
Oracle® NoSQL Database
Quick Start to KVLocal

Release 22.2

F51345-03

August 2022

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Introduction
KVLocal is an embedded Oracle NoSQL Database that can be embedded in data-rich
applications to process and present live data from large datasets. KVLocal provides a
single-node store that is not replicated.

It runs as a separate child process in the application JVM and requires minimal
administration. KVLocal is a robust database and handles failures efficiently. You can
start and stop KVLocal using APIs.

KVLocal provides the ability to run a single instance of Oracle NoSQL Database by
including kvstore.jar in the application's classpath, starting a JVM, and calling an
API to initialize the database. KVLocal is accessed using the Java Direct Driver API.

KVLocal to use either TCP/IP sockets or Unix domain sockets for communication
between the client APIs and KVLocal. If you configure KVLocal to use TCP/IP sockets,
it runs by default in secure mode, and you can configure it explicitly to run non-
securely. If you configure KVLocal to use Unix domain sockets, it is inherently secure
because it is not accessible over the network. The security depends on file protections
on the socket files used for communication.

1

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Note:

There is no separate support for secure or non-secure KVLocal when using
Unix domain sockets.

KVLocal store has an Administrative (Admin) service that helps to configure, deploy,
monitor, and change KVLocal store components.

Note:

One application (in other words one JVM) can run only one KVLocal store.

This Quick Start guide demonstrates how to perform the following tasks:

• Embedding KVLocal in your Java Application

• Starting Administration CLI

• Running SQL Shell with KVLocal

• Backing Up KVLocal Store

The following topics provide more detailed information:

• KVLocal Diagnostic Utility

• KVLocal FAQs

Java Development Kit (JDK) Requirements

2

Unix domain sockets require Java 16 or later.

Embedding KVLocal in your Java Application
Make sure that the kvstore.jar file is included in your application's CLASSPATH.
The kvstore.jar file is available as part of Oracle NoSQL Database software. You
can download it from Oracle Technology Network.

Create KVLocalConfig Object
Create an object of the KVLocalConfig class. This class represents the configuration
parameters used by KVLocal. KVLocalConfig class contains two builders:
InetBuilder and UnixDomainBuilder. The InetBuilder is the builder to construct a
KVLocalConfig instance using TCP/IP sockets, and the UnixDomainBuilder is the
builder to construct a KVLocalConfig instance using Unix domain sockets.

KVLocal supports the following configuration parameters.

Parameter Description

StoreName
If not set, defaults to kvstore.

Example:
• InetBuilder.setStoreName("nosql"

)
• UnixDomainBuilder.setStoreName("

nosql")

Name of the KVLocal instance.

HostName
(For InetBuilder) If not set, defaults to
localhost.

(For UnixDomainBuilder) Defaults to
unix_domain:<KVROOT>/sockets/sock
and is non-modifiable.

Example:
InetBuilder.setHostName("nosql.app.c
om");

The network address to use to reach the host
when using InetBuilder for KVLocal
instance. You cannot set this parameter when
using UnixDomainBuilder.

Port
If not set, defaults to 5000.

Example: InetBuilder.setPort(5500);

The TCP/IP port on which the client APIs
communicate with the KVLocal instance. You
can change this parameter only if you are
using InetBuilder. When using Unix domain
sockets, it does not represent a TCP/IP port.
However, the default value of 5000 must be
specified with the -port flag when connecting
to the Admin CLI.

3

Parameter Description

enableSecurity
(For InetBuilder) If not set, defaults to
true.

(For UnixDomainBuilder) Defaults to false
and is non-modifiable.

Example:
InetBuilder.enableSecurity(false);

Determines whether it is a secure or non-
secure KVLocal store. For
UnixDomainBuilder, the value of this
parameter is always false, and you cannot
modify it. The reason being the Unix domain
sockets configurations are inherently secure
for communication.

StorageSize
If not set, defaults to 10.

Example: To set the storage size to 80 GB
• InetBuilder.setStorageSize(80);
• UnixDomainBuilder.setStorageSiz

e(80);

The maximum amount of available disk space
in GB for a KVLocal database. If the KVLocal
database exceeds its disk usage threshold
value (excluding 5 GB of free space), KVLocal
suspends all write operations on the host
system until you remove sufficient data to
satisfy the threshold requirement. If you set
storage directory size to 0, KVLocal
opportunistically uses all the available space,
excluding 5 GB free disk space.

MemoryMB
If not set, defaults to 8192. The minimum
value for this parameter is 48.

Example: To set the memory size to 85 MB
• InetBuilder.setMemoryMB(85);
• UnixDomainBuilder.setMemoryMB(85

);

AAmount of memory size in MB of the Java
heap used to run the embedded KVLocal
database. The Java heap size here refers to
the Java heap size of the child process and not
of the JVM process that is running the
application.

Note:

Ensure
that the
host
machine
has
enough
memory
available
to create
the JVM
with the
requeste
d heap
size.

• KVLocalConfig instance using TCP/IP sockets

• KVLocalConfig instance using Unix domain sockets

4

KVLocalConfig instance using TCP/IP sockets
• For a secure KVLocal

import oracle.kv.KVLocalConfig;
/* Create a KVLocalConfig object with TCP sockets */
KVLocalConfig config = new KVLocalConfig.InetBuilder("rootDir")
 .build();

• For a non-secure KVLocal

import oracle.kv.KVLocalConfig;
/* Create a KVLocalConfig object with port number 6000 and security
not enabled */
KVLocalConfig config = new kvlocalConfig.InetBuilder("rootDir")
 .setPort(6000)
 .enableSecurity(false)
 .build();

rootDir is where the kvroot directory should reside. It refers to the absolute path to
the directory where Oracle NoSQL Database data is stored, for example, /home/
kvstore.

If you enable security for KVLocal, a security file (user.security) gets generated
under the kvroot directory when you start KVLocal. If a kvstore already exists (in
other words, the kvroot directory already exists), KVLocal uses the security file
present in the existing kvroot directory to secure the kvstore.

KVLocalConfig instance using Unix domain sockets

import oracle.kv.KVLocalConfig;
/* Create a KVLocalConfig object with Unix domain sockets */
KVLocalConfig config = new KVLocalConfig.UnixDomainBuilder("rootDir")
 .build();

rootDir is where the kvroot directory should reside. It refers to the absolute path to
the directory where Oracle NoSQL Database data is stored, for example, /home/
kvstore.

When you use Unix domain sockets, socket files get created under the kvroot
directory. These socket files are used for communication between the server (KVLocal)
and the client (user application). For example, if your kvroot directory is /home/kvroot,
the full path to one such Unix domain socket file is: /home/kvroot/sockets/sock-5000

Invoke KVLocal Start and Stop APIs

5

The KVLocal class provides APIs to start or stop the embedded NoSQL database
instance. In your application, invoke the start or stop APIs and get the handle to
kvstore.

Note:

One application (in other words, one JVM) can manage only one KVLocal
store. The second KVLocal instantiation within the same JVM throws the
exception "The KVLocal has already been initialized.".

The KVLocal class provides following APIs to start or stop KVLocal instance and get
the handle to the kvstore.

Method Name Description

start(KVLocalConfig config) Starts a KVLocal instance.

startExistingStore(String
rootDir)

Starts KVLocal instance from the existing root
directory.

stop() Stops the running instance of KVLocal.

6

Method Name Description

KVStore getStore() Gets a store handle to a running KVLocal
instance.
A new store handle gets created as needed on
the first call to this method. All subsequent
calls return the existing store handle. If the
existing store handle is cleaned up by
invocation of the KVLocal.closeStore()
method, the next call to this method creates a
new store handle again.

Note:

The
applicatio
n must
invoke
KVLocal
.closeS
tore()
method
when it is
done
accessin
g the
store to
free up
resource
s
associate
d with the
store
handle.
DO NOT
invoke
KVStore
.close(
)
method,
because
it does
not free
up all the
resource
s
associate
d with the
store
handle
and
makes
the store

7

Method Name Description

handle
non-
functional
.

• Using TCP/IP sockets

• Using Unix domain sockets

Using TCP/IP sockets

import oracle.kv.KVLocalConfig;
import oracle.kv.KVLocal;
/* Create a KVLocal object and pass the KVLocal configuration
parameters to the object */
KVLocalConfig config = new KVLocalConfig.InetBuilder("rootDir")
 .build();
/* Start KVLocal*/
KVLocal local = KVLocal.start(config);
/* Get a handle to kvstore */
KVStore storeHandle = local.getStore();
/* Use existing key/value APIs to write to kvstore */
storeHandle.put(Key,Value);
ValueVersion valueVersion = storeHandle.get(Key.createKey(key));
/* Close kvstore */
KVLocal.closeStore();
/* Stop kvstore */
local.stop();

rootDir is where the kvroot directory should reside. It refers to the absolute path to the
directory where Oracle NoSQL Database data is stored, for example, /home/kvstore.

Using Unix domain sockets

import oracle.kv.KVLocalConfig;
import oracle.kv.KVLocal;
/* Create a KVLocal object and pass the KVLocal configuration
parameters to the object */
KVLocalConfig config = new KVLocalConfig.UnixDomainBuilder("rootDir")
 .build();
/* Start KVLocal*/
KVLocal local = KVLocal.start(config);
/* Get a handle to kvstore */

8

KVStore storeHandle = local.getStore();
/* Use existing key/value APIs to write to kvstore */
storeHandle.put(Key,Value);
ValueVersion valueVersion = storeHandle.get(Key.createKey(key));
/* Close kvstore */
KVLocal.closeStore();
/* Stop kvstore */
local.stop();

rootDir is where the kvroot directory should reside. It refers to the absolute path to the
directory where Oracle NoSQL Database data is stored, for example, /home/kvstore.

Starting Administration CLI
The runadmin utility provides the Admin command-line interface (CLI). When a
KVLocal instance is running, an admin client can connect to the KVLocal store using
the following command:

java -jar <KVHOME>/lib/kvstore.jar runadmin -port 5000 -host localhost
Where, <KVHOME> refers to the directory where Oracle NoSQL Database package
files reside.

Note:

When using Unix domain socket to connect to KVLocal, specify the
hostname in this form: unix_domain:KVROOT/sockets/sock. For
example, if the KVROOT directory is /disk1/kvroot, run the following
command to start the Administration CLI:

java -jar <KVHOME> /lib/kvstore.jar runadmin -port 5000 -host
unix_domain:/disk1/kvroot/sockets/sock

Setting JE Parameters for KVLocal
JE is the storage engine for KVLocal. KVLocal is a wrapper around JE and emulates a
single replication node from the NoSQL Database Cluster. Hence, one interacts with
KVLocal as though it were a single node NoSQL Database.

You can set the JE parameters for a KVLocal instance using the Replication Node
(RN) parameter, configProperties=<String>. It contains property settings for the
underlying BDB JE subsystem. Its format is
property=value;property=value....

9

Before setting the JE parameters, you first need to determine the current settings in
the KVLocal instance. To determine the current settings of configProperties, enter
the Admin CLI show parameters -service name command as follows:

kv-> show parameters -service rg1-rn1;
...
...
configProperties=je.cleaner.threads 1;
je.rep.insufficientReplicasTimeout 100 ms;
je.env.runEraser true;
je.erase.deletedDatabases true;
je.erase.extinctRecords true;
je.erase.period 6 days;
je.env.runBackup false;
je.backup.schedule 0 8 * * *;
je.backup.copyClass
oracle.nosql.objectstorage.backup.BackupObjectStorageCopy;
je.backup.copyConfig /var/lib/andc/config/params/
backup.copy.properties;
je.backup.locationClass
oracle.nosql.objectstorage.backup.BackupObjectStorageLocation;
je.backup.locationConfig /var/lib/andc/config/params/
backup.location.properties;
je.rep.electionsOpenTimeout=2 s;
je.rep.electionsReadTimeout=2 s;
je.rep.feederTimeout=3 s;
je.rep.heartbeatInterval=500;
je.rep.replicaTimeout=3 s;
je.rep.repstreamOpenTimeout=2 s;...
...

To set or modify a JE parameter, enter the Admin CLI plan change-parameters -
service <id> command.

For example, if your configProperties for Replication Node is set to:

"configProperties=je.cleaner.minUtilization=40;">

And you want to add new settings for configProperties, you need to issue the
following command:

kv-> plan change-parameters -all-rns -params \
 "configProperties=je.cleaner.minUtilization=50;\
 je.env.runVerifier=false;">

Changing KVLocal JVM Memory Parameters
You can change the JVM memory settings for KVLocal using
javaRnParamsOverride=<String> parameter. It accepts a string that is added to

10

the command line when the child process is started. This parameter is intended for
specifying miscellaneous JVM properties that cannot be specified using other RN
parameters. If the string is not a valid sequence of tokens for the JVM command line,
the Replication Node process fails to start.

To determine the current settings of javaRnParamsOverride and
configProperties parameters, enter the Admin CLI show parameters -
service name command as follows:

kv-> show parameters -service rg1-rn1;

For example, if you want to increase the JVM memory, use the plan change-
parameters command from the Admin CLI, as follows:

kv-> plan change-parameters -wait -all-admins -params \
javaRnParamsOverride="-Xms2048m -Xmx2048m-XX:ParallelGCThreads=4"

Running SQL Shell with KVLocal
To connect SQL shell to a KVLocal instance, run the following command:

java -jar <KVHOME>/lib/sql.jar -helper-hosts <host:port> -store
<storeName>
Where, <KVHOME> refers to the directory where Oracle NoSQL Database package
files reside.

Note:

When using Unix domain socket to connect to KVLocal, specify the
hostname in this form: unix_domain:KVROOT/sockets/sock. For
example, if the KVROOT directory is /disk1/kvroot, run the following
command to start the Administration CLI:

java -jar <KVHOME>/lib/kvstore.jar -helper-hosts unix_domain:/
disk1/kvroot/sockets/sock:5000 -store kvstore

For a complete list of utility commands accessed through "java -jar
<KVHOME>/lib/sql.jar <command>", see Shell Utility Commands.

Backing Up KVLocal Store

11

Using snapshots you can make backups of your KVLocal store to copy its data and
configurations. Later, you can restore KVLocal store data and configurations from a
snapshot.

An application can invoke the following KVLocal APIs to create a snapshot, or restore
from it, or remove a snapshot.

12

Method Name Description Parameter(s) Returns

String
createSnapshot(
String name)

Creates a new
snapshot using the
specified name as a
suffix.
This method backs up
the data files and
configuration files of
the KVLocal store,
including files required
for restore activities.
The snapshot data is
stored in a directory
inside the kvroot
directory.

N

o

t

e

:

W
h
e
n
y
o
u
c
r
e
a
t
e
a
s
n
a
p
s
h
o
t
,
i
t
i
s

name - specifies the
suffix to use for the
snapshot name.

The generated
snapshot name. The
generated snapshot
name has a date-time
prefix. The date-time
prefix consists of a 6-
digit, year, month, day
value in YYMMDD
format, and a 6-digit
hour, minute, seconds
timestamp as
HHMMSS. The date
and time values are
separated from each
other with a dash (-)
and include a dash (-)
suffix before the input
snapshot name.
Example: If you
specify Thursday as
value for the name
parameter, the
generated snapshot
name is
110915-153514-
Thursday.

13

Method Name Description Parameter(s) Returns

s
t
o
r
e
d
i
n
a
s
u
b
d
i
r
e
c
t
o
r
y
o
f
t
h
e
h
o
s
t
m
a
c
h
i
n
e
.
B
u
t
t
h
e
s
e
s
n
a
p
s
h

14

Method Name Description Parameter(s) Returns

o
t
s
d
o
n
'
t
b
e
c
o
m
e
p
e
r
s
i
s
t
e
n
t
b
a
c
k
u
p
s
u
n
l
e
s
s
t
h
e
y
a
r
e
c
o
p
i
e
d
t
o

15

Method Name Description Parameter(s) Returns

s
e
p
a
r
a
t
e
s
t
o
r
a
g
e
.
I
t
i
s
y
o
u
r
r
e
s
p
o
n
s
i
b
i
l
i
t
y
t
o
c
o
p
y
e
a
c
h
o
f
t
h

16

Method Name Description Parameter(s) Returns

e
s
n
a
p
s
h
o
t
s
t
o
a
n
o
t
h
e
r
l
o
c
a
t
i
o
n
,
p
r
e
f
e
r
a
b
l
y
o
n
a
d
i
f
f
e
r
e
n
t
m
a

17

Method Name Description Parameter(s) Returns

c
h
i
n
e
,
f
o
r
d
a
t
a
s
a
f
e
t
y
.

KVLocal
restoreFromSnap
shot(String
rootDir, String
name)

Restores the store
from a snapshot.
This method replaces
the data in the
kvroot directory
with the data specified
in the snapshot, then
starts an embedded
NoSQL database
instance. The KVLocal
instance obtained
using this API must be
explicitly stopped
using the KVLocal
stop API.

rootDir - specifies
the root directory of
the store.
name - specifies the
name of the snapshot,
including the date and
time that was
generated by
createSnapshot
API.

An instance of
KVLocal.

18

Method Name Description Parameter(s) Returns

void
removeSnapshot(
String name)

Removes a snapshot.

T

i

p

:

T
o
p
r
e
s
e
r
v
e
s
t
o
r
a
g
e
,
y
o
u
s
h
o
u
l
d
p
e
r
i
o
d
i
c
a
l
l
y
r
e
m

name - specifies the
full name of the
snapshot, including
date and time, that
was generated by the
createSnapshot
API.

19

Method Name Description Parameter(s) Returns

o
v
e
o
b
s
o
l
e
t
e
s
n
a
p
s
h
o
t
s
.

String[]
listSnapshots()

Lists the names of all
the snapshots.

An array of names of
snapshots.

• Using TCP/IP sockets

• Using Unix domain sockets

Using TCP/IP sockets

import oracle.kv.KVLocalConfig;
import oracle.kv.KVLocal;

/* Start the KVLocal */
KVLocalConfig config = new KVLocalConfig.InetBuilder("/home/
kvstore").build();
KVLocal local = KVLocal.start(config);

/* Create a Snapshot */
String snapshotName = local.createSnapshot("sp1");

/* List all Snapshots */
String snapshotName = local.listSnapshots();

/* Stop the KVLocal */
local.stop();

20

/* Restore from a Snapshot */
local = KVLocal.restoreFromSnapshot(rootDir,snapshotName);

Using Unix domain sockets

import oracle.kv.KVLocalConfig;
import oracle.kv.KVLocal;

/* Start the KVLocal */
KVLocalConfig config = new KVLocalConfig.UnixDomainBuilder("/home/
kvstore").build();
KVLocal local = KVLocal.start(config);

/* Create a Snapshot */
String snapshotName = local.createSnapshot("sp1");

/* List all Snapshots */
String snapshotName = local.listSnapshots();

/* Stop the KVLocal */
local.stop();

/* Restore from a Snapshot */
local = KVLocal.restoreFromSnapshot(rootDir,snapshotName);

KVLocal Diagnostic Utility
An application can invoke the following KVLocal APIs to catch KVLocal configuration
errors. These APIs return important and meaningful information in JSON format, which
you can use to identify or diagnose the problem.

21

Method Name Description Parameter Returns

String
verifyConfigura
tion(boolean
verbose)

Verifies the store
configuration by
iterating over
components and
checking their state
against the information
maintained by the
Admin service.
This method checks if
an embedded NoSQL
database instance is
running in a stable
and healthy state. If
there are any
configuration errors,
violations or warnings
are generated in the
output. Violations are
issues that can cause
problems and should
be investigated.

verbose - specifies
whether or not the
output contains the
verbose output. If
false, the output
contains violations
and warnings only.

The verified
configuration results in
JSON format.

22

Method Name Description Parameter Returns

String
verifyData()

Verifies store data
integrity. This method
is relatively time-
consuming since it
verifies the Log record
integrity on disk and
B-tree integrity in
memory.
If a KVLocal instance
has a persistent B-tree
or log corruption, the
service shuts down
and the JE
environment is
invalidated. JE then
creates a file called
7fffffff.jdb, placing it
wherever other .jdb
files exist in your
environment. Manual
administration
intervention is
required to recover
from persistent data
corruption. For more
information on see
Recovering from Data
Corruption.

If a KVLocal instance
has transient
corruption, the service
automatically exits.
Transient corruption
can occur due to
memory corruption.
Restarting an
embedded NoSQL
database instance is
required to recover
from transient
corruption.

The verified data
result in JSON format.
If no transient
corruption is found,
the result shows "No
Btree Corruptions"
and "No Log File
Corruptions".

Sample JSON output from Diagnostic Utility

Sample verbose JSON output from verifyConfiguration API

{
 "topology": {
 "storeName": "kvstore",
 "sequenceNumber": 5,
 "numPartitions": 1,

23

 "numStorageNodes": 1,
 "time": 1629830958933,
 "version": "21.3.0"
 },
 "storewideLogName": "localhost:/home/hongyang/projects/kvlocal/
kvstore/build/kvsandbox/diagnosticTool/kvstore/log/kvstore_{0..N}.log",
 "shardStatus": {
 "healthy": 1,
 "writable-degraded": 0,
 "read-only": 0,
 "offline": 0,
 "total": 1
 },
 "adminStatus": "healthy",
 "zoneStatus": [
 {
 "resourceId": "zn1",
 "name": "KVLite",
 "type": "PRIMARY",
 "allowArbiters": false,
 "masterAffinity": false,
 "rnSummaryStatus": {
 "online": 1,
 "offline": 0,
 "read-only": 0,
 "hasReplicas": false
 }
 }
],
 "snStatus": [
 {
 "resourceId": "sn1",
 "hostname": "localhost",
 "registryPort": 5000,
 "zone": {
 "resourceId": "zn1",
 "name": "KVLite",
 "type": "PRIMARY",
 "allowArbiters": false,
 "masterAffinity": false
 },
 "serviceStatus": "RUNNING",
 "version": "21.3.0 2021-08-24 18:48:25 UTC Build id:
008f726d548c+ Edition: Enterprise",
 "isMasterBalanced": true,
 "serviceStartTime": "2021-08-24 18:49:09 UTC",
 "adminStatus": {
 "resourceId": "admin1",
 "status": "RUNNING",
 "state": "MASTER",
 "authoritativeMaster": true,
 "serviceStartTime": "2021-08-24 18:49:11 UTC",

24

 "stateChangeTime": "2021-08-24 18:49:11 UTC",
 "availableStorageSize": "2 GB"
 },
 "rnStatus": [
 {
 "resourceId": "rg1-rn1",
 "status": "RUNNING",
 "requestsEnabled": "ALL",
 "state": "MASTER",
 "authoritativeMaster": true,
 "expectedStatus": "RUNNING",
 "sequenceNumber": 36,
 "haPort": 5003,
 "storageType": "HD",
 "availableStorageSize": "9 GB",
 "serviceStartTime": "2021-08-24 18:49:12 UTC",
 "stateChangeTime": "2021-08-24 18:49:12 UTC"
 }
],
 "anStatus": []
 }
],
 "violations": [],
 "warnings": [],
 "operation": "verify configuration -json -silent",
 "return_code": 5000,
 "description": "Operation ends successfully"
}

Sample JSON output from verifyData API

{
 "Verify Report": {
 "rg1-rn1": {
 "Btree Verify":"No Btree Corruptions",
 "Log File Verify":"No Log File Corruptions"
 }
 }
}

KVLocal FAQs
What if the existing store's configuration parameters are different from the
KVLocal start() parameters?

If the existing store's configuration parameters are different from the KVLocalConfig
parameters, the KVLocal.start() throws an exception, "parameter not consistent.".
You can either update the KVLocalConfig parameters to match the ones recorded in
the directory or call the startExistingStore() API.

25

Does the KVLocal RepNode service automatically restart after it has stopped?

It depends on whether or not the service shutdown was requested by the user.

The RepNode service automatically gets restarted if it crashes. However, a lot of
crashes in a short period prevent automatic restarts. In that case, you should diagnose
the problem and restart the service manually.

When the RepNode service stops because the user called the KVLocal.stop() API
or exit the application, then the RepNode service needs to be restarted manually by
calling the KVLocal.start() API.

Is the existing Java Direct Driver API supported?

KVLocal supports the Java Direct Driver API.

Oracle NoSQL Database Quick Start to KVLocal, Release 22.2
F51345-03

Copyright © 2022, 2022, Oracle and/or its affiliates

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is
applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are
"commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the
U.S. Government’s use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable
agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-
party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

26

