High Availability Setup Guide

Oracle Banking Origination

Release 14.7.1.0.0

Part Number F81701-01

May 2023

ORACLE

Table of Contents

1. HIGH AVAILABILITY SETUPR GUIDE ..ottt 1-1
11 INTRODUCTION ..ttt sttt b bbb e bbb et nn bbbt e e nnenns 1-1
12 How TO DO MULTI NODE SETUP (HIGH AVAILABILITY ARCHITECTURE) ...veitiiieerieieniesiesieseesieeneesee e e 1-1

1.2.1 Configuration Server Related ChangeS.........ccocciiiirieiieiieiie et 1-1
1.2.2 Plato Ul Configuration Server Related Changesccccvvveieiieieieie e seeeeeesee e 1-2
1.2.3 setDomainENV.sh related ChANQEScivieeieieicce ettt r e sre e 1-2
1.2.4 Requirement 0f LOad BalanCers........cciiiiieiioiiicie sttt sttt na e nre e 1-3
1.3 SAMPLE HA PROXY CONFIGURATIONc.cuttaitttattetetetesesetsesessssebesesesesesest s st ssssssesebesesesesestnsasssasesssssesns 1-3

ORACLE

1.1

1.2

121

Introduction

1.High Availability Setup Guide

This guide is a supporting document for the installation of Oracle Banking Microservices
Architecture applications. You can find the reference in the respective installation guides.

How to do Multi Node setup (High Availability

Architecture)

Configuration Server Related Changes

The below changes are to be made in the PROPERTIES table pointed to by the Configuration
Server:

For the Discovery Server:

PLATO Discovery Service should have an entry for its entire peer PLATO Discovery Services
configured through eureka.client.serviceUrl.defaultZone. This will hold a comma-separated
list of all the peer PLATO Discovery services.

In addition, to enable the peer aware mode for the PLATO Discovery Service we should set
the eureka.client.register-with-eureka to true.

ID | APPLICATION

PROFILE

LABEL

KEY

VALUE

1 plato-discovery-
service

jdbc

jdbc

eureka.client.

serviceUrl.de
faultZone

http://<IP of the server
where the first instance of
PLATO Discovery Service
is running>:<PORT where
the first instance of
PLATO Discovery Service
is running>/plato-
discovery-
service/eureka,http://<IP
of the server where the
second instance of
PLATO Discovery Service
is running>:<PORT where
the second instance of
PLATO Discovery Service
is running>/plato-
discovery-service/eureka

2 plato-discovery-
service

jdbc

jdbc

eureka.client.

register-with-
eureka

true

3 plato-discovery-
service

jdbc

jdbc

server.port

<< PORT Number where
the PLATO Discovery
Service is running >>

1.2.2

123

For the Individual Services:

Each service should have an entry of all the PLATO Discovery Services configured through
eureka.client.serviceUrl.defaultZone. This will hold a comma separated list of all the
PLATO Discovery services.

ID | APPLICATION | PROFILE | LABEL KEY VALUE
1 <<service- jdbc jdbc eureka. | http://<IP of the server where
name>> client.s | the first instance of PLATO

erviceU | Discovery Service is

rl.defau | running>:<PORT where the first
[tZone instance of PLATO Discovery
Service is running>/plato-
discovery-
service/eureka,http://<IP of the
server where the second
instance of PLATO Discovery
Service is running>:<PORT
where the second instance of
PLATO Discovery Service is
running>/plato-discovery-
service/eureka

Plato Ul Configuration Server Related Changes

For each of the product registered in PRODUCT_SERVICES_ENV_LEDGER, we need to
change the URL to point to the Load Balancer of the PLATO API Gateway Service.

ID PRODUCT_NAME URL

<<PRODUCT NAME>> | << HTTP URL OF THE LOAD BALANCER >>

setDomainEnv.sh related changes

For all the Micro Services:

Individual MICRO services should now access the PLATO Config Service via the Load
Balancer URI (i.e). configured in the server runtime through the property
plato.services.config.uri.

The plato.services.config.uri must point to the URI of the load balancer. The format of the
same would be as follows:

-Dplato.services.config.uri=http://<< IP OF THE LOAD BALANCER
>>:<< PORT OF THE LOAD BALANCER >>

For the Ul APPSHELL:

Ul APPShell should now access the APl Gateway Router Service via the Load balancer URI
(i.e.) configured in the server runtime. For example, Dapigateway.url.

The apigateway.url must point to the host and port of the load balancer. The format of the
same would be as follows:

-Dapigateway.url=http://<< IP OF THE LOAD BALANCER >>:<< PORT OF
THE LOAD BALANCER >>

If you need to install the services of Oracle Banking Microservices Architecture in more than
two nodes, it is not possible to maintain the value of the eureka URL in the properties table
due to the size restriction. In such cases, you can remove the following key from the
properties table and add in the setuseroverrides.sh file.

-Deureka.client.serviceUrl.defaultZone

1.2.4 Requirement of Load Balancers

Load Balancers are required for PLATO API GATEWAY Service, PLATO Configuration Service,
and PLATO Ul APP SHELL.

1.2.4.1 PLATO API Gateway Router Service

PLATO API Gateway Router Service acts as a single point of entry for Ul and External Systems
to access the underlying services. This service will route requests to respective services via
PLATO API GATEWAY Service. In a multi node deployment where multiple PLATO APl Gateway
Router Services are deployed, we would need a single URI for accessing the multi node
deployments of the PLATO API Gateway Router Services. This Load Balancer would help us to
achieve that functionality.

1.2.4.2 PLATO Configuration Service

All the domain services access PLATO Configuration Service for retrieving their configurations. In
a multi node deployment where multiple PLATO Configuration Services are deployed, we would
need a single URI for accessing the multi node deployments of the PLATO Configuration
Services. This Load Balancer would help us to achieve that functionality.

1.2.4.3PLATO Ul APP SHELL

1.3

The PLATO Ul App Shell acts as the single user interface entry point for the users. In a multi-
node deployment, where multiple instances of PLATO Ul APP SHELL are deployed, users need
a single URI for accessing the multi-node deployments of the PLATO Ul APP SHELL. Load
Balancer setup will help to achieve this.

In addition to the “App Shell,” the Ul of the application is serviced by additional Ul “component
server” applications. These are for SMS, CMC, MOC, and the respective product domain too. All
these Ul component server applications need to be deployed in the same managed server, where
PLATO Ul APP SHELL war is deployed.

If the deployment is in a cluster with more than one managed server for Ul applications, then all
the Ul applications need to be deployed in the clustered managed servers, and appropriate load
balancer setup need to be done for all the Ul applications.

Sample HA Proxy Configuration

A load balancer such as HAProxy, NGINX, Oracle HTTP Server, etc. may be used for high-
availability." in case there isn't an existing general reference to load balancers.

Sample basic configuration in HAProxy for API Gateway (set in
etc/haproxy/haproxy.conf)

frontend LBGateway
bind load.balancer.ip.address:port

default_backend LBGateway

backend LBGateway load.balancer.ip.address:port
mode http

balance roundrobin

option httpchk

option http-keep-alive

option forwardfor

option httpchk HEAD /app-shell

server <backend_server_name_1> api.gatewayl.ip.address:api_gateway port_1
check

server <backend_server_name_1> api.gateway2.ip.address:api_gateway_port_2
check

