

tart

Oracle Health Insurance Back
Office

D a t a M a n a g e m e n t T e c h n i c a l

R e f e r e n c e

version 3.13

Part number: F75883-01

August 11, 2023

OHI Data Management Technical Reference Guide

2

Copyright 2013, 2023, Oracle Corporation. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and

disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or

allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,

perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of

this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any

errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.

Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are

“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation

and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall

be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent

applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer

Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or

intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury.

If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,

redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any

liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their

respective owners.

This software and documentation may provide access to or information on content, products, and services from third

parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with

respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any

loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related notices. For

information on third party notices and the software and related documentation in connection with which they need to be

included, please contact the attorney from the Development and Strategic Initiatives Legal Group that supports the

development team for the Oracle offering. Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be considered in your

capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to

deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described in this document remains at the sole discretion

of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of

Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Software

License and Service Agreement, which has been executed and with which you agree to comply. This document and

information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without

prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any

contractual agreement with Oracle or its subsidiaries or affiliates.

OHI Data Management Technical Reference Guide

3

CHANGE HISTORY

Release Version Changes

10.15.1.0.0 1.4 • Changes for database 12C

• Small textual changes
10.15.3.0.0 1.5 • Added remark for VPD and the created database user for

SS/DM

• Added advise for parameter parallel_degree_level for subset
export as well as disabling archive log mode

10.16.1.0.0 1.6 • Added remark about deferred segment creation

• Added OHI Data Marts support
10.16.2.0.0 1.7 • Added changes for OEM 13C

• Added work-around for subset definition import bug
19828552

10.16.2.2.0 1.8 • Pre-processing masking script SDM0001S.pl made compulsory
(bug 25252355)

10.17.1.0.0 1.9 • Added paragraph 4.2 about masking flex fields

10.17.1.3.0 2.0 • Adjust paragraph 3.4, adding creating the subset rule
definition file

• Removed workaround for bug 23249155
10.17.2.0.0 2.1 • Updated prerequisites; OEM 13C R2 is now certified

10.18.1.0.0 2.2 • Added masking for OHI Data Marts

• Updated prerequisites; Supported version of database plugin
changed to 13.2.2.0

10.18.2.0.0 2.3 • No changes except part number.

10.18.2.2.0 2.4 • Slightly adjusted the recommendations for IO calibration

10.18.2.3.0 2.5 • Added pre masking step

• Added 2 known issues
10.19.1.0.0 2.6 • Added option for configuration only subset

• Some minor textual corrections and changes
10.19.1.1.0 2.7 • Updated prerequisites; OEM 13C R3 is now certified

10.19.2.0.0 2.8 • No changes, republished with new part number.

10.20.1.0.0 2.9 • No changes, republished.

10.20.3.0.0 3.0 • Adapted for impact of DB 19c certification

10.20.6.0.0 3.1 • Small improvements.

• Added the step-by-step execution guide appendix.

OHI Data Management Technical Reference Guide

4

Release Version Changes

10.20.8.0.0 3.2 • Added a note to state that the OHI BO Data Management data

subsetting and masking processes cannot be executed on a

database instance (PDB) with an active Oracle Database Vault

installation.

• Updated prerequisites; OEM 13C R4 is now certified

10.21.1.0.0 3.3 • No changes, republished with new part number.

10.21.4.0.0 3.4 • Data masking revised

10.21.5.0.0 3.5 • Modified Datamasking instructions

• Added Appendix 2 “Masking a custom database schema”

10.22.1.0.0 3.6 • No changes, republished with new part number.

10.22.6.0.0 3.7 • Added policy number masking rule in Appendix 2 “Masking a

custom database schema”

• Added description in 4.1 to adjust the application from

production to test

• Added note in 4.3 and in 4.7 about the need to gather table

statistics again

10.22.7.0.0 3.8 • Subsetting revised

• Added claim number and invoice reference masking rule in

Appendix 2 “Masking a custom database schema”

10.22.8.0.0 3.9 • Corrected sample masking script in paragraph 7.4

• Expanded description for subsetting cleanup

10.23.1.0.0 3.10 • Added custom masking rule for name prefix in appendix 2

• Exclude certain column types from custom masking

• Allow repeated masking and subsetting

• Added option to keep table statistics

• Added option to compress OHI Back Office tables during

subset or masking

• Added option to make use of NOLOGGING to decrease the

time needed to execute a run

• New part number.

10.23.2.0.0 3.11 • Use of database parameter PARALLEL_FORCE_LOCAL added

• Subset prepare steps modified

10.23.5.0.0 3.12 • Added additional checks and logging in 4.1

10.23.6.0.0 3.13 • Added a note about the 0% subset option to appendix 1

OHI Data Management Technical Reference Guide

5

Contents

1 Introduction 7

1.1 Subsetting and Masking 7

1.2 Prerequisites 9

2 High Level Design 9

2.1 Subsetting Process 9

2.2 Data Masking Process 10

3 Detailed Process - Subsetting 12

3.1 Preparing to-be-subset Database (Target Database) 12

3.2 Running Subset on Target Database 14

3.3 Monitoring the subset run 15

3.4 Checking the outcome 16

3.5 Processing errors and restarting 16

3.6 Cleaning up 17

3.7 Repeated subsetting 17

4 Detailed Process - Data Masking 18

4.1 Preparing to-be-masked Database (Target Database) 18

4.2 Masking flex fields 20

4.3 Running Masking on Target Database 21

4.4 Monitoring the masking run 23

4.5 Checking the outcome 23

4.6 Processing errors and restarting 24

4.7 Cleaning up 24

4.8 Repeated data masking 24

5 OHI Data Marts subset 24

5.1 Preparing OHI Data Marts data-store 25

5.2 Loading OHI Data Marts 25

6 Appendix 1: Define a policy selection 26

7 Appendix 2: Masking a custom database schema 28

7.1 Creating the masking rule set 28

7.2 The use of the PI_COL_* parameters 30

OHI Data Management Technical Reference Guide

6

7.3 Execution 31

7.4 Example script 31

OHI Data Management Technical Reference Guide

7

1 Introduction

Welcome to the technical reference guide for the Oracle Health Insurance Back Office suite (OHI BO

and OHI DM) Data Management application. This reference guide is intended to help you in using the

data subsetting and data masking functionality as provided by the OHI Data Management product for

OHI Back Office and OHI Data Marts.

1.1 Subsetting and Masking

This guide describes how you can create a subset of a given OHI BO data store. The subset contains

less data than the given data store but at the same time is still fully functional for the OHI BO

application (that is: all data integrity and consistency rules are upheld). Using data subsetting you

create smaller versions of, for instance, production-size OHI BO databases. These smaller databases

can then be provisioned to development teams, test teams, or deployed in user-acceptance

environments. Through data subsetting you can significantly reduce the total amount of disk storage

required to support the various, and often many, non-production OHI BO environments in your

organization.

There is no separate subset process for an OHI DM environment, instead a OHI DM subset

environment for an OHI BO subset environment needs to be created through an initial full load of the

OHI BO subset.

Next to data subsetting, this guide describes how OHI BO and/or OHI DM data stores can be masked.

Due to privacy regulations, organizations are obliged to deal with privacy sensitive data in a secure

manner. Production environments usually have stringent data access control and auditing

mechanisms in place to ensure that only those who need to access privacy sensitive data can do so.

Typically, those accessing the various non-production environments are not authorized to see privacy

sensitive data or the data access control and auditing mechanisms are less stringent, or even absent,

in these environments. With data masking you can mask (scramble, anonymize, pseudonymize) the

privacy sensitive data elements in non-production OHI BO and/or OHI DM environments.

Development and test teams that use these masked environments are therefore not able to see

privacy sensitive data. The masked data store is still fully functional for the OHI BO and/or OHI DM

application (that is: all data integrity and consistency rules are upheld).

Both subsetting and data masking work mainly on the so-call Fact tables (e.g., policies, claims). The

Dimension tables (containing setup data) are left largely untouched.

The intended audience for this technical reference guide is the DBA group that administers the

various OHI BO and OHI DM environments inside an organization. This technical reference guide

contains four chapters.

OHI Data Management Technical Reference Guide

8

1. Introduction

The chapter you are currently reading. This chapter introduces you to the data subsetting

and data masking packages of the OHI BO application.

2. High Level Design

In chapter 2 you find a high-level design of the data subsetting and data masking processes

as they have been designed to operate on a data store of the OHI BO application.

3. Detailed Process

In chapters 3 and 4 you find a step-by-step description of the data subsetting and data

masking processes. By following these steps, you can create a subset of the OHI BO

application data store and mask this data store.

Subsetting and data masking are implemented in the database of OHI and do not require additional

applications.

OHI Data Management Technical Reference Guide

9

1.2 Prerequisites

The OHI BO Data Management data masking processes requires one of the following components:

• A non-production OHI Back Office environment with the appropriate release

• A non-production OHI Datamarts environment with the appropriate release

The OHI BO Data Management data subsetting processes requires the following components:

1. A non-production OHI BO environment with the appropriate release

2 High Level Design

This chapter contains a high-level overview of the data subsetting and data masking processes as

they apply to the OHI BO application.

2.1 Subsetting Process

Subsetting is performed in-place. The subset process is run on a target database, which is then

resized. Subsetting is performed by either executing a stored procedure or scheduling a database job

in the target environment.

Figure 2.1 shows a high-level overview of this process.

Figure 2.1: High level overview of the subset process.

OHI Data Management Technical Reference Guide

10

To end up with a database that is smaller than the original (i.e., takes up less disk space), the DBA

needs to rename the original tablespaces and create new tablespaces with the original prescribed

names, using new, smaller, data files before starting the subsetting process. This means the database

will temporarily require more disk space.

For the set of tables to be subsetted (based on the subset rules), the metadata is gathered and

stored in a processing table. The metadata contains the definition of the table and its indexes,

constraints and triggers.

During the subset process this data is processed per table.

The next step is to rename the original table and create a new table, based on the stored metadata

of the original table (that now has been renamed). This newly created table is than filled with the

data from the original table with the subset rule(s) applied to it.

Next the constraints and indexes are added to the tables and if all steps are successful the original

(renamed) tables are dropped. This will free the original, renamed tablespaces and data files. These

can then be dropped by the DBA.

Chapter 3 contains a detailed description of the subset process.

2.2 Data Masking Process

Data masking is performed in-place. The masking process is run on a target database, which is then

masked. Masking is performed by either executing a stored procedure or scheduling a database job

in the target environment.

Figure 2.2 shows a high-level overview of this process.

OHI Data Management Technical Reference Guide

11

Figure 2.2: High level overview of masking process.

For the set of tables to be masked (based on the masking rules), the metadata is gathered and stored

in a processing table. The metadata contains the definition of the table and its indexes, constraints

and triggers.

During the masking process this data is processed per table.

If a tablespace name is provided the original table is first moved to this tablespace so no additional

space is used in the original tablespace. The specified tablespace can be created temporarily and may

be removed afterwards.

The next step is to rename the original table (either in the original tablespace or in the specified

tablespace) and create a new table, in the original tablespace, based on the stored metadata of the

original table (that has been renamed). This newly created table is than filled with the data from the

original table with the masking rules applied to it. Next the constraints and indexes are added to the

table and if all steps are successful the original (renamed) table is dropped, and the next table will be

processed.

Chapter 4 contains a detailed description of the data masking process.

OHI Data Management Technical Reference Guide

12

3 Detailed Process - Subsetting

The subset process executes "in-place" within an existing OHI Back Office environment.

3.1 Preparing to-be-subset Database (Target Database)

Obviously, subsetting should never be executed on a production environment. Therefore, it is

required to adjust the value of the application environment parameter in the OHI system parameter

record to “Test” instead of “Production” (alg_systeem_parameters.applicatie_omgeving).

In OHI Back Office this can be done by modifying the value in the window SYS1010F “General system

parameter” on the tab “Other user settings”.

Before subsetting the target database, it is advisable to create a backup of the database. Depending

on the size of the archive log destination file system, it may be advisable to disable archive logging

during the subset process, and, when required, re-enable it afterwards and create a new initial full

backup.

Recommended database configuration during subsetting

Before running the subset process on the target database, the database should be configured to

maximize performance. The following parameters are recommended (and might deviate from

parameters required for OHI Back Office at runtime):

• parallel_max_servers : default value (>1) or (for example) twice the number of

available CPU threads, to enable parallel query during subsetting

• pga_aggregate_target : parallel_max_servers * 1GB

Checks and actions before subsetting

The subset program creates an empty copy of the original table for each table that is part of a subset

rule and inserts the data based on the rule. This means that the subset program requires a certain

amount of free space in the original tablespaces.

One of the goals of a subset is to reduce the size of a test environment. Just deleting data won’t

release the storage used by the database. The existing tablespaces and underlying data files must be

removed to free up disk space. Because the tablespace names are prescribed by OHI and checked

during release installations, we need to end up with the original tablespace names.

That is the reason the subset process requires the following steps:

• The DBA renames all tablespaces containing the tables and indexes that occur in a subset
rule. These tablespaces are:
OZG_FACT_FIN_IND

OZG_FACT_FIN_TAB

OZG_FACT_REL_IND

OHI Data Management Technical Reference Guide

13

OZG_FACT_REL_TAB

OZG_FACT_SYS_IND

OZG_FACT_SYS_TAB

OZG_FACT_ZRG_IND

OZG_FACT_ZRG_TAB

Arbitrary new names can be chosen, as these tablespaces need to be removed at the end of
the subset process.

• The DBA creates a new set of (smaller) tablespaces with these original names:
OZG_FACT_FIN_IND

OZG_FACT_FIN_TAB

OZG_FACT_REL_IND

OZG_FACT_REL_TAB

OZG_FACT_SYS_IND

OZG_FACT_SYS_TAB

OZG_FACT_ZRG_IND

OZG_FACT_ZRG_TAB

• The subset process renames the existing full-size tables and indexes in the renamed
tablespaces

• The subset process creates copies of the original tables and indexes with the original names
in the new tablespaces. These contain the subset of the data. The subset process deletes the
original (renamed) tables and indexes, freeing the original (renamed) tablespaces.

• The DBA drops the empty renamed tablespaces and underlying data files, freeing up the disk
space

Note: the tables are “moved” to the prescribed tablespace, even if they were originally located in the
wrong tablespace.

Sufficient quota for these new tablespaces should be granted to the application owner and the
default tablespace should be set to OZG_FACT_ZRG_TAB for the application owner again.

To verify this the following procedure can be called:
set serveroutput on

exec sdm_driver_pck.pre_check(pi_action => 'S');

The output looks like the following:
Environment is not a production environment

Environment is not yet a subset.

Database is in restricted session mode

Batch scheduler is not active

VPD is not active

Default tablespace is: OZG_FACT_ZRG_TAB

INFO: Tablespace sizes

INFO: ---------------------------------------

INFO: OZG_DIM_FIN_IND : 0,014 Gb

INFO: OZG_DIM_FIN_TAB : 0,007 Gb

INFO: OZG_DIM_REL_IND : 0,011 Gb

INFO: OZG_DIM_REL_TAB : 0,007 Gb

INFO: OZG_DIM_SYS_IND : 0,245 Gb

INFO: OZG_DIM_SYS_TAB : 0,376 Gb

INFO: OZG_DIM_ZRG_IND : 1,445 Gb

INFO: OZG_DIM_ZRG_TAB : 1,045 Gb

INFO: OZG_FACT_FIN_IND : 1,133 Gb

INFO: OZG_FACT_FIN_TAB : 1,167 Gb

INFO: OZG_FACT_REL_IND : 0,885 Gb

INFO: OZG_FACT_REL_TAB : 0,622 Gb

INFO: OZG_FACT_SYS_IND : 1,485 Gb

OHI Data Management Technical Reference Guide

14

INFO: OZG_FACT_SYS_TAB : 6,486 Gb

INFO: OZG_FACT_ZRG_IND : 2,057 Gb

INFO: OZG_FACT_ZRG_TAB : 1,634 Gb

INFO: OZG_LOG_IND : 0,007 Gb

INFO: OZG_LOG_TAB : 0,102 Gb

INFO: <**total**> : 18,726 Gb

For performance reasons it is best to de-activate all maintenance background jobs to prevent for

example a parallel statistics gathering job uses unnecessary resources that delay the subset process.

Note: Please deactivate Virtual Private Database (VPD) when this is activated in the OHI Back Office

schema.

NOLOGGING and FORCE LOGGING

To decrease the time needed to create a subset the subset tooling uses the NOLOGGING option to

insert the rows in the table and create subsequent indexes on this table. To allow the use of this

NOLOGGING option the database should not should not be running in FORCE LOGGING mode.

When using the NOLOGGING option a full back up has to be made (before and) after the subset

process as a recovery without the required archive- and redo log files is not possible.

PARALLEL_FORCE_LOCAL

When the subset is run on a RAC environment with multiple instances available, the database

parameter PARALLEL_FORCE_LOCAL can be set to FALSE. In this way the queries used by the subset

can make use of the available instances instead of restricting execution to one instance. The subset

needs to be run on a database service which can use these multiple instances in this case.

Afterwards this parameter needs to be set to TRUE when using the OHI Back Office application again.

3.2 Running Subset on Target Database

To start the subset process a database job can be created. To do this execute the following command

as the OHI database schema owner:

begin

 sdm_driver_pck.job

 (pi_action => 'S'

 , pi_masking_seed => null

 , pi_masking_tablespace => null

 , pi_subset_policy_selection => <The name of the policy selection>

 , pi_job_class => 'DEFAULT_JOB_CLASS'

 , pi_force_query => 'N'

 , pi_force_dml => 'Y'

 , pi_force_ddl => 'Y'

 , pi_parallel_policy_manual => 'Y'

 , pi_gather_stats => 'Y'

 , pi_compress_bo => 'N'

);

end;

/

This will start a database scheduler job with the name OHI_SUBSET and run the

SDM_DRIVER_PCK.SUBSET procedure.

It is also possible to start the subset procedure directly in the calling session, but this will require you

to keep the executing SQL*Plus session open and alive.

OHI Data Management Technical Reference Guide

15

The parameters do have the following impact/effect during the subset process:

• PI_ACTION: S for Subset

• PI_MASKING_SEED: not used for subsetting

• PI_MASKING_TABLESPACE: not used for subsetting

• PI_SUBSET_POLICY_SELECTION: The name of the policy selection that act as the basis for the

subset to be created. See appendix 1 for more explanation.

• PI_JOB_CLASS: The scheduler job class this job will use as a resource group.

• PI_FORCE_QUERY: when Y(es) the session is set to FORCE parallel query, when N(o) the

session is set to ENABLE parallel query

• PI_FORCE_DML: when Y(es) the session is set to FORCE parallel DML, when N(o) the session

is set to ENABLE parallel DML

• PI_FORCE_DDL: when Y(es) the session is set to FORCE parallel DDL, when N(o) the session is

set to ENABLE parallel DDL

• PI_PARALLEL_POLICY_MANUAL: when Y(es) the session is set to MANUAL for the parameter

PARALLEL_DEGREE_POLICY, when N(o) the session is set to AUTO for the parameter

PARALLEL_DEGREE_POLICY.

Note: This parameter will not be set in an Autonomous Data Warehouse environment.

• PI_GATHER_STATS: When Y(es) table and index statistics will be gathered at the end of the

subset run, when N(o) the gather statistics step is omitted in the subset run. A recent set of

Statistics is necessary for the performance of the application during normal use.

When K(eep) the original table and column statistics will be reused. This way a smaller

database can act as if it was a full production database in regards to query execution.

Note: Gathering of statistics will be executed with the same settings as in step 820 of

OHIPATCH. The time limit of step 820 does not apply here.

• PI_COMPRESS_BO: when Y(es) the tables in the subset will be compressed using Oracle

Advanced Compression if no compression is present. When N(o) is chosen no compression is

applied nor removed from the tables in the subset.

Note: An appropriate licence for Advanced Compression is required when using this option.

All parameters are provided with a default which is the OHI recommended setting.

These settings will make maximum use of the available resources. If it is not possible or if you don’t

want to use the maximum available resources, you can set these parameters to the other possible

value.

3.3 Monitoring the subset run

There is no direct output during the subset run. However, information about the run is stored in a

table.

The current action is shown in the first row in the following query which can be run under the OHI

schema owner. The schema owner in the queries is the owner of the tables the subset is run for:

select mlg.*

from sdm#log mlg

where mlg.schema_owner = '<schema owner>'

order by mlg.id desc;

OHI Data Management Technical Reference Guide

16

After the initialization phase is done, the overall progress can be monitored by looking at the status

of the tables with the following query:

select ssd.base_table

, ssd.status

from sdm#statement_data ssd

where ssd.object_type = 'TABLE'

and ssd.usage_type = 'SUBSET'

and ssd.schema_owner = '<schema owner>'

order by ssd.id;

Tables with status D(one) have been processed successfully.

3.4 Checking the outcome

After the subset job and/or procedure is finished a report can be created to check on the process and

possible errors. To create the report the following script can be run under the subset schema owner

col spool_tijdstip new_value l_spool_tijdstip noprint

select to_char(sysdate,'YYYYMMDD_HH24_MI_SS') spool_tijdstip

from dual

/

set trimspool on

set trim on

set pages 0

set linesize 1000

set long 10000000

set longchunksize 10000000

set feedback off

set showmode off

set flush off

set verify off

spool SUBSET_REPORT_&l_spool_tijdstip..html

select * from table(sdm_driver_pck.report(pi_full => 'N'))

/

spool off

undefine l_spool_tijdstip

This will create an HTML file with the following information

• Provided parameter values

• Instance and session information

• Generic run information

• Top 20 long running actions

• Any errors that occurred

When the parameter pi_full is provided with the value ‘Y’ the report will provide a full report of all

executed steps. This option can be requested by OHI Support to investigate issues.

3.5 Processing errors and restarting

 If one or more errors occurred the process can be restarted by using the same parameters, after

mitigating the cause of the error, e.g., by increasing a tablespace size.

In that case, the process will detect an incomplete previous run and only process the tables that are

not yet successfully processed.

OHI Data Management Technical Reference Guide

17

3.6 Cleaning up

The (renamed) tablespaces that held the original data (as described earlier) can be dropped now, to

release the extra disk space used and decrease the size of the environment.

Note: make sure you check no objects are left in these tablespaces. The subset process has “moved”

all OHI Back Office objects, but you may have custom objects (that should not be present) in these

tablespaces. Use this query to detect remaining tables:

select * from dba_tables

where tablespace_name like '%PRESUBSET';

Table CREATE$JAVA$LOB$TABLE can be deleted.

Revert the changes made to the database parameters before using the database as an OHI Back

Office runtime environment.

Note: For correct operation of the application, it is necessary to have an actual set of table and index

statistics. If gathering statistics is omitted during the subset process (via the parameter

PI_GATHER_STATS) these statistics should be gathered manually before using the application. Not

having a recent set of statistics could result in a different experience in the performance of the

application.

3.7 Repeated subsetting

It is possible to repeat subsetting on the same environment. This can be used to test the subsetting
functionality of a newer release after installation on an environment that was subsetted before.

OHI Data Management Technical Reference Guide

18

4 Detailed Process - Data Masking

The data masking process executes "in-place" within an existing OHI BO or OHI DM data store.

4.1 Preparing to-be-masked Database (Target Database)

Data masking can be performed on a full-size OHI BO or OHI DM data store, or on a subset OHI BO or

OHI DM data store.

Note: A subset of an OHI DM data store can be obtained by performing an initial load from a subset

OHI BO environment, see chapter 5. Typically, you would first mask that OHI BO data store before

performing an initial load to construct the companion OHI DM data store. Masking an OHI DM data

store is typically used for a full sized OHI DM environment.

Obviously, the masking process takes more time on full-size data stores. During masking, tables with

sensitive columns are temporarily duplicated (this is further explained in Section 4.3). For this reason,

it is necessary to check that tablespaces holding the tables either have enough free space available or

are able to grow (auto extend) during the masking process. Upon completion of data masking a

database (or tablespace) reorganization of some kind will have to be performed to reclaim the then

remaining free space. See Section 4.3 (PI_MASKING_TABLESPACE) for a way to prevent having to

execute such a reorganization.

Obviously, masking should never be executed on a production environment. Therefore, it is required

to adjust the value of the application environment parameter in the OHI system parameter record to

“Test” instead of “Production” (alg_systeem_parameters.applicatie_omgeving).

In OHI Back Office this can be done by modifying the value in the window SYS1010F “General system

parameter” on the tab “Other user settings”.

In an OHI DataMarts the environment type can be set by executing the following statement as

schema owner:

update alg_systeem_parameters

set applicatie_omgeving = 'T'

;

commit;

Before masking the target database, it is advisable to create a backup of the database. Depending on

the size of the archive log destination file system, it may be advisable to disable archive logging

during the masking process, and, when required, re-enable it afterwards and create a new initial full

backup.

Recommended database configuration during masking

Before running the masking process on the target, it should be configured to maximize performance.

The following parameters are recommended (and might deviate from parameters required for OHI

Back Office or OHI Data Marts at runtime):

OHI Data Management Technical Reference Guide

19

• parallel_max_servers: default value (>1) or (for example) twice the number of

available CPU threads, to enable parallel query during masking

• pga_aggregate_target:parallel_max_servers * 1GB

Masking an Autonomous Data Warehouse

When masking is performed for OHI Data Marts on an ADW environment it is recommended to use

the “high” connection service.

Checks before masking

The masking program processes one table at a time. It creates a copy of the original table and deletes

that copy after the table has been masked successfully. This means that the masking program

requires a certain amount of free space in the original tablespace or in the specified “temporary”

tablespace. If the masking of a table fails, the copy is not removed (to support a quick retry after the

cause of the failure has been addressed), and processing continues with the next table.

Therefore, the free space needed will be at least the size of the largest table, plus a reserve for any

tables that fail to be processed successfully.

NOTE:

When the masking is performed on a so-called snapshot clone, all tables that are part of the

masking will be recreated and written. Therefore the required amount of disk storage will be at

least the amount of all the tables and indexes in the masking set in the snapshot master.

Masking a snapshot clone is therefore not efficient in terms of disk storage.

To get an indication of the minimum free space that needs to be available, a pre-check can be

executed on the target database before the masking is started.

This check will check some environment settings and will provide a list of the top table in size, per

tablespace that is part of the masking set. Also the total size used for the tables and indexes that are

part of the masking process will be shown.

The pre-check can be executed by running the following command as schema owner in SQL*Plus:

set serveroutput on

exec sdm_driver_pck.pre_check(pi_action => 'M');

The output looks like the following:

Pre masking checks

INFO : Environment is not a production environment

INFO : Environment is not yet masked

INFO : Database is in restricted session mode

INFO : Batch scheduler is not active

INFO : Back Office parameter 'Default country code' is set to 'NL'

INFO : Value for parameter 'job_queue_processes' is set to 15 with a 'pga_aggregate_limit' of

10Gb

INFO : Largest table to be masked based on size per tablespace

INFO : --

INFO : OZG_DIM_FIN_TAB : FSA_BEDRIJFSONDERDELEN (0,000 GB)

INFO : OZG_DIM_REL_TAB : RBH_BANKEN (0,000 GB)

INFO : OZG_DIM_SYS_TAB : ALG_GROEPEN (0,000 GB)

INFO : OZG_DIM_ZRG_TAB : ZAS_VERGOEDING_CATEGORIEEN (0,133 GB)

INFO : OZG_FACT_FIN_TAB: FSA_VORD_JOURN_REGELS (0,245 GB)

INFO : OZG_FACT_REL_TAB: RBH_RELATIES (0,178 GB)

INFO : OZG_FACT_SYS_TAB: ALG#MELDINGEN (0,017 GB)

INFO : OZG_FACT_ZRG_TAB: REF_EIGENSCHAP_WAARDEN (1,188 GB)

OHI Data Management Technical Reference Guide

20

INFO : Total allocated size of tables to be masked: 3,378 GB

INFO : Total allocated size of indexes on tables to be masked: 4,690 GB

NOLOGGING and FORCE LOGGING

To decrease the time needed to mask an environment the masking tooling uses the NOLOGGING

option to insert the rows in the table and create subsequent indexes on this table. To allow the use

of this NOLOGGING option the database should not should not be running in FORCE LOGGING mode.

When using the NOLOGGING option a full back up has to be made (before and) after the masking

process as a recovery without the required archive- and redo log files is not possible.

PARALLEL_FORCE_LOCAL

When the subset is run on a RAC environment with multiple instances available the database

parameter PARALLEL_FORCE_LOCAL can be set to FALSE. In this way the queries used by the masking

process can make use of the available instances instead of restricting to one instance. The masking

process needs to be run on a database service which can use these multiple instances in this case.

Afterwards this parameter needs to be set to TRUE when using the OHI Back Office application again.

JOB_QUEUE_PROCESSES

The database parameter JOB_QUEUE_PROCESSES should be set to at most 10 times the amount of

GB set for the parameter PGA_AGGREGATE_LIMIT. If, for example, the pga_aggregate_limit is set to

10GB, the maximum for job_queue_processes is 100.

RESTRICTED SESSION MODE

Before the masking can be executed the database must be set in restricted session mode to prevent

unwanted access to the schema. When masking a OHI Datamarts environment the OHI Back Office

environment acting as the source environment for the OHI Datamarts environment should not be in

restricted session mode.

4.2 Masking flex fields

Flex fields are flexible, like the name says, and your organization can determine what they are used

for and what is stored in them. As such, it may be that certain flex fields contain sensitive information

that should also be masked.

In the OHI BO application it is possible to indicate if the value for a specific flex field should be

masked. In window ZRG7019F (Flex field) the indication “Mask?” can be set to “Yes” in order to mask

the value for this flex field. If set to “No” (default value) masking will not take place. Masking the OHI

DM application will also use this setup in OHI BO.

OHI Data Management Technical Reference Guide

21

Note: The value of a flex field can be used to influence the logic of processes like the claims

processing. Masking of these flex fields can interfere with this logic and may lead to unpredictable

and/or undesirable results. Therefore, the advice is to mask only those flex fields that are actually

privacy-sensitive.

4.3 Running Masking on Target Database

To start the masking process a database job can be created. To do this, execute the following

command as the OHI database schema owner:

begin

 sdm_driver_pck.job

 (pi_action => 'M'

 , pi_masking_seed => <your ‘secret’ integer value>

 , pi_masking_tablespace => 'SCRATCH_TBS'

 , pi_subset_policy_selection => null

 , pi_job_class => 'DEFAULT_JOB_CLASS'

 , pi_force_query => 'N'

 , pi_force_dml => 'Y'

 , pi_force_ddl => 'Y'

 , pi_parallel_policy_manual => 'Y'

 , pi_gather_stats => 'Y'

 , pi_compress_bo => 'N'

);

end;

/

This will start a database scheduler job with the name OHI_MASKING and run the

SDM_DRIVER_PCK.MASK procedure.

It is also possible to start the mask procedure directly in the calling session, but this will require you

to keep the executing SQL*Plus session open and alive.

The parameters do have the following impact/effect during the masking process:

• PI_ACTION: M for Masking

OHI Data Management Technical Reference Guide

22

• PI_MASKING_SEED: this can have a value between 0 and 4294967295. This will randomize

the masking output and prevent identical masked strings for identical source strings for

different OHI Back Office customers.

Note: If you want to mask an OHI Back Office environment and a OHI Data Marts

environment that should be coupled together make sure the value of the seed is the same,

so make sure to store it in a safe place.

• PI_MASKING_TABLESPACE: when provided each table to be masked will be moved to this

tablespace before it is masked. For this an existing but empty tablespace should be provided.

If no tablespace is provided the temporary table object is created in the same tablespace as

the table to be masked. Providing a tablespace might increase the masking time, because the

tables to be masked will first have to be moved to the chosen tablespace, but will have the

benefit (after dropping this tablespace) that the size of the original tablespaces is not

significantly increased after masking.

• PI_SUBSET_POLICY_SELECTION: not used for data masking

• PI_JOB_CLASS: The scheduler job class this job will use as a resource group. For an

Autonomous Data Warehouse environment use the job class best fit for the resource-

intensive masking job, e.g., ‘HIGH’.

• PI_FORCE_QUERY: when Y(es) the session is set to FORCE parallel query, when N(o) the

session is set to ENABLE parallel query

• PI_FORCE_DML: when Y(es) the session is set to FORCE parallel DML, when N(o) the session

is set to ENABLE parallel DML

• PI_FORCE_DDL: when Y(es) the session is set to FORCE parallel DDL, when N(o) the session is

set to ENABLE parallel DDL

• PI_PARALLEL_POLICY_MANUAL: when Y(es) the session is set to MANUAL for the parameter

PARALLEL_DEGREE_POLICY, when N(o) the session is set to AUTO for the parameter

PARALLEL_DEGREE_POLICY.

Note: This parameter will not be set in an Autonomous Data Warehouse environment.

• PI_GATHER_STATS: When Y(es) table and index statistics will be gathered at the end of the

masking run, when N(o) the gather statistics step is omitted in the masking run. A recent set

of Statistics is necessary for the performance of the application.

When K(eep) the original table and column statistics will be reused

Note: Gathering of statistics will be executed with the same settings as in step 820 of

OHIPATCH. The time limit of step 820 does not apply here.

• PI_COMPRESS_BO: when Y(es) the tables in the masking set will be compressed using Oracle

Advanced Compression if no compression is present. When N(o) is chosen no compression is

applied nor removed from the tables in the masking set. This option is only applicable when

masking an OHI Back Office database.

Note: An appropriate licence for Advanced Compression is required when using this option.

All parameters are provided with a default which is the OHI recommended setting, except for the

tablespace name.

These settings will make maximum use of the available resources. If it is not possible or if you don’t

want to use the maximum available resources, you can set these parameters to the other possible

value.

OHI Data Management Technical Reference Guide

23

4.4 Monitoring the masking run

There is no direct output during the masking run. However, information about the run is stored in a

table.

The current action is shown in the first row in the following query which can be run under the OHI

schema owner. The schema owner in the queries is the owner of the tables that are (being) masked:

select mlg.*

from sdm#log mlg

where mlg.schema_owner = '<schema owner>'

order by mlg.id desc;

After the initialization phase is done, the overall progress can be monitored by looking at the status

of the tables with the following query:

select ssd.base_table

, ssd.status

from sdm#statement_data ssd

where ssd.object_type = 'TABLE'

and ssd.usage_type = 'MASKING'

and ssd.schema_owner = '<schema owner>'

order by ssd.id;

Tables with status D(one) have been processed successfully.

4.5 Checking the outcome

After the masking job and/or procedure is finished a report can be created to check on the process

and possible errors. To create the report the following script can be run under the masked schema

owner

col spool_tijdstip new_value l_spool_tijdstip noprint

select to_char(sysdate,'YYYYMMDD_HH24_MI_SS') spool_tijdstip

from dual

/

set trimspool on

set trim on

set pages 0

set linesize 1000

set long 10000000

set longchunksize 10000000

set feedback off

set showmode off

set flush off

set verify off

spool MASKING_REPORT_&l_spool_tijdstip..html

select * from table(sdm_driver_pck.report(pi_full => 'N'))

/

spool off

undefine l_spool_tijdstip

This will create an HTML file with the following information

• Provided parameter values

• Instance and session information

OHI Data Management Technical Reference Guide

24

• Generic run information

• Top 20 long running actions

• Any errors that occurred

When the parameter pi_full is provided with the value ‘Y’ the report will provide a full report of all

executed steps. This option can be requested by OHI Support to investigate issues.

4.6 Processing errors and restarting

 If one or more errors occurred the process can be restarted by using the same parameters, after

mitigating the cause of the error, e.g., by increasing a tablespace size.

In that case, the process will detect an incomplete previous run and only process the tables that are

not yet successfully masked.

4.7 Cleaning up

If you supplied a value for PI_MASKING_TABLESPACE (to move the tables with sensitive columns to

an empty tablespace, as described earlier) you can drop that tablespace now, to release the extra

disk space used by the masking process.

Revert the changes made to the database parameters before using the database as an OHI Back

Office or OHI Data Marts runtime environment.

Note: For correct operation of the application, it is necessary to have an actual set of table and index

statistics. If gathering statistics is omitted during the masking process (via the parameter

PI_GATHER_STATS) these statistics should be gathered manually before using the application. Not

having a recent set of statistics could result in a different experience in the performance of the

application.

4.8 Repeated data masking

It is possible to repeat data masking on the same environment. This can be used to test the data

masking functionality of a newer release after installation on an environment that was masked

before.

5 OHI Data Marts subset

OHI Data Marts (OHI DM) is certified to extract data from sub-setted and/or data-masked OHI Back

Office (OHI BO) data stores.

The following types of OHI BO data stores are supported:

• subsetted

• subsetted and data-masked

• data-masked

From release 10.18.1.0.0 onwards, OHI DM can be data-masked itself as well. The process to mask

OHI DM is described in chapter 4.

OHI Data Management Technical Reference Guide

25

When a subset OHI DM environment is needed you should use the approach described in this

chapter. Whether or not the source OHI BO environment is already masked determines whether the

resulting OHI DM environment is masked. For creating a subset OHI DM environment an initial load is

needed from the OHI BO subset environment.

When you need a full size masked OHI DM environment the masking process from the previous

chapter can be applied.

Theoretically you can create a subset OHI BO environment and corresponding OHI DM environment

and mask them both independently, but this is more time consuming and more error-prone than

using a subset masked OHI BO environment to create the corresponding OHI DM environment.

5.1 Preparing OHI Data Marts data-store

An empty OHI DM data store is required to be able to load data from a subsetted and/or data-

masked OHI BO data store into OHI DM. The SQL script OBDRESET.sql (available within

OZG_TEMPLATES.zip) is provided to create an empty OHI DM data store by truncating all the

necessary OHI DM tables. This script can be run using SQL*Plus while connected as the OBD_OWN

account.

We strongly advise to create a clone from an existing OHI DM environment which is at the same OHI

patch-level as the OHI BO data store and use this cloned environment to run the SQL script

OBDRESET.sql against. Make sure the database link SRC_OPENZORG is referring to the correct OHI

BO data store.

NOTE: This SQL script should never be used within a production environment!

5.2 Loading OHI Data Marts

Performing loads from a subsetted and/or data-masked OHI BO environment is identical to loading

from a normal OHI BO environment. See the OHI Back Office online help for information on loading

(topic ‘Loading OHI Data Marts’).

You can proceed with a full initial load from the OHI BO subset environment by not specifying up to

which moment to load. Or you choose to first load older data up to a specific date and divide the

work in this way, by using additional incremental loads for later periods to load.

OHI Data Management Technical Reference Guide

26

6 Appendix 1: Define a policy selection

A policy selection within OHI Back Office is used to determine which rows should be included in the

subset.

In this section the setup of the policy selection is explained in more detail.

A policy selection is a set of policy numbers. Typically, you should determine a representative set of

policies to be included in your subset, as this forms the base of the data that will be included in the

subset. All policy related data, including relevant claims, will be incorporated in the subset. So,

determining a well-considered policy selection is an important aspect in setting up your subset

environment.

Note: Regression and integration tests may require certain types of data or cases to be present.

Make sure to include these in your policy selection.

There are two ways you can create a policy selection:

1. Use the OHI Back Office Policy Selection window to setup a policy selection.

2. Use SQL*Plus to directly populate the underlying two tables of a policy selection.

The figure below shows the window ZRG2070F “Policy Selection”. You have to enter a name for the

policy selection (this name will be input for one of the steps later on). The description is optional. All

other items can be left empty or at their default value. In the second block you enter all required

policy numbers.

 The Policy Selection window.

The two underlying tables for the Policy Selection screen are depicted in Figure 3.2. They are:

OHI Data Management Technical Reference Guide

27

• VER_POLIS_SELECTIES, and

• VER_POL_PER_POS.

It might be more convenient to use a SQL tool, such as SQL*Plus, to create the necessary rows

manually in these tables.

Figure 3.2: Policy selection tables.

For example, the following two insert statements set up a policy selection named

SAMPLE_OF_5_PERCENT that holds a random sample of 5% of the total number of policies available

in the source database.

insert into ver_polis_selecties (naam) values('SAMPLE_OF_5_PERCENT');

insert into ver_pol_per_pos (pos_id, pol_nr)
select (select id from ver_polis_selecties where naam = 'SAMPLE_OF_5_PERCENT')

 , nr

from ver_polissen SAMPLE(5);

commit;

Of course, you can execute multiple insert into ver_pol_per_pos statements with different

selections to add policies to the policy selection.

For running these statements, you need an account with (temporary) insert privileges on these tables

unless you use the OHI BO table owner account, which is strongly discouraged given the security

impact.

Note: Creating a policy selection without adding policies to this selection, so no rows for the

selection in VER_POL_PER_POS, will create a so called 0% subset during the subset process. A 0%

subset is a subset with all setup and configuration data, including brokers, healthcare providers and

group contracts, but without policy and claims data and without the financial data (payables and

receivables).

OHI Data Management Technical Reference Guide

28

7 Appendix 2: Masking a custom database schema
This appendix provides a step-by-step guide to mask a custom database schema that contains data

extracted from an OHI environment. This is done in the same way and with the same rules as for the

OHI environment.

This guide is not meant to mask any database with any dataset. Only data from an OHI environment

in a custom development schema can be masked, with the limitation that no additional masking

rules other than those provided and used to mask an OHI environment can be used and are

supported.

7.1 Creating the masking rule set

It is assumed that the custom development schema is in the same database as the OHI database

schema and that the custom development schema has been granted (directly!!) all privileges that

have been granted to the OZG_ROL_DIRECT role.

Note that is is not possible to mask hidden, virtual or identity columns.

Each table and/or column that should be masked should be registered via the procedure

sdm_driver_pck.add_custom_rule.

This procedure has the following interface:

procedure add_custom_rule

(pi_schema_owner in sdm#custom_schema_masking.schema_owner%type

, pi_table_name in sdm#custom_schema_masking.table_name%type

, pi_column_name in sdm#custom_schema_masking.column_name%type

, pi_masking_rule in sdm#custom_schema_masking.masking_rule%type

, pi_col_gender in sdm#custom_schema_masking.col_gender%type default null

, pi_col_first_name in sdm#custom_schema_masking.col_first_name%type default null

, pi_col_last_name in sdm#custom_schema_masking.col_last_name%type default null

, pi_col_country in sdm#custom_schema_masking.col_country%type default null

, pi_col_street in sdm#custom_schema_masking.col_street%type default null

, pi_col_city in sdm#custom_schema_masking.col_city%type default null

, pi_col_postal_code in sdm#custom_schema_masking.col_postal_code%type default null

, pi_col_house_number in sdm#custom_schema_masking.col_house_number%type default null

);

The parameters

• PI_SCHEMA_OWNER: The custom development database schema that holds the table that is

to be masked. It is possible to register tables from multiple database schemas, but each

masking run will only process tables from one schema and run from that schema.

• PI_TABLE_NAME: The table name of the table to be masked or truncated

• PI_COLUMN_NAME: The column name which should be masked; must be left empty when

the table should be truncated

• PI_MASKING_RULE: The masking rule(*) that should be applied to the column or table

• PI_COL_GENDER: Column name (or expression) of the column containing the gender value

• PI_COL_FIRST_NAME: Column name (or expression) of the column containing the first name

value

• PI_COL_LAST_NAME: Column name (or expression) of the column containing the last name

value

• PI_COL_COUNTRY: Column name (or expression) of the column containing the country value

OHI Data Management Technical Reference Guide

29

• PI_COL_STREET: Column name (or expression) of the column containing the street value

• PI_COL_CITY: Column name (or expression) of the column containing the city value

• PI_COL_POSTAL_CODE: Column name (or expression) of the column containing the postal

code value

• PI_COL_HOUSE_NUMBER: Column name (or expression) of the column containing the house

number value

(*) Available masking rules for the parameter PI_MASKING_RULE are:

• TRUNCATE: truncate the table, in other words all rows are removed leaving an empty table

• NULL_VALUE: the column value is removed

• TRANSLATE: replaces the content with dummy data depending on the datatype of the

column.

• TRANSLATE_UNIQUE: replaces the content of a varchar column with dummy characters, but

will make sure the content will keep its uniqueness

• DATE: adjust the date to the 1st, 11th or 21st of the month, can be used e.g., for a date of birth

• REL_NR: replaces the relation number with a new calculated relation number

• POL_NR: replaces the policy number with a new calculated policy number

• DCR_NR: replaces the claim number with a new calculated claim number

• KENMERK: replaces an invoice reference number with a new number

• BSN: replaces the existing social security number with a new calculated social security

number

• PHONE_1: masks a phone number

• PHONE_2: masks a phone number with a different pattern

• FAX: masks a fax number

• BANK: replaces the bank account number with a new calculated bank account number

(IBAN)

• LASTNAME: replaces the last name of a person with a new last name

• PREFIX_NAME: replaces the lastname prefix of a person with a new prefix

• FIRSTNAME: replaces the first name of a person with a new first name

• FIRSTNAME_LETTER: replaces the first letter of the first name of a person with a new first

letter based on the new first name

• EMAIL: replaces the email of a person with a new email based on the new first and last name

of that person

• STREET: replaces the street part of an address with a fake street

• CITY: replaces the city part of an address with a fake city

• COUNTRY: replaces the country part of an address with a fixed one if this is not the Dutch

country code

• HOUSENUMBER: replaces the house number of an address

• POSTAL_CODE: replaces the postal code part of an address with a fake postal code

• POSTAL_CODE_LETTER: replaces the character part of a Dutch postal code with a fake

character part

• POSTAL_CODE_NUMBER: replaces the numerical part of a Dutch postal code with a fake

numerical part

OHI Data Management Technical Reference Guide

30

7.2 The use of the PI_COL_* parameters

Masking is based on the data in the given row. Sometimes the name of the column itself is enough,

sometimes additional data is required.

For instance a gender is needed to differentiate between male and female first names.

The table below shows which additional columns are needed for each masking rule. If the rule is not

mentioned in this table, no additional columns are required.

Some of the required column parameters may seem unnecessary, e.g., a pi_col_postal_code for the

column with/for the postal code, but these are required for the correct implementation.

Rule Additional Parameters

FIRSTNAME PI_COL_GENDER

FIRSTNAME_LETTER PI_COL_GENDER, PI_COL_FIRST_NAME

PREFIX_NAME PI_COL_LAST_NAME

EMAIL PI_COL_GENDER, PI_COL_FIRST_NAME,

PI_COL_LAST_NAME

STREET PI_COL_COUNTRY, PI_COL_POSTAL_CODE,

PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also

present in the table, also the following are

required:

PI_COL_STREET, PI_COL_CITY

CITY PI_COL_COUNTRY, PI_COL_POSTAL_CODE,

PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also

present in the table, also the following are

required:

PI_COL_STREET, PI_COL_CITY

COUNTRY PI_COL_COUNTRY, PI_COL_POSTAL_CODE,

PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also

present in the table, also the following are

required:

PI_COL_STREET, PI_COL_CITY

HOUSENUMBER PI_COL_COUNTRY, PI_COL_POSTAL_CODE,

PI_COL_HOUSENUMBER

OHI Data Management Technical Reference Guide

31

If addresses outside of the Netherlands are also

present in the table, also the following are

required:

PI_COL_STREET, PI_COL_CITY

POSTAL_CODE PI_COL_COUNTRY, PI_COL_POSTAL_CODE,

PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also

present in the table, also the following are

required:

PI_COL_STREET, PI_COL_CITY

POSTAL_CODE_LETTER PI_COL_COUNTRY, PI_COL_POSTAL_CODE,

PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also

present in the table, also the following are

required:

PI_COL_STREET, PI_COL_CITY

POSTAL_CODE_NUMBER PI_COL_COUNTRY, PI_COL_POSTAL_CODE,

PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also

present in the table, also the following are

required:

PI_COL_STREET, PI_COL_CITY

The PI_COL columns can contain the actual column name as well as an expression.

7.3 Execution

Masking of a custom development schema is done with the same interface as for OHI itself.

The procedure sdm_driver_pck.job, or sdm_driver_pck.mask, should be executed under the custom

development schema owner. To be able to run the job, the owner of the custom schema must have

the privileges ‘CREATE JOB’ and ‘EXECUTE ON DBMS_SCHEDULER’.

7.4 Example script

The following script is an example showing a possible setup.

NB. The procedure SDM_DRIVER_PCK.DEL_CUSTOM_SCHEMA will remove all rules for the given

custom development schema.

This example assumes your script is the “master” that is maintained, and the rules are re-created

whenever there is a change in your custom schema that impacts the masking.

For this example, the following custom development tables are used:

create table SVS_PERSONEN

(ID NUMBER not null,

OHI Data Management Technical Reference Guide

32

 BSN VARCHAR2(20) not null,

 ACHTERNAAM VARCHAR2(240),

 VOORNAAM VARCHAR2(240),

 GEBDATUM DATE not null,

 GESLACHT VARCHAR2(1) not null,

 REKENINGNUMMER VARCHAR2(40),

 DEC_CODE VARCHAR2(30),

 EMAIL VARCHAR2(240),

 UZOVI VARCHAR2(36),

 MERK VARCHAR2(5) not null,

 ZV_PAKKET VARCHAR2(5),

 AV_PAKKET VARCHAR2(5),

 NOTITIES VARCHAR2(4000)

);

ALTER TABLE SVS_PERSONEN ADD CONSTRAINT SVS_PSN_PK PRIMARY KEY (ID);

ALTER TABLE SVS_PERSONEN ADD CONSTRAINT SVS_PSN_UK1 UNIQUE (BSN);

create table SVS_ADRESSEN

(ID NUMBER not null,

 DATUM_INGANG DATE not null,

 BSN VARCHAR2(20) not null,

 PC_LETTER VARCHAR2(2),

 PC_NR NUMBER(4),

 HUISNR NUMBER(5),

 LAND VARCHAR2(2),

 BUITENLAND_STRAAT VARCHAR2(35),

 BUITENLAND_POSTCODE VARCHAR2(15),

 BUITENLAND_PLAATS VARCHAR2(35),

 NOTITIES VARCHAR2(4000)

);

ALTER TABLE SVS_ADRESSEN ADD CONSTRAINT SVS_ADR_PK PRIMARY KEY (ID);

ALTER TABLE SVS_ADRESSEN ADD CONSTRAINT SVS_ADR_FK_PSN FOREIGN KEY (BSN) REFERENCES

SVS_PERSONEN (BSN);

create table SVS_TEKSTEN

(ID NUMBER not null,

 BSN VARCHAR2(20) not null,

 TEKST VARCHAR2(4000)

);

ALTER TABLE SVS_TEKSTEN ADD CONSTRAINT SVS_TKN_PK PRIMARY KEY (ID);

ALTER TABLE SVS_TEKSTEN ADD CONSTRAINT SVS_TKN_FK_PSN FOREIGN KEY (BSN) REFERENCES

SVS_PERSONEN (BSN);

INSERT INTO SVS_PERSONEN(ID, BSN, ACHTERNAAM, VOORNAAM, GEBDATUM, GESLACHT, REKENINGNUMMER,

DEC_CODE, EMAIL, UZOVI, MERK, ZV_PAKKET, AV_PAKKET, NOTITIES)

VALUES(1,'826897083','Jansen','Jan',to_date('01-06-1980','DD-MM-

YYYY'),'M','NL69INGB0123456789','KLT13405','jansen_j@example.org','0000','DDZ','ZVNAT','ALLIN'

,'Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit

anim id est laborum.');

INSERT INTO SVS_ADRESSEN(ID, DATUM_INGANG, BSN, PC_LETTER, PC_NR, HUISNR, LAND,

BUITENLAND_STRAAT, BUITENLAND_POSTCODE, BUITENLAND_PLAATS, NOTITIES) VALUES(1,to_date('01-01-

1990','DD-MM-YYYY'), '826897083', 'CB', '1071' , 29, 'NL',NULL,NULL,NULL,NULL);

INSERT INTO SVS_TEKSTEN(ID, BSN, TEKST) VALUES (1,'826897083','Lorem ipsum dolor sit amet,

consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna

aliqua.');

INSERT INTO SVS_TEKSTEN(ID, BSN, TEKST) VALUES (2,'826897083','Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat');

COMMIT;

begin

 -- clear the rules for the schema SVS_OWNER

 sdm_driver_pck.del_custom_schema(pi_schema_owner => 'SVS_OWNER');

 --table SVS_TEKSTEN should be made empty

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

OHI Data Management Technical Reference Guide

33

 , pi_table_name => 'SVS_TEKSTEN'

 , pi_column_name => null

 , pi_masking_rule => 'TRUNCATE'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_PERSONEN'

 , pi_column_name => 'BSN'

 , pi_masking_rule => 'BSN'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_PERSONEN'

 , pi_column_name => 'ACHTERNAAM'

 , pi_masking_rule => 'LASTNAME'

);

 -- Gender in OHI is stored as 1 or 2; example shows a conversion if

 -- the custom data gender column has another domain set for the GENDER

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_PERSONEN'

 , pi_column_name => 'VOORNAAM'

 , pi_masking_rule => 'FIRSTNAME'

 , pi_col_gender => 'DECODE(GESLACHT,''M'',1,''V'',2,GESLACHT)'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_PERSONEN'

 , pi_column_name => 'GEBDATUM'

 , pi_masking_rule => 'DATE'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_PERSONEN'

 , pi_column_name => 'REKENINGNUMMER'

 , pi_masking_rule => 'BANK'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_PERSONEN'

 , pi_column_name => 'EMAIL'

 , pi_masking_rule => 'EMAIL'

 , pi_col_gender => 'GESLACHT'

 , pi_col_first_name => 'VOORNAAM'

 , pi_col_last_name => 'ACHTERNAAM'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_PERSONEN'

 , pi_column_name => 'DEC_CODE'

 , pi_masking_rule => 'TRANSLATE_UNIQUE'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_PERSONEN'

 , pi_column_name => 'NOTITIES'

 , pi_masking_rule => 'TRANSLATE'

);

 -- NOTE: although the SVS_PERSONEN.BSN is masked by a rule above, all other BSN columns

 -- should be masked in the same way; there is no automatic detection of the same type of

OHI Data Management Technical Reference Guide

34

 -- columns or foreign key relation dependencies

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_ADRESSEN'

 , pi_column_name => 'BSN'

 , pi_masking_rule => 'BSN'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_ADRESSEN'

 , pi_column_name => 'PC_LETTER'

 , pi_masking_rule => 'POSTAL_CODE_LETTER'

 , pi_col_country => '''NL'''

 , pi_col_postal_code => 'PC_NR||PC_LETTER'

 , pi_col_house_number => 'HUISNR'

);

 -- NOTE: although a country code column is present in this table (column LAND)

 -- this example uses a literal value for the country code

 -- In this specific example we ‘know’ that it is a Dutch (NL) specific postal code

 -- NOTE: In this case the postal code is in the table separated into two columns.

 -- you can use a concatenation to make these two columns act as one for the masking rule

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_ADRESSEN'

 , pi_column_name => 'PC_NR'

 , pi_masking_rule => 'POSTAL_CODE_NUMBER'

 , pi_col_country => '''NL'''

 , pi_col_postal_code => 'PC_NR||PC_LETTER'

 , pi_col_house_number => 'HUISNR'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_ADRESSEN'

 , pi_column_name => 'BUITENLAND_STRAAT'

 , pi_masking_rule => 'STREET'

 , pi_col_country => 'LAND'

 , pi_col_street => 'BUITENLAND_STRAAT'

 , pi_col_city => 'BUITENLAND_PLAATS'

 , pi_col_postal_code => 'BUITENLAND_POSTCODE'

 , pi_col_house_number => 'HUISNR'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_ADRESSEN'

 , pi_column_name => 'BUITENLAND_POSTCODE'

 , pi_masking_rule => 'POSTAL_CODE'

 , pi_col_country => 'LAND'

 , pi_col_street => 'BUITENLAND_STRAAT'

 , pi_col_city => 'BUITENLAND_PLAATS'

 , pi_col_postal_code => 'BUITENLAND_POSTCODE'

 , pi_col_house_number => 'HUISNR'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_ADRESSEN'

 , pi_column_name => 'BUITENLAND_PLAATS'

 , pi_masking_rule => 'CITY'

 , pi_col_country => 'LAND'

 , pi_col_street => 'BUITENLAND_STRAAT'

 , pi_col_city => 'BUITENLAND_PLAATS'

 , pi_col_postal_code => 'BUITENLAND_POSTCODE'

 , pi_col_house_number => 'HUISNR'

);

OHI Data Management Technical Reference Guide

35

 -- NOTE: besides a literal or concatenation also simple sql functions like NVL are supported

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_ADRESSEN'

 , pi_column_name => 'HUISNR'

 , pi_masking_rule => 'HOUSENUMBER'

 , pi_col_country => 'LAND'

 , pi_col_street => 'BUITENLAND_STRAAT'

 , pi_col_city => 'BUITENLAND_PLAATS'

 , pi_col_postal_code => 'NVL(PC_NR||PC_LETTER,BUITENLAND_POSTCODE)'

 , pi_col_house_number => 'HUISNR'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_ADRESSEN'

 , pi_column_name => 'LAND'

 , pi_masking_rule => 'COUNTRY'

 , pi_col_country => 'LAND'

 , pi_col_street => 'BUITENLAND_STRAAT'

 , pi_col_city => 'BUITENLAND_PLAATS'

 , pi_col_postal_code => 'NVL(PC_NR||PC_LETTER,BUITENLAND_POSTCODE)'

 , pi_col_house_number => 'HUISNR'

);

 sdm_driver_pck.add_custom_rule

 (pi_schema_owner => 'SVS_OWNER'

 , pi_table_name => 'SVS_ADRESSEN'

 , pi_column_name => 'NOTITIES'

 , pi_masking_rule => 'NULL_VALUE'

);

 -- NOTE: Don’t forget to commit the transactions

 commit;

end;

/

