
the application takes
place through the WSH

Initiated with
tpchkauth()
or tpinit()

The client connects to the WSL process using a known network address. The process
for establishing this connection is initiated when the client calls tpchkauth() or
tpinit(). The WSL returns the address of a WSH to the client, and then notifies the
Workstation handler process of the connection request. The WSC connects to the
WSH. All further communication between the WSC and the application takes place
through the WSH.

Chapter 14
How the Workstation Client Connects to an Application

14-4

15
Setting Up Workstation Clients

This topic includes the following sections:

• Defining Workstation Clients

• Specifying the Maximum Number of Workstation Clients

• Defining a Workstation Listener (WSL) as a Server

• Detecting Network Failures

• Using the Keep-alive Option

• Using the Network Timeout Option

• Sample Configuration File that Supports Workstation Clients

15.1 Defining Workstation Clients
Before a Workstation client can join an Oracle Tuxedo application, the application
environment must be prepared to accommodate it. The Oracle Tuxedo system provides the
variables described in the following table table for setting up your environment. Two (TUXDIR
and WSNADDR) are required; the rest are optional. Defaults are available for all parameters
except WSENVFILE.

Table 15-1 Defining Workstation Clients

To Specify ... Set This
Environment
Variable ...

The application password. (Useful only for applications in which security is implemented through
password usage.) Clients that run from scripts can get the application password from this
variable.

APP_PW(Option
al)

Specifies the security principal name identification string to be used for authentication purposes
when SSL is initiated. This parameter may contain a maximum of 511 characters (excluding the
terminating NULL character).

SEC_PRINCIPA
L_NAME(Option
al)

Specifies the location of the file or device where the decryption (private) key for the principal
specified in SEC_PRINCIPAL_NAME resides. This parameter may contain a maximum of 1023
characters (excluding the terminating NULL character).

SEC_PRINCIPA
L_LOCATION(O
ptional)

Specifies the variable in which the password for the principal specified in SEC_PRINCIPAL_NAME
is stored. This parameter may contain a maximum of 31 characters (excluding the terminating
NULL character).

SEC_PRINCIPA
L_PASSWORD(O
ptional)

The maximum number of significant bits of the encryption key for link-level encryption. Value can
be 0 (if no encryption is used), or 40, 56, 128, or 256 (if the number specified is the number of
significant bits in the encryption key).

TMMAXENCRYPT
BITS(Optional)

The minimum number of significant bits of the encryption key for link-level encryption. Value can
be 0 (if no encryption is used), or 40, 56, 128, or 256 (if the number specified is the number of
significant bits in the encryption key).

TMMINENCRYPT
BITS(Optional)

The directory in which replies are stored when the WSRPLYMAX limit has been reached. The
default is the working directory.

TMPDIR(Option
al)

15-1

Table 15-1 (Cont.) Defining Workstation Clients

To Specify ... Set This
Environment
Variable ...

Specifies the code-set encoding name that the workstation machine includes in an allocated
MBSTRING typed buffer. TPMBENC has no default value. For a Workstation client using MBSTRING
typed buffers, TPMBENC must be defined on the workstation machine.

TPMBENC(Optio
nal)

Specifies whether the workstation machine automatically converts the data in a received
MBSTRING buffer to the encoding defined in TPMBENC. By default, the automatic conversion is
turned off, meaning that the data in the received MBSTRING buffer is delivered to the Workstation
client as is—no encoding conversion. Setting TPMBACONV to any value, say Y (yes), turns on the
automatic conversion.

TPMBACONV(Op
tional)

The location of the Oracle Tuxedo system software on this workstation. The client cannot connect
unless this environment variable is set.

TUXDIR(Requir
ed)

Specifies whether the workstation machine caches Document Type Definition (DTD), XML
schema, and entity files. By default, the caching is turned on (Y). Setting URLENTITYCACHING to
N (no) turns off the caching.

URLENTITYCAC
HING(Optional)

Specifies the directory in which the workstation machine caches DTD, schema, and entity files.
The URLENTITYCACHEDIR variable specifies the absolute pathname for the cached files. If
URLENTITYCACHEDIR is not specified, the default directory becomes URLEntityCachedir,
which will be created in the current working directory of the Workstation client process provided
that the appropriate write permissions are set.

URLENTITYCAC
HEDIR(Optional
)

The network device to be used. The default is an empty string. WSDEVICE(Opti
onal)

The name of the file in which all environment variables may be set. There is no default for this
variable.

WSENVFILE(Op
tional)

The network address used by the Workstation client when connecting to the Workstation listener
or Workstation handler. This variable, along with the WSFRANGE variable, determines the range of
TCP/IP ports to which a Workstation client attempts to bind before making an outbound
connection. This address must be a TCP/IP address.

WSFADDR(Optio
nal)

The range of TCP/IP ports to which a Workstation client process attempts to bind before making
an outbound connection. The WSFADDR parameter specifies the base address of the range.

WSFRANGE(Opti
onal)

A list of one or more network addresses of the WSL that the client wants to contact. This address
must match the address of a WSL process in the application configuration file.

WSNADDR(Requi
red)

The amount of core memory to be used for buffering application replies. The default is 256,000
bytes.

WSRPLYMAX
(Optional)

The machine type. If the value of WSTYPE matches the value of TYPE in the configuration file for
the WSL machine, no encoding/decoding is performed. The default is the empty string.

WSTYPE(Option
al)

15.2 Specifying the Maximum Number of Workstation
Clients

To enable Workstation clients to join an application, you must specify the
MAXWSCLIENTS parameter in the MACHINES section of the UBBCONFIG file.

MAXWSCLIENTS is the only parameter that has special significance for the Workstation
feature. MAXWSCLIENTS tells the Oracle Tuxedo system at boot time how many
accesser slots to reserve exclusively for Workstation clients. For native clients, each
accesser slot requires one semaphore. However, the Workstation handler process

Chapter 15
Specifying the Maximum Number of Workstation Clients

15-2

(executing on the native platform on behalf of Workstation clients) multiplexes Workstation
client accesses through a single accesser slot and, therefore, requires only one semaphore.
This capability is an additional benefit of the Workstation component. By putting more clients
on workstations instead of on the native platform, an application reduces its IPC resource
requirements.

MAXWSCLIENTS takes its specified number of accesser slots from the total set in MAXACCESSERS.
This is important to remember when specifying MAXWSCLIENTS; enough slots must be left to
accommodate native clients as well as servers. If you specify a value for MAXWSCLIENTS
greater than that of MAXACCESSERS, native clients and servers fail at tpinit() time. The
following table describes the MAXWSCLIENTS parameter.

Parameter Description

MAXWSCLIENTS Specifies the maximum number of WSCs that may connect to a machine.
The syntax is MAXWSCLIENTS=number . The default is 0.

If MAXWSCLIENTS is not specified, WSCs may not connect to the machine being described.

15.3 Defining a Workstation Listener (WSL) as a Server
Workstation clients access your application through a WSL process and one or more WSH
processes. The WSL can support multiple Workstation clients. It acts as the single point of
contact for all the Workstation clients connected to your application at the network address
specified on the WSL command line. The listener schedules work for one or more
Workstation handler processes.

A WSH process acts as a surrogate within the administrative domain of your application for
clients on remote workstations. The WSH uses a multiplexing scheme to support multiple
Workstation clients concurrently.

To join Workstation clients to an application, you must specify the Workstation listener (WSL)
processes in the SERVERS section of the UBBCONFIG file. Use the same syntax you use to
specify a server.

• Passing Information to a WSL Process

• Using Command-line Options Set with CLOPT

15.3.1 Passing Information to a WSL Process
To pass information to a WSL process, you can use the command-line option string, CLOPT.
The format of the CLOPT parameter is as follows:

CLOPT="[-A] [servopts_options] -- -n netaddr [-d device]
 [-w WSHname][-t timeout_factor][-T Client_timeout]
 [-m minh][-M maxh][-x mpx_factor]
 [-p minwshport][-P maxwshport]
 [-I init_timeout][-c compression_threshold]
 [-k compression_threshold]
 [-z bits][-Z bits][-H external_netaddr]
 [-N network_timeout][-K{client|handler|both|none}]"

The -A option requests that the WSL offer all its services when it is booted. This option is
included by default, but it is shown here to emphasize the distinction between system-

Chapter 15
Defining a Workstation Listener (WSL) as a Server

15-3

supplied servers and application servers. When application servers are booted, they
sometimes offer only a subset of their available services.

The double-dash (--) marks the beginning of a list of parameters that is passed to the
WSL after it has been booted.

15.3.2 Using Command-line Options Set with CLOPT
You can specify any of the following command-line options shown in the following table
in the CLOPT string after the double-dash string (--).

Table 15-2 Using Command-line Options Set with CLOPT

Use This
Command-line
Option...

To Specify...

-n netaddr
(Required)

The network address used by WSCs to contact the listener. The WSC must set the
appropriate environment variable (WSNADDR) to the value specified after -n.

[-d device]
(Required for some
transport interfaces)

Specify the network device name. This is an optional parameter because only some
transport interfaces require it. Sockets, for example, does not require this parameter.

[-t timeout] The amount of time to allow for a client to connect to the WSH.
To calculate the total amount of time to allow for this purpose, the system multiplies the
value of timeout by the value of the SCANUNIT parameter.

The default is 3 in a non-secure application, and 6 in a secure application. In this context
we refer to an application as secure if one of the following parameters is set:
• USER_AUTH
• ACL
• MANDATORY_ACL
• APP_PW

[-w name] The name of the WSH process that should be booted for this listener. The default is WSH,
which is the name of the handler provided. If another handler process is built with the
buildwsh(1) command, that name is specified here.

[-m number] The minimum number of handlers that should be booted and always available. The default
is 0.

[-M number] The maximum number of handlers that can be booted. The default is the value of
MAXWSCLIENTS for the machine being configured, divided by the multiplexing value
(specified with -x).

[-x number] The maximum number of clients that a WSH can multiplex at one time. The value must be
greater than 0. The default is 10.

[-T
client_timeout]

The amount of time (in minutes) that a client can remain idle without being disconnected. If
a client does not make any requests within this time period, the WSH disconnects the
client. If this argument is not given or is set to 0, the timeout is infinite.

[-p
minwshport]and [-
P maxwshport]

The range for port numbers available for use by WSHs associated with this listener server.
Port numbers must fall in the range between 0 and 65535. The default is 2048 for
minwshport and 65535 for maxwshport .

[-z] and [-z] The range of bits that can be used, on the WSL side, for link-level encryption: use -z to
specify the minimum number of bits, and -Z to specify the maximum number of bits.

[-N
network_timeout]

The minimum amount of time (in seconds) that a Workstation client is allowed to wait to
receive a response from the WSL/WSH. A value of 0 indicates no network timeout.

Chapter 15
Defining a Workstation Listener (WSL) as a Server

15-4

Table 15-2 (Cont.) Using Command-line Options Set with CLOPT

Use This
Command-line
Option...

To Specify...

[-K {client |
handler | both |
none}]

The viability of a network connection between the Workstation handler and a Workstation
client if no traffic has occurred over that connection within a specified period of time.

See Also:

• For a complete list of the CLOPT command-line options, see servopts(5) in the
File Formats, Data Descriptions, MIBs, and System Processes Reference.

15.4 Detecting Network Failures
The Workstation component provides two administrative options to WSL that enable you to
avoid hanging indefinitely when a network connection is lost. Specifically, these options allow
you to:

• Check client connections periodically (keep-alive option)

• Limit the amount of time that a client waits for a response from a WSH before dropping the
connection to that WSH (network timeout option)

15.5 Using the Keep-alive Option
Keep-alive is a networking operation that periodically checks the viability of a network
connection between the Workstation handler and a Workstation client if no traffic has
occurred over that connection within a specified period of time.

You can request the keep-alive option by adding the -K option to the WSL CLOPT entry in the
SERVERS section of the UBBCONFIG file. The -K option accepts the following arguments:
client, handler, both, or none.

The following table shows the keep-alive option.

Table 15-3 Using the Keep-alive Option

Use This
Option...

To...

-K client Generate keep-alive messages from the client machines. If the keep-alive message is not
acknowledged, the client machine considers the network down. Subsequent ATMI calls fail with a
tperrno of TPESYSTEM.

Chapter 15
Detecting Network Failures

15-5

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

Table 15-3 (Cont.) Using the Keep-alive Option

Use This
Option...

To...

-K handler Generate keep-alive messages from the handler machine. If the keep-alive message is not
acknowledged, the handler machine considers the network down. The handler then cleans up the
entry associated with the client that does not respond. This reduces the possibility that the
handler will exhaust the number of clients that a workstation can multiplex at one time (as
specified by -x) with stale clients.

-K both Generate keep-alive message from both the client and handler machines. The availability and
timeout thresholds for this component are determined by tunable parameters in the operating
system.

-K none Turn off the keep-alive option. Using this setting has the same effect as not specifying -K at all.

Your entry in the UBBCONFIG file must look like the following:

WSL SRVGRP="WSLGRP" SRVID=1000 RESTART=Y GRACE=0

CLOPT="-A -- -n //ws.beasys.com:5120 -d /dev/tcp -K both"

In the example, -K turns on keep-alive checking on both the Workstation client and the
server.

For details about the format of a WSL entry in UBBCONFIG, see WSL(5) in the File
Formats, Data Descriptions, MIBs, and System Processes Reference.

Note:

Any timeout period that you specify applies to the entire system. If you
specify a timeout with one application in mind, and you later change the
amount of time specified, all applications that use keep-alive are also
affected.

15.6 Using the Network Timeout Option
Network timeout is an option that lets you decide how long you are willing to wait for
an operation in a Workstation client before your request for that operation is canceled
(timed out) on a network.

You can request the network timeout function through an administrative option to the
WSL: -N. The -N option uses a network timeout to receive data in the Workstation client.

• How Network Timeout Works

• Limitations When Using the Network Timeout Option

• Setting the Network Timeout Option

15.6.1 How Network Timeout Works
The network timeout option establishes a waiting period (in seconds) for any Oracle
Tuxedo operation in the Workstation client that receives data from the network. If the

Chapter 15
Using the Network Timeout Option

15-6

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

period is exceeded, the operation fails and the client is disconnected from the application. A
value of 0 (the default) indicates no timeout.

Note:

Setting this value too low may cause too many disconnects.

Each ATMI function returns an error whenever a timeout occurs. When a link times out, the
application is notified. An existing error code is used. (Additional error detail on the specific
error can be retrieved by a call to tperrordetail(3c).) Once a network timeout occurs, the
status of outstanding operations is in doubt: transactions cannot be completed; incoming
replies can be lost, and so on. The only safe action is to terminate the connection to the
application by doing the equivalent of a tpterm(3c) without communicating with the WSH.

By the time the operation returns, the client is no longer part of the Oracle Tuxedo
application. The client can rejoin the application in either of two ways:

• By calling tpinit(3c)
• By using an implicit connection (if security is not configured)

15.6.2 Limitations When Using the Network Timeout Option
• Network timeout does not handle network send operations.

• If the value of the network timeout is less than the value of the transaction timeout or the
block time, then the client may be disconnected before the processing of the request is
complete.

• Network timeout disconnects the Workstation client after timeout even though the
connection may still be viabl

15.6.3 Setting the Network Timeout Option
To use the network timeout option in your Oracle Tuxedo application, add the -N option to the
WSL CLOPT argument.

15.7 Sample Configuration File that Supports Workstation
Clients

The following excerpt from a sample configuration file in the following Listing shows how you
can add the Workstation component to the bankapp application. It contains modifications to
the MACHINES and SERVERS sections.

Listing Sample UBBCONFIG File Supporting Workstation Clients

*MACHINES
SITE1
 ...
 MAXWSCLIENTS=150
 ...
SITE2

Chapter 15
Sample Configuration File that Supports Workstation Clients

15-7

 ...
 MAXWSCLIENTS=0
 ...
*SERVERS
 ...
WSL SRVGRP=”BANKB1" SRVID=500 RESTART=Y
 CLOPT=”-A -- -n //ws.oracle.com:5120 -m 5 -M 30 -x 5"
 ...

• Modifying the MACHINES and SERVERS Sections

15.7.1 Modifying the MACHINES and SERVERS Sections
The following changes are shown in the MACHINES and SERVERS sections:

• In the MACHINES section, the default for MAXWSCLIENTS is overridden in the entries
for two sites. For SITE1, the default is raised to 150, while it is lowered to 0 for
SITE2, because no Workstation clients will be connected to that site.

• In the SERVERS section, a WSL process is specified for group BANKB1. The WSL
has a server ID of 500 and it is marked as restartable.

• The command-line options show the following:

– The WSL will advertise all of its services (-A).

– The WSL will listen at network address //ws.oracle.com:5120 (-n).

– A minimum of five WSHs will be booted (-m).

– A maximum of 30 WSHs will be booted (-M).

– Each handler will be allowed a maximum of five clients connected at any one
time (-x).

Chapter 15
Sample Configuration File that Supports Workstation Clients

15-8

16
Managing Remote Oracle Tuxedo CORBA
Client Applications

This topic contains the following sections:

• Introduction to Managing Remote Oracle Tuxedo CORBA Client Applications

• CORBA Object Terminology

• Remote CORBA Client Overview

• Setting Environment Variables for Remote CORBA Clients

• Setting the Maximum Number of Remote CORBA Clients

• Configuring a Listener for a Remote CORBA Client

• Modifying the Configuration File to Support Remote CORBA Clients

• Configuring Outbound IIOP for Remote Joint Client/Servers

• Using the ISL Command to Configure Outbound IIOP Support

• Applying Service Version to Tuxedo Applications

16.1 Introduction to Managing Remote Oracle Tuxedo CORBA
Client Applications

This chapter explains how to configure connections from remote Oracle Tuxedo CORBA
client applications to CORBA objects via the standard Internet Inter-ORB Protocol (IIOP).
This chapter is specific to Oracle Tuxedo CORBA servers.

Note:

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client
ORB were deprecated since Tuxedo 8.1 and are no longer supported since Tuxedo
9.x. All Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client
ORB text references, associated code samples, etc. must only be used:

• to help implement/run third party Java ORB libraries, and

• for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their respective
vendors. Oracle Tuxedo does not provide any technical support or documentation for third
party CORBA Java ORBs.

This topic includes the following sections:

16-1

16.2 CORBA Object Terminology
The following terms are used in this chapter.

DLL
Dynamic Link Libraries. A DLL is a collection of functions grouped into a load module
that is dynamically linked with an executable program at run time for a Windows
application.

IIOP
Internet Inter-ORB Protocol (IIOP). IIOP is basically TCP/IP with some COBRA-
defined message exchanges that serve as a common backbone protocol.

ISH
IIOP Server Handler. This is a client process running on an application site that acts
as a surrogate on behalf of the remote client.

ISL
IIOP Server Listener. This is a server process running on an application site that
listens for remote clients requesting connection.

Server
A server hosted on a machine in an Oracle Tuxedo domain. An Oracle Tuxedo
CORBA server is built with the Oracle Tuxedo CORBA buildobjserver command.
CORBA Servers implement Oracle Tuxedo functionality, such as security,
transactions, and object state management. Servers can make invocations on any
server, inside or outside an Oracle Tuxedo domain.

Native Client
A client located within an Oracle Tuxedo domain, using the CORBA ORB to make
invocations on objects either inside or outside the Oracle Tuxedo domain. A native
client’s host contains the Oracle Tuxedo administrative and infrastructure
components, such as tmadmin, FactoryFinder, and ISL/ISH. Native clients use the
environmental objects to access CORBA objects. You build native C++ clients with the
buildobjclient command or native Java clients using the tools provided by the third-
party ORB.

Remote Client
A client not located within an Oracle Tuxedo domain. A remote client can use the
CORBA ORB to make invocations on objects either inside or outside the Oracle
Tuxedo domain. A remote client’s host does not contain Oracle Tuxedo administrative
and infrastructure components, such as tmadmin, FactoryFinder, and ISL/ISH; it does
contain supporting software (the CORBA ORB) that allows remote clients to invoke
objects. Remote clients use the environmental objects to access CORBA objects. You
build remote C++ clients with the buildobjclient command or remote Java clients
using the tools provided by the third-party ORB.

Native Joint Client/server
A process that has two purposes:

1. execute code acting as the starter for some business actions.

Chapter 16
CORBA Object Terminology

16-2

2. execute method code for invocations on objects. A joint client/server located within an
Oracle Tuxedo domain. You build native joint C++ client/servers with the
buildobjclient command. Java native joint client/servers are not supported.

Note:

The server role of the native joint client/server is considerably less robust than that
of a server. It has none of the Oracle Tuxedo CORBA administrative and
infrastructure components, such as tmadmin, FactoryFinder, and ISL/ISH (hence
none of Oracle Tuxedo’s scalability and reliability attributes), it does not use the
Oracle Tuxedo TP Framework, and it requires more direct interaction between the
client and the ORB.

Remote Joint Client/server
A process that has two purposes:

1. execute code acting as the starter for some business actions

2. execute method code for invocations on objects. A joint client/server located outside an
Oracle Tuxedo domain. The joint client/server does not use the Oracle Tuxedo TP
Framework and requires more direct interaction between the Client and the ORB. You
build remote joint C++ client/servers with the buildobjclient command or remote Java
client/servers using the tools provided by the third-party ORB.

Note:

A joint client/server is different from a server that acts as a client as part of its
server role. Once the server completes processing of an invocation, it returns to
dormancy. A joint client/server is always in the active mode, executing code not
related to a server role; the server role temporarily interrupts the active client role,
but the client role is always resumed.

The server role of the remote joint client/server is considerably less robust than that of a
server. Neither the client nor the server has any of the Oracle Tuxedo administrative and
infrastructure components, such as tmadmin, FactoryFinder, and ISL/ISH (hence, none of
Oracle Tuxedo’s scalability and reliability attributes).

Oracle Tuxedo CORBA object
A CORBA object that is implemented using TP Framework and that implements security,
transactions, and object state management. CORBA objects are implemented in Oracle
Tuxedo CORBA servers; that is, they are part of an Oracle Tuxedo domain and use the
Oracle Tuxedo infrastructure.

Callback Object
A CORBA object supplied as a parameter in a client’s invocation on a target object. The
target object can make invocations on the callback object either during the execution of the
target object or at some later time (even after the invocation on the target object has been
completed). A callback object might be located inside or outside an Oracle Tuxedo domain.

Chapter 16
CORBA Object Terminology

16-3

16.3 Remote CORBA Client Overview
In this section, the term “remote client” represents a CORBA client application that is
deployed on systems that do not have the full Oracle Tuxedo CORBA server software
installed. This means that no administration or application servers are running there
and that no bulletin board is present. All communication between the client and the
application takes place over the network.

The types of clients are:

• CORBA C++ client
A client process can run on UNIX or Microsoft Windows. The client has access to
the CORBA ORB interface. The networking behind the calls is transparent to the
user. The client process registers with the system and has the same status as a
native client.

The client can do the following:

• Invoke methods on remote CORBA objects

• Begin, roll back, or commit transactions

• Be required to pass application security

Note:

A client process communicates with the native domain through the ISH.

• Illustration of an Application with Remote CORBA Clients

• How the Remote Client Connects to an Application

16.3.1 Illustration of an Application with Remote CORBA Clients
The following figure shows an example of an application with remote clients
connected. Any request by a remote client to access the CORBA server application is
sent over the network to the ISH. This process sends the request to the appropriate
server and sends the reply back to the remote client.

Chapter 16
Remote CORBA Client Overview

16-4

Figure 16-1 Bank Application with Remote Clients

Oracle Tuxedo Domain

Client Application Server Application

Client Application

Client Application

Development Tools

Factory Finder

IIOP Listener/Handler

IIOP Listener/Handler

Transaction Coordinator

Interface Repository

Bootstrap Object Bootstrap Object

Bootstrap Object

Bootstrap Object

16.3.2 How the Remote Client Connects to an Application
The client connects to the ISL process in the IIOP Listener/Handler using a known network
address. This is initiated when the client calls the Bootstrap object constructor. The ISL
process uses a function that is specific to the operating system to pass the connection
directly to the selected ISH process. To the client application, there is only one connection.
The client application does not know, or need to know, that it is now connected to the ISH
process.

16.4 Setting Environment Variables for Remote CORBA Clients
For CORBA C++ clients, environment variables can be used to pass information to the
system, as follows:

• TUXDIR—the location of the Oracle Tuxedo CORBA client software on this remote client.
It must be set for the client to connect.

• TOBJADDR—the network address of the ISL that the client wants to contact. This must
match the address of an ISL process as specified in the application configuration file.

Chapter 16
Setting Environment Variables for Remote CORBA Clients

16-5

Note:

The network address that is specified by programmers in the Bootstrap
constructor or in TOBJADDR must exactly match the network address in the
server application’s UBBCONFIG file. The format of the address as well as the
capitalization must match. If the addresses do not match, the call to the
Bootstrap constructor will fail with a seemingly unrelated error message:

ERROR: Unofficial connection from client at
<tcp/ip address>/<port-number>:

For example, if the network address is specified as //TRIXIE:3500;TLSv1.2
in the ISL command line option string (in the server application’s UBBCONFIG
file), specifying either //192.12.4.6:3500;TLSv1.2 or //
trixie:3500;TLSv1.2 in the Bootstrap constructor or in TOBJADDR will cause
the connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to determine the
capitalization used. On Windows systems, see the host system's Network control
panel to determine the capitalization used. Or use the environment variable
COMPUTERNAME. For example:

echo %COMPUTERNAME%

16.5 Setting the Maximum Number of Remote CORBA
Clients

To join remote clients to an application, you must specify the MAXWSCLIENTS parameter
in the MACHINES section of the UBBCONFIG file.

MAXWSCLIENTS tells the Oracle Tuxedo system at boot time how many accesser slots to
reserve exclusively for remote clients. For native clients, each accesser slot requires
one semaphore. However, the ISH process (executing on the native platform on behalf
of remote clients) multiplexes remote client accessers through a single accesser slot
and, therefore, requires only one semaphore. This points out an additional benefit of
the remote extension. By putting more clients out on remote systems and taking them
off the native platform, an application reduces its IPC resource requirements.

MAXWSCLIENTS takes its specified number of accesser slots from the total set in
MAXACCESSERS. This is important to remember when specifying MAXWSCLIENTS; enough
slots must remain to accommodate native clients as well as servers. Do not specify a
value for MAXWSCLIENTS greater than MAXACCESSERS. The following table describes the
MAXWSCLIENTS parameter.

Parameter Description

MAXWSCLIENTS Specifies the maximum number of remote clients that may connect to a machine.
The default is 0. If a value is not specified, remote clients may not connect to the machine being
described.

The syntax is MAXWSCLIENTS=number.

Chapter 16
Setting the Maximum Number of Remote CORBA Clients

16-6

16.6 Configuring a Listener for a Remote CORBA Client
Remote clients access your application through the services of an ISL process and one or
more ISH processes. The ISL is specified in one entry as a server supplied by the <Default ?
Font>Oracle Tuxedo system. The ISL can support multiple remote clients and acts as the
single point of contact for all the remote clients connected to your application at the network
address specified on the ISL command line. The listener schedules work for one or more
remote handler processes. An ISH process acts as a surrogate within the administrative
domain of your application for remote clients on remote systems. The ISH uses a multiplexing
scheme to support multiple remote clients concurrently.

To join remote clients to an application, you must list the ISL processes in the SERVERS
section of the UBBCONFIG file. The processes follow the same syntax for listing any server.

• Format of the CLOPT Parameter

16.6.1 Format of the CLOPT Parameter
You use the following ISL command-line options (CLOPT) to pass information to the ISL
process for remote clients. The format of the CLOPTparameter is as follows:

ISL SRVGRP=”identifier”
 SRVID="number"
 CLOPT="[-A] [servopts options] -- -n netaddr
 [-C {detect|warn|none}]
 [-d device]
 [-K {client|handler|both|none}]
 [-m minh]
 [-M maxh]
 [-T client-timeout]
 [-x mpx-factor]
 [-H external-netaddr"

For a detailed description of the CLOPT command line options, see the ISL command in the
Oracle Tuxedo Command Reference

16.7 Modifying the Configuration File to Support Remote
CORBA Clients

The following Listing shows a sample UBBCONFIG file to support remote clients:

• The MACHINES section shows the default MAXWSCLIENTS as being overridden for two sites.
For SITE1, the default is raised to 150, while it is lowered to 0 for SITE2, which does not
have remote clients connected to it.

• The MACHINES section shows the default MAXWSCLIENTS as being overridden for two sites.
For SITE1, the default is raised to 150, while it is lowered to 0 for SITE2, which does not
have remote clients connected to it.

• The SERVERS section shows an ISL process listed for group BANKB1. Its server ID is 500
and it is marked as restartable.

Chapter 16
Configuring a Listener for a Remote CORBA Client

16-7

• The command line options show the following:

– The IIOP Listener/Handler will advertise all of its services (-A).

– The IIOP Listener/Handler will listen at host TRIXIE on port 2500.

– The network provider is /dev/tcp (-d).

– The minimum number of ISH processes to boot is 5 (-m).

– The maximum number of ISH processes to boot is 30 (-M).

– Each handler can have a maximum of 5 clients connected at any one time (-
x).

Listing Sample UBBCONFIG File Configuration

*MACHINES
SITE1
 ...
 MAXWSCLIENTS=150
 ...
SITE2
 ...
 MAXWSCLIENTS=0
 ...
*SERVERS
 ...
ISL SRVGRP=”BANKB1" SRVID=500 RESTART=Y
 CLOPT=”-A -- -n //TRIXIE:2500 -d /dev/tcp
 -m 5 -M 30 -x 5"
 ..

16.8 Configuring Outbound IIOP for Remote Joint Client/
Servers

Support for outbound IIOP provides native clients and servers acting as native clients
the ability to invoke on a remote object reference outside of the Oracle Tuxedo
domain. This means that calls can be invoked on remote clients that have registered
for callbacks, and objects in remote servers can be accessed.

Administrators are the only users who interact directly with the outbound IIOP support
components. Administrators are responsible for booting the ISLs with the correct
startup parameters to enable outbound IIOP to objects not located in a connected
client. Administrators may need to adjust the number of ISLs they boot and the various
startup parameters to obtain the best configuration for their installation’s specific
workload characteristics.

Administrators have the option of booting the ISLs with the default parameters.
However, the default Oracle Tuxedo ISL startup parameters do not enable use of
outbound IIOP.

Chapter 16
Configuring Outbound IIOP for Remote Joint Client/Servers

16-8

Note:

Outbound IIOP is not supported for transactions or security.

• Functional Description

16.8.1 Functional Description
Outbound IIOP support is required to support client callbacks. In Oracle WebLogic Enterprise
versions 4.0 and 4.1, the ISL/ISH was an inbound half-gateway. Outbound IIOP support adds
the outbound half-gateway to the ISL/ISH. (See the following figure.)

There are three types of outbound IIOP connections available, depending on the version of
GIOP supported by the native server and the remote joint client/server application:

• Bidirectional—outbound IIOP reusing the same connection (supported only for Oracle
WebLogic Enterprise release 4.2 or later C++ GIOP 1.2 servers, clients, and joint client/
servers)

• Asymmetric—outbound IIOP via a second connection (supported for GIOP 1.0, GIOP
1.1, and GIOP 1.2 servers, clients, and joint client/server applications)

• Dual-paired connection—outbound IIOP (supported for GIOP 1.0, GIOP 1.1, and GIOP
1.2 servers, clients, and joint client/server applications)

Note:

GIOP 1.2 is supported only by Oracle WebLogic Enterprise release 4.2 (and later)
and Oracle Tuxedo release 8.0 (and later) C++ clients, servers, and joint client/
servers. Oracle WebLogic Enterprise releases 4.0 and 4.1 C++ clients and servers
support GIOP versions 1.0 and 1.1, but not GIOP 1.2. Java clients, servers, and
joint client/servers only support GIOP 1.0.

Bi-directional and dual-paired connection outbound IIOP provides outbound IIOP to object
references located in joint client/servers connected to an ISH. Asymmetric outbound IIOP
provides outbound IIOP to object references not located in a joint client/server connected to
an ISH, and also allows Oracle Tuxedo CORBA clients to invoke on any object reference, not
only object references located in clients currently connected to an ISH.

Each type of outbound IIOP is described in more detail in the following sections.

Chapter 16
Configuring Outbound IIOP for Remote Joint Client/Servers

16-9

Figure 16-2 Joint Client/Server IIOP Connections Supported

• Bidirectional Outbound IIOP

• Asymmetric Outbound IIOP

• Dual-paired Connection Outbound IIOP

• How the Routing Code Finds an ISL

16.8.1.1 Bidirectional Outbound IIOP
With bidirectional outbound IIOP, the following operations are executed (see the
following figure):

1. A client creates an object reference and invokes on a Oracle Tuxedo CORBA
server. The client ORB identifies the connection as being bidirectional using the
service context. The service context travels with the message to the Oracle
Tuxedo CORBA server.

2. When unmarshaling the object reference, the Oracle Tuxedo CORBA server
compares the host/port in the service context with the host/port in the object
reference. If they match, the ORB adds the ISH client information needed for
routing to the ISH. This client information travels with the object reference
whenever it is passed to other Oracle Tuxedo CORBA servers.

3. At some point in time, an Oracle Tuxedo CORBA server or native client invokes on
the object reference, and the routing code invokes on the appropriate ISH, given
the client information.

Chapter 16
Configuring Outbound IIOP for Remote Joint Client/Servers

16-10

4. The ISH sends the request to the client over the same client connection.

5. The client executes the method and sends the reply back to the ISH via the client
connection.

6. The ISH receives the reply and sends it to the Oracle Tuxedo CORBA server.

Figure 16-3 Bidirectional Connection

16.8.1.2 Asymmetric Outbound IIOP
With asymmetric outbound IIOP, the following operations are executed (see the following
figure):

1. A server gets an object reference from some source. It could be a naming service, a
string_to_object, or it could be passed in through a client, but not located in that client.
Since the object reference is not located in a client connected to an ISH, the outgoing call
cannot be made using the bidirectional method. The Oracle Tuxedo CORBA server
invokes on the object reference.

2. On the first invoke, the routing code invokes a service in the ISL and passes in the host/
port.

3. The ISL selects an ISH to handle the outbound invoke and returns the ISH information to
the Oracle Tuxedo CORBA server.

4. The Oracle Tuxedo CORBA server invokes on the ISH.

5. The ISH determines which outgoing connection to use to send the request to the client. If
none is connected, the ISH creates a connection to the host/port.

Chapter 16
Configuring Outbound IIOP for Remote Joint Client/Servers

16-11

6. The client executes the method and sends the reply back to the ISH.

7. The ISH receives the reply and sends it to the Oracle Tuxedo CORBA server.

Figure 16-4 Asymmetric Outbound IIOP

16.8.1.3 Dual-paired Connection Outbound IIOP
With dual-paired connection outbound IIOP, the following operations are executed (see
the following figure):

1. A client creates an object reference and calls the Bootstrap function
(register_callback_port) and passes the object reference.

2. The ISH gets the host/port from the IOR and stores it with the client context.

3. The client invokes on an Oracle Tuxedo CORBA server and passes the object
reference. From the register_callback_port call, the ISH creates a service
context containing the host/port. The service context travels with the message to
the Oracle Tuxedo CORBA server.

4. When unmarshaling the object reference, the Oracle Tuxedo CORBA server
compares the host/port in the service context with the host/port in the object
reference. If they match, the ORB adds the ISH client information to the object
reference. This client information travels with the object reference whenever it is
passed to other Oracle Tuxedo CORBA servers.

5. At some point in time, an Oracle Tuxedo CORBA server or native client invokes on
the object reference. The routing code invokes on the appropriate ISH, passing the
client information.

6. The ISH creates a second connection to the client. It sends the request to the
client over the second connection.

Chapter 16
Configuring Outbound IIOP for Remote Joint Client/Servers

16-12

7. The client executes the method and sends the reply back to the ISH via the first client
connection.

8. The ISH receives the reply and sends it to the Oracle Tuxedo CORBA server. If the client
disconnects from the ISH, the second connection is also disconnected.

Figure 16-5 Dual-paired Connections Outbound IIOP

16.8.1.4 How the Routing Code Finds an ISL
The steps to finding an ISL are as follows:

1. A service is advertised in each ISL.

2. The routing code invokes on that service name.

3. Normal Oracle Tuxedo routing is used to find an ISL.

4. An idle ISL on the same machine is always chosen, if available. If not available,
NETLOAD ensures that a local ISL is chosen most often.

Note:

Some invokes may be made to ISLs on nonlocal machines.

Chapter 16
Configuring Outbound IIOP for Remote Joint Client/Servers

16-13

16.9 Using the ISL Command to Configure Outbound IIOP
Support

Outbound IIOP support is used when a native C++ or Java client, or a server acting as
a native client, invokes on an object reference that is a remote object reference. The
routing code recognizes that the object reference is from a non-Oracle Tuxedo
CORBA ORB or from a remote Oracle Tuxedo CORBA joint client/server.

• Types of Object References

• User Interface

16.9.1 Types of Object References
There are two kinds of remote object references:

• Object references created by Oracle Tuxedo CORBA remote joint client/servers
outside of the <Default ? Font>Oracle Tuxedo domain

• Object references created by other vendors’ servers.

Both are detected by the routing code and sent to the outbound IIOP support for
handling.

16.9.2 User Interface
The user interface to outbound IIOP support is the command line interface for booting
the ISL process(es). New command-line options to configure the outbound IIOP
processing were added to the ISL command in this release of the Oracle Tuxedo
software. These options enable support for asymmetric IIOP to object references not
located in clients connected to an ISH.

The ISL command syntax listed below shows the new options for outbound IIOP
support:

ISL SRVGRP="identifier"

 SRVID="number"
 CLOPT="[-A] [servopts options] -- -n netaddr
 [-C {detect|warn|none}]
 [-d device]
 [-K {client|handler|both|none}]
 [-m minh]
 [-M maxh]
 [-T Client-timeout]
 [-x mpx-factor]
 [-H external-netaddr]
#NEW options for outbound IIOP
 [-O]
 [-o outbound-max-connections]
 [-s Server-timeout]
 [-u out-mpx-users] "

Chapter 16
Using the ISL Command to Configure Outbound IIOP Support

16-14

For a detailed description of the CLOPT command-line options, see the ISL command in the
Oracle Tuxedo Command Reference.

16.10 Applying Service Version to Tuxedo Applications
• Overview

• Enabling and Disabling Application Service Versioning

• UBB Config File Application Service Version Configuration

• Domain Configuration File Application Service Version Configuration

16.10.1 Overview
It is common that the user wants to keep existing functionality but also want to add new
functionality into a service as time going. To reduce the compatible risk, it had better to
provide two different version services with the same service name, one for old functionality,
and one for new functionality. The old client can still use the existing functionality without any
code change while the new client can use the new functionality.

The application service version feature offer a configuration driven way which can be used by
Tuxedo customers to plan, develop, test, scale, and deploy their Tuxedo applications in each
stage. The user can use the version to partition current Tuxedo application into different
virtual application domains, different virtual machines, and different virtual server groups on
current Tuxedo management hierarchy. It provide a flexible method to let customers setup
their application zone according to a defined version (from this perspective, version can be
endowed a new meaning: logical partition identity) to respond all kinds of special business
access logic, and on the other hand customers can use version to solve some upgrading
requirements in non-stop mode and change the service business logic seamlessly for the end
users.

16.10.2 Enabling and Disabling Application Service Versioning
You can enable/disable the application service version feature in UBB configuration file or
through MIB.

• Enable/Disable Application Service Version Using UBB Config File

• Enable/Disable Application Service Versioning Using MIB

16.10.2.1 Enable/Disable Application Service Version Using UBB Config File
To enable the application service version, add the APPVER option to the OPTIONS parameter in
*RESOURCES section. For example:

*RESOURCES
OPTIONS APPVER, LAN

To disable the application service version, remove the APPVER option from the OPTIONS
parameter in *RESOURCES section. For example:

*RESOURCES
OPTIONS LAN

Chapter 16
Applying Service Version to Tuxedo Applications

16-15

Note:

If the application version is disabled, the user cannot configure the
application service version related configuration in the*RESOURCE and * GROUP
sections.

16.10.2.2 Enable/Disable Application Service Versioning Using MIB
To enable the application service versioning in MIB, add the APPVER option to
TA_OPTIONS in the T_DOMAIN class.

For example:

SRVCNM .TMIB
TA_OPERATION SET
TA_CLASS T_DOMAIN
TA_OPTIONS APPVER,LAN

To disable the application service versioning in MIB, remove the APPVER option from
TA_OPTIONS in the T_DOMAIN class.

For example:

SRVCNM .TMIB
TA_OPERATION SET
TA_CLASS T_DOMAIN
TA_OPTIONS LAN

Note:

Before disabling the application service versioning, you should remove the
application service versioning related options that were already configured in
MIB. For more information, see Resetting the User Configured Service
Version Information Using MIB.

16.10.3 UBB Config File Application Service Version Configuration
Three attributes (REQUEST_VERSION, VERSION_POLICY and VERSION_RANGE), are used in
configuration files to specify what version and what allowable version range in a
configured Tuxedo management entity. These three attributes can be configured in the
*GROUP and *RESOUCEsection of the UBB Config File as shown in the following figure.

For more information, see UBBCONFIG(5), Section 5 - File Formats, Data Descriptions,
MIBs, and System Processes Reference in the Oracle Tuxedo Reference Guide.

Listing UBB Config File Application Service Version Configuration

*RESOUCE
DOMAINID LOCALDOM
OPTIONS LAN,APPVER

Chapter 16
Applying Service Version to Tuxedo Applications

16-16

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

REQUEST_VERSION 1 VERSION_RANGE "1-2"
*GROUP
GRP1 GRPNO=1 REQUEST_VERSION=2 VERSION_POLICY="PROPAGATE"
GRP2 GRPNO=2 VERSION_RANGE="3-4"
GRP3 GRPNO=3 REQUEST_VERSION=3 VERSION_RANGE="1-3"
DMGRP GRPNO=4 LMID=SITE1
GWGRP GRPNO=5 LMID=SITE1
WSGRP GRPNO=6 LMID=SITE1 REQUEST_VERSION=4
JGRP GRPNO=7 LMID=SITE1 REQUEST_VERSION=3
*SERVER
SERVER1 SVRGRP=GRP1
SERVER2 SVRGRP=GRP2
SERVER3 SVRGRP=GRP3
DMADM SRVGRP=DMGRP
GWADM SRVGRP=GWGRP
GWTDOMAIN SRVGRP=GWGRP
WSL SRVGRP=WSGRP
JSL SRVGRP=JGRP

server1 advertises SVC2, SVC3. Because server1 belongs to GRP1, the REQUEST_VERSION of
the server1, SVC2, SVC3 is inherited from GRP1. The configured REQUEST_VERSION of the GRP1
is 2, so REQUEST_VERSION of the server1, SVC2, SVC3 is 2.

The VERSION_RANGE, VERSION_POLICY of SVC2, SVC3 are inherited from GRP1. There is no
configured VERSION_RANGE for GRP1, so it inherit from the *RESOURCE section, which is "1-2"

The VERSION_POLICY of SVC2, SVC3 are inherited from GRP1. The configured VERSION_POLICY
of GRP1 is PROPAGATE, so the VERSION_POLICY of SVC2, SVC3 is PROPAGATE.

server2 advertises SVC1, SVC2, SVC3. According to the same rule described for server1, the
REQUEST_VERSION of server2, SVC1, SVC2, SVC3 is1, the VERSION_RANGE of SVC1, SVC2, SVC3
are "3-4", the VERSION_POLICY of the SVC1, SVC2, SVC3 is non-PROPAGATE.

server3 advertises SVC1, SVC2. According to the same rule described for server1, the
REQUEST_VERSION of the server3, SVC1, SVC2 is 3, the VERSION_RANGE of SVC1, SVC2 are "1-3",
the VERSION_POLICY of the SVC1, SVC2 is non-PROPAGATE.

If a native client joins the application without specifying the group name, its REQUEST_VERSION
is 1.

If a native client joins the application with a specific group name, such as GRP3, its
REQUEST_VERSION is 3.

If a /WS client joins the application, its REQUEST_VERSION is determined by the WSL, whose
REQUEST_VERSION is 4 according to the UBB config file. So the REQUEST_VERSION of the /WS
client is 4.

If a JOLT client joins the application, its REQUEST_VERSION is determined by the JSL, whose
REQUEST_VERSION is 3 according to the UBB config file. So the REQUEST_VERSION of the /WS
client is 4.

Chapter 16
Applying Service Version to Tuxedo Applications

16-17

16.10.4 Domain Configuration File Application Service Version
Configuration

The following Listing shows a domain configuration file application service
configuration example.

Listing Domain Configuration File Application Service Version Configuration

*DM_LOCAL
LOCALDOM TYPE=TDOMAIN
DOMAINID="LOCALDOM"
*DM_REMOTE
REMOTEDOM1 TYPE=TDOMAIN
DOMAINID= "DOM1" MTYPE="Linux"
REMOTEDOM2 TYPE=TDOMAIN
DOMAINID= "DOM2" MTYPE="Linux"
REQUEST_VERSION=4
*DM_IMPORT
R_SVC1 RDOM= REMOTEDOM1 VERSION_RANGE="1-3"
R_SVC2 RDOM= REMOTEDOM2 VERSION_RANGE="4-6"
R_SVC3 RDOM= REMOTEDOM2

No REQUEST_VERSION is configured forREMOTEDOM1, so the domain gateway will
propagate the request version of all the requests come from REMOTEDOM1, i.e the
domain gateway will not change the incoming request version.

The REQUEST_VERSION of the REMOTEDOM2 is configured as 4, so the domain gateway
will change the request version of all the requests come from REMOTEDOM2 to 4.

TheLOCALDOM import R_SVC1 service from REMOTEDOM1 and specify the VERSION_RANGE
as "1-3". So the VERSION_RANGE of the R_SVC1 service in theLOCALDOM is "1-3".

The LOCALDOM import R_SVC2 service from REMOTEDOM2 and specify the VERSION_RANGE
as "4-6". So the VERSION_RANGE of the R_SVC2 service in the LOCALDOM is "4-6".

The LOCALDOM import R_SVC3 service without specified VERSION_RANGE. Because the
VERSION_RANGE of the imported service is still determined by VERSION_RANGE
configuration of the *GROUP and *RESOURCE, the VERSION_RANGE of the *RESOUCE is
"1-2", so the VERSION_RANGE of R_SVC3 is "1-2".

For more information, see UBB Config File Application Service Version Configuration.

• Version Based Routing

• Resetting the User Configured Service Version Information Using MIB

16.10.4.1 Version Based Routing
When the application service feature is enabled, the system dispatches the request to
the service according to both the service name and the version range of the service.
We call the this mechanism as Version Based Routing (VBR). When a service entry
matching the requested service name is found, the VBR is used to further routing
decision.

Chapter 16
Applying Service Version to Tuxedo Applications

16-18

VBR only does a simple numeric comparison using current request version number with the
two boundary values of version range. VBR return "no entry is found" error to the caller when
all of services with matching name are not allowable for this versioned request.

Tuxedo already offers several routing mechanisms: DDR (Data Dependent Routing), TAR
(Transaction Affinity Routing), and RAR (Request Affinity Routing). VBR (Version Based
Routing) is also a new routing mechanism that can owns same functions as these of existing
routing algorithms.

VBR can be used together with the other routing mechanisms; Tuxedo will choose the
services that match all criteria if there are multiple routing mechanisms. But the user had
better to understand how the interaction among these routing mechanisms if use them
together.

Suppose the configuration describe as above section.

1. If server3 needs to call SVC2 during its initialization period, The REQUEST_VERSION of
server3 is 3, the candidate services are:

Server1:SVC2 1-2
Server2:SVC2 3-4

So server3 will call Server2:SVC2.
2. If the native client need to call SVC3, the REQUEST_VERSION of the native client is 1, the

candidate services are:

Server1:SVC1 1-2
Server2:SVC1 3-4

Server2:SVC1 3-4So the native client will call Server1:SVC1
3. If Server1:SVC1 needs to call SVC3, the SVC1 will propagate the incoming

REQUEST_VERSION, in this case the incoming REQUEST_VERSION is 1, so the current
REQUEST_VERSION of Server1:SVC1 is 1, the candidate services are:

Server2:SVC3 3-4
Server3:SVC3 1-3

Server3:SVC3 1-3 So Server1:SVC1calls Server3:SVC3
4. If a request come from REMOTEDOM2, suppose the original REQUEST_VERSION is 6, then the

REQUEST_VERSION of the incoming request is changed to 4.

5. If a request comes from REMOTEDOM1, suppose the original REQUEST_VERSION is 2, then the
REQUEST_VERSION of the incoming request will still be 2.

16.10.4.2 Resetting the User Configured Service Version Information Using MIB
You can configure REQUEST_VERSION, VERSION_RANGE, and VERSION_POLICY in the *GROUPS or
*RESOURCES section of UBB config file. The low-level configuration overrides the high level-
configuration.

If there is no user-configured service version configuration at any level, the system uses the
default value. That causes the result very different for the user configured configuration and

Chapter 16
Applying Service Version to Tuxedo Applications

16-19

default value. If you modify the REQUEST_VERSION, VERSION_RANGE or VERSION_POLICY
using MIB, it is the user-configured service version configuration. It is necessary to
provide a method to reset this modification to the default value using MIB, otherwise
you cannot restore the UBB config file to its original state through MIB operation.

To reset the REQUEST_VERSION, VERSION_RANGE, and VERSION_POLICY to default value,
you just need to simply set value as DEFAULT.

For example, modify the REQUEST_VERSION in MIB as shown in the following Listing.

Listing Resetting the User Configured Service Version Information Using MIB

SRVCNM .TMIB
TA_OPERATION SET
TA_CLASS T_GROUP
TA_SRVGRP APPGRP1
TA_GRPNO 1
TA_CURLMID SITE1
TA_REQUEST_VERSION 4
Then the user reset the REQUEST_VERSION to default value through MIB:
SRVCNM .TMIB
TA_OPERATION SET
TA_CLASS T_GROUP
TA_SRVGRP APPGRP1
TA_GRPNO 1
TA_CURLMID SITE1
TA_REQUEST_VERSION DEFAULT

Chapter 16
Applying Service Version to Tuxedo Applications

16-20

17
Applying Service Version to Tuxedo
Applications

This topic contains the following sections:

• Overview

• Enabling and Disabling Application Service Versioning

• Application Service Version Configurations

• Version Based Routing

• Resetting the User Configured Service Version Information Using MIB

• Interoperability

17.1 Overview
It is common that the user wants to keep existing functionality but also want to add new
functionality into a service as time goes by. To reduce the compatible risk, it is better to
provide two different version services with the same service name, one for old functionality,
and the other for new functionality. The old client can still use the existing functionality without
changing any code while the new client can use the new functionality.

Application Service Versioning feature offer a configuration driven way which can be used by
Tuxedo customers to plan, develop, test, scale, and deploy their Tuxedo applications in each
stage. The user can use the version to partition current Tuxedo application into different
virtual application domains, different virtual machines, and different virtual server groups on
current Tuxedo management hierarchy, so as to respond to various of special business
access logics and on the other hand satisfy upgrading requirements in non-stop mode.

This feature supports for COBOL application and programming environment without requiring
special changes for COBOL environment.

This feature supports FORWARD queue only for /Q. With Application Service Versioning
enabled, when a client puts a message into FORWARD queue, the FORWARD queue forwards the
queued message to the service that supports the client request version.

17.2 Enabling and Disabling Application Service Versioning
You can enable/disable the application service versioning feature using UBB configuration file
or MIB.

• Enable/Disable Application Service Versioning Using UBB Config File

• Enable/Disable Application Service Versioning Using MIB

17-1

17.2.1 Enable/Disable Application Service Versioning Using UBB
Config File

To enable the application service versioning in UBB configuration file, add the APPVER
option to the OPTIONS parameter in *RESOURCES section.

For example:

*RESOURCES
OPTIONS APPVER, LAN

To disable the application service version in UBB configuration file, remove the APPVER
option from the OPTIONS parameter in *RESOURCES section.

For example:

*RESOURCES
OPTIONS LAN

Note:

If the application service versioning is disabled, you cannot configure the
application service versioning related attributes in *RESOURCE and *GROUP
sections.

17.2.2 Enable/Disable Application Service Versioning Using MIB
To enable the application service versioning in MIB, add the APPVER option to
TA_OPTIONS in the T_DOMAIN class.

For example:

SRVCNM .TMIB
TA_OPERATION SET
TA_CLASS T_DOMAIN
TA_OPTIONS APPVER,LAN

To disable the application service versioning in MIB, remove the APPVER option from
TA_OPTIONS in the T_DOMAIN class.

For example:

SRVCNM .TMIB
TA_OPERATION SET
TA_CLASS T_DOMAIN
TA_OPTIONS LAN

Chapter 17
Enabling and Disabling Application Service Versioning

17-2

Note:

Before disabling the application service versioning, you should remove the
application service versioning related options that were already configured in MIB.
For more information, see Resetting the User Configured Service Version
Information Using MIB.

17.3 Application Service Version Configurations
• UBB Config File Configuration

• Domain Config File Configuration

17.3.1 UBB Config File Configuration
Three attributes, REQUEST_VERSION, VERSION_POLICY, and VERSION_RANGE, are used in
configuration files to specify the version and acceptable version range in a configured Tuxedo
management entity. These three attributes can be configured in the *GROUPS and *RESOURCES
section of the UBB configuration file, as shown in the following Listing.

For more information, see UBBCONFIG(5) in Section 5 - File Formats, Data Descriptions,
MIBs, and System Processes Reference in the Oracle Tuxedo Reference Guide.

Listing UBB Config File Application Service Version Configuration

*RESOURCES
DOMAINID LOCALDOM
OPTIONS LAN,APPVER
REQUEST_VERSION 1 VERSION_RANGE "1-2"
*GROUPS
GRP1 GRPNO=1 REQUEST_VERSION=2
VERSION_POLICY="PROPAGATE"
GRP2 GRPNO=2 VERSION_RANGE="3-4"
GRP3 GRPNO=3 REQUEST_VERSION=3 VERSION_RANGE="1-3"
DMGRP GRPNO=4 LMID=SITE1
GWGRP GRPNO=5 LMID=SITE1
WSGRP GRPNO=6 LMID=SITE1 REQUEST_VERSION=4
JGRP GRPNO=7 LMID=SITE1 REQUEST_VERSION=3
*SERVERS
SERVER1 SVRGRP=GRP1
SERVER2 SVRGRP=GRP2
SERVER3 SVRGRP=GRP3
DMADM SRVGRP=DMGRP
GWADM SRVGRP=GWGRP
GWTDOMAIN SRVGRP=GWGRP
WSL SRVGRP=WSGRP
JSL SRVGRP=JGRP

Take the following Listing for an example, application service version has the following rules:

• A server inherits the REQUEST_VERSION attribute from the group it belongs to. When a
server advertises services, the services inherit version attributes from the group, to which

Chapter 17
Application Service Version Configurations

17-3

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

the server belongs. If there is no version attribute value specified to the group,
they will inherit upward from the attributes specified in *RESOURCES section. Based
on this rule:

– When server1 advertises SVC2 and SVC3, the REQUEST_VERSION,
VERSION_RANGE, and VERSION_POLICY of SVC2 and SVC3 are 2, “1-2”, and
PROPAGATE, respectively.

– When server2 advertises SVC1, SVC2, and SVC3 , the REQUEST_VERSION,
VERSION_RANGE, and VERSION_POLICY of SVC1, SVC2, and SVC3 are 1, “3-4”, and
non-PROPAGATE, respectively.

– When server3 advertises SVC1 and SVC2, the REQUEST_VERSION,
VERSION_RANGE, and VERSION_POLICY of SVC1 and SVC2 are 3, "1-3", and non-
PROPAGATE, respectively.

• If a native client joins the application without specifying the group name, its
REQUEST_VERSION is 1.

• If a native client joins the application with a specific group name, such as GRP3, its
REQUEST_VERSION is 3.

• If a /WS client joins the application, its REQUEST_VERSION is determined by the
WSL, whose REQUEST_VERSION is 4 according to the UBB config file. So the
REQUEST_VERSION of the /WS client is 4.

• If a JOLT client joins the application, its REQUEST_VERSION is determined by the
JSL, whose REQUEST_VERSION is 3 according to the UBB config file. So the
REQUEST_VERSION of the JOLT client is 3.

17.3.2 Domain Config File Configuration
The following Listing illustrates a domain configuration file application service version
configuration example.

Listing Domain Configuration File Application Service Version Configuration

*DM_LOCAL
LOCALDOM TYPE=TDOMAIN
DOMAINID="LOCALDOM"
*DM_REMOTE
REMOTEDOM1 TYPE=TDOMAIN
DOMAINID= "DOM1" MTYPE="Linux"
REMOTEDOM2 TYPE=TDOMAIN
DOMAINID= "DOM2" MTYPE="Linux"
REQUEST_VERSION=4
*DM_IMPORT
R_SVC1 RDOM= REMOTEDOM1 VERSION_RANGE="1-3"
R_SVC2 RDOM= REMOTEDOM2 VERSION_RANGE="4-6"
R_SVC3 RDOM= REMOTEDOM2

From the following Listing, the application service version are configured as follows:

• No REQUEST_VERSION is configured to REMOTEDOM1. Therefore the domain gateway
will propagate the request version of all the requests come from REMOTEDOM1
without changing the incoming request version.

Chapter 17
Application Service Version Configurations

17-4

• The REQUEST_VERSION of the REMOTEDOM2 is configured to 4. Therefore the domain
gateway will change the request version of all the requests come from REMOTEDOM2 to 4.

• The LOCALDOM imports R_SVC1 service from REMOTEDOM1 and specifies the VERSION_RANGE
to "1-3". Therefore the VERSION_RANGE of the R_SVC1 service in the LOCALDOM is " 1-3 ".

• The LOCALDOM imports R_SVC2 service from REMOTEDOM2 and specifies the VERSION_RANGE
to "4-6". Therefore the VERSION_RANGE of the R_SVC2 service in the LOCALDOM is " 4-6 ".

• The LOCALDOM imports R_SVC3 service without specifying VERSION_RANGE. Because
the VERSION_RANGE of the imported service is still determined by VERSION_RANGE
configuration of the *GROUPS and *RESOURCES, the VERSION_RANGE of the *RESOURCES is
"1-2", and the VERSION_RANGE of R_SVC3 is "1-2".

For more information, see UBB Config File Configuration.

17.4 Version Based Routing
When the application service versioning feature is enabled, the system dispatches the
requests to the service according to both the service name and service version range. We
call this mechanism Version Based Routing (VBR). When a service entry matching the
requested service name is found, VBR is used for further routing decision.

VBR only does a simple numeric comparison using the current request version number with
two boundary values of version range. VBR returns "no entry is found" error to the caller
when all the services with the matching name are not allowable for this versioned request.

As a routing mechanism, VBR functions the same as the existing routing mechanisms, like
DDR (Data Dependent Routing), TAR (Transaction Affinity Routing), and RAR (Request
Affinity Routing).

VBR can work with other routing mechanisms. Oracle Tuxedo chooses the services that
match all criteria if there are multiple routing mechanisms. It is recommended you are clear
about the interoperability among these routing mechanisms before using them together.

Using the following listing as an illustration:

• Suppose server3 needs to call SVC2 during the initializing period, so the candidate
services are:

Server1:SVC2 1-2
Server2:SVC2 3-4

Since the REQUEST_VERSION of server3 configured in the following Listing is 3, the
server3 will call Server2:SVC2.

• Suppose the native client needs to call SVC3, so the candidate services are:

Server1:SVC3 1-2
Server2:SVC3 3-4

Since the REQUEST_VERSION of the native client configured in the following Listing is 1, the
native client will call Server1:SVC3

• Since the REQUEST_VERSION of the native client configured in the following Listing is 1, the
native client will call Server1:SVC3

Chapter 17
Version Based Routing

17-5

• Suppose the native client calls Server1:SVC1 and Server1:SVC1 needs to call
SVC3, so the candidate services are:

Server2:SVC3 3-4
Server3:SVC3 1-3

As configured in the following Listing, the Server1:SVC1 will propagate the
incoming REQUEST_VERSION which is 1, as a result the REQUEST_VERSION of
Server1:SVC1 will become to 1, rather than its own REQUEST_VERSION 2, therefore
the Server1:SVC1 will call Server3:SVC3

• If a request comes from REMOTEDOM2, suppose the original REQUEST_VERSION is 6,
then the REQUEST_VERSION of the incoming request is changed to 4.

• If a request comes from REMOTEDOM1, suppose the original REQUEST_VERSION is 2,
then the REQUEST_VERSION of the incoming request is still 2.

17.5 Resetting the User Configured Service Version
Information Using MIB

You can configure REQUEST_VERSION, VERSION_RANGE, and VERSION_POLICY in the
*GROUPS or *RESOURCES section of UBB config file. The low-level configuration
overrides the high level-configuration.

If there is no user-configured service version configuration at any level, the system
uses the default value. That causes the result very different for the user configured
configuration and default value. If you modify the REQUEST_VERSION, VERSION_RANGE or
VERSION_POLICY using MIB, it is the user-configured service version configuration. It is
necessary to provide a method to reset this modification to the default value using
MIB, otherwise you cannot restore the UBB config file to its original state through MIB
operation.

To reset the REQUEST_VERSION, VERSION_RANGE, and VERSION_POLICY to default value,
you just need to simply set value as DEFAULT.

For example, modify the REQUEST_VERSION in MIB as shown in the following Listing.

Listing Resetting the User Configured Service Version Information Using MIB

SRVCNM .TMIB
TA_OPERATION SET
TA_CLASS T_GROUP
TA_SRVGRP APPGRP1
TA_GRPNO 1
TA_CURLMID SITE1
TA_REQUEST_VERSION 4
Then the user reset the REQUEST_VERSION to default value through MIB:
SRVCNM .TMIB
TA_OPERATION SET
TA_CLASS T_GROUP
TA_SRVGRP APPGRP1
TA_GRPNO 1

Chapter 17
Resetting the User Configured Service Version Information Using MIB

17-6

TA_CURLMID SITE1
TA_REQUEST_VERSION DEFAULT

17.6 Interoperability
You can control how the JCA/WTC/old Tuxedo domain interoperates with the new Tuxedo
domain using the domain configuration file, as follows:

• Control the requests coming from JCA/WTC/old Tuxedo domain by setting the
REQUEST_VERSION and VERSION_POLICY attributes in the DM_REMOTE section

• Control the requests going to JCA/WTC/old Tuxedo domain by setting VERSION_RANGE in
the DM_IMPORT section.

If the request coming from the old Tuxedo domain enters in the Tuxedo 12c domain which
has no REQUEST_VERSION configured for the corresponding remote domain, the request
version is changed to 0.

The default request version is 0-65535, which means the new domain can call all the
imported service from JCA/WTC/old Tuxedo domain by default.

In MP environment, if a local client runs on a machine that is installed the old version Tuxedo,
the client can call any version service because there is no version control for the old version
Tuxedo.

Likewise, for the /WS or Jolt client connecting to an old version WSL or JSL server, there is
no version control for them.

Chapter 17
Interoperability

17-7

18
Oracle Tuxedo Applications Packing and
Deployment

This topic contains the following sections:

• Overview

• How to Deploy/Undeploy Tuxedo Applications

18.1 Overview
This feature provides a centralized control platform to allow users to automatically deploy/
undeploy one Tuxedo application (domain) on different remote machines using a set of new
commands on the master node of domain. Deployment process typically contains several
steps: application packages distribution, Tuxedo system environment setup, Tuxedo
configuration, Tuxedo system booting and so on.

• Components

• Constraints

18.1.1 Components
This feature contains the following main components:

• Application Packages Repository

• Deployment Repository

• New-added Tuxedo commands tmcrdom and tmdeldom
• Enhanced Tuxedo tlisten daemon.

The relationship among these components is illustrated in the following figure:

18-1

Figure 18-1 Applications Packaging and Deployment Component Relationship

Application Packages Repository
It is a place in NFS (Network File System). Users need to maintain (add/delete) their
Application Packages in this place by themselves. This place can be accessed by all
the compute nodes which will be deployed the Tuxedo Application to.

Deployment Repository
It is a place in NFS (Network File System). This feature will maintain all the domains'
information generated by this feature itself in this place. This place can be accessed
by all the compute nodes which will be deployed the Tuxedo Application to.

Chapter 18
Overview

18-2

New-added Tuxedo Commands
Two new added Tuxedo commands, which are responsible for creating domain, configuring
domain, connecting with tlisten to do the deployment tasks and so on.

Enhanced tlisten daemon
This daemon will do the real deployment tasks on every compute node once it receives the
Tuxedo deployment command notification.

To use this feature, first, the users need to allocate two big enough disk space or something
like this to act as the Application Packages Repository and Deployment Repository on the
NFS. And make sure the two places are accessible by all the Tuxedo System such as its new
added commands, tlisten and so on. Second, the Tuxedo System must have been installed
on every compute node which the Tuxedo Application will be deployed to. Last, you need to
start up tlisten on every compute nodes. All the Tuxedo servers' running dependent libraries,
such as Data Base client libraries, are not in this feature's deployment scope, it needs the
customers themselves to assure their availabilities.

18.1.2 Constraints
This feature doesn't support to deploy machine level ENVFILE (which is specified in
UBBCONFIG MACHINES section by ENVFILE parameter), groups level ENVFILE, servers
level ENVFILE, servers level RCMD file to other directories than APPDIR.

The JAVA JDK has been installed on the master node on which will run the tmcrdom
command.

18.2 How to Deploy/Undeploy Tuxedo Applications
• Introduction to Application Package Organization and Contents

• Uploading/Deleting an Application Package

• Creating and Deploying a Domain

• Undeploying a Domain

18.2.1 Introduction to Application Package Organization and Contents
A Tuxedo application (domain), as defined in a TUXCONFIG (UBBCONFIG) configuration
file, is the set of machines, groups, servers, and other resources. It can exist on a single
machine or cross multiple network-connected machines. For this feature, to deploy the whole
Tuxedo application, users need to add their Application Packages to the Application
Packages Repository by themselves first. One Application Package is an entity which holds
all the binary or non-binary files referenced by one or more groups defined in a UBBCONFIG
file. That means, every Application Package is mapped to one or more groups defined in a
UBBCONFIG file, and all these groups must belong to the same machine in UBBCONFIG.
So a Tuxedo application can consist of one or more application packages. Also every
Application Package can be repeatedly deployed to one or more domains.

The application package is a user generated .zip file and can have several tiers in it. For
example:

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-3

Figure 18-2 Application Package

Every Application Package is required to contain a file named "Properties.xml" in
Tier1. This file is a group level's part UBBCONFIG file. It contains some properties in
GROUPS, RMS, SERVERS, and SERVICES sections of a complete UBBCONFIG file and is
mainly used to describe the relationship and parameters of all the servers within this
package's groups. The Properties.xml file will be used to generate the ultimate
UBBCONFIG file when decide to deploy this package to a machine using tmcrdom
and its content can be modified in the according deployment plan.

All the items in the GROUPS, RMS, SERVERS, SERVICES section of UBBCONFIG are
divided into four categories:

Mandatory and Changeable
It is a kind of index value. The user must fill it in the Properties.xml file, but it will be
replaced by the value specified in the deployment plan when using tmcrdom
command.

Optional and Unchangeable
If needed, it must be filled by the user in the Properties.xml file. And it will not allow to
modify it when assemble the UBBCONFIG. That means, this kind of parameter can
only appear in the Properties.xml if needed, and can not appear in the deployment
plan.

Mandatory and Unchangeable
It must be filled by the user in the Properties file, and its value will not be modified
when assemble the UBBCONFIG.

Forbidden
It can't be filled in the Application Packages' Properties.xml file. The user will fill it in
the deployment plan when assemble the UBBCONFIG if needed.

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-4

Table 18-1 GROUPS Section Properties

GROUPS Section

Items Category

GROUPNAME Mandatory and Changeable

GRPNO = number Mandatory and Changeable

LMID = string_value1 [,string_value2] Forbidden

ENVFILE = string_value Optional and Unchangeable ENVFILE must be a relative
path of application package, tmcrdom will add absolute
path to it

TMSNAME = string_value Optional and Unchangeable

MRM = {Y | N} Optional and Unchangeable

SIGNATURE_REQUIRED = {Y | N} Optional and Unchangeable

ENCRYPTION_REQUIRED = {Y | N} Optional and Unchangeable

OPENINFO = string_value Forbidden

CLOSEINFO = string_value Forbidden

TMSCOUNT = number Forbidden

SEC_PRINCIPAL_NAME = string_value Forbidden

SEC_PRINCIPAL_LOCATION = string_value Forbidden

SEC_PRINCIPAL_PASSVAR = string_value Forbidden

REQUEST_VERSION Forbidden

VERSION_RANGE Forbidden

VERSION_POLICY Forbidden

Table 18-2 RMS Section Properties

RMS Section

Item Category

RMSNAME Mandatory and Changeable

RMID = number Mandatory and Changeable

TMSNAME = string_value Optional and Unchangeable

OPENINFO = string_value Forbidden

CLOSEINFO = string_value Forbidden

TMSCOUNT = number Forbidden

AUTO = {Y | N} Forbidden

SRVGRP Forbidden

Table 18-3 SERVERS Section Properties

SERVERS Section

Item Category

SRVID = number Mandatory and Changeable

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-5

Table 18-3 (Cont.) SERVERS Section Properties

SERVERS Section

Item Category

AOUT Mandatory and Unchangeable. It must be a relative path
of application package, tmcrdom will add absolute path
to it.

ENVFILE = string_value Optional and Unchangeable. It must be a relative path of
application package, tmcrdom will add absolute path to
it.

RCMD = string_value Optional and Unchangeable. It must be a relative path of
application package, tmcrdom will add absolute path to
it.

CONV = {Y | N} Optional and Unchangeable

CLOPT = string_value Forbidden

SEQUENCE = number Forbidden

RQADDR = string_value Forbidden

MIN = number Forbidden

MAX = number Forbidden

RQPERM = number Forbidden

REPLYQ = {Y | N} Forbidden

RPPERM = number Forbidden

MAXGEN = number Forbidden

GRACE = number Forbidden

RESTART = {Y | N} Forbidden

SYSTEM_ACCESS = identifier[,identifier] Forbidden

MAXDISPATCHTHREADS = number Forbidden

MINDISPATCHTHREADS = number Forbidden

THREADSTACKSIZE = number Forbidden

SEC_PRINCIPAL_NAME = string_value Forbidden

SEC_PRINCIPAL_LOCATION = string_value Forbidden

SEC_PRINCIPAL_PASSVAR = string_value Forbidden

SICACHEENTRIESMAX = string_value Forbidden

CONCURR_STRATEGY=PER_REQUEST Forbidden

CONCURR_STRATEGY = PER_OBJECT Forbidden

Table 18-4 SERVICES Section Properties

SERVICES Section

Item Category

SVCNM Forbidden

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-6

Table 18-4 (Cont.) SERVICES Section Properties

SERVICES Section

Item Category

BUFTYPE =
"type1[:subtype1[,subtype2 . . .]]
[;type2[:subtype3[, . . .]]] . . ."

Forbidden

SIGNATURE_REQUIRED = {Y | N} Forbidden

ENCRYPTION_REQUIRED = {Y | N} Forbidden

LOAD = number Forbidden

PRIO = number Forbidden

BUFTYPECONV = {XML2FML | XML2FML32} Optional and Unchangeable

BLOCKTIME numeric_value Forbidden

SVCTIMEOUT = number Forbidden

SESSIONROLE Forbidden

AFFINITYSCOPE Forbidden

AFFINITYSTRICT Forbidden

AUTOTRAN = {Y | N} Forbidden

ROUTING = string_value Forbidden

TRANTIME = number Forbidden

In the Properties.xml file, users must assure all the parameters' references are valid. For
example, the GROUP which is indicated by SRVGRP in the SERVICES section must have already
been defined in this Properties.xml file's GROUPS section or it will report error when system
generates the UBBCONFIG.

Besides the items of the GROUPS, RMS, SERVERS, SERVICES section of UBBCONFIG in
Properties.xml, this file also contains some package global attributes at the beginning:

Table 18-5 Description Information of the Package

Item Category

PackageName The global unique application package name, for
example, APP1.zip.

TuxedoVersion The Tuxedo version this package is built on. This item is
checked when assembling Tuxedo domain to decide if
the package is suitable for certain Tuxedo installation.

SupportedOS The Operation System this package can be deployed to.
This information is compared with the corresponding
item in Machine list entry when deploying the package.
The possible values are Linux, SunOS, AIX, and HP-UX.

TuxedoWordSize The Tuxedo word size this package is built on. The value
can be 32 or 64 (bit). This information is compared with
the corresponding item in Machine list entry when
deploying the package.

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-7

Table 18-5 (Cont.) Description Information of the Package

Item Category

MachineArch The machine architecture this package can apply to.
The possible values are: x86_64, SUNW, powerpc, and
IA64. This information is compared with the
corresponding item in Machine list when deploying the
package.

LibPath The path where the library locates in the package, if
there is a library in it.

Actually the values of these package global attributes will not be checked by Tuxedo
tmcrdom/tmdeldom commands. The reason to keep these values in the Properties.xml
is that, the contents requirement of the Application Package are the same with the
similar Tuxedo EM function. So we suggest you to fill these values as the table
described, then when you want to use the Tuxedo EM deploy/undeploy function, you
can use these packages directly without any change.

For more information, please refer to Properties.xml Schema.

18.2.2 Uploading/Deleting an Application Package
User can add/delete the Application Packages to/from the Application Package
Repository freely by themselves. That means it's the users' duty to maintain the
Application Packages Repository.

18.2.3 Creating and Deploying a Domain
Users need to use tmcrdom to create and deploy the domain. This command must be
run on the master node of the domain which will be created by this command.

Before running this command, the customer need to export their JAVA_HOME and
JVMLIBS environment.

The command syntax is:

tmcrdom -d "domain_name" -f "deployment_plan"

Where:

• "domain_name" will be checked. If the domain has already existed in the
Deployment Repository, it will report error, or it will create this domain in the
repository.

• "deployment_plan" is a text file. This feature assumes that it has already been
created by the customer before invoking this command. It contains the deployment
information needed by this domain. It can be specified in the command as an
absolute path or relative path on the master node. Its format is similar to
UBBCONFIG.

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-8

http://docs.oracle.com/cd/E72452_01/tsam/docs1222/ref/emref.html#1117061

Note:

In some scenarios, although tmcrdom execution fails, it actually has created a
domain in the Deployment Repository, thus if you create the domain again you will
receive an error message saying the domain already exists. To solve this, you need
to delete the domain using the tmdeldom command with -f option before you can
create the domain.

• deployment_plan

18.2.3.1 deployment_plan
A deployment_plan file is made up of nine possible specification sections. Allowable section
names are:

• RESOUCES Section

• MACHINES Section

• GROUPS Section

• RMS Section

• NETGROUPS Section

• NETWORK Section

• SERVERS Section

• ROUTING

• SERVICES Section

18.2.3.1.1 RESOUCES Section
Required parameters are:

IPCKEY numeric_value
Refer to the same parameter in UBBCONFIG.

MASTER string_value1[,string_value2]
Refer to the same parameter in UBBCONFIG.

MODEL {SHM | MP}
Refer to the same parameter in UBBCONFIG.

APPREPOSITORY string_value
It specifies the repository path which the Application Packages will be put on. This parameter
is required. The place which is specified by this parameter must be NFS accessible. The
string length can't be larger than 256. It must be an absolute path.

DEPREPOSITORY string_value
It specifies the repository path which all the domain deployment information will be put. This
parameter is required. The place which is specified by this parameter must be NFS
accessible. The string length can't be larger than 256. It must be an absolute path.

All other parameters are same as RESOURCES section parameters in UBBCONFIG.

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-9

See Also:

For more information on the UBBCONFIG refer to Section 5 - File Formats,
Data Descriptions, MIBs, and System Processes Reference

18.2.3.1.2 MACHINES Section
It's same as the UBBCONFIG's MACHINES section. It must be included in the
deployment plan. Its contents will be used as the MACHINES section in the ultimate
UBBCONFIG.

Besides these, this feature introduce some new parameters:

CONFIGSCRIPT = string_value[0..256]
It specifies the configuration script which will be run on each compute node before
booting the Tuxedo System. It must be an absolute path on the master node. The
tmcrdom command will copy this script to the deployment repository specified by
DEPREPOSITORY and deploy it to the destination machine later. After deployed to
the destination machine, it will be run under the destination machine's APPDIR.

BOOTSCRIPT = string_value[0..256]
It specifies the booting script which will be run on the mater node to boot the Tuxedo
System. It must be an absolute path on the master node. The tmcrdom command will
copy this script to the deployment repository specified by DEPREPOSITORY and
deploy it to the destination machine later. After deployed to the destination machine, it
will be run under the destination machine's APPDIR.

SHUTDOWNSCRIPT = string_value[0..256]
It specifies the shutdown script which will be run on the mater node to shutdown the
Tuxedo System. It must be an absolute path on the master node. The tmcrdom
command will copy this script to the deployment repository specified by
DEPREPOSITORY and deploy it to the destination machine later. After deployed to
the destination machine, it will be run under the destination machine's APPDIR.

UNCONFIGSCRIPT = string_value[0.. 256]
It specifies the unconfigure script which will be run on each compute node after the
Tuxedo System is shutdown. It must be an absolute path on the master node. The
tmcrdom command will copy this script to the deployment repository specified by
DEPREPOSITORY and deploy it to the destination machine later. After deployed to
the destination machine, it will be run under the destination machine's APPDIR.

For every machine, machine address, LMID, TUXCONFIG, TUXDIR and APPDIR are
required. For master machine, CONFIGSCRIPT, BOOTSCRIPT and SHUTDOWNSCRIPT are
required. For slave machine, BOOTSCRIPT and SHUTDOWNSCRIPT are forbidden.

Note:

The scripts specified by CONFIGSCRIPT, BOOTSCRIPT, SHUTDOWNSCRIPT, and
UNCONFIGSCRIPT must be able to be found by tmcrdom on the master
machine where the command runs.

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-10

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

18.2.3.1.3 GROUPS Section
Required parameters are:

GROUPNAME
Refer to the same parameter in UBBCONFIG. This group name will be used in the ultimate
UBBCONFIG.

LMID = string_value1 [,string_value2]
Refer to the same parameter in UBBCONFIG.

GRPNO = number
Refer to the same parameter in UBBCONFIG. This group number will be used in the ultimate
UBBCONFIG.

Optional parameters are:

• OPENINFO = string_value
• CLOSEINFO = string_value
• TMSCOUNT = number
• SEC_PRINCIPAL_NAME = string_value [0..511]
• SEC_PRINCIPAL_LOCATION = string_value [0..1023]
• SEC_PRINCIPAL_PASSVAR = string_value [0..31]
• REQUEST_VERSION = { numeric_value| * }
• VERSION_RANGE = string_value
• VERSION_POLICY = string_value { PROPAGATE }
For information about above parameters, refer to the same parameters in UBBCONFIG.

These parameters below are new for the Optional parameters:

PAKNAME = string_value[0..256]
It associates this group with one Application Package. That means, this Application Package
will be deployed to the machine which is specified by this group's LMID parameter. If
PAKNAME parameter is specified, the GROUPS parameters which can be specified in the
properties.xml file like:ENVFILE, TMSNAME, MRM, SIGNATURE_REQUIRED,
ENCRYPTION_REQUIRED can't appear in this group definition in the deployment plan, their
values will come from the Application Package's properties.xml file. If PAKNAME is not
specified, this group is a normal one. Then all the parameters in this group will be the same
with the UBBCONFIG. We recommend the customers to use this normal group to hold their
Tuxedo System level servers, for example, GWADM.

If PAKNAME is specified, PAKGRPNAME and PAKINSTANCE must also be specified for this
group entry.

PAKGRPNAME= string_value [1..30]
It specifies the logical name of the group in the Application Package, and the Application
Package's name is specified by PAKNAME parameter. It cannot contain an asterisk (*),
comma, or colon. If a non-empty value is specified, PAKNAME and PAKINSTANCE must
also be specified for this group entry. Two group entries with the same PAKNAME and

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-11

PAKINSTANCE cannot have the same PAKGRPNAME. That means two group entries
cannot be associated with one same group entry in one Application Package.

It specifies the logical name of the group in the Application Package, and the
Application Package's name is specified by PAKNAME parameter. It cannot contain
an asterisk (*), comma, or colon. If a non-empty value is specified, PAKNAME and
PAKINSTANCE must also be specified for this group entry. Two group entries with the
same PAKNAME and PAKINSTANCE cannot have the same PAKGRPNAME. That
means two group entries cannot be associated with one same group entry in one
Application Package.

PAKINSTANCE = number [1...30000]
It specifies the index for the same Application Package. This is for the situation that
one Application Package being deployed to the same domain for more than once.
This number must be greater than 0 and less than 30000. If PAKINSTANCE is
specified, PAKNAME and PAKGRPNAME must also be specified.

If PAKNAME is not specified, the parameters below are the same as the parameters in
UBBCONFIG:

• ENVFILE = string_value[0..256] (up to 78 bytes for Oracle Tuxedo 8.0
or earlier)

• TMSNAME = string_value[0..256] (up to 78 bytes for Oracle Tuxedo 8.0
or earlier)

• MRM = {Y | N}
• SIGNATURE_REQUIRED = {Y | N}
• ENCRYPTION_REQUIRED = {Y | N}

See Also:

For more information on the UBBCONFIG refer to Section 5 - File Formats,
Data Descriptions, MIBs, and System Processes Reference

18.2.3.1.4 RMS Section
If one rms entry belongs to a group which is not associated with any Application
Package, all the parameters are same as those in UBBCONFIG.

If not:

Required parameters are:

RMSNAME
Refer to the same parameter in UBBCONFIG. This rms entry name will be used in the
ultimate UBBCONFIG.

SRVGRP = string_value
Refer to the same parameter in UBBCONFIG. All the entries in this RMS section
which belong to this group must be associated with one Application Package group's
all rms entries, or it will report error. The according group in the Application Package
is specified by the group's PAKGRPNAME in the deployment plan.

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-12

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

RMID = number
Refer to the same parameter in UBBCONFIG.

PAKRMID = number
This specifies the RMID appears in the Application Package. It must be between 1 and 31
inclusive. The rms entries belong to the same group cannot have the same PAKRMID.

If one RMS entry belong to a group which has PAKNAME defined, it must specify PAKRMID
parameter in the deployment plan, or it will report error.

Optional parameters are:

• TMSCOUNT = number
• OPENINFO = string_value
• CLOSEINFO = string_value
• AUTO = {Y | N}
For information about above parameters, refer to the same parameters in UBBCONFIG.

TMSNAME = string_value[0..256] can't be specified in the deployment plan. It will be from
the properties.xml file.

See Also:

For more information on the UBBCONFIG refer to Section 5 - File Formats, Data
Descriptions, MIBs, and System Processes Reference

18.2.3.1.5 NETGROUPS Section
Same as NETGROUPS section in UBBCONFIG. It must be included in the deployment plan if
customer needs it in the ultimate generated UBBCONFIG. Its contents will be used as the
NETGROUPS section in the ultimate UBBCONFIG.

18.2.3.1.6 NETWORK Section
Same as NETWORK section in UBBCONFIG. It must be included in the deployment plan. Its
contents will be used as the NETWORK section in the ultimate UBBCONFIG.

18.2.3.1.7 SERVERS Section
If one server belongs to a group which is not associated with any Application Package, then
all the parameters are the same with UBBCONFIG.

If not:

Required parameters are:

AOUT
It must be the same with the aout in the corresponding Application Package's properties.xml.

SRVGRP = string_value
Refer to the same parameters in UBBCONFIG.

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-13

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

SRVID = number
Refer to the same parameters in UBBCONFIG. This value will be used in the ultimate
UBBCONFIG.

PAKSRVID = number
It specifies the SRVID in the Application Package's properties file. Every server in the
Application Package's properties file must be associated with one entry in this section
in the deployment plan.

If one server belongs to a group which has PAKNAME defined, then PAKSRVID must
be specified for this server. And two servers belong to the same group can not have
the same PAKSRVID. If one server belongs to a normal group which has no
PAKNAME defined, then it can not define PAKSRVID parameter.

Optional parameters listed below are same as those in UBBCONFIG:

• CLOPT = string_value
• SEQUENCE = number
• MIN = number
• MAX = number
• RQADDR = string_value
• RQPERM = number
• REPLYQ = {Y | N}
• RPPERM = number
• MAXGEN = number
• GRACE = number
• RESTART = {Y | N}
• SYSTEM_ACCESS = identifier[,identifier]
• MAXDISPATCHTHREADS = number
• MINDISPATCHTHREADS = number
• THREADSTACKSIZE = number
• SEC_PRINCIPAL_NAME = string_value [0..511]
• SEC_PRINCIPAL_LOCATION = string_value [0..1023]
• SEC_PRINCIPAL_PASSVAR = string_value [0..31]
• SICACHEENTRIESMAX = string_value
• CONCURR_STRATEGY=PER_REQUEST
• CONCURR_STRATEGY = PER_OBJECT
The parameters listed below cannot appear in this section, the ultimate UBBCONFIG
will keep the properties.xml file value.

• ENVFILE = string_value[0..256]
• RCMD = string_value[0..256]
• CONV = {Y | N}

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-14

See Also:

For more information on the UBBCONFIG refer to Section 5 - File Formats, Data
Descriptions, MIBs, and System Processes Reference

18.2.3.1.8 ROUTING
It's same as UBBCONFIG's ROUTING section. It must be included in the deployment plan if
customer needs it in the ultimate generated UBBCONFIG. Its contents will be used as the
ROUTING section in the ultimate UBBCONFIG.

18.2.3.1.9 SERVICES Section
If one service belongs to a group which is not associated with any Application Package, then
all the parameters are same as those in UBBCONFIG.

If not:

Required parameters are:

SVCNM
It must be the same with the SVCNM in the corresponding Application Package's
properties.xml. All the services in the properties.xml file must have an associated entry in
this section.

SRVGRP = string_value
Refer to the same parameters in UBBCONFIG

Optional parameters listed below are same as those in UBBCONFIG:

• LOAD = number
• PRIO = number
• ROUTING = string_value
• BLOCKTIME numeric_value
• SVCTIMEOUT = number
• SESSIONROLE
• AFFINITYSCOPE
• AFFINITYSTRICT
• AUTOTRAN = {Y | N}
• TRANTIME = number
The parameters listed below can't appear in this section, the ultimate UBBCONFIG retains
the properties.xml file value:

• BUFTYPE = "type1[:subtype1[,subtype2 . . .]]
[;type2[:subtype3[, . . .]]] . . . "

• SIGNATURE_REQUIRED = {Y | N}
• ENCRYPTION_REQUIRED = {Y | N}

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-15

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

• BUFTYPECONV = {XML2FML | XML2FML32}
This command generates one domain's all information including UBBCONFIG and
save it to the Deployment Repository.

This command configures every compute node according to the configure script
including creating the TLOG device and so on.

This command boots up the whole Tuxedo System.

See Also:

For more information on the UBBCONFIG refer to Section 5 - File Formats,
Data Descriptions, MIBs, and System Processes Reference

18.2.4 Undeploying a Domain
Users can use tmdeldom to shut down and undeploy the domain. This command must
be run on the master node of the domain.

The command syntax is:

tmdeldom -d "domain_name" -r "deprepository" -f

The command functions are:

• Shut down the whole domain

• Unconfigure every node if needed.

• Undeploy the whole domain and delete it also from the Deployment Repository.

The parameter domain_name is the domain's name which is specified in the previous
tmcrdom command. The deprepository is the Deployment Repository which is
specified by the DEPREPOSITORY parameter in the previous deployment plan.
Without "-f", once any step of tmdeldom fail, the command will not continue to execute.

If -f is specified, even if step 1, 2, or 3 is failed, this command will also delete the
domain information in the repository.

Chapter 18
How to Deploy/Undeploy Tuxedo Applications

18-16

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

19
Configuring Tuxedo for Propagating ECID

This topic includes the following sections:

• Overview

• Configurations

• Tracing ECID with Tuxedo System

19.1 Overview
Tuxedo is enhanced to support ECID propagation from its 12c (12.1.1) release. The following
figure illustrates, it supports the propagation of ECID across various Tuxedo boundaries.

Figure 19-1 ECID Propagation

19-1

With this feature enabled, as the receiving side, Tuxedo will check whether there is an
ECID in each request call across boundaries. If yes, the received ECID will be
propagated along the whole call path; otherwise, as the boundary node, the domain
gateway will try to generate an ECID for this call and propagate it once correctly
configured.

For a call initiated by a Tuxedo component, say, a native client, a WS client, or a Jolt
client, the client can generate an ECID for it once correctly configured.

Note:

JCA support is not in the scope of this feature.

This section describes following four scenarios of ECID propagation.

• Propagating ECID from Tuxedo to Database

• Propagating ECID Between Tuxedo and WLS

• Propagating ECID within Tuxedo

• Generating ECID by Native/WS/Jolt clients and Domain Gateway

• Interoperability

19.1.1 Propagating ECID from Tuxedo to Database
Tuxedo supports to propagate the ECID to Oracle DB via Oracle Call Interface (OCI).
This is a one-way propagation. Since the OCI/DB never initiates a request call in
theory, it’s not necessary to support the propagation in opposite direction (from DB to
Tuxedo).

The OCI provides a registration API and a callback function interface. The
implementation of the callback function handles the details of propagation. The
process is showed as below:

1. When a tuxedo server process is up and with ECID enabled, it will call the
registration API to register the implementation of the callback function.

2. OCI invokes the callback function and passes the relative context which can be
used to identify the DB connection/session before a roundtrip.

3. The callback implementation gets the associated ECID from Tuxedo context and
passes such ECID to Oracle DB.

19.1.2 Propagating ECID Between Tuxedo and WLS
WTC provides interoperability between WLS applications and Tuxedo services. As an
interface, WTC takes full responsibility of ECID’s propagation between Tuxedo and
WLS.

• For a request call from WLS to Tuxedo, the process is:

1. WTC sets the ECID into the special field of the message.

2. WTC sends the message to Tuxedo.

3. Tuxedo domain gateway gets the ECID from received message.

Chapter 19
Overview

19-2

• For a request call from Tuxedo to WLS, the process is:

1. Tuxedo domain gateway sends the message with ECID to WTC.

2. WTC gets the ECID from received message.

3. WTC sets the ECID for current Execution Context.

ECID can also be propagated between Tuxedo and WLS* when using Web Services through
the SALT gateway (GWWS), either in SOAP or REST mode, and regardless of direction
(Tuxedo calling WLS or WLS calling Tuxedo). In this mode, the ECID will be included in an
HTTP header in the same manner as WLS* uses to propagate ECID contexts with other
Oracle products.

Note:
*WLS should be WLS 12c (12.1.3) or higher releases of WLS.

19.1.3 Propagating ECID within Tuxedo
The ECID propagation within Tuxedo (both intra-domain and across domains) utilizes the
META_TCM field in the messages. Tuxedo client, server, and domain gateway are all enhanced
to support to get or set ECID in META_TCM section of a message.

Inside the Tuxedo, the ECID generation/propagation happens with following three ATMI APIs:

• tpcall

• tpacall

• tpforward

19.1.4 Generating ECID by Native/WS/Jolt clients and Domain Gateway
As boundary components, native/WS/Jolt client and domain gateway can generate the ECID
for each request message once configured correctly.

19.1.5 Interoperability
If there is a domain/machine with an Oracle Tuxedo version lower than 12c in the call path,
the end-to-end ECID propagation depends on specific user scenarios.

For example, let's consider the following interoperability scenario.

There are three domains: DOM1, DOM2 and DOM3. DOM1 and DOM3 are in Oracle Tuxedo
12c, DOM2 is in Tux11gR1; DOM1 enables both ECID_USERLOG and ECID_CREATE but DOM3
only enables ECID_USERLOG.

On one hand, if client on DOM1 invokes tpcall service1 on DOM2 and then service1 invokes
tpcall service2 on DOM3 (allocating a new buffer via tpalloc), ECID will not be found in
DOM3's ULOG. Thus, ECID information from DOM1 cannot be kept.

On the other hand, if client on DOM1 invokes tpcall service1 on DOM2 and then service1
invokes tpcall service2 on DOM3 (reusing the buffer with which service1 is invoked), ECID
will be found in DOM3's ULOG. Thus, ECID information from DOM1 can be propagated and
retrieved by DOM3.

Chapter 19
Overview

19-3

19.2 Configurations
This section covers the following configurations to enable ECID propagation:

• Enabling and Disabling ECID Propagation

• Configuring the Server to Propagate ECID via OCI

19.2.1 Enabling and Disabling ECID Propagation
In RESOURCES section of UBBCONFIG(5), the OPTIONS field is extended with new flags
to enable and specify the behavior for handling the ECID.

Option 'ECID_CREATE': ECID creation functionality is enabled. The boundary nodes
(including Native/WS/Jolt client and domain gateway) can generate the ECID.

Option 'ECID_USERLOG': With this option on, if not a null string, the ECID will be
appended to the userlog.

If neither of above options is set, the ECID propagation around Tuxedo is enabled by
default, but ECID can neither be created nor printed in ULOG in this domain. In such
scenario, " tmadmin > psr -v" can be used to get the ECID. The two of above options
can also be updated by MIB operation.

19.2.2 Configuring the Server to Propagate ECID via OCI
To perform ECID propagation to Oracle DB via OCI callback functions, the related
server must be specified by a “-L” option. For example:

simpserv CLOPT="-A -L default --" SRVGRP=GROUP1 SRVID=2

Once activated with a specified "–L", a server will call the registration API of OCI for
ECID propagation.

-LD or -L default

Loads default OCI library, that is, "oci.dll" for WIN32 platform and "libclntsh.so" for
other platforms.

-L oci_lib_name

Loads the OCI library with the name specified by oci_lib_name. Such oci_lib_name
can be an absolute path or a leaf name, which can be found through the system library
path.

Chapter 19
Configurations

19-4

19.3 Tracing ECID with Tuxedo System
The userlog is enhanced to print out the ECID of current active call if 'ECID_USERLOG' is
configured in UBBCONFIG. For example:

233331.myhost!simpserv.19461.2664420416.0: ECID
<004fVWEOfCE6iKO5IjK6yf0004k8000000>: sleep 15

The tmadmin printserver (psr -v) command is enhanced to print out ECID if the server is
currently in service. For example:

 Group ID: GROUP1, Server ID: 1
 Machine ID: SITE1
 Process ID: 19461, Request Qaddr: 1009713159, Reply Qaddr: 1009713159
 Server Type: USER
 Prog Name:
../samples/atmi/simpapp/simpserv

 Queue Name: 00001.00001
 Options: (none)
 Generation: 1, Max message type: 1073741824
Creation time: Tue Sep 27 23:32:44 2011
 Up time: 0:05:22
Requests done: 2
 Load done: 100
Current Service: TOUPPER,(ecid:
c9ca469656eb23b5:79482783:132ae1bef3b:-8000-0000000000000010)

See Also:

File Formats, Data Descriptions, MIBs, and System Processes Reference

Chapter 19
Tracing ECID with Tuxedo System

19-5

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html

20
Logging Last Resource Transaction
Optimization

This topic includes the following sections:

• Overview

• Logging Last Resource Configurations

• Lazy Deletion on TLOG Records of Completed LLR Transactions

• Constrains and Limitations

20.1 Overview
Logging Last Resource (LLR) transaction optimization is a performance enhancement option
that enables a non-XA resource to participate in a global transaction.

The LLR resource uses a local transaction for its transaction work. The Oracle Tuxedo
transaction manager prepares all other resources in the transaction and determines the
commit decision for the global transaction based on the outcome of the LLR resource's local
transaction.

In a global two-phase commit (2PC) transaction with an LLR participant, the Oracle Tuxedo
transaction manager follows these basic steps:

• Calls prepare on all other (XA-compliant) transaction participants.

• Inserts a commit record to a table on the LLR participant (rather than to the file-based
transaction log).

• Commits the LLR participant's local transaction (which includes both the transaction
commit record insert and the application's SQL work).

• Calls commit on all other transaction participants.

• After the transaction completes successfully, lazily deletes the database transaction log
record as part of a future transaction.

In the recovery, the transaction records left in the LLR table are taken as completing
transactions.

20.2 Logging Last Resource Configurations
• Configuring LLR Library in RM File

• Configuring OPENINFO in UBBCONFIG File

• Configuring LLR Options in UBBCONFIG File

• Building LLR Server/TMS

• Typical Configuration Example

20-1

20.2.1 Configuring LLR Library in RM File
The LLR library provides an XA switch to emulate XA operations and several uniform
APIs for LLR server/TMS. Configure LLR library in the RM file under ${TUXDIR}/
udataobj as follows:

[LLR XA switch name]:[LLR XA switch variable]:[Link options]

The following table shows the LLR library details:

Table 20-1 LLR Library

LLR XA
Switch Name

LLR XA
Switch
Variable

Link Options RM Implementatio
n

LLR Library

tuxllr_oraes
ql

tuxllrsw_ora
esql

-lllroraesql -L$
{ORACLE_LIB}-lclntsh

Oracle Embedded SQL $
{TUXDIR}/lib
/
libllroraesq
l.so

In general, the LLR XA switch variable is tuxllrsw_[name] and the LLR XA switch
name is tuxllr_[name]. The related library name is libllr[name], where [name]
consists of RM ID and implementation ID. For example, ora indicates Oracle
database, and esql indicates embedded SQL.

20.2.2 Configuring OPENINFO in UBBCONFIG File
Configure OPENINFO in the UBBCONFIG file in the following format:

[LLR XA switch name]:[open string]
The following table shows the details.

Table 20-2 OPENINFO Format

LLR XA
Switch Name

Format

tuxllr_oraes
ql ORACLE_XA{+required_fields...} [+optional_fields...]

For more information about SqlNet, Acc and DB, refer to Oracle online document.

TuxLLR is a specific optional field for Tuxedo LLR, which defines the LLR table name. If
not defined, the default name is used.

The LLR table is used to store the committing TLOG for transactions that involves LLR
server. The default table name is TUXLLR_[DOMAINID]. If [DOMAINID] is empty, DOM is
used. When you specify the LLR table name using TuxLLR, make sure different LLR
tables are used for different tuxedo domains in a same non-XA resource; otherwise the
recovery might work incorrectly.

Chapter 20
Logging Last Resource Configurations

20-2

http://docs.oracle.com/database/121/ADFNS/adfns_xa.htm#ADFNS017

In addition, ensure the RM user account used by LLR switch has the privilege to create and
update the LLR table. Otherwise, errors might occur.

For example, a user might get the following message in Oracle database:

ORA-01950: no privileges on tablespace 'string'
This is because the user does not have privilege to allocate an extent in the specified
tablespace. To solve the issue, grant the user appropriate system privilege or grant the user
space resource on the tablespace.

20.2.3 Configuring LLR Options in UBBCONFIG File
LLR_DELSWAPSIZE numeric_value
Specifies the maximum completed LLR involved 2PC global transaction ID (gtrid) that can be
stored in the swap area. By default, the value is 0. To enable LLR feature, specify a positive
value.

LLR_DELDELAY numeric_value
Specifies a multiplier of the basic SCANUNIT between LLR completed records lazy deletions.
The value must be greater than 0. If this parameter is not specified, the default is set so that
SCANUNIT * LLR_DELDELAY is approximately 30 seconds, however, if the SCANUNIT value is
greater than 30 seconds, LLR_DELDELAY is set to 1 if not specified.

20.2.4 Building LLR Server/TMS
Oracle Tuxedo takes an XA switch as a Oracle Tuxedo-specific LLR XA switch if the XA
switch name prefix is tuxllr_.

As long as an application server is built with the LLR XA switch, Oracle Tuxedo treats it as an
LLR server. The TMS servers built with the same LLR XA switch in the same group are
treated as LLR TMS. The group that LLR server belongs to is an LLR group. The transaction
involving an LLR server is an LLR involved transaction. The TLOG record of this transaction
is stored in the LLR table instead of Oracle Tuxedo traditional TLOG file.

An LLR server/TMS must use the correct LLR XA switch. It means the RM and the
implementation must be the same as the LLR library that provides the XA switch.

20.2.5 Typical Configuration Example
Following is an example of the LLR server (server.pc), which uses the embedded SQL to
insert a record into an Oracle database table within a local transaction.

Listing

…
EXEC SQL INCLUDE sqlca;
EXEC SQL BEGIN DECLARE SECTION;
char mylog[200];
int mypid;
EXEC SQL END DECLARE SECTION;
int tpsvrinit(int argc, char *argv[])
{
 tpopen();
 mypid=getpid();

Chapter 20
Logging Last Resource Configurations

20-3

 return(0);
}
 void tpsvrdone()
{
 tpclose();
}
void ECHO(TPSVCINFO *rqst)
{
 strncpy(mylog, rqst->data,rqst->len);
 mylog[rqst->len-1] = 0;
 EXEC SQL INSERT INTO TUX_RAC_TAB(OWNER, DATA) VALUES(:mypid,
 :mylog);
 tpreturn(TPSUCCESS, 0, rqst->data, 0L, 0);/*do not commit the
local
 transaction*/
}
…

Listing Configuring the RM File

tuxllr_oraesql:tuxllrsw_oraesql: -lllroraesql -L${ORACLE_LIB} -lclntsh

Listing Configuring UBBCONFIG

*RESOURCE
…
MODEL SHM

SCANUNIT 5

MAXGTT 600

LLR_DELDELAY 6

LLR_DELSWAPSIZE 500

…
*MACHINES
“m1” LMID=L1 TLOGSIZE=100
…
*GROUPS
GRP1 LMID=L1 GRPNO=10 TMSNAME="TMS_LLRORAESQL" TMSCOUNT=2

OPENINFO="tuxllr_oraesql:ORACLE_XA+SqlNet=orcl.tux1+ACC=P/scott/tiger”
…
server1 SRVGRP=GRP1 SRVID=10
…

Listing Building LLR Servers and TMS

…
${PROC} ${PROCFLAGS} iname=server.pc
buildserver -r tuxllr_oraesql -o server1 -f server.c

Chapter 20
Logging Last Resource Configurations

20-4

buildtms -r tuxllr_oraesql -o TMSLLRORAESQL
…

20.3 Lazy Deletion on TLOG Records of Completed LLR
Transactions

The TLOG records of completed 2PC global transaction IDs (gtrid) in LLR table are purged in
a lazy way. The purge is based on a timer. You can configure it using the parameter
LLR_DELDELAY.

A new introduced swap area in BB is used to temporarily store the completed LLR involved
gtrids. BBL may move these gtrids in the swap area to each local cache scan unit and purge
the corresponding TLOG records in the LLR table according to the gtrids when time is out.
You can specify the swap area size using the attribute LLR_DELSWAPSIZE.

If the swap area is too small, the completed gtrids that cannot be stored in the swap area at
that time are cached by the related coordinator TMS process temporarily.

Unexpected node crash (for example, BB is lost) leaves the completed records in the LLR
table that does not be purged in time. Each record needs on entry in the transaction table
during Tuxedo recovery. The transaction table size in BB is specified by MAXGTT. If MAXGTT is
not big enough to store these records, BBL fails to boot up when the node is restored. When
that happens, increase the MAXGTT value and retry.

It is recommended that specifying a sufficient LLR_DELSWAPSIZE to accommodate at least all
completed LLR involved 2PC gtrids in a scan unit.

BBL does not purge the completed gtrids records in the LLR table. It invokes the system
supplied LLR helper process to do this job. The process can also help BBL to retrieve records
in LLR data during Tuxedo recovery.

Note:

A ".llr" directory is created under $APPDIR to store temporary files used by LLR.

20.4 Constrains and Limitations
• General

– Like a normal XA server, the customer codes in an LLR server must manage the
connection through tpopen/tpclose.

– Only one LLR server can be involved in a global transaction.

– According to the MRM group, the OPENINFO used by the LLR server must be specified
in the GROUP section.

– LLR server does not support tpsuspend and tpresume.

– According to MP domain, the slave node using an Oracle Tuxedo release that does
not support LLR fails to boot up if LLR is enabled.

Chapter 20
Lazy Deletion on TLOG Records of Completed LLR Transactions

20-5

– BBL spends more time than usual to boot up if some LLR groups are specified
because BBL retrieves possible TLOG records from the LLR tables of all
related non-XA resources.

– Only Linux 64-bit platform is supported.

• RM-Specific (specific to libllroraesql)

– Multi-threaded LLR server is not supported
The simulating XA switch tuxllrsw_oraesql does not support thread context.
According to LLR involved MRM group, the other XA connections to Oracle
database should not enable the property Threads in the OPENINFO. Otherwise
the SQL jobs on LLR connection in the application server cannot work.

– An LLR server cannot handle any new request before current local transaction
is finished.

Chapter 20
Constrains and Limitations

20-6

Glossary

Glossary-1

Index

Index-1

	Contents
	List of Figures
	List of Tables
	1 Administrative Tasks and Tools
	1.1 Tasks an Administrator Performs
	1.1.1 Setup Tasks
	1.1.2 Run-time Tasks
	1.1.3 Differences Between the Oracle Tuxedo ATMI and CORBA Environments

	1.2 Planning the Design of Your Application
	1.3 Tools to Help You Administer Your Application

	2 About the Configuration File
	2.1 What Is the Configuration File?
	2.1.1 Text and Binary Versions of the Configuration File

	2.2 Contents of the Configuration File
	2.3 CORBA Administrative Requirements and Performance
	2.3.1 Configuring NameManager
	2.3.2 Reliability Requirements
	2.3.2.1 Managing Factory Entries
	2.3.2.2 Configuring Multiple NameManagers and FactoryFinders
	2.3.2.3 Designating a Master NameManager

	2.3.3 Performance Hint

	3 Creating the Configuration File
	3.1 How to Create a Configuration File
	3.2 How to Create the Configuration File for a Single-machine Application
	3.3 How to Create the Configuration File for a Multiple-machine (Distributed) Application
	3.4 How to Create the Configuration File for a Multiple-domain Application
	3.5 How to Create the RESOURCES Section of the Configuration File
	3.5.1 Sample RESOURCES Section

	3.6 Defining the Application Type
	3.6.1 Characteristics of the MODEL and OPTIONS Parameters
	3.6.2 Example Settings

	3.7 Controlling the Number of Buffer Types and Subtypes
	3.7.1 Example Settings

	3.8 Controlling the Number of Conversations
	3.8.1 Characteristics of the MAXCONV Parameter
	3.8.2 Example Setting

	3.9 Defining IPC Limits
	3.9.1 Example Settings

	3.10 Enabling Load Balancing
	3.10.1 Characteristics of the LDBAL Parameter
	3.10.2 Example Settings

	3.11 Identifying the Master Machine
	3.11.1 Characteristics of the MASTER Parameter
	3.11.2 Example Settings

	3.12 Specifying the Maximum Number of Network Groups
	3.13 Specifying the Number of Sanity Checks and Blocking Timeouts
	3.13.1 Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters
	3.13.2 Timeouts for Blocking ATMI Operations
	3.13.3 Example Settings

	3.14 Establishing Operating System-level Security
	3.15 Specifying the Security Level
	3.16 Defining the Security Attributes of a Server
	3.17 Protecting Shared Memory
	3.17.1 Example Settings

	3.18 Setting the Address of the System Resources for an Application
	3.18.1 Characteristics of the IPCKEY Parameter
	3.18.2 Example Settings

	3.19 Specifying How Clients Receive Unsolicited Notification
	3.19.1 Characteristics of the NOTIFY and USIGNAL Parameters

	3.20 How to Create the MACHINES Section of the Configuration File
	3.20.1 Sample MACHINES Section
	3.20.1.1 Sample MACHINES Parameters
	3.20.1.2 How to Customize the Sample MACHINES Section

	3.21 Specifying the Maximum Number of ACL Entries in the Cache
	3.22 Defining an Additional Service Request Load
	3.23 Reserving the Physical Address and Machine ID
	3.23.1 Characteristics of the Address and the LMID Parameter

	3.24 Setting the Number of Lock Spins
	3.24.1 Characteristics of the SPINCOUNT Parameter

	3.25 Specifying Machines as Types
	3.25.1 Characteristics of the TYPE Parameter

	3.26 Identifying the Location of the Configuration File
	3.26.1 Characteristics of the TUXCONFIG Parameter

	3.27 Indicating the Size of the DTP Transaction Log
	3.28 Defining the DTP Transaction Log Name
	3.29 Specifying Environment Variable Settings
	3.29.1 Characteristics of the ENVFILE Parameter

	3.30 Defining the Oracle Tuxedo Filesystem Containing the TLOG
	3.31 Specifying a Machine’s Maximum Number of Simultaneous Global Transactions
	3.32 Defining the Number of Accesser Entries on a Workstation Client
	3.33 Defining Space Limits for Messages Transmitted by the BRIDGE
	3.34 Indicating the Offset for the DTP Transaction Log
	3.35 Defining the Offset for TUXCONFIG
	3.35.1 Characteristics of the TUXOFFSET Parameter

	3.36 Identifying the Locations of the System Software and Application Server Software
	3.36.1 Characteristics of the APPDIR and TUXDIR Parameters

	3.37 Indicating a Threshold Message Size for Compression
	3.37.1 Example

	3.38 Specifying the Pathname for the ULOG
	3.38.1 Characteristics of the ULOGPFX Parameter

	3.39 How to Create the GROUPS Section of the Configuration File
	3.39.1 Sample GROUPS Section for ATMI
	3.39.2 Sample GROUPS Section for CORBA

	3.40 Specifying a Group Name, Number, and LMID
	3.40.1 Characteristics of the Group Name, Group Number, and LMID

	3.41 Indicating a Transaction Manager Server Name and Numbers per Group
	3.42 Identifying the Environment File Location for Servers in a Group
	3.43 Defining Information Needed When Opening and Closing the Resource Manager
	3.44 How to Create the NETWORK Section of the Configuration File
	3.44.1 Sample NETWORK Section

	3.45 Specifying a Device Name for the BRIDGE Process
	3.46 Assigning a BRIDGE Network Address
	3.47 Assigning Encryption Levels
	3.47.1 Example

	3.48 Assigning a tlisten Network Address
	3.49 How to Create the NETGROUPS Section of the Configuration File
	3.49.1 Sample Network Groups Configuration
	3.49.2 Configuring a Sample UBBCONFIG File with Netgroups

	3.50 Assigning a Name to a Network Group
	3.51 Assigning a Network Group Number
	3.52 Assigning a Priority to the Network Group
	3.53 How to Create the SERVERS Section of the Configuration File
	3.53.1 Sample SERVERS Section
	3.53.1.1 Sample SERVERS Section Parameters

	3.54 Specifying a Server as Conversational
	3.54.1 Characteristics of the CONV Parameter

	3.55 Setting the Order in Which Servers Are Booted
	3.55.1 Required Order in Which to Boot CORBA C++ Servers

	3.56 Characteristics of the SEQUENCE, MIN, and MAX Parameters
	3.57 Specifying Server Command-line Options
	3.57.1 Characteristics of the CLOPT Parameter

	3.58 Identifying the Location of the Server Environment File
	3.58.1 Characteristics of the Server Environment File

	3.59 Defining Server Name, Group, and ID
	3.59.1 Characteristics of the Server Name, SRVGRP, and SRVID Parameters

	3.60 Identifying Server Queue Information
	3.60.1 MSSQ Example
	3.60.2 Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters

	3.61 Defining Server Restart Information
	3.61.1 Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters

	3.62 Defining Server Access to Shared Memory
	3.62.1 Characteristics of the SYSTEM_ACCESS Parameter

	3.63 Defining the Server Dispatch Threads
	3.64 Setting Security Parameters for ISL Servers
	3.65 How to Create the SERVICES Section of the Configuration File
	3.65.1 Sample SERVICES Section

	3.66 Specifying Automatic Starts and Timeout Intervals for Transactions
	3.67 Specifying a List of Allowable Buffer Types for a Service
	3.67.1 Examples of the BUFTYPE Parameter

	3.68 Designating How Much Time to Process a Request
	3.68.1 What Happens When a Timeout Occurs
	3.68.2 How a Service Timeout Is Reported
	3.68.2.1 How to Control a Service Timeout

	3.69 Specifying Nontransactional Service-Level Blocktime
	3.70 Enabling Load Balancing
	3.70.1 Characteristics of the LDBAL Parameter

	3.71 Defining the Name of the Routing Criteria
	3.72 Specifying Service Parameters for Different Server Groups
	3.73 Controlling the Flow of Data by Service Priority
	3.73.1 Characteristics of the PRIO Parameter
	3.73.2 Sample SERVICES Section Using Different Priorities

	3.74 Indicating Service Processing Time
	3.75 How to Create the INTERFACES Section of the Configuration File
	3.75.1 Specifying CORBA Interfaces in the INTERFACES Section
	3.75.2 Specifying FACTORYROUTING Criteria
	3.75.2.1 University Sample
	3.75.2.2 Bankapp Sample

	3.75.3 Enabling Load Balancing
	3.75.4 Controlling the Flow of Data by Interface Priority
	3.75.5 Specifying Different Interface Parameters for Different Server Groups

	3.76 How to Create the ROUTING Section of the Configuration File
	3.76.1 ROUTING Section Example

	3.77 Defining the Routing Buffer Field and Field Type
	3.78 Specifying Range Criteria
	3.79 Defining Buffer Types
	3.80 CORBA Factory-based Routing in the University Production Sample Application
	3.81 CORBA Factory-based Routing in the Bankapp Sample Application
	3.82 How to Configure the Oracle Tuxedo System to Take Advantage of Threads
	3.83 How to Compile a Configuration File

	4 About Transactions
	4.1 What Is a Transaction?
	4.1.1 What Are the ACID Properties?
	4.1.2 How a Transaction Succeeds or Fails

	4.2 Benefits of Using Transactions
	4.3 Example of a Global Transaction
	4.4 What Is the Oracle Tuxedo Transaction Manager (TM)?
	4.5 How the System Tracks Distributed Transaction Processing
	4.5.1 How the System Uses Global Transaction Identifiers (GTRIDs) for Tracking
	4.5.2 How the System Uses a Transaction Log (TLOG) for Tracking
	4.5.2.1 Writing TLOG to an Oracle Database

	4.6 How the System Uses a Two-Phase Commit to Commit Transactions
	4.6.1 How the System Handles Transaction Infection
	4.6.2 How the ATMI Protects a Transaction’s Integrity Before a Two-Phase Commit

	5 Configuring Your ATMI Application to Use Transactions
	5.1 Modifying the UBBCONFIG File to Accommodate ATMI Transactions
	5.2 Specifying Global Transaction Parameters in the RESOURCES Section
	5.3 Creating a Transaction Log (TLOG) in the MACHINES Section
	5.3.1 Creating the UDL
	5.3.2 Defining Transaction-related Parameters in the MACHINES Section
	5.3.2.1 Writing TLOG to an Oracle Database

	5.3.3 Creating the Domains Transaction Log

	5.4 Defining Resource Managers and the Transaction Manager Server in the GROUPS Section
	5.4.1 Sample of the GROUPS Section
	5.4.1.1 Description of Transaction Values in the Sample GROUPS Section
	5.4.1.2 Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters

	5.5 Enabling a Service to Begin a Transaction in the SERVICES Section
	5.5.1 Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters

	5.6 Modifying the Domains Configuration File to Support Transactions
	5.6.1 Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRAPTRAN, and MAXTRAN Parameters
	5.6.2 Characteristics of the AUTOTRAN and TRANTIME Parameters

	5.7 Example: A Distributed Application with Transactions
	5.7.1 Sample RESOURCES Section
	5.7.2 Sample MACHINES Section
	5.7.3 Sample GROUPS and NETWORK Sections
	5.7.4 Sample SERVERS, SERVICES, and ROUTING Sections

	6 Introduction to Using Tuxedo with Oracle Real Application Clusters (RAC)
	6.1 Instance Awareness
	6.2 Using Tuxedo with XA Affinity
	6.2.1 Overview
	6.2.2 XA Affinity Priority
	6.2.3 XA Affinity Policy
	6.2.4 Prerequisites
	6.2.4.1 Software Requirements
	6.2.4.2 Installation Notes

	6.2.5 Configurations
	6.2.6 Limitations

	6.3 Using Tuxedo with Common XID
	6.3.1 Overview
	6.3.1.1 Typical Scenario

	6.3.2 Prerequisites
	6.3.2.1 Software Requirements
	6.3.2.2 Installation Notes

	6.3.3 Configurations
	6.3.4 Limitations

	6.4 Using Tuxedo with Single Group Multiple Branches (SGMB)
	6.4.1 Overview
	6.4.2 Prerequisites
	6.4.2.1 Software Requirements
	6.4.2.2 Installation Notes

	6.4.3 Configurations
	6.4.4 Limitations

	6.5 Using Tuxedo with Fast Application Notification (FAN)
	6.5.1 Overview
	6.5.2 Prerequisites
	6.5.2.1 Software Requirements
	6.5.2.2 Installation Notes

	6.5.3 Configurations
	6.5.3.1 Configurations on DB
	6.5.3.1.1 ONS
	6.5.3.1.2 Load Balancing Advisor (LBA)
	6.5.3.1.3 TAF

	6.5.3.2 Configurations on Tuxedo

	6.5.4 Limitations

	6.6 Using Tuxedo with Oracle Real Application Clusters (RAC)
	6.6.1 Overview
	6.6.2 Limitations
	6.6.3 Software Requirements
	6.6.4 Configuring Tuxedo for Oracle RAC
	6.6.4.1 Configuring Transaction Propagation
	6.6.4.1.1 TUXRACGROUPS Syntax
	6.6.4.1.2 TUXRACGROUPS Examples
	6.6.4.1.3 Transaction Creation Behavior Using TUXRACGROUPS
	6.6.4.1.4 Data Dependent Routing Using TUXRACGROUPS
	6.6.4.1.5 Assigning Transactions to Special Oracle RAC Instances
	6.6.4.1.6 TUXRAGROUPS Transaction Use Cases

	6.6.4.2 Configuring Transaction Recovery
	6.6.4.2.1 Configuring Oracle 10g Fast Application Notification (FAN)
	6.6.4.2.2 Configuring Transaction Recovery for Oracle 10gR2
	6.6.4.2.3 Configuring Transaction Recovery for Oracle 12c and Above
	6.6.4.2.4 Specifying Environment Variables in the UBBCONFIG File

	7 Enabling IPv6
	7.1 Overview
	7.2 Enabling IPv6
	7.2.1 IPv6 Address Format
	7.2.2 Tuxedo Component IPv6 Support

	7.3 IPv4 and IPv6 Interoperability
	7.4 Oracle Tuxedo MP Mode Interoperability

	8 Managing the Oracle Tuxedo Service Metadata Repository
	8.1 Oracle Tuxedo Service Metadata Repository
	8.1.1 MIB(5) Similarities and Differences

	8.2 Creating The Oracle Tuxedo Service Metadata Repository
	8.2.1 The Oracle Tuxedo Service Metadata Repository Input File
	8.2.1.1 Using Service-Level Keywords and Values
	8.2.1.2 Using Parameter-Level Keywords and Values
	8.2.1.3 Parameter Occurrences

	8.3 Configuring The Oracle Tuxedo Service Metadata Repository Server
	8.3.1 Configuring Multiple Oracle Tuxedo Service Metadata Repository Servers

	8.4 Accessing The Oracle Tuxedo Service Metadata Repository File

	9 Managing CORBA Interface Repositories
	9.1 Overview
	9.2 Administration Considerations
	9.3 Using Administration Commands to Manage Interface Repositories
	9.3.1 Prerequisites
	9.3.2 Creating and Populating an Interface Repository
	9.3.3 Displaying or Extracting the Content of an Interface Repository
	9.3.4 Deleting an Object from an Interface Repository

	9.4 Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

	10 Distributing ATMI Applications Across a Network
	10.1 What Is a Distributed ATMI Application?
	10.1.1 Example of a Distributed Application
	10.1.2 Implementing a Distributed Application

	10.2 Why Distribute an ATMI Application Across a Network?
	10.2.1 Features of a Distributed Application

	11 Creating the Configuration File for a Distributed Oracle Tuxedo ATMI Application
	11.1 Configuration File Requirements for a Distributed Oracle Tuxedo ATMI Application
	11.2 Creating the RESOURCES Section
	11.3 Creating the MACHINES Section
	11.4 Creating the GROUPS Section
	11.5 Creating the SERVICES Section
	11.6 Creating the ROUTING Section
	11.7 Example Configuration File for a Distributed Application
	11.8 Modifying the Domain Gateway Configuration File to Support Routing
	11.8.1 Description of ROUTING Section Parameters in DMCONFIG
	11.8.1.1 Routing Field Description
	11.8.1.2 Example of a 5-Site Domain Configuration Using Routing

	12 Setting Up the Network for a Distributed Application
	12.1 Configuring the Network for a Distributed Application
	12.2 How Data Moves Over a Network
	12.3 How Data Moves Over Parallel Networks
	12.4 Example of a Network Configuration for a Simple Distributed Application
	12.5 How Failover and Failback Work in Scheduling Network Data
	12.6 Example Configuration of Multiple Netgroups
	12.6.1 Configuration File for the Sample Network
	12.6.2 Assigning Priorities for Each Network Group
	12.6.2.1 Example Assignment of Priorities to Network Groups
	12.6.2.2 Example NETGROUP and NETWORK Sections

	13 Using Oracle Tuxedo Distributed Caching (TDC) with Oracle Coherence
	13.1 Overview
	13.1.1 Data Caching for Clients and Servers
	13.1.2 Result Caching for Oracle Tuxedo Services

	13.2 Configuring Oracle Coherence
	13.2.1 tangosol-coherence-override.xml
	13.2.2 coherence-cache-config.xml

	13.3 Configuring Oracle Tuxedo Java Server
	13.3.1 Configuring Oracle Tuxedo Java Server Configuration file
	13.3.2 Configure Oracle Tuxedo Distributed Caching (TDC) Property File

	13.4 Using Data Caching for Clients and Servers
	13.4.1 Steps for Using Data Caching for Clients and Servers
	13.4.1.1 Configure Oracle Coherence
	13.4.1.2 Start Oracle Coherence Cluster
	13.4.1.3 Configure Oracle Tuxedo Java Server
	13.4.1.4 Configure UBBCONFIG
	13.4.1.5 Put an Oracle Tuxedo buffer associated with a key into an Oracle Tuxedo cache
	13.4.1.6 Get an Oracle Tuxedo buffer from an Oracle Tuxedo cache according to the key

	13.4.2 Sample: Using Data Caching for Clients and Servers
	13.4.2.1 Sample: Configure Oracle Coherence
	13.4.2.2 Sample: Start Oracle Coherence cluster
	13.4.2.3 Sample: Configure Oracle Tuxedo Java Server
	13.4.2.3.1 Preparing tdcsvr_coh.xml for Oracle Tuxedo java server
	13.4.2.3.2 Prepare tdcsvr_coh.conf for TDC property file

	13.4.2.4 Sample: Configure TMJAVASVR in UBBCONFIG
	13.4.2.5 Sample: Put an Oracle Tuxedo buffer associated with a key into an Oracle Tuxedo cache
	13.4.2.6 Sample: Get an Oracle Tuxedo buffer from an Oracle Tuxedo cache according to the key

	13.5 Using Result Caching for Oracle Tuxedo Services
	13.5.1 Steps for Using Result Caching for Oracle Tuxedo Services
	13.5.1.1 Configure Oracle Coherence
	13.5.1.2 Start Oracle Coherence Cluster
	13.5.1.3 Configure Oracle Tuxedo Java Server
	13.5.1.4 Configure UBBCONFIG
	13.5.1.4.1 SERVICES Section
	13.5.1.4.2 CACHING Section

	13.5.1.5 Use MIB to Dynamically Make Changes for TDC

	13.5.2 Sample: Using Result Caching for Oracle Tuxedo Services
	13.5.2.1 Sample: Configure VIEWTABLE
	13.5.2.2 Sample: Configure UBBCONFIG
	13.5.2.3 Sample: Set on Server Side
	13.5.2.4 Sample: Set on Client Side

	13.6 Propagating Execution Context ID (ECID) to Oracle Coherence
	13.6.1 Enabling ECID
	13.6.2 Enabling ECID for TDC

	13.7 Oracle Tuxedo Distributed Caching (TDC) Related ATMI APIs
	13.7.1 tpgetcache(3c)
	13.7.1.1 Name
	13.7.1.2 Synopsis
	13.7.1.3 Description
	13.7.1.4 Return Values
	13.7.1.5 Errors

	13.7.2 tpcacheput(3c)
	13.7.2.1 Name
	13.7.2.2 Synopsis
	13.7.2.3 Description
	13.7.2.4 Return Values
	13.7.2.5 Errors

	13.7.3 tpcacheget(3c)
	13.7.3.1 Name
	13.7.3.2 Synopsis
	13.7.3.3 Description
	13.7.3.4 Return Values
	13.7.3.5 Errors

	13.7.4 tpcacheremove(3c)
	13.7.4.1 Name
	13.7.4.2 Synopsis
	13.7.4.3 Description
	13.7.4.4 Return Values
	13.7.4.5 Errors

	13.7.5 tpcachemremove(3c)
	13.7.5.1 Name
	13.7.5.2 Synopsis
	13.7.5.3 Description
	13.7.5.4 Return Values
	13.7.5.5 Errors

	13.7.6 tpcacheremoveall(3c)
	13.7.6.1 Name
	13.7.6.2 Synopsis
	13.7.6.3 Description
	13.7.6.4 Return Values
	13.7.6.5 Errors

	13.8 Oracle Tuxedo Distributed Caching (TDC) Property File Properties
	13.9 Oracle Tuxedo Distributed Caching (TDC) Related UBBCONFIG Parameters
	13.10 UBBCONFIG SERVICES Section
	13.10.1 UBBCONFIG CACHING Section

	13.11 Oracle Tuxedo Distributed Caching (TDC) Related MIB Attributes
	13.11.1 T_SERVICE Class Definition
	13.11.2 T_CACHING Class Definition

	14 Workstation Clients
	14.1 What Is the Workstation Component?
	14.2 Sample Application with Four Workstation Clients
	14.3 How the Workstation Client Connects to an Application

	15 Setting Up Workstation Clients
	15.1 Defining Workstation Clients
	15.2 Specifying the Maximum Number of Workstation Clients
	15.3 Defining a Workstation Listener (WSL) as a Server
	15.3.1 Passing Information to a WSL Process
	15.3.2 Using Command-line Options Set with CLOPT

	15.4 Detecting Network Failures
	15.5 Using the Keep-alive Option
	15.6 Using the Network Timeout Option
	15.6.1 How Network Timeout Works
	15.6.2 Limitations When Using the Network Timeout Option
	15.6.3 Setting the Network Timeout Option

	15.7 Sample Configuration File that Supports Workstation Clients
	15.7.1 Modifying the MACHINES and SERVERS Sections

	16 Managing Remote Oracle Tuxedo CORBA Client Applications
	16.1 Introduction to Managing Remote Oracle Tuxedo CORBA Client Applications
	16.2 CORBA Object Terminology
	16.3 Remote CORBA Client Overview
	16.3.1 Illustration of an Application with Remote CORBA Clients
	16.3.2 How the Remote Client Connects to an Application

	16.4 Setting Environment Variables for Remote CORBA Clients
	16.5 Setting the Maximum Number of Remote CORBA Clients
	16.6 Configuring a Listener for a Remote CORBA Client
	16.6.1 Format of the CLOPT Parameter

	16.7 Modifying the Configuration File to Support Remote CORBA Clients
	16.8 Configuring Outbound IIOP for Remote Joint Client/Servers
	16.8.1 Functional Description
	16.8.1.1 Bidirectional Outbound IIOP
	16.8.1.2 Asymmetric Outbound IIOP
	16.8.1.3 Dual-paired Connection Outbound IIOP
	16.8.1.4 How the Routing Code Finds an ISL

	16.9 Using the ISL Command to Configure Outbound IIOP Support
	16.9.1 Types of Object References
	16.9.2 User Interface

	16.10 Applying Service Version to Tuxedo Applications
	16.10.1 Overview
	16.10.2 Enabling and Disabling Application Service Versioning
	16.10.2.1 Enable/Disable Application Service Version Using UBB Config File
	16.10.2.2 Enable/Disable Application Service Versioning Using MIB

	16.10.3 UBB Config File Application Service Version Configuration
	16.10.4 Domain Configuration File Application Service Version Configuration
	16.10.4.1 Version Based Routing
	16.10.4.2 Resetting the User Configured Service Version Information Using MIB

	17 Applying Service Version to Tuxedo Applications
	17.1 Overview
	17.2 Enabling and Disabling Application Service Versioning
	17.2.1 Enable/Disable Application Service Versioning Using UBB Config File
	17.2.2 Enable/Disable Application Service Versioning Using MIB

	17.3 Application Service Version Configurations
	17.3.1 UBB Config File Configuration
	17.3.2 Domain Config File Configuration

	17.4 Version Based Routing
	17.5 Resetting the User Configured Service Version Information Using MIB
	17.6 Interoperability

	18 Oracle Tuxedo Applications Packing and Deployment
	18.1 Overview
	18.1.1 Components
	18.1.2 Constraints

	18.2 How to Deploy/Undeploy Tuxedo Applications
	18.2.1 Introduction to Application Package Organization and Contents
	18.2.2 Uploading/Deleting an Application Package
	18.2.3 Creating and Deploying a Domain
	18.2.3.1 deployment_plan
	18.2.3.1.1 RESOUCES Section
	18.2.3.1.2 MACHINES Section
	18.2.3.1.3 GROUPS Section
	18.2.3.1.4 RMS Section
	18.2.3.1.5 NETGROUPS Section
	18.2.3.1.6 NETWORK Section
	18.2.3.1.7 SERVERS Section
	18.2.3.1.8 ROUTING
	18.2.3.1.9 SERVICES Section

	18.2.4 Undeploying a Domain

	19 Configuring Tuxedo for Propagating ECID
	19.1 Overview
	19.1.1 Propagating ECID from Tuxedo to Database
	19.1.2 Propagating ECID Between Tuxedo and WLS
	19.1.3 Propagating ECID within Tuxedo
	19.1.4 Generating ECID by Native/WS/Jolt clients and Domain Gateway
	19.1.5 Interoperability

	19.2 Configurations
	19.2.1 Enabling and Disabling ECID Propagation
	19.2.2 Configuring the Server to Propagate ECID via OCI

	19.3 Tracing ECID with Tuxedo System

	20 Logging Last Resource Transaction Optimization
	20.1 Overview
	20.2 Logging Last Resource Configurations
	20.2.1 Configuring LLR Library in RM File
	20.2.2 Configuring OPENINFO in UBBCONFIG File
	20.2.3 Configuring LLR Options in UBBCONFIG File
	20.2.4 Building LLR Server/TMS
	20.2.5 Typical Configuration Example

	20.3 Lazy Deletion on TLOG Records of Completed LLR Transactions
	20.4 Constrains and Limitations

	Glossary
	Index

