Oracle® NoSQL Database
C Key-Value Driver API Reference

Release 22.2
E91468-17
August 2022

ORACLE"

Oracle NoSQL Database C Key-Value Driver API Reference, Release 22.2
E91468-17
Copyright © 2011, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Conventions Used in this Book viii

1 Introduction to Oracle NoSQL Database C API

Library Installation 1-1
Library Usage 1-1
Thread Safety 1-2
2 Store and Library Functions
kv_close_store() 2-2
kv_config_add_host_port() 2-3
kv_config_add read _zone() 2-3
kv_config_get_lob_suffix() 2-4
kv_config_get_lob_timeout() 2-4
kv_config_get_lob_verification_bytes() 2-5
kv_config_get_read_zones() 2-5
kv_config_set_consistency() 2-6
kv_config_set_durability() 2-6
kv_config_set_lob_suffix() 2-7
kv_config_set_lob_timeout() 2-7
kv_config_set_request_limits() 2-8
kv_config_set_security_properties() 2-9
kv_config_set_timeouts() 2-9
kv_config_set_verification_bytes() 2-10
kv_create_config() 2-11
kv_create_jni_impl() 2-12
kv_create_jni_impl_from_jvm() 2-12
kv_create_password_credentials() 2-13
kv_create properties() 2-13
kv_get_impl_type() 2-14
kv_get_open_error() 2-14

ORACLE iii

kv_open_store() 2-15

kv_open_store_login() 2-16
kv_release_config() 2-16
kv_release_credentials() 2-17
kv_release_impl() 2-17
kv_release properties() 2-18
kv_set_property() 2-18
kv_store_login() 2-19
kv_store_logout() 2-20
kv_version() 2-21
kv_version_c() 2-21
3 Data Operation Functions
kv_create_delete_op() 3-3
kv_create delete_with_options_op() 3-4
kv_create_operations() 3-4
kv_create_put_op() 3-5
kv_create put_with_options_op() 3-6
kv_delete() 3-7
kv_delete_with_options() 3-8
kv_execute() 3-9
kv_get() 3-10
kv_get_with_options() 3-11
kv_init_key range() 3-12
kv_init_key range_prefix() 3-13
kv_iterator_next() 3-13
kv_iterator_next_key() 3-14
kv_iterator_size() 3-15
kv_lob_delete() 3-15
kv_lob_get_for_read() 3-16
kv_lob_get for_write() 3-17
kv_lob_get_version() 3-18
kv_lob_put_from_file() 3-18
kv_lob_read() 3-19
kv_lob_release_handle() 3-20
kv_multi_delete() 3-20
kv_multi_get() 3-21
kv_multi_get_iterator() 3-22
kv_multi_get_iterator_keys() 3-24
kv_multi_get_keys() 3-25

ORACLE iv

kv_operation_get_abort_on_failure() 3-26

kv_operation_get_key() 3-27
kv_operation_get_type() 3-27
kv_operation_results_size() 3-28
kv_operations_set_copy() 3-29
kv_operations_size() 3-30
kv_parallel_scan_iterator_next() 3-30
kv_parallel_scan_iterator_next_key() 3-31
kv_parallel_store_iterator() 3-32
kv_parallel_store_iterator_keys() 3-33
kv_put() 3-34
kv_put_with_options() 3-35
kv_release _iterator() 3-37
kv_release_operation_results() 3-37
kv_release operations() 3-37
kv_release_parallel_scan_iterator() 3-38
kv_result_get previous_value() 3-38
kv_result_get_previous_version() 3-39
kv_result_get success() 3-40
kv_result_get version() 3-40
kv_store_iterator() 3-41
kv_store_iterator_keys() 3-42
4 Key/Value Pair Management Functions
kv_copy_version() 4-2
kv_create_key() 4-2
kv_create_key copy() 4-3
kv_create key from_uri() 4-5
kv_create_key from_uri_copy() 4-6
kv_create value() 4-7
kv_create value_copy() 4-8
kv_get_key major() 4-9
kv_get_key_minor() 4-9
kv_get key uri() 4-10
kv_get_value() 4-10
kv_get_value_size() 4-11
kv_get version() 4-11
kv_release_key() 4-12
kv_release_value() 4-12

ORACLE Y

kv_release_version() 4-13

5 Durability and Consistency Functions
kv_create_durability() 5-1
kv_create_simple_consistency() 5-2
kv_create_time_consistency() 5-3
kv_create_version_consistency() 5-4
kv_get_consistency_type() 5-5
kv_get_default_durability() 5-6
kv_get durability _master_sync() 5-6
kv_get_durability_replica_ack() 5-6
kv_get_durability_replica_sync() 5-7
kv_is_default_durability() 5-7
kv_release_consistency() 5-8

6 Statistics Functions
kv_detailed_metrics_list_get_name() 6-2
kv_detailed_metrics_list_get record_count() 6-2
kv_detailed_metrics_list_get_scan_time() 6-3
kv_detailed_metrics_list_size() 6-3
kv_get node_metrics() 6-4
kv_get_num_nodes() 6-5
kv_get_num_operations() 6-5
kv_get operation_metrics() 6-6
kv_get_stats() 6-7
kv_parallel_scan_get_partition_metrics() 6-7
kv_parallel_scan_get shard_metrics() 6-8
kv_release_detailed_metrics_list() 6-8
kv_release_stats() 6-9
kv_stats_string() 6-9

7 Error Functions
kv_get_last_error() 7-1

A Data Types

Data Operations Data Types A-1
kv_depth_enum A-1
kv_direction_enum A-2

ORACLE vi

kv_presence_enum
kv_return_value_version_enum
Durability and Consistency Data Types
kv_ack_policy _enum
kv_consistency_enum
kv_sync_policy_enum
Store Operations Data Types
kv_api_type_enum
kv_error_t
kv_store_iterator_config_t

B Third Party Licenses

A-2

A-3
A-3
A-3
A-4

A-5
A-5
A-6

ORACLE"

Vii

Preface

Preface

This document describes the Oracle NoSQL Database C API.

This book is aimed at software engineers responsible for building Oracle NoSQL
Database applications.

Conventions Used In this Book

The following typographical conventions are used within this manual:
Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to
your KVHOME directory."

" Note:

Finally, notes of special interest are represented using a note block such as
this.

ORACLE viii

Introduction to Oracle NoSQL Database C

API

Welcome to the Oracle NoSQL Database C API. This API is intended for use with C and C++
applications that want to access and manage data which is placed in an Oracle NoSQL
Database Key-Value Store (KV Store).

This manual describes version 12.1.4.2 of the C API library. This version of the library is
intended for use with Oracle NoSQL Database version 11.2.2.0.

Library Installation

This API is a wrapper around the native Java NoSQL Database interfaces. This means that in
order for you to use the API, you must have a Java virtual machine configured for the
machine where your client will run.

For information on how to build the library, see Build Instructions.

Library Usage

ORACLE

Examples of how to use these APIs are included with your distribution. See the <package>/
examples directory. In particular, hello.c illustrates the basic API usage to a store tjat does
not require authentication, while hello secured.c shows similar usage working with a secure
store.

At a high level, you'll complete these steps to use this library:

1. Initialize the Java Native Interface framework (JNI) using kv_create_jni_impl().
2. Create a store configuration using kv_create_config().

3. If you are using a store that requires authentication, define the security properties and the
authentication credentials using these APIs kv_create_properties(), kv_set_property(),
andkv_config_set_security _properties(). You create authentication credentials
using kv_create_password_credentials().

4. Obtain a handle to the store using kv_open_store() or kv_open_store_login().

5. Perform data read and write operations using a variety of functions described in Data
Operation Functions. Sometimes, these functions will require durability and consistency
structures, and key/value structures. Functions used to create and manage such
structures are described in Durability and Consistency Functions and Key/Value Pair
Management Functions.

If you are operating with a store that requires authentication, be prepared to
handle Kv_AUTH FAILURE errors. When you see these errors, reauthenticate
using kv_store_login().

6. Once you have finished accessing the store, close your store handle
using kv_close_store(). If you logged the handle into the store, this will log your handle
out.

1-1

https://apexapps.oracle.com/pls/apex/f?p=44785:112:::::P112_CONTENT_ID:22400

Chapter 1
Thread Safety

7. Release your store configuration structure using kv_release_config().
8. Release your JNI implementation using kv_release_impl().

Notice that in this list of basic steps, you are responsible for allocating or initializing
structures, and for release such structures once your complete your operations. You
use some kinde of create and release functions to accomplish these tasks. This
pattern of responsibility repeats throughout the API, with few exceptions. For example,
creating a key requires kv_create_key() and to releasing it uses kv_release_key().
You are responsible for releasing any resources that you acquire through the use of
these APIs.

Thread Safety

ORACLE

In all but a few cases, the data structures you create and use from this library are not
thread-safe. Therefore, do not share these across threads.

The exceptions to this are kv_impl t and kv_store t, which are thread-safe after you
create them. However, be careful to create and release these in a single-threaded
manner.

kv_impl t is created using kv_create_jni_impl() and released
using kv_release_impl(). kv_store t is created using kv_open_store() and released
using kv_close_store().

1-2

Store and Library Functions

This chapter describes high-level KV Store functions, which are used to operate on the store
handle itself. Other operations operate on the data in the store. There are also functions used
to examine the KV Store C library that is in use.

Store Operations Functions

Store Operations Functions

Description

kv_close_store()

Close an Oracle NoSQL Database store

kv_get_open_error()

Returns the error encountered opening the store, if any

kv_open_store()

Open an Oracle NoSQL Database store

kv_open_store_login()

Open an Oracle NoSQL Database store and authenticate

kv_store_login()

Update the login credentials

kv_store_logout()

Log out of the store

Store Configuration Functions

Store Configuration Functions

Description

kv_config_add_host_port()

Identifies an additional helper host

kv_config_add_read_zone(),
kv_config_get_read_zones()

Adds a zone used for read operations

kv_config_set_consistency()

Sets the default consistency

kv_config_set_durability()

Sets the default durability policy

kv_config_set_security_properties()

Sets security properties

kv_config_set_request_limits()

Sets store request limits

kv_config_set_timeouts()

Sets store request timeouts

kv_create_config()

Create a store configuration

kv_create_password_credentials()

Creates username/password credentials for store
authentication

kv_create_properties()

Create a properties structure

kv_release_config()

Release the store configuration

kv_release_credentials()

Release store authentication credentials

kv_release_properties()

Release a properties structure

kv_set_property()

Sets a property

ORACLE

2-1

Chapter 2
kv_close_store()

Large Object Configuration Functions

Large Object Configuration Description
Functions
kv_config_set_lob_suffix(), Sets/gets the suffix used by LOB keys

kv_config_get_lob_suffix()

kv_config_set_lob_timeout(), Sets/gets the LOB chunk timeout value
kv_config_get_lob_timeout()

kv_config_set verification_bytes(), Sets/gets the number of bytes used to verify a resumed
kv_config_get_lob_verification_byte LOB put operation

s()

Library Operations Functions

Library Operations Functions Description

kv_create_jni_impl() Initialize the NI layer
kv_create_jni_impl_from_jvm() Initialize the JNI layer using a pointer to a JVM
kv_get_impl_type() Return the C API implementation type
kv_release_impl() Release the JNI structures

kv_version() Return the library version number
kv_version_c() Return the version number for the C library

kv_close_store()

#include <kvstore.h>

kv_error_t
kv _close store(kv store t *store)

Closes the store handle, releasing all resources that the handle was using. If
authentication was performed for this store handle (that is,

if kv_open_store_login() was used), then this API logs out the client before releasing
the handle's resources. After calling this function, never use the handle again, even if
an error is returned from this function.

You open store handles using kv_open_store() or kv_open_store_login().

Parameters

e store

The store parameter is the store handle you want to close.

See Also

e Store and Library Operations

ORACLE 2-2

Chapter 2
kv_config_add_host_port()

kv_config_add_host_port()

#include <kvstore.h>

kv_error_t

kv _config add host port (kv _config t *config,
const char *host,
int port);

Adds an additional host and port pair to the store's configuration. The host/port pair identified
here must be for an active node in the store because it is used by the application as a helper
host when the application first starts up. Usage of this function is optional. At least one helper
host is required, but that helper host is identified when you create the store's configuration
using kv_create_config().

Parameters

* config

The config parameter points to the configuration structure to which you want to add a
helper host. This structure was initially created using kv_create_config().

* host
The host parameter is the network name of a node belonging to the store.
* port

The port parameter is the helper host's port number.

See Also

e Store and Library Operations

kv_config_add read zone()

ORACLE

#include <kvstore.h>

kv_error_t
kv_config add read zone(kv_config t *config,
const char *read zone);

Adds a read zone. All nodes that are to be used for read operations must be located in the
read zone. Before you call this function to create the read zone, then all read operations can
be performed on nodes in any zone.

The specified read zone must exist at the time that this configuration is used to open a store
handle, or Kv_INVALID ARGUMENT is returned when you attempt to open the handle.

Zones specified for read operations can include primary and secondary zones. If the master
is not located in any of the specified zones, either because the zones are all secondary zones
or because the master node is not currently in one of the specified primary zones, then read
operations configured for absolute consistency will fail.

2-3

Chapter 2
kv_config_get_lob_suffix()

Parameters

* config

The config parameter points to the configuration structure for which you want to
set the read zone.

* read_zone
The read_zone parameter is the name of the zone used to service read requests.
See Also

e Store and Library Operations

kv_config_get lob_suffix()

#include <kvstore.h>

const char *
kv _config get lob suffix (kv config t *config);

Retrieves the suffix associated with Large Object (LOB) keys, after you set the LOB
suffix using kv_config_set_lob_suffix().

Keys associated with LOBs must have a trailing suffix string at the end of their final
Key component. This requirement permits non-LOB methods to check for inadvertent
modifications to LOB objects.

Parameters

- config

The config parameter points to the configuration structure from which you want to
retrieve the LOB sulffix.

See Also

e Store and Library Operations

kv_config_get_lob_timeout()

ORACLE

#include <kvstore.h>

kv_timeout t
kv_config get lob timeout (const kv config t *config);

Returns the default timeout value (in ms) associated with chunk access during Large
Objects operations. LOBs are read from the store in chunks, and each such chunk
must be retrieved within the timeout period identified by this function or an error is
returned on the read attempt.

Parameters

» config

2-4

Chapter 2
kv_config_get_lob_verification_bytes()

The config parameter points to the configuration structure from which you want to
retrieve the LOB timeout value.

See Also

e Store and Library Operations

kv_config_get_lob_verification_bytes()

#include <kvstore.h>

kv _long t
kv _config get lob verification bytes(const kv config t *config);

Returns the number of trailing bytes of a partial LOB. The partial LOB must be verified
against a user-supplied LOB stream upon resuming a LOB put operation. This value is set
using the kv_config_set_verification_bytes().

Parameters

* config

The config parameter is a pointer to the configuration structure from which you retrieve
the verification bytes value.

See Also

e Store and Library Operations

kv_config_get read_zones()

ORACLE

#include <kvstore.h>

kv _read zones t *
kv _config get read zones (kv _config t *config)

Retrieves the structure containing the read zones used by this configuration object. A node
must belong to one of the zones identified in the kv_read zones_t structure if it is to be used
to service read requests. If NULL is returned, any node in any zone can be used to service
read requests.

The structure returned by this function is as follows:

typedef struct {
kv_int t kz num zones;
char **kz zones;

} kv _read zones t;

You add read zones using kv_config_add_read_zone().

Parameters

* config

2-5

Chapter 2
kv_config_set_consistency()

The config parameter points to the configuration structure from which you want to
retrieve the read zones.

See Also

e Store and Library Operations

kv_config_set_consistency()

#include <kvstore.h>

kv_error_t
kv _config set consistency (kv config t *config,
kv_consistency t *consistency);

Identifies the default consistency policy to be used by this process. Note that this
default can be overridden on a per-operation basis.

Parameters

» config

The config parameter points to the configuration structure for which you want to
set the default consistency. This structure was initially created
using kv_create_config().

° consistency

The consistency parameter identifies the consistency policy to be used as the
default. Consistency policies are created

using kv_create_simple_consistency(), kv_create_time_consistency(), and
kv_create version_consistency().

See Also

e Store and Library Operations

kv_config_set_durability()

ORACLE

#include <kvstore.h>

kv_error_t
kv_config set durability (kv _config t *config,
kv _durability t durability);

Identifies the default durability policy to be used by this process. Note that this default
can be overridden on a per-operation basis.

Parameters

» config

The config parameter points to the configuration structure for which you want to
set the default durability. This structure was initially created
using kv_create_config().

2-6

Chapter 2
kv_config_set_lob_suffix()

e durability

The durability parameter identifies the durability policy to be used as the default.
Durability policies are created using kv_create_durability().

See Also

e Store and Library Operations

kv_config_set_lob_suffix()

#include <kvstore.h>

kv_error_t
kv _config set lob suffix(kv config t *config,
const char *suffix);

Sets the suffix associated with Large Object (LOB) keys. Keys associated with LOBs must
have a trailing suffix string at the end of their final key component. This requirement permits
non-LOB methods to check for inadvertent modifications to LOB objects.

Parameters

» config

The config parameter points to the configuration structure for which you want to set the
LOB suffix.

o suffix
The suffix parameter identifies the suffix you want to use. By default ".lob" is used.
See Also

e Store and Library Operations

kv_config_set lob_timeout()

ORACLE

#include <kvstore.h>

kv_error_t
kv_config set lob timeout (kv _config t *config,
kv_timeout t timeout ms);

Sets the default timeout value associated with chunk access during Large Object operations.
LOBs are read from the store in chunks, and each such chunk must be retrieved within the
timeout period defined by this function or an error is returned on the read attempt.

Parameters

» config

The config parameter points to the configuration structure for which you want to set the
chunk timeout value.

* timeout_ms

2-7

Chapter 2
kv_config_set_request_limits()

The timeout_ms parameter is the timeout in milliseconds used for LOB chunk
reads.

See Also

e Store and Library Operations

kv_config_set_request_limits()

ORACLE

#include <kvstore.h>

kv_error _t

kv _config set request limits (kv config t *config,
kv_int t max active requests,
kv_int t request threshold percent,
kv _int t node limit percent);

Configures the maximum number of requests that the client can have active for a node
in the KVStore. Limiting requests in this way helps minimize the possibility of thread
starvation in situations where one or more nodes in the store exhibits long service
times. As a result, nodes retain threads, making them unavailable to service requests
to other reachable and healthy nodes.

The long service times can be due to problems at the node itself, or in the network
path to that node. Whenever possible, the KVS request dispatcher will minimize use of
nodes with long service times automatically, by re-routing requests to other nodes that
can handle them. So the mechanism provided by this function offers an additional
margin of safety when re-routing requests is not possible.

The request limiting mechanism of this function is activated only when the number of
active requests exceeds the threshold specified by the

parameter request_threshold_percent. Both the threshold and limit parameters that
you provide to this function are expressed as a percentage of max_active_requests.

The limits that this function sets are applicable only if the client is mult-threaded.

When the mechanism is active, the number of active requests to a node is not allowed
to exceed node_limit_percent. Any new requests that would exceed this limit are
rejected and the function making the request returns with an error.

For example, consider a configuration with max_active_requests=10,
request_threshold_percent=80 and node_limit_percent=50. If 8 requests are already
active at the client, and a 9th request is received that would be directed at a node
which already has 5 active requests, the latest request would cause an error. If only 7
requests were active at the client, the 8th request would be directed at the node with 5
active requests. The request would then be processed normally.

Parameters

» config

The config parameter points to the configuration structure for which you want to
set request limits. This structure was initially created using kv_create_config().

° max_active_requests

2-8

Chapter 2
kv_config_set security_properties()

The max_active_requests parameter is the maximum number of active requests
permitted by the KV client. This number is typically derived from the maximum number of
threads that the client has set aside for processing requests. The default is 100. Note that
the KVStore does not actually enforce this maximum directly. Instead, it uses this
parameter only as the basis for calculating the request limits to be enforced at a node.

* request_threshold_percent

The request_threshold_percent parameter is the threshold computed as a percentage
of max_active_requests at which requests are limited. The default is 90.

* node_limit_percent

The node_limit_percent parameter determines the maximum number of active requests
that can be associated with a node when the request limiting mechanism is active. The
default is 80.

See Also

e Store and Library Operations

kv_config_set_security properties()

#include <kvstore.h>

kv_error_t
kv _config set security properties (kv _config t *config,
kv _properties t *props)

Sets the security properties for use by the client for authentication to the store. The properties

are set to the properties structure using kv_set_property().

Use this function only if you are opening a handle to a secure store
using kv_open_store_login().
Parameters
» config
The config parameter is the configuration structure that you want to configure.
e props

The props parameter is the properties structure which contains the security properties
that you want to set for the store handle.

See Also

e Store and Library Operations

kv_config_set_timeouts()

ORACLE

#include <kvstore.h>
kv_error_t

kv_config set timeouts(kv_config t *config,
kv_long t socket read timeout,

2-9

Chapter 2
kv_config_set verification_bytes()

kv _long t request timeout,
kv _long t socket open timeout);

Configures default timeout values that are used for when this client performs store
data access. All timeout values are specified in milliseconds.

Parameters

config

The config parameter points to the configuration structure for which you want to
set request timeouts. This structure was initially created using kv_create_config().

socket_read_timeout

The socket_read_timeout parameter configures the read timeout associated with
sockets used to make client requests. It applies to both read and write requests,
and represents the amount of time the client will wait for a response from the
store. Shorter timeouts result in more rapid failure detection and recovery.
However, this timeout should be sufficiently long so as to allow for the longest
timeout associated with a request.

request_timeout

The request_timeout parameter configures the default request timeout. That is,
client read and write requests must fully complete within the period of time
identified on this parameter, or the request fails with an error.

socket_open_timeout

The socket_open_timeout parameter configures the amount of time the client will
wait when opening a socket to the store. Shorter timeouts result in more rapid
failure detection and recovery.

See Also

Store and Library Operations

kv_config_set_verification_bytes()

ORACLE

#include <kvstore.h>

kv_error_t
kv _config set lob verification bytes(kv_config t *config,

kv_long t num bytes);

Sets the number of trailing bytes of a partial LOB that must be verified against the user
supplied LOB stream when resuming a LOB put operation.

Parameters

config

The config parameter points to the configuration structure for which you want to
set the number of LOB verification bytes.

num_bytes

2-10

Chapter 2
kv_create_config()

The num_bytes parameter identifies the number of trailing bytes used to verify a
resumed LOB put operation. This number of bytes is taken from the partial LOB that
exists from suspending the put operation, and is compared to your LOB input stream.

See Also

e Store and Library Operations

kv_create_config()

ORACLE

#include <kvstore.h>

kv_error_t

kv _create config(kv _config t **config,
const char *store name,
const char *host,
int port)

Creates a configuration structure to be used with kv_open_store(). You release the resources
used by this structure using kv_release_config(), but only if your application encounters an
error when kv_open_store()is called or when this function returns an error.

Note that you must identify at least one helper host when you call this function, using
the host and port parameters. The helper host is used by the application to locate other
nodes in the store. Additional helper hosts can be identified using kv_config_add_host_port().

This function defines default client behavior. All of the defaults that you can configure using
this function can be overridden on a per-operation basis using the appropriate parameters to
this API's put/get/delete functions.

You can define default store behavior only before opening the store handle; changing these
configuration options after open time has no effect on store behavior.

Parameters

* config

The config parameter references memory into which a pointer to the allocated
configuration structure is copied.

° store_name

The store_name parameter is the name of the KV Store. The store name is used to
guard against accidental use of the wrong host or port. The store name must consist
entirely of upper or lowercase, letters and digits.

* host

The host parameter is the network name of a node belonging to the store. The node
must be currently active because it is used by the application as a helper host to locate
other nodes in the store.

« port

The port parameter is the helper host's port number.

See Also

e Store and Library Operations

2-11

Chapter 2
kv_create_jni_impl()

kv_create jni_impl()

#include <kvstore.h>

kv_error_t
kv _create jni impl (kv _impl t **impl,
const char *classpath)

Creates a JNI implementation structure. This object initializes the Java Native
Interface layer. Programs written using this implementation will use JNI, and so require
a Java runtime to be available in order for the program to run.

The implementation structure is used with kv_open_store().

You release the implementation structure using kv_release_impl().

Parameters
 impl

The impl parameter references memory into which a pointer to the allocated
implementation structure is placed.

* classpath

The classpath parameter provides a path to the kvclient.jar file, which is required
in order to use this library.

See Also

e Store and Library Operations

kv_create_jni_impl_from_jvm()

ORACLE

#include <kvstore.h>

kv_error_t
kv _create jni impl from jvm(kv impl t **impl, void *jvm)

Creates a JNI implementation structure based on a JVM instantiation created by the
application.. This object initializes the Java Native Interface layer. Programs written
using this implementation will use JNI, and so require a Java runtime to be available in
order for the program to run.

The implementation structure is used with kv_open_store().

You release the implementation structure using kv_release_impl().

Parameters
 impl

The impl parameter references memory into which a pointer to the allocated
implementation structure is placed.

2-12

Chapter 2
kv_create_password_credentials()

° jvm
The jvm parameter is a pointer to a Java Virtual Machine that was created by the
application.

See Also

e Store and Library Operations

kv_create_password_credentials()

#include <kvstore.h>

kv_error_t

kv _create password credentials (kv impl t *impl,
const char *username,
const char *password,
kv _credentials t **creds)

Creates a credentials structure with the username/password pair that you want to use to
authenticate a store. These credentials are used
with kv_open_store_login() or kv_store_login().

Release these credentials using kv_release_credentials().

Parameters
e impl

The impl parameter is the implementation structure you are using for the library. It is
created using kv_create_jni_impl().

e username
The username parameter is the username you want to use for store authentication.
e password
The password parameter is the password parameter is the user's password.
* creds
The creds parameter references memory into which is passed the
allocated kv _credentials_t structure.

See Also

e Store and Library Operations

kv_create_properties()

#include <kvstore.h>
kv_error_t

kv create properties(kv_impl t *impl,
kv_properties t **props)

ORACLE 2-13

Chapter 2
kv_get_impl_type()

Creates and allocates resources for a properties structure. Use kv_set_property() to
set a property to the structure allocated here. Use kv_release properties() to release
the structure.

The properties you can set here control the behavior of the underlying Java code. At
present, you can use only the Oracle NoSQL Database security properties.

See kv_set_property() for details. These are set for the store configuration

using kv_config_set_security properties().

Parameters
 impl

The impl parameter is the implementation structure you are using for the library. It
is created usingkv_create_jni_impl().

e props

The props parameter references memory into which is placed the
initialized kv_properties t structure.

See Also

e Store and Library Operations

kv_get_impl_type()

#include <kvstore.h>

kv_api_type_enum
kv _get impl type (kv _impl t *impl)

Returns the type of implementation in use by the KVStore C Library. Currently, there is
only one possible implementation type: KV _JNI.

Parameters
* impl

The impl parameter is the implementation structure whose type you want to
examine.

See Also

e Store and Library Operations

kv_get _open_error()

ORACLE

#include <kvstore.h>

const char *
kv _get open error (kv impl t *impl);

Returns a descriptive string of any error that was encountered opening the store. This
method is not thread-safe.

2-14

https://docs.oracle.com/cd/NOSQL/html/driver_kv_c/doc/c_ref/storeops_datatype.html#kv_api_type_enum

Chapter 2
kv_open_store()

Parameters
* impl
The impl parameter is the implementation structure containing the open error that you

want to examine.

See Also

e Store and Library Operations

kv_open_store()

#include <kvstore.h>

kv_error_t

kv _open store(const kv _impl t *impl,
kv _store t **store,
kv _config t *config)

Opens a KV Store handle (structure). Call kv_close_store() to release the resources allocated
for this structure.

The config parameter is donated upon success, and so upon a successful open your
application should ignore the kv_config t structure. If this function fails, you must

call kv_release_config() (it is only when an error occurs on store open that you should
explicitly release the configuration structure). Upon failure, you might be able to obtain error
information using kv_get_open_error().

This function is not thread-safe; it must not be called concurrently on the
same kv_impl t instance.

Parameters
 impl

The impl parameter is the implementation structure you are using for the library. It is
created usingkv_create_jni_impl().

e store

The store parameter references memory into which a pointer to the allocated store
handle (structure) is copied.

* config

The config parameter is the configuration structure that you want to use to configure this
handle. It is created using kv_create_config().

See Also

e Store and Library Operations

ORACLE 2-15

Chapter 2
kv_open_store_login()

kv_open_store_login()
#include <kvstore.h>

kv_error_t

kv _open store login(const kv impl t *impl,
kv _store t **store,
kv _config t *config,
kv _credentials t *creds)

Opens a KV Store handle (structure) and authenticates to the store using the supplied
authentication credentials. Call kv_close_store() to log out of the store and release the
resources allocated for this structure. Note that you can also log out of the store

using kv_store_logout().

The config parameter is donated upon success, and so upon a successful open your
application should ignore the kv_config t structure. If this function fails, you must
call kv_release_config() (it is only when an error occurs on store open that you should
explicitly release the configuration structure). Upon failure, you might be able to obtain
error information using kv_get_open_error().

This function is not thread-safe; it must not be called concurrently on the
same kv_impl t instance.

Parameters
 impl

The impl parameter is the implementation structure you are using for the library. It
is created using kv_create_jni_impl().

e store

The store parameter references memory into which a pointer to the allocated
store handle (structure) is copied.

* config

The config parameter is the configuration structure that you want to use to
configure this handle. It is created using kv_create_config().

 creds

The creds parameter is the credentials structure that you want to use to login to
the store. You create this structure using kv_create_password_credentials().

See Also

e Store and Library Operations

kv_release_config()

#include <kvstore.h>

ORACLE 2-16

Chapter 2
kv_release_credentials()

kv_error_t
kv _release config (kv _config t **config)

Releases the resources used by a KV Store configuration object. This function should only be
called if an error occurs when kv_open_store() or kv_open_store_login() is called.
The kv_config t structure was initially allocated using kv_create_config().

Parameters
» config

The config parameter is the configuration structure that you want to release.
See Also

e Store and Library Operations

kv_release credentials()

#include <kvstore.h>

void
kv_release credentials(kv_credentials t **creds)

Releases password credentials created using kv_create password_credentials()

Parameters

 creds

The creds parameter references the password credentials you want to release.

See Also

e Store and Library Operations

kv_release_impl()

ORACLE

#include <kvstore.h>

void
kv _release impl (kv _impl t **impl)

Releases the implementation structure created by kv_create_jni_impl().

Parameters
e impl

The impl parameter is the implementation structure whose resources you want to
release.

See Also

e Store and Library Operations

2-17

Chapter 2
kv_release_properties()

kv_release_properties()

#include <kvstore.h>

void
kv _release properties (kv properties t **props)

Releases a properties structure created using kv_create_properties().

Parameters
° props

The props parameter references the properties you want to release.
See Also

e Store and Library Operations

kv_set_property()

ORACLE

#include <kvstore.h>

kv_error_t

kv _set property (kv properties t* props,
const char* prop name,
const char* prop value)

Sets a Java property to the kv_properties_t structure. At present, only the Oracle
NoSQL Database security properties can be set. The resulting properties structure is
assigned to the store configuration structure

using kv_config_set_security _properties().

Parameters
* props

The props parameter references the properties structure on which you want to set
the properties.

s props_name

The props_name parameter must be a property name. Supported properties are
defined in kvstore.h:

— KV_SEC_SECURITY FILE PROPERTY

Identifies a security property configuration file to be read when
a KvstoreConfig is created, as a set of overriding property definitions.

— KV _SEC_TRANSPORT PROPERTY
If set to ss1, enables the use of SSL/TLS communications.

— KV_SEC_SSL_CIPHER SUITES PROPERTY

2-18

Chapter 2
kv_store_login()

Controls what SSL/TLS cipher suites are acceptable for use. The property value is a
comma-separated list of SSL/TLS cipher suite names. Refer to your Java
documentation for the list of valid values.

— KV_SEC_SSL_PROTOCOLS PROPERTY

Controls what SSL/TLS protocols are acceptable for use. The property value is a
comma-separated list of SSL/TLS protocol names. Refer to your Java documentation
for the list of valid values.

— KV _SEC SSL HOSTNAME VERIFIER PROPERTY

Specifies a verification step to be performed when connecting to a NoSQL DB server
when using SSL/TLS. The only verification step currently supported is
the dnmatch verifier.

The dnmatch verifier must be specified in the form dnmatch (distinguished-name),
where distinguished-name must be the NoSQL DB server certificate's distinguished
name. For a typical secure deployment this should be dnmatch (CN=NoSQL) .

— KV_SEC_SSL_TRUSTSTORE FILE PROPERTY

Identifies the location of a Java truststore file used to validate the SSL/TLS
certificates used by the Oracle NoSQL Database server. This property must be set to
an absolute path for the file. If this property is not set, a system property setting

of javax.net.ssl.trustStore is used.

— KV_SEC_SSL_TRUSTSTORE TYPE PROPERTY

Identifies the type of Java truststore that is referenced by

the Kv_SEC_SSL TRUSTSTORE FILE PROPERTY property. This is only needed if using a
non-default truststore type. The specified type must be supported by your Java
implementation.

— KV SEC_SSL AUTH USERNAME PROPERTY
Specifies the username used for authentication.
— KV SEC_SSL AUTH WALLET PROPERTY

Identifies an Oracle Wallet directory containing the password of the user to
authenticate. This is only used in the Enterprise Edition of the product.

— KV _SEC_SSL AUTH PWDFILE PROPERTY
Identifies a password store file containing the password of the user to authenticate
e prop_value

The prop_value parameter must be the property's value.

See Also

e Store and Library Operations

kv_store_login()

ORACLE

#include <kvstore.h>

kv_error_t

2-19

Chapter 2
kv_store_logout()

kv_store login(kv store t *store,
kv credentials t *creds)

Updates the login credentials used by the store handle. Use this function under one of
the two following circumstances:

1. The application returns Kv_AUTH FAILURE. Calling this function causes the handle
to attempt to re-establish the authentication to the store. The credentials used in
this case must be for the handle's currently logged in user.

2. Ifthe handle is currently logged out due to a call to kv_store_logout(), then this
function can be used to log in to the store. In that case, login credentials for any
valid user can be used.

You create a credentials structure using kv_create_password_credentials().

Parameters

e store

The store parameter references the store handle that you want to use for
authentication or reauthentication.

 creds

The creds parameter is the authentication credentials structure you want to use
for this log in attempt.

See Also

e Store and Library Operations

kv_store_logout()

#include <kvstore.h>

kv_error_t
kv_store logout (kv_store t *store)

Logs the store handle out of the store. The handle remains valid, but you should not
use it with any functions except kv_close_store() or kv_store_login(). Once logged out,
all other functions will return Kv_AUTH FAILURE.

Parameters

e store

The store parameter references the store handle that you want to log out.

See Also

e Store and Library Operations

ORACLE 2-20

Chapter 2
kv_version()

kv_version()

#include <kvstore.h>

kv_error_t
kv _version(kv_impl t *impl, kv int t *major,
kv_int t *minor, kv int t *patch)

Identifies the Oracle NoSQL Database version information. Versions consist of major, minor
and patch numbers.

Parameters
 impl

The impl is the implementation structure used to open the KV Store. It is created
using kv_create_jni_impl().

° major

The major parameter identifies the store's major release number.
* minor

The minor parameter identifies the store's minor release number.
° patch

The patch parameter identifies the store's patch release number.

See Also

e Store and Library Operations

kv_version_c()

ORACLE

#include <kvstore.h>

void
kv _version c(kv_int t *major, kv _int t *minor, kv _int t *patch)

Identifies the version information for the C API library. Versions consist of major, minor and
patch numbers.
Parameters
° major
The major parameter identifies the store's major release number.
°* minor
The minor parameter identifies the store's minor release number.
e patch

The patch parameter identifies the store's patch release number.

2-21

Chapter 2
kv_version_c()

See Also

* Store and Library Operations

ORACLE" 2-22

Data Operation Functions

ORACLE

This chapter describes the functions used to perform data read and writes on the store.
Functions are described that allow single records to be read or written at a time, and for many
records to be read and written in a single operation. Functions that return iterators are also
described. These allow you to walk over some or all of the records contained in the store.

This chapter also describes functions used to perform multiple write operations that are
organized in a single sequence of operations. That is, you can in one atomic unit perform
several put operations that create new records, then put operations that update those
records, and/or delete those records. These sequences are performed under a single
transaction that effectively offers serializable isolation.

Data Operations Functions

Data Operations Functions

Description

kv_delete()

Delete the key/value pair associated with the key

kv_delete_with_options()

Delete the key/value pair using options

kv_get()

| Get the value associated with the key

kv_get_with_options()

Get the value that matches the options

kv_put()

| Put a key/value pair, inserting or overwriting as appropriate

kv_put_with_options()

Put the key/value pair using options

Multiple-Key Operations Functions

Multiple-Key Operations Functions

Description

kv_init_key_range()

Create and initialize a key range for use in multiple-key
operations

kv_init_key_range_prefix()

Create and initialize a key range using prefix information

kv_iterator_next()

| Return the next key/value pair from a store iterator

kv_iterator_next_key()

Return the next key from a store iterator

kv_iterator_size()

| Return the number of elements in the store iterator

kv_multi_delete()

Delete all descendant key/value pairs associated with the
parent key

kv_multi_get()

Return all descendant key/value pairs associated with the
parent key

kv_multi_get_iterator()

Returns an iterator that provides traversal of descendant key/
value pairs

kv_multi_get_iterator_keys()

Returns an iterator that provides traversal of descendant
keys

kv_multi_get_keys()

Return the descendant keys associated with the parent key

kv_parallel_scan_iterator_next()

Return the next key/value pair from a parallel scan iterator

3-1

ORACLE

Chapter 3

Multiple-Key Operations Functions

Description

kv_parallel_scan_iterator_next_key()

Return the next key from a parallel scan iterator

kv_parallel_store_iterator()

Return a parallel scan store iterator

kv_parallel_store_iterator_keys()

Return an parallel scan iterator providing traversal of store
keys

kv_release_iterator()

Release the store iterator

kv_release_parallel_scan_iterator()

Release the parallel scan iterator

kv_store_iterator()

Return an iterator that provides traversal of all store key/
value pairs

kv_store_iterator_keys()

Return an iterator that provides traversal of all store keys

Multi-Step Operations Functions

Multi-Step Operations Functions

Description

kv_create_delete_op()

Create a delete operation to be used with an operation
sequence

kv_create_delete_with_options_op()

Create a delete operation, with parameters, to be used
with an operation sequence

kv_create_operations()

Creates and initializes a structure used to contain a
sequence of store operations

kv_create_put_op()

Create a put operation to be used with an operation
sequence

kv_create_put_with_options_op()

Create a put operation, with parameters, to be used with
an operation sequence

kv_execute()

Execute the operation

kv_operation_get_abort_on_failure()

Returns whether the entire operation aborts in the event
of an execution failure

kv_operation_get_key()

Returns the Key associated with the operation

kv_operation_get_type()

Returns the operation type

kv_operation_results_size()

Returns the size of the operation's result set

kv_operations_set_copy()

Configures a list of operations to copy user-supplied
structures and buffers

kv_operations_size()

Returns the number of operations in the operation
structure

kv_release_operation_results()

Release the results obtained by executing an operation

kv_release_operations()

Release the operation structure

kv_result_get_previous_value()

For a put or delete operation, returns the previous value
associated with the key

kv_result_get_previous_version()

For a put or delete operation, returns the version or the
previous value associated with the Key

kv_result_get_success()

Returns whether the operation was successful

kv_result_get_version()

For a put operation, returns the Version of the new key/
value pair

3-2

Large Object Operations Functions

Chapter 3
kv_create_delete_op()

Large Object Operations Functions

Description

kv_lob_delete()

Delete the LOB

kv_lob_get_for_read()

Open a LOB handle for read operations

kv_lob_get_for_write()

Open a LOB handle for write operations

kv_lob_get_version()

Returns the Version of the LOB key/value pair

kv_lob_put_from_file()

Put a LOB key/value pair, inserting or overwriting as
appropriate

kv_lob_read()

Read a LOB from the store

kv_lob_release_handle()

Release the LOB handle

kv_create_delete_op()

#include <kvstore.h>

kv_error_t

kv _create delete op(kv_operations t *list,
const kv _key t *key,
kv_int t abort on failure)

Creates a simple delete operation suitable for use as part of a multi-step operation to be run
using kv_execute(). The semantics of the returned operation when executed are identical to

that of kv_delete().

Parameters

o list

The list parameter is the operation sequence to which this delete operation is appended.
The list is allocated using kv_create_operations().

* key

The key parameter identifies the Key portion of the record to be deleted.

Note that all of the operations performed under a single call to kv_execute() must share
the same major key path, and that major key path must be complete.

e abort_on_failure

The abort_on_failure parameter indicates whether the entire operation should abort if
this delete operation fails. Specify 1 if you want the operation to abort upon deletion

failure.

See Also

» Data Operations and Related Functions

ORACLE

3-3

Chapter 3
kv_create_delete_with_options_op()

kv_create delete_with_options_op()

#include <kvstore.h>

kv_error_tkv_create delete with options op(kv_operations t *list,

const kv key t *key,
const kv version t

*version, kv_return_value_version_enum return info,

kv_int t abort on failure)

Create a complex delete operation suitable for use as part of a multi-step operation to
be run using kv_execute(). The semantics of the returned operation when executed
are identical to that ofkv_delete_with_options().

Parameters

list

The list parameter is the operation sequence to which this delete operation is
appended. The sequence is allocated using kv_create_operations().

key
The key parameter identifies the Key portion of the record to be deleted.

Note that all of the operations performed under a single call to kv_execute() must
share the same major key path, and that major key path must be complete.

version

The version parameter indicates the Version that the record must match before it
can be deleted. The Version is obtained using the kv_get_version() function.

return_info

The return_info parameter indicates what information should be returned to
the kv_execute() results list by this operation.

See kv_return_value_version_enum for a description of the options accepted by
this parameter.

abort_on_failure

The abort_on_failure parameter indicates whether the entire operation should
abort if this delete operation fails. Specify 1 if you want the operation to abort upon
deletion failure.

See Also

Data Operations and Related Functions

kv_create operations()

#include <kvstore.h>

kv_error_t

ORACLE

3-4

Chapter 3
kv_create_put_op()

kv create operations(kv_store t *store,
kv _operations t **operations)

Allocates a structure containing a multi-step sequence of operations to be performed
by kv_execute(). Release the resources used by this sequence
using kv_release_operations().

Immediately upon calling this function, you might want to call kv_operations_set_copy(). See
that function's description for details.

Parameters

e store

The store parameter is the handle to the store in which you want to run the sequence of
operations.

e ;operations

The operations parameter references memory into which a pointer to the allocated
operations structure is copied.

See Also

» Data Operations and Related Functions

kv_create_put_op()

ORACLE

#include <kvstore.h>

kv_error_t

kv _create put op(kv operations t *list,
const kv _key t *key,
const kv _value t *value,
kv_int t abort on failure)

Creates a simple put operation suitable for use as part of a multi-step operation to be run
using kv_execute(). The semantics of the returned operation when executed are identical to
that of kv_put().

Parameters
o list

The list parameter operation sequence to which this put operation is appended. The
sequence is allocated using kv_create _operations().

* key

The key parameter is the Key portion of the Key/Value pair that you want to write to the
store.

Note that all of the operations performed under a single call to kv_execute() must share
the same major key path, and that major key path must be complete.

 value

The value parameter is the Value portion of the Key/Value pair that you want to write to
the store.

3-5

Chapter 3
kv_create_put_with_options_op()

 abort_on_failure

The abort_on_failure parameter indicates whether the entire operation should
abort if this put operation fails. Specify 1 if you want the operation to abort upon
put failure.

See Also

» Data Operations and Related Functions

kv_create_put_with_options_op()

ORACLE

#include <kvstore.h>

kv_error_tkv_create put with options op(kv_operations t *list,
const kv key t *key,
const kv value t *value,
const kv version t
*version, kv_presence_enumif presence,kv_return_value_version_enum return info,
kv_int t abort on failure)

Creates a complex put operation suitable for use as part of a multi-step operation to be
run using kv_execute(). The semantics of the returned operation when executed are
identical to that of kv_put().

Parameters
o list

The list parameter operation sequence to which this put operation is appended.
The sequence is allocated using kv_create_operations().

* key

The key parameter is the Key portion of the Key/Value pair that you want to write
to the store.

Note that all of the operations performed under a single call to kv_execute() must
share the same major key path, and that major key path must be complete.

* value

The value parameter is the Value portion of the Key/Value pair that you want to
write to the store.

e version

The version parameter indicates that the record should be put only if the existing
value matches the version supplied to this parameter. Use this parameter when
updating a value to ensure that it has not changed since it was last read. The
version is obtained using the kv_get_version() function.

e if_presence

The if_presence parameter describes the conditions under which the record can
be put, based on the presence or absence of the record in the store. For

example, KV_IF PRESENT means that the record can only be written to the store if a
version of the record already exists there.

For a list of all the available presence options, see kv_presence_enum.

3-6

Chapter 3
kv_delete()

* return_info

The return_info parameter indicates what information should be returned to
the kv_execute() results list by this operation. See kv_return_value_version_enum for a
description of the options accepted by this parameter.

 abort_on_failure

The abort_on_failure parameter indicates whether the entire operation should abort if
this put operation fails. Specify 1 if you want the operation to abort upon put failure.

See Also

» Data Operations and Related Functions

kv_delete()

#include <kvstore.h>

kv_error_t
kv delete (kv _store t *store,
const kv key t *key)

Delete the key/value pair associated with the key.

Deleting a key/value pair with this method does not automatically delete its children or
descendant key/value pairs. To delete children or descendants,
use kv_multi_delete() instead.

This function uses the default durability and default request timeout. Default durabilities are
set usingkv_config_set_durability(). The default request timeout is set
using kv_config_set_timeouts().

Possible outcomes when calling this method are:

e The KV pair was deleted and the number of records deleted is returned. For this function,
a successful return value will always be 0 or 1.

e The KV pair was not guaranteed to be deleted successfully. A non-
success kv_error_t error is returned; that is, a negative integer is returned.

Parameters

e store

The store parameter is the handle to the store in which you want to perform the delete
operation.

* key

The key parameter is the key used to look up the key/value pair to be deleted.

See Also

» Data Operations and Related Functions

ORACLE .

Chapter 3
kv_delete_with_options()

kv_delete_with_options()

ORACLE

#include <kvstore.h>

kv_error_tkv_delete with options(kv_store t *store,
const kv _key t *key,
const kv version t *if version,
kv _value t

**previous value,Kkv_return_value_version_enum return info,
kv _durability t durability,
kv_timeout t timeout ms)

Delete the key/value pair associated with the key.

Deleting a key/value pair with this method does not automatically delete its children or
descendant key/value pairs. To delete children or descendants,
use kv_multi_delete() instead.

Possible outcomes when calling this method are:

* The KV pair was deleted and the number of records deleted is returned. For this
function, a successful return value will always be 0 or 1.

e The KV pair was not guaranteed to be deleted successfully. A non-
success kv_error_t error is returned; that is, a negative integer is returned.

Parameters

e store

The store parameter is the handle to the store in which you want to perform the
delete operation.

* key
The key parameter is the key used to look up the key/value pair to be deleted.
» if_version

The if_version parameter indicates the Version that the record must match before
it can be deleted. The Version is obtained using the kv_get_version() function.

e previous_value

The previous_value parameter references memory into which is copied the Value
portion of the Key/Value pair that this function deleted.

e return_info

The return_info parameter indicates what information should be returned to
the kv_execute() results list by this operation.

See kv_return_value_version_enum for a description of the options accepted by
this parameter.

e durability

The durability parameter provides the durability guarantee to be used with this
delete operation. Durability guarantees are created using kv_create_durability().

* timeout_ms

3-8

Chapter 3
kv_execute()

The timeout_ms parameter provides an upper bound on the time interval for processing
the operation. A best effort is made not to exceed the specified limit. If zero, the default
request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

See Also

» Data Operations and Related Functions

kv_execute()

#include <kvstore.h>

kv_error_t
kv_execute (kv_store t *store,
const kv operations t *list,
kv _operation results t **result,
kv durability t durability,
kv _timeout t timeout ms)

Executes a sequence of operations. The operations list is created
using kv_create_operations(), and individual steps in the operation sequence are created
using functions such as kv_create_delete_op() and kv_create_put_op().

Each operation created for this sequence operates on a single key and matches the
corresponding Oracle NoSQL Database operation. For example, the operation generated by
the kv_create_put_with_options_op() function corresponds to

the kv_put_with_options() function. The argument pattern for creating each operation is
similar, but they differ in the following respects:

* The durability argument is not passed to the operations created for this sequence,
because that argument applies to the execution of the entire batch of operations and is
passed to this function.

» Each individual operation indicates whether the entire sequence of operations should
abort if the individual operation is unsuccessful.

Note that all of the operations performed under a single call to kv_execute() must share the
same major key path, and that major key path must be complete.

Parameters

° store

The store parameter is the store handle in which you want to run this sequence of
operations.

o list

The list parameter is the list of operations. This list structure is allocated
using kv_create_operations().

e result

The result parameter is a list of operations result. Each element in the results list
describes the results of executing one of the operations in the sequence of operations.

Use kv_operation_results_size() to discover how many elements are in the operation
results set.

ORACLE 3-9

kv_get()

ORACLE

Chapter 3
kv_get()

To determine if a given operation was successful, using kv_result_get_success().
To determine the version of the key/value pair operated upon by the operation,
use kv_result_get_version(). To determine the previous version of the key/value
pair before the operation was executed, use kv_result_get_previous_version(). To
determine the value of the key/value pair prior to executing the operation,

use kv_result_get_previous_value().

To release the resources used by the results list,
use kv_release_operation_results().

durability

The durability parameter identifies the durability policy in use when this sequence
of operations is executed. All the operations contained within the specified
sequence are executed within the scope of a single transaction that effectively
provides serializable isolation. The transaction is started and either committed or
aborted by this function. This means the operations are all atomic in nature: either
they all succeed or the store is left in a state as if none of them had ever been run
at all.

Durability policies are created using kv_create_durability().
If this parameter is NULL, the store's default durability policy is used.
timeout_ms

The timeout_ms parameter identifies the upper bound on the time interval, in
milliseconds, for processing the sequence of operations. A best effort is made not
to exceed the specified limit. If zero, the default request timeout is used.

See Also

Data Operations and Related Functions

#include <kvstore.h>

kv_error_t
kv _get (kv _store t *store,

const kv _key t *key,
kv _value t **valuep)

Get the value associated with the key. This function uses the store's default
consistency policy and timeout value. To use values other than the defaults,
use kv_get_with_options() instead.

Parameters

store

The store parameter is the handle to the store from which you want to retrieve the
value.

key
The key parameter is the key portion of the record that you want to read.

valuep

3-10

Chapter 3
kv_get_with_options()

The valuep parameter references memory into which is copied the value portion of the
retrieved record. Release the resources used by this structure using kv_release_value().

This parameter must either be 0, or it must point to a previously used, not-yet-
released kv_value t structure.

See Also

Data Operations and Related Functions

kv_get_with_options()

ORACLE

#include <kvstore.h>

kv_error_t
kv_get with options(kv_store t *store,

const kv _key t *key,

kv _value t **valuep,
kv_consistency t *consistency,
kv_timeout t timeout ms)

Get the value associated with the key. This function allows you to use a non-default
consistency policy and timeout value.

Parameters

store

The store parameter is the handle to the store from which you want to retrieve the value.
key

The key parameter is the key you want to use to look up the key/value pair.

valuep

The valuep parameter references memory into which is copied the value portion of the
retrieved record. Release the resources used by this structure using kv_release_value().

consistency

The consistency parameter is the consistency policy you want to use with this operation.
You create the consistency policy

using kv_create_simple_consistency(), kv_create_time_consistency() orkv_create_versio
n_consistency().

If NULL, the store's default consistency policy is used.
timeout_ms

The timeout_ms parameter identifies the upper bound on the time interval, in
milliseconds, for processing the get operation. A best effort is made not to exceed the
specified limit. If zero, the default request timeout is used.

See Also

Data Operations and Related Functions

3-11

Chapter 3
kv_init_key range()

kv_init_key range()

ORACLE

#include <kvstore.h>

void

kv_init key range (kv _key range t *key range,
const char *start, kv int t start inclusive,
const char *end, kv int t end inclusive)

Creates a key range to be used in multiple-key operations and iterations.

The key range defines a range of string values for the key components immediately
following the last component of a parent key that is used in a multiple-key operation. In
terms of a tree structure, the range defines the parent key's immediate children that
are selected by the multiple-key operation.

Parameters
 key_range
The key_range parameter is the handle to the key range structure.

The kv_key range_t structure contains a series of const char * and int data
members owned by you. For this reason, a release function is not needed for this
structure. However, you should not free the strings until you are done using the
key range.

e start

The start parameter defines the lower bound of the key range. If NULL, no lower
bound is enforced.

You must not free this string until you are done with the key_range created by this
function.

e start_inclusive

The start_inclusive parameter indicates whether the value specified to start is
included in the range. Specify 1 if it is included; 0 otherwise.

e end

The end parameter defines the upper bound of the key range. If NULL, no upper
bound is enforced.

You must not free this string until you are done with the key_range created by this
function.

¢ end_inclusive

The end_inclusive parameter indicates whether the value specified to end is
included in the range. Specify 1 if it is included; 0 otherwise.

See Also

» Data Operations and Related Functions

3-12

Chapter 3
kv_init_key_range_prefix()

kv_init_key range_prefix()
#include <kvstore.h>

void
kv_init key range prefix(kv key range t *key range,
const char *prefix)

Creates a key range based on a single string that defines the range's prefix. Using this
function is the equivalent to using the kv_init_key range() function like this:

kv_init key range(key range p, prefix str, 1, prefix str, 1);

The key range defined here is for use with multiple-key operations and iterations.

Parameters
* key_range
The key_range parameter is the handle to the key range structure.

The kv_key range t structure contains a series of const char * and int data members
owned by you. For this reason, a release function is not needed for this structure.
However, you should not free the strings until you are done using the key range.

e prefix

The prefix parameter is the string that defines both the lower and upper bounds,
inclusive, of the key range.

You must not free this string until you are done with the key_range created by this
function.

See Also

e Data Operations and Related Functions

kv_iterator_next()

#include <kvstore.h>

kv_error_t

kv_iterator next (kv iterator t *iterator,
const kv _key t **key,
const kv value t **value)

Returns the iterator's next record. If another record exists, this function returns Kv_SUCCESS,
and the keyand value parameters are populated. If there are no more records, the return
value is KV_NO SUCH OBJECT. If the return value is something other

than Kv_SUCCESS or KV_NO_SUCH OBJECT, there was an operational failure.

ORACLE 3-13

Chapter 3
kv_iterator_next_key()

Parameters

iterator

The iterator parameter is the handle to the iterator. It is allocated using one of
functions that performs multiple reads of the store (such as kv_multi_get()). It is
released using kv_release_iterator().

key

The key parameter references memory in which a pointer to the next key is
copied.

Note, you should not release this key structure. The resources used here will be
released when the iterator is released.

value

The value parameter references memory in which a pointer to the next value is
copied.

Note, you should not release this value structure. The resources used here will be
released when the iterator is released.

See Also

Data Operations and Related Functions

kv_iterator_next_key()

ORACLE

#include <kvstore.h>

kv_error_t
kv_iterator next key(kv iterator t *iterator,

const kv _key t **key)

Returns the iterator's next key. If another key exists, this function returns Xv_SUCCESS,
and the key parameter is populated. If there are no more keys, the return value
iSKV_NO SUCH OBJECT. If the return value is something other

than Kv_SUCCESS or KV_NO_SUCH OBJECT, there was an operational failure.

Parameters

store
The store parameter is the handle to the store to which the iterator belongs.
iterator

The iterator parameter is the handle to the iterator. It is allocated using one of
functions that performs multiple reads of the store (such as kv_multi_get()). It is
released using kv_release _iterator().

key

The key parameter references memory in which a pointer to the next key is
copied.

Note, you should not release this key structure. The resources used here will be
released when the iterator is released.

3-14

Chapter 3
kv_iterator_size()

See Also

» Data Operations and Related Functions

kv_iterator_size()

#include <kvstore.h>

kv _int t
kv _iterator size(const kv iterator t *iterator)

Returns the number of items contained in the iterator. This function can only be used with
iterators returned by the kv _multi * line of functions. The iterators returned by other
functions, such as kv_store_iterator(), are not usable by this function.

Parameters

+ store
The store parameter is the handle to the store to which the iterator belongs.
* iterator

The iterator parameter is the handle to the iterator for which you want sizing information.

See Also

» Data Operations and Related Functions

kv_lob_delete()

ORACLE

#include <kvstore.h>

kv_int t

kv _lob delete(kv_store t *store,
const kv _key t *key,
kv_durability t durability,
kv_timeout t timeout ms);

Deletes the Large Object record from the store.

Parameters

- store

The store parameter is the handle to the store from which you want to delete the LOB.
* key

The key parameter is the key used to look up the key/value pair to be deleted.
e durability

The durability parameter provides the durability guarantee to be used with this delete
operation. Durability guarantees are created using kv_create_durability().

3-15

Chapter 3
kv_lob_get for_read()

timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit. If
zero, the default request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

See Also

Data Operations and Related Functions

kv_lob_get_for_read()

ORACLE

#include <kvstore.h>

kv_error_t
kv _lob get for read(kv store t *store,

const kv _key t *key,

kv _lob handle t **handle,

kv _consistency t *consistency,
kv_timeout t timeout ms);

Allocates and configures a LOB handle for reading a Large Object from the store. If
the handle is successfully created, KV_SUCCESS is returned; otherwise, Kv_NO MEMORY .

Upon opening this handle, you perform the actual read operation using kv_lob_read().

The LOB handle allocated by this function must be released
using kv_lob_release_handle().

Parameters

store

The store parameter is the handle to the store from which you want to read the
LOB record.

key

The key parameter is the LOB record's key. Note that the final path component
used here must specify the LOB suffix configured for the store, or the read
operation will fail. The LOB suffix is configured for your store

using kv_config_set_lob_suffix().

handle

The handle parameter references memory into which a pointer to the allocated
LOB handle (structure) is copied.

consistency

The consistency parameter is the consistency policy you want to use with this
read operation. You create the consistency policy

using kv_create_simple_consistency(), kv_create_time_consistency() orkv_create
_version_consistency().

If NULL, the store's default consistency policy is used.

timeout_ms

3-16

Chapter 3
kv_lob_get for write()

The timeout_ms parameter identifies the upper bound on the time interval, in
milliseconds, for processing the get operation. A best effort is made not to exceed the
specified limit. If zero, the default request timeout is used.

See Also

» Data Operations and Related Functions

kv_lob_get_for write()

ORACLE

#include <kvstore.h>

kv_error_t

kv _lob get for write(kv store t *store,
const kv _key t *key,
kv _lob handle t **handle,
kv _presence enum if presence,
kv durability t durability,
kv _timeout t timeout ms);

Allocates and configures a LOB handle for writing a Large Object to the store. If the handle is
successfully created, XvV_SUCCESS is returned; otherwise, KV_NO MEMORY .

Upon opening this handle, you perform the actual write operation
using kv_lob_put_from_file() . Note that no method currently exists for writing a large object
directly from memory.

The LOB handle allocated by this function must be released using kv_lob_release_handle().

Parameters

« store
The store parameter is the handle to the store where you want to write the Large Object.
* key

The key parameter is the LOB record's key. Note that the final path component used here
must specify the LOB suffix configured for the store, or the write operation will fail. The
LOB suffix is configured for your store using kv_config_set _lob_suffix().

 handle

The handle parameter references memory into which a pointer to the allocated LOB
handle (structure) is copied.

» if_presence

The if_presence parameter describes the conditions under which the record can be
written to the store, based on the presence or absence of the record in the store. For
example, KV_IF PRESENT means that the record can only be written to the store if a
version of the record already exists there.

For a list of all the available presence options, see kv_presence_enum.
e durability

The durability parameter provides the durability guarantee to be used with this write
operation. Durability guarantees are created using kv_create_durability().

3-17

Chapter 3
kv_lob_get version()

e timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
writing each chunk of the LOB. (Large Objects are written to the store in multiple
chunks.) A best effort is made not to exceed the specified limit. If zero, the default
LOB timeout value defined for the store is used. This value is set
usingkv_config_set_lob_timeout().

See Also

» Data Operations and Related Functions

kv_lob_get version()

#include <kvstore.h>

kv_error_t
kv _lob get version(kv_lob handle t *handle,
kv _version t **version);

Returns the record's version. The version is owned by the handle and must not be
released independently of the handle. If no version is
available, KVv_INVALID ARGUMENT is returned.

The record's version is available immediately upon handle creation
using kv_lob_get for_read(). If kv_lob_get for_write() is used, the version is available
only after the LOB has been written to the store (using kv_lob_put_from_file()).

Parameters

 handle

The handle parameter is the LOB handle from which you want to retrieve the
record's version.

e version

The version parameter references memory into which the value is copied.
Release the resources used by this value using kv_release_version().

See Also

» Data Operations and Related Functions

kv _lob_put_from_file()

ORACLE

#include <kvstore.h>
kv_error_t

kv_lob put from file(kv lob handle t *handle,
const char *path to file);

Writes the Large Object stored in path_to_file to the store. The key used for the
resulting record is the key that was used to create

3-18

Chapter 3
kv_lob_read()

the kv 1lob handle t (using kv_lob_get_for_write()). The handle must have been open for
writing, or KV_INVALID ARGUMENT is returned.

If the put is successful, Kv_SUCCESS is returned.

The object is written to the store in chunks. Each chunk must be written to the store within the
timeout period defined when the kv_lob_handle t was created, or the put will fail.

When the handle is created, it is possible to specify restrictions on the write depending on
whether the LOB currently exists in the store (using the if_presence parameter

for kv_lob_get_for_write()). If K<v_IF PRESENT was specified and the key does not

exist, KV_KEY NOT FOUND is returned. If Kv_IF ABSENT was specified and the key

exists, KV_KEY EXISTS is returned.

Parameters
* handle

The handle parameter is the handle to the store where you want to write the LOB.
* path_to_file

The path_to_file parameter is the filesystem path to the file that contains the LOB value
that you want to write to the store.

See Also

o Data Operations and Related Functions

kv_lob_read()

ORACLE

#include <kvstore.h>

kv _int t

kv _lob read(kv_lob handle t *handle,
kv _long t offset,
kv_int t num bytes to read,
unsigned char *buffer);

Performs a read of a single chunk, or portion, of a LOB from the store into a buffer.

The kv_lob handle t must have been opened for read (using kv_lob_get_for_read())

or KV_INVALID ARGUMENT is returned. Otherwise, the number of bytes read is returned. The
end of the LOB is indicated by a return value of 0. A negative return value indicates an error
on the read.

Parameters

¢« handle

The handle parameter is the LOB handle that you want to use to perform the read. It
must have been created using kv_lob_get for_read().

» offset
The offset parameter is the offset into the LOB where this read is to begin.

* num_bytes_to_read

3-19

Chapter 3
kv_lob_release_handle()

The num_bytes_to_read parameter is the number of bytes you want to read from
the LOB.

e buffer

The buffer parameter is the user-supplied buffer into which the LOB chunk is
placed. This buffer must be at least num_bytes_to_read bytes in size.

See Also

» Data Operations and Related Functions

kv_lob_release handle()

#include <kvstore.h>

void
kv _lob release handle(kv_lob handle t **handle);

Release a LOB handle that was allocated
by kv_lob_get for_read() or kv_lob_get_for_write().

Parameters
 handle

The handle parameter is the LOB handle that you want to release.
See Also

» Data Operations and Related Functions

kv_multi_delete()

ORACLE

#include <kvstore.h>

kv_int t
kv multi delete(kv_store t *store, const kv key t *parent key,
const kv _key range t *key range,kv_depth_enum depth,
kv _durability t durability,
kv_timeout t timeout ms)

Deletes the descendent key/value pairs associated with the parent_key. Returns the
total number of keys deleted. If an error, returns an integer value less than zero.

All of the deletions performed as a result of this operation are performed within the
context of a single transaction. This means that either all matching key/value pairs are
deleted, or none of them are.

Parameters

° store

The store parameter is the handle to the store in which you want to perform the
delete operation.

3-20

Chapter 3
kv_multi_get()

e parent_key

The parent_key parameter is the parent key whose "child" records are to be deleted. It
must not be NULL. The major key path must be complete. The minor key path may be
omitted or may be a partial path.

You construct a key using kv_create_key().
* key_range

The key_range parameter further restricts the range under the parent_key to the minor
path components in this key range. It may be NULL.

You construct a key range using kv_init_key range().
* depth

The depth parameter specifies how deep the deletion can go. You can allow only
children to be deleted, the parent and all the children, all descendants, and so forth.
See kv_depth_enum for a description of all your depth options.

e durability

The durability parameter identifies the durability to be used for this write operation.
Durability guarantees are created using kv_create_durability().

e timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for processing
the operation. A best effort is made not to exceed the specified limit. If zero, the default
request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

See Also

» Data Operations and Related Functions

kv_multi_get()

ORACLE

#include <kvstore.h>

kv_error_tkv multi get (kv _store t *store,
const kv _key t *parent key,
kv_iterator t **return iterator,
const kv _key range t *sub range,kv_depth_enum depth,
kv_consistency t *consistency,
kv_timeout t timeout ms)

Returns the descendant key/value pairs associated with the parent_key.

The sub_range and the deptharguments can be used to further limit the key/value pairs that
are retrieved. The key/value pairs are fetched within the scope of a single transaction that
effectively provides serializable isolation.

This API should be used with caution because it could result in errors due to running out of
memory, or excessive garbage collection activities in the underlying Java virtual machine, if
the results cannot all be held in memory at one time. Consider

using kv_multi_get _iterator() instead.

3-21

Chapter 3
kv_multi_get_iterator()

This function only allows fetching key/value pairs that are descendants of
a parent_key that has a complete major path. To fetch the descendants of
a parent_key with a partial major path, use kv_store_iterator() instead.

Parameters

store

The store parameter is the handle to the store from which you want to retrieve
key/value pairs.

parent_key

The parent_key parameter is the parent key whose "child" records are to be
retrieved. It must not be NULL. The major key path must be complete. The minor
key path may be omitted or may be a partial path.

return_iterator

The return_iterator parameter references memory into which is copied the results
set. Release the resources used by this iterator using kv_release_iterator ().

The iterator returned here is transactional, which means the contents of the
iterator will be static (isolated) until such a time as the iterator is released.

sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().
depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

consistency

The consistency parameter identifies the consistency policy to use for this read
operation. Consistency policies are created

using kv_create_simple_consistency(), kv_create_time_consistency(),
orkv_create_version_consistency().

timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit. If
zero, the default request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

See Also

Data Operations and Related Functions

kv_multi_get_iterator()

#include <kvstore.h>

kv_error_tkv multi get iterator(kv_store t *store,

ORACLE

const kv _key t *parent key,

3-22

ORACLE

Chapter 3
kv_multi_get_iterator()

kv iterator t **return iterator,
const kv _key range t

*sub range, kv_depth_enumdepth, kv_direction_enum direction,

int batch size,
kv _consistency t *consistency,
kv timeout t timeout ms)

Returns an iterator that permits an ordered traversal of the descendant key/value pairs
associated with the parent_key. It is useful when the expected result set is too large to fit in
memory. Note that the result is not transactional and the operation effectively provides read-
committed isolation. The implementation batches the fetching of key/value pairs in the
iterator, to minimize the number of network round trips, while not monopolizing the available
bandwidth.

This function requires the parent_key to not be NULL, and to have a complete major key
path. If you want to obtain an iterator based on a NULL key, or on a key with a partial major
key path, use kv_store_iterator() instead.

Parameters

store
The store parameter is the handle to the store for which you want an iterator.
parent_key

The parent_key parameter is the parent key whose "child" records are to be retrieved. It
must not be NULL. The major key path must be complete. The minor key path may be
omitted or may be a partial path.

return_iterator

The return_iterator parameter references memory into which is copied the results set.
Release the resources used by this iterator using kv_release_iterator().

sub_range

The sub_range parameter further restricts the range under the parent_key to the minor
path components in this key range. It may be NULL.

You construct a key range using kv_init_key range().
depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so forth.
See kv_depth_enum for a description of all your depth options.

direction

The direction parameter specifies the order in which records are returned by the iterator.
Only

kv direction enum.KV DIRECTION FORWARD and kv direction enum.KV DIRECTION REV
ERSE are supported by this function.

batch_size

The batch_size parameter specifies the suggested number of keys to fetch during each
network round trip. If only the first or last key-value pair is desired, passing a value of one
(1) is recommended. If zero, an internally determined default is used.

consistency

3-23

Chapter 3
kv_multi_get_iterator_keys()

The consistency parameter identifies the consistency policy to use for this read
operation. Consistency policies are created

using kv_create_simple_consistency(), kv_create_time_consistency(),
orkv_create_version_consistency().

e timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit. If
zero, the default request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

See Also

» Data Operations and Related Functions

kv_multi_get_iterator_keys()

ORACLE

#include <kvstore.h>

kv_error_tkv multi get iterator keys(kv_store t *store,
const kv key t *parent key,
kv_iterator t **return iterator,
const kv key range t

*sub_range, kv_depth_enumdepth, kv_direction_enum direction,
int batch size,
kv_consistency t *consistency,
kv_timeout t timeout ms)

Returns an iterator that permits an ordered traversal of the descendant keys
associated with the parent_key. It is useful when the expected result set is too large
to fit in memory. Note that the result is not transactional and the operation effectively
provides read-committed isolation. The implementation batches the fetching of key/
value pairs in the iterator, to minimize the number of network round trips, while not
monopolizing the available bandwidth.

This function requires the parent_key to not be NULL, and to have a complete major
key path. If you want to obtain an iterator based on a NULL key, or on a key with a
partial major key path, use kv_store_iterator_keys() instead.

Parameters

+ store
The store parameter is the handle to the store for which you want an iterator.
* parent_key

The parent_key parameter is the parent key whose "child" keys are to be
retrieved. It must not be NULL. The major key path must be complete. The minor
key path may be omitted or may be a partial path.

e return_iterator

The return_iterator parameter references memory into which is copied the results
set. Release the resources used by this iterator using kv_release _iterator().

* sub_range

3-24

Chapter 3
kv_multi_get_keys()

The sub_range parameter parameter further restricts the range under the parent_key to
the minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key range().
depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so forth.
See kv_depth_enum for a description of all your depth options.

direction

The direction parameter specifies the order in which keys are returned by the iterator.
Only

kv _direction enum.KV DIRECTION FORWARD and kv direction enum.KV DIRECTION REV
ERSE are supported by this function.

batch_size

The batch_size parameter specifies the suggested number of keys to fetch during each
network round trip. If only the first or last key is desired, passing a value of one (1) is
recommended. If zero, an internally determined default is used.

consistency

The consistency parameter identifies the consistency policy to use for this read
operation. Consistency policies are created

using kv_create_simple_consistency(),kv_create_time_consistency(),

or kv_create_version_consistency().

timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for processing
the operation. A best effort is made not to exceed the specified limit. If zero, the default
request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

See Also

Data Operations and Related Functions

kv_multi_get_keys()

ORACLE

#include <kvstore.h>

kv_error_tkv multi get keys(kv_store t *store,

const kv _key t *parent key,

kv_iterator t **return iterator,

const kv _key range t *sub range,kv_depth_enum depth,
kv_consistency t *consistency,

kv_timeout t timeout ms)

Returns the descendant keys associated with the parent_key. The sub_range and
the depth arguments can be used to further limit the keys that are retrieved. The keys are
fetched within the scope of a single transaction that effectively provides serializable isolation.

This API should be used with caution because it could result in errors due to running out of
memory, or excessive garbage collection activities in the underlying Java virtual machine, if

3-25

Chapter 3
kv_operation_get_abort_on_failure()

the results cannot all be held in memory at one time. Consider
using kv_multi_get_iterator_keys() instead.

This function only allows fetching keys that are descendants of a parent_key that has
a complete major path. To fetch the descendants of a parent_key with a partial major
path, use kv_store_iterator_keys() instead.

Parameters

store

The store parameter is the handle to the store from which you want to retrieve
keys.

parent_key

The parent_key parameter is the parent key whose "child" keys are to be
retrieved. It must not be NULL. The major key path must be complete. The minor
key path may be omitted or may be a partial path.

return_iterator

The return_iterator parameter references memory into which is copied the results
set. Release the resources used by this iterator using kv_release_iterator().

sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().
depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

consistency

The consistency parameter identifies the consistency policy to use for this read
operation. Consistency policies are created

using kv_create_simple_consistency(),kv_create_time_consistency(),

or kv_create_version_consistency().

timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit. If
zero, the default request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

See Also

Data Operations and Related Functions

kv_operation_get_abort_on_failure()

#include <kvstore.h>

kv_int t

ORACLE

3-26

Chapter 3
kv_operation_get_key()

kv_operation get abort on failure(const kv _operations t *operations,
kv_int t index)

Returns whether a failure for the identified operation causes the entire sequence of
operations to fail. If the entire sequence will fail, then this function returns 1. If
the index parameter is out of range, this function returns Kv_NO SUCH OBJECT.

Parameters

° operations

The operations parameter is the operation sequence to which the operation in question
belongs.

* index

The index parameter identifies the exact operation in the sequence that you want to
examine.

See Also

» Data Operations and Related Functions

kv_operation_get_key()

#include <kvstore.h>

const kv _key t *
kv_operation get key(const kv operations t *operations,
kv_int t index)

Returns the key associated with the operation. If the index parameter is out of range, this
function returns NULL.

Parameters

e operations

The operations parameter is the operation sequence to which the operation in question
belongs.

* index

The index parameter identifies the exact operation in the sequence that you want to
examine.

See Also

e Data Operations and Related Functions

kv_operation_get_type()
#include <kvstore.h>

kv_operation enum

ORACLE 3-27

Chapter 3
kv_operation_results_size()

kv_operation get type(const kv operations t *operations,
kv _int t index)

Returns the type of operation being performed in a particular step in an operation
sequence. This function can return one of the following values:

* KV _NO SUCH OBJECT
The index parameter is out of range.
* KV _OP DELETE
The operation was created using kv_create_delete_op().
* KV OP DELETE IF VERSION
The operation was created using kv_create_delete_with_options_op().
* KV OP PUT
The operation was created using kv_create_put_op().
° KV OP PUT WITH OPTIONS

The operation was created using kv_create_put_with_options_op().

Parameters

° operations

The operations parameter is the operation sequence to which the operation in
question belongs.

* index

The index parameter identifies the exact operation in the sequence that you want
to examine.

See Also

» Data Operations and Related Functions

kv_operation_results_size()

ORACLE

#include <kvstore.h>

kv _int t
kv _operation results size(const kv operation results t *results)

Returns the number of results in the results set created by running kv_execute().

Parameters

* results

The results parameter is the results set whose size you want to obtain.

See Also

» Data Operations and Related Functions

3-28

Chapter 3
kv_operations_set_copy()

kv_operations_set_copy()

ORACLE

#include <kvstore.h>

kv_error_t
kv _operations set copy (kv operations t **operations)

Configures the supplied kv_operations_t so that user-supplied buffers, strings and
structures are copied. Normally, buffers, text strings, and structures provided to this API are
owned by the application. (The API simply points to the memory in question when making
use of it.) This is highly efficient for short-lived user-supplied memory because it avoids
memory allocation/copying of the memory's content.

However, if there is a need to retain the data supplied by the user for longer periods of time
(beyond which the user-supplied memory might go out of scope, or otherwise be reused or
even deallocated), then call this function immediately after creating the operations list. Doing
so will cause the API to copy the contents of all user-supplied memory to memory owned by
the API. In this way, the application can do whatever is appropriate with the memory it
supplies, while the API is able to retain the contents of that memory for however long it needs
that content.

As an example, suppose you were creating an operations list by iterating over records in the
store, like this:

// Create an operation
// Store open skipped for brevity
kv _create operations(store, &operations);

// Tell the operations list to copy keys/values
kv_operations set copy(operations);

// Create a store iterator that walks over every record in the store
err = kv_store iterator(store, NULL, &iter, NULL, O,
KV_DIRECTION UNORDERED, 0, NULL, 0);
if (err != KV _SUCCESS) {
fprintf (stderr, "Error obtaining store iterator: %d\n", err);
goto done;

// Step through the iterator, doing work on each record's value.
// If kv_operations set copy() had not been called, iter key and
// iter value would go out of scope with each step through the store
// iterator. This would cause unpredictable results when it came time
// to execute the sequence of operations.
while (kv _iterator next(iter,
(const kv _key t **)g&iter key,
(const kv value t **)giter value)
== KV_SUCCESS) {
// Do some work to iter value
kv _create put op(operations, iter key, iter value, 0);

if (iter)

3-29

Chapter 3
kv_operations_size()

kv release iterator(&iter);

kv_execute (store, operations, &results, 0, 0);

Parameters

° operations

The operations parameter references the operations list which you want to
configure for copy.

See Also

» Data Operations and Related Functions

kv_operations_size()

#include <kvstore.h>

kv_int t
kv _operations_size(const kv operations t *operations)

Returns the number of operations in the operation sequence.

Parameters

e operations

The operations parameter is the operation sequence whose size you want to
obtain.

See Also

« Data Operations and Related Functions

kv_parallel_scan_iterator_next()

ORACLE

#include <kvstore.h>

kv_error_t

kv _parallel scan iterator next (kv _parallel scan iterator t *iterator,
const kv _key t **key,
const kv _value t **value)

Returns the iterator's next record. If another record exists, this function

returns KV_SUCCESS, and the key and value parameters are populated. If there are no
more records, the return value is Kv_NO_SUCH_OBJECT. If the return value is something
other than Xv_SUCCESS or KV_NO SUCH OBJECT, there was an operational failure.

Parameters

e iterator

3-30

Chapter 3
kv_parallel_scan_iterator_next_key()

The iterator parameter is the handle to the iterator. It is allocated
using kv_parallel_store_iterator(). It is released
using kv_release_parallel_scan_iterator().

* key
The key parameter references memory in which a pointer to the next key is copied.

Note, you should not release this key structure. The resources used here will be released
when the iterator is released.

* value
The value parameter references memory in which a pointer to the next value is copied.
Note, you should not release this value structure. The resources used here will be

released when the iterator is released.

See Also

» Data Operations and Related Functions

kv_parallel_scan_iterator_next_key()

#include <kvstore.h>

kv_error_t

kv parallel scan iterator next key(
kv parallel scan iterator t *iterator,
const kv _key t **key)

Returns the iterator's next key. If another key exists, this function returns Kv_SUCCESS, and
the key parameter is populated. If there are no more keys, the return value

iSKV_NO_SUCH OBJECT. If the return value is something other

than Kv_SUCCESS or KV_NO_SUCH OBJECT, there was an operational failure.

Parameters

e jterator

The iterator parameter is the handle to the iterator. It is allocated using one of functions
that performs multiple reads of the store (such as kv_multi_get()). It is released
using kv_release_iterator().

* key
The key parameter references memory in which a pointer to the next key is copied.

Note, you should not release this key structure. The resources used here will be released
when the iterator is released.

See Also

» Data Operations and Related Functions

ORACLE 3-31

Chapter 3
kv_parallel_store_iterator()

kv_parallel_store_iterator()

ORACLE

#include <kvstore.h>

kv_error_tkv_parallel store iterator (kv _store t *store,
const kv _key t *parent key,
kv _parallel scan iterator t **return parallel scan iterator,
const kv _key range t
*sub_range, kv_depth_enumdepth, kv_direction_enumdirection,
int batch size,
kv _consistency t *consistency,
kv_timeout t timeout ms,kv_store_iterator_config_t
*store iterator config)

Creates a parallel scan iterator which iterates over all key/value pairs in unsorted
order. The result is not transactional and the operation effectively provides read-
committed isolation. The implementation batches the fetching of key/value pairs in the
iterator, to minimize the number of network round trips, while not monopolizing the
available bandwidth.

Parameters

e store
The store parameter is the handle to the store for which you want an iterator.
e parent_key

The parent_key parameter is the parent key whose "child" records are to be
retrieved. May be NULL, or may have only a partial major key path.

e return_parallel_scan_.iterator

The return_parallel_scan_iterator parameter references memory into which is
copied the results set. Release the resources used by this iterator
using kv_release_parallel_scan_iterator().

* sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key range().
e depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

« direction

The direction parameter specifies the order in which records are returned by the
iterator. Only kv_direction enum.KV DIRECTION UNORDERED is supported by this
function.

¢ batch_size

3-32

Chapter 3
kv_parallel_store_iterator_keys()

The batch_size parameter provides the suggested number of records to fetch during
each network round trip. If only the first or last key/value pair is desired, passing a value
of one (1) is recommended. If zero, an internally determined default is used.

* consistency

The consistency parameter identifies the consistency policy to use for this read
operation. Consistency policies are created

using kv_create_simple_consistency(),kv_create_time_consistency(),

or kv_create_version_consistency().

e timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for processing
the operation. A best effort is made not to exceed the specified limit. If zero, the default
request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

» store_iterator_config

The store_iterator_config parameter configures the parallel scan operation. Both the
maximum number of requests and the maximum number of results batches can be
specified using akv_store_iterator_config_t structure.

See Also

» Data Operations and Related Functions

kv_parallel_store_iterator_keys()

ORACLE

#include <kvstore.h>

kv_error_t kv parallel store iterator keys(kv store t *store,

const kv key t *parent key,

kv _parallel scan iterator t **return parallel scan iterator,

const kv _key range t *sub range,kv_depth_enum depth, kv_direction_enum
direction,

int batch size,

kv_consistency t *consistency,

kv_timeout t timeout ms,

kv_store_iterator_config_t *store iterator config)

Creates a parallel scan iterator which iterates over all keys in the store in unsorted order. The
result is not transactional and the operation effectively provides read-committed isolation. The
implementation batches the fetching of keys in the iterator, to minimize the number of network
round trips, while not monopolizing the available bandwidth.

Parameters

e store
The store parameter is the handle to the store for which you want an iterator.
e parent_key

The parent_key parameter is the parent key whose "child" keys are to be retrieved. May
be NULL, or may have only a partial major key path.

e return_iterator

3-33

kv_put()

ORACLE

Chapter 3
kv_put()

The return_parallel_scan_iterator parameter references memory into which is
copied the results set. Release the resources used by this iterator
using kv_release_parallel_scan_iterator().

sub_range

The sub_range parameter further restricts the range under the parent_key to the
minor path components in this key range. It may be NULL.

You construct a key range using kv_init_key range().
depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

direction

The direction parameter specifies the order in which records are returned by the
iterator. Only kv_direction enum.KV_DIRECTION UNORDERED is supported by this
function.

batch_size

The batch_size parameter provides the suggested number of keys to fetch during
each network round trip. If only the first or last key is desired, passing a value of
one (1) is recommended. If zero, an internally determined default is used.

consistency

The consistency parameter identifies the consistency policy to use for this read
operation. Consistency policies are created

using kv_create_simple_consistency(),kv_create_time_consistency(),

or kv_create_version_consistency().

timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit. If
zero, the default request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

store_iterator_config

The store_iterator_config parameter configures the parallel scan operation. Both
the maximum number of requests and the maximum number of results batches
can be specified using akv_store_iterator_config_t structure.

See Also

Data Operations and Related Functions

#include <kvstore.h>

kv_error_t
kv_put (kv_store t *store,

const kv _key t *key,

3-34

Chapter 3
kv_put_with_options()

const kv _value t *value,
kv_version t **new version)

Writes the key/value pair to the store, inserting or overwriting as appropriate.

This is the simplified version of the function that uses default values for most of put options.
For a more complete version that lets you use non-default values, use kv_put_with_options().

Parameters

store

The store parameter is the handle to the store where you want to write the key/value
pair.

key

The key parameter is the key that you want to write to the store. It is created
using kv_create_key() or kv_create_key from_uri().

value

The value parameter is the value that you want to write to the store. It is created
using kv_create_value().

new_version

The new_version parameter references memory into which is copied the key/value pair's
new version information. This pointer will be NULL if this function produces a non-zero
return code.

You release the resources used by the version data structure using kv_release_version().

See Also

Data Operations and Related Functions

kv_put_with_options()

ORACLE

#include <kvstore.h>

kv_error_t
kv _put with options(kv_store t *store,

const kv _key t *key,
const kv _value t *value,
const kv version t *if version,kv_presence_enum

if presence,

kv _version t **new version,
kv_value t **previous value,kv_return_value_version_enum

return info,

kv _durability t durability,
kv_timeout t timeout ms)

Writes the key/value pair to the store, inserting or overwriting as appropriate.

Parameters

store

3-35

ORACLE

Chapter 3
kv_put_with_options()

The store parameter is the handle to the store where you want to write the key/
value pair.

key

The key parameter is the key that you want to write to the store. It is created
using kv_create_key() or kv_create_key from_uri().

value

The value parameter is the value that you want to write to the store. It is created
using kv_create_value().

if_version

The if_version parameter indicates that the record should be put only if the
existing value matches the version supplied to this parameter. Use this parameter
when updating a value to ensure that it has not changed since it was last read.
The version is obtained using the kv_get_version() function.

if_presence

The if_presence parameter describes the conditions under which the record can
be put, based on the presence or absence of the record in the store. For

example, KV_IF PRESENT means that the record can only be written to the store if a
version of the record already exists there.

For a list of all the available presence options, see kv_presence_enum.
new_version

The new_version parameter references memory into which is copied the key/
value pair's new version information. This pointer will be NULL if this function
produces a non-zero return code, or if return_info is

not KV_RETURN VALUE ALL Of KV_RETURN VALUE VERSION.

You release the resources used by the version data structure
using kv_release_version().

previous_value

The previous_value parameter references memory into which is copied the
previous value associated with the given key. Returns NULL if there was no
previous value (the operation is inserting a new record, rather than updating an
existing one); or if return_info is not

KV _RETURN VALUE ALL Ofr KV_RETURN VALUE VALUE.

You release the resources used by this parameter using kv_release_value().
return_info

The return_info parameter indicates what version and value information should
be returned as a part of this operation. See kv_return_value_version_enum for a
list of possible options.

durability

The durability parameter provides the durability guarantee to be used with this
write operation. Durability guarantees are created using kv_create_durability().

timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit. If

3-36

Chapter 3
kv_release _iterator()

zero, the default request timeout is used. The default request timeout is set
using kv_config_set_timeouts().

See Also

» Data Operations and Related Functions

kv_release_iterator()

#include <kvstore.h>

void
kv _release iterator(kv_iterator t **iterator)

Releases the resources used by the iterator. Iterators are created using multiple-key
operations, such as is performed using kv_multi_get_iterator().

Parameters

e iterator

The iterator parameter is the iterator that you want to release.

See Also

» Data Operations and Related Functions

kv_release_operation_results()

#include <kvstore.h>

void
kv _release operation results (kv operation results t **results)

Releases the results list created by running kv_execute().

Parameters

+ store
The store parameter is the handle to the store to which the results list belongs.
* results

The results parameter is the results list that you want to release.

See Also

» Data Operations and Related Functions

kv_release_operations()

#include <kvstore.h>

ORACLE 3-37

Chapter 3
kv_release_parallel_scan_iterator()

void
kv release operations (kv operations t **operations)

Releases a multi-step, sequence of operations that was initially created
using kv_create_operations().

Parameters
* operations

The operations parameter is the multi-step operation that you want to release.
See Also

» Data Operations and Related Functions

kv_release parallel_scan_iterator()

#include <kvstore.h>

void
kv _release parallel scan iterator(
kv parallel scan iterator t **iterator)

Releases the resources used by the iterator, which was created
using kv_parallel_store_iterator() orkv_parallel_store_iterator_keys().

Parameters
* iterator

The iterator parameter is the iterator that you want to release.
See Also

» Data Operations and Related Functions

kv_result_get previous_value()

ORACLE

#include <kvstore.h>

kv_error_t

kv_result get previous value(const kv _operation results t *res,
kv_int t index,
const kv _value t **value)

Returns the previous value that existed before a put operation was run as a part of
multi-step, sequence of operations. A previous value will only exist if the provided
index in the operation contains a put operation as created

by kv_create_put_with_options_op(), and if that function's return_info parameter
iS KV_RETURN VALUE ALL Of KV RETURN VALUE VALUE.

If the index parameter is out of range, this function returns Xv_NO_SUCH OBJECT.

3-38

Chapter 3
kv_result_get_previous_version()

Parameters

res

The res parameter is the operation results list that contains the previous value you want
to examine.

index

The index parameter is the index in the results list which holds the information you want
to retrieve.

value

The value parameter references memory to which is copied the previous value. Release
the resources used by this value using kv_release_value().

This parameter will be NULL if the indexed result was not generated by put operation that
was configured to return previous values.

See Also

Data Operations and Related Functions

kv_result_get previous_version()

ORACLE

#include <kvstore.h>

kv_error_t
kv_result get previous version(const kv operation results t *res,

kv_int t index,
const kv _version t **version)

Returns the value's version that existed before a put operation was run as a part of multi-
step, sequence of operations. A previous version will only exist if the provided index in the
operation contains a put operation as created by kv_create_put_with_options_op(), and if that
function's return_info parameter is Kv_RETURN_VALUE ALL Or KV_RETURN VALUE VERSION.

If the index parameter is out of range, this function returns Kv_NO SUCH_OBJECT.

Parameters

res

The res parameter is the operation results list that contains the previous version you
want to examine.

index

The index parameter is the index in the results list which holds the information you want
to retrieve.

version

The version parameter references memory to which is copied the previous version.
Release the resources used by this value using kv_release_version().

This parameter will be NULL if the indexed result was not generated by put operation that
was configured to return previous versions.

3-39

Chapter 3
kv_result_get_success()

See Also

» Data Operations and Related Functions

kv_result_get success()

#include <kvstore.h>

kv _int t
kv _result get success(const kv operation results t *res,
kv_int t index)

Identifies whether the operation at the provided index was successful.
Returns Xv_TRUE if it was successful; Kv_FALSE otherwise. If the index parameter is out
of range, this function returns Kv_NO SUCH OBJECT.

Parameters

e res

The res parameter is the operation results list containing the operation result that
you want to examine.

e index

The index parameter is the index in the results list which hold the information you
want to retrieve.

See Also

e Data Operations and Related Functions

kv_result_get_version()

ORACLE

#include <kvstore.h>

kv_error_t

kv_result get version(const kv operation results t *res,
kv_int t index,
const kv _version t **version)

Returns the value's version. The version information is stored at the identified index in
the results list as a consequence of successfully executing

either kv_create_put_op() or kv_create_put_with_options_op(). If the index parameter
is out of range, this function returns Xv_NO_ SUCH_OBJECT.

Parameters

e res

The res parameter is the operation results list that contains the version information
you want to examine.

* index

3-40

Chapter 3
kv_store_iterator()

The index parameter is the index in the results list which holds the information you want
to retrieve.

version

The version parameter references memory to which is copied the version information.
Release the resources used by this value using kv_release_version().

See Also

Data Operations and Related Functions

kv_store_iterator()

ORACLE

#include <kvstore.h>

kv_error_t
kv _store iterator (kv _store t *store,

const kv key t *parent key,
kv_iterator t **return iterator,
const kv key range t *sub range,
kv_depth_enum depth,
kv_direction_enum direction,

int batch size,

kv_consistency t *consistency,
kv_timeout t timeout ms)

Creates an iterator which iterates over all key/value pairs in unsorted order. The result is not
transactional and the operation effectively provides read-committed isolation. The
implementation batches the fetching of key/value pairs in the iterator, to minimize the number
of network round trips, while not monopolizing the available bandwidth.

This function differs from kv_multi_get_iterator() in that it allows the parent_key to be NULL,
or to have only a partial major key path.

Parameters

store

The store parameter is the handle to the store for which you want an iterator.
parent_key

The parent_key parameter is the parent key whose "child" records are to be retrieved.
return_iterator

The return_iterator parameter references memory into which is copied the results set.
Release the resources used by this iterator using kv_release_iterator().

sub_range

The sub_range parameter further restricts the range under the parent_key to the minor
path components in this key range. It may be NULL.

You construct a key range using kv_init_key range().

depth

3-41

Chapter 3
kv_store_iterator_keys()

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so
forth. See kv_depth_enum for a description of all your depth options.

direction

The direction parameter specifies the order in which records are returned by the
iterator. Only kv_direction enum.KV_DIRECTION UNORDERED is supported by this
function.

batch_size

The batch_size parameter provides the suggested number of records to fetch
during each network round trip. If only the first or last key/value pair is desired,
passing a value of one (1) is recommended. If zero, an internally determined
default is used.

consistency

The consistency parameter identifies the consistency policy to use for this read
operation. Consistency policies are created

using kv_create_simple_consistency(),kv_create_time_consistency(),

or kv_create_version_consistency().

timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for
processing the operation. A best effort is made not to exceed the specified limit. If
zero, the default request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

See Also

Data Operations and Related Functions

kv_store_iterator_keys()

ORACLE

#include <kvstore.h>

kv_error_t
kv_store iterator keys(kv_store t *store,

const kv _key t *parent key,
kv_iterator t **return iterator,
const kv _key range t *sub range,
kv_depth_enum depth,
kv_direction_enum direction,

int batch size,

kv_consistency t *consistency,
kv_timeout t timeout ms)

Creates an iterator which iterates over all keys in the store in unsorted order. The
result is not transactional and the operation effectively provides read-committed
isolation. The implementation batches the fetching of keys in the iterator, to minimize
the number of network round trips, while not monopolizing the available bandwidth.

This function differs from kv_multi_get_iterator_keys() in that it allows
the parent_key to be NULL, or to have only a partial major key path.

3-42

Chapter 3
kv_store_iterator_keys()

Parameters

store

The store parameter is the handle to the store for which you want an iterator.
parent_key

The parent_key parameter is the parent key whose "child" keys are to be retrieved.
return_iterator

The return_iterator parameter references memory into which is copied the results set.
Release the resources used by this iterator using kv_release_iterator().

sub_range

The sub_range parameter further restricts the range under the parent_key to the minor
path components in this key range. It may be NULL.

You construct a key range using kv_init_key_range().
depth

The depth parameter specifies how deep the retrieval can go. You can allow only
children to be retrieved, the parent and all the children, all descendants, and so forth.
See kv_depth_enum for a description of all your depth options.

direction

The direction parameter specifies the order in which records are returned by the iterator.
Only kv_direction enum.KV_DIRECTION UNORDERED is supported by this function.

batch_size

The batch_size parameter provides the suggested number of keys to fetch during each
network round trip. If only the first or last key is desired, passing a value of one (1) is
recommended. If zero, an internally determined default is used.

consistency

The consistency parameter identifies the consistency policy to use for this read
operation. Consistency policies are created

using kv_create_simple_consistency(), kv_create_time_consistency(),
orkv_create_version_consistency().

timeout_ms

The timeout_ms parameter provides an upper bound on the time interval for processing
the operation. A best effort is made not to exceed the specified limit. If zero, the default
request timeout is used. The default request timeout is set

using kv_config_set_timeouts().

See Also

ORACLE

Data Operations and Related Functions

3-43

ORACLE

Key/Value Pair Management Functions

This chapter describes the functions used to manage keys and values. Both are used to
describe a single entry (or record) in the KV Store. In addition, this chapter describes
functions used to manage versions; that is, data structures that identify the key-value pair's

specific version.

Key Functions

Key Functions

Description

kv_create_key()

Allocate and initialize a key structure using major and minor
path components

kv_create_key_copy()

Allocate and initialize a key structure using major and minor
path components

kv_create_key_from_uri()

Allocate and initialize a key structure using a URI string

kv_create_key_from_uri_copy()

Allocate and initialize a key structure using a URI string

kv_get_key_major()

Return the major path components for the key

kv_get_key_minor()

Return the minor path components for the key

kv_get_key_uri()

Return the key's major and minor path components as a URI

kv_release_key()

Release the key structure, freeing all associated memory

Value Functions

Value Functions

Description

kv_create_value()

Allocate and initialize a value structure

kv_create_value_copy()

Allocate and initialize a value structure

kv_get_value()

Returns the value as a string

kv_get_value_size()

Returns the value's size

kv_release_value()

Release a value structure

Version Functions

Version Functions

Description

kv_copy_version()

Copies a version structure

kv_get_version()

Returns a value's version

kv_release_version()

Release a version structure

4-1

Chapter 4
kv_copy_version()

kv_copy_version()

#include <kvstore.h>

kv _error t
kv_copy version(const kv version t *from, kv version t **to)

Copies a version structure.

Parameters

e from

The from parameter is the version structure you want to copy. Normally, these are
created using kv_get_version().

e to

The to parameter references memory into which a pointer to the allocated version
structure is copied. Release the resources used by this structure
using kv_release_version().

See Also

* Key/Value Pair Management Functions

kv_create key()

ORACLE

#include <kvstore.h>

kv_error_t

kv _create key(kv store t *store,
kv _key t **key,
const char **major,
const char **minor)

Creates a key in the key/value store. To release the resources used by this structure,
use kv_release_key().

This function differs from kv_create_key copy() in that it does not copy the contents of
the strings passed to the function. Therefore, these strings should not be released or
modified until the kv_key t structure created by this function is released.

A key represents a path to a value in a hierarchical namespace. It consists of a
sequence of string path component names, and each component name is used to
navigate the next level down in the hierarchical namespace. The complete sequence
of string components is called the full key path.

The sequence of string components in a full key path is divided into two groups or sub-
sequences: The major key path is the initial or beginning sequence, and the minor key
path is the remaining or ending sequence. The Full Path is the concatenation of the
Major and Minor Paths, in that order. The Major Path must have at least one
component, while the Minor path may be empty (have zero components).

4-2

Chapter 4
kv_create_key copy()

Each path component must be a non-null String. Empty (zero length) Strings are allowed,
except that the first component of the major path must be a non-empty String.

Given a key, finding the location of a key/value pair is a two step process:

1. The major path is used to locate the node on which the key/value pair can be found.
2. The full path is then used to locate the key/value pair within that node.

Therefore all key/value pairs with the same major path are clustered on the same node.

Keys which share a common major path are physically clustered by the KVStore and can be
accessed efficiently via special multiple-operation APIs, e.g. kv_multi_get(). The APIs are
efficient in two ways:

1. They permit the application to perform multiple-operations in single network round trip.

2. The individual operations (within a multiple-operation) are efficient since the common-
prefix keys and their associated values are themselves physically clustered.

Multiple-operation APIs also support ACID transaction semantics. All the operations within a
multiple-operation are executed within the scope of a single transaction.

Parameters

° store

The store parameter is the handle to the store in which the key is used. The store handle
is obtained using kv_open_store().

* key
The key parameter references memory into which a pointer to the allocated key is
copied.

° major

The major parameter is an array of strings, each element of which represents a major
path component.

Note that the string used here is not copied. You must not release or modify this memory
until the structure in which it is used is released.

e minor

The minor parameter is an array of strings, each element of which represents a minor
path component.

Note that the string used here is not copied. You must not release or modify this memory
until the structure in which it is used is released.

See Also

* Key/Value Pair Management Functions

kv_create key copy()

#include <kvstore.h>
kv_error_t

kv _create key copy(kv_store t *store,
kv _key t **key,

ORACLE 4.3

ORACLE

Chapter 4
kv_create_key copy()

const char **major,
const char **minor)

Creates a key in the key/value store. To release the resources used by this structure,
use kv_release_key().

This function differs from kv_create_key() in that it copies the contents of the strings
passed to the function, so that those strings can be released, or modified and then
reused in whatever way is required by the application.

A key represents a path to a value in a hierarchical namespace. It consists of a
sequence of string path component names, and each component name is used to
navigate the next level down in the hierarchical namespace. The complete sequence
of string components is called the full key path.

The sequence of string components in a full key path is divided into two groups or sub-
sequences: The major key path is the initial or beginning sequence, and the minor key
path is the remaining or ending sequence. The Full Path is the concatenation of the
Major and Minor Paths, in that order. The Major Path must have at least one
component, while the Minor path may be empty (have zero components).

Each path component must be a non-null String. Empty (zero length) Strings are
allowed, except that the first component of the major path must be a non-empty String.

Given a key, finding the location of a key/value pair is a two step process:

1. The major path is used to locate the node on which the key/value pair can be
found.

2. The full path is then used to locate the key/value pair within that node.

Therefore all key/value pairs with the same major path are clustered on the same
node.

Keys which share a common major path are physically clustered by the KVStore and
can be accessed efficiently via special multiple-operation APIs, e.g. kv_multi_get().
The APIs are efficient in two ways:

1. They permit the application to perform multiple-operations in single network round
trip.

2. The individual operations (within a multiple-operation) are efficient since the
common-prefix keys and their associated values are themselves physically
clustered.

Multiple-operation APIs also support ACID transaction semantics. All the operations
within a multiple-operation are executed within the scope of a single transaction.

Parameters

e store

The store parameter is the handle to the store in which the key is used. The store
handle is obtained using kv_open_store().

* key
The key parameter references memory into which a pointer to the allocated key is
copied.

° major

4-4

Chapter 4
kv_create_key_from_uri()

The major parameter is an array of strings, each element of which represents a major
path component.

Note that the string used here is copied. You may release or modify this memory as
needed because the contents of this memory is copied to memory owned by
the kv_key t structure.

e minor

The minor parameter is an array of strings, each element of which represents a minor
path component.

Note that the string used here is copied. You may release or modify this memory as
needed because the contents of this memory is copied to memory owned by
the kv_key t structure.

See Also

* Key/Value Pair Management Functions

kv_create key from uri()

ORACLE

#include <kvstore.h>

kv_error_t

kv_create key from uri(kv_store t *store,
kv _key t **key,
const char *uri)

Creates a key in the key/value store based on a URI. To release the resources used by this
structure, use kv_release_key().

This function differs from kv_create_key from_uri_copy() in that it does not copy the contents
of the URI string passed to the function. Therefore, the URI strings should not be released or
modified until the kv_key t structure created by this function is released.

The key path string format used here is designed to work with URIs and URLSs. It is intended
to be used as a general purpose string identifier. The key path components are separated by
slash (/) delimiters. A special slash-hyphen-slash delimiter (/-/) is used to separate the major
and minor paths. Characters that are not allowed in a URI path are encoded using URI
syntax (% XX where XX are hexadecimal digits). The string always begins with a leading
slash to prevent it from begin treated as a URI relative path. Some examples are below.

°* /SingleComponentMajorPath
* /MajorPathPartl/MajorPathPart2/-/MinorPathPartl/MinorPathPart?2
o /HasEncodedSlash:%2F, zero: %00, AndSpace: %20

Example 1 demonstrates the simplest possible path. Note that a leading slash is always
necessary.

Example 2 demonstrates the use of the /-/ separator between the major and minor paths. If a
key happens to have a path component that is nothing but a hyphen, to distinguish it from
that delimiter it is encoded as $2D. For example: /major/%2d/path/-/minor/%2d/path.

Example 3 demonstrates encoding of characters that are not allowed in a path component.
For URI compatibility, characters that are encoded are the ASCII space and other Unicode

4-5

Chapter 4
kv_create_key from_uri_copy()

separators, the ASCIl and Unicode control characters, and the following 15 ASCII
characters: ("#% /<>?[\]” " {|}). The hyphen (-) is also encoded when it is the
only character in the path component, as described above.

Note that although any Unicode character may be used in a key path component, in
practice it may be problematic to include control characters because web user agents,
proxies, and so forth, may not be tolerant of all characters. Although it will be encoded,
embedding a slash in a path component may also be problematic. It is the
responsibility of the application to use characters that are compatible with other
software that processes the URI.

Parameters

e store

The store parameter is the handle to the store in which the key is used. The store
handle is obtained using kv_open_store().

* key
The key parameter references memory into which a pointer to the allocated key is
copied.

° uri

The uri parameter is the full key path, both major and minor components,
described as a string. See the description at the beginning of this page for how
that string should be formatted.

Note that the string used here is not copied. You must not release or modify this
memory until the structure in which it is used is released.

See Also

* Key/Value Pair Management Functions

kv_create key from_uri_copy()

ORACLE

#include <kvstore.h>

kv_error_t

kv _create key from uri copy(kv_store t *store,
kv _key t **key,
const char *uri)

Creates a key in the key/value store based on a URI. To release the resources used
by this structure, use kv_release_key().

This function differs from kv_create_key from_uri() in that it copies the contents of the
URI string passed to the function, so that the string can be released, or modified and
then reused in whatever way is required by the application.

The key path string format used here is designed to work with URIs and URLSs. It is
intended to be used as a general purpose string identifier. The key path components
are separated by slash (/) delimiters. A special slash-hyphen-slash delimiter (/-/) is
used to separate the major and minor paths. Characters that are not allowed in a URI
path are encoded using URI syntax (%XX where XX are hexadecimal digits). The

4-6

Chapter 4
kv_create_value()

string always begins with a leading slash to prevent it from begin treated as a URI relative
path. Some examples are below.

e /SingleComponentMajorPath
e /MajorPathPartl/MajorPathPart2/-/MinorPathPartl/MinorPathPart2
°* /HasEncodedSlash:%2F, Zero:%00, AndSpace: %20

Example 1 demonstrates the simplest possible path. Note that a leading slash is always
necessary.

Example 2 demonstrates the use of the /-/ separator between the major and minor paths. If
a key happens to have a path component that is nothing but a hyphen, to distinguish it from
that delimiter it is encoded as $2D. For example: /major/%$2d/path/-/minor/%2d/path.

Example 3 demonstrates encoding of characters that are not allowed in a path component.
For URI compatibility, characters that are encoded are the ASCII space and other Unicode
separators, the ASCII and Unicode control characters, and the following 15 ASCII characters:
("#%/<>?[\]1""{|}. The hyphen (-) is also encoded when it is the only character in the
path component, as described above.

Note that although any Unicode character may be used in a key path component, in practice
it may be problematic to include control characters because web user agents, proxies, and so
forth, may not be tolerant of all characters. Although it will be encoded, embedding a slash in
a path component may also be problematic. It is the responsibility of the application to use
characters that are compatible with other software that processes the URI.

Parameters

° store

The store parameter is the handle to the store in which the key is used. The store handle
is obtained using kv_open_store().

* key
The key parameter references memory into which a pointer to the allocated key is
copied.

* uri

The uri parameter is the full key path, both major and minor components, described as a
string. See the description at the beginning of this page for how that string should be
formatted.

Note that the string used here is copied. You may release or modify this memory as
needed because the contents of this memory is copied to memory owned by the
kv_key t structure.

See Also

* Key/Value Pair Management Functions

kv_create value()

#include <kvstore.h>

kv_error_t
kv _create value (kv _store t *store,

ORACLE 47

Chapter 4
kv_create_value_copy()

kv _value t **value,
const unsigned char *data,
int data len)

Creates the value in a key/value store. To release the resources used by this structure,
use kv_release_value().

This function differs from kv_create_value_copy() in that it does not copy the contents
of the data buffer passed to the function. Therefore, the data buffer should not be
released or modified until the kv _value t structure created by this function is
released.

Parameters

e store

The store parameter is the handle to the store in which the value is stored. The
store handle is obtained using kv_open_store().

* value

The value parameter references memory into which a pointer to the allocated
value is copied.

* data
The data parameter is a buffer containing the data to be contained in the value.

Note that the buffer used here is not copied. You must not release or modify this
memory until the structure in which it is used is released.

 data_len

The data_len parameter indicates the size of the data buffer.

See Also

» Key/Value Pair Management Functions

kv_create value_copy()

ORACLE

#include <kvstore.h>

kv_error_t

kv _create value copy(kv_store t *store,
kv _value t **value,
const unsigned char *data,
int data_ len)

Creates the value in a key/value store. To release the resources used by this structure,
use kv_release_value().

This function differs from kv_create_value() in that it copies the contents of the data
buffer passed to the function, so that the buffer can be released, or modified and then
reused in whatever way is required by the application.

4-8

Chapter 4
kv_get_key_major()

Parameters

° store

The store parameter is the handle to the store in which the value is stored. The store
handle is obtained using kv_open_store().

* value

The value parameter references memory into which a pointer to the allocated value is
copied.

* data
The data parameter is a buffer containing the data to be contained in the value.

Note that the buffer used here is copied. You may release or modify this memory as
needed because the contents of this memory is copied to memory owned by the
kv _value_ t structure.

 data_len

The data_len parameter indicates the size of the data buffer.

See Also

* Key/Value Pair Management Functions

kv_get key major()
#include <kvstore.h>

const char **
kv _get key major(const kv _key t *key)

Returns the major path components used by the provided key.

Note that the string returned by this function is owned by the key structure, and is valid until
the key is released.

Parameters
* key

The key parameter is the key structure from which you want to obtain the major path
components.

See Also

e Key/Value Pair Management Functions

kv_get_key _minor()

#include <kvstore.h>

const char **
kv_get key minor(const kv_key t *key)

ORACLE 4.9

Chapter 4
kv_get_key uri()

Returns the minor path components used by the provided key.

Note that the string returned by this function is owned by the key structure, and is valid
until the key is released.

Parameters
* key

The key parameter is the key structure from which you want to obtain the minor
path components.

See Also

* Key/Value Pair Management Functions

kv_get key uri()

#include <kvstore.h>

const char *
kv_get key uri(const kv_key t *key)

Returns a string representing the key's major and minor path components. See

kv_create_key from_uri() for a description of the string's syntax.

Note that the string returned by this function is owned by the key structure, and is valid
until the key is released.

Parameters
* key

The key parameter is the key structure from which you want to obtain the path
URI.

See Also

* Key/Value Pair Management Functions

kv_get value()

#include <kvstore.h>

const unsigned char *
kv _get value(const kv value t *value)

Returns the value as a string.

Note that the string returned by this function is owned by the value structure, and is
valid until the value is released.

Parameters

* value

ORACLE 4-10

Chapter 4
kv_get_value_size()

The value parameter is the value structure from which you want to extract its contents as
a string.

See Also

* Key/Value Pair Management Functions

kv_get value_size()

#include <kvstore.h>

kv _int t
kv _get value size(const kv value t *value)

Returns the size of the value, in bytes.

Parameters

* value

The value parameter is the value structure for which you want its size.

See Also

* Key/Value Pair Management Functions

kv_get_version()

#include <kvstore.h>

const kv version t *
kv _get version(const kv value t *value)

Creates a version structure, which refers to a specific version of a key-value pair. Note that
the kv_version_t structure returned by this function is owned by the kv_value t structure
from which is was obtained. As such, you should not explicitly release the version structure
returned by this function; it will be automatically released when the value structure is
released.

When a key-value pair is initially inserted in the KV Store, and each time it is updated, it is
assigned a unique version token. The version is associated with the version portion of the
key-value pair. The version is important for two reasons:

* When an update or delete is to be performed, it may be important to only perform the
update or delete if the last known value has not changed. For example, if an integer field
in a previously known value is to be incremented, it is important that the previous value
has not changed in the KV Store since it was obtained by the client. This can be
guaranteed by passing the version of the previously known value to the if version
parameter of the kv_put_with_options() or kv_delete_with_options() functions. If the
version specified does not match the current version of the value in the KV Store, these
functions will not perform the update or delete operation and will return an indication of
failure. Optionally, they will also return the current version and/or value so the client can
retry the operation or take a different action.

ORACLE 4-11

Chapter 4
kv_release_key()

When a client reads a value that was previously written, it may be important to
ensure that the KV Store node servicing the read operation has been updated with
the information previously written. This can be accomplished by using a version-

based consistency policy with the read operation. See
kv_create_version_consistency() for more information.

Be aware that the system may infrequently assign a new version to a key-value

pair; for example, when migrating data for better resource usage. Therefore, when

using kv_put_with_options() or kv_delete_with_options(), do not assume that the
version will remain constant until it is changed by the application.

Parameters

* value

The value parameter is the value structure from which you want to extract version

information.

See Also

* Key/Value Pair Management Functions

kv_release_key()

#include <kvstore.h>

void
kv _release key(kv key t **key)

Releases the resources used by a key. The structure was intially allocated using
kv_create_key() or kv_create_key_from_uri().

Parameters
* key

The key parameter references the kv_key t structure that you want to release.
See Also

» Key/Value Pair Management Functions

kv_release value()

ORACLE

#include <kvstore.h>

void
kv _release value (kv _value t **value

Releases the resources used by a value. The value was initially created using
kv_create_value(), or it may have been created as a return value from some data
operation function.

4-12

Chapter 4
kv_release_version()

Parameters

* value

The value parameter is the kv_value_t structure that you want to release.

See Also

* Key/Value Pair Management Functions

kv_release_version()

#include <kvstore.h>

void
kv release version (kv version t **version)

Releases a version structure. The version structure was initially created using
kv_get_version(), or through some store write operation such as is performed by
kv_put_with_options().

Parameters

e version

The value parameter is the kv_version t structure that you want to release.

See Also

* Key/Value Pair Management Functions

ORACLE' 4-13

Durability and Consistency Functions

This chapter describes the functions used to manage durability and consistency policies.
Durability policies are used with write operations to manage how likely your data writes are to
persist in the event of a catastrophic failure, be it in your hardware or software layers. By
default, your writes are highly durable. So managing durability policies is mostly about
relaxing your durability guarantees in an effort to improve your write throughput.

Consistency policies are used with read operations to describe how likely it is that the data on
your replicas will be identical to, or consistent with, the data on your master server. The most
stringent consistency policy requires that the read operation be performed on the master
server. In general, the stricter your consistency policy, the slower your store's read

throughput.

Consistency Functions

Consistency Functions

Description

kv_create_simple_consistency()

Create and initialize a Consistency structure

kv_create_time_consistency()

Create and initialize a Consistency structure using time
information

kv_create_version_consistency()

Create and initialize a Consistency structure using a Version

kv_get_consistency_type()

Return the Consistency type

kv_release_consistency()

Release the Consistency structure

Durability Functions

Durability Functions

Description

kv_create_durability()

Allocate and initialize a Durability structure

kv_get_default_durability()

Return the store's default Durability

kv_get_durability_master_sync()

Return the transaction synchronization policy used on the
Master

kv_get_durability_replica_ack()

Return the replica's acknowledgement policy

kv_get_durability_replica_sync()

Return the transaction synchronization policy used on the
replica

kv_is_default_durability()

Return whether the durability is the store's default

kv_create_durability()

ORACLE

#include <kvstore.h>

kv _durability t

kv _create durability (kv_sync_policy_enum master,

5-1

Chapter 5
kv_create_simple_consistency()

kv_sync_policy_enum replica,
kv_ack_policy_enum ack)

Creates a durability policy, which is then used for store write operations such as
kv_put_with_options() or kv_delete_with_options(). The durability policy can also be
used with a set of operations performed in a single transaction, using kv_execute().

The overall durability is a function of the sync policy in effect for the master, the sync
policy in effect for each replica, and the replication acknowledgement policy in effect
for the replication group.

Parameters

e master

The master parameter defines the synchronization policy in effect for the master
in this replication group for this durability guarantee. See kv_sync_policy_enum for
a list of the synchronization policies that you can set.

e replica

The replica parameter defines the synchronization policy in effect for the replicas
in this replication group for this durability guarantee. See kv_sync_policy_enum for
a list of the synchronization policies that you can set.

« ack

The ack parameter defines the acknowledgement policy to be used for this
durability guarantee. The acknowledgment policy describes how many replicas
must respond to, or acknowledge a transaction commit before the master
considers the transaction completed. See kv_ack_policy_enum for a list of the
possible acknowledgement policies.

See Also

e Durability and Consistency Management Functions

kv_create_simple_consistency()

ORACLE

#include <kvstore.h>

kv_error_tkv_create simple consistency(kv_consistency t **consistency,
kv_consistency_enum type)

Creates a simple consistency guarantee used for read operations.

In general, read operations may be serviced either at a master or replica node. When
reads are serviced at the master node, consistency is always absolute. For reads that
might be performed at a replica, you can specify ABSOLUTE consistency to force the
operation to be serviced at the master. For other types of consistency, when the
operation is serviced at a replica, the read transaction will not begin until the
consistency policy is satisfied.

Consistency policies can be used for read operation performed in the store, such as
with kv_get_with_options() or kv_store_iterator().

5-2

Chapter 5
kv_create_time_consistency()

You release the memory allocated for the consistency structure using
kv_release_consistency().

Parameters

* consistency

The consistency parameter references memory into which a pointer to the allocated
consistency policy is copied.

+ type

The type parameter defines the type of consistency you want to use. See
kv_consistency_enum for a list of the simple consistency policies that you can specify.

See Also

* Durability and Consistency Management Functions

kv_create_time_consistency)

ORACLE

#include <kvstore.h>

kv_error_t

kv _create time consistency(kv_consistency t **consistency,
kv_timeout t time lag,
kv_timeout t timeout ms)

Creates a consistency policy which describes the amount of time the replica is allowed to lag
the master. The application can use this policy to ensure that the replica node sees all
transactions that were committed on the master before the lag interval.

You release the memory allocated for the consistency structure using
kv_release_consistency().

Effective use of this policy requires that the clocks on the master and replica are
synchronized by using a protocol like NTP.

Parameters

* consistency

The consistency parameter references memory into which a pointer to the allocated
consistency policy is copied.

* time_lag

The time_lag parameter specifies the time interval, in milliseconds, by which the replica
may be out of date with respect to the master when a transaction is initiated on the
replica.

e timeout_ms

The timeout_ms parameter describes how long a replica may wait for the desired
consistency to be achieved before giving up.

To satisfied the consistency policy, the KVStore client driver implements a read operation
by choosing a node (usually a replica) from the proper replication group, and sending it a
request. If the replica cannot guarantee the desired Consistency within the Consistency

5-3

Chapter 5
kv_create_version_consistency)

timeout, it replies to the request with a failure indication. If there is still time
remaining within the operation timeout, the client driver picks another node and
tries the request again (transparent to the application).

KVStore operations which accept a consistency policy also accept a separate
operation timeout. It makes sense to think of the operation timeout as the
maximum amount of time the application is willing to wait for the operation to
complete. On the other hand, the consistency timeout is like a performance hint to
the implementation, suggesting that it can generally expect a healthy replica to
become consistent within the given amount of time, and that if it does not, then it is
probably more likely worth the overhead of abandoning the request attempt and
retrying with a different replica. Note that for the consistency timeout to be
meaningful, it must be smaller than the operation timeout.

Choosing a value for the operation timeout depends on the needs of the
application. Finding a good consistency timeout value is more likely to depend on
observations made of real system performance.

See Also

* Durability and Consistency Management Functions

kv_create_version_consistency()

ORACLE

#include <kvstore.h>

kv_error_t

kv _create version consistency (kv consistency t **consistency,
const kv version t *version,
kv _timeout t timeout ms)

Creates a consistency policy which ensures that the environment on a replica hode is
at least as current as denoted by the specified version. The version is created by
providing a Value portion of a Key/Value pair to kv_get_version(), or is obtained from
the result set provided to kv_result_get version() or kv_result_get_previous_version().
Versions are also returned in the new_version parameter of the kv_put_with_options()
function.

The version of a Key-Value pair represents a point in the serialized transaction
schedule created by the master. In other words, the version is like a bookmark,
representing a particular transaction commit in the replication stream. The replica
ensures that the commit identified by the version has been executed before allowing
the transaction on the replica to proceed.

For example, suppose the application is a web application. Each request to the web
server consists of an update operation followed by read operations (say from the same
client). The read operations naturally expect to see the data from the updates
executed by the same request. However, the read operations might have been routed
to a replica node that did not execute the update.

In such a case, the update request would generate a version, which would be
resubmitted by the browser, and then passed with subsequent read requests to the KV
Store. The read request may be directed by the KV Store's load balancer to any one of
the available replicas. If the replica servicing the request is already current (with
regards to the version token), it will immediately execute the transaction and satisfy

5-4

Chapter 5
kv_get_consistency_type()

the request. If not, the transaction will stall until the replica replay has caught up and the
change is available at that node.

You release the memory allocated for the consistency structure using
kv_release_consistency().

Parameters

consistency

The consistency parameter references memory into which a pointer to the allocated
consistency policy is copied.

version

The version parameter identifies the version that must be seen at the replica in order to

consider it current. This value is created by providing a value portion of a Key/Value pair
to kv_get_version(), or is obtained from the result set provided to kv_result_get_version()
or kv_result_get_previous_version().

timeout_ms

The timeout_ms parameter describes how long a replica may wait for the desired
consistency to be achieved before giving up.

To satisfied the consistency policy, the KVStore client driver implements a read operation
by choosing a node (usually a replica) from the proper replication group, and sending it a
request. If the replica cannot guarantee the desired Consistency within the Consistency
timeout, it replies to the request with a failure indication. If there is still time remaining
within the operation timeout, the client driver picks another node and tries the request
again (transparent to the application).

KVStore operations which accept a consistency policy also accept a separate operation
timeout. It makes sense to think of the operation timeout as the maximum amount of time
the application is willing to wait for the operation to complete. On the other hand, the
consistency timeout is like a performance hint to the implementation, suggesting that it
can generally expect a healthy replica to become consistent within the given amount of
time, and that if it does not, then it is probably more likely worth the overhead of
abandoning the request attempt and retrying with a different replica. Note that for the
consistency timeout to be meaningful, it must be smaller than the operation timeout.

Choosing a value for the operation timeout depends on the needs of the application.
Finding a good consistency timeout value is more likely to depend on observations made
of real system performance.

See Also

Durability and Consistency Management Functions

kv_get_consistency_type()

ORACLE

#include <kvstore.h>

kv_consistency_enum
kv_get consistency type (kv _consistency t *consistency)

Identifies the consistency policy type used by the provided policy. See kv_consistency_enum
for a list of possible consistency policy types.

5-5

Chapter 5
kv_get_default_durability()

Parameters

* consistency

The consistency parameter points to the consistency policy for which you want to
identify the type.

See Also

* Durability and Consistency Management Functions

kv_get_default_durability()

#include <kvstore.h>

kv _durability t
kv _get default durability()

Returns the default durability policy in use by the KV Store. You set the default
durability policy using kv_config_set_consistency().

See Also

* Durability and Consistency Management Functions

kv_get_durability_master_sync()

#include <kvstore.h>

kv_sync_policy_enum
kv_get durability master sync(kv_durability t durability)

Returns the sync policy in use by the Master for the given durability policy. See
kv_sync_policy_enum for a list of the possible sync policies.

Parameters

e durability

The durability parameter identifies the durability policy to be examined.

See Also

e Durability and Consistency Management Functions

kv_get_durability _replica_ack()
#include <kvstore.h>

kv_ack_policy_enum
kv_get durability replica ack(kv_durability t durability)

ORACLE 5-6

Chapter 5
kv_get durability_replica_sync()

Returns the acknowledgement policy in use for the given durability policy. The
acknowledgement policy identifies how many replicas must acknowledge a transaction
commit before the master considers the transaction to be completed. See
kv_ack_policy_enum for a list of the possible sync policies.

Parameters
* durability

The durability parameter identifies the durability policy to be examined.
See Also

* Durability and Consistency Management Functions

kv_get_durability _replica_sync()

#include <kvstore.h>

kv_sync_policy_enum
kv _get durability replica sync (kv durability t durability)

Returns the sync policy in use by the replicas for the given durability policy. See
kv_sync_policy_enum for a list of the possible sync policies.

Parameters
e durability

The durability parameter identifies the durability policy to be examined.
See Also

e Durability and Consistency Management Functions

kv_is_default_durability()

ORACLE

#include <kvstore.h>

kv_error_t
kv_is default durability (kv durability t durability)

Returns whether the identified durability policy is identical to the default durability policy.
KV_SUCCESS indicates that the provided durability is equal to the default durability.

You set the default durability using kv_config_set_durability().

Parameters
e durability

The durability parameter identifies the durability policy to be examined.

5-7

Chapter 5
kv_release_consistency()

See Also

» Durability and Consistency Management Functions

kv_release_consistency)

ORACLE

#include <kvstore.h>

void
kv release consistency (kv _consistency t **consistency)

Releases (or frees) the memory allocated for thekv_consistency t structure. This
structure is initially created using kv_create_simple_consistency(),
kv_create_time_consistency(), or kv_create_version_consistency().

Parameters

° consistency

The consistency structure to release.

See Also

* Durability and Consistency Management Functions

5-8

Statistics Functions

ORACLE

This chapter describes functions used to retrieve and examine statistical information. There
are two types of statistics described here: statistics related to store operations and state, and
statistics related to parallel scan operations.

For store-related statistics, metrics can be obtained on a per-node or per-operation basis. All
statistical information is contained within a structure that you allocate using kv_get_stats().
You release the resources allocated for this structure using kv_release_stats().

In many cases, statistical information is reported for a time interval. For example, this
happens when information is retrieved that reports on maximum, minimum and average
numbers. In this case, the reporting interval can be restarted by calling kv_get_stats() with a
value of 1 for the clear parameter.

For parallel scan statistics, the statistics are retrieved from a parallel scan iterator using
either kv_parallel_scan_get_partition_metrics() or kv_parallel_scan_get_shard_metrics().
This returns a structure that you can examine using a number of different functions. You
release this structure using kv_release_detailed_metrics_list().

Statistics Functions

Statistics Functions Description

kv_get_node_metrics() Returns metrics associated with each node in the KV Store

kv_get_num_nodes() Return the number of nodes contained in the KV Store

kv_get_num_operations() Return the number of operations that were executed

kv_get_operation_metrics() Aggregates the metrics associated with a KV Store operation

kv_get_stats() Return statistics associated with the KV Store

kv_release_stats() Release the statistics structure

kv_stats_string() Returns a descriptive string containing metrics for each
operation

Parallel Scan Statistics Functions

Parallel Scan Statistics Functions Description

kv_detailed_metrics_list_size() Returns the size of the detailed metrics list

kv_detailed_metrics_list_get_record_co | Returns the number of records in the detailed metrics list
unt()

kv_detailed_metrics_list_get_scan_tim | Returns the time used to perform the parallel scan
e()
kv_detailed_metrics_list_get_name() Returns the name of the shard or partition used by the
parallel scan

kv_parallel_scan_get_partition_metrics(| Returns parallel scan metrics for the partition
)

kv_parallel_scan_get_shard_metrics() | Returns parallel scan metrics for the partition

6-1

Chapter 6
kv_detailed_metrics_list_get_name()

Parallel Scan Statistics Functions Description

kv_release_detailed_metrics_list() | Releases the detailed metrics list

kv_detailed_metrics_list_get_name()

#include <kvstore.h>

kv_error_t

kv _detailed metrics list get name(
const kv detailed metrics list t *res,
kv_int t index,
char **name)

Returns the name of the patrtition or shard which was examined by the parallel scan.

Parameters

e res

The res parameter is the detailed metrics list for which you want the partition or
shard name. It is created using either kv_parallel_scan_get_partition_metrics()
or kv_parallel_scan_get_shard_metrics().

* index

The index parameter is the point in the scan from which you want to return the
partition or shard name.

e name

The name parameter references memory into which is placed the shard or
partition name.

See Also

e Statistics and Related Functions

kv_detailed_metrics_list_get record_count()

ORACLE

#include <kvstore.h>

kv_error_t

kv _detailed metrics list get record count (
const kv detailed metrics list t *res,
kv_int t index,
kv _long t *count)

Returns the record count for the shard or partition.

Parameters

e res

6-2

Chapter 6
kv_detailed_metrics_list_get scan_time()

The res parameter is the detailed metrics list for which you want the record count. It is
created using either kv_parallel_scan_get_partition_metrics()or
kv_parallel_scan_get_shard_metrics().

* index

The index parameter is the point in the scan to which you want to examine the record
count.

* count
The count parameter references memory into which is placed the record count up to the
point in the scan identified by index.

See Also

e Statistics and Related Functions

kv_detailed_metrics_list_get_scan_time()

#include <kvstore.h>

kv_error_t

kv _detailed metrics list get scan time(
const kv detailed metrics list t *res,
kv_int t index,
kv _long t *time)

Returns the time in milliseconds used to scan the partition or shard.

Parameters

e res

The res parameter is the detailed metrics list for which you want the scan time. It is
created using either kv_parallel_scan_get partition_metrics()or
kv_parallel_scan_get_shard_metrics().

* index

The index parameter is the point in the scan up to which you want to examine the scan
time.

 time

The time parameter references memory into which is placed the time in milliseconds
taken to perform the scan up to the point identified by index.

See Also

e Statistics and Related Functions

kv_detailed_metrics_list_size()

#include <kvstore.h>

kv_int t

ORACLE 6-3

Chapter 6
kv_get_node_metrics()

kv _detailed metrics list size(
const kv detailed metrics list t *result)

Returns the size of the detailed metrics list, as created by
kv_parallel_scan_get_partition_metrics()and kv_parallel_scan_get_shard_metrics().

Parameters

e result

The result parameter is the detailed metrics list for which you want size
information.

See Also

» Statistics and Related Functions

kv_get_node_metrics()

ORACLE

#include <kvstore.h>

kv _node metrics t *
kv _get node metrics (kv stats t *stats,
kv_int t index)

Returns a list of metrics associated with each node in the store. The information is
returned using a kv_node metrics_t structure, which includes the following data
members:

e kv int t avg latency ms
Returns the trailing average latency (in ms) over all requests made to this node.
°* kv int t max active request count

Returns the number of requests that were concurrently active for this node at this
Oracle NoSQL Database client.

°* kv long t request count
Returns the total number of requests processed by the node.
° kv int t is active

Returns 1 if the node is currently active. That is, it is reachable and can service
requests.

° kv int t is master

Returns 1 if the node is currently a master.
° const char *node name

Returns the internal name associated with the node.
* const char *zone name;

Returns the name of the zone which hosts the node.

Note that if the index parameter is out of range, then this functions returns NULL.

6-4

Chapter 6
kv_get_num_nodes()

Parameters

° stats

The stats parameter is the statistics structure containing the node metrics information.
This structure is allocated using kv_get_stats(), and is released using kv_release_stats().

* index

The index parameter is the integer designation of the node for which you want to retrieve
statistical information. You can discover the total number of nodes for which statistical
information is available using kv_get_num_nodes().

See Also

» Statistics and Related Functions

kv_get_num_nodes()

#include <kvstore.h>

kv int t
kv _get num nodes(const kv stats t *stats)

Returns the total number of nodes currently in the store, active and inactive.

Parameters

e stats

The stats parameter is the structure containing the statistical information that you want to
examine. This structure is allocated using kv_get_stats(), and is released using
kv_release_stats().

See Also

e Statistics and Related Functions

kv_get_num_operations()

#include <kvstore.h>

kv_int t
kv_get num operations(const kv stats t *stats)

Returns the total number of store operations described by the provided statistics structure.

Parameters

e stats

The stats parameter is the statistics structure containing the node metrics information.
This structure is allocated using kv_get_stats(), and is released using kv_release_stats().

ORACLE 6-5

Chapter 6
kv_get_operation_metrics()

See Also

Statistics and Related Functions

kv_get_operation_metrics()

ORACLE

#include <kvstore.h>

kv _operation metrics t *
kv _get operation metrics(kv_stats t *stats,

kv_int t index)

Aggregates the metrics associated with an Oracle NoSQL Database operation. The
information is returned using a kv_operation metrics t structure, which includes the
following data members:

kv _float t avg latency ms

Returns the average latency associated with the operation in milliseconds.
kv_int t max latency ms

Returns the maximum latency associated with the operation in milliseconds.
kv_int t min latency ms

Returns the minimum latency associated with the operation in milliseconds.
kv_int t total operations

Returns the number of operations that were executed.

const char *operation name

Returns the name of the Oracle NoSQL Database operation associated with the
metrics.

Note that if the index parameter is out of range, then this functions returns NULL.

Parameters

stats

The stats parameter is the statistics structure containing the operation metrics
information. This structure is allocated using kv_get_stats(), and is released
using kv_release_stats().

index

The index parameter is the integer designation of the operation for which you
want to retrieve statistical information. You can discover the total number of
operations for which statistical information is available

using kv_get_num_operations().

See Also

Statistics and Related Functions

6-6

Chapter 6
kv_get_stats()

kv_get_stats()

#include <kvstore.h>

kv_error_t

kv _get stats(kv_store t *store,
kv _stats t **stats,
kv_int t clear)

Returns a statistics structure, which you can then examine using kv_get node_metrics(),
kv_get_operation_metrics(), or kv_stats_string(). You release the resources allocated for the
statistics structure using kv_release_stats().

Parameters

e store

The store parameter is the handle to the store for which you want to examine statistical
information.

e stats

The stats parameter references memory into which a pointer to the allocated statistics
structure is copied.

e clear

The clear parameter resets all counters within the statistics structure to zero. Setting this
value to 1 creates a new reporting interval for which minimum, maximum, average, and
total values are computed.

See Also

e Statistics and Related Functions

kv_parallel_scan get_ partition_metrics()

ORACLE

#include <kvstore.h>

kv_error_t

kv _parallel scan get partition metrics(
const kv _parallel scan iterator t *iterator,
kv _detailed metrics list t **result)

Gets the per-partition metrics for this parallel scan. This may be called at any time during the
iteration in order to obtain metrics to that point or it may be called at the end to obtain metrics
for the entire scan.

Parameters

e jterator

The iterator parameter is the iterator for which you want to return statistics. This iterator
is allocated using kv_parallel_store_iterator() or kv_parallel_store_iterator_keys()

6-7

Chapter 6
kv_parallel_scan_get_shard_metrics()

* result

The result parameter is the list of parallel scan partition metrics. Use
kv_detailed_metrics_list_get_record_count(),
kv_detailed_metrics_list_get_scan_time(), and
kv_detailed_metrics_list_get_name()to examine this list. Return the size of this list
using kv_detailed_metrics_list_size(). Release this list using
kv_release_detailed_metrics_list().

See Also

e Statistics and Related Functions

kv_parallel_scan_get shard metrics()

#include <kvstore.h>

kv_error_t

kv _parallel scan get shard metrics(
const kv parallel scan iterator t *iterator,
kv detailed metrics list t **result)

Gets the per-shard metrics for this parallel scan. This may be called at any time during
the iteration in order to obtain metrics to that point or it may be called at the end to
obtain metrics for the entire scan.

Parameters

e iterator

The iterator parameter is the iterator for which you want to return statistics. This
iterator is allocated using
kv_parallel_store_iterator() or kv_parallel_store_iterator_keys()

* result

The result parameter is the list of parallel scan shard metrics. Use
kv_detailed_metrics_list_get record_count(),

kv_detailed_metrics_list_get scan_time(), and
kv_detailed_metrics_list_get_name()to examine this list. Return the size of this list
using . Release this list using kv_release detailed_metrics_list().

See Also

e Statistics and Related Functions

kv_release detailed metrics_list()

#include <kvstore.h>

void
kv_release detailed metrics list(kv_detailed metrics list t **results)

ORACLE 6-8

Chapter 6
kv_release_stats()

Releases the resources used by the detailed metrics list, as created
by kv_parallel_scan_get_partition_metrics() and kv_parallel_scan_get_shard_metrics().

Parameters
e results

The results parameter is the detailed metrics list that you want to release.
See Also

» Statistics and Related Functions

kv_release_stats()

#include <kvstore.h>

void
kv release stats (kv _stats t **stats)

Releases all the resources allocated for the provided statistics structure. The statistics
structure is initially allocated using kv_get_stats().

Parameters
* stats

The stats parameter is the statistics structure that you want to release.
See Also

e Statistics and Related Functions

kv_stats_string()

ORACLE

#include <kvstore.h>

const char *
kv _stats string(kv_store t *store,
const kv_stats t *stats)

Returns a descriptive string containing metrics for each operation that was actually performed
during the statistics gathering interval, one per line.

Parameters

e store

The store parameter the handle to the store for which you want to examine statistical
information.

e stats

The stats parameter is the structure containing the statistical information. This structure
is allocated using kv_get_stats(), and is released using kv_release_stats().

6-9

Chapter 6
kv_stats_string()

See Also

e Statistics and Related Functions

ORACLE" 6-10

Error Functions

This chapter contains functions used to investigate and examine error returns obtained from
the C API functions described in this manual.

Most methods in this library return an enumeration, kv_error_t, indicating success or failure.
Because of the need to also return integer and "boolean-like" values in some cases, all actual
error values are negative. 0 (KV_SUCCESS) indicates no error. Valid integer return values are
non-negative. When an error is returned the kv_get_last_error() method may have additional
information about the error.

Error Functions

Error Functions Description

kv_get_last_error() Return a string explaining the last error

kv_get last_error()

ORACLE

#include <kvstore.h>

const char *
kv _get last error (kv _store t *store)

Returns a string explaining the last error. This string is only useful immediately following an
error return; otherwise it may indicate an older, irrelevant error. This value is maintained per-
thread and is not valid across threads.

Parameters

° store

The store parameter is the handle to the store in which an operation returned an error.

See Also

e Error Functions

7-1

Data Types

This appendix describes the enum datatypes used by the various Oracle NoSQL Database
functions:

Data Operations Data Types
Durability and Consistency Data Types
Store Operations Data Types

Data Operations Data Types

This section defines the data types used by the functions described in this appendix.

kv_depth_enum

ORACLE

typedef enum {

KV_DEPTH DEFAULT = 0,
KV_DEPTH_CHILDREN ONLY,
KV_DEPTH DESCENDANTS ONLY,
KV_DEPTH_PARENT AND CHILDREN,
KV_DEPTH_PARENT AND DESCENDANTS

} kv_depth enum;

Used with multiple-key and iterator operations to specify whether to select (return or operate
on) the key-value pair for the parent key, and the key-value pairs for only immediate children
or all descendants.

Options are:

KV DEPTH DEFAULT

No depth constraints are placed on the operation.
KV_DEPTH CHILDREN ONLY

Select only immediate children, do not select the parent.
KV_DEPTH DESCENDANTS ONLY

Select all descendants, do not select the parent.

KV _DEPTH PARENT AND CHILDREN

Select immediate children and the parent.

KV DEPTH PARENT AND DESCENDANTS

Select all descendants and the parent.

A-1

Appendix A
Data Operations Data Types

kv_direction_enum

typedef enum {
KV_DIRECTION FORWARD,
KV_DIRECTION REVERSE,
KV _DIRECTION UNORDERED
} kv _direction enum;

Used with iterator operations to specify the order that keys are returned.
* KV _DIRECTION FORWARD
Iterate in ascending key order.
* KV _DIRECTION REVERSE
Iterate in descending key order.
* KV _DIRECTION UNORDERED

Iterate in no particular key order.

kv_presence_enum

typedef enum {
KV_IF DONTCARE = 0,
KV_IF ABSENT,
KV_IF PRESENT

} kv_presence_ enum;

Defines under what circumstances a Key/Value record will be put into the store
if kv_put_with_options() is in use.

* KV _IF DONTCARE
The record is put into the store without constraint.
* KV _IF ABSENT

Put the record into the store only if a value for the the supplied key does not
currently exist in the store.

¢ KV_IF PRESENT

Put the record into the store only if a value for the supplied key does currently exist
in the store.

kv_return_value_version_enum

typedef enum {
KV_RETURN VALUE NONE = 0,
KV_RETURN VALUE ALL,
KV _RETURN VALUE VALUE,
KV_RETURN VALUE VERSION

} kv_return value version enum;

ORACLE A-2

Appendix A
Durability and Consistency Data Types

Used with put and delete operations to define what to return as part of the operations.
* KV _RETURN VALUE NONE
Do not return the value or the version.
* KV RETURN VALUE ALL
Return both the value and the version.
* KV RETURN VALUE VALUE
Return the value only.
* KV RETURN VALUE VERSION

Return the version only.

Durability and Consistency Data Types

This section defines the data types used to support durability and consistency policies.

kv_ack policy_enum

typedef enum {
KV_ACK ALL = 1,
KV_ACK NONE = 2,
KV_ACK MAJORITY = 3
} kv_ack policy enum;

A replicated environment makes it possible to increase an application's transaction commit
guarantees by committing changes to its replicas on the network. This enumeration defines
the policy for how such network commits are handled.

Ack policies are set as a part of defining a durability guarantee. You create a durability
guarantee using kv_create_durability().

Possible ack policies are:
° KV ACK ALL

All replicas must acknowledge that they have committed the transaction.
* KV _ACK NONE

No transaction commit acknowledgments are required and the master will never wait for
replica acknowledgments.

¢ KV_ACK MAJORITY

A simple majority of replicas must acknowledge that they have committed the transaction.

kv_consistency_enum

ORACLE

typedef enum {
KV_CONSISTENCY ABSOLUTE = 0,
KV_CONSISTENCY NONE,
KV_CONSISTENCY TIME,
KV_CONSISTENCY VERSION,

A-3

Appendix A
Durability and Consistency Data Types

KV_CONSISTENCY NONE NO MASTER
} kv_consistency enum;

Enumeration that is used to define the consistency guarantee used for read
operations. Values are:

° KV _CONSISTENCY ABSOLUTE

A consistency policy that requires a read transaction be serviced on the Master so
that consistency is absolute.

¢ KV_CONSISTENCY NONE

A consistency policy that allows a read transaction performed at a Replica to
proceed regardless of the state of the Replica relative to the Master.

¢ KV _CONSISTENCY TIME

A consistency policy which describes the amount of time the Replica is allowed to
lag the Master. This policy cannot be specified

using kv_create_simple_consistency(). Instead,

use kv_create_time_consistency().

e KV _CONSISTENCY VERSION

A consistency policy which ensures that the environment on a Replica node is at
least as current as that used by the Value provided to kv_get_version(), or by the
result set provided to kv_result_get_version() or kv_result_get_previous_version().

This policy cannot be specified using kv_create_simple_consistency(). Instead,
usekv_create_version_consistency().

¢ KV_CONSISTENCY NONE NO MASTER

A consistency policy that requires a read operation be serviced on a replica; never
the Master. When this consistency policy is used, the read operation will not be
performed if the only node available is the Master.

For read-heavy applications (ex. analytics), it may be desirable to reduce the load
on the master by restricting the read requests to only the replicas in the store. Use
of the secondary zones feature is preferred over this consistency policy as the
mechanism for achieving this sort of read isolation. But for cases where the use of
secondary zones is either impractical or not desired, this consistency policy can be
used to achieve a similar effect; without employing the additional resources that
secondary zones may require.

kv_sync_policy _enum

ORACLE

typedef enum {
KV_SYNC NONE = 1,
KV_SYNC FLUSH = 2,
KV_SYNC WRITE NO SYNC = 3
} kv_sync policy enum;

Defines the synchronization policy to be used when committing a transaction. High
levels of synchronization offer a greater guarantee that the transaction is persistent to
disk, but trade that off for lower performance.

A-4

Appendix A
Store Operations Data Types

Sync policies are set as a part of defining a durability guarantee. You create a durability
guarantee using kv_create_durability().

Possible sync policies are:
* KV _SYNC NONE
Do not write or synchronously flush the log on transaction commit.
* KV SYNC FLUSH
Write and synchronously flush the log on transaction commit.
* KV SYNC WRITE NO SYNC

Write but do not synchronously flush the log on transaction commit.

Store Operations Data Types

This section defines data types that are by the store or API at a high level, or data types that
are commonly used by all areas of the API.

kv_api_type_enum

typedef enum {
KV_JNI
} kv_api type enum;

Structure used to describe the APl implementation type. Currently only one option is
available: Kv_JNI.

kv_error t

typedef enum {
KV_SUCCESS = 0,
KV_NO MEMORY = -1,
KV_NOT IMPLEMENTED = -2,
KV_ERROR JVM = -3,
KV_KEY NOT FOUND = -4,
KV_KEY EXISTS = -5,
KV_NO SUCH VERSION = -6,
KV_NO SUCH OBJECT = -7,
KV_INVALID OPERATION = -8,
KV_INVALID ARGUMENT = -9,
KV_TIMEOUT = -10,
KV_CONSISTENCY = -11,
KV_DURABILITY = -12,
KV_FAULT = -13,
KV_AUTH FAILURE = -15,
KV_AUTH REQUIRED = -16,
KV_ACCESS DENIED = -17,
KV_ERROR JAVA UNKNOWN = -99,
KV_ERROR _UNKNOWN = -100

} kv _error t

ORACLE A-5

Appendix A
Store Operations Data Types

#define KV_FALSE 0
#define KV_TRUE 1

All non-void API methods return kv_error t. With few exceptions a return value of
KV_SUCCESS (or 0) means no error and a negative value means an error.

The exceptions are the methods that return integer values. In these cases a negative
return means an error and a non-negative return is the correct value.

kv_store_iterator_config_t

ORACLE

typedef struct {
kv_int t max conc_req;
kv_int t max res batches;
} kv_store iterator config t;

Used to configure a parallel scan of the store.

max_conc_req identifies the maximum number of concurrent requests the parallel
scan will make. That is, this is the maximum number of client-side threads that are
used to perform this scan. Setting this value to 1 causes the store iteration to be
performed using only the current thread. Setting it to O lets the KV Client determine the
number of threads based on topology information (up to a maximum of the number of
available processors). Values less than O are reserved for some future use and cause
an error to be returned.

max_res_batches specifies the maximum number of results batches that can be held
in the Oracle NoSQL Database client process before processing on the Replication
Node pauses. This ensures that client side memory is not exceeded if the client cannot
consume results as fast as they are generated by the Replication Nodes. The default
value is the value specified for max_conc_req.

A-6

Third Party Licenses

ORACLE

The Oracle NoSQL Database Client is licensed under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License. You may obtain a
copy of the License at:.

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

The following applies to this Oracle NoSQL client as well as all other products under the
Apache 2.0 license.

Apache License Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of this
definition, "control" means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted
by this License.

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation
of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of authorship.
For the purposes of this License, Derivative Works shall not include works that remain

B-1

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/

ORACLE

Appendix B

separable from, or merely link (or bind by hame) to the interfaces of, the Work and
Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of
the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed
by, or on behalf of, the Licensor for the purpose of discussing and improving the
Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor” shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement,
then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or
Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from the
Source form of the Work, excluding those notices that do not pertain to any
part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if

B-2

ORACLE

Appendix B

and wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may add
Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions or use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any
separate license agreement you may have executed with Licensor regarding such
Contributions.

Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the
NOTICE file

Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.
You are solely responsible for determining the appropriateness of using or redistributing
the Work and assume any risks associated with Your exercise of permissions under this
License.

Limitation of Liability. In no event and under no legal theory whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included

B-3

ORACLE

Appendix B

on the same "printed page" as the copyright notice for easier identification within third-
party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

B-4

http://www.apache.org/licenses/LICENSE-2.0

	Contents
	Preface
	Conventions Used in this Book

	1 Introduction to Oracle NoSQL Database C API
	Library Installation
	Library Usage
	Thread Safety

	2 Store and Library Functions
	kv_close_store()
	kv_config_add_host_port()
	kv_config_add_read_zone()
	kv_config_get_lob_suffix()
	kv_config_get_lob_timeout()
	kv_config_get_lob_verification_bytes()
	kv_config_get_read_zones()
	kv_config_set_consistency()
	kv_config_set_durability()
	kv_config_set_lob_suffix()
	kv_config_set_lob_timeout()
	kv_config_set_request_limits()
	kv_config_set_security_properties()
	kv_config_set_timeouts()
	kv_config_set_verification_bytes()
	kv_create_config()
	kv_create_jni_impl()
	kv_create_jni_impl_from_jvm()
	kv_create_password_credentials()
	kv_create_properties()
	kv_get_impl_type()
	kv_get_open_error()
	kv_open_store()
	kv_open_store_login()
	kv_release_config()
	kv_release_credentials()
	kv_release_impl()
	kv_release_properties()
	kv_set_property()
	kv_store_login()
	kv_store_logout()
	kv_version()
	kv_version_c()

	3 Data Operation Functions
	kv_create_delete_op()
	kv_create_delete_with_options_op()
	kv_create_operations()
	kv_create_put_op()
	kv_create_put_with_options_op()
	kv_delete()
	kv_delete_with_options()
	kv_execute()
	kv_get()
	kv_get_with_options()
	kv_init_key_range()
	kv_init_key_range_prefix()
	kv_iterator_next()
	kv_iterator_next_key()
	kv_iterator_size()
	kv_lob_delete()
	kv_lob_get_for_read()
	kv_lob_get_for_write()
	kv_lob_get_version()
	kv_lob_put_from_file()
	kv_lob_read()
	kv_lob_release_handle()
	kv_multi_delete()
	kv_multi_get()
	kv_multi_get_iterator()
	kv_multi_get_iterator_keys()
	kv_multi_get_keys()
	kv_operation_get_abort_on_failure()
	kv_operation_get_key()
	kv_operation_get_type()
	kv_operation_results_size()
	kv_operations_set_copy()
	kv_operations_size()
	kv_parallel_scan_iterator_next()
	kv_parallel_scan_iterator_next_key()
	kv_parallel_store_iterator()
	kv_parallel_store_iterator_keys()
	kv_put()
	kv_put_with_options()
	kv_release_iterator()
	kv_release_operation_results()
	kv_release_operations()
	kv_release_parallel_scan_iterator()
	kv_result_get_previous_value()
	kv_result_get_previous_version()
	kv_result_get_success()
	kv_result_get_version()
	kv_store_iterator()
	kv_store_iterator_keys()

	4 Key/Value Pair Management Functions
	kv_copy_version()
	kv_create_key()
	kv_create_key_copy()
	kv_create_key_from_uri()
	kv_create_key_from_uri_copy()
	kv_create_value()
	kv_create_value_copy()
	kv_get_key_major()
	kv_get_key_minor()
	kv_get_key_uri()
	kv_get_value()
	kv_get_value_size()
	kv_get_version()
	kv_release_key()
	kv_release_value()
	kv_release_version()

	5 Durability and Consistency Functions
	kv_create_durability()
	kv_create_simple_consistency()
	kv_create_time_consistency()
	kv_create_version_consistency()
	kv_get_consistency_type()
	kv_get_default_durability()
	kv_get_durability_master_sync()
	kv_get_durability_replica_ack()
	kv_get_durability_replica_sync()
	kv_is_default_durability()
	kv_release_consistency()

	6 Statistics Functions
	kv_detailed_metrics_list_get_name()
	kv_detailed_metrics_list_get_record_count()
	kv_detailed_metrics_list_get_scan_time()
	kv_detailed_metrics_list_size()
	kv_get_node_metrics()
	kv_get_num_nodes()
	kv_get_num_operations()
	kv_get_operation_metrics()
	kv_get_stats()
	kv_parallel_scan_get_partition_metrics()
	kv_parallel_scan_get_shard_metrics()
	kv_release_detailed_metrics_list()
	kv_release_stats()
	kv_stats_string()

	7 Error Functions
	kv_get_last_error()

	A Data Types
	Data Operations Data Types
	kv_depth_enum
	kv_direction_enum
	kv_presence_enum
	kv_return_value_version_enum

	Durability and Consistency Data Types
	kv_ack_policy_enum
	kv_consistency_enum
	kv_sync_policy_enum

	Store Operations Data Types
	kv_api_type_enum
	kv_error_t
	kv_store_iterator_config_t

	B Third Party Licenses

