Oracle® Database
SQL Translation and Migration Guide

Release 23c
F47005-02
September 2023

ORACLE"

Oracle Database SQL Translation and Migration Guide, Release 23c
F47005-02

Copyright © 2011, 2023, Oracle and/or its affiliates.

Primary Author: Tulika Das

Contributors: Peter Castro, Christopher Jones, Shoaib Lari, Tom Laszewski, Aman Manglik, Robert Pang,
Rajendra Pingte, Jeff D. Smith, Andrei Souleimanian

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation,” or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Vil
Related Documents Vii
Documentation Accessibility Vi
Conventions Vil
Changes in This Release for Oracle Database SQL Translation and
Migration Guide
1 Introduction to Tools and Products that Support Migration
1.1 Oracle Database Features for Migration Support 1-1
1.1.1 SQL Translation Framework 1-1
1.1.2 Support for Identity Columns 1-1
1.1.2.1 Creating Identity Columns 1-2
1.1.3 Implicit Statement Results 1-2
1.1.3.1 JDBC Support for Implicit Results 1-2
1.1.3.2 OCI Support for Implicit Results 1-3
1.1.3.3 ODBC Support for Implicit Results 1-4
1.1.4 Enhanced SQL to PL/SQL Bind Handling 1-6
1.1.4.1 Invoking a Subprogram with a Nested Table Parameter 1-6
1.1.5 Native SQL Support for Query Row Limits and Row Offsets 1-7
1.1.5.1 Limiting Bulk Selection 1-7
1.1.6 JDBC Driver Support for Application Migration 1-7
1.1.7 ODBC Driver Support for Application Migration 1-7
1.2 Other Oracle Products that Enable Migration 1-8
1.2.1 OEM Tuning and Performance Packs 1-8
1.2.2 Oracle GoldenGate 1-8
1.2.3 Oracle Database Gateways 1-8
1.2.4 Oracle SQL Developer 1-9
1.3 Migration Support for Other Database Vendors 1-9
1.3.1 Application Support in Third-Party Databases 1-9

ORACLE

1.3.2 Third-Party Database Version Support 1-9

2 SQL Translation Framework Overview
2.1 Architecture of SQL Translation Framework 2-2
2.2 How to Use SQL Translation Framework 2-2
2.3 When to Use SQL Translation Framework 2-3
3 SQL Translation Framework Configuration

3.1 Installing and Configuring SQL Translation Framework with Oracle SQL Developer 3-1
3.1.1 Overview of Oracle SQL Developer Migration Support 3-1
3.1.2 Setting Up Oracle SQL Developer 3.2 for Windows 3-1
3.1.2.1 Setting Up Oracle SQL Developer 3.2 Startup 3-2

3.1.2.2 Starting Oracle SQL Developer 3-2

3.1.3 Creating a Connection to Oracle Database 3-3
3.1.4 Testing SQL Translation 3-4
3.1.5 Creating a Translation Profile and Installing SQL Translator 3-4
3.1.5.1 Installing SQL Translator 3-5

3.1.5.2 Creating a Translation Profile 3-8

3.1.6 Using the SQL Translator Profile 3-8

3.2 Installing and Configuring SQL Translation Framework from Command Line 3-10
3.2.1 Installing Oracle Sybase Translator 3-10
3.2.2 Setting up a SQL Translation Profile 3-10
3.2.3 Setting Up a Database Service to Use the SQL Translation Profile 3-11
3.2.3.1 Setting Up a Database Service in Oracle Real Application Clusters 3-11

3.2.4 Testing Sybase SQL Translation Using the SQL Translation Profile 3-11

3.3 Granting Necessary Permissions for Installing the SQL Translator 3-12

4 SQL Translation of JDBC and ODBC Applications

4.1 SQL Translation of JDBC Applications 4-1
4.1.1 SQL Translation Profile 4-1
4.1.2 Error Message Translation 4-1
4.1.3 Converting JDBC Standard Parameter Markers 4-2
4.1.4 Executing the Translated Oracle Dialect Query 4-2
4.1.5 Error Translation 4-3
4.1.6 Using JDBC Driver for SQL Translation 4-3

4.2 SQL Translation of ODBC Applications 4-4
4.2.1 SQL Translation profile 4-4
4.2.2 Error Message Translation 4-5

ORACLE iv

4.2.3 Translating Error Messages 4-5

5 Example: Application Migration Using SQL Translation Framework

5.1 Migrating a Sybase JDBC Application 5-1
5.1.1 Application Overview 5-1
5.1.2 Setting Up Migration 5-1
5.1.3 Capturing Migration 5-3
5.1.4 Setting Migration Preferences 5-6
5.1.5 Converting Migration 5-7
5.1.6 Generating a Migration 5-9
5.1.6.1 Creating a Target Oracle User 5-10

5.1.7 Moving the Data 5-10

5.2 Generating Migration Reports 5-11

6 API Reference for SQL Translation of JDBC Applications

6.1.1 Translation Properties 6-1
6.1.1.1 sqglTranslationProfile 6-1
6.1.1.2 sqlErrorTranslationFile 6-2

6.1.2 OracleTranslatingConnection Interface 6-2
6.1.2.1 SqlTranslationVersion 6-3
6.1.2.2 createStatement() 6-3
6.1.2.3 prepareCall() 6-6
6.1.2.4 prepareStatement() 6-9
6.1.2.5 getSQLTranslationVersions() 6-12

6.1.3 Error Translation Configuration File 6-13

Glossary

Index

ORACLE" v

List of Tables

1-1 Supported Applications in Databases

1-2 Supported Database Versions for Migration Using Oracle SQL Developer
6-1 Translation Properties

6-2 OracleTranslatingConnection Enumeration

6-3 OracleTranslatingConnection Methods

ORACLE

1-9
1-9
6-1
6-2
6-3

Vi

Preface

Audience

This guide describes the installation, configuration, and administration tasks for all activities
related to migrating applications developed for non-Oracle databases, such as DB2, Sybase,
and legacy applications, to Oracle Database. This guide also provides migration scenarios
that users may implement in sequence.

This guide is for database administrators and application developers who are interested in
migrating from databases other than Oracle to an Oracle Database.

Related Documents

For more information, see the following documents in the Oracle Database documentation
set:

e Oracle Database SQL Language Reference
* Oracle Database Administrator's Guide
e Oracle Database Development Guide

e Oracle Database Reference

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE viii

Changes in This Release for Oracle Database
SQL Translation and Migration Guide

ORACLE

This preface contains the changes in this book for Oracle Database 23c.

Desupport of MySQL Client Library Driver for Oracle

The MySQL Client Library Driver for Oracle is desupported in Oracle Database 23c.

The MySQL Client library driver, 1iboramysgl, was deprecated in Oracle Database 21c. It is
now desupported. There is no replacement. This desupport does not affect the ability of older
Oracle Database Client releases that use liboramysgl to connect to the database. However,
the features available to use through these clients eventually can be limited.

Introduction to Tools and Products that
Support Migration

Before migrating your application to Oracle Database, you must be aware of several key
points that are described in Oracle Database Concepts.

When discussing the migration of a database-centered enterprise, it is useful to keep in mind
that the actual migration of database schema and data is only a part of the process. The
migration of a core business solution often involves several databases and applications that
work together to deliver the product and services that drive the revenue of an organization.
For more information about preparing a migration plan, see Oracle SQL Developer User's
Guide.

1.1 Oracle Database Features for Migration Support

Oracle Database 12c introduced a large set of features that collectively enhance the
migration process of hon-Oracle database applications to Oracle Database.

1.1.1 SQL Translation Framework

A key part of migrating non-Oracle databases to Oracle Database involves the conversion of
non-Oracle SQL statements to SQL statements that are acceptable to Oracle Database. The
conversion of the non-Oracle SQL statements of the applications is a manual and tedious
process. To minimize the effort, or to eliminate the necessity for converting these statements,
Oracle Database 12c introduced a new feature called SQL Translation Framework. SQL
Translation Framework receives these SQL statements from client applications, and then
translates them at run-time.

The SQL Translation Profile registers the SQL Translater inside the database so it can handle
the SQL translation for non-Oracle client application. If an error occurs while a SQL statement
is executed, then the SQL Translator can translate the Oracle error code and the ANST
SQLSTATE into the vendor-specific values expected by the application. The translated
statements are then saved in the SQL Translation Profile, to be examined and edited at the
user’s discretion.

The advantages of SQL Translation Framework follow:
* The translation of SQL statements, Oracle error codes, and ANST SQLSTATE is automatic.

e The translations are centralized and examinable.

* The user has the option to extract translations and insert them back into the application.

1.1.2 Support for Identity Columns

Oracle Database 12c implements ANSI-compliant IDENTITY columns. Migration from
database systems that use identity columns is simplified and can take advantage of this new
functionality.

ORACLE 1-1

Chapter 1
Oracle Database Features for Migration Support

This feature implements auto increment by enhancing DEFAULT or DEFAULT ON NULL
semantics for use by SEQUENCE.NEXTVAL and SYS_GUID, supports built-in functions and
implicit return of default values.

1.1.2.1 Creating Identity Columns

Example 1-1 creates a table with an identity column, which is generated by default.
When explicit nulls are inserted into the identity column, the sequence generator
creates values by default. For further details, see Oracle Database SQL Language
Reference.

Example 1-1 How to create an identity column

CREATE TABLE tl (cl NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY,
c2 VARCHAR2 (10));

INSERT INTO tl(c2) VALUES (‘abc');

INSERT INTO tl (cl, c2) VALUES (null, ‘xyz');

SELECT cl, c2 FROM t1;

1.1.3 Implicit Statement Results

Starting with Oracle Database 12c¢ Release 2 (12.2), Oracle implicitly returns to the
client application the results of SQL statements executed within a stored procedure,
bypassing the explicit use REF CURSORS. This feature eliminates the overhead of re-
writing the client-side code.

Implicit statement results enable the user to write a stored procedure, where each
intended query (the statement after the FOR keyword) is part of the OPEN cursor
variable. When code is migrated to Oracle Database from other vendors
environments, the PL/SQL layer adds the equivalent capability and enables SELECT
statements to pass the results to the client. The stored procedures can then return the
results directly to the client with the DBMS SQL.RETURN RESULT procedure. The
SQL*Plus FORMAT command and its variations may be invoked to customize the output.

For information about the DBMS SQL package, see Oracle Database PL/SQL Packages
and Types Reference. For information about how to use format output, SQL*Plus
User's Guide and Reference.

1.1.3.1 JDBC Support for Implicit Results

Starting with Oracle Database 12¢ Release 2 (12.2), JDBC applications provide
support for implicit results through the following new functions:

e getMoreResults
* getMoreResults (int)
* getResultSet

You can use these methods to retrieve and process the implicit results returned by
PL/SQL procedures or blocks, as demonstrated in Example 1-2.

For more information, see Oracle Database JDBC Developer's Guide

ORACLE 1-2

Chapter 1
Oracle Database Features for Migration Support

1.1.3.1.1 Processing Implicit Results in JDBC

Example 1-2 Retrieving and Processing Implicit Results from PL/ISQL Blocks
Suppose you have a procedure called foo:

create procedure foo as
cl sys refcursor;
c2 sys refcursor;

begin
open cl for select * from hr.employees;
dbms_sql.return result(cl); --return to client

-- open 1 more cursor

open c2 for select * from hr.departments;

dbms_sql.return result (c2); --return to client
end;

The following code demonstrates how to retrieve the implicit results returned by PL/SQL
procedures using the JDBC getMoreResults methods:

String sql = "begin foo; end;";

Connection conn = DriverManager.getConnection (jdbcURL, user, password);
try {

Statement stmt = conn.createStatement ();

stmt.executeQuery (sql);

while (stmt.getMoreResults())

{
ResultSet rs = stmt.getResultSet();
System.out.println ("ResultSet");
while (rs.next())

{
/* get results */

}

1.1.3.2 OCI Support for Implicit Results

Starting with Oracle Database 12¢ Release 2 (12.2), Oracle Call Interface (OCI) provides
support for implicit results through a new function, 0CIStmtGetNextResult (). Itis called
iteratively by C applications to retrieve each implicit result from stored procedures and
anonymous blocks. Implicit results consume rows directly from a stored procedure without
going through a RefCursor.

" See Also:

Oracle Call Interface Programmer's Guide

1.1.3.2.1 Processing Implicit Results in OCI

Example 1-3 shows how to use the 0CIStmtGetNextResult () function to retrieve and process
the implicit results returned by either a PL/SQL stored procedure or an anonymous block:

ORACLE 1-3

Chapter 1
Oracle Database Features for Migration Support

Example 1-3 Using OCIStmtGetNextResult() to Process Implicit Results

OCIStmt *stmthp;

ub4 rsetcnt;

void *result;

ub4 rtype;

char *sql = "begin foo; end;";

OCIHandleAlloc ((void *)envhp, (void **)é&stmthp,
OCI_HTYPE STMT, 0, (void **)0);

/* Prepare and execute the PL/SQL procedure. */
OCIStmtPrepare (stmthp, errhp, (oratext *)sqgl, strlen(sql),
OCI_NTV_SYNTAX, OCI DEFAULT);

0CIStmtExecute (svchp, stmthp, errhp, 1, 0,
(const OCISnapshot *)O0,
(OCISnapshot *)0, OCI DEFAULT);

/* Now check if any implicit results are available. */
OCIAttrGet((void *)stmthp, OCI_HTYPE STMT, &rsetcnt, 0,
OCI ATTR IMPLICIT RESULT COUNT, errhp);

/* Loop and retrieve the implicit result-sets.
* ResultSets are returned in the same order as in the PL/SQL
* procedure/block.

*/
while (OCIStmtGetNextResult (stmthp, errhp, &result, &rtype,
OCI DEFAULT) == OCI SUCCESS)
{ /* Check the type of implicit ResultSet, currently

* only supported type is OCI_RESULT TYPE SELECT
*/ if (rtype == OCI RESULT TYPE SELECT)

{ OCIStmt *rsethp = (OCIStmt *)result;
/* Perform normal OCI actions to define and fetch rows. */
} else

printf ("unknown result type %d\n", rtype);
/* The result set handle should not be freed by the user. */
} OCIHandleFree (stmthp, OCI_HTYPE STMT); /* All implicit result-sets are
also freed. */

1.1.3.3 ODBC Support for Implicit Results

Starting with Oracle Database 12¢, ODBC applications provide support for implicit
results through a new function, SQLMoreResults (). ODBC driver is enhanced to make
use of the following new OCI APIs that enhance the migration process:

* OCIStmtGetNextResult () function
* OCI ATTR IMPLICIT RESULT COUNT attribute
* OCI RESULT TYPE SELECT attribute

ODBC support for implicit results enables the migration of Sybase and SQL Server
applications that use multiple result sets bundled in the stored procedures. Oracle
achieves this by sending the statements or procedures to the server, where the non-
Oracle SQL is translated to Oracle syntax.

1.1.3.3.1 Processing Implicit Results in ODBC

Example 1-4 and Example 1-5 demonstrate how to retrieve implicit results in ODBC.

ORACLE 1-4

ORACLE

Chapter 1
Oracle Database Features for Migration Support

Example 1-4 Using ODBC to return implicit results with
DBMS_SQL.RETURN_RESULT

create or replace procedure foo

is

cl sys refcursor;

c2 sys_refcursor;

begin
open cl for select employee id, first name from employees where employee 1d=7369;
dbms sqgl.return result(cl);
open c2 for select department id, department name from departments where rownum <=2;
dbms sql.return result(c2);

end;

/

Example 1-5 Using ODBC to return implicit results with SQLMoreResults

SQLLEN enind, jind;

SQLUINTEGER eno = 0;

SQLCHAR empname [STR LEN] = "";

//Allocate HENV, HDBC, HSTMT handles

rc = SQLPrepare (hstmt, "begin foo(); end;", SQL NTS);

rc = SQLExecute (hstmt) ;

//Bind columns for the first SELECT query in the procedure foo (

rc = SQLBindCol (hstmt, 1, SQL C ULONG, é&eno, 0, &Jjind);

rc = SQLBindCol (hstmt, 2, SQL C CHAR, empname, sizeof (empname),
&enind) ;

//so on for all the columns that needs to be fetched as per the SELECT
//query in the procedure.

//Fetch all results for first SELECT query

while ((rc = SQLFetch (hstmt)) != SQL NO DATA)

{

//do something

}

//Bgain check if there are any results available by calling
//SQLMoreResults. SQLMoreResults will return SQL SUCCESS if any
//results are available else returns errors appropriately as explained
//in MSDN ODBC spec.

rc = SQLMoreResults (hstmt);

if (rc == SQL SUCCESS)

{

//I1f the columns for the second SELECT query are different the rebind
//the columns for the second SELECT SQL statement.

rc = SQLBindCol (hstmt, 1,..);

rc = SQLBindCol (hstmt, 2,..);

//Fetch the second result set

while ((rc = SQLFetch (hstmt)) != SQL NO DATA)
//do something

}

SQLFreeStmt (hstmt, SQL DROP) ;

SQLDisconnect (hdbc);

SQLFreeConnect (hdbc);
SQLFreekEnv (henv);

1-5

Chapter 1
Oracle Database Features for Migration Support

1.1.4 Enhanced SQL to PL/SQL Bind Handling

In earlier releases of Oracle Database, a SQL expression could not invoke a PL/SQL
function that had a formal parameter or return type that was not a SQL data type.

Starting with Oracle Database 12c¢, a PL/SQL anonymous block, a SQL CALL
statement, or a SQL query can invoke a PL/SQL function that has parameters of the
following types:

* Boolean
* Record declared in a package specification
* Collection declared in a package specification

The SQL TABLE operator is also enhanced, so that you can query on PL/SQL
collections of locally scoped types as an argument to TABLE operator. Here, the
collections can be of nested table types, VARRAY, or PL/SQL index table that are
indexed by PLS INTEGER.

This feature extends the flexibility of the TABLE operator, and enables easy migration of
non-Oracle stored procedure code to PL/SQL.

1.1.4.1 Invoking a Subprogram with a Nested Table Parameter

ORACLE

Example 1-6 shows how to dynamically call a subprogram with a nested table formal
parameter. See Oracle Database PL/SQL Language Reference for more information
on this topic.

Example 1-6 Invoking a subprogram with a nested table formal parameter

CREATE OR REPLACE PACKAGE pkg AUTHID CURRENT USER AS
TYPE names IS TABLE OF VARCHAR2 (10);

PROCEDURE print names (x names);

END pkg;

/

CREATE OR REPLACE PACKAGE BODY pkg AS
PROCEDURE print names (x names) IS
BEGIN

FOR i IN x.FIRST .. x.LAST LOOP
DBMS_OUTPUT.PUT LINE(x(i));
END LOOP;
END;

END pkg;

/

DECLARE
fruits pkg.names;
dyn_stmt VARCHAR2 (3000) ;

BEGIN
fruits := pkg.names('apple', 'banana', 'cherry');
dyn stmt := 'BEGIN print names(:x); END;';
EXECUTE IMMEDIATE dynistmt USING fruits;

END;

1-6

Chapter 1
Oracle Database Features for Migration Support

1.1.5 Native SQL Support for Query Row Limits and Row Offsets

Starting with Oracle Database 12c¢, Oracle provides a row limiting clause that enables native
SQL support for query row limits and row offsets. If your application has queries that limit the
number of rows returned or offset the starting row of the results, this feature significantly
reduces SQL complexity for such queries.

1.1.5.1 Limiting Bulk Selection

Example 1-7 shows how to limit bulk selection with the FETCH FIRST clause. See Oracle
Database SQL Language Reference for more information on this topic.

Example 1-7 How to limit bulk selection

DECLARE
TYPE SalList IS TABLE OF employees.salary3%TYPE;
sals Sallist;
BEGIN
SELECT salary BULK COLLECT INTO sals FROM employees
WHERE ROWNUM <= 50;

SELECT salary BULK COLLECT INTO sals FROM employees
SAMPLE (10);

SELECT salary BULK COLLECT INTO sals FROM employees
FETCH FIRST 50 ROWS ONLY;
END;
/

1.1.6 JDBC Driver Support for Application Migration

Many applications that you want to migrate to Oracle Database from other databases have
Java applications that use JDBC to connect to the database. To facilitate SQL translation,
Oracle Database 12c introduced a new set of JDBC APIs that are specific to SQL translation.

See Also:

e "SQL Translation of JDBC Applications"
e API Reference for SQL Translation of JDBC Applications

e Complete documentation of the oracle. jdbc package in Oracle Database
JDBC Java API Reference

e http://www.oracle.com/technetwork/database/enterprise-edition/
jdbc-112010-090769.html for an updated list of JDBC drivers

1.1.7 ODBC Driver Support for Application Migration

ORACLE

ODBC driver supports the migration of third-party applications to Oracle Databases by using
the SQL Translation Framework. This enables non-Oracle database SQL statements to run
against Oracle Database. See "How to Use SQL Translation Framework" before beginning to
migrate third-party ODBC application to Oracle Database.

1-7

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

Chapter 1
Other Oracle Products that Enable Migration

To use this feature with an ODBC application, you must specify the service name,
which was created as part of SQL Translation Framework setup, as the ServerName=
entry in the .odbc. ini file.

If you require support for translation of Oracle errors (ORA errors) to your the native
database, once your application starts running against Oracle Database, then you
must enable the SQLTranslateErrors=T entry in the .odbc.ini file. See "SQL
Translation of ODBC Applications” for more information on this topic.

1.2 Other Oracle Products that Enable Migration

Oracle recommends the use of several Oracle products as part of an overall migration
strategy.

1.2.1 OEM Tuning and Performance Packs

For every type of migration, a few of the SQL statements used in the application must
change, and some indexes must be re-built. Oracle SQL Tuning and Performance
Packs provide guidance for the optimization step of the application migration.

1.2.2 Oracle GoldenGate

Oracle GoldenGate is a comprehensive software package for enabling the replication
of data in heterogeneous data environments. The product set enables high availability
solutions, real-time data integration, transactional change data capture, data
replication, transformations, and verification between operational and analytical
enterprise systems.

Oracle GoldenGate enables the exchange and manipulation of data at the transaction
level among multiple, heterogeneous platforms across the enterprise. Its modular
architecture provides the flexibility to extract and replicate selected data records,
transactional changes, and changes to DDL (data definition language) across a variety
of topologies.

When you migrate very large databases, the actual process of copying data from one
database to another is time-consuming. During this time, the enterprise must continue
delivering services using the old solution, which changes some of the data. These run-
time changes must be captured and propagated to Oracle Database. Oracle
GoldenGate captures these changes and enables side-by-side testing to ensure that
the new solution performs as planned.

1.2.3 Oracle Database Gateways

ORACLE

Oracle Database Gateways address the needs of disparate data access. In a
heterogeneously distributed environment, Gateways make it possible to integrate with
any number of non-Oracle systems from an Oracle application. They enable
integration with data stores such as IBM DB2, Microsoft SQL Server and Excel,
transaction managers like IBM CICS and message queuing systems like IBM
WebSphere MQ.

For more information about Oracle Database Gateways, see http://www.oracle.com/
technetwork/database/gateways/index.html

1-8

http://www.oracle.com/technetwork/database/gateways/index.html
http://www.oracle.com/technetwork/database/gateways/index.html

Chapter 1
Migration Support for Other Database Vendors

1.2.4 Oracle SQL Developer

Oracle SQL Developer, as described in Oracle SQL Developer User's Guide, has a large
suite of features that enable migration, including the following features:

e Support for database migration, such as schema, data, and server-side objects, from
non-Oracle databases to Oracle Database (Migration Wizard)

e Support for application migration, including SQL statement pre-processing and data type
translation support (Application Migration Assistant)

1.3 Migration Support for Other Database Vendors

Oracle provides migration support for applications running on various databases.

1.3.1 Application Support in Third-Party Databases

Table 1-1 provides information about the applications supported in several third-party
databases. Note that while translation framework is available for DB2 LUW, a translator for
DB2 is not available.

Table 1-1 Supported Applications in Databases

Application SQL DB2 LUW DB2 Sybase Teradata Informix
Server AS400 ASE

Oracle SQL Developer Yes Yes No Yes Yes No

Oracle Migration Workbench No No Yes No No Yes

SQL Translation Framework (SQL Yes Yes Yes Yes Yes Yes

Translation Profile)

SQL Translation Framework (SQL yes Partial No Yes No No
Translator)

1.3.2 Third-Party Database Version Support

ORACLE

This section lists the supported database versions for migration using Oracle SQL Developer.

The Table 1-2 table does not provide a comprehensive list. SQL translation may not work
properly for every database listed on the table.

Table 1-2 Supported Database Versions for Migration Using Oracle SQL Developer

RDBMS Supported Versions
SQL Server 7.0, 2000, 2005,2008
Sybase Adaptive Server (ASE) 12, 15

Access 97, 2000, 2002 and 2003
DB2 AS400 V4R3, V4R5

DB2 LUW 8,9

Teradata 12

1-9

Chapter 1
Migration Support for Other Database Vendors

Table 1-2 (Cont.) Supported Database Versions for Migration Using Oracle SQL

Developer
___|
RDBMS Supported Versions
Informix 7.3,9.1,9.2,9.3,94

ORACLE 1-10

SQL Translation Framework Overview

Various client-side applications, designed to work with non-Oracle Databases, cannot be
used with Oracle Database without significant alterations. This is because SQL dialect varies
among vendors of database technologies and different vendors use different syntaxes to
express SQL queries and statements.

Starting with Oracle Database 12c, there is a new mechanism called SQL Translation
Framework. It translates the SQL statements of a client program from a foreign (non-Oracle)
SQL dialect into the SQL dialect used by the Oracle Database SQL compiler.

In addition to translating non-Oracle SQL statements, the SQL Translation Framework may
be used to substitute an Oracle SQL statement with another Oracle statement to address a
semantic or performance issue. In this way, you can address an application issue without
patching the client application.

The SQL translation framework consists of two basic components: SQL Translator, and SQL
Translation Profile.

The SQL Translator

The SQL Translator is a software component, provided by Oracle or third-party vendors,
which can be installed in Oracle Database. It translates the SQL statements of a client
program before they are processed by the Oracle Database SQL compiler. If an error results
from translated SQL statement execution, then Oracle Database SQL compiler generates an
Oracle error message.

The SQL Translator automatically translates non-Oracle SQL to Oracle SQL, thereby
enabling the existing client-side application code to run largely unchanged against an Oracle
Database. This reduces the cost of migration to Oracle Database storage significantly. As a
corollary, the translation feature may be used in other scenarios, where it may be expedient
to intervene between the original SQL statement submitted by the client and its actual
execution.

The SQL Translation Profile

The SQL Translation Profile is a database object that contains the set of captured non-Oracle
SQL statements, and their translations or translation errors. The SQL Translation Profile is
used to review, approve, and modify translations. A profile is associated to a single translator.
However, a translator can be used in one or more SQL Translation Profiles. Typically, there is
one SQL Translation Profile per application, otherwise applications can share translated
gueries. You can export profiles among various databases.

The following figure illustrates the run-time overview the SQL Translation Framework.

ORACLE 2-1

Chapter 2
Architecture of SQL Translation Framework

Figure 2-1 SQL Translation Framework at Runtime

SQL Translation
Framework

Oracle Database

Non-Oracle SQL | SQL Translator
Results el
Application < Translation
Profile

2.1 Architecture of SQL Translation Framework

The key component of SQL Translation Framework is the SQL Translation Profile. The
profile is a collection of non-Oracle statements that are processed through the
translator. The application determines which profile to use when connecting to the
Oracle Database. The translator handles the actual translation work.

In most cases, the non-Oracle SQL statements and errors are translated by a SQL
Translator registered in the profile. The translator may be supplied by Oracle or by a
third-party vendor. If the translator does not have a translation for a particular SQL
statement or error, then you may register your own custom translation. You may also
wish to register your own custom translation to override the default translator and to
customize your translation results.

2.2 How to Use SQL Translation Framework

ORACLE

Perform the following steps to use SQL Translation Framework:

1. Install a SQL Translator, either from Oracle or a third-party vendor, in Oracle
Database.

2. Create a SQL Translation Profile and register the SQL Translator with the profile.

3. Create a Database service and specify the SQL Translation Profile as a service
attribute to which the application can connect.

Note that setting the SQL Translation Profile at the service level ensures that
everything running through that listener service is translated automatically.

The translator can also be activated at connection level by using the ALTER
SESSION statement or the LOGON triggers.

4. Link the application with an Oracle driver to connect the application to Oracle
Database. You must also change the connection settings to connect to the
Database service with the SQL Translation Profile.

2-2

Chapter 2
When to Use SQL Translation Framework

5. Test all functionality of the application against Oracle Database. As the application runs,
the SQL Translation Profile translates SQL statements of the application from the third-
party SQL dialect to semantically-equivalent Oracle syntax and register them in the
profile.

If the translator does not have a translation for a particular SQL statement or error, then
you may register your own translation to fill its place.

6. Verify the custom translations and edit them, if required. Alternatively, register new ones
to ensure that the application performs as intended, until testing is complete.

Oracle recommends establishing a test environment and rigorously testing the
application, ideally through a regression test suite.

7. Set up the server-side application objects and data in the production Oracle Database for
deployment to a production environment.

8. Create a database service with the profile set as a service attribute and change the
connection settings of the application, so that it connects to the database service in the
production database. The application is expected to run as tested.

Oracle recommends that the application be monitored to guard against the possibility of
errors due to unavailability of translation of any SQL statement. You must first disable the
automatic translation of new and unseen SQL statements in the profile; when any such
statement is encountered, it raises an error that is logged. In cases of alerts for mis-
translation, you must make adjustments to the profile.

¢ See Also:

e The new DBMS SQL TRANSLATOR PL/SQL package and updated DBMS SQL and
DBMS SERVICE PL/SQL packages in the Oracle Database PL/SQL Packages
and Types Reference.

e Updated GRANT and REVOKE statements and new system privileges in the Oracle
Database SQL Language Reference.

e Oracle Database PL/SQL Packages and Types Reference

e Oracle Database Administrator's Guide

2.3 When to Use SQL Translation Framework

ORACLE

Use SQL Translation to migrate a client application that uses SQL statements with vendor-
proprietary SQL syntax.

Note:

Currently, SQL Translators are available only for Sybase and SQL Server, and there
is limited support for DB2.

SQL Translation Framework is designed for use with open API applications, such as ODBC
or JDBC, and applications that use SQL statements that may be translated into semantically-
equivalent Oracle syntax. These applications must relink to the Oracle ODBC or JDBC driver
and then execute through the translation service.

2-3

ORACLE

Chapter 2
When to Use SQL Translation Framework

Following are the possible scenarios for the connection mechanism:

If the application uses ODBC, JDBC, OLE DB or .NET driver, or data provider to
connect to the database, then the driver or data provider for Oracle must be
replaced.

No direct translator is available for DB2. For more information, refer to "Migration
Support for Other Database Vendors".

If the application uses IBM DRDA network protocol to connect to DB2, then the
database connection settings must be changed to connect to Oracle through
DRDA Application Server for Oracle.

If the application uses a vendor-proprietary C client API (the case of Sybase), then
the API calls must be replaced with appropriate Oracle OCI APIs.

2-4

SQL Translation Framework Configuration

The SQL Translation Framework may be installed and configured using Oracle SQL
Developer, or from the command line interface. In either case, the user must have the
necessary permissions to install SQL Translator.

3.1 Installing and Configuring SQL Translation Framework with
Oracle SQL Developer

You can use the DBA Navigator in Oracle SQL Developer 3.2 to install and manage the
translator and translation profile.

3.1.1 Overview of Oracle SQL Developer Migration Support

The SQL Translation framework is installed as part of Oracle Database installation. However,
it must be configured to recognize the non-Oracle SQL dialect of the application and you
must install at least one translator to fully utilize the framework.

Before using the SQL Translation feature, you must migrate your data, schema, stored
procedures, triggers, and views. Oracle implements database schema migration and data
migration through Oracle SQL Developer functionality. Oracle SQL Developer simplifies the
process of migrating a non-Oracle database to an Oracle Database through the use of
Migration Wizard. The Migration wizard provides convenient and comprehensive guidance
through the phases involved in migrating a database.

Oracle SQL Developer captures information from the source non-Oracle database and
displays it in a captured model, which is a representation of the structure of the source
database. This representation is stored in a migration repository, which is a collection of
schema objects that Oracle SQL Developer uses to store migration information.

The information in the repository is used to generate the converted model, which is a
representation of the structure of the destination database as it will be implemented in the
Oracle database. You can then use the information in the captured model and the converted
model to compare database objects, identify conflicts with Oracle reserved words, and
manage the migration progress. When you are ready to migrate, generate the Oracle schema
objects, and then migrate the data.

This section describes how to perform the subsequent tasks that enable automatic run-time
migration. These examples use SQL Translator with a JDBC application that runs against a
Sybase database; they can be easily adapted for other client/database configurations. Note
that Oracle SQL Developer is shipped with an installed Sybase translator.

See Oracle SQL Developer User's Guide for more information.

3.1.2 Setting Up Oracle SQL Developer 3.2 for Windows

Oracle SQL Developer 3.2 is shipped with Oracle Database 11g JDBC drivers and there is no
client for Windows in this release. If you are using a Windows system, then you must enable

ORACLE 3-1

Chapter 3

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

Oracle SQL Developer 3.2 to use Oracle Database 12¢ JDBC driver, so that all the
features of the current release are enabled. Perform the following steps to achieve

this:

* Rename the sqldeveloper\jdbc\1lib folder to sqldeveloper\jdbc\lib 1lg.

e Create a new empty folder as sqldeveloper\jdbc\1lib.

e Unzip Oracle Database 12¢ JDBC JAR files into the new sgqldeveloper\jdbc\1lib

folder.

See Oracle Database JDBC Developer's Guide for more information about Oracle

Database 12¢ JDBC files.

3.1.2.1 Setting Up Oracle SQL Developer 3.2 Startup

Oracle SQL Developer automatically uses JDBC drivers found in any
ORACLE HOME\client directory. To override this behavior and make Oracle SQL

Developer use JDBC drivers in the sqldeveloper\jdbc\1lib directory, create a new

sqldeveloper.bat file in the sqldeveloper directory:

set ORACLE HOME=%CD%
start sgldeveloper.exe

3.1.2.2 Starting Oracle SQL Developer

Run the sqldeveloper.bat file to run Oracle SQL Developer.

ORACLE

To check the JDBC driver configuration:

1. Select About from Help menu.

2. Select Properties. It must display the configuration as shown in Figure 3-1:

Figure 3-1 Checking JDBC Configuration for Oracle SQL Developer

3 About Oracle SQL Developer

Orade SQL Developer (3.2.09)

[About | Version | Properties || Extensions

Name
| java.vm.specification.name
java.vm.spedfication.vendor
java.vm.spedification.version
java.vm.vendor
java.vm.version
jdbc.driver home
jdbe.library
line.separator
log.file.name
oracle.home
orade.ide.util. AddinPolicyUtils. OVERRIDE_FLAG
oracle,jdbc.mapDateToTimestamp
oracle.translated.locales
oracle.xdkjava.compatibility. version
kpeg-

==
2

Value
Java Virtual Machine Specification ™
Orade Corporation
1.7
Oracdle Corporation
23.0-b21

/D:fsqldev/sqldev_3.2_prod_otn/sgldeveloper/

] /D:fsqldev/sqldev_3.2_prod_otn/sqldeveloper fidbcfibfojdbct. jar

vin
D:\sqldev\sqldev_3.2_prod_otn\sqldeveloper\sqldeveloper\extensic
D:\sqldev\sgldev_3.2_prod_otn\sgldeveloper

true

false

de,es, fr,it,ja ko,pt_BR,zh_CN,zh_TW

9.0.4

3-2

Chapter 3

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3.1.3 Creating a Connection to Oracle Database

ORACLE

Create a connection to the Database with the credentials as shown in Figure 3-2:

Figure 3-2 Creating an Oracle Database Connection

(3L New / Select Database Connection

12c2_pdb1_vm_mi... migrep@/flocalhost...

1262 o 1.vm_sy.—eystem@/focabos.— [

Status :

Connection Name Connection Detals | Connection Name | 2SRV UIET)
12c2_pdb1_vm_db... dbo_orade129@/M... | Username [svstem

12c2_vm_system system@/flocalhos... | [¥] Save Password

\
\
Password [------ 1

Oracle Access

Connection Type [Basic ~| Role [defauit v|

Hostname [localnost

Port [=521

Osp [

(%) Service name [orcl

[[] 05 Authentication [_| Kerberos Authentication [Proxy Connection

Save . I Clear I | Test] [Connect] [Cancel

You can use the following command to check the database you are connected to and the

JDBC driver being used:

show jdbc

Setting Up Migration P

references

You must set up the migration preferences in the following way:

1. Select Preferences

2. Select Generation Options from Migration option on the left panel, as shown in

Figure 3-3.

Figure 3-3 Setting Up Migration Preferences in Oracle SQL Developer

from the Tools menu.

3 Preferences =
@ igrats tion 0p
@ Environment | File Creation Options
& Change Management Faran =
(=) Qe Single.
& Code Editor N fe
Compare: and Merge () A Fie per Ofgiect
Datshase
& Data General Options
& Data Modeler [] Genarats Comymants
& Debugger
Extensong [Least Priviege Schema Migration
External Editor [] Generate Data Move Liser
[[Genergte Faded Cbjects
- Mgration [¥] Generate Stored Procedure for Migrate Biobs Offine
u-Mmeoamns [¥#] Generate Separate Emulation Liser
o e 9
i -
s [Use &l Cradke Daabass 12¢ faatures in Miration
Mouseover Popups
Shorteut Keys
UritTest Parameters
- Versonng
Wieb Browser and Proxy |
XML Schemas e
£ >
[t] -

3-3

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3.1.4 Testing SQL Translation

Perform the following steps to determine whether Sybase SQL Translator is properly
installed or not:

1.
2.

3.

Open Oracle SQL Developer.

From the Tools menu, select Migration, and then select Translation Scratch
Editor.

a Oracle SQL Developer

File Edit View MNavigate Run Versioning QLI Help Automation

EEE 96 XER Q- OCREED Migrate...

| EL Unit Test 4 Repository Management 4

Connections * | | R x)
gj a flRe GJ . Microsoft Access Exporter 4
= 'ii Eﬂ v % P Data Miner LA
. a [i) Create Database Capture Scripts...
g +/-{[Z5 Editions Database Copy... IR
E o[1ava B B Database DIf... o Translation Scratc| or
E a Database Export...
=]
g.. Monitor SQL...
- Monitor Sessions...
5QL Worksheet AIF10
External Tools...

In the Scratch Editor toolbar, select Sybase T_SQL To PL/SQL option, which is
the Sybase translator.

A scratch Editor |
& % | sybase T-5QL To PL/SQL - |8 ~|

Worksheet Query Builder

In the left panel of the Scratch Editor, enter the following query in Sybase SQL
dialect:

select top 10 * from dual
Click the Translate icon.

The translated query text is displayed in the right panel of the editor.

2 scratch Editor % =
& 3 [0 sybase TSQLToPLSQL ra-] | rERYA B0 &2ed B
Worksheet Query Builder Worksheet Query Builder
1| select top 10 * from duall 1| SELECT *
2 FROM dual VHERE ROVHUM <= 10;
3]
4

3.1.5 Creating a Translation Profile and Installing SQL Translator

Oracle SQL Developer is installed with Oracle Database 12c. It loads Java classes of
the Sybase Translator, approximately 15 MB, into Oracle Database. Due to the size

ORACLE

3-4

and the number of Java classes loaded, Oracle recommends you to install the translator

Chapter 3

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

locally, and not over a WAN.

If the translator is installed under a user profile that has a pre-existing migration repository,

the translator picks up the context of the database, such as name changes. Therefore, you
must create a new user with the following specifications:

e CONNECT, RESOURCE, and CREATE VIEW privileges

* Access to storage in the SYSTEM and/or USER tablespace

3.1.5.1 Installing SQL Translator

To install SQL Translator:

ORACLE

1. Log into the database using ADMIN privileges.

2. Atthe command line, enter the following commands.

GRANT CONNECT, RESOURCE, CREATE VIEW TO TranslUser identified by TranslUser;

ALTER USER TranslUser QUOTA UNLIMITED ON SYSTEM;

3. From the View menu, select DBA.

K Ovucte 501

pr—pomp=reer =

Bl el
Bicrracsq *5 Iresizomts
5 Dt
- @ t"
A i B bt
ST e

0 | Compueencrenn o

e 1o [rvaste Bun veruoeing Tk me

" femeiae o

L e [P || e | Tawget: (1 12 bt ryatem B

L &
s | vty | o i | Corev it St s [| Farged Mot | Pt Satues Dl sty Vel Comparser | Ruikirters

ncae

8 emmee
= - -

e e) B
] 1] ==
s s o
5 o

4. In the DBA Navigator, right-click Connections and select Add Connection.

3-5

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

File [t View HNavigste Run Venigming Tooh felp Aytomation
Beofg 90, XaR O-0- &
BReen * 13y 5 ()

5. In the Select Connection box, select the connection if you want to use an existing
connection. If you want to create a new connection, then add the information for
transluser discussed in step 2.

6. Click Connect.

7. In the DBA navigator, right-click the connection created in the preceding steps,
and select Install SQL Translator.

ORACLE 3-6

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

- Uracle 4L Leveioper

File Edit View Bun Versigning Took Help Automation
BEHa 9% XBmO-O- &
x| flaepers = |03 = [

The Install SQL Translator dialog box opens.

You must have special permissions to install the SQL Translator and create a SQL
Translation Profile. You will be prompted to provide the Sys password, so that these
privileges can be granted. Refer to "Granting Necessary Permissions for Installing the
SQL Translator" for more information about these privileges.

8. Create a SQL Translation Profile, following steps described in "Creating a Translation
Profile ".

9. Verify that the user has sufficient privileges to run the translation profile.

You may have to login as Sys user to grant additional privileges.

GRAHT CREATE S0L TRANSLATION PROFTLE TO TransiUser ™

v
< L

I Yes I [Mo]

10. Install SQL Translator.

SQL Translator Install (Running)

[00:08] Loading file:C: \workspace\ transiator. file_name jar

[RuninBackground “ Cancel Task

11. To ensure that both the Profile and Translator are properly installed, verify whether the
appropriate package and Java class files are present or not in the Connections pane.

ORACLE"

3-7

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

[Connections = | [Re... x x O
R TE
H--[#) Editioning Views
]Ea Indexes
b {7 Packages
=) SYBASE_TSQL_TRANSLATOR
SR }sYBASE_TSOL_TRANSLATOR Body
ﬂ translate_sql
ﬂ translate_error

3.1.5.2 Creating a Translation Profile

To create a translation profile:

1. From the SQL Translator drop-down box, select Sybase or SQL Translator.
2. Check Create New Profile.

3. Enter SYBASE PROFILE in Profile Name field.

4.

In Profile Schema, select the name of the user created in section "Creating a
Translation Profile and Installing SQL Translator".

5. Click Apply.

a Install SQL Translator @
SQL Translator ‘Sybase SQL Translator - ‘
Create New Profile

5L Profile

Profile Name |sybaseProﬁIe |

Profile Schema | a Sh0_Transiliser v|
Help | Apply | | Cancel |

3.1.6 Using the SQL Translator Profile

ORACLE

To test the SQL Translation Profile, use SQL Worksheet:

1. Right-click the SYBASE PROFILE node.
2. Select Open SQL Worksheet with Profile.

3. Enter a T-SQL statement that you want to translate.

3-8

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

) ‘Denele SO Durorkepes - TYRAS (e
N, = it

fhe Edit New Haigate Run Werignisg [ouh fein

Bedd @ NE0I0 -0 & =3
| Bceratenn * (s F] s bt m s | Flsmas peorun » [iiamans o |
+-BTS FuREn B0 Eued [@ st m)

-1

5[L gt v _the i 1
1§ {5 Contsner Datatune
It [Catsbunr Coriu sksry

ol

4. Click SYBASE PROFILE and select the SQL Translation tab to inspect the profile and view
the translated statement.

| e on 3

B Wenlgnng Jech Help

GeoBg 9% LBD O -0 &- E
i 5| e = O Rzt mgw * Ao | o mosr = a
+$-BTS Dntain S0 Translafions Ermor Code Trarslafors

iz:ﬂ‘ B s, e B

FEICH FIRET oORA:LITERAL TVFE=]

An alternative way to view the profile SQL in a better way when you double-click on it, the

fingerprint and template open in a Translation Scratch Editor as shown in the following
images:

ORACLE 3-9

Chapter 3

Installing and Configuring SQL Translation Framework from Command Line

Geag 9 Xan0-0- &

[Bycorractons + irmerts +
+-UTH

B, comermons

G i ot m e+ |EOMAS_paORE & (B o 5]
Owtaln SQU Translatons Ermor Code Trarslatorn. =
~l AR B e T —
| TRANGLATED, TIXT
1 ULITERAL THPE-INT IB=i> = FROH ALL SBJDCTE | FROM AL ORECTS 4|

& I 1302 ot o smpiedemoids |

& [122 pebn v mgyen
¥ £ 122 b sritem
Byraa

@

) oo

1) Pratecs - 1203 oot v e
2 Sepiebemn1:

[1202 0k v o _pemgiecema 1ix
£ Taustace

(5]

[Be [t Wew Hovigete Fun Venigning Tooh Help

Felgd 90 XG0 0-0- &-

Bycorrestors * [amperts *
+-UTH

Y, Commecmons

& I 12 bt v e smoisdematx o[
% Ig) Lo

) Bt mmyw * | e « (Bt it | Sz mores « [S]

dek-a-»3

AWl B0 Besd @

“I wroriahont Guery Bulder

F

SELECT TOF <0RAILITERAL THTE=INT IDei> * FRa ALL_OBJECTS oY *

3.2 Installing and Configuring SQL Translation Framework
from Command Line

There are several processes that you must complete to successfully install and
configure the SQL Translation Framework from command line interface.

3.2.1 Installing Oracle Sybase Translator

To install Oracle Sybase Translator, Use Oracle SQL Developer as described in
"Installing and Configuring SQL Translation Framework with Oracle SQL Developer".

3.2.2 Setting up a SQL Translation Profile

Login as a system user.

> sqlplus system/<password>

Grant create privileges to the standard user.

Perform the following steps to set up a SQL Translation Profile through a command-
line interface:

ORACLE"

3-10

Chapter 3
Installing and Configuring SQL Translation Framework from Command Line

This allows the standard user to create a SQL Translation Profile.
SQL> grant create sqgl translation profile to <user>;
3. Login as a standard user.
sqlplus <user>/<password>

4. Invoke the methods of DBMS SQL TRANSLATOR PL/SQL package to create and configure
the translation profile.

SQL> exec dbms_sql translator.create profile('sybase profile')
SQL> exec dbms_sql translator.set attribute('sybase profile',
dbms sql translator.attr translator,
'migration repo.sybase tsql translator')

5. Grant all privileges for the SQL Translation Profile to Oracle Sybase translation schema.

SQL> grant all on sgl translation profile sybase profile to migration repo;

3.2.3 Setting Up a Database Service to Use the SQL Translation Profile

This section describes how to add a database service in a standard environment and in an
Oracle Real Application Clusters environment.

Setting Up a Database Service in a Standard Environment
To set up a database service in a standard environment:

1. Login as a DBA

2. Issue the following commands to use the DBMS SERVICE PL/SQL package to create and
invoke the database service:

SQL> declare
params dbms_service.svc parameter array;

begin
params ('SQL TRANSLATION PROFILE') := 'user.sybase profile';
dbms_service.create service('sybase service', 'network name', params);
dbms_service.start service('sybase service');

end;

/

3.2.3.1 Setting Up a Database Service in Oracle Real Application Clusters

To set up a database service in Oracle Real Application Clusters:

1. Add the database service:

srvctl add service -db db name -service sybase service
-sql translation profile user.sybase profile

2. Start the database service:

srvctl start service -db db name -service sybase service

3.2.4 Testing Sybase SQL Translation Using the SQL Translation Profile

Perform the following steps to test the translation:

1. Login as a standard user:

ORACLE 3-11

Chapter 3
Granting Necessary Permissions for Installing the SQL Translator

sqlplus user/password

Specify the SQL Translation Profile at the SQL prompt:

SQL> alter session set sql translation profile = sybase profile;

Force the database to treat SQL*Plus as a foreign SQL application:

SQL> alter session set events = '10601 trace name context forever, level 32';
Run a SQL query that uses Sybase SQL dialect. For example:

select top 3 * from emp;

The query returns the following results:

EMPNO ENAME JOB MGR HIREDATE SAL coMM DEPTNO
7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

3.3 Granting Necessary Permissions for Installing the SQL

Translator

ORACLE

This section discusses the privileges that you must have to install the SQL Translator.
The SYBASE PROFILE created here has the following two users:

MIGREP, where the translator is installed

TARGET USER, where the profile is installed

To grant privileges necessary for installing the SQL Translator:

1.

Connect as SYs to grant the required privileges:
connect sys/oracle as sysdba
Allow MIGREP to create a view and have access to unlimited quota:

GRANT connect, resource, create view to MIGREP;
ALTER USER MIGREP QUOTA UNLIMITED ON USERS;

Allow TARGET USER to create a view and have access to unlimited quota:

GRANT connect, resource, create view to TARGET USER;
ALTER USER MIGREP QUOTA UNLIMITED ON TARGET USER;

Allow MIGREP to load a SQL Translator:

BEGIN

DBMS_JAVA.GRANT_PERMISSION(UPPER('MIGREP'),
'SYS:java.lang.RuntimePermission', 'getClassLoader', '');
END;
/

Allow TARGET USER to create profiles:
GRANT CREATE SQL TRANSLATION PROFILE TO TARGET USER;
Allow TARGET USER to explicitly alter the session to use a profile:

GRANT ALTER SESSION TO TARGET USER;

This privilege is not granted in SQL Developer by default.

3-12

ORACLE

Chapter 3
Granting Necessary Permissions for Installing the SQL Translator

Allow the translator to make reference to the profile:

CONNECT TARGET USER/TARGET USER;
GRANT ALL ON SQL TRANSLATION PROFILE SYBASE PROFILE TO MIGREP;

Allow the profile to make reference to the translator:

CONNECT MIGREP/MIGREP;
GRANT EXECUTE ON SYBASE TSQL TRANSLATOR TO TARGET USER;

3-13

SQL Translation of JDBC and ODBC
Applications

Oracle provides SQL Translation mechanisms for use with JDBC and ODBC applications.

4.1 SQL Translation of JDBC Applications

Consider the concepts necessary to understanding how to use SQL Translator with a JDBC
application.

4.1.1 SQL Translation Profile

A SQL Translation Profile is a database schema object that directs how SQL statements in
non-Oracle dialects are translated into Oracle SQL dialects. It also directs how Oracle error
codes and SQLSTATES are translated into the SQL dialect of other vendors.

When you want to migrate a client application written for a non-Oracle SQL database to
Oracle, you can create a SQL Translation Profile and configure it to translate the SQL
statements and errors for the application. At runtime, the application sets the profile for the
connection in Oracle Database to translate its SQL statements and errors. This profile is set
using the oracle.jdbc.sqlTranslationProfile property.

When necessary, you can register custom translations of SQL statements and errors with the
SQL Translation Profile on the Server. When a SQL statement or error is translated, then first,
the custom translation is looked up and then, the translator is invoked only if no match is
found.

See "Architecture of SQL Translation Framework" and "Setting up a SQL Translation Profile".

4.1.2 Error Message Translation

ORACLE

You may prefer receiving error messages in the form of messages that used to be thrown by
the native database. You must then use the error message translation file, which translates
error messages when there is no valid connection to the database. Once a connection to the
database is established, the JDBC driver bypasses this file completely and all errors are
handled by the translator on the server. Similar to query translation, you can also register
custom error translations on the server.

The error message translation file is not written by a specific component. You must provide
the file for translation and specify the name of the file. You can also provide the file path as
the value of the corresponding connection property.

The error message translation file is in XML format; it contains a series of error translations.
Each error translation contains the following information:

Translation Error Type

ORA error number positive integer

4-1

Chapter 4
SQL Translation of JDBC Applications

Translation Error Type
Oracle error message String
Translated error code positive integer
Translated SQL State positive integer

4.1.3 Converting JDBC Standard Parameter Markers

Before submitting the SQL statements for translation., the JDBC driver internally
converts the JDBC standard parameter markers (?) into Oracle style parameter
markers of the format :b<n>.

Here, the naming format for the parameter markers is :b<n>, where n is an incremental
number to specify the position of the (?) marker in the JDBC PreparedStatement.

Consider the UPDATE employees SET salary = salary * ? WHERE employee id = ?
PreparedStatement Statement, where, the first parameter marker (?) will become :bl
and the second parameter marker (?) will become :b2.

After conversion, the driver sends the following query to the server for translation:

UPDATE employees SET salary = salary * :bl WHERE employee id = :b2

Note that any query that contains "?" as a parameter marker fails during the
connection translation phase if you change the value of the processEscapes property
to FALSE. For a successful translation, you must retain the default value of the
processEscapes property.

Converting parameter markers helps the driver to automatically reorder any parameter
changes that occurred at translation. At the time of conversion, any custom translation
that must be registered on the server should be registered from the Oracle style
parameter marker version; the server receives the statements. Note that, the custom
translation must have the same number of parameter markers in the Oracle style as in
the original query.

For more information about supported JDBC APIs, APl Reference for SQL Translation
of JDBC Applications .

4.1.4 Executing the Translated Oracle Dialect Query

ORACLE

After the JDBC standard parameter markers are converted into Oracle style parameter
markers, the driver makes a round-trip to the server for translating the query into
Oracle dialect. Once the translated query is received by the server, any reordering in
the parameters in handled transparently by the driver, and the query is executed as a
normal query.

If a query cannot be translated due to the unavailability of translation, then the server
can either raise an error or return a NULL, based on the value of the

DBMS SQOL TRANSLATOR.ATTR RAISE TRANSLATION ERROR profile attribute. If the server
returns a NULL, then the original untranslated query is assumed to be the query
translated by the driver and executed.

The driver keeps the translation in the local caches to save the future round-trip.

4-2

Chapter 4
SQL Translation of JDBC Applications

Note that the JDBC driver can support the translation errors (when the query cannot be
translated due to the unavailability of translation) set by either value of the

DBMS SQL TRANSLATOR.ATTR RAISE TRANSLATION ERROR attribute. However, the value must
be set on the server before the connection is established. Because a change in the value of
this attribute in the middle of a session may result in inconsistent behavior, Oracle
recommends that you do not flip the value of this attribute during a session. See Oracle
Database PL/SQL Packages and Types Reference for more information about the
TRANSLATE SQL procedure.

4.1.5 Error Translation

If any SQLException is thrown during the query execution, the driver transparently makes a
trip to the server and translates the exception from Oracle codes to the original vendor-
specific code. So, the resulting SQLException has both vendor-specific code and SQLSTATE
along with the Oracle-specific SQLException as the cause.

Similar to query translation, custom error translations can also be registered on the server
and given priority over standard translation. The

DBMS SQL TRANSLATOR.ATTR RAISE TRANSLATION ERROR attribute has the same effect on
custom error translation as on query translation.

Note that the errors are translated only after a connection to the server is established. So, for
errors that occur before the connection to the server is established, Error Message
Translation is used.

4.1.6 Using JDBC Driver for SQL Translation

ORACLE

Example 4-1 demonstrates how to use a JDBC driver for SQL translation. You must first grant
the CREATE SQL TRANSLATION PROFILE privilege to HR as follows:

conn system/manager;
grant create sqgl translation profile to HR;
exit

Now, connect to the database as HR and execute the following SQL statements:

drop table sample tab;

create table sample tab (cl number, c2 varchar2(100));

insert into sample tab values (1, 'A');

insert into sample tab values (1, 'A');

insert into sample tab values (1, 'A');

commit;

exec dbms sql translator.drop profile('FO0');

exec dbms sgl translator.create profile('FO0');

exec dbms sqgl translator.register sqgl translation('FOO','select row of select cl, c2
from sample tab

where cl=:bl and c2=:b2','select cl, c2 from sample tab where cl=:bl and c2=:b2"');

Now, you can run the following program that translates SQL statements that use JDBC
standard parameter markers.

Example 4-1 Translating Non-Oracle SQL Statements to Oracle SQL Dialect Using
JDBC Driver

public class SQLTransPstmt

{
static String url="jdbc:oracle:thin:@localhost:5521:jvxl";

static String user="HR", pwd="hr";

4-3

Chapter 4
SQL Translation of ODBC Applications

static String PROFILE = "FOO";
static String primitiveSql = "select row of select cl, c2 from sample tab
where cl=? and c2=?";

// Note that this query contains JDBC style parameter markers
// But the preceding custom translation registered in SQL is using Oracle style
markers

public static void main(String[] args) throws Exception
{
OracleDataSource ods = new OracleDataSource();
ods.setURL (url);

Properties props = new Properties();
props.put ("user", user);
props.put ("password", pwd);

// The Following connection property makes the connection translating

props.put (OracleConnection.CONNECTION PROPERTY SQL TRANSLATION PROFILE,
PROFILE) ;

ods.setConnectionProperties (props);

Connection conn = ods.getConnection();

System.out.println ("connection for SQL translation: "+conn);

try{
// Any statements created using a translating connection are
// automatically translating. If you want to get a non-translating
// statement out of a translating connection please have a look at
// the oracle.jdbc.OracleTranslatingConnection Interface.
// Refer to "OracleTranslatingConnection Interface"
// for more information
PreparedStatement trStmt = conn.prepareStatement (primitiveSql);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println ("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())
System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();

trStmt.close();
}catch (Exception e) {

e.printStackTrace();

}

conn.close();

4.2 SQL Translation of ODBC Applications

Consider the concepts necessary to understanding how to use SQL Translator with an
ODBC application.

4.2.1 SQL Translation profile

For ODBC applications, the SQL Translation Profile is set at the service level. So, you
do not require to set it in the .odbc. ini file.

ORACLE' 4.4

Chapter 4
SQL Translation of ODBC Applications

4.2.2 Error Message Translation

You may prefer receiving error messages in the form of messages that used to be thrown by
the native database. In such cases, when the application is set to run on Oracle Database,
you must set the SQLTranslateErrors=T entry in the .odbc.ini file to translate the ORA errors
to their native form.

4.2.3 Translating Error Messages

ORACLE

Example 4-2 demonstrates how to use the ODBC driver in SQL translation. The SQL
statement used in the example uses Sybase TOP N syntax.

Note that you must set the ServerName= entry in the .odbc. ini file with the Database service
name created in "How to Use SQL Translation Framework" section. Also, set the
'SQLTranslateErros=T entry in the .odbc. ini file, if you require translation of Oracle errors to
native database errors.

Example 4-2 Translating Non-Oracle SQL to Oracle SQL Dialect Using ODBC Driver

int main()

{

HENV m_henv; /* environment handle */

HDBC m_hdbc; /* connection handle */

HSTMT m_hstmt; /* statement handle */

int retCode; /* return code */

char dbdsn[100]; /* Initialize with the DSN name of connection */

const char szUID[10];/*Initialize with appropriate Username of DB */
const char szPWD[10]; /* Initialize with appropriate Password */

char queryl[100]="select top 3 coll from babel tab3 order by coll";
SQLLEN paramInd = SQL NTS;
SQLUINTEGER no = 0;

//Allocate HENV, HDBC, HSTMT handles
retCode = SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &m henv);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{
printf ("SQLAllocHandle failed \n");
printSQLError (1, m henv);

retCode = SQLSetEnvAttr (m henv, SQL ATTR ODBC VERSION, (void *) SQL OV ODBC3,
SQL IS INTEGER);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{
printf ("SQLSetEnvAttr failed\n");
printSQLError (1, m henv);

retCode = SQLAllocHandle (SQL HANDLE DBC, m henv, &m hdbc);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{

printf ("SQLAllocHandle failed\n");

printSQLError (2, m hdbc);

retCode = SQLConnect (m hdbc, (SQLCHAR *) dbdsn,SQL NTS,
(SQLCHAR *) szUID, SQL NTS,

4-5

ORACLE

Chapter 4
SQL Translation of ODBC Applications

(SQLCHAR *) szPWD, SQL NTS);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{
printf ("SQLConnect failed to connect\n");
printSQLError (2, m hdbc);

retCode = SQLAllocHandle (SQL HANDLE STMT, m hdbc, &m hstmt);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{
printf ("SQLAllocHandle with SQL HANDLE STMT failed\n");
printSQLError (3, m hstmt);

/* Prepare and Execute the Sybase Top-N syntax SQL statements */

retCode = SQLPrepare (m _hstmt, (SQLCHAR *) queryl, SQL NTS);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{

printf ("SQLPrepare failed\n");

printSQLError (3, m hstmt);

retCode=SQLExecute (m_hstmt) ;
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{

printf ("SQLExecute-failed\n");

printSQLError (3, m hstmt);

while (retCode = SQLFetch(m hstmt) !=SQL NO DATA)
{
retCode=SQLGetData (m hstmt,1,SQL C ULONG, &no, 0, ¶mInd);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{
printf ("SQLFetch failed\n");
printSQLError (3, m hstmt);
}

printf ("Value is %d\n",no);

retCode = SQLCloseCursor (m hstmt);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
printf ("SQLCloseCursor failed\n");

printf ("cleanup()\n");
retCode = SQLFreeHandle (SQL HANDLE STMT, m hstmt);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{
printf ("SQLFreeHandle failed\n");
printSQLError (3, m hstmt);

retCode = SQLDisconnect (m_hdbc);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)

{
printf ("SQLDisconnect failed\n");
printSQLError (2, m hdbc);

retCode = SQLFreeHandle (SQL HANDLE DBC, m hdbc);

4-6

Chapter 4
SQL Translation of ODBC Applications

if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{

printf ("SQLFreeHandle failed\n");

printSQLError (2, m hdbc);

retCode = SQLFreeHandle (SQL HANDLE ENV, m henv);
if (retCode != SQL SUCCESS && retCode != SQL SUCCESS WITH INFO)
{

printf ("SQLFreeHandle failed\n");

printSQLError (1, m henv);

ORACLE 4.7

Example: Application Migration Using SQL
Translation Framework

Consider an example of migrating a Sybase JDBC Application, and the information contained
in the migration reports: how it may be used to tune the migration for optimal results.

5.1 Migrating a Sybase JDBC Application

Figure 5-1 illustrates how an application that is coded to query a Sybase database may use
SQL Translation Framework to query information stored in Oracle Database instead.

Figure 5-1 Sybase Application Running Against Oracle Database

Oracle

/ App Tables |

Custom SQL Auto and
Translations Translator Store

t S
Oracle

Sybase Sybase SQL /
-
App ODBC/JDBC Translation Profile —.: e
e

Driver t

Custom Error-Code
Mappings

5.1.1 Application Overview

The Sybase database used in this example has three tables and five procedures and
includes the following features:

e IDENTITY columns

e INSERT statements into tables with IDENTITY columns

° VARCHAR columns with size greater than 4000 characters
* Multiple implicit result sets returned from procedures

A Java application connects to this Sybase database using JDBC.

5.1.2 Setting Up Migration

The migration process has four phases - Capture, Convert, Generate, and Data Move. It is
best practice to complete each phase of the migration process, review any issues on the

ORACLE 5-1

ORACLE

Chapter 5
Migrating a Sybase JDBC Application

Summary page, and then continue to the next phase. The Migration Wizard enables
you to complete each step in turn and then return back to the wizard to complete
further steps. To do this, after completing each phase, select the Proceed to
Summary Page check box and click Next.

Perform the following steps to set up migration:

1.
2.

N o o &

Download the JDBC driver JTDS 1.2.
Add JTDS as a third-party JDBC driver as follows:
a. Select Preferences from the Tools menu.

b. Select Third Party JDBC Driver from the Database option on the right panel,
as shown in Figure 5-2.

Figure 5-2 Setting JTDS JDBC Driver

.m Preferences @

] Database: Third Party JDBC Drivers
5 Environment Third-party JDBC Driver Path
% Change Management Paran
& Code Editor
Compare and Merge
= Database
Advanced
Autotrace Explan Plan
Drag And Drop
Licensing
NS
Objectiiewer |
PLISQL Compler
Reports
501 Editor Code Templi
% - SCL Formatter
e Pty Jo8c Orived
User Defined Extension
& Utites
Workshest
& - Data Miner
+ - Data Modsler
3 - Debugger

Add Enitry... Edit Entry... Remave

Help Ok Cancel

Click Add Entry.

The Select Path Entry box is displayed.

Select the jtds-1.2.jar file and click Select.

Click OK.

Connect to the Oracle Database where you want to migrate the information.

Verify that the connection is using Oracle Database 12c JDBC drivers, with the
following command:

show jdbc

Create a new user migrep in Oracle database, for the migration repository, with the
following command:

GRANT CONNECT,RESOURCE,CREATE VIEW to migrep INDENTIFIED BY migrep;
ALTER USER migrep QUOTA UNLIMITED to users;

Connect to the database as the migrep user and associate the migration
repository with the user, as shown in Figure 5-3.

5-2

Chapter 5

Migrating a Sybase JDBC Application

10.

Figure 5-3 Associating a User with Migration Repository

Ble Edit View Havigate Run Versigeing ook Help
Beag o XN O-0- 1&-
[@comnections | (Breporis =[] £ razadiwmsystom 5 | G122 pdb) v mgrep =

FPEBYA BR Rueed

$-0TD
R Connectons [Worlsheet | uery buider
& (g 122 el wm mioren: I
i 12
@12 paconmet
ST
x&ﬂ" Culew
fd to Folder 3
g
Generste DB Doc...
Remote Debug..
Gather Schema Statistes...
Recompile Schema _
EML DB Protocal server configuration
Baruge Database
Open S0L Wosksheet
Beowser

Create a connection to the Sybase database, in this example, simpledemol2c, as shown

in Figure 5-4.

Figure 5-4 Creating a Connection to the Sybase Database

5.1.3 Capturing Migration

Perform the following steps to capture migration:

1.

Connection Name Connection Details | Connection Name |sybase
12c2_pdb1_vm_mi... migrep@/flocalhost... | Username sa
12c2_pdb1_vm_sy... system@/flocalhos... P g
12¢2_vm_system system@/flocalhos... |~
[v] Save Password
~ Orade | Access | SQLServer = Sybase
[] use Default Password
[] use Windows Authentication
SR
Port
| Retrieve database | [bugtestcase2 -
Imaster "
model
ubs2
Coubs3 [comet]|

Right-click on the simpledemol2c Sybase database and select the Migrate to Oracle
option, as shown in Figure 5-5.

ORACLE"

5-3

Chapter 5

Migrating a Sybase JDBC Application

2.

Figure 5-5 Starting Capture Phase of Migration Process

(3 o501 Deier =g
fle fdit View Havigate Bum Venigning ook Help
Besgd e Xam Q-0 & ’:‘"
x| Gaeports x [B i ot m_system % | B 222 pbt v mgrep * | Shavbase %) =

This opens the Migration Wizard, as shown in Figure 5-6.
Click Next.

Figure 5-6 Migration Wizard Introduction Screen

W

| This wizard enables the migration of third party database on to Oracle.
Diatab igration can be carried out either in an Online o Off line Mode.
You need a ive connaction to third party database to do an Online Migration.

Migration involves the following steps.

1. Priming an Orade connection with the Migration Repository,
2. Creating a Mgraton Project that serves as a container for the migration entities

:
|

Repostory

3. Capturing the source database meta information into the Migration Repository.
4, Converting the captured meta information to Orade specfic meta information.

5. Generating Oradle Database creation script from the converted meta information.
6. Generated Orade D8 Creation saipt.

7. Move the Data from the Scurce Database to the newly created Orade Database.

Following connection privilege prerequisites.

1. Repository Connection - Connect, Resaunce and Create View
2. Tanget Connection for DB Creation -

i

T

0
0
e
e
T
I

[Skip this page on mext laundh.

Choose the Migration Repository, as shown in Figure 5-7.
Click Next.

ORACLE"

5-4

Chapter 5
Migrating a Sybase JDBC Application

3.

4,

Figure 5-7 Choosing the Migration Repository

Repository

Emm-w:n E

Eﬁéjéﬁqé?{g

[t |

§

Selecta
| evpty pae.

| Semectors (0 122 po1 3 migren
] Trurscate

for the Migraton Repositary, Chedk Trunchle o reset B repesiiery B3

L

[] Broceed to Summany Fage

[spek | mext>][gnsh || concel |

Enter a project name and specify an output directory to place files, as shown in

Figure 5-8.
Click Next.

Figure 5-8

—

Project is a container for the migration entites, Al soripts wil be saved to the cutput drest...

o SmoleDema 12 |
[Rescripbion:

Qutput Directory: |C:\SmpleDemo 120 | [Lcnocge..]

[Eroceed to Summary Page

[<Bock | text> | [Ersh | [cance |

Specifying Project Name and Output Directory

Select the database connection and the mode, as shown in Figure 5-9.

Click Next.

ORACLE"

5-5

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-9 Selecting the Database Connection and Mode

Source Database

A Brsiect
. Source Database
. Cmtre

ﬂ* 4

(3 Migeation Wizerd - Stepd of @

%) Onine () Offine:

| hoose the Thind Party Detabase from which you are nigraring.
| Comnection: | R sybase. v & 7

Avplable Source Platforms:
e

Sybase
Add the source platfiorm with chedk: for update or the link below.

< fack Hext > Cancel J

5. Select the database, in this case, simpledemol2c, by moving it from Available
Databases to Selected Databases, as shown in Figure 5-10.

Click Proceed to Summary Page to review the Capture phase before moving to
the next phase of the migration process.

Click Next.

Figure 5-10 Selecting the Database to be Migrated

Capture

el

(3 Mgration Wizsrd - Step $ of &

Select the databiaes for defiribon capbre.
Availabie Databases
bugtestcase?

Selecied Databages.
mmpleceme 12¢

bugtestcases
demal2e
pubsz
pubs3
trsp2000

7] Eroceed to Summary Page

<pak | Hext> Freh Cancel

The capture phase saves a snapshot of the selected database at this point of time.
Only the object definitions are captured, not the actual table data. This captured
shapshot can be viewed in the Migration Projects navigator.

Note that the snapshot is not a connection to the database, and it only enables you to
browse through the information saved in the Migration Repository.

5.1.4 Setting Migration Preferences

Before starting the conversion phase, you must set the migration preferences. Perform
the following steps to achieve this:

1. From the Tools menu, select Preferences, then Migration, and then Translators.

Select the Generate Compound Triggers option.

ORACLE

5-6

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-11 Setting Migration Preferences

[Preferences]
&8)| Migration: Translators
[# Environment ~| | Default Source Date Format ddfmm/fyyyy |
[Change Management Paran Variable Name Prefix]
[~ Code Editor =
Compare and Merge In Parameter Prefix v

Database Query Assignment Translation | Assignment ¥

Data Minar
Data Modeler Display AST D
Debugger Generate Compound Triggers [v]
Extensions
External Editor
+— File Types
- Migration
Data Move Options
Generation Options
Identifier Options
Translators
- Mouseover Popups
Shor tout Keys
+— UnitTest Parameters
- Versionk
Web Browser and Proxy
XML Schemas bt
] H——— >

C o J | T

=-B-8n

2. From the Tools menu, select Preferences, then Migration, and then Generation
Options. Select the Use all Oracle Database 12c features in Migration option.

Figure 5-12 Setting Migration Preferences

a Preferences @
L)) | Migration: Generation Options
[Environment e File Creation Options
[#-- Change Management Paran - 5
[Code Editor ‘ =iz Be
Compare and Merge () A File per Object
- Database ~ o
- Data M General Options
- Data Modeler [¥] Generate Comments
[Debugger
i~ Extensions [] Least Priviege Schema Migration
External Editor [] Generate Data Move User
[~ FleTypes [] Generate Faied Objects
= Migration ! [¥] Generate Stored Procedure for Migrate Blobs Offine
Generate Separate Emilation Liser
ized Tables |NONE
Identifier Options _fS‘f‘base}TD Index Qrganized [. -
Tranelators [Use all Oradle Database 12c features in Migration
- Mouseover Popups
Shortout Keys
- UnitTest Parameters
[# Versioning
Web Browser and Proxy
XML Schemas n
¢ >
.......... tEb J o L Concdl

5.1.5 Converting Migration

Perform the following steps to start convert phase of the migration process:

1. Right-click the Capture Model node and choose Convert, as shown in Figure 5-13.

ORACLE 5.7

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-13 Starting Convert Phase of Migration Process

fle Edt View HNovigate Rum Versigaing Took Help

[Projects - 1262 pelit_vm_mgren
2 B Srgiebena1d
= 2120900 0402

BoEd 90 XE0N O O & =
[Bycomnectons = [Flaeports *) [ostmers = [§ oplems =)
0T e o
= § nbase ™ FEATE FROCEDURE dbo. topItens
& 3 bgresicasez a5
& £3 tugtestcases HESTH
-3 demonz SELECT TOF 10 items.nare, 1tema, deacription, Ltess.price, itess.isage FRON itess
& £) mester SELECT TOF 50 items.name, items,description, Ltems.price, itens.image INTO #tesp FROM 1t
& B3 moddl UPDATE TOF 5 #temp SET maswe = “666°
-] mubsl SELECT #tesp.mame, ftenp.description, #teup.price, #temp.image FROM Steup
w3 pbsx
=) smpledemoic * Adaptive ferver has expanded all **' elements in the following statement */ SELBCT TOF
= oo SELECT iteas.mane, itens. descriprion, items.price, items,image
2 (£ Tatles FROM itens
- # [customers UMTON ALL]
& [items SELECT items.manw, itens.description, items.price, items,image
w [sales FROM items) &5 X

The Migration Wizard is opened at the Convert phase, as shown in Figure 5-14.

Figure 5-14 Converting the Migrated Data

In) Speafﬂhemmnoptms
T [Data Type Mapping | {OBjecE NG|
)T\Rgs_osihnry
).I.\Pfoﬁ t [] Show only data types used in source model

Source Database Source Data Type Cracle Data Type Type
)T\ TETIME DATE System

Capture. BLOB System
;T:Cnnvert NUMBER[12] System
[MONEY NUMBER[19, 4] System
»T'\Imm VARCHAR VARCHARZ System

Move Data
@ Summary

[_addnewrue][Edirue |[Removerue |
AT IR Advanced Optons

(e)] (o) (omat]

2. Select Proceed to Summary Page and click Next.

3. Click Finish.

During the convert phase, object names are resolved to valid Oracle names. Data
types are converted to Oracle Database types and T-SQL defined objects like stored
procedures, views, and so on are converted to Oracle PL/SQL. A converted model is

created that can be browsed in the Migration Projects navigator. The converted

procedures can be reviewed in the converted model.

ORACLE"

5-8

Chapter 5
Migrating a Sybase JDBC Application

Note that the converted model is not an actual Oracle database, but a prototype of an Oracle
Database. The information is still stored only in the Migration Repository tables.

5.1.6 Generating a Migration

The migration generation phase creates the objects in the target Oracle Database. A script is
created and it is run against a selected Oracle connection in the following two ways:

* Inoffline mode, the scriptis opened in a SQL Worksheet and you have to select the
connection and run it manually.

* Inonline mode, you must provide the target connection in the wizard and the wizard
runs the script automatically.

The following steps demonstrate how to perform the generate phase of the migration process
in of f1ine mode:

1. Right-click on Converted Database Objects in the Migration Projects panel and select
Generate Target.

2. Select offline as the database mode in the Migration Wizard, as shown in Figure 5-15.
Click Next.

Figure 5-15 Selecting the Database Mode

@ Migration Wizard - Step 7 of 9 =

Target Database

$ Project The offine migration script will be generated in the project output directory.
,T_\ Source Database Generated Soipt Directory:C:\SimpleDemo 12 \generated
Ca o

[] rop Target Chjects

[w] Praceed to Summary Page Advanced Opbons
Help <&ack_ Next> || Fintsh | Cancd_,

3. Choose a connection in the target Oracle Database, as shown in Figure 5-16.

ORACLE' 5.9

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-16 Creating Oracle Database Connection for Target User
dbo_simpledemol2c

T Oracie 50U . Hagl [E=n e
fde fdit Yiew Hovigate Run Verigaing Jooh |Help
GoEg 90 XA0H 0-0- &~ =
Btomectorn = [tmorn * (]| EhSmplelemel 201209 10_10-40-d8agl =
+-0TH 5 Worlahee? ristory
G- tese rBER 32 f2usd 13 02 st i ssten
[bogeiniase e
e [] \!.l LEFINE (F¥;
& () demcizc : 1 |
& [) mester FROMFT Creating Mser EMulatisn ...
& [,nuﬁ-l CFEATE FS¥R Emulation IPENTIFIED BY Ewulation DEFRMALT TARLESFME SYSTEM TEXPORBEY TAMESPRE TENF
3) otez BT CREATE SESSION, RESOUSCE, CREATE VIEW, CREATE MATERIALIZED VIEW, CRERTE SYSOHM,CREATE FUst
= 0 pts3 SR SO GFF:
& O T IROMPT Crearisg Waee dbo_sisplesensdls ...
=& de EATE USER s _stmpledensiie IDENTIFIED BY dbe_siapledewsllc DEFMULT TASLESHRCE STSTER TERMURIGC
5 (4 Tables AT CHEATE SESSIIM, MESOURCE, CHEATE VIEW, CMERTE MATERIALLZFD VIE, CHERTE SOMGN,ALTER SESSIC
= [customess comacet Ewslation/Emulation:
& (Ol news
= Dl sskes S create or ceplace
5 [vens FICE UTILS A5
) suLsERER
} | st
@ Mcromn Progerts 1 BN | camanasm_rror
-
TBENTITY MR L0) 2
By propecs - 2o 1_wm mcren TRANCUGNT RBER (L0} i =03
W @ seledumor VAR _NURBER ISIIER L0) £ =04

FUMCTION BRGINTTOMEN | F_EXPR IBSER) FETURN VRO 1
FUSCTION BEGIMTTUSES(F_EXPR BW) FETURN VRRCHRRS §

FUCTION BET SO0(F_PANL BX B JAN BN RETWO BN

Hesssges -Log 1

e g e Lo e WLt _vm_meren U onves iectodeisFoiiertinde e T | | Wimdows: GRAF

The database objects are not created under the connection selected in this step.
However, this connection must have enough privileges to create other users and
objects.

5.1.6.1 Creating a Target Oracle User

Create a connection to the newly created user (described in step 3), as shown in
Figure 5-17. At this point, the Sybase database objects are migrated to Oracle
Database, but the data is not migrated till now.

Figure 5-17 Targeting an Oracle User

[Mew / Select Datsbase Connection ==l
[comectonMame Connecton Detsis | Connection Name [12c2_pdbl_vm_dbes_smpiedemo Lic

|12c2_petot_vm ... migrep@ifocabost... | isermame {#bo_smpledema 12c

——— ovevem—

|12c2_vm_system system/flocathos.... _D_ o L 4

sybase s8 80 ipap.us...., |] Sawe Password

Oracle | Access | SQuServer | Sybase
Connecton Type [Basc =| moie [defout =]

Hastngme focaihost

Port =3
Osp |
() Service name [pdb1 examle.com
a5 Eerberos [Provey Connextion
States :
_ beb e [Q] Tt | ot][cawel]

5.1.7 Moving the Data

Perform the following steps to move the data to Oracle Database:

1. Right-click the Converted Database Objects node and select Move Data, as
shown in Figure 5-18.

Click Next.

ORACLE" 5-10

Chapter 5
Generating Migration Reports

Figure 5-18 Moving the Data from Sybase Database to Oracle Database

]
Oracte SO Developer)

e fdit Yiew Havigate Ben Verigming [wsh Help

GoEg 90 L Bah O -0 &- =3

Bcomectorn 2| [Fiecor 1 o) {iroeree = (R muonwn_ 008 o

*-ATS Saston Sumwmary | Arves | Catre [emms | Comverson Siate | Corvenson smuee [Target Stakus | Target lesues |Duts Qualey [Model Compare ' [F
o i - .|

B e § cenes § comenr|j e |f oatwace
[
5-10_10-40-20 SybarelsPlogin il (amcivie skt omfen

2. Select online as the data move mode in the Move Data screen.

You can select offline as the data move mode if the migration process involves large
amount of data.

3. Click Next. The Summary screen appears.
4. Click Finish.

You can browse the database objects to verify the data is moved to Oracle database.

" See Also:
Oracle SQL Developer User's Guide

5.2 Generating Migration Reports

Oracle SQL Developer provides a number of reports on the migration process to help identify
tasks and issues to resolve. Click or double-click on the migrated project in the Migration
Projects navigator. A report will appear on the right panel with a number of tabs and children
reports, as shown in Figure 5-19.

ORACLE 5-11

Chapter 5
Generating Migration Reports

Figure 5-19 Generating Migration Reports

(B Oracte 5L Devetoper
e [dit Yiew Hvigate Ban Venksing Jooh Hep

GoEg 20 . Xan OO &- e

A oo = [@iecebenoix =
S-ATD sure v oot lomams | Togat St | Torget s [Oata Qaiey el Compard (2]
w]| 5 W ~r..

Bt ot e dho_spledemol 3 @ moxchuee |§ moceucse { s § cenes § conent | conenare f catwece
&) Tobles et | b New igrarien =
T nm 2 simpleDemollc 2011-08-10_10-40-1% SybaselSPlogin coxiete arsieie oepiele aprgiele

B Prageem - 223 pes_m_morep
ot [Sempheiome 13

The Analysis report provides information about the size of the migrated database like
the number of objects, line sizes, and so on, as shown in Figure 5-20.

Figure 5-20 Migration Analysis Report

(b Oracle S0 Deveoper: s |E== R |
fle f[dit View Hovigste Ron Venkgsing ook Help
GoBg 90 Xam o0 & i
Ricormectorn » (lames [[smpbetrematze = |
e-ATD Stsie | Sumrsary Arulyes Coptrn ismurs |Corvermon Stats | Corverson tsmurs [Target Statue (Targnt smurs | Data Graley [Model Comparel 11 1]
N - [0 A
R R ﬁ FRORCTGE [MODEMRE | oamamasrs § uwes || Taes |§ vews [mRoswes | meoceouess | oonem
£ Tobiee Pered) = 1 1 E] & o 5
:g? simgleDenaldn 1 1] o o H
& O surs |semptememenze 2m12-29-20_30-10-28 1 1 3 e .
= Gmme
& e < ¥
M4 Ednoneg vews aw |
x_s.'_jmuu nhq—n_uhmlwhmlmlmmlml Tampo... [4] »
L Peages e mebeids ~
1) Procedres . =
@ Furcnons i
L2 s
) Queues Tables -

By prajecns - 1302 bt reipen
it [Sempleome 12

| 132 pesd_vn_moen| MIGREP | MD_PRO

The Target Status report provides information about the status of the migrated objects
in the Target database. First, select a target connection with enough privileges to view
the status of other schema objects and then select refresh. Objects that are present in
the converted model, but are missing from the target Oracle Database, are listed as
missing. These objects can be either valid or invalid.

ORACLE"

5-12

Chapter 5
Generating Migration Reports

Figure 5-21 Target Status Report

0 e s 2.
fe [dat Yiew Navigate Bun Versioning Tooh Hep
ZoEgd 96 Xam O-0- &-

ey
=

By brogects - 162 o 1_vm_rren
SemleDema 13

Ryornecions * Chers *) [iSmplebemolds. = |
-ATH 15 denatyss | Captre Iomses | o Staks | Con Tapes S []
A Connaczone ~ I Taget: [0 133 ot om ot =) A
50 1362 b1 m o miedemorx: | [§ mee g ceormee § sooweer § vun § rowm § emec f sooum
&) Tatdes Fitered) 5 o s
& [ousrosgns

dra_sieplesessile IMESACDEOFT WALID

| 1202 b3y e 1O | MO PRONCTS Bt

The Data Quality tab provides information about the number of rows in the target Oracle
Database compared with the source database. Perform the following steps to compare the

databases:

1. Select a converted model, a source connection, and a target connection.

2. Click Analyse.
3. Click Refresh.

This performs a count (*) function on each table in the source and the target database.
So, it is advisable not to perform this operation on production data.

ORACLE"

5-13

APl Reference for SQL Translation of JDBC
Applications

Consider the APIs that are part of the oracle.jdbc package, specifically the elements of
oracle.jdbc that assist in SQL translation. To successfully migrate JDBC applications, it is

important to understand the translation properties, interfaces, and the error translation
mechanisms.

¢ See Also:

e Complete documentation of the oracle. jdbc package in Oracle Database
JDBC Java API Reference

6.1.1 Translation Properties

The translation properties are listed in Table 6-1

Table 6-1 Translation Properties

Property Description
sglTranslationProfile Specifies the name of the transaction profile
sqlErrorTranslationFile Specifies the path of the SQL error translation file

6.1.1.1 sqlTranslationProfile

ORACLE

The property oracle.jdbc.sqlTranslationProfile specifies the name of the transaction
profile.

Declaration

oracle.jdbc.sqglTranslationProfile

Constant

OracleConnection.CONNECTION PROPERTY SQL TRANSLATON PROFILE

The value of the constant is oracle.jdbc.sqlTranslationProfile. This is also the property
name.

Property Value

The value is a string. There is no default value.

6-1

Chapter 6
OracleTranslatingConnection Interface

Remarks

The property sqlTranslationProfile can be set as either a system property or a
connection property. The property is required to use SQL translation. If this property is
set then all statements created by the connection have SQL translation enabled unless
otherwise specified.

6.1.1.2 sqlErrorTranslationFile

The property oracle.jdbc.sqlErrorTranslationFile specifies the path of the SQL
error translation file.

Declaration

oracle.jdbc.sqglErrorTranslationFile

Constant

Oracle.connection.CONNECTION PROPERTY SQL ERROR TRANSLATION FILE.

Property Value

The value is a path name. It has no default value.

Exceptions

An error in establishing a connection results in a SQLEXxception but without a valid
connection. However the SQL error translation file path is available either as a system
property or connection property and will be used to translate the error.

Remarks

This file is used only for translating errors which occur when connection establishment
fails. Once the connection is established this file is bypassed and is not considered
even if it contains the translation details for any error which occurs after the connection
is established. The property sqlErrorTranslationFile can be either a system
property or a connection property. The content of this file is used to translate Oracle
SQLExceptions into foreign SQLExceptions when there is no valid connection.

6.1.2 OracleTranslatingConnection Interface

ORACLE

This interface is only implemented by a Connection object that supports SQL
Translation. The main purpose of this interface is to get non-translating statements
(including preparedStatement and CallableStatement) from a translating connection.

The public interface oracle.jdbc.OracleTranslatingConnection defines the factory
methods for creating translating and non-translating Statement objects.

The OracleTranslatingConnection enumerations are listed in Table 6-2:

Table 6-2 OracleTranslatingConnection Enumeration

__|
Name Description

SqlTranslationVersion Provides the Keys to the map

6-2

Chapter 6
OracleTranslatingConnection Interface

The OracleTranslatingConnection methods are listed in Table 6-3:

Table 6-3 OracleTranslatingConnection Methods
|

Name Description

createStatement() Creates a Statement object with option to translate or not translate
SQL.

prepareCall() Creates a CallableStatement object with option to translate or not

translate SQL.

prepareStatement() Creates a PreparedStatement object with option to translate or not
translate SQL.

getSQLTranslationVersions() Returns a map of all the translation versions of the query during SQL
Translation.

6.1.2.1 SqlTranslationVersion

The sqlTranslationVersion enumerated values specify the keys to the
getSQLTranslationVersions() method.

Syntax

public enum SglTranslationVersion {
ORIGINAL SQL,
JDBC_MARKER CONVERTED,
TRANSLATED

}

The following table lists all the SqlTranslationVersion enumeration values with a
description of each enumerated value.

Member Name Description

ORIGINAL SQL Specifies the original vendor specific sql

Specifies that JIDBC parameter markers ('?") is replaced with Oracle
style parameter markers (‘:b<n>'). Hence consecutive '?'s will be
converted to :b1, :b2, :b3 and so on. This change is required to take
care of any changes in the order of parameters during translation. This
version is sent to the server for translation. Hence any custom
translations on the server must be registered from this version and not
the ORIGINAL SQL version.

JDBC_MARKER CONVERTED

TRANSLATED Specifies the translated query returned from the server

6.1.2.2 createStatement()

ORACLE

This group of methods create a Statement object, and specify whether the statement
supports SQL translation. If the value of parameter translating is TRUE, then the returning
statement supports translation and is identical to the corresponding version in the
java.sgl.Connection interface without the translating argument. If the value is FALSE, then the
returning statement does not support translation.

6-3

ORACLE

Chapter 6
OracleTranslatingConnection Interface

Syntax

Description

public Statement createStatement (
boolean translating)
throws SQLException;

public Statement createStatement (
int resultSetType, int

resultSetConcurrency, boolean

translating)

throws SQLException;

public Statement createStatement (
int resultSetType,
int resultSetConcurrency,
int resultSetHoldability,
boolean translating)

throws SQLException;

Creates a Statement object with option to
translate or not translate SQL.

Creates a Statement object with the given
type and concurrency with option to translate
or not translate SQL.

Creates a Statement object with the given
type, concurrency, and holdability with option
to translate or not translate SQL.

Parameters
Parameter Description
resultSetType Specifies the int value representing the result set type.

resultSetConcurrency

type.

Specifies the int value representing the result set concurrency

resultSetHoldabilit Specifies the int value representing the result set holdability type.

y

translating

Specifies whether or not the statement supports translation.

Return Value

The createStatement () method returns a Statement object.

Exceptions

The createStatement () method throws SQLException.

Example

Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;

import oracle.jdbc.OracleTranslatingConnection;

import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

6-4

ORACLE

Chapter 6
OracleTranslatingConnection Interface

conn system/manager;
grant create sql translation profile to HR;

conn username/pwd;

drop table sample tab;

create table sample tab (cl number, c2 varchar2(100));

insert into sample tab values (1, 'A');

insert into sample tab values (2, 'B');

commit;

exec dbms sql translator.drop profile('FO0');

exec dbms sql translator.create profile('FO0');

exec dbms sql translator.register sql translation('FOO','select row of (cl, c2) from
sample tab','select cl, c2 from sample tab');

Example 6-1 Using the createStatement() method

public class SQLTransStmt
{
static String url="jdbc:oracle:thin:@localhost:5521:0rcl";
static String user="username", pwd="pwd";
static String PROFILE = "FOO";
static String primitiveSgl = "select row of (cl, c2) from sample tab";

public static void main(String[] args) throws Exception
{
OracleDataSource ods = new OracleDataSource();
ods.setURL (url);

Properties props = new Properties();

props.put ("user", user);

props.put ("password", pwd);
props.put(OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE, PROFILE) ;
ods.setConnectionProperties (props) ;

Connection conn = ods.getConnection();

System.out.println ("connection for SQL translation: "+conn);

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement (true)");
Statement trStmt = trConn.createStatement (true);
System.out.println ("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery(primitiveSql);
while (trRs.next())
System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement (false)");
Statement trStmt = trConn.createStatement (false);
System.out.println ("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery(primitiveSql);
while (trRs.next())
System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();

6-5

Chapter 6
OracleTranslatingConnection Interface

trStmt.close();
}catch (Exception e) {
System.out.println ("expected Exception: "+e.getMessage());

}

try{

OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;

System.out.println("Call: oracle.jdbc.OracleTranslatingConnection.
createStatement (ResultSet.TYPE SCROLL SENSITIVE, ResultSet.CONCUR UPDATABLE,
true)");

Statement trStmt = trConn.createStatement (ResultSet.TYPE SCROLL SENSITIVE,
ResultSet.CONCUR_UPDATABLE, true);

System.out.println ("executeQuery for: "+primitiveSql);

ResultSet trRs = trStmt.executeQuery(primitiveSql);

while (trRs.next())

System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
System.out.println("move resultset back to 2nd row...");
trRs.absolute (2);
while (trRs.next())

System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();

}catch (Exception e) {
e.printStackTrace();

}

try{

conn.setAutoCommit (false);

OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;

System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement (ResultSet.TYPE SCROLL SEN
SITIVE, ResultSet.CONCUR_UPDATABLE,
ResultSet.HOLD CURSORS OVER COMMIT, true)");

Statement trStmt = trConn.createStatement (ResultSet.TYPE SCROLL SENSITIVE,
ResultSet.CONCUR_UPDATABLE, ResultSet.HOLD_CURSORS_OVER_COMMIT, true);

System.out.println ("executeQuery for: "+primitiveSql);

ResultSet trRs = trStmt.executeQuery(primitiveSql);

trRs.last();

System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));

trRs.updateString (2, "Hello");

trRs.updateRow () ;

conn.commit () ;

System.out.println("accept the update and list all of the rows again...");

trRs.beforeFirst();

while (trRs.next())

System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

}

conn.close();

6.1.2.3 prepareCall()

This group of methods create a CallableStatement object, and specify whether the
statement supports SQL translation. If the value of parameter translating is TRUE,

ORACLE 6-6

ORACLE

Chapter 6
OracleTranslatingConnection Interface

then the returning statement supports translation. If the value is FALSE, then the returning

statement does not support translation.

Syntax

Description

public CallableStatement prepareCall (
String sql,
boolean translating)

throws SQLException;

public CallableStatement prepareCall (
String sql,
int resultSetType,
int resultSetConcurrency,
boolean translating)
throws SQLException;

public CallableStatement prepareCall (
String sql,
int resultSetType,
int resultSetConcurrency,
int resultSetHoldability,
boolean translating)
throws SQLException;

Creates a CallableStatement object with
option to translate or not translate SQL

Creates a CallableStatement object with the
given type and concurrency with option to
translate or not translate SQL

Creates a CallableStatement object with the
given type, concurrency, and holdability with
option to translate or not translate SQL

Parameters

Parameter Description

sql Specifies the String SQL statement value to be sent to the database;
may contain one or more parameters

resultSetType Specifies the int value representing the result set type

resultSetConcurrency

Specifies the int value representing the result set concurrency type

resultSetHoldability Specifies the int value representing the result set holdability type

translating

Specifies whether or not the statement supports translation

Return Value

The prepareCall () method returns a CallableStatement object.

Exceptions

The prepareCall () method throws SQLException.

Example

Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

6-7

Chapter 6
OracleTranslatingConnection Interface

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

conn system/manager;
grant create sql translation profile to HR;

conn username/pwd;

create or replace procedure sample proc (p num number, p vchar in out varchar2)
AS
begin
p_vchar := 'p num'||p num||', p vchar'||p vchar;
end;

/

exec dbms_sql_translator.drop_profile('FOO’);

exec dbms_sql_translator.create_profile('FOO’);

exec dbms sqgl translator.register sql translation('FOO', 'exec
sample proc(:bl, :b2)', '{call sample proc(:bl, :b2)}");

Example 6-2 Using the prepareCall() method

public class SQLTransCstmt
{
static String url="jdbc:oracle:thin:@localhost:5521:0rcl";
static String user="username", pwd="pwd";
static String PROFILE = "FOO";
static String primitiveSql = "exec sample proc(:bl, :b2)";

public static void main (String[] args) throws Exception
{
OracleDataSource ods = new OracleDataSource();
ods.setURL (url) ;

Properties props = new Properties();

props.put ("user", user);

props.put ("password", pwd);

props.put (OracleConnection.CONNECTION PROPERTY SQL TRANSLATION PROFILE,
PROFILE) ;

ods.setConnectionProperties (props);

Connection conn = ods.getConnection();

System.out.println ("connection for SQL translation: "+conn);

tryf
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println(

"Call: oracle.jdbc.OracleTranslatingConnection.prepareCall (sql, true)");
CallableStatement trStmt = trConn.prepareCall (primitiveSql, true);
trStmt.setInt ("b1", 1);
trStmt.setString ("b2", "A");
trStmt.registerOutParameter ("b2", Types.VARCHAR);

System.out.println ("execute for: "+primitiveSql);
trStmt.execute () ;
System.out.println("out param: "+trStmt.getString("b2"));

trStmt.close();

}catch (Exception e) {
e.printStackTrace();

ORACLE 6-8

ORACLE

try{
OracleTranslatingConnection trConn =
System.out.println(

Chapter 6
OracleTranslatingConnection Interface

(OracleTranslatingConnection) conn;

"Call: oracle.jdbc.OracleTranslatingConnection.prepareCall (sql, false)");
CallableStatement trStmt = trConn.prepareCall (primitiveSql, false);

trStmt.setInt (1, 1);
trStmt.setString (2, "A");

System.out.println("execute for: "+primitiveSql);

ResultSet trRs = trStmt.executeQuery();

while (trRs.next())

System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));

trRs.close();

trStmt.close();
}catch (Exception e) {

System.out.println ("expected Exception: "+e.getMessage());

}

conn.close();

6.1.2.4 prepareStatement()

This group of methods create a PreparedStatement object, and specify whether the
statement supports SQL translation. If the value of parameter translating is TRUE, then the
returning statement supports translation. If the value is FALSE, then the returning statement

does not support translation.

Syntax

Description

public PreparedStatement prepareStatement (
String sql,
boolean translating)

throws SQLException;

public PreparedStatement prepareStatement (
String sql,
int resultSetType,
int resultSetConcur,
boolean translating)
throws SQLException;

public PreparedStatement prepareStatement (
String sql,
int resultSetType,
int resultSetConcur,
int resultSetHold,
boolean translating)
throws SQLException;

Creates a PreparedStatement object
with option to translate or not translate
SQL

Creates a PreparedStatement object
with the given type and concurrency with
option to translate or not translate SQL

Creates a PreparedStatement object
with the given type, concurrency, and
holdability with option to translate or not
translate SQL

6-9

ORACLE

Chapter 6
OracleTranslatingConnection Interface

Parameter Description

sql Specifies the String SQL statement value to be sent to the
database; may contain one or more parameters

Specifies the int value representing the result set type

resultSetType
resultSetConcur Specifies the int value representing the result set concurrency
type
resultSetHold Specifies the int value representing the result set holdability type
t . Specifies whether or not the statement supports translation
ranslating

Return Value

The prepareStatement () method returns a PreparedStatement object.

Usage Notes

When the "?" placeholder is used with the prepareStatement () method, the driver
internally changes the "?" to Oracle-style parameters because the server side
translator can only work with Oracle-style markers. This is necessary to distinguish the
bind variables. If not, any change in the order of the bind variables will be
indistinguishable. The replaced oracle style markers follow the format :b<n> where <n>
is an incremental number. For example, exec sample proc(?,?) becomes exec
sample proc(:bl, :b2).

To further exemplify, consider a scenario of a vendor format where the vendor query
selecting top three rows is SELECT * FROM employees WHERE first name=? AND
employee id=? TOP 3. The query has to be converted to oracle dialect. In this case
the following translation is to be registered on the server:

From:

SELECT * FROM employees WHERE first name=:bl AND employee id=:b2 TOP 3

To:

SELECT * FROM employees WHERE first name=:bl AND employee id=:b2 AND ROWNUM <= 3

See SqlTranslationVersion and "SQL Translation of JDBC Applications" for more
information.

Exceptions

The prepareStatement () method throws SQLException.

Example

Import the following packages before running the example:

import java.sqgl.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;

import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

6-10

ORACLE

Chapter 6
OracleTranslatingConnection Interface

Run the following SQL statements:

conn system/manager;
grant create sqgl translation profile to USER;

conn username/pwd;

drop table sample tab;

create table sample tab (cl number, c2 varchar2(100));
insert into sample tab values (1, 'A');

insert into sample tab values (1, 'A');

insert into sample tab values (1, 'A');

commit;

exec dbms_sql_translator.drop_profile('FOO’);

exec
exec

dbms_sql_translator.create_profile('FOO’);
dbms sql translator.register sql translation('FOO', 'select row of select cl, c2

from sample tab

where cl=:bl and c2=:b2', 'select cl, c2 from sample tab where cl=:bl and c2=:b2');

Example 6-3 Using the prepareStatement() method

public class SQLTransPstmt

{

static String url="jdbc:oracle:thin:@localhost:5521:0rcl";

static String user="username", pwd="pwd";

static String PROFILE = "FOO";

static String primitiveSql = "select row of select cl, c2 from sample tab

where cl=:bl and c2=:b2";

public static void main (String[] args) throws Exception

{

OracleDataSource ods = new OracleDataSource();
ods.setURL (url) ;

Properties props = new Properties();

props.put ("user", user);

props.put ("password", pwd);

props.put (OracleConnection.CONNECTION PROPERTY SQL TRANSLATION PROFILE,
PROFILE) ;

ods.setConnectionProperties (props);

Connection conn = ods.getConnection();

System.out.println ("connection for SQL translation: "+conn);

tryf
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.prepareStatement (sql, true)");
PreparedStatement trStmt = trConn.prepareStatement (primitiveSql, true);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println ("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())
System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;

6-11

Chapter 6
OracleTranslatingConnection Interface

System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.prepareStatement (sql, false)");
PreparedStatement trStmt = trConn.prepareStatement (primitiveSqgl, false);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println ("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())
System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();

trStmt.close();

}catch (Exception e) {
System.out.println ("expected Exception: "+e.getMessage());

}

try{

OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.prepareStatement (
sql, ResultSet.TYPE SCROLL SENSITIVE, ResultSet.CONCUR UPDATABLE,

true)");

PreparedStatement trStmt = trConn.prepareStatement (
primitiveSql, ResultSet.TYPE SCROLL SENSITIVE,
ResultSet.CONCUR READ ONLY, true);

trStmt.setInt (1, 1);

trStmt.setString (2, "A");

System.out.println ("executeQuery for: "+primitiveSql);

ResultSet trRs = trStmt.executeQuery();

while (trRs.next())
System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));

System.out.println("trRs.beforeFirst and show resultSet again...");
trRs.beforeFirst();
while (trRs.next())
System.out.println("Cl:"+trRs.getInt (1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {

e.printStackTrace();

}

conn.close();

6.1.2.5 getSQLTranslationVersions()

ORACLE

Returns a map of all the translation versions of the query during SQL Translation. In
case of an exception, and if suppressExceptions is true, then the translated version in

the map is NULL.

Syntax

public Map<SglTranslationVersion, String> getSglTranslationVersions(
String sql,
boolean suppressExceptions)

throws SQL Exception;

6-12

Chapter 6
Error Translation Configuration File

Return Value

Map with all translation versions of a query. See SqlTranslationVersion enum for more details
about returning versions.

Exception

This method throws sQLException if there is a problem in query translation, provided
suppressExceptions is false.

6.1.3 Error Translation Configuration File

ORACLE

An XML configuration file (path) is provided as a value of the
oracle.jdbc.sqlErrorTranslationFile property. This file contains the translations
information for errors. These errors occur when a connection to the server cannot be
established and thus translation cannot happen on the server. Error messages are of the type
that define the state of the database that prevents the connection from being established.

The structure of the configuration XML file is defined in the DTD as follows:

<!DOCTYPE LocalTranslationProfile]|

<!ELEMENT LocalTranslationProfile (Exception+t)>
<!ELEMENT Exception (ORAError, ErrorCode, SQLState)>
<!ELEMENT ORAError (#PCDATA)>

<!ELEMENT ErrorCode (#PCDATA)>

<!ELEMENT SQLState (#PCDATA)>

1>

where,

e ORAError is an int value and specifies the error code for the oracle error.

* ErrorCode is an int value and specifies the vendor error code, that is, the translated
code.

° SQLState is a String value and specifies the vendor SQL state.

6-13

Glossary

ORACLE

adapter

A real-time, proprietary tool used to enable access to data stored in one database from
another database. Adapters are commonly used to translate SQL, map data types, and
facilitate the integration of SQL statements, triggers, and stored procedures.

custom SQL translation

A scenario in which users can register their customer-specific translations of SQL statements
with the SQL Translation Profile. During the translation of non-Oracle statements, the profile
looks up the custom translations first. Then, if no match is found, it invokes the SQL
Translator.

data integration

The exchange of data between different databases, either asynchronously in real-time
transactions or synchronously as batch processes.

data integration framework

A set of tools and processes used to enable data exchanges between different databases.
Traditional frameworks include many nightly processes such as large batch extractions and
feeds, and bulk loading of data. Newer frameworks can include small daily processes and
feeds occurring in near real time.

database schema migration

The process of identifying and converting tables, columns, and other objects in a non-Oracle
schema to conform to the naming, size, and other conventions required by Oracle Database.

error translation

A scenario in which users can register vendor-specific translations of error codes and
messages with the SQL Translation Profile. During SQL execution, client applications rely on
vendor-specific error codes and messages. When errors occur, the translated error codes
and messages are returned instead of the Oracle error codes and messages.

Glossary-1

ORACLE

Glossary

migration

The process of modifying a non-Oracle application, including all of its components
(such as architecture, data, SQL code, and client) to use the Oracle RDBMS rather
than a proprietary database management system.

migration repository

A data store in Oracle Database that Oracle SQL Developer uses to manage the
metadata for the source and target schema models during a migration. Multiple
migration repositories can be used to migrate from several databases to Oracle
Database at the same time.

Oracle Database Gateways

A set of Oracle products that support data integration with non-Oracle systems
synchronously using consistent APIs.

Oracle GoldenGate

An Oracle product that supports modular, transaction-level data integration between
diverse data sources that are stored in SQL Server, Sybase, DB2, Oracle, and other
databases.

Oracle SQL*Loader

A fast, flexible, and free Oracle utility that supports loading data from flat files into
Oracle Database. It supports several data formats and many different encodings. It
also supports parallel data loading.

Oracle SQL Developer Migration Wizard

An Oracle tool that enables the migration of a third-party database to an Oracle
database in batch mode. Migration includes data, schemas, objects, triggers, and
stored procedures.

SQL dialect

A variation or extension of SQL implemented by a database vendor. When migrating
client applications from third-party databases to Oracle, all non-Oracle SQL
statements must be translated into Oracle SQL. Because these non-Oracle SQL
statements are embedded within the source code of client applications, locating and
translating them is a time-consuming, manual task. This release enhances the Oracle
database to accept non-Oracle SQL statements from external vendors, and translate
them automatically at run time before execution.

SQL Translation Profile

A database schema object that directs how non-Oracle SQL statements are translated
into Oracle SQL dialects. This schema also contains translations of error codes,

Glossary-2

ORACLE

Glossary

SQLSTATES, and error messages to be returned when errors occur during the SQL
execution.

When migrating a client application with non-Oracle SQL statements to Oracle, the user
creates a SQL Translation Profile and configures it to translate the SQL statements and
errors for the application. At run time, the application sets the translation profile in the Oracle
database to translate its SQL statements and errors.

SQL Translator

The SQL Translator is a software component, provided by Oracle or third-party vendors,
which can be installed in Oracle Database. It translates the SQL statements of a client
program before they are processed by the Oracle Database SQL compiler. If an error results
from translated SQL statement execution, then Oracle Database SQL compiler generates an
Oracle error message.

SQLSTATE

A status parameter defined by the ANSI SQL standard. It is a 5-character string that indicates
the status of a SQL operation. Some of these values are:

e 00xxx: Unqualified Successful Completion
* 01xxx: Warning

* 02xxx: No Data

* 07xxx: Dynamic SQL Error

e 08xxx: Connection Exception

* 09xxx: Triggered Action Exception

Glossary-3

Index

A

M

ATTR_RAISE_TRANSLATION_ERROR, 4-2

C

createStatement(), 6-3
creating identity columns, 1-2

E

enhanced SQL to PL/SQL bind handling, 1-6

F

features supporting migration, 1-1

G

methods
createStatement(), 6-3
getSQLTranslationVersions(), 6-12
prepareCall(), 6-6
prepareStatement(), 6-9

Migrating a Sybase JDBC application, 5-1
capturing migration, 5-3
converting migration, 5-6, 5-7
generating migration, 5-9
moving the data, 5-10
setting up migration, 5-1

migration support for other database vendors,

getSQLTranslationVersions(), 6-12

1-9

N

native SQL support for query row limits and row
offsets, 1-7

O

identity columns, 1-1

implicit statement results, 1-2

interface
OracleTranslatingConnection, 6-2

J

JDBC API, 6-1
configuration file, 6-13
SQLErrorTranslation.xml, 6-13
methods
createStatement(), 6-3
getSQLTranslationVersions(), 6-12
prepareCall(), 6-6
prepareStatement(), 6-9
OracleTranslatingConnection interface, 6-2
translation properties, 6-1
sqlErrorTranslationFile, 6-2
sqlTranslationProfile, 6-1
JDBC driver support for application migration, 1-7
JDBC support for implicit results, 1-2

ORACLE

OCI support for implicit results, 1-3
ODBC driver support for application migration,
1-7

ODBC support for implicit results, 1-4

OEM tuning and performance packs, 1-8

Oracle Database Gateways, 1-8

Oracle GoldenGate, 1-8

Oracle SQL developer
migration support, 3-1
set up, 3-2

Oracle SQL Developer, 1-9

OracleTranslatingConnection interface, 6-2
createStatement() method, 6-3
getSQLTranslationVersions() method, 6-12
prepareCall() method, 6-6
prepareStatement() method, 6-9

P

permissions for installing the SQL translator, 3-12
prepareCall(), 6-6
prepareStatement(), 6-9

Index-1

products supporting migration, 1-8

S

SQL translation framework, 1-1
architecture, 2-2
configuration, 3-1, 3-10
installation, 3-1, 3-10
SQL translation profile, 2-1
SQL translator, 2-1
use, 2-2
when to use, 2-3
SQL translation of JDBC aplications, 4-1
SQL translation of JDBC applications, 4-1
error message translation, 4-1
error translation, 4-3
execution of translated Oracle dialect query,
4-2

ORACLE

Index

SQL translation of JDBC applications (continued)
parameter marker conversion, 4-2
SQL translation profile, 4-1
SQL translation of ODBC applications, 4-1, 4-4
error message translation, 4-5
SQL translation profile, 4-4
SQL translation profile
set up, 3-10
SQLErrorTranslation.xml, 6-13
sqlErrorTranslationFile, 6-2
sqlTranslationProfile, 6-1
SqlTranslationVersion enumerated values, 6-3

T

translation properties
sqlErrorTranslationFile, 6-2
sqlTranslationProfile, 6-1

Index-2

	Contents
	List of Tables
	Preface
	Audience
	Related Documents
	Documentation Accessibility
	Conventions

	Changes in This Release for Oracle Database SQL Translation and Migration Guide
	1 Introduction to Tools and Products that Support Migration
	1.1 Oracle Database Features for Migration Support
	1.1.1 SQL Translation Framework
	1.1.2 Support for Identity Columns
	1.1.2.1 Creating Identity Columns

	1.1.3 Implicit Statement Results
	1.1.3.1 JDBC Support for Implicit Results
	1.1.3.1.1 Processing Implicit Results in JDBC

	1.1.3.2 OCI Support for Implicit Results
	1.1.3.2.1 Processing Implicit Results in OCI

	1.1.3.3 ODBC Support for Implicit Results
	1.1.3.3.1 Processing Implicit Results in ODBC

	1.1.4 Enhanced SQL to PL/SQL Bind Handling
	1.1.4.1 Invoking a Subprogram with a Nested Table Parameter

	1.1.5 Native SQL Support for Query Row Limits and Row Offsets
	1.1.5.1 Limiting Bulk Selection

	1.1.6 JDBC Driver Support for Application Migration
	1.1.7 ODBC Driver Support for Application Migration

	1.2 Other Oracle Products that Enable Migration
	1.2.1 OEM Tuning and Performance Packs
	1.2.2 Oracle GoldenGate
	1.2.3 Oracle Database Gateways
	1.2.4 Oracle SQL Developer

	1.3 Migration Support for Other Database Vendors
	1.3.1 Application Support in Third-Party Databases
	1.3.2 Third-Party Database Version Support

	2 SQL Translation Framework Overview
	2.1 Architecture of SQL Translation Framework
	2.2 How to Use SQL Translation Framework
	2.3 When to Use SQL Translation Framework

	3 SQL Translation Framework Configuration
	3.1 Installing and Configuring SQL Translation Framework with Oracle SQL Developer
	3.1.1 Overview of Oracle SQL Developer Migration Support
	3.1.2 Setting Up Oracle SQL Developer 3.2 for Windows
	3.1.2.1 Setting Up Oracle SQL Developer 3.2 Startup
	3.1.2.2 Starting Oracle SQL Developer

	3.1.3 Creating a Connection to Oracle Database
	3.1.4 Testing SQL Translation
	3.1.5 Creating a Translation Profile and Installing SQL Translator
	3.1.5.1 Installing SQL Translator
	3.1.5.2 Creating a Translation Profile

	3.1.6 Using the SQL Translator Profile

	3.2 Installing and Configuring SQL Translation Framework from Command Line
	3.2.1 Installing Oracle Sybase Translator
	3.2.2 Setting up a SQL Translation Profile
	3.2.3 Setting Up a Database Service to Use the SQL Translation Profile
	3.2.3.1 Setting Up a Database Service in Oracle Real Application Clusters

	3.2.4 Testing Sybase SQL Translation Using the SQL Translation Profile

	3.3 Granting Necessary Permissions for Installing the SQL Translator

	4 SQL Translation of JDBC and ODBC Applications
	4.1 SQL Translation of JDBC Applications
	4.1.1 SQL Translation Profile
	4.1.2 Error Message Translation
	4.1.3 Converting JDBC Standard Parameter Markers
	4.1.4 Executing the Translated Oracle Dialect Query
	4.1.5 Error Translation
	4.1.6 Using JDBC Driver for SQL Translation

	4.2 SQL Translation of ODBC Applications
	4.2.1 SQL Translation profile
	4.2.2 Error Message Translation
	4.2.3 Translating Error Messages

	5 Example: Application Migration Using SQL Translation Framework
	5.1 Migrating a Sybase JDBC Application
	5.1.1 Application Overview
	5.1.2 Setting Up Migration
	5.1.3 Capturing Migration
	5.1.4 Setting Migration Preferences
	5.1.5 Converting Migration
	5.1.6 Generating a Migration
	5.1.6.1 Creating a Target Oracle User

	5.1.7 Moving the Data

	5.2 Generating Migration Reports

	6 API Reference for SQL Translation of JDBC Applications
	6.1.1 Translation Properties
	6.1.1.1 sqlTranslationProfile
	6.1.1.2 sqlErrorTranslationFile

	6.1.2 OracleTranslatingConnection Interface
	6.1.2.1 SqlTranslationVersion
	6.1.2.2 createStatement()
	6.1.2.3 prepareCall()
	6.1.2.4 prepareStatement()
	6.1.2.5 getSQLTranslationVersions()

	6.1.3 Error Translation Configuration File

	Glossary
	adapter
	custom SQL translation
	data integration
	data integration framework
	database schema migration
	error translation
	migration
	migration repository
	Oracle Database Gateways
	Oracle GoldenGate
	Oracle SQL*Loader
	Oracle SQL Developer Migration Wizard
	SQL dialect
	SQL Translation Profile
	SQL Translator
	SQLSTATE

	Index

