
Oracle® Database Gateway for APPC
User's Guide

23c
F47551-02
August 2023

Oracle Database Gateway for APPC User's Guide, 23c

F47551-02

Copyright © 2002, 2023, Oracle and/or its affiliates.

Primary Author: Rhonda Day

Contributing Authors: Vira Goorah, Govind Lakkoju, Peter Wong, Juan Pablo Ahues-Vasquez, Peter Castro,
Charles Benet

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Intended Audience xiv

Documentation Accessibility xiv

Related Documents xiv

Legacy Compilers xv

Conventions xv

1 Introduction to the Oracle Database Gateway for APPC

1.1 Overview of the Gateway 1-1

1.2 Features of the Gateway 1-2

1.3 Terms 1-3

1.4 Examples and Sample Files for the Gateway 1-6

1.5 Architecture of the Gateway 1-7

1.6 Communication with the Gateway 1-8

1.7 RPC Functions 1-8

1.7.1 TIP Function 1-9

1.7.1.1 Remote Transaction Initiation 1-9

1.7.1.2 Data Exchange 1-9

1.7.1.3 Remote Transaction Termination 1-9

1.8 Overview of a Gateway Using SNA 1-10

1.8.1 Transaction Types for a Gateway Using SNA 1-10

1.8.2 Simple Gateway Communication with the Oracle Database (SNA) 1-11

1.8.2.1 Steps to Communicate Between Gateway and Mainframe Using SNA 1-11

1.8.3 Writing TIPs to Generate PL/SQL Programs Using SNA 1-12

1.8.3.1 Steps to Writing a TIP on a Gateway Using SNA 1-12

1.9 Overview of a Gateway Using TCP/IP 1-14

1.9.1 Transaction Types for a Gateway Using TCP/IP 1-14

1.9.2 Simple Gateway Communication with the Oracle Database (TCP/IP) 1-15

1.9.2.1 Preparing the Gateway to Communicate Using TCP/IP 1-15

1.9.2.2 Steps to Communication Between the Gateway and IMS, Using TCP/IP 1-15

1.9.3 Writing TIPs to Generate PL/SQL Programs Using TCP/IP 1-17

iii

1.9.3.1 Steps to Writing a TIP on a Gateway Using TCP/IP 1-17

2 Procedural Gateway Administration Utility

2.1 Overview of PGAU 2-1

2.2 COMMIT/ROLLBACK Processing 2-2

2.2.1 COMMIT Processing 2-2

2.2.2 ROLLBACK Processing 2-2

2.3 Invoking PGAU 2-3

2.4 Definitions and Generation in PGAU 2-3

2.5 Process to Define and Test a TIP 2-4

2.5.1 Definition Names 2-4

2.5.2 Definition Versioning 2-5

2.5.3 Keywords 2-6

2.6 PGAU Commands 2-6

2.6.1 CONNECT 2-6

2.6.2 DEFINE CALL 2-7

2.6.3 DEFINE DATA 2-8

2.6.4 DEFINE TRANSACTION 2-10

2.6.5 DESCRIBE 2-13

2.6.6 DISCONNECT 2-14

2.6.7 EXECUTE 2-14

2.6.8 EXIT 2-15

2.6.9 GENERATE 2-15

2.6.10 GROUP 2-19

2.6.11 HOST 2-20

2.6.12 PRINT 2-21

2.6.13 REDEFINE DATA 2-21

2.6.14 REM 2-24

2.6.15 REPORT 2-25

2.6.16 SET 2-27

2.6.17 SHOW 2-28

2.6.18 SPOOL 2-30

2.6.19 UNDEFINE CALL 2-30

2.6.20 UNDEFINE DATA 2-31

2.6.21 UNDEFINE TRANSACTION 2-32

2.6.22 VARIABLE 2-33

3 Creating a TIP

3.1 Granting Privileges for TIP Creators 3-1

iv

3.2 Evaluating the RHT 3-2

3.2.1 Identify the Remote Host Transaction 3-2

3.2.2 PGAU DEFINE CALL Command 3-2

3.2.3 PGAU DEFINE DATA Command 3-3

3.2.4 PGAU DEFINE TRANSACTION Command on a Gateway Using SNA 3-3

3.2.5 PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP 3-4

3.2.6 Writing the PGAU Statements 3-4

3.2.7 Writing a PGAU Script File 3-5

3.3 Defining and Generating the TIP 3-6

3.4 Compiling the TIP 3-7

3.5 TIP Content Documentation (tipname.doc) 3-8

4 Developing Client Application (SNA Only)

4.1 Overview of Client Application 4-1

4.2 Preparing the Client Application 4-3

4.3 Understanding the Remote Host Transaction Requirements 4-3

4.3.1 TIP Content and Purpose 4-3

4.3.2 Remote Host Transaction Types 4-4

4.3.2.1 One-Shot Transactions 4-4

4.3.2.2 Persistent Transactions 4-5

4.3.2.3 Multi-Conversational Transactions 4-6

4.4 Customized TIPs for Each Remote Host Transaction 4-6

4.5 Client Application Requirements 4-7

4.6 Ensuring TIP and Remote Transaction Program Correspondence 4-10

4.6.1 DATA Correspondence 4-11

4.6.2 CALL Correspondence 4-12

4.6.2.1 Flexible Call Sequence 4-12

4.6.2.2 Call Correspondence Order Restrictions 4-13

4.6.3 TRANSACTION Correspondence 4-14

4.7 Calling the TIP from the Client Application 4-14

4.7.1 Declaring TIP Variables 4-15

4.7.2 Initializing the Conversation 4-16

4.7.2.1 Transaction Instance Parameter 4-17

4.7.2.2 Overriding TIP Initializations 4-18

4.7.2.3 Security Considerations 4-20

4.8 Exchanging Data 4-20

4.8.1 Terminating the Conversation 4-20

4.8.2 Error Handling 4-20

4.8.3 Granting Execute Authority 4-21

4.9 Executing the Application 4-21

v

4.10 APPC Conversation Sharing 4-21

4.10.1 APPC Conversation Sharing Concepts 4-21

4.10.2 APPC Conversation Sharing Usage 4-22

4.10.3 APPC Conversation Sharing TIP Compatibility 4-23

4.10.4 APPC Conversation Sharing for TIPs That Are Too Large 4-23

4.10.5 APPC Conversation Sharing Example 4-24

4.10.6 APPC Conversation Sharing Overrides and Diagnostics 4-26

4.11 Application Development with Multi-Byte Character Set Support 4-26

4.12 Modifying a Terminal-Oriented Transaction to Use APPC 4-27

4.13 Privileges Needed to Use TIPs 4-27

5 Implementing Commit-Confirm (SNA Only)

5.1 Overview of Commit-Confirm 5-1

5.2 Supported OLTPs 5-2

5.3 Components Required to Support Commit-Confirm 5-2

5.4 Application Design Requirements 5-4

5.5 Commit-Confirm Architecture 5-4

5.5.1 Components 5-5

5.5.2 Interactions 5-5

5.6 Commit-Confirm Flow 5-5

5.6.1 Commit-Confirm Logic Flow, Step by Step 5-6

5.6.2 Gateway Server Commit-Confirm Transaction Log 5-7

6 PG4TCPMAP Commands (TCP/IP Only)

6.1 Preparation for Populating the PGA_TCP_IMSC Table 6-1

6.2 Overview 6-1

6.3 Populating the PGA_TCP_IMSC Table 6-2

6.4 Before You Run the pg4tcpmap Tool 6-3

6.5 pg4tcpmap Tool Commands 6-5

6.5.1 Inserting a Row into the PGA_TCP_IMSC Table 6-5

6.5.2 Deleting Rows from the PGA_TCP_IMSC Table 6-6

6.5.3 Querying the PGA_TCP_IMSC Table 6-7

7 Developing Client Application (TCP/IP Only)

7.1 Overview of Client Application 7-1

7.2 Preparing the Client Application 7-3

7.2.1 TIP Content and Purpose 7-3

7.2.2 Remote Host Transaction Types 7-4

7.3 Ensuring TIP and Remote Transaction Program Correspondence 7-4

vi

7.3.1 DATA Correspondence 7-4

7.3.2 CALL Correspondence 7-6

7.3.2.1 Flexible Call Sequence 7-6

7.3.2.2 Call Correspondence Order Restrictions 7-7

7.3.3 TRANSACTION Correspondence 7-8

7.4 Calling the TIP from the Client Application 7-8

7.4.1 Declaring TIP Variables 7-9

7.4.2 Initializing the Conversation 7-10

7.4.2.1 Transaction Instance Parameter 7-11

7.4.2.2 Overriding TIP Initializations 7-12

7.4.2.3 Security Considerations 7-13

7.5 Exchanging Data 7-13

7.5.1 Terminating the Conversation 7-14

7.5.2 Error Handling 7-14

7.5.3 Granting Execute Authority 7-14

7.6 Calling PG4TCPMAP 7-15

7.7 Executing the Application 7-15

7.8 Application Development with Multi-Byte Character Set Support 7-15

7.9 Privileges Needed to Use TIPs 7-16

8 Troubleshooting

8.1 TIP Definition Errors 8-1

8.2 Problem Analysis with PG DD Diagnostic References 8-2

8.3 Problem Analysis with PG DD Select Scripts 8-3

8.4 Data Conversion Errors 8-4

8.5 Problem Analysis with TIP Runtime Traces 8-5

8.6 TIP Runtime Trace Controls 8-6

8.6.1 Generating Runtime Data Conversion Trace and Warning Support 8-6

8.6.2 Controlling TIP Runtime Conversion Warnings 8-6

8.6.3 Controlling TIP Runtime Function Entry/Exit Tracing 8-7

8.6.4 Controlling TIP Runtime Data Conversion Tracing 8-7

8.6.5 Controlling TIP Runtime Gateway Exchange Tracing 8-7

8.7 Suppressing TIP Warnings and Tracing 8-7

8.8 Problem Analysis of Data Conversion and Truncation Errors 8-8

8.9 Gateway Server Tracing 8-10

8.9.1 Defining the Gateway Trace Destination 8-10

8.9.2 Enabling the Gateway Trace 8-11

8.9.2.1 Enabling the Gateway Trace Using Initialization Parameters 8-12

8.9.2.2 Enabling the Gateway Trace Dynamically from PL/SQL 8-12

vii

A Database Gateway for APPC Data Dictionary

A.1 PG DD Environment Dictionary A-1

A.1.1 Environment Dictionary Sequence Numbers A-1

A.1.2 Environment Dictionary Tables A-2

A.1.2.1 pga_maint A-2

A.1.2.2 pga_environments A-2

A.1.2.3 pga_env_attr A-3

A.1.2.4 pga_env_values A-3

A.1.2.5 pga_compilers A-3

A.1.2.6 pga_datatypes A-4

A.1.2.7 pga_datatype_attr A-4

A.1.2.8 pga_datatype_values A-5

A.1.2.9 pga_usage A-5

A.1.2.10 pga_modes A-5

A.2 PG DD Active Dictionary A-6

A.2.1 Active Dictionary Versioning A-6

A.2.2 Active Dictionary Sequence Numbers A-6

A.2.3 Active Dictionary Tables A-7

A.2.3.1 pga_trans A-7

A.2.3.2 pga_trans_attr A-8

A.2.3.3 pga_trans_values A-8

A.2.3.4 pga_trans_calls A-9

A.2.3.5 pga_call A-10

A.2.3.6 pga_call_parm A-10

A.2.3.7 pga_data A-11

A.2.3.8 pga_fields A-12

A.2.3.9 pga_data_attr A-13

A.2.3.10 pga_data_values A-14

B Gateway RPC Interface

B.1 PGAINIT and PGAINIT_SEC B-1

B.2 PGAXFER B-4

B.3 PGATERM B-5

B.4 PGATCTL B-6

B.5 PGATRAC B-7

C The UTL_PG Interface

C.1 UTL_PG Functions C-1

C.1.1 Common Parameters C-1

viii

C.1.1.1 Common Input Parameters C-2

C.1.1.2 Common Output Parameter C-2

C.1.2 RAW_TO_NUMBER C-3

C.1.3 NUMBER_TO_RAW C-4

C.1.4 MAKE_RAW_TO_NUMBER_FORMAT C-5

C.1.5 MAKE_NUMBER_TO_RAW_FORMAT C-7

C.1.6 RAW_TO_NUMBER_FORMAT C-8

C.1.7 NUMBER_TO_RAW_FORMAT C-9

C.1.8 WMSGCNT C-9

C.1.9 WMSG C-10

C.2 NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values C-12

D Datatype Conversions

D.1 Length Checking D-1

D.1.1 Parameters Over 32K in Length D-1

D.2 Conversion D-2

D.2.1 USAGE(PASS) D-2

D.2.2 USAGE(ASIS) D-7

D.2.3 USAGE(SKIP) D-7

D.2.4 PL/SQL Naming Algorithms D-8

E Tip Internals

E.1 Background Reading E-1

E.2 PL/SQL Package and TIP File Separation E-1

E.2.1 Independent TIP Body Changes E-2

E.2.1.1 Determine if a Specification Has Remained Valid E-2

E.2.2 Dependent TIP Body or Specification Changes E-3

E.2.2.1 Recompile the TIP Body E-4

E.2.3 Inadvertent Alteration of TIP Specification E-4

F Administration Utility Samples

F.1 Sample PGAU DEFINE DATA Statements F-1

F.2 Sample PGAU DEFINE CALL Statements F-2

F.3 Sample PGAU DEFINE TRANSACTION Statement F-2

F.4 Sample PGAU GENERATE Statement F-2

F.5 Sample Implicit Versioning Definitions F-3

F.6 Sample PGAU REDEFINE DATA Statements F-6

ix

F.7 Sample PGAU UNDEFINE Statements F-7

Index

x

List of Tables

1-1 RPC Functions and Commands in the Gateway and Remote Host 1-9

2-1 DEFINE CALL Parameter Descriptions 2-7

2-2 DEFINE DATA Parameter Descriptions 2-8

2-3 DEFINE TRANSACTION Parameter Descriptions 2-10

2-4 DESCRIBE Parameter Descriptions 2-13

2-5 GENERATE Parameter Descriptions 2-15

2-6 REDEFINE DATA Parameter Descriptions 2-22

2-7 REPORT Parameters Descriptions 2-25

2-8 SET Parameter Descriptions 2-27

2-9 SHOW Parameter Descriptions 2-29

2-10 UNDEFINE CALL Parameter Descriptions 2-30

2-11 UNDEFINE DATA Parameter Descriptions 2-31

2-12 UNDEFINE TRANSACTION Parameter Descriptions 2-32

2-13 VARIABLE Parameter Descriptions 2-33

4-1 Logic Flow of CICS-DB2 Example 4-2

4-2 Function Declarations 4-15

4-3 Command Line Arguments 4-16

4-4 PGAU Statements 4-24

6-1 PGA_TCP_IMSC Table Columns 6-2

7-1 Logic Flow of IMS Connect-IMS Example 7-2

7-2 Function Declarations 7-9

7-3 Procedure Declarations 7-9

8-1 PG DD ID Numbers in Correspondence 8-1

8-2 Meaning of TRACE(OC) Output 8-3

8-3 SQL*Plus Test Scripts and Their Corresponding Entries 8-4

8-4 Values of Positions 1 through 4 on Second Parameter of TIP Call 8-6

8-5 PGATCTL Parameters 8-12

A-1 Oracle Sequence Objects A-1

A-2 pga_maint A-2

A-3 pga_environments A-3

A-4 pga_env_attr A-3

A-5 pga_env_values A-3

A-6 pga_compilers A-4

A-7 pga_datatypes A-4

A-8 pga_datatype_attr A-4

xi

A-9 pga_datatype_values A-5

A-10 pga_usage A-5

A-11 pga_modes A-6

A-12 Active Dictionary Oracle Sequence Object Descriptions A-6

A-13 pga_trans A-7

A-14 pga_trans_attr A-8

A-15 pga_trans_values A-9

A-16 pga_trans_calls A-9

A-17 pga_call A-10

A-18 pga_call_parm A-11

A-19 pga_data A-11

A-20 pga_fields A-12

A-21 pga_data_attr A-14

A-22 pga_data_values A-15

B-1 Gateway Functions B-1

B-2 Common PGAINIT and PGAINIT_SEC Parameters B-2

B-3 PGAINIT_SEC Parameters Specific to the Procedure B-3

B-4 PGAXFER Parameters B-4

B-5 PGATERM Parameters B-5

B-6 PGATCTL Parameters B-6

B-7 PGATRAC Parameter B-7

C-1 Input Parameters Common to UTL_PG Function C-2

C-2 Output Parameters Common to UTL_PG Functions C-3

C-3 RAW_TO_NUMBER Function Parameters C-3

C-4 Optional and Default Parameters of the RAW_TO_NUMBER Function C-4

C-5 NUMBER_TO_RAW Function Parameters C-5

C-6 Defaults and Optional Parameters for NUMBER_TO_RAW Function C-5

C-7 MAKE_RAW_TO_NUMBER_FORMAT Function Parameters C-6

C-8 Default and Optional MAKE_RAW_TO_NUMBER_FORMAT Parameters C-6

C-9 MAKE_NUMBER_TO_RAW_FORMAT Function Parameters C-7

C-10 Optional, Default Parameters: MAKE_NUMBER_TO_RAW_FORMAT C-8

C-11 RAW_TO_NUMBER_FORMAT Function Parameters C-8

C-12 NUMBER_TO_RAW_FORMAT Function Parameters C-9

C-13 WMSGCNT Function Parameter C-10

C-14 WMSGCNT Return Values C-10

C-15 WMSG Function Parameters C-11

C-16 WMSG Function Errors C-11

xii

D-1 Length Parameters D-1

D-2 COBOL Symbol Definitions D-3

D-3 COBOL-PGAU Conversion D-4

D-4 Format Conversion Descriptions D-5

F-1 TIP User Transaction Datatypes Used in Package Name PGADB2I F-3

F-2 TIP User Transaction Datatypes for Package Name NEWDB2I F-5

xiii

Preface

The Oracle Database Gateway for APPC provides Oracle applications seamless
access to virtually any APPC-enabled system, including IBM mainframe data and
services through Remote Procedure Call (RPC) processing.

Intended Audience
Read this guide if you are responsible for tasks such as:

• determining hardware and software requirements

• installing, configuring, or administering an Oracle Database Gateway for APPC

• developing applications that access remote host databases through the Oracle
Database Gateway for APPC using the SNA Communication Protocol or the
TCP/IP communication protocol

• determining security requirements

• determining and resolving problems

Before using this guide to administer the gateway, you should understand the
fundamentals of your operating system and Oracle Database Gateways.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
The Oracle Database Gateway for APPC User's Guide is included as part of your
product shipment. Also included is:

• Oracle Database Gateway for APPC Installation and Configuration Guide for IBM
AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-
Bit), and HP-UX Itanium

• Oracle Database Gateway for APPC Installation and Configuration Guide for
Microsoft Windows

Preface

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

You might also need Oracle Database 11g and Oracle Net documentation. The following is a
useful list of the Oracle publications that may be referenced in this book:

• Oracle Database Installation Guide

• Oracle Database Administrator's Guide

• Oracle Database Concepts

• Oracle Database Error Messages

• Oracle Database Net Services Administrator's Guide

Refer to the Oracle Technical Publications Catalog and Price Guide for a complete list of
documentation provided for Oracle products.

Legacy Compilers
Examples in this guide use the compiler name parameter value IBMVSCOBOLII, which
represents the IBM VS COBOL II compiler. Although the IBM VS COBOL II compiler is no
longer supported, the string IBMVSCOBOLII should still be used and the supported COBOL
compiler will be called.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xv

1
Introduction to the Oracle Database Gateway
for APPC

The Oracle Database Gateway for APPC enables users to initiate transaction program
execution on remote online transaction processors (OLTPs). The Oracle Database Gateway
for APPC can establish connection with OLTP using the SNA communication protocol. The
gateway can also use TCP/IP for IMS Connect to establish communication with IMS/TM
through TCP/IP. The gateway provides Oracle applications with seamless access to IBM
mainframe data and services through Remote Procedural Call (RPC) processing.

Refer to the Oracle Database Installation Guide and to the certification matrix on the My
Oracle Support Web site for the most up-to-date list of certified hardware platforms and
operating system versions. The My Oracle Support Web site can be found at:

https://support.oracle.com
The following sections describe the architecture, uses, and features of the Oracle Database
Gateway for APPC.

• Overview of the Gateway

• Features of the Gateway

• Terms

• Examples and Sample Files for the Gateway

• Architecture of the Gateway

• Communication with the Gateway

• RPC Functions

• Overview of a Gateway Using SNA

• Overview of a Gateway Using TCP/IP

1.1 Overview of the Gateway
The Oracle Database Gateway for APPC extends the RPC facilities available with the Oracle
database. The gateway enables any client application to use PL/SQL to request execution of
a remote transaction program (RTP) residing on a host. The gateway provides RPC
processing to systems using the SNA Advanced Program-to-Program Communication
(APPC) protocol and to IMS/TM systems using TCP/IP support for IMS Connect. This
architecture allows efficient access to data and transactions available on the IBM mainframe
and IMS, respectively.

The gateway requires no Oracle software on the remote host system. Because of this, the
gateway uses existing transactions with little or no programming effort on the remote host.

For gateways using SNA only:

The use of a generic and standard protocol, APPC, allows the gateway to access numerous
systems. The gateway can communicate with virtually any APPC-enabled system, including

1-1

https://support.oracle.com

IBM Corporation's CICS on any platform and IBM Corporation's IMS and APPC/MVS.
These transaction monitors provide access to a broad range of systems, allowing the
gateway to access many datastores, including VSAM, DB2 (static SQL), IMS, and
others.

The gateway can access any application capable of using the CPI-C API, either
directly or through a TP monitor such as CICS.

1.2 Features of the Gateway
The Oracle Database Gateway for APPC provides the following benefits:

• Fast interface

The gateway is optimized so that remote execution of a program is achieved with
minimum network traffic. The interface to the gateway is an optimized PL/SQL
stored procedure specification (called the TIP or transaction interface package)
precompiled in the Oracle database. Because there are no additional software
layers on the remote host, overhead occurs only when your program executes.

• Location transparency

Client applications need not be operating system-specific. For example, your
application can call a program in a CICS Transaction Server for z/OS. If you move
the program to a CICS region on AIX, then you need not change the application.

• Application transparency

Users calling applications that execute a remote transaction program are unaware
that a request is sent to a host.

• Flexible interface

You can use the gateway to interface with existing procedural logic or to integrate
new procedural logic into an Oracle database environment.

• Oracle database integration

The integration of the Oracle database with the gateway enables the gateway to
benefit from existing and future Oracle database features. For example, the
gateway can be called from an Oracle stored procedure or database trigger.

• Transactional support

The gateway and the Oracle database allow remote transfer updates and Oracle
database updates to be performed in a coordinated fashion.

• Wide selection of tools

The gateway supports any tool or application that supports PL/SQL.

• PL/SQL code generator

The Oracle Database Gateway for APPC provides a powerful development
environment, including:

– a data dictionary to store information relevant to the remote transaction

– a tool to generate the PL/SQL Transaction Interface Package, or TIP

– a report utility to view the information stored in the gateway dictionary

– a complete set of tracing and debugging facilities

Chapter 1
Features of the Gateway

1-2

– a wide set of samples to demonstrate the use of the product against datastores such
as DB2, IMS, and CICS.

• Site autonomy and security

The gateway provides site autonomy, allowing you to do such things as authenticate
users. It also provides role-based security compatible with any security package running
on your mainframe computer.

• Automatic conversion

Through the TIP, the following conversions are performed:

– ASCII to and from EBCDIC

– remote transaction program datatypes to and from PL/SQL datatypes

– national language support for many languages

• Globalization Support

• TCP/IP support for IMS Connect

This release of the gateway includes TCP/IP support for IMS Connect, giving users a
choice of whether to use an SNA or TCP/IP communication protocol. IMS Connect is an
IBM product which allows TCP/IP clients to trigger execution of IMS transactions. The
gateway can use a TCP/IP communication protocol to access IMS Connect, which
triggers execution of IMS transactions. There is no SNA involvement with this
configuration.

Related to this feature of the gateway is:

– The gateway mapping tool. This release of the gateway includes a tool (pg4tcpmap)
whose purpose is to map the information from your SNA Side Profile Name to the
TCP/IP host name and Port Number.

Note:

When your communications protocol is TCP/IP, only IMS is supported as
the OLTP.

1.3 Terms
The following terms and definitions are used throughout this guide:

Gateway Initialization File

This file is known as initsid.ora and it contains parameters that govern the operation of the
gateway. If you are using the SNA protocol, refer to Appendix A, "Gateway Initialization
Parameters for SNA Protocol" in the Oracle Database Gateway for APPC Installation and
Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris
on SPARC (64-Bit), and HP-UX Itanium or Oracle Database Gateway for APPC Installation
and Configuration Guide for Microsoft Windows for more information. If your protocol is
TCP/IP, refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication
Protocol" in the Oracle Database Gateway for APPC Installation and Configuration Guide for
IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and
HP-UX Itanium or Oracle Database Gateway for APPC Installation and Configuration Guide
for Microsoft Windows.

Chapter 1
Terms

1-3

Gateway Remote Procedure

The Oracle Database Gateway for APPC provides prebuilt remote procedures. In
general, the following three remote procedures are used:

• PGAINIT, which initializes transactions

• PGAXFER, which transfers data

• PGATERM, which terminates transactions

Refer to Gateway RPC Interface in this guide and to "Remote Procedural Call
Functions" in Chapter 1 of the Oracle Database Gateway for APPC Installation and
Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle
Solaris on SPARC (64-Bit), and HP-UX Itanium or Oracle Database Gateway for
APPC Installation and Configuration Guide for Microsoft Windows for more information
about gateway remote procedures.

dg4pwd

dg4pwd is a utility which encrypts passwords that are normally stored in the gateway
initialization file. Passwords are stored in an encrypted form in the password file,
making the information more secure. Refer to "Passwords in the Gateway Initialization
File" in the security requirements chapter of the Oracle Database Gateway for APPC
Installation and Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux
x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium and Oracle Database
Gateway for APPC Installation and Configuration Guide for Microsoft Windows for
detailed information about how the dg4pwd utility works.

pg4tcpmap Tool

This tool is applicable only when the gateway is using TCP/IP support for IMS
Connect. Its function is to map SNA parameters (such as Side Profile Name) to
TCP/IP parameters (such as OLTP host name, IMS Connect port number and IMS
destination ID).

PGA (Procedural Gateway Administration)

PGA is a general reference within this guide to all or most components comprising the
Oracle Database Gateway for APPC. This term is used when references to a specific
product or component are too narrow.

PGDL (Procedural Gateway Definition Language)

PGDL is the collection of statements used to define transactions and data to the
PGAU.

PL/SQL Stored Procedure Specification (PL/SQL package)

This is a precompiled PL/SQL procedure that is stored in Oracle database.

UTL_RAW PL/SQL Package (the UTL_RAW Functions)

This component of the gateway represents a series of data conversion functions for
PL/SQL RAW variables and remote host data. The types of conversions performed
depend on the language of the remote host data. Refer to Datatype Conversions in
this guide for more information.

Chapter 1
Terms

1-4

UTL_PG PL/SQL Package (the UTL_PG Functions)

This component of the gateway represents a series of COBOL numeric data conversion
functions. Refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values" in The
UTL_PG Interface of this guide for supported numeric datatype conversions.

Oracle Database

This is any Oracle database instance that communicates with the gateway for purposes of
performing RPCs to execute RTP. The Oracle database can be on the same system as the
gateway or on a different system. If it is on a different system, then Oracle Net is required on
both systems. Refer to Figure 1-2 for a view of the gateway architecture.

OLTP (Online Transaction Processor)

OLTP is any of a number of online transaction processors available from other vendors,
including CICS Transaction Server for z/OS and IMS/TM.

Note:

When your communications protocol is TCP/IP, only IMS is supported as the OLTP.

PGAU (Procedural Gateway Administration Utility)

PGAU is the tool that is used to define and generate PL/SQL transaction interface packages
(TIPs). Refer to Procedural Gateway Administration Utility in this guide for more information
about PGAU.

PG DD (Procedural Gateway Data Dictionary)

This component of the gateway is a repository of remote host transaction definitions and data
definitions. PGAU accesses definitions in the PG DD when generating TIPs. The PG DD has
datatype dependencies because it supports the PGAU and is not intended to be directly
accessed by the customer. Refer to Database Gateway for APPC Data Dictionary in this
guide for a list of PG DD tables.

RPC (Remote Procedural Call)

RPC is a programming call that executes program logic on one system in response to a
request from another system. Refer to "Gateway Remote Procedure" in Appendix C of the
Oracle Database Gateway for APPC Installation and Configuration Guide for IBM AIX on
POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX
Itaniumor Oracle Database Gateway for APPC Installation and Configuration Guide for
Microsoft Windows , and to Gateway RPC Interface in this guide for more information.

RTP (Remote Transaction Program)

A remote transaction program is a customer-written transaction, running under the control of
an OLTP, which the user invokes remotely using a PL/SQL procedure. To execute a remote
transaction program through the gateway, you must use RPC to execute a PL/SQL program
to call the gateway functions.

Chapter 1
Terms

1-5

TIP (Transaction Interface Package)

A TIP is an Oracle PL/SQL package that exists between your application and the
remote transaction program. The transaction interface package, or TIP, is a set of
PL/SQL stored procedures that invoke the RTP through the gateway. TIPs perform the
conversion and reformatting of remote host data using PL/SQL and UTL_RAW/UTL_PG
functions.

Figure 1-1 illustrates where the terminology discussed in the preceding sections
applies to the gateway's architecture.

Figure 1-1 Relationship of Gateway and Oracle Database

SNA or TCP/IP

Client

Transaction

Interface Package

PG DD

Data Dictionary

Oracle Database Operating System

Gateway Remote

Procedure Calls

PGAU

Oracle Net

OLTP

Remote

Transaction

Program

Mainframe

1.4 Examples and Sample Files for the Gateway
The following sample files and examples are referred to for illustration purposes
throughout this guide. There are different example and sample files for a gateway
using the SNA protocol than for a gateway using TCP/IP for IMS Connect.

Examples and Sample Files for Gateway Using SNA

For gateways using the SNA communication protocol, this guide uses a CICS-DB2
inquiry as an example. Transaction Interface Packages (TIPs) pgadb2i.pkb and
pgadb2i.pkh send an employee number, empno, to a DB2 application and receive an
employee record, emprec.

The CICS-DB2 inquiry sample and its associated PGAU commands are also available
in the %ORACLE_HOME%\dg4appc\demo\CICS directory on Windows platform
and $ORACLE_HOME/dg4appc/demo/CICS directory on UNIX platforms. The sample
CICS-DB2 inquiry used as an example in this chapter is in files pgadb2i.pkh and

Chapter 1
Examples and Sample Files for the Gateway

1-6

pgadb2i.pkb. Refer to the README.doc file in the same directory for information about
installing and using the samples. It can be found in the %ORACLE_HOME%\dg4appc\demo\CICS
directory for Windows and $ORACLE_HOME/dg4appc/demo/CICS directory for UNIX.

Examples and Sample Files for Gateway Using TCP/IP

If your gateway is using the TCP/IP communication protocol, this guide uses an IMS inquiry
as an example. Transaction Interface Packages (TIPs) pgtflip.pkh and pgtflip.pkb send
input to IMS, through IMS Connect, and receive the flipped input as the output.

The IMS inquiry sample (FLIP) and its associated PGAU commands are located in the
%ORACLE_HOME%\dg4appc\demo\IMS directory for Windows and $ORACLE_HOME/dg4appc/
demo/IMS directory for UNIX. The sample IMS inquiry used as an example for a gateway
using TCP/IP is located in files pgtflip.pkh and pgtflip.pkb.

Refer to the README.doc file for more information about installing and using other IMS
samples. It can be found in the %ORACLE_HOME%\dg4appc\demo\IMS directory for Windows
and $ORACLE_HOME/dg4appc/demo/IMS directory for UNIX.

1.5 Architecture of the Gateway
The architecture of Oracle Database Gateway for APPC consists of several components:

1. Oracle database

Refer to the configuration section corresponding to your communications protocol in the
installation guides for a description of the various methods for establishing the gateway-
Oracle database relationship.

The Oracle database can also be used for non-gateway applications.

2. The gateway

Oracle Database Gateway for APPC must be installed on a server that can run the
required version of the operating system.

3. An OLTP

The OLTP must be accessible from the gateway using your SNA or TCP/IP
communication protocol. Multiple Oracle databases can access the same gateway. A
single system gateway installation can be configured to access more than one OLTP.

• For gateways using TCP/IP: The only OLTP that is supported through TCP/IP is IMS
through IMS Connect.The OLTP must be accessible to the system using the TCP/IP
protocol. Multiple Oracle databases can access the same gateway. A single system
gateway installation can be configured to access more than one OLTP. Multiple IMS
systems can be accessed from an IMS Connect. If you have a number of IMS
Connect systems available, any of these may be connected to one or more IMS
systems.

Figure 1-2 illustrates the architecture of the Oracle Database Gateway for APPC using SNA
or TCP/IP, as described in the previous section.

Chapter 1
Architecture of the Gateway

1-7

Figure 1-2 Gateway Architecture Featuring SNA or TCP/IP Protocol

APPC

Oracle Database

Oracle Net

Client

Other Options:

CICS/400

CICS/VSE

APPC

TCP/IP

CICS

IMS/TM

VTAM - APPC

Other

Databases

VSAM

DB2

IMS/DB

APPLICATION

TCP/IP

SNA Server

- APPC

Oracle

Database

Gateway
Oracle Net

Operating System

TCP/IP IMS CONNECT IMS/TM

1.6 Communication with the Gateway
All the communication between the user or client program and the gateway is handled
through a TIP which executes on an Oracle database. The TIP is a standard PL/SQL
package that provides the following functions:

• declares the PL/SQL variables that can be exchanged with a remote transaction
program;

• calls the gateway packages that handle the communications for starting the
conversation, exchanging data, and terminating the conversation;

• handles all datatype conversions between PL/SQL datatypes and the target
program datatypes.

The PGAU, provided with the gateway, automatically generates the TIP specification.

The gateway is identified to the Oracle database using a database link. The database
link is the same construct used to identify other Oracle databases. The functions in the
gateway are referenced in PL/SQL as:

function_name@dblink_name

1.7 RPC Functions
The Oracle Database Gateway for APPC provides a set of functions that are called by
the client through RPC. These functions direct the gateway to initiate, transfer data
with, and terminate RTP running under an OLTP on another system.

Table 1-1 lists the RPC functions and the correlating commands that are invoked in the
gateway and remote host.

Chapter 1
Communication with the Gateway

1-8

Table 1-1 RPC Functions and Commands in the Gateway and Remote Host

Applications Oracle TIP Gateway Remote Host

call tip_init tip_init
call pgainit@gateway

PGAINIT Initiate program

call tip_main tip_main
call pgaxfer@gateway

PGAXFER Exchange data

call tip_term tip_term
call pgaterm@gateway

PGATERM Terminate program

1.7.1 TIP Function
The following sections describe how a TIP works by first establishing a connection to the
remote host, then exchanging data from the target transaction program and finally,
terminating a conversation.

• Remote Transaction Initiation

• Data Exchange

• Remote Transaction Termination

1.7.1.1 Remote Transaction Initiation
The TIP initiates a connection to the remote host using one of the gateway functions,
PGAINIT.

When the communication protocol is SNA: PGAINIT provides, as input, the required SNA
parameters to start a conversation with the target transaction program. These parameters are
sent across the SNA network, which returns a conversation identifier to PGAINIT. Future calls
to the target program use the conversation identifier as an input parameter.

When the communication protocol is TCP/IP: PGAINIT provides, as input, the required
TCP/IP parameters.These parameters are sent across the TCP/IP network to start the
conversation with the target transaction program. The TCP/IP network returns a socket file
descriptor to PGAINIT. Future calls, such as PGAXFER and PGATERM, use this same socket file
descriptor as an input parameter.

1.7.1.2 Data Exchange
After the conversation is established, a database gateway function called PGAXFER can
exchange data in the form of input and output variables. PGAXFER sends and receives buffers
to and from the target transaction program. The gateway sees a buffer as only a RAW stream
of bytes. The TIP that resides in the Oracle database is responsible for converting PL/SQL
datatypes of the application to RAW before sending the buffer to the gateway. It is also
responsible for converting RAW to PL/SQL datatypes before returning the results to the
application.

1.7.1.3 Remote Transaction Termination
When communication with the remote program is complete, the gateway function PGATERM
terminates the conversation between the gateway and the remote host.

Chapter 1
RPC Functions

1-9

When the communication protocol is SNA: PGATERM uses the conversation identifier
as an input parameter to request conversation termination.

When the communication protocol is TCP/IP: PGATERM uses the socket file
descriptor for TCP/IP as an input parameter to request conversation termination.

Note:

At this point, if your communication protocol is SNA, then proceed to the
following section, Overview of a Gateway Using SNA.

If your gateway communication protocol is TCP/IP, then proceed to Overview
of a Gateway Using TCP/IP.

1.8 Overview of a Gateway Using SNA
If you are using the SNA communication protocol, read the following sections to
develop an understanding of how the gateway communicates with the Oracle
database and with the mainframe, as well as transaction types unique to your gateway
and writing TIPs.

1.8.1 Transaction Types for a Gateway Using SNA
The Oracle Database Gateway for APPC supports three types of transactions that
read data from and write data to remote host systems:

• one-shot

In a one-shot transaction, the application starts the connection, exchanges data,
and terminates the connection, all in a single call.

• persistent

In a persistent transaction, multiple calls to exchange data with the remote
transaction can be executed before terminating the conversation.

• multi-conversational

In a multi-conversational transaction, the database gateway server can be used to
exchange multiple records in one call to the remote transaction program.

Refer to "Remote Host Transaction Types" in Client Application Development (SNA
Only) of this guide for more information about transaction types.

The following list demonstrates examples of the power of the Oracle Database
Gateway for APPC:

• You can initiate a CICS transaction on the mainframe to retrieve data from a
VSAM file for a PC application.

• You can modify and monitor the operation of a remote process control computer.

• You can initiate an IMS/TM transaction that executes static SQL in DB2.

• You can initiate a CICS transaction that returns a large number of records in a
single call.

Chapter 1
Overview of a Gateway Using SNA

1-10

1.8.2 Simple Gateway Communication with the Oracle Database (SNA)
This section describes simple communication between the mainframe and the Oracle
database on a gateway using the SNA communication protocol. The Oracle Database
Gateway for APPC lets you write your own procedures to begin transferring information
between the Oracle database and a variety of programs on an IBM mainframe, including IBM
CICS, IMS, and APPC/MVS.

For an illustration of the communications function of the Oracle Database Gateway for APPC,
refer to %ORACLE_HOME%\dg4appc\demo\CICS\pgacics.sql on Microsoft Windows
or $ORACLE_HOME/dg4appc/demo/CICS/pgacics.sql on UNIX based platforms. This is a
sample communication between the Oracle database and CICS Transaction Server for z/OS.
Executing this simple PL/SQL procedure pgacics.sql, causes the Oracle database to invoke
the database gateway, which uses SNA to converse with the FLIP transaction in CICS. These
steps are described in detail in Steps to Communicate Between Gateway and Mainframe
Using SNA . Note that you will already have compiled and linked the stored procedure when
you configured the gateway.

1.8.2.1 Steps to Communicate Between Gateway and Mainframe Using SNA
The following steps describe the Windows-to-mainframe communications process illustrated
in Figure 1-3 when your communication protocol is SNA to communicate between the
gateway and the mainframe:

1. From SQL*Plus, execute pgacics. This invokes the PL/SQL stored procedure in the
Oracle database.

For Microsoft Windows:

C:\> sqlplus <userid>/<password>@<database_specification_string>
SQL> execute pgacics('==< .SCIC htiw gnitacinummoc si yawetag
ruoy ,snoitalutargnoC >==');

For UNIX Based platforms:

$ sqlplus <userid>/<password>@<database_specification_string>
SQL> execute pgacics('==< .SCIC htiw gnitacinummoc si yawetag
ruoy ,snoitalutargnoC >==');

2. The pgacics PL/SQL stored procedure will start up the gateway. The gateway will start
up communication with CICS Transaction Server for z/OS through SNA and will call FLIP.

3. FLIP processes the input, generates the output and sends the output back to the
database gateway.

4. Finally, the database gateway will send the output back to the PL/SQL stored procedure
in the Oracle database. The result is displayed in SQL*Plus:

==> Congratulations, your gateway is communicating with CICS. <==
PL/SQL procedure successfully completed.

Figure 1-3 illustrates the communications process described in steps 1 through 4.

Chapter 1
Overview of a Gateway Using SNA

1-11

Figure 1-3 Communication Between the Oracle Database and the Mainframe,
Using SNA

2 3

...

...

...

...

FLIP

CICS

Mainframe

Client

Oracle Database

SQL>execute pgacics ‘(snoitalutargnoC)’

Congratulations

PL/SQL procedure successfully completed

PGAINIT@PGA (...);

PGAXFER@PGA (...);

PGATERM@PGA (...);

...

Oracle Database Gateway

1

4

APPC

Operating System

1.8.3 Writing TIPs to Generate PL/SQL Programs Using SNA
Most transactions using SNA communication protocol are much larger and more
complex than the sample pgacics.sql file referred to in Figure 1-3. Additionally,
communication with a normal-sized RTP would require you to create an extremely long
PL/SQL file. PGAU function generates the PL/SQL procedure for you.

The following is a brief description of the four steps necessary for you to generate a
TIP. Refer to Creating a TIP for detailed information about this procedure, and refer to
Procedural Gateway Administration Utility for more information about PGAU.

All parameter names in this section are taken from a file called pgadb2i.ctl in the
%ORACLE_HOME%\pga4appc\demo\CICS directory on Microsoft Windows or in
the $ORACLE_HOME/pga4appc/demo/CICS directory on UNIX Based systems.

1.8.3.1 Steps to Writing a TIP on a Gateway Using SNA
Follow these steps to write a TIP.

Step 1 Create a control file:
The user writes the control files. The control file has four main types of PGAU
commands:

Chapter 1
Overview of a Gateway Using SNA

1-12

1. DEFINE DATA. This is used to define input and output fields, using COBOL data
definitions.

• Sample define data:

define data empno plsdname(empno) usage(pass) language(ibmvscobolii)
 infile("empno.cob");

2. DEFINE CALL. This is used to define PL/SQL functions calls to be generated as part of
the package.

• Sample define call:

define call db2imain pkgcall(pgadb2i_main)
 parms((empno in),(emprec out));

3. DEFINE TRANSACTION. This is used to group the preceding functions and specify other
parameters on which the TIP depends.

• Sample define transaction:

define transaction db2i call(db2imain,db2idiag)
 sideprofile(CICSPGA)
 tpname(DB2I)
 logmode(oraplu62)
 synclevel(0)
 nls_language("american_america.we8ebcdic37c");

4. GENERATE. This is used to generate the TIP specification files from the previously stored
data, call, and transaction definitions.

• Sample generate transaction:

generate db2i pkgname(pgadb2i) pganode(pga) outfile("pgadb2i");

Step 2 Execute the control file within PGAU
Running the control file within PGAU will create PG DD entries for the data, call, and
transaction definitions, and will generate the specification files (For example, pgadb2i.pkh
and pgadb2i.pkb):
For Microsoft Windows:

C:\> pgau
PGAU> CONNECT<userid>/<password>@<database>_specification_string>
PGAU> @pgadb2i.ctl

For UNIX based systems:

$ pgau
PGAU> CONNECT<userid>/<password>@<database>_specification_string>
PGAU> @pgadb2i.ctl

Step 3 Execute the specification files
Running the specification files will create the PL/SQL stored procedures. Note that the
header specification file (for example, pgadb2i.pkh) must be run first:
For Microsoft Windows:

C:\> sqlplus<userid>/<password>@<database_specification_string>
SQL> @pgadb2i.pkh;
SQL> @pgadb2i.pkb;

For UNIX based systems:

Chapter 1
Overview of a Gateway Using SNA

1-13

$ sqlplus<userid>/<password>@<database_specification_string>
SQL> @pgadb2i.pkh;
SQL> @pgadb2i.pkb;

Step 4 Create a driver procedure to run the TIP
The TIP is now ready for use. For convenience, it will usually be called using a driver
procedure (for example, db2idriv). This driver will then call the individual stored
procedures in the correct order. Create the driver procedure and run it:
For Microsoft Windows:

C:\> sqlplus <userid>/<password>@<database_specification string>
SQL> @pgadb2id.sql
SQL> execute db2idriv('000320');

For UNIX based systems:

$ sqlplus <userid>/<password>@<database_specification string>
SQL> @pgadb2id.sql
SQL> execute db2idriv('000320');

1.9 Overview of a Gateway Using TCP/IP
If you are using the TCP/IP communication protocol, read the following sections to
develop an understanding of how the gateway communicates with the Oracle
database and with the mainframe, as well as transaction types unique to your gateway
and writing TIPs.

1.9.1 Transaction Types for a Gateway Using TCP/IP
The Oracle Database Gateway for APPC using TCP/IP support for IMS Connect
supports three types of transaction socket connections:

• Transaction socket.

The socket connection lasts across a single transaction.

• Persistent socket.

The socket connection lasts across multiple transactions.

• Nonpersistent socket.

The socket connection lasts across a single exchange consisting of one input and
one output.

Note:

Do not use the nonpersistent socket type if you plan to implement
conversational transactions because multiple connections and
disconnections will occur.

Refer to the section about pg4tcpmap commands in PG4TCPMAP Commands
(TCP/IP Only) of this guide for more information about the function and use of
these parameters.

Chapter 1
Overview of a Gateway Using TCP/IP

1-14

You can initiate an IMS/TM transaction that executes static SQL in DB2. This illustrates
the power of the Oracle Database Gateway for APPC's feature supporting TCP/IP for
IMS Connect.

1.9.2 Simple Gateway Communication with the Oracle Database (TCP/IP)
This section describes simple communication between IMS and the Oracle database
whenTCP/IP for IMS Connect is being used as the communication protocol between the
gateway and the remote host (IMS). The Oracle Database Gateway for APPC lets you write
your own procedures to begin transferring information between the Oracle database and I/O
PCB programs on IMS.

For an illustration of the communications function of the gateway using TCP/IP for IMS
Connect, refer to the %ORACLE_HOME%\dg4appc\demo\IMS\pgaims.sql file on Microsoft
Windows or $ORACLE_HOME/dg4appc/demo/IMS/pgaims.sql on UNIX based systems.

Executing the simple PL/SQL procedure pgaims.sql causes the Oracle database to call the
gateway, which uses TCP/IP to converse with the sample transaction FLIP in IMS. The
communication steps that take place when you execute the PL/SQL procedure are described
in detail in Steps to Communication Between the Gateway and IMS_ Using TCP/IP. Note that
you will already have compiled and linked the stored procedure when you configured the
gateway.

1.9.2.1 Preparing the Gateway to Communicate Using TCP/IP
If your gateway is using TCP/IP support for IMS Connect, then you must use the pg4tcpmap
tool to create the required mapping between PGAINIT parameters and the target system
network address information. The pg4tcpmap tool maps the Side Profile Name specified in a
DEFINE TRANSACTION to TCP/IP and IMS Connect attributes, such as port number, IP address
(host name) and IMS subsystem ID. The TCP/IP parameters are used to start a conversation
with the target transaction program.

The pg4tcpmap tool must be run in order to populate the PGA_TCP_IMSC table before executing
any TIPs which rely on TPC/IP support for IMS Connect.

• Refer to PG4TCPMAP Commands (TCP/IP Only) in this guide for complete instructions
for setting up and executing pg4tcpmap commands to populate the PGA_TCP_IMSC table.
PG4TCPMAP Commands (TCP/IP Only) also explains the content of the PGA_TCP_IMSC
table and an example of how to use the table.

• A trace file from a sample pg4tcpmap execution is located in Troubleshooting in this
guide.

• A screen output file is located in Appendix B, "Gateway Initialization Parameters for
TCP/IP Communication Protocol" in the Oracle Database Gateway for APPC Installation
and Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle
Solaris on SPARC (64-Bit), and HP-UX Itanium or Oracle Database Gateway for APPC
Installation and Configuration Guide for Microsoft Windows.

1.9.2.2 Steps to Communication Between the Gateway and IMS, Using TCP/IP
The following steps describe the communications process, as illustrated in Figure 1-4 when
your communication protocol is TCP/IP:

1. From SQL*Plus, execute pgaims.sql. This invokes the PL/SQL stored procedure in the
Oracle database.

Chapter 1
Overview of a Gateway Using TCP/IP

1-15

For Microsoft Windows:

C:\> sqlplus <userid>/<password>@<database_specification_string>
SQL> execute pgaims 'snoitalutargnoC';

For UNIX based systems:

$ sqlplus <userid>/<password>@<database_specification_string>
SQL> execute pgaims 'snoitalutargnoC';

The pgaims.sql stored procedure will start up the gateway.

2. The gateway which has the APPC information will call the mapping table
(PGA_TCP_IMSC). The mapping table will map the information so that it will have the
host name (TCP/IP address) and the port number.

Note:

Rather than insert, delete, or update the PGA_TCP_IMSC mapping table
manually, you should use the pg4tcpmap tool to do so. You may use the
SELECT statement to query the rows.

3. When the gateway has the port number and host name, it will initiate
communication with IMS Connect through TCP/IP, and it will call FLIP through
IMS.

4. FLIP processes the input, generates the output, and sends the output back to the
gateway.

5. Finally, the gateway will send the output back to the PL/SQL stored procedure in
the Oracle database. The result is displayed in SQL*Plus:

Congratulations
PL/SQL procedure successfully completed.

Figure 1-4 illustrates the communications process described in the previous Steps 1
through 5.

Chapter 1
Overview of a Gateway Using TCP/IP

1-16

Figure 1-4 Communication Between Oracle Database and Mainframe, Using TCP/IP

PGAINIT@PGA (...);

PGAXFER@PGA (...);

PGATERM@PGA (...);

...

Gateway

Oracle Database

SQL>execute pgaims ‘(snoitalutargnoC)’

Congratulations

PL/SQL procedure successfully completed

Mainframe

...

...

...

...

FLIP

IMS

IMS Connect

PGA_TCP_IMSCClient

TCP/IP

1

2 3

4

5

3

Operating System

1.9.3 Writing TIPs to Generate PL/SQL Programs Using TCP/IP
Most transactions are much larger and more complex than the sample pgaims.sql file
referred to in Figure 1-4. Additionally, communication with a normal-sized RTP (remote
transaction program) would require you to create an extremely long PL/SQL file. Oracle
Database Gateway for APPC's TIP function generates the PL/SQL procedure for you.

The following is a brief description of the four steps necessary for you to generate a TIP.
Refer to Creating a TIP for detailed information about this procedure, and refer to Procedural
Gateway Administration Utility for more information about PGAU.

All parameter names in this section are taken from a file called pgtflip.ctl in the
%ORACLE_HOME%\pga4appc\demo\IMS directory on Microsoft Windows or $ORACLE_HOME/
pga4appc/demo/IMS directory on UNIX based systems.

1.9.3.1 Steps to Writing a TIP on a Gateway Using TCP/IP
Follow these steps to write a TIP.

Chapter 1
Overview of a Gateway Using TCP/IP

1-17

Step 1 Create a control file:
The user writes the control files. The control file has four main types of PGAU
commands:

1. DEFINE DATA. This is used to define input and output fields, using COBOL data
definitions.

• Sample define data:

define data flipin plsdname(flipin) usage(pass) language(ibmvscobolii)
(
 01 msgin pic x(20).
)

define data flipout plsdname(flipout) usage(pass) language(ibmvscobolii)
(
 01 msgout pic x(20).
)

2. DEFINE CALL. This is used to define PL/SQL functions calls to be generated as
part of the package.

• Sample define call:

define call flipmain pkgcall(pgtflip_main)
 parms((flipin in),(flipout out));

3. DEFINE TRANSACTION. This is used to group the preceding functions and specify
other parameters on which the TIP depends.

• Sample define transaction:

define transaction imsflip call(flipmain)
 sideprofile(pgatcp)
 tpname(flip)
 nls_language("american_america.us7ascii");

Note:

On a gateway using TCP/IP, the side profile name value is actually
the TCP/IP unique name that was defined when the user specified
the value, host name, port number and many other IMS Connect
values during configuration of the network.

4. GENERATE. This is used to generate the TIP specification files from the previously
stored data, call, and transaction definitions.

• Sample generate transaction:

generate imsflip pkgname(pgtflip) pganode(pga10ia) outfile("pgtflip")
diagnose(pkgex(dc,dr));

Step 2 Execute the control file within PGAU
Running the control file within PGAU will create PG DD entries for the data, call, and
transaction definitions and will generate the specification files (for example,
pgtflip.pkh and pgtflip.pkb):
For Microsoft Windows:

Chapter 1
Overview of a Gateway Using TCP/IP

1-18

C:\> cd %ORACLE_HOME%\dg4appc\demo\IMS
C:\> pgau
PGAU> CONNECT userid/password@database_specification_string
PGAU> @pgtflip.ctl

For UNIX based systems:

$ pgau
PGAU> CONNECT userid/password@database_specification_string
PGAU> @pgtflip.ctl

Step 3 Execute the specification files
Running the specification files will create the PL/SQL stored procedures. Note that the
header specification file (for example, pgtflip.pkh) must be run first:
For Microsoft Windows:

C:\> sqlplus userid/password@database_specification_string
SQL> @pgtflip.pkh;
SQL> @pgtflip.pkb;

For UNIX based systems:

$ sqlplus userid/password@database_specification_string
SQL> @pgtflip.pkh;
SQL> @pgtflip.pkb;

Step 4 Create a driver procedure to run the TIP
The TIP is now ready for use. For convenience, it will usually be called using a driver
procedure (for example, pgtflipd). This driver will then call the individual stored procedures
in the correct order. Create the driver procedure and run it:
For Microsoft Windows:

C:\> sqlplus <userid>/<password>@<database_specification string>
SQL> @pgtflip.sql
SQL> execute pgtflipd('hello');

For UNIX based system:

$ sqlplus <userid>/<password>@<database_specification string>
SQL> @pgtflip.sql
SQL> execute pgtflipd('hello');

Chapter 1
Overview of a Gateway Using TCP/IP

1-19

2
Procedural Gateway Administration Utility

The Procedural Gateway Administration Utility (PGAU) is a utility that assists the PGA
administrator or user to define the data which is to be exchanged with remote transaction
programs. It generates the PL/SQL Transaction Interface Packages (TIPs) discussed in
Creating a TIP, Tip Internals and, depending upon your communication protocol, either Client
Application Development (SNA Only) or Client Application Development (TCP/IP Only).

Topics:

• Overview of PGAU

• COMMIT/ROLLBACK Processing

• Invoking PGAU

• Definitions and Generation in PGAU

• Process to Define and Test a TIP

• PGAU Commands

2.1 Overview of PGAU

Note:

If you have existing TIPs that were generated previously on a gateway using the
SNA protocol and you want to utilize the new TCP/IP feature, then the TIPs will
have to be regenerated by PGAU with mandatory NLS_LANGUAGE and Side Profile
Settings. Specify the appropriate ASCII character set in the DEFINE TRANSACTION
command.

This is due to the fact that the gateway assumes that the appropriate "user exit" in
IMS Connect is being used, which would translate between the appropriate ASCII
and EBCDIC character sets.

PGAU maintains a data dictionary, PG DD, which is a collection of tables in an Oracle
database. These tables hold the definitions of the remote transaction data and how that data
is to be exchanged with the remote transaction program. Refer to "Ensuring TIP and Remote
Transaction Program Correspondence" for a discussion of the correlation between TIPs and
their respective remote transaction programs. The PG DD contents define this correlation.

The PGA administrator or user defines the correlation between TIPs and the remote
transaction program using the following PGAU commands (also called "statements"):

• PGAU DEFINE DATA statements, which describe the data to be exchanged.

• PGAU DEFINE CALL statements, which describe the exchange sequences.

2-1

• PGAU DEFINE TRANSACTION statements, which group the preceding CALL and
DATA commands together and describe certain aspects unique to the remote
transaction program, such as its network name or location.

• PGAU GENERATE statement, which the PGA administrator or user uses to specify
and create the TIP specifications, after the TIP/transaction correlation has been
defined in the PG DD. Additional PGAU commands needed to alter and delete
definitions in the PG DD are described in "PGAU Commands" .

The PGAU commands are known collectively as Procedural Gateway Definition
Language (PGDL). Any references to PGDL are to the collection of PGAU commands
defined in this book.

PGAU provides editing and spooling facilities and the ability to issue SQL commands.

Note:

Do not use PGAU instead of SQL*Plus for general database administration.

Alternatively, PGAU commands can be supplied in a control file. The control file
contains one or more PGAU commands for manipulating the PG DD or generating TIP
specifications.

PGAU issues status messages on each operation. The message text is provided
through Globalization Support message support. PGAU processes each command in
sequence. An error on a single command causes PGAU to skip that command.

To run PGAU, the PG DD tables must already have been created. Refer to the
gateway configuration sections corresponding to your communications protocol in the
installation guides.

2.2 COMMIT/ROLLBACK Processing
The following sections provide information on COMMIT/ROLLBACK processing.

• COMMIT Processing

• ROLLBACK Processing

2.2.1 COMMIT Processing
PGAU never issues COMMIT commands. As the user, it is your responsibility to COMMIT
PG DD changes when all the changes are implemented. Otherwise Oracle issues a
COMMIT command by default when you exit the PGAU session. If PG DD changes are
not to be committed, you must run a ROLLBACK command before exiting.

2.2.2 ROLLBACK Processing
PGAU sets a savepoint at the beginning of each PGAU command that alters the
PG DD and at the beginning of a PGAU GROUP. PGAU rolls back to the savepoint upon
any PGAU command or group failure.

Chapter 2
COMMIT/ROLLBACK Processing

2-2

You can code COMMIT or ROLLBACK commands within PGAU scripts, or interactively in PGAU,
but not within a GROUP.

Neither COMMIT nor ROLLBACK is issued for PGAU GENERATE or REPORT commands.

For information about grouping PGAU commands together to roll back changes in case of
failure, refer to the discussion of the PGAU "GROUP" command in the later sections.

2.3 Invoking PGAU
Before you can invoke PGAU, your Oracle database should already be set up. If it is not,
refer to the sections on configuring your Oracle Database Gateway for APPC, in the
installation guides.

Before executing PGAU, you must set the ORACLE_HOME environment variable to the directory
into which the gateway server was installed.

If you want to receive PGAU messages in a language other than English, set the LANGUAGE
environment variable to the appropriate value.

PGAU is invoked by entering the pgau command. You can run prepared scripts of PGAU
commands directly from the operating system prompt by specifying a command string on the
command line using the following syntax:

For Microsoft Windows:

C:\> pgau @command_file
C:\> pgau command=@command_file
C:\> pgau command="@command_file"

For UNIX based systems:

$ pgau @command_file
$ pgau command=@command_file
$ pgau command="@command_file"

The default extension is .sql. Use the last form if the command filename contains non-
alphanumeric characters.

To perform PG DD maintenance and PL/SQL package generation, you must connect to the
Oracle database from PGAU as user PGAADMIN, using the CONNECT command. The "PGAU
Commands" section discusses how to use the "CONNECT" command.

2.4 Definitions and Generation in PGAU
This version of PGAU supports the definition of remote transaction data in COBOL, entered
interactively or in a file. File input is supported for the DEFINE and REDEFINE DATA commands,
and standard COBOL data division macros or "copybooks" can be supplied.

PGAU and the PG DD support different versions of user data and remote transaction
definitions. This facilitates alteration and testing of data formats and transactions without
affecting production usage.

Multiple versions of any data or transaction definitions might exist. You must ensure that
versions stored and used in the PG DD are synchronized with the remote transactions.

Chapter 2
Invoking PGAU

2-3

Neither the gateway, PGAU, nor generated TIPs provide this synchronization, but they
will issue messages as error conditions are detected.

Data definitions must exist before being referenced by call definitions. Call definitions
must exist before being referenced by transaction definitions.

Note:

It is your responsibility to ensure that the data transaction definition versions
that are stored and used in the PG DD are synchronized with the remote
transactions. The gateway, PGAU and generated TIPs do not provide this
synchronization, but issue messages as error conditions are detected.

2.5 Process to Define and Test a TIP
The general process for defining and testing a TIP for a given transaction is as follows:

1. Define input and output using COBOL data definitions.

2. Redefine the default datanames and PL/SQL variable names created by the above
process (optional).

3. Define PL/SQL FUNCTION calls to be generated as part of the PL/SQL package.

4. Define a transaction that groups the above functions.

5. Generate the TIP specifications from the previously stored TRANSACTION, CALL, and
DATA definitions.

6. Generate the TIP PL/SQL stored procedures.

7. Test the TIP by calling it from a high-level application.

Refer to Creating a TIP for more information about TIPs.

2.5.1 Definition Names
Definition names are unique identifiers that you designate through PGAU. The name is
a string of 1 to 30 bytes. If punctuation or white space is included, the name must be
specified within double quotes.

Names are assumed to be unique within the PG DD, except when duplicate names
are intentionally distinguished by a unique version number. It is your responsibility to
ensure name uniqueness.

Valid characters for PG DD definition names are:

• A through Z

• a through z

• 0 through 9

• #

• $

• _ (underscore)

Chapter 2
Process to Define and Test a TIP

2-4

Note that unless defaults are overridden, transaction definition names might be PL/SQL
package names, and transaction call names might be PL/SQL procedure names. Therefore,
choose names that are syntactically correct for PL/SQL, making certain that they are also
unique names within that system. As the user, it is your responsibility to ensure PL/SQL
name compatibility.

2.5.2 Definition Versioning
The PG Data Dictionary tables contain the descriptions of transactions and data structures.
There might be more than one version of a definition. Old versions are retained indefinitely.

In all PG DD operations, a definition or package is referred to by its name. That name can be
qualified by a specific version number.

All version numbers:

• are supplied by Oracle Sequence Objects

• are purely numeric

• must be free from user alteration, suffixing, or prefixing

Refer to Database Gateway for APPC Data Dictionary and the pgddcr8.sql file in the
%ORACLE_HOME%\dg4appc\admin directory on Microsoft Windows or $ORACLE_HOME/dg4appc/
admin directory on UNIX based systems for the specific names of the Oracle Sequence
Objects used for version number generation.

If an explicit version number is specified, it is presumed to be the version number of an
existing definition, not a new definition. Such explicit references are used when:

• generating a TIP from a specific remote transaction version

• defining a remote transaction based on a specific data version

If no explicit version is specified:

• The latest (highest number) is assumed when a definition is being referenced. This is the
MAX value selected from the VERSION column for all rows with the same definition name,
not the CURRVAL number.

• The next (NEXTVAL number) is assumed when a definition is being added.

Version numbers might not be contiguous. Although version numbers are always increasing,
multiple versions of a given definition might skip numbers. This is because the sequence
object is shared for all definitions of the same type (TRANSACTION, CALL, or DATA), and
sequence object NEXTVAL is not restored in event of an Oracle database transaction
ROLLBACK. Thus, NEXTVAL might be assigned to a different definition before the next version of
the same definition.

Examples of valid definition names:

DEFINE TRANSACTION|CALL|DATA
 payroll (new or latest definition)
 payroll_xaction (new or latest definition)
 payroll_xaction VERSION(3)...(an existing definition)

No attempt is made by PGAU to synchronize versions. Although the existence of dependent
items is assured at definition time, deletion is done without reference to dependencies. For
example, generating a TIP requires prior definition of the transaction, which requires prior
definition of the calls, which require prior definition of the data. But nothing prevents PGAU
from deleting an active data definition while a call definition still references it.

Chapter 2
Process to Define and Test a TIP

2-5

2.5.3 Keywords
All PGAU keywords can be specified in upper or lower case and are not reserved
words. Reservation is not necessary because all keywords have known spelling and
appear in predictable places, and because all data is delimited by parentheses,
apostrophes, quotes, or blanks.

Note that all unquoted values specified by keywords are stored in the PG Data
Dictionary in uppercase unless otherwise specified in the keyword description.

2.6 PGAU Commands
PGAU allows you to enter Procedural Gateway Administration commands
(commands), such as DEFINE, UNDEFINE, REDEFINE, and GENERATE, in addition to
normal SQL commands. The SET and SHOW commands are also implemented. In
addition, the PGAU commands listed in the following section are available to you.

2.6.1 CONNECT
Purpose

This command enables you to make a connection to PGAU. Use the CONNECT
command to log on to an Oracle database, optionally specifying the user ID and
password in addition to the Oracle instance. The CONNECT command has the following
syntax:

Syntax

For Microsoft Windows:

CONNECT [username|username/password|username@connect-string|username\password@connect-string

For UNIX based systems:

CONNECT [username|username/password|username@connect-string|username/password@connect-string

Parameters

username\password for Microsoft Windows and username/password for UNIX based
systems are the usernames and passwords used to connect to PGAU,

and

connect-string specifies the service name of the remote database.

Refer to the Oracle Database Net Services Administrator's Guide for more information
about specifying remote databases.

Examples

CONNECT
CONNECT SCOTT/TIGER
CONNECT SCOTT@OTHERSYS

Chapter 2
PGAU Commands

2-6

CONNECT Usage Notes

• Before connecting, you must set ORACLE_SID to the database SIDname.

• If you want to connect to a remote database, you must set TNS_ADMIN to the full
pathname of the directory in which the file tnsnames.ora is stored.

• You do not need to place a semi colon (;) at the end of the command.

2.6.2 DEFINE CALL
Purpose

This command creates a new version of the PL/SQL call definition in the PG Data Dictionary.

Syntax

DEFINE CALL cname
 [PKGCALL(pcname)]
 [PARMS((dname
 {IN | OUT | IN OUT}
 [VERSion(datavers)]), ...)];

Where Table 2-1 describes the parameters in this syntax:

Table 2-1 DEFINE CALL Parameter Descriptions

Parameter Definition

CALL cname is a mandatory parameter. It is the name of the
call definition to be created.

PKGCALL (pcname) is an optional parameter. It specifies the name of
the PL/SQL package procedure or function by
which the application might invoke the call. The
default value, cname, is assumed if this operand is
omitted, in which case cname must also be valid
in PL/SQL syntax and unique within the
transactions and TIPs referencing this call.

PARMS((dname
{IN|OUT|IN OUT} [

VERSION(datavers)]), . . .)

is an optional parameter. It specifies a list of
previously defined data input to and output from
this PL/SQL function call, and the type of each
parameter (input to the call, output from, or both).
The order in which the parameters are specified
determines the order in which they must appear in
subsequent calls to the TIP from an application.

Each dname specifies a previously defined data
item, and is mandatory. {IN | OUT | IN OUT}
specifies the PL/SQL call mode of the parameter
and indicates whether the dname data is sent,
received, or both in the exchange with the remote
transaction program. One must be chosen.
VERS(datavers) is an optional specific version
number of the dname data definition, if not the
latest. If this operand is omitted, it is assumed that
the call takes no parameters.

Chapter 2
PGAU Commands

2-7

Examples

Refer to "Sample PGAU DEFINE CALL Statements" in Administration Utility Samples
for examples of DEFINE CALL commands.

DEFINE CALL Usage Notes

• Version of the CALL definition is not specified and defaults to NEXTVAL of the Oracle
Sequence Object for CALL.

• PKGCALL and PARMS can be specified in either order.

• You need to place a semi colon (;) at the end of the command.

2.6.3 DEFINE DATA
Purpose

This command creates a new version of the data definition in the PG DD.

Syntax

DEFINE DATA dname
 [PLSDNAME(plsdvar)]
 [USAGE({PASS|ASIS|SKIP})]
 [COMPOPTS ('options')]
 LANGUAGE(language)
 {(definition)|INFILE("filespec")};

Parameters

Table 2-2 describes the DEFINE DATA parameters:

Table 2-2 DEFINE DATA Parameter Descriptions

Parameter Description

DATA dname is a mandatory parameter. It is the name of the data definition to
be created.

PLSDNAME (plsdvar) is an optional parameter. It is the name of the PL/SQL variable
associated with dname. It becomes the name of a PL/SQL
variable if the dname item is atomic data, or a PL/SQL record
variable if the dname item is aggregate data (such as a record or
structure), when the TIP is generated.

USAGE({PASS|ASIS|
SKIP})

is an optional parameter. It specifies the way the TIP handles the
data items when exchanged in calls with the remote transaction.

PASS indicates that the item should be translated and exchanged
with the transaction.

ASIS indicates the item is binary and, though exchanged, should
not be translated.

SKIP indicates the item should be deleted from all exchanges.

The default value, PASS, is assumed if this parameter is omitted.

The USAGE(NULL) keyword on DEFINE or REDEFINE DATA
PGAU statements is not supported.

Chapter 2
PGAU Commands

2-8

Table 2-2 (Cont.) DEFINE DATA Parameter Descriptions

Parameter Description

COMPOPTS
('options')

is an optional parameter. It specifies the compiler options used
when compiling the data definition on the remote host. The only
option currently supported is 'TRUNC(BIN)'. Note that the options
must be enclosed in apostrophes (') or quotes ("). TRUNC(BIN) is
a COBOL option that affects the way halfword and fullword binary
values are handled.

Refer to "DEFINE DATA Usage Notes" for further information on
this option.

LANGUAGE
(language)

is a mandatory parameter. It specifies the name of the
programming language in the supplied definition. PGAU presently
supports only COBOL.

(definition) is mutually exclusive with the INFILE parameter. It is an inline
description of the data. The description must be provided in
COBOL syntax, as indicated above. This inline description must
begin with an opening parenthesis and end with a closing
parenthesis. The opening parenthesis must be the last non-blank
character on the line and the COBOL data definition must start on
a new line, following the standard COBOL rules for column usage
and continuations. The closing parenthesis and terminating
semicolon must be on a separate line following the last line of the
COBOL data definition. In COBOL, the specification is a COBOL
data item or structure, defined in accordance with COBOL.
Margins are assumed to be standard, and explicit or implicit
continuation is supported. Datanames containing invalid
characters (for example, "-") for PL/SQL use are translated to
their closest equivalent and truncated as required.

INFILE ("filespec") is mutually exclusive with the (definition) parameter. It
indicates that the definition is to be read from the user disk file
described by filespec, instead of an inline definition described
by (definition).

Note that filespec must be enclosed in double quotes.

Examples

Refer to "Sample PGAU DEFINE DATA Statements" in Administration Utility Samples for
examples of DEFINE DATA commands.

DEFINE DATA Usage Notes

• Version of the DATA definition is not specified and defaults to NEXTVAL of the Oracle
Sequence Object for DATA.

• PLSDNAME, USAGE, and LANGUAGE can be specified in any order.

• INFILE ("filespec") is a platform-specific designation of a disk file.

• COMPOPTS ('TRUNC(BIN)') should be used only when the remote host transaction was
compiled using COBOL with the TRUNC(BIN) compiler option specified. When this option
is used, binary data items defined as PIC 9(4) or PIC S9(4) can actually contain values
with 5 digits, and binary data items defined as PIC 9(9) or PIC S9(9) can actually
contain values with 10 digits. Without COMPOPTS ('TRUNC(BIN)'), PGAU generates

Chapter 2
PGAU Commands

2-9

NUMBER(4,0) or NUMBER(9,0) fields for these data items, resulting in possible
truncation of the values.

When COMPOPTS ('TRUNC(BIN)') is specified, PGAU generates NUMBER(5,0) or
NUMBER(10, 0) fields for these data items, avoiding any truncation of the values.
Care must be taken when writing the client application to ensure that invalid values
are not sent to the remote host transaction.

For a PIC 9(4) the value must be within the range 0 to 32767, for a PIC S9(4) the
value must be within the range -32767 to +32767, for a PIC 9(9) the value must be
within the range 0 to 2,147,483,647, and for a PIC S9(9) the value must be within
the range -2,147,483,647 to +2,147,483,647. COBOL always reserves the high-
order bit of binary fields for a sign, so the value ranges for unsigned fields are
limited to the absolute values of the value ranges for signed fields. For further
information, refer to the appropriate IBM COBOL programming manuals.

• Refer to "USAGE(PASS)" in Datatype Conversions for information about how
PGAU converts COBOL statements.

• You need to place a semi colon (;) at the end of the command.

2.6.4 DEFINE TRANSACTION
Purpose

This command creates a new version of the transaction definition in the PG Data
Dictionary.

Syntax

DEFINE TRANSACTION tname
CALL(cname [VERS(callvers)], ...
 [ENVIRONMENT(name)]
 {SIDEPROFILE(name) [LUNAME(name)] [TPNAME(name)]
 [LOGMODE(name)] |
 LUNAME(name) TPNAME(name) LOGMODE(name)}
 [SYNCLEVEL(0|1|2)]
 [NLS_LANGUAGE("nlsname")];
 [REMOTE_MBCS("nlsname")]
 [LOCAL_MBCS("nlsname")];

Parameters

Table 2-3 describes the DEFINE TRANSACTION parameters:

Table 2-3 DEFINE TRANSACTION Parameter Descriptions

Parameter Description

TRANSACTION
tname

A mandatory parameter. It is the name of the transaction definition to be
created. If you do not specify a package name (TIP name) in the GENERATE
statement, the transaction name specified here will become the package
name, by default. In that case, the tname must be unique and must be in
valid PL/SQL syntax within the database containing the PL/SQL packages.

Chapter 2
PGAU Commands

2-10

Table 2-3 (Cont.) DEFINE TRANSACTION Parameter Descriptions

Parameter Description

CALL(cname
[VERS(callver
s)], ...)

A mandatory parameter. It specifies a list of previously defined calls
(created with DEFINE CALL) which, taken together, comprise this
transaction. The order in which the calls are specified here determines the
order in which they are created by GENERATE, but not necessarily the order
in which they might be called by an application. VERS(callvers) is an
optional specific version number of the call definition, if not the latest.

The relative position of each cname in its left-to-right sequence is the seq#
column in pga_trans_calls. For example:

CALL (cname1, cname2,cname3)
pga_trans_calls(seq#) = 1
2 3

ENVIRONMENT
(name)

Specifies the name of the host environment for this transaction, for
example, IBM370. If this parameter is omitted, IBM370 is assumed. IBM370
is the only environment supported by this version of PGAU.

SIDEPROFILE
(name)

This parameter is optional for a gateway using SNA, but if omitted, the
user must specify the parameters for LUNAME, TPNAME, and LOGMODE. It
specifies the name of an SNA Side Information Profile which directs the
APPC connection to the transaction manager. This name can be 1 to 8
characters in length. Name values can be alphanumeric with'@', '#', and '$'
characters only if unquoted. Quoted values can contain any character, and
delimited by quotes ("), or apostrophes ('). Case is preserved for all values.

This parameter is mandatory for a gateway using the TCP/IP
connection. It has no comparable SNA meaning.

You need to run the pg4tcpmap tool to map this name to the hostname,
port number, subsystem ID and any other desired attribute of IMS Connect.

This name represents a group of IMS transactions with similar IMS Connect
attributes. You can re-use the same name as long as they share the same
IMS Connect attributes, such as subsystem ID, TIME delay or socket type.
Refer to PG4TCPMAP Commands (TCP/IP Only) for details.

LUNAME(name) This parameter is optional on a gateway using SNA: Overrides the
LUNAME within the Side Information Profile, if the Side Information Profile
was specified. It specifies the SNA Logical Unit name of the transaction
manager (OLTP).

This is either the fully-qualified LU name, 3 to 17 characters in length, or an
LU alias 1 to 8 characters in length (when the SNA software on your
gateway system supports LU aliases).

Name values can be alphanumeric with'@', '#', and'$' characters and a
single period '.', to delimit the network from the LU, as in netname.luname, if
fully qualified. Quoted values can contain any character, and delimited by
quotes ("), or apostrophes ('). Case is preserved for all values.

This parameter is not applicable when using the TCP/IP
communication protocol.

Chapter 2
PGAU Commands

2-11

Table 2-3 (Cont.) DEFINE TRANSACTION Parameter Descriptions

Parameter Description

TPNAME (name) This parameter is optional on a gateway using SNA: Overrides the
TPNAME within the Side Profile, if the Side profile was specified. It specifies
the partner Transaction Program name to be invoked.

• For CICS, this must be the CICS Transaction ID and is 1 to 4
characters in length.

• For IMS, this must be the IMS Transaction Name and is 1 to 8
characters in length.

• For AS/400, this must be specified as "library/program" and cannot
exceed 21 bytes.

Name values can be alphanumeric with'@', '#', and'$' characters only if
unquoted. Quoted values can contain any character, and delimited by
quotes ("), or apostrophes ('). Case is preserved for all values.

This parameter is required for a gateway using TCP/IP support for IMS
Connect. It must be the IMS Transaction Name.

• The IMS Transaction Name must be 1 to 8 characters in length.

LOGMODE(name) This parameter is optional on a gateway using SNA: Overrides the
LOGMODE within the Side Information Profile, if the Side Information Profile
was specified. It specifies the name of a VTAM logmode table entry to be
used to communicate with this transaction, and is 1-8 characters in length.

Name values can be alphanumeric with '@', '#', and '$' characters only.
Values cannot be quoted. Case is not preserved and always translated to
upper case.

This parameter is not applicable when using the TCP/IP
communication protocol.

SYNCLEVEL (0|
1)

This parameter is optional on a gateway using SNA: It specifies the
APPC SYNCLEVEL of this transaction ('0' or '1'). The default value of 0 is
assumed if this operand is omitted, indicating the remote transaction
program does not support synchronization. A value of '1' indicates that
CONFIRM is supported.

On a gateway using TCP/IP: The default of this parameter is '0', which is
the only accepted value.

NLS_LANGUAGE
("nlsname")

This is an optional parameter. The default value is
"american_america.we8ebcdic37c". It is an Globalization Support name
in the language_territory.charset format. It specifies the
Globalization Support name in which the remote host data for all single-byte
character set fields in the transaction are encoded.

Note that if you are using TCP/IP, make sure that you set this
parameter to "american_america.us7ascii".

REMOTE_MBCS
("nlsname")

This is an optional parameter. The default value is
"japanese_japan.jal6dbcs". It is an Globalization Support name in the
language_territory.charset format. It specifies the Globalization
Support name in which the remote host data for all multi-byte character set
fields in the transaction are encoded.

LOCAL_MBCS
("nlsname")

This is an optional parameter. The default value is
"japanese_japan.jal6dbcs". It is an Globalization Support name in the
language_territory.charset format. It specifies the Globalization
Support name in which the local host data for all multi-byte character set
fields in the transaction are encoded.

Chapter 2
PGAU Commands

2-12

Examples

Refer to "Sample PGAU DEFINE TRANSACTION Statement" in Administration Utility
Samples for examples of DEFINE TRANSACTIONs commands.

DEFINE TRANSACTION Usage Notes:

• NLS_LANGUAGE and the Oracle database's LANGUAGE specify default character sets to be
used for conversion of all single-byte character fields for the entire transaction. These
defaults can be overridden for each SBCS field by the REDEFINE DATA REMOTE_LANGUAGE
or LOCAL_LANGUAGE parameters.

• The version of the TRANSACTION definition is not specified and defaults to NEXTVAL of the
Oracle Sequence Object for TRANS.

• REMOTE_MBCS and LOCAL_MBCS specify the default multi-byte character sets to be used for
conversion of all DBCS or MBCS fields for the entire transaction. This default can be
overridden for each DBCS or MBCS field by the REDEFINE DATA REMOTE_LANGUAGE or
LOCAL_LANGUAGE parameters.

• You must place ";" at the end of the command.

2.6.5 DESCRIBE
Purpose

Use this command to describe a table, view, stored procedure, or function. If neither TABLE,
VIEW, nor PROCEDURE are explicitly specified, the table or view with the specified name is
described.

Syntax

The DESCRIBE command has the following syntax:

DESCRIBE [TABLE table|VIEW view|PROCEDURE proc|some_name]

Parameters

Table 2-4 describes the DESCRIBE parameter:

Table 2-4 DESCRIBE Parameter Descriptions

Parameter Description

table is the tablename

view is the viewname

proc is the procedurename

Examples

DESCRIBE PROCEDURE SCOTT.ADDEMP
DESCRIBE SYS.DUAL
DESCRIBE TABLE SCOTT.PERSONNEL
DESCRIBE VIEW SCOTT.PVIEW

Chapter 2
PGAU Commands

2-13

DESCRIBE Usage Notes

• You do not need to place ";" at the end of the command.

2.6.6 DISCONNECT
Purpose

Use this command to disconnect from an Oracle database.

Syntax

The DISCONNECT command has the following syntax:

DISCONNECT

Parameters

None

Examples

None

DISCONNECT Usage Notes

• You do not need to place ";" at the end of the command.

2.6.7 EXECUTE
Purpose

Use this command to execute a one-line PL/SQL statement.

Syntax

The EXECUTE command has the following syntax:

EXECUTE pl/sql block

Parameters

pl/sql block is any valid pl/sql block. Refer to the Oracle Database PL/SQL
Language Reference for more information.

Examples

EXECUTE :balance := get_balance(333)

EXECUTE Usage Notes

• You do not need to place ";" at the end of the command

Chapter 2
PGAU Commands

2-14

2.6.8 EXIT
Purpose

Use this command to terminate PGAU.

Syntax

The EXIT command has the syntax:

EXIT

Parameters

None

Examples

None

EXIT Usage Notes

• You do not need to place ";" at the end of the command.

• The "quit" command is not a valid statement in PGAU.

2.6.9 GENERATE
Purpose

A PL/SQL package is built and written to the indicated output files. The PG Data Dictionary is
not updated by this command.

Syntax

GENERATE tname
 [VERSion(tranvers)]
 [PKGNAME(pname)]
 [PGANODE(dblink_name)]
 [OUTFILE("[specpath]{specname}[.{spectype}]")]
 [,"[bodypath]{bodyname}[.{bodytype}]]")
 [DIAGNOSE ({[TRACE({[SE] [,IT] [,QM] [,IO] [,OC] [,DD] [,TG] })]
 [PKGEX({[DC][,DR]})])};

Parameters

Table 2-5 describes the GENERATE parameters:

Table 2-5 GENERATE Parameter Descriptions

Parameter Description

tname is a mandatory parameter. It is the transaction
name defined in a DEFINE TRANSACTION
statement.

Chapter 2
PGAU Commands

2-15

Table 2-5 (Cont.) GENERATE Parameter Descriptions

Parameter Description

VERSion(transvers) is an optional parameter. It specifies which
transaction definition is to be used. The VERsion
parameter defaults to highest numbered
transaction if not specified.

PKGNAME(pname) is an optional parameter. It specifies the name of
the PL/SQL package to be created. If this operand
is omitted, the package name is assumed to be
the same as the transaction name.

PGANODE (dblink_name) is an optional parameter. It specifies the Oracle
database link name to the gateway server. If this
operand is omitted, "PGA" is assumed to be the
dblink_name.

OUTFILE is an optional parameter. If this parameter is
specified, specname must also be specified.

specpath is the optional directory path of the TIP
specification and the TIP content documentation.
It defaults to the current directory. The value must
end with a backslash (\) for Microsoft Windows
and a slash (/) for UNIX based systems.

specname is the filename of the TIP specification and the TIP
content documentation. It defaults to pname, if
specified, or else pgau.

spectype is the optional file extension of the TIP
specification and defaults to pkh.

bodypath is the optional directory path of the TIP body. It
defaults to specpath, if specified, or else the
current directory. The value must end with a
backslash (\) for Microsoft Windows and a slash (/)
for UNIX based systems.

bodyname is the optional file name of the TIP body. It defaults
to specname, if specified, or else pname, if
specified, or else pgau. If bodyname defaults to
specname, the leftmost period of specname is
used to extract bodyname when specname
contains multiple qualifiers.

bodytype is the optional file extension of the TIP body and
defaults to pkb.

The TIP Content output path defaults to specpath
or else the current directory. The file id defaults to
specname, if specified, or else pname, if specified,
or else pgau, and always has an extension
of .doc.

Refer to the "GENERATE Usage Notes:" for more
examples, and Tip Internals for more information.

DIAGNOSE is an optional parameter with two options, TRACE
and PKGEX.

Chapter 2
PGAU Commands

2-16

Table 2-5 (Cont.) GENERATE Parameter Descriptions

Parameter Description

TRACE specifies that an internal trace of the execution of
PGAU is written to output file pgau.trc in the
user's current directory.

TRACE suboptions are delimited by commas.

Trace messages are provided as a diagnostic tool
to Oracle Support Services and other Oracle
representatives to assist them in diagnosing
customer problems when generating TIPs. They
are part of an Oracle reserved function for which
the usage, interface, and documentation might
change without notice at Oracle's sole discretion.
This information is provided so customers might
document problem symptoms.

• SE - Subroutine Entry/Exit
Messages are written tracing subroutine name
and arguments upon entry, and subroutine name
and conditions at exit.

• IT - Initialization/Termination
Messages are written tracing PGAU initialization
and termination functions.

• QM - Queue Management
Messages are written tracing control block
allocation, queuing, searching, dequeuing, and
deletion.

• IO - Input/Output
Messages are written tracing input, output, and
control operations for .dat input files and .wrk
and package output files.

• DD - PG DD Definitions
Messages are written tracing the loading of
transaction, call, data parameter, field, attribute,
environment and compiler information from the PG
DD.

• OC - Oracle Calls
Messages are written tracing the Oracle UPI call
results for SQL statement processing and
SELECTs from the PG DD.

• TG - TIP Generation
Messages are written tracing steps completed in
TIP Generation, typically a record for each call,
parameter, and data field for which a PL/SQL code
segment has been generated.

Chapter 2
PGAU Commands

2-17

Table 2-5 (Cont.) GENERATE Parameter Descriptions

Parameter Description

PKGEX causes additional TIP execution time diagnostic
logic to be included within the generated PL/SQL
package.

PKGEX suboptions are delimited by commas.

• DC - Data Conversion
Enables runtime checking of repeating group limits
and the raising of exceptions when such limits are
exceeded.

Enables warning messages to be passed from the
UTL_PG data conversion functions:

• NUMBER_TO_RAW
• RAW_TO_NUMBER
• MAKE_NUMBER_TO_RAW_FORMAT
• MAKE_RAW_TO_NUMBER_FORMAT
The additional logic checks for the existence of
warnings and, if present, causes them to be
displayed using DBMS_OUTPUT calls.

The TIP generation default is to suppress such
warnings on the presumption that a TIP has been
tested with production data and that data
conversion anomalies either do not exist, or are
known and to be ignored.

If errors occur which might be due to data
conversion problems, regeneration of the TIP with
PKGEX(DC) enabled might provide additional
information.

Note: A runtime switch is also required to execute
the warning logic. PKGEX(DC) only causes the
warning logic to be included in the TIP. Refer to
"Controlling TIP Runtime Conversion Warnings" in
Troubleshooting.

Additional messages are written to a named pipe
for tracing the data conversion steps performed by
the TIP as it executes.

This option only causes the trace logic to be
generated in the TIP. It must be enabled when the
TIP is initialized.

Refer to"Controlling TIP Runtime Conversion
Warnings" in Troubleshooting for more
information.

• DR - Dictionary Reference
PL/SQL single line Comments are included in
TIPs which reference the PG DD id numbers for
the definitions causing the TIP function calls and
conversions.

Examples

Refer to "Sample PGAU GENERATE Statement" in Administration Utility Samples for
examples of GENERATE commands.

Chapter 2
PGAU Commands

2-18

GENERATE Usage Notes:

• All PGAU GENERATE trace messages are designated PGU-39nnn. Refer to the
%ORACLE_HOME%\dg4appc\mesg\pguus.msg file on Microsoft Windows or $ORACLE_HOME/
dg4appc/mesg/pguus.msg on UNIX based systems for further information on any given
trace message.

• The pgau.trc trace message output file is overwritten by the next invocation of
GENERATE, regardless of the TRACE specification. A trace header record is always written
to the pgau.trc file. If a particular trace file is to be saved, it must be copied to another
file before the next invocation of GENERATE.

• TRACE options can be specified in any order or combination, and can also be specified
with PKGEX operand on the same GENERATE statement.

• You must place ";" at the end of the command.

2.6.10 GROUP
Purpose

Multiple PGAU commands can be grouped together for purposes of updating the PG DD, and
for rolling back all changes resulting from the commands in the group, if any one statement
fails.

No COMMIT processing is performed, even if all commands within the group succeed. You
perform the COMMIT either by coding COMMIT commands in the PGAU script, outside of GROUPs,
or by issuing COMMIT interactively to PGAU.

PGAU issues a savepoint ROLLBACK to conditions before processing the group if any
statement within the group fails.

Syntax

GROUP (pgaustmt1; pgaustmt2; ... pgaustmtN);

Parameters

pgaustmtN: is a PGAU DEFINE, REDEFINE, or UNDEFINE statement

Examples

GROUP (
 DEFINE DATA EMPNO
 PLSDNAME (EMPNO)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 (
 01 EMP-NO PIC X(6).
);

 DEFINE CALL DB2IMAIN
 PKGCALL (PGADB2I_MAIN)
 PARMS ((EMPNO IN),
 (EMPREC OUT));

 DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN,

Chapter 2
PGAU Commands

2-19

 DB2IDIAG)
 SIDEPROFILE(CICSPROD)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)
 SYNCLEVEL(0)
 NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

GENERATE DB2I
 PKGNAME(PGADB2I)
 OUTFILE("pgadb2i"););

GROUP Usage Notes:

• No non-PGAU commands, such as ORACLE or SQL, can be placed inside the
parentheses delimiting the group.

• A PGAU script can contain multiple GROUPs. Each GROUP can be interspersed with
SQL commands, such as COMMIT or SELECT or with PGAU commands, such as
GENERATE or REPORT.

• The first failing PGAU statement within the group causes a savepoint ROLLBACK to
conditions at the beginning of the group. All subsequent commands within the
group are flushed and not examined. PGAU execution resumes with the statement
following the group. If that statement is a COMMIT, all PG DD changes made before
the failing group are committed.

• You must place ";" at the end of the command.

2.6.11 HOST
Purpose

Use this command to execute an operating system command without exiting PGAU.

Syntax

The HOST command has the syntax:

HOST host_command

Parameters

host_command is any valid operating system command.

Examples

HOST vi log.out
HOST ls -la
HOST pwd

HOST Usage Notes

• Using the HOST command starts a new command shell under which to execute the
specified operating system command. This means that any environment changes
caused by the executed command affect only the new command shell started by
PGAU, and not the command shell under which PGAU itself is executing. For
example, a "cd" command executed by the HOST command does not change the
current directory in the PGAU execution environment.

Chapter 2
PGAU Commands

2-20

• You do not need to place ";" at the end of the command.

2.6.12 PRINT
Purpose

Use this command to print the value of a variable defined with the VARIABLE command.

Syntax

The PRINT command has the syntax:

PRINT varname

Parameters

varname is a variable name which is defined by a variable command.

Examples

PRINT ename
PRINT balance

PRINT Usage Notes

• You do not need to place ";" at the end of the command.

2.6.13 REDEFINE DATA
Purpose

The existing data definition in the PG Data Dictionary is modified. PG DD column values for
DATA#, FLD#, and POS remain the same for redefined data items. This permits existing CALL
and DATA definitions to utilize the redefined data. REDEFINE does not create a different version
of a data definition and the version number is not updated.

Syntax

REDEFINE DATA dname
 [VERSion(datavers)]
 [PLSDNAME(plsdvar)]
 [FIELD(fname) [PLSFNAME(plsfvar)]]
 [USAGE({PASS|ASIS|SKIP})]
 [COMPOPTS ('options')]
 [REMOTE_LANGUAGE("nlsname")]
 [LOCAL_LANGUAGE("nlsname")]
 LANGUAGE(language)
 <(definition) | INFILE("filespec")>;

Parameters

Table 2-6 describes the REDEFINE DATA parameters:

Chapter 2
PGAU Commands

2-21

Table 2-6 REDEFINE DATA Parameter Descriptions

Parameter Description

DATA dname is a mandatory parameter. It is the name of the data definition to
be modified.

VERSion(datavers) is an optional parameter. It specifies which version of dname is to
be modified, and if specified, the updated dname information
retains the same version number; a new version is not created. It
defaults to the highest version if omitted.

PLSDNAME(plsdvar) is an optional parameter. It is the name of the PL/SQL variable
associated with the dname above. It becomes the name of a
PL/SQL variable if the dname item is atomic data, or a PL/SQL
record variable if the dname item is aggregate data (such as a
record or structure), when the TIP is generated. This name
replaces any plsdvar name previously specified by DEFINE
DATA into pga_data(plsdvar) of the PG DD.

FIELD(fname) is an optional parameter. It is the name of a field or group within
the dname item, if aggregate data is being redefined (such as
changing a field within a record).

PLSFNAME(plsfvar) is an optional parameter if FIELD is specified. It is the name of
the PL/SQL variable associated with the fname above. It
becomes the name of a PL/SQL field variable within a PL/SQL
record variable when the TIP is generated. This name replaces
any plsfvar name previously specified by REDEFINE DATA into
pga_data(plsfvar) of the PG DD.

USAGE({PASS|ASIS
|SKIP})

is optional. If omitted, the last usage specified is retained. It
specifies the way the TIP handles the data items when
exchanged in calls with the remote transaction:

• PASS indicates that the item should be translated and
exchanged with the transaction.

• ASIS indicates the item is binary and, though exchanged,
should not be translated.

• SKIP indicates the item should be deleted from all
exchanges.

If specified, all affected fields are updated with the same USAGE
value. (Refer to the notes pertaining to single or multiple field
redefinition, under FIELD).

The USAGE(NULL) keyword on DEFINE or REDEFINE DATA
PGAU statements is not supported.

COMPOPTS ('options') is optional. If omitted, the last options specified are retained. If
specified as a null string ('') then the last options specified are
removed. If a non-null value is specified, then the last options
specified are all replaced with the new options. The only option
currently supported is 'TRUNC(BIN)'. Note that the options must
be enclosed in apostrophes (') or quotes ("). TRUNC(BIN) is a
COBOL option that affects the way halfword and fullword binary
values are handled. Refer to "REDEFINE DATA Usage Notes:"
for further information on this option.

Chapter 2
PGAU Commands

2-22

Table 2-6 (Cont.) REDEFINE DATA Parameter Descriptions

Parameter Description

REMOTE_LANGUAGE
("nlsname")

is an optional parameter. The default value is
"american_america.we8ebcdic37c" or as overridden by the
NLS_LANGUAGE parameter of DEFINE TRANSACTION. It is an
Globalization Support name in the
language_territory.charset format. It specifies the
Globalization Support name in which the remote host data for the
specific character field being redefined is encoded. The field can
be single byte or multi-byte character data.

LOCAL_LANGUAGE
("nlsname")

is an optional parameter. The default value is initialized from the
LANGUAGE variable of the local Oracle database when the TIP
executes. It is an Globalization Support name in the
language_territory.charset format. It specifies the
Globalization Support name in which the local Oracle data for the
specific character field being redefined is encoded. The field can
be single byte or multi-byte character data.

LANGUAGE ("language") is a mandatory parameter if definition input is specified. It
specifies the name of the programming language in the supplied
definition. PGAU presently supports only COBOL.

(definition) is mutually exclusive with the INFILE parameter. It is an inline
description of the data. The description must be provided in
COBOL syntax. This inline description must begin with an
opening parenthesis and end with a closing parenthesis. The
opening parenthesis must be the last non-blank character on the
line and the COBOL data definition must start on a new line,
following the standard COBOL rules for column usage and
continuations. The closing parenthesis and terminating semicolon
must be on a separate line following the last line of the COBOL
data definition. If in COBOL, the specification is a COBOL data
item or structure, defined according to the rules for COBOL.
Margins are assumed to be standard, explicit or implicit
continuation is supported. Datanames containing invalid
characters (for example, "-") for PL/SQL use are translated to
their closest equivalent and truncated as required.

INFILE ("filespec") is mutually exclusive with the (definition) parameter. It
indicates that the definition is to be read from the operating
system file described by filespec, instead of an inline definition
described by (definition).

Note that "filespec" must be enclosed in double quotes.

Examples

Refer to "Sample PGAU REDEFINE DATA Statements" in Administration Utility Samples for
examples of REDEFINE commands.

REDEFINE DATA Usage Notes:

• Specification of either PLSDNAME, FIELD, or PLSFNAME allows redefinition of a single data
item's names while the (definition) parameter redefines the named data item's
content.

• The presence of FIELD denotes only a single data field (single PG DD row uniquely
identified by dname, fname, and version) is updated. The absence of FIELD denotes that

Chapter 2
PGAU Commands

2-23

multiple data fields (multiple PG DD rows identified by dname and version) are
updated or replaced by the definition input.

• REMOTE_LANGUAGE and LOCAL_LANGUAGE override the character sets used for
conversion of any individual SBCS, DBCS, or MBCS character data field.

• LANGUAGE (language) and (definition)|INFILE("filespec") are mandatory as
a group. If data definitions are to be supplied, then a LANGUAGE parameter must be
specified and then either the inline definition or INFILE must also be specified.

• The presence of (definition) | INFILE("filespec") denotes that multiple data
fields (those PG DD rows identified by dname and version) are updated or replaced
by the definition input. Fewer, equal, or greater numbers of fields might result from
the replacement.

• INFILE("filespec") is a platform-specific designation of a disk file.

• COMPOPTS ('TRUNC(BIN)') should be used only when the remote host transaction
was compiled using COBOL with the TRUNC(BIN) compiler option specified. When
this option is used, binary data items defined as PIC 9(4) or PIC S9(4) can
actually contain values with 5 digits, and binary data items defined as PIC 9(9) or
PIC S9(9) can actually contain values with 10 digits. Without COMPOPTS
('TRUNC(BIN)'), PGAU generates NUMBER(4,0) or NUMBER(9,0) fields for these
data items, resulting in possible truncation of the values. When COMPOPTS
('TRUNC(BIN)') is specified, PGAU generates NUMBER(5,0) or NUMBER(10, 0)
fields for these data items, avoiding any truncation of the values. Care must be
taken when writing the client application to ensure that invalid values are not sent
to the remote host transaction. For a PIC 9(4) the value must be within the range
0 to 32767, for a PIC S9(4) the value must be within the range -32767 to +32767,
for a PIC 9(9) the value must be within the range 0 to 2,147,483,647, and for a
PIC S9(9) the value must be within the range -2,147,483,647 to +2,147,483,647.
COBOL always reserves the high-order bit of binary fields for a sign, so the value
ranges for unsigned fields are limited to the absolute values of the value ranges for
signed fields. For further information, refer to the appropriate IBM COBOL
programming manuals.

• Refer to "USAGE(PASS)" in Datatype Conversions for information about how
PGAU converts COBOL statements.

• You must place ";" at the end of the command.

2.6.14 REM
Purpose

Comments can either be introduced by the REM command or started with the two-
character sequence /* and terminated with the two-character sequence */.

Use the REM command to start a Comment line.

Syntax

The REM command has the syntax:

REM Comment

Chapter 2
PGAU Commands

2-24

Parameters

Comment is any strings.

Examples

REM This is a Comment....

REM Usage Notes

You do not need to place ";" at the end of the command.

2.6.15 REPORT
Purpose

This command produces a report of selected data from the PG Data Dictionary. Selection
criteria might determine that:

• a single TRANSACTION, CALL, or DATA entity (with or without an explicit version) is reported,
or

• that all TRANSACTION, CALL, or DATA entities with a given name be reported or that all
entities in the PG DD be reported, or

• that all invalid TRANSACTIONs or CALLs and all unreferenced CALLs, or DATA entities be
reported.

Syntax

REPORT { { TRANSACTION tname | CALL cname | DATA dname } [VERSION(ver1...)]
 | ALL { TRANSACTIONS [tname] | CALLS [cname] | DATA [dname] } }
 [WITH { CALLS | DATA | DEBUG } ...]
 | ISOLATED;

Parameters

Table 2-7 describes the REPORT parameter:

Table 2-7 REPORT Parameters Descriptions

Parameter Description

TRANSACTION tname Reports the PG DD contents for the latest or selected versions of the
transaction tname.

CALL cname Reports the PG DD contents for the latest or selected versions of the
call cname.

DATA dname Reports the PG DD contents for the latest or selected versions of the
data dname.

VERSION(ver1,
[ver2 ...])

Reports selected versions of the indicated entry and is mutually
exclusive with ALL.

ALL TRANSACTIONS
[tname]

Reports the PG DD contents for all existing versions of every
transaction entry or optionally a specific transaction tname, and is
mutually exclusive with TRANSACTION.

Chapter 2
PGAU Commands

2-25

Table 2-7 (Cont.) REPORT Parameters Descriptions

Parameter Description

ALL CALLS [cname] Reports the PG DD contents for all existing versions of every call entry
or optionally a specific call cname, and is mutually exclusive with CALL.

ALL DATA [dname] Reports the PG DD contents for all existing versions of every data
entry or optionally a specific data dname, and is mutually exclusive with
DATA.

WITH CALLS Reports call entries associated with the specified transactions.

WITH DATA Reports data entries associated with the specified calls, and when
specified for transactions, implies WITH CALLS.

WITH DEBUG Reports PG DD column values for tran#, call#, parm#, data#, and
attr# as appropriate, depending on the type of items being reported.

This report is useful with TIPs generated with PG DD Diagnostic
references. Refer to the GENERATE DIAGNOSE PGEX(OR) option for
more information.

ISOLATED Mutually exclusive with all other parameters. All unreferenced CALL
and DATA entries are reported along with TRANSACTIONs that
reference missing CALLs and DATA and CALLs that reference missing
DATA.

REPORT Usage Notes:

• Report output is to the terminal and can be spooled, saved, and printed.

• Data reports are formatted according to their original compiler language, and
preceded by a PGAU DEFINE DATA command which defines the data to the PG
DD.

• CALL and TRANSACTION reports are formatted as PGAU DEFINE CALL or
TRANSACTION commands (also called "statements"), which effectively define the
entry to the PG DD.

• The following command reports the single most recent data definition specified by
data name dname, or optionally, for those specific versions given.

REPORT DATA dname;
REPORT DATA dname VERSION(version#1,version#2);

This command reports all data definitions specified by data name dname:

REPORT ALL DATA dname;
• The following command reports the single most recent call definitions specified by

call name cname, or optionally for those specific versions given.

REPORT CALL cname;
REPORT CALL cname VERSION(version#1,version#2) WITH DATA;

This command reports all call definitions specified by call name cname:

REPORT ALL CALLS cname WITH DATA;

This command reports all call definitions in the PG DD:

REPORT ALL CALLS WITH DATA;

Chapter 2
PGAU Commands

2-26

When WITH DATA is specified, all the data definitions associated with each selected call
are also reported. The data definitions precede each corresponding selected call in the
report output.

• The following command reports the single most recent transaction definitions specified by
transaction name tname, or optionally for those specific versions given.

REPORT TRANSACTION tname
REPORT TRANSACTION tname VERSION(version#1,version#2)
WITH DATA WITH CALLS;

This command reports all transaction definitions specified by transaction name tname:

REPORT ALL TRANSACTIONS tname WITH DATA WITH CALLS;

This command reports all transaction definitions in the PG DD:

REPORT ALL TRANSACTIONS WITH DATA WITH CALLS;

When WITH CALLS option is specified, all call definitions associated with each selected
transaction are also reported (the call definitions precede each corresponding selected
transaction in the report output).

When WITH DATA is specified, all the data definitions associated with each selected call
are also reported (the data definitions precede each corresponding selected call in the
report output).

For transaction reports, specification of WITH DATA implies specification of WITH CALL.

• The following command reports any unreferenced CALL or DATA definitions. It also reports
any TRANSACTION or CALL definitions that reference missing CALL or DATA definitions
respectively.

REPORT ISOLATED;
• The following command reports all definitions in the PG DD.

REPORT ALL;

Data definitions are reported, followed by their associated call definitions, followed by the
associated transaction definition.

This sequence is repeated for every defined call and transaction in the PG DD.

• You must place ";" at the end of the command.

2.6.16 SET
Parameters

Table 2-8 describes the SET parameters:

Table 2-8 SET Parameter Descriptions

Parameter Description

ARRAYSIZE [n] Sets the number of rows fetched at a time from the database. The
default is 20.

CHARWIDTH [n] Sets the column display width for CHAR data. If entered with no
argument, it returns the setting to 9, which is the default.

Chapter 2
PGAU Commands

2-27

Table 2-8 (Cont.) SET Parameter Descriptions

Parameter Description

DATEWIDTH Sets the column display width for DATE data. If entered with no
argument, it returns the setting to 9, which is the default.

ECHO {ON|OFF} Sets echoing of commands entered from command files to ON or OFF.
The default is OFF.

FETCHROWS [n] Sets the number of rows returned by a query. This is useful with
ordered queries for finding a certain number of items in a category, the
top ten items for example. It is also useful with unordered queries for
finding the first n records that satisfy a certain criteria.

LONGWIDTH [n] Sets the column display width for LONG data. If entered with no
argument, it returns the setting to 80, which is the default.

MAXDATA [n] Sets the maximum data size. It indicates the maximum data that can
be received in a single fetch during a SELECT command. The default is
20480 bytes (20K).

NUMWIDTH [n] Sets the column display width for NUMBER data. If entered with no
argument, it returns the setting to 10, which is the default.

SERVEROUTPUT {OFF|ON
[SIZE n|n]}

Sets debugging output from stored procedures that use DBMS_OUTPUT
PUT and PUT_LINE commands to ON or OFF. You can specify the size
in bytes of the message buffer using SIZE n. The size specified is the
total number of bytes of all messages sent that can be accumulated at
one time. The minimum is 2000 bytes. If the buffer fills before calls to
the get-message routines make room for additional message bytes, an
error is returned to the program sending the message. SERVEROUTPUT
with no parameters is the same as SERVEROUTPUT ON.

STOPONERROR {ON|OFF} Indicates whether execution of a command file should stop if an error
occurs. Specifying OFF disables STOPONERROR.

TERMOUT {ON|OFF} Enables or disables terminal output for SQL commands. It is useful for
preventing output to the terminal when spooling output to files. The
default is OFF, which disables terminal output.

TIMING {ON|OFF} Enables or disables display of parse, execute, and fetch times (both
CPU and elapsed) for each executed SQL statement. The default is
OFF, which disables the TIMING display.

Examples

PGAU> set arraysize 30

PGAU> set CHARWIDTH

SET Usage Notes

• You do not need to place ";" at the end of the command.

2.6.17 SHOW
Parameters

Table 2-9 describes the SHOW parameters:

Chapter 2
PGAU Commands

2-28

Table 2-9 SHOW Parameter Descriptions

Parameters Description

ALL Shows all valid SET parameters

ARRAYSIZE Shows the number of rows fetched at a time from the database.

CHARWIDTH Shows the column display width for CHAR data.

DATEWIDTH Shows the column display width for DATE data.

ECHO Shows echoing of commands entered from command files to ON or
OFF.

FETCHROWS Shows the number of rows returned by a query.

LONGWIDTH Shows the column display width for LONG data.

MAXDATA Shows the maximum data size.

NUMWIDTH Shows the column display width for NUMBER data.

SERVEROUTPUT Shows debugging output from stored procedures that use
DBMS_OUTPUT PUT and PUT_LINE commands.

STOPONERROR Indicates whether execution of a command file should stop if an error
occurs.

TERMOUT Shows whether the terminal output for SQL commands is enabled or
disabled.

TIMING Shows whether display of parse, execute, and fetch times (both CPU
and elapsed) for each executed SQL statement is enabled or disabled.

VAR Is the same as the PRINT command; in addition, it shows all variables
and their datatypes.

Examples

Note that when you issue a SET command, there will be no output if it is successful. If you
want to check whether your statement was executed successfully, issue a SHOW command like
the following:

PGAU> show arraysize
Arraysize 30

PGAU> show CHARWIDTH
Charwidth 80

PGAU> show all
Instance local
Spool OFF
Timing OFF
Termout ON
Echo OFF
Stoponerror OFF
Maxdata 20480
Arraysize 20
Fetchrows 100

Numwidth 10
Charwidth 80
Longwidth 80

Chapter 2
PGAU Commands

2-29

Datewidth 9
ServerOutput OFF

SHOW Usage Notes

• You do not need to place ";" at the end of the command.

2.6.18 SPOOL
Purpose

Use this command to specify a filename that captures PGAU output. All output is
directed to the terminal unless TERMOUT is off.

Syntax

The SPOOL command has the syntax:

SPOOL [filename|OFF]

Parameters

If a simple filename is specified, with no periods, then .log is appended to the
filename.

filename is where the output of your executed commands is placed.

Examples

SPOOL log.outfile
SPOOL out
SPOOL OFF

SPOOL Usage Notes

• You do not need to place ";" at the end of the command.

2.6.19 UNDEFINE CALL
Purpose

Use this command to remove an occurrence of the CALL definition from PG DD.

Syntax

UNDEFINE CALL cname [VERSion(callvers|ALL)];

Parameters

Table 2-10 describes the UNDEFINE CALL parameters:

Table 2-10 UNDEFINE CALL Parameter Descriptions

Parameter Description

CALL cname| A mandatory parameter. It specifies the name associated with the
item to be dropped; if no version is specified only the latest
(highest numbered) version is removed.

Chapter 2
PGAU Commands

2-30

Table 2-10 (Cont.) UNDEFINE CALL Parameter Descriptions

Parameter Description

VERSion({datavers|

callvers|
transvers|ALL})

An optional parameter. It specifies which singular version of a
definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
highest numbered version of the named definition is assumed if
VERSION is omitted.

Examples

Refer to "Sample PGAU UNDEFINE Statements" in Administration Utility Samples for
examples of UNDEFINE CALL commands.

UNDEFINE CALL Usage Notes:

• Removing definitions only prevents PL/SQL packages from being subsequently
generated. TIPs can still be recreated if the .pkh and .pkb specification files exist and
those previous TIPS can be invoked if they remain in the database of the Oracle
database. Whether such TIPs execute successfully depends on whether the
corresponding remote transaction programs are still active.

• Remove a CALL definition only after all TRANSACTIONs which reference it are removed. No
integrity checking is done.

• You must place ";" at the end of the command.

2.6.20 UNDEFINE DATA
Purpose

Use this command to remove an occurrence of the DATA definition in the PG Data Dictionary.

Syntax

UNDEFINE DATA dname [VERSion(datavers|ALL)];

Parameters

Table 2-11 describes the UNDEFINE DATA parameters:

Table 2-11 UNDEFINE DATA Parameter Descriptions

Parameter Description

DATA dname| A mandatory parameter. It specifies the name associated with the item
to be dropped. If no version is specified, only the latest (highest
numbered) version is removed.

VERSion({datavers|
callvers|
transvers|ALL})

An optional parameter. It specifies which singular version of a
definition is to be removed, or if ALL, then all definitions are removed,
for the given definition named. The default of the highest numbered
version of the named definition is assumed if VERSION is omitted.

Chapter 2
PGAU Commands

2-31

Examples

Refer to "Sample PGAU UNDEFINE Statements" in Administration Utility Samples for
examples of UNDEFINE DATA commands.

UNDEFINE DATA Usage Notes

• Removing definitions only prevents PL/SQL packages (TIPs) from being
subsequently generated. Previously generated TIPs can still be recreated if
the .pkh and .pkb specification files remain in existence. Previously created TIPs
can still be invoked if they remain in the database of the Oracle database. Whether
such TIPs execute successfully depends on whether the corresponding remote
transaction programs are still active.

• Remove a DATA definition only after all CALLs and all TRANSACTIONs which
reference it are removed. No integrity checking is done.

• You must place ";" at the end of the command.

2.6.21 UNDEFINE TRANSACTION
Purpose

This command removes an occurrence of the TRANSACTION definition in the PG Data
Dictionary.

Syntax

UNDEFINE TRANSACTION tname [VERSion(tranvers|ALL)];

Parameters

Table 2-12 describes the UNDEFINE TRANSACTION parameters:

Table 2-12 UNDEFINE TRANSACTION Parameter Descriptions

Parameter Description

TRANSACTION tname} Mandatory parameter. It specifies the name associated with the
item to be dropped. If no version is specified, only the latest
(highest numbered) version is removed.

VERSion({datavers|
callvers|
transvers|ALL})

Optional parameter. It specifies which singular version of a
definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
highest numbered version of the named definition is assumed if
VERSION is omitted.

Examples

Refer to "Sample PGAU UNDEFINE Statements" in Administration Utility Samples for
examples of UNDEFINE TRANSACTION commands.

UNDEFINE TRANSACTION Usage Notes

• Removing definitions only prevents PL/SQL packages from being subsequently
generated. TIPs can still be recreated if the .pkh and .pkb specification files

Chapter 2
PGAU Commands

2-32

remain in existence. Previously created TIPs can be invoked if they remain in the
database of the Oracle database. Whether such TIPs execute successfully depends on
whether the corresponding remote transaction programs are still active.

• A TRANSACTION definition can be removed at any time.

• You must place ";" at the end of the command.

2.6.22 VARIABLE
Purpose

Use this command to declare a bind variable for use in the current session with the EXECUTE
or PRINT command, or for use with a PL/SQL block.

Syntax

The VARIABLE command has the syntax:

VARIABLE name type

Parameters

Table 2-13 describes the VARIABLE parameters.

Table 2-13 VARIABLE Parameter Descriptions

Parameter Description

name Is a variable name.

type Is the variable datatype

Examples

VARIABLE balance NUMBER
VARIABLE emp_name VARCHAR2

VARIABLE Usage Notes

• You do not need to place ";" at the end of the command.

Chapter 2
PGAU Commands

2-33

3
Creating a TIP

This following sections show in detail how you can define, generate and compile a
Transaction Interface Package (TIP). It assumes that a remote host transaction program
(RTP) already exists. This transaction program has operational characteristics that dictate
how the TIP is defined and how the TIP is used by the client application.

• Granting Privileges for TIP Creators

• Evaluating the RHT

• Defining and Generating the TIP

• Compiling the TIP

• TIP Content Documentation (tipname.doc)

The following steps create a TIP for use with a remote host transaction (RHT):

• evaluating the RHT

• preparing the PGAU statements

• defining and generating the TIP

• compiling the TIP

3.1 Granting Privileges for TIP Creators
Every TIP developer requires access to the following PL/SQL packages, which are shipped
with the Oracle database:

For Microsoft Windows:

• DBMS_PIPE in %ORACLE_HOME%\rdbms\admin
• UTL_RAW in %ORACLE_HOME%\rdbms\admin
• UTL_PG in %ORACLE_HOME%\rdbms\admin
For UNIX based systems:

• DBMS_PIPE in $ORACLE_HOME/rdbms/admin
• UTL_RAW in $ORACLE_HOME/rdbms/admin
• UTL_PG in $ORACLE_HOME/rdbms/admin
If anyone other than user PGAADMIN will be developing TIPs, they will need explicit grants to
perform these operations. Refer to the "Optional Configuration Steps" section in the
configuration section appropriate to your communication protocol in the installation guides for
more information about private and public grants.

3-1

3.2 Evaluating the RHT
Follow the steps below to identify and become familiar with your remote host
transaction data exchanges.

1. Identify the Remote Host Transaction

2. PGAU DEFINE CALL Command

3. PGAU DEFINE DATA Command

4. PGAU DEFINE TRANSACTION Command on a Gateway Using SNA

5. PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP

6. Writing the PGAU Statements

7. Writing a PGAU Script File

3.2.1 Identify the Remote Host Transaction
You must first identify the RHT data exchange steps. These are the send and receive
calls embedded within the RHT program.

If your gateway is using the SNA communication protocol:

The RHT data exchange steps are identified under the following languages:

• You may use COBOL for:

– CICS

– IMS

• You may use IBM 370 Assembler for:

– CICS

– IMS

• You may use IBM REXX for:

– CICS

– IMS

– z/OS

If your gateway is using the TCP/IP communication protocol:

IMS is the only OLTP that is supported when the gateway is using TCP/IP support for
IMS Connect. The RHT programs must use embedded I/O PCB function calls. The
function is identified only under the COBOL and Assembler languages.

3.2.2 PGAU DEFINE CALL Command
Make a call list of every data exchange. This list dictates a series of PGAU DEFINE
CALL statements. Refer to "DEFINE CALL" in Procedural Gateway Administration
Utility for more information about this PGAU command.

The three important parameters that you will use for each call are:

Chapter 3
Evaluating the RHT

3-2

• cname: the name of the call definition to be created;

• dname: the name of the data structure to be exchanged; and

• whether it is send (OUT) or receive (IN)

RHT send corresponds to a TIP OUT and RHT receive corresponds to a TIP IN.

If your communication protocol is SNA: Refer to Flexible Call Sequence for more
information about PGAU DEFINE CALL commands.

If your communication protocol is TCP/IP: Refer to Flexible Call Sequence for more
information about PGAU DEFINE CALL commands.

PGAU call entries are only defined once, so eliminate any duplicates.

This call list defines the TIP function calls, not the order in which they are used. Note that the
order in which each call is made is a behavior of the transaction and dictates the order of
calls made by the high-level application to the TIP, which then calls the RHT through the
Database Gateway server. While this calling sequence is critical to maintaining the
synchronization between the application and the RHT, the TIP is only an access method for
the application and has no knowledge of higher level sequencing of calls.

3.2.3 PGAU DEFINE DATA Command
For each call in the RHT call list, identify the RHT data structures being sent or received in
the call buffers.

Make a data list of every such structure. This list dictates a series of PGAU DEFINE DATA
statements.

The two important parameters that you will use for DEFINE DATA are:

• dname: the name of the data definition to be created; and

• dname.ext: the file in which the data definition is stored.

PGAU data entries are only defined once, so eliminate any duplicates.

Note:

Move COBOL record layouts (copybooks) to the gateway system.

PGAU can use copybooks as input when defining the data items. Once you have
identified the data items to be exchanged, use a file transfer program to download
the copybooks to the gateway system. The copybooks are later used to define the
data items. The sample copybook used in the example is documented in
Administration Utility Samples.

3.2.4 PGAU DEFINE TRANSACTION Command on a Gateway Using SNA
Determine the network address information for the RHT program. Your network or OLTP
system programmer can provide you with this information.

The five important parameters that you will use for PGAU DEFINE TRANSACTION are:

• Side Profile name

Chapter 3
Evaluating the RHT

3-3

• TP name

• LU name

• LOGMODE
• SYNCLEVEL
You must also identify the Globalization Support character set (charset) for the
language in which the OLTP expects the data.

At this point, if your gateway is using SNA, then proceed to Writing the PGAU
Statements.

3.2.5 PGAU DEFINE TRANSACTION Command on a Gateway Using
TCP/IP

Before you use this command, you will need to know the IMS Connect hostname (or
TCP/IP address), port number and the other IMS Connect parameters that are defined
as columns within the PGA_TCP_IMSC table. Refer to PG4TCPMAP Commands (TCP/IP
Only) for complete information about preparation for mapping parameters to TCP/IP
using the pg4tcpmap tool.

When you run the pg4tcpmap tool you need to specify a unique name (Side Profile
Name). That name must be the same name that you are using here to create your TIP.

If you are converting your gateway from the SNA to a TCP/IP communications
protocol to invoke IMS transactions, then you need to regenerate the TIPs.

Refer to Procedural Gateway Administration Utility for details.

3.2.6 Writing the PGAU Statements
After evaluating the RHT, define the TIP to PGAU for placement in the PG DD.

1. Write a DEFINE DATA statement for each entry in your data list. If, for example, your
RHT had three different data structures, your data definitions might be:

DEFINE DATA dname1 LANGUAGE(IBMVSCOBOLII) INFILE(dnamel.ext);
DEFINE DATA dname2 LANGUAGE(IBMVSCOBOLII) INFILE(dname2.ext);
DEFINE DATA dname3 LANGUAGE(IBMVSCOBOLII) INFILE(dname3.ext);

Then you must copy or transfer the source file containing these data definitions to
the directory where PGAU can read them as input.

2. Write a DEFINE CALL statement for each entry in your call list. If, for example, your
RHT had a receive send receive send sequence, your call definitions would be:

DEFINE CALL cname1 PARMS((dnamel IN));
DEFINE CALL cname2 PARMS((dname2 OUT));
DEFINE CALL cname3 PARMS((dname3 IN));
DEFINE CALL cname4 PARMS((dname2 OUT));

Chapter 3
Evaluating the RHT

3-4

Note:

Optionally, you can rewrite your call definitions to consolidate the data
transmission into fewer exchanges, as long as you do not alter the data
transmission sequence. For example:

DEFINE CALL cname1 PARMS((dname1 IN),
(dname2 OUT));
DEFINE CALL cname3 PARMS((dname3 IN),
(dname2 OUT));
This reduces the calls between the application and the TIP from four calls to
two calls passing an IN and OUT parameter on each call. Because TIPs always
process IN parameters before OUT parameters, the data transmission sequence
is unchanged. However, this consolidation is not always possible.

If your communication protocol is SNA: Refer to Flexible Call Sequence for
more information about PGAU DEFINE CALL commands.

If your communication protocol is TCP/IP: Refer to Flexible Call Sequence
for more information about PGAU DEFINE CALL commands.

3. Write a DEFINE TRANSACTION statement that contains every call, specifying the network
address and Globalization Support information:

DEFINE TRANSACTION tname CALLS(cname1
 cname2,
 cnameN)
 ENVIRONMENT(IBM370)
 SIDEPROF(profname) |
 TPNAME(tpid) LUNAME(luname) LOGMODE(mode)
 SYNCLEVEL(n)
 NLS_LANGUAGE(charset);

4. You can add a GENERATE statement to create the TIP specification:

GENERATE tname

Note:

You can also add a REPORT statement to list the PG DD entries for tname:

REPORT TRANSACTION tname with CALLS with DATA;
Also annotate the script with Comments:

REM this is a Comment

3.2.7 Writing a PGAU Script File
The previous section describes the steps you need to follow in order to execute PGAU
statements via your PGAU command line processor. As a time saving measure, you can
choose to write all of the statements (DEFINE DATA, DEFINE CALL and DEFINE TRANSACTION)
into a single PGAU script file named tname.ctl, in the following order:

Chapter 3
Evaluating the RHT

3-5

1. define data

2. define call

3. define transaction

4. generate

Note:

Because you will probably run this script more than once, you should
include UNDEFINE statements first to remove any previous entries in the
PG DD.

This is an example of a tname.ctl PGAU script file:

UNDEFINE TRANSACTION tname Version(all);
UNDEFINE CALL cname1 Version(all);
UNDEFINE CALL cname2 Version(all);
UNDEFINE DATA dname1 Version(all);
UNDEFINE DATA dname2 Version(all);
UNDEFINE DATA dname3 Version(all);
DEFINE DATA dname1 LANGUAGE(IBMVSCOBOLII) INFILE(dnamel.ext);
DEFINE DATA dname2 LANGUAGE(IBMVSCOBOLII) INFILE(dname2.ext);
DEFINE DATA dname3 LANGUAGE(IBMVSCOBOLII) INFILE(dname3.ext);
DEFINE CALL cname1 PARMS(dname1 IN),
 (dname2 OUT));
DEFINE CALL cname2 PARMS(dname3 IN),
 (dname2 OUT));
DEFINE TRANSACTION tname CALLS(cname1,
 cname2,
 cnameN)
 ENVIRONMENT(IBM370)
 SIDEPROF(profname) |
 TPNAME(tpid) LUNAME(luname) LOGMODE(mode)
 SYNCLEVEL(n)
 NLS_LANGUAGE(charset);
Generate tname

3.3 Defining and Generating the TIP
After you have created your control file, use PGAU to create the PG DD entries and
the TIP specification files.

Note:

The user ID under which you run PGAU must have:

• write access to output the specification files (pgau.pkh, pgau.pkb, and
pgau.doc), where pgau is the default name; and

• read access to the data definition source files (dname.ext), where
dname.ext will be specified in PGAU DEFINE DATA statement(s).

Chapter 3
Defining and Generating the TIP

3-6

Invoke PGAU against your PG DD stored in the Oracle Database Gateway for APPC
Administrator's user ID:

For Microsoft Windows:

C:\> pgau
PGAU> connect pgaadmin\pw@database_specification_string

For UNIX based systems:

$ pgau
PGAU> connect pgaadmin/pw@database_specification_string

Issue the following commands:

PGAU> set echo on
PGAU> spool tname.def
PGAU> @tname.ctl
PGAU> spool off

The TIP is now ready to be compiled. By default, the GENERATE statement writes your TIP
specifications to the following output files in your current directory:

pgau.pkh (TIP Header)
pgau.pkb (TIP Body)
pgau.doc (TIP content documentation)

Note:

You can optionally add spool and echo to your script (tname.ctl) or make other
enhancements, such as using PG DD roles and the PGAU GROUP statement for
shared PG DDs.

• If your gateway is using SNA: Refer to Client Application Development (SNA
Only) for more information.

• If your gateway is using TCP/IP support for IMS Connect: Refer to Client
Application Development (TCP/IP Only) for more information.

3.4 Compiling the TIP
Exit PGAU. Remain in your current directory and invoke SQL*Plus.

For Microsoft Windows:

C:\> sqlplus userid/pw@database_specification_string
SQL> set echo on
SQL> @pgau.pkh
SQL> @pgau.pkb

For UNIX based systems:

$ sqlplus userid/pw@database_specification_string
SQL> set echo on
SQL> @pgau.pkh
SQL> @pgau.pkb

Chapter 3
Compiling the TIP

3-7

The last two commands compile the TIP specification and body, respectively.

You have now compiled a TIP which can be called by your client application. If your
client application is already written you can begin testing.

For more information about designing your client application and compiling a TIP, refer
to Introduction to Oracle Database Gateway for APPC and Tip Internals.

If your gateway is using SNA: Refer to Client Application Development (SNA Only)
for information about PGAU statement syntax and usage.

If your gateway is using TCP/IP support for IMS Connect: Refer to Client
Application Development (TCP/IP Only) for information about PGAU statement syntax
and usage.

3.5 TIP Content Documentation (tipname.doc)
This section discusses the TIP documentation file that is produced when the user
issues a PGAU GENERATE command. This TIP content file describes the function calls
and PL/SQL variables and datatypes available in the TIP.

PGAU GENERATE always produces a TIP content file named tipname.doc. The filename
is the name of the transaction that was specified in the PGAU GENERATE command,
and the filetype is always .doc. This TIP content file contains the following sections:

• GENERATION Status

This section contains the status under which the TIP is generated.

• TIP Transaction

This section identifies the defined transaction attributes. These result from the
PGAU DEFINE TRANSACTION definition.

• TIP Default Calls

This section identifies the syntax of the calls made by the user's application to
initialize and terminate the transaction. PGAU generates these calls into every TIP
regardless of how the TIP or transaction is defined.

• TIP User Calls

This section identifies the syntax of the calls which the user defines for the
application to interact with the transaction.

• TIP User Declarations

This section identifies the TIP package public datatype declarations, implied by the
user's data definition specified in each call parameter.

• TIP User Variables

This section contains TIP variables that can be referred to by applications or
referenced by applications.

Chapter 3
TIP Content Documentation (tipname.doc)

3-8

4
Developing Client Application (SNA Only)

The following sections discuss how you will call a TIP and control a remote host transaction.
It also provides you with the steps for preparing and executing a gateway transaction. The
following assumptions are made:

• a remote host transaction (RHT) has already been written

• a TIP corresponding to the RHT has already been defined using the steps described in
Creating a TIP

Note:

If your gateway uses the TCP/IP support for IMS Connect, refer to Client
Application Development (TCP/IP Only) for information about calling a TIP and
controlling a remote host transaction.

Topics:

• Overview of Client Application

• Preparing the Client Application

• Understanding the Remote Host Transaction Requirements

• Customized TIPs for Each Remote Host Transaction

• Client Application Requirements

• Ensuring TIP and Remote Transaction Program Correspondence

• Calling the TIP from the Client Application

• Exchanging Data

• Executing the Application

• APPC Conversation Sharing

• Application Development with Multi-Byte Character Set Support

• Modifying a Terminal-Oriented Transaction to Use APPC

• Privileges Needed to Use TIPs

4.1 Overview of Client Application
The Procedural Gateway Administration Utility (PGAU) generates a complete TIP using
definitions you provide. The client application can then call the TIP to access the remote host
transaction. Procedural Gateway Administration Utility , discusses the use of PGAU in detail.

This overview explains what you must do in order to call a TIP and control a remote host
transaction.

4-1

The gateway receives PL/SQL calls from the Oracle database and issues APPC calls
to communicate with a remote transaction program. The following three application
programs make this possible:

• an APPC-enabled remote host transaction program

• a Transaction Interface Package, or TIP. A TIP is a PL/SQL package that handles
communication between the client and the gateway and performs datatype
conversions between COBOL and PL/SQL.

PGAU generates the TIP specification for you. In the shipped samples, the PGAU-
generated package is called pgadb2i.pkb. This generated TIP includes at least
three function calls that map to the remote transaction program:

– pgadb2i_init initializes the conversation with the remote transaction program

– pgadb2i_main exchanges application data with the remote transaction
program

– pgadb2i_term terminates the conversation with the remote transaction
program

Refer to Tip Internals for more information about TIPs, if you are writing your own
TIP or debugging.

• a client application that calls the TIP.

The client application calls the three TIP functions with input and output
arguments. In the example, the client application passes empno, an employee
number to the remote transaction and the remote transaction sends back emprec
an employee record.

Table 4-1 demonstrates the logic flow between the PL/SQL driver, the TIP, and the
gateway using the example CICS-DB2 transaction.

Table 4-1 Logic Flow of CICS-DB2 Example

Client Application Oracle TIP Procedures Established Between the
Gateway and the Remote Transaction
(mainframe)

calls tip_init Calls PGAINIT Gateway sets up control blocks and issues
APPC ALLOCATE. Mainframe program
initiates.

calls tip_main Calls PGAXFER to send
empno and receive emprec

Gateway issues APPC SEND to the
mainframe. Mainframe RECEIVE
completes. Mainframe performs
application logic and issues APPC SEND
back to gateway. The gateway- issues
APPC RECEIVE; receive completes.
Mainframe issues APPC TERM.

calls tip_term Call PGATERM Gateway cleans up control blocks.

A client application which utilizes the gateway to exchange data with a remote host
transaction performs some tasks for itself and instructs the TIP to perform other tasks
on its behalf. The client application designer must consequently know the behavior of
the remote transaction and how the TIP facilitates the exchange.

The following sections provide an overview of remote host transaction behavior, how
this behavior is controlled by the client application and how TIP function calls and data

Chapter 4
Overview of Client Application

4-2

declarations support the client application to control the remote host transaction. These
sections also provide background information about what the TIP does for the client
application and how the TIP calls exchange data with the remote host transaction.

4.2 Preparing the Client Application
To prepare the client application for execution you must understand the remote host
transaction requirements and then perform these steps:

1. Move relevant COBOL records layout (copybooks) to the gateway system for input to
PGAU.

2. Describe the remote host transaction data and calls to the PG Data Dictionary (PG DD)
with DEFINE DATA, DEFINE CALL, and DEFINE TRANSACTION statements.

3. Generate the TIP in the Oracle database, using GENERATE.

4. Create the client application that calls the TIP public functions.

5. Grant privileges on the newly created package.

4.3 Understanding the Remote Host Transaction Requirements
Browse through the remote host transaction program (RTP) to determine:

• the PL/SQL parameters required on the various client application to TIP calls

• the order in which the calls are made

Identify the remote host transaction program (RTP) facilities to be called and the data to be
exchanged on each call. You will then define the following, and store them in the PG DD:

• DEFINE DATA
• DEFINE CALL
• DEFINE TRANSACTION
Refer to Creating a TIP for specific definition steps and for the actual creation and generation
of a TIP.

4.3.1 TIP Content and Purpose
The content of a PGAU-generated TIP reflects the calls available to the remote host
transaction and the data that has been exchanged. Understanding this content helps when
designing and debugging client applications that call the TIP.

A TIP is a PL/SQL package, and accordingly has two sections:

• A Package Specification containing:

– Public function prototypes and parameters, and

• A Package Body containing:

– Private functions and internal control variables

– Public functions

– Package initialization following the last public function.

Chapter 4
Preparing the Client Application

4-3

The purpose of the TIP is to provide a PL/SQL callable public function for every
allowed remote transaction program interaction. A remote transaction program
interaction is a logically related group of data exchanges through one or more PGAXFER
RPC calls. This is conceptually similar to a screen or menu interaction in which several
fields are filled in, the enter key is pressed, and several fields are returned to the user.
Carrying the analogy further:

• the user might be likened to the TIP or client application

• fields to be filled in are IN parameters on the TIP function call

• fields returned are OUT parameters on the TIP function call

• screen or menu is the group of IN and OUT parameters combined

• a pressed enter key is likened to the PGAXFER remote procedural call (RPC)

The actual grouping of parameters that constitute a transaction call is defined by the
user. The gateway places no restrictions on how a remote transaction program might
correspond to a collection of TIP function calls, each call having many IN and OUT
parameters.

PGA users typically have one TIP per remote transaction program. How the TIP
function calls are grouped and what data parameters are exchanged on each call
depends on the size, complexity and behavior of the remote transaction program.

Refer to Oracle's Oracle Database PL/SQL Language Reference for a discussion of
how PL/SQL packages work. The following discussion covers the logic that must be
performed within a TIP. Refer to the sample TIP and driver supplied in the
%ORACLE_HOME%\dg4appc\demo\CICS directory for Microsoft Windows
or $ORACLE_HOME/dg4appc/demo/CICS directory for UNIX based systems, in files
pgadb2i.pkh, pgadb2i.pkb, and pgadb2id.sql.

4.3.2 Remote Host Transaction Types
From a database gateway application perspective, there are three main types of
remote host transactions:

• one-shot

• persistent

• multi-conversational

4.3.2.1 One-Shot Transactions
A simple remote transaction program which receives one employee number and
returns the employee record could have a TIP which provides one call, passing the
employee number as an IN parameter and returning the employee record as an OUT
parameter. An additional two function calls must be provided by this and every TIP:

• a remote transaction program init function call

• a remote transaction program terminate function call

The most simple TIP has three public functions, such as tip_init, tip_main, and
tip_term.

Chapter 4
Understanding the Remote Host Transaction Requirements

4-4

The client application calls tip_init, tip_main, and tip_term in succession. The
corresponding activity at the remote site is remote transaction program start, data exchange,
and remote transaction program end.

The remote transaction program might even terminate itself before receiving a terminate
signal from the gateway. This sequence is usual and is handled normally by gateway logic.
This kind of remote transaction program is termed one-shot.

4.3.2.2 Persistent Transactions
A more complex remote transaction program has two modes of behavior: an INQUIRY or
reporting mode, and an UPDATE mode. These modes can have two TIP data transfer function
calls: one for INQUIRY and one for UPDATE. Such a TIP might have five public functions. For
example:

• tip_init
This initializes communications with the remote transaction program.

• tip_mode
This accepts a mode selection parameter and puts the transaction program into either
inquiry or update mode.

• tip_inqr
This returns an employee record for a given employee number.

• tip_updt
This accepts an employee record for a given employee number.

• tip_term
This terminates communications with the remote transaction program.

The client application calls tip_init and then tip_mode to place the remote transaction
program in inquiry mode which then scans employee records, searching for some
combination of attributes (known to the client application and end-user). Some parameter on
an inquiry call is then set to signal a change to update mode and the client application calls
tip_updt to update some record. The client application finally calls tip_term to terminate the
remote transaction program.

The corresponding activity at the remote site is:

• remote transaction program start

• mode selection exchange

• loop reading records

• switch to update mode

• update one record

• remote transaction program end

Such a remote transaction program is called persistent because it interacts until it is signalled
to terminate.

The remote transaction program can be written to permit a return to inquiry mode and repeat
the entire process indefinitely.

Chapter 4
Understanding the Remote Host Transaction Requirements

4-5

4.3.2.3 Multi-Conversational Transactions
A client application might need to get information from one transaction, tran_A, and
subsequently write or lookup information from another, tran_B. This is possible with a
properly written client application and TIPs for tran_A and tran_B. In fact, any number
of transactions might be concurrently controlled by a single client application. All
transactions could be read-only, with the client application retrieving data from each
and consolidating it into a local Oracle database or displaying it in an Oracle Form.

Alternatively, a transaction could be capable of operating in different modes or
performing different services depending on what input selections were supplied by the
client application. For example, one instance of tran_C can perform one service while
a second instance of tran_C performs a second service. Each instance of tran_C
would have its own unique conversation with the client application and each instance
could have its own behavior (one-shot or persistent) depending on the nature of the
service being performed.

4.4 Customized TIPs for Each Remote Host Transaction
Each remote host system might have hundreds of remote transaction programs
(RTPs) which a user might want to call. Each remote transaction program is different,
passes different data, and performs different functions. The interface between the user
and each remote transaction program must consequently be specialized and
customized to the user's requirements for each remote transaction program. The
Transaction Interface Package provides this customized interface.

Example

Assume that the remote site has a transaction program which manages employee
information in an employee database or other file system. The remote transaction
program's name, in the remote host, is EMPT for Employee Tracking. EMPT provides
both inquiry and update facilities, and different Oracle users are required to access
and use these EMPT facilities.

Some users might be restricted to inquiry-only use of EMPT, while others might have
update requirements. In support of the Oracle users' client applications, at least three
possible TIPs could exist:

1. EMP_MGMT to provide access to all facilities of the EMPT remote transaction program.

2. EMP_UPDT to access only the update functions of the EMPT remote transaction
program.

3. EMP_INQR to access only the lookup functions of the EMPT remote transaction
program.

End-user access to these TIPs is controlled by Oracle privileges. Additional security
might be imposed on the end-user by the remote host.

Each TIP also has encoded within it the name of the remote transaction program
(EMPT) and network information sufficient to establish an APPC conversation with EMPT.

Chapter 4
Customized TIPs for Each Remote Host Transaction

4-6

4.5 Client Application Requirements
Using the TIP, the client application must correspond with and control the remote host
transaction. This involves:

• client application initialization

• user input and output

• remote host transaction initialization using the TIP initialization functions (with and without
overrides)

• remote host transaction control and data exchange using the TIP user functions

• remote host transaction termination using the TIP termination function

The preceding three steps vary, based on the requirements of the remote host
transaction.

• exception handling

• client application termination

One-shot remote host transaction client applications must:

• Declare RHT/TIP datatypes to be exchanged. All client applications must declare
variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such
variables have already been defined in the TIP corresponding to each RHT and the client
application need only reference the TIP datatype in its declaration. Refer also to
"Declaring TIP Variables" for more information. Also refer to the TIP content
documentation file for the specific TIP/RHT for more information about the exact usage of
these variables.

• Initialize the RHT using the TIP initialization function. The TIP directs the gateway server
to initialize a conversation with the desired RHT, specifying either default RHT identifying
parameters (supplied when the RHT was defined in the PG DD and encoded within the
TIP when it was generated) or override RHT identifying parameters supplied by the user
or client application when the TIP initialization function is called. Refer to "Initializing the
Conversation" and "Overriding TIP Initializations" for more details.

• Exchange data with the RHT using the TIP user function (one call). As previously
discussed, a one-shot remote host transaction only accommodates a single data
exchange and upon completion of that exchange, the RHT terminates on its own. The
client application consequently needs only to execute a single call to the user-defined TIP
function to cause the data exchange.

Refer to the TIP content documentation file in %ORACLE_HOME%\dg4appc\demo\CICS\ on
Microsoft Windows or $ORACLE_HOME/dg4appc/demo/CICS/ on UNIX based systems, for
the specific TIP/RHT for the exact syntax of this call.

The client application should initialize values into IN or IN OUT parameter values before
calling the TIP function call. These are the same variables that were declared above,
when you declared the RHT/TIP datatypes to be exchanged.

All TIP function calls return a 0 return code value and all returned user gateway data
values are exchanged in the function parameters. Any exception conditions are raised as
required and can be intercepted in an exception handler.

Chapter 4
Client Application Requirements

4-7

Upon return from the TIP function call, the client application can analyze and
operate on the IN OUT or OUT parameter values. These are the same variables that
were declared above, when you declared the RHT/TIP datatypes to be
exchanged.

Refer to Datatype Conversions for details about how TIPs convert the various
types and formats of remote host data.

• Terminate the RHT using the TIP termination function. Regardless of the type of
RHT being accessed, the TIP terminate function should be called to clean up and
terminate the conversation with the RHT. Conversations with one-shot RHTs can
be terminated from the gateway server before the RHT terminates. The TIP must
perform its cleanup as well. Cleanup is only performed at the termination request
of the client application.

The client application can request a normal or an aborted termination.

Refer to "Terminating the Conversation" for more information.

Persistent remote host transaction client applications must:

• Declare RHT/TIP datatypes to be exchanged. All client applications must declare
variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such
variables have already been defined in the TIP corresponding to each RHT; the
client application need only reference the TIP datatype in its declaration. Refer to
"Declaring TIP Variables" for more information. Refer also to the TIP content
documentation file for the specific TIP/RHT for more information about the exact
usage of these variables.

• Initialize the RHT using the TIP initialization function. The TIP directs the gateway
server to initialize a conversation with the desired RHT, specifying either default
RHT identifying parameters (supplied when the RHT was defined in the PG DD
and encoded within the TIP when it was generated) or override RHT identifying
parameters supplied by the user or client application when the TIP initialization
function is called. Refer to "Initializing the Conversation" and "Overriding TIP
Initializations" for more details.

• Repetitively exchange data with RHT using the TIP user function(s). Remote host
transactions that provide or require ongoing or repetitive control sequences should
be controlled by the client application in the same manner that the RHT would be
operated by an interactive user or other control program. The intercession of the
TIP and gateway server does not alter the RHT behavior; instead, it extends
control of that behavior to the client application using the various function calls
defined in the TIP.

A persistent RHT can be controlled with one or more TIP function calls. The RHT
might be designed, for example, to loop and return output for every input until the
conversation is explicitly terminated. Or it could have been designed to accept as
input a count or list of operations to perform and return the results in multiple
exchanges for which the TIP function has only OUT parameters.

A persistent RHT can also be interactive, each output being specified by a
previous input selection and ending only when the conversation has been explicitly
terminated by the client application.

The TIP function calls available to the client applications and their specific syntax
is documented in the TIP Content documentation file for the specific TIP/RHT.

The manner in which the RHT interprets the TIP IN parameters and returns TIP
OUT parameters must be determined from the RHT or explained by the RHT

Chapter 4
Client Application Requirements

4-8

programmer. The TIP provides the function calls and the exchanged parameter datatypes
to facilitate the client application's control of the RHT and imposes no limitations or
preconditions on the sequence of operations the RHT is directed to perform. The TIP
provides the client application with the calls and data parameters the RHT was defined to
accept in the PG DD.

• Terminate the RHT using the TIP termination function. Regardless of the type of RHT
being accessed, the TIP terminate function should be called to clean up and terminate
the conversation with the RHT. Conversations with persistent RHTs can be terminated
from the gateway server before the RHT terminates, or the RHT might have already
terminated. The TIP must perform its cleanup as well and this cleanup is only performed
at the termination request of the client application.

The client application can request a normal or an aborted termination.

Refer to "Terminating the Conversation" for more information.

Multi-conversational remote host transaction client applications must:

• Declare RHT/TIP datatypes to be exchanged. All client applications must declare
variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such
variables have already been defined in the TIP corresponding to each RHT, and the client
application need only reference the TIP datatype in its declaration. Refer to "Declaring
TIP Variables" for more information. Also refer to the TIP content documentation file for
the specific TIP/RHT for more information about the exact usage of these variables.

• Initialize each RHT involved, using the TIP initializing function. A specific customized TIP
exists for each RHT as defined in the PG DD. Client applications that control multiple
RHTs are multi-conversational and must start each RHT and its associated conversation.
This is done by calling each TIP initialization function as before; but multiple TIPs are
initialized.

If a single RHT is designed to perform multiple services for one or more callers and if the
client application is designed to use this RHT, the TIP corresponding to that RHT can be
initialized multiple times by the client application.

The client application subsequently distinguishes from active RHTs under its control
using:

– TIP schema tipname.callname when multiple TIP/RHTs are being controlled. By
encoding the same TIP schema name on TIP user calls, the client application
specifies to which RHT the call is being made.

– tranuse IN OUT parameter value when multiple instances of the same TIP/RHT are
being controlled. This is the value returned on the TIP initialization function call and
subsequently passed as an IN parameter on the user-defined TIP function calls. The
returned tranuse value corresponds to that conversation connected to a given
instance of an RHT. By supplying the same tranuse value on TIP user calls, the
client application specifies to which RHT instance the given RHT call is being made.

Client application logic must keep track of which RHTs have been started and which TIPs
and tranuse values correspond to started RHTs.

• Exchange data with each RHT, using the TIP user function(s), either once or repetitively if
the RHT is one-shot or persistent. Client application logic must sequence the RHTs
though their allowed steps in accordance with proper RHT operation, as does a user
operating the RHTs interactively.

Client application logic must also perform any cross-RHT result analysis or data transfer
that might be required. All TIPs execute in isolation from each other.

Chapter 4
Client Application Requirements

4-9

Output from one RHT intended as input to another RHT must be received in the
client application as an IN or IN OUT parameter from the first RHT and sent as an
IN or IN OUT parameter from the client application to the second RHT. All TIP-to-
RHT function calls must be performed by the client application and data
parameters exchanged must have been declared as variables by the client
application. The TIPs provide both the required datatype definitions and the RHT
function calls for the client application.

Refer to the TIP content documentation file for each specific TIP/RHT for the exact
syntax of the TIP function calls and definitions of the parameter datatypes
exchanged.

• Terminate each initialized RHT, using the TIP termination function. To terminate an
RHT, its corresponding TIP termination function must be called to terminate the
RHT and its conversation and to initiate TIP cleanup. The RHT to be terminated is
specified by its TIP schema name (the same schema as for its data exchange
function calls) and the tranuse value when multiple instances of the same RHT
are being terminated.

RHTs and their corresponding TIPs can be terminated in any sequence desired by
the client application and do not have to be terminated in the same order in which
they are initialized.

Note:

The specific syntax of the various TIP data exchange variables function
calls is the same as was previously defined in the PG DD for the
particular RHT and can be researched by examining the TIP content
documentation file (tipname.doc) or the TIP specification file produced
when the TIP was generated. If a TIP has not yet been generated for the
RHT being accessed, refer to Creating a TIP, and "DATA
Correspondence", "CALL Correspondence", and "TRANSACTION
Correspondence" for more information. It is preferable to define and
generate the TIP first, however, so that the client application reference
documentation is available to you when needed.

4.6 Ensuring TIP and Remote Transaction Program
Correspondence

A remote host transaction program and its related TIP with client application must
correspond on two key requirements:

• Parameter datatype conversion, which results from the way in which transaction
DATA is defined. Refer to Datatype Conversions for a discussion of how PGAU-
generated TIPs convert data based on the data definitions.

• APPC send/receive synchronization, which results from the way in which
transaction CALLs are defined

These DATA and CALL definitions are then included by reference in a TRANSACTION
definition.

Chapter 4
Ensuring TIP and Remote Transaction Program Correspondence

4-10

4.6.1 DATA Correspondence
Using data definitions programmed in the language of the remote host transaction, the PGAU
DEFINE DATA command stores in the PG DD the information needed for PGAU GENERATE to
create the TIP function logic to perform:

• all data conversion from PL/SQL IN parameters supplied by the receiving remote host
transaction

• all buffering into the format expected by the receiving remote host transaction

• all data unbuffering from the format supplied by the sending remote host transaction

• all data conversion to PL/SQL OUT parameters supplied by the sending remote host
transaction

PGAU determines the information needed to generate the conversion and buffering logic from
the data definitions included in the remote host transaction program. PGAU DEFINE DATA
reads this information from files, such as COBOL copy books, or in-stream from scripts and
saves it in the PG DD for repeated use. The gateway Administrator needs to transfer these
definition files from the remote host to the Oracle host where PGAU runs.

From the data definitions stored in the PG DD, PGAU GENERATE determines the remote host
datatype and matches it to an appropriate PL/SQL datatype. It also determines data lengths
and offsets within records and buffers and generates the needed PL/SQL logic into the TIP.
Refer to the PGAU "DEFINE DATA" statement in Procedural Gateway Administration Utility
and "Sample PGAU DEFINE DATA Statements" in Administration Utility Samples for more
information.

All data that are referenced as parameters by subsequent calls must first be defined using
PGAU DEFINE DATA. Simple data items, such as single numbers or character strings, and
complex multi-field data aggregates, such as records or structures, can be defined. PGAU
automatically generates equivalent PL/SQL variables and records of fields or tables for the
client application to reference in its calls to the generated TIP.

As discussed, a parameter might be a simple data item, such as an employee number, or a
complex item, such as an employee record. PGAU DEFINE DATA automatically extracts the
datatype information it needs from the input program data definition files.

In this example, empno and emprec are the arguments to be exchanged.

pgadb2i_main(trannum,empno,emprec)

A PGAU DEFINE DATA statement must therefore be issued for each of these parameters:

DEFINE DATA EMPNO
 PLSDNAME (EMPNO)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 (
 01 EMP-NO PIC X(6).
);

DEFINE DATA EMPREC
 PLSDNAME (DCLEMP)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 INFILE("emp.cob");

Chapter 4
Ensuring TIP and Remote Transaction Program Correspondence

4-11

Note that a definition is not required for the trannum argument. This is the APPC
conversation identifier and does not require a definition in PGAU.

4.6.2 CALL Correspondence
The requirement to synchronize APPC SENDs and RECEIVEs means that when the
remote transaction program expects data parameters to be input, it issues APPC
RECEIVEs to read the data parameters. Accordingly, the TIP must cause the gateway to
issue APPC SENDs to write the data parameters to the remote transaction program.
The TIP must also cause the gateway to issue APPC RECEIVEs when the remote
transaction program issues APPC SENDs.

The PGAU DEFINE CALL statement specifies how the generated TIP is to be called by
the client application and which data parameters are to be exchanged with the remote
host transaction for that call. Each PGAU DEFINE CALL statement might specify the
name of the TIP function, one or more data parameters, and the IN/OUT mode of each
data parameter. Data parameters must have been previously defined with PGAU
DEFINE DATA statements. Refer to "DEFINE CALL" in Procedural Gateway
Administration Utility and "Sample PGAU DEFINE CALL Statements" in Administration
Utility Samples for more information.

PGAU DEFINE CALL processing stores the specified information in the PG DD for later
use by PGAU GENERATE. PGAU GENERATE then creates the following in the TIP
package specification:

• declarations of public PL/SQL functions for each CALL defined with PL/SQL
parameters for each DATA definition specified on the CALL

• declarations of the public PL/SQL data parameters

The client application calls the TIP public function as a PL/SQL function call, using the
function name and parameter list specified in the PGAU DEFINE CALL statement. The
client application might also declare, by reference, private variables of the same
datatype as the TIP public data parameters to facilitate data passing and handling
within the client application, thus sharing the declarations created by PGAU GENERATE.

In this example, the following PGAU DEFINE CALL statement must be issued to define
the TIP public function:

DEFINE CALL DB2IMAIN
 PKGCALL (pgadb2i_main)
 PARMS ((empno IN),(emprec OUT));

4.6.2.1 Flexible Call Sequence
The number of data parameters exchanged between the TIP and the gateway on each
call can vary at the user's discretion, as long as the remote transaction program's
SEND/RECEIVE requests are satisfied. For example, the remote transaction program
data exchange sequence might be:

APPC SEND 5 fields (field1-field5)
APPC RECEIVE 1 fields (field6)
APPC SEND 1 field (field7)
APPC RECEIVE 3 fields (field8 - field10)

The resulting TIP/application call sequence could be:

Chapter 4
Ensuring TIP and Remote Transaction Program Correspondence

4-12

tip_call1(parm1 OUT, <-- APPC SEND field1 from remote TP
 parm2 OUT, <-- APPC SEND field2 from remote TP
 parm3 OUT); <-- APPC SEND field3 from remote TP

tip_call2(parm4 OUT, <-- APPC SEND field4 from remote TP
 parm5 OUT); <-- APPC SEND field5 from remote TP
tip_call3(parm6 IN OUT); --> APPC RECEIVE field6 in remote TP
 <-- APPC SEND field7 from remote TP

tip_call4(parm8 IN, --> APPC RECEIVE field8 into remote TP
 parm9 IN, --> APPC RECEIVE field9 into remote TP
 parm10 IN); --> APPC RECEIVE field10 into remote TP

To define these four public functions to the TIP, four PGAU DEFINE CALL statements must be
issued, each specifying its unique public function name (tip_callx) and the data parameter
list to be exchanged. Once a data item is defined using DEFINE DATA, it can be referenced in
multiple calls in any mode (IN, OUT, or IN OUT). For example, parm5 could be used a second
time in place of parm6. This implies the same data is being exchanged in both instances,
received into the TIP and application on tip_call2 and returned, possibly updated, to the
remote host in tip_call4.

Notice also that the remote transaction program's first five written fields are read by two
separate TIP function calls, tip_call1 and tip_call2. This could also have been
equivalently accomplished with five TIP function calls of one OUT parameter each or a single
TIP function call with five OUT parameters. Then the remote transaction program's first read
field (field6) and subsequent written field (field7) correspond to a single TIP function call
(tip_call3) with a single IN OUT parameter (parm6).

This use of a single IN OUT parameter implies that the remote transaction program's datatype
for field6 and field7 are both the same and correspond to the conversion performed for the
datatype of parm6. If field6 and field7 were of different datatypes, then they have to
correspond to different PL/SQL parameters (for example, parm6 IN and parm7 OUT). They
could still be exchanged as two parameters on a single TIP call or one parameter each on
two TIP calls, however.

Lastly, the remote transaction program's remaining three RECEIVE fields are supplied by
tip_call4 parameters 8-10. They also could have been done with three TIP calls passing
one parameter each or two TIP calls passing one parameter on one call and two parameters
on the other, in either order. This flexibility permits the user to define the correspondence
between the remote transaction program's operation and the TIP function calls in whatever
manner best suits the user.

4.6.2.2 Call Correspondence Order Restrictions
Each TIP public function first sends all IN parameters, before it receives any OUT parameters.
Thus, a remote transaction program expecting to send one field and then receive one field
must correspond to separate TIP calls.

For example:

tip_callO(parmO OUT); <-- APPC SEND outfield from remote TP

PGAXFER RPC checks first for parameters to send, but finds none and proceeds to receive
parameters:

tip_callI(parmI IN); --> APPC RECEIVE infield to remote TP

Chapter 4
Ensuring TIP and Remote Transaction Program Correspondence

4-13

PGAXFER RPC processes parameters to send and then checks for parameters to
receive, but finds none and completes; therefore, a single TIP public function with an
OUT parameter followed by an IN parameter does not work, because the IN parameter
is processed first--regardless of its position in the parameter list.

4.6.3 TRANSACTION Correspondence
The remote host transaction is defined with the PGAU DEFINE TRANSACTION statement
with additional references to prior definitions of CALLs that the transaction supports.

You specify the remote host transaction attributes, such as:

• transaction ID or name

• network address or location

• system type (such as IBM370)

• Oracle National Language of the remote host

Note:

The PL/SQL package name is specified when the transaction is defined;
this is the name by which the TIP is referenced and which the public
function calls to be included within the TIP. Each public function must
have been previously defined with a PGAU DEFINE CALL statement,
which has been stored in the PG DD. If you do not specify a package
name (TIP name) in the GENERATE statement, the transaction name you
specified will become the package name by default. In that case, the
transaction name (tname) must be unique and must be in valid PL/SQL
syntax within the database containing the PL/SQL packages.

For more information, refer to "DEFINE TRANSACTION" in Procedural
Gateway Administration Utility and "Sample PGAU DEFINE
TRANSACTION Statement" in Administration Utility Samples.

In this example, the following DEFINE TRANSACTION statements are used to define a
remote CICS transaction called DB2I:

DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN,
 DB2IDIAG)
 SIDEPROFILE(CICSPROD)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)
 SYNCLEVEL(0)
 NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

4.7 Calling the TIP from the Client Application
Once a TIP is created, a client application must be written to interface with the TIP. A
client application that calls the TIP functions must include five logical sections:

• declaring TIP variables

• initializing the conversation

Chapter 4
Calling the TIP from the Client Application

4-14

• exchanging data

• terminating the conversation

• error handling

4.7.1 Declaring TIP Variables
The user declarations section of the tipname.doc file documents the required declarations.

When passing PL/SQL parameters on calls to TIP functions, the client application must use
the exact same PL/SQL datatypes for TIP function arguments as are defined by the TIP in its
specification section. Assume, for example, the following is in the TIP specification, or
tipname.doc:
FUNCTION tip_call1 tranuse, IN BINARY_INTEGER,
 tip_var1 io_mode pls_type1,
 tip_record io_mode tran_rectype)
RETURN INTEGER;

TYPE tran_rectype is RECORD
 (rec_field1 pls_type1,
 ...
 rec_fieldN pls_typeN);

Table 4-2 provides a description of the function declarations:

Table 4-2 Function Declarations

Item Description

tip_call1 The TIP function name as defined in the package specification.

tranuse The remote transaction instance parameter returned from the TIP init
function identifying the conversation on which this TIP call is to
exchange data.

tran_rectype The PL/SQL record datatype declared in the tipname TIP
specification. This is the same value as in the TYPE tran_rectype
is RECORD statement.

pls_typeN Is a PL/SQL atomic datatype.

rec_fieldN Is a PL/SQL record field corresponding to a remote transaction
program record field.

In the client application PL/SQL atomic datatypes should be defined as the exact same
datatype of their corresponding arguments in the TIP function definition. The following should
be coded in the client application before the BEGIN command:

appl_var pls_type1; /* declare appl variable for */

TIP datatypes need not be redefined. They must be declared locally within the client
application, appearing in the client application before the BEGIN:

appl_record tipname.tran_rectype; /* declare appl record */

Table 4-3 describes the command line arguments:

Chapter 4
Calling the TIP from the Client Application

4-15

Table 4-3 Command Line Arguments

Item Description

tip_call1 The TIP function name as defined in the package specification.

tranuse The remote transaction instance parameter returned from the TIP
init function identifying the conversation on which this TIP call is
to exchange data.

tran_rectype The PL/SQL record datatype declared in the tipname TIP
specification. This is the same value as in the TYPE
tran_rectype is RECORD statement.

Refer to the tipname.doc content file for a complete description of the user
declarations you can reference.

The client application calls the TIP public function as if it were any local PL/SQL
function:

rc = tip_call1(tranuse,
 appl_var,
 appl_record);

In the CICS-DB2 inquiry example, the PL/SQL driver pgadb2id.sql, which is located in
%ORACLE_HOME%\dg4appc\demo\CICS directory for Microsoft Windows
and $ORACLE_HOME/dg4appc/demo/CICS directory for UNIX based systems, is the client
application and includes the following declaration:

...

...
CREATE or REPLACE PROCEDURE db2idriv(empno IN CHAR) IS
tranuse INTEGER :=0 /* transaction usage number */
DCLEMP PGADB2I.DCLEMP_typ; /* DB2 EMP row definition */
DB2 PGADB2I.DB2_typ; /* DB2 diagnostic information */
rc INTEGER :=0 /* PGA RPC return codes */
line VARCHAR2(132); /* work buffer for output */
term INTEGER :=0; /* 1 if pgadb2i_term called */
...
...

4.7.2 Initializing the Conversation
The call to initialize the conversation serves several purposes:

• To cause the PL/SQL package, the TIP, to be loaded and to perform the
initialization logic programmed in the TIP initialization section.

• To cause the TIP init function to call the PGAINIT remote procedural call (RPC),
which in turn establishes communication with the remote transaction program
(RTP), and returns a transaction instance number to the application.

Optionally, calls to initialize the conversation can be used to:

• Override default RHT/OLTP identification, network address attributes, and
conversation security user ID and password.

• Specify what diagnostic traces the TIP is to produce. Refer to Troubleshooting for
more information about diagnostic traces.

Chapter 4
Calling the TIP from the Client Application

4-16

PGAU-generated TIPs provide four different initialization functions that client applications can
call. These are overloaded functions which all have the same name, but vary in the types of
parameters passed.

Three initialization parameters are passed:

• The transaction instance number for RHT conversation identification. The tranuse
parameter is required on all TIP initializations.

• TIP diagnostic flags for TIP runtime diagnostic controls. The tipdiag parameter is
optional. Refer to Troubleshooting for a discussion of TIP diagnostics.

• TIP default overrides for overriding OLTP and network attributes. The override
parameter is optional.

The following four functions are shown as they might appear in the TIP Content
documentation file. Examples of client application use are provided later.

TYPE override_Typ IS RECORD (
 tranname VARCHAR2(255), /* Transaction Program */
 transync BINARY_INTEGER, /* RESERVED */
 trannls VARCHAR2(50), /* RESERVED */
 oltpname VARCHAR2(255), /* Logical Unit */
 oltpmode VARCHAR2(255), /* LOG Mode Entry */
 netaddr VARCHAR2(255), /* Side Profile */
 oltpuser VARCHAR2(8), /* userid for OLTP access */
 oltppass VARCHAR2(8)); /* password for OLTP access*/

FUNCTION pgadb2i_init(/* init standard */
 tranuse IN OUT BINARY_INTEGER)
 RETURN INTEGER;

FUNCTION pgadb2i_init(/* init override */
 tranuse IN OUT BINARY_INTEGER,
 override IN override_Typ)
 RETURN INTEGER;

FUNCTION pgadb2i_init(/* init diagnostic */
 tranuse IN OUT BNARY_INTEGER,
 tipdiag IN CHAR)
 RETURN INTEGER;

FUNCTION pgadb2i_init(/* init over-diag */
 tranuse IN OUT BINARY_INTEGER,
 override IN override_Typ,
 tipdiag IN CHAR)
 RETURN INTEGER;

4.7.2.1 Transaction Instance Parameter
This transaction instance number (shown in examples as tranuse) must be passed to
subsequent TIP exchange and terminate functions. It identifies to the gateway on which
APPC conversation--and therefore which iteration of a remote transaction program--the data
is to be transmitted or communication terminated.

A single client application might control multiple instances of the same remote transaction
program or multiple different remote transaction programs, all concurrently. The transaction
instance number is the TIP‘s mechanism for routing the client application call through the
gateway to the intended remote transaction program.

Chapter 4
Calling the TIP from the Client Application

4-17

It is the responsibility of the client application to save the transaction instance number
of each active transaction and pass the correct one to each TIP function called for that
transaction.

The client application calls the TIP initialization function as if it were any local PL/SQL
function. For example:

...

...
tranuse INTEGER := 0;/* transaction usage number*/
...
...
BEGIN
 rc := pgadb2i.pgadb2i_init(tranuse);
...
...

4.7.2.2 Overriding TIP Initializations
Note that in the preceding example the client application did not specify any remote
transaction program name, network connection, or security information. The TIP has
such information internally coded as defaults and the client application simply calls the
appropriate TIP for the chosen remote transaction program. The client application can,
however, optionally override some TIP defaults and supply security information.

You do not need to change any client applications that do not require overrides.

When the remote host transaction was defined in the PG DD, the DEFINE TRANSACTION
statement specified certain default OLTP and network identification attributes which
can be overridden:

• TPname

• LUname

• LOGMODE
• Side Profile

Refer to "DEFINE TRANSACTION" in Procedural Gateway Administration Utility for
more information about the DEFINE TRANSACTION statement.

These PG DD-defined transaction attributes are generated into TIPs as defaults and
can be overridden at TIP initialization time. This facilitates the use of one TIP, which
can be used with a test transaction or system, and can later be used with a production
transaction or system, without having to regenerate the TIP.

The override_Typ record datatype describes the various transaction attributes that
can be overridden by the client application. The following overrides are currently
supported:

• tranname can be set to override the value that was specified by the TPNAME
parameter of the DEFINE TRANSACTION statement

• oltpname can be set to override the value that was specified by the LUNAME
parameter of the DEFINE TRANSACTION statement

• oltpmode can be set to override the value that was specified by the LOGMODE
parameter of the DEFINE TRANSACTION statement

Chapter 4
Calling the TIP from the Client Application

4-18

• netaddr can be set to override the value that was specified by the SIDEPROFILE
parameter of the DEFINE TRANSACTION statement

In addition to the transaction attributes defined in the PG DD, there are two security-related
parameters, conversation security user ID and conversation security password, that can be
overridden at TIP initialization time. The values for these parameters normally come from
either the database link used to access the gateway or the Oracle database session. There
are cases when the Oracle database user ID is not sufficient for accessing the OLTP system.
The user ID and password overrides provide a way to specify those parameters to the OLTP
system.

The following overrides are currently supported:

• oltpuser can be set to override the user ID used to initialize the conversation with the
OLTP

• oltppass can be set to override the password used to initialize the conversation with the
OLTP

The security overrides have an effect only if PGA_SECURITY_TYPE=PROGRAM is specified in the
gateway initialization file, and the OLTP system is configured to accept a user ID and
password on incoming conversation requests.

The transync (APPC SYNCLEVEL) and trannls (Globalization Support character set) are
defined in the override record datatype, but are reserved for future use. The RHT SYNCLEVEL
and Globalization Support name cannot be overridden.

The client application might override the default attributes at TIP initialization for the following
reasons:

• to start a different version of the RHT (such as production instead of test)

• to change the location of the OLTP containing the RHT (if the OLTP was moved due to
migration or a switch to backup configuration)

Client applications requiring overrides can use any combination of override and initialization
parameters and might alter the combination at any time without regenerating the TIP or
affecting applications that do not override parameters.

To override the TIP defaults, an additional client application record variable must be declared
as override_Typ datatype, values must be assigned to the override subfields, and the
override record variable must be passed on the TIP initialization call from the client
application.

For example:

 ...
 ...
 my_overrides pgadb2i.override_Typ; -- declaration
 ...
 ...
 my_overrides.oltpname := 'CICSPROD'; -- swap to production CICS
 my_overrides.tranname := 'TNEW'; -- new transaction name

BEGIN
 rc := pgadb2i.pgadb2i_init(tranuse,my_overrides); -- init
 ...
 ...

Within the TIP, override attributes are checked for syntax problems and passed to the
gateway server.

Chapter 4
Calling the TIP from the Client Application

4-19

4.7.2.3 Security Considerations
The security requirements of the default and overridden OLTPs must be the same
because the same gateway server is used in either conversation, as dictated by the
database link names in the PGA RPC calls. The gateway server startup security mode
is set at gateway server initialization time and passed unchanged to the OLTP at TIP
or conversation initialization time.

4.8 Exchanging Data
The client application should pass the transaction instance number, returned from a
previous tip_init call, to identify which remote transaction program is affected and to
identify any client application data parameters to be exchanged with the remote
transaction program.

In this CICS-DB2 inquiry example, we pass an employee number and receive an
employee record back:

rc = pgadb2i.pgadb2i_main(tranuse, /* transfer data */
 empno, /* employee number */
 DCLEMP); /* return employee record*/

4.8.1 Terminating the Conversation
The client application calls the TIP termination function as if it were any local PL/SQL
function. For example:

...

...
term := 1; /* indicate term called* */
 rc := pgadb2i.pgadb2i_term(tranuse,0); /* terminate normally */
...
...

After a transaction instance number has been passed on a TIP terminate call to
terminate the transaction, or after the remote transaction program has abended, that
particular transaction instance number may be forgotten.

4.8.2 Error Handling
The client application should include an exception handler that can clean up any active
APPC conversations before the client application terminates. The sample client
application provided in pgadb2id.sql contains an example of exception handling.

Gateway exceptions are reported in the range PGA-20900 to PGA-20999. When an
exception occurs, the TIP termination function should be called for any active
conversations that have been started by prior calls to the TIP initialization function.

For example:

EXCEPTION
 WHEN OTHERS THEN
 IF term = 0 THEN /* terminate function not called yet */
 rc := pgadb2i.pgadb2i_term(tranuse,1); /*terminate abnormally*/
 END IF;
 RAISE;

Chapter 4
Exchanging Data

4-20

...

...

The remote transaction should also include provisions for error handling and debugging, such
as writing debugging information to the CICS temporary storage queue area. Refer to the
Oracle Database PL/SQL Language Reference for a discussion of how to intercept and
handle Oracle exceptions.

4.8.3 Granting Execute Authority
The TIP is a standard PL/SQL package and execute authority must be granted to users who
call the TIP from their client application. In this example, we grant execute on the PGADB2I
package to user SCOTT:

GRANT EXECUTE ON PGADB2I TO SCOTT

Refer to the Oracle Database Administrator's Guide for further information.

4.9 Executing the Application
Before executing the client application, ensure that a connection to the host is established
and that the receiving partner is available. In this example we use PL/SQL driver DB2IDRIV to
execute the CICS-DB2 inquiry. To execute this client application, enter from SQL*Plus:

set serveroutput on
execute DB2IDRIV('nnnnnn');

4.10 APPC Conversation Sharing
Multiple TIPs can share the same APPC conversation with one or more Remote Host
Transactions (RHTs) which are also sharing that same conversation. Two benefits derive from
this feature:

• Existing RHTs which rely upon passing control of a conversation are supported by Oracle
Database Gateway for APPC.

• TIPs otherwise too large for PL/SQL compilation can be separated into multiple smaller
TIPs, each with fewer user-defined functions, providing the client application with the
same set of function calls and data definitions without any change to the RHT.

4.10.1 APPC Conversation Sharing Concepts
Mainframe OLTPs, such as IMS, allow transactions to share a single APPC conversation by
passing it when the transaction calls another transaction. RHTs are defined to PGAU as
single transactions with calls, inputs and outputs for which PGAU generates a single TIP with
initialization, transfer and termination functions corresponding to that specific RHT.

Logic generated into every TIP allows that TIP either:

• to initiate a new conversation when its init function is called, or

• to transfer data on an existing conversation when its user-defined functions are called, or

• to terminate an existing conversation when its "term" function is called.

An APPC conversation is treated as a resource shared and managed by multiple TIPs. There
is no requirement for any TIP to be the sole user of an APPC conversation.

Chapter 4
Executing the Application

4-21

Any TIP generated at 3.4.0 or later can perform any of the following combinations of
service:

• initiate

• initiate and transfer

• initiate, transfer, and terminate (standard operation)

• transfer

• transfer and terminate

• terminate

• initiate and terminate (assumes other TIPs perform transfer)

A single APPC conversation can be shared in the following ways:

• from one TIP to multiple RHTs

• from multiple TIPs to one RHT

• from multiple TIPs to multiple RHTs

Without APPC conversation sharing, a single TIP must be defined which contains all
functions and data for all RHTs which a client application might need to call. Creating
TIPs with a superset of RHTs often causes such TIPs to be too large for PL/SQL to
compile.

Conversely, with APPC conversation sharing, each RHT (or even each RHT data
exchange for those RHTs which perform multiple, different data exchange operations)
can be defined in a single TIP which is smaller and less likely to exceed PL/SQL
compilation limits.

4.10.2 APPC Conversation Sharing Usage
APPC conversation sharing is automatically available in every TIP generated at 3.4.0
or later. No TIPs generated before 3.4.0 can participate in APPC conversation sharing.
TIPs generated before 3.4.0 must be regenerated using PGAU 3.4.0. or later to
participate in APPC conversation sharing. PGAU is upward compatible and
regeneration should be transparent, provided only the regenerated TIP body
(tipname.pkb) is recompiled. If the TIP specification is also recompiled, the client
application needs recompilation as well. Refer to Tip Internals for more detailed
information.

Definition and generation of TIPs is accomplished as previously discussed in Chapters
1, 2, and 3. No additional options or parameters need be specified.

Run-time use of APPC conversation sharing is under the control of the client
application. It is accomplished simply by calling the init function of one of the TIPs that
share a conversation and passing the tranuse value returned to the other TIP
functions as each is called in its desired order. Any TIP init function can be used,
provided that all TIPs were defined with the same DEFINE TRANSACTION TPNAME or
SIDEPROFILE value. The TPNAME or SIDEPROFILE value specifies which RHT to initialize.

When the init function of an APPC conversation sharing-capable TIP is called to
initialize a conversation, the tranuse value returned indicates conversation sharing is
enabled. By passing that same tranuse value when calling functions in other TIPs,
those other TIPs perform their transfers on the same conversation already initialized,
provided that all TIPs involved were generated at Version 3.4.0 or later.

Chapter 4
APPC Conversation Sharing

4-22

4.10.3 APPC Conversation Sharing TIP Compatibility
TIPs generated at 3.4.0 or later of the database gateway use and expect different values for
tranuse than do pre-3.4.0 TIPs. If a pre-3.4.0 TIP is used to initialize a conversation and its
tranuse value is passed to a 3.4.0 or later generated TIP, the following exception is raised:

ORA-20704 PGA_TIP: tranuse value cannot be shared

Pre-3.4.0 generated TIPs do not detect the different tranuse value for shared conversations,
however, and this can result in unpredictable errors.

Note:

All TIPs called in a shared conversation must have been generated at 3.4.0 or later.

No TIPs generated before 3.4.0 can participate in APPC conversation sharing.

The tranuse values are incompatible between pre-3.4.0 and 3.4.0 or later releases. This
should not pose a problem for you for the following reason: before 3.4.0, all RHT functions
defined in a TIP had to be called through that TIPs functions, and the init function of that
same TIP had to be called first to initialize the conversation. The tranuse value was only
valid for the TIP which initialized it. Thus, unless you make programming changes, it is not
possible for an existing application to accidentally mix tranuse values.

Pre-3.4.0 TIPs and client applications can continue to be used without change and old client
applications can call new 3.4.0 or later TIPs without change. This is made possible when an
old TIP body is regenerated and compiled; the TIP now becomes capable of APPC
conversation sharing, even though the old client application has not changed.

None of the functions of a pre-3.4.0 TIP can share an APPC conversation. However, once a
TIP is regenerated at 3.4.0 or later, any of its functions can share APPC conversations.

4.10.4 APPC Conversation Sharing for TIPs That Are Too Large
You can use conversation sharing to circumvent a TIP that is too large to compile. This is
identified by 'PLS-00123 - package too large to compile', or some other problem
symptom such as PL/SQL compilation hanging. In this case you must choose which function
calls to remove from the former TIP and define into new TIPs.

Specifically, you must decide which PGAU DEFINE CALL statements and their related DEFINE
DATA statements should be moved from the old PGAU control file (.ctl) into one or more new
PGAU control files. In addition, you must decide which PGAU DEFINE TRANSACTION
statements should be included in each new PGAU control file defining each new TIP.

You must consider several PGAU statements; refer to Table 4-4 for a list of the PGAU
statements and their descriptions:

Chapter 4
APPC Conversation Sharing

4-23

Table 4-4 PGAU Statements

Statement Description

DEFINE DATA statements Must be unique. They can be shared by all affected PGAU control
files, provided they are defined to the Procedural Gateway Data
Dictionary (PG DD) before being referenced by DEFINE CALL
statements. No changes are needed to these statements.

DEFINE CALL statements Must be unique. They need only be referenced by the new
DEFINE TRANSACTION statement of the TIP in which they are
included, provided they are defined to the PG DD before being
referenced by a DEFINE TRANSACTION statement. The DEFINE
CALL statements can optionally be moved to the new PGAU
control file of the TIP in which they are included.

DEFINE TRANSACTION
statements

Specified for each new TIP desired and will reference those call
definitions moved from the former large TIP to the new small
TIPs. No transaction attributes will change. This allows any new
TIP to perform the same initialization or termination with the
same RHT as the former large TIP. The old DEFINE
TRANSACTION statement (of the former large TIP) should now
exclude any call definitions which are being moved to new small
TIPs.

4.10.5 APPC Conversation Sharing Example
Assume the existence of RHTs A, B and C, and that RHT A performs a menu selection
and calls RHT B for a query function or RHT C for an update followed by a select
function.

You could define the following DATA and CALLs:

• DEFINE DATA choice ...

• DEFINE DATA input ...

• DEFINE DATA answer ...

• DEFINE DATA record ...

• DEFINE CALL menu_A callname(pick) parms(choice in);
• DEFINE CALL query_B callname(query) parms((input in), (answer out));
• DEFINE CALL update_C callname(update) parms(record in);
• DEFINE CALL select_C callname(select) parms(record out);
The following example TIPs could be defined:

Example 1

This example does not use APPC conversation sharing, but is a valid TIP definition
created before release 3.4.0, combining the functions of RHTs A, B and C.

DEFINE TRANSACTION rhtABC calls(menu_A,
 query_B,
 update_C,
 select_C)
 tpname(RHTA);

Chapter 4
APPC Conversation Sharing

4-24

This TIP includes all data definitions and calls, and might be too large to compile. This TIP
does not use APPC conversation sharing as there is only the one TIP, rhtABC. The RHTs do,
however, perform their normal sharing of the conversation at the remote host. If the TIP was
small enough to compile, the client application calls TIP functions as follows:

rc := rhtABC.rhtABC_init(tranuse);
rc := rhtABC.pick(tranuse, choice);
rc := rhtABC.query(tranuse, input, answer);
rc := rhtABC.update(tranuse, record);
rc := rhtABC.select(tranuse, record);
rc := rhtABC.rhtABC_term(tranuse);

Example 2

This example demonstrates defining a set of TIPs with APPC conversation sharing,
separating the functions of RHTs A, B and C into three TIPs:

DEFINE TRANSACTION rhtA calls(menu_A) tpname(RHTA);
DEFINE TRANSACTION rhtB calls(query_B) tpname(RHTA);
DEFINE TRANSACTION rhtC calls(update_C,
 select_C) tpname(RHTA);

Each TIP includes only the call and data it requires, and each TIP automatically performs
APPC conversation sharing. The client application calls these functions as follows:

rc := rhtA.rhtA_init(tranuse);
rc := rhtA.pick(tranuse, choice);
rc := rhtB.query(tranuse, input, answer);
rc := rhtC.update(tranuse, record);
rc := rhtC.select(tranuse, record);
rc := rhtB.rhtB_term(tranuse);

The only client application difference between the two examples is in the schema qualifier on
each of the TIP calls. This is because the function being called is in a different TIP which has
a different package name in the database.

Only new DEFINE TRANSACTION statements were needed to make use of APPC conversation
sharing. The CALL and DATA definitions were used as-is. This means the old TIP rhtABC is still
defined as it was and might still be too large to compile.

Example 3

If you performed Sample 2 but you still believe that the TIP may be too large to compile, try
this:

DEFINE TRANSACTION rhtABC calls(menu_A) tpname(RHTA);
DEFINE TRANSACTION rhtB calls(query_B) tpname(RHTA);
DEFINE TRANSACTION rhtCU calls(update_C) tpname(RHTA);
DEFINE TRANSACTION rhtCS calls(select_C) tpname(RHTA);

TIP rhtABC has had three functions removed so it is now smaller and more likely to compile.
TIP rhtB has one function and TIP rhtC has been separated into two TIPs even though the
corresponding host functions remain in a single RHT.

The client application calls these functions as follows:

rc := rhtB.rhtB_init(tranuse);
rc := rhtABC.pick(tranuse, choice);
rc := rhtB.query(tranuse, input);
rc := rhtCU.update(tranuse, record);

Chapter 4
APPC Conversation Sharing

4-25

rc := rhtCS.select(tranuse, record);
rc := rhtABC.rhtABC_term(tranuse);

A different TIP is used for initialization, illustrating that all TIPs contain the init and term
functions, and because the DEFINE TRANSACTION statements all specified the same
tpname(RHTA), the same remote host transaction is always called for initialization.

4.10.6 APPC Conversation Sharing Overrides and Diagnostics
TIP default override parameters are processed in the TIP init function which was called
to perform initialization. Once the APPC conversation is established, no further sharing
of overriding parameters is necessary. You need do nothing more than pass the
overrides to the TIP init function.

TIP diagnostic parameters are shared among all TIPs sharing a given conversation. In
effect, requesting diagnostics of the TIP performing initialization causes the same
diagnostics to be requested of all TIPs sharing the conversation. Requesting
diagnostics from only one TIP of several sharing a conversation is not possible. The
application designer or user need only pass the TIP runtime trace controls to the TIP
init function.

4.11 Application Development with Multi-Byte Character Set
Support

COBOL presently only supports double byte character sets (DBCS) for PIC G
datatypes.

PGAU processes COBOLII PIC G datatypes as PL/SQL VARCHAR2 variables and
generates TIPs which automatically convert the data according to the Oracle
NLS_LANGUAGEs specified for the remote host data and the local Oracle data.

These Oracle NLS_LANGUAGEs can be specified as defaults for all PIC G data
exchanged by the TIP with the remote transaction (see DEFINE TRANSACTION ...
REMOTE_MBCS or LOCAL_MBCS). The Oracle NLS_LANGUAGEs for any individual PIC G data
item can be further overridden (see REDEFINE DATA ... REMOTE or LOCAL_LANGUAGE).

DBCS data can be encoded in any combination of supported DBCS character sets.
For example, a remote host application which allows different codepages for each field
of data in a record is supported by the Oracle Database Gateway MBCS support.

Use of REDEFINE DATA ... REMOTE_LANGUAGE or LOCAL_LANGUAGE on PIC X items is
also supported. Thus a TIP can perform DBCS or MBCS conversions for specified PIC
X data fields, in addition to SBCS conversions by default for the remaining PIC X data
fields. Default SBCS conversion is according to the DEFINE TRANSACTION...
NLS_LANGUAGE and local Oracle default LANGUAGE environment values.

When PGAU is generating a TIP, the PIC G datatypes are converted to PL/SQL
VARCHAR2 datatypes. After conversion by the TIP, received 'PIC G' VARCHAR2
datatypes can have a length less then the maximum due to deletion of shift-out and
shift-in meta characters, and sent 'PIC G' RAWs will have the shift-out and shift-in
characters inserted as required by the remote host character set specified.

This is different from the conversions performed for PIC X data which is always a
known fixed-length and hence CHAR datatypes are used in TIPs for PIC X data fields.

Chapter 4
Application Development with Multi-Byte Character Set Support

4-26

However, even when the PIC X field contains DBCS or MBCS data, a CHAR variable is still
used and padded with blanks if needed.

Some remote host applications bracket a PIC G field with PIC X bytes used for shift-out, shift-
in meta-character insertion. Such a COBOL definition might look like:

01 MY_RECORD.
 05 SO PIC X.
 05 MY_SBCS_DATA PIC G(52).
 05 SI PIC X.

This is not processed correctly by PGAU, because all three fields are defined, and
consequently treated, as separate data items when conversion is performed.

To be properly processed, the definition input to PGAU should be:

01 MY_RECORD.
 05 MY_MBCS_DATA PIC G(51).

The PGAU REDEFINE DATA statement can redefine the 3-field definition to the 1-field definition
by specifying USAGE(SKIP) on fields SO and SI, and '05 MY_MBCS_DATA PIC G(51).' to
redefine MY_MBCS_DATA. The three REDEFINE statements can be placed in the PGAU input
control file, and thus the remote host definition need not be altered.

4.12 Modifying a Terminal-Oriented Transaction to Use APPC
The remote transaction program must include mapped APPC verbs to initiate, communicate,
and terminate the APPC conversation. However, when the remote transaction program is
terminal-oriented, the following options are available:

• You can separate the terminal logic from the application and I/O logic. Once this
separation is achieved, a small front end remote transaction program can be written to
interface between the gateway calls and the transaction application logic. For example, in
CICS the CICS LINK is used to implement this technique.

• You can modify your existing program so that APPC calls are embedded. In the example,
PGADB2I, we use CICS and its associated mapped APPC verbs as follows:

– EXEC CICS ASSIGN accepts the conversation initiated by the gateway.

– EXEC CICS RECEIVE receives the arguments.

– EXEC CICS SEND ends the results.

– EXEC CICS RETURN terminates the conversation.

• If you do not want to modify your terminal-oriented transaction, you can insert an APPC-
capable interface, such as IBM Corporation's FEPI for CICS Transaction Server for z/OS,
between the terminal-oriented program and the gateway.

• With IMS/TM, existing unmodified IMS transactions can be accessed with the gateway
using the implicit APPC facility. With implicit APPC, the standard DLI GU, GN, and ISRT
calls using the I/O PCB are automatically converted to appropriate APPC send or receive
calls when the IMS transaction is invoked through APPC.

4.13 Privileges Needed to Use TIPs
Execute privileges must be explicitly granted to callers of TIPs or procedures. This privilege
cannot be granted through a role.

Chapter 4
Modifying a Terminal-Oriented Transaction to Use APPC

4-27

Any TIP user wanting to trace a TIP must be granted execute privileges on the rtrace
and ptrace procedures. Refer to the "Configuring PGAU" section in the chapter
appropriate for your communications protocol in the installation guides for more
information.

For example, on Microsoft Windows:

C:\> sqlplus pgaadmin\pw@database_specification_string
SQL> grant execute on pgaadmin.purge_trace to tip_user_userid;
SQL> grant execute on pgaadmin.read_trace to tip_user_userid;

On UNIX based systems:

$ sqlplus pgaadmin/pw@database_specification_string
SQL> grant execute on pgaadmin.purge_trace to tip_user_userid;
SQL> grant execute on pgaadmin.read_trace to tip_user_userid;

After a TIP has been developed, the TIP user must be granted execute privileges on
the TIP by the TIP owner. The TIP owner is usually PGAADMIN, but can be another user
who has been granted either the PGDDDEF or PGDDGEN roles.

For example, on Microsoft Windows:

C:\> sqlplus tip_owner\pw@database_specification_string
SQL> grant execute on tipname to tip_user_userid;

On UNIX based systems:

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to tip_user_userid;

where database_specification_string is the Oracle Net identifier for the Oracle
database where the gateway UTL_RAW and UTL_PG components were installed. This is
the same Oracle database where the TIPs are executed and where grants on the TIPs
are performed from the TIP owner user ID.

A SQL script for performing these grants is provided in the %ORACLE_HOME%
\dg4appc\admin directory on Microsoft Windows and in the $ORACLE_HOME/dg4appc/
admin directory on UNIX based system. The pgddausr.sql script performs the grants
for private access to the packages by a single TIP user. If private grants are to be
used, the pgddausr.sql script must be run once for each TIP user's user ID.

To run these scripts, use SQL*Plus to connect to the Oracle database as user
PGAADMIN. From SQL*Plus, run the pgddausr.sql script from the %ORACLE_HOME%
\dg4appc\admin directory on Microsoft Windows or $ORACLE_HOME/dg4appc/admin
directory on UNIX based system. The script performs the necessary grants as
previously described. You are prompted for the required user IDs, passwords, and
database specification strings. If you are using private grants, repeat this step for each
user ID requiring access to the packages.

No script has been provided to perform public grants. To do this, issue the following
commands:

For Microsoft Windows:

C:\> sqlplus tip_owner\pw@database_specification_string
SQL> grant execute on tipname to PUBLIC;

For UNIX based systems:

Chapter 4
Privileges Needed to Use TIPs

4-28

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to PUBLIC;

Chapter 4
Privileges Needed to Use TIPs

4-29

5
Implementing Commit-Confirm (SNA Only)

Commit-confirm allows the updating of local Oracle resources to occur in the same Oracle
transaction as the updating of non-Oracle resources accessed through the Oracle Database
Gateway for APPC.

Read the following topics to familiarize yourself with the elements and functions of commit-
confirm.

You will find instructions for configuring gateway components for commit-confirm on an SNA
environment in the installation guides. Refer to Chapter 5, "Configuring Your Network" and
Chapter 6, "Gateway Configuration Using the SNA Communications Protocol" of the
installation and configuration guides for specific information.

Topics:

• Overview of Commit-Confirm

• Supported OLTPs

• Components Required to Support Commit-Confirm

• Application Design Requirements

• Commit-Confirm Architecture

• Commit-Confirm Flow

5.1 Overview of Commit-Confirm

Note:

If you are planning to implement commit-confirm, then you should already have
configured the components. Depending on your platform, refer to Chapter 12 of the
Oracle Database Gateway for APPC Installation and Configuration Guide for IBM
AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit),
and HP-UX Itanium or Chapter 9 of the Oracle Database Gateway for APPC
Installation and Configuration Guide for Microsoft Windows for instructions on its
configuration.

Commit-confirm is a special implementation of two-phase commit that allows a database or
gateway that does not support full two-phase commit to participate in distributed update
transactions with other databases or gateways that do support full two-phase commit. In this
implementation, the commit-confirm site is always the first to be committed, after all other
sites have been prepared. This allows all sites to be kept in sync, because if the commit-
confirm site fails to commit successfully, all other sites can be rolled back.

Within an Oracle distributed transaction, all work associated with that transaction is assigned
a common identifier, known as the Oracle Global Transaction ID. This identifier is guaranteed
to be unique, so that it can be used to exclusively identify a particular distributed transaction.

5-1

The key requirement for commit-confirm support is the ability for the commit-confirm
site (in this case, the Oracle Database Gateway for APPC) to be able to log the Oracle
Global Transaction ID as part of its unit of work, so that if a failure occurs, the
gateway's recovery processing can determine the status of a particular Oracle Global
Transaction ID by the presence or absence of a log entry for that transaction. A new
Oracle Global Transaction ID is generated after every commit or rollback operation.

The Oracle Database Gateway for APPC implements commit-confirm using LU6.2
SYNCLEVEL 1. This is similar to the implementation of single-site update, with the
added advantage that resources on both the Oracle site and the OLTP being accessed
by the gateway can be updated and kept in sync. The main difference is that the
commit-confirm implementation requires some additional programming in the OLTP
transaction to perform the transaction logging necessary for recovery support.

5.2 Supported OLTPs
Since commit-confirm uses LU6.2 SYNCLEVEL 1, it can be supported by any OLTP that
supports APPC, including CICS Transaction Server for z/OS and IMS/TM. The Oracle
Database Gateway for APPC provides sample commit-confirm applications for both
CICS Transaction Server for z/OS and IMS/TM.

With CICS Transaction Server for z/OS, the standard command-level EXEC CICS
interface can be used for all APPC communications. In addition, the CPI-C interface
can be used if it is preferred. A sample DB2 update transaction written in COBOL
using the EXEC CICS interface is provided with the gateway. Any language supported
by CICS Transaction Server for z/OS can be used for writing commit-confirm
transactions.

With IMS/TM, the CPI-C interface must be used, making the IMS transaction an
"explicit APPC transaction," as referred to in the IBM IMSCICS Transaction Server for
z/OS manuals. This is necessary because it is the only way that the LU6.2 SYNCLEVEL
1 control flows are accessible to the IMS transaction. When using "implied APPC"
where "GU" from the IOPCB and "ISRT" to the IOPCB are used for receiving and
sending data, there is no way for the IMS transaction to access the LU6.2 SYNCLEVEL
1 control flow, making it impossible to use this method for commit-confirm. A sample
DLI database update transaction written in COBOL using the CPI-C APPC interface is
provided with the gateway. Any language supported by IMS and CPI-C can be used for
writing commit-confirm transactions.

5.3 Components Required to Support Commit-Confirm
The following components are required to support commit-confirm:

• Oracle Database Gateway for APPC Server

The gateway server supports commit-confirm when
PGA_CAPABILITY=COMMIT_CONFIRM is specified in the gateway initialization file.
When the gateway server is running with commit-confirm enabled, it will connect to
a local Oracle database where it maintains a commit-confirm transaction log,
similar to the Oracle two-phase commit log stored in the DBA_2PC_PENDING table.
The gateway's transaction log is stored in the PGA_CC_PENDING table. A row is
stored in this table for each in-flight transaction and remains there until the
transaction has completed. The life span of rows in PGA_CC_PENDING is normally
quite short, lasting only from the time the commit is received by the gateway until

Chapter 5
Supported OLTPs

5-2

the time the Oracle database completes all commit processing and tells the gateway to
forget the transaction.

The commit-confirm gateway SID should be reserved for use only to invoke update
transactions that implement commit-confirm. There is some extra overhead involved in
the setup for logging when PGA_CAPABILITY is set to COMMIT_CONFIRM. Read-only
transactions should be invoked through a separate gateway SID with PGA_CAPABILITY set
to READ_ONLY so that they will not incur the extra overhead.

• Logging Server

An Oracle database must be available for use by the gateway server for storing the
PGA_CC_PENDING table. For maximum performance and reliability, Oracle recommends
that this Oracle database reside on the same system as the gateway server.

• OLTP Commit-Confirm Transaction Log

A commit-confirm transaction log database must be defined to the OLTP system being
accessed. This database must be recoverable and must be accessible by the OLTP as
part of the same unit of work as the OLTP application's databases, so that updates to the
transaction log database will be kept in sync with updates to the application's databases
in a single unit of work.

The commit-confirm transaction log database need contain only the Oracle Global
Transaction ID and a date/time stamp. The Oracle Global Transaction ID is 169 bytes
long and must be the key field. The date/time stamp is used for purging old entries that
can be left in the log after certain failure scenarios.

For simplicity, all commit-confirm applications under a particular OLTP should share the
same commit-confirm transaction log.

• OLTP Transaction Logging Code

Code must be added to each OLTP transaction invoked by a commit-confirm gateway to
perform the transaction logging required by the gateway's commit-confirm
implementation. This code must receive the Oracle Global Transaction ID from the
gateway and write that information into the OLTP commit-confirm transaction log
database. For maximum flexibility and ease of use, this code can be written as a
subroutine callable from any commit-confirm transaction on your OLTP system.

This code must be executed at the beginning of each commit-confirm transaction prior to
the first APPC receive and then immediately after each COMMIT or ROLLBACK in the
transaction. This ensures that the logging is done at the beginning of each unit of work.

• OLTP Forget/Recovery Transaction

A separate APPC transaction must be created on the OLTP system that can be started
by the gateway to forget a transaction once it has been successfully committed and to
query a transaction's state during recovery processing. This transaction deletes the entry
for a particular Oracle Global Transaction ID from the OLTP commit-confirm transaction
log database during forget processing and queries the entry for a particular Oracle Global
Transaction ID from the OLTP commit-confirm transaction log database during recovery
processing.

Chapter 5
Components Required to Support Commit-Confirm

5-3

Note:

Make sure that the gateway initialization parameters and the OLTP
parameters are properly configured, as described in Chapter 11 of the
Oracle Database Gateway for APPC Installation and Configuration
Guide for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle
Solaris on SPARC (64-Bit), and HP-UX Itanium or Chapter 8 of the
Oracle Database Gateway for APPC Installation and Configuration
Guide for Microsoft Windows depending on your platform.

5.4 Application Design Requirements
When designing commit-confirm applications for use with the Oracle Database
Gateway for APPC, there are some requirements you must meet to provide the ability
for the gateway to determine the state of a transaction in the event of a failure. If these
requirements are not met, attempting to use an application with a commit-confirm
gateway will produce unpredictable results.

The first thing that must be done by an OLTP transaction invoked by a commit-confirm
gateway is to receive the Oracle Global Transaction ID from the gateway and log it into
the OLTP commit-confirm transaction log database. This must be done before the
normal data flow between the OLTP transaction and the Oracle application begins.
The gateway always sends the Oracle Global Transaction ID as the very first data
item.

If the OLTP transaction is a one-shot transaction, this is the only change needed. If the
transaction is a persistent transaction that performs more than one unit of work (issues
more than one commit or rollback), then a new Oracle Global Transaction ID must be
received and logged after every COMMIT or ROLLBACK.

The Oracle Global Transaction ID is sent by the gateway in a variable-length record
with a maximum length of 202 bytes. The first 32 bytes contain a special binary string
used to verify that the data came from the gateway and not from some other
application. The next 1 byte is a reserved field. The Oracle Global Transaction ID is
next, with a maximum length of 169 bytes. You must log the reserved field and the
Oracle Global Transaction ID, as well as a date/time stamp and any other information
you wish to log. Note that the Oracle Global Transaction ID must be the key field for
the log database so that the forget/recovery transaction can use the Oracle Global
Transaction ID to directly access a log entry.

Note:

If your OLTP is IMS/TM, you must add a PCB for the commit-confirm
transaction log database to the PSB for each transaction that you will use
with a commit-confirm gateway. This PCB must be the first PCB in the PSB.

5.5 Commit-Confirm Architecture
The architecture of the commit-confirm implementation in the Oracle Database
Gateway for APPC consists of three main components:

Chapter 5
Application Design Requirements

5-4

• Oracle database

• Oracle Database Gateway for APPC server (gateway server)

• Logging server (an Oracle database holding the tables PGA_CC_PENDING and PGA_CC_LOG)

This section describes the role each component plays in the operation of commit-confirm and
how these components interact.

5.5.1 Components
The Oracle database is the controlling component in the commit-confirm architecture. It tells
the gateway server when to commit a transaction and when to rollback a transaction. It does
the same with all other servers participating in a distributed transaction. When a failure has
occurred, it is the Oracle database acting as the integrating server which drives the recovery
process in each participating server, including the gateway server.

The gateway server performs the task of converting instructions from the Oracle database
into LU6.2 operations and then logs the transaction into the logging server. The gateway
server stores the log information in a table called PGA_CC_PENDING on the logging server. If a
failure occurs during transaction processing, the gateway server determines which error
should be returned to the Oracle database.

The logging server is an Oracle database available to the gateway server for storing and
accessing its commit-confirm log information. The logging server need not be the same
Oracle database which acts as the integrating server. Because the logging server is an
integral component of gateway commit-confirm operations, the best place for it to reside is on
the same system as the gateway server. This allows the communication between the
gateway server and the logging server to use interprocess communications, providing a high-
speed, low overhead, local connection between the components.

5.5.2 Interactions
There is a specific set of interactions that occur between the components. They are:

• Oracle Database <--> Gateway Server

The Oracle database drives all actions by the gateway server. At the request of the
Oracle application, the integrating server can instruct the gateway server to begin a new
Oracle transaction, start a commit sequence, start a rollback sequence, or start a forget
sequence. It can also call gateway remote procedural call (RPC) functions (PGAINIT,
PGAXFER, PGATERM) on behalf of the Oracle application.

• Gateway Server <--> Logging Server

The gateway server calls the logging server to insert and delete rows from its
PGA_CC_PENDING table. This is actually done by calling a PL/SQL stored procedure,
PGA_CC_LOG, in the logging server to reduce the number of open cursors required by the
gateway server for performing its logging. Only a single cursor is needed by the gateway
server for logging.

5.6 Commit-Confirm Flow
The flow of control for a successful commit between an Oracle application and an OLTP
transaction is described in the following section and illustrated inFigure 5-1 . The figure
assumes that both Oracle and OLTP resources have been updated. The following steps in
Commit-Confirm Logic Flow_ Step by Step outline the commit-confirm logic flow.

Chapter 5
Commit-Confirm Flow

5-5

5.6.1 Commit-Confirm Logic Flow, Step by Step
1. The application issues a COMMIT to the Oracle database.

2. The Oracle database sends PREPARE to each participant in the distributed
transaction other than the gateway.

3. Each participant prepares its database updates and responds PREPARE OK to the
Oracle database.

4. The Oracle database sends COMMIT to the gateway. The gateway receives the
COMMIT from the Oracle database and inserts a new pending transaction row into
the PGA_CC_PENDING table.

5. The gateway sends an APPC CONFIRM to the OLTP application. The OLTP
application receives the CONFIRM request in the form of a status from the last
APPC RECEIVE.

6. The OLTP application issues a COMMIT using an appropriate OLTP function. The
OLTP commits all database updates made by the application since the last
COMMIT, including the commit-confirm transaction log update.

7. Once the database updates have been committed, the OLTP returns control to the
application with a return code indicating the status of the COMMIT.

8. The OLTP application sends an APPC CONFIRMED to the gateway.

9. The gateway receives the CONFIRMED and returns COMMIT OK to the Oracle
database.

10. The Oracle database sends COMMIT to each participant in the distributed
transaction other than the gateway.

11. Each participant commits its database updates and responds COMMIT OK to the
Oracle database.

12. The Oracle database sends a FORGET to the gateway.

13. The gateway receives the FORGET and starts a new APPC conversation with the
FORGET/RECOVERY transaction at the OLTP, sends it a FORGET request and an APPC
CONFIRM. The FORGET/RECOVERY transaction receives the FORGET request and
deletes the entry from the commit-confirm transaction log for the current Oracle
transaction, and commits the delete.

14. The FORGET/RECOVERY transaction sends an APPC CONFIRMED to the gateway to
indicate that the FORGET was processed, and then terminates. The gateway
receives the CONFIRMED and deletes the pending transaction row from the
PGA_CC_PENDING table.

15. The gateway returns FORGET OK to the Oracle database.

16. The Oracle database returns control to the Oracle application.

Figure 5-1 illustrates the Commit-Confirm logic flow described in the previous section.

Chapter 5
Commit-Confirm Flow

5-6

Figure 5-1 Commit-Confirm Flow with Synclevel 1

OLTP
Oracle

Database

PREPARE

COMMIT

COMMIT

FORGET

COMMIT

Application

COMMIT

Program

Continues

Gateway

CONFIRM

Commit

OK

FORGET

FORGET

OK

OLTP App

RECEIVE

CONFIRMED

(return

code)

COMMIT

Program

Continues

Forget/Recover

Transaction

DELETE

LOG

ENTRY

FORGET

OK

1
2

3

4
5

6

7

8
9

10

11

12

13

141516

5.6.2 Gateway Server Commit-Confirm Transaction Log
The commit-confirm transaction log consists of a single table, PGA_CC_PENDING. This table
contains a row for each in-flight Oracle transaction that includes the commit-confirm gateway.
The table is maintained by the gateway server and is similar in function to the Oracle
database's DBA_2PC_PENDING table. Note that a row is not inserted into this table until a
COMMIT is received by the gateway and the row is deleted when a FORGET is received by the
gateway. There is no involvement by the gateway during the PREPARE phase.

The PGA_CC_PENDING table contains the following columns:

• GLOBAL_TRAN_ID
This is the Oracle Global Transaction ID for the transaction. It is identical to the
corresponding column in the DBA_2PC_PENDING table.

• SIDE_NAME
This is the Side Information Profile name that was used by the gateway to allocate the
APPC conversation with the target LU. It corresponds to the SIDENAME parameter passed
to the PGAINIT gateway function.

• LU_NAME
This is the fully-qualified partner LU name of the target LU. This value is either the LU
name from the Side Information Profile or the LUNAME parameter passed to the PGAINIT

Chapter 5
Commit-Confirm Flow

5-7

gateway function. This name fully identifies the OLTP system on which the
transaction was executed.

• MODE_NAME
This is the Mode name that was used by the gateway to allocate the APPC
conversation with the target LU. The value is either the Mode name from the Side
Information Profile or the MODENAME parameter passed to the PGAINIT gateway
function.

• TP_NAME
This is the transaction program name executed at the target LU. The value is
either the TP name from the Side Information Profile or the TPNAME parameter
passed to the PGAINIT gateway function. This name fully identifies the OLTP
transaction program that was executed.

Chapter 5
Commit-Confirm Flow

5-8

6
PG4TCPMAP Commands (TCP/IP Only)

The following sections describe the commands and instructions necessary to operate the
pg4tcpmap tool. This tool allows relevant parameters to map to a gateway using TCP/IP
support for IMS Connect. The tool will be used to populate the PGA_TCP_IMSC table.

Topics:

• Preparation for Populating the PGA_TCP_IMSC Table

• Overview

• Populating the PGA_TCP_IMSC Table

• Before You Run the pg4tcpmap Tool

• pg4tcpmap Tool Commands

6.1 Preparation for Populating the PGA_TCP_IMSC Table
If your gateway is using TCP/IP support for IMS Connect, then you must use the pg4tcpmap
tool to prompt PGAINIT to provide the required TCP/IP parameters as input.

The pg4tcpmap tool must be run before executing any PL/SQL gateway statements in order to
populate the PGA_TCP_IMSC table, which utilizes the corresponding TIPs.

Note that you do not need to rerun the pg4tcpmap tool for additional IMS transactions if they
share the same IMS Connect attributes.

The PGA_TCP_IMSC table was created when you executed the %ORACLE_HOME%
\dg4appc\admin\pgaimsc.sql script on Microsoft Windows or $ORACLE_HOME/dg4appc/
admin/pgaimsc.sql script on UNIX based systems during your gateway configuration. If you
need further information about creating the PGA_TCP_IMSC table, then depending on your
platform, refer to Chapter 13 of the Oracle Database Gateway for APPC Installation and
Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris
on SPARC (64-Bit), and HP-UX Itanium or Chapter 10 of Oracle Database Gateway for
APPC Installation and Configuration Guide for Microsoft Windows .

6.2 Overview
In a PGAINIT procedure call, the user must specify a Side Profile Name and TP Name. The
values of these parameters will be inserted into a table named PGA_TCP_IMSC.

Configure userid and password before running gateway mapping tool

Before executing the pg4tcpmap tool, you must configure a valid userid and password and
TNSNAMES alias for the Oracle database where the PGA_TCP_IMSC table resides. You must
specify the userid, password, and database in the PGA_TCP_USER, PGA_TCP_PASS, and
PGA_TCP_DB parameters, respectively, located in the gateway initialization file %ORACLE_HOME%
\dg4appc\admin\initsid.ora for Microsoft Windows and $ORACLE_HOME/dg4appc/admin/
initsid.ora for UNIX based systems.

6-1

6.3 Populating the PGA_TCP_IMSC Table
Table 6-1 describes the parameter information contained in the column names, types
and contents column found in the PGA_TCP_IMSC table.

Table 6-1 PGA_TCP_IMSC Table Columns

Column Name Type Content

SideProfileNa
me

varchar2(8) This parameter has no SNA implication. It is simply a
name that is defined in the .ctl file for the PGAU utility.
It represents a group of IMS transactions with similar
IMS Connect attributes, such as time delay, socket type
and IMS subsystem ID.

Unique index.

HostName varchar2(169)
NOT NULL

The OLTP TCP/IP address or the hostname.

PortNumber varchar2(17)
NOT NULL

The OLTP port number.

ANDRS char(1) NOT
NULL

ANDRS specifies whether the client is sending:

A = ACK: Positive Acknowledgement;

N = NAK: Negative Acknowledgement;

D = DEALLOCATE: Deallocate Connection;

R = RESUME: Resume TPIPE;

S = SENDONLY: Send only Acknowledgment or
Deallocate.

blank: no request for Acknowledgement or Deallocate.

The default is "blank".

TIMER char(1) NOT
NULL

Time delay for the receive to the datastore after an ACK
or RESUME TPIPE:

D = default value X'00' .25 second;

S = short wait X'01' through X'19': 01 to .25 second

N = No Wait occurs

I = Receive waits indefinitely.

The default is "D".

SOCK char(1) NOT
NULL

Socket Connection Type

T = Transaction Socket:

P = Persistent Socket

N = Non-persistent Socket

The default is "T".

CLIENTID char(8) NOT
NULL

Specifies the name of the client ID that is used by IMS
Connect. The default is 'null'.

COMMITMODE char(1) NOT
NULL

It specifies the commit mode:

0 = the commit mode is 0;

1 = the commit mode is 1

The default is "1".

Chapter 6
Populating the PGA_TCP_IMSC Table

6-2

Table 6-1 (Cont.) PGA_TCP_IMSC Table Columns

Column Name Type Content

IMSDESTID char(8) NOT
NULL

Specifies the datastore names (IMS subsystem ID) 8
bytes.

This parameter must be specified.

LTERM char(8) NOT
NULL

Specifies the IMS LTERM override. The default is
"blank".

RACFGRPNAM char(8) NOT
NULL

Specifies the RACF group name.

The default is "blank".

You need to specify the RACF group name if you have
set PGA_SECURITY_TYPE to PROGRAM.

Refer to "PGA_SECURITY_TYPE" in Table B-1 "PGA
Parameters on Gateway Using TCP/IP for IMS Connect"
in the Oracle Database Gateway for APPC Installation
and Configuration Guide for IBM AIX on POWER
Systems (64-Bit), Linux x86-64, Oracle Solaris on
SPARC (64-Bit), and HP-UX Itanium or Oracle Database
Gateway for APPC Installation and Configuration Guide
for Microsoft Windows..

Refer to "TCP/IP Security Option
SECURITY=PROGRAM" in Chapter 14 of the Oracle
Database Gateway for APPC Installation and
Configuration Guide for IBM AIX on POWER Systems
(64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-
Bit), and HP-UX Itanium or Chapter 11 of the Oracle
Database Gateway for APPC Installation and
Configuration Guide for Microsoft Windows to learn
more about how to set the RACF userid and RACF
password.

IRM_ID char(8) NOT
NULL

Specifes the IMS Connect user exit IRM ID. If you do not
specify this parameter it will default to IRMREQ,
corresponding to the IBM HWSIMSO0 sample user exit.

LLLL char(1) NOT
NULL

Specifies whether the IMS Connect user exit return data
includes the LLLL (total length) prefix field or not.
Supported values are:

Y - the exit return data includes the LLLL prefix field

N - the exit return data does not include the LLLL prefix
field

The default value is N.

6.4 Before You Run the pg4tcpmap Tool
Follow these steps to prepare for running the pg4tcpmap tool before you run the gateway.

1. Set the ORACLE_HOME and ORACLE_SID for the Oracle database.

2. Make certain that the user, PGAADMIN, has been created in the Oracle database and you
can talk to the database. Issue:

%ORACLE_HOME%\dg4appc\admin\pgacr8au.sql on Microsoft Windows

or,

Chapter 6
Before You Run the pg4tcpmap Tool

6-3

$ORACLE_HOME/dg4appc/admin/pgacr8au.sql on UNIX based systems

3. The initsid.ora file must contain appropriate parameters. Set the following
parameters:

• PGA_TCP_USER
• PGA_TCP_PASS
• PGA_TCP_DB
• If you intend to enable the tracing, you will also need to set the following

parameters:

– TRACE_LEVEL=255
– LOG_DESTINATION=<valid directory>
Refer to Troubleshooting for information about tracing.

4. Make certain that the PGA_TCP_IMSC table has been created. Issue:

%ORACLE_HOME%\dg4appc\admin\pgaimsc.sql on Microsoft Windows

or,

$ORACLE_HOME/dg4appc/admin/pgaimsc.sql on UNIX based systems

Figure 6-1 illustrates the relationship between the gateway, the database and the
pg4tcpmap tool in mapping the Side Profile Name to TCP/IP and IMS Connect
attributes in the PGA_TCP_IMSC table.

Chapter 6
Before You Run the pg4tcpmap Tool

6-4

Figure 6-1 Mapping SNA Parameters to TCP/IP Using the pg4tcpmap Tool

Database

PGA_TCP_IMSC

Table

Operating System

Gateway

C:\>pg4tcpmap

...

I

...

‘Side Profile name’ is ‘PGAIMST’

‘remote host name’ is ‘MVS08’

‘IMS Connect port number’ is ‘9900’

‘conversational protocol’ is “

‘Timer’ is ‘D’

‘socket connection type’ is ‘T’

...

Oracle Net

Operating System

A copy of the screen output file for the pg4tcpmap tool is located in Appendix B, "Gateway
Initialization Parameters for TCP/IP Communication Protocol" in the Oracle Database
Gateway for APPC Installation and Configuration Guide for IBM AIX on POWER Systems
(64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium or Oracle
Database Gateway for APPC Installation and Configuration Guide for Microsoft Windows.

An example of a trace file from a sample pg4tcpmap execution can be found in
Troubleshooting.

6.5 pg4tcpmap Tool Commands
There are two commands for the pg4tcpmap tool:

• one command inserts a row into the PGA_TCP_IMSC table;

• the other command deletes a row from the table, and the user must specify the predicate
as "Side Profile Name".

6.5.1 Inserting a Row into the PGA_TCP_IMSC Table
For Microsoft Windows, issue the following command from the gateway Oracle home
%ORACLE_HOME%\bin directory:

Chapter 6
pg4tcpmap Tool Commands

6-5

C:\> pg4tcpmap

For UNIX based systems, issue the following command from the gateway Oracle
home $ORACLE_HOME/bin directory:

$ pg4tcpmap

The gateway release number, copyright information, along with the following text
appears:

This tool takes the IMS Connect TCP/IP information, such as host name and port
number, and maps them to your TIPs.

You may use this tool to insert or delete IMS Connect TCP/IP information.
If you want to insert a row, Type "I"
If you want to delete a row, type "D"

Enter <i>, and after that, you need only enter the required parameters.

6.5.2 Deleting Rows from the PGA_TCP_IMSC Table
For Microsoft Windows, issue the following command from the gateway Oracle home
%ORACLE_HOME%\bin directory:

C:\> pg4tcpmap

For UNIX based systems, issue the following command from the gateway Oracle
home $ORACLE_HOME/bin directory:

$ pg4tcpmap

The gateway release number, copyright information, along with the following text
appears:

This tool takes the IMS Connect TCP/IP information, such as host name and port
number, and maps them to your TIPs.

You may use this tool to insert or delete IMS Connect TCP/IP information.
If you want to insert a row, Type "I"
If you want to delete a row, type "D"

Enter <d>, and the pg4tcpmap tool will ask you what Side Profile Name you want to
delete.

If the row does not exist, you will receive an ORA-1403 error message.

Note:

Do not use SQL*Plus to update the PGA_TCP_IMSC table. If you have
problems or incorrect data in the table, use %ORACLE_HOME%
\dg4appc\admin\pgaimsc.sql on Microsoft Windows or $ORACLE_HOME/
dg4appc/admin/pgaimsc.sql on UNIX based systems to re-create the table
and its index.

Chapter 6
pg4tcpmap Tool Commands

6-6

6.5.3 Querying the PGA_TCP_IMSC Table
Use the regular SQL*Plus select statement to query the table.

Example for Microsoft Windows:

C:\> sqlplus userid/password@databasename
SQL> column hostname format A22
SQL> column portnumber format A6
SQL> select sideprofilename, hostname,portnumber,imsdestid,commitmode from
 pga_tcp_imsc;

SIDEPROF HOSTNAME PORTNU IMSDESTI C
--------------- ---------------------- ------ -------- -
IMSPGA MVS08.US.EXAMPLE.COM 9900 IMSE 1

Example for UNIX based systems:

$ sqlplus userid/password@databasename
SQL> column hostname format A22
SQL> column portnumber format A6
SQL> select sideprofilename, hostname,portnumber,imsdestid,commitmode from
 pga_tcp_imsc;

SIDEPROF HOSTNAME PORTNU IMSDESTI C
--------------- ---------------------- ------ -------- -
IMSPGA MVS08.US.EXAMPLE.COM 9900 IMSE 1

Chapter 6
pg4tcpmap Tool Commands

6-7

7
Developing Client Application (TCP/IP Only)

The following topics discuss how you will call a TIP and control a remote host transaction if
your gateway uses TCP/IP support for IMS Connect. It also provides you with the steps for
preparing and executing a gateway transaction.

The following assumptions are made:

• a remote host transaction (RHT) has already been written

• a TIP corresponding to the RHT has already been defined using the steps described in
Creating a TIP.

• the PGA_TCP_IMSC mapping table has been populated, using the pg4tcpmap tool, with the
SIDE PROFILE name, TCP/IP hostname, port number and other IMS Connect parameters.

Topics:

• Overview of Client Application

• Preparing the Client Application

• Ensuring TIP and Remote Transaction Program Correspondence

• Calling the TIP from the Client Application

• Exchanging Data

• Calling PG4TCPMAP

• Executing the Application

• Application Development with Multi-Byte Character Set Support

• Privileges Needed to Use TIPs

7.1 Overview of Client Application
The Procedural Gateway Administration Utility (PGAU) generates a complete TIP using
definitions you provide. The client application can then call the TIP to access the remote host
transaction. Procedural Gateway Administration Utility , discusses the use of PGAU in detail.

This overview explains what you must do in order to call a TIP and control a remote host
transaction.

The gateway receives PL/SQL calls from the Oracle database and issues TCP/IP calls to
communicate with a remote transaction program.

The following application programs make this possible:

1. An I/O PCB-enabled remote host transaction program.

2. The PGA_TCP_IMSC mapping table that has been populated, using the pg4tcpmap tool,
with the SIDE PROFILE name as well as the TCP/IP hostname, port number and other
IMS Connect parameters.

7-1

3. A Transaction Interface Package (TIP). A TIP is a PL/SQL package that handles
communication between the client and the gateway and performs datatype
conversions between COBOL and PL/SQL.

4. PGAU generates the TIP specification for you. In the shipped samples, the PGAU-
generated package is called pgtflip.pkb. This generated TIP includes at least
three function calls that map to the remote transaction program:

• pgtflip_init initializes the conversation with the remote transaction program

• pgtflip_main exchanges application data with the remote transaction
program

• pgtflip_term terminates the conversation with the remote transaction
program

Refer to Tip Internals for more information about TIPs, if you are writing your own
TIP or debugging.

5. A client application that calls the TIP.

The client application calls the three TIP functions with input and output
arguments. In the example, the client application passes an input and the remote
transaction and the remote transaction sends back the flipped input as an output.

Table 7-1 demonstrates the logic flow between the PL/SQL driver, the TIP, and the
gateway using the example IMS Connect-IMS transaction.

Table 7-1 Logic Flow of IMS Connect-IMS Example

Client
Application

Oracle TIP Procedures Established Between the
Gateway and the Remote Transaction
(mainframe IMS)

Calls tip_init Calls PGAINIT Gateway issues TCP/IP socket and connect
to initiate the conversation with IMS
Connect.

Calls tip_main Calls PGAXFER to send the
input and receive the output

Gateway issues TCP/IP send() to IMS
Connect. IMS Connect, through OTMA and
XCF, talks to the IMS instance. IMS RECEIVE
completes. IMS performs application logic
and issues SEND back to gateway. The
gateway issues TCP/IP receive(); receive
completes.

Calls tip_term Calls PGATERM Gateway issues TCP/IP close().

A client application which utilizes the gateway to exchange data with a remote host
transaction performs some tasks for itself and instructs the TIP to perform other tasks
on its behalf. The client application designer must consequently know the behavior of
the remote transaction and how the TIP facilitates the exchange.

The following sections provide an overview of remote host transaction behavior, how
this behavior is controlled by the client application and how TIP function calls and data
declarations support the client application to control the remote host transaction.
These sections also provide background information about what the TIP does for the
client application and how the TIP calls exchange data with the remote host
transaction.

Chapter 7
Overview of Client Application

7-2

7.2 Preparing the Client Application
To prepare the client application for execution you must understand the remote host
transaction requirements and then perform these steps:

1. Make sure that the pg4tcpmap tool has been used to map the SIDEPROFILE name,
defined in the .ctl file for the PGAU utility, to TCP/IP and IMS Connect attributes.

Refer to PG4TCPMAP Commands (TCP/IP Only) in this guide for detailed information
about mapping parameters.

2. Make certain that you have identified the remote host transaction program facilities to be
called.

3. Move relevant COBOL records layout (copybooks) to the gateway system for input to
PGAU.

4. Describe the remote host transaction data and calls to the PG Data Dictionary (PG DD)
with DEFINE DATA, DEFINE CALL, and DEFINE TRANSACTION statements.

5. Generate the TIP in the Oracle database, using GENERATE.

6. Create the client application that calls the TIP public functions.

7. Grant privileges on the newly created package.

7.2.1 TIP Content and Purpose
The content of a PGAU-generated TIP reflects the calls available to the remote host
transaction and the data that has been exchanged. Understanding this content helps when
designing and debugging client applications that call the TIP.

A TIP is a PL/SQL package, and accordingly has two sections:

• A Package Specification containing:

– Public function prototypes and parameters

• A Package Body containing:

– Private functions and internal control variables

– Public functions

– Package initialization following the last public function

The purpose of the TIP is to provide a PL/SQL callable public function for every allowed
remote transaction program interaction. A remote transaction program interaction is a
logically related group of data exchanges through one or more PGAXFER RPC calls. This is
conceptually similar to a screen or menu interaction in which several fields are filled in, the
enter key is pressed, and several fields are returned to the user. Carrying the analogy further:

• the user might be likened to the TIP or client application

• fields to be filled in are IN parameters on the TIP function call

• fields returned are OUT parameters on the TIP function call

• screen or menu is the group of IN and OUT parameters combined

• a pressed enter key is likened to the PGAXFER remote procedural call (RPC)

Chapter 7
Preparing the Client Application

7-3

The actual grouping of parameters that constitute a transaction call is defined by the
user. The gateway places no restrictions on how a remote transaction program might
correspond to a collection of TIP function calls, each call having many IN and OUT
parameters.

PGA users typically have one TIP per remote transaction program. How the TIP
function calls are grouped and what data parameters are exchanged on each call
depends on the size, complexity and behavior of the remote transaction program.

Refer to Oracle's Oracle Database PL/SQL Language Reference for a discussion of
how PL/SQL packages work. The following discussion covers the logic that must be
performed within a TIP. Refer to the sample TIP and driver supplied in the
%ORACLE_HOME%\dg4appc\demo\IMS directory on Microsoft Windows and
in $ORACLE_HOME/dg4appc/demo/IMS directory on UNIX based systems, in files
pgtflip.pkh, pgtflip.pkb, and pgtflipd.sql.

7.2.2 Remote Host Transaction Types
From a database gateway application perspective, there are three main types of
remote host transactions:

• transaction socket

• persistent socket

• non-persistent socket

You should be familiar with the remote host transaction types. Refer to the IBM IMS
Connect Guide and Reference for a full description of these transaction types.

7.3 Ensuring TIP and Remote Transaction Program
Correspondence

A remote host transaction program and its related TIP with client application must
correspond on two key requirements:

• Parameter datatype conversion, which results from the way in which transaction
DATA is defined. Refer to Datatype Conversions for a discussion of how PGAU-
generated TIPs convert data based on the data definitions.

• TCP/IP send/receive synchronization, which results from the way in which
transaction CALLs are defined.

These DATA and CALL definitions are then included by reference in a TRANSACTION
definition.

Make certain that the SIDEPROFILE name has been mapped to TCP/IP and IMS
Connect attributes, using the pg4tcpmap tool.

7.3.1 DATA Correspondence
Using data definitions programmed in the language of the remote host transaction, the
PGAU DEFINE DATA command stores in the PG DD the information needed for PGAU
GENERATE to create the TIP function logic to perform:

Chapter 7
Ensuring TIP and Remote Transaction Program Correspondence

7-4

• all data conversion from PL/SQL IN parameters supplied by the receiving remote host
transaction

• all buffering into the format expected by the receiving remote host transaction

• all data unbuffering from the format supplied by the sending remote host transaction

• all data conversion to PL/SQL OUT parameters supplied by the sending remote host
transaction

PGAU determines the information needed to generate the conversion and buffering logic from
the data definitions included in the remote host transaction program. PGAU DEFINE DATA
reads this information from files, such as COBOL copy books, or in-stream from scripts and
saves it in the PG DD for repeated use. The Gateway Administrator needs to transfer these
definition files from the remote host to the Oracle host where PGAU runs.

From the data definitions stored in the PG DD, PGAU GENERATE determines the remote host
datatype and matches it to an appropriate PL/SQL datatype. It also determines data lengths
and offsets within records and buffers and generates the needed PL/SQL logic into the TIP.
Refer to the PGAU "DEFINE DATA" statement in Procedural Gateway Administration Utility
and "Sample PGAU DEFINE DATA Statements" in Administration Utility Samples for more
information.

All data that are referenced as parameters by subsequent calls must first be defined using
PGAU DEFINE DATA. Simple data items, such as single numbers or character strings, and
complex multi-field data aggregates, such as records or structures, can be defined. PGAU
automatically generates equivalent PL/SQL variables and records of fields or tables for the
client application to reference in its calls to the generated TIP.

As discussed, a parameter might be a simple data item, such as an employee number, or a
complex item, such as an employee record. PGAU DEFINE DATA automatically extracts the
datatype information it needs from the input program data definition files.

In this example, FLIPIN and FLIPOUT are the arguments to be exchanged.

PGTFLIP_MAIN(trannum,FLIPIN,FLIPOUT)

A PGAU DEFINE DATA statement must therefore be issued for each of these parameters:

DEFINE DATA FLIPIN
 PLSDNAME (FLIPIN)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 (
 01 MSGIN PIC X(20).
);

DEFINE DATA FLIPOUT
 PLSDNAME (flipout)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 (
 01 MSGOUT PIC X(20).
);

Note that a definition is not required for the trannum argument. This is the APPC conversation
identifier and does not require a definition in PGAU.

Chapter 7
Ensuring TIP and Remote Transaction Program Correspondence

7-5

7.3.2 CALL Correspondence
The requirement to synchronize TCP/IP send() and receive() means that when the
remote transaction program expects data parameters to be input, it issues TCP/IP
receive() to read the data parameters. Accordingly, the TIP must cause the gateway to
issue TCP/IP send() to write the data parameters to the remote transaction program.
The TIP must also cause the gateway to issue TCP/IP receive() when the remote
transaction program issues TCP/IP send().

The PGAU DEFINE CALL statement specifies how the generated TIP is to be called by
the client application and which data parameters are to be exchanged with the remote
host transaction for that call. Each PGAU DEFINE CALL statement might specify the
name of the TIP function, one or more data parameters, and the IN/OUT mode of each
data parameter. Data parameters must have been previously defined with PGAU
DEFINE DATA statements. Refer to "DEFINE CALL" in Procedural Gateway
Administration Utility and "Sample PGAU DEFINE CALL Statements" in Administration
Utility Samples for more information.

PGAU DEFINE CALL processing stores the specified information in the PG DD for later
use by PGAU GENERATE. PGAU GENERATE then creates the following in the TIP
package specification:

• declarations of public PL/SQL functions for each CALL defined with PL/SQL
parameters for each DATA definition specified on the CALL

• declarations of the public PL/SQL data parameters

The client application calls the TIP public function as a PL/SQL function call, using the
function name and parameter list specified in the PGAU DEFINE CALL statement. The
client application might also declare, by reference, private variables of the same
datatype as the TIP public data parameters to facilitate data passing and handling
within the client application, thus sharing the declarations created by PGAU GENERATE.

In this example, the following PGAU DEFINE CALL statement must be issued to define
the TIP public function:

DEFINE CALL FLIPMAIN
 PKGCALL (pgtflip_main)
 PARMS ((FLIPIN IN),(FLIPOUT OUT));

7.3.2.1 Flexible Call Sequence
The number of data parameters exchanged between the TIP and the gateway on each
call can vary at the user's discretion, as long as the remote transaction program's
SEND/RECEIVE requests are satisfied. For example, the remote transaction program
data exchange sequence might be:

TCP/IP SEND 5 fields (field1-field5)
TCP/IP RECEIVE 1 fields (field6)
TCP/IP SEND 1 field (field7)
TCP/IP RECEIVE 3 fields (field8 - field10)

The resulting TIP/application call sequence could be:

tip_call1(parm1 OUT, <-- TCP/IP SEND field1 from remote TP
 parm2 OUT, <-- TCP/IP SEND field2 from remote TP
 parm3 OUT); <-- TCP/IP SEND field3 from remote TP

Chapter 7
Ensuring TIP and Remote Transaction Program Correspondence

7-6

tip_call2(parm4 OUT, <-- TCP/IP SEND field4 from remote TP
 parm5 OUT); <-- TCP/IP SEND field5 from remote TP
tip_call3(parm6 IN OUT); --> TCP/IP RECEIVE field6 in remote TP
 <-- TCP/IP SEND field7 from remote TP

tip_call4(parm8 IN, --> TCP/IP RECEIVE field8 into remote TP
 parm9 IN, --> TCP/IP RECEIVE field9 into remote TP
 parm10 IN); --> TCP/IP RECEIVE field10 into remote TP

To define these four public functions to the TIP, four PGAU DEFINE CALL statements must be
issued, each specifying its unique public function name (tip_callx) and the data parameter
list to be exchanged. Once a data item is defined using DEFINE DATA, it can be referenced in
multiple calls in any mode (IN, OUT, or IN OUT). For example, parm5 could be used a second
time in place of parm6 This implies the same data is being exchanged in both instances,
received into the TIP and application on tip_call2 and returned, possibly updated, to the
remote host in tip_call4.

Notice also that the remote transaction program's first five written fields are read by two
separate TIP function calls, tip_call1 and tip_call2. This could also have been
equivalently accomplished with five TIP function calls of one OUT parameter each or a single
TIP function call with five OUT parameters. Then the remote transaction program's first read
field (field6) and subsequent written field (field7) correspond to a single TIP function call
(tip_call3) with a single IN OUT parameter (parm6).

This use of a single IN OUT parameter implies that the remote transaction program's
datatype for field6 and field7 are both the same and correspond to the conversion
performed for the datatype of parm6. If field6 and field7 were of different datatypes, then
they have to correspond to different PL/SQL parameters (for example, parm6 IN and parm7
OUT). They could still be exchanged as two parameters on a single TIP call or one parameter
each on two TIP calls, however.

Lastly, the remote transaction program's remaining three RECEIVE fields are supplied by
tip_call4 parameters 8-10. They also could have been done with three TIP calls passing
one parameter each or two TIP calls passing one parameter on one call and two parameters
on the other, in either order. This flexibility permits the user to define the correspondence
between the remote transaction program's operation and the TIP function calls in whatever
manner best suits the user.

7.3.2.2 Call Correspondence Order Restrictions
Each TIP public function first sends all IN parameters, before it receives any OUT parameters.
Thus, a remote transaction program expecting to send one field and then receive one field
must correspond to separate TIP calls.

For example:

tip_callO(parmO OUT); <-- TCP/IP SEND outfield from remote TP

PGAXFER RPC checks first for parameters to send, but finds none and proceeds to receive
parameters:

tip_callI(parmI IN); --> TCP/IP RECEIVE infield to remote TP

PGAXFER RPC processes parameters to send and then checks for parameters to receive, but
finds none and completes; therefore, a single TIP public function with an OUT parameter

Chapter 7
Ensuring TIP and Remote Transaction Program Correspondence

7-7

followed by an IN parameter does not work, because the IN parameter is processed
first--regardless of its position in the parameter list.

7.3.3 TRANSACTION Correspondence
The remote host transaction is defined with the PGAU DEFINE TRANSACTION statement
with additional references to prior definitions of CALLs that the transaction supports.

You specify the remote host transaction attributes, such as:

• transaction ID or name

• network address or location

• system type (such as IBM370)

• Oracle National Language of the remote host

Note:

The PL/SQL package name is specified when the transaction is defined;
this is the name by which the TIP is referenced and which the public
function calls to be included within the TIP. Each public function must
have been previously defined with a PGAU DEFINE CALL statement,
which has been stored in the PG DD. If you do not specify a package
name (TIP name) in the GENERATE statement, the transaction name you
specified will become the package name by default. In that case, the
transaction name (tname) must be unique and must be in valid PL/SQL
syntax within the database containing the PL/SQL packages.

For more information, refer to "DEFINE TRANSACTION" in Procedural
Gateway Administration Utility and "Sample PGAU DEFINE
TRANSACTION Statement" in Administration Utility Samples.

In this example, the following DEFINE TRANSACTION statement is used to match this
information with the inserted row in the PGA_TCP_IMSC table.

DEFINE TRANSACTION IMSFLIP
 CALL (FLIPMAIN)
 SIDEPROFILE(PGATCP)
 TPNAME(FLIP)
 NLS_LANGUAGE("american_america.us7ascii");

7.4 Calling the TIP from the Client Application
Once a TIP is created, a client application must be written to interface with the TIP. A
client application that calls the TIP functions must include five logical sections:

• declaring TIP variables

• initializing the conversation

• exchanging data

• terminating the conversation

• error handling

Chapter 7
Calling the TIP from the Client Application

7-8

7.4.1 Declaring TIP Variables
The user declarations section of the tipname.doc file documents the required declarations.

When passing PL/SQL parameters on calls to TIP functions, the client application must use
the exact same PL/SQL data types for TIP function arguments as are defined by the TIP in its
specification section. Assume, for example, the following is in the TIP specification, or
tipname.doc:

FUNCTION tip_call1 tranuse, IN BINARY_INTEGER,
 tip_var1 io_mode pls_type1,
 tip_record io_mode tran_rectype)
RETURN INTEGER;

TYPE tran_rectype is RECORD
 (rec_field1 pls_type1,
 ...
 rec_fieldN pls_typeN);

Where Table 7-2 provides a description of each of the parameters:

Table 7-2 Function Declarations

Parameter Description

tip_call1 The TIP function name as defined in the package specification.

tranuse The remote transaction instance parameter returned from the TIP init
function identifying the conversation on which this TIP call is to
exchange data.

tran_rectype The PL/SQL record data type declared in the tipname TIP
specification. This is the same value as in the TYPE tran_rectype
is RECORD statement.

pls_typeN Is a PL/SQL atomic data type.

rec_fieldN Is a PL/SQL record field corresponding to a remote transaction
program record field.

In the client application PL/SQL atomic data types should be defined as the exact same data
type of their corresponding arguments in the TIP function definition. The following should be
coded in the client application before the BEGIN command:

appl_var pls_type1; /* declare appl variable for */

You do not need to redefine TIP data types. They must be declared locally within the client
application, appearing in the client application before the BEGIN:

appl_record tipname.tran_rectype; /* declare appl record */

Table 7-3 describes the meaning of each procedure declaration:

Table 7-3 Procedure Declarations

Item Description

appl_record Is a PL/SQL record exchanged with the TIP and used within the client
application.

Chapter 7
Calling the TIP from the Client Application

7-9

Table 7-3 (Cont.) Procedure Declarations

Item Description

tipname Is the PL/SQL package (TIP) name as stored in Oracle database. This
is the same value as in the statement CREATE or REPLACE PACKAGE
tipname in the TIP specification.

tran_rectype Is the PL/SQL record data type declared in the tipname TIP
specification. This is the same value as in the TYPE tran_rectype is
RECORD statement.

Refer to the tipname.doc content file for a complete description of the user
declarations you can reference.

The client application calls the TIP public function as if it were any local PL/SQL
function:

rc = tip_call1(tranuse,
 appl_var,
 appl_record);

In the TCP/IP IMS Connect example, the PL/SQL driver pgtflipd.sql, which is
located in %ORACLE_HOME%\dg4appc\demo\IMS directory on Microsoft Windows and
in $ORACLE_HOME/dg4appc/demo/IMS directory on UNIX based systems, is the client
application and includes the following declaration:

...

...
CREATE or REPLACE PROCEDURE pgtflipd(mesgin IN CHAR) IS
trannum INTEGER :=0 /* transaction usage number */
mesgout VARCHAR2(254); /* the output parameter */
rc INTEGER :=0 /* PGA RPC return codes */
term INTEGER :=0; /* 1 if pgtflip_term called */
...
...

7.4.2 Initializing the Conversation
The call to initialize the conversation serves several purposes:

• To cause the PL/SQL package, the TIP, to be loaded and to perform the
initialization logic programmed in the TIP initialization section.

• To cause the TIP init function to call the PGAINIT remote procedural call (RPC),
which in turn establishes communication with the remote transaction program
(RTP), and returns a transaction instance number to the application.

Optionally, calls to initialize the conversation can be used to:

• Override default RHT/OLTP identification, network address attributes, and
conversation security user ID and password.

• Specify what diagnostic traces the TIP is to produce. Refer to Troubleshooting for
more information about diagnostic traces.

PGAU-generated TIPs provide four different initialization functions that client
applications can call. These are overloaded functions which all have the same name,
but vary in the types of parameters passed.

Chapter 7
Calling the TIP from the Client Application

7-10

Three initialization parameters are passed:

• The transaction instance number for RHT socket file descriptor. The tranuse parameter
is required on all TIP initializations.

• TIP diagnostic flags for TIP runtime diagnostic controls. The tipdiag parameter is
optional. Refer to Troubleshooting for a discussion of TIP diagnostics.

• TIP default overrides for overriding OLTP and network attributes. The override
parameter is optional.

The following four functions are shown as they might appear in the TIP Content
documentation file. Examples of client application use are provided later.

TYPE override_Typ IS RECORD (
 tranname VARCHAR2(2000), /* Transaction Program */
 transync BINARY_INTEGER, /* RESERVED */
 trannls VARCHAR2(50), /* RESERVED */
 oltpname VARCHAR2(2000), /* Logical Unit */
 oltpmode VARCHAR2(2000), /* LOG Mode Entry */
 netaddr VARCHAR2(2000), /* Side Profile */
 tracetag VARCHAR2(2000), /* gateway trace idtag */

FUNCTION pgtflip_init(/* init standard */
 tranuse IN OUT BINARY_INTEGER)
 RETURN INTEGER;

FUNCTION pgtflip_init(/* init override */
 tranuse IN OUT BINARY_INTEGER,
 override IN override_Typ)
 RETURN INTEGER;

FUNCTION pgtflip_init(/* init diagnostic */
 tranuse IN OUT BNARY_INTEGER,
 tipdiag IN CHAR)
 RETURN INTEGER;

FUNCTION pgtflip_init(/* init over-diag */
 tranuse IN OUT BINARY_INTEGER,
 override IN override_Typ,
 tipdiag IN CHAR)
 RETURN INTEGER;

7.4.2.1 Transaction Instance Parameter
This transaction instance number (shown in examples as tranuse) must be passed to
subsequent TIP exchange and terminate functions. It identifies to the gateway on which
TCP/IP conversation--and therefore which iteration of a remote transaction program--the data
is to be transmitted or communication terminated.

A single client application might control multiple instances of the same remote transaction
program or multiple different remote transaction programs, all concurrently. The transaction
instance number is the TIP‘s mechanism for routing the client application call through the
gateway to the intended remote transaction program.

It is the responsibility of the client application to save the transaction instance number of each
active transaction and pass the correct one to each TIP function called for that transaction.

The client application calls the TIP initialization function as if it were any local PL/SQL
function. For example:

Chapter 7
Calling the TIP from the Client Application

7-11

...

...
trannum INTEGER := 0;/* transaction usage number*/
...
...
BEGIN
 rc := pgtflip.pgtflip_init(trannum);
...
...

7.4.2.2 Overriding TIP Initializations
Note that in the preceding example the client application did not specify any remote
transaction program name, network connection, or security information. The TIP has
such information internally coded as defaults and the client application simply calls the
appropriate TIP for the chosen remote transaction program. The client application can,
however, optionally override some TIP defaults and supply security information.

You do not need to change any client applications that do not require overrides.

When the remote host transaction was defined in the PG DD, the DEFINE TRANSACTION
statement specified certain default OLTP and network identification attributes which
can be overridden:

• TPname

• Side Profile

Refer to "DEFINE TRANSACTION" in Procedural Gateway Administration Utility for
more information about the DEFINE TRANSACTION statement.

These PG DD-defined transaction attributes are generated into TIPs as defaults and
can be overridden at TIP initialization time. This facilitates the use of one TIP, which
can be used with a test transaction or system, and can later be used with a production
transaction or system, without having to regenerate the TIP.

The override_Typ record datatype describes the various transaction attributes that
can be overridden by the client application. The following overrides are currently
supported:

• tranname can be set to override the value that was specified by the TPNAME
parameter of the DEFINE TRANSACTION statement

• netaddr can be set to override the value that was specified by the SIDEPROFILE
parameter of the DEFINE TRANSACTION statement

In addition to the transaction attributes defined in the PG DD, there are two security-
related parameters, conversation security user ID and conversation security password,
that can be overridden at TIP initialization time. The values for these parameters
normally come from either the database link used to access the gateway or the Oracle
database session. There are cases when the Oracle database user ID is not sufficient
for accessing the OLTP system. The user ID and password overrides provide a way to
specify those parameters to the OLTP system.

The following overrides are currently supported:

• oltpuser can be set to override the user ID used to initialize the conversation with
the OLTP

Chapter 7
Calling the TIP from the Client Application

7-12

• oltppass can be set to override the password used to initialize the conversation with the
OLTP

The security overrides have an effect only if PGA_SECURITY_TYPE=PROGRAM is specified in the
gateway initialization file, and the OLTP system is configured to accept a user ID and
password on incoming conversation requests.

The transync (IMS Connect SYNCLEVEL) and trannls (Globalization Support character set)
are defined in the override record datatype, but are reserved for future use. The RHT
SYNCLEVEL and Globalization Support name cannot be overridden.

The client application might override the default attributes at TIP initialization for the following
reasons:

• to start a different version of the RHT (such as production instead of test)

• to change the location of the OLTP containing the RHT (if the OLTP was moved due to
migration or a switch to backup configuration)

Client applications requiring overrides can use any combination of override and initialization
parameters and might alter the combination at any time without regenerating the TIP or
affecting applications that do not override parameters.

To override the TIP defaults, an additional client application record variable must be declared
as override_Typ datatype, values must be assigned to the override subfields, and the
override record variable must be passed on the TIP initialization call from the client
application. For example:

 ...
 ...
 my_overrides pgtflip.override_Typ; -- declaration
 ...
 ...
 my_overrides.oltpname := 'IVTNO'; -- swap to production IMS
 my_overrides.tranname := 'IVTNV'; -- new transaction name

BEGIN
 rc := pgtflip.pgtflip_init(trannum,my_overrides); -- init
 ...
 ...

Within the TIP, override attributes are checked for syntax problems and passed to the
gateway server.

7.4.2.3 Security Considerations
The security requirements of the default and overridden OLTPs must be the same because
the same gateway server is used in either conversation, as dictated by the database link
names in the PGA RPC calls. The gateway server startup security mode is set at gateway
server initialization time and passed unchanged to the OLTP at TIP or conversation
initialization time.

7.5 Exchanging Data
The client application should pass the transaction instance number, returned from a previous
tip_init call, to identify which remote transaction program is affected and to identify any
client application data parameters to be exchanged with the remote transaction program.

Chapter 7
Exchanging Data

7-13

In this IMS Connect inquiry example, we pass an employee number and receive an
employee record back:

rc = pgtflip.pgtflip_main(trannum, /* transfer data */
 mesgin, /* input parameter */
 mesgout); /* output parameter*/

7.5.1 Terminating the Conversation
The client application calls the TIP termination function as if it were any local PL/SQL
function. For example:

...

...
term := 1; /* indicate term called */
 rc := pgtflip.pgtflip_term(trannum,0); /* terminate normally */
...
...

After a transaction instance number has been passed on a TIP terminate call to
terminate the transaction, or after the remote transaction program has abended, that
particular transaction instance number might be forgotten.

7.5.2 Error Handling
The client application should include an exception handler that can clean up any active
TCP/IP conversations before the client application terminates. The sample client
application provided in pgtflipd.sql contains an example of exception handling.

Gateway exceptions are reported in the range PGA-20900 to PGA-20999 and PGA-22000
to PGA 22099. When an exception occurs, the TIP termination function should be called
for any active conversations that have been started by prior calls to the TIP
initialization function.

For example:

EXCEPTION
 WHEN OTHERS THEN
 IF term = 0 THEN /* terminate function not called yet */
 rc := pgtflip.pgtflip_term(trannum,1); /*terminate abnormally*/
 END IF;
 RAISE;

The remote transaction should also include provisions for error handling and
debugging, such as writing debugging information to the IMS temporary storage queue
area. Refer to the Oracle Database PL/SQL Language Reference for a discussion of
how to intercept and handle Oracle exceptions.

7.5.3 Granting Execute Authority
The TIP is a standard PL/SQL package and execute authority must be granted to
users who call the TIP from their client application. In this example, we grant execute
on the pgtflip package to user SCOTT:

GRANT EXECUTE ON PGTFLIP TO SCOTT

Refer to the Oracle Database Administrator's Guide for further information.

Chapter 7
Exchanging Data

7-14

7.6 Calling PG4TCPMAP
PGAU need not be modified in order to have a conversation on a gateway using TCP/IP. You
use the APPC format of PGAU, but you will map parameters to TCP/IP using the pg4tcpmap
tool.

To map the DEFINE TRANSACTION parameters using TCP/IP, you must have a valid input within
the PGA_TCP_IMSC table before executing the application. Refer to PG4TCPMAP Commands
(TCP/IP Only) for information about setting up and using the mapping tool.

7.7 Executing the Application
Before executing the client application, ensure that a connection to the host is established
and that the receiving partner is available. In this example we use PL/SQL driver PGTFLIPD to
execute the IMS/IMS Connect inquiry. To execute this client application, enter from SQL*Plus:

set serveroutput on
execute pgtflipd('hello');

7.8 Application Development with Multi-Byte Character Set
Support

COBOL presently only supports double byte character sets (DBCS) for PIC G datatypes.

PGAU processes IBM VS COBOLII PIC G datatypes as PL/SQL VARCHAR2 variables and
generates TIPs which automatically convert the data according to the Oracle NLS_LANGUAGEs
specified for the remote host data and the local Oracle data.

These Oracle NLS_LANGUAGEs can be specified as defaults for all PIC G data exchanged by
the TIP with the remote transaction (see DEFINE TRANSACTION ... REMOTE_MBCS or
LOCAL_MBCS). The Oracle NLS_LANGUAGEs for any individual PIC G data item can be further
overridden (see REDEFINE DATA ... REMOTE or LOCAL_LANGUAGE).

DBCS data can be encoded in any combination of supported DBCS character sets. For
example, a remote host application which allows different codepages for each field of data in
a record is supported by the Oracle Database Gateway MBCS support.

Use of REDEFINE DATA ... REMOTE_LANGUAGE or LOCAL_LANGUAGE on PIC X items is also
supported. Thus a TIP can perform DBCS or MBCS conversions for specified PIC X data
fields, in addition to SBCS conversions by default for the remaining PIC X data fields. Default
SBCS conversion is according to the DEFINE TRANSACTION... NLS_LANGUAGE and local
Oracle default LANGUAGE environment values.

When PGAU is generating a TIP, the PIC G datatypes are converted to PL/SQL VARCHAR2
datatypes. After conversion by the TIP, received 'PIC G' VARCHAR2s can have a length less
then the maximum due to deletion of shift-out and shift-in meta characters, and sent 'PIC G'
RAW datatypes will have the shift-out and shift-in characters inserted as required by the
remote host character set specified.

This is different from the conversions performed for PIC X data which is always a known
fixed-length and hence CHAR datatypes are used in TIPs for PIC X data fields. However, even

Chapter 7
Calling PG4TCPMAP

7-15

when the PIC X field contains DBCS or MBCS data, a CHAR variable is still used and
padded with blanks if needed.

Some remote host applications bracket a PIC G field with PIC X bytes used for shift-
out, shift-in meta-character insertion. Such a COBOL definition might look like:

01 MY_RECORD.
 05 SO PIC X.
 05 MY_MBCS_DATA PIC G(50).
 05 SI PIC X.

This is not processed correctly by PGAU, because all three fields are defined, and
consequently treated, as separate data items when conversion is performed.

To be properly processed, the definition input to PGAU should be:

01 MY_RECORD.
 05 MY_MBCS_DATA PIC G(51).

The PGAU REDEFINE DATA statement can redefine the 3-field definition to the 1-field
definition by specifying USAGE(SKIP) on fields SO and SI, and '05 MY_MBCS_DATA PIC
G(51).' to redefine MY_MBCS_DATA. The three REDEFINE statements can be placed in
the PGAU input control file, and thus the remote host definition need not be altered.

7.9 Privileges Needed to Use TIPs
Execute privileges must be explicitly granted to callers of TIPs or procedures. This
privilege cannot be granted through a role.

Any TIP user wanting to trace a TIP must be granted execute privileges on the rtrace
and ptrace procedures. Refer to the "Configuring PGAU" section appropriate for your
communications protocol in the installation guides and the Oracle Database
Development Guide for more information.

For example:

On Microsoft Windows:

C:\> sqlplus pgaadmin\pw@database_specification_string
SQL> grant execute on pgaadmin.purge_trace to tip_user_userid;
SQL> grant execute on pgaadmin.read_trace to tip_user_userid;

On UNIX based systems:

$ sqlplus pgaadmin/pw@database_specification_string
SQL> grant execute on pgaadmin.purge_trace to tip_user_userid;
SQL> grant execute on pgaadmin.read_trace to tip_user_userid;

After a TIP has been developed, the TIP user must be granted execute privileges on
the TIP by the TIP owner. The TIP owner is usually PGAADMIN, but can be another user
who has been granted either the PGDDDEF or PGDDGEN roles. For example:

For Microsoft Windows:

C:\> sqlplus tip_owner\pw@database_specification_string
SQL> grant execute on tipname to tip_user_userid;

For UNIX based systems:

Chapter 7
Privileges Needed to Use TIPs

7-16

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to tip_user_userid;

where database_specification_string is the Oracle Net identifier for the Oracle database
where the gateway UTL_RAW and UTL_PG components were installed. This is the same Oracle
database where the TIPs are executed and where grants on the TIPs are performed from the
TIP owner user ID.

A SQL script for performing these grants is provided in the %ORACLE_HOME%\dg4appc\admin
directory for Microsoft Windows and $ORACLE_HOME/dg4appc/admin in the directory for UNIX
based systems. The pgddausr.sql script performs the grants for private access to the
packages by a single TIP user. If private grants are to be used, the pgddausr.sql script must
be run once for each TIP user's user ID.

To run these scripts, use SQL*Plus to connect to the Oracle database as user PGAADMIN.
From SQL*Plus, run the pgddausr.sql script from the %ORACLE_HOME%\dg4appc\admin
directory on Microsoft Windows or $ORACLE_HOME/dg4appc/admin directory on UNIX based
systems. The script performs the necessary grants as previously described. You are
prompted for the required user IDs, passwords, and database specification strings. If you are
using private grants, repeat this step for each user ID requiring access to the packages.

No script has been provided to perform public grants. To do this, issue the following
commands:

For Microsoft Windows:

C:\> sqlplus tip_owner\pw@database_specification_string
SQL> grant execute on tipname to PUBLIC;

For UNIX based systems:

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to PUBLIC;

Chapter 7
Privileges Needed to Use TIPs

7-17

8
Troubleshooting

The following topics discuss diagnostic techniques and aids for determining and resolving
problems with data conversion, truncation, and conversation startup. They also describe how
to collect the data when the debugging (trace) option is on.

You want to trace the PL/SQL stored procedures only when you suspect problems. Do not
enable tracing during normal operations because it will affect performance.

Topics:

• TIP Definition Errors

• Problem Analysis with PG DD Diagnostic References

• Problem Analysis with PG DD Select Scripts

• Data Conversion Errors

• Problem Analysis with TIP Runtime Traces

• TIP Runtime Trace Controls

• Suppressing TIP Warnings and Tracing

• Problem Analysis of Data Conversion and Truncation Errors

• Gateway Server Tracing

8.1 TIP Definition Errors
TIP definition errors occur when a TRANSACTION, CALL, or DATA entry in the PG DD is not
properly defined.

Use the REPORT with DEBUG statement to list the PG DD contents and GENERATE
DIAGNOSE(PKGEX(DR)) option to include corresponding ID numbers in the TIP.

Table 8-1 shows the mnemonic used to represent ID numbers and their correspondence with
the following:

• PGAU REPORT with debug listings, GENERATE traces and TIPs

• PG DD tables and columns from which ID numbers are selected

• Oracle sequence objects from which ID numbers originate

Table 8-1 PG DD ID Numbers in Correspondence

PGAU REPORT/TIP PDGG table(col) Sequence Object

v# transaction version pga_trans(version) pga.transvers
v# call version pga_call(version) pga.callvers
v# data version pga_data(version) pga.datavers
t# transaction id# pga_trans(trans#) pga.transeq

8-1

Table 8-1 (Cont.) PG DD ID Numbers in Correspondence

PGAU REPORT/TIP PDGG table(col) Sequence Object

c# call id# pga_call(call#)
pga_call_parm(call#)

pga.callseq

d# data id# pga_call_parm(data#)
pga_data(data#)
pga_fields(data#)

pga.dataseq

f# field id# pga_fields(fld#) pga.fieldseq
q# qualifier id# pga_data_values(qual#) pga.fieldseq
a# trans attribute id# pga_trans_values(attr#)

pga_trans_attr(attr#)
pga.tattrseq

a# field attribute id# pga_data_values(attr#)
pga_data_attr(attr#)

pga.dtattseq

e# environment pga_environments(env#) pga.envrseq
l# compiler/language pga_compilers(comp#) pga.compseq

These ID numbers can be used to associate the conversions performed in the TIP with
the definitions stored in the PG DD.

The PG DD diagnostic references appear in TIPs generated with the PKGEX(DR)
option as single line Comments:

-- PG DD type idno=nnn ...

The PG DD diagnostic references appear in REPORT with DEBUG listings before or to the
right of their related definition entry as end-delimited Comments:

/* idno=nnn */

Refer to Database Gateway for APPC Data Dictionary for more information about PG
DD, including a complete list of dictionary tables.

8.2 Problem Analysis with PG DD Diagnostic References
TIPs should be generated by the PGAU GENERATE command with the PKGEX(DR)
diagnostic option, to include PG DD reference Comments in the TIP. These diagnostic
references are Comments only and do not affect the runtime overhead of the TIP.
Refer to GENERATE in Procedural Gateway Administration Utility for a description of
the PKGEX (DR) parameter.

1. Before defining the PL/SQL package, identify the transaction name, ID number
(t#), and version (v#) from the TIP specification within the TIP.

2. Invoke PGAU REPORT WITH DEBUG specifying the same transaction name and
version.

REPORT selects definitions from the PG DD and produces a listing showing the
DATA, CALL, and TRANSACTION definitions and the ID number of each user-supplied
definition.

Chapter 8
Problem Analysis with PG DD Diagnostic References

8-2

3. Compare the reported definitions with those used in the remote transaction program and
identify all corresponding exchanges and the data formats transmitted.

4. Look for and investigate any mismatches, such as:

• different numbers of send/receive calls

• different sequence of send/receive calls

• different parameter lists on send/receive calls

• different data fields within each exchanged parameter

• different lengths for each exchanged parameter

• unsupported datatypes for each exchanged parameter

• improperly initialized control fields for:

– repeating group counts

IBMVSCOBOLII affected clauses include

OCCURS n TIMES DEPENDING ON field
– remapped group criteria

IBMVSCOBOLII affected clauses include

REDEFINES field1 WHEN field2 = criteria

8.3 Problem Analysis with PG DD Select Scripts
PGAU GENERATE error messages and TRACE(OC) entries reference SQL SELECT statements.
Refer to Table 8-2 for the meaning of the name designations for each entry.

Table 8-2 Meaning of TRACE(OC) Output

Name Entry

SED Select Environment Data

STL Select Transaction (latest version)

STV Select Transaction (specific version)

STC Select Transaction Calls

SPD Select Parameter Data

SF Select Fields

SFA Select Field Attributes

SXF Select conversion Formats

SXA Select Attribute conversions

The SQL*Plus test scripts in Table 8-3 are provided to perform the identical SELECTS as
GENERATE performs to determine which PG DD rows are being used when the TIP is
generated. These files are loaded into the %ORACLE_HOME%\dg4appc\admin directory on
Microsoft Windows or into the $ORACLE_HOME/dg4appc/admin directory on UNIX based
systems, during installation.

Chapter 8
Problem Analysis with PG DD Select Scripts

8-3

Table 8-3 SQL*Plus Test Scripts and Their Corresponding Entries

Script Entry

pgddsed.sql Select Environment Data

pgddstl.sql Select Transaction (latest version)

pgddstv.sql Select Transaction (specific version)

pgddstc.sql Select Transaction Calls

pgddspd.sql Select Parameter Data

pgddsf.sql Select Fields

pgddsfa.sql Select Field Attributes

pgddsxf.sql Select Conversion Formats

pgddsxa.sql Select Attribute conversions

The scripts are shown in the same order used by GENERATE and each script prompts
the SQL*Plus user for the required input. The information retrieved from a previous
select is often used as input to a subsequent select. If a you suspect that a PG DD
field entry has produced inaccurate data, browse the .sql files listed above to
determine the source of the problem. These files are loaded into the %ORACLE_HOME%
\dg4appc\admin directory on Microsoft Windows or $ORACLE_HOME/dg4appc/admin
directory on UNIX based systems, during installation.

8.4 Data Conversion Errors
Data conversion errors are usually the result of:

• incorrect determination of data type

or

• incorrect specification of data position

PGAU determination of the data type is based on the values found in the PG DD,
pga_fields(mask), and pga_fields(maskopts) columns. PGAU generates PL/SQL
code to perform conversions based on the mask value:

• PIC X converted to CHAR with the same character length

• PIC G converted to CHAR with the same character length

• PIC 9 converted to NUMBER
Character data type is presumed for all PIC X and PIC G mask values and conversion
errors are more likely the result of position, length, and justification errors.

Determination of numeric data type depends on several factors, including the
combination of mask and maskopts values and how they apply to the actual remote
host data in its internal format. Values for mask, maskopts, and data might conflict in
unexpected ways. For example, an option such as USAGE IS COMP might be overridden
if the data is in display format. While compilers occasionally perform such overrides
correctly, they can cause unexpected results when exchanging data with systems
coded in other languages.

Chapter 8
Data Conversion Errors

8-4

To notify the user of such overrides, a warning function has been included in the following
UTL_PG functions:

• MAKE _NUMBER_TO_RAW_FORMAT
• MAKE_RAW_TO_NUMBER_FORMAT
• NUMBER_TO_RAW
• RAW_TO_NUMBER

8.5 Problem Analysis with TIP Runtime Traces
TIPs should be generated by the PGAU GENERATE command with the PKGEX(DC) diagnostic
option to include TIP data conversion trace logic in the TIP. TIP function call trace logic is
always included in every TIP. This is runtime trace instrumentation and has some overhead
when tracing is enabled, but negligible overhead when tracing is disabled. Refer to
GENERATE in Procedural Gateway Administration Utility for more information.

1. Regenerate TIPs with the PKGEX(DC, DR) options and recompile the TIP body file,
tipname.pkb. Avoid recompiling the TIP specification.

2. Revise the application that calls the TIP initialization function (tipname_init) to pass the
trace flags parameter with data conversion and function call tracing enabled. Refer to
"Controlling TIP Runtime Data Conversion Tracing".

If the problem causes an exception to be raised in the TIP and the application contains
an exception handler, the application exception handler should be Commented out to
prevent it from handling the exception and preventing the exception point of origin from
being reported. When the TIP exception is next raised, its source line number in the TIP
is reported. Record this information.

3. Execute the application with diagnostic TIP initialization.

If the TIP trace pipe inlet overflows due to the application calls causing the TIP to write
trace messages in the TIP trace pipe inlet, you have one minute from the start of the
overflow condition to begin Step 4 and empty the TIP trace pipe.

Otherwise, exception "ORA-20703 PGA-TIP: pipe send error" is issued, ending the
diagnostic session, possibly before any relevant trace information is generated.

4. Retrieve and record the TIP trace message stream.

Use SQL*Plus to connect to the same Oracle user ID executing the application or the
user ID under which the TIP is executed. This establishes a second session from which
the trace pipe outlet can be read, preventing the TIP trace pipe from overflowing at the
TIP trace pipe inlet.

a. Issue the command:

set serveroutput on size nnnnn
b. Issue the command to record the trace output:

spool tipname.trc
c. Issue the command to retrieve the trace stream:

exec rtrace('tipname');

If the application is long-running, repeat this command as often as needed until all
trace messages have been retrieved.

Chapter 8
Problem Analysis with TIP Runtime Traces

8-5

5. If any exceptions are raised, note their prefix, number, and full message text.

6. Analyze the TIP trace message stream. A normal trace is shown for the pgadb2i
TIP in Administration Utility Samples.

8.6 TIP Runtime Trace Controls
Runtime trace control is the second parameter specified on a TIP initialization call. It is
a CHAR(8) datatype of the following form:

rc := yourtip_init(trannum,'wxyz0000');

Table 8-4 describes the value of positions one to four:

Table 8-4 Values of Positions 1 through 4 on Second Parameter of TIP Call

Item Description

position 1 (w) controls UTL_RAW warning. A value of 0 suppresses warnings; a
value of 1 issues warnings.

position 2 (x) controls the function entry/exit tracing. A value of 0 suppresses
the function entry/exit tracing; a value of 1 enables the function
entry/exit tracing.

position 3 (y) controls data conversion tracing. A value of 0 suppresses data
conversion tracing; a value of 1 enables data conversion tracing.

position 4 (z) controls gateway exchange tracing. A value of 0 suppresses
gateway exchange tracing; a value of 1 enables gateway
exchange tracing.

Positions 5 through 8 are reserved and ignored.

8.6.1 Generating Runtime Data Conversion Trace and Warning
Support

Use PGAU to regenerate the TIP and specify the GENERATE parameter
DIAGNOSE(PKGEX(DC)). This includes runtime PL/SQL code in the TIP which tests for
and displays warnings of correct, but possibly unexpected NUMBER_TO_RAW and
RAW_TO_NUMBER conversions.

Refer to GENERATE in Procedural Gateway Administration Utility for more information
about this parameter.

Recompile the TIP body under SQL*Plus. Avoid recompiling the TIP specification.

8.6.2 Controlling TIP Runtime Conversion Warnings
After the TIP has been regenerated, the issuance of runtime warnings is under control
of the application. By default, warnings are suppressed and are only issued when they
are enabled.

Errors and exceptions are always issued if they occur.

Chapter 8
TIP Runtime Trace Controls

8-6

To enable the issuance of warnings, an additional parameter must be supplied when calling
the TIP initialization function. This parameter is a CHAR(8) datatype and each character
position controls a particular TIP runtime diagnostic function.

To enable warnings in yourtip, the client application should call the TIP initialization function
with the statement:

rc := yourtip_init(trannum,'10000000');

The following is input to the TIP trace pipe inlet at initialization time:

"UTL_PG warnings enabled"

8.6.3 Controlling TIP Runtime Function Entry/Exit Tracing
To enable function entry/exit tracing in yourtip, the client application should call the TIP
initialization function with the statement:

rc := yourtip_init(trannum,'01000000');

The following is input to the TIP trace pipe inlet at initialization time:

'function entry/exit trace enabled'
'tipname_init entered'
'time date/time stamp'

8.6.4 Controlling TIP Runtime Data Conversion Tracing
To enable data conversion tracing in yourtip, the client application should call the TIP
initialization function with the following statement:

rc := yourtip_init(trannum,'00100000');

The following is input to the TIP trace pipe inlet at initialization time:

'data conversion trace enabled'

8.6.5 Controlling TIP Runtime Gateway Exchange Tracing
To enable runtime gateway exchange tracing in yourtip, the client application should call the
TIP initialization function with the following statement:

rc := yourtip_init(trannum,'00010000');

The following is input to the TIP trace pipe inlet at initialization time:

'gateway exchange trace enabled'

8.7 Suppressing TIP Warnings and Tracing
After debugging is finished, there are two ways to suppress the following:

• data conversion tracing

• conversion warnings

• function entry/exit tracing

• gateway exchange tracing

Chapter 8
Suppressing TIP Warnings and Tracing

8-7

You can:

1. Call the TIP initialization function without passing any diagnostic control
parameters:

rc := yourtip_init(trannum);
2. Call the TIP initialization function passing a revised diagnostic control parameter

which disables all tracing and warnings:

rc := yourtip_init(trannum,'00000000');

A third method, described in Method C, removes the logic for:

• data conversion tracing

• conversion warnings

3. Generate the TIP again without:

PKGEX(DC)
Or you can recompile the previous version of the TIP body if it was saved.

Methods A and B allow you to use the same TIP without alteration, but without tracing
or warnings. These methods are reversible without alteration or replacement of the
TIP. Tracing and warnings can be redisplayed should a problem recur.

Method C also suppresses data conversion tracing and warnings and incurs reduced
overhead by avoiding tests, but is not reversible without regenerating the TIP or
recompiling an alternate version with data conversion tracing and warning diagnostics
imbedded.

The logic for function entry/exit and gateway exchange tracing is included in every TIP
and cannot be removed. It can be disabled by method A or B.

8.8 Problem Analysis of Data Conversion and Truncation
Errors

Oracle Database Gateway for APPC data lengths are limited by PL/SQL to 32,763
bytes per APPC exchange and PL/SQL variable.

The following steps can be used to diagnose data conversion or truncation errors.

Refer to Creating a TIP to review the proper values and definitions referenced in items
1 through 4 below:

1. Ensure that the COBOL definitions used in the RHT match the input to PGAU;

2. Ensure the RHT transmission buffers are of sufficient length;

3. If your gateway uses SNA: Ensure the RHT APPC call addresses the correct
transmission buffer and uses the correct data length;

If your gateway uses TCP/IP: Ensure the RHT I/O PCB call addresses the
correct transmission buffer and uses the correct data length

4. Ensure the client application has declared the correct TIP datatypes used as
arguments in the TIP calls.

5. Ensure that the client application is calling the TIP functions in the proper
sequence (init, user-defined..., term), and that any input data to the RHT is correct.

Chapter 8
Problem Analysis of Data Conversion and Truncation Errors

8-8

Also ensure that if multiple user-defined functions exist, they are being called in the
proper sequence and passed the correct input values, if any.

DBMS_OUTPUT calls can be inserted in the client application to trace its behavior.

For more information about calling TIP functions in proper sequence, refer to the section
on configuring the Oracle database for first time installations in the installation guides.

6. Optionally, regenerate the TIP with diagnostic traces included and enable them. The
following traces are particularly useful:

• data conversion trace

• function entry/exit trace

• gateway exchange trace

Refer to "Problem Analysis with TIP Runtime Traces" for more information about traces;
refer also to GENERATE in Procedural Gateway Administration Utility .

Note that the output of the trace is different for a gateway using SNA than for a gateway
using TCP/IP. However, the method of invoking the trace is the same regardless of which
communication protocol you are using.

On Microsoft Windows, the gateway server tracing must also be enabled in
%ORACLE_HOME%\dg4appc\admin\initsid.ora. Set the parameters SET TRACE_LEVEL=255
and SET LOG_DESTINATION=C:\oracle\pga\12.2\dg4appc\log
On UNIX based systems, the gateway server tracing must also be enabled
in $ORACLE_HOME/dg4appc/admin/initsid.ora. Set the parameters SET
TRACE_LEVEL=255 and SET LOG_DESTINATION=/oracle/pga/12.2/dg4appc/log
Refer to "Gateway Server Tracing" in this guide for more information about tracing.

• If your gateway is using SNA: Refer to Appendix A, "Gateway Initialization
Parameters for SNA Protocol" in your Oracle Database Gateway for APPC
Installation and Configuration Guide for more information about these parameters;

• If your gateway is using TCP/IP: Refer to Appendix B, "Gateway Initialization
Parameters for TCP/IP Communication Protocol" in the Oracle Database Gateway
for APPC Installation and Configuration Guide for IBM AIX on POWER Systems (64-
Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium or Oracle
Database Gateway for APPC Installation and Configuration Guide for Microsoft
Windows. for more information about these parameters.

Rerun the client application and examine the trace (see the next step for details).

To disable the trace, reset

SET TRACE_LEVEL=0
7. Examine the trace output.

The TIP trace output can be saved in a spool file, such as:

spool tipname.trc

TIP trace output is written to a named DBMS_PIPE and can be retrieved under SQL*Plus
by issuing the following command:

exec rtrace('tipname');

or it can be purged by issuing the following command:

exec ptrace('tipname');

Chapter 8
Problem Analysis of Data Conversion and Truncation Errors

8-9

Note:

tipname is case-sensitive and must be specified exactly as it is in the
TIP.

Gateway server trace output is written to a log file in a default directory path
specified by the SET LOG_DESTINATION gateway parameter in %ORACLE_HOME%
\dg4appc\admin\initsid.ora for Microsoft Windows and in $ORACLE_HOME/
dg4appc/admin/initsid.ora for UNIX based systems. For example, on Microsoft
Windows:

SET LOG_DESTINATION=C:\oracle\pga\12.2\dg4appc\log

On UNIX based systems:

SET LOG_DESTINATION=$ORACLE_HOME/dg4appc/log/

Refer to "Gateway Server Tracing" for more information.

The gateway server log file can be viewed be editing the file or by issuing other
system commands that display file contents. The log file can also be copied and
saved to document problem symptoms.

8.9 Gateway Server Tracing
The gateway contains extensive tracing logic in the gateway remote procedural calls
(RPCs), and the APPC-specific code. Tracing is enabled through gateway initialization
parameters or dynamic RPC calls to the gateway. The trace provides information
about the execution of the gateway RPC functions and about the execution of the
APPC interface. The trace file contains a text stream written in chronological sequence
of events. The trace is designed to assist application programmers with the debugging
of their OLTP transaction programs and Oracle applications that communicate with
those transaction programs through the gateway.

A single trace file is created for an entire gateway session from the time the database
link is opened until it is closed. The trace can be directed to a specific path/filename or
to a path (directory) only. In the first case, the file is overwritten each time a new
session begins for the gateway being traced. When the trace target is a directory, a
separate file with a generated name (containing the operating system process ID) is
written for each gateway session. The latter approach must be used whenever the
gateway to be traced might be the target of new sessions after the desired trace is
written but before it can be copied and saved. Conversely, in some situations you
might choose to create a distinct gateway system identifier used solely for tracing, and
direct its trace to a single specific filename. This avoids the problem of an ever-
increasing set of trace files when, for example, repeated attempts are necessary to
reproduce or debug a problem. A fixed filename should never be used if there is any
chance that an unexpected gateway session could overlay a useful trace.

8.9.1 Defining the Gateway Trace Destination
This section describes how to define the destination of trace files to the gateway, and
how to cause the gateway to create the trace files during initialization. Note that this

Chapter 8
Gateway Server Tracing

8-10

does not enable any gateway tracing, it merely defines the destination of any trace output
produced when the gateway tracing is enabled.

1. Choose a gateway system identifier to trace. Decide whether you will be tracing an
existing gateway system identifier or a new one created specifically for tracing. If a new
system identifier will be used, configure the new system identifier exactly the same as the
old one by creating a new initsid.ora (a copy of the old), entries in listener.ora as
necessary, and a new Oracle database link.

Test the new system identifier to ensure it works before proceeding.

2. For Microsoft Windows, in %ORACLE_HOME%\dg4appc\admin, edit the initsid.ora file so it
contains the following:

SET TRACE_LEVEL=255
SET LOG_DESTINATION=logdest

For UNIX based systems, in $ORACLE_HOME/dg4appc/admin, edit the initsid.ora file so
it contains the following:

SET TRACE_LEVEL=255
SET LOG_DESTINATION=logdest

where logdest is the directory path for the trace output. The logfile is usually in
%ORACLE_HOME%\dg4appc\log for Microsoft Windows and $ORACLE_HOME/dg4appc/log for
UNIX based systems. Refer to the earlier discussion about "Problem Analysis of Data
Conversion and Truncation Errors" for more information.

Note:

Misspelled parameter names in initsid.ora are not detected. The parameter is
ignored.

Once these two steps are completed, the gateway opens the specified trace file during
initialization. Each session on this system identifier writes a trace file as specified by the SET
LOG_DESTINATION parameter described in Step 2 above.

If a directory path was specified, each trace file has a name of the form:

sid_pid.log

where sid is the gateway sid and pid is the operating system process ID of the gateway
server expressed in decimal.

8.9.2 Enabling the Gateway Trace
There are two ways to enable the gateway server tracing. The first is to set the tracing
options in the gateway initialization file, initsid.ora. The second is to use the additional
PGA remote procedural call (RPC) function, PGATCTL, to dynamically control the tracing from
within the Oracle application. The first method causes tracing to be performed for all users of
the gateway system identifier and is recommended only when the use of the gateway system
identifier can be limited to users actually needing the trace. The second method is more
flexible and allows the application programmer to selectively trace events on a single
gateway session without affecting the operation of other users' gateway sessions.

Chapter 8
Gateway Server Tracing

8-11

Before the gateway server trace is enabled, perform the tasks listed in "Defining the
Gateway Trace Destination".

8.9.2.1 Enabling the Gateway Trace Using Initialization Parameters
Edit the initsid.ora file, and add the following line at the end of the file (or, if a SET
TRACE_LEVEL parameter is already specified, modify it):

SET TRACE_LEVEL=trace

where trace is a numeric value from 1 to 255 indicating which traces are to be
enabled. For further information on the use of this parameter, refer to "PGA
Parameters" in Appendix A, "Gateway Initialization Parameters for SNA Protocol" of
the Oracle Database Gateway for APPC Installation and Configuration Guide for IBM
AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit),
and HP-UX Itanium or Oracle Database Gateway for APPC Installation and
Configuration Guide for Microsoft Windows

Once this step is completed, tracing is enabled for the desired gateway system
identifier.

8.9.2.2 Enabling the Gateway Trace Dynamically from PL/SQL
The following is only needed for user-written TIPs. PGAU-generated TIPs
automatically include the following facilities. Refer to "Controlling TIP Runtime
Gateway Exchange Tracing" for more information.

Make the following changes to the PL/SQL application that calls the Transaction
Interface Package(s) to execute remote transaction(s).

1. Add a call to PGATCTL before any calls to TIP initialization functions are made:

PGATCTL@dblink(convid,
 traceF,
 traceS);

Where Table 8-5 describes the parameters in PGATCTL:

Table 8-5 PGATCTL Parameters

Parameter Description

dblink is the name of the database link to the gateway

convid For a gateway using SNA: Conversation identifier returned
by the PGAINIT function to be used to identify the
conversation.

For a gateway using TCP/IP: Socket file descriptor returned
by the PGAINIT function to be used to identify the
conversation

traceF is the trace control function to be performed.

traceS specifies which traces are to be enabled, as described
previously in the discussion of the SET TRACE_LEVEL
initialization parameter.

Chapter 8
Gateway Server Tracing

8-12

This call sets the trace flags for all new conversations started after the call to the value
specified by traceS.

2. Recompile the PL/SQL application to pick up the new trace call.

Chapter 8
Gateway Server Tracing

8-13

A
Database Gateway for APPC Data Dictionary

The Procedural Gateway Data Dictionary (PG DD) is maintained in a conventional Oracle
database. It is installed by a SQL*Plus installation script (pgddcr8.sql in the %ORACLE_HOME%
\dg4appc\admin directory on Microsoft Windows or $ORACLE_HOME/dg4appc/admin directory
on UNIX based systems) and manipulated by PGAU statements and standard SQL
statements.

The dictionary is divided into two sections:

• the environment dictionary

• the active dictionary

The environment dictionary is static and should not be changed. The contents of the
environment dictionary support proper translation from the remote transaction's environment
to the integrating server's environment, and is platform-specific. The active dictionary is
updated at the user's location by the PGAU in response to definitions supplied by the user.

Topics:

• PG DD Environment Dictionary

• PG DD Active Dictionary

A.1 PG DD Environment Dictionary
The PGAU uses some dictionary tables strictly as input. These dictionary tables define
environmental parameters for PGAU. Both table and values are installed by a SQL*Plus
script at gateway installation time and are not to be modified by the installation.

The environment dictionary does not reference the active dictionary, but the active dictionary
does reference environment dictionary entries.

A.1.1 Environment Dictionary Sequence Numbers
The environment dictionary requires unique identifying numbers in some columns to join
environment dictionary entries together. Oracle sequence objects are therefore created by
the Oracle Database Gateway for APPC to support this requirement.

Table A-1 presents the Oracle sequence objects and their descriptions.

Table A-1 Oracle Sequence Objects

Oracle Sequence Objects Descriptions

pga.envrseq Environment id tag

pga.compseq Compiler id tag

pga.eattrseq Environment Attribute id tag

pga.dtypeseq Datatype id tag

A-1

Table A-1 (Cont.) Oracle Sequence Objects

Oracle Sequence Objects Descriptions

pga.dtattseq Datatype Attribute id tag

A.1.2 Environment Dictionary Tables
The environment dictionary tables contain constants that describe the following
components of the operating environment:

• pga_maint
• pga_environments
• pga_env_attr
• pga_env_values
• pga_compilers
• pga_datatypes
• pga_datatype_attr
• pga_datatype_values
• pga_usage
• pga_modes

A.1.2.1 pga_maint
The pga_maint table stores the PG DD maintenance information, including version
number and change history, as presented in Table A-2:

Table A-2 pga_maint

Column Type Contents

version number(10,4) PG DD version in format VVRRFF.rrff, where:

VV - base version;

RR - base release;

FF - base fix;

rr - port-specific release;

ff - port-specific fix.

mntdate date Oracle date and time at which the PG DD was
upgraded.

change varchar2(256) Description of the PG DD upgrade.

A.1.2.2 pga_environments
The pga_environments table stores the defined environment keywords, as presented
in Table A-3:

Appendix A
PG DD Environment Dictionary

A-2

Table A-3 pga_environments

Column Type Content

name varchar2(16) not null Environment.

Primary key.

env# number (9, 0) not null Env id.

Foreign key.

A.1.2.3 pga_env_attr
The pga_env_attr table stores the types of environmental attributes, as presented in
Table A-4:

Table A-4 pga_env_attr

Column Type Content

name varchar2 (16) not null Attribute.

Primary key.

attr# number (9, 0) not null Attribute id.

Foreign key.

coltype varchar2 (4) not null Attr value type.

Foreign key.

A.1.2.4 pga_env_values
The pga_env_values table stores the values for environments, as presented in Table A-5:

Table A-5 pga_env_values

Column Type Content

env# number (9, 0) not null Env id.

Primary key.

attr# number (9, 0) not null Attribute id.

Primary key.

numval number (9, 0) Numeric attribute value.

charval varchar2 (64) Character attribute value.

dateval date Date attribute value.

A.1.2.5 pga_compilers
The pga_compilers table stores the compiler environment names, as presented in Table A-6:

Appendix A
PG DD Environment Dictionary

A-3

Table A-6 pga_compilers

Column Type Content

name varchar2 (16) not null Compiler name.

Primary key.

plscomp varchar2 (30) PLS compiler name.

Secondary key.

env# number (9, 0) not null Env id.

Foreign key.

comp# number (9, 0) not null Compiler env id.

Foreign key.

ddl_process number (9, 0) not null PGADDL processor number.

A.1.2.6 pga_datatypes
The pga_datatypes table stores the datatype keywords, as presented in Table A-7:

Table A-7 pga_datatypes

Column Type Content

comp# number (9, 0) not null Compiler env id.

Primary key.

name varchar2 (16) not null Datatype keyword.

Primary key.

dt# number (9, 0) not null Datatype_values.

Foreign key.

A.1.2.7 pga_datatype_attr
The pga_datatype_attr table stores datatype attribute keywords, as presented in
Table A-8:

Table A-8 pga_datatype_attr

Column Type Content

name varchar2 (16) not null Attribute keyword.

Primary key.

attr# number (9, 0) not null Attribute id.

Foreign key.

coltype varchar2 (4) not null Type of attr.

Foreign key.

Appendix A
PG DD Environment Dictionary

A-4

A.1.2.8 pga_datatype_values
The pga_datatype_values table stores the datatype attribute values, as presented in
Table A-9:

Table A-9 pga_datatype_values

Column Type Content

comp# number (9, 0) not null Compiler env id.

Primary key.

dt# number (9, 0) not null datatype_values.

Foreign key.

attr# number (9, 0) not null Attribute id.

Foreign key.

dag# number (9, 0) Datatype attr group no.

numval number (9, 0) Numeric attribute value.

charval varchar2 (40) Character attribute value.

dateval date Date attribute value.

A.1.2.9 pga_usage
The pga_usage table performs a referential integrity check of pga_data and pga_field
column "usage" as presented in Table A-10:

Table A-10 pga_usage

Column Type Content

name varchar2(6) Value for the "usage" field of data dictionary tables. For
example:

'PASS'

'SKIP
'NULL'

'ASIS'

Primary key.

Max length => 4-char string length.

A.1.2.10 pga_modes
The pga_modes table performs a referential integrity check of pga_call_parm column "mode",
as presented in Table A-11:

Appendix A
PG DD Environment Dictionary

A-5

Table A-11 pga_modes

Column Type Content

name varchar2(6) Name of valid parameter call modes. For example:

IN
OUT
IN OUT
Max length => 'IN OUT' string length.

A.2 PG DD Active Dictionary
The PG DD active data dictionary is created by pgddcr8.sql at installation, but
maintained using PGAU. The active dictionary can refer to items (by ID number) in the
environment dictionary.

A.2.1 Active Dictionary Versioning
The PG DD active dictionary tables contain the descriptions of transactions and data
structures. There might be more than one version of a definition. Old versions are
retained indefinitely.

In PGAU dictionary operations, a definition is referred to by its "name", which can be
qualified by a specific version number. If omitted, the most recent version is assumed.

A.2.2 Active Dictionary Sequence Numbers
Because the active dictionary is constantly changing, the identifying numbers needed
to join active dictionary entries together must also change. To support this
requirement, PG DD installation creates the following Oracle sequence objects.

Table A-12 lists the Oracle sequence objects and their descriptions:

Table A-12 Active Dictionary Oracle Sequence Object Descriptions

Oracle Sequence Objects Description

pga.transeq Transaction id tag

pga.tranvers Transaction Version id tag

pga.tattrseq Transaction Attribute id tag

pga.callseq APPC-Call id tag

pga.callvers Call Version id tag

pga.parmseq APPC-Call Parameter id tag

pga.dataseq Data id tag

pga.fieldseq Data subfield id tag

pga.datavers Data Version id tag

pga.dattrseq Data Attribute id tag

Appendix A
PG DD Active Dictionary

A-6

A.2.3 Active Dictionary Tables
Following is a list of active dictionary tables:

• pga_trans
• pga_trans_attr
• pga_trans_values
• pga_trans_calls
• pga_call
• pga_data
• pga_fields
• pga_data_attr
• pga_data_values

A.2.3.1 pga_trans
One row exists in the PGA_TRANS table for each user transaction. The row is created by a
PGAU DEFINE TRANSACTION statement and used by a PGAU GENERATE statement to create
the PL/SQL package (TIP).

Table A-13 This 3-column table presents the column, type and content information for
PGA_TRANS:

Table A-13 pga_trans

Column Type Content

tname varchar2(64) Transaction name as defined by the customer.

Primary key.

Max length => APPC TPname string length.

version number(9,0) Version identification of this entry; it exists in the table
because multiple archived or invalid entries might exist and
be kept for possible future reactivation.

Primary key.

Set from an Oracle sequence object for transaction version
inserted into the PG DD.

updtdate date Audit-trail date/time record last updated.

updtuser varchar2(30) Audit-trail user ID/program which last updated this record.

trans# number(9,0) PGA Transaction number, used for the define call, define
data and define transaction statements.

Foreign key.

pga_trans_values(trans#),
pga_trans_calls(trans#).

Set from an Oracle sequence object for transaction inserted
into the PG DD.

Appendix A
PG DD Active Dictionary

A-7

A.2.3.2 pga_trans_attr
The pga_trans_attr table relates a character string defining the transaction attributes
supported by PGA to pga_trans_values entries through an attribute id number and
type.

The pga_trans_attr table is also used for integrity checks of transaction attributes
when new transactions are being defined.

There is an entry in the pga_trans_attr table for each transaction attribute name. All
possible transaction attribute names supported by PGA on any defined transaction are
specified. There is one row for each attribute, and no duplicates are allowed.

Table A-14 This 3-column table presents the column, type and content information for
pga_trans_attr:

Table A-14 pga_trans_attr

Column Type Content

name varchar2(16) Character string name of attribute.

Primary key.

Contains:

"ENVIRONMENT",

"LUNAME",

"TPNAME",

"LOGMODE",

"SIDEPROFILE",

"SYNCLEVEL",

"NLS_LANGUAGE",

"REMOTE_MBCS"

"LOCAL_MBCS"

attr# number(9,0) Attribute id assigned.

Foreign key.

pga_data_values(attr#).

Set from an Oracle sequence object for each
supported transaction attribute inserted into the PG
DD.

coltype varchar2(4) Type of Oracle column from which attribute value is
retrieved from pga_tran_values. For example:

'NUM ' => pga_tran_values(numval)
'CHAR' => pga_tran_values(charval)
'DATE' => pga_tran_values(dateval)

required char(1) If not null, required keyword for DEFINE
TRANSACTION; if null, optional.

A.2.3.3 pga_trans_values
The pga_trans_values table describes the values of transaction attributes.

Appendix A
PG DD Active Dictionary

A-8

A row exists to specify the value of each attribute of each transaction defined in the data
dictionary.

The column, type and content information for pga_trans_values is presented in Table A-15:

Table A-15 pga_trans_values

Column Type Content

trans# number(9,0) Transaction id from pga_trans(trans#).

Primary key.

Set from an Oracle sequence object for transaction inserted
into the PG DD.

attr# number(9,0) Attribute id from pga_trans_attr(attr#),

Primary key.

Set from an Oracle sequence object for each supported
transaction attribute inserted into the PG DD.

numval number(9,0) Attribute's numeric value, for example for a given transaction's
SYNCLEVEL attribute 0.

charval varchar2(64) Attribute's character value; for example, a given transaction's
TPNAME attribute.

dateval date Attribute's date value. Probably always null; included for
completeness.

A.2.3.4 pga_trans_calls
The pga_trans_calls table relates all calls available with any single transaction to each
specific call definition through a call ID number.

An entry exists in the pga_trans_calls table for each PL/SQL call referenced in a transaction
definition through the CALL(cname,...) operand. One row per transaction call; no duplicates.

The column, type and content information for pga_trans_calls is presented in Table A-16:

Table A-16 pga_trans_calls

Column Type Content

trans# number(9,0) Transaction id number from pga_trans(trans#).

Primary key.

Set from an Oracle sequence object for transaction inserted
into the PG DD.

seq# number(9,0) Sequence number of this call.

Primary key.

call# number(9,0) Call id number in pga_call(call#).

Foreign key.

Copied from pga_call.call# for the referenced call when
this transaction definition was inserted or updated.

Appendix A
PG DD Active Dictionary

A-9

A.2.3.5 pga_call
The pga_call table relates all calls that are available for all defined transactions, to a
unique call id number and PL/SQL remote procedural call (RPC) name. One entry
exists in this table for each PL/SQL call (defined in a DEFINE CALL statement).

One row per call, duplicates are possible when multiple transactions make identical
calls. The plsrpc specification must be unique within the Oracle database which makes
the calls, and rows are uniquely distinguished by call#.

The column, type and content information for pga_call are presented in Table A-17:

Table A-17 pga_call

Column Type Content

cname varchar2(48) Call name for PGAU reference;

Primary key.

Max length => COBOL name string length

plsrpc varchar2(30) RPC call name for reference in PL/SQL (public
procedure to be generated).

Max length => PL/SQL RPC name length

updtdate date Audit trail date/time of record's last update.

updtuser varchar2(30) Audit trail user id/program which last updated this
record.

version number(9,0) Version identification of this entry, because multiple
archived or invalid entries might exist and be kept for
possible future reactivation.

Primary key.

Set from an Oracle sequence object for call version
inserted into PG DD.

call# number(9,0) Call id number.

Foreign key.

pga_trans_calls(call#),
pga_call_parm(call#).

Set from an Oracle sequence object for each call
inserted into the PG DD.

A.2.3.6 pga_call_parm
The pga_call_parm table relates all parameters of any single transaction call to the
data definitions describing each parameter.

One entry exists in the pga_call_parm table for each parameter on a call in the
PARMS() operand of the PGAU DEFINE CALL statement. One row per parameter,
duplicates allowed when multiple calls (in the pga_call table) refer to the same
parameters.

Table A-18 This 3-column table presents the column, type and content information for
pga_call_parm:

Appendix A
PG DD Active Dictionary

A-10

Table A-18 pga_call_parm

Column Type Content

call# number(9,0) Call number for the referencing call from pga_calls.

Primary key.

Set from an Oracle sequence object for each call inserted
into the PG DD.

parm# number(9,0) Position in the PARMS() argument of DEFINE CALL
operation (1,2,3...).

Primary key.

cmode varchar2(6) Call mode of this parameter; one of the values in
pga_data_modes. For example:

'IN', 'OUT', 'IN OUT'

Max length => 'IN OUT' string length

data# number(9,0) Data definition # in pga_data(data#) of this item.

Foreign key.

pga_data(data#),pga_data_values(data#).

Copied from pga_data.data# for the data item when this
call/parm definition was inserted or updated.

A.2.3.7 pga_data
The pga_data table defines each data item used as a parameter in a call and relates the
remote host data name to its PL/SQL variables and any component subfields or clauses
within each data item (if the data item is an aggregate, such as a record). Each data item
might have attributes related to it through its corresponding field definition. Even atomic data
items have a single row in the pga_field table.

One row exists in the pga_data table for each data item defined by a PGAU DEFINE DATA or
REDEFINE DATA statement.

Table A-19 This 3-column table presents the column, type and content information for
pga_data:

Table A-19 pga_data

Column Type Content

comp# number(9,0) Compiler id number.;

Foreign key.

(pga_compiler(comp#).

Set from pga_compiler(comp#) based on the language
parameter specified on the DEFINE DATA statement when
the data definition is inserted.

compopts varchar2(100) Compiler options from the COMPOPTS keyword on the DEFINE
DATA statement.

dname varchar2(255) Name from the DEFINE statement;

Primary key.

Max length => COBOL name length

Appendix A
PG DD Active Dictionary

A-11

Table A-19 (Cont.) pga_data

Column Type Content

plsdvar varchar(30) PL/SQL variable name of data item for reference in PL/SQL.

Max length => PL/SQL variable length

version number(9,0) Version number of this entry. Set from an Oracle sequence
object for data version inserted into the PGADD.

updtdate date Audit-trail date/time this control record last updated.

updtuser varchar2(30) Audit-trail user id/program which last updated this record.

usage varchar2(6) Default usage of this data item: PASS, SKIP, NULL, ASIS.

Used primarily by PGAU REPORT.

Max length => 4-char string length

data# number(9,0) Data definition number.

Foreign key.

(pga_call_parm(data#), (pga_field(data#)
Set from an Oracle sequence object.

A.2.3.8 pga_fields
The pga_fields table defines each field within a data item and relates the remote host
data field to its PL/SQL variables or nested records. Each field item might have
attributes related to it (by field#) in the pga_data_attr and pga_data_values tables.

One row exists in the pga_fields table for each atomic item, field, clause, or nested
record defined by a PGAU DEFINE DATA statement. Several rows would exist (related
by a single data# and incrementing fld#) to define an aggregate data item, one row per
field or group.

Table A-20 This 3-column table presents the column, type and content information for
pga_fields:

Table A-20 pga_fields

Column Type Content

data# number(9,0) Data definition number.

Primary key.

(pga_data(data#), pga_call_parm(data#).

Set from an Oracle sequence object.

fname varchar2(255) Extracted or derived name of a field if dname defines
aggregate data.

Max length => COBOL name length

plsfvar varchar2(30) PL/SQL variable name of subfield in aggregate data
for reference in PL/SQL. Max length => PL/SQL
variable length

updtdate date Audit-trail date/time this control record last updated.

updtuser varchar2(30) Audit-trail user id/program which last updated this
record.

Appendix A
PG DD Active Dictionary

A-12

Table A-20 (Cont.) pga_fields

Column Type Content

fld# number(9,0) Clause or field within data definition id no.

Foreign key.

pga_data_values(fld#).

Set from an Oracle sequence object.

pos# number(9,0) Relative position number of each field defined within
an aggregate data item (for example, 1, 2 3, and so
on) or NULL if data is atomic.

usage varchar2(6) Usage of this data field:

'PASS', 'SKIP', 'NULL', 'ASIS'.

Max length => 4-char string length

mask varchar2(30) Datatype or Mask value. For example:

'S9(4)'

'X(24)'

'VARCHAR2(24)'

'BINARY_INTEGER(16)'

NULL
When NULL, item defined is assumed to be a COBOL
group or PL/SQL nested record.

Max length => arbitrarily chosen

maskopts varchar2(100) Datatype or Mask options value. For example:

'USAGE COMP-4'

'DISPLAY'

NULL
Max length => arbitrarily chosen

A.2.3.9 pga_data_attr
The pga_data_attr table defines all possible data attribute names allowed by PGA and
relates each attribute name to a number and type, by which the value of this attribute for a
specific data item can be selected from pga_data_values.

The pga_data_attr table is also used for integrity checks of data attributes when new data
items are defined.

There is one entry in the pga_data_attr table for every possible attribute name to which any
PGA supported data item might relate.

Table A-21 This 3-column table presents the column, type and content information for
pga_data_attr:

Appendix A
PG DD Active Dictionary

A-13

Table A-21 pga_data_attr

Column Type Content

name varchar2(16) Character string name of attribute.

Primary key.

Contains:

"LEVEL"
"RENAMEMF" (renames member first)
"RENAMEML" (renames member last)
"REMAPSMF" (redefines member first)
"REMAPSML" (redefines member last)
"REMAPSWM" (redefines when member)
"REMAPSWC" (redefines when char value)
"REMAPSWN" (redefines when num value)
"REPGRPFF" (occurs n)
"REPGRPVF" (odo first n)
"REPGRPVL" (odo last n)
"REPGRPVM" (odo depending member)
"REPGRPKA" (either Key Asc name)
"REPGRPKD" (either Key Desc name)
"REPGRPIX" (either index name)
"PLSTYPE"
"JUST" (justified char data)
"SYNC" (aligned aggregate data)
"LOCAL_LANGUAGE"
"REMOTE_LANGUAGE"
"LENGTH" (LENGTH IS variable)

Max length => attr name string lengths

attr# number(9,0) Attribute id assigned.

Foreign key.

pga_data_values(attr#). Set from an Oracle sequence
object for each supported data attribute inserted into the
PG DD.

coltype varchar2(4) Type of Oracle column from which attribute value is
retrieved from pga_data_values. For example:

'NUM ' => pga_data_values(numval)
'CHAR'=> pga_data_values(charval)
'DATE' => pga_data_values(dateval)

required char(1) If not null, required keyword.

A.2.3.10 pga_data_values
A row exists in the pga_data_values table for each attribute of each data item defined
by each data definition.

Table A-22 This 3-column table presents the column, type and content information for
pga_data_values:

Appendix A
PG DD Active Dictionary

A-14

Table A-22 pga_data_values

Column Type Content

fld# number(9,0) Data Field Definition number from pga_data(fld#). Primary key.

attr# number(9,0) Attribute id from pga_data_attr(attr#).

Primary key.

numval number(9,0) Attribute's numeric value. For example:

number for "LEVEL"
number for "REMAPSWN" (redefines)
number for "REPGRPFF" (occurs n)
number for "REPGRPVF" (odo first n)
number for "REPGRPVL" (odo last n)

If a non-numeric attribute, this item is NULL.

charval varchar2(40) Attribute's character value.

fname for "RENAMEMF (renames first)
fname for "RENAMEML" (renames last)
fname for "REMAPSMF" (redefines first)
fname for "REMAPSML" (redefines last)
fname for "REMAPSWM" (redefines when)
fname for "REPGRPVM" (odo member)
string for "REMAPSWC" (redefines)
string for "REPGRPKA" (occurs key)
string for "REPGRPKD" (occurs key)
string for "REPGRPIX" (occurs index)
string for "PLSTYPE" (PL/SQL data type)
string for "JUST"
string for "SYNC"
string for "REMOTE_LANGUAGE"
fname for "LENGTH"

If a non-character attribute, this item is NULL.

Max length => NLS_charset string length

dateval date Attribute's date value. Always null, included for completeness.

qual number (9,0) Qualified name number.

Foreign key.

Appendix A
PG DD Active Dictionary

A-15

B
Gateway RPC Interface

To execute a remote transaction program using the Oracle Database Gateway for APPC you
must execute a PL/SQL program to call the gateway functions, using a remote procedural call
(RPC). The gateway functions handle the initiation, data exchange and termination for the
gateway conversation with the remote transaction program.

The Oracle Database Gateway for APPC includes a tool, PGAU, to generate the PL/SQL
packages (TIPs) automatically, based on definitions you provide in the form of COBOL record
layouts and PGDL (Procedural Gateway Definition Language).

The gateway functions are all executed through remote procedural calls (RPC). The functions
are called from PL/SQL code as follows:

function@dblink(parm1,parm2,...,parmn);

Where Table B-1 describes the parameters in this syntax:

Table B-1 Gateway Functions

Item Description

function is the name of the function being called.

dblink is the name of a predefined database link to the gateway server on the
Windows system.

parm1, parm2,parmn are the function-specific parameters described later in this appendix.

Calling a function in PL/SQL code with the @dblink notation following the function name is a
remote procedural call.

B.1 PGAINIT and PGAINIT_SEC
PGAINIT and PGAINIT_SEC are remote procedural calls that initiate an APPC conversation
with a specified transaction program. The difference between the two is that PGAINIT_SEC
includes the added capability of being able to set the gateway conversation security user ID
and password to values other than the current Oracle user ID and password. Upon
successful completion of either function, the conversation is ready to send data to the remote
transaction program.

Table B-2 presents the PGAINIT and PGAINIT_SEC parameters that are common in both
procedures. It lists the type, datatype and description of each parameter:

B-1

Table B-2 Common PGAINIT and PGAINIT_SEC Parameters

Parameters Type Datatypes Descriptions

CONVID OUT RAW(12) For a gateway using SNA: Conversation
identifier returned by the PGAINIT function
to be used to identify the conversation to the
PGAXFER and PGATERM functions. After
PGAINIT is called, this variable must never
be modified, or results will be unpredictable.

For a gateway using TCP/IP: Socket file
descriptor returned by the PGAINIT function
to be used to identify the conversation to the
PGAXFER and PGATERM functions. After
PGAINIT is called, this variable must never
be modified, or results will be unpredictable.

TPNAME IN VARCHAR2(64) Transaction program name of the remote
transaction program with which a
conversation is to be established. For most
OLTPs, the name must be the transaction
name as defined to the OLTP. This name
can be from 1 to 64 characters in length.

Note: For TCP/IP support, the maximum
size is 8 characters. For more information,
refer to Appendix B, "Gateway Initialization
Parameters for TCP/IP Communication
Protocol" in the Oracle Database Gateway
for APPC Installation and Configuration
Guide for IBM AIX on POWER Systems (64-
Bit), Linux x86-64, Oracle Solaris on SPARC
(64-Bit), and HP-UX Itanium or Oracle
Database Gateway for APPC Installation and
Configuration Guide for Microsoft Windows.

LUNAME IN VARCHAR2(17) For a gateway using SNA: the LU name of
the OLTP under which the remote
transaction program executes. This
parameter is the fully-qualified LU name or
alias and can be from 1 to 17 characters in
length.

For a gateway using TCP/IP: this
parameter is not applicable.

MODENAME IN VARCHAR2(8) For a gateway using SNA: Logmode entry
name of the logmode table entry on the
remote host, which defines the session
characteristics for the APPC conversation.
This name can be from 1 to 8 characters in
length.

For a gateway using TCP/IP: this
parameter is not applicable.

Appendix B
PGAINIT and PGAINIT_SEC

B-2

Table B-2 (Cont.) Common PGAINIT and PGAINIT_SEC Parameters

Parameters Type Datatypes Descriptions

PROFNAME IN VARCHAR2(8) Profile name of the SNA Side Information
profile which defines the conversation. This
name can be from 1 to 8 characters in
length.

For a gateway using TCP/IP: this name
represents a group of IMS transactions
similar of similar TCP/IP and IMS Connect
attributes.

SYNCLEVEL IN CHAR(1) SYNCLEVEL for this conversation. This value
must be either '0' or '1'.

SYNCLEVEL 0 indicates that the remote
transaction program has no synchronization
capabilities.

SYNCLEVEL 1 indicates that the remote
transaction program is capable of
responding to CONFIRM requests and is used
to ensure data integrity when the remote
transaction program is making updates to a
database on the remote host.

Table B-3 lists the PGAINIT_SEC parameters which are specific to the procedure:

Table B-3 PGAINIT_SEC Parameters Specific to the Procedure

Parameter Type Datatype Description

USERID IN VARCHAR2(8) Conversation security user ID to be
passed to the target OLTP. The value
must be from 1 to 8 characters in
length.

PASSWORD IN VARCHAR2(8) Conversation security password to be
passed to the target OLTP. The value
must be from 1 to 8 characters in
length.

For Gateways Using the SNA Protocol:

There is an interrelationship between PROFNAME and LUNAME/TPNAME/MODENAME. If PROFNAME is
set to blanks or a null value, the LUNAME, TPNAME, and MODENAME parameters are all required to
be non-blank values. If they are not all set to non-blank values, an exception is generated.
However, if PROFNAME is set to a valid Side Information Profile name, the LUNAME, TPNAME, and
MODENAME parameters can be null or blank, because the Side Information profile specifies all
the information necessary to establish the conversation. In this case, any non-blank, non-null
values specified for LUNAME, TPNAME, or MODENAME override values set in the Side Information
profile.PROFNAME must be set and cannot be blank or null.

For Gateways Using the TCP/IP protocol:

PROFNAME and TPNAME must be set and cannot be blank or null.

Appendix B
PGAINIT and PGAINIT_SEC

B-3

B.2 PGAXFER
PGAXFER is called to transfer data to and from a remote transaction program on the
gateway conversation initialized by PGAINIT. The function sends and/or receives data
items based on the calling parameters.

Table B-4 lists the types, datatypes and descriptions of PGAXFER parameters:

Table B-4 PGAXFER Parameters

Parameter Type Datatype Description

CONVID IN RAW(12) For a gateway using SNA: Conversation
identifier returned by the PGAINIT function to
be used to identify the conversation.

For a gateway using TCP/IP: Socket file
descriptor returned by the PGAINIT function
to be used to identify the conversation.

SENDBUF IN RAW(32763) Buffer containing all the data items to be sent
to the remote transaction program. The data
items are sent as is, with no changes. Data
items must appear in the buffer in the exact
order in which the remote transaction
program expects to receive them. The total
size of all the data items cannot exceed the
maximum size for a single gateway send,
which is 32,763 bytes for a mapped
gateway conversation.

SENDBUFL IN BINARY_INTEGER Total length of the data items contained in
SENDBUF. The range is 0-32,763 bytes. A
value of '0' is used when there are no data
items to send.

SENDLNS IN RAW(1024) Buffer containing an array of up to 256 4-
byte integer values. The first integer value
specifies the number of data items contained
in the send buffer (SENDBUF). Following that
data item count is a series of integer values
specifying the lengths of the data items.
There must be an exact match between the
data item count and the number of data item
length values. Up to 255 data items can be
described by this array. The sum of all the
data item lengths cannot exceed the total
length in SENDBUFL.

RECVBUF OUT RAW(32763) Buffer to contain all the data items received
from the remote transaction program. The
data items are stored in this buffer in the
exact order in which the remote transaction
program sends them. The total size of all the
data items cannot exceed the maximum size
of 32,763 bytes.

RECVBUFL IN BINARY_INTEGER Total length of the receive buffer. The range
is 0-32,763 bytes. A value of '0' is used
when there are no data items to receive.

Appendix B
PGAXFER

B-4

Table B-4 (Cont.) PGAXFER Parameters

Parameter Type Datatype Description

RECVLNS INOUT RAW(1024) Buffer containing an array of up to 256 4-
byte integer values. The first integer value
specifies the number of data items to be
received into the receive buffer (RECVBUF).
Following the data item count is a series of
integer values specifying the maximum
lengths of the data items to be received. On
output, these values are replaced with the
actual lengths of the data items received.
There must be an exact match between the
data item count and the number of data item
length values. Up to 255 data items can be
described by this array. The sum of all the
data item lengths cannot exceed the total
length of the receive buffer (RECVBUFL).

When PGAXFER is called, either or both of SENDBUFL and RECVBUFL must be nonzero; in other
words, at least one data item must be sent to or received from the remote transaction
program. If PGAXFER is called with no data items to send or receive, it generates an exception.

Note:

On each PGAXFER call, all send processing occurs first, followed by all receive
processing. If a transaction operates in a manner that requires multiple sets of send
and receives, then PGAXFER can be called more than once to accommodate the
transaction. If more than 32,763 bytes of data are to be sent or received, multiple
calls to PGAXFER must be made.

B.3 PGATERM
PGATERM is called to terminate an the gateway conversation that was initiated by a previous
call to PGAINIT. Upon successful completion of this function, the conversation is deallocated
and all storage associated with it is freed.

Table B-5 presents the types, datatypes and descriptions of PGATERM parameters:

Table B-5 PGATERM Parameters

Parameter Type Datatype Description

CONVID IN RAW(12) For a gateway using SNA: Conversation identifier
returned by the PGAINIT function to be used to identify
the conversation.

For a gateway using TCP/IP: Socket file descriptor
returned by the PGAINIT function to be used to identify
the conversation.

Appendix B
PGATERM

B-5

Table B-5 (Cont.) PGATERM Parameters

Parameter Type Datatype Description

TERMTYPE IN CHAR(1) Type of termination to be performed.'0' indicates normal
completion and '1' indicates nonstandard termination,
which is only requested if there is an error.

B.4 PGATCTL
PGATCTL is called by the TRACE_LEVEL parameter at %ORACLE_HOME%
\dg4appc\admin\initsid.ora file for Microsoft or $ORACLE_HOME/dg4appc/admin/
initsid.ora file on UNIX based systems. Using PGATCTL, the trace level can be
changed dynamically from within a PL/SQL stored procedure. This facility is useful
when debugging a new PL/SQL application.

Table B-6 presents the types, datatypes and descriptions of parameters in PGATCTL:

Table B-6 PGATCTL Parameters

Parameter Type Datatype Description

CONVID IN RAW(12) For a gateway using SNA: Conversation identifier
returned by the PGAINIT function to be used to
identify the conversation.

For a gateway using TCP/IP: Socket file descriptor
returned by the PGAINIT function to be used to
identify the conversation.

TRFUNC IN CHAR(1) Trace control function to be performed. The valid
values are:

'S' - set trace flags to the exact value specified by the
TRFLAGS parameter.

'E' - enable the trace flags specified by the TRFLAGS
parameter, without changing any other flags.

'D' - disable the trace flags specified by the TRFLAGS
parameter, without changing any other flags.

Appendix B
PGATCTL

B-6

Table B-6 (Cont.) PGATCTL Parameters

Parameter Type Datatype Description

TRFLAGS IN BINARY_INT
EGER

Trace flags.

Turn on TRACE_LEVEL. Refer to Appendix A,
"Gateway Initialization Parameters for SNA Protocol"
in the Oracle Database Gateway for APPC Installation
and Configuration Guide for IBM AIX on POWER
Systems (64-Bit), Linux x86-64, Oracle Solaris on
SPARC (64-Bit), and HP-UX Itanium or Oracle
Database Gateway for APPC Installation and
Configuration Guide for Microsoft Windows for more
information if your protocol is SNA.

Refer to Appendix B, "Gateway Initialization
Parameters for TCP/IP Communication Protocol" in
the Oracle Database Gateway for APPC Installation
and Configuration Guide for IBM AIX on POWER
Systems (64-Bit), Linux x86-64, Oracle Solaris on
SPARC (64-Bit), and HP-UX Itanium or Oracle
Database Gateway for APPC Installation and
Configuration Guide for Microsoft Windows.

B.5 PGATRAC
This function is called to write a line of user data into the PGA trace file. Using PGATRAC, the
flow within a PL/SQL procedure can be traced, along with the events traced, based on the
TRACE_LEVEL at %ORACLE_HOME%\dg4appc\admin\initsid.ora for Microsoft Windows
or $ORACLE_HOME/dg4appc/admin/initsid.ora on UNIX based systems. This is a useful
debugging tool when developing a new PL/SQL application.

Table B-7 presents the type, datatype and description of the PGATRAC parameter:

Table B-7 PGATRAC Parameter

Parameter Type Datatype Description

TRDATA IN VARCHAR2(120) Line of user data to be written into the gateway trace
file. The contents must be printable characters.

Appendix B
PGATRAC

B-7

C
The UTL_PG Interface

The Oracle Database Gateway for APPC requires the use of the RAW datatype to transfer
data to and from PL/SQL without any alteration by Oracle Net. This is necessary because
only the PL/SQL applications have information about the format of the data being sent to and
received from the remote transaction programs. Oracle Net only has information about the
systems where the PL/SQL application and the gateway server are running. If Oracle Net is
allowed to perform translation on the data flowing between PL/SQL and the gateway, the data
can end up in the wrong format.

Topics:

• UTL_PG Functions

• NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

Note:

The IBM VS COBOL II compiler has been desupported. However, the string
"IBMVSCOBOLII" is still used as the value of the compiler name parameter to
represent any COBOL compiler you choose to use. The value IBMVSCOBOLII should
still be used and does not create a dependency on any specific version of the
compiler.

C.1 UTL_PG Functions
The UTL_PG package is an extension to PL/SQL that provides a full set of functions for
converting COBOL number formats into Oracle numbers and Oracle numbers into COBOL
number formats.

UTL_PG conversion format RAWs are not portable in this release. Additionally, generation of
conversion format RAWs on one system and transfer to another system is not supported.

The functions listed in this section are called in the standard PL/SQL manner:

package_name.function_name(arguments)

Specifically for UTL_PG routines, this is:

UTL_PG.function_name(arguments)

For each function listed below, the function name, arguments and their datatypes, and the
return value datatype are provided. Unless otherwise specified, the parameters are IN, not
OUT, parameters.

C.1.1 Common Parameters
The following UTL_PG functions share several similar parameters among themselves:

C-1

• RAW_TO_NUMBER
• MAKE_NUMBER_TO_RAW_FORMAT
• MAKE_RAW_TO_NUMBER_FORMAT
• NUMBER_TO_RAW
These similar parameters are described in detail in Table C-1 and then referenced only
by name in subsequent tables listing the parameters for each UTL_PG function in this
Appendix.

C.1.1.1 Common Input Parameters
Table C-1 describes the input parameters that are common to all of the UTL_PG
functions:

Table C-1 Input Parameters Common to UTL_PG Function

Parameter Description

mask is the compiler datatype mask. This is the datatype to be
converted, specified in the source language of the named
compiler (compname). This implies the internal format of the data
as encoded according to the compiler and host platform.

maskopts is the compiler datatype mask options or NULL. These are
additional options associated with the mask, as allowed or
required, and are specified in the source language of compname.
These can further qualify the type of conversion as necessary.

envrnmnt is the compiler environment clause or NULL. These are additional
options associated with the environment in which the remote data
resides, as allowed or required, and is specified in the source
language of compname. This parameter typically supplies
aspects of data conversion dictated by customer standards, such
as decimal point or currency symbols if applicable.

compname is the compiler name. The only supported value is
IBMVSCOBOLII.

compopts is the compiler options or NULL.

nlslang is the zoned decimal code page specified in Globalization
Support format, language_territory.charset. This defaults
to AMERICAN_AMERICA.WE8EBCDIC37C.

wind is the warning indicator. A Boolean indicator which controls
whether conversion warning messages are to be returned in the
wmsgblk OUT parameter.

wmsgbsiz is the warning message block declared size in bytes. It is a
BINARY_INTEGER set to the byte length of wmsgblk. The
warning message block must be at least 512 and not more than
8192 bytes in length. When declaring wmsgblk, plan on
approximately 512 bytes for each warning returned, depending
on the nature of the requested conversion.

C.1.1.2 Common Output Parameter
Table C-2 describes the output parameter that is common to the UTL_PG functions:

Appendix C
UTL_PG Functions

C-2

Table C-2 Output Parameters Common to UTL_PG Functions

Parameter Description

wmsgblk is the warning message block. It is a RAW value which can contain
multiple warnings in both full message and substituted parameter
formats, if wind is TRUE. This parameter should be passed to the
WMSGCNT function to test if warnings were issued and to WMSG to
extract any warning that are present.

If wind is TRUE and no warnings are issued or if wind is FALSE, the
length of wmsgblk is 0. This parameter does not need to be reset
before each use. The warning message is documented in the Oracle
Database Error Messages manual. This parameter must be allocated
and passed as a parameter in all cases, regardless of how wind is
specified.

C.1.2 RAW_TO_NUMBER
RAW_TO_NUMBER converts a RAW byte-string r from the remote host internal format specified
by mask, maskopts, envrnmnt, compname, compopts, and nlslang into an Oracle number.

Warnings are issued, if enabled, when the conversion specified conflicts with the conversion
implied by the data or when conflicting format specifications are supplied.

For detailed information about the mask, maskopts, envrnmnt, compname, and compopts
arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values".

Syntax

function RAW_TO_NUMBER (r IN RAW,
 mask IN VARCHAR2,
 maskopts IN VARCHAR2,
 envrnmnt IN VARCHAR2,
 compname IN VARCHAR2,
 compopts IN VARCHAR2,
 nlslang IN VARCHAR2,
 wind IN BOOLEAN,
 wmsgbsiz IN BINARY_INTEGER,
 wmsgblk OUT RAW) RETURN NUMBER;

Where Table C-3 describes the parameters in this function:

Table C-3 RAW_TO_NUMBER Function Parameters

Parameter Description

r is the remote host data to be converted.

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Globalization Support format.

Appendix C
UTL_PG Functions

C-3

Table C-3 (Cont.) RAW_TO_NUMBER Function Parameters

Parameter Description

wind is a warning indicator.

wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Defaults and Optional Parameters

Table C-4 describes the default and optional parameters of the RAW_TO_NUMBER
function:

Table C-4 Optional and Default Parameters of the RAW_TO_NUMBER Function

Parameters Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

Return Value

An Oracle number corresponding in value to r.

Error and Warning Messages

If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages for an explanation and information about how to handle it.

C.1.3 NUMBER_TO_RAW
NUMBER_TO_RAW converts an Oracle number n of declared precision and scale into a
RAW byte-string in the remote host internal format specified by mask, maskopts,
envrnmnt, compname, compopts, and nlslang.

Warnings are issued, if enabled, when the conversion specified conflicts with the
conversion implied by the data or when conflicting format specifications are supplied.

For detailed information about the mask, maskopts, envrnmnt, compname, and
compopts arguments, refer to"NUMBER_TO_RAW and RAW_TO_NUMBER Argument
Values".

Syntax

function NUMBER_TO_RAW (n IN NUMBER,
 mask IN VARCHAR2,
 maskopts IN VARCHAR2,
 envrnmnt IN VARCHAR2,
 compname IN VARCHAR2,
 compopts IN VARCHAR2,
 nlslang IN VARCHAR2,
 wind IN BOOLEAN,

Appendix C
UTL_PG Functions

C-4

 wmsgbsiz IN BINARY_INTEGER,
 wmsgblk OUT RAW) RETURN RAW;

Where Table C-5 describes the parameters in this function:

Table C-5 NUMBER_TO_RAW Function Parameters

Parameter Description

n is the Oracle number to be converted.

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Globalization Support format.

wind is a warning indicator.
wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Defaults and Optional Parameters

Table C-6 describes the defaults and optional parameters for the NUMBER_TO_RAW function:

Table C-6 Defaults and Optional Parameters for NUMBER_TO_RAW Function

Parameter Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

Return Value

A RAW value corresponding in value to n.

Error and Warning Messages

If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error
Messages for an explanation and information about how to handle it.

C.1.4 MAKE_RAW_TO_NUMBER_FORMAT
MAKE_RAW_TO_NUMBER_FORMAT makes a RAW_TO_NUMBER format conversion specification used
to convert a RAW byte-string from the remote host internal format specified by mask,
maskopts, envrnmnt, compname, compopts, and nlslang into an Oracle number of
comparable precision and scale.

Warnings are issued, if enabled, when the conversion specified conflicts with the conversion
implied by the data or when conflicting format specifications are supplied.

Appendix C
UTL_PG Functions

C-5

This function returns a RAW value containing the conversion format which can be
passed to UTL_PG.RAW_TO_NUMBER_FORMAT.

For detailed information about the mask, maskopts, envrnmnt, compname, and compopts
arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values".

Syntax

function MAKE_RAW_TO_NUMBER_FORMAT (mask IN VARCHAR2,
 maskopts IN VARCHAR2,
 envrnmnt IN VARCHAR2,
 compname IN VARCHAR2,
 compopts IN VARCHAR2,
 nlslang IN VARCHAR2,
 wind IN BOOLEAN,
 wmsgbsiz IN BINARY_INTEGER,
 wmsgblk OUT RAW) RETURN RAW;

Where Table C-7 describes the parameters in this function:

Table C-7 MAKE_RAW_TO_NUMBER_FORMAT Function Parameters

Parameter Description

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Globalization Support format.

wind is a warning indicator.

wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Defaults and Optional Parameters

Table C-8 describes the defaults and optional parameters of the
MAKE_RAW_TO_NUMBER_FORMAT function:

Table C-8 Default and Optional MAKE_RAW_TO_NUMBER_FORMAT
Parameters

Parameter Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

Return Value

A RAW(2048) format conversion specification for RAW_TO_NUMBER.

Appendix C
UTL_PG Functions

C-6

Error and Warning Messages

If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error
Messages guide for an explanation and information about how to handle it.

C.1.5 MAKE_NUMBER_TO_RAW_FORMAT
MAKE_NUMBER_TO_RAW_FORMAT makes a NUMBER_TO_RAW format conversion specification used
to convert an Oracle number of declared precision and scale to a RAW byte-string in the
remote host internal format specified by mask, maskopts, envrnmnt, compname, compopts, and
nlslang.
Warnings are issued, if enabled, when the conversion specified conflicts with the conversion
implied by the data or when conflicting format specifications are supplied.

This function returns a RAW value containing the conversion format which can be passed to
UTL_PG.NUMBER_TO_RAW_FORMAT. The implementation length of the result format RAW is 2048
bytes.

For detailed information about the mask, maskopts, envrnmnt, compname, and compopts
arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values".

Syntax

function MAKE_NUMBER_TO_RAW_FORMAT (mask IN VARCHAR2,
 maskopts IN VARCHAR2,
 envrnmnt IN VARCHAR2,
 compname IN VARCHAR2,
 compopts IN VARCHAR2,
 nlslang IN VARCHAR2,
 wind IN BOOLEAN,
 wmsgbsiz IN BINARY_INTEGER,
 wmsgblk OUT RAW) RETURN RAW;

Where Table C-9 describes the parameters in this function:

Table C-9 MAKE_NUMBER_TO_RAW_FORMAT Function Parameters

Parameter Description

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Globalization Support format.

wind is a warning indicator.
wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Appendix C
UTL_PG Functions

C-7

Defaults and Optional Parameters

Table C-10 describes the defaults and optional parameters for the
MAKE_NUMBER_TO_RAW_FORMAT function:

Table C-10 Optional, Default Parameters: MAKE_NUMBER_TO_RAW_FORMAT

Parameter Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

Return Value

A RAW(2048) format conversion specification for NUMBER_TO_RAW.

Error and Warning Messages

If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.6 RAW_TO_NUMBER_FORMAT
RAW_TO_NUMBER_FORMAT converts, according to the RAW_TO_NUMBER conversion format
r2nfmt, a RAW byte-string rawval in the remote host internal format into an Oracle
number.

Syntax

function RAW_TO_NUMBER_FORMAT (rawval IN RAW,
 r2nfmt IN RAW) RETURN NUMBER;

where Table C-11 describes the parameters in this function:

Table C-11 RAW_TO_NUMBER_FORMAT Function Parameters

Parameter Description

rawval is the remote host data to be converted.

r2nfmt is a RAW(2048) format specification returned from
MAKE_RAW_TO_NUMBER_FORMAT.

Defaults

None

Return Value

An Oracle number corresponding in value to r.

Appendix C
UTL_PG Functions

C-8

Error and Warning Messages

If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error
Messages guide for an explanation and information about how to handle it.

C.1.7 NUMBER_TO_RAW_FORMAT
NUMBER_TO_RAW_FORMAT converts, according to the NUMBER_TO_RAW conversion format n2rfmt,
an Oracle number numval of declared precision and scale into a RAW byte-string in the
remote host internal format.

Syntax

function NUMBER_TO_RAW_FORMAT (numval IN NUMBER,
 n2rfmt IN RAW) RETURN RAW;

Where Table C-12 describes the parameters in this function:

Table C-12 NUMBER_TO_RAW_FORMAT Function Parameters

Parameters Description

numval is the Oracle number to be converted.

n2rfmt is a RAW(2048) format specification returned from
MAKE_NUMBER_TO_RAW_FORMAT.

Defaults

None

Return Value

A RAW value corresponding in value to n.

Error and Warning Messages

If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error
Messages guide for an explanation and information about how to handle it.

C.1.8 WMSGCNT
WMSGCNT tests a wmsgblk to determine how many warnings, if any, are present.

Syntax

function WMSGCNT (wmsgblk IN RAW) RETURN BINARY_INTEGER;

Where Table C-13 describes the parameter in this function.

Appendix C
UTL_PG Functions

C-9

Table C-13 WMSGCNT Function Parameter

Parameter Description

wmsgblk is the warning message block returned from one of the following
functions:

• MAKE_NUMBER_TO_RAW_FORMAT
• MAKE_RAW_TO_NUMBER_FORMAT
• NUMBER_TO_RAW
• RAW_TO_NUMBER

Defaults

None

Return Value

A BINARY_INTEGER value equal to the count of warnings present in the RAW wmsgblk.

Table C-14 lists possible returned values:

Table C-14 WMSGCNT Return Values

Value Description

>0 indicates a count of warnings present in wmsgblk.

0 indicates that no warnings are present in wmsgblk.

Error and Warning Messages

If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

C.1.9 WMSG
WMSG extracts a warning message specified by wmsgitem from wmsgblk.

Syntax

function WMSG (wmsgblk IN RAW,
 wmsgitem IN BINARY_INTEGER,
 wmsgno OUT BINARY_INTEGER,
 wmsgtext OUT VARCHAR2,
 wmsgfill OUT VARCHAR2) RETURN BINARY_INTEGER;

Where Table C-15 describes the parameters in this function:

Appendix C
UTL_PG Functions

C-10

Table C-15 WMSG Function Parameters

Parameter Description

wmsgblk is a RAW warning message block returned from one of the following
functions:

• MAKE_NUMBER_TO_RAW_FORMAT
• MAKE_RAW_TO_NUMBER_FORMAT
• NUMBER_TO_RAW
• RAW_TO_NUMBER

wmsgitem is a BINARY_INTEGER value specifying which warning message to
extract, numbered from 0 for the first warning through n minus 1 for the
nth warning.

wmsgno is an OUT parameter containing the BINARY_INTEGER (hexadecimal)
value of the warning number. This value, after conversion to decimal,
is documented in the Oracle Database Error Messages manual.

wmsgtext is a VARCHAR2 OUT parameter value containing the fully-formatted
warning message in ORA-xxxxx format, where xxxxx is the decimal
warning number documented in the Oracle Database Error Messages
manual.

wmsgfill is a VARCHAR2 OUT parameter value containing the list of warning
message parameters to be substituted into a warning message in the
following format:

warnparm1;;warnparm2;;...;;warnparmn

where each warning parameter is delimited by a double semicolon.

Defaults

None

Return Value

A BINARY_INTEGER value containing a status return code.

A return code of "0" indicates that wmsgno, wmsgtext, and wmsgfill are assigned and valid.

Error and Warning Messages

If you receive an ORA-xxxx error or warning message, refer to the Oracle Database Error
Messages guide for an explanation and information about how to handle it.

Table C-16 describes the error messages you could receive:

Table C-16 WMSG Function Errors

Error Description

-1 indicating the warning specified by wmsgitem was not found in
wmsgblk.

-2 indicating an invalid message block.

-3 indicating wmsgblk is too small to contain the warning associated with
wmsgitem. A partial or no warning message might be present for this
particular wmsgitem.

Appendix C
UTL_PG Functions

C-11

Table C-16 (Cont.) WMSG Function Errors

Error Description

-4 indicating there are too many substituted warning parameters.

C.2 NUMBER_TO_RAW and RAW_TO_NUMBER
Argument Values

This table lists the valid values for the format arguments for NUMBER_TO_RAW and
RAW_TO_NUMBER and related functions. Following are examples of some valid COBOL
picture masks. Any valid COBOL picture mask may be used. Refer to the appropriate
IBM COBOL programming guides for an explanation of COBOL picture masks.

mask: COBOL picture mask

 PIC 9(n) where 1 <= n <= 18
 PIC S9(n) where 1 <= n <= 18
 PIC 9(n)V9(s) where 1 <= n+s <= 18
 PIC S9(n)V9(s) where 1 <= n+s <= 18
 PIC S9999999V99
 PIC V99999
 PIC SV9(5)
 PIC 999.00
 PIC 99/99/99
 PIC ZZZ.99
 PIC PPP99
 PIC +999.99
 PIC 999.99+
 PIC -999.99
 PIC 999.99-
 PIC $$$$$,$$$.99
 PIC $9999.99DB
 PIC $9999.99CR

maskopts: COBOL picture mask options

 COMP
 USAGE IS COMP
 USAGE IS COMPUTATIONAL
 COMP-3
 USAGE IS COMP-3
 USAGE IS COMPUTATIONAL-3
 COMP-4
 USAGE IS COMP-4
 USAGE IS COMPUTATIONAL-4
 DISPLAY
 USAGE IS DISPLAY
 SIGN IS LEADING
 SIGN IS LEADING SEPARATE
 SIGN IS LEADING SEPARATE CHARACTER
 SIGN IS TRAILING
 SIGN IS TRAILING SEPARATE
 SIGN IS TRAILING SEPARATE CHARACTER

envrnmnt: COBOL environment clause

Appendix C
NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

C-12

 CURRENCY SIGN IS x where x is a valid currency sign character
 DECIMAL-POINT IS COMMA

compname: COBOL compiler name

 IBMVSCOBOLII

compopts: COBOL compiler options

 (no values are supported at this time)

Appendix C
NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

C-13

D
Datatype Conversions

You must convert datatypes and data formats properly when you are using the PGAU tool to
generate TIPs and when you are developing a custom TIP using PL/SQL and the UTL_RAW
and UTL_PG functions.

Read the following topics to learn about datatype conversion as it relates to TIPs:

• Length Checking

• Conversion

D.1 Length Checking
PGAU-generated TIPs perform length checking at the end of every parameter sent and
received.

Table D-1 provides a list of length parameters generated by PGAU:

Table D-1 Length Parameters

Parameter Description

expected length Is computed by PGAU when the TIP is generated.

convert length Is summed by the TIP from each converted field.

send length Is the transmitted send data length and is also equal to the actual
length for send parameters.

receive length Is the transmitted receive data length.

An exception is raised when the convert length of a sent parameter does not equal its
expected length. This occurs if too many or too few send field conversions are performed.

An exception is raised when the convert length of a received parameter does not equal its
received length. These length exceptions result when too few or too many conversions are
performed.

A warning is issued when the expected length of a received parameter does not equal its
convert or received length and data conversion tracing is enabled. This occurs when a
maximum length record is expected, but a shorter record is transmitted and correctly
converted.

D.1.1 Parameters Over 32K in Length
PGAU generates TIPs that support transmission of individual data parameters which exceed
32K bytes.

PGAU includes this support automatically when PGAU GENERATE processing detects the
maximum length of a data parameter exceeding 32K.

D-1

This support is driven by the data definitions placed in the PG DD and cannot be
selected by the user. To include the support, the data definition must actually or
possible exceed 32K. To remove the support, you must decrease the parameter length
to less than 32K, REDEFINE the data, and GENERATE the TIP again.

This support tests for field positions crossing the 32K buffer boundaries before and
after conversion of those fields which lie across such boundaries. In the case of
repeating groups, This can be many fields, for repeating groups, or few fields in the
case of simple linear records.

Each test and the corresponding buffer management logic adds overhead.

Note:

The target of a REDEFINE clause cannot reside in a previously processed
buffer. Run-time TIP processing of the fields containing such REDEFINE
clauses get unpredictable results.

D.2 Conversion
The PG DD and TIPs generated by PGAU support COBOL, specified as IBMVSCOBOLII
when defining data.

D.2.1 USAGE(PASS)
When USAGE(PASS) has been specified on the PGAU DEFINE DATA statement, the
following datatype and format conversions are supported:

• PIC X
• PIC G

PIC X Datatype Conversions

PGAU TIPs convert the COBOL X datatype to a PL/SQL CHAR datatype of the same
character length. Globalization Support character set translation is also performed.

Note: COBOL lacks a datatype specifically designated for variable length data. It is
represented in COBOL as a subgroup containing a PIC 9 length field followed by a PIC
X character field. For example:

10 NAME.

15 LENGTH PIC S9(4).

15 LETTERS PIC X(30).

Given this context, it cannot be guaranteed that all instances of an S9(4) field followed
by an X field are always variable length data. Rather than PGAU TIPs converting the
above COBOL group NAME to a VARCHAR, the TIPs instead construct a nested PL/SQL
record as follows:

Appendix D
Conversion

D-2

TYPE NAME_typ is RECORD (
 LENGTH NUMBER(4,0),
 LETTERS CHAR(30));

TYPE ... is RECORD(
 ...
 NAME NAME_typ,
 ...

It is the client application's responsibility (based upon specific knowledge of the remote host
data) to extract NAME.LENGTH characters from NAME.LETTERS and assign the result to a
PL/SQL VARCHAR, if a VARCHAR is desired.

Character set conversion is performed for single byte encoded:

• remote host character data, using either:

– DEFINE TRANSACTION NLS_LANGUAGE character set for an entire transaction, or

– REDEFINE DATA REMOTE_LANGUAGE character set for a single field, if specified.

• local Oracle character data, using either:

– LANGUAGE character set of integrating server for an entire transaction, or

– REDEFINE DATA LOCAL_LANGUAGE character set for a single field, if specified.

PIC G Datatype Conversions

PGAU generated TIPs convert the COBOL G datatype to a PL/SQL VARCHAR2 datatype of the
same length, allowing 2 bytes for every character position.

Character set conversion is performed for double-byte and multi-byte encoded:

• remote host character data, using either:

– DEFINE TRANSACTION REMOTE_MBCS character set for an entire transaction, or

– REDEFINE DATA REMOTE_LANGUAGE character set for a single field, if specified.

• local Oracle character data, using either:

– DEFINE TRANSACTION LOCAL_MBCS character set for an entire transaction, or

– REDEFINE DATA LOCAL_LANGUAGE character set for a single field, if specified.

Alphanumeric and DBCS Editing Field Positions

Table D-2 illustrates how PGAU interprets COBOL symbols in datatype conversions, by
providing the definitions for the symbols.

Table D-2 COBOL Symbol Definitions

COBOL Symbols Oracle Definition of COBOL Symbols - Data Content

'B' blank (1 byte SBCS or 2 bytes DBCS depending on USAGE)

'0' zero (1 byte SBCS)

'/' forward slash (1 byte SBCS)

'G' double byte

Appendix D
Conversion

D-3

Edited positions in COBOL statement data received from the remote host are
converted by PGAU along with the entire field and passed to the client application in
the corresponding PL/SQL VARCHAR2 output variable.

When editing symbols are present, they are interpreted to mean the remote host field
contains the COBOL data content and length indicated. The editing positions are
included in the length of the data field, but conversion of all field positions is processed
by PGAU as a single string and no special scanning or translation is done for edited
byte positions.

Edited positions in COBOL statement data sent to the remote host are converted by
PGAU along with the entire PL/SQL VARCHAR2 input variable passed from the client
application.

Table D-3 provides an example of how PGAU converts COBOL datatypes:

Table D-3 COBOL-PGAU Conversion

COBOL Datatype Description of Conversion by PGAU

PIC XXXBBXX Is an alphanumeric field 7 bytes in length and would be converted in a
single UTL_RAW.CONVERT call. No testing or translation is done on the
contents of the byte positions indicated by 'B'. While COBOL language
rules indicate that these positions contain "blank" in the character set
specified for the remote host, what data is actually present is the user's
responsibility.

PIC GGBGGG Is a DBCS field 12 bytes in length and would be converted in a single
UTL_RAW.CONVERT call. No testing or translation is done on the
contents of the byte positions indicated by 'B'. While COBOL language
rules indicate that these positions contain "blank" in the character set
specified for the remote host, what data is actually present is the user's
responsibility.

PIC 9 PGAU TIPs convert the COBOL 9 datatype to a PL/SQL NUMBER
datatype of the same precision and scale. Globalization Support
character set translation is also performed on signs, currency symbols,
and spaces.

The following are supported:

• COMPUTATIONAL (binary)

• COMPUTATIONAL-3 (packed decimal)

• COMPUTATIONAL-4 (binary)

• DISPLAY (zoned decimal)

For DISPLAY datatypes, the following sign specifications are
supported:

• SEPARATE [CHARACTER]
• LEADING
• TRAILING
Refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument
Values" in The UTL_PG Interface for more information about numeric
datatype conversions.

COMPUTATIONAL-1 and COMPUTATIONAL-2 (floating point) datatypes
are not supported.

Appendix D
Conversion

D-4

Table D-3 (Cont.) COBOL-PGAU Conversion

COBOL Datatype Description of Conversion by PGAU

FILLER COBOL FILLER fields are recognized by PGAU by the spelling of the
element name FILLER. PGAU does not generate any data conversion
for such elements, but does require their space be properly allocated
to preserve offsets within the records exchanged with the remote host
transaction.

If a RENAMES or REDEFINES definition covers a FILLER element,
PGAU generates data conversion statements for the same area when
it is referenced as a component of the RENAMES or REDEFINES
variable. Such data conversion reflects only the format of the RENAMES
or REDEFINES definition and not the bounds of the FILLER definition.

Format Conversion

Table D-4 describes format conversion:

Table D-4 Format Conversion Descriptions

Item Description

JUSTIFIED |
JUSTIFIED RIGHT

This causes remote host transaction data to be converted as a PL/SQL CHAR
datatype according to character datatype, as discussed in "PIC X Datatype
Conversions ", for both IN and OUT parameters.

IN parameter data passed from the application is stripped of its rightmost blanks
and left padded as required. Then it is sent to the remote host.

OUT parameter data is aligned as it is received from the remote host and padded
with blanks as required on the left. Then it is passed to the application.

JUSTIFIED LEFT This causes warnings to be issued during TIP generation. No alignment is
performed. This is treated as documentation.

The remote host transaction data is converted as a PL/SQL CHAR datatype
according to character datatype, as discussed in "PIC X Datatype Conversions ",
for both IN and OUT parameters.

Appendix D
Conversion

D-5

Table D-4 (Cont.) Format Conversion Descriptions

Item Description

LENGTH IS
field-2

This is an Oracle extension to the data definition as stored in the PG DD. This
extension exists only in the PGAU context and is not valid COBOL syntax.

The purpose of this extension is to provide a means for variable-length character
data to be processed more efficiently by the TIP conversion logic. This is an
alternative to defining a variable-length PIC X field as PIC X(1) OCCURS
DEPENDING ON field-2, where field-2 is the length of the field. With this
extension, the same field could be defined as PIC X(5000) LENGTH IS
field-2, where field -2 is the length of the field. The TIP is able to pick up the
length and do the character set conversion on the field with a single
UTL_RAW.CONVERT call instead of using a loop to do the conversion one
character at a time.

Note that the use of this construct does not affect the COBOL program. The PIC
X (or PIC G) field is still fixed-length as far as COBOL is concerned, so the
position of the data does not change, nor does the amount of data that is
transferred between the gateway and the OLTP. However, if the field is the last
field in a COBOL definition, then the COBOL program could be modified to send
only the number of bytes required to satisfy the length set in the field-2 field
referenced by the LENGTH IS clause.

The LENGTH IS clause can be specified only for PIC X and PIC G fields, and the
picture mask for those fields cannot contain editing characters.

OCCURS n TIMES This causes conversion of exactly 'n' instances of a set of PL/SQL variables to or
from a repeating group area within the remote host record, the size of which area
equals the group length times 'n' repetitions. PGAU generated TIPs employ
PL/SQL RECORDs of TABLEs to implement an array-like subscript on fields within a
repeating group. PL/SQL supports a single dimension TABLE, and consequently
PGAU supports only a single level of an OCCURS group. Nested OCCURS groups
are not supported. The conversion and formatting performed are dictated by the
COBOL datatype of each subfield defined within the repeating group, as
documented in "PIC X Datatype Conversions " and "Format Conversion ".

OCCURS m TO n
TIMES DEPENDING
ON field-2

This causes conversion of at least 'm' and not over 'n' instances of a set of PL/SQL
variables to or from a repeating group area within the remote host record, the size
of which area equals the group length times the repetition count contained in the
named field. PGAU generated TIPs employ PL/SQL RECORDs of TABLEs to
implement an array-like subscript on fields within a repeating group. PL/SQL
supports a single dimension TABLE, and consequently PGAU supports only a
single level of an OCCURS DEPENDING ON group. Nested OCCURS DEPENDING
ON groups are not supported. The conversion and formatting performed are
dictated by the COBOL datatype of each subfield defined within the repeating
group, as documented in "PIC X Datatype Conversions " and "Format Conversion
".

Range conversion: PGAU-generated TIPs use a 'FOR ... LOOP' algorithm with a
range of 1 to whatever TIMES upper limit was specified. When the TIP has been
generated with the DIAGNOSE(PKGEX(DC)) option, the PL/SQL FOR statement
which iterates an OCCURS DEPENDING ON repeating group is preceded by an IF
test to ensure at TIP runtime that the DEPENDING ON field contains a number
which lies within the specified range for which the lower limit need not be 1. An
exception is raised if this test fails.

Appendix D
Conversion

D-6

Table D-4 (Cont.) Format Conversion Descriptions

Item Description

RENAMES item-2
THRU item-3

A single PL/SQL variable declaration corresponds to a RENAMES definition. If all
the subfields covered by a RENAMES definition are PIC X, then the PL/SQL
variable is a VARCHAR2. Otherwise any non-PIC X subfield causes the PL/SQL
variable datatype to be RAW.

Lengths of renamed fields do not contribute to the overall parameter data length
because the original fields dictate the lengths.

REDEFINES
item-2 WHEN
item-3=value

The 'WHEN item-3=value' is an Oracle extension to the data definition as stored
in the PG DD. This extension exists only in the PGA context and is not valid
COBOL syntax.

The purpose of this extension is to provide a means for the gateway administrator
or application developer to specify the criteria by which the redefinition is to be
applied. For example, a record type field is often present in a record and different
record formats apply depending on which record type is being processed. The
specification of which type value applies to which redefinition is typically buried in
the transaction programming logic, not in the data definition. To specify which
conversion to perform on redefined formats in the TIP, the WHEN criteria was
added to PGA data definitions.

PGAU generates PL/SQL nested record declarations which correspond in name
and datatype to the subordinate elements covered by the REDEFINES definition.
The standard PGAU datatype determination described in "PIC X Datatype
Conversions ".

LEVEL 01 REDEFINE is ignored:

This permits remote host copybooks to include definitions which REDEFINE other
transaction working storage buffers without having to define such buffers in the
TIP or alter the copybook used as input for the definition.

SYNCHRONIZED |
SYNCHRONIZED
RIGHT

This causes the numeric field to be aligned on boundaries as dictated by the
remote host environment, compiler language, and datatype.

Numeric conversion is performed on the aligned data fields according to numeric
datatype, as discussed in "PIC X Datatype Conversions ", for both IN and OUT
parameters.

SYNCHRONIZED
LEFT

This causes warnings to be issued during TIP generation and no realignment is
performed. This is treated as documentation.

Numeric conversion is performed on the aligned data fields according to numeric
datatype, as discussed in "PIC X Datatype Conversions ", for both IN and OUT
parameters.

D.2.2 USAGE(ASIS)
When USAGE(ASIS) is specified on the PGAU DEFINE DATA statement, no conversion is
performed. Consequently, each such field is simply copied to a PL/SQL RAW of the same
byte length. No conversion, translation, or reformatting is done.

D.2.3 USAGE(SKIP)
When USAGE(SKIP) is specified on the PGAU DEFINE DATA statement, no data exchange is
performed. The data is skipped as if it did not exist. Consequently, such fields are not
selected from the PG DD, not reflected in the TIP logic, and presumed absent from the data
streams exchanged with the remote host. The purpose of "SKIP" is to have definitions in the

Appendix D
Conversion

D-7

PG DD, but not active, perhaps because a remote host has either removed the field or
has yet to include the field. SKIP allows an existing data definition to be used even
though some fields do not exist at the remote host.

D.2.4 PL/SQL Naming Algorithms
Delimiters

COBOL special characters in record, group, and element names are translated when
PGAU DEFINE inserts definitions into the PG DD, and by PGAU GENERATE when
definitions are selected from the PG DD. Special characters are translated as follows:

• hyphen is translated to underscore (_)

• period is deleted

Qualified Compound Names

PL/SQL variable names are fully qualified and composed from:

• PL/SQL record name as the leftmost qualifier corresponding to level 01 or 77
COBOL record name.

• PL/SQL nested record names corresponding to COBOL group names.

• PL/SQL nested fields corresponding to COBOL elements of datatype:

– CHAR or NUMBER corresponding to non-repeating COBOL elements.

– TABLE corresponding to COBOL elements which fall within an OCCURS or
OCCURS DEPENDING ON group (COBOL repeating fields correspond to PL/SQL
nested RECORDs of TABLE's).

Note that when referencing PL/SQL variables from calling applications, the TIP
package name must be prefixed as the leftmost qualifier. Thus the fully qualified
reference to the PL/SQL variable which corresponds to:

• SKILL is:

tipname.EMPREC_Typ.SKILL(SKILL_Key)

• HOME_ADDRESS ZIP is:

tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.FIRST_FIVE
tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.LAST_FOUR

Truncated and Non-Unique Names

PGAU truncates field names and corresponding PL/SQL variable names when the
name exceeds:

• 26 bytes for fields within an aggregate record or group

This is due to the need to suffix each field or PL/SQL variable name with:

– "_Typ" for group names

– "_Tbl" for element names with a repeating group

or

• 30 bytes due to the PL/SQL limitation of 30 bytes for any name

Appendix D
Conversion

D-8

The rightmost four characters are truncated. This imposes the restriction that names be
unique to 26 characters.

Duplicate Names

COBOL allows repetitive definition of the same group or element names within a record, and
the context of the higher level groups serves to uniquely qualify names. However, because
PGAU-generated TIPs declare PL/SQL record variables which reference nested PL/SQL
records for subordinate groups and fields, such nested PL/SQL record types can have
duplicate names.

Given the following COBOL definition, note that ZIP is uniquely qualified in COBOL, but the
corresponding PL/SQL declaration would have a duplicate nested record type for ZIP.

01 EMPREC.
 05 HIREDATE PIC X(8).
 05 BIRTHDATE PIC X(8).
 05 SKILL PIC X(12) OCCURS 4.
 05 EMPNO PIC 9(4).
 05 EMPNAME.
 10 FIRST-NAME PIC X(10).
 10 LAST-NAME PIC X(15).
 05 HOME-ADDRESS.
 10 STREET PIC X(20).
 10 CITY PIC X(15).
 10 STATE PIC XX.
 10 ZIP.
 15 FIRST-FIVE PIC X(5).
 15 LAST-FOUR PIC X(4).
 05 DEPT PIC X(45).
 05 OFFICE-ADDRESS.
 10 STREET PIC X(20).
 10 CITY PIC X(15).
 10 STATE PIC XX.
 10 ZIP.
 15 FIRST-FIVE PIC X(5).
 15 LAST-FOUR PIC X(4).
 05 JOBTITLE PIC X(20).

PGAU avoids declaring duplicate nested record types, and generates the following PL/SQL:

SKILL_Key
BINARY_INTEGER;

TYPE SKILL_Tbl is TABLE of CHAR(12)
 INDEX by
BINARY_INTEGER;

 TYPE EMPNAME_Typ is RECORD (
 FIRST_NAME CHAR(10),
 LAST_NAME
CHAR(15));

 TYPE ZIP_Typ is RECORD (
 FIRST_FIVE CHAR(5),
 LAST_FOUR
CHAR(4));

 TYPE HOME_ADDRESS_Typ is RECORD (
 STREET CHAR(20),
 CITY CHAR(15),

Appendix D
Conversion

D-9

 STATE CHAR(2),
 ZIP
ZIP_Typ);

 TYPE OFFICE_ADDRESS_Typ is RECORD (
 STREET CHAR(20),
 CITY CHAR(15),
 STATE CHAR(2),
 ZIP ZIP_Typ);

 TYPE EMPREC_Typ is RECORD (
 HIREDATE CHAR(8),
 BIRTHDATE CHAR(8),
 SKILL SKILL_Tbl,
 EMPNO NUMBER(4,0),
 EMPNAME EMPNAME_Typ,
 HOME_ADDRESS HOME_ADDRESS_Typ,
 DEPT CHAR(45),
 OFFICE_ADDRESS OFFICE_ADDRESS_Typ,
 JOBTITLE CHAR(20));

However, in the case where multiple nested groups have the same name but have
different subfields (see ZIP following):

05 HOME-ADDRESS.
 10 STREET PIC X(20).
 10 CITY PIC X(15).
 10 STATE PIC XX.
 10 ZIP.
 15 LEFTMOST-FOUR PIC X(4).
 15 RIGHMOST-FIVE PIC X(5).
05 DEPT PIC X(45).
05 OFFICE-ADDRESS.
 10 STREET PIC X(20).
 10 CITY PIC X(15).
 10 STATE PIC XX.
 10 ZIP.
 15 FIRST-FIVE PIC X(5).
 15 LAST-FOUR PIC X(4).
05 JOBTITLE PIC X(20).

PGAU alters the name of the PL/SQL nested record type for each declaration in which
the subfields differ in name, datatype, or options. Note the "02" appended to the
second declaration (ZIP_Typ02), and its reference in OFFICE_ADDRESS.

TYPE EMPNAME_Typ is RECORD (
 FIRST_NAME CHAR(10),
 LAST_NAME
CHAR(15));

TYPE ZIP_Typ is RECORD (
 LEFTMOST_FOUR CHAR(4),
 RIGHTMOST_FIVE
CHAR(5));
 TYPE HOME_ADDRESS_Typ is RECORD (
 STREET CHAR(20),
 CITY CHAR(15),
 STATE CHAR(2),
 ZIP

Appendix D
Conversion

D-10

ZIP_Typ);

TYPE ZIP_Typ02 is RECORD (
 FIRST_FIVE CHAR(5),
 LAST_FOUR
CHAR(4));

TYPE OFFICE_ADDRESS_Typ is RECORD (
 STREET CHAR(20),
 CITY CHAR(15),
 STATE CHAR(2),
 ZIP
ZIP_Typ02);

TYPE EMPREC_Typ is RECORD (
 HIREDATE CHAR(8),
 BIRTHDATE CHAR(8),
 SKILL SKILL_Tbl,
 EMPNO NUMBER(4,0),
 EMPNAME EMPNAME_Typ,
 HOME_ADDRESS HOME_ADDRESS_Typ,
 DEPT CHAR(45),
 OFFICE_ADDRESS OFFICE_ADDRESS_Typ,
 JOBTITLE CHAR(20));

And the fully qualified reference to the PL/SQL variable which corresponds to:

• HOME_ADDRESS.ZIP is:

tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.LEFTMOST_FOUR
tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.RIGHTMOST_FIVE

• OFFICE_ADDRESS.ZIP is:

tipname.EMPREC_Typ.OFFICE_ADDRESS.ZIP.FIRST_FIVE
tipname.EMPREC_Typ.OFFICE_ADDRESS.ZIP.LAST_FOUR

Note that the nested record type name ZIP_Typ02 is not used in the reference, but is implicit
within PL/SQL's association of the nested records.

Appendix D
Conversion

D-11

E
Tip Internals

PGAU generates complete and operational TIPs for most circumstances. TIP internals
information is provided to assist you in diagnosing problems with PGAU-generated TIPs, and
in writing custom TIPs, if you choose to do so.

• If your gateway is using the SNA communication protocol:

This appendix refers to a sample called pgadb2i. The source for this TIP is in file
pgadb2i.sql in the %ORACLE_HOME%\dg4appc\demo\CICS directory for Microsoft Windows
and $ORACLE_HOME/dg4appc/demo/CICS directory for UNIX based systems.

• If your gateway is using the TCP/IP communication protocol:

This appendix refers to a sample called pgaims. The source for this TIP is in file
pgtflipd.sql in the %ORACLE_HOME%\dg4appc\demo\IMS directory for Microsoft Windows
and $ORACLE_HOME/dg4appc/demo/IMS directory on UNIX based systems.

Toipics:

• Background Reading

• PL/SQL Package and TIP File Separation

E.1 Background Reading
Several topics are important to understanding TIP operation and development; following is a
list of concepts that are key to TIP operation and suggested sources to which you can refer
for more information.

• For information about PL/SQL Packages, refer to the Oracle Database PL/SQL Packages
and Types Reference.

• For information about PGA Application Concepts, refer to the following chapters in this
guide:

• If your communication protocol is SNA: refer to Client Application Development (SNA
Only);

• If your communication protocol is TCP/IP: refer to Client Application Development
(TCP/IP Only).

• For information about PGA RPC Interface, refer to Gateway RPC Interface.

• For information about PGA UTL_PG Interface, refer to The UTL_PG Interface.

E.2 PL/SQL Package and TIP File Separation
PGAU GENERATE writes each output TIP into a standard PL/SQL package specification file
and body file. This separation is beneficial and important. Refer to the Oracle Database
Development Guide and the Oracle Database PL/SQL Language Reference for more
information. Also refer to "GENERATE" in Procedural Gateway Administration Utility for more
information about building the PL/SQL package.

E-1

TIPs are PL/SQL packages. Any time a package specification is recompiled, all
objects which depend on that package are invalidated and implicitly recompiled as
they are referenced, even if the specification did not change.

Objects which depend on a TIP specification include client applications that call the
TIP to interact with remote host transactions.

It might be important to change the TIP body for the following reasons:

• Oracle ships maintenance which affects the TIP body.

• Oracle ships maintenance for the UTL_RAW or UTL_PG conversion functions upon
which the TIP body relies.

Refer to The UTL_PG Interface for more detailed information about these
functions.

• If the remote host network or program location parameters have changed. Refer to
"DEFINE TRANSACTION" in Procedural Gateway Administration Utility for more
information

Provided that the TIP specification does not need to change or be recompiled, the TIP
body can be regenerated and recompiled to pick up changes without causing
invalidation and implicit recompilation of client applications that call the TIP.

It is for this reason that PGAU now separates output TIPs into specification and body
files. Refer to "GENERATE" in Procedural Gateway Administration Utility for a
discussion of file identification.

E.2.1 Independent TIP Body Changes
Independent TIP body changes are internal and require no change to the TIP
specification. Examples of such changes include: a change in UTL_RAW or UTL_PG
conversions, inclusion of diagnostics, or a change to network transaction parameters.

In these cases, when PGAU is used to regenerate the TIP, the new TIP specification
file can be saved or discarded, but should not be recompiled. The new TIP body
should be recompiled under SQL*Plus. Provided that the TIP body change is
independent, the new body compilation completes without errors and the former TIP
specification remains valid.

E.2.1.1 Determine if a Specification Has Remained Valid
To determine if a specification has remained valid, issue the following statements from
SQL*Plus, depending upon your communication protocol:

• If your gateway is using the SNA communication protocol, issue the following:

SQL> column ddl_date format A22 heading 'LAST_DDL'
SQL> select object_name,
 2 object_type,
 3 to_char(last_ddl_time,'MON-DD-YY HH:MM:SS') ddl_date,
 4 status
 5 from all_objects where owner = 'PGAADMIN'
 6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
----------- ----------- -------------------- ---------
PGADB2I PACKAGE NOV-24-1999 09:09:13 VALID
PGADB2I PACKAGE BODY NOV-24-1999 09:11:44 VALID

Appendix E
PL/SQL Package and TIP File Separation

E-2

DB2IDRIV PROCEDURE DEC-30-1999 12:12:14 VALID
DB2IDRVM PROCEDURE DEC-30-1999 12:12:53 VALID
DB2IFORM PROCEDURE DEC-14-1999 11:12:24 VALID

The LAST_DDL column is the date and time at which the last DDL change against the
object was done. It shows that the order of compilation was:

PGADB2I PACKAGE (the specification)
DB2IDRVM PROCEDURE (1st client application depending on PGADB2I)
DB2IFORM PROCEDURE (2nd client application depending on PGADB2I)
DB2IDRIV PROCEDURE (3rd client application depending on PGADB2I)
PGADB2I PACKAGE BODY (a recompilation of the body)

Note that the recompilation of the body does not invalidate its dependent object, the
specification, or the client application indirectly.

• If your gateway is using the TCP/IP communication protocol, issue the following fro
SQL*Plus:

SQL> column ddl_date format A22 heading 'LAST_DDL'
SQL> select object_name,
 2 object_type,
 3 to_char(last_ddl_time,'MON-DD-YY HH:MM:SS') ddl_date,
 4 status
 5 from all_objects where owner = 'PGAADMIN'
 6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
----------- ----------- -------------------- ---------
PGTFLIP PACKAGE APR-24-03 03:04:58 VALID
PGTFLIP PACKAGE BODY APR-24-03 03:04:02 VALID
PGTFLIPD PROCEDURE APR-24-03 03:04:09 VALID

The LAST_DDL column is the date and time at which the last DDL change against the
object was done. It shows that the order of compilation was:

PGTFLIP PACKAGE (the specification)
PGTFLIPD PROCEDURE (client application depending on PGADB2I)
PGTFLIP PACKAGE BODY (a recompilation of the body)

Note that the recompilation of the body does not invalidate its dependent object, the
specification, or the client application indirectly.

E.2.2 Dependent TIP Body or Specification Changes
You can also change the data structures or call exchange sequences of the remote host
transaction. However, this kind of change is exposed to dependent client applications
because the public datatypes or functions in the TIP specification will also change and
necessitate recompilation, which in turn causes the Oracle database to recompile such
dependent client applications.

• If your gateway is using the SNA communication protocol, issue the following:

SQL> column ddl_date format A22 heading 'LAST_DDL'
SQL> select object_name,
 2 object_type,
 3 to_char(LAST_DDL_TIME,'MON-DD-YY HH:MM:SS') ddl_date,
 4 status
 5 from all_objects where owner = 'PGAADMIN'
 6 order by object_type, object_name;

Appendix E
PL/SQL Package and TIP File Separation

E-3

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
---------- ----------- --------------------- ---------
PGADB2I PACKAGE NOV-24-1999 09:09:13 VALID
PGADB2I PACKAGE BODY NOV-24-1999 09:11:44 INVALID
DB2IDRIV PROCEDURE DEC-30-1999 12:12:14 INVALID
DB2IDRVM PROCEDURE DEC-30-1999 12:12:53 INVALID
DB2IFORM PROCEDURE DEC-14-1999 11:12:24 INVALID

• If your gateway is using the TCP/IP communication protocol, issue the
following:

SQL> column ddl_date format A22 heading 'LAST_DDL'
SQL> select object_name,
 2 object_type,
 3 to_char(LAST_DDL_TIME,'MON-DD-YY HH:MM:SS') ddl_date,
 4 status
 5 from all_objects where owner = 'PGAADMIN'
 6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
---------- ----------- --------------------- ---------
PGTFLIP PACKAGE APR-24-03 03:04:58 VALID
PGTFLIP PACKAGE BODY APR-24-03 05:03:52 INVALID
PGTFLIP PROCEDURE APR-24-03 05:04:29 INVALID

E.2.2.1 Recompile the TIP Body
Note that the recompilation of the specification has invalidated its dependent objects,
the three client applications in addition to the package body. To complete these
changes, the body must be recompiled to bring it into compliance with the specification
and then the three client applications could be compiled manually, or the Oracle
database compiles them automatically as they are referenced.

If the client applications are recompiled by the Oracle database as they are
referenced, there is a one-time delay during recompilation.

Recompilation errors in the client application, if any, are due to:

• customer changes in the client application source

• an altered PG DD definition for the TIP if the TIP has been regenerated

• the wrong version being generated from multiple transaction entry versions saved
in the PG DD if the TIP has been regenerated

E.2.3 Inadvertent Alteration of TIP Specification
If you make a mistake when you generate a tip (for example, if you alter a PG DD
transaction definition, or if you have inadvertently specified the wrong version during
regeneration), then the recompiled body will not match the stored specification; as a
result, the Oracle database would invalidate the specification and any dependent client
applications.

You may have to regenerate and recompile the TIP and its dependent client
applications to restore correct operation.

Appendix E
PL/SQL Package and TIP File Separation

E-4

F
Administration Utility Samples

Use the following sample input statements and report output for the Procedural Gateway
Administration Utility to guide you in designing your own PGAU statements.

Sample PGAU statements:

• Sample PGAU DEFINE DATA Statements

• Sample PGAU DEFINE CALL Statements

• Sample PGAU DEFINE TRANSACTION Statement

• Sample PGAU GENERATE Statement

• Sample Implicit Versioning Definitions

• Sample PGAU REDEFINE DATA Statements

• Sample PGAU UNDEFINE Statements

F.1 Sample PGAU DEFINE DATA Statements
DEFINE DATA EMPNO
 PLSDNAME (EMPNO)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 (
 01 EMP-NO PIC X(6).
);

DEFINE DATA EMPREC
 PLSDNAME (DCLEMP)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 INFILE("emp.cob");

where the file emp.cob contains the following:

01 DCLEMP.
 10 EMPNO PIC X(6).
 10 FIRSTNME.
 49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
 49 FIRSTNME-TEXT PIC X(12).
 10 MIDINIT PIC X(1).
 10 LASTNAME.
 49 LASTNAME-LEN PIC S9(4) USAGE COMP.
 49 LASTNAME-TEXT PIC X(15).
 10 WORKDEPT PIC X(3).
 10 PHONENO PIC X(4).
 10 HIREDATE PIC X(10).
 10 JOB PIC X(8).
 10 EDLEVEL PIC S9(4) USAGE COMP.
 10 SEX PIC X(1)
 10 BIRTHDATE PIC X(10).
 10 SALARY PIC S9999999V99 USAGE COMP-3.

F-1

 10 BONUS PIC S9999999V99 USAGE COMP-3.
 10 COMM PIC S9999999V99 USAGE COMP-3.

DEFINE DATA DB2INFO
 PLSDNAME (DB2)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 INFILE("db2.cob");

where the file db2.cob contains the following:

01 DB2.
 05 SQLCODE PIC S9(9) COMP-4.
 05 SQLERRM.
 49 SQLERRML PIC S9(4) COMP-4.
 49 SQLERRT PIC X(70).
 05 DSNERRM.
 49 DSNERRML PIC S9(4) COMP-4.
 49 DSNERRMT PIC X(240) OCCURS 8 TIMES
 INDEXED BY ERROR-INDEX

F.2 Sample PGAU DEFINE CALL Statements
DEFINE CALL DB2IMAIN
 PKGCALL (PGADB2I_MAIN)
 PARMS ((EMPNO IN),
 (EMPREC OUT));
DEFINE CALL DB2IDIAG
 PKGCALL (PGADB2I_DIAG)
 PARMS ((DB2INFO OUT));

F.3 Sample PGAU DEFINE TRANSACTION Statement
DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN,
 DB2IDIAG)
 SIDEPROFILE(CICSPROD)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)
 SYNCLEVEL(0)
 NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

F.4 Sample PGAU GENERATE Statement
GENERATE DB2I
 PKGNAME(PGADB2I)
 OUTFILE("pgadb2i");

A user's high-level application now uses this TIP by referencing these PL/SQL
datatypes passed and returned.

Table F-1 provides a description of the TIP user transaction datatypes in package
name PGADB2I:

Appendix F
Sample PGAU DEFINE CALL Statements

F-2

Table F-1 TIP User Transaction Datatypes Used in Package Name PGADB2I

Datatype Description

PGADB2I.EMPNO is a PL/SQL variable corresponding to COBOL EMPNO.

PGADB2I.DCLEMP Which is a PL/SQL RECORD corresponding to COBOL DCLEMP.

PGADB2I.DB2 Which is a PL/SQL RECORD corresponding to COBOL DB2INFO.

and the application calls:

PGADB2I.PGADB2I_INIT(trannum);
PGADB2I.PGADB2I_MAIN(trannum, empno, emprec);
PGADB2I.PGADB2I_DIAG(trannum, db2);
PGADB2I.PGADB2I_TERM(trannum, termtype);

F.5 Sample Implicit Versioning Definitions
The examples are sample definitions of DATA, CALL, and TRANSACTION entries with implicit
versioning.

This example creates a new DATA version of 'EMPREC' because 'EMPREC' DATA was defined
previously:

DEFINE DATA EMPREC
 PLSDNAME (NEWEMP)
 USAGE (PASS)
 LANGUAGE (IBMVSCOBOLII)
 INFILE("emp2.cob");

where the file emp2.cob contains the following:

01 NEWEMP.
 10 EMPNO PIC X(6).
 10 FIRSTNME.
 49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
 49 FIRSTNME-TEXT PIC X(12).
 10 MIDINIT PIC X(1).
 10 LASTNAME.
 49 LASTNAME-LEN PIC S9(4) USAGE COMP.
 49 LASTNAME-TEXT PIC X(15).
 10 WORKDEPT PIC X(3).
 10 PHONENO PIC X(3).
 10 HIREDATE PIC X(10).
 10 JOB PIC X(8).
 10 EDLEVEL PIC S9(4) USAGE COMP.
 10 SEX PIC X(1).
 10 BIRTHDATE PIC X(10).
 10 SALARY PIC S9999999V99 USAGE COMP-3.
 10 BONUS PIC S9999999V99 USAGE COMP-3.
 10 COMM PIC S9999999V99 USAGE COMP-3.
 10 YTD.
 15 SAL PIC S9(9)V99 USAGE COMP-3.
 15 BON PIC S9(9)V99 USAGE COMP-3.
 15 COM PIC S9(9)V99 USAGE COMP-3.

To determine which DATA version number was assigned, this SQL query can be issued:

Appendix F
Sample Implicit Versioning Definitions

F-3

SELECT MAX(pd.version)
 FROM pga_data pd
 WHERE pd.dname = 'EMPREC';

To determine additional information related to the updated version of 'EMPREC' this
query can be used:

SELECT *
 FROM pga_data pd
 WHERE pd.dname = 'EMPREC';

This example creates a new CALL version of 'DB2IMAIN' because the 'DB2IMAIN' CALL
was defined previously:

DEFINE CALL DB2IMAIN
 PKGCALL (PGADB2I_MAIN)
 PARMS ((EMPNO IN),
 (EMPREC OUT VERSION(ddddd)));

where ddddd is the version number of the EMPREC DATA definition queried after the
previous DEFINE DATA updated EMPREC.

To determine which call version number was assigned, this SQL query can be issued:

SELECT MAX(pc.version)
 FROM pga_call pc
 WHERE pc.cname = 'DB2IMAIN';

To determine additional information related to the updated version of 'DB2IMAIN' this
query can be used:

 SELECT *
 FROM pga_call pc
 WHERE pc.cname = 'DB2IMAIN';

The DEFINE TRANSACTION example creates a new TRANSACTION version of 'DB2I'
because the 'DB2I' TRANSACTION was defined previously. The essential difference of
the new version of the DB2I transaction is that the first call uses a new PL/SQL record
format "NEWEMP" (which corresponds to the COBOL NEWEMP format) to query the
employee data.

Note:

Record format changes like that discussed above must be synchronized with
the requirements of the remote transaction program. Changes to the PGA
TIP alone result in errors. A new remote transaction program with the
corequisite changes could be running on a separate CICS system and
started through the change from "CICSPROD" to "CICSTEST" in the
SIDEPROFILE parameter below.

DEFINE TRANSACTION DB2I
 CALL (DB2IMAIN VERSION (ccccc),
 DB2IDIAG)
 SIDEPROFILE(CICSTEST)
 TPNAME(DB2I)
 LOGMODE(ORAPLU62)

Appendix F
Sample Implicit Versioning Definitions

F-4

 SYNCLEVEL(0)
 NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

where ccccc is the version number of the DB2IMAIN CALL definition queried after the previous
DEFINE CALL updated DB2IMAIN.

There are two versions of the DB2I transaction definition in the PGA DD. The original uses
the old "DCLEMP" record format and starts transaction "DB2I" on the production CICS system.
The latest uses the "NEWEMP" record format and starts transaction "DB2I" on the test CICS
system.

To determine which transaction version number was assigned, this SQL query can be issued:

SELECT MAX(pt.version)
 FROM pga_trans pt
 WHERE pt.tname = 'DB2I';

To determine additional information related to the updated version of 'DB2I' this query can be
used:

SELECT *
 FROM pga_trans pt
 WHERE pt.tname = 'DB2I';

This example generates a new package using the previously defined new versions of the
TRANSACTION, CALL, and DATA definitions:

GENERATE DB2I
VERSION(ttttt)
PKGNAME(NEWDB2I)
OUTFILE("pgadb2i");

where ttttt is the version number of the DB2I TRANSACTION definition queried after the
previous DEFINE TRANSACTION updated DB2I.

Note that the previous PL/SQL package files pgadb2i.pkh and pgadb2i.pkb are overwritten.
To keep the new package separate, change the output file specification. For example:

GENERATE DB2I
VERSION(ttttt)
PKGNAME(NEWDB2I)
OUTFILE("newdb2i");

A user's high-level application now uses this TIP by referencing the PL/SQL datatypes
passed and returned.

Table F-2 provides a description of the TIP user transaction datatypes in package name
NEWDB2I:

Table F-2 TIP User Transaction Datatypes for Package Name NEWDB2I

Datatype Description

NEWDB2I.EMPNO Is a PL/SQL variable corresponding to COBOL EMPNO.

NEWDB2I.NEWEMP Is a PL/SQL RECORD corresponding to COBOL NEWEMP.

NEWDB2I.DB2 Is a PL/SQL RECORD corresponding to COBOL DB2.

and the application calls:

Appendix F
Sample Implicit Versioning Definitions

F-5

NEWDB2I.PGADB2I_INIT(trannum);
NEWDB2I.PGADB2I_MAIN(trannum, empno, newemp);
NEWDB2I.PGADB2I_DIAG(trannum, db2);
NEWDB2I.PGADB2I_TERM(trannum, termtype);

F.6 Sample PGAU REDEFINE DATA Statements
Single-field redefinition in which EDLEVEL USAGE becomes COMP-3:

REDEFINE DATA EMPREC
 PLSDNAME(DCLEMP)
 LANGUAGE(IBMVSCOBOLII)
 FIELD(EDLEVEL)
 PLSFNAME(PLSRECTYPE)
 (
 10 EDLEVEL PIC S9(4) USAGE IS COMP-3.
);

By default, this redefines the latest version of EMPREC which implicitly affects the latest
call and transaction definitions which refer to it.

Sample multi-field redefinition in which the employee's first and last name fields are
expanded and the employee's middle initial is removed.

REDEFINE DATA EMPREC
 VERSION(1)
 PLSDNAME(DCLEMP)
 LANGUAGE(IBMVSCOBOLII)
 INFILE("emp1.cob");

where the file emp1.cob contains the following:

01 DCLEMP.
 10 EMPNO PIC X(6).
 10 FIRSTNME.
 49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
 49 FIRSTNME-TEXT PIC X(15).
 10 LASTNAME.
 49 LASTNAME-LEN PIC S9(4) USAGE COMP.
 49 LASTNAME-TEXT PIC X(20).
 10 WORKDEPT PIC X(3).
 10 PHONENO PIC X(4).
 10 HIREDATE PIC X(10).
 10 JOB PIC X(8).
 10 EDLEVEL PIC S9(4) USAGE COMP.
 10 SEX PIC X(1).
 10 BIRTHDATE PIC X(10).
 10 SALARY PIC S9999999V99 USAGE COMP-3.
 10 BONUS PIC S9999999V99 USAGE COMP-3.
 10 COMM PIC S9999999V99 USAGE COMP-3.

The assumption is that version 1 of the data definition for 'EMPREC' is to be redefined.
This causes a redefinition of the first 'EMPREC' sample data definition without changing
the version number. Thus, existing call and transaction definitions which referenced
version 1 of 'EMPREC' automatically reflect the changed 'EMPREC'. This change becomes
effective when a TIP is next generated for a transaction that references the call which
referenced version 1 of 'EMPREC'.

Appendix F
Sample PGAU REDEFINE DATA Statements

F-6

This implicitly affects both versions of the transaction because both refer to EMPREC in the
second call to update the employee data.

F.7 Sample PGAU UNDEFINE Statements
This sample illustrates the deletion of a specific version of a definition which has multiple
versions, followed by deletion of all versions of a specific named definition.

UNDEFINE DATA EMPREC VERSION (ddddd);
UNDEFINE DATA EMPREC VERSION (ALL);
UNDEFINE CALL DB2IMAIN VERSION (ccccc);
UNDEFINE CALL DB2IMAIN VERS (all);
UNDEFINE TRANSACTION DB2I vers (ttttt);
UNDEFINE TRANSACTION DB2I vers (all);

Note that the previous UNDEFINE statements leave the DATA definition for EMPNO and the CALL
definition for DB2IDIAG in the PGA DD.

Appendix F
Sample PGAU UNDEFINE Statements

F-7

Index

A
APPC

runtime, 4-22
SENDs and RECEIVEs

TIP CALL correspondence, 4-12
trace, 8-12
using with terminal-oriented transaction

program, 4-27
APPC conversation sharing, 4-21

concepts, 4-21
examples, 4-24
for too large TIPs, 4-23
overrides and diagnostics, 4-26
TIP compatibility, 4-23
usage, 4-22

architecture
commit-confirm, 5-4
components of the gateway, 1-7

ASCII
automatic conversion, 1-3

C
CALL correspondence

on gateway using SNA, 4-12
on gateway using TCP/IP, 7-6

call correspondence order restrictions
on gateway using SNA, 4-13
on gateway using TCP/IP, 7-7

CICS, 1-10
CICS Transaction Server

gateway starts communication with, 1-11
client application development

calling a TIP
on gateway using SNA, 4-14
on gateway using TCP/IP, 7-8

customized TIPs for remote host transaction,
4-6

declaring TIP variables, 4-15, 7-9
error handling

on gateway using SNA, 4-20
on gateway using TCP/IP, 7-14

examples and samples, 1-6

client application development (continued)
exchanging data, 4-20

on gateway using TCP/IP, 7-13
executing, 4-21, 7-15
granting execute authority, 4-21, 7-14
on gateway using TCP/IP, 7-1
overriding TIP initializations, 4-18

on gateway using TCP/IP, 7-12
overview, 4-1
preparation, 4-3
remote host transaction types

multi-conversational transactions, 4-6
one-shot transactions, 4-4
persistent transactions, 4-5
See also, index entries for each

transaction type, 5-4
requirements, 4-7

declare RHT/TIP data to be exchanged,
4-7–4-9

exchange data with RHT using TIP user
function, 4-7, 4-9

initialize RHT for multi-conversational
applications, 4-9

initialize RHT using TIP initialization
function, 4-7, 4-8

repetitively exchange data with RHT
using TIP user function, 4-8

terminate RHT using TIP termination
function, 4-8–4-10

security considerations, 4-20, 7-13
terminating the conversation, 4-20, 7-14
TIP and remote transaction program

correspondence, 4-10, 7-4
TIP CALL correspondence, 4-12
TIP content and purpose, 4-3
TIP DATA correspondence, 4-11, 7-4
TIP TRANSACTION correspondence

on gateway using SNA, 4-14
on gateway using TCP/IP, 7-8

client application development for gateway using
TCP/IP

overview, 7-1
client application development on gateway using

TCP/IP
preparing, 7-3

Index-1

COBOL, 4-3, 7-3, D-2, D-8
datatype conversion supported by PG DD

and TIPs, D-2
lacks datatype for variable length data, D-2
PGAU interpretation of COBOL symbols, D-3
support for double byte character sets, PIC G

datatypes, 4-26, 7-15
COMMIT command, 2-2, 2-3

user responsibility, 2-2
COMMIT processing, 2-2
commit-confirm, 5-1

application design requirements, 5-4
architecture, 5-4

components, 5-5
interactions, 5-5

components, 5-2
logic flow, 5-5

step by step, 5-6
Oracle Global Transaction ID, 5-2
purpose, 5-1
relation to two-phase commit, 5-1
required components

logging server, 5-3
OLTP commit-confirm transaction log,

5-3
OLTP forget/recovery transaction, 5-3
OLTP transaction logging code, 5-3

supported OLTPs, 5-2
transaction log, 5-7

communication
between mainframe and Oracle database

on gateway using SNA, 1-11
between server, gateway and remote host,

1-8
compiling a TIP, 3-7
CONNECT command, 2-3, 2-6
control file

creating
on gateway using SNA, 1-12
on gateway using TCP/IP, 1-17

conversation sharing, see APPC conversation
sharing, 4-21

creating a TIP
(detailed), 3-1
overview, 1-12, 1-17

D
data conversion

errors, 8-4
DATA correspondence, 4-11, 7-4
data dictionary, see PG DD, 1-3
data exchange

PGAXFER function, 1-9
data format conversion, D-1

database link, 1-8
datastores

gateway access to, 1-2
datatype

RAW, C-1
datatype conversion, D-1

COBOL editing symbols, D-3
convert length, D-1
duplicate names, D-8
expected length, D-1
format conversion, D-2
parameters over 32K in length, D-1
PL/SQL, D-8

naming algorithms, D-8
receive length, D-1
removing support for parameters over 32K in

length, D-2
See USAGE (PASS), USAGE (ASIS).

USAGE (SKIP), and PL/SQL Naming
Algorithms, D-2

send length, D-1
truncated and non-unique names, D-8

datatype conversions
COBOL symbols interpreted by PGAU, D-3

DBCS
See double-byte character sets, 4-26, 7-15

DBMS_PIPE PL/SQL package, 3-1
debugging tool

PGATRAC function, B-7
DEFINE CALL, 2-1
DEFINE CALL parameters, 2-7
DEFINE CALL statement ("command"), 1-13,

1-18, 3-4, 4-23, F-2
DEFINE DATA, 2-1
DEFINE DATA statement ("command"), 1-13,

1-18, 2-26, 3-4, 4-11, 4-23, 7-4, A-11, F-1
DEFINE TRANSACTION parameters, 2-10
DEFINE TRANSACTION statement

("command"), 3-5, 4-23, F-2
defining and generating a TIP, 3-6
definition versioning, 2-5
deleting and inserting rows into PGA_TCP_IMSC

table, 6-5
DESCRIBE command, 2-13
dg4pwd utility

definition, 1-3
DISCONNECT command, 2-14
double byte character sets (DBCS)

in application development, 4-26, 7-15
driver procedure

on gateway using SNA, 1-14
on gateway using TCP/IP, 1-19

Index

Index-2

E
EBCDIC

automatic conversion, 1-3
environment dictionary

sequence numbers, A-1
errors

causes of, 8-1
data conversion, 8-4
including exception handlers in your TIP,

4-20, 7-14
NUMBER_TO_RAW function, C-4
PLS -00123

program too large, 4-23
truncation, 8-8

examples
APPC conversation sharing, 4-24

EXECUTE command, 2-14
executing

client application development, 4-21, 7-15
EXIT command, 2-15

F
file

initsid.ora, 1-3, 8-11, 8-12
pgadb2i.pkb, 1-6, 1-13, 4-4
pgadb2i.pkh, 1-6, 1-12, 1-13, 4-4
pgadb2i.sql, E-1
pgau.trc, 2-17, 2-19
pgddausr.sql, 4-28, 7-17
pgddcr8.sql, 2-5, A-6
pgtflip.pkb, 1-18, 7-4
pgtflip.pkh, 1-18, 7-4
tipname.doc, 3-8, 4-10, 7-9
tipname.pkb, 8-5

flexible call sequence
on gateway using SNA, 4-12
on gateway using TCP/IP, 7-6

FLIP
and pgacics PL/SQL stored procedure

on gateway using SNA, 1-11
transaction in CICS, 1-11
transaction in IMS, 1-15

format conversion, D-2
function

PGATERM, B-5
PGAXFER, 4-4, 7-3, B-4
UTL_PG, C-1

functions
see RPC (remote procedural call), 1-8
see UTL_PG, 1-3
See UTL_PG, C-1
see UTL_RAW, 1-3

G
gateway

access to IBM datastores, 1-2
communication, 1-1

overview, 1-8
with CICS in mainframe on gateway

using SNA, 1-11
components, 1-7
creating a TIP, 3-1
enabling a trace, 8-12
features

application transparency, 1-2
code generator, 1-2
fast interface, 1-2
flexible interface, 1-2
location transparency, 1-2
Oracle database integration, 1-2
performs automatic conversions, 1-3
site autonomy and security, 1-3
support for tools, 1-2

initialization files, 1-3
overview, 1-1

using TCP/IP, 1-1
remote procedure, definition, 1-3
remote transaction initiation

using SNA, 1-9
using TCP/IP, 1-9

remote transaction termination
using SNA, 1-9
using TCP/IP, 1-10

tracing, 8-10
transaction types

on gateway using SNA, 1-10
on gateway using TCP/IP, 1-14

gateway sample files
using SNA

pgadb2i.pkb, 1-6
pgadb2i.pkh, 1-6

using TCP/IP
pgadb2i.pkh, 1-6

gateway server, 5-5
function in commit-confirm architecture, 5-5
transaction log tables, 5-7

gateway server trace, 8-10, 8-11
GENERATE, 2-2
GENERATE statement ("command"), 1-13, 1-18,

3-5, 3-7, 4-11, 7-4, E-1, F-2
GLOBAL_TRAN_ID, 5-7
Globalization Support

multi-byte character set support, 4-26, 7-15
granting privileges for creating TIPs, 3-1
GROUP statement (PGAU), 3-7

Index

Index-3

H
HOST command, 2-20

I
I/O PCB, 1-15, 3-2, 7-1
implicit APPC, 4-27
implicit versioning

sample definitions, F-3
IMS, 1-1

communication with Integrating Server
using TCP/IP, 1-15

IMS inquiry
location of sample file, 1-7

IMS/TM
communication through the gateway, 1-1

initialization files
see gateway initialization files, also see PGA

parameters, 1-3
initiating remote transactions, 1-9
initsid.ora file, 1-3, 8-11, 8-12

parameters to run pg4tcpmap tool, 6-4

J
JUSTIFIED LEFT, D-5

K
keywords

PGAU, 2-6

L
LENGTH IS field-2, D-6
logging server, 5-3, 5-5

description, 5-5
interaction with gateway database, 5-5

LU_NAME, 5-7

M
MAKE_NUMBER_TO_RAW_FORMAT function,

C-7
MAKE_RAW_TO_NUMBER_FORMAT function,

C-5
mapping parameters

from SNA to TCP/IP, 6-1
mapping table

PGA_TCP_IMSC, 1-16
MBCS, See multi-byte character sets, 4-26, 7-15
MODE_NAME, 5-8

multi-byte character sets (MBCS), 4-26, 7-15
application development support, 4-26, 7-15

multi-conversational transaction type
for gateway using SNA, 1-10

multi-conversational transactions, 4-6, 4-7

N
non-persistent socket transaction type for TCP/IP

for IMS Connect, 1-14
NUMBER_TO_RAW and RAW_TO_NUMBER

argument values, C-12
NUMBER_TO_RAW function, C-4

errors, C-4
NUMBER_TO_RAW_FORMAT function, C-9

O
OCCURS DEPENDING ON, D-6
OLTP

and TCP/IP, 1-5, 1-7
commit-confirm transaction log, 5-3
definition, 1-3
forget/recovery transaction, 5-3
functional requirements of the gateway, 5-4
in commit-confirm, 5-2
in gateway architecture featuring SNA, 1-7
in gateway using TCP/IP, 1-7
logic flow for successful commit, 5-5
only IMS supported on gateway using

TCP/IP, 1-3, 1-5
remote, 1-1
security considerations, 4-20, 7-13
transaction logging code, 5-3

one-shot transaction types, 1-10, 4-4, 4-7, 5-4
online transaction processor

See OLTP, 1-7
operating system

role in gateway installation, 1-7
Oracle database, 1-9

between server and mainframe
using SNA, 1-11

component of the gateway, 1-7
definition, 1-3
function in gateway communication

on gateway using TCP/IP, 1-15
multiple servers on the gateway

using SNA, 1-7
using TPC/IP, 1-7

precompiles PL/SQL package, 1-2
role

in gateway communication, 1-8
simple communication

on gateway using SNA, 1-11
on gateway using TCP/IP, 1-15

Index

Index-4

Oracle database (continued)
stores PL/SQL, 1-3

Oracle Database Gateway for APPC
also see gateway, 1-10
compatibility with version 3.4.0, 4-23
development environment, 1-2
See also, gateway server, 5-5

Oracle global transaction ID, 5-1–5-4, 5-7
Oracle integrating server, 4-2

and role in client application, on gateway
using TCP/IP, 7-1

calling RPC functions, 5-5
component of commit-confirm architecture,

5-5
interaction with gateway server in commit-

confirm, 5-5
simple communication

on gateway using TCP/IP, 1-15
steps to communication

between server and IMS, 1-15
Oracle Net, 1-5, 4-28, 7-17, C-1

restrictions for data conversion, C-1
overrides, 4-18, 7-12

LOGMODE, 4-18, 7-12
LUname, 4-18, 7-12
Side profile, 4-18, 7-12
TPname, 4-18, 7-12

P
package

UTL_PG, 3-1
parameters

mapped to TPC/IP, 6-2
see PGAU commands, 2-6
See remote procedural call (RPC), B-1
See SET LOG_DESTINATION, 8-11
See SET TRACE_LEVEL, 8-11

persistent socket transaction type
for TCP/IP for IMS Connect, 1-14

persistent transaction type, for gateway using
SNA, 1-10

persistent transactions, 4-5, 4-7, 4-8, 5-4
PG DD (Data Dictionary), 2-2, 2-10

active dictionary, A-6
sequence numbers, A-6
versioning, A-6

active dictionary tables
pga_call, A-10
pga_call_parm, A-10
pga_data, A-11
pga_data_attr, A-13
pga_data_values, A-14
pga_fields, A-12
pga_trans, A-7

PG DD (Data Dictionary) (continued)
active dictionary tables (continued)
pga_trans_attr, A-8
pga_trans_calls, A-9
pga_trans_values, A-8

data definitions for parameters over 32K in
length, D-2

datatype conversion support for COBOL, D-2
definition, 1-3
definition names

valid characters in, 2-4
diagnostic

options, 8-2
references, 8-2

entries, creating a TIP, 3-6
environment dictionary tables, A-1, A-2

pga_modes, A-5
pga_usage, A-5

in writing PGAU statements, 3-4
keyword form in storage, 2-6
maintenance, 2-3
overview, A-1
preparing client application

on gateway using SNA, 4-3
on gateway using TCP/IP, 7-3

purpose of REPORT command, 2-25
relationship to PGAU, 2-1
remote transaction definitions, 2-3
ROLLBACK command, 2-2
select scripts, 8-3
storage of information needed for PGAU

GENERATE to perform, 4-11, 7-4
transaction attributes, 4-19, 7-12
USAGE (SKIP), D-7
version definition tables, 2-5

pg4tcpmap tool, 1-16, 3-4, 7-1
calling, to map DEFINE TRANSACITON

parameters, 7-15
commands to operate PGA_TCP_IMSC

table, 6-5
definition, 1-3
description and function in the gateway, 1-3
function, 1-3

in mapping input parameters, 6-1
function in remote transaction initiation, 1-9
preparation for populating PGA_TCP_IMSC

table, 6-1
setting parameters in initsid.ora, 6-4
to map SideProfile name, 2-11

PGA
administrator, 2-1
definition, 1-3

pga_call table, A-10
pga_call_parm table, A-10

Index

Index-5

PGA_CC_PENDING table
commit-confirm transaction log, 5-7

pga_compilers table, A-3
pga_data table, A-11
pga_data_attr, A-13
pga_data_values table, A-14
pga_datatype_attr table, A-4
pga_datatype_values table, A-5
pga_datatypes table, A-4
pga_env_attr table, A-3
pga_env_values table, A-3
pga_environments table, A-2
pga_fields table, A-12
pga_maint table, A-2
pga_modes constant, A-5
PGA_TCP_IMSC table, 1-16, 3-4, 6-1, 7-1, 7-8

content and parameters, 6-2
querying, 6-7

PGA_TCP_PASS, 6-1
PGA_TCP_USER, 6-1
pga_trans table, A-7
pga_trans_attr table, A-8
pga_trans_calls table, A-9
pga_trans_values table, A-8
pga_usage, A-5
pga_usage constant, A-5
PGAADMIN, 3-1
pgadb2i.pkb, 1-6
pgadb2i.pkb file, 1-6, 1-13, 4-4
pgadb2i.pkh file, 1-6, 1-12, 1-13
pgadb2i.sql file, 4-4, E-1
pgadb2id.sql file, 4-4
PGAINIT, 1-9, B-1

role in mapping SNA parameters to TCP/IP,
6-1

PGAINIT function, 1-3, 1-9
PGATCTL, B-6
PGATERM, B-5
PGATERM function, 1-3, 1-9
PGATRAC, B-7
PGAU, 4-1

-generated TIP specifications, 1-8
accesses definitions in PG DD, 1-5
commands- also called "statements", 2-6
COMMIT processing, 2-2
defining and testing a TIP, 2-4
definition, 2-1

used to generate TIP specifications, 1-3
definition names, 2-4
definition versioning, 2-5
definitions, 2-3
functions, 2-2
generation, 2-3
interpretation of COBOL symbols in datatype

conversion, D-3

PGAU (continued)
invoking, 2-3
keywords, 2-6
overview, 2-1
purpose of PGDL, 1-3
role in calling TIPs, on gateway using

TCP/IP, 7-1
ROLLBACK processing, 2-2
sample input, F-1
writing statements, 3-4

PGAU commands, 1-12, 1-18
CONNECT, 2-3, 2-6
CONNECT, parameters, 2-6
DEFINE CALL, 2-7, 2-26, 3-4, 4-23

call list, 3-2
on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18
sample, F-2

DEFINE DATA, 2-8, 2-26, 3-4, 4-11, 4-23,
7-4, A-11

on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18
parameters, 2-8
sample, F-1

DEFINE DATA, datatype conversions
USAGE (ASIS), D-7
USAGE (PASS), D-2
USAGE (SKIP), D-7

DEFINE PGAU, call list, 3-3
DEFINE TRANSACTION, 1-13, 2-2, 2-10,

3-5, 4-23
on gateway using TCP/IP, 1-18
sample, F-2

DEFINE TRANSACTION, parameters, 2-10,
3-3

defining correlation between TIP and RTP,
2-1

DESCRIBE, 2-13
DESCRIBE, parameters, 2-13
DISCONNECT, 2-14
DISCONNECT, parameters, 2-14
EXECUTE, 2-14
EXECUTE, parameters, 2-14
EXIT, 2-15
EXIT, parameters, 2-15
formatting of Call and Transaction reports,

2-26
four main types, in control file, 1-12, 1-18
GENERATE, 2-15, 3-5, 3-7, 3-8, 4-11, 7-4,

E-1
error messages, 8-3
on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18
parameters, 2-15
sample, F-2

Index

Index-6

PGAU commands (continued)
GENERATE (continued)
support and non-support for parameters

over 32K length, D-1
traces, 8-1

GROUP, 2-19, 3-7
HOST, 2-20

parameters, 2-20
on gateway using SNA, 1-13
PRINT, 2-21
REDEFINE DATA, 2-21, A-11

sample, F-6
REM, 2-24
REM, parameters, 2-24
REPORT, 2-25
REPORT, parameters, 2-25
SET, 2-27
SET, parameters, 2-27
SHOW, 2-28
SHOW, parameters, 2-28
SPOOL, 2-30
SPOOL, parameters, 2-30
TRANSACTION, 2-26
UNDEFINE CALL, 2-30
UNDEFINE CALL, parameters, 2-30
UNDEFINE DATA, 2-31
UNDEFINE DATA, parameters, 2-31
UNDEFINE TRANSACTION, 2-32
UNDEFINE TRANSACTION, parameters,

2-32
UNDEFINE, sample, F-7
VARIABLE, 2-33
VARIABLE, parameters, 2-33

PGAU script file
adding spool and echo, 3-7
creating, 3-5

pgau.trc file, 2-17, 2-19
PGAXFER, 7-7, B-4
PGAXFER function, 1-3, 1-9, 4-4, 7-3
PGDD (Data Dictionary)

environment sequence numbers, A-1
pgddausr.sql file, 4-28, 7-17
pgddcr8.sql file, 2-5, A-6
PGDL (Procedural Gateway Definition

Language), 2-2, B-1
definition, 1-3

pgtflip.pkb file, 1-18, 7-4
pgtflip.pkh file, 1-18
pgtflip.sql file, 7-4
pgtflipd.sql, 7-10
pgtflipd.sql file, 7-4
PIC 9, 8-4
PIC G, 8-4

datatypes, 4-26, 7-15
PIC G datatype conversions, D-3

PIC G datatypes, D-2
PIC X data types, 8-4
PIC X datatypes, D-2
PKGEX(DC) diagnostic option, 8-5
PL/SQL, 1-5

call, A-9, A-10
code, B-1
code generator, 1-2, 8-4
data length limits, 8-8
datatypes, 1-8, 4-7–4-9, 4-11, F-2, F-5

converted to RAW, 1-9
developing TIPs, D-1
enabling a trace, 8-12
function in the gateway, 1-1, 1-8
invoking DG4APPC, 1-11, 1-15
naming algorithms, D-8

delimiters, D-8
duplicate names, D-8
qualified compound names, D-8

parameters, 4-15, 7-9
record format, F-4
stored procedure, 1-11
transferring data

using RAW datatype, C-1
UTL_PG package function, 1-3
UTL_RAW function, 1-3
variable names, D-8

datatype conversion, D-8
variables, 3-8, D-6–D-8

PL/SQL package, 2-3, 2-7, 2-31, 2-32, 3-1, 4-4,
8-2, B-1, E-1, E-2

components, 4-3, 7-3
contents

package specification, 4-3, 7-3
DBMS_PIPE, 3-1
definition, 1-3, 1-6
execute authority, 4-21, 7-14
function, 4-2, 7-2
functions, 1-8
grants required, 3-1
pagcics, 1-11
parameter, 2-18
See TIP, 1-8, E-2
specifying names, 4-14, 7-8

PL/SQL stored procedure, 5-5
changing trace level, B-6
starting up communication with mainframe,

1-11, 1-15
PL/SQL stored procedure specification

also called "TIP", 1-2
See PL/SQL package, 1-3

PRINT command, 2-21
privileges

needed to use TIPs, 4-27

Index

Index-7

problem analysis
of data conversion and truncation errors, 8-8
with PG DD diagnostic references, 8-2
with PG DD select scripts, 8-3
with TIP runtime traces, 8-5

Procedural Gateway Administration
see PGA, 1-3

Procedural Gateway Administration Utility
see PGAU, 1-8

R
RAW_TO_NUMBER FORMAT function, C-8
RAW_TO_NUMBER function, C-3
recompilation errors

causes, E-4
REDEFINE DATA statement, A-11, F-6
REM command, 2-24
remote host transactions (RHT)

APPC conversation sharing, 4-21
attributes needed, 4-14, 7-8
client application, 4-8
defined using the PGAU DEFINE

TRANSACTION statement, 4-14, 7-8
evaluating, 3-2
multi-conversational, client applications, 4-7
one-shot, client applications, 4-7
persistent, client applications, 4-7
requirements

understanding, 4-3
steps involved in, 4-7
types

on gateway using SNA, 1-10, 4-4
on gateway using TCP/IP, 7-4

remote procedural call
See RPC, 1-1

remote procedural call (RPC), A-10
calling the gateway, B-1
executing gateway functions, B-1
parameters, B-6
PGAINIT and PGAINIT_SEC, B-3
PGAINIT and PGAINIT_SEC, parameters,

B-3
PGATCTL, B-6
PGATERM, B-5
PGATERM, parameters, B-5
PGATRAC, B-7
PGATRAC, parameters, B-7
PGAXFER, B-4
PGAXFER, parameters, B-4

remote procedure
definition, 1-3

remote transaction initiation
on gateway using SNA, 1-9
on gateway using TC/IP, 1-9

remote transaction program
See RTP, 1-1

remote transaction termination
on gateway using SNA, 1-9
on gateway using TCP/IP, 1-10

REPORT statement, 3-5
RHT, See remote host transactions, 3-2
ROLLBACK command, 2-2, 2-3
ROLLBACK processing, 2-2
RPC

definition, 1-3
function

PGAINIT, 1-4, 1-9
PGATERM, 1-4
PGAXFER, 1-4, 1-9
within the gateway, 1-1, 1-8

processing, 1-1
RPC interface

PGATCTL, B-6
PGATERM, B-5
PGATRAC, B-7
PGAXFER, B-4
See also, remote procedural call (RPC), B-1

RTP
activities, 4-5
definition, 1-3
executing, 1-5
function in the gateway, 1-1
on gateway using SNA, 4-6
purpose, 4-4, 7-3

runtime traces, 8-5
controls, 8-6
conversion warnings, 8-6
data conversion tracing, 8-7
gateway exchange tracing, 8-7
runtime function entry/exit tracing, 8-7

S
sample

PGAU DEFINE CALL command, F-2
PGAU DEFINE DATA command, F-1
PGAU DEFINE TRANSACTION command,

F-2
PGAU GENERATE command, F-2
PGAU REDEFINE DATA command, F-6
PGAU UNDEFINE command, F-7

sample definitions
implicit versioning, F-3

script file, 3-5
sequence objects

in the PGDD environment dictionary, A-1
SET command, 2-27
SET LOG_DESTINATION parameter, 8-9–8-11
SET TRACE_LEVEL parameter, 8-9, 8-11, 8-12

Index

Index-8

Side Information Profile, 2-12, B-3
SIDE_NAME, 5-7
simple DG4APPC communication

on gateway using SNA, 1-11
SNA

and gateway components, 1-7
communication between mainframe and

Oracle database, 1-11
communications function, 1-11
creating a TIP, 1-12
determining validity of TIP specification, E-2
examples and sample files used in this guide,

1-6
flexible call sequence, 4-12
function in the gateway, 1-1
gateway transaction types, 1-10
implementing commit-confirm, 5-1
overview of the gateway, using, 1-1
parameters, 1-9
PGAU DEFINE TRANSACTION command,

3-3
remote transaction initiation, 1-9
remote transaction termination on the

gateway, 1-9
steps to connecting Oracle database and

mainframe, 1-11
supported remote host languages, 3-2
TIP internals, E-1
uses APPC to access all systems, 1-1
writing TIPs, 1-12

socket file descriptor
returned by TCP/IP network to PGAINIT, 1-9

specification file
on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18

SPOOL command, 2-30
SQL*Plus

connecting server and mainframe, 1-11
invoking, 3-7
recompiling TIP body changes, E-2
running scripts, 4-27, 7-16
test scripts, 8-3

statements
see PGAU commands, 2-6

SYNCHRONIZED LEFT, D-7

T
TCP/IP for IMS Connect, 1-15, 7-11

and gateway components, 1-7
and PGA_TCP_IMSC parameter table, 6-1
and PGAINIT, 6-1
and Remote Transaction Initiation, 1-9
Client application overview, 7-1

TCP/IP for IMS Connect (continued)
communication between gateway and Oracle

database, 1-15
content of PGA_TCP_IMSC table, 6-2
creating a TIP, 7-1
determining validity of TIP specification, E-2
elements of TIP-RTP correspondence, 7-4
examples and sample files used in this guide,

1-6
function in the gateway, 1-1
gateway support for, description, 1-3
IMS enabled, 1-5
mapping parameters using pg4tcpmap tool,

7-15
mapping SNA parameters to TCP/IP, 6-1
non-persistent socket transaction type, 1-14
OLTP in gateway architecture, 1-7
persistent socket transaction type, 1-14
PGAU DEFINE TRANSACTION command,

3-4
remote host languages supported, 3-2
remote transaction initiation, 1-9
remote transaction termination, 1-10
SENDs and RECEIVEs

TIP CALL correspondence, 7-6
setting initsid.ora parameters, 6-4
simple communication

between gateway and integrating server,
1-15

steps to communication between server and
IMS, 1-15

steps to writing a TIP, 1-17
supports only IMS as OLTP, 1-3, 1-5
TIP granting privileges needed, 7-16
TIP internals, E-1
TRANSACTION correspondence, 7-8
transaction types, 1-14

terminal-oriented transactions
modifying, 4-27

terminating a TIP conversation, 4-20, 7-14
terms, gateway terms defined, 1-3
TIP, 1-7, 4-2, 7-2

APPC conversation sharing, 4-21, 4-23
background references, E-1
CALL correspondence, 4-12

on gateway using SNA, 4-12
on gateway using TCP/IP, 7-6
order restrictions, 4-13

calling
from the client application, 4-14, 7-8

calling and controlling
on gateway using SNA, 4-1
on gateway using TCP/IP, 7-1

Index

Index-9

TIP (continued)
client application development

content and purpose on gateway using
SNA, 4-3

content and purpose on gateway using
TCP/IP, 7-3

compiling, 3-7
content documentation (tipname.doc), 3-8
content file sections

GENERATION Status, 3-8
TIP Default Calls, 3-8
TIP Transaction, 3-8
TIP User Calls, 3-8
TIP User Declarations, 3-8
TIP User Variables, 3-8

control file, 2-2
controlling

runtime conversion warnings, 8-6
runtime data conversion tracing, 8-7
runtime function tracing, 8-7
runtime gateway exchange tracing, 8-7

conversation sharing used to circumvent
large TIPs, 4-23

conversion, 1-3, 4-26, 7-15
converting PL/SQL datatypes to RAW, 1-9
creating, 3-1
custom TIP writing, E-1
customized interface for each remote host

transaction (RTP), 4-6
DATA correspondence, 4-11

on gateway using TCP/IP, 7-4
datatype conversion support for COBOL, D-2
declaring variables to create a TIP, 4-15, 7-9
defining and generating, 3-6
defining, with PGAU, 2-4
definition, 1-3, 1-6
definition errors, 8-1
dependent TIP body or specification

changes, E-3
diagnostic parameters, 4-26
driver procedures

on gateway using SNA, 1-14
on gateway using TCP/IP, 1-19

flexible call sequence, 4-12
four steps to generate

on gateway using SNA, 1-12
on gateway using TCP/IP, 1-17

functions
in Oracle database, 1-9

generated by PGAU, 4-2
granting privileges to use, 3-1, 4-27, 7-16
independent TIP body changes, E-2
initializations, 4-18, 7-12

overriding, 4-18
initializing the conversation, 4-16, 7-10

TIP (continued)
internals, E-1
override parameters, 4-26
overriding

on gateway using TCP/IP, 7-12
overriding default attributes, 4-18, 7-12
overview, 1-12, 1-17
privileges needed, 3-1, 4-27
public functions

tip_init, 4-5
tip_inqr, 4-5
tip_mode, 4-5
tip_term, 4-5
tip_updt, 4-5

recompiling, E-2, E-3
remote transaction

correspondence, 4-10
remote transaction correspondence, on

gateway using TCP/IP, 7-4
remote transaction initiation (PGAINIT), 1-9
requirements for corresponding with RHT

on gateway using SNA, 4-10
on gateway using TCP/IP, 7-4

requirements of the client application, 4-7
service, 4-22
specification file, 3-6

on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18

specifications
generated by PGAU, 1-8

steps to writing
on gateway using SNA, 1-12
on gateway using TCP/IP, 1-17

terminating the conversation, 4-20, 7-14
trace controls, 8-6
tracing, 8-9
TRANSACTION correspondence, 4-14, 7-8

on gateway using SNA, 4-14
using transaction instance parameter

on gateway using TCP/IP, 7-11
writing

on gateway using SNA, 1-12
on gateway using TCP/IP, 3-4

TIP control file commands, 1-12, 1-13, 1-18
on gateway using TCP/IP, 1-18

TIP specification, 4-2, E-2
changes, E-3
errors, E-4

TIP warnings and tracing
suppressing, 8-7

tipname.doc file, 3-8, 4-10, 7-9
tipname.pkb file, 8-5
TP_NAME, 5-8
trace option, 8-1

TIP definition errors, 8-1

Index

Index-10

TRACE_LEVEL, 8-11
traces, 8-6, 8-7

diagnostic, 8-9
enable gateway server trace, 8-11
enabling APPC trace from PL/SQL, 8-12
enabling through initsid.ora, 8-12
gateway server, 8-10
purpose of initializing conversations, 4-16,

7-10
runtime, 8-5

trace controls, 8-6
suppressing, 8-7
TIP, 8-5, 8-7

TRANSACTION correspondence
on gateway using SNA, 4-14
on gateway using TCP/IP, 7-8

transaction instance parameter
on gateway using SNA, 4-17
on gateway using TCP/IP, 7-11

Transaction Interface Package
See TIP, 1-3

transaction socket
transaction type for TCP/IP, 1-14

transaction types
one-shot, persistent and multi-

conversational, for SNA, 1-10
transparency

(application), 1-2
(location), on gateway using SNA, 1-2

U
UNDEFINE statement, 3-6, F-7
USAGE(ASIS), D-7
USAGE(PASS), D-2

datatype conversion, D-2
FILLER, D-5
PIC G, D-3

USAGE(PASS) (continued)
format conversion

OCCURS DEPENDING ON, D-6
USAGE(SKIP), D-7
UTL_PG

package
definition, 1-3

parameters (input and output), C-1
PL/SQL package, 3-1

UTL_PG function, C-1
MAKE_NUMBER_TO_RAW_FORMAT, C-7
MAKE_RAW_TO_NUMBER_FORMAT, C-5
NUMBER_TO_RAW, C-4
NUMBER_TO_RAW and

RAW_TO_NUMBER argument
values, C-12

NUMBER_TO_RAW_FORMAT, C-9
RAW_TO_NUMBER, C-3
RAW_TO_NUMBER_FORMAT, C-8
WMSG, C-10
WMSGCNT, C-9

UTL_RAW PL/SQL package, 3-1, C-1
definition, 1-3

V
VARIABLE command, 2-33

W
WMSG function, C-10
WMSGCNT function, C-9
writing PGAU statements, 3-4

Index

Index-11

	Contents
	List of Tables
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Legacy Compilers
	Conventions

	1 Introduction to the Oracle Database Gateway for APPC
	1.1 Overview of the Gateway
	1.2 Features of the Gateway
	1.3 Terms
	1.4 Examples and Sample Files for the Gateway
	1.5 Architecture of the Gateway
	1.6 Communication with the Gateway
	1.7 RPC Functions
	1.7.1 TIP Function
	1.7.1.1 Remote Transaction Initiation
	1.7.1.2 Data Exchange
	1.7.1.3 Remote Transaction Termination

	1.8 Overview of a Gateway Using SNA
	1.8.1 Transaction Types for a Gateway Using SNA
	1.8.2 Simple Gateway Communication with the Oracle Database (SNA)
	1.8.2.1 Steps to Communicate Between Gateway and Mainframe Using SNA

	1.8.3 Writing TIPs to Generate PL/SQL Programs Using SNA
	1.8.3.1 Steps to Writing a TIP on a Gateway Using SNA

	1.9 Overview of a Gateway Using TCP/IP
	1.9.1 Transaction Types for a Gateway Using TCP/IP
	1.9.2 Simple Gateway Communication with the Oracle Database (TCP/IP)
	1.9.2.1 Preparing the Gateway to Communicate Using TCP/IP
	1.9.2.2 Steps to Communication Between the Gateway and IMS, Using TCP/IP

	1.9.3 Writing TIPs to Generate PL/SQL Programs Using TCP/IP
	1.9.3.1 Steps to Writing a TIP on a Gateway Using TCP/IP

	2 Procedural Gateway Administration Utility
	2.1 Overview of PGAU
	2.2 COMMIT/ROLLBACK Processing
	2.2.1 COMMIT Processing
	2.2.2 ROLLBACK Processing

	2.3 Invoking PGAU
	2.4 Definitions and Generation in PGAU
	2.5 Process to Define and Test a TIP
	2.5.1 Definition Names
	2.5.2 Definition Versioning
	2.5.3 Keywords

	2.6 PGAU Commands
	2.6.1 CONNECT
	2.6.2 DEFINE CALL
	2.6.3 DEFINE DATA
	2.6.4 DEFINE TRANSACTION
	2.6.5 DESCRIBE
	2.6.6 DISCONNECT
	2.6.7 EXECUTE
	2.6.8 EXIT
	2.6.9 GENERATE
	2.6.10 GROUP
	2.6.11 HOST
	2.6.12 PRINT
	2.6.13 REDEFINE DATA
	2.6.14 REM
	2.6.15 REPORT
	2.6.16 SET
	2.6.17 SHOW
	2.6.18 SPOOL
	2.6.19 UNDEFINE CALL
	2.6.20 UNDEFINE DATA
	2.6.21 UNDEFINE TRANSACTION
	2.6.22 VARIABLE

	3 Creating a TIP
	3.1 Granting Privileges for TIP Creators
	3.2 Evaluating the RHT
	3.2.1 Identify the Remote Host Transaction
	3.2.2 PGAU DEFINE CALL Command
	3.2.3 PGAU DEFINE DATA Command
	3.2.4 PGAU DEFINE TRANSACTION Command on a Gateway Using SNA
	3.2.5 PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP
	3.2.6 Writing the PGAU Statements
	3.2.7 Writing a PGAU Script File

	3.3 Defining and Generating the TIP
	3.4 Compiling the TIP
	3.5 TIP Content Documentation (tipname.doc)

	4 Developing Client Application (SNA Only)
	4.1 Overview of Client Application
	4.2 Preparing the Client Application
	4.3 Understanding the Remote Host Transaction Requirements
	4.3.1 TIP Content and Purpose
	4.3.2 Remote Host Transaction Types
	4.3.2.1 One-Shot Transactions
	4.3.2.2 Persistent Transactions
	4.3.2.3 Multi-Conversational Transactions

	4.4 Customized TIPs for Each Remote Host Transaction
	4.5 Client Application Requirements
	4.6 Ensuring TIP and Remote Transaction Program Correspondence
	4.6.1 DATA Correspondence
	4.6.2 CALL Correspondence
	4.6.2.1 Flexible Call Sequence
	4.6.2.2 Call Correspondence Order Restrictions

	4.6.3 TRANSACTION Correspondence

	4.7 Calling the TIP from the Client Application
	4.7.1 Declaring TIP Variables
	4.7.2 Initializing the Conversation
	4.7.2.1 Transaction Instance Parameter
	4.7.2.2 Overriding TIP Initializations
	4.7.2.3 Security Considerations

	4.8 Exchanging Data
	4.8.1 Terminating the Conversation
	4.8.2 Error Handling
	4.8.3 Granting Execute Authority

	4.9 Executing the Application
	4.10 APPC Conversation Sharing
	4.10.1 APPC Conversation Sharing Concepts
	4.10.2 APPC Conversation Sharing Usage
	4.10.3 APPC Conversation Sharing TIP Compatibility
	4.10.4 APPC Conversation Sharing for TIPs That Are Too Large
	4.10.5 APPC Conversation Sharing Example
	4.10.6 APPC Conversation Sharing Overrides and Diagnostics

	4.11 Application Development with Multi-Byte Character Set Support
	4.12 Modifying a Terminal-Oriented Transaction to Use APPC
	4.13 Privileges Needed to Use TIPs

	5 Implementing Commit-Confirm (SNA Only)
	5.1 Overview of Commit-Confirm
	5.2 Supported OLTPs
	5.3 Components Required to Support Commit-Confirm
	5.4 Application Design Requirements
	5.5 Commit-Confirm Architecture
	5.5.1 Components
	5.5.2 Interactions

	5.6 Commit-Confirm Flow
	5.6.1 Commit-Confirm Logic Flow, Step by Step
	5.6.2 Gateway Server Commit-Confirm Transaction Log

	6 PG4TCPMAP Commands (TCP/IP Only)
	6.1 Preparation for Populating the PGA_TCP_IMSC Table
	6.2 Overview
	6.3 Populating the PGA_TCP_IMSC Table
	6.4 Before You Run the pg4tcpmap Tool
	6.5 pg4tcpmap Tool Commands
	6.5.1 Inserting a Row into the PGA_TCP_IMSC Table
	6.5.2 Deleting Rows from the PGA_TCP_IMSC Table
	6.5.3 Querying the PGA_TCP_IMSC Table

	7 Developing Client Application (TCP/IP Only)
	7.1 Overview of Client Application
	7.2 Preparing the Client Application
	7.2.1 TIP Content and Purpose
	7.2.2 Remote Host Transaction Types

	7.3 Ensuring TIP and Remote Transaction Program Correspondence
	7.3.1 DATA Correspondence
	7.3.2 CALL Correspondence
	7.3.2.1 Flexible Call Sequence
	7.3.2.2 Call Correspondence Order Restrictions

	7.3.3 TRANSACTION Correspondence

	7.4 Calling the TIP from the Client Application
	7.4.1 Declaring TIP Variables
	7.4.2 Initializing the Conversation
	7.4.2.1 Transaction Instance Parameter
	7.4.2.2 Overriding TIP Initializations
	7.4.2.3 Security Considerations

	7.5 Exchanging Data
	7.5.1 Terminating the Conversation
	7.5.2 Error Handling
	7.5.3 Granting Execute Authority

	7.6 Calling PG4TCPMAP
	7.7 Executing the Application
	7.8 Application Development with Multi-Byte Character Set Support
	7.9 Privileges Needed to Use TIPs

	8 Troubleshooting
	8.1 TIP Definition Errors
	8.2 Problem Analysis with PG DD Diagnostic References
	8.3 Problem Analysis with PG DD Select Scripts
	8.4 Data Conversion Errors
	8.5 Problem Analysis with TIP Runtime Traces
	8.6 TIP Runtime Trace Controls
	8.6.1 Generating Runtime Data Conversion Trace and Warning Support
	8.6.2 Controlling TIP Runtime Conversion Warnings
	8.6.3 Controlling TIP Runtime Function Entry/Exit Tracing
	8.6.4 Controlling TIP Runtime Data Conversion Tracing
	8.6.5 Controlling TIP Runtime Gateway Exchange Tracing

	8.7 Suppressing TIP Warnings and Tracing
	8.8 Problem Analysis of Data Conversion and Truncation Errors
	8.9 Gateway Server Tracing
	8.9.1 Defining the Gateway Trace Destination
	8.9.2 Enabling the Gateway Trace
	8.9.2.1 Enabling the Gateway Trace Using Initialization Parameters
	8.9.2.2 Enabling the Gateway Trace Dynamically from PL/SQL

	A Database Gateway for APPC Data Dictionary
	A.1 PG DD Environment Dictionary
	A.1.1 Environment Dictionary Sequence Numbers
	A.1.2 Environment Dictionary Tables
	A.1.2.1 pga_maint
	A.1.2.2 pga_environments
	A.1.2.3 pga_env_attr
	A.1.2.4 pga_env_values
	A.1.2.5 pga_compilers
	A.1.2.6 pga_datatypes
	A.1.2.7 pga_datatype_attr
	A.1.2.8 pga_datatype_values
	A.1.2.9 pga_usage
	A.1.2.10 pga_modes

	A.2 PG DD Active Dictionary
	A.2.1 Active Dictionary Versioning
	A.2.2 Active Dictionary Sequence Numbers
	A.2.3 Active Dictionary Tables
	A.2.3.1 pga_trans
	A.2.3.2 pga_trans_attr
	A.2.3.3 pga_trans_values
	A.2.3.4 pga_trans_calls
	A.2.3.5 pga_call
	A.2.3.6 pga_call_parm
	A.2.3.7 pga_data
	A.2.3.8 pga_fields
	A.2.3.9 pga_data_attr
	A.2.3.10 pga_data_values

	B Gateway RPC Interface
	B.1 PGAINIT and PGAINIT_SEC
	B.2 PGAXFER
	B.3 PGATERM
	B.4 PGATCTL
	B.5 PGATRAC

	C The UTL_PG Interface
	C.1 UTL_PG Functions
	C.1.1 Common Parameters
	C.1.1.1 Common Input Parameters
	C.1.1.2 Common Output Parameter

	C.1.2 RAW_TO_NUMBER
	C.1.3 NUMBER_TO_RAW
	C.1.4 MAKE_RAW_TO_NUMBER_FORMAT
	C.1.5 MAKE_NUMBER_TO_RAW_FORMAT
	C.1.6 RAW_TO_NUMBER_FORMAT
	C.1.7 NUMBER_TO_RAW_FORMAT
	C.1.8 WMSGCNT
	C.1.9 WMSG

	C.2 NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

	D Datatype Conversions
	D.1 Length Checking
	D.1.1 Parameters Over 32K in Length

	D.2 Conversion
	D.2.1 USAGE(PASS)
	D.2.2 USAGE(ASIS)
	D.2.3 USAGE(SKIP)
	D.2.4 PL/SQL Naming Algorithms

	E Tip Internals
	E.1 Background Reading
	E.2 PL/SQL Package and TIP File Separation
	E.2.1 Independent TIP Body Changes
	E.2.1.1 Determine if a Specification Has Remained Valid

	E.2.2 Dependent TIP Body or Specification Changes
	E.2.2.1 Recompile the TIP Body

	E.2.3 Inadvertent Alteration of TIP Specification

	F Administration Utility Samples
	F.1 Sample PGAU DEFINE DATA Statements
	F.2 Sample PGAU DEFINE CALL Statements
	F.3 Sample PGAU DEFINE TRANSACTION Statement
	F.4 Sample PGAU GENERATE Statement
	F.5 Sample Implicit Versioning Definitions
	F.6 Sample PGAU REDEFINE DATA Statements
	F.7 Sample PGAU UNDEFINE Statements

	Index

