
Oracle® Database
High Availability Overview and Best Practices

F46982-05
February 2024

Oracle Database High Availability Overview and Best Practices,

F46982-05

Copyright © 2005, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xv

Documentation Accessibility xv

Related Documents xvi

Conventions xvi

Part I Oracle Database High Availability Overview

1 Overview of High Availability

What Is High Availability? 1-1

Importance of Availability 1-2

Cost of Downtime 1-2

Causes of Downtime 1-3

Chaos Engineering 1-7

Roadmap to Implementing the Maximum Availability Architecture 1-8

2 High Availability and Data Protection – Getting From Requirements to
Architecture

High Availability Requirements 2-1

A Methodology for Documenting High Availability Requirements 2-2

Business Impact Analysis 2-2

Cost of Downtime 2-3

Recovery Time Objective 2-3

Recovery Point Objective 2-4

Manageability Goal 2-4

Total Cost of Ownership and Return on Investment 2-5

Mapping Requirements to Architectures 2-5

Oracle MAA Reference Architectures 2-6

Bronze Reference Architecture 2-7

Silver Reference Architecture 2-7

iii

Gold Reference Architecture 2-7

Platinum Reference Architecture 2-8

High Availability and Data Protection Attributes by Tier 2-8

3 Features for Maximizing Availability

Oracle Data Guard 3-1

Oracle Active Data Guard 3-4

Oracle Data Guard Advantages Over Traditional Solutions 3-6

Data Guard and Planned Maintenance 3-7

Data Guard Redo Apply and Standby-First Patching 3-8

Data Guard Transient Logical Rolling Upgrades 3-8

Rolling Upgrade Using Oracle Active Data Guard 3-9

Oracle GoldenGate 3-10

Best Practice: Oracle Active Data Guard and Oracle GoldenGate 3-12

When to Use Oracle Active Data Guard 3-12

When to Use Oracle GoldenGate 3-13

When to Use Oracle Active Data Guard and Oracle GoldenGate Together 3-13

Recovery Manager 3-14

Oracle Real Application Clusters and Oracle Clusterware 3-16

Benefits of Using Oracle Clusterware 3-17

Benefits of Using Oracle Real Application Clusters and Oracle Clusterware 3-18

Oracle RAC Advantages Over Traditional Cold Cluster Solutions 3-18

Oracle RAC One Node 3-21

Oracle Automatic Storage Management 3-21

Fast Recovery Area 3-23

Corruption Prevention, Detection, and Repair 3-24

Data Recovery Advisor 3-26

Oracle Flashback Technology 3-27

Oracle Flashback Query 3-28

Oracle Flashback Version Query 3-29

Oracle Flashback Transaction 3-29

Oracle Flashback Transaction Query 3-30

Oracle Flashback Table 3-30

Oracle Flashback Drop 3-30

Restore Points 3-30

Oracle Flashback Database 3-31

Flashback Pluggable Database 3-31

Block Media Recovery Using Flashback Logs or Physical Standby Database 3-32

Flashback Data Archive 3-32

Oracle Data Pump and Data Transport 3-32

iv

Oracle Replication Technologies for Non-Database Files 3-33

Oracle Advanced Cluster File System 3-34

Oracle Database File System 3-35

Oracle Solaris ZFS Storage Appliance Replication 3-36

Oracle Multitenant 3-37

Oracle Sharding 3-39

Oracle Restart 3-39

Online Reorganization and Redefinition 3-40

Zero Data Loss Recovery Appliance 3-40

Fleet Patching and Provisioning 3-41

Edition-Based Redefinition 3-42

4 Oracle Database High Availability Solutions for Unplanned Downtime

Outage Types and Oracle High Availability Solutions for Unplanned Downtime 4-1

Managing Unplanned Outages for MAA Reference Architectures and Multitenant
Architectures 4-6

5 Oracle Database High Availability Solutions for Planned Downtime

Oracle High Availability Solutions for Planned Maintenance 5-1

High Availability Solutions for Migration 5-3

6 Enabling Continuous Service for Applications

7 Operational Prerequisites to Maximizing Availability

Understand Availability and Performance SLAs 7-1

Implement and Validate a High Availability Architecture That Meets Your SLAs 7-1

Establish Test Practices and Environment 7-1

Configuring the Test System and QA Environments 7-2

Performing Preproduction Validation Steps 7-3

Set Up and Use Security Best Practices 7-5

Establish Change Control Procedures 7-5

Apply Recommended Patches and Software Periodically 7-5

Perform Disaster Recovery Validation 7-6

Establish Escalation Management Procedures 7-7

Configure Monitoring and Service Request Infrastructure for High Availability 7-7

Run Database Health Checks Periodically 7-7

Configure Oracle Enterprise Manager Monitoring Infrastructure for High Availability 7-8

Configure Automatic Service Request Infrastructure 7-9

v

Check the Latest MAA Best Practices 7-9

Part II Oracle Database High Availability Best Practices

8 Overview of Oracle Database High Availability Best Practices

9 Oracle Database Configuration Best Practices

Use a Server Parameter File (SPFILE) 9-1

Enable Archive Log Mode and Forced Logging 9-1

Configure an Alternate Local Archiving Destination 9-1

Use a Fast Recovery Area 9-2

Enable Flashback Database 9-3

Set FAST_START_MTTR_TARGET Initialization Parameter 9-4

Protect Against Data Corruption 9-4

Set the LOG_BUFFER Initialization Parameter to 128MB or Higher 9-5

Set USE_LARGE_PAGES=ONLY 9-5

Use Bigfile Tablespace 9-6

Use Automatic Shared Memory Management and Avoid Memory Paging 9-8

Use Oracle Clusterware 9-9

10

Oracle Flashback Best Practices

Oracle Flashback Performance Observations 10-1

Oracle Flashback Configuration Best Practices 10-2

Oracle Flashback Operational Best Practices 10-4

Oracle Flashback Performance Tuning for Specific Application Use Cases 10-4

Part III Oracle RAC and Clusterware Best Practices

11

Overview of Oracle RAC and Clusterware Best Practices

Part IV Oracle Data Guard Best Practices

vi

12

Overview of MAA Best Practices for Oracle Data Guard

13

Plan an Oracle Data Guard Deployment

Oracle Data Guard Architectures 13-1

Application Considerations for Oracle Data Guard Deployments 13-1

Deciding Between Full Site Failover or Seamless Connection Failover 13-1

Full Site Failover Best Practices 13-2

Configuring Seamless Connection Failover 13-5

Assessing and Optimizing Network Performance 13-5

Gather Topology Information 13-7

Understanding Network Usage of Data Guard 13-7

Understanding Targets and Goals for Instantiation 13-7

Understanding Throughput Requirements and Average Redo Write Size for Redo
Transport 13-7

Verify Average Redo Write Size 13-9

Understand Current Network Throughput 13-9

Optimizing Redo Transport with One and Many Processes 13-12

Using This Data 13-17

Determining Oracle Data Guard Protection Mode 13-18

Offloading Queries to a Read-Only Standby Database 13-19

14

Configure and Deploy Oracle Data Guard

Oracle Data Guard Configuration Best Practices 14-1

Apply Oracle Database Configuration Best Practices First 14-1

Use Recovery Manager to Create Standby Databases 14-1

Use Oracle Data Guard Broker with Oracle Data Guard 14-1

Example Broker Installation and Configuration 14-2

Configure Redo Transport Mode 14-3

Validate the Broker Configuration 14-3

Configure Fast Start Failover 14-5

Fast Start Failover with Multiple Standby Databases 14-7

Set Log Buffer Optimally 14-8

Set Send and Receive Buffer Sizes 14-8

Set SDU Size to 65535 for Synchronous Transport Only 14-9

Configure Online Redo Logs Appropriately 14-9

Sizing Redo Logs 14-9

Use Standby Redo Log Groups 14-10

Protect Against Data Corruption 14-11

vii

Use Flashback Database for Reinstatement After Failover 14-12

Use Force Logging Mode 14-13

Configure Fast Start Failover to Bound RTO and RPO (MAA Gold Requirement) 14-13

Configure Standby AWR 14-16

Configuring Multiple Standby Databases 14-17

Managing Oracle Data Guard Configurations with Multiple Standby Databases 14-17

Multiple Standby Databases and Redo Routes 14-17

Using the RedoRoutes Property for Remote Alternate Destinations 14-18

Fast Start Failover with Multiple Standby Databases 14-20

Setting FastStartFailoverTarget 14-20

Switchover with FastStartFailoverTarget Set 14-20

Fast-Start Failover Outage Handling 14-21

Oracle Active Data Guard Far Sync Solution 14-21

About Far Sync 14-22

Offloading to a Far Sync Instance 14-22

Far Sync Deployment Topologies 14-22

Case 1: Zero Data Loss Protection Following Role Transitions 14-23

Case 2: Reader Farm Support 14-24

Case 3: Cloud Deployment With Far Sync Hub 14-24

Far Sync High Availability Topologies 14-25

Choosing a Far Sync Deployment Topology 14-26

Far Sync Configuration Best Practices 14-27

Configuring the Active Data Guard Far Sync Architecture 14-29

Configuring the Far Sync Instances 14-29

Setting Up HA Far Sync Instances 14-30

Configuring Far Sync Instances with Oracle RAC or Oracle Clusterware 14-31

Encrypting a Database Using Data Guard and Fast Offline Encryption 14-32

15

Tune and Troubleshoot Oracle Data Guard

Overview of Oracle Data Guard Tuning and Troubleshooting 15-1

Redo Transport Troubleshooting and Tuning 15-1

Gather Topology Information 15-2

Verify Transport Lag and Understand Redo Transport Configuration 15-2

Gather Information to Troubleshoot Transport Lag 15-3

Compare Redo Generation Rate History on the Primary 15-4

Evaluate the Transport Network and Tune 15-5

Gather and Monitor System Resources 15-5

Tune to Meet Data Guard Resource Requirements 15-6

Advanced Troubleshooting: Determining Network Time with Asynchronous Redo
Transport 15-6

Tuning and Troubleshooting Synchronous Redo Transport 15-9

viii

Understanding How Synchronous Transport Ensures Data Integrity 15-9

Assessing Performance in a Synchronous Redo Transport Environment 15-10

Why the Log File Sync Wait Event is Misleading 15-11

Understanding What Causes Outliers 15-12

Effects of Synchronous Redo Transport Remote Writes 15-12

Example of Synchronous Redo Transport Performance Troubleshooting 15-13

Redo Apply Troubleshooting and Tuning 15-14

Understanding Redo Apply and Redo Apply Performance Expectations 15-15

Verify Apply Lag 15-16

Gather Information 15-17

Compare Redo Generation Rate History on the Primary 15-20

Tune Single Instance Redo Apply 15-21

Evaluate System Resource Bottlenecks 15-21

Tune Redo Apply by Evaluating Database Wait Events 15-22

Enable Multi-Instance Redo Apply if Required 15-24

Addressing a Very Large Redo Apply Gap 15-27

Improving Redo Apply Rates by Sacrificing Data Protection 15-27

Role Transition, Assessment, and Tuning 15-28

Prerequisite Data Guard Health Check Before Role Transition 15-28

Every Quarter 15-28

One Month Before Switchover 15-29

Days Before Switchover 15-31

Data Guard Role Transition 15-32

Monitor Data Guard Role Transitions 15-33

Key Switchover Operations and Alert Log Tags 15-33

Key Failover Operations and Alert Log Tags 15-34

Post Role Transition Validation 15-34

Troubleshooting Problems During a Switchover Operation 15-35

Sources of Diagnostic Information 15-35

Retry Switchover After Correcting the Initial Problem 15-35

Rolling Back After Unsuccessful Switchover to Maximize Uptime 15-35

Data Guard Performance Observations 15-36

Data Guard Role Transition Duration 15-36

Application Throughput and Response Time Impact with Data Guard 15-39

16

Monitor an Oracle Data Guard Configuration

Monitoring Oracle Data Guard Configuration Health Using the Broker 16-1

Detecting Transport or Apply Lag Using the Oracle Data Guard Broker 16-3

Monitoring Oracle Data Guard Configuration Health Using SQL 16-5

Oracle Data Guard Broker Diagnostic Information 16-7

ix

Detecting and Monitoring Data Corruption 16-7

Part V MAA Platinum and Oracle GoldenGate Best Practices

17

MAA Platinum Reference Architecture Overview

18

Overview of Oracle GoldenGate Best Practices

19

Cloud: Configuring Oracle GoldenGate Hub

Overview of MAA GoldenGate Hub 19-1

Planning GGHub Placement in the Platinum MAA Architecture 19-2

Where to Place the MAA Primary GGHub and Standby GGHub 19-2

MAA GGHubs Placed in the Same OCI Region 19-3

MAA GGHubs Placed in Different OCI Regions 19-7

Task 1: Configure the Source and Target Databases for Oracle GoldenGate 19-12

Task 2: Prepare a Primary and Standby Base System for GGHub 19-16

Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub 19-19

Task 4: Configure the Oracle GoldenGate Environment 19-65

20

Cloud: Oracle GoldenGate Microservices Architecture on Oracle
Exadata Database Service Configuration Best Practices

Overview of Oracle GoldenGate Microservices Architecture Configuration on Oracle
Exadata Database Service 20-1

Task 1 - Before You Begin 20-2

Task 2 - Configure the Oracle Database for GoldenGate 20-4

Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment 20-7

Task 4 - Install Oracle GoldenGate 20-17

Task 5 - Create the Oracle GoldenGate Deployment 20-21

Task 6 - Configure the Network 20-23

Task 7 - Configure Oracle Grid Infrastructure Agent 20-26

Task 8 - Configure NGINX Reverse Proxy 20-31

Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections 20-41

Task 10 - Create a New Profile 20-43

Task 11 - Configure Oracle GoldenGate Processes 20-43

x

21

Cloud MAA Platinum: Oracle GoldenGate Microservices Architecture
Integrated with Active Data Guard

Overview 21-1

Task 1 - Before You Begin 21-2

Task 2 - Configure the Oracle Database for GoldenGate 21-2

Task 3 - Configure Oracle Database File System 21-4

Task 4 - Install Oracle GoldenGate 21-8

Task 5 - Create Oracle GoldenGate Deployment Directories 21-8

Task 6 - Network Configuration 21-9

Task 7 - Configure Standby NGINX Reverse Proxy 21-9

Task 8 - Configure Oracle Grid Infrastructure Agent 21-13

Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections 21-15

Task 10 - Configure Oracle GoldenGate Processes 21-16

Example Distribution Path Target Change Script 21-23

22

On-Premises: Configuring Oracle GoldenGate Hub

Overview of MAA GoldenGate Hub 22-1

Planning GGHub Placement in the Platinum MAA Architecture 22-2

Where to Place the MAA Primary GGHub and Standby GGHub 22-2

MAA GGHubs Placed in the Same Data Center 22-3

MAA GGHubs Placed in Different Data Centers 22-7

Task 1: Configure the Source and Target Databases for Oracle GoldenGate 22-12

Task 2: Prepare a Primary and Standby Base System for GGHub 22-16

Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub 22-18

Task 4: Configure the Oracle GoldenGate Environment 22-58

23

On-Premises: Oracle GoldenGate Microservices Architecture with
Oracle Real Application Clusters Configuration Best Practices

Summary of Recommendations when Deploying Oracle GoldenGate on Oracle RAC 23-1

Task 1: Configure the Oracle Database for Oracle GoldenGate 23-2

Task 2: Create the Database Replication Administrator User 23-2

Task 3: Create the Database Services 23-3

Task 4: Set Up a File System on Oracle RAC 23-3

Task 5: Install Oracle GoldenGate 23-8

Task 6: Create the Oracle GoldenGate Deployment 23-8

Task 7: Oracle Clusterware Configuration 23-10

Task 8: Configure NGINX Reverse Proxy 23-16

Task 9: Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections 23-17

Task 10: Configure Oracle GoldenGate Processes 23-18

xi

Task 11: Configure Autostart of Extract and Replicat Processes 23-23

24

On-Premises MAA Platinum: Oracle GoldenGate Microservices
Architecture Integrated with Active Data Guard

Prerequisites 24-1

Task 1: Configure the Standby Database for Oracle GoldenGate 24-2

Task 2: Modify the Primary Database Service 24-3

Task 3: Create the Standby Database Service 24-3

Task 4: Configure DBFS on the Standby Cluster Nodes 24-3

Task 5: Install Oracle GoldenGate Software 24-4

Task 6: Create Oracle GoldenGate Deployment Directories 24-5

Task 7: Configure the Standby NGINX Reverse Proxy 24-6

Task 8: Configure Oracle Clusterware 24-8

Task 9: Create Oracle Net TNS Aliases for Oracle GoldenGate Database Connections 24-10

Task 10: Configure Oracle GoldenGate Processes 24-11

Example Distribution Path Target Change Script 24-16

25

Managing Planned and Unplanned Outages for Oracle GoldenGate Hub

Managing Planned Outages 25-1

Managing Unplanned Outages 25-3

26

Troubleshooting Oracle GoldenGate

Troubleshooting MAA GoldenGate Hub 26-1

Troubleshooting ACFS Replication 26-1

Troubleshooting Oracle GoldenGate 26-3

Troubleshooting Oracle GoldenGate on Oracle RAC 26-6

Example Configuration Problems 26-10

Part VI Oracle Database Cloud Best Practices

27

Oracle Maximum Availability Architecture and Oracle Autonomous
Database

Oracle Autonomous Database with Default High Availability Option (MAA Silver) 27-1

Oracle Autonomous Database with Autonomous Data Guard Option (MAA Gold) 27-3

Maintaining Application Uptime 27-5

xii

28

Oracle Maximum Availability Architecture in Oracle Exadata Cloud
Systems

Oracle Maximum Availability Architecture Benefits 28-1

Expected Impact with Unplanned Outages 28-3

Expected Impact with Planned Maintenance 28-4

Achieving Continuous Availability For Your Applications 28-12

Oracle Maximum Availability Architecture Reference Architectures in Oracle Exadata Cloud 28-16

Part VII Continuous Availability for Applications

29

Configuring Continuous Availability for Applications

About Application High Availability Levels 29-1

Configuring Level 1: Basic Application High Availability 29-4

Step 1: Configure High Availability Database Services 29-4

Configure High Availability Services 29-5

Configure High Availability Services for Oracle Active Data Guard or Standby Roles 29-6

Step 2: Configure the Connection String for High Availability 29-6

Step 3: Ensure That FAN Is Used 29-7

Step 4: Ensure Application Implements Reconnection Logic 29-9

Configuring Level 2: Prepare Applications for Planned Maintenance 29-10

Recommended Option: Use an Oracle Connection Pool 29-10

Alternate Option: Use Connection Tests 29-11

Leverage Server-Side Operations for Planned Maintenance 29-14

Configuring Level 3: Mask Unplanned and Planned Failovers from Applications 29-14

Return Connections to the Connection Pool 29-15

Set FAILOVER_RESTORE on the Service 29-16

Restore Original Function Values During Replay 29-16

Side Effects 29-16

JDBC Configuration 29-17

Monitoring 29-17

Reference 29-17

Connection Time Estimates During Data Guard Switchover or Failover 29-17

Oracle Net TNS String Parameters 29-18

Connection Retry Logic Examples 29-19

Server-Side Planned Maintenance Command Examples 29-22

Part VIII Oracle Multitenant Best Practices

xiii

30

Overview of Oracle Multitenant Best Practices

31

PDB Switchover and Failover in a Multitenant Configuration

PDB Switchover Use Case 31-2

Prerequisites 31-2

Configuring PDB Switchover 31-3

PDB Failover Use Case 31-9

Prerequisites 31-10

Additional Considerations 31-10

Configuring PDB Failover 31-10

Resolving Errors 31-15

Reference 31-17

Full Example Commands with Output 31-17

Keyword Definitions 31-21

Messages 31-22

Sample Oracle Database Net Services Connect Aliases 31-24

Part IX Full Site Switch in Oracle Cloud or On-Premises

32

Full Site Switch in Oracle Cloud or On-Premise

Performing Role Transitions Between Regions 32-2

Best Practices for Full Site Switchover 32-4

More Information About Full Site Switchover 32-5

xiv

Preface

This book introduces you to Oracle best practices for deploying a highly available database
environment, and provides best practices for configuring the Oracle MAA reference
architectures.

Part 1 provides an overview of high availability and helps you to determine your high
availability requirements. It describes the Oracle Database products and features that are
designed to support high availability and describes the primary database architectures that
can help your business achieve high availability.

Part 2 describes the best practices for configuring a highly available Oracle database, using
features provided with Oracle Database, which lets you achieve MAA Bronze reference
architecture service levels

Part 3 describes the best practices for configuring a highly available Oracle database using
Oracle Data Guard for replication and data protection, which lets you achieve MAA Gold
reference architecture service levels.

This preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This book is intended for chief technology officers, information technology architects,
database administrators, system administrators, network administrators, and application
administrators who perform the following tasks:

• Plan data centers

• Implement data center policies

• Maintain high availability systems

• Plan and build high availability solutions

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
Knowledge of Oracle Database, Oracle RAC, and Data Guard concepts and
terminology is required to understand the configuration and implementation details
described in this book. For more information, see the Oracle Database documentation
set. These books may be of particular interest:

• Oracle Database Administrator’s Guide

• Oracle Clusterware Administration and Deployment Guide

• Oracle Real Application Clusters Administration and Deployment Guide

• Oracle Automatic Storage Management Administrator's Guide

• Oracle Data Guard Concepts and Administration

• Oracle Database Backup and Recovery User's Guide

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle Database. See Oracle Database
Sample Schemas for information about using these schemas.

Also, you can download the Oracle MAA best practice white papers at http://
www.oracle.com/goto/maa.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/goto/maa
http://www.oracle.com/goto/maa

Part I
Oracle Database High Availability Overview

• Overview of High Availability

• High Availability and Data Protection – Getting From Requirements to Architecture

• Features for Maximizing Availability

• Oracle Database High Availability Solutions for Unplanned Downtime

• Oracle Database High Availability Solutions for Planned Downtime

• Enabling Continuous Service for Applications

• Operational Prerequisites to Maximizing Availability

1
Overview of High Availability

See the following topics to learn what high availability and why it is important. Then follow the
roadmap to implementing a Maximum Availability Architecture.

What Is High Availability?
Availability is the degree to which an application and database service is available.

Availability is measured by the perception of an application's user. Users experience
frustration when their data is unavailable or the computing system is not performing as
expected, and they do not understand or care to differentiate between the complex
components of an overall solution. Performance failures due to higher than expected usage
create the same disruption as the failure of critical components in the architecture. If a user
cannot access the application or database service, it is said to be unavailable. Generally, the
term downtime is used to refer to periods when a system is unavailable.

Users who want their systems to be always ready to serve them need high availability. A
system that is highly available is designed to provide uninterrupted computing services during
essential time periods, during most hours of the day, and most days of the week throughout
the year; this measurement is often shown as 24x365. Such systems may also need a high
availability solution for planned maintenance operations such as upgrading a system's
hardware or software.

Reliability, recoverability, timely error detection, and continuous operations are primary
characteristics of a highly available solution:

• Reliability: Reliable hardware is one component of a high availability solution. Reliable
software—including the database, web servers, and applications—is just as critical to
implementing a highly available solution. A related characteristic is resilience. For
example, low-cost commodity hardware, combined with software such as Oracle Real
Application Clusters (Oracle RAC), can be used to implement a very reliable system. The
resilience of an Oracle RAC database allows processing to continue even though
individual servers may fail. For example, the Oracle RAC database allows processing to
continue even though individual servers may fail.

• Recoverability: Even though there may be many ways to recover from a failure, it is
important to determine what types of failures may occur in your high availability
environment and how to recover from those failures quickly in order to meet your
business requirements. For example, if a critical table is accidentally deleted from the
database, what action should you take to recover it? Does your architecture provide the
ability to recover in the time specified in a service-level agreement (SLA)?

• Timely error detection: If a component in your architecture fails, then fast detection is
essential to recover from the unexpected failure. Although you may be able to recover
quickly from an outage, if it takes an additional 90 minutes to discover the problem, then
you may not meet your SLA. Monitoring the health of your environment requires reliable
software to view it quickly and the ability to notify the database administrator of a
problem.

• Continuous operation: Providing continuous access to your data is essential when very
little or no downtime is acceptable to perform maintenance activities. Activities, such as

1-1

moving a table to another location in the database or even adding CPUs to your
hardware, should be transparent to the user in a high availability architecture.

More specifically, a high availability architecture should have the following traits:

• Tolerate failures such that processing continues with minimal or no interruption

• Be transparent to—or tolerant of—system, data, or application changes

• Provide built-in preventive measures

• Provide active monitoring and fast detection of failures

• Provide fast recoverability

• Automate detection and recovery operations

• Protect the data to minimize or prevent data loss and corruptions

• Implement the operational best practices to manage your environment

• Achieve the goals set in SLAs (for example, recovery time objectives (RTOs) and
recovery point objectives (RPOs)) for the lowest possible total cost of ownership

Importance of Availability
The importance of high availability varies among applications. Databases and the
internet have enabled worldwide collaboration and information sharing by extending
the reach of database applications throughout organizations and communities.

This reach emphasizes the importance of high availability in data management
solutions. Both small businesses and global enterprises have users all over the world
who require access to data 24 hours a day. Without this data access, operations can
stop, and revenue is lost. Users now demand service-level agreements from their
information technology (IT) departments and solution providers, reflecting the
increasing dependence on these solutions. Increasingly, availability is measured in
dollars, euros, and yen, not just in time and convenience.

Enterprises have used their IT infrastructure to provide a competitive advantage,
increase productivity, and empower users to make faster and more informed decisions.
However, with these benefits has come an increasing dependence on that
infrastructure. If a critical application becomes unavailable, then the business can be in
jeopardy. The business might lose revenue, incur penalties, and receive bad publicity
that has a lasting effect on customers and on the company's stock price.

It is important to examine the factors that determine how your data is protected and
maximize availability to your users.

Cost of Downtime
The need to deliver increasing levels of availability continues to accelerate as
enterprises reengineer their solutions to gain competitive advantage. Most often, these
new solutions rely on immediate access to critical business data.

When data is not available, the operation can cease to function. Downtime can lead to
lost productivity, lost revenue, damaged customer relationships, bad publicity, and
lawsuits.

It is not always easy to place a direct cost on downtime. Angry customers, idle
employees, and bad publicity are all costly, but not directly measured in currency. On

Chapter 1
Importance of Availability

1-2

the other hand, lost revenue and legal penalties incurred because SLA objectives are not met
can easily be quantified. The cost of downtime can quickly grow in industries that are
dependent on their solutions to provide service.

Other factors to consider in the cost of downtime are:

• The maximum tolerable length of a single unplanned outage

If the event lasts less than 30 seconds, then it may cause very little impact and may be
barely perceptible to users. As the length of the outage grows, the effect may grow
exponentially and negatively affect the business.

• The maximum frequency of allowable incidents

Frequent outages, even if short in duration, may similarly disrupt business operations.

When designing a solution, it is important to recognize the true cost of downtime to
understand how the business can benefit from availability improvements.

Oracle provides a range of high availability solutions to fit every organization regardless of
size. Small workgroups and global enterprises alike are able to extend the reach of their
critical business applications. With Oracle and the Internet, applications and data are reliably
accessible everywhere, at any time.

Causes of Downtime
One of the challenges in designing a high availability solution is examining and addressing all
of the possible causes of downtime.

It is important to consider causes of both unplanned and planned downtime when designing a
fault-tolerant and resilient IT infrastructure. Planned downtime can be just as disruptive to
operations as unplanned downtime, especially in global enterprises that support users in
multiple time zones.

The following table describes unplanned outage types and provides examples of each type.

Table 1-1 Causes of Unplanned Downtime

Type Description Examples

Site failure A site failure may affect all processing at a data
center, or a subset of applications supported by a
data center.

The definition of site varies given the contexts of on-
premises and cloud.

• Site failure - entire regional failure
• Data center - entire data center location
• Availability domain - isolated data center within a

region with possibly many other availability
domains

• Fault domain - isolated set of system resources
within an Availability Domain or data center

Typically, each site, data center, availability domain,
and fault domain has its own set of isolated hardware,
DB compute, network, storage, and power.

• Extended site-wide power
failure

• Site-wide network failure
• Natural disaster makes a

data center inoperable
• Terrorist or malicious

attack on operations or the
site

Chapter 1
Causes of Downtime

1-3

Table 1-1 (Cont.) Causes of Unplanned Downtime

Type Description Examples

Cluster-wide
failure

The whole cluster hosting an Oracle RAC database is
unavailable or fails. This includes:

• Failures of nodes in the cluster
• Failure of any other components that result in the

cluster being unavailable and the Oracle
database and instances on the site being
unavailable

• The last surviving node on
the Oracle RAC cluster
fails and the node or
database cannot be
restarted

• Both redundant cluster
interconnections fail or
Clusterware failure

• Database corruption so
severe that continuity is not
possible on the current
database server

• Clusterware and hardware-
software defects
preventing availability or
stability.

Computer
failure

A computer failure outage occurs when the system
running the database becomes unavailable because it
has failed or is no longer available. When the
database uses Oracle RAC then a computer failure
represents a subset of the system (while retaining full
access to the data).

• Database system
hardware failure

• Operating system failure
• Oracle instance failure

Network
failure

A network failure outage occurs when a network
device stops or reduces network traffic and
communication from your application to database,
database to storage, or any system to system that is
critical to your application service processing.

• Network switch failure
• Network interface failure
• Network cable failures

Storage
failure

A storage failure outage occurs when the storage
holding some or all of the database contents becomes
unavailable because it has shut down or is no longer
available.

• Disk or flash drive failure
• Disk controller failure
• Storage array failure

Chapter 1
Causes of Downtime

1-4

Table 1-1 (Cont.) Causes of Unplanned Downtime

Type Description Examples

Data
corruption

A corrupt block is a block that was changed so that it
differs from what Oracle Database expects to find.
Block corruptions can be categorized as physical or
logical:

• In a physical block corruption, which is also called
a media corruption, the database does not
recognize the block at all; the checksum is invalid
or the block contains all zeros. An example of a
more sophisticated block corruption is when the
block header and footer do not match.

• In a logical block corruption, the contents of the
block are physically sound and pass the physical
block checks; however, the block can be logically
inconsistent. Examples of logical block corruption
include incorrect block type, incorrect data or
redo block sequence number, corruption of a row
piece or index entry, or data dictionary
corruptions.

Block corruptions can also be divided into interblock
corruption and intrablock corruption:

• In an intrablock corruption, the corruption occurs
in the block itself and can be either a physical or
a logical block corruption.

• In an interblock corruption, the corruption occurs
between blocks and can only be a logical block
corruption.

A data corruption outage occurs when a hardware,
software, or network component causes corrupt data
to be read or written. The service-level impact of a
data corruption outage may vary, from a small portion
of the application or database (down to a single
database block) to a large portion of the application or
database (making it essentially unusable).

• Operating system or
storage device driver
failure

• Faulty host bus adapter
• Disk controller failure
• Volume manager error

causing a bad disk read or
write

• Software or hardware
defects

Human error A human error outage occurs when unintentional or
other actions are committed that cause data in the
database to become incorrect or unusable. The
service-level impact of a human error outage can vary
significantly, depending on the amount and critical
nature of the affected data.

• File deletion (at the file
system level)

• Dropped database object
• Inadvertent data changes
• Malicious data changes

Chapter 1
Causes of Downtime

1-5

Table 1-1 (Cont.) Causes of Unplanned Downtime

Type Description Examples

Lost or stray
writes

A lost or stray write is another form of data corruption,
but it is much more difficult to detect and repair
quickly. A data block stray or lost write occurs when:

• For a lost write, an I/O subsystem acknowledges
the completion of the block write even though the
write I/O did not occur in the persistent storage.
On a subsequent block read on the primary
database, the I/O subsystem returns the stale
version of the data block, which might be used to
update other blocks of the database, thereby
corrupting it.

• For a stray write, the write I/O completed but it
was written somewhere else, and a subsequent
read operation returns the stale value.

• For an Oracle RAC system, a read I/O from one
cluster node returns stale data after a write I/O is
completed from another node (lost write). For
example, this occurs if a network file system
(NFS) is mounted in Oracle RAC without
disabling attribute caching (for example, without
using the noac option). In this case, the write I/O
from one node is not immediately visible to
another node because it is cached.

Block corruptions caused by stray writes or lost writes
can cause havoc to your database availability. The
data block may be physically or logically correct but
subsequent disk reads will show blocks that are stale
or with an incorrect Oracle Database block address.

• Operating system or
storage device driver
failure

• Faulty host bus adapter
• Disk controller failure
• Volume manager error
• Other application software
• Lack of network file

systems (NFS) write
visibility across a cluster

• Software or hardware
defects

Delay,
slowdown, or
hangs

A delay or slowdown occurs when the database or the
application cannot process transactions because of a
resource or lock contention. A perceived delay can be
caused by lack of system resources.

• Database or application
deadlocks

• Runaway processes that
consume system
resources

• Logon storms or system
faults

• Combination of application
peaks with lack of system
or database resources.
This can occur with one
application or many
applications in a
consolidated database
environment without
proper resource
management.

• Archived redo log
destination or fast recovery
area destination becomes
full

• Oversubscribed or heavily
consolidated database
system

Chapter 1
Causes of Downtime

1-6

The following table describes planned outage types and provides examples of each type.

Table 1-2 Causes of Planned Downtime

Type Description Examples

Software
changes

• Planned periodic software changes
to apply minor fixes for stability and
security

• Planned annual or bi-annual major
upgrades to adopt new features and
capabilities

• Software updates, including security
updates to operating system, clusterware.
or database

• Major upgrade of operating system,
clusterware, or database

• Updating or upgrading application software

System
and
database
changes

• Planned system changes to replace
defected hardware

• Planned system changes to expand
or reduce system resources

• Planned database changes to adopt
parameter changes

• Planned change to migrate to new
hardware or architecture

• Adding or removing processors or memory
to a server

• Adding or removing nodes to or from a
cluster

• Adding or removing disks drives or storage
arrays

• Replacing any Field Replaceable Unit
(FRU)

• Changing configuration parameters
• System platform migration
• Migrating to cluster architecture
• Migrating to new storage

Data
changes

Planned data changes to the logical
structure or physical organization of
Oracle Database objects. The primary
objective of these changes is to improve
performance or manageability.

• Table definition changes
• Adding table partitioning
• Creating and rebuilding indexes

Application
changes

Planned application changes can include
data changes and schema and
programmatic changes. The primary
objective of these changes is to improve
performance, manageability, and
functionality.

Application upgrades

Oracle offers high availability solutions to help avoid both unplanned and planned downtime,
and recover from failures. Oracle Database High Availability Solutions for Unplanned
Downtime and Oracle Database High Availability Solutions for Planned Downtime discuss
each of these high availability solutions in detail.

Chaos Engineering
Maximum Availability Architecture leverages Chaos Engineering throughout its testing and
development life cycles to ensure that end-to-end application and database availability is
preserved or at its optimal levels for any fault or maintenance event.

Chaos Engineering is the discipline of experimenting on a system in order to build confidence
in the system’s capability to withstand turbulent conditions in production. Specifically, MAA
injects various faults and planned maintenance events to evaluate application and database
impact throughout our development, stress, and testing cycles. With that experimentation,
best practices, defects, and lessons learned are derived, and that knowledge is put back in
practice to evolve and improve our MAA solutions.

Chapter 1
Chaos Engineering

1-7

Roadmap to Implementing the Maximum Availability
Architecture

Oracle high availability solutions and sound operational practices are the key to
successful implementation of an IT infrastructure. However, technology alone is not
enough.

Choosing and implementing an architecture that best fits your availability requirements
can be a daunting task. Oracle Maximum Availability Architecture (MAA) simplifies the
process of choosing and implementing a high availability architecture to fit your
business requirements with the following considerations:

• Encompasses redundancy across all components

• Provides protection and tolerance from computer failures, storage failures, human
errors, data corruption, lost writes, system delays or slowdowns, and site disasters

• Recovers from outages as quickly and transparently as possible

• Provides solutions to eliminate or reduce planned downtime

• Provides consistent high performance and robust security

• Provides Oracle Engineered System and cloud options to simplify deployment and
management and achieve the highest scalability, performance, and availability

• Achieves SLAs at the lowest possible total cost of ownership

• Applies to On-Premise, Oracle Public Cloud, and hybrid architectures consisting of
parts on-premise and part in the cloud

• Provides special consideration to Container or Oracle Multitenant, Oracle
Database In-Memory, and Oracle Sharding architectures

To build, implement, and maintain this type of architecture, you need to:

1. Analyze your specific high availability requirements, including both the technical
and operational aspects of your IT systems and business processes, as described
in High Availability and Data Protection – Getting From Requirements to
Architecture.

2. Evaluate the various high availability architectures and their benefits and options,
as described in Oracle MAA Reference Architectures.

3. Understand the availability impact for each MAA reference architecture, or various
high availability features, on businesses and applications, as described in Oracle
Database High Availability Solutions for Unplanned Downtime, and Oracle
Database High Availability Solutions for Planned Downtime.

4. Familiarize yourself with Oracle high availability features, as described in Features
for Maximizing Availability.

5. Use operational best practices to provide a successful MAA implementation, as
described in Operational Prerequisites to Maximizing Availability .

6. Implement a high availability architecture using Oracle MAA resources, which
provide technical details about the various Oracle MAA high availability
technologies, along with best practice recommendations for configuring and using
such technologies, such as Oracle MAA best practices white papers, customer

Chapter 1
Roadmap to Implementing the Maximum Availability Architecture

1-8

https://docs.oracle.com/en/database/oracle/oracle-database/19/haiad/index.html

papers with proof of concepts, customer case studies, recorded web casts,
demonstrations, and presentations.

Additional Oracle MAA resources are available at http://www.oracle.com/goto/maa.

Chapter 1
Roadmap to Implementing the Maximum Availability Architecture

1-9

http://www.oracle.com/goto/maa

2
High Availability and Data Protection – Getting
From Requirements to Architecture

See the following topics to learn how Oracle Maximum Availability Architecture provides a
framework to effectively evaluate the high availability requirements of an enterprise.

High Availability Requirements
Any effort to design and implement a high availability strategy for Oracle Database begins by
performing a thorough business impact analysis to identify the consequences to the
enterprise of downtime and data loss, whether caused by unplanned or planned outages.

The term "business impact" is intended to be agnostic of whether the enterprise is a
commercial venture, government agency, or not-for-profit institution. In all cases, data loss
and downtime can seriously impact the ability of any enterprise to perform its functions.
Implementing high availability may involve critical tasks such as:

• Retiring legacy systems

• Investing in more capable and robust systems and facilities

• Redesigning the overall IT architecture and operations to adapt to this high availability
model

• Modifying existing applications to take full advantage of high availability infrastructures

• Redesigning business processes

• Hiring and training personnel

• Moving parts or an entire application or database into the Oracle Public Cloud

• Balancing the right level of consolidation, flexibility, and isolation

• Understanding the capabilities and limitations of your existing system and network
infrastructure

By combining your business analysis with an understanding of the level of investment
required to implement different high availability solutions, you can develop a high availability
architecture that achieves both business and technical objectives.

2-1

Figure 2-1 Planning and Implementing a Highly Available Enterprise

A Methodology for Documenting High Availability
Requirements

The elements of this analysis framework are:

• Business Impact Analysis

• Cost of Downtime

• Recovery Time Objective

• Recovery Point Objective

• Manageability Goal

• Total Cost of Ownership and Return on Investment

Business Impact Analysis
The business impact analysis categorizes the business processes based on the
severity of the impact of IT-related outages.

A rigorous business impact analysis:

• Identifies the critical business processes in an organization

• Calculates the quantifiable loss risk for unplanned and planned IT outages
affecting each of these business processes

Chapter 2
A Methodology for Documenting High Availability Requirements

2-2

• Outlines the effects of these outages

• Considers essential business functions, people and system resources, government
regulations, and internal and external business dependencies

• Is based on objective and subjective data gathered from interviews with knowledgeable
and experienced personnel

• Reviews business practice histories, financial reports, IT systems logs, and so on

For example, consider a semiconductor manufacturer with chip fabrication plants located
worldwide. Semiconductor manufacturing is an intensely competitive business requiring a
huge financial investment that is amortized over high production volumes. The human
resource applications used by plant administration are unlikely to be considered as mission-
critical as the applications that control the manufacturing process in the plant. Failure of the
applications that support manufacturing affects production levels and have a direct impact on
the financial results of the company.

As another example, an internal knowledge management system is likely to be considered
mission-critical for a management consulting firm, because the business of a client-focused
company is based on internal research accessibility for its consultants and knowledge
workers. The cost of downtime of such a system is extremely high for this business.

Similarly, an e-commerce company is highly dependent on customer traffic to its website to
generate revenue. Any disruption in service and loss of availability can dampen customer
experience and drive away customers to the competition. Thus, the company needs to
ensure that the existing infrastructure can scale and handle spikes in customer traffic.
Sometimes, this is not possible using on-premise hardware and by moving the cloud the
company can ensure their systems always remain operational.

Cost of Downtime
A complete business impact analysis provides the insight needed to quantify the cost of
unplanned and planned downtime.

Understanding this cost is essential because it helps prioritize your high availability
investment and directly influences the high availability technologies that you choose to
minimize the downtime risk.

Various reports have been published, documenting the costs of downtime in different
industries. Examples include costs that range from millions of dollars for each hour of
brokerage operations and credit card sales, to tens of thousands of dollars for each hour of
package shipping services.

These numbers are staggering. The Internet and Cloud can connect the business directly to
millions of customers. Application downtime can disrupt this connection, cutting off a business
from its customers. In addition to lost revenue, downtime can negatively affect customer
relationships, competitive advantages, legal obligations, industry reputation, and shareholder
confidence.

Recovery Time Objective
The business impact analysis determines your tolerance to downtime, also known as the
recovery time objective (RTO).

An RTO is defined as the maximum amount of time that an IT-based business process can
be down before the organization starts suffering unacceptable consequences (financial

Chapter 2
A Methodology for Documenting High Availability Requirements

2-3

losses, customer dissatisfaction, reputation, and so on). RTO indicates the downtime
tolerance of a business process or an organization in general.

RTO requirements are driven by the mission-critical nature of the business. Therefore,
for a system running a stock exchange, the RTO is zero or near to zero.

An organization is likely to have varying RTO requirements across its various business
processes. A high volume e-commerce website, for which there is an expectation of
rapid response times, and for which customer switching costs are very low, the web-
based customer interaction system that drives e-commerce sales is likely to have an
RTO of zero or close to zero. However, the RTO of the systems that support back-end
operations, such as shipping and billing, can be higher. If these back-end systems are
down, then the business may resort to manual operations temporarily without a
significant visible impact.

Some organizations have varying RTOs based on the probability of failures. One
simple class separation is local failures (such as single database compute, disk/flash,
network failure) as opposed to disasters (such as a complete cluster, database, data
corruptions, or a site failure). Typically, business-critical customers have an RTO of
less than 1 minute for local failures, and may have a higher RTO of less than 1 hour
for disasters. For mission-critical applications the RTOs may indeed be the same for all
unplanned outages.

Recovery Point Objective
The business impact analysis also determines your tolerance to data loss, also known
as a recovery point objective (RPO).

The RPO is the maximum amount of data that an IT-based business process can lose
without harm to the organization. RPO measures the data-loss tolerance of a business
process or an organization in general. This data loss is often measured in terms of
time, for example, zero, seconds, hours, or days of data loss.

A stock exchange where millions of dollars worth of transactions occur every minute
cannot afford to lose any data. Therefore, its RPO must be zero. The web-based sales
system in the e-commerce example does not require an RPO of zero, although a low
RPO is essential for customer satisfaction. However, its back-end merchandising and
inventory update system can have a higher RPO because lost data can be reentered.

An RPO of zero can be challenging for disasters, but I can be accomplished with
various Oracle technologies protecting your database, especially Zero Data Loss
Recovery Appliance.

Manageability Goal
A manageability goal is more subjective than either the RPO or the RTO. You must
make an objective evaluation of the skill sets, management resources, and tools
available in an organization, and the degree to which the organization can successfully
manage all elements of a high availability architecture.

Just as RPO and RTO measure an organization's tolerance for downtime and data
loss, your manageability goal measures the organization's tolerance for complexity in
the IT environment. When less complexity is a requirement, simpler methods of
achieving high availability are preferred over methods that may be more complex to
manage, even if the latter could attain more aggressive RTO and RPO objectives.

Chapter 2
A Methodology for Documenting High Availability Requirements

2-4

Understanding manageability goals helps organizations differentiate between what is possible
and what is practical to implement.

Moving Oracle databases to Oracle Cloud can reduce manageability cost and complexity
significantly, because Oracle Cloud lets you to choose between various Maximum Availability
Architecture architectures with built-in configuration and life cycle operations. With
Autonomous Database Cloud, database life cycle operations, such as backup and restore,
software updates, and key repair operations are automatic.

Total Cost of Ownership and Return on Investment
Understanding the total cost of ownership (TCO) and objectives for return on investment
(ROI) are essential to selecting a high availability architecture that also achieves the business
goals of your organization.

TCO includes all costs (such as acquisition, implementation, systems, networks, facilities,
staff, training, and support) over the useful life of your chosen high availability solution.
Likewise, the ROI calculation captures all of the financial benefits that accrue for a given high
availability architecture.

For example, consider a high availability architecture in which IT systems and storage at a
remote standby site remain idle, with no other business use that can be served by the
standby systems. The only return on investment for the standby site is the costs related to
downtime avoided by its use in a failover scenario. Contrast this with a different high
availability architecture that enables IT systems and storage at the standby site to be used
productively while in the standby role (for example, for reports or for off-loading the overhead
of user queries or distributing read-write workload from the primary system). The return on
investment of such an architecture includes both the cost of downtime avoided and the
financial benefits that accrue to its productive use, while also providing high availability and
data protection.

Enterprises can also reduce TCO for growing infrastructure needs by moving workloads to
the cloud rather than making an upfront capital investment in building a new data center. The
major economic appeal is to convert capital expenditures into operational expenditures, and
generate a higher ROI.

Mapping Requirements to Architectures
The business impact analysis will help you document what is already known. The outcome of
the business impact analysis provides the insight you need to group databases having similar
RTO and RPO objectives together.

Different applications, and the databases that support them, represent varying degrees of
importance to the enterprise. A high level of investment in high availability infrastructure may
not make sense for an application that if down, would not have an immediate impact on the
enterprise. So where do you start?

Groups of databases by similar RTO and RPO can be mapped to a controlled set of high
availability reference architectures that most closely address the required service levels. Note
that in the case where there are dependencies between databases, they are grouped with the
database having the most stringent high availability requirement.

Chapter 2
Mapping Requirements to Architectures

2-5

Oracle MAA Reference Architectures
Oracle MAA best practices define high availability reference architectures that address
the complete range of availability and data protection required by enterprises of all
sizes and lines of business.

The Platinum, Gold, Silver, and Bronze MAA reference architectures, or tiers, are
applicable to on-premises, private and public cloud configurations, and hybrid cloud.
They deliver the service levels described in the following figure.

Figure 2-2 Oracle MAA Reference Architectures

Each tier uses a different MAA reference architecture to deploy the optimal set of
Oracle high availability capabilities that reliably achieve a given service level at the
lowest cost and complexity. The tiers explicitly address all types of unplanned outages,
including data corruption, component failure, and system and site outages, as well as
planned outages due to maintenance, migrations, or other purposes.

Container databases (CDBs) using Oracle Multitenant can exist in any tier, Bronze
through Platinum, providing higher consolidation density and higher TCO. Typically,
the consolidation density is higher with Bronze and Silver tiers, and there is less or
zero consolidation when deploying a Platinum tier.

Oracle Database In-Memory can also be leveraged in any of the MAA tiers. Because
the In-Memory column store is seamlessly integrated into Oracle Database, all of the
high availability benefits that come from the MAA tiers are inherited when
implementing Oracle Database In-Memory.

Oracle Engineered Systems can also exist in any of the tiers. Integrating Zero Data
Loss Recovery Appliance (Recovery Appliance) as the Oracle Database backup and
recovery solution for your entire data center reduces RPO and RTO when restoring
from backups. Leveraging Oracle Exadata Database Machine as your database
platform in the MAA reference architectures provides the best database platform
solution with the lowest RTO and brownout, along with additional Exadata MAA quality
of service.

Chapter 2
Mapping Requirements to Architectures

2-6

See Also:

High Availability Reference Architectures

Oracle Exadata Database Machine: Maximum Availability Architecture and MAA
Best Practices for Oracle Exadata Database Machine

http://www.oracle.com/goto/maa for MAA white paper “Oracle Database In-Memory
High Availability Best Practices”

Bronze Reference Architecture
The Bronze tier is appropriate for databases where simple restart of a failed component (e.g.
listener, database instance, or database) or restore from backup is "HA and DR enough."

The Bronze reference architecture is based on a single instance Oracle Database using MAA
best practices that implement the many capabilities for data protection and high availability
included with every Oracle Enterprise Edition license. Oracle-optimized backups using Oracle
Recovery Manager (RMAN) provide data protection, and are used to restore availability
should an outage prevent the database from restarting. The Bronze architecture then uses a
redundant system infrastructure enhanced by Oracle's technologies, such as Oracle Restart,
Recovery Manager (RMAN), Zero Data Loss Recovery Appliance, Flashback technologies,
Online Redefinition, Online Patching, Automatic Storage Management (ASM), Oracle
Multitenant, and more.

Silver Reference Architecture
The Silver tier provides an additional level of high availability for databases that require
minimal or zero downtime in the event of database instance or server failure, as well as most
common planned maintenance events, such as hardware and software updates.

The Silver reference architecture adds a rich set of enterprise capabilities and benefits,
including clustering technology using either Oracle RAC or Oracle RAC One Node. Also,
Application Continuity provides a reliable replay of in-flight transactions, which masks
outages from users and simplifies application failover.

Gold Reference Architecture
The Gold tier raises the stakes substantially for business-critical applications that cannot
tolerate high RTO and RPO for any disasters such as database, cluster, corruptions, or site
failures. Additionally, major database upgrades or site migrations can be done in seconds.

The Gold tier also reduces costs while improving your return on investment by actively using
all of the replicas at all times.

The Gold reference architecture adds database-aware replication technologies, Oracle Data
Guard and Oracle Active Data Guard, which synchronize one or more replicas of the
production database to provide real time data protection and availability. Database-aware
replication substantially enhances high availability and data protection (corruption protection)
beyond what is possible with storage replication technologies. Oracle Active Data Guard Far
Sync is used for zero data loss protection at any distance.

See also, Oracle Data Guard Advantages Over Traditional Solutions.

Chapter 2
Mapping Requirements to Architectures

2-7

https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html
https://www.oracle.com/a/tech/docs/exadata-maa.pdf
https://www.oracle.com/a/tech/docs/exadata-maa-wp.pdf
https://www.oracle.com/a/tech/docs/exadata-maa-wp.pdf
http://www.oracle.com/goto/maa

Platinum Reference Architecture
The Platinum tier introduces several new Oracle Database capabilities, including
Oracle GoldenGate for zero-downtime upgrades and migrations.

Edition Based Redefinition lets application developers design for zero-downtime
application upgrades. You can alternativly design applications for Oracle Sharding,
which provides extreme availability by distributing subsets of a database into highly
available shards, while the application can access the entire database as one single
logical database.

Each of these technologies requires additional effort to implement, but they deliver
substantial value for the most critical applications where downtime is not an option.

High Availability and Data Protection Attributes by Tier
Each MAA reference architecture delivers known and tested levels of downtime and
data protection.

The following table summarizes the high availability and data protection attributes
inherent to each architecture. Each architecture includes all of the capabilities of the
previous architecture, and builds upon it to handle an expanded set of outages. The
various components included and the service levels achieved by each architecture are
described in other topics.

Table 2-1 High Availability and Data Protection Attributes By MAA Reference
Architecture

MAA
Reference
Architectur
e

Unplanned
Outages
(Local Site)

Planned
Maintenanc
e

Data
Protection

Unrecoverable Local Outages
and Disaster Recovery

Bronze Single
Instance,
auto-restart
for
recoverable
instance and
server
failures.
Redundancy
for system
infrastructure
so that single
component
failures such
as disk,
flash, and
network
should not
result in
downtime.

Some online,
most off-line

Basic
runtime
validation
combined
with manual
checks

Restore from backup, potential to
lose data generated since the last
backup. Using Zero Data Loss
Recovery Appliance reduces the
potential to lose data to zero or
near zero.

Chapter 2
Mapping Requirements to Architectures

2-8

Table 2-1 (Cont.) High Availability and Data Protection Attributes By MAA
Reference Architecture

MAA
Reference
Architectur
e

Unplanned
Outages
(Local Site)

Planned
Maintenanc
e

Data
Protection

Unrecoverable Local Outages
and Disaster Recovery

Silver HA with
automatic
failover for
instance and
server
failures

Most rolling,
some online,
few offline

Basic
runtime
validation
combined
with manual
checks

Restore from backup, potential to
lose data generated since the last
backup. Using Zero Data Loss
Recovery Appliance reduces the
potential to lose data to zero or
near zero. In-flight transactions are
preserved with Application
Continuity.

Gold Comprehensi
ve high
availability
and disaster
recovery

All rolling or
online

Comprehensi
ve runtime
validation
combined
with manual
checks

Real-time failover, zero or near-zero
data loss

Platinum Zero
application
outage for
Platinum
ready
applications

Zero
application
outage

Comprehensi
ve runtime
validation
combined
with manual
checks

Zero application outage for
Platinum-ready applications, with
zero data loss. Oracle RAC, Oracle
Active Data Guard, and Oracle
GoldenGate complement each
other, providing a wide array of
solutions to achieve zero database
service downtime for unplanned
outages. Alternatively, use Oracle
Sharding for site failure protection,
because impact on the application
is only on shards in failed site rather
than the entire database. Each
shard can be configured with real-
time failover, zero or near-zero data
loss, or zero application outage for
Platinum-ready applications. In-
flight transactions are preserved,
with zero data loss.

See Also:

http://www.oracle.com/goto/maa

Chapter 2
Mapping Requirements to Architectures

2-9

http://www.oracle.com/goto/maa

3
Features for Maximizing Availability

Familiarize yourself with the following Oracle Database high availability features used in MAA
solutions.

Oracle Data Guard
Oracle Data Guard ensures high availability, data protection, and disaster recovery for
enterprise data.

Data Guard provides a comprehensive set of services that create, maintain, manage, and
monitor one or more standby databases to enable Oracle databases to survive outages of
any kind, including natural disasters and data corruptions. A Data Guard standby database is
an exact replica of the production database and thus can be transparently utilized in
combination with traditional backup, restoration, flashback, and cluster techniques to provide
the highest possible level of data protection, data availability and disaster recovery. Data
Guard is included in Oracle Enterprise Edition.

A Data Guard configuration consists of one primary database and one or more standby
databases. A primary database can be either a single-instance Oracle database or an Oracle
RAC database. Similar to a primary database, a standby database can be either a single-
instance Oracle database or an Oracle RAC database. Using a backup copy of the primary
database, you can create up to 30 standby databases that receive redo directly from the
primary database. Optionally you can use a cascaded standby to create Data Guard
configurations where the primary transmits redo to a single remote destination, and that
destination forwards redo to multiple standby databases. This enables a primary database to
efficiently synchronize many more than 30 standby databases if desired.

Note:

Oracle Active Data Guard is an extension of basic Data Guard providing advanced features
that off-load various types of processing from a production database, extend zero data loss
protection over any distance, and that enhance high availability. Oracle Active Data Guard is
licensed separately from Oracle Database Enterprise Edition.

There are several types of standby databases. Data Guard physical standby database is the
MAA best practice for data protection and disaster recovery and is the most common type of
standby database used. A physical standby database uses Redo Apply (an extension of
Oracle media recovery) to maintain an exact, physical replica of the production database.
When configured using MAA best practices, Redo Apply uses multiple Oracle-aware
validation checks to prevent corruptions that can impact a primary database from impacting
the standby. Other types of Data Guard standby databases include: snapshot standby (a
standby open read/write for test or other purposes) and logical standby (used to reduce
planned downtime).

Benefits of Using Data Guard

• Continuous Oracle-aware validation of all changes using multiple checks for physical and
logical consistency of structures within an Oracle data block and redo, before updates are
applied to a standby database. This isolates the standby database and prevents it from
being impacted by data corruptions that can occur on the primary system.

3-1

• Transparent operation: There are no restrictions on the use of Data Guard physical
standby for data protection. Redo Apply supports all data and storage types, all
DDL operations, and all applications (custom and packaged applications), and
guarantees data consistency across primary and standby databases.

• Highest performance: Fast redo transport for best recovery point objective, fast
apply performance for best recovery time objective. Multi-instance redo apply
provides Oracle RAC scalability for redo apply, eliminating bottlenecks of a single
database server. Redo apply can essentially scale up to available CPU, I/O, and
network across your Oracle RAC cluster. An observed redo apply rate of 3500 MB
per second (12 TB/hour) on 8 node RAC Exadata.

• Fast failover to a standby database to maintain availability should the primary
database fail for any reason. Failover is either a manual or automatic operation
depending on how Data Guard is configured.

• Integrated client notification framework to enable application clients to connect to a
new primary database after a failover occurs.

• Automatic or automated (depending upon configuration) resynchronization of a
failed primary database, quickly converting it to a synchronized standby database
after a failover occurs.

• Choice of flexible data protection levels to support all network configurations,
availability and performance SLAs, and business requirements.

• Management of a primary and all of its standby databases as a single
configuration to simplify management and monitoring using either the Data Guard
Broker command-line interface or Oracle Enterprise Manager Cloud Control.

• Data Guard Broker greatly improves manageability with additional features for
comprehensive configuration health checks, resumable switchover operations,
streamlined role transitions, support for cascaded standby configurations, and
user-configurable thresholds for transport and apply lag to automatically monitor
the ability of the configuration to support SLAs for recovery point and recovery
time objectives at any instant in time.

• Efficient transport to multiple remote destinations using a single redo stream
originating from the primary production database and forwarded by a cascading
standby database.

• Snapshot Standby enables a physical standby database to be open read/write for
testing or any activity that requires a read/write replica of production data. A
snapshot standby continues to receive but does not apply updates generated by
the primary. When testing is complete, a snapshot standby is converted back into
a synchronized physical standby database by first discarding the changes made
during the open read/write, and then applying the redo received from the primary
database. Primary data is always protected. Snapshot standby is particularly
useful when used in conjunction with Oracle Real Application Testing (workload is
captured at the production database for replay and subsequent performance
analysis at the standby database-an exact replica of production).

• Reduction of planned downtime by using a standby database to perform
maintenance in a rolling manner. The only downtime is the time required to
perform a Data Guard switchover; applications remain available while the
maintenance is being performed.

• Increased flexibility for Data Guard configurations where the primary and standby
systems may have different CPU architectures or operating systems subject to
limitations defined in My Oracle Support note 413484.1.

Chapter 3
Oracle Data Guard

3-2

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=413484.1

• Efficient disaster recovery for a container database (CDB). Data Guard failover and
switchover completes using a single command at a CDB level regardless of how many
pluggable databases (PDBs) are consolidated within the CDB.

• Enables a specific administration privilege, SYSDG, to handle standard administration
duties for Data Guard. This new privilege is based on the least privilege principle, in
which a user is granted only the necessary privileges required to perform a specific
function and no more. The SYSDBA privilege continues to work as in previous releases.

• The Oracle Database In-Memory column store is supported on standby databases in an
Active Data Guard environment.

• Further improves performance and availability of Data Warehouses in a Data Guard
configuration by tracking information from NOLOGGING operations so they can be repaired
with the new RMAN command RECOVER DATABASE NOLOGGING.

• Improves the impact multiple SYNC transport destinations have on the primary database
through the use of a new parameter DATA_GUARD_SYNC_LATENCY. This parameter defines
the maximum amount of time (in seconds) that the Primary database must wait before
disconnecting subsequent destinations after at least one synchronous standby has
acknowledged receipt of the redo.

• Data Guard Broker improves manageability by supporting destinations of different
Endianess than the primary in addition to enhancing management of alternate
destinations.

• Data Guard improves protection and Return To Operations (RTO) and Recovery Point
Objectives (RPO) through multiple features including:

– Multi-Instance Redo Apply (MIRA) provides scalable redo apply performance across
Oracle RAC instances reducing RTO for even higher production OLTP or batch
workloads

– Compare primary and standby database blocks using the new DBMS_DBCOMP package
to help identify lost writes so they can be resolved efficiently.

– Fast Start Failover (FSFO) has the robustness of highly available zero data loss
configurations with support for Maximum Protection mode while giving the flexibility of
multiple observers and multiple failover targets for high availability in any
configuration. FSFO can also be configured to automatically fail over to the standby
with the detection of a lost write on the primary .

– RPO is improved with no data loss failovers after a storage failure in ASYNC
configurations and Data Guard Broker support for Application Continuity, improving
the user experience during Data Guard role transitions.

• Oracle Data Guard Broker further improves the management of databases by supporting
destinations of different endianness than the primary in addition to enhancing
management of alternate archive destinations when the primary destination is
unavailable.

• Oracle Data Guard Database Compare tool compares data blocks stored in an Oracle
Data Guard primary database and its physical standby databases. Use this tool to find
disk errors (such as lost write) that cannot be detected by other tools like the DBVERIFY
utility. (new in Oracle Database 12c Release 2)

• Oracle Data Guard Broker supports multiple automatic failover targets in a fast-start
failover configuration. Designating multiple failover targets significantly improves the
likelihood that there is always a standby suitable for automatic failover when needed.
(new in Oracle Database 12c Release 2)

Chapter 3
Oracle Data Guard

3-3

• Dynamically change Oracle Data Guard Broker Fast-Start Failover target. The
fast-start failover target standby database can be changed dynamically, to another
standby database in the target list, without disabling fast-start failover. (new in
Oracle Database 19c)

• Propagate restore points from primary to standby Site. Restore points created on
the primary database are propagated to the standby sites, so that they are
available even after a failover operation. (new in Oracle Database 19c)

• Oracle Data Guard automatic outage resolution can be tuned to fit your specific
needs. Oracle Data Guard has an internal mechanism to detect hung processes
and terminate them, allowing the normal outage resolution to occur. (new in Oracle
Database 19c)

• Active Data Guard DML redirection helps load balancing between the primary and
standby databases. Incidental Data Manipulation Language (DML) operations can
be run on Active Data Guard standby databases. This allows more applications to
benefit from using an Active Data Guard standby database when some writes are
required. When incidental DML is issued on an Active Data Guard standby
database, the update is passed to the primary database where it is processed.
The resulting redo of the transaction updates the standby database after which
control is returned to the application. (new in Oracle Database 19c)

Oracle Active Data Guard
Oracle Active Data Guard is Oracle's strategic solution for real time data protection
and disaster recovery for the Oracle database using a physical replication process.

Oracle Active Data Guard also provides high return on investment in disaster recovery
systems by enabling a standby database to be open read-only while it applies changes
received from the primary database. Oracle Active Data Guard is a separately licensed
product that provides advanced features that greatly expand Data Guard capabilities
included with Oracle Enterprise Edition.

Figure 3-1 Oracle Active Data Guard Architecture

Oracle Active Data Guard enables administrators to improve performance by
offloading processing from the primary database to a physical standby database that is
open read-only while it applies updates received from the primary database. Offload
capabilities of Oracle Active Data Guard include read-only reporting and ad-hoc
queries (including DML to global temporary tables and unique global or session

Chapter 3
Oracle Data Guard

3-4

sequences), data extracts, fast incremental backups, redo transport compression, efficient
servicing of multiple remote destinations, and the ability to extend zero data loss protection to
a remote standby database without impacting primary database performance. Oracle Active
Data Guard also increases high availability by performing automatic block repair and enabling
High Availability Upgrades automation.

Note:

Oracle Active Data Guard is licensed separately as a database option license for Oracle
Database Enterprise Edition. All Oracle Active Data Guard capabilities are also included in an
Oracle Golden Gate license for Oracle Enterprise Edition. This provides customers with the
choice of a standalone license for Oracle Active Data Guard, or licensing Oracle GoldenGate
to acquire access to all advanced Oracle replication capabilities.

Benefits of Oracle Active Data Guard

Oracle Active Data Guard inherits all of the benefits previously listed for Data Guard, plus the
following:

• Improves primary database performance: Production-offload to an Oracle Active Data
Guard standby database of read-only applications, reporting, and ad hoc queries. Any
application compatible with a read-only database can run on an Oracle Active Data
Guard standby. Oracle also provides integration that enables the offloading of many
Oracle E-Business Suite Reports, PeopleTools reporting, Oracle Business Intelligence
Enterprise Edition (OBIEE), and Oracle TopLink applications to an Oracle Active Data
Guard standby database.

• DML global temporary tables and the use of sequences at the standby database
significantly expands the number of read-only applications that can be off-loaded from
production databases to an Oracle Active Data Guard standby database.

• The unique ability to easily scale read performance using multiple Oracle Active Data
Guard standby databases, also referred to as a Reader Farm.

• Production-offload of data extracts using Oracle Data Pump or other methods that read
directly from the source database.

• Production-offload of the performance impact from network latency in a synchronous,
zero data loss configuration where primary and standby databases are separated by
hundreds or thousands of miles. Far sync uses a lightweight instance (control file and
archive log files, but no recovery and no data files), deployed on a system independent of
the primary database. The far sync instance is ideally located at the maximum distance
from the primary system that an application can tolerate the performance impact of
synchronous transport to provide optimal protection. Data Guard transmits redo
synchronously to the far sync instance and far sync forwards the redo asynchronously to
a remote standby database that is the ultimate failover target. If the primary database
fails, the same failover command used for any Data Guard configuration, or mouse click
using Oracle Enterprise Manager Cloud Control, or automatic failover using Data Guard
Fast-Start Failover initiates a zero data loss failover to the remote destination. This
transparently extends zero data loss protection to a remote standby database just as if it
were receiving redo directly from the primary database, while avoiding the performance
impact to the primary database of WAN network latency in a synchronous configuration.

• Production-offload of the overhead of servicing multiple remote standby destinations
using far sync. In a far sync configuration, the primary database ships a single stream of
redo to a far sync instance using synchronous or asynchronous transport. The far sync
instance is able to forward redo asynchronously to as many as 29 remote destinations
with zero incremental overhead on the source database.

Chapter 3
Oracle Data Guard

3-5

• Data Guard maximum availability supports the use of the

NOAFFIRM

redo transport attribute. A standby database returns receipt acknowledgment to its
primary database as soon as redo is received in memory. The standby database
does not wait for the Remote File Server (RFS) to write to a standby redo log file.

This feature provides increased primary database performance in Data Guard
configurations using maximum availability and SYNC redo transport. Fast Sync
isolates the primary database in a maximum availability configuration from any
performance impact due to slow I/O at a standby database. This new FAST SYNC
feature can work with a physical standby target or within a far sync configuration.

• Production-offload of CPU cycles required to perform redo transport compression.
Redo transport compression can be performed by the far sync instance if the Data
Guard configuration is licensed for Oracle Advanced Compression. This conserves
bandwidth with zero incremental overhead on the primary database.

• Production-offload and increased backup performance by moving fast incremental
backups off of the primary database and to the standby database by utilizing
Oracle Active Data Guard support for RMAN block change tracking.

• Increased high availability using Oracle Active Data Guard automatic block repair
to repair block corruptions, including file header corruptions, detected at either the
primary or standby, transparent to applications and users.

• Increased high availability by reducing planned downtime for upgrading to new
Oracle Database patch sets and database releases using the additional
automation provided by high availability Upgrade.

• Connection preservation on an Active Data Guard standby through a role change
facilitates improved reporting and improves the user experience. The connections
pause while the database role changes to a primary database and resume,
improving the user experience.

• The Oracle Enterprise Manager Diagnostic tool can be used with Active Data
Guard to capture and send performance data to the Automatic Workload
Repository, while the SQL Tuning Advisor allows primary database SQL statement
tuning to be offloaded to a standby database.

• Active Data Guard support for the Oracle Database In-Memory option enables
reporting to be offloaded to the standby database while reaping the benefits the In-
Memory option provides, including tailored column stores for the standby database
workload.

Oracle Data Guard Advantages Over Traditional Solutions
Oracle Data Guard provides a number of advantages over traditional solutions.

• Fast, automatic or automated database failover for data corruptions, lost writes,
and database and site failures, with recovery times of potentially seconds with
Data Guard as opposed to hours with traditional solutions

• Zero data loss over wide area network using Oracle Active Data Guard Far Sync

• Offload processing for redo transport compression and redo transmission to up to
29 remote destinations using Oracle Active Data Guard Far Sync

Chapter 3
Oracle Data Guard

3-6

• Automatic corruption repair automatically replaces a physical block corruption on the
primary or physical standby by copying a good block from a physical standby or primary
database

• Most comprehensive protection against data corruptions and lost writes on the primary
database

• Reduced downtime for storage, Oracle ASM, Oracle RAC, system migrations and some
platform migrations, and changes using Data Guard switchover

• Reduced downtime for database upgrades with Data Guard rolling upgrade capabilities

• Ability to off-load primary database activities—such as backups, queries, or reporting—
without sacrificing the RTO and RPO ability to use the standby database as a read-only
resource using the real-time query apply lag capability, including Database In-Memory
column support

• Ability to integrate non-database files using Oracle Database File System (DBFS) or
Oracle Advanced Cluster File System (Oracle ACFS) as part of the full site failover
operations

• No need for instance restart, storage remastering, or application reconnection after site
failures

• Transparency to applications

• Transparent and integrated support (application continuity and transaction guard) for
application failover

• Effective network utilization

• Database In-Memory support

• Integrated service and client failover that reduces overall application RTO

• Enhanced and integrated Data Guard awareness with existing Oracle technologies such
as Oracle RAC, RMAN, Oracle GoldenGate, Enterprise Manager, health check (orachk),
DBCA, and Fleet Patch and Provisioning

For data resident in Oracle databases, Data Guard, with its built-in zero-data-loss capability,
is more efficient, less expensive, and better optimized for data protection and disaster
recovery than traditional remote mirroring solutions. Data Guard provides a compelling set of
technical and business reasons that justify its adoption as the disaster recovery and data
protection technology of choice, over traditional remote mirroring solutions.

Data Guard and Planned Maintenance
Data Guard standby databases can be used to reduce planned downtime by performing
maintenance in a rolling fashion. Changes are implemented first at the standby database.
The configuration is allowed to run with the primary at the old version and standby at the new
version until there is confidence that the new version is ready for production. A Data Guard
switchover can be performed, transitioning production to the new version or same changes
can be applied to production in a rolling fashion. The only possible database downtime is the
time required to perform the switchover.

There are several approaches to performing maintenance in a rolling fashion using a Data
Guard standby. Customer requirements and preferences determine which approach is used.

Chapter 3
Oracle Data Guard

3-7

Data Guard Redo Apply and Standby-First Patching
Beginning with Oracle Database 10g, there has been increased flexibility in cross-
platform support using Data Guard Redo Apply.

In certain Data Guard configurations, primary and standby databases are able to run
on systems having different operating systems (for example, Windows and Linux),
word size (32bit/64bit), different storage, different Exadata hardware and software
versions, or different hardware architectures. Redo Apply can also be used to migrate
to Oracle Automatic Storage Management (ASM), to move from single instance Oracle
databases to Oracle RAC, to perform technology refresh, or to move from one data
center to the next.

Beginning with Oracle Database 11g Release 2 (11.2), Standby-First Patch Apply
(physical standby using Redo Apply) can support different database software patch
levels between a primary database and its physical standby database for the purpose
of applying and validating Oracle patches in a rolling fashion. Patches eligible for
Standby-First patching include:

• Database Release Updates (RUs) or Release Update Revisions (RURs)

• Database Patch Set Update (PSU)

• Database Critical Patch Update (CPU)

• Database bundled patch

Standby-First Patch Apply is supported for certified database software patches for
Oracle Database Enterprise Edition 11g Release 2 (11.2) and later.

In each of the types of planned maintenance previously described, the configuration
begins with a primary and physical standby database (in the case of migration to a
new platform, or to ASM or Oracle RAC, the standby is created on the new platform).
After all changes are implemented at the physical standby database, Redo Apply
(physical replication) is used to synchronize the standby with the primary. A Data
Guard switchover is used to transfer production to the standby (the new environment).

See Also:

My Oracle Support Note 413484.1 for information about mixed platform
combinations supported in a Data Guard configuration.

My Oracle Support Note 1265700.1 for more information about Standby First
Patch Apply and the README for each patch to determine if a target patch is
certified as being a Standby-First Patch.

Data Guard Transient Logical Rolling Upgrades
There are numerous types of maintenance tasks that are unable to use Redo Apply
(physical replication) to synchronize the original version of a database with the
changed or upgraded version. These tasks include:

• Database patches or upgrades that are not Standby-First Patch Apply-eligible.
This includes database patch-sets (11.2.0.2 to 11.2.0.4) and upgrade to new
Oracle Database releases (18c to 19c).

Chapter 3
Oracle Data Guard

3-8

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=413484.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1265700.1

• Maintenance must be performed that modifies the physical structure of a database that
would require downtime (for example, adding partitioning to non-partitioned tables,
changing Basicfile LOBs to Securefile LOBs, changing XML-CLOB to Binary XML, or
altering a table to be OLTP-compressed).

All of the previous types of maintenance can be performed in a rolling fashion using a Data
Guard standby database by using Data Guard SQL Apply (logical replication) to synchronize
the old and new versions of the database. Prior to Oracle Database 11g this required creating
a logical standby database, performing the maintenance on the logical standby,
resynchronizing the standby with the primary, and then switching over. Additionally if a
physical standby was being used for disaster recovery, then a new physical standby database
would have to be created from a backup of the production database at the new version. This
represented a number of logistical and cost challenges when upgrading a multi-terabyte
database.

Beginning with Oracle Database 11g, database rolling upgrades can use a new procedure
called Transient Logical that begins and ends with a physical standby database. SQL Apply is
only used during the phase when Data Guard is synchronizing across old and new versions.
A new logical standby database does not need to be created if there is already a physical
standby in place. A new physical standby database does not need to be created from a
backup of the production database at the new version after the maintenance is complete.
Similar to the traditional process of upgrading a Data Guard configuration having an in-place
physical standby, the original primary is upgraded or changed using redo from the new
primary database and Redo Apply (a single catalog upgrade migrates both primary and
standby databases to the new Oracle release).

Transient Logical upgrades require that the primary database be at Oracle Database 11g
release 1 (11.1) or later and that the database meet the prerequisites of SQL Apply.

Oracle provides a Bourne shell script that automates a number of the manual steps required
by the Transient Logical rolling upgrade process.

Databases that use Oracle Database Vault can be upgraded to new Oracle Database
releases and patch sets by using Oracle Data Guard database rolling upgrades (transient
logical standby only).

See Also:

http://www.oracle.com/goto/maa for Oracle MAA white paper “Oracle Database
Rolling Upgrades: Using a Data Guard Physical Standby Database”

Rolling Upgrade Using Oracle Active Data Guard
Rolling database upgrade using Oracle Active Data Guard provides a simpler, automated,
and easily repeatable method for reducing planned downtime than represented by the
manual Transient Logical rolling upgrade procedure.

Rolling upgrade using Oracle Active Data Guard transforms the 42 or more steps required by
the manual procedure into several easy-to-use DBMS_ROLLING PL/SQL packages. Rolling
upgrades performed using the DBMS_ROLLING PL/SQL package are supported on a
multitenant container database (CDB).

A rolling upgrade using Oracle Active Data Guard:

Chapter 3
Oracle Data Guard

3-9

http://www.oracle.com/goto/maa

• Generates an upgrade plan with a configuration-specific set of instructions to
guide you through the upgrade process.

• Modifies parameters of the rolling upgrade.

• Configures primary and standby databases participating in the upgrade.

• Performs switchover of the production database to the new version. Switchover is
the only downtime required.

• Completes the upgrade of the old primary and any additional standby databases in
the Data Guard configuration and resynchronizes with the new primary.

Rolling upgrade using Oracle Active Data Guard has the following additional benefits:

• Provides a simple specify-compile-run protocol

– Catches configuration errors at the compilation step

– Runtime errors are detected during processing

• The state is kept in the database

– Enables a reliable, repeatable process

• Runtime steps are constant regardless of how many databases are involved

• Handles failure at the original primary database

• Enables data protection for the upgraded primary at all times

See Also:

http://www.oracle.com/goto/maa for Oracle MAA white paper “Oracle
Database Rolling Upgrades: Using a Data Guard Physical Standby
Database”

Oracle Data Guard Concepts and Administration

Oracle GoldenGate
Oracle GoldenGate is Oracle's strategic logical replication solution for data distribution
and data integration.

Oracle GoldenGate offers a real-time, log-based change data capture and replication
software platform. The software provides capture, routing, transformation, and delivery
of transactional data across heterogeneous databases in real time.

Unlike replication solutions from other vendors, Oracle GoldenGate is more closely
integrated with Oracle Database while also providing an open, modular architecture
ideal for replication across heterogeneous database management systems. This
combination of attributes eliminates compromise, making Oracle GoldenGate the
preferred logical replication solution for addressing requirements that span Oracle
Database and non-Oracle Database environments.

A typical environment includes a capture, pump, and delivery process. Each of these
processes can run on most of the popular operating systems and databases, including
Oracle Database. All or a portion of the data can be replicated, and the data within any
of these processes can be manipulated for not only heterogeneous environments but

Chapter 3
Oracle GoldenGate

3-10

http://www.oracle.com/goto/maa

also different database schemas, table names, or table structures. Oracle GoldenGate also
supports bidirectional replication with preconfigured conflict detection and resolution handlers
to aid in resolving data conflicts.

Oracle GoldenGate logical replication enables all databases in an Oracle GoldenGate
configuration, both source and target databases, to be open read-write. This makes it a key
component of MAA for addressing a broad range of high availability challenges for zero
downtime maintenance, cross platform migration, and continuous data availability,
specifically:

• Zero or near zero downtime maintenance. In this architecture, Oracle GoldenGate
provides greater flexibility than the capabilities provided by Data Guard. Oracle
GoldenGate source and target databases can have a different physical and logical
structure, can reside on different hardware and operating system architectures, can span
wide differences in Oracle Database releases (for example, 12.2 to 19c), or be a mix of
Oracle and non-Oracle systems. This allows for the modernization of 24x7 servers and
allows new Oracle features to be implemented without impacting the availability of the
databases. Maintenance is first performed on a target database while production runs on
the source. After the maintenance is complete, production can be moved to the source all
at once, similar to a Data Guard switchover. Optionally, bidirectional replication can be
used to gradually move users over to the new system to create the perception of zero
downtime. In either case, Oracle GoldenGate replication can be enabled in the reverse
direction to keep the original source database synchronized during a transition period,
making it simple to effect a planned fall-back to the previous version if needed, with
minimal downtime and no data loss.

• Zero or near-zero downtime migrations when a Data Guard solution is not
applicable. Platform or database migrations can be carried out using Oracle GoldenGate
as the data synchronization method between the old and new systems. Once the
database has been instantiated on another host, Oracle GoldenGate is configured to
replicate changes from the production database. A guaranteed restore point can be
created on the migrated database so that after user testing the database can be flashed
back, and Oracle GoldenGate can apply any outstanding data changes from the
production database before moving the application users to the new database, similar to
a snapshot standby database. If desired, bi-directional replication can also be configured
from the migrated database back to the production database for use as a fallback
solution.

• Zero or near-zero downtime application upgrades. Application upgrades that modify
back-end database objects typically result in significant planned downtime while
maintenance is being performed. Oracle GoldenGate replication enables data
transformations that map database objects used by a previous version of an application
to objects modified by the new version of an application. This enables database
maintenance to be performed on a separate copy of the production database without
impacting the availability of the application. After the maintenance is complete and Oracle
GoldenGate has finished synchronizing old and new versions, users can be switched to
the new version of the application.

• Read-write access to a replica database while it is being synchronized with its
source database. This is most often used to offload reporting to a copy of a production
database when the reporting application requires a read-write connection to database in
order to function. This is also relevant to disaster recovery environments where the
nature of the technology used for the application tier requires an active read-write
connection to the DR database at all times in order to meet recovery time objectives.

• Active-Active replication. Oracle GoldenGate supports an active-active multi-directional
configuration, where there are two or more systems with identical sets of data that can be
changed by application users on either system. Oracle GoldenGate replicates

Chapter 3
Oracle GoldenGate

3-11

transactional data changes from each database to the others to keep all sets of
data current.

• Seamless moves between Oracle Real Application Clusters (RAC) nodes in the
event of database instance failure or during applicable maintenance operations.
This ability provides high availability with Oracle GoldenGate and it is possible to
patch and upgrade the Oracle GoldenGate software on one or more nodes in the
cluster without affecting the node where Oracle GoldenGate is currently running.
Then at a predetermined time, Oracle GoldenGate can be switched to one of the
upgraded nodes. The switch is done without reconfiguring Oracle GoldenGate
because configuration information is shared across the Oracle RAC cluster.

See Also:

Oracle GoldenGate Documentation

http://www.oracle.com/goto/maa for Oracle MAA Oracle GoldenGate white
papers

Best Practice: Oracle Active Data Guard and Oracle
GoldenGate

While Oracle Active Data Guard and Oracle GoldenGate are each capable of
maintaining a synchronized copy of an Oracle database, each has unique
characteristics that result in high availability architectures that can use one technology
or the other, or both at the same time, depending upon requirements.

Examples of MAA Best Practice guidelines are as follows:

When to Use Oracle Active Data Guard
Use Oracle Active Data Guard when the emphasis is on simplicity, data protection, and
availability.

• Simplest, fastest, one-way replication of a complete Oracle database.

• No restrictions: Data Guard Redo Apply supports all data and storage types and
Oracle features; transparent replication of DDL

• Features optimized for data protection: Detects silent corruptions that can occur on
source or target; automatically repairs corrupt blocks

• Synchronized standby open read-only provides simple read-only offloading for
maximum ROI

• Transparency of backups: A Data Guard primary and standby are physically exact
copies of each other; RMAN backups are completely interchangeable

• Zero data loss protection at any distance, without impacting database performance

• Minimizing planned downtime and risk using standby first patching, database
rolling upgrades, and select platform migrations

• Reduce risk of introducing change by dual purposing a DR system for testing
using Data Guard Snapshot Standby

Chapter 3
Best Practice: Oracle Active Data Guard and Oracle GoldenGate

3-12

https://docs.oracle.com/en/middleware/goldengate/index.html
https://www.oracle.com/goto/maa

• Integrated automatic database and client failover

• Integrated management of a complete configuration: Data Guard Broker command line
interface or Oracle Enterprise Manager Cloud Control

When to Use Oracle GoldenGate
Use Oracle GoldenGate when the emphasis is on advanced replication requirements not
addressed by Oracle Active Data Guard.

• Any requirement where the replica database must be open read/write while synchronizing
with the primary database

• Any data replication requirements such as multimaster and bidirectional replication,
subset replication, many-to-one replication, and data transformations.

• When data replication is required between endian format platforms or across-database
major versions.

• Maintenance and migrations where zero downtime or near zero downtime is required.
Oracle GoldenGate can be used to migrate between application versions, for example,
from Application 1.0 to Application 2.0 without downtime.

• Database rolling upgrades where it is desired to replicate from new version down to the
old version for the purpose of fast fall-back if something is wrong with the upgrade.

• Zero downtime planned maintenance where bidirectional replication is used to gradually
migrate users to the new version, creating the perception of zero downtime. Note that
bidirectional replication requires avoiding or resolving update conflicts that can occur on
disparate databases.

When to Use Oracle Active Data Guard and Oracle GoldenGate Together
Oracle Active Data Guard and Oracle GoldenGate are not mutually exclusive. The following
are use cases of high availability architectures that include the simultaneous use of Oracle
Active Data Guard and Oracle GoldenGate.

• An Oracle Active Data Guard standby is utilized for disaster protection and database
rolling upgrades for a mission critical OLTP database. At the same time, Oracle
GoldenGate is used to replicate data from the Data Guard primary database (or from the
standby database using Oracle GoldenGate ALO mode) for ETL update of an enterprise
data warehouse.

• Oracle GoldenGate subset replication is used to create an operational data store (ODS)
that extracts, transforms, and aggregates data from numerous data sources. The ODS
supports mission critical application systems that generate significant revenue for the
company. An Oracle Active Data Guard standby database is used to protect the ODS,
providing optimal data protection and availability.

• Oracle GoldenGate bidirectional replication is utilized to synchronize two databases
separated by thousands of miles. User workload is distributed across each database
based upon geography, workload, and service level using Global Data Services (GDS).
Each Oracle GoldenGate copy has its own local synchronous Data Guard standby
database that enables zero data loss failover if an outage occurs. Oracle GoldenGate
capture and apply processes are easily restarted on the new primary database following
a failover because the primary and standby are an exact, up-to-date replica of each other.

• An Oracle Active Data Guard standby database used for disaster protection is
temporarily converted into an Oracle GoldenGate target for the purpose of performing

Chapter 3
Best Practice: Oracle Active Data Guard and Oracle GoldenGate

3-13

planned maintenance not supported by Data Guard. For example, a Siebel
application upgrade requiring modification of back-end database objects which
require comprehensive testing before switching users over to the new system.

• Oracle Active Data Guard is used to protect a production environment when a
major database version upgrade is required offering zero or near-zero downtime
(for example, Oracle 18c to 19c.) A second primary/standby environment is
created using the new database version, and Oracle GoldenGate is used to
replicate data from the production environment to the copy with one-way or
bidirectional replication. When Oracle GoldenGate has completed synchronizing
the old and new environments, production is switched to the new environment and
the old environment is decommissioned. This provides zero or minimal downtime
depending upon configuration, eliminates risk by providing complete isolation
between the old and new environment, and avoids any impact to data protection
and availability SLAs if problems are encountered during the upgrade process.

See Also:

http://www.oracle.com/goto/maa for Oracle MAA Best Practices white paper
““Transparent Role Transitions With Oracle Data Guard and Oracle
GoldenGate"

Recovery Manager
Recovery Manager (RMAN) provides a comprehensive foundation for efficiently
backing up and recovering the database. RMAN eliminates operational complexity
while providing superior performance and availability of the database.

RMAN determines the most efficient method of running the requested backup,
restoration, or recovery operation and then submits these operations to the Oracle
Database server for processing. RMAN and the server automatically identify
modifications to the structure of the database and dynamically adjust the required
operation to adapt to the changes.

RMAN is the standard interface to backup and restore from Recovery Appliance, local
disk (ZFS storage), tape, and cloud object store.

RMAN provides the following benefits:

• Support for Oracle Sharding - RMAN support for every independent database
(shard)

• Enhancement for Sparse Databases - allows backup and restore to operate on

SPARSE

backup sets and or image copies

• Over the Network Standby Database repair of

NONLOGGED

Chapter 3
Recovery Manager

3-14

http://www.oracle.com/goto/maa

operation - new syntax for validation and repair on Standby -

VALIDATE/RECOVER .. NONLOGGED BLOCK;

• RMAN DUPLICATE

feature enhanced to support creation of Far Sync from Primary and backup

• RMAN DUPLICATE

Using Encrypted Backups - RMAN enhanced support non Auto-login wallet based
encrypted backups with a new

SET

command - enables interrupt-free cloning

• Support for cross-platform backup and restore over the network

• Network-enabled restoration allows the

RESTORE

operations to copy data files directly from one database to another over the network

• Simplified table restoration with the

RECOVER TABLE

command

• Support for Oracle Multitenant, including backup and recovery of individual pluggable
databases

• Support for cross-platform Oracle Multitenant, including backup and recovery of individual
PDBs

• Automatic channel failover on backup and restore operations

• Automatic failover to a previous backup when the restore operation discovers a missing
or corrupt backup

• Automatic creation of new database files and temporary files during recovery

• Automatic recovery through a previous point-in-time recovery—recovery through reset
logs

• Block media recovery, which enables the data file to remain online while fixing the block
corruption

• Fast incremental backups using block change tracking

• Fast backup and restore operations with intrafile and interfile parallelism

• Enhanced security with a virtual private recovery catalog

• Merger of incremental backups into image copies, providing up-to-date recoverability

• Optimized backup and restoration of required files only

Chapter 3
Recovery Manager

3-15

• Retention policy to ensure that relevant backups are retained

• Ability to resume backup and restore operations in case of failure

• Automatic backup of the control file and the server parameter file, ensuring that
backup metadata is available in times of database structural changes and media
failure and disasters

• Easily reinstantiate a new database from an existing backup or directly from the
production database (thus eliminating staging areas) using the

DUPLICATE

command.

See Also:

Oracle Database Backup and Recovery User’s Guide

Oracle Real Application Clusters and Oracle Clusterware
Oracle RAC and Oracle Clusterware enable Oracle Database to run any packaged or
custom application across a set of clustered servers.

This capability provides the highest levels of availability and the most flexible
scalability. If a clustered server fails, then Oracle Database continues running on the
surviving servers. When more processing power is needed, you can add another
server without interrupting access to data.

Oracle RAC enables multiple instances that are linked by an interconnect to share
access to an Oracle database. In an Oracle RAC environment, Oracle Database runs
on two or more systems in a cluster while concurrently accessing a single shared
database. The result is a single database system that spans multiple hardware
systems, enabling Oracle RAC to provide high availability and redundancy during
failures in the cluster. Oracle RAC accommodates all system types, from read-only
data warehouse systems to update-intensive online transaction processing (OLTP)
systems.

Oracle Clusterware is software that, when installed on servers running the same
operating system, enables the servers to be bound together to operate as if they are
one server, and manages the availability of user applications and Oracle databases.
Oracle Clusterware also provides all of the features required for cluster management,
including node membership, group services, global resource management, and high
availability functions:

• For high availability, you can place Oracle databases (single-instance or Oracle
RAC databases), and user applications (Oracle and non-Oracle) under the
management and protection of Oracle Clusterware so that the databases and
applications restart when a process fails or so that a failover to another node
occurs after a node failure.

• For cluster management, Oracle Clusterware presents multiple independent
servers as if they are a single-system image or one virtual server. This single
virtual server is preserved across the cluster for all management operations,

Chapter 3
Oracle Real Application Clusters and Oracle Clusterware

3-16

enabling administrators to perform installations, configurations, backups, upgrades, and
monitoring functions. Then, Oracle Clusterware automatically distributes the processing
of these management functions to the appropriate nodes in the cluster.

Oracle Clusterware is a requirement for using Oracle RAC. Oracle Clusterware is the only
clusterware that you need for most platforms on which Oracle RAC operates. Although
Oracle Database continues to support third-party clusterware products on specified platforms,
using Oracle Clusterware provides these main benefits:

• Dispenses with proprietary vendor clusterware

• Uses an integrated software stack from Oracle that provides disk management with local
or remote Oracle Automatic Storage Management (Oracle Flex ASM) to data
management with Oracle Database and Oracle RAC

• Can be configured in large clusters, called an Oracle Flex Cluster.

In addition, Oracle Database features, such as Oracle services, use the underlying Oracle
Clusterware mechanisms to provide their capabilities.

Oracle Clusterware requires two clusterware components: a voting disk to record node
membership information and the Oracle Cluster Registry (OCR) to record cluster
configuration information. The voting disk and the OCR must reside on shared storage.
Oracle Clusterware requires that each node be connected to a private network over a private
interconnect.

Benefits of Using Oracle Clusterware
Oracle Clusterware provides the following benefits.

• Tolerates and quickly recovers from computer and instance failures.

• Simplifies management and support by means of using Oracle Clusterware together with
Oracle Database. By using fewer vendors and an all Oracle stack you gain better
integration compared to using third-party clusterware.

• Performs rolling upgrades for system and hardware changes. For example, you can
apply Oracle Clusterware upgrades, patch sets, and interim patches in a rolling fashion.

When you upgrade to Oracle Database 12c, Oracle Clusterware and Oracle ASM
binaries are installed as a single binary called the Oracle Grid Infrastructure. You can
upgrade Oracle Clusterware in a rolling manner from Oracle Clusterware 10g and Oracle
Clusterware 11g; however, you can only upgrade Oracle ASM in a rolling manner from
Oracle Database 11g release 1 (11.1).

• Automatically restarts failed Oracle processes.

• Automatically manages the virtual IP (VIP) address. When a node fails, the node's VIP
address fails over to another node on which the VIP address can accept connections.

• Automatically restarts resources from failed nodes on surviving nodes.

• Controls Oracle processes as follows:

– For Oracle RAC databases, Oracle Clusterware controls all Oracle processes by
default.

– For Oracle single-instance databases, Oracle Clusterware enables you to configure
the Oracle processes into a resource group that is under the control of Oracle
Clusterware.

Chapter 3
Oracle Real Application Clusters and Oracle Clusterware

3-17

• Provides an application programming interface (API) for Oracle and non-Oracle
applications that enables you to control other Oracle processes with Oracle
Clusterware, such as restart or react to failures and certain rules.

• Manages node membership and prevents split-brain syndrome in which two or
more instances attempt to control the database.

• Using server weight-based node eviction allows for aligning the choice of which
node gets evicted in case of certain failures in the cluster with business
requirements, ensuring that the most important workload is kept alive for as long
as possible, assuming an equal choice between servers.

• Provides the ability to perform rolling release upgrades of Oracle Clusterware, with
no downtime for applications.

Benefits of Using Oracle Real Application Clusters and Oracle
Clusterware

Together, Oracle RAC and Oracle Clusterware provide all of the Oracle Clusterware
benefits plus the following benefits.

• Provides better integration and support of Oracle Database by using an all Oracle
software stack compared to using third-party clusterware.

• Relocate Oracle Service automatically. Plus, when you perform additional fast
application notification (FAN) and client configuration, distribute FAN events so
that applications can react immediately to achieve fast, automatic, and intelligent
connection and failover.

• Detect connection failures fast and automatically, and remove terminated
connections for any Java application using Oracle Universal Connection Pool
(Oracle UCP) Fast Connection Failover and FAN events.

• Balance work requests using Oracle UCP runtime connection load balancing.

• Use runtime connection load balancing with Oracle UCP, Oracle Call Interface
(OCI), and Oracle Data Provider for .NET (ODP.NET).

• Distribute work across all available instances using load balancing advisory.

• You can configure a database so that Oracle Clusterware is aware of the CPU
requirements and limits for the given database. Oracle Clusterware uses this
information to place the database resource only on servers that have a sufficient
number of CPUs, amount of memory, or both.

• Allow the flexibility to increase processing capacity using commodity hardware
without downtime or changes to the application.

• Provide comprehensive manageability integrating database and cluster features.

• Provide scalability across database instances.

• Implement Fast Connection Failover for nonpooled connections.

Oracle RAC Advantages Over Traditional Cold Cluster Solutions
Oracle RAC provides many advantages over traditional cold cluster solutions,
including the following.

• Scalability across database instances

Chapter 3
Oracle Real Application Clusters and Oracle Clusterware

3-18

• Flexibility to increase processing capacity using commodity hardware without downtime
or changes to the application

• Ability to tolerate and quickly recover from computer and instance failures (measured in
seconds)

• Application brownout can be zero or seconds compared to minutes and hours with cold
cluster solutions

• Optimized communication in the cluster over redundant network interfaces, without using
bonding or other technologies

Oracle Grid Infrastructure and Oracle RAC make use of Redundant Interconnect Usage
that distributes network traffic and ensures optimal communication in the cluster. This
functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2). In
previous releases, technologies like bonding or trunking were used to make use of
redundant networks for the interconnect.

• Rolling upgrades for system and hardware changes

• Rolling patch upgrades for some interim patches, security patches, CPUs, and cluster
software

• Fast, automatic, and intelligent connection and service relocation and failover

• Comprehensive manageability integrating database and cluster features with Grid Plug
and Play and policy-based cluster and capacity management

• Load balancing advisory and run-time connection load balancing help redirect and
balance work across the appropriate resources

• Oracle Quality of Service (QoS) Management for policy-based run-time management of
resource allocation to database workloads to ensure service levels are met in order of
business need under dynamic conditions. This is accomplished by assigning a service to
a server pool where the database is running. Resources from the pool are used to make
sure the required capacity is available.

• Oracle Enterprise Management support for Oracle Automatic Storage Management
(ASM) and Oracle Advanced Cluster File System (ACFS), Grid Plug and Play, Cluster
Resource Management, Oracle Clusterware and Oracle RAC Provisioning and patching.

• SCAN (Single Client Access Name) support as a single name to the clients connecting to
Oracle RAC that does not change throughout the life of the cluster, even if you add or
remove nodes from the cluster.

The following figure shows Oracle Database with Oracle RAC architecture. This figure shows
Oracle Database with Oracle RAC architecture for a partitioned three-node database. An
Oracle RAC database is connected to three instances on different nodes. Each instance is
associated with a service: HR, Sales, and Call Center. The instances monitor each other by
checking "heartbeats." Oracle Net Services provide client access to the Application/web
server tier at the top of the figure.

Chapter 3
Oracle Real Application Clusters and Oracle Clusterware

3-19

Figure 3-2 Oracle Database with Oracle RAC Architecture

Note:

After Oracle release 11.2, Oracle RAC One Node or Oracle RAC is the
preferred solution over Oracle Clusterware (Cold Cluster Failover) because it
is a more complete and feature-rich solution.

See Also:

Oracle RAC Administration and Deployment Guide

Oracle Clusterware Administration and Deployment Guide

Chapter 3
Oracle Real Application Clusters and Oracle Clusterware

3-20

Oracle RAC One Node
Oracle Real Application Clusters One Node (Oracle RAC One Node) is a single instance of
an Oracle RAC database that runs on one node in a cluster.

This feature enables you to consolidate many databases into one cluster with minimal
overhead, protecting them from both planned and unplanned downtime. The consolidated
databases reap the high availability benefits of failover protection, online rolling patch
application, and rolling upgrades for the operating system and Oracle Clusterware.

Oracle RAC One Node enables better availability than cold failover for single-instance
databases because of the Oracle technology called online database relocation, which
intelligently migrates database instances and connections to other cluster nodes for high
availability and load balancing. Online database relocation is performed using the Server
Control Utility (SRVCTL).

Oracle RAC One Node provides the following:

• Always available single-instance database services

• Built-in cluster failover for high availability

• Live migration of instances across servers

• Online rolling patches and rolling upgrades for single-instance databases

• Online upgrade from single-instance to multiple-instance Oracle RAC

• Better consolidation for database servers

• Enhanced server virtualization

• Lower cost development and test platform for full Oracle RAC

• Relocation of Oracle RAC primary and standby databases configured with Data Guard.
This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Oracle RAC One Node also facilitates the consolidation of database storage, standardizes
your database environment, and, when necessary, enables you to transition to a full, multiple-
instance Oracle RAC database without downtime or disruption.

Oracle Automatic Storage Management
Oracle Automatic Storage Management (Oracle ASM) provides a vertically integrated file
system and volume manager directly in the Oracle Database kernel.

This design provides several benefits, resulting in:

• Significantly less work to provision database storage

• Higher level of availability

• Elimination of the expense, installation, and maintenance of specialized storage products

• Unique capabilities for database applications

For optimal performance, Oracle ASM spreads files across all available storage. To protect
against data loss, Oracle ASM extends the concept of SAME (stripe and mirror everything)
and adds more flexibility because it can mirror at the database file level rather than at the
entire disk level.

Chapter 3
Oracle RAC One Node

3-21

More important, Oracle ASM simplifies the processes of setting up mirroring, adding
disks, and removing disks. Instead of managing hundreds or possibly thousands of
files (as in a large data warehouse), database administrators using Oracle ASM create
and administer a larger-grained object called a disk group. The disk group identifies
the set of disks that are managed as a logical unit. Automation of file naming and
placement of the underlying database files save administrators time and ensure
adherence to standard best practices.

The Oracle ASM native mirroring mechanism (two-way or three-way) protects against
storage failures. With Oracle ASM mirroring, you can provide an additional level of
data protection with the use of failure groups. A failure group is a set of disks sharing a
common resource (disk controller or an entire disk array) whose failure can be
tolerated. After it is defined, an Oracle ASM failure group intelligently places redundant
copies of the data in separate failure groups. This ensures that the data is available
and transparently protected against the failure of any component in the storage
subsystem.

By using Oracle ASM, you can:

• Mirror and stripe across drives and storage arrays.

• Automatically remirror from a failed drive to remaining drives.

• Automatically rebalance stored data when disks are added or removed while the
database remains online.

• Support Oracle database files and non-database files using Oracle Advanced
Cluster File System (Oracle ACFS).

• Allow for operational simplicity in managing database storage.

• Manage the Oracle Cluster Registry (OCR) and voting disks.

• Provide preferred read capability on disks that are local to the instance, which
gives better performance for an extended cluster.

• Support very large databases.

• Support Oracle ASM rolling upgrades.

• Improve availability and reliability using the Oracle ASM disk scrubbing process to
find and repair logical data corruptions using mirror disks.

• Support finer granularity in tuning and security.

• Provide fast repair after a temporary disk failure through Oracle ASM Fast Mirror
Resync and automatic repair of block corruptions if a good copy exists in one of
the mirrors.

• Provide disaster recovery capability for the file system by enabling replication of
Oracle ACFS across the network to a remote site.

• Patch the Oracle ASM instance without impacting the clients that are being
serviced using Oracle Flex ASM. A database instance can be directed to access
Oracle ASM metadata from another location while the current Oracle ASM
instance it is connected to is taken offline for planned maintenance.

• Monitor and manage the speed and status of Oracle ASM Disk Resync and
Rebalance operations.

• Bring online multiple disks simultaneously and manage performance better by
controlling resync parallelism using the Oracle ASM Resync Power Limit. Recover
faster after a cell or disk failure, and the instance doing the resync is failing; this is
made possible by using a Disk Resync Checkpoint which enables a resync to

Chapter 3
Oracle Automatic Storage Management

3-22

resume from where it was interrupted or stopped instead of starting from the beginning.

• Automatically connect database instances to another Oracle ASM instance using Oracle
Flex ASM. The local database instance can still access the required metadata and data if
an Oracle ASM instance fails due to an unplanned outage.

• Use flex diskgroups to prioritize high availability benefits across multiple databases all
using the same diskgroup. Some of the key HA benefits are file extent redundancy,
rebalance power limit, and rebalance priority. With flex diskgroups, you can set different
values for the above features for different databases, resulting in prioritization across
multiple databases within one diskgroup.

• Use flex diskgroups to implement quoto_groups across multiple databases sharing one
diskgroup which helps in space management and protection.

• Use flex diskgroups to create point-in-time database clones using the ASM split mirror
feature.

• Use preferred reads with stretch clusters to improve performance by affinitizing reads to a
site.

See Also:

Oracle Automatic Storage Management Administrator's Guide

Fast Recovery Area
The fast recovery area is a unified storage location for all recovery-related files and activities
in Oracle Database.

After this feature is enabled, all RMAN backups, archived redo log files, control file
autobackups, flashback logs, and data file copies are automatically written to a specified file
system or Oracle ASM disk group, and the management of this disk space is handled by
RMAN and the database server.

Performing a backup to disk is faster because using the fast recovery area eliminates the
bottleneck of writing to tape. More important, if database media recovery is required, then
data file backups are readily available. Restoration and recovery time is reduced because
you do not need to find a tape and a free tape device to restore the needed data files and
archived redo log files.

The fast recovery area provides the following benefits:

• Unified storage location of related recovery files

• Management of the disk space allocated for recovery files, which simplifies database
administration tasks

• Fast, reliable, disk-based backup and restoration

See Also:

Oracle Database Backup and Recovery User’s Guide

Chapter 3
Fast Recovery Area

3-23

Corruption Prevention, Detection, and Repair
Data block corruptions can be very disruptive and challenging to repair. Corruptions
can cause serious application and database downtime and data loss when
encountered and worse yet it can go undetected for hours, days and even weeks
leading to even longer application downtime once detected.Unfortunately, there is not
one way to comprehensively prevent, detect, and repair data corruptions within the
database because the source and cause of corruptions can be anywhere in memory,
hardware, firmware, storage, operating system, software, or user error. Worse yet,
third-party solutions that do not understand Oracle data block semantics and how
Oracle changes data blocks do not prevent and detect data block corruptions well.
Third party remote mirroring technologies can propagate data corruptions to the
database replica (standby) leading to a double failure, data loss, and much longer
downtime. Third party backup and restore solutions cannot detect corrupted backups
or bad sectors until a restore or validate operation is issued, resulting in longer restore
times and once again potential data loss.

Oracle MAA has a comprehensive plan to prevent, detect, and repair all forms of data
block corruptions including physical block corruptions, logical block corruptions, stray
writes, and lost writes. These additional safeguards provide the most comprehensive
Oracle data block corruption prevention, detection, and repair solution. Details of this
plan are described in the My Oracle Support note "Best Practices for Corruption
Detection, Prevention, and Automatic Repair - in a Data Guard Configuration (Doc ID
1302539.1)."

The following outlines block corruption checks for various manual operational checks
and runtime and background corruption checks. Database administrators and the
operations team can incorporate manual checks such as running Oracle Recovery
Manager (RMAN) backups, RMAN "check logical" validations, or running the ANALYZE
VALIDATE STRUCTURE command on important objects. Manual checks are especially
important to validate data that are rarely updated or queried.

Runtime checks are far superior in that they catch corruptions almost immediately or
during runtime for actively queried and updated data. Runtime checks can prevent
corruptions or automatically fix corruptions resulting in better data protection and
higher application availability. A new background check has been introduced in
Exadata to automatically scan and scrub disks intelligently with no application
overhead and to automatically fix physically corrupted blocks.

Table 3-1 Summary of Block Corruption Checks

Checks Capabilities Physical Block
Corruption

Logical Block
Corruption

Manual checks Dbverify, Analyze Physical block
checks

Logical intra-block and
inter-object consistency
checks

Manual checks RMAN Physical block
checks during
backup and restore
operations

Intra-block logical
checks

Manual checks ASM Scrub Physical block
checks

Some logical intra-
block checks

Chapter 3
Corruption Prevention, Detection, and Repair

3-24

Table 3-1 (Cont.) Summary of Block Corruption Checks

Checks Capabilities Physical Block
Corruption

Logical Block
Corruption

Runtime checks Oracle Active Data
Guard

1. Continuous
physical block
checking at standby
during transport and
apply

2. Strong database
isolation eliminates
single point database
failure

3. Automatic repair of
block corruptions,
including file block
headers in Oracle
Database 12c
Release 2

4. Automatic
database failover

1. With
DB_LOST_WRITE_PROT
ECT enabled, detection
of lost writes (11.2 and
higher). With 11.2.0.4
and Data Guard broker,
ability to shutdown the
primary when lost
writes are detected on
the primary database.

2. With
DB_BLOCK_CHECKING
enabled on the
standby, additional
intra-block logical
checks

Runtime checks Database With
DB_BLOCK_CHECKSU
M, in-memory data
block and redo
checksum validation

With
DB_BLOCK_CHECKING,
in-memory intra-block
check validation

Starting in Oracle
Database 18c, and with
Shadow Lost Write
Protection enabled,
Oracle tracks system
change numbers
(SCNs) for tracked data
files and enables early
lost write detection.
When lost writes are
detected, an error is
returned immediately.

See Shadow Lost Write
Protection description
following this table.

Runtime checks ASM and ASM
software mirroring

(inherent in Exadata,
Supercluster, and
Zero Data Loss
Recovery Appliance)

Implicit data
corruption detection
for reads and writes
and automatic repair
if good ASM extent
block pair is available
during writes

.

Runtime checks DIX + T10 DIF Checksum validation
from operating
system to HBA
controller to disk
(firmware). Validation
for reads and writes
for certified Linux,
HBA and disks.

.

Chapter 3
Corruption Prevention, Detection, and Repair

3-25

Table 3-1 (Cont.) Summary of Block Corruption Checks

Checks Capabilities Physical Block
Corruption

Logical Block
Corruption

Runtime checks Hardware and
Storage

Limited checks due
to lack of Oracle
integration.
Checksum is most
common.

Limited checks due to
lack of Oracle
integration. Checksum
is most common

Runtime checks Exadata Comprehensive
HARD checks on
writes

HARD checks on
writes

Background checks Exadata Automatic HARD
disk scrub and repair.
Detects and fixes
bad sectors.

.

Shadow Lost Write Protection

New in Oracle Database 18c, shadow lost write protection detects a lost write before it
can result in a major data corruption. You can enable shadow lost write protection for a
database, a tablespace, or a data file without requiring an Oracle Data Guard standby
database. Shadow lost write protection provides fast detection and immediate
response to a lost write, thus minimizing the data loss that can occur in a database
due to data corruption.

See Also:

Oracle Database Reference for more information about the views and
initialization parameters

My Oracle Support Note 1302539.1

Data Recovery Advisor
Data Recovery Advisor automatically diagnoses persistent (on-disk) data failures,
presents appropriate repair options, and runs repair operations at your request.

You can use Data Recovery Advisor to troubleshoot primary databases, logical
standby databases, physical standby databases, and snapshot standby databases.

Data Recovery Advisor includes the following functionality:

• Failure diagnosis

The first symptoms of database failure are usually error messages, alarms, trace
files and dumps, and failed health checks. Assessing these symptoms can be
complicated, error-prone, and time-consuming. Data Recovery Advisor
automatically diagnoses data failures and informs you about them.

• Failure impact assessment

Chapter 3
Data Recovery Advisor

3-26

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1302539.1

After a failure is diagnosed, you must understand its extent and assess its impact on
applications before devising a repair strategy. Data Recovery Advisor automatically
assesses the impact of a failure and displays it in an easily understood format.

• Repair generation

Even if a failure was diagnosed correctly, selecting the correct repair strategy can be
error-prone and stressful. Moreover, there is often a high penalty for making poor
decisions in terms of increased downtime and loss of data. Data Recovery Advisor
automatically determines the best repair for a set of failures and presents it to you.

• Repair feasibility checks

Before presenting repair options, Data Recovery Advisor validates them with respect to
the specific environment and availability of media components required to complete the
proposed repair, including restoring files directly from the primary or standby database to
complete the proposed repair.

• Repair automation

If you accept the suggested repair option, Data Recovery Advisor automatically performs
the repair, verifies that the repair was successful, and closes the appropriate failures.

• Validation of data consistency and database recoverability

Data Recovery Advisor can validate the consistency of your data, and backups and redo
stream, whenever you choose.

• Early detection of corruption

Through Health Monitor, you can schedule periodic runs of Data Recovery Advisor
diagnostic checks to detect data failures before a database process running a transaction
discovers the corruption and signals an error. Early warnings can limit the damage
caused by corruption.

• Integration of data validation and repair

Data Recovery Advisor is a single tool for data validation and repair.

Note:

Data Recovery Advisor only supports single-instance databases. Oracle RAC
databases are not supported.

See Also:

Oracle Database Backup and Recovery User’s Guide for information about Data
Recovery Advisor supported database configurations.

Oracle Flashback Technology
Oracle Flashback technology is a group of Oracle Database features that let you view past
states of database, database objects, transactions or rows or to rewind the database,
database objects, transactions or rows to a previous state without using point-in-time media
recovery.

Chapter 3
Oracle Flashback Technology

3-27

With flashback features, you can:

• Perform queries to show data as it looked at a previous point in time

• Perform queries that return metadata that shows a detailed history of changes to
the database

• Recover tables or rows to a previous point in time

• Automatically track and archive transactional data changes

• Roll back a transaction and its dependent transactions while the database remains
online

• Undrop a table

• Recover a database to a point-in-time without a restore operation

Other than the flashback database feature, most Oracle Flashback features use the
Automatic Undo Management (AUM) system to obtain metadata and historical data for
transactions. They rely on undo data, which are records of the effects of individual
transactions. For example, if a user runs an UPDATE statement to change a salary
from 1000 to 1100, then Oracle Database stores the value 1000 in the undo data.

Undo data is persistent and survives a database shutdown. By using flashback
features, you can use undo data to query past data or recover from logical damage.
Besides using it in flashback features, Oracle Database uses undo data to perform
these actions:

• Roll back active transactions

• Recover terminated transactions by using database or process recovery

• Provide read consistency for SQL queries

Oracle Flashback can address and rewind data that is compromised due to various
human or operator errors that inadvertently or maliciously change data, cause bad
installations and upgrades, and result in logical errors in applications. These problems
use features such as flashback transaction, flashback drop, flashback table, and
flashback database.

See Also:

Oracle Database Development Guide

Performing Flashback and Database Point-in-Time Recovery, Using
Flashback Database and Restore Points, and Performing Block Media
Recovery in the Oracle Database Backup and Recovery User’s Guide

Oracle Database PL/SQL Packages and Types Reference

Oracle Database Backup and Recovery Reference

Oracle Flashback Query
Oracle Flashback Query (Flashback Query) provides the ability to view data as it
existed in the past by using the Automatic Undo Management system to obtain
metadata and historical data for transactions.

Chapter 3
Oracle Flashback Technology

3-28

Undo data is persistent and survives a database malfunction or shutdown. The unique
features of Flashback Query not only provide the ability to query previous versions of tables,
they also provide a powerful mechanism to recover from erroneous operations.

Uses of Flashback Query include:

• Recovering lost data or undoing incorrect, committed changes. For example, rows that
were deleted or updated can be immediately repaired even after they were committed.

• Comparing current data with the corresponding data at some time in the past. For
example, by using a daily report that shows the changes in data from yesterday, it is
possible to compare individual rows of table data, or find intersections or unions of sets of
rows.

• Checking the state of transactional data at a particular time, such as verifying the account
balance on a certain day.

• Simplifying application design by removing the need to store certain types of temporal
data. By using Flashback Query, it is possible to retrieve past data directly from the
database.

• Applying packaged applications, such as report generation tools, to past data.

• Providing self-service error correction for an application, enabling users to undo and
correct their errors.

Oracle Flashback Version Query
Oracle Flashback Version Query is an extension to SQL that you can use to retrieve the
versions of rows in a given table that existed at a specific time interval.

Oracle Flashback Version Query returns a row for each version of the row that existed in the
specified time interval. For any given table, a new row version is created each time the
COMMIT statement is issued.

Oracle Flashback Version Query is a powerful tool that database administrators (database
administrators) can use to run analysis to determine the source of problems. Additionally,
application developers can use Oracle Flashback Version Query to build customized
applications for auditing purposes.

Oracle Flashback Transaction
Oracle Flashback Transaction backs out a transaction and its dependent transactions.

The

DBMS_FLASHBACK.TRANSACTION_BACKOUT()

procedure rolls back a transaction and its dependent transactions while the database remains
online. This recovery operation uses undo data to create and run the compensating
transactions that return the affected data to its original state. You can query the

DBA_FLASHBACK_TRANSACTION_STATE

view to see whether the transaction was backed out using dependency rules or forced out by
either:

Chapter 3
Oracle Flashback Technology

3-29

• Backing out nonconflicting rows

• Applying undo SQL

Oracle Flashback Transaction increases availability during logical recovery by quickly
backing out a specific transaction or set of transactions and their dependent
transactions. You use one command to back out transactions while the database
remains online.

Oracle Flashback Transaction Query
Oracle Flashback Transaction Query provides a mechanism to view all of the changes
made to the database at the transaction level.

When used in conjunction with Oracle Flashback Version Query, it offers a fast and
efficient means to recover from a human or application error. Oracle Flashback
Transaction Query increases the ability to perform online diagnosis of problems in the
database by returning the database user that changed the row, and performs analysis
and audits on transactions.

Oracle Flashback Table
Oracle Flashback Table recovers a table to a previous point in time.

It provides a fast, online solution for recovering a table or set of tables that were
changed by a human or application error. In most cases, Oracle Flashback Table
alleviates the need for administrators to perform more complicated point-in-time
recovery operations. The data in the original table is not lost when you use Oracle
Flashback Table because you can return the table to its original state.

Oracle Flashback Drop
Although there is no easy way to recover dropped tables, indexes, constraints, or
triggers, Oracle Flashback Drop provides a safety net when you are dropping objects.

When you drop a table, it is automatically placed into the Recycle Bin. The Recycle
Bin is a virtual container where all dropped objects reside. You can continue to query
data in a dropped table.

Restore Points
When an Oracle Flashback recovery operation is performed on the database, you
must determine the point in time—identified by the system change number (SCN) or
time stamp—to which you can later flash back the data.

Oracle Flashback restore points are labels that you can define to substitute for the
SCN or transaction time used in Flashback Database, Flashback Table, and Oracle
Recovery Manager (RMAN) operations. Furthermore, a database can be flashed back
through a previous database recovery and opened with an

OPEN RESETLOGS

command by using guaranteed restore points. Guaranteed restore points allow major
database changes—such as database batch jobs, upgrades, or patches—to be quickly
undone by ensuring that the undo required to rewind the database is retained.

Chapter 3
Oracle Flashback Technology

3-30

Using the restore points feature provides the following benefits:

• The ability to quickly restore to a consistent state, to a time before a planned operation
that has gone awry (for example, a failed batch job, an Oracle software upgrade, or an
application upgrade)

• The ability to resynchronize a snapshot standby database with the primary database

• A quick mechanism to restore a test or cloned database to its original state

Oracle Flashback Database
Oracle Flashback Database is the equivalent of a fast rewind button, quickly returning a
database to a previous point in time without requiring a time consuming restore and roll
forward using a backup and archived logs.

The larger the size of the database, the greater the advantage of using Oracle Flashback
Database for fast point in time recovery.

Enabling Oracle Flashback Database provides the following benefits:

• Fast point in time recovery to repair logical corruptions, such as those caused by
administrative error.

• Useful for iterative testing when used with Oracle restore points. A restore point can be
set, database changes implemented, and test workload run to assess impact. Oracle
Flashback Database can then be used to discard the changes and return the database to
the original starting point, different modifications can be made, and the same test
workload run a second time to have a true basis for comparing the impact of the different
configuration changes.

• Data Guard uses Oracle Flashback Database to quickly reinstantiate a failed primary
database as a new standby (after a failover has occurred), without requiring the failed
primary to be restored from a backup.

• Flashback database operates at the CDB level or the PDB level.

Flashback Pluggable Database
You can rewind a PDB to a previous SCN. The FLASHBACK PLUGGABLE DATABASE command,
which is available through SQL or Recovery Manager, is analogous to FLASHBACK DATABASE
in a non-CDB.

Flashback PDB protects an individual PDB against data corruption, widespread user errors,
and redo corruption. The operation does not rewind data in other PDBs in the CDB.

You can use

CREATE RESTORE POINT ... FOR PLUGGABLE
 DATABASE

to create a PDB restore point, which is only usable within a specified PDB. As with CDB
restore points, PDB restore points can be normal or guaranteed. A guaranteed restore point

Chapter 3
Oracle Flashback Technology

3-31

never ages out of the control file and must be explicitly dropped. If you connect to the
root, and if you do not specify the

FOR PLUGGABLE
 DATABASE

clause, then you create a CDB restore point, which is usable by all PDBs.

A special type of PDB restore point is a clean restore point, which you can only create
when a PDB is closed. For PDBs with shared undo, rewinding the PDB to a clean
restore point is faster than other options because it does not require restoring backups
or creating a temporary database instance.

Block Media Recovery Using Flashback Logs or Physical Standby
Database

After attempting to automatically repair corrupted blocks, block media recovery can
optionally retrieve a more recent copy of a data block from the flashback logs to
reduce recovery time.

Automatic block repair allows corrupt blocks on the primary database to be
automatically repaired as soon as they are detected, by using good blocks from a
physical standby database.

Furthermore, a corrupted block encountered during instance recovery does not result
in instance recovery failure. The block is automatically marked as corrupt and added to
the RMAN corruption list in the

V$DATABASE_BLOCK_CORRUPTION

table. You can subsequently issue the RMAN

RECOVER BLOCK

command to fix the associated block. In addition, the RMAN

RECOVER BLOCK

command restores blocks from a physical standby database, if it is available.

Flashback Data Archive
The Flashback Data Archive is stored in a tablespace and contains transactional
changes to every record in a table for the duration of the record's lifetime.

The archived data can be retained for a much longer duration than the retention period
offered by an undo tablespace, and used to retrieve very old data for analysis and
repair.

Oracle Data Pump and Data Transport

Chapter 3
Oracle Data Pump and Data Transport

3-32

Oracle Data Pump technology enables very high-speed movement of data and metadata
from one database to another. Data Pump is used to perform the following planned
maintenance activities:

• Database migration to a different platform

• Database migration to pluggable databases

• Database upgrade

The Data Pump features that enable the planned maintenance activities listed above are the
following:

• Full transportable export/import to move an entire database to a different database
instance

• Transportable tablespaces to move a set of tablespaces between databases

See Also:

Transporting Data

Oracle Replication Technologies for Non-Database Files
Oracle Advanced Cluster File System (Oracle ACFS), Oracle Database File System, and
Oracle Solaris ZFS Storage Appliance Replication are the Oracle replication technologies for
non-database files.

Table 3-2 Oracle Replication Technologies for Non-Database Files

Technology Recommended Usage Comments

Oracle Advanced Cluster
File System

Recommended to provide
a single-node and cluster-
wide file system solution
integrated with Oracle
ASM, Oracle Clusterware,
and Oracle Enterprise
Manager technologies.
Provides a loosely coupled
full stack replication
solution when combined
with Data Guard or Oracle
GoldenGate.

Oracle ACFS establishes and maintains
communication with the Oracle ASM
instance to participate in Oracle ASM state
transitions including Oracle ASM instance
and disk group status updates and disk
group rebalancing.

Supports many database and application
files, including executables, database trace
files, database alert logs, application reports,
BFILEs, and configuration files. Other
supported files are video, audio, text,
images, engineering drawings, and other
general-purpose application file data.

Can provide near-time consistency between
database changes and file system changes
when point-in-time recovery happens

Can be exported and accessed by remote
clients using standard NAS File Access
Protocols such as NFS and CIFS.

Chapter 3
Oracle Replication Technologies for Non-Database Files

3-33

Table 3-2 (Cont.) Oracle Replication Technologies for Non-Database Files

Technology Recommended Usage Comments

Oracle Database File
System

Recommended for
providing stronger
synchronization between
database and non-
database systems.

Can be integrated with the database to
maintain complete consistency between the
database changes and the file system
changes

All data stored in the database and can be
used with Oracle Active Data Guard to
provide both disaster recovery and read-only
access

Can take advantage all of the Oracle
database features

Oracle Solaris ZFS Storage
Appliance Replication

Recommended for disaster
recovery protection for non-
database files, and
specifically for Oracle
Fusion Middleware critical
files stored outside of the
database.

Replicates all non-database objects,
including Oracle Fusion Middleware binaries
configuration

Can provide near time consistency between
database changes and file system changes
when point-in-time recovery happens

Oracle Advanced Cluster File System
Oracle Advanced Cluster File System (ACFS) is a multiplatform, scalable file system,
and storage management technology that extends Oracle Automatic Storage
Management (Oracle ASM) functionality to support customer files maintained outside
of Oracle Database.

Oracle ACFS supports many database and application files, including executables,
database trace files, database alert logs, application reports, BFILEs, and
configuration files. Other supported files are video, audio, text, images, engineering
drawings, and other general-purpose application file data.

Oracle ACFS takes advantage of the following Oracle ASM functionality:

• Oracle ACFS dynamic file system resizing

• Maximized performance through direct access to Oracle ASM disk group storage

• Balanced distribution of Oracle ACFS across Oracle ASM disk group storage for
increased I/O parallelism

• Data reliability through Oracle ASM mirroring protection mechanisms

Oracle ACFS Replication, similar to Data Guard for the database, enables replication
of Oracle ACFS file systems across the network to a remote site, providing disaster
recovery capability for the file system. Oracle ACFS replication captures file system
changes written to disk for a primary file system and records the changes in files called
replication logs. These logs are transported to the site hosting the associated standby
file system where background processes read the logs and apply the changes
recorded in the logs to the standby file system. After the changes recorded in a
replication log are successfully applied to the standby file system, the replication log is
deleted from the sites hosting the primary and standby file systems.

An additional feature of Oracle ACFS is that it offers snapshot-based replication for
generic and application files, providing an HA solution for disaster recovery and Test/

Chapter 3
Oracle Replication Technologies for Non-Database Files

3-34

Development environments. Oracle Databases stored in ACFS can leverage Oracle
Multiltenant and ACFS snapshot technologies to create quick and efficient snapshot clones of
pluggable databases.

Oracle Data Guard and Oracle ACFS can be combined to provide a full stack high availability
solution with Data Guard protecting the database with a standby database and Oracle ACFS
replicating the file system changes to the standby host. For planned outages the file system
and the database remain consistent to a point in time with zero data loss.

See Also:

Oracle ACFS ASM Cluster File System: What is it and How to use it

http://www.oracle.com/goto/maa for Oracle MAA white paper “Full Stack Role
Transition - Oracle ACFS and Oracle Data Guard”

Oracle Database File System
Oracle Database File System (DBFS) takes advantage of the features of the database to
store files, and the strengths of the database in efficiently managing relational data, to
implement a standard file system interface for files stored in the database.

With this interface, storing files in the database is no longer limited to programs specifically
written to use BLOB and CLOB programmatic interfaces. Files in the database can now be
transparently accessed using any operating system (OS) program that acts on files. For
example, extract, transform, and load (ETL) tools can transparently store staging files in the
database.

Oracle DBFS provides the following benefits:

• Full stack integration recovery and failover: By storing file system files in a database
structure, it is possible to easily perform point-in-time recovery of both database objects
and file system data.

• Disaster Recovery System Return on Investment (ROI): All changes to files contained in
DBFS are also logged through the Oracle database redo log stream and thus can be
passed to a Data Guard physical standby database. Using Oracle Active Data Guard
technology, the DBFS file system can be mounted read-only using the physical standby
database as the source. Changes made on the primary are propagated to the standby
database and are visible once applied to the standby.

• File system backups: Because DBFS is stored in the database as database objects,
standard RMAN backup and recovery functionality can be applied to file system data.
Any backup, restore, or recovery operation that can be performed on a database or
object within a database can also be performed against the DBFS file system.

See Also:

Database File System (DBFS)

Chapter 3
Oracle Replication Technologies for Non-Database Files

3-35

https://www.oracle.com/technetwork/database/database-technologies/cloud-storage/acfs/learnmore/oracle-acfs-19c-5302856.html
http://www.oracle.com/goto/maa

Oracle Solaris ZFS Storage Appliance Replication
The Oracle Solaris ZFS Storage Appliance series supports snapshot-based replication
of projects and shares from a source appliance to any number of target appliances
manually, on a schedule, or continuously.

The Oracle Solaris ZFS Storage Appliance series supports the following use cases:

• Disaster recovery: Replication can be used to mirror an appliance for disaster
recovery. In the event of a disaster that impacts the service of the primary
appliance (or even an entire data center), administrators activate the service at the
disaster recovery site, which takes over using the most recently replicated data.
When the primary site is restored, data changed while the disaster recovery site
was in service can be migrated back to the primary site, and normal service is
restored. Such scenarios are fully testable before a disaster occurs.

• Data distribution: Replication can be used to distribute data (such as virtual
machine images or media) to remote systems across the world in situations where
clients of the target appliance would not ordinarily be able to reach the source
appliance directly, or such a setup would have prohibitively high latency. One
example uses this scheme for local caching to improve latency of read-only data
(such as documents).

• Disk-to-disk backup: Replication can be used as a backup solution for
environments in which tape backups are not feasible. Tape backup might not be
feasible, for example, because the available bandwidth is insufficient or because
the latency for recovery is too high.

• Data migration: Replication can be used to migrate data and configuration
between Oracle Solaris ZFS Storage appliances when upgrading hardware or
rebalancing storage. Shadow migration can also be used for this purpose.

The architecture of Oracle Solaris ZFS Storage Appliance also makes it an ideal
platform to complement Data Guard for disaster recovery of Oracle Fusion
Middleware. Oracle Fusion Middleware has a number of critical files that are stored
outside of the database. These binaries, configuration data, metadata, logs and so on
also require data protection to ensure availability of the Oracle Fusion Middleware. For
these, the built-in replication feature of the ZFS Storage Appliance is used to move this
data to a remote disaster recovery site.

Benefits of the Oracle Solaris ZFS Storage Appliance when used with Oracle Fusion
Middleware include:

• Leverages remote replication for Oracle Fusion Middleware

• Provides ability to quickly create clones and snapshots of databases to increase
ROI of DR sites

See Also:

Oracle ZFS Storage Appliance Software

Chapter 3
Oracle Replication Technologies for Non-Database Files

3-36

https://www.oracle.com/storage/nas/zfs-appliance-software/

Oracle Multitenant
Oracle Multitenant is the optimal database consolidation method. The multitenant architecture
combines the best attributes of each of the previous consolidation methods without their
accompanying tradeoffs.

Oracle Multitenant helps reduce IT costs by simplifying consolidation, provisioning, upgrades
and more. This new architecture allows a container database (CDB) to hold many pluggable
databases (PDBs). To applications, these PDBs appear as a standalone database, and no
changes are required to the application in order to access the PDB. By consolidating multiple
databases as PDBs into a single CDB, you are provided with the ability to manage "many as
one". The flexibility remains to operate on PDBs in isolation should your business require it.

Oracle Multitenant is fully compliant with and takes direct advantage of high availability
features such as Oracle Real Application Clusters, Oracle Data Guard, and Oracle
GoldenGate, just like any non-container database (non-CDB), meaning it can be used in any
of the Oracle MAA reference architectures. Grouping multiple PDBs with the same high
availability requirements into the same CDB ensures that all of those PDBs and their
applications are managed and protected with the same technologies and configurations.

Benefits of Using Oracle Multitenant

• High consolidation density - Many PDBs can be stored in a single CDB. These PDBs
share background processes and memory structures letting you run more PDBs than you
would non-CDBs, because the overhead for each non-CDB is removed or reduced. You
can store up to 4095 PDBs in a CDB. Each PDB can also have a different characterset
from other PDBs within the same CDB, as long as the CDB root character set is a
superset of all of the PDBs’ character sets. Logical standby databases also support this
mix of character sets to allow rolling upgrades with a transient logical standby database.

• Online provisioning operations, including clones, refreshable clones, and PDB relocation
- A PDB can be unplugged from one CDB and plugged into another. A PDB can also be
cloned either into the same CDB or into a different CDB. Cloning can be used to create a
"gold image" or seed database for DBaaS or SaaS environments. This PDB can then be
rapidly cloned to easily set up database environments for new customers.

– Near Zero Downtime PDB Relocation – This feature significantly reduces the
downtime of relocating a PDB from one CDB to another by using clone functionality.
The source PDB remains open and functional while the relocation takes place. The
application outage is reduced to a very short window while the source PDB is brought
to a consistent state, and the destination PDB is synchronized and brought online.
This functionality also takes advantage of another new feature, Listener Redirects,
which allows you to keep the same connect descriptor for applications and connect to
the destination PDB even after it has been relocated.

– Online provisioning and cloning – Clones of PDBs can be created without requiring
the source PDB to be placed in read only-mode. The source PDB can be left in read-
write mode and accessible to applications for the duration of the clone operation.

– Refreshable Clone PDB – Clones of PDBs can be created in such a way as to be
refreshed with changes with changes made to the source PDB applied either
automatically at set intervals or manually. For a clone to be refreshable it must
remain in read-only mode. The clone can be converted into an ordinary PDB by
opening it read-write. Refreshable clones are well suited to be used as test masters
for Exadata storage snapshots.

Chapter 3
Oracle Multitenant

3-37

• New patching and upgrade options -When you upgrade or patch a CBD, all of the
PDBs in that container are also upgraded or patched. If you need isolation, you
can unplug a PDB and plug it into a CDB at a later version.

• Database backup and recovery - By consolidating multiple databases as PDBs,
operations such as backup and disaster recovery are performed at the container
level. Oracle Multitenant also provides the flexibility to backup and restore
individual PDBs with no impact to other running PDBs in the same CDB.

• Operation with Oracle Data Guard - Data Guard configurations are maintained at
the CDB level. When a Data Guard role transition (either failover or switchover) is
performed, all PDBs are transitioned to the new primary database. There is no
need to create or manage multiple Data Guard configurations for each PDB as
would be required for single databases. Existing tools such as Data Guard
Standby First Patching and Data Guard Transient Logical Rolling Upgrade can still
be used to reduce downtime and are performed at the container level, so all PDBs
will be maintained in a single operation.

– PDB Migration with Data Guard Broker – The Data Guard broker has been
enhanced to provide automation for migrating PDBs from one CDB, either the
primary database or the standby database, to another CDB. This can be used
for straight migration of a PDB from one CDB to another running at either at
the same version or a CDB running at a higher version to start the upgrade
process. This automation can also be used to affect a single PDB failover by
using the PDBs files at a standby database to plug into a different CDB at the
same version.

– Subset Standby - A subset standby enables users of Oracle Multitenant to
designate a subset of the PDBs in a CDB for replication to a standby
database. This provides a finer granularity of designating which standby
databases will contain which PDBs.

• Operation with Oracle GoldenGate - All of functionality provided by Oracle
GoldenGate also exists for Oracle Multitenant. GoldenGate also provides the
flexibility to operate at the PDB level, allowing replication to occur for a subset of
the PDBs in a CDB. GoldenGate can be used for minimal to zero downtime
upgrades either at the CDB level or at an individual PDB level.

• Resource management - Just as Oracle Resource Manager can control resource
utilization between single databases, it can also control resource utilization of
individual PDBs in a container. This can ensure that a single PDB does not access
more than its assigned share of system resources. You can specify guaranteed
minimums and maximums for SGA, buffer cache, shared pool, and PGA memory
at the PDB limit.

• Operation with Oracle Flashback Database - If fast point-in-time recovery is
required, the initial release of Oracle Multitenant enables using Flashback
Database at the CDB level. Oracle Multitenant enables Flashback Database to be
used on an individual PDB without impacting the availability of other PDBs.
Flashback Database can performed at the CDB level which will flashback all of the
PDBs in the container. Individual PDBs can be flashed back using the Flashback
Pluggable Database feature. When flashing back an individual PDB all other PDBs
remain unaffected.

• Data Guard Broker PDB Migration or Failover - In multitenant broker
configurations, you may need to move a Production PDB from one container
database to another container database that resides on the same system. You
may also need to failover a PDB from a Data Guard Standby database to a new
production container database when the production PDB has failed but the

Chapter 3
Oracle Multitenant

3-38

container database and all other PDBs function normally. Using the new Data Guard
Broker command, MIGRATE PLUGGABLE DATABASE, you can easily move a single PDB from
one container database to another, or failover a single PDB from a Data Guard standby
to a new production container database. (new in Oracle Database 12c Release 2)

See Also:

• Oracle Multitenant Administrator's Guide

• Oracle MAA technical brief "Best Practices for Database Consolidation" at
https://www.oracle.com/database/technologies/high-availability/oracle-
database-maa-best-practices.html

Oracle Sharding
Oracle Sharding is a scalability and availability feature for applications explicitly designed to
run on a sharded database.

Oracle sharding enables distribution and replication of data across a pool of Oracle
databases that share no hardware or software. The pool of databases is presented to the
application as a single logical database. Applications elastically scale (data, transactions, and
users) to any level, on any platform, simply by adding additional databases (shards) to the
pool. Scaling up to 1000 shards is supported.

Oracle Sharding provides superior run-time performance and simpler life-cycle management
compared to home-grown deployments that use a similar approach to scalability. It also
provides the advantages of an enterprise DBMS, including relational schema, SQL, and other
programmatic interfaces, support for complex data types, online schema changes, multi-core
scalability, advanced security, compression, high-availability, ACID properties, consistent
reads, developer agility with JSON, and much more.

See Also:

Oracle Globally Distributed Database Guide

Oracle Restart
Oracle Restart enhances the availability of a single-instance (nonclustered) Oracle database
and its components.

Oracle Restart is used in single-instance environments only. For Oracle Real Application
Clusters (Oracle RAC) environments, the functionality to automatically restart components is
provided by Oracle Clusterware.

If you install Oracle Restart, it automatically restarts the database, the listener, and other
Oracle components after a hardware or software failure or whenever the database's host
computer restarts. It also ensures that the Oracle components are restarted in the proper
order, in accordance with component dependencies.

Oracle Restart periodically monitors the health of components—such as SQL*Plus, the
Listener Control utility (LSNRCTL), ASMCMD, and Oracle Data Guard—that are integrated

Chapter 3
Oracle Sharding

3-39

https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-best-practices.html
https://www.oracle.com/database/technologies/high-availability/oracle-database-maa-best-practices.html

with Oracle Restart. If the health check fails for a component, Oracle Restart shuts
down and restarts the component.

Oracle Restart runs out of the Oracle Grid Infrastructure home, which you install
separately from Oracle Database homes.

Integrated client failover applications depend on role based services and Fast
Application Notification events, managed by Oracle clusterware, to alert the application
to failures. Single instance databases must have Oracle Restart to achieve integrated
client failover.

See Also:

Oracle Database Administrator’s Guide for information about installing and
configuring the Oracle Restart feature

Online Reorganization and Redefinition
One way to enhance availability and manageability is to allow user access to the
database during a data reorganization operation.

The Online Reorganization and Redefinition feature in Oracle Database offers
administrators significant flexibility to modify the physical attributes of a table and
transform both data and table structure while allowing user access to the database.
This capability improves data availability, query performance, response time, and disk
space usage. All of these are important in a mission-critical environment and make the
application upgrade process easier, safer, and faster.

Use Oracle Database online maintenance features to significantly reduce (or
eliminate) the application downtime required to make changes to an application's
database objects

See Also:

Redefining Tables Online in Oracle Database Administrator’s Guide

Zero Data Loss Recovery Appliance
The cloud-scale Zero Data Loss Recovery Appliance, commonly known as Recovery
Appliance, is an engineered system designed to dramatically reduce data loss and
backup overhead for all Oracle databases in the enterprise.

Integrated with Recovery Manager (RMAN), the Recovery Appliance enables a
centralized, incremental-forever backup strategy for large numbers of databases,
using cloud-scale, fault-tolerant hardware and storage. The Recovery Appliance
continuously validates backups for recoverability.

Recovery Appliance is the MAA-preferred backup and recovery appliance because:

• Elimination of data loss when restoring from Recovery Appliance

• Minimal backup overhead

Chapter 3
Online Reorganization and Redefinition

3-40

• Improved end-to-end data protection visibility

• Cloud-scale protection

• Integrates very well with all MAA reference architectures including Oracle Sharding tier

See Also:

Zero Data Loss Recovery Appliance Documentation

Fleet Patching and Provisioning
Fleet Patching and Provisioning maintains a space-efficient repository of software, more
precisely "gold images," which are standardized software homes that can be provisioned to
any number of target machines.

Any number of homes can be provisioned from a given gold image, and Fleet Patching and
Provisioning maintains lineage information so that the provenance of deployed software is
always known. Gold images can be organized into series, allowing you to create groupings
that track the evolution of a release, with different series for different tailored solutions such
as Oracle Database patch bundles for specific applications. A notification system informs
interested parties when a new image is available in a given series. Fleet Patching and
Provisioning is a feature of Oracle Grid Infrastructure. The components that form the Fleet
Patching and Provisioning Server are managed automatically by Oracle Grid Infrastructure.

Fleet Patching and Provisioning can provision databases, clusterware, middleware, and
custom software. Fleet Patching and Provisioning offers additional features for creating,
configuring, patching and upgrading Oracle Grid Infrastructure and Oracle Database
deployments. These capabilities simplify maintenance, reducing its risk and impact, and
provide a roll-back option if changes need to be backed out. Additional capabilities include
provisioning clusters and databases onto base machines, and simple capacity on demand by
growing and shrinking clusters and Oracle RAC databases. All of these operations are
performed with single commands which replace the numerous manual steps otherwise
required. All commands and their outcomes are recorded in an audit log. All workflows allow
customization to support the unique requirements of any environment.

The key benefits of Fleet Patching and Provisioning are:

• Enables and enforces standardization

• Simplifies provisioning, patching and upgrading

• Minimizes the impact and risk of maintenance

• Increases automation and reduces touch points

• Supports large scale deployments

See Also:

Fleet Patching and Provisioning and Maintenance in Oracle Clusterware Administration and
Deployment Guide

Oracle Fleet Patching and Provisioning (FPP) Introduction and Technical Overview

Chapter 3
Fleet Patching and Provisioning

3-41

https://docs.oracle.com/en/engineered-systems/zero-data-loss-recovery-appliance/19.2/index.html
https://www.oracle.com/technetwork/database/database-technologies/cloud-storage/acfs/learnmore/oraclefpp-19c-wp-5486894.html

Edition-Based Redefinition
Planned application changes may include changes to data, schemas, and programs.
The primary objective of these changes is to improve performance, manageability, and
functionality. An example is an application upgrade.

Edition-based redefinition (EBR) lets you upgrade the database component of an
application while it is in use, thereby minimizing or eliminating downtime. To upgrade
an application while it is in use, you must copy the database objects that comprise the
database component of the application and redefine the copied objects in isolation.
Your changes do not affect users of the application; they can continue to run the
unchanged application. When you are sure that your changes are correct, you make
the upgraded application available to all users.

See Also:

Using Edition-Based Redefinition in Oracle Database Development Guide

Chapter 3
Edition-Based Redefinition

3-42

4
Oracle Database High Availability Solutions
for Unplanned Downtime

Oracle Database offers an integrated suite of high availability solutions that increase
availability.

These solutions also eliminate or minimize both planned and unplanned downtime, and
help enterprises maintain business continuity 24 hours a day, 7 days a week. However,
Oracle's high availability solutions not only go beyond reducing downtime, but also help to
improve overall performance, scalability, and manageability.

Outage Types and Oracle High Availability Solutions for
Unplanned Downtime

Various Oracle MAA high availability solutions for unplanned downtime are described here in
an easy to navigate matrix.

The following table shows how the features discussed in the referenced (hyperlinked)
sections can be used to address various causes of unplanned downtime. Where several
Oracle solutions are listed, the MAA recommended solution is indicated in the Oracle MAA
Solution column.

Table 4-1 Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA
Solution

Benefits

Site failures Oracle Data Guard
and Enabling
Continuous Service
for Applications (MAA
recommended)

• Integrated client and application failover
• Fastest and simplest database replication
• Supports all data types
• Zero data loss by eliminating propagation delay
• Oracle Active Data Guard

– Supports read-only services and DML on global
temporary tables and sequences to off-load more
work from the primary

– Allows small updates to be redirected to the
primary enabling read-mostly reports to be
offloaded to standby

• Database In-Memory support

Oracle GoldenGate • Flexible logical replication solution (target is open read/
write)

• Active-active high availability (with conflict resolution)
• Heterogeneous platform and heterogeneous database

support
• Potential zero downtime with custom application failover

4-1

Table 4-1 (Cont.) Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA
Solution

Benefits

Recovery Manager,
Zero Data Loss
Recovery Appliance
and Oracle Secure
Backup

• Fully managed database recovery and integration with
Oracle Secure Backup

• Recovery Appliance

– provides end-to-end data protection for backups
– reduces data loss for database restores
– Non-real-time recovery

Instance or
computer
failures

Oracle Real
Application Clusters
and Oracle
Clusterware and
Enabling Continuous
Service for
Applications (MAA
recommended)

• Integrated client and application failover
• Automatic recovery of failed nodes and instances
• Lowest application brownout with Oracle Real

Application Clusters

Oracle RAC One
Node and Enabling
Continuous Service
for Applications

• Integrated client and application failover
• Online database relocation migrates connections and

instances to another node
• Better database availability than traditional cold failover

solutions

Oracle Data Guard
and Enabling
Continuous Service
for Applications

• Integrated client and application failover
• Fastest and simplest database replication
• Supports all data types
• Zero data loss by eliminating propagation delay
• Oracle Active Data Guard

– Supports read-only services and DML on global
temporary tables and sequences to off-load more
work from the primary

– Allows small updates to be redirected to the
primary enabling read-mostly reports to be
offloaded to standby

• Database In-Memory support

Oracle GoldenGate • Flexible logical replication solution (target is open read/
write)

• Active-Active high availability (with conflict resolution)
• Heterogeneous platform and heterogeneous database

support
• Potential zero downtime with custom application failover

Storage failures Oracle Automatic
Storage Management
(MAA recommended)

Mirroring and online automatic rebalancing places
redundant copies of the data in separate failure groups.

Oracle Data Guard
(MAA recommended)

• Integrated client and application failover
• Fastest and simplest database replication
• Supports all data types
• Zero data loss by eliminating propagation delay
• Oracle Active Data Guard supports read-only services

and DML on global temporary tables and sequences to
off-load more work from the primary

• Database In-Memory support

Chapter 4
Outage Types and Oracle High Availability Solutions for Unplanned Downtime

4-2

Table 4-1 (Cont.) Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA
Solution

Benefits

Recovery Manager
with Fast Recovery
Area, and Zero Data
Loss Recovery
Appliance (MAA
recommended)

Fully managed database recovery and managed disk and
tape backups

Oracle GoldenGate • Flexible logical replication solution (target is open read/
write)

• Active-active high availability (with conflict resolution)
• Heterogeneous platform and heterogeneous database

support
• Potential zero downtime with custom application failover

Data corruption Corruption Prevention,
Detection, and Repair
(MAA recommended)

Database initialization
settings such as
DB_BLOCK_CHECKING
,
DB_BLOCK_CHECKSUM
, and
DB_LOST_WRITE_PRO
TECT

Different levels of data and redo block corruption prevention
and detection at the database level

Chapter 4
Outage Types and Oracle High Availability Solutions for Unplanned Downtime

4-3

Table 4-1 (Cont.) Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA
Solution

Benefits

Data corruption Oracle Data Guard
(MAA recommended)

Oracle Active Data
Guard Automatic
Block Repair

DB_LOST_WRITE_PRO
TECT initialization
parameter

• In a Data Guard configuration with an Oracle Active
Data Guard standby

– Physical block corruptions detected by Oracle at a
primary database are automatically repaired using
a good copy of the block retrieved from the standby,
and vice versa

– The repair is transparent to the user and
application, and data corruptions can definitely be
isolated

• With MAA recommended initialization settings,
Oracle Active Data Guard and Oracle Exadata
Database Machine, achieve most comprehensive full
stack corruption protection.

• With DB_LOST_WRITE_PROTECT enabled

– A lost write that occurred on the primary database
is detected either by the physical standby database
or during media recovery of the primary database,
recovery is stopped to preserve the consistency of
the database

– Failing over to the standby database using Data
Guard will result in some data loss

– Data Guard Broker's PrimaryLostWrite property
supports SHUTDOWN and CONTINUE, plus
FAILOVER and FORCEFAILOVER options, when
lost writes are detected on the primary database.
See Oracle Data Guard Broker

– DB_LOST_WRITE_PROTECT initialization parameter
provides lost write detection

• Shadow lost write protection detects a lost write
before it can result in major data corruption. You can
enable shadow lost write protection for a database, a
tablespace, or a data file without requiring an Oracle
Data Guard standby database. Note the impact on your
workload may vary.

Chapter 4
Outage Types and Oracle High Availability Solutions for Unplanned Downtime

4-4

Table 4-1 (Cont.) Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA
Solution

Benefits

Dbverify, Analyze,
Data Recovery
Advisor and Recovery
Manager, Zero Data
Loss Recovery
Appliance, and ASM
Scrub with Fast
Recovery Area (MAA
recommended)

These tools allow the administrator to run manual checks to
help detect and potentially repair from various data
corruptions.

• Dbverify and Analyze conduct physical block and
logical intra-block checks. Analyze can conduct inter-
object consistency checks.

• Data Recovery Advisor automatically detects data
corruptions and recommends the best recovery plan.

• RMAN operations can

– Conduct both physical and inter-block logical
checks

– Run online block-media recovery using flashback
logs, backups, or the standby database to help
recover from physical block corruptions

• Recovery Appliance
– Does periodic backup validation that helps ensure

that your backups are valid
– Allows you to input your recovery window

requirements, and alerts you when those SLAs
cannot be met with your existing backups managed
by Recovery Appliance

• ASM Scrub detects and attempts to repair physical and
logical data corruptions with the ASM pair in normal and
high redundancy disks groups.

Data corruption Oracle Exadata
Database Machine
and Oracle Automatic
Storage Management
(MAA recommended)

DIX + T10 DIF
Extensions (MAA
recommended where
applicable)

• If Oracle ASM detects a corruption and has a good
mirror, ASM returns the good block and repairs the
corruption during a subsequent write I/O.

• Exadata provides implicit HARD enabled checks to
prevent data corruptions caused by bad or misdirected
storage I/O.

• Exadata provides automatic HARD disk scrub and
repair. Detects and fixes bad sectors.

• DIX +T10 DIF Extensions provides end to end data
integrity for reads and writes through a checksum
validation from a vendor's host adapter to the storage
device

Oracle GoldenGate • Flexible logical replication solution (target is open read/
write). Logical replica can be used as a failover target if
partner replica is corrupted.

• Active-active high availability (with conflict resolution)
• Heterogeneous platform and heterogeneous database

support

Human errors Oracle security
features (MAA
recommended)

Restrict access to prevent human errors

Oracle Flashback
Technology (MAA
recommended)

• Fine-grained error investigation of incorrect results
• Fine-grained and database-wide or pluggable database

rewind and recovery capabilities

Chapter 4
Outage Types and Oracle High Availability Solutions for Unplanned Downtime

4-5

Table 4-1 (Cont.) Outage Types and Oracle High Availability Solutions for Unplanned
Downtime

Outage Scope Oracle MAA
Solution

Benefits

Delays or slow
downs

Oracle Database and
Oracle Enterprise
Manager

Oracle Data Guard
(MAA recommended)
and Enabling
Continuous Service
for Applications

• Oracle Database automatically monitors for instance
and database delays or cluster slow downs and
attempts to remove blocking processes or instances to
prevent prolonged delays or unnecessary node
evictions.

• Oracle Enterprise Manager or a customized
application heartbeat can be configured to detect
application or response time slowdown and react to
these SLA breaches. For example, you can configure
the Enterprise Manager Beacon to monitor and detect
application response times. Then, after a certain
threshold expires, Enterprise Manager can call the Data
Guard

DBMS_DG.INITIATE_FS_FAILOVER

PL/SQL procedure to initiate a failover. See the section
about "Managing Fast-Start Failover" in Oracle Data
Guard Broker.

• Database In-Memory support

File system data Oracle Replication
Technologies for Non-
Database Files

Enables full stack failover that includes non-database files

Managing Unplanned Outages for MAA Reference
Architectures and Multitenant Architectures

High availability solutions in each of the MAA service-level tiers for the MAA reference
architectures and multitenant architectures are described in an easy to navigate
matrix.

If you are managing many databases in DBaaS, we recommend using the MAA tiers
and Oracle Multitenant as described in Oracle MAA Reference Architectures.

The following table identifies various unplanned outages that can impact a database in
a multitenant architecture. It also identifies the Oracle high availability solution to
address that outage that is available in each of the MAA reference architectures.

Table 4-2 Unplanned Outage Matrix for MAA Reference Architectures and
Multitenant Architectures

Event Solutions by MAA
Architecture

Recovery Window
(RTO)

Data Loss (RPO)

Instance Failure BRONZE: Oracle
Restart

Minutes if instance
can restart

Zero

Chapter 4
Managing Unplanned Outages for MAA Reference Architectures and Multitenant Architectures

4-6

Table 4-2 (Cont.) Unplanned Outage Matrix for MAA Reference Architectures
and Multitenant Architectures

Event Solutions by MAA
Architecture

Recovery Window
(RTO)

Data Loss (RPO)

SILVER: Oracle
RAC (see Oracle
Real Application
Clusters and Oracle
Clusterware) or
Oracle RAC One
Node, and Enabling
Continuous Service
for Applications

Seconds with Oracle
RAC, minutes with
Oracle RAC One
Node

Zero

GOLD: Oracle RAC
(see Oracle Real
Application Clusters
and Oracle
Clusterware and
Enabling
Continuous Service
for Applications

Seconds Zero

PLATINUM: Oracle
RAC (see Oracle
Real Application
Clusters and Oracle
Clusterware) and
Enabling
Continuous Service
for Applications

Zero Application
Outage

Zero

Permanent Node
Failure (but storage
available)

BRONZE: Restore
and recover

Hours to Day Zero

SILVER: Oracle
RAC (see Oracle
Real Application
Clusters and Oracle
Clusterware) and
Enabling
Continuous Service
for Applications

Seconds Zero

SILVER: Oracle
RAC One Node
and Enabling
Continuous Service
for Applications

Minutes Zero

GOLD: Oracle RAC
(see Oracle Real
Application Clusters
and Oracle
Clusterware) and
Enabling
Continuous Service
for Applications

Seconds Zero

Chapter 4
Managing Unplanned Outages for MAA Reference Architectures and Multitenant Architectures

4-7

Table 4-2 (Cont.) Unplanned Outage Matrix for MAA Reference Architectures
and Multitenant Architectures

Event Solutions by MAA
Architecture

Recovery Window
(RTO)

Data Loss (RPO)

PLATINUM: Oracle
RAC (see Oracle
Real Application
Clusters and Oracle
Clusterware) and
Enabling
Continuous Service
for Applications

Seconds Zero

Storage Failure ALL: Oracle
Automatic Storage
Management

Zero downtime Zero

Data corruptions BRONZE/SILVER:
Basic protection

Some corruptions
require recover
restore and
recovery of
pluggable database
(PDB), entire
multitenant
container database
(CDB) or non-
container database
(non-CDB)

Hour to Days • Since last backup if
unrecoverable

• Zero or Near Zero
with Recovery
Appliance

GOLD:
Comprehensive
corruption
protection and Auto
Block Repair with
Oracle Active Data
Guard

• Zero with auto
block repair

• Seconds to
minutes if
corruption due to
lost writes and
using Data Guard
Fast Start
failover.

Zero unless corruption
due to lost writes

PLATINUM:
Comprehensive
corruption
protection and Auto
Block Repair with
Oracle Active Data
Guard

Oracle GoldenGate
replica with custom
application failover

• Zero with auto
block repair

• Zero with Oracle
GoldenGate
replica

Zero when using Active
Data Guard Fast-Start
Failover and Oracle
GoldenGate

Chapter 4
Managing Unplanned Outages for MAA Reference Architectures and Multitenant Architectures

4-8

Table 4-2 (Cont.) Unplanned Outage Matrix for MAA Reference Architectures
and Multitenant Architectures

Event Solutions by MAA
Architecture

Recovery Window
(RTO)

Data Loss (RPO)

Human error ALL: Logical
failures resolved by
flashback drop,
flashback table,
flashback
transaction,
flashback query
flashback pluggable
database, and
undo.

Dependent on
detection time but
isolated to PDB and
applications using
those objects.

Dependent on logical
failure

All: Comprehensive
logical failures
impacting an entire
database and PDB
that requires RMAN
point in time
recovery (PDB) or
flashback pluggable
database

Dependent on
detection time

Dependent on logical
failure

Database unusable,
system, site or storage
failures, wide spread
corruptions or
disasters

BRONZE/SILVER:
Restore and
recover

Hours to Days • Since last database
and archive backup

• Zero or near zero
with Recovery
Appliance

GOLD: Active Data
Guard Fast-Start
Failover and
Enabling
Continuous Service
for Applications

Seconds Zero to Near Zero

PLATINUM: Oracle
GoldenGate replica
with custom
application failover

Zero Zero when using Active
Data Guard Fast-Start
Failover and Oracle
GoldenGate

Performance
Degradation

ALL: Oracle
Enterprise Manager
for monitoring and
detection,
Database Resource
Management for
Resource Limits
and ongoing
Performance
Tuning

No downtime but
degraded service

Zero

Chapter 4
Managing Unplanned Outages for MAA Reference Architectures and Multitenant Architectures

4-9

5
Oracle Database High Availability Solutions
for Planned Downtime

Planned downtime can be just as disruptive to operations as unplanned downtime. This is
especially true for global enterprises that must support users in multiple time zones, or for
those that must provide Internet access to customers 24 hours a day, 7 days a week.

See the following topics to learn about keeping your database highly available during planned
downtime.

Oracle High Availability Solutions for Planned Maintenance
Oracle provides high availability solutions for all planned maintenance.

The following table describes the various Oracle high availability solutions and their projected
downtime for various maintenance activities.

Table 5-1 Oracle High Availability Solutions for Planned Maintenance

Maintenance Event High Availability Solutions with Target Outage Time

Dynamic and Online Resource Provisioning, or

Online reorganization and redefinition

Zero application and database downtime for

• Changing initialization parameters dynamically
• Renaming and relocating datafiles online
• Automatic memory management tuning
• Online reorganization and redefinition (managing

tables and managing indexes)
See the Oracle Database Administrator Guide, Oracle
Database Reference (to evaluate which parameters to
use on dynamic), and Online Data Reorganization and
Redefinition

Operating system software or hardware updates and
patches

Zero database downtime with Oracle RAC and Oracle
RAC One Node Rolling

Seconds to minutes database downtime with
Standby-First Patch Apply and subsequent Data Guard
Switchover

Oracle Database or Grid Infrastructure interim or
diagnostic patches

Zero downtime with Database Online Patching or Zero-
Downtime Oracle Grid Infrastructure Patching

Zero database downtime with Oracle RAC and Oracle
RAC One Node Rolling

Zero application downtime with Application Checklist
for Continuous Service for MAA Solutions

Seconds to minutes database downtime with
Standby-First Patch Apply and subsequent Data Guard
Switchover

5-1

https://www.oracle.com/database/technologies/high-availability/online-ops.html
https://www.oracle.com/database/technologies/high-availability/online-ops.html
https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=761111.1
https://support.oracle.com/rs?type=doc&id=2635015.1
https://support.oracle.com/rs?type=doc&id=2635015.1
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://support.oracle.com/rs?type=doc&id=1265700.1

Table 5-1 (Cont.) Oracle High Availability Solutions for Planned Maintenance

Maintenance Event High Availability Solutions with Target Outage Time

Oracle Database or Grid Infrastructure quarterly updates
under the Critical Patch Update (CPU) program, or
Oracle Grid Infrastructure release upgrades

Zero database downtime with Oracle RAC and Oracle
RAC One Node Rolling.

Zero application downtime with Application Checklist
for Continuous Service for MAA Solutions

Seconds to minutes downtime with Standby-First
Patch Apply and subsequent Data Guard Switchover

Special consideration is required during rolling database
quarterly updates for applications that use database
OJVM. See My Oracle Support RAC Rolling Install
Process for the "Oracle JavaVM Component Database
PSU/RU" (OJVM PSU/RU) Patches (Doc ID 2217053.1)
for details.

Oracle Database Release Upgrade (for example, Oracle
Database 11g to 12.2 or 12.2 to 19c)

Seconds to minutes downtime with Data Guard
transient logical or DBMS_ROLLING solution

Zero downtime with Oracle GoldenGate

See Automated Database Upgrades using Oracle Active
Data Guard and DBMS_ROLLING for 12.2 and higher
database releases or Database Rolling Upgrade using
Data Guard for older releases.

Exadata database server software updates Zero database downtime with Oracle RAC Rolling

Zero application downtime with Application Checklist
for Continuous Service for MAA Solutions

Seconds to minutes downtime with Standby-First
Patch Apply and subsequent Data Guard Switchover

See Updating Exadata Software

Exadata storage server or Exadata switch software
updates

Zero downtime using Exadata patchmgr
See Updating Exadata Software

Database Server or Oracle RAC cluster changes (add
node, drop node, adjust CPU or memory size of the
database server)

Some hardware changes like adjusting CPU can be
done online without restarting the database server.
Refer to the hardware specific documentation.

If the change is not online, then

Zero database downtime with Oracle RAC and Oracle
RAC One Node Rolling.

Zero application downtime with Application Checklist
for Continuous Service for MAA Solutions

Seconds to minutes downtime with Standby-First
Patch Apply and subsequent Data Guard Switchover

Application upgrades Zero downtime with Edition Based Redefinition

Zero downtime with Oracle GoldenGate

See Edition Based Redefinition and Oracle GoldenGate
documentation

Chapter 5
Oracle High Availability Solutions for Planned Maintenance

5-2

https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=2217053.1
https://support.oracle.com/rs?type=doc&id=2217053.1
https://support.oracle.com/rs?type=doc&id=2217053.1
https://www.oracle.com/technetwork/database/availability/database-upgrade-dbms-rolling-4126957.pdf
https://www.oracle.com/technetwork/database/availability/database-upgrade-dbms-rolling-4126957.pdf
https://www.oracle.com/technetwork/database/availability/database-rolling-upgrade-3206539.pdf
https://www.oracle.com/technetwork/database/availability/database-rolling-upgrade-3206539.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=1265700.1
https://docs.oracle.com/en/engineered-systems/exadata-database-machine/dbmmn/updating-exadata-software.html#GUID-60051AF9-3514-4760-8D58-364943E58A08
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://docs.oracle.com/en/middleware/goldengate/core/index.html
https://docs.oracle.com/en/middleware/goldengate/core/index.html

Table 5-1 (Cont.) Oracle High Availability Solutions for Planned Maintenance

Maintenance Event High Availability Solutions with Target Outage Time

Fleet-wide software maintenance events

• Oracle Database or Grid Infrastructure interim or
diagnostic patches

• Oracle Database or Grid Infrastructure quarterly
updates under the Critical Patch Update (CPU)
program, or Oracle Grid Infrastructure release
upgrades

• Exadata database server software updates
• Exadata storage server or Exadata switch software

updates

Use Fleet Patching and Provisioning, which leverages
the following high availability solutions to achieve the
target outage times for fleet-wide software maintenance
events:

Zero database downtime with Oracle RAC and Oracle
RAC One Node Rolling

Zero application downtime with Application Checklist
for Continuous Service for MAA Solutions for

• Oracle Database or Grid Infrastructure interim or
diagnostic patches

• Oracle Database or Grid Infrastructure quarterly
updates under the Critical Patch Update (CPU)
program, or Oracle Grid Infrastructure release
upgrades

• Exadata database server software updates
Zero downtime using Exadata patchmgr for Exadata
storage server or Exadata switch software updates

High Availability Solutions for Migration
Oracle MAA recommends several solutions for reducing downtime due to database
migration.

The following table describes the high availability solutions for migration at a high level.

Table 5-2 High Availability Solutions for Migration

Maintenance Event High Availability Solutions with Target Outage Time

Migrate to an on-premises Oracle Exadata Database
Machine or any Oracle Database cloud service,
including Oracle Exadata Database Service on
Cloud@Customer

See Zero Downtime Migration for a complete list of
supported services and platforms

Use the Zero Downtime Migration tool, which provides

• Physical migration with RMAN backup and restore,
with an optional low downtime option using Oracle
Data Guard. This is the simplest turnkey migration
solution, which is ideal when the source and target
system platform (for example, Linux to Linux) and
database versions (Oracle Database 19c to 19c)
are the same.

• Logical migration with Oracle Data Pump, with an
optional low downtime option using Oracle
GoldenGate. This is the only option for migrating a
database when the source and target system
platform (For example, AIX to Linux) or major
database versions (Oracle Database 12c to 19c)
are different.

To migrate to Oracle Autonomous Database, use the
Oracle Cloud Infrastructure Database Migration service
(or the Zero Downtime Migration tool), which provide

• Offline migration with Data Pump
• Online migration with Data Pump and Oracle

GoldenGate

Chapter 5
High Availability Solutions for Migration

5-3

https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/database/technologies/rac/zdm.html
https://www.oracle.com/database/technologies/rac/zdm.html
https://docs.oracle.com/en/cloud/paas/database-migration/

Table 5-2 (Cont.) High Availability Solutions for Migration

Maintenance Event High Availability Solutions with Target Outage Time

Migrate the database to a different server or platform Seconds to minutes downtime with Oracle Data
Guard for certain platform combinations

Zero downtime with Oracle GoldenGate

Data Guard always supports primary and standby
combinations on the same platform. For heterogeneous
platforms, Refer to Data Guard Support for
Heterogeneous Primary and Physical Standbys in Same
Data Guard Configuration (Doc ID 413484.1)

Migrate database to an incompatible character set Zero downtime with Oracle GoldenGate

See Character Set Migration

Migrate to pluggable databases to another container
database

Seconds to minutes downtime with Pluggable
Database Relocate (PDB Relocate)

See Relocating a PDB

Migrate to new storage Zero Downtime with Oracle Automatic Storage
Management if storage is compatible

with Oracle Data Guard for certain platform
combinations

Zero Downtime with Oracle GoldenGate

Migrate database from a single-instance system to an
Oracle RAC cluster

Zero Downtime with Oracle RAC when applicable. See
Adding Oracle RAC to Nodes with Oracle Clusterware
Installed

Seconds to minutes downtime with Oracle Data
Guard for certain platform combinations

Zero Downtime with Oracle GoldenGate

Chapter 5
High Availability Solutions for Migration

5-4

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=413484.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=413484.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=413484.1

6
Enabling Continuous Service for Applications

Applications achieve continuous service easily when the underlying network, systems, and
databases are always available.

To achieve continuous service in the face of unplanned outages and planned maintenance
activities can be challenging. An MAA database architecture and its configuration and
operational best practices is built upon redundancy and its ability to tolerate, prevent, and at
times auto-repair failures.

However, applications can incur downtime whenever a failure hits a database instance, a
database node, or the entire cluster or data center. Similarly, some planned maintenance
activities may require restarting a database instance, a database node, or an entire database
server to be restarted.

In all cases, following a simple checklist, your applications can incur zero or very little
downtime whenever the database service that the application is connected to can be moved
to another Oracle RAC instance or to another database.

See Configuring Continuous Availability for Applications for various levels and options to
achieve continuous service for your application.

Drain Timeouts for Planned Maintenance Events

For planned maintenance events, some applications require time to complete their in-flight
transactions.

The amount of time (DRAIN_TIMEOUT) for any workload to gracefully complete its in-flight
transactions and move its sessions vary based on the workload characteristics. For short
OLTP transactions, a DRAIN_TIMEOUT of 1 minute may be sufficient, while batch jobs might
require 30 minutes. In some cases it might be best to suspend these long transactions to
times outside the planned maintenance window.

The trade-off for configuring a longer DRAIN_TIMEOUT is that the planned maintenance window
would be extended.

The following table outlines planned maintenance events that will incur Oracle RAC instance
rolling restart and the relevant service drain timeout variables that may impact your
application.

6-1

Table 6-1 Drain Timeout Variables for Planned Maintenance Events

Planned Maintenance Event Application Drain Timeout Variables

Exadata Database Host (Dom0) software
changes

Exadata Host handles operating system (OS)
shutdown with maximum timeout of 10
minutes.

OS shutdown calls an rhphelper, which has
the following drain timeout settings:

• DRAIN_TIMEOUT: value used for services
that do not have a drain_timeout
defined. Default 180

• MAX_DRAIN_TIMEOUT: overrides any
higher drain_timeout value defined for
a given service. Default 300

Each Clusterware-managed service is also
controlled by a drain_timeout attribute that
can be lower than the above values.

See also: Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1)

Exadata Database Guest (DomU) software
changes

Exadata patchmgr and dbnodeupdate
software programs call rhphelper, which has
the following drain timeout settings:

DRAIN_TIMEOUT: value used for services that
do not have a drain_timeout defined.
Default 180

MAX_DRAIN_TIMEOUT: overrides any higher
drain_timeout value defined for a given
service. Default 300

Each Clusterware-managed service is also
controlled by a drain_timeout attribute that
can be lower than the above values.

See also: Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1)

Oracle Grid Infrastructure (GI) software
changes or upgrade

The recommend steps are described in
Graceful Application Switchover in RAC with
No Application Interruption (Doc ID
1593712.1).

Example:

srvctl stop instance -o immediate -
drain_timeout 600 -failover -force
Each Clusterware-managed service is also
controlled by a drain_timeout attribute that
can be lower than the above values.

Chapter 6

6-2

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=1593712.1
https://support.oracle.com/rs?type=doc&id=1593712.1
https://support.oracle.com/rs?type=doc&id=1593712.1

Table 6-1 (Cont.) Drain Timeout Variables for Planned Maintenance Events

Planned Maintenance Event Application Drain Timeout Variables

Oracle Database Software changes The recommend steps are described in
Graceful Application Switchover in RAC with
No Application Interruption (Doc ID
1593712.1).

Example:

srvctl stop instance -o immediate -
drain_timeout 600 -failover -force
Each Clusterware-managed service is also
controlled by a drain_timeout attribute that
can be lower than the above values.

See also:

Configuring Continuous Availability for Applications

Chapter 6

6-3

https://support.oracle.com/rs?type=doc&id=1593712.1
https://support.oracle.com/rs?type=doc&id=1593712.1
https://support.oracle.com/rs?type=doc&id=1593712.1

7
Operational Prerequisites to Maximizing
Availability

Use the following operational best practices to provide a successful MAA implementation.

Understand Availability and Performance SLAs
Understand and document your high availability and performance service-level agreements
(SLAs):

• Understand the attributes of High Availability and various causes of downtime as
described in Overview of High Availability.

• Get agreement from line of business, upper management, and technical teams on HA
and performance service level agreements as described in High Availability
Requirements, and A Methodology for Documenting High Availability Requirements.

Implement and Validate a High Availability Architecture That
Meets Your SLAs

When you have agreement on your high availability and performance service level
requirements:

• Map the requirements to one of the Oracle MAA standard and validated MAA reference
architectures, as described in High Availability and Data Protection – Getting From
Requirements to Architecture

• Evaluate the outage and planned maintenance matrices relevant to your referenced
architecture in Oracle Database High Availability Solutions for Unplanned Downtime and
Oracle Database High Availability Solutions for Planned Downtime

• Learn about the database features required to implement your MAA architecture in High
Availability Architectures

Establish Test Practices and Environment
You must validate or automate the following to ensure that your target high availability SLAs
are met:

• All software update and upgrade maintenance events

• All repair operations, including those for various types of unplanned outages

• Backup, restore, and recovery operations

If you use Oracle Data Guard for disaster recovery and data protection, Oracle recommends
that you:

7-1

https://docs.oracle.com/en/database/oracle/oracle-database/21/haiad/
https://docs.oracle.com/en/database/oracle/oracle-database/21/haiad/

• Perform periodic switchover operations, or conduct full application and database
failover tests

• Validate end-to-end role transition procedures by performing application and Data
Guard switchovers periodically

A good test environment and proper test practices are essential prerequisites to
achieving the highest stability and availability in your production environment. By
validating every change in your test environment thoroughly, you can proactively
detect, prevent, and avoid problems before applying the same change on your
production systems.

These practices involve the following:

Configuring the Test System and QA Environments
The test system should be a replica of the production MAA environment (for example,
using the MAA Gold reference architecture.) There will be trade offs if the test system
is not identical to the MAA service-level driven standard reference architecture that
you plan to implement. It's recommended that you perform functional, performance,
and availability tests with a workload that mimics production. Evaluate if availability
and performance SLAs are maintained after each change, and ensure that clear
fallback or repair procedures are in place if things go awry, while applying the change
on the production environment.

With a properly configured test system, many problems can be avoided, because
changes are validated with an equivalent production and standby database
configuration containing a full data set and using a workload framework to mimic
production (for example, using Oracle Real Application Testing.)

Do not try to reduce costs by eliminating the test system, because that decision
ultimately affects the stability and the availability of your production applications. Using
only a subset of system resources for testing and QA has the tradeoffs shown in the
following table, which is an example of the MAA Gold reference architecture.

Table 7-1 Tradeoffs for Different Test and QA Environments

Test Environment Benefits and Tradeoffs

Full Replica of Production
and Standby Systems

Validate:
• All software updates and upgrades
• All functional tests
• Full performance at production scale
• Full high availability

Full Replica of Production
Systems

Validate:
• All software updates and upgrades
• All functional tests
• Full performance at production scale
• Full high availability minus the standby system
Cannot Validate:
• Functional tests, performance at scale, high availability, and

disaster recovery on standby database

Chapter 7
Establish Test Practices and Environment

7-2

Table 7-1 (Cont.) Tradeoffs for Different Test and QA Environments

Test Environment Benefits and Tradeoffs

Standby System Validate:
• Most software update changes
• All functional tests
• Full performance--if using Data Guard Snapshot Standby,

but this can extend recovery time if a failover is required
• Role transition
• Resource management and scheduling--required if standby

and test databases exist on the same system

Shared System Resource Validate:
• Most software update changes
• All functional tests
This environment may be suitable for performance testing if
enough system resources can be allocated to mimic production.
Typically, however, the environment includes a subset of
production system resources, compromising performance
validation. Resource management and scheduling is required.

Smaller or Subset of the
system resources

Validate:
• All software update changes
• All functional tests
• Limited full-scale high availability evaluations
Cannot Validate:
• Performance testing at production scale

Different hardware or
platform system resources
but same operating system

Validate:
• Some software update changes
• Limited firmware patching test
• All functional tests unless limited by new hardware features
• Limited production scale performance tests
• Limited full-scale high availability evaluations

See Also:

Oracle Database Testing Guide

Performing Preproduction Validation Steps
Pre-production validation and testing of hardware, software, database, application or any
changes is an important way to maintain stability. The high-level pre-production validation
steps are:

1. Review the patch or upgrade documentation or any document relevant to that change.
Evaluate the possibility of performing a rolling upgrade if your SLAs require zero or
minimal downtime. Evaluate any rolling upgrade opportunities to minimize or eliminate
planned downtime. Evaluate whether the patch or the change qualifies for Standby-First
Patching.

Note:

Chapter 7
Establish Test Practices and Environment

7-3

Standby-First Patch enables you to apply a patch initially to a physical standby
database while the primary database remains at the previous software release
(this applies to certain types of software updates and does not apply to major
release upgrades; use the Data Guard transient logical standby and
DBMS_ROLLING method for patch sets and major releases). Once you are
satisfied with the change, then perform a switchover to the standby database. The
fallback is to switchback if required. Alternatively, you can proceed to the following
step and apply the change to your production environment. For more information,
see "Oracle Patch Assurance - Data Guard Standby-First Patch Apply" in My
Oracle Support Note 1265700.1 at https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1265700.1

2. Validate the application in a test environment and ensure the change meets or
exceeds your functionality, performance, and availability requirements. Automate
the procedure and be sure to also document and test a fallback procedure. This
requires comparing metrics captured before and after patch application on the test
and against metrics captured on the production system. Real Application Testing
may be used to capture the workload on the production system and replay it on
the test system. AWR and SQL Performance Analyzer may be used to assess
performance improvement or regression resulting from the patch.

Validate the new software on a test system that mimics your production
environment, and ensure the change meets or exceeds your functionality,
performance, and availability requirements. Automate the patch or upgrade
procedure and ensure fallback. Being thorough during this step eliminates most
critical issues during and after the patch or upgrade.

3. Use Oracle Real Application Testing and test data management features to
comprehensively validate your application while also complying with any security
restrictions your line of business may have. Oracle Real Application Testing (a
separate database option) enables you to perform real-world testing of Oracle
Database. By capturing production workloads and assessing the impact of system
changes on these workloads before production deployment, Oracle Real
Application Testing minimizes the risk of instabilities associated with system
changes. SQL Performance Analyzer and Database Replay are key components
of Oracle Real Application Testing. Depending on the nature and impact of the
system change being tested, and on the type of system on which the test will be
performed, you can use either or both components to perform your testing.

When performing real-world testing there is a risk of exposing sensitive data to
non-production users in a test environment. The test data management features of
Oracle Database help to minimize this risk by enabling you to perform data
masking and data subsetting on the test data.

4. If applicable, perform final pre-production validation of all changes on a Data
Guard standby database before applying them to production. Apply the change in
a Data Guard environment, if applicable.

5. Apply the change in your production environment.

Chapter 7
Establish Test Practices and Environment

7-4

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1265700.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1265700.1

See Also:

Data Guard Redo Apply and Standby-First Patching and Data Guard Transient
Logical Rolling Upgrades

Converting a Physical Standby Database into a Snapshot Standby Database and
Performing a Rolling Upgrade With an Existing Physical Standby Database in
Oracle Data Guard Concepts and Administration

Oracle Database Rolling Upgrades: Using a Data Guard Physical Standby
Database on http://www.oracle.com/goto/maa

Oracle Patch Assurance - Data Guard Standby-First Patch Apply (Doc ID
1265700.1)

Set Up and Use Security Best Practices
Corporate data can be at grave risk if placed on a system or database that does not have
proper security measures in place. A well-defined security policy can help protect your
systems from unwanted access and protect sensitive corporate information from sabotage.
Proper data protection reduces the chance of outages due to security breaches.

See Also:

Oracle Database Security Guide.

Establish Change Control Procedures
Institute procedures that manage and control changes as a way to maintain the stability of the
system and to ensure that no changes are incorporated in the primary database unless they
have been rigorously evaluated on your test systems, or any one of the base architectures in
the MAA service-level tiers.

Review the changes and get feedback and approval from your change management team.

Apply Recommended Patches and Software Periodically
By periodically testing and applying the latest recommended patches and software versions,
you ensure that your system has the latest security and software fixes required to maintain
stability and avoid many known issues. Remember to validate all updates and changes on a
test system before performing the upgrade on the production system.

Furthermore, Oracle health check tools such as

orachk

Chapter 7
Set Up and Use Security Best Practices

7-5

http://www.oracle.com/pls/topic/lookup?ctx=db19&id=GUID-63245504-B67C-4DF2-B8E5-752C0A67FEE7
http://www.oracle.com/pls/topic/lookup?ctx=db19&id=GUID-C5DF6148-C1E9-4ADF-A975-AC95FC64E0C4
https://www.oracle.com/technetwork/database/availability/database-upgrade-dbms-rolling-4126957.pdf
https://www.oracle.com/technetwork/database/availability/database-upgrade-dbms-rolling-4126957.pdf
http://www.oracle.com/goto/maa
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1265700.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1265700.1

(supporting Non-Engineered Systems and Oracle Database Appliance) and

exachk

(supporting Engineered Systems such as Oracle Exadata Database Machine,
Exalogic, Zero Data Loss Recovery Appliance, and Big Data Appliance) provide
Oracle software upgrade advice, critical software update recommendations, and
patching and upgrading pre-checks, along with its system and database health checks
and MAA recommendations.

See Also:

"Oracle Recommended Patches -- Oracle Database" in My Oracle Support
Note 756671.1 at https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=756671.1
"Exadata Database Machine and Exadata Storage Server Supported
Versions" in My Oracle Support Note 888828.1 at https://
support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=888828.1
"ORAchk - Health Checks for the Oracle Stack" in My Oracle Support Note
1268927.2 at https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1268927.2
"Oracle Exadata Database Machine exachk or HealthCheck" in My Oracle
Support Note 1070954.1 at https://support.oracle.com/CSP/main/
article?cmd=show&type=NOT&id=1070954.1

Perform Disaster Recovery Validation
Disaster recovery validation is required to ensure that you meet your disaster recovery
service level requirements such as RTO and RPO.

Whether you have a standby database, Oracle GoldenGate replica, or leverage
database backups from Zero Data Loss Recovery Appliance (Recovery Appliance),
ZFS Storage, or another third party, it is important to ensure that the operations and
database administration teams are well prepared to failover or restore the database
and application any time the primary database is down or underperforming. The
concerned teams should be able to detect and decide to failover or restore as
required. Such efficient preparation before disasters will significantly reduce overall
downtime.

If you use Data Guard or Oracle GoldenGate for high availability, disaster recovery,
and data protection, Oracle recommends that you perform regular application and
database switchover operations every three to six months, or conduct full application
and database failover tests.

Periodic RMAN cross checks, RMAN backup validations, and complete database
restore and recovery are required to validate your disaster recovery solution through
backups. Inherent backup checks and validations are done automatically with the
Recovery Appliance, but periodic restore and recovery tests are still recommended.

Chapter 7
Perform Disaster Recovery Validation

7-6

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=756671.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=756671.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=888828.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=888828.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1268927.2
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1268927.2
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1070954.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1070954.1

Establish Escalation Management Procedures
Establish escalation management procedures so repair is not hindered. Most repair solutions,
when conducted properly are automatic and transparent with the MAA solution. The
challenges occur when the primary database or system is not meeting availability or
performance SLAs and failover procedures are not automatic as in the case with some Data
Guard failover scenarios. Downtime can be prolonged if proper escalation policies are not
followed and decisions are not made quickly.

If availability is the top priority, perform repair and failover operations first and then
proceed with gathering logs and information for Root Cause Analysis (RCA) after the
application service has been reestablished. For simple data gathering, use the Trace File
Analyzer Collector (TFA).

See Also:

MAA web page at http://www.oracle.com/goto/maa
My Oracle Support note 1513912.2 “TFA Collector - Tool for Enhanced Diagnostic
Gathering” at 1513912.2

Configure Monitoring and Service Request Infrastructure for
High Availability

To maintain your High Availability environment, you should configure the monitoring
infrastructure that can detect and react to performance and high availability related thresholds
before any downtime has occurred.

Also, where available, Oracle can detect failures, dispatch field engineers, and replace failed
hardware components such as disks, flash cards, fans, or power supplies without customer
involvement.

Run Database Health Checks Periodically
Oracle Database health checks are designed to evaluate your hardware and software
configuration and MAA compliance to best practices.

All of the Oracle health check tools will evaluate Oracle Grid Infrastructure, Oracle Database,
and provide an automated MAA scorecard or review that highlights when key architectural
and configuration settings are not enabled for tolerance of failures or fast recovery. For
Oracle's engineered systems such as Exadata Database Machine, there may be hundreds of
additional software, fault and configuration checks.

Oracle recommends periodically (for example, monthly for Exadata Database Machine)
downloading the latest database health check, running the health check, and addressing the
key FAILURES, WARNINGS, and INFO messages. Use

exachk

Chapter 7
Establish Escalation Management Procedures

7-7

http://www.oracle.com/goto/maa
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1513912.2

for Engineered Systems such as Oracle Exadata Database Machine, Exalogic, Zero
Data Loss Recovery Appliance, and Big Data Appliance, and use

orachk

for Non-Engineered Systems and Oracle Database Appliance.

Furthermore, it is recommended that you run the health check prior to and after any
planned maintenance activity.

You must evaluate:

• Existing or new critical health check alerts prior to planned maintenance window

• Adding any new recommendations to the planned maintenance window after
testing

• Existing software or critical software recommendations

See Also:

My Oracle Support Note 1268927.2 "ORAchk - Health Checks for the Oracle
Stack" at https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1268927.2
My Oracle Support Note 1070954.1 "Oracle Exadata Database Machine
exachk or HealthCheck" at https://support.oracle.com/CSP/main/
article?cmd=show&type=NOT&id=1070954.1

Configure Oracle Enterprise Manager Monitoring Infrastructure for
High Availability

You should configure and use Enterprise Manager and the monitoring infrastructure
that detects and reacts to performance and high availability related thresholds to avoid
potential downtime.

The monitoring infrastructure assists you with monitoring for High Availability and
enables you to do the following:

• Monitor system, network, application, database and storage statistics

• Monitor performance and service statistics

• Create performance and high availability thresholds as early warning indicators of
system or application problems

• Provide performance and availability advice

• Established alerts and tools and database performance

• Receive alerts for engineered systems hardware faults

Chapter 7
Configure Monitoring and Service Request Infrastructure for High Availability

7-8

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1268927.2
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1268927.2
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1070954.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1070954.1

See Also:

MAA Best Practices for Enterprise Manager at http://www.oracle.com/goto/maa

Configure Automatic Service Request Infrastructure
In addition to monitoring infrastructure with Enterprise Manager in the Oracle high availability
environment where available, Oracle can detect failures, dispatch field engineers, and
replace failing hardware without customer involvement.

For example, Oracle Automatic Service Request (ASR) is a secure, scalable, customer-
installable software solution available as a feature. The software resolves problems faster by
using auto-case generation for Oracle's Solaris server and storage systems when specific
hardware faults occur.

See Also:

See "Oracle Automatic Service Request" in My Oracle Support Note 1185493.1 at
https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1185493.1

Check the Latest MAA Best Practices
The MAA solution encompasses the full stack of Oracle technologies, so you can find MAA
best practices for Oracle Fusion Middleware, Oracle Fusion Applications, Oracle Applications
Unlimited, Oracle Exalytics, Oracle Exalogic, Oracle VM, and Oracle Enterprise Manager
Cloud Control on the MAA pages.

MAA solutions and best practices continue to be developed and published on http://
www.oracle.com/goto/maa.

Chapter 7
Check the Latest MAA Best Practices

7-9

http://www.oracle.com/goto/maa
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1185493.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1185493.1
http://www.oracle.com/goto/maa
http://www.oracle.com/goto/maa

Part II
Oracle Database High Availability Best
Practices

• Overview of Oracle Database High Availability Best Practices

• Oracle Database Configuration Best Practices

• Oracle Flashback Best Practices

8
Overview of Oracle Database High Availability
Best Practices

By adopting the Oracle MAA best practices for Oracle Database, you can achieve the service
levels of the Oracle MAA Bronze reference architecture.

The Bronze architecture achieves the highest availability for a single-instance database
configuration, whether it is a standalone database or part of a consolidated multitenant
database, by using the high availability capabilities included in Oracle Database Enterprise
Edition.

The Bronze architecture is the base configuration for the other MAA reference architectures.
The Oracle Database best practices should also be implemented in the Silver, Gold, and
Platinum references architectures, unless specifically noted in the best practices for that
architecture.

For information about the components, service levels, and benefits of the Bronze reference
architecture, as well as the MAA architectures that build on the Bronze base, see the "High
Availability Reference Architectures" interactive diagram at https://www.oracle.com/webfolder/
technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-
reference-architectures.html.

8-1

https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html
https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html
https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html

9
Oracle Database Configuration Best Practices

Adopt the Oracle MAA best practices for configuring all Oracle single-instance databases to
reduce or avoid outages, reduce the risk of corruption, and improve recovery performance.

Note that the following Oracle Database best practices are used to configure the Oracle MAA
Bronze reference architecture, and they are also the base database base practices for the
other MAA reference architectures: Silver (Oracle RAC), Gold (Oracle Data Guard), and
Platinum (Oracle GoldenGate).

Use a Server Parameter File (SPFILE)
The server parameter file (SPFILE) enables a single, central parameter file to hold all
database initialization parameters associated with all instances of a database. This provides
a simple, persistent, and robust environment for managing database parameters. SPFILE is
recommended to be placed in the DATA ASM disk group.

Enable Archive Log Mode and Forced Logging
Running the database in ARCHIVELOG mode and using database FORCE LOGGING mode are
prerequisites for database recovery operations.

The ARCHIVELOG mode enables online database backup and is necessary to recover the
database to a point in time later than what has been restored. Features such as Oracle Data
Guard and Flashback Database require that the production database run in ARCHIVELOG
mode.

If you can isolate data that never needs to be recovered within specific tablespaces, then you
can use tablespace level FORCE LOGGING attributes instead of the database FORCE LOGGING
mode.

Configure an Alternate Local Archiving Destination
The local archive destination, usually LOG_ARCHIVE_DEST_1, should have an alternate local
destination on a different ASM disk group. This configuration prevents database hanging due
to lack of archive log space if DB_RECOVERY_FILE_DEST fills up or is unavailable for any
reason.

9-1

Table 9-1 Alternate Local Archiving Configuration Parameters

Database Parameter LOG_ARCHIVE_DEST_n parameter
settings for local archive destinations

LOG_ARCHIVE_DEST_n LOCATION=USE_DB_FILE_RECOVERY_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
MAX_FAILURE=1
REOPEN=5
DB_UNIQUE_NAME=db_unique_name of the
database

ALTERNATE=some other log archive
destination. Must be log_archive_dest_[1-10]

LOG_ARCHIVE_DEST_y LOCATION=A disk group other than the disk
group used for DB_RECOVERY_FILE_DEST.
Usually the DATA disk group.
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
MAX_FAILURE=1
REOPEN=5
ALTERNATE= the primary local archive log
destination: usually LOG_ARCHIVE_DEST_1

DB_RECOVERY_FILE_DEST Archive destination, for example, a RECO disk
group

LOG_ARCHIVE_DEST_STATE_n ENABLE
LOG_ARCHIVE_DEST_STATE_y ALTERNATE

Sample parameter settings:

• LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_FILE_RECOVERY_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES) MAX_FAILURE=1 REOPEN=5
DB_UNIQUE_NAME=db_unique_name of the database
ALTERNATE=LOG_ARCHIVE_DEST_10'

• LOG_ARCHIVE_DEST_10='LOCATION=+DATA VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
MAX_FAILURE=1 REOPEN=5 DB_UNIQUE_NAME=db_unique_name of the database
ALTERNATE=LOG_ARCHIVE_DEST_1'

• LOG_ARCHIVE_DEST_STATE_1 =enable
• LOG_ARCHIVE_DEST_STATE_10=alternate
• DB_RECOVERY_FILE_DEST=typically the RECO disk group

Use a Fast Recovery Area
The Fast Recovery Area is Oracle-managed disk space that provides a centralized
disk location for backup and recovery files.

The Fast Recovery Area is defined by setting the following database initialization
parameters:

• DB_RECOVERY_FILE_DEST specifies the default location for the fast recovery area.
Set this parameter to the RECO disk group.

Chapter 9
Use a Fast Recovery Area

9-2

• DB_RECOVERY_FILE_DEST_SIZE specifies (in bytes) the hard limit on the total space to be
used by database recovery files created in the recovery area location.

Set this parameter to a value large enough to store archived logs, flashback logs and any
local database backup files locally. Having the files locally can reduce your recovery time
after restoring a backup. RMAN will automatically manage these files according to your
RMAN backup and data retention policies. Typically customers store 24 hours of data in
the destination

When your system hosts many databases sharing the same
DB_RECOVERY_FILE_DEST_SIZE, space needs to manage and monitored holistically.
Recommended to alert when RECO disk group for example is 90% full.

Enable Flashback Database
Flashback Database provides an efficient alternative to point-in-time recovery for reversing
unwanted database changes.

Flashback Database lets you rewind an entire database backward in time, reversing the
effects of database changes within a time window. The effects are similar to database point-
in-time recovery. You can flash back a database by running a single RMAN command or a
SQL*Plus statement instead of using a complex procedure.

To enable Flashback Database, configure a fast recovery area and set a flashback retention
target using the best practices listed below. This retention target specifies how far back you
can rewind a database with Flashback Database.

• Know your application performance baseline before you enable flashback database to
help determine the overhead and to assess the application workload implications of
enabling flashback database.

• Ensure that the fast recovery area space is sufficient to hold the flashback database
flashback logs. A general rule of thumb is that the volume of flashback log generation is
approximately the same order of magnitude as redo log generation. For example, if you
intend to set DB_FLASHBACK_RETENTION_TARGET to 24 hours, and if the database
generates 20 GB of redo in a day, then allow 20 GB to 30 GB disk space for the
flashback logs.

– An additional method to determine fast recovery area sizing is to enable flashback
database and allow the database to run for a short period of time (2-3 hours). Query
V$FLASHBACK_DATABASE_STAT.ESTIMATED_FLASHBACK_SIZE to retrieve the estimated
amount of space required for the fast recovery area.

– Note that the DB_FLASHBACK_RETENTION_TARGET is a target and there is no guarantee
that you can flashback the database that far. In some cases if there is space pressure
in the fast recovery area where the flashback logs are stored, then the oldest
flashback logs may be deleted. To guarantee a flashback point-in-time you must use
guaranteed restore points.

• Ensure that there is sufficient I/O bandwidth to the fast recovery area. Insufficient I/O
bandwidth with flashback database on is usually indicated by a high occurrence of the
FLASHBACK BUF FREE BY RVWR wait event.

• To monitor the progress of a flashback database operation you can query the
V$SESSION_LONGOPS view. An example query to monitor progress is

SELECT sofar, totalwork, units FROM v$session_longops WHERE opname =
'Flashback Database';

Chapter 9
Enable Flashback Database

9-3

• For repetitive tests where you must flashback to the same point, use flashback
database guaranteed restore points instead of enabling flashback database. This
will minimize space usage.

• Flashback PDB can rewind a pluggable database without affecting other PDBs in
the CDB. You can also create PDB restore points.

Set FAST_START_MTTR_TARGET Initialization Parameter
With Fast-Start Fault Recovery, the FAST_START_MTTR_TARGET initialization parameter
simplifies the configuration of recovery time from instance or system failure.

The FAST_START_MTTR_TARGET parameter specifies a target for the expected recovery
time objective (RTO), which is the time, in seconds, that it should take to start the
instance and perform cache recovery. When you set this parameter, the database
manages incremental checkpoint writes in an attempt to meet the target. If you have
chosen a practical value for this parameter, then you can expect your database to
recover, on average, in approximately the number of seconds you have chosen.

Initially, set the FAST_START_MTTR_TARGET initialization parameter to 300 (seconds), or
to the value required for your expected recovery time objective (RTO). As you set or
lower this value, database writer (DBWR) will become more active to meet your
recovery targets.

Make sure that you have sufficient IO bandwidth to handle potential higher load. See
the Database Performance Tuning Guide for information about monitoring and tuning
FAST_START_MTTR_TARGET.

Outage testing for cases such as node or instance failures during peak loads is
recommended.

Protect Against Data Corruption
Oracle Database corruption prevention, detection, and repair capabilities are built on
internal knowledge of the data and transactions it protects, and on the intelligent
integration of its comprehensive high availability solutions.

A data block is corrupted when it is not in a recognized Oracle Database format, or its
contents are not internally consistent. Data block corruption can damage internal
Oracle control information or application and user data, leading to crippling loss of
critical data and services.

When Oracle Database detects corruption, it offers block media recovery and data file
media recovery to recover the data. You can undo database-wide logical corruptions
caused by human or application errors with Oracle Flashback Technologies. Tools are
also available for proactive validation of logical data structures. For example, the
SQL*Plus ANALYZE TABLE statement detects inter-block corruptions.

The following are best practices for protecting your database against corruption.

• Use Oracle Automatic Storage Management (Oracle ASM) to provide disk
mirroring to protect against disk failures.

• Use the HIGH redundancy disk type for optimal corruption repair with Oracle ASM.

Using Oracle ASM redundancy for disk groups provides mirrored extents that can
be used by the database if an I/O error or corruption is encountered. For continued

Chapter 9
Set FAST_START_MTTR_TARGET Initialization Parameter

9-4

protection, Oracle ASM redundancy lets you move an extent to a different area on a disk
if an I/O error occurs. The Oracle ASM redundancy mechanism is useful if you have bad
sectors returning media errors.

• Enable Flashback technologies for fast point-in-time recovery from logical corruptions
that are most often caused by human error, and for fast reinstatement of a primary
database following failover.

• Implement a backup and recovery strategy with Recovery Manager (RMAN) and
periodically use the RMAN BACKUP VALIDATE CHECK LOGICAL scan to detect corruptions.

Use RMAN and Oracle Secure Backup for additional block checks during backup and
restore operations. Use Zero Data Loss Recovery Appliance for backup and recovery
validation including corruption checks and repairs, central backup validation, reduced
production database impact, and Enterprise Cloud backup and recovery solutions.

• Set database initialization parameter DB_BLOCK_CHECKSUM=MEDIUM or FULL.

• Evaluate setting DB_BLOCK_CHECKING=MEDIUM or FULL, but only after a full performance
evaluation with the application.

Set the LOG_BUFFER Initialization Parameter to 128MB or
Higher

Set the LOG_BUFFER initialization parameter to a minimum of 128 MB for databases with
flashback enabled.

Set USE_LARGE_PAGES=ONLY
On Linux, the database’s SGA should leverage large pages for consistent performance and
stability.

There are two ways to ensure this happens with the USE_LARGE_PAGES parameter:

• USE_LARGE_PAGES=ONLY - Hugepages must be preallocated before instance startup.

• USE_LARGE_PAGES=AUTO_ONLY - Hugepages are dynamically acquired at instance startup
time, but this dynamic acquisition can fail if memory is fragmented or if another instance
is starting up and dynamically acquiring hugepages at the same time.

The MAA best practice is USE_LARGE_PAGES=ONLY. This recommendation is applicable for
Cloud and non-Cloud environments, and all Cloud and Exadata automation tools ensure this
configuration is in place.

Note:

Oracle RDBMS 19c default for USE_LARGE_PAGES on Exadata is AUTO_ONLY, but this
value will be deprecated in the future.

Chapter 9
Set the LOG_BUFFER Initialization Parameter to 128MB or Higher

9-5

Use Bigfile Tablespace
As databases grow larger more data files are added to smallfile tablespaces, which
requires additional administration, monitoring, and maintenance, while negatively
impacting database open time and role transition time in Oracle Data Guard
environments.

Bigfile tablespaces allow a single large data file per tablespace, up to 32TB for 8k
blocksize and 128TB for 32k blocksize. The single data file reduces the number of files
in the database thus improving database checkpoint, database open, and role
transition time, while improving administration costs.

Recommendations include:

• For new database design and deployment, use bigfile tablespaces and
partitioning to minimize the number of data files. Partitioning of large tables
prevents having an enormous bigfile. A reasonable bigfile should still be 16TB or
less.

– For very large tables that have different retention policies, or have different
access requirements, use Oracle Partitioning as part of your database and
object design. Oracle Partitioning can also work around any potential bigfile
size limitation.

– For very large tablespaces, use bigfile tablespaces instead of many smallfile
data files. Bigfile tablespaces are only supported for locally managed
tablespaces with automatic segment space management.

– There are no negative trade-offs for using bigfile tablespaces, other than
understanding the maximum limits for your DB_BLOCK_SIZE. To continue to
ensure good database backup and restore performance, you should also use
the RMAN SECTION SIZE parameter to parallelize backup and restore
operations when there are bigfile tablespaces.

• For existing databases with a lot of data files, focus on tablespaces that have the
most data files and evaluate if you can use the ALTER TABLE MOVE or online
redefinition to migrate tables or partitions to bigfile tablespaces.

The following tables show a recent Data Guard performance test which demonstrates
that reducing the number of data files in the database from 9000 data files to ~100
data files improved failover times by 10x and switchover times by 4 times.

Unplanned Outage/DR
(Failover)

Initial Configuration Tuned MAA Configuration

Close to Mount (C2M) 21 secs 1 sec

Terminal Recovery (TR) 154 secs 2 secs

Convert to Primary (C2P) 114 secs 5 secs

Open new Primary (OnP) 98 secs 28 secs

Open PDB and Start Service
(OPDB)

146 secs 16 secs

Total App Downtime 533 secs or 8min 53 secs 52 secs (90% drop)

Chapter 9
Use Bigfile Tablespace

9-6

Planned DR Switch
(Switchover)

Initial Configuration Tuned MAA Configuration

Convert Primary to Standby 26 secs 21 sec

Convert Standby to Primary
(C2P)

47 secs 7 secs

Open new Primary (OnP) 152 secs 14 secs

Open PDB and Start Service
(OPDB)

130 secs 39 secs

Total App Downtime 355 secs or 5 minutes 55 secs 81 secs (78% drop)

For existing databases with a lot of data files, the following table compares the use of ALTER
TABLE MOVE or DBMS_REDEFINITION to migrate tables or partitions to bigfile tablespaces.

Areas of Interest or Use Cases DBMS_REDEFINITION ALTER TABLE MOVE ONLINE

Application Impact • No DDL changes allowed during
move

• Application blackout of seconds
during activation

• No DDL changes allowed during
move

• Application blackout during final
switch unknown

Application Functionality Supported • DML supported
• PDML supported
• No DDL changes allowed during

move

• DML supported
• PDML not supported
• No DDL changes allowed during

move

Impact of indexes • Available during move
• Indexes maintained

• Available during move
• Indexes maintained after move

(with UPDATE INDEXES clause)

• Indexes moved separately
(REBUILD ONLINE)

Space Requirements Double space required
(tables+indexes)

Double space required
(tables+indexes)

Table Partition Functionality Move entire partitioned table with
one execution

Move partition by partition in order to
maintain all indexes

Statistics Management New statistics can be created before
activation

New statistics created after activation

Monitoring Progress You can query the V$ONLINE_REDEF
view to monitor the progress of an
online table redefinition operation.

Query V$SESSION_LONGOPS?

Resume on failure Restart-able Unknown

Rollback Yes N/A

Chapter 9
Use Bigfile Tablespace

9-7

Areas of Interest or Use Cases DBMS_REDEFINITION ALTER TABLE MOVE ONLINE

Restrictions • Tables with LONG columns can
be redefined online, but those
columns must be converted to
CLOBS. Also, LONG RAW columns
must be converted to BLOBS.
Tables with LOB columns are
acceptable.

• Index-organized table can be
moved

• Domain indexes can be moved
• Parallel DML and direct path

INSERT operations are allowed

Many 'corner case' restrictions with
DBMS_REDEFINITION. See
Restrictions for Online Redefinition of
Tables in Oracle Database
Administrator’s Guide

• Cannot move a table with a
LONG or RAW column

• Cannot move partitioned index-
organized table.

• Cannot move if a domain index
is defined on the table like
spatial, XML, or a Text index.

• Parallel DML and direct path
INSERT operations are not
possible during a table move.

• Cannot move index-organized
tables that contain any LOB,
VARRAY, Oracle-supplied type,
or user-defined object type
columns.

Documentation and References See DBMS_REDEFINITION in
Oracle Database PL/SQL Packages
and Types Reference

See ALTER TABLE in Oracle
Database SQL Language Reference

Use Automatic Shared Memory Management and Avoid
Memory Paging

Enable Automatic Shared Memory Management by setting the SGA_TARGET parameter,
and set the USE_LARGE_PAGES database initialization parameter to AUTO_ONLY or ONLY
and the USE_LARGE_PAGES ASM initialization parameter to TRUE.

Use the following guidelines in addition to setting SGA_TARGET to enable Automatic
Shared Memory Management.

• The sum of SGA and PGA memory allocations on the database server should
always be less than your system's physical memory while still accommodating
memory required for processes, PGA, and other applications running on the same
database server.

• To get an accurate understanding of memory use, monitor PGA memory and host-
based memory use by querying V$PGASTAT for operating systems statistics.

• Avoid memory paging by adjusting the number of databases and applications, or
reducing the allocated memory settings.

Set PGA_AGGREGATE_LIMIT to specify a hard limit on PGA memory usage. If the
PGA_AGGREGATE_LIMIT value is exceeded, Oracle Database first terminates
session calls that are consuming the most untunable PGA memory. Then, if the
total PGA memory usage is still over the limit, the sessions that are using the most
untunable memory will be terminated.

Set the database initialization parameter USE_LARGE_PAGES=AUTO_ONLY or ONLY, and set
the ASM initialization parameter USE_LARGE_PAGES=TRUE.

Chapter 9
Use Automatic Shared Memory Management and Avoid Memory Paging

9-8

• Make sure that the entire SGA of a database instance is stored in HugePages by setting
the init.ora parameter USE_LARGE_PAGES=ONLY, or set to AUTO_ONLY on Exadata
systems.

Setting USE_LARGE_PAGES=ONLY is recommended for database instances, because this
parameter ensures that an instance will only start when it can get all of its memory for
SGA from HugePages.

• For ASM instances leave the parameter USE_LARGE_PAGES=ONLY (the default value). This
setting still ensures that HugePages are used when available, but also ensures that ASM
as part of Grid Infrastructure starts when HugePages are not configured, or insufficiently
configured.

• Use Automatic Shared Memory Management, because HugePages are not compatible
with Automatic Memory Management.

Use Oracle Clusterware
Oracle Clusterware lets servers communicate with each other, so that they appear to function
as a collective unit. Oracle Clusterware has high availability options for all Oracle databases
including for single instance Oracle databases. Oracle Clusterware is one of minimum
requirements in making applications highly available.

Oracle Clusterware provides the infrastructure necessary to run Oracle Real Application
Clusters (Oracle RAC), Oracle RAC One Node, and Oracle Restart. Oracle Grid
Infrastructure is the software that provides the infrastructure for an enterprise grid
architecture. In a cluster, this software includes Oracle Clusterware and Oracle ASM.

For a standalone server, the Grid Infrastructure includes Oracle Restart and Oracle ASM.
Oracle Restart provides managed startup and restart of a single-instance (non-clustered)
Oracle database, Oracle ASM instance, service, listener, and any other process running on
the server. If an interruption of a service occurs after a hardware or software failure, Oracle
Restart automatically restarts the component.

Oracle Clusterware manages resources and resource groups to increase their availability,
based on how you configure them. You can configure your resources and resource groups so
that Oracle Clusterware:

• Starts resources and resource groups during cluster or server start

• Restarts resources and resource groups when failures occur

• Relocates resources and resource groups to other servers, if the servers are available

For more information, see Oracle Clusterware Administration and Deployment Guide topics,
High Availability Options for Oracle Database and Making Applications Highly Available Using
Oracle Clusterware.

Chapter 9
Use Oracle Clusterware

9-9

10
Oracle Flashback Best Practices

Oracle Database Flashback Technologies is a unique and rich set of data recovery solutions
that let the database reverse human errors by selectively and efficiently undoing the effects of
a mistake.

Before Flashback was introduced to Oracle Database, it might have taken minutes to
damage a database but hours to recover it. With Flashback, correcting an error takes about
as long as it took to make it. In addition, the time required to recover from this error is not
dependent on the database size, which is a capability unique to Oracle Database.

Flashback supports database recovery at all levels, including the row, transaction, table, and
the entire database. Flashback provides an ever-growing set of features to view and rewind
data back and forth in time, and address several critical high availability and disaster recovery
use cases. The list of features and use cases, as well as some key examples, can be found
in Oracle Flashback Technology.

The Flashback features give you the capability to query historical data, perform change
analysis, and perform the self-service repair to recover from logical corruptions while the
database is online. With Oracle Flashback Technology, you can indeed undo the past.

Oracle Flashback Performance Observations
After adopting the configuration and operational best practices and applying recommended
patches, Oracle has observed the following performance observations when Flashback
Database is enabled on the primary or standby databases.

• Flashing back a database or a PDB to the previous hour usually takes seconds and
minutes, even with a very high workload. It finishes in a fraction of the time it takes to
apply a given amount of redo. Here are some observations:

– Flashing back a large batch workload consisting of 400 GB of changes completed in
less than 5 minutes.

– Flashing back of a heavy OLTP of 8GB of changes completed in less than 2 minutes.

– Due to many variables, there is no rule-of-thumb or calculation to estimate the time to
complete a flashback. The tests which produced these observations were done on
Exadata to remove system bottlenecks such as storage I/O bandwidth.

• The impact on OLTP workload on the primary database is usually less than 5 percent.

• The impact of a large insert (batch inserts, for example) or direct load operations is
usually less than 5 percent if Flashback block new optimization is in effect; otherwise, the
impact can vary dramatically (2-40% impact), so testing is required.

Refer to the Flashback use cases that mention block new optimization descriptions and
exceptions in Oracle Flashback Performance Tuning for Specific Application Use Cases.

• Enabling Flashback database can reduce peak redo apply performance rates on a
physical standby database if the standby system cannot handle the additional I/O
throughput requirements in the Fast Recovery Area. However, even with Flashback
database enabled on the standby, the achievable redo apply rates with Flashback
enabled are still very high and can outperform application redo generation rates.

10-1

The following lists describe the critical flashback milestones and key performance
improvements across different Oracle Database software releases:

Oracle Database 12c Release 2 (12.2)

• Flashback Pluggable Database enables the flashback of individual PDBs without
affecting other PDBs.

• PDB Restore Points enable an ease of use method to set an alias to an SCN. This
alias can then be used for flashback PDB or Point-In-Time Recovery.

Oracle Database 19c

• Creating a Restore Point on a primary database automatically propagates to a
standby database, and creates a corresponding Restore Point on the standby
database.

• When Flashback Database is enabled on both the primary and standby databases
in an Oracle Data Guard configuration, flashing back the primary database causes
the standby database to automatically flash back as well.

Oracle Database 21c

• Migrate Flashback Data Archive-enabled tables between different database
releases

• Flashback Database support for data file resizing operations

• PDBs can be recovered to an orphan PDB incarnation within the same CDB
incarnation or an ancestor incarnation

Oracle Flashback Configuration Best Practices
The following are Oracle MAA best practices for configuring Flashback technologies in
Oracle Database.

Setting DB_FLASHBACK_RETENTION_TARGET

Set the DB_FLASHBACK_RETENTION_TARGET initialization parameter to the largest value
prescribed by any of the following conditions that apply:

• To leverage Flashback database to reinstate your failed primary database after
Oracle Data Guard failover, set DB_FLASHBACK_RETENTION_TARGET to a minimum of
60 (minutes) to enable reinstatement of a failed primary. When enabling Flashback
database, a couple of hours are required to generate sufficient flashback data into
the flashback logs before reinstatement is possible. You can query
V$FLASHBACK_DATABASE_LOG to find the oldest flashback time.

• Consider cases where there are multiple outages (for example, a network outage,
followed later by a primary database outage) that may result in a transport lag
between the primary and standby databases at failover time. For such cases, set
DB_FLASHBACK_RETENTION_TARGET to a value equal to the sum of 60 (mins) plus the
maximum transport lag that you wish to accommodate. This ensures that the failed
primary database can be flashed back to an SCN that precedes the SCN at which
the standby became primary. This is a requirement for primary reinstatement.

• If you are using Flashback Database for fast point-in-time recovery from user error
or logical corruptions, set DB_FLASHBACK_RETENTION_TARGET to a value equal to the
farthest time in the past that you wish to be able to recover from.

Chapter 10
Oracle Flashback Configuration Best Practices

10-2

• In most cases, DB_FLASHBACK_RETENTION_TARGET should be set to the same value on the
primary and standby.

Sizing the Fast Recovery Area

Flashback Database uses its own logging mechanism, creating flashback logs and storing
them in the Fast Recovery Area (FRA). Ensure that the FRA has allocated sufficient space to
accommodate the flashback logs for the target retention size and for peak batch rates. Sizing
the FRA is described in detail in the Oracle Backup and Recovery documentation, but
generally the volume of flashback log generation is similar in magnitude to redo log
generation. Use the following conservative formula and approach:

Target FRA = Current FRA + DB_FLASHBACK_RETENTION_TARGET x 60 x Peak Redo Rate (MB/
sec)

Example:

• Current FRA or DB_RECOVERY_FILE_DEST_SIZE=1000GB

• Target DB_FLASHBACK_RETENTION_TARGET=360 (360 minutes)

• From AWR:

– The peak redo rate for OLTP workload is 3 MB/sec for the database

– The peak redo rate for the batch workload is 30 MB/sec for the database, and the
longest duration is 4 hours

– The worst-case redo generation size for a 6 hour window is (240 minutes x 30
MB/sec x 60 secs/min) + (120 minutes x 3 MB/sec x 60 secs/min) = 453,600 MB, or
approximately 443 GB

• Proposed FRA or DB_RECOVERY_FILE_DEST_SIZE= 443 GB +1000 GB = 1443 GB

An additional method to determine FRA sizing is to enable Flashback Database and allow the
database applications to run for a short period (2-3 hours), and then query
V$FLASHBACK_DATABASE_STAT.ESTIMATED_FLASHBACK_SIZE.

Note that the DB_FLASHBACK_RETENTION_TARGET is a target, and there is no guarantee that
you can flash back the database that far. The oldest flashback logs may be deleted if there is
space pressure in the FRA where the flashback logs are stored. See Maintaining the Fast
Recovery Area in Oracle Database Backup and Recovery User’s Guide for a detailed
explanation of the FRA deletion rules. You must use guaranteed restore points (GRP) to
guarantee a flashback point-in-time. The required flashback logs will never be recycled or
purged with GRP until GRP is dropped. The database can stop responding if there is a GRP
but there is insufficient space, so you must allocate more space in the FRA depending on the
intended duration of the GRP.

Configuring sufficient I/O bandwidth for Fast Recovery Area

Insufficient I/O bandwidth with Flashback Database on is usually indicated by a high
occurrence of the "FLASHBACK BUF FREE BY RVWR" wait event in an Automatic Workload
Repository (AWR) report for OLTP workloads and "FLASHBACK LOG FILE WRITE" latency
> 30 ms for large insert operations.

In general, flashback I/Os are 1 MB in size. The overall write throughput would be similar to
the redo generation rate if database force logging were enabled, or identical to your load rate
for direct load operations. For simplicity, configure one large shared storage GRID and
configure DATA on the outer portion of the disks or LUNS and RECO (FRA) on the inner
amount of the disks or LUNS. This is done automatically for Exadata systems.

Setting LOG_BUFFER

Chapter 10
Oracle Flashback Configuration Best Practices

10-3

To give Flashback Database more buffer space in memory, set the initialization
parameter LOG_BUFFER=256MB or higher, depending on operating system limits.

Oracle Flashback Operational Best Practices
The following are Oracle MAA recommended operational best practices for Flashback
Database.

• Gather database statistics using Automatic Workload Repository (AWR) or Oracle
Enterprise Manager before and after enabling Flashback Database, so you can
measure the impact of enabling Flashback Database.

• Using Oracle Enterprise Manager, set the Enterprise Manager monitoring
metric,"Recovery Area Free Space (%)" for proactive alerts of space issues with
the fast recovery area (FRA).

• To monitor the progress of a Flashback Database operation, you can query the
V$SESSION_LONGOPS view. For example,

select * from v$session_longops where opname like 'Flashback%';
If more detail is required on the Flashback Database operation, generate a
detailed trace of the Flashback Database operation in the DIAGNOSTIC_DEST
trace directory for the database by setting database parameter
_FLASHBACK_VERBOSE_INFO=TRUE.

• When using Flashback Database to perform repeated tests on a test database, it
is recommended that you use Guaranteed Restore Points (GRP) only, without
explicitly turning on Flashback Database. To minimize space usage and flashback
performance overhead, follow this recommended approach:

Create Guaranteed Restore Point (GRP)
Execute test
loop
 Flashback database to GRP
 Open resetlogs
 Create new GRP
 Drop old GRP
 Execute
testEnd loop

• Follow the Oracle Data Guard redo apply best practices described in Redo Apply
Troubleshooting and Tuning.

Oracle Flashback Performance Tuning for Specific
Application Use Cases

Performance Tuning for OLTP Workloads

The "flashback buf free by RVWR" wait event only occurs when Flashback Database
is enabled. A session waits for the recovery writer (RVWR) to write flashback data to
the flashback logs on disk because the buffers are full. The session may need to wait
until RVWR can free up the buffers.

Chapter 10
Oracle Flashback Operational Best Practices

10-4

Suppose this event becomes one of the top wait events for the database. In that case, it is
typically because the file system or storage system for the Fast Recovery Area (FRA) has
insufficient I/O bandwidth to accommodate additional I/O from the Flashback writes. Refer to
the Flashback Database section in the Oracle Database Backup and Recovery User’s Guide
for tuning considerations and evaluate the corresponding I/O and storage statistics.

Table 10-1 Top 5 Timed Foreground Events

Event Waits Times Average wait
(ms)

% database time Wait class

write complete
waits

1,842 23,938 12995 33.68 Configuration

flashback buf free
by RVWR

53,916 20,350 377 28.63 Configuration

cell single block
physical read

3,029,626 16,348 5 23.00 User I/O

buffer busy waits 6,248 5,513 882 7.76 Concurrency

DB CPU 1,757 2.47

Performance Tuning for Direct Path Operations

Look at the "flashback log write bytes" and "physical write bytes" system statistics found in
v$sysstat, in your AWR reports, or Oracle Enterprise Manager.

• "flashback log write bytes" = The total size in bytes of Flashback Database data written
by RVWR to Flashback Database logs

• "physical write bytes" = The total size in bytes of all disk writes from the database
application activity (and not other kinds of instance activity).

If (flashback log write bytes) / (physical write bytes) < 5%, then Flashback is not impacting
your performance.

Otherwise, evaluate any operational changes or bug fixes that will allow you to use the
Flashback block new optimization feature (refer to performance observation section above).
Furthermore, ignore the "flashback log file sync" wait event, even if it's one of the top wait
events.

Example of block new optimization in effect

In this example:

• flashback log write bytes = 1,223,442,432

• physical write bytes = 184,412,282,880

The result of (flashback log write bytes) / (physical write bytes) = 0.0066 < 5%, implies that
there’s only a fraction of flashback data compared to the physical writes within this interval
where there are direct load operations. Even in this case, the "flashback log file sync" wait
event was the 2nd highest wait event in the database, as shown in the following table.

Table 10-2 Top 5 Timed Foreground Events

Event Waits Times Average wait
(ms)

% database time Wait class

direct path write 136,553 7,875 58 39.12 User I/O

Chapter 10
Oracle Flashback Performance Tuning for Specific Application Use Cases

10-5

Table 10-2 (Cont.) Top 5 Timed Foreground Events

Event Waits Times Average wait
(ms)

% database time Wait class

flashback log file
sync

91,566 5,887 64 29.25 User I/O

DB CPU 3,092 15.36

log buffer space 20,545 1,737 85 8.63 Configuration

gc buffer busy
release

1,277 487 382 2.42 Cluster

Example of block new optimization not in effect

In this example:

• flashback log write bytes= 184,438,194,176

• physical write bytes =184,405,925,888

The result of (flashback log write bytes) / (physical write bytes) = 100% > 5%, implies
that in this case all direct writes also result in flashback log writes. Listed here are the
top wait events for this case.

Table 10-3 Top 5 Timed Foreground Events

Event Waits Times Average wait
(ms)

% database time Wait class

flashback log file
sync

170,088 22,385 132 52.04 User I/O

direct path write 278,185 8,284 30 19.26 User I/O

flashback buf free
by RVWR

38,396 5,048 131 11.74 Configuration

direct path read 220,618 4,242 19 9.86 User I/O

DB CPU 2,788 6.48

Performance Tuning for Conventional Load Operations

The following examples illustrate two conventional loads, one that uses block new
optimization and one that does not.

Example of block new optimization not in effect

The example below does not use the block new optimization because of a truncate
just before loading the table. The wait events for a conventional load without block new
optimization show a fairly large amount of total wait time spent in "flashback log file
sync". This is because of time needed to read them before the image of the block into
the buffer cache and well as writing the block to the flashback log.

Chapter 10
Oracle Flashback Performance Tuning for Specific Application Use Cases

10-6

Table 10-4 Top 5 Timed Foreground Events

Event Waits Times Average wait
(ms)

% database time Wait class

flashback log file
sync

235,187 13,728 58 30.82 User I/O

direct path write 558,037 10,818 19 24.29 User I/O

direct path read 459,076 8,419 18 18.90 User I/O

DB CPU 6,171 13.85

flashback buf free
by RVWR

79,463 4,268 54 9.58 Configuration

Looking at the instance statistics below you can see very little increase in the statistics that
track block new optimizations.

Statistic Total Per second Per transaction

flashback cache read
optimizations for block new

62 0.06 1.13

flashback direct read
optimizations for block new

8 0.01 0.15

flashback log write bytes 177,533,280,256 177,245,433.67 3,227,877,822.84

flashback log writes 18,917 18.89 343.95

If the "flashback cache read optimizations for block new" is much smaller than "flashback log
writes" then the block new optimization does not have an effect.

The best tuning recommendation for the above load operation would be to increase I/O
bandwidth or, perhaps better, change the manner in which the load is performed so that it can
take advantage of block new optimizations. You can also wait until you are outside the
flashback retention target, or remove the object from recycle bin if it was dropped.

Example of block new optimization not effect

The wait events for a conventional load with block new optimization show a relatively small
amount of total time spent in "flashback log file sync" compared to other database waits, as
shown here.

Table 10-5 Top 5 Timed Foreground Events

Event Waits Times Average wait
(ms)

% database time Wait class

direct path write 284,115 8,977 32 34.20 User I/O

DB CPU 6,284 23.94

log buffer space 128,879 5,081 39 19.36 Configuration

flashback log file
sync

139,546 3,178 23 12.11 User I/O

latch: redo
allocation

95,887 1,511 16 5.76 Other

Looking at the instance statistics you can see that the statistics that track block new
operations have significantly increased during the load.

Chapter 10
Oracle Flashback Performance Tuning for Specific Application Use Cases

10-7

Statistic Total Per second Per transaction

flashback cache read
optimizations for block new

329 0.53 9.68

flashback direct read
optimizations for block new

698,410 1,116.43 20,541.47

flashback log write bytes 1,197,514,752 1,914,271.66 35,221,022.12

flashback log writes 18,951 30.29 557.38

Chapter 10
Oracle Flashback Performance Tuning for Specific Application Use Cases

10-8

Part III
Oracle RAC and Clusterware Best Practices

• Overview of Oracle RAC and Clusterware Best Practices

11
Overview of Oracle RAC and Clusterware
Best Practices

Oracle Clusterware and Oracle Real Application Clusters (RAC) are Oracle's strategic high
availability and resource management database framework in a cluster environment, and an
integral part of the Oracle MAA Silver reference architecture.

Adding Oracle RAC to a Bronze MAA reference architecture elevates it to a Silver MAA
reference architecture. The Silver MAA reference architecture is designed for databases that
can’t afford to wait for a cold restart or a restore from backup, should there be an
unrecoverable database instance or server failure.

The Silver reference architecture has the potential to provide zero downtime for node or
instance failures, and zero downtime for most database and system software updates, that
are not achievable with the Bronze architecture. To learn more about the Silver MAA
reference architecture, see High Availability Reference Architectures.

Oracle Clusterware and Oracle RAC provide the following benefits:

• High availability framework and cluster management solution

– Manages resources, such as Virtual Internet Protocol (VIP) addresses, databases,
listeners, and services

– Provides HA framework for Oracle database resources and non-Oracle database
resources, such as third party agents

• Active-active clustering for scalability and availability

– High Availability If a server or database instance fails, connections to surviving
instances are not affected; connections to the failed instance quickly failover to
surviving instances that are already running and open on other servers in the Oracle
RAC cluster

– Scalability and Performance Oracle RAC is ideal for high-volume applications or
consolidated environments where scalability and the ability to dynamically add or re-
prioritize capacity across more than a single server are required. An individual
database may have instances running on one or more nodes of a cluster. Similarly, a
database service may be available on one or more database instances. Additional
nodes, database instances, and database services can be provisioned online. The
ability to easily distribute workload across the cluster makes Oracle RAC the ideal
complement for Oracle Multitenant when consolidating many databases.

The following table highlights various Oracle Clusterware and Real Application Cluster
configuration best practices.

11-1

https://docs.oracle.com/en/database/oracle/oracle-database/19/haiad/index.html

Table 11-1 Oracle RAC HA Use Cases and Best Practices

Use Case Best Practices

Certified and validated Clusterware software stack Use Oracle Clusterware and avoid third-party
Clusterware.

See Oracle Database Clusterware Administration and
Deployment Guide

Clusterware is built-in to all Oracle Exadata Systems.

Certified and validated storage architecture Use Oracle Automatic Storage Management (Oracle
ASM) and Oracle Advanced Cluster File System (Oracle
ACFS) instead of third party volume managers and
cluster file systems for the following MAA benefits:

• Eliminate hot spots by distributing work across all
disks

• Scale and adjust storage capacity by adding and
dropping disks and storage online

• Reduce complexity by providing a simplified and
uniform method (ASMCMD, ASMCA, ExaCLI, or
oeadacli) to manage database storage

• Inherent data corruption detection and repair when
using ASM diskgroups

• Simple management, patching and maintenance
with an integrated Oracle Grid Infrastructure
(Clusterware +ASM) without any additional drivers

When using ASM with external redundancy, ensure that
the underlying storage and network is highly available
with no single point of failure.

When using ASM native redundancy, high redundancy
diskgroups are recommended to provide maximum
protection for unplanned outages and during storage
software updates. By default Exadata deployments use
high redundancy for all diskgroups (both for data and
recovery destinations).

Oracle ACFS is a multi-platform, scalable file system
and storage management technology that extends
Oracle ASM functionality to support all customer files
and can be leveraged for non-database files.

These best practices are built-in to all Oracle Exadata
Systems.

See Introducing Oracle Automatic Storage Management

Chapter 11

11-2

Table 11-1 (Cont.) Oracle RAC HA Use Cases and Best Practices

Use Case Best Practices

Certified and validated network architecture Ensure that the entire database and storage network
topology has multiple network paths with no single point
of failure.

When connecting to the database service, use built-in
Virtual Internet Protocol (VIP) addresses, Single Client
Access Name (SCAN), and multiple local SCAN
listeners configured over a bonded client network.

Use a separate high bandwidth, bonded network for
backup or Data Guard traffic.

For the private network used as the cluster interconnect,
Oracle recommends that non-Exadata customers use
Oracle HAIP for network redundancy instead of using
bonded networks. Bonding configurations have various
attributes that behave differently with different network
cards and switch settings. This recommendation does
not apply to the private cluster interconnect in Exadata
environments, because the bond setup has been
properly configured and validated. Further, Exadata
uses the CLUSTER_INTERCONNECT parameter over the
highly available bonded network. Generic systems
should NOT use the CLUSTER_INTERCONNECT and
bonding but rather use Oracle HAIP.

Cluster configuration checks Use Cluster Verification Utility (CVU) at monthly intervals
to validate a range of cluster and Oracle RAC
components such as shared storage devices,
networking configurations, system requirements, and
Oracle Clusterware. See Cluster Verification Utility
Reference

To perform a holistic, proactive health check and to
evaluate if Oracle RAC or Exadata best practices are
being followed, use exachk for Exadata RAC systems,
or use orachk for non-Exadata RAC systems, at
monthly intervals and before and after any software
update.

See ORAchk - Health Checks for the Oracle Stack (Doc
ID 1268927.2)and Oracle Exadata Database Machine
exachk or HealthCheck (Doc ID 1070954.1).

Note that both exachk and orachk include CVU
checks. Exachk covers software and configuration best
practices and critical alerts for Storage, Network,
Clusterware, ASM, and Database.

Incorporate configuration recommendations from CVU,
exachk, or orachk.

Chapter 11

11-3

https://support.oracle.com/rs?type=doc&id=1268927.2
https://support.oracle.com/rs?type=doc&id=1268927.2
https://support.oracle.com/rs?type=doc&id=1070954.1
https://support.oracle.com/rs?type=doc&id=1070954.1

Table 11-1 (Cont.) Oracle RAC HA Use Cases and Best Practices

Use Case Best Practices

Reduce downtime for database node or instance failures Typically, the default settings are sufficient for most use
cases. If node detection and instance recovery need to
be expedited, evaluate lower values for
FAST_START_MTTR_TARGET
Reducing FAST_START_MTTR_TARGET can increase
database writer activity significantly, so additional I/O
bandwidth is required.

For Exadata systems, Instant Failure Detection
capabilities use remote direct memory access (RDMA)
to quickly confirm server failures in less than 2 seconds
compared to typical 30 seconds detection found in most
Oracle RAC clusters.

Eliminate downtime for software updates Use Oracle RAC rolling updates for Clusterware or
database software updates (for example, Release
Updates) to avoid downtime.

Use out-of-place software updates when possible, so
rollback and fallback use cases are simplified.

Use software gold images to eliminate the complexity of
running database opatch utility.

For a fleet of databases on a single Oracle RAC cluster
or multiple clusters, use Oracle Fleet Patching and
Provisioning

Make application and processes highly available on the
cluster

When an application, process, or server fails in a cluster,
you want the disruption to be as short as possible and
transparent to users. For example, when an application
fails on a server, that application can be restarted on
another server in the cluster, minimizing or negating any
disruption in the use of that application. Similarly, if a
server in a cluster fails, then all of the applications and
processes running on that server must failover to
another server to continue providing service to the
users. Using the built-in generic_application
resource type, Oracle Clusterware can manage all of
these entities to ensure high availability, resource types
or customizable scripts and application agent programs,
and resource attributes that you assign to applications
and processes.

Use Oracle Clusterware to manage third-party resources
and agents that reside on the cluster.

See Making Applications Highly Available Using Oracle
Clusterware

Chapter 11

11-4

Table 11-1 (Cont.) Oracle RAC HA Use Cases and Best Practices

Use Case Best Practices

Reduce application downtime for planned and
unplanned outages

Leverage Clusterware-managed services and
application best practices to achieve zero application
downtime.

Use SRVCTL to manage services for your PDB. Never
use default service for application connectivity. Always
have at least one preferred Oracle RAC instance and at
least one additional available Oracle RAC instance for
High Availability.

Applications should subscribe to HA Fast Application
Notifications (FAN) and be configured to respond and
failover if required.

See Enabling Continuous Service for Applications and
Continuous Availability - Application Checklist for
Continuous Service for MAA Solutions

Capacity planning Capacity planning and sizing should be done before
deployment, and periodically afterward, to ensure that
there are sufficient system resources to meet application
performance requirements.

Capacity planning needs to accommodate growth or
consolidation of databases, additional application
workloads, additional processes, or anything that strains
existing system resources.

Evaluating if performance requirements are still met
during an unplanned outage or planned maintenance
events is also crucial.

Chapter 11

11-5

https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf

Part IV
Oracle Data Guard Best Practices

• Overview of MAA Best Practices for Oracle Data Guard

• Plan an Oracle Data Guard Deployment

• Configure and Deploy Oracle Data Guard

• Tune and Troubleshoot Oracle Data Guard

• Monitor an Oracle Data Guard Configuration

12
Overview of MAA Best Practices for Oracle
Data Guard

By adding a physical standby database with Oracle Active Data Guard, a Silver MAA
reference architecture is elevated to a Gold MAA reference architecture. Implement Oracle
Data Guard best practices to achieve minimal downtime and potentially zero data loss for all
unplanned outages.

Oracle Active Data Guard plays an important role in delivering the high availability and
comprehensive data protection that you expect of the Gold MAA reference architecture. The
Gold reference architecture, consisting of an Oracle RAC primary database and Oracle RAC
standby systems with Oracle Active Data Guard, plus MAA configuration and life cycle
operations, provides a comprehensive set of services that create, maintain, manage, and
monitor one or more standby databases. Oracle Active Data Guard protects your data during
all types of planned maintenance activities, such as software updates and major database
upgrades, and unplanned outages, including database failures, site outages, natural
disasters, and data corruptions.

The goal of Oracle Data Guard best practices is to help you implement tested and proven
MAA best practices to ensure a successful and stable Data Guard deployment. The following
steps connect you to the Oracle MAA best practices for planning, implementing, and
maintaining this type of architecture.

1. Plan your Oracle Data Guard architecture, and take into account various considerations
for the application, network, and so on.

2. Configure and Deploy Data Guard using Oracle MAA best practices.

3. Tune and Troubleshoot your Data Guard deployment.

To learn more about the Gold MAA reference architecture, see High Availability Reference
Architectures.

12-1

https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html
https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html

13
Plan an Oracle Data Guard Deployment

Analyze your specific requirements, including both the technical and operational aspects of
your IT systems and business processes, understand the availability impact for the Oracle
Data Guard architecture options, and consider the impact of your application and network.

Oracle Data Guard Architectures
The Gold MAA reference architecture provides you with four architecture patterns, using
Oracle Active Data Guard to eliminate single point of failure. The patterns vary from a single
remote active standby with Fast Start Failover and HA Obeserver, to including far sync
instances, multiple standbys, and reader farms.

When planning your Gold MAA Reference Architecture, see High Availability Reference
Architectures for an overview of each Gold architecture pattern, and choose the elements to
incorporate based on your requirements.

Application Considerations for Oracle Data Guard Deployments
As part of planning your Oracle Data Guard deployment, consider the resources required and
application availability requirements in a fail over scenario.

Deciding Between Full Site Failover or Seamless Connection Failover
The first step is to evaluate which failover option best meets your business and application
requirements when your primary database or primary site is inaccessible or lost due to a
disaster.

The following table describes various conditions for each outage type and recommends a
failover option in each scenario.

Table 13-1 Recommended Failover Options for Different Outage Scenarios

Outage Type Condition Recommended Failover
Option

Primary Site Failure (including all
application servers)

Primary site contains all existing
application servers (or mid-tier
servers) that were connected to
the failed primary database.

Full site failover is required

13-1

https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html
https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html

Table 13-1 (Cont.) Recommended Failover Options for Different Outage Scenarios

Outage Type Condition Recommended Failover
Option

Primary Site Failure (with some
application servers surviving)

Some or all application servers
are not impacted and the
surviving application servers can
reconnect to new primary
database in a secondary disaster
recovery site.

Application performance and
throughput is still acceptable with
different network latency
between application servers and
new primary database in a
secondary disaster recovery site.

Typically analytical or reporting
applications can tolerate higher
network latency between client
and database without any
noticeable performance impact,
while OLTP applications
performance may suffer more
significantly if there is an
increase in network latency
between the application server
and database.

Seamless connection failover is
recommended to minimize
downtime and enable automatic
application and database failover.

Complete Primary Database or
Primary Server Failure

Application servers are not
impacted and users can
reconnect to new primary
database in a secondary disaster
recovery site.

Application performance and
throughput is still acceptable with
different network latency
between application servers and
new primary database in a
secondary disaster recovery site.

Typically analytical or reporting
applications can tolerate higher
network latency between client
and database without any
noticeable performance impact,
while OLTP applications
performance may suffer more
significantly if there is an
increase in network latency
between the application server
and database.

If performance is acceptable,
seamless connection failover is
recommended to minimize
downtime and enable automatic
application and database failover.

Otherwise, full site failover is
required.

Full Site Failover Best Practices
A full site failover means that the complete site fails over to another site with a new
set of application tiers and a new primary database.

Chapter 13
Application Considerations for Oracle Data Guard Deployments

13-2

Complete site failure results in both the application and database tiers becoming unavailable.
To maintain availability, application users must be redirected to a secondary site that hosts a
redundant application tier and a synchronized copy of the production database.

Consider the two figures below. The first figure shows the network routes before failover.
Client or application requests enter the Primary site at the client tier, and are routed to the
application server and database server tiers on the primary site.

Figure 13-1 Network Routes Before Site Failover

H
e
a
rt

b
e
a
t

h
b

F
ir
e
w

a
ll

h
b

W
A

N

T
ra

ff
ic

�
M

a
n
a
g
e
r

R
o

u
te

r
R

o
u

te
r

P
ri

m
a
ry

 S
it

e

P
ri

m
a
ry

C
li
e
n

t

T
ie

r
1
 -

 C
li
e
n

t

T
ie

r
2
 -

 A
p

p
li
c
a
ti

o
n

 S
e
rv

e
r

F
ir

e
w

a
ll

F
ir

e
w

a
ll

h
b

W
A

N

T
ra

ff
ic

�
M

a
n
a
g
e
r

R
o

u
te

r
R

o
u

te
r

S
e
c
o

n
d

a
ry

 S
it

e

S
e
c
o

n
d

a
ry

F
ir

e
w

a
ll

F
ir

e
w

a
ll

H
a
rd

w
a
re

-

b
a
se

d
 lo

a
d
�

b
a
la

n
c
e
r

S
w

it
c
h

e
s

IM
A

P

S
e
rv

e
rs

A
p

p
li
c
a
ti

o
n

/�
W

e
b

 S
e
rv

e
rs

A
p

p
li
c
a
ti

o
n

/�
W

e
b

 S
e
rv

e
rs

L
D

A
P

�
S

e
rv

e
rs

S
ta

n
d

b
y

H
a
rd

w
a
re

-

b
a
se

d
 lo

a
d
�

b
a
la

n
c
e
r

h
b

h
b

h
b

F
ir

e
w

a
ll

F
ir

e
w

a
ll

S
w

it
c
h

e
s

H
a
rd

w
a
re

-

b
a
s
e
d
 l
o
a
d
�

b
a
la

n
c
e
r

S
w

it
c
h

e
s

IM
A

P

S
e
rv

e
rs

L
D

A
P

�
S

e
rv

e
rs

S
ta

n
d

b
y

H
a
rd

w
a
re

-

b
a
se

d
 lo

a
d
�

b
a
la

n
c
e
r

A
c
ti

v
e

h
b

F
ir

e
w

a
ll

F
ir

e
w

a
ll

S
w

it
c
h

e
s

F
ir
e
w

a
ll

T
ie

r
3
 -

 D
a
ta

b
a
s
e
 S

e
rv

e
r

S
w

it
c
h

e
s

R
A

C

In
s
ta

n
c
e

R
A

C

In
s
ta

n
c
e

R
o

u
te

r
S

w
it

c
h

e
s

S
w

it
c
h

e
s

R
o

u
te

r
S

w
it

c
h

e
s

h
b

h
b

R
A

C

D
a
ta

b
a
s
e

R
A

C

D
a
ta

b
a
s
e

R
A

C

In
s
ta

n
c
e

R
A

C

In
s
ta

n
c
e

h
b

h
b

In
te

rn
e
t

S
ta

n
d

b
y
 C

o
m

p
o

n
e
n

ts

A
c
ti

v
e

The second figure, below, illustrates the network routes after a complete site failover. Client
or application requests enter the Secondary site at the client tier and follow the same path on
the secondary site that they followed on the primary site.

Chapter 13
Application Considerations for Oracle Data Guard Deployments

13-3

Figure 13-2 Network Routes After Site Failover

H
e
a
rt

b
e
a
t

h
b

F
ir
e
w

a
ll

h
b

W
A

N

T
ra

ff
ic

�
M

a
n
a
g
e
r

R
o

u
te

r
R

o
u

te
r

P
ri

m
a
ry

 S
it

e

P
ri

m
a
ry

C
li
e
n

t

T
ie

r
1
 -

 C
li
e
n

t

T
ie

r
2

 -
 A

p
p

li
c

a
ti

o
n

 S
e

rv
e

r

F
ir

e
w

a
ll

F
ir

e
w

a
ll

h
b

W
A

N

T
ra

ff
ic

�
M

a
n
a
g
e
r

R
o

u
te

r
R

o
u

te
r

S
e
c
o

n
d

a
ry

 S
it

e

S
e
c
o

n
d

a
ry

F
ir

e
w

a
ll

F
ir

e
w

a
ll

H
a
rd

w
a
re

-

b
a
se

d
 lo

a
d
�

b
a
la

n
c
e
r

S
w

it
c
h

e
s

IM
A

P

S
e
rv

e
rs

A
p

p
li
c
a
ti

o
n

/�
W

e
b

 S
e
rv

e
rs

A
p

p
li
c
a
ti

o
n

/�
W

e
b

 S
e
rv

e
rs

L
D

A
P

�
S

e
rv

e
rs

S
ta

n
d

b
y

H
a
rd

w
a
re

-

b
a
se

d
 lo

a
d
�

b
a
la

n
c
e
r

h
b

h
b

h
b

F
ir

e
w

a
ll

F
ir

e
w

a
ll

S
w

it
c
h

e
s

H
a
rd

w
a
re

-

b
a
s
e
d
 l
o
a
d
�

b
a
la

n
c
e
r

S
w

it
c
h

e
s

IM
A

P

S
e
rv

e
rs

L
D

A
P

�
S

e
rv

e
rs

S
ta

n
d

b
y

H
a
rd

w
a
re

-

b
a
se

d
 lo

a
d
�

b
a
la

n
c
e
r

h
b

F
ir

e
w

a
ll

F
ir

e
w

a
ll

S
w

it
c
h

e
s

F
ir
e
w

a
ll

T
ie

r
3
 -

 D
a
ta

b
a
s
e
 S

e
rv

e
r

S
w

it
c
h

e
s

R
A

C

In
s
ta

n
c
e

R
A

C

In
s
ta

n
c
e

R
o

u
te

r
S

w
it

c
h

e
s

S
w

it
c
h

e
s

R
o

u
te

r
S

w
it

c
h

e
s

h
b

h
b

R
A

C

D
a
ta

b
a
s
e

R
A

C

D
a
ta

b
a
s
e

R
A

C

In
s
ta

n
c
e

R
A

C

In
s
ta

n
c
e

h
b

h
b

In
te

rn
e
t

S
ta

n
d

b
y
 C

o
m

p
o

n
e
n

ts

A
c
ti

v
e

A
c
ti

v
e

MAA best practice is to maintain a running application tier at the standby site to avoid
incurring start-up time, and to use Oracle Data Guard to maintain a synchronized copy
of the production database. Upon site failure, a WAN traffic manager is used to
perform a DNS failover (either manually or automatically) to redirect all users to the
application tier at standby site while a Data Guard failover transitions the standby
database to the primary production role.

Use Oracle Active Data Guard Fast-Start Failover to automate the database failover.
Application server and non-database failovers can be automated and coordinated by
using Oracle Site Guard. Oracle Site Guard orchestrates and automates any
operations, such as starting up application servers on the secondary site,
resynchronizing non-database meta data as Data Guard fails over automatically.

For more information about Oracle Site Guard, see the Oracle Site Guard
Administrator's Guide.

Chapter 13
Application Considerations for Oracle Data Guard Deployments

13-4

Configuring Seamless Connection Failover
Automating seamless client failover in an Oracle Data Guard configuration includes relocating
database services to the new primary database as part of a Data Guard failover, notifying
clients that a failure has occurred to break them out of TCP timeout, and redirecting clients to
the new primary database.

In the following figure, a database request is interrupted by an outage or timeout (1), so the
session reconnects to the Oracle RAC cluster (2) (or standby) (2), the database request
replays automatically on the alternate node (3), and the result from the database request is
returned to the user (4).

Figure 13-3 Seamless Connection Failover

To achieve seamless connection failover, refer to Configuring Continuous Availability for
Applications.

Assessing and Optimizing Network Performance
Oracle Data Guard relies on the underlying network to send redo from the primary database
to standby databases. Ensuring that the network is healthy and capable of supporting peak
redo generation rates helps avoid future transport lags.

A transport lag forms when the primary database cannot ship redo to the standby faster than
primary instance's redo generation rate. A transport lag can lead to potential data loss if a
primary database failure occurs.

Network assessment consists of evaluating

• Network reliability

• Network bandwidth to accommodate peak redo generation rates

Chapter 13
Assessing and Optimizing Network Performance

13-5

Note:

Each instance of the primary database instance generates its own redo and
ships redo to the standby database in a single network stream. Therefore,
maximizing single process network throughput for each node is critical for
redo transport.

Historically there are areas that can reduce network and redo transport throughput
resulting in potential transport lags:

1. Network firewalls or network encryption

Network firewalls and network (not Oracle Net) encryption can reduce overall
throughput significantly. Verify throughput with the oratcp tool (described below),
with and without encryption, and tune accordingly.

At times reducing the encryption level can increase throughput significantly. A
balance is required to meet security needs with your performance and data loss
requirements.

2. Redo transport compression

When database initialization parameter has LOG_ARCHIVE_DEST_N attribute
COMPRESSION=ENABLE, Oracle background processes have to compress the redo
before sending network message, and uncompress the redo before processing the
redo. This reduces the overall redo and network throughput. Compression is only
recommended if network bandwidth is insufficient between the primary and
standby destinations.

3. Oracle Net encryption

Depending on the Oracle Net encryption level, this will have varying redo
throughput impact, because Oracle Net messages containing redo have to be
encrypted before sending and then unencrypted before redo processing.

Note that if database encryption is already enabled with Transparent Data
Encryption (TDE), redo is already encrypted, although Oracle Net encryption can
also encrypt the message headers.

4. Untuned network for redo transport

• Increasing maximum operating system socket buffer size can increase single
process throughput by 2-8 times. Test with different socket buffer sizes to see
what value yields positive results, and ensure throughput is greater than the
peak redo throughput.

• Compare performance with various MTU settings.

If average redo write size is less than 1500 bytes, then try various MTU
settings including MTU=9000 (for example, Jumbo Frames) for network
interface that sends or receives redo on your system. This may reduce some
unnecessary network round trips which will increase overall throughput.

Also note that for SYNC transport, Oracle's average redo write size (for
example, Oracle message send) increases significantly as determined by
v$sysstats or AWR statistics "redo size / redo writes".

When sending redo across geographical regions, experiments have shown
that using MTU=9000 can also benefit in some network topologies. Conduct

Chapter 13
Assessing and Optimizing Network Performance

13-6

performance tests with oratcp and compare the results with default MTU and
MTU=9000 settings.

Gather Topology Information
Understanding the topology of the Oracle Data Guard configuration, and its relevance to Data
Guard performance, helps eliminate infrastructure weaknesses that are often incorrectly
attributed to the Data Guard architecture.

Oracle recommends that you outline the following high-level architecture information.

• Describe the primary and standby database system (number of nodes in Oracle RAC
cluster, CPUs and memory per database node, storage I/O system)

• Describe network topology connecting the primary and standby systems

– Network switches and firewalls in between primary and standby

– Network bandwidth and latency

For standby databases with symmetric hardware and configuration, and with a well tuned
network configuration that can support peak redo generation rates, the transport lag should
be less than 1 second.

Understanding Network Usage of Data Guard
The phases of the Data Guard life cycle which use the network most heavily are:

• Instantiation - During this phase of standby database creation, files can be copied using
parallelism from any host. Determining the degree of parallelism which maximizes
throughput between nodes helps to optimize the standby instantiation process.

• Redo Transport (Steady State)- Under normal Data Guard operation the primary
database ships redo to the standby which is then applied. Each RAC instance of a
primary database ships redo in a single stream from the host on which it is running.
Understanding the requirements of each primary database instance and ensuring a
single process can achieve the throughput requirements is critical to a standby database
staying current with the primary database.

Understanding Targets and Goals for Instantiation
Instantiation for large databases can take hours, or in extreme cases days. To allow for
planning of an instantiation and also maximize throughput between the primary and standby
system to complete the instantiation is as timely a manner as possible, first determine the
goal for instantiation time. Then follow the process defined below to maximize per process
throughput and identify the optimal degree of parallelism between the primary and standby
nodes.

Understanding Throughput Requirements and Average Redo Write
Size for Redo Transport

Required network bandwidth of a given Data Guard configuration is determined by the redo
generate rate of the primary database.

Chapter 13
Assessing and Optimizing Network Performance

13-7

Note:

In cases where the primary database is pre-existing, a baseline for the
required network bandwidth can be established. If there is no existing
primary database, skip this step and future references to the data further in
the process.

While the Automatic Workload Repository (AWR) tool can be used to determine the
redo generation rate, the snapshots are often 30 or 60 minutes apart which can dilute
the peak rate. Since peak rates often occur for shorter periods of time, it is more
accurate to use the following query which calculates the redo generation rate for each
log when run on an existing database. (change the timestamps as appropriate)

SQL> SELECT THREAD#, SEQUENCE#, BLOCKS*BLOCK_SIZE/1024/1024 MB,
(NEXT_TIME-FIRST_TIME)*86400 SEC,
 (BLOCKS*BLOCK_SIZE/1024/1024)/((NEXT_TIME-FIRST_TIME)*86400) "MB/S"
FROM V$ARCHIVED_LOG
WHERE ((NEXT_TIME-FIRST_TIME)*86400<>0)
AND FIRST_TIME BETWEEN TO_DATE('2022/01/15 08:00:00','YYYY/MM/DD
HH24:MI:SS')
 AND TO_DATE('2022/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS')
AND DEST_ID=1 ORDER BY FIRST_TIME;

Example output:

THREAD# SEQUENCE# MB SEC MB/s
------- --------- ---------- ---------- ----------
 2 2291 29366.1963 831 35.338383
 1 2565 29365.6553 781 37.6000708
 2 2292 29359.3403 537 54.672887
 1 2566 29407.8296 813 36.1719921
 2 2293 29389.7012 678 43.3476418
 2 2294 29325.2217 1236 23.7259075
 1 2567 11407.3379 2658 4.29169973
 2 2295 24682.4648 477 51.7452093
 2 2296 29359.4458 954 30.7751004
 2 2297 29311.3638 586 50.0193921
 1 2568 3867.44092 5510 .701894903

Note:

To find the peak redo rate, choose times during the highest level of
processing, such as peak OLTP periods, End of Quarter batch processing or
End of Year batch processing.

In this short example the highest rate was about 52MB/s. Ideally the network will
support the maximum rate plus 30% or 68MB/s for this application.

Chapter 13
Assessing and Optimizing Network Performance

13-8

Verify Average Redo Write Size
Using v$sysstats or looking at your AWR reports for various workload and peak intervals,
record the average redo write size based on

Average Redo Write Size = "REDO SIZE" / "REDO WRITES"

Use this average redo write size in your oratcp experiments. If the average redo write size >
1500 bytes, experiment with various MTU settings.

Understand Current Network Throughput
The Oracle utility oratcptest is a general-purpose tool for measuring network bandwidth and
latency similar to iperf/qperf which can be run by any OS user.

The oratcptest utility provides options for controlling the network load such as:

• Network message size

• Delay time between messages

• Parallel streams

• Whether or not the oratcptest server should write messages on disk.

• Simulating Data Guard SYNC transport by waiting for acknowledgment (ACK) of a packet
or ASYNC transport by not waiting for the ACK.

Note:

This tool, like any Oracle network streaming transport, can simulate efficient
network packet transfers from the source host to target host similar to Data Guard
transport. Throughput can saturate the available network bandwidth between
source and target servers. Therefore, Oracle recommends that short duration tests
are performed and that consideration is given for any other critical applications
sharing the same network.

Measure the Existing Throughput of One and Many Processes

Do the following tasks to measure the existing throughput.

Task 1: Install oratcptest

1. Download the oratcptest.jar file from MOS note 2064368.1

2. Copy the JAR file onto both client (primary) and server (standby)

Note:

oratcptest requires JRE 6 or later

3. Verify that the host has JRE 6 or later

Chapter 13
Assessing and Optimizing Network Performance

13-9

4. On all primary and standby hosts, verify that the JVM can run the JAR file by
displaying the help

java -jar oratcptest.jar -help

Task 2: Determine the Existing Throughput for a Single Process

Data Guard asynchronous redo transport (ASYNC) uses a streaming protocol which
does not wait for packet acknowledgment and therefore achieves higher rates than
SYNC transport.

1. Start the test server on the receiving (standby) side.

java -jar oratcptest.jar -server [IP of standby host or VIP in RAC
 configurations] -port=<any available port number>

2. Run the test client. (Change the server address and port number to match that of
your server started in step 4.)

$ java -jar oratcptest.jar [IP of standby host or VIP in RAC
configurations]
 -port=<port number> -mode=async -duration=120 -interval=20s

[Requesting a test]
 Message payload = 1 Mbyte
 Payload content type = RANDOM
 Delay between messages = NO
 Number of connections = 1
 Socket send buffer = (system default)
 Transport mode = ASYNC
 Disk write = NO
 Statistics interval = 20 seconds
 Test duration = 2 minutes
 Test frequency = NO
 Network Timeout = NO
 (1 Mbyte = 1024x1024 bytes)

(17:54:44) The server is ready.
 Throughput
(17:55:04) 20.919 Mbytes/s
(17:55:24) 12.883 Mbytes/s
(17:55:44) 10.457 Mbytes/s
(17:56:04) 10.408 Mbytes/s
(17:56:24) 12.423 Mbytes/s
(17:56:44) 13.701 Mbytes/s
(17:56:44) Test finished.
 Socket send buffer = 2 Mbytes
 Avg. throughput = 13.466 Mbytes/s

In this example the average throughput between these two nodes was about 13 MB/s
which does not meet the requirements of 68 MB/s from the query.

Chapter 13
Assessing and Optimizing Network Performance

13-10

Note:

This process can be scheduled to run at a given frequency using the -freq option
to determine if the bandwidth varies at different times of the day. For instance
setting -freq=1h/24h will repeat the test every hour for 24 hours.

Task 3: Determine Existing Throughput for Multiple Processes

1. Repeat the previous test with two (2) connections (using num_conn parameter).

$ java -jar oratcptest.jar <target IP address> -port=<port number>
 -duration=60s -interval=10s -mode=async [-output=<results file>] -
num_conn=2

[Requesting a test]
 Message payload = 1 Mbyte
 Payload content type = RANDOM
 Delay between messages = NO
 Number of connections = 2
 Socket send buffer = (system default)
 Transport mode = ASYNC
 Disk write = NO
 Statistics interval = 20 seconds
 Test duration = 2 minutes
 Test frequency = NO
 Network Timeout = NO
 (1 Mbyte = 1024x1024 bytes)

(18:08:02) The server is ready.
 Throughput
(18:08:22) 44.894 Mbytes/s
(18:08:42) 23.949 Mbytes/s
(18:09:02) 25.206 Mbytes/s
(18:09:22) 23.051 Mbytes/s
(18:09:42) 24.978 Mbytes/s
(18:10:02) 22.647 Mbytes/s
(18:10:02) Test finished.
 Avg. socket send buffer = 2097152
 Avg. aggregate throughput = 27.454 Mbytes/s

2. Re-run step 1 Iteratively and increase the value of num_conn by two each time until the
aggregate throughput does not increase for three consecutive values. For example if the
aggregate throughput is approximately the same for 10, 12 and 14 connections, stop.

Note:

RMAN can utilize all nodes in the cluster for instantiation. To find the total
aggregate throughput, see My Oracle Support Creating a Physical Standby
database using RMAN restore database from service (Doc ID 2283978.1).

Chapter 13
Assessing and Optimizing Network Performance

13-11

https://support.oracle.com/rs?type=doc&id=2283978.1
https://support.oracle.com/rs?type=doc&id=2283978.1

3. Run the same test with all nodes in all clusters to find the current total aggregate
throughput. Node 1 of primary to node 1 of standby, node 2 to node 2, etc. Sum
the throughput found for all nodes.

4. Reverse the roles and repeat the tests.

5. Note the number of connections which achieved the best aggregate throughput.

Use the total size of the database and total aggregate throughput to estimate the
amount of time it will take to complete the copy of the database. A full instantiation
also needs to apply the redo generated during the copy. Some additional percentage
(0%-50%) should be added to this estimated time based on how active the database
is.

If the estimated time meets the goal, no additional tuning is required for instantiation.

Optimizing Redo Transport with One and Many Processes
If throughput from the prior single and multiple process tests meet the targets, no
additional tuning is required. If higher throughput is required, setting the maximum
TCP socket buffers size to a larger value is the primary method to potentially increase
throughput.

Setting TCP Socket Buffer Size

The TCP socket buffers are system memory buffers which temporarily store incoming
and outgoing data. Outgoing data is stored on the write buffers while incoming data is
stored on the read buffers. Read and write socket buffers are allocated separately.
When a buffer, generally the read buffer, fills up (often do to the application not pulling
data out of the buffer fast enough), a message is sent to the sender to slow down or
stop sending data. Allocating a larger buffer often improves redo transport by giving
the application time to pull data off the wire without stopping the sender.

Tuning TCP socket buffer size is the primary approach to improving ASYNC transport
and can improve SYNC transport as well in some cases.

Note:

With larger socket buffer sizes, TCP selective acknowledgment (SACK) is
strongly recommended. Often times this is enabled by default but refer to
your operating system documentation for details on confirming or enabling
TCP selective acknowledgment.

To set TCP Socket Buffer Size do the following tasks.

Task 1: Determine Optimal Maximum Socket Buffer Size

Find the optimal maximum socket buffer size for a single process on the target network
link by running a series of tests.

Chapter 13
Assessing and Optimizing Network Performance

13-12

Note:

Bandwidth Delay Product is the product of the network link capacity of a channel
and the round time, or latency. The minimum recommended value for socket buffer
sizes is 3*BDP, especially for a high-latency, high-bandwidth network. Use
oratcptest to tune the socket buffer sizes.

Task 2: Set Maximum Socket Buffer Size Temporarily

On the primary and standby systems follow these steps to set the maximum socket buffer
size for requests. This will be done in memory and will not persist if the server is restarted for
any reason.

Do the following steps as root.

1. First find the current size of the kernel parameters net.ipv4.tcp_rmem and
net.ipv4.tcp_wmem. The values returned are the minimum, default and maximum size for
socket buffers which TCP dynamically allocates. If a process requires more than the
default given when a socket is created, more buffers will be dynamically allocated up to
the maximum value.

cat /proc/sys/net/ipv4/tcp_rmem
4096 87380 6291456

cat /proc/sys/net/ipv4/tcp_wmem
4096 16384 4194304

2. Change the values to 16MB or whatever 3*BDP was calculated to be

sysctl -w net.ipv4.tcp_rmem='4096 87380 16777216';

sysctl -w net.ipv4.tcp_wmem='4096 16384 16777216';

Note:

Increasing these values can increase system memory usage of any network socket
on the system.

Note:

Changes made with sysctl are not permanent. Update the /etc/sysctl.conf file to
persist these changes through machine restarts. There will be a step to change the
configuration file at the end of this process once the proper setting is determined.

Task 3: Test Throughput of a Single Process

Re-run the previous tests allowing the socket buffers to dynamically grow to the new
maximum set in the previous step

(as oracle)

Chapter 13
Assessing and Optimizing Network Performance

13-13

Server (standby):

$ java -jar oratcptest.jar -server [IP of standby host or VIP in RAC
configurations]
 -port=<port number>

Client (primary):

$ java -jar oratcptest.jar <IP of standby host or VIP in RAC
configurations>
 -port=<port number> -mode=async -duration=120s -interval=20s

Note:

Do not use the oratcptest sockbuf parameter because the kernel parameters
which govern explicit requests for socket buffer size are different than those
set for this test.

After the test completes the results from the client and server show the value for
socket buffers during that test. At the time of this writing, that value is half of the actual
socket buffer size and should be doubled to find the actual size used.

Client

[Requesting a test]
 Message payload = 1 Mbyte
 Payload content type = RANDOM
 Delay between messages = NO
 Number of connections = 1
 Socket send buffer = 2 Mbytes
 Transport mode = ASYNC
 Disk write = NO
 Statistics interval = 20 seconds
 Test duration = 2 minutes
 Test frequency = NO
 Network Timeout = NO
 (1 Mbyte = 1024x1024 bytes)
(11:39:16) The server is ready.
 Throughput
(11:39:36) 71.322 Mbytes/s
(11:39:56) 71.376 Mbytes/s
(11:40:16) 72.104 Mbytes/s
(11:40:36) 79.332 Mbytes/s
(11:40:56) 76.426 Mbytes/s
(11:41:16) 68.713 Mbytes/s
(11:41:16) Test finished.

 Socket send buffer = 8388608
 Avg. throughput = 73.209 Mbytes/s

Chapter 13
Assessing and Optimizing Network Performance

13-14

Server

The test terminated. The socket receive buffer was 8 Mbytes.

Note:

oratcptest is reporting half of the buffers allocated to the socket. Double the number
reported for the actual socket buffer size used during the test.

Task 4: Test Throughput of Multiple Processes

Now repeat the test using the num_conn value determined in the first tests. for example,. if
the peak aggregate throughput was reached with 10 processes set num_conn=10.

Client

$ java -jar oratcptest.jar <IP of standby host or VIP in RAC configurations>
 -port=<port number> -mode=async -duration=120s -interval=20s -num_conn=10

[Requesting a test]
 Message payload = 1 Mbyte
 Payload content type = RANDOM
 Delay between messages = NO
 Number of connections = 10
 Socket send buffer = (system default)
 Transport mode = ASYNC
 Disk write = NO
 Statistics interval = 20 seconds
 Test duration = 2 minutes
 Test frequency = NO
 Network Timeout = NO
 (1 Mbyte = 1024x1024 bytes)

(19:01:38) The server is ready.
 Throughput
(19:01:58) 266.077 Mbytes/s
(19:02:18) 242.035 Mbytes/s
(19:02:38) 179.574 Mbytes/s
(19:02:58) 189.578 Mbytes/s
(19:03:18) 218.856 Mbytes/s
(19:03:38) 209.130 Mbytes/s
(19:03:38) Test finished.
 Avg. socket send buffer = 8 Mbytes
 Avg. aggregate throughput = 217.537 Mbytes/s

Note:

oratcptest is reporting half of the buffers allocated to the socket. Double the number
reported for the actual socket buffer size used during the test.

Chapter 13
Assessing and Optimizing Network Performance

13-15

Server (Each connection will have the receive buffer printed. Double the socket buffer
size in each instance)

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

The test terminated. The socket receive buffer was 8 Mbytes.

Use the total size of the database and total aggregate throughput to estimate the
amount of time it will take to complete the copy of the database. A full instantiation
also needs to apply the redo generated during the copy. Some additional percentage
(0%-50%) should be added to this estimated time based on how active the database
is.

Task 5: Repeat the Tests

Repeat the previous two tests with higher values for tcp_rmem and tcp_wmem if more
throughput is needed. Understand that these higher values are available for other
sockets as well but will be dynamically allocated only if needed. The table shows
sample data tracking the different throughput results for different socket buffer sizes.

tcp_rmem
maximum

tcp_wmem
maximum

Single Process
Throughput

Single Node
Multi-Process
Maximum
Aggregate
Throughput

Single Node
Multi-Process
Parallelism

6291456 4194304 13.5 MB/s 203 MB/s 16

8388608 8388608 48 MB/s 523 MB/s 14

16777216 16777216 73 MB/s 700 MB/s 14

33554432 33554432 132 MB/s 823 MB/s 14

Task 6: Set Parameters Permanently

Changes using sysctl modify the values in memory which do not persist through a
reboot of the host. Once the optimal size for socket buffers is determined, set the
kernel parameters so they persist through server restarts by editing the /etc/sysctl.conf
file.

This must be done on all nodes of the primary and standby systems.

Chapter 13
Assessing and Optimizing Network Performance

13-16

To make these changes persistent, edit the /etc/sysctl.conf either modifying the existing
values or adding these values to the file if they are absent.

net.ipv4.tcp_rmem='4096 87380 16777216'

net.ipv4.tcp_wmem='4096 16384 16777216'

Task 7: Evaluate Larger MTU

Determine the network interfaces that are used by the Data Guard transport.

If Average Redo Write Size > current MTU setting (for example, typically the default 1500),
evaluate if jumbo frames (for example, MTU=9000) can reduce the network RTT for these
large network packets and improve overall redo throughput.

Shown here is an example of changing the MTU for Data Guard transport network interface
for testing purposes on Linux.

ifconfig bondeth0 mtu 9000 up

Repeat the same oratcp performance methodology as described above with the higher MTU
size to see if greater throughput is achieved.

If performance gains are noticed, work with system and network engineers to change MTU
size for DG transport for both primary and standby databases.

Using This Data
The throughput numbers can be used to determine throughput to aid in Redo Transport and
Instantiation situations.

Redo Transport

If the single process throughput does not exceed the single instance redo generation rate for
a primary database, the standby will not stay current with the primary during these times.
Further evaluation and network tuning by the network engineering team may be required in
these cases.

Instantiation

Once the maximum aggregate throughput of all nodes is understood, a rough estimate for
instantiation can be developed. As an example, if there is a 100 TB database on a 2-node
RAC to be instantiated and each node can achieve 300 MB/s it should take about 50 hours to
copy the data files. Additional work to instantiate will add some percentage to that number
(~30%).

300 MB/s * 60 seconds/minute * 60 minutes/hour * 2 nodes = ~2 TB/hr
aggregate for both nodes
100TB / 2TB/hr = ~50 hours

The steps to instantiate a database using large database optimizations such as using multiple
nodes is described in Creating a Physical Standby database using RMAN restore database
from service (Doc ID 2283978.1).

Chapter 13
Assessing and Optimizing Network Performance

13-17

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2283978.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2283978.1

Determining Oracle Data Guard Protection Mode
Oracle Data Guard can run in three different protection modes, which cater to different
performance, availability, and data loss requirements. Use this guide to determine
which protection mode fits your business requirements and your potential
environmental constraints.

Maximum Protection mode guarantees that no data loss will occur if the primary
database fails, even in the case of multiple failures (for example, the network between
the primary and standby fails, and then at a later time, the primary fails). This policy is
enforced by never signaling commit success for a primary database transaction until at
least one synchronous Data Guard standby has acknowledged that redo has been
hardened to disk. Without such an acknowledgment the primary database will stall and
eventually shut down rather than allow unprotected transactions to commit.

To maintain availability in cases where the primary database is operational but the
standby database is not, the best practice is to always have a minimum of two
synchronous standby databases in a Maximum Protection configuration. Primary
database availability is not impacted if it receives acknowledgment from at least one
synchronous standby database.

Choose this protection mode if zero data loss is more important than database
availability. Workload impact analysis is recommended to measure whether any
overhead is acceptable when enabling SYNC transport.

Maximum Availability mode guarantees that no data loss will occur in cases where
the primary database experiences the first failure to impact the configuration. Unlike
the Maximum Protection mode, Maximum Availability will wait a maximum of
NET_TIMEOUT seconds for an acknowledgment from any of the standby databases,
after which it will signal commit success to the application and move to the next
transaction. Primary database availability (thus the name of the mode) is not impacted
by an inability to communicate with the standby (for example, due to standby or
network outages). Data Guard will continue to ping the standby and automatically re-
establish connection and resynchronize the standby database when possible, but
during the period when primary and standby have diverged there will be data loss
should a second failure impact the primary database.

For this reason, it is a best practice to monitor protection level, which is simplest using
Enterprise Manager Grid Control, and quickly resolve any disruption in communication
between the primary and standby before a second failure can occur. This is the most
common zero data loss database protection mode.

Choose this protection mode if zero data loss is very important but you want the
primary database to continue to be available even with the unlikely case that all
standby databases are not reachable. You can complement this solution by integrating
multiple standby databases or using Far Sync instances to implement a zero data loss
standby solution across a WAN. Workload impact analysis is recommended to
measure whether any overhead is acceptable when enabling SYNC transport.

Maximum Performance mode is the default Data Guard mode, and it provides the
highest level of data protection that is possible without affecting the performance or the
availability of the primary database. This is accomplished by allowing a transaction to
commit as soon as the redo data needed to recover that transaction is written to the
local online redo log at the primary database (the same behavior as if there were no
standby database). Data Guard transmits redo concurrently to 1) the standby

Chapter 13
Determining Oracle Data Guard Protection Mode

13-18

database directly from the primary log buffer and 2) to the local online redo log write
asynchronously enabling a very low potential data loss if the primary site is lost. There is
never any wait for standby acknowledgment but the potential data loss for this data protection
mode can still be near zero..

Similar to Maximum Availability mode, it is a best practice to monitor the protection level
using Enterprise Manager Grid Control, and quickly resolve any disruption in communication
between primary and standby before a second failure can occur.

Choose this mode if minimum data loss is acceptable and zero performance impact on the
primary is required.

Offloading Queries to a Read-Only Standby Database
Offloading queries and reporting workloads to read-only standby databases can free up your
primary database system resources, giving you the ability to add more users, workloads, or
even databases.

When you leverage both primary and standby database resources, your business and your
applications benefit with higher total system usage, and potentially higher application
throughput.

Offload appropriate workloads by following these steps.

1. Identify which application modules are read-only or read-mostly.

• Evaluate whether you have application services or modules that are read-only.

• Small and short read-only queries are good candidates to offload to the standby
database.

• Short DMLs, especially those that are response-time sensitive, should not be
offloaded to the standby.

• Large reports or analytic reports are good candidates to offload.

• Reports that are primarily reads, and that may have an infrequent DML, typically at
the start or end of a report, may be good candidates to offload.

To enable DML Redirection, see ADG_REDIRECT_DML.

2. Gather information about the expected application performance, throughput, response
time, or elapsed time service levels for each offload candidate.

• Once you have determined which queries and reports are good candidates to offload,
find out the required expected and maximum response time or elapsed time for each
of them. For example some large analytic reports must complete within a 2 hour time
span.

• For short queries, determine the expected response time and throughput
expectations.

• These requirements are sometimes referred to as application performance Service
Level Agreements, which you need for the next step.

3. Test the performance of each candidate on the standby, and determine whether it meets
your requirements.

• Even though the primary and standby databases have essentially identical data, they
are independent databases, independent machines, independent configurations, and
have different workloads. For example, an Active Data Guard read-only standby

Chapter 13
Offloading Queries to a Read-Only Standby Database

13-19

database has a redo apply workload plus the queries that are offloaded, while
the primary database may have OLTP, batch, and query workloads.

• Reported elapsed times, query response time, and workload performance may
vary between the primary and standby due to these system, configuration, and
workload differences.

• Tuning requires that you understand system resources, SQL plans, and
individual query CPU and wait profile. The tuning recommendations are
applicable for both primary and standby databases. See Diagnosing and
Tuning Database Performance .

4. Offload a subset of the queries that meet your performance requirements, freeing
up resources on the primary database for additional processing capacity.

• Once you have determined which queries and reports can be offloaded, and
the performance of those activities are acceptable, then slowly offload some of
the workload and monitor it.

• Do not oversubscribe and offload too much workload to the standby such that
redo apply cannot keep pace after tuning. If the standby falls behind. then you
lose that standby as a viable role transition target, and in most cases a
standby that lags cannot be used to offload queries.

What if a specific query does not meet your requirements?

1. Consult with a performance engineer and follow the recommendations in
Database Performance Tuning Guide.

2. A particular query response time or throughput or report elapsed time is not
guaranteed to be the same on the standby system as it was on the primary.
Analyze the system resources, SQL plans, overall CPU work time and wait times.

For example, you may see standby query scn advance wait is contributing to a
much longer elapsed time in one of your short queries. This wait increase is
attributed to Active Data Guard redo apply. If a query sees a certain row in a data
block and needs to roll it back because the transaction has not committed as of
the query System Commit Number (SCN), it needs to apply corresponding undo to
get a consistent read for that query. If the redo for the corresponding undo change
has not been applied by redo apply yet, the query needs to wait. The presence of
such wait is itself not an issue, and typically may be a couple of milliseconds, but it
will vary by workload and may be higher in Real Application Cluster database
systems.

Chapter 13
Offloading Queries to a Read-Only Standby Database

13-20

14
Configure and Deploy Oracle Data Guard

Use the following Oracle MAA best practice recommendations to configure and deploy Oracle
Data Guard.

Oracle Data Guard Configuration Best Practices
The following topics describe Oracle MAA best practices for configuring your Oracle Data
Guard configuration.

Apply Oracle Database Configuration Best Practices First
Before you implement the Oracle Data Guard best practices that follow, apply the Oracle
Database configuration best practices.

The Oracle Data Guard configuration best practices are considered additional to the general
Oracle Database configuration best practices, and will help you achieve the services levels
you expect of the MAA Gold reference architecture. It is implied that all of the database
configuration best practices should be followed in a Data Guard configuration, and that the
Data Guard recommendations discussed here supplant the general database
recommendation where there are conflicts.

See Oracle Database Configuration Best Practices for more details.

Use Recovery Manager to Create Standby Databases
There are several methods you can use to create an Oracle Data Guard standby database,
but because of its simplicity, the Oracle MAA recommended approach is to create a physical
standby database using the RMAN RESTORE ... FROM SERVICE clause.

For information about this approach see Creating a Physical Standby database using RMAN
restore from service (Doc ID 2283978.1).

Use Oracle Data Guard Broker with Oracle Data Guard
Use Oracle Data Guard broker to create, manage, and monitor an Oracle Data Guard
configuration.

You can perform all Data Guard management operations locally or remotely using the broker
interfaces: the Data Guard management pages in Oracle Enterprise Manager, which is the
broker's graphical user interface (GUI), and the Data Guard command-line interface, called
DGMGRL.

The broker interfaces improve usability and centralize management and monitoring of the
Data Guard configuration. Available as a feature of Oracle Database Enterprise Edition and
Personal Edition, the broker is also integrated with Oracle Database, Oracle Enterprise
Manager, and Oracle Cloud Control Plane.

14-1

https://support.oracle.com/rs?type=doc&id=2283978.1
https://support.oracle.com/rs?type=doc&id=2283978.1

Example Broker Installation and Configuration
The following is an example broker installation and configuration, which is used in all
of the broker configuration best practices examples.

Prerequisites:

• Primary database, standby database, and observers reside on separate servers
and hardware to provide fault isolation.

• Both primary and standby databases must use an SPFILE.

• Set the DG_BROKER_START initialization parameter to TRUE.

• If any of the databases in the configuration is an Oracle RAC database, you must
set up the DG_BROKER_CONFIG_FILEn initialization parameters for that database
such that they point to the same shared files for all instances of that database. The
shared files could be files on a cluster file system, if available, on raw devices, or
stored using Oracle Automatic Storage Management.

1. If they do not already exist, create Oracle Net Services aliases that connect to the
primary and the standby databases. These aliases should exist in the database
home for each host or member of the Data Guard configuration. For Oracle RAC
configurations, the aliases should connect using the SCAN name.

chicago =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS=(PROTOCOL= TCP)
 (HOST=prmy-scan)(PORT=1521)))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = chicago)))

boston =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS=(PROTOCOL= TCP)
 (HOST=stby-scan)(PORT=1521)))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = boston)))

2. On a primary host, connect with DGMGRL and create the configuration.

$ dgmgrl sys
Enter password: password
DGMGRL> create configuration 'dg_config' as primary database is
'chicago' connect identifier is chicago;

 Configuration "dg_config" created with primary database "chicago"

DGMGRL> add database 'boston' as connect identifier is boston;

 Database "boston" added

Chapter 14
Oracle Data Guard Configuration Best Practices

14-2

DGMGRL> enable configuration;
 Enabled.

3. By default the broker sets up a LOG_ARCHIVE_DEST_n for Maximum Performance database
protection mode.

The broker configures the remote archive destinations with the default values for
asynchronous transport, as shown here.

log_archive_dest_3=service="boston", ASYNC NOAFFIRM delay=0 optional
compression=disable max_failure=0 reopen=300 db_unique_name="boston"
net_timeout=30, valid_for=(online_logfile,all_roles)

Configure Redo Transport Mode
Configure the redo transport service on each configuration member by setting the
LogXptMode property to one of the following modes.

• ASYNC configures redo transport services for this standby database using the ASYNC and
NOAFFIRM attributes of the LOG_ARCHIVE_DEST_n initialization parameter. This mode, along
with standby redo log files, enables minimum data loss data protection of potentially less
couple seconds with zero performance impact.

• FASTSYNC configures redo transport services for this standby database using the SYNC and
NOAFFIRM attributes of the LOG_ARCHIVE_DEST_n initialization parameter. Configure
synchronous redo transport mode with the NOAFFIRM attribute (default=AFFIRM) when
using maximum availability mode protection mode. This helps to minimize the
performance impact of synchronous redo transport by acknowledging the receipt of redo
once it has been successfully received and verified within standby memory, but before
the redo has been written to the standby redo log. Zero data loss protection is still
preserved when only the primary database fails.

• SYNC configures redo transport services for this standby database using the SYNC and
AFFIRM attributes of the LOG_ARCHIVE_DEST_n initialization parameter. This mode, along
with standby redo log files, is required for configurations operating in either maximum
protection mode or maximum availability mode. This redo transport service enables zero
data loss data protection to the primary database, but also can incur a higher
performance impact if the round trip latency between primary and standby is high (for
example, more than 2ms). This option is required for maximum protection mode.

Use the EDIT DATABASE SET PROPERTY command to set the transport mode the broker
configuration, as shown in these examples.

DGMGRL> EDIT DATABASE 'boston' SET PROPERTY LogXptMode=ASYNC;
DGMGRL> EDIT DATABASE 'chicago' SET PROPERTY LogXptMode=FASTSYNC;
DGMGRL> EDIT DATABASE 'SanFran' SET PROPERTY LogXptMode=SYNC;

Validate the Broker Configuration
To identify any problems with the overall configuration, validate it using the following steps.

1. Show the status of the broker configuration using the SHOW CONFIGURATION command.

DGMGRL> show configuration;

Chapter 14
Oracle Data Guard Configuration Best Practices

14-3

 Configuration – dg

 Protection Mode: MaxPerformance
 Members:
 chicago - Primary database
 boston - Physical standby database

 Fast-Start Failover: DISABLED

 Configuration Status:
 SUCCESS (status updated 18 seconds ago)

If the configuration status is SUCCESS, everything in the broker configuration is
working properly. However, if the configuration status is WARNING or ERROR then
something is wrong in the configuration. Additional error messages that
accompany a WARNING or ERROR status can be used to identify the issues. The next
step is to examine each database in the configuration to narrow down what the
specific error is related to.

2. To identify warnings on the primary and standby databases, show their statuses
using the SHOW DATABASE command.

DGMGRL> show database chicago

 Database – chicago

 Role: PRIMARY
 Intended State: TRANSPORT-ON
 Instance(s):
 tin1
 tin2

 Database Status:
 SUCCESS

If the database status is SUCCESS then the database is working properly. However,
if database status is WARNING or ERROR, then something is wrong in the database.
Additional error messages accompany the WARNING or ERROR status and can be
used to identify current issues.

Repeat the SHOW DATABASE command on the standby database and assess any
error messages.

3. Validate the databases on Oracle Database 12.1 and later.

In addition to the above commands, in Oracle Database 12.1 and later, the Data
Guard broker features a VALIDATE DATABASE command.

DGMGRL> validate database chicago

 Database Role: Primary database
 Ready for Switchover: Yes

DGMGRL> validate database boston;

Chapter 14
Oracle Data Guard Configuration Best Practices

14-4

 Database Role: Physical standby database
 Primary Database: tin

 Ready for Switchover: No
 Ready for Failover: Yes (Primary Running)

 Capacity Information:
 Database Instances Threads
 tin 2 2
 can 1 2
 Warning: the target standby has fewer instances than the
 primary database, this may impact application performance

 Standby Apply-Related Information:
 Apply State: Not Running
 Apply Lag: Unknown
 Apply Delay: 0 minutes

The VALIDATE DATABASE command does not provide a SUCCESS or WARNING status and
must be examined to determine if any action needs to be taken.

Configure Fast Start Failover
Fast-start failover allows the broker to automatically fail over to a previously chosen standby
database in the event of loss of the primary database. Enabling fast-start failover is
requirement to meet stringent RTO requirements in the case of primary database, cluster, or
site failure.

Fast-start failover quickly and reliably fails over the target standby database to the primary
database role, without requiring you to perform any manual steps to invoke the failover. Fast-
start failover can be used only in a broker configuration.

If the primary database has multiple standby databases, then you can specify multiple fast-
start failover targets, using the FastStartFailoverTarget property. The targets are referred
to as candidate targets. The broker selects a target based on the order in which they are
specified on the FastStartFailoverTarget property. If the designated fast-start failover
target develops a problem and cannot be the target of a failover, then the broker
automatically changes the fast-start failover target to one of the other candidate targets.

You can use any protection mode with fast-start failover. The maximum protection and
maximum availability modes provide an automatic failover environment guaranteed to lose no
data. Maximum performance mode provides an automatic failover environment guaranteed to
lose no more than the amount of data (in seconds) specified by the
FastStartFailoverLagLimit configuration property. This property indicates the maximum
amount of data loss that is permissible in order for an automatic failover to occur. It is only
used when fast-start failover is enabled and the configuration is operating in maximum
performance mode.

1. Set the FastStartFailoverThreshold property to specify the number of seconds you
want the observer and target standby database to wait, after detecting the primary
database is unavailable, before initiating a failover, as shown in this example.

DGMGRL> EDIT CONFIGURATION SET PROPERTY FastStartFailoverThreshold =
seconds;

Chapter 14
Oracle Data Guard Configuration Best Practices

14-5

A fast-start failover occurs when the observer and the standby database both lose
contact with the production database for a period of time that exceeds the value
set for FastStartFailoverThreshold, and when both parties agree that the state
of the configuration is synchronized (Maximum Availability), or that the lag is not
more than the configured FastStartFailoverLagLimit (Maximum Performance).

An optimum value for FastStartFailoverThreshold weighs the trade-off between
the fastest possible failover (minimizing downtime) and unnecessarily triggering
failover because of temporary network irregularities or other short-lived events that
do not have material impact on availability.

The default value for FastStartFailoverThreshold is 30 seconds.

The following table shows the recommended settings for
FastStartFailoverThreshold in different use cases.

Table 14-1 Minimum Recommended Settings for
FastStartFailoverThreshold

Configuration minimum Recommended Setting

Single-instance primary, low latency, and a
reliable network

15 seconds

Single-instance primary and a high latency
network over WAN

30 seconds

Oracle RAC primary Oracle RAC miscount + reconfiguration time
+ 30 seconds

2. Determine where to place the observer in your topology.

In an ideal state fast-start failover is deployed with the primary, standby, and
observer, each within their own availability domain (AD) or data center; however,
configurations that only use two availability domains, or even a single availability
domain, must be supported. The following are observer placement
recommendations for two use cases.

Deployment Configuration 1: 2 regions with two ADs in each region.

• Initial primary region has the primary database in AD1, and two high
availability observers (one observer in AD2 and second HA observer in AD1)

• Initial standby region has the standby database in AD1, and two high
availability observers used after role change (one observer in AD2 and second
HA observer in AD1)

• For the observer, MAA recommends at least 2 observer targets in the same
primary region but in different ADs

Deployment Configuration 2: 2 regions with only 1 AD in each region

• Initial primary regions have the primary database and two light weight servers
to host observers

• Initial standby region has the standby database and two light weight servers to
host observers (when there is a role change)

3. Configure observer high availability.

You can register up to three observers to monitor a single Data Guard broker
configuration. Each observer is identified by a name that you supply when you

Chapter 14
Oracle Data Guard Configuration Best Practices

14-6

issue the START OBSERVER command. You can also start the observers as a background
process.

DGMGRL> sys@boston
Enter password: password
DGMGRL> start observer number_one in background;

On the same host or a different host you can start additional observers for high
availability:

DGMGRL> sys@boston
Enter password: password
DGMGRL> start observer number_two in background;

Only the primary observer can coordinate fast-start failover with Data Guard broker. All
other registered observers are considered to be backup observers.

If the observer was not placed in the background then the observer is a continuously
running process that is created when the START OBSERVER command is issued. Therefore,
the command-line prompt on the observer computer does not return until you issue the
STOP OBSERVER command from another DGMGRL session. To issue commands and interact
with the broker configuration, you must connect using another DGMGRL client session.

Now that you have correctly configured fast-start failover, the following conditions can trigger
a failover.

• Database failure where all database instances are down

• Data files taken offline because of I/O errors

• Both the Observer and the standby database lose their network connection to the
production database, and the standby database confirms that it is in a synchronized state

• A user-configurable condition

Optionally, you can specify the following conditions for which a fast-start failover can be
invoked. It is recommend that you leave these user-configurable conditions at the default
values and not invoke an automatic failover.

• Data file offline (write error)

• Corrupted Dictionary

• Corrupted Control file

• Inaccessible Log file

• Stuck Archiver

• ORA-240 (control file enqueue timeout)

Should one of these conditions be detected, the observer fails over to the standby, and the
primary shuts down, regardless of how FastStartFailoverPmyShutdown is set. Note that the
for user-configurable conditions, the fast-start failover threshold is ignored and the failover
proceeds immediately.

Fast Start Failover with Multiple Standby Databases
The FastStartFailoverTarget configuration property specifies the DB_UNIQUE_NAME of one or
more standby databases that can act as target databases in a fast-start failover situation

Chapter 14
Oracle Data Guard Configuration Best Practices

14-7

when the database on which the property is set is the primary database. These
possible target databases are referred to as candidate fast-start failover targets.

The FastStartFailoverTarget configuration property can only be set to the name of
physical standbys. It cannot be set to the name of a snapshot standby database, far
sync instance, or Zero Data Loss Recovery Appliance.

If only one physical standby database exists, then the broker selects that as the
default value for this property on the primary database when fast-start failover is
enabled. If more than one physical standby database exists, then the broker selects
one based on the order in which they are specified in the property definition. Targets
are verified when fast-start failover is enabled

Set Log Buffer Optimally
Set LOG_BUFFER to a minimum of 256 MB when using Oracle Data Guard with
asynchronous redo transport.

Doing so allows the asynchronous redo transport to read redo from the log buffer and
avoid disk I/Os to online redo logs. For workloads that have a very high redo
generation rate (for example, > 50 MB/sec per database instance) the LOG_BUFFER can
be increased up to maximum value allowed for the platform being used.

Note:

The maximum LOG_BUFFER setting for Linux platform is 2 GB and for
Windows is 1 GB.

Set Send and Receive Buffer Sizes
Redo transport processes, especially the receive/standby side, generally benefit from
more TCP socket buffers in high latency network paths. TCP socket buffers can be
managed by the TCP stack dynamically.

Setting the maximum values for tcp_rmem and tcp_wmem allows the kernel to
dynamically modify the buffers allocated to a socket as needed.

Bandwidth Delay Product (BDP) is the product of the network link capacity of a
channel and the round time, or latency. The minimum recommended value for socket
buffer sizes is 3*BDP, especially for a high-latency, high-bandwidth network. Use
oratcptest to tune the socket buffer sizes.

As root, set the maximum value for tcp_rmem and tcp_wmem to 3*<Bandwidth Delay
Product>. In this example BDP is 16MB. The other two values for these parameters
should be left as they currently are set on the system.

sysctl -w net.ipv4.tcp_rmem='4096 87380 16777216';

sysctl -w net.ipv4.tcp_wmem='4096 16384 16777216';

Chapter 14
Oracle Data Guard Configuration Best Practices

14-8

Using sysctl to change these values changes them dynamically in memory only and will be
lost when the system is rebooted. Additionally set these values in /etc/sysctl.conf on linux
systems. Add these entries if the values are absent in the file.

net.ipv4.tcp_rmem='4096 87380 16777216'

net.ipv4.tcp_wmem='4096 16384 16777216'

Set SDU Size to 65535 for Synchronous Transport Only
With Oracle Net Services you can control data transfer by adjusting the session data unit
(SDU) size. Oracle testing has shown that setting the SDU parameter to its maximum value
of 65535 improves performance of synchronous transport.

You can set SDU on a per connection basis using the SDU parameter in the local naming
configuration file, tnsnames.ora, and the listener configuration file, listener.ora, or you can
set the SDU for all Oracle Net Services connections with the profile parameter
DEFAULT_SDU_SIZE in the sqlnet.ora file.

Configure Online Redo Logs Appropriately
Redo log switching has a significant impact on redo transport and apply performance. Follow
these best practices for sizing the online redo logs on the primary and standby databases.

Following these guidelines for online redo logs.

• All online redo log groups should have identically sized logs (to the byte).

• Online redo logs should reside on high performing disks (DATA disk groups).

• Create a minimum of three online redo log groups per thread of redo on Oracle RAC
instances.

• Create online redo log groups on shared disks in an Oracle RAC environment.

• Multiplex online redo logs (multiple members per log group) unless they are placed on
high redundancy disk groups.

• Size online redo logs to switch no more than 12 times per hour (every ~5 minutes). In
most cases a log switch every 15 to 20 minutes is optimal even during peak workloads.

Sizing Redo Logs
Size the redo logs based on the peak redo generation rate of the primary database.

You can determine the peak rate by running the query below for a period of time that includes
the peak workload. The peak rate could be seen at month-end, quarter-end, or annually. Size
the redo logs to handle the highest rate in order for redo apply to perform consistently during
these workloads.

SQL> SELECT thread#,sequence#,blocks*block_size/1024/1024 MB,(next_time-
first_time)*86400 sec,
 blocks*block_size/1024/1024)/((next_time-first_time)*86400) "MB/s"
 FROM v$archived_log WHERE ((next_time-first_time)*86400<>0) and first_time
 between to_date('2015/01/15 08:00:00','YYYY/MM/DD HH24:MI:SS')
 and to_date('2015/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS') and dest_id=1
order by first_time;

Chapter 14
Oracle Data Guard Configuration Best Practices

14-9

 THREAD# SEQUENCE# MB SEC MB/s
---------- ---------- ---------- ---------- ----------
 2 2291 29366.1963 831 35.338383
 1 2565 29365.6553 781 37.6000708
 2 2292 29359.3403 537 54.672887
 1 2566 29407.8296 813 36.1719921
 2 2293 29389.7012 678 43.3476418
 2 2294 29325.2217 1236 23.7259075
 1 2567 11407.3379 2658 4.29169973
 2 2295 29452.4648 477 61.7452093
 2 2296 29359.4458 954 30.7751004
 2 2297 29311.3638 586 50.0193921
 1 2568 3867.44092 5510 .701894903

Choose the redo log size based on the peak generation rate with the following chart.

Table 14-2 Recommended Redo Log Size

Peak Redo Rate Recommended Redo Log Size

<= 1 MB/s 1 GB

<= 5 MB/s 4 GB

<= 25 MB/s 16 GB

<= 50 MB/s 32 GB

> 50 MB/s 64 GB

Use Standby Redo Log Groups
Configure the standby redo log groups on all primary and standby databases for
improved availability and performance.

For each redo log thread--a thread is associated with an Oracle RAC database
instance--the number of standby redo log groups must be greater than or equal to (>=)
the number of online redo log groups.

Consider the following additional guidelines when creating standby redo log groups.

• All online redo logs and standby redo log groups should have identically sized logs
(to the byte). Standby redo logs are not used if they are not the same size as the
online redo logs.

• All standby redo log groups should have identically sized logs (to the byte) on both
the primary and standby databases.

• Standby redo logs should reside on high performing disks (DATA disk group).

• Standby redo logs should be multiplexed (multiple members per log group) unless
placed on high redundancy disk groups. Multiplexing standby redo logs is optional
in all cases because Data Guard can fetch any missing redo.

• In an Oracle RAC environment, create standby redo logs on a shared disk.

• In an Oracle RAC environment, assign a thread to each standby redo log group.

Chapter 14
Oracle Data Guard Configuration Best Practices

14-10

The following example creates three log groups for each redo thread.

SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 1 GROUP 7 ('+DATA') SIZE
4194304000, GROUP 8 ('+DATA') SIZE 4194304000, GROUP 9 ('+DATA') SIZE
4194304000;

SQL> ALTER DATABASE ADD STANDBY LOGFILE THREAD 2 GROUP 10 ('+DATA') SIZE
4194304000, GROUP 11 ('+DATA') SIZE 4194304000, GROUP 12 ('+DATA') SIZE
419430400

To check the thread number and group numbers of the online redo logs, query the V$LOG
view.

SQL> SELECT * FROM V$LOG;

To check the results of the ALTER DATABASE ADD STANDBY LOGFILE THREAD statements, query
the V$STANDBY_LOG view.

SQL> SELECT * FROM V$STANDBY_LOG;

Protect Against Data Corruption
Oracle Database corruption prevention, detection, and repair capabilities are built on internal
knowledge of the data and transactions it protects, and on the intelligent integration of its
comprehensive high availability solutions.

When data corruption is detected, Oracle Data Guard, block media recovery, and data file
media recovery can recover the data. Database-wide logical corruptions caused by human or
application errors can be undone with Oracle Flashback Technologies.

Tools are also available for proactive validation of logical data structures. For example, the
SQL*Plus ANALYZE TABLE statement detects inter-block corruptions.

Achieve the most comprehensive data corruption prevention and detection with these best
practices.

• Use Oracle Data Guard with physical standby databases to prevent widespread block
corruption. Oracle Data Guard is the best solution for protecting Oracle data against data
loss and corruption, and lost writes.

• Set the Oracle Database block-corruption initialization parameters on the Data Guard
primary and standby databases as shown in the following table.

Table 14-3 Block-Corruption Initialization Parameter Settings

On the primary database set... On the standby databases set...

DB_BLOCK_CHECKSUM=MEDIUM or FULL
DB_LOST_WRITE_PROTECT=TYPICAL
DB_BLOCK_CHECKING=FALSE*

DB_BLOCK_CHECKSUM=MEDIUM or FULL
DB_LOST_WRITE_PROTECT=TYPICAL
DB_BLOCK_CHECKING=MEDIUM or FULL

* DB_BLOCK_CHECKING on the PRIMARY is recommended to be set to MEDIUM or FULL but
only after a full performance evaluation with the application.

Chapter 14
Oracle Data Guard Configuration Best Practices

14-11

• Performance overhead is incurred on every block change, therefore performance
testing is of particular importance when setting the DB_BLOCK_CHECKING parameter.
Oracle highly recommends the minimum setting of DB_BLOCK_CHECKING=MEDIUM
(block checks on data blocks but not index blocks) on either the primary or
standby database. If the performance overhead of enabling DB_BLOCK_CHECKING to
MEDIUM or FULL is unacceptable on your primary database, then set
DB_BLOCK_CHECKING to MEDIUM or FULL for your standby databases.

The following recommendations also help to protect against data corruptions.

• Use Oracle Automatic Storage Management (Oracle ASM) to provide disk
mirroring to protect against disk failures.

• Use Oracle ASM HIGH REDUNDANCY for optimal corruption repair. Using Oracle
ASM redundancy for disk groups provides mirrored extents that can be used by
the database if an I/O error or corruption is encountered. For continued protection,
Oracle ASM redundancy provides the ability to move an extent to a different area
on a disk if an I/O error occurs. The Oracle ASM redundancy mechanism is useful
if you have bad sectors returning media errors.

• Enable Flashback Technologies for fast point-in-time recovery from logical
corruptions most often caused by human error and for fast reinstatement of a
primary database following failover.

• Use RMAN for additional block checks during backup and restore operations.
Implement a backup and recovery strategy with Recovery Manager (RMAN) and
periodically use the RMAN BACKUP VALIDATE CHECK LOGICAL scan to detect
corruptions.

• Use Zero Data Loss Recovery Appliance for backup and recovery validation
including corruption checks and repairs, central backup validation, reduced
production database impact, and Enterprise Cloud backup and recovery solution.

Use Flashback Database for Reinstatement After Failover
Enable Flashback Database on both the primary and standby database, so that if the
original primary database has not been damaged, you can reinstate the original
primary database as a new standby database following a failover.

If there is a failure during the switchover process, then it can easily be reversed when
Flashback Database is enabled.

Set DB_FLASHBACK_RETENTION_TARGET to the same value on the standby database as
the primary. Set DB_FLASHBACK_RETENTION_TARGET initialization parameter to the
largest value prescribed by any of the following conditions that apply.

• To leverage flashback database to reinstate your failed primary database after
Data Guard failover, for most cases set DB_FLASHBACK_RETENTION_TARGET to a
minimum of 120 (minutes) to enable reinstatement of a failed primary.

• If using Flashback Database for fast point in time recovery from user error or
logical corruptions, set DB_FLASHBACK_RETENTION_TARGET to a value equal to the
farthest time in the past to which the database should be recovered. If you can
detect and repair from logical corruptions in less than 24 hours, then set
DB_FLASHBACK_RETENTION_TARGET to a minimum of 1440 (minutes).

Chapter 14
Oracle Data Guard Configuration Best Practices

14-12

Use Force Logging Mode
When the primary database is in FORCE LOGGING mode, all database data changes are
logged. FORCE LOGGING mode ensures that the standby database remains consistent with the
primary database.

If it is not possible to use this mode because you require the load performance with
NOLOGGING operations, then see Enable an Appropriate Logging Mode for other options.

You can enable force logging immediately by issuing an ALTER DATABASE FORCE LOGGING
statement. If you specify FORCE LOGGING, then Oracle waits for all ongoing non-logged
operations to finish.

Configure Fast Start Failover to Bound RTO and RPO (MAA Gold
Requirement)

Enabling fast-start failover is requirement to meet stringent RTO requirements in the case of
primary database, cluster, or site failure. With Data Guard fast-start failover, there's a Data
Guard observer to provide quorum of 2 and to preserve database consistency and prevent
database split brains.

Fast-start failover allows the Data Guard broker to automatically fail over to a previously
chosen standby database in the event of loss of the primary database. Fast-start failover
quickly and reliably switches the target standby database over to the primary database role,
without requiring you to perform any manual steps to invoke the failover. Fast-start failover
can be used only in a Data Guard broker configuration.

If the primary database has multiple standby databases, then you can specify multiple fast-
start failover targets, using the FastStartFailoverTarget property. The targets are referred
to as candidate targets. The broker selects a target based on the order in which they are
specified on the FastStartFailoverTarget property. If the designated fast-start failover
target develops a problem and cannot be the target of a failover, then the broker
automatically changes the fast-start failover target to one of the other candidate targets.

You can use any Data Guard protection mode with fast-start failover. The maximum
protection and maximum availability modes provide an automatic failover environment
guaranteed to lose no data. Maximum performance mode provides an automatic failover
environment guaranteed to lose no more than the amount of data (in seconds) specified by
the FastStartFailoverLagLimit configuration property. This property indicates the maximum
amount of data loss that is permissible in order for an automatic failover to occur. It is only
used when fast-start failover is enabled and the configuration is operating in maximum
performance mode.

1. Set the FastStartFailoverThreshold property to specify the number of seconds you
want the observer and target standby database to wait, after detecting the primary
database is unavailable, before initiating a failover, as shown in this example.

DGMGRL> EDIT CONFIGURATION SET PROPERTY FastStartFailoverThreshold =
seconds;

A fast-start failover occurs when the observer and the standby database both lose
contact with the production database for a period of time that exceeds the value set for
FastStartFailoverThreshold, and when both parties agree that the state of the

Chapter 14
Oracle Data Guard Configuration Best Practices

14-13

configuration is synchronized (Maximum Availability mode), or that the lag is not
more than the configured FastStartFailoverLagLimit (Maximum Performance
mode).

An optimum value for FastStartFailoverThreshold weighs the trade-off between
the fastest possible failover (minimizing downtime) and unnecessarily triggering
failover because of temporary network irregularities or other short-lived events that
do not have material impact on availability.

The default value for FastStartFailoverThreshold is 30 seconds.

The following table shows the recommended settings for
FastStartFailoverThreshold in different use cases.

Configuration Minimum Recommended Setting

Single-instance primary, low latency, and a
reliable network

15 seconds

Single-instance primary and a high latency
network over WAN

30 seconds

Oracle RAC primary Oracle RAC miscount + reconfiguration time
+ 30 seconds

For Exadata systems, minimum setting of 30
seconds

2. Determine where to place the observer in your topology.

The Data Guard broker observer provides a quorum of 2 to preserve database
consistency and avoid split brains. Data Guard fast-start failover always
guarantees that only one primary database exists, and external consistency is
guaranteed by routing transactions to the primary database. In an ideal state, fast-
start failover is deployed with the primary, standby, and observer, each within their
own availability domain (AD) or data center; however, configurations that only use
two availability domains, or even a single availability domain, must be supported.
The following are observer placement recommendations for two use cases.

• Deployment Configuration 1: 2 regions with two ADs in each region.

– Initial primary region has the primary database in AD1, and two high
availability observers (one observer in AD2 and second HA observer in
AD1)

– Initial standby region has the standby database in AD1, and two high
availability observers used after role change (one observer in AD2 and
second HA observer in AD1)

– For the observer, MAA recommends at least 2 observer targets in the
same primary region but in different ADs

• Deployment Configuration 2: 2 regions with only 1 AD in each region

– Initial primary regions have the primary database and two light weight
servers to host observers

– Initial standby region has the standby database and two light weight
servers to host observers (when there is a role change)

3. Configure observer high availability.

You can register up to three observers to monitor a single Data Guard broker
configuration. Each observer is identified by a name that you supply when you

Chapter 14
Oracle Data Guard Configuration Best Practices

14-14

issue the START OBSERVER command. You can also start the observers as a background
process.

DGMGRL> sys@boston
Enter password:
DGMGRL> start observer number_one in background;

On the same host or a different host you can start additional observers for high
availability:

DGMGRL> sys@boston
Enter password:
DGMGRL> start observer number_two in background;

Only the primary observer can coordinate fast-start failover with Data Guard broker. All
other registered observers are considered to be backup observers.

If the observer was not placed in the background, then the observer is a continuously
executing process that is created when the START OBSERVER command is issued.
Therefore, the command-line prompt on the observer computer does not return until you
issue the STOP OBSERVER command from another DGMGRL session. To issue commands
and interact with the broker configuration, you must connect using another DGMGRL client
session.

Triggering Fast-Start Failover

Now that you have correctly configured fast-start failover, the following conditions can trigger
a failover.

• Database failure where all database instances are down

• Datafiles taken offline because of I/O errors

• Both the Observer and the standby database lose their network connection to the
production database, and the standby database confirms that it is in a synchronized state

• A user-configurable condition

Optionally, you can specify the following conditions for which a fast-start failover can be
invoked. It is recommend that you leave these user-configurable conditions at the default
values and not invoke an automatic failover.

• Datafile offline (write error)

• Corrupted Dictionary

• Corrupted Controlfile

• Inaccessible Logfile

• Stuck Archiver

• ORA-240 (control file enqueue timeout)

Should one of these conditions be detected, the observer fails over to the standby, and the
primary shuts down, regardless of how FastStartFailoverPmyShutdown is set. Note that the
for user-configurable conditions, the fast-start failover threshold is ignored and the failover
proceeds immediately.

Fast Start Failover with Multiple Standby Databases

Chapter 14
Oracle Data Guard Configuration Best Practices

14-15

The FastStartFailoverTarget configuration property specifies the DB_UNIQUE_NAME of
one or more standby databases that can act as target databases in a fast-start failover
situation when the database on which the property is set is the primary database.
These possible target databases are referred to as candidate fast-start failover targets.

The FastStartFailoverTarget configuration property can only be set to the name of
physical standbys. It cannot be set to the name of a snapshot standby database, far
sync instance, or Zero Data Loss Recovery Appliance.

If only one physical standby database exists, then the broker selects that as the
default value for this property on the primary database when fast-start failover is
enabled. If more than one physical standby database exists, then the broker selects
one based on the order in which they are specified in the property definition. Targets
are verified when fast-start failover is enabled.

Configure Standby AWR
Since Oracle Database 12c (12.2), Automatic Workload Repository (AWR) snapshots
can be taken of the standby database.

Standby AWR is the best tool for identifying performance issues with recovery and
reporting workloads in an Active Data Guard standby database.

See Managing Automatic Workload Repository in Active Data Guard Standby
Databases for details about configuring and managing standby AWR.

Note:

For Oracle Exadata Cloud Data Guard deployments, standby AWR is
configured as part of instantiation.

To Create Standby AWR Reports

1. Identify the AWR ID (NODE_ID) for the standby database.

SQL> select NODE_ID,NODE_NAME from DBA_UMF_REGISTRATION;

2. Run the reports from the primary database using the NODE_ID for the target
database as the DBID.

• For instance level reports (for example, assessing redo apply performance
bottlenecks) use the awrrpti script.

SQL> ?/rdbms/admin/awrrpti

• For global AWR reports on the standby (for example, assessing query
performance) use the awrgrpti script.

SQL> ?/rdbms/admin/awrgrpti

Chapter 14
Oracle Data Guard Configuration Best Practices

14-16

Configuring Multiple Standby Databases
An Oracle Data Guard configuration with multiple standby databases gives you the benefits
of both local and remote standby databases.

A local standby database can provide zero data loss failover and application downtime
reduced to seconds. If a regional disaster occurs, making the primary and local standby
systems inaccessible, the application and database can fail over to the remote standby. See
"Gold: Multiple Standby Databases" for a full discussion of the features and benefits of a
multiple standby configuration.

Managing Oracle Data Guard Configurations with Multiple Standby
Databases

The Oracle Data Guard broker automates management and operation tasks across multiple
databases in an Oracle Data Guard configuration. The broker also monitors all of the systems
in a single Oracle Data Guard configuration.

In a multi-member Data Guard configuration the following redo transport destinations are
supported:

• Oracle Data Guard standby databases

• Far sync instances (See Using Far Sync Instances for more information)

• Oracle Streams downstream capture databases

• Zero Data Loss Recovery Appliance (Recovery Appliance)

Multiple Standby Databases and Redo Routes
You can use the Oracle Data Guard broker RedoRoutes property to override the default
behavior by which a primary database sends the redo that it generates to every other redo
transport destination in the configuration.

An example redo transport topology that differs from the default would be one in which a
physical standby, or a far sync instance, forwards redo received from the primary database to
one or more destinations, or one in which the redo transport mode used for a given
destination is dependent on which database is in the primary role.

Consider a configuration that has a primary database (North_Sales) and two physical
standby databases (Local_Sales and Remote_Sales). The Local_Sales database is located
in the same data center as the primary for high availability purposes and for simpler
application and database failover. The Remote_Sales database is located in a remote data
center for disaster recovery purposes.

Rather than have North_Sales ship its redo to both databases, you can use the RedoRoutes
broker property to configure real-time cascading, in which the local physical standby
database forwards to Remote_Sales the redo it receives from North_Sales. To accomplish
this, the RedoRoutes property is set on North_Sales and Local_Sales as follows:

• On the North_Sales database, the RedoRoutes property specifies that if North_Sales is in
the primary role, then it should ship redo to the Local_Sales database using synchronous
transport mode. This rule prevents the primary from shipping redo data directly to the
Remote_Sales database.

Chapter 14
Configuring Multiple Standby Databases

14-17

https://www.oracle.com/webfolder/technetwork/tutorials/architecture-diagrams/high-availability-overview/high-availability-reference-architectures.html

• On the Local_Sales database, the RedoRoutes property must specify that if
North_Sales is in the primary role, then Local_Sales should forward redo it
receives from North_Sales on to Remote_Sales.

To see the runtime RedoRoutes configuration, use the SHOW CONFIGURATION command.
For example:

DGMGRL> SHOW CONFIGURATION;

Configuration - Sales_Configuration

 Protection Mode: MaxAvailability
 Members:
 North_Sales - Primary database
 Local_Sales - Physical standby database
 Remote_Sales - Physical standby database (receiving current
redo)

Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS

Note that the asynchronous redo transport attribute was explicitly specified in the redo
route rule for the Remote_Sales destination to enable real-time cascading of redo to
that destination. (Real-time cascading requires a license for the Oracle Active Data
Guard option.)

To disable real-time cascading of redo, do not specify the asynchronous redo transport
attribute. For example:

DGMGRL> EDIT DATABASE 'Local_Sales' SET PROPERTY 'RedoRoutes' =
'(North_Sales : Remote_Sales)';

See RedoRoutes for more information.

Using the RedoRoutes Property for Remote Alternate Destinations
The RedoRoutes property can be used to set up a remote alternate destination, so that
a terminal member can still receive redo data even if the member from which it was
receiving the redo data fails.

Using the previous example, you can have the primary database, North_Sales, send
redo data directly to Remote_Sales if the Local_Sales standby database failed. It is
also possible, using the PRIORITY attribute, to specify that once the Local_Sales failure
has been resolved it can resume shipping redo to Remote_Sales.

DGMGRL> EDIT DATABASE 'North_Sales' SET PROPERTY
 'RedoRoutes' = '(LOCAL : (Local_Sales ASYNC PRIORITY=1, Remote_Sales
ASYNC PRIORITY=2))';
Property "RedoRoutes" updated

DGMGRL> EDIT DATABASE 'Local_Sales'
 SET PROPERTY 'RedoRoutes' = '(North_Sales : Remote_Sales ASYNC)';

Chapter 14
Configuring Multiple Standby Databases

14-18

Property "RedoRoutes" updated

DGMGRL> SHOW CONFIGURATION;

Configuration - Sales_Configuration

 Protection Mode: MaxPerformance
 Members:
 North_Sales - Primary database
 Local_Sales - Physical standby database
 Remote_Sales - Physical standby database
Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS

To see the full RedoRoutes configuration, use the SHOW CONFIGURATION VERBOSE command.
For example:

DGMGRL> SHOW CONFIGURATION VERBOSE;

Configuration - Sales_Configuration

 Protection Mode: MaxPerformance
 Members:
 North_Sales - Primary database
 Local_Sales - Physical standby database
 Remote_Sales - Physical standby database
 Remote_Sales - Physical standby database (alternate of Local_Sales)

 Properties:
 FastStartFailoverThreshold = '180'
 OperationTimeout = '30'
 TraceLevel = 'USER'
 FastStartFailoverLagLimit = '300'
 CommunicationTimeout = '180'
 ObserverReconnect = '0'
 FastStartFailoverAutoReinstate = 'TRUE'
 FastStartFailoverPmyShutdown = 'TRUE'
 BystandersFollowRoleChange = 'ALL'
 ObserverOverride = 'FALSE'
 ExternalDestination1 = ''
 ExternalDestination2 = ''
 PrimaryLostWriteAction = 'CONTINUE'
 ConfigurationWideServiceName = 'c0_CFG'

Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS

Chapter 14
Configuring Multiple Standby Databases

14-19

Fast Start Failover with Multiple Standby Databases
The Oracle Data Guard FastStartFailoverTarget broker configuration property
specifies the DB_UNIQUE_NAME of one or more standby databases that can act as target
databases in a fast-start failover scenario when the database on which the property is
set is the primary database.

These possible target databases are referred to as candidate fast-start failover targets.
The FastStartFailoverTarget property can only be set to the name of physical
standbys. It cannot be set to the name of a snapshot standby database, far sync
instance, or Zero Data Loss Recovery Appliance.

If only one physical standby database exists, then the broker selects that database as
the default value for FastStartFailoverTarget on the primary database when fast-
start failover is enabled. If more than one physical standby database exists, then the
broker selects a single standby based on the order in which they are specified in the
property definition. The targets are verified when fast-start failover is enabled.

See also, FastStartFailoverTarget.

Setting FastStartFailoverTarget
If you have two or more standby databases, set up the FastStartFailoverTarget
configuration property on the primary database to indicate the desired fast-start
failover target standby database.

The Oracle Data Guard broker reciprocally sets this property for the target standby
database to indicate the primary database as its future target standby database when
fast-start failover is actually enabled. There is no need for you set this property on the
target standby as this is done for you automatically. For example:

DGMGRL> edit database moe set property ='curly,larry';
Property "faststartfailovertarget" updated

After FastStartFailoverTarget is configured, continue with enabling fast-start
failover. When fast-start failover is enabled, you cannot change the
FastStartFailoverTarget configuration property on the primary or target standby
databases.

To change the FastStartFailoverTarget property to point to a different standby
database, disable fast-start failover, set the FastStartFailoverTarget property, and
reenable fast-start failover. This action does not impact primary or standby database
availability or up time.

Switchover with FastStartFailoverTarget Set
If fast-start failover is enabled with FastStartFailoverTarget set you can still perform
a switchover or a manual failover, as long the role change is directed to the same
standby database that was specified for the FastStartFailoverTarget database
property on the primary database.

Chapter 14
Configuring Multiple Standby Databases

14-20

Attempting to switch over to a standby that is not the fast-start failover target results in
ORA-16655.

DGMGRL> switchover to curly
Performing switchover NOW, please wait...
Error: ORA-16655: specified standby database not the current fast-start
failover target standby

To switch over to a standby that is not the primary fast-start target:

1. Disable fast-start failover.

DGMGRL> DISABLE FAST_START FAILOVER;

2. Edit the FastStartFailoverTarget property to list the standby you wish to switch over to
first.

DGMGRL> edit database moe set property
FastStartFailoverTarget='curly,larry';
Property "faststartfailovertarget" updated

3. Enable fast-start failover.

DGMGRL> ENABLE FAST_START FAILOVER;

4. Perform the switchover operation.

DGMGRL> switchover to curly
Performing switchover NOW, please wait...

Fast-Start Failover Outage Handling
If the primary database's fast-start failover target standby database becomes unavailable,
perhaps because the standby database or instance is down or there's an issue with
transporting redo, then the primary's fast-start failover target is automatically switched to the
next target configured in the FastStartFailoverTarget property.

Note that is can take several ping cycles to effect the target switch: one ping to recognize that
the current target is not viable, and another ping to propose the target switch and finalize it.

If the original fast-start failover target comes back online, a switch back to the original target
is not performed automatically. To get the original target back after an outage you must
disable and then enable fast-start failover.

Oracle Active Data Guard Far Sync Solution
To support zero data loss, you can deploy between the primary and standby databases an
Oracle Data Guard far sync instance, which is a remote Oracle Data Guard destination that
accepts redo from the primary database and then ships that redo to other members of the
Oracle Data Guard configuration.

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-21

About Far Sync
Far Sync is an Oracle Active Data Guard feature that provides increased flexibility in
the location of a disaster recovery site for those who wish to implement zero data loss
protection.

Even users who have already deployed Oracle Data Guard synchronous transport can
benefit from configuring a far sync instance closer to the primary than their current
standby to reduce the performance impact on the production database.

Synchronous redo transport over WAN distances or on an under-performing network
often has too large an impact on primary database performance to support zero data
loss protection. Oracle Active Data Guard Far Sync provides the ability to perform a
zero data loss failover to a remote standby database without requiring a second
standby database or complex operation.

Far Sync enables this by deploying a far sync instance (a lightweight Oracle instance)
at a distance that is within an acceptable range of the primary for synchronous redo
transport. A far sync instance receives redo from the primary using synchronous
transport and forwards the redo to up to 29 remote standby databases using
asynchronous transport.

Far sync instances are part of the Oracle Active Data Guard Far Sync feature, which
requires an Oracle Active Data Guard license.

Offloading to a Far Sync Instance
A far sync instance offloads from the primary any overhead of resolving gaps in redo
received by the remote standby database (for example, following network or standby
database outages) and can conserve WAN bandwidth by performing redo transport
compression without impacting primary database performance.

Note that redo compression requires that the Advanced Compression Option be
licensed.

Redo Transport Encryption can additionally be offloaded to the far sync instance.
Including Advanced Security Option (ASO) encryption during MAA testing showed no
impact to the performance of the primary nor currency of the standby databases.

Oracle recommends using ASO for encryption because it is tested and integrated with
Oracle Net and Data Guard.

Note that Oracle Advanced Security Option is a licensed option.

Far Sync Deployment Topologies
Oracle Active Data Guard Far Sync provides the ability to perform a zero data loss
failover to a remote standby database without requiring a second standby database or
complex operation.

Data Guard enables this by deploying a far sync instance (a lightweight Oracle
instance that has only a control file, SPFILE, password file and standby log files; there
are no database files or online redo logs) at a distance that is within an acceptable
range of the primary for synchronous transport. A far sync instance receives redo from
the primary through synchronous transport and immediately forwards the redo to up to
29 remote standby databases using asynchronous transport. A far sync instance can

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-22

also forward redo to the new Oracle Database Backup, Logging, and Recovery Appliance.

Figure 14-1 Far Sync Architecture Overview

The following use cases illustrate the benefits of various architecture choices you can
implement with far sync instances.

Case 1: Zero Data Loss Protection Following Role Transitions
This is the most basic example in which a primary database uses high availability far sync
instances to extend zero data loss failover to a remote standby database.

Ideally the high availability far sync instance is deployed in a location separate from the
primary database to isolate it from site failure, but within a metro area distance (network RTT
of 5ms or less – subject to performance testing). Even if no separate location is available
there is still a benefit to deploying a far sync instance within the same data center to enable
fast, zero data loss failover for all unrecoverable outages short of full site failure.

The remote high availability far sync instance is idle while the standby database is in a
standby role. It becomes active when the standby database transitions to the primary
database role, enabling zero data loss failover to the new standby (old primary). The high
availability far sync instance that is local to the original primary database becomes inactive
while it is in a standby role.

Figure 14-2 Role Transition Facilitated by Far Sync

High availability far sync options are described in Far Sync Instance High Availability
Typologies.

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-23

Case 2: Reader Farm Support
Far Sync can support up to 30 remote destinations, making it a very useful tool for
supporting a reader farm – an Active Data Guard configuration having multiple active
standby databases to easily scale read performance.

In this example the reader farm is configured in a remote location from the primary
database. The primary ships once over the WAN to the far sync instance located in the
remote destination and Far Sync distributes redo locally to all active standby
databases in the reader farm.

Figure 14-3 Far Sync Ships Redo to Reader Farm

Case 3: Cloud Deployment With Far Sync Hub
Far Sync is a very lightweight process; a single physical server can support multiple
far sync instances, each providing zero data loss failover to a remote destination.

The diagram below shows primary databases shipping to a single physical machine
operating as a far sync "hub" consisting of multiple far sync instances on a single
physical machine. Primaries and the far sync hub are on-premises while standby
databases are deployed remotely in the cloud.

Note that all of the systems in this configuration (primary and standby database hosts
and far sync instance host) must meet the usual requirements for compatibility in a
Data Guard configuration described in Data Guard Support for Heterogeneous Primary
and Physical Standbys in Same Data Guard Configuration (Doc ID 413484.1).

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-24

https://support.oracle.com/rs?type=doc&id=413484.1
https://support.oracle.com/rs?type=doc&id=413484.1

Figure 14-4 Far Sync Hub Architecture

Far Sync High Availability Topologies
To keep far sync instances highly available, consider the following deployment topologies.

Deploy Far Sync Instances on Oracle Real Application Clusters

The far sync instance can be placed on an Oracle RAC cluster. In this configuration a far
sync instance is only active on one server at a time while other servers provide automatic
failover for high availability. The characteristics of this approach include:

• Lowest data loss potential and brown-out when the active far sync instance or node fails.

• The ability to resume zero data loss protection quickly after far sync instance failure.

• By itself, this solution does not address cluster failure.

The most critical applications are well served by a pair of Oracle RAC far sync instances,
each configured as an alternate for the other and deployed at different locations. This
provides the most robust HA and data protection (during instance, node, cluster and site
outages).

Deploy Far Sync Instances on Alternate Destinations and Multiple Far Sync instances

Configuring two separate far sync instances on distinct physical machines, each serving as
an alternate destination for the other, provides far sync instance high availability in a non-
Oracle RAC environment. Each destination defined on the primary database contains the
ALTERNATE keyword assigning the other far sync instance as the alternate. When the active
far sync instance enters an error state the alternate destination pointing to the alternate far
sync instance is enabled automatically. By defining a far sync instance as an alternate
destination, Maximum Availability protection will be maintained after a briefly dropping to a
resynchronization state while the new destination is prepared.

The characteristics of this approach include:

• Retains zero data loss coverage after far sync instance transport failures (instance or
network outages).

• Failure testing has shown

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-25

– During far sync instance failures a performance brownout of approximately 3.5
seconds while SYNC redo transport starts (network sync service - NSS).

– During network failures a short brownout equal to the setting of the
destination's net_timeout parameter was observed.

• HA for machine outage assuming each far sync instance is on separate hardware.

• HA for site outage assuming far sync instances are deployed in separate sites.

• Higher application brown-out and resynchronization time during far sync instance
outages compared with Far Sync with Oracle RAC

Deploy a Far Sync Instance on the Terminal Standby as an Alternate Destination

The simplest approach to maintaining data protection during a far sync instance
outage is to create an alternate LOG_ARCHIVE_DEST_n pointing directly to the terminal
standby (the terminal failover target). Asynchronous transport to the remote
destination is the most likely choice in order to avoid the performance impact on the
primary caused by WAN network latency.

Asynchronous transport can achieve near-zero data loss protection (as little as sub-
seconds to seconds of exposure), but because it never waits for standby
acknowledgment, it is unable to provide a zero data loss guarantee. In this
configuration the protection level must be dropped to Maximum Performance prior to a
switchover (planned event) as the level must be enforceable on the target in order to
perform the transition. Changing protection levels and transport methods is a dynamic
operation that does not require downtime.

During a far sync instance outage, redo transport automatically fails over to using the
alternate destination. Once the far sync instance is repaired and resumes operation,
transport automatically switches back to the far sync instance and zero data loss
protection is restored.

The characteristics of this approach include:

• No additional hardware or far sync instances to manage.

• Loss of zero data loss coverage during a far sync instance outage. Data protection
level drops to UNSYNCHRONIZED with ASYNC transport until the Far sync instance can
resume operation and the standby become fully synchronized.

Choosing a Far Sync Deployment Topology
All configurations for far sync instance high availability perform equally with regard to
receiving and sending redo. The choice of configuration should be based on
application tolerance to the maximum data loss (RPO) and application brownout
period of the different failure scenarios.

• Far sync instances deployed on Oracle RAC provides the lowest brownout and
best protection however has no coverage for cluster or site outage. The most
critical applications are well served by a pair of Oracle RAC far sync instances
configured as alternates for each other and deployed at different locations. This
provides the most robust Far Sync high availability (instance, node, cluster, and
site failure) protection.

• Alternate far sync instances in a non-RAC environment provide the ability to place
each instance on separate physical database servers. This configuration provides
protection by deploying the far sync instances in different sites. Applications where
data protection is critical but where cost is an important consideration are best

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-26

served by deploying a pair of single node far sync instances, each as an alternate for the
other. There is, however, slightly increased application brownout and longer
resynchronization time while transport transitions from one far sync instance to the other.
There is also the potential for data loss should a second outage impact the primary
database while transport transitions from one far sync instance to the other.

• Terminal standby alternate configurations require that the application accept that there is
no zero data loss protection while the far sync instance is not available, but requires no
additional hardware to implement. Applications that can tolerate increased data loss
potential during a far sync instance outage, and where low cost is the main consideration,
are best served by configuring the terminal standby as an alternate location using
asynchronous redo transport. Use of the terminal standby as an alternate destination
requires accepting that the configuration will run in asynchronous mode during the entire
period required to resolve the far sync instance outage. The advantage of this approach
is that it requires no additional hardware or software to deploy or manage. Applications
that can tolerate increased data loss potential during a far sync instance outage and
where low cost is the main consideration are best served by configuring the terminal
standby as an alternate location using ASYNC redo transport.

• A Far Sync hub is an efficient way of consolidating far sync instances for multiple Data
Guard configurations on a single physical host. Cloud deployments that include a zero
data loss service level category can deploy a Far Sync hub to efficiently consolidate far
sync instances for multiple zero data loss configuration on a single physical machine or
cluster

• Applications where data protection is critical but where cost is an important consideration
are best served by deploying a pair of single node far sync instances, each as an
alternate for the other.

Far Sync Configuration Best Practices
The following are far sync configuration best practices that are necessary in addition to those
best practices that apply to any synchronous redo transport destination.

• The network between the primary database and the far sync instance must:

– Have round trip latency low enough so that the impact to response time and
throughput of the primary database does not exceed business requirements. The
degree of impact is very application specific and will require testing to validate. In
general, experience shows that there is a higher likelihood of success if the round-trip
latency is less than 5ms, though there are successful deployments at higher
latencies.

– Provide enough bandwidth between the primary database and the far sync instance
to accommodate peak redo volumes, in addition to any other traffic sharing the
network. Redo transport compression can be used to reduce network bandwidth
requirements.

– Ideally have redundant network links that also tolerate network component failure.

• Standard Oracle Data Guard network best practices, such as setting appropriate TCP
send and receive buffer sizes equal to three times the bandwidth delay product. See
Configure Online Redo Logs Appropriately.

• Standby redo logs for a far sync instance should be placed on storage with sufficient
IOPS (writes per second) capacity to exceed the I/O of the LGWR process on the primary
database during peak activity, in addition to any IOPS from other activities. This is an
important consideration. For example:

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-27

– If the far sync instance has lower performing disks than the primary database,
it will not be able to forward redo to remote destinations as fast as it is
received, and an archive log gap may form.

– In redo gap resolution scenarios, due to planned maintenance on the standby
or network outages, for example, there will be additional I/O requests for gap
resolution on top of peak redo coming in.

– Lower performing disks at the far sync instance will delay acknowledgment to
the primary database, increasing the total round-trip time between primary and
standby databases and impacting application response time. This impact can
be eliminated by using Fast Sync between the primary database and the far
sync instance.

• The far sync instance should follow the same standby redo log best practices as
the standby database. See Configure Online Redo Logs Appropriately.

• The standby redo logs of an alternate far sync instance should be manually
cleared before use to achieve the fastest return to synchronous transport when the
alternate far sync is activated. For example:

ALTER DATABASE CLEAR LOGFILE GROUP 4, GROUP 5, GROUP 6;

• Oracle MAA performance testing shows that a small far sync instance SGA does
not impact the performance of the far sync instance or the primary database. To
conserve system resources, you can configure the minimum SGA required for Far
Sync to function.

– Set CPU_COUNT=4. Values of 1 or 2 are possible when neither compression nor
encryption are not being used.

– Reducing the CPU_COUNT during testing has no effect on the performance of
the Far sync instance.

• Configure far sync instances for both the primary and standby databases to
maintain zero data loss protection following role transitions. The second far sync
instance configured in proximity to the standby database is idle until the standby
becomes the primary database, enabling synchronous redo transport in the
reverse direction.

Note that in a Data Guard Broker configuration, a switchover (planned role
transition) cannot occur while in Maximum Availability mode unless the protection
mode can be enforced from the target standby site. If the standby database does
not have its own far sync instance it will have to be configured to ship
asynchronous redo to the original primary database after the roles are reversed.
This prevents a switchover from occurring unless the protection mode for the
primary database is first dropped from Maximum Availability to Maximum
Performance.

• Fast Sync yields a 4% to 12% primary database performance improvement
compared to synchronous transport, depending on the network latency and the I/O
speed of the far sync instance hardware.

• Provided CPU, I/O, and network requirements are met.

– Placing the far sync instance on a virtual machine produces no reduction in
performance over physical hardware configurations.

– Multiple far sync instances servicing multiple Data Guard configurations can
share the same physical server, cluster, or virtual machine.

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-28

• Note that archives may need to be managed on the far sync server.

Configuring the Active Data Guard Far Sync Architecture
The following topics walk you through an example of configuring an Active Data Guard Far
Sync architecture.

Configuring the Far Sync Instances
The following examples show you how to add far sync instances to an Oracle Data Guard
broker configuration.

The first step is to add a far sync standby instance that is independent or fault isolated from
the primary database server, and where the network latency between the primary server and
the far sync server is consistently low enough that application performance can tolerate it (for
example, < 5 ms).

In the following example, far sync instance FS1 is created for the primary database,
North_Sales.

DGMGRL> ADD FAR_SYNC FS1 AS CONNECT IDENTIFIER IS FS1.example.com;
Far Sync FS1 added
DGMGRL> ENABLE FAR_SYNC FS1;
Enabled.
DGMGRL> SHOW CONFIGURATION;

Configuration - DRSolution

 Protection Mode: MaxPerformance
 Members:
 North_Sales - Primary database
 FS1 - Far Sync
 South_Sales - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS

After a far sync instance has been added to the configuration, set up redo transport to
support maximum availability mode and then upgrade the protection mode, as shown in the
following example.

DGMGRL> EDIT DATABASE 'North_Sales' SET PROPERTY 'RedoRoutes' = '(LOCAL :
FS1 SYNC)';
DGMGRL> EDIT FAR_SYNC 'FS1' SET PROPERTY 'RedoRoutes' = '(North_Sales :
South_Sales ASYNC)';
DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxAvailability;
DGMGRL> SHOW CONFIGURATION;

Configuration - DRSolution

 Protection Mode: MaxAvailability
 Members:

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-29

 North_Sales - Primary database
 FS1 - Far Sync
 South_Sales - Physical standby database

Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

To ensure that maximum availability protection mode can be maintained when the
remote standby database, South_Sales, becomes the primary database after a
switchover or a failover, add a second far sync instance to the configuration so that
South_Sales can send redo in synchronous mode, which in turn will send redo to the
new terminal database, North_Sales, after the role transition.

The following example shows you how to add a second far sync instance (FS2) to the
broker configuration.

DGMGRL> ADD FAR_SYNC FS2 AS CONNECT IDENTIFIER IS FS2.example.com;
Far Sync FS2 added
DGMGRL> EDIT FAR_SYNC 'FS2' SET PROPERTY 'RedoRoutes' =
'(South_Sales : North_Sales ASYNC)';
DGMGRL> ENABLE FAR_SYNC FS2;
Enabled.
DGMGRL> EDIT DATABASE 'South_Sales' SET PROPERTY 'RedoRoutes' =
'(LOCAL : FS2 SYNC)';
DGMGRL> SHOW CONFIGURATION;

Configuration - DRSolution

 Protection Mode: MaxAvailability
 Members:
 North_Sales - Primary database
 FS1 - Far Sync
 South_Sales - Physical standby database
 FS2 - Far Sync (inactive)

Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

Setting Up HA Far Sync Instances
Alternate HA far sync instances are set up to provide high availability for the far sync
instances you created for the primary and remote standby databases.

The following example shows you how to add a second far sync instance (FS1a) to the
primary database's far sync instance (FS1) in the Oracle Data Guard broker
configuration, so that if the primary far sync instance becomes unavailable, redo
transport will use the alternate far sync instance.

DGMGRL> ADD FAR_SYNC FS1a AS CONNECT IDENTIFIER IS FS1a.example.com;
Far Sync FS1a added
DGMGRL> EDIT DATABASE 'North_Sales' SET PROPERTY 'RedoRoutes' =
' (LOCAL:(FS1 SYNC PRIORITY=1, FS1a SYNC PRIORITY=2))';

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-30

DGMGRL> EDIT FAR_SYNC 'FS1' SET PROPERTY 'RedoRoutes' = '(North_Sales :
South_Sales ASYNC)';
DGMGRL> EDIT FAR_SYNC 'FS1a' SET PROPERTY 'RedoRoutes' = '(North_Sales :
South_Sales ASYNC)';
DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxAvailability;
DGMGRL> SHOW CONFIGURATION;

Configuration - DRSolution

 Protection Mode: MaxAvailability
 Members:
 North_Sales - Primary database
 FS1 - Far Sync
 FS1a - Far Sync
 South_Sales - Physical standby database

Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

After adding the alternate far sync instance on the primary, use the following example to add
an alternate far sync instance (FS2a) on the standby.

DGMGRL> ADD FAR_SYNC FS2a AS CONNECT IDENTIFIER IS FS2a.example.com;
Far Sync FS2a added
DGMGRL> EDIT DATABASE 'South_Sales' SET PROPERTY 'RedoRoutes' = ' (LOCAL:
(FS2 SYNC PRIORITY=1, FS2a SYNC PRIORITY=2))';
DGMGRL> EDIT FAR_SYNC 'FS2' SET PROPERTY 'RedoRoutes' = '(South_Sales :
North_Sales ASYNC)';
DGMGRL> EDIT FAR_SYNC 'FS2a' SET PROPERTY 'RedoRoutes' = '(South_Sales :
North_Sales ASYNC)';
DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxAvailability;
DGMGRL> SHOW CONFIGURATION;

Configuration - DRSolution

 Protection Mode: MaxAvailability
 Members:
 North_Sales - Primary database
 FS1 - Far Sync
 FS1a - Far Sync
 South_Sales - Physical standby database
 FS2 - Far Sync (inactive)
 FS2a - Far Sync (inactive)

Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

Configuring Far Sync Instances with Oracle RAC or Oracle Clusterware
If a far sync instance is deployed on a server or cluster with Oracle Clusterware (for example,
in an Oracle Restart, Oracle Real Application Clusters (Oracle RAC), or Oracle RAC One
Node installation), then use the SRVCTL utility to specify a default open mode of mount.

Chapter 14
Oracle Active Data Guard Far Sync Solution

14-31

You can use a command such as the following:

srvctl modify database -d db_unique_name -startoption MOUNT

Encrypting a Database Using Data Guard and Fast Offline
Encryption

Encrypting a database using Transparent Data Encryption (TDE) can be done more
quickly, with minimal down time, and no extra space requirements, by using the
standby database and offline encryption.

In this two-phase process, the standby database is encrypted offline, followed by a
switchover, and then the offline encryption is repeated on the new standby database
(formerly the primary).

In more recent Oracle releases online encryption is also available. Online encryption
may fit the needs for some, but requires additional storage while a tablespace is
converted, and online encryption can be a time-consuming process because each
block is read and written to a new encrypted data file. With fast offline encryption, each
data file is encrypted directly, in-place, on a mounted standby database.

Step 1: Configure Transparent Data Encryption (TDE)

There are a number of different TDE configuration options. Different Oracle releases
have different requirements. It is strongly recommended that you review Introduction to
Transparent Data Encryption in the Oracle Database Advanced Security Guide for
your database release to understand the configuration options and implications of
TDE.

Note:

This process describes configuring a united, file-based keystore, which
means that the wallets are stored on a file system, and all keys for all PDBs
are stored in a single wallet.
For more complex configurations such as isolated PDBs, Oracle Key Vault
(OKV), or Hardware Security Module (HSM), see Using Transparent Data
Encryption in Oracle Database Advanced Security Guide for details.

The following are the basic parameters required to configure a united, file-based
keystore. The parameters are configured on the primary and standby databases but
may have different values.

Chapter 14
Encrypting a Database Using Data Guard and Fast Offline Encryption

14-32

https://docs.oracle.com/en/database/oracle/oracle-database/21/asoag/asopart1.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/asoag/asopart1.html

Parameter Configuration Best Practice

WALLET_ROOT Starting in Oracle Database 18c, configuring the
WALLET_ROOT database parameter is the best practice
for specifying the root directory for all database wallets.
For clustered databases, the location specified in
WALLET_ROOT must be a shared location such as an
ASM disk.

ALTER SYSTEM SET
 WALLET_ROOT='+DATA/db_unique_name'
 SCOPE=SPFILE SID='*';

Note:

WALLET_ROOT is a static
parameter; the database
must be restarted for the
changes to take effect.
TDE_CONFIGURATION
cannot be set until the
database is restarted with
the WALLET_ROOT set.

See WALLET_ROOT in the Oracle Database Reference
for more details.

TDE_CONFIGURATION The TDE_CONFIGURATION database parameter sets the
type of keystore.

TDE_CONFIGURATION is dynamic, but it can only be set
after the database is restarted with WALLET_ROOT
configured.

ALTER SYSTEM SET

TDE_CONFIGURATION='KEYSTORE_CONFIGURATION
=FILE'
 SCOPE=SPFILE SID='*';

See TDE_CONFIGURATION in the Oracle Database
Reference for more details.

Chapter 14
Encrypting a Database Using Data Guard and Fast Offline Encryption

14-33

Parameter Configuration Best Practice

TABLESPACE_ENCRYPTION The database parameter TABLESPACE_ENCRYPTION is
available in Oracle 19c (19.16).
TABLESPACE_ENCRYPTION is an alternative to
ENCRYPT_NEW_TABLESPACES, which specifies whether
to encrypt new tablespaces when they are created. If
both TABLESPACE_ENCRYPTION and
ENCRYPT_NEW_TABLESPACES parameters are set,
TABLESPACE_ENCRYPTION takes precedence.

The values for TABLESPACE_ENCRYPTION are as
follows:

• AUTO_ENABLE - All newly created tablespaces will
be encrypted. This is the Oracle Cloud default which
cannot be overridden in Oracle 19c (19.16) and
later.

• MANUAL_ENABLE - Manually control whether
tablespaces are encrypted with the ENCRYPTION
clause on the CREATE statement.

• DECRYPT_ONLY - No tablespaces will be encrypted.
This setting is used in a hybrid Data Guard
configuration where the on-premises database
remains unencrypted while the cloud database is
encrypted.

ALTER SYSTEM SET
TABLESPACE_ENCRYPTION=MANUAL_ENABLE
SCOPE=BOTH SID='*';

See TABLESPACE_ENCRYPTION in the Oracle
Database Reference for more details.

ENCRYPT_NEW_TABLESPACES Before Oracle Database 19c (19.16) the
ENCRYPT_NEW_TABLESPACES parameter specifies
whether to encrypt new tablespaces.

The values for ENCRYPT_NEW_TABLESPACES are as
follows:

• CLOUD_ONLY - When a tablespace is created in the
Oracle Cloud, it is transparently encrypted with the
default encryption algorithm, whether or not the
encryption clause in included. The default
encryption algorithm can be changed as shown in
Step 2, but AES128 is the default algorithm.

• ALWAYS - The new tablespace is transparently
encrypted whether or not the database is in the
Oracle Cloud.

• DDL - Manually control whether tablespaces are
encrypted with the ENCRYPTION clause.

See ENCRYPT_NEW_TABLESPACES in the Oracle
Database Reference for more details.

The following table indicates which TDE parameters to configure based on your Oracle
Database release.

Chapter 14
Encrypting a Database Using Data Guard and Fast Offline Encryption

14-34

https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/TABLESPACE_ENCRYPTION.html#GUID-42408BFB-1A3F-4BAA-B0E9-1AA0CD48FA5A
https://docs.oracle.com/en/database/oracle/oracle-database/19/refrn/ENCRYPT_NEW_TABLESPACES.html#GUID-44EF2AAC-1313-4437-B0F3-A427F45016F2

Oracle Release WALLET_ROOT and
TDE_CONFIGURATIO
N

TABLESPACE_ENCRY
PTION

ENCRYPT_NEW_TABL
ESPACES

Oracle 19c (19.16) and
later

Yes Yes No

Oracle 18c to 19c
(19.15)

Yes No Yes

Step 2: Set the default encryption algorithm

The default encryption algorithm for TDE is AES128. In Oracle 21c and later releases, the
algorithm can be set with the TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM parameter, but
this setting must be configured before creating the wallet. Likewise,
"_tablespace_encryption_default_algorithm" can be used in Oracle 19c and earlier with
patch 30398099.

This setting determines the encryption algorithm used on new tablespaces for
TABLESPACE_ENCRYPTION=AUTO_ENABLE, ENCRYPT_NEW_TABLESPACES=ALWAYS, and for offline
encryption used in this process.

On the primary and standby databases issue:

-- for Oracle 21c and later
ALTER SYSTEM SET "tablespace_encryption_default_algorithm"='AES256'
scope=both;

 -- for Oracle 19c and earlier
ALTER SYSTEM SET "_tablespace_encryption_default_algorithm"='AES256'
scope=both;

Step 3: Create the encryption wallet and set the master key

The TDE documentation is very thorough in describing creation of the wallet, or keystore, and
setting the master encryption key on the primary database.

See Configuring a Software Keystore and TDE Master Encryption Key for United Mode in
Oracle Database Advanced Security Guide for details.

Note that even if the primary database is to remain unencrypted after the standby is
encrypted, in a hybrid Data Guard use case the master key must be set on the primary
database. This key is used to encrypt data on the standby during redo apply, and after role
transition. The key is be used to decrypt data from the encrypted primary cloud database
after role transition.

Step 4: Copy the wallet files to the standby database environment

The standby database must have a copy of the encryption wallet and the auto-login keystore
to perform encryption operations on the standby database. Copy the files from the primary
database to the standby database accordingly.

From the location defined by WALLET_ROOT. If the target directory does not exist on the
standby, it should be created manually.

Chapter 14
Encrypting a Database Using Data Guard and Fast Offline Encryption

14-35

https://docs.oracle.com/en/database/oracle/oracle-database/21/asoag/configuring-united-mode2.html#GUID-2E40034B-4523-4D1C-9A2F-BCC3D58C570D

Copy files to each node:

ASMCMD> cp +DATA/PRIMARY_ORACLE_UNQNAME/TDE/cwallet.sso /tmp
ASMCMD> cp +DATA/PRIMARY_ORACLE_UNQNAME/TDE/ewallet.p12 /tmp

<primary host>$ scp /tmp/cwallet.sso ewallet.p12 oracle@standby_host:/tmp

<standby host> ASMCMD> cp /tmp/cwallet.sso +DATA/
STANDBY_db_unique_name/TDE/
<standby host> ASMCMD> cp /tmp/ewallet.p12 +DATA/
STANDBY_db_unique_name/TDE/

Alternatively, the files can be copied directly from ASM to ASM.

ASMCMD>cp cwallet.sso sys/password@stbyhost1.+ASM1:+DATA/
STANDBY_ORACLE_UNQNAME/TDE/
ASMCMD>cp ewallet.p12 sys/password@stbyhost1.+ASM1:+DATA/
STANDBY_ORACLE_UNQNAME/TDE/

Step 5: Verify Data Guard health

Before starting the offline encryption process, make sure that the standby database is
current with the primary. Managed recovery must be stopped during the encryption
process, and so ensuring that the standby database is current with the primary
reduces the redo gap that must be applied after the encryption process.

On the primary or standby database, look up redo apply lag, then validate the standby
database as shown in the following example. The Data Guard Broker command
VALIDATE DATABASE lists potential configuration gaps. Address any gaps and verify
that the status of "Ready for Switchover" and "Ready for Failover" are both YES.

DGMGRL> SHOW CONFIGURATION LAG

Configuration - dgconfig

 Protection Mode: MaxPerformance
 Members:
primary_db - Primary database
 standby_db - Physical standby database
 Transport Lag: 0 seconds (computed 1 second ago)
 Apply Lag: 0 seconds (computed 1 second ago)

Fast-Start Failover: Disabled

Configuration Status:
SUCCESS (status updated 11 seconds ago)

DGMGRL> VALIDATE DATABASE <standby>

 Database Role: Physical standby database
 Primary Database: primary

Chapter 14
Encrypting a Database Using Data Guard and Fast Offline Encryption

14-36

 Ready for Switchover: Yes
 Ready for Failover: Yes (Primary Running)

Step 6: Place the standby database in a mounted state with recovery stopped

Before you run the offline encryption process directly against the data files, the standby
database must be mounted and recovery must be stopped. All instances of the standby can
be used during the encryption process to encrypt multiple files simultaneously.

$ srvctl stop database -d standby -o immediate

$ srvctl start database -d standby -o mount

DGMGRL> EDIT DATABASE standby SET STATE=APPLY-OFF;

Redo transport services continue to ship redo to ensure that the archived logs are present at
the standby database. This process maintains Recovery Point Objective (RPO) in the event
of a failure during the encryption process.

For a database that is very active, the required number of archived logs could be significant,
so make sure that there is sufficient space in the recovery area.

Step 7: Encrypt data files in-place and in parallel on the standby database

The encryption properties of TEMP tablespaces cannot be changed after creation. To encrypt
a TEMP tablespace it must be created as encrypted.

To use an encrypted TEMP tablespace, create a new TEMP tablespace using the
ENCRYPTION clause and make it the default temporary tablespace. Then drop the original
TEMP tablespace.

SQL> CREATE TEMPORARY TABLESPACE TEMP_ENC ENCRYPTION ENCRYPT;

SQL> ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP_ENC;

The UNDO and TEMP metadata that is generated from sensitive data in an encrypted
tablespace is already encrypted; therefore, encrypting UNDO and TEMP tablespaces is
optional.

1. Make sure the standby database is mounted and the keystore is open.

SQL> select inst_id,database_role,open_mode from gv$database;

 INST_ID DATABASE_ROLE OPEN_MODE
---------- ---------------- --------------------
 1 PHYSICAL STANDBY MOUNTED
 2 PHYSICAL STANDBY MOUNTED

SQL> col WRL_PARAMETER format a40
SQL> set linesize 120 pagesize 9999
SQL> select * from gv$encryption_wallet;

INST_ID WRL_TYPE WRL_PARAMETER STATUS

Chapter 14
Encrypting a Database Using Data Guard and Fast Offline Encryption

14-37

------- -------- --------------------------------------- ------
 1 file +DATA/ORACLE_UNQNAME/TDE OPEN

2. Encrypt the data files.

The offline encryption command encrypts each data file with a single process;
however, multiple data files can be encrypted in parallel with separate sessions.
Each session can fully utilize a CPU core. It is recommended that each instance
issues a number of sessions less than or equal to the number of cores on the host.

The following query can be used to generate a script to convert the data files.
Break the script into multiple scripts and run each smaller script in an individual
session. The most efficient process is to encrypt large files individually while
placing multiple smaller files in a separate script.

Note:

The seed database files do not need to be encrypted.

set lines 120
set pages 9999
spool encrypt.sql
select 'alter session set container='||pdb.name||';'||
chr(10)||'alter database datafile '||chr(39)||df.name||chr(39)||'
encrypt;' COMMAND
from v$tablespace ts, v$datafile df, v$pdbs pdb where ts.ts#=df.ts#
and ts.con_id=df.con_id and df.con_id=pdb.con_id and pdb.name <>
'PDB$SEED';

spool off
COMMAND
--
--
alter session set container=ORADBP11;
alter database datafile '+DATA/DB_UNIQUE_NAME/
E73F249E7030C3B8E0537B544664A065/DATAFILE/system.336.1113852973'
encrypt;

alter session set container=ORADBP11;
alter database datafile '+DATA/DB_UNIQUE_NAME/
E73F249E7030C3B8E0537B544664A065/DATAFILE/sysaux.335.1113852973'
encrypt;

alter session set container=ORADBP11;
alter database datafile '+DATA/DB_UNIQUE_NAME/
E73F249E7030C3B8E0537B544664A065/DATAFILE/undotbs1.337.1113852973'
encrypt;

<...>

3. TEMP files can be encrypted by dropping and recreating them using the
ENCRYPTION clause in the CREATE statement. Identify existing TEMP files using the
V$TEMPFILE view.

Chapter 14
Encrypting a Database Using Data Guard and Fast Offline Encryption

14-38

4. Validate that all data files are encrypted by querying V$DATAFILE_HEADER.ENCRYPTED.
After file encryption is completed, the ENCRYPTED column indicates whether the file is
encrypted (YES) or not (NO). All data files except those belonging to the seed PDB should
be encrypted.

Step 8: Restart redo apply and catch up on the standby database

After it is confirmed that all data files are encrypted, the standby database must apply all of
the redo from the primary that was generated during the encryption process. The following
are recommended ways to catch up redo on the standby database, depending on the amount
of redo that needs to be applied.

• If the gap is small, restart managed recovery and apply the redo gap until the apply lag is
0.

On the primary or standby database run

DGMGRL> edit database standby set state=apply-on;

• If the encryption process took longer, and the primary database was very active, the gap
might be large. It is often faster to use an incremental roll forward approach to copy only
the blocks which have changed since apply was stopped.

That process is described in My Oracle Support note How to Roll Forward a Standby
Database Using Recover Database From Service (Doc ID 2850185.1). Recovery is still
needed when the roll forward is complete, but this process can shorten the time
significantly to close large gaps.

Step 9: Perform a Data Guard switchover to begin encryption on the primary database

Until you are ready to encrypt the primary database, you can allow the unencrypted primary
database to ship unencrypted redo to the standby, where it is encrypted by the standby
indefinitely.

When you are ready to encrypt the primary database, and it is convenient to switch the
database roles, perform a Data Guard switchover, making the encrypted standby database
the new primary and the unencrypted primary database the new standby.

On the original primary database which is now the standby, repeat steps 5-8 to encrypt the
data files and catch up on redo.

Step 11: Perform a Data Guard switchover (optional)

If, after both the standby and primary database are encrypted, you prefer to revert to the
original primary-standby database roles, you can perform a Data Guard switchover to re-
establish their original roles.

Chapter 14
Encrypting a Database Using Data Guard and Fast Offline Encryption

14-39

https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1

15
Tune and Troubleshoot Oracle Data Guard

When redo transport, redo apply, or role transitions are not meeting your expected
requirements, use the following guidelines to help you tune and troubleshoot your
deployment.

Overview of Oracle Data Guard Tuning and Troubleshooting
To get the best performance from your Oracle Data Guard configuration, use the following
Oracle MAA best practices for monitoring, assessment, and performance tuning.

• Ensure that Oracle Database and Oracle Data Guard configuration best practices are in
place.

The assumption when assessing and tuning is that all of the Oracle Database and Data
Guard configuration best practices are already integrated in the environment. Evaluate
the adherence to those best practices before doing any tuning.

• Assess and tune redo transport services

Oracle Data Guard automatically tunes redo transport to optimize performance. However,
if you observe performance issues, you can monitor and tune redo transport services.

Asynchronous redo transport with Maximum Performance data protection mode is the
default Oracle Data Guard configuration. Tuning asynchronous redo transport consists
mainly of ensuring that the primary, standby, and network resources are sufficient for
handling the workload, and that you monitor those resources for bottlenecks.

Synchronous redo transport does sacrifice some performance for zero data loss;
however, using sound MAA recommended methods, you can monitor and assess the
impact and distribute resources appropriately.

• Assess and tune redo apply

In most cases, the default Oracle settings result in satisfactory performance for media
recovery when the standby is always up to date. However, as applications and databases
increase in size and throughput, media recovery operations can benefit from additional
tuning to further optimize recovery time or redo apply throughput on a standby database

• Assess and tune role transitions

With proper planning and implementation, Oracle Data Guard and Active Data Guard role
transitions can effectively minimize downtime and ensure that the database environment
is restored with minimal impact on the business. Performance tests using a physical
standby database and Oracle Maximum Availability Architecture (MAA) best practices
have shown that switchover and failover can be reduced to seconds.

Redo Transport Troubleshooting and Tuning
Oracle Data Guard redo transport performance is directly dependent on the performance of
the primary and standby systems, the network that connects them, and the I/O subsystem.

15-1

For most Oracle Data Guard configurations, you should be able to achieve zero or
minimal data loss by troubleshooting and tuning redo transport.

The guidance presented here assumes that the MAA configuration best practices are
followed. As a prerequisite, ensure that the Oracle Data Guard Configuration Best
Practices are implemented.

To improve transport holistically, leverage the data gathering and troubleshooting
methodology described in the topics below, which guide you through gathering the
necessary data to assess whether there is indeed a redo transport problem and what
can be tuned to optimize redo transport throughput.

• Gather Topology Information

• Verify Transport Lag and Understand Redo Transport Configuration

• Gather Information to Troubleshoot Transport Lag

• Compare Redo Generation Rate History on the Primary

• Evaluate the Transport Network and Tune

• Gather and Monitor System Resources

• Advanced Troubleshooting: Determining Network Time with Asynchronous Redo
Transport

• Tuning and Troubleshooting Synchronous Redo Transport

Gather Topology Information
Understanding the topology of the Oracle Data Guard configuration, and its relevance
to Data Guard performance, helps eliminate infrastructure weaknesses that are often
incorrectly attributed to the Data Guard architecture.

Oracle recommends that you outline the following high-level architecture information.

• Describe the primary and standby database system (number of nodes in Oracle
RAC cluster, CPUs and memory per database node, storage I/O system)

• Describe network topology connecting the primary and standby systems

– Network components/devices in between primary and standby

– Network bandwidth and latency

For standby databases with symmetric hardware and configuration, and with a good
tuned network configuration, the transport lag should be less than 10 seconds and in
most cases less than 1 second.

Verify Transport Lag and Understand Redo Transport Configuration

To determine if there is any lag on the standby database, and if this is a transport or
apply lag, query the V$DATAGUARD_STATS view.

SQL> select name,value,time_computed,datum_time from v$dataguard_stats
where name=’%lag’;
The DATUM_TIME column is the local time on the standby database when the datum
used to compute the metric was received. The lag metrics are computed based on
data that is periodically received from the primary database. An unchanging value in

Chapter 15
Redo Transport Troubleshooting and Tuning

15-2

this column across multiple queries indicates that the standby database is not receiving data
from the primary database. The potential data loss in this scenario would be from the last
datum time from V$DATAGUARD_STATS to the current time on the standby.

To obtain a histogram that shows the history of transport or apply lag values since the
standby instance was last started, query the V$STANDBY_EVENT_HISTOGRAM view.

SQL> select * from v$standby_event_histogram where name like '%lag' and count
>0;
To evaluate the transport or apply lag over a time period, take a snapshot of
V$STANDBY_EVENT_HISTOGRAM at the beginning of the time period and compare that snapshot
with one taken at the end of the time period.

SQL> col NAME format a10
SQL> select NAME,TIME,UNIT,COUNT,LAST_TIME_UPDATED from
V$STANDBY_EVENT_HISTOGRAM where
 name like '%lag' and count >0 order by LAST_TIME_UPDATED;

NAME TIME UNIT COUNT LAST_TIME_UPDATED

---------- ---------- ---------------- ---------- --------------------

transport lag 41 seconds 3 01/05/2022 16:30:59

transport lag 245 seconds 1 01/05/2022 16:31:02

transport lag 365 seconds 2 01/05/2022 16:31:03

transport lag 451 seconds 2 01/05/2022 16:31:04

If you observe a high redo transport lag, continue this redo transport investigation with Gather
Information to Troubleshoot Transport Lag. If you see no transport lag but a high redo apply
lag, address the apply lag using the methodology in Redo Apply Troubleshooting and Tuning.

Gather Information to Troubleshoot Transport Lag

Gather the following information and investigate the questions when an unacceptable redo
transport lag is observed:

• When did the transport lag occur? Record the V$DATAGUARD_STATS and
V$STANDBY_EVENT_HISTOGRAM data to show when the lag started and how the lag is
changing over time.

• Does the transport lag occur during certain time period, such as daily at 12 midnight for
daily batch operations, monthly during large batch operation, or quarterly during quarter
end?

• Check the LOG_ARCHIVE_DEST setting for any enabled Oracle Data Guard transport, and
verify whether redo COMPRESSION or ENCRYPTION is enabled. Overall redo transport
throughput can be negatively impacted because redo must be compressed or encrypted
before sending, and then uncompressed or unencrypted upon receiving it on the standby.
Verify if that change was recent, and if you can test disabling these setting attributes.

• Check the Oracle Net settings to evaluate if Oracle Net encryption is enabled. If Oracle
Net encryption is enabled, when was it enabled and at what level? Oracle Net encryption

Chapter 15
Redo Transport Troubleshooting and Tuning

15-3

can slow down redo throughput significantly because redo is encrypted before
sending and unencrypted upon receiving the redo on the standby. Optionally,
disable or reduce encryption levels to see if the redo transport lag reduces.

Compare Redo Generation Rate History on the Primary

There are cases where the primary database redo generation rate is exceptionally
high for a short period of time, such as during large batch jobs, data loads, data pump
operations, create table as select, PDML operations, or end of month, quarter, or year
batch updates.

Obtain the redo generation history from the primary database and compare that to
when the redo transport or redo apply lag started. Check if the redo generation rate is
exceptionally high because of additional workloads, such as adding new pluggable
databases or new application services. By doing so, additional tuning may be required
to accommodate this additional load.

As part of troubleshooting, gather the following information or address the following
questions:

• Gather daily history of primary database's redo generation rate using this query.

SQL> select trunc(completion_time) as "DATE", count(*) as "LOG
SWITCHES", round(sum(blocks*block_size)/1024/1024) as "REDO PER DAY
(MB)"
from v$archived_log
where dest_id=1
group by trunc(completion_time) order by 1;

• Gather per log redo generation rate starting 6 hours prior to start any redo or
transport lag.

SQL> alter session set nls_date_format='YYYY/MM/DD HH24:MI:SS';
SQL> select thread#,sequence#,blocks*block_size/1024/1024 MB,
(next_time-first_time)*86400 sec, blocks*block_size/1024/1024)/
((next_time-first_time)*86400) "MB/s" from v$archived_log
where ((next_time-first_time)*86400<>0)
and first_time between to_date('2015/01/15 08:00:00','YYYY/MM/DD
HH24:MI:SS')
and to_date('2015/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS')
and dest_id=1 order by first_time;

• Gather hourly snapshots of the redo generation rate from the Automatic Workload
Repository (AWR) report 6 hours before the start of any redo or transport lag.

By default, Oracle Database automatically generates snapshots once every hour;
however, you may want to manually create snapshots to capture statistics at times
different from those of the automatically generated snapshots. To view information
about an existing snapshot, use the DBA_HIST_SNAPSHOT view.

See Creating Snapshots in the Oracle Database Performance Tuning Guide for
complete information about AWR and generating snapshots and AWR reports.

• Is this primary redo generation rate exceptionally high compared to prior history?

Chapter 15
Redo Transport Troubleshooting and Tuning

15-4

• If possible, determine the workload that corresponds to the high redo generation rate and
evaluate whether it's transient or if it can be tuned.

For example, for large purge operations, consider truncate or drop partition operations to
reduce the redo generation volumes.

Evaluate the Transport Network and Tune
Redo transport consists of the primary database instance background process sending redo
to the standby database background process. You can evaluate if the network is optimized for
Oracle Data Guard redo transport.

If asynchronous redo transport is configured, redo data is streamed to the standby in large
packets asynchronously. To tune asynchronous redo transport over the network, you need to
optimize a single process network transfer.

If synchronous redo transport is configured, each redo write must be acknowledged by the
primary and standby databases before proceeding to the next redo write. You can optimize
standby synchronous transport by using the FASTSYNC attribute as part of the
LOG_ARCHIVE_DEST setting, but higher network latency (for example > 5 ms) impacts overall
redo transport throughput.

Before you continue, see Assessing and Optimizing Network Performance first to:

• Assess whether you have sufficient network bandwidth to support the primary's redo
generation rate

• Determine optimal TCP socket buffer sizes to tune redo transport

• Tune operating system limits on socket buffer sizes to tune redo transport

• Determine optimal MTU setting for redo write size

• Tune MTU to increase network throughput for redo transport

If network configuration is tuned, evaluate if the transport lag (refer to Verify Transport Lag
and Understand Redo Transport Configuration) is reducing to acceptable levels. If that's the
case, you have met your goals and you can stop. Otherwise continue with the rest of the rest
of tuning and troubleshooting section.

Gather and Monitor System Resources
Gather Oracle Linux OSwatcher or Oracle Exadata Exawatcher data to analyze system
resources.

OSWatcher (oswbb) is a collection of UNIX shell scripts intended to collect and archive
operating system and network metrics to aid support in diagnosing performance issues. As a
best practice, you should install and run OSWatcher on every node that has a running Oracle
instance. In the case of a performance issue, Oracle support can use this data to help
diagnose performance problems which may outside the database.

You can download OSWatcher from OSWatcher (Doc ID 301137.1).

ExaWatcher is a utility that collects performance data on the storage servers and database
servers on an Exadata system. The data collected includes operating system statistics, such
as iostat, cell statistics (cellsrvstat), and network statistics.

See Using ExaWatcher Charts to Monitor Exadata Database Machine Performance in the
Oracle Exadata Database Machine Maintenance Guide for more information.

Chapter 15
Redo Transport Troubleshooting and Tuning

15-5

https://support.oracle.com/rs?type=doc&id=301137.1

Tune to Meet Data Guard Resource Requirements
Redo transport can be impacted if:

• Primary or standby database is completely CPU bound

• Primary or standby database I/O system is saturated

• Network topology can't support the redo generation rates

Evaluate whether the primary database system has:

• Sufficient CPU utilization for Log Writer Process (LGWR) to post foregrounds
efficiently

• Sufficient I/O bandwidth so local log writes maintain low I/O latency during peak
rates

• Network interfaces that can handle peak redo rate volumes combined with any
other network activity across the same interface

• Automatic Workload Repository (AWR), Active Session History (ASH), and
OSwatcher or Exawatcher data gathered from the primary database for tuning and
troubleshooting

Evaluate whether the standby database system has:

• Sufficient CPU utilization for the remote file server (RFS), the Oracle Data Guard
process that receives redo at the standby database, to efficiently write to standby
redo logs

• Sufficient I/O bandwidth to enable local log writes to maintain low I/O latency
during peak rates

• A network interface that can receive the peak redo rate volumes combined with
any other network activity across the same interface

• AWR, ASH, and OSwatcher or Exawatcher data gathered from the standby
database for tuning and troubleshooting

Note:

The top issue encountered with the standby database is poor standby log
write latency because of insufficient I/O bandwidth. This problem can be
mitigated by using Data Guard Fast Sync.

If system configuration is tuned and the above resource constraints are removed,
evaluate if the transport lag (refer to Verify Transport Lag and Understand Redo
Transport Configuration) is reducing to acceptable levels. If that's the case, you have
met your goals.

Advanced Troubleshooting: Determining Network Time with
Asynchronous Redo Transport

Before you proceed, first see Assessing and Optimizing Network Performance.

Chapter 15
Redo Transport Troubleshooting and Tuning

15-6

Given enough resources, especially network bandwidth, asynchronous redo transport can
maintain pace with very high workloads. In cases where resources are constrained,
asynchronous redo transport can begin to fall behind resulting in a growing transport lag on
the standby database.

Asynchronous redo transport (ASYNC) transmits redo data asynchronously with respect to
transaction commitment. A transaction can commit without waiting for an acknowledgment
that the redo generated by that transaction was successfully transmitted to a remote standby
database. With ASYNC, the primary database Log Writer Process (LGWR) continues to
acknowledge commit success even if limited bandwidth prevents the redo of previous
transactions from being sent to the standby database immediately (picture a sink filling with
water faster than it can drain).

ASYNC uses a TT00 process to transmit redo directly from the log buffer of the primary
database. If the TT00 process is unable to keep pace, and the log buffer is recycled before
the redo can be transmitted to the standby database, then the TT00 process automatically
transitions to reading and sending from the online redo log file (ORL) on disk. Once TT00
transmission has caught up with current redo generation, it automatically transitions back to
reading and sending directly from the log buffer.

In cases in which there are two or more log switches before the TT00 has completed sending
the original ORL, the TT00 will still transition back to reading the contents of the current
online log file. Any ORLs that were archived in between the original ORL and the current ORL
are automatically transmitted using Oracle Data Guard’s redo gap resolution process.

Sufficient resources, such as network bandwidth, CPU, memory, and log file I/O on both the
primary and standby databases are critical to the performance of an asynchronous Data
Guard configuration.

To determine which resource is constraining asynchronous transport, use krsb stats which
can be enabled by setting event 16421 on both the primary and standby databases:

alter session set events ‘16421 trace name context forever, level 3’;

This event is very lightweight and won't affect performance of the primary or standby
database.

This dynamic event should be set on all primary and standby instances, and it will write
statistics into the TT00 or remote file server (RFS) trace file when shipping for a given
sequence has completed. Looking in the trace file, you will see the krsb_end stats at the
beginning and end of the file. The stats at the end of the file will provide insight into where
asynchronous shipping was spending time. For example:

krsb_end: Begin stats dump for T-1.S-593
 max number of buffers in use 10
 Operation elapsed time (micro seconds) 474051333
 File transfer time (micro seconds) 474051326
 Network Statistics
 LOG_ARCHIVE_DEST_2 : OCI REQUEST
 Total count : OCI REQUEST 2748
 Total time : OCI REQUEST 81374
 Average time : OCI REQUEST 29
 LOG_ARCHIVE_DEST_2 : NETWORK SEND
 Total count : NETWORK SEND 2748
 Total time : NETWORK SEND 286554724
 Average time : NETWORK SEND 104277

Chapter 15
Redo Transport Troubleshooting and Tuning

15-7

 Total data buffers queued 9644
 Total data buffers completed 9644
 Total bytes written 9885272064
 Total bytes completed synchronously 9885272064
 Average network send size (blocks) 7025
 Average network send buffers 3.51
 Average buffer turnaround time 240889
 Throughput (MB/s) 19.89
 Total network layer time 286636098
 Percentage of time in network 60.47
 Disk Statistics
 Total count : DISK READ 11531
 Total time : DISK READ 12335132
 Average time : DISK READ 1069
 Read-ahead blocks 14151680
 Log buffer blocks 266915
 Disk stall blocks 4888576
 Total count : BUFFER RELEASE 9643
 Total time : BUFFER RELEASE 7229
 Average time : BUFFER RELEASE 0
 Total disk layer time 12342361
 Percentage of time in disk layer 2.60
 Data Guard Processing Statistics
 Total count : SLEEP 198
 Total time : SLEEP 172351312
 Average time : SLEEP 870461
 Total DG layer time 175072867
 Percentage of time in DG layer 36.93
 Remote Server-Side Network Statistics
 LOG_ARCHIVE_DEST_2 : NETWORK GET
 Total count : NETWORK GET 8242
 Total bytes : NETWORK GET 9885272064
 Total time : NETWORK GET 453233790
 Average time : NETWORK GET 54990
 Total server-side network layer time 453233790
 Percentage of time in network 95.61
 Remote Server-Side Disk Statistics
 LOG_ARCHIVE_DEST_2 : DISK WRITE
 Total count : DISK WRITE 9644
 Total time : DISK WRITE 8731303
 Average time : DISK WRITE 905
 LOG_ARCHIVE_DEST_2 : DISK NOSTALL REAP
 Total count : DISK NOSTALL REAP 9644
 Total time : DISK NOSTALL REAP 579066
 Average time : DISK NOSTALL REAP 60
 LOG_ARCHIVE_DEST_2 : BUFFER GET
 Total count : BUFFER GET 9644
 Total time : BUFFER GET 3607
 Average time : BUFFER GET 0
 Total server-side disk layer time 9313976
 Percentage of time in disk layer 1.96
 Remote Server-Side Data Guard Processing Statistics
 LOG_ARCHIVE_DEST_2 : PUBLISH RTA BOUNDARY
 Total count : PUBLISH RTA BOUNDARY 8948
 Total time : PUBLISH RTA BOUNDARY 3665841

Chapter 15
Redo Transport Troubleshooting and Tuning

15-8

 Average time : PUBLISH RTA BOUNDARY 409
 LOG_ARCHIVE_DEST_2 : VALIDATE BUFFER
 Total count : VALIDATE BUFFER 9644
 Total time : VALIDATE BUFFER 1403088
 Average time : VALIDATE BUFFER 145
 Total Server-Side DG layer time 11503560
 Percentage of time in DG layer 2.43
krsb_end: End stats dump

The above output comes from a test run where a transport lag is just beginning to occur. You
can observe a lag due to network congestion increase, and the time waiting on the network
layer increases above 50%. If a transport lag is the result of either compression or encryption,
the percentage of time spent in the Data Guard layer would become the majority.

To disable krsb stats set event 16421 to level 1:

alter session set events ‘16421 trace name context forever, level 1’;

Tuning and Troubleshooting Synchronous Redo Transport

Before you proceed, first see Assessing and Optimizing Network Performance.

The following topics describe how to assess synchronous redo transport.

• Understanding How Synchronous Transport Ensures Data Integrity

• Assessing Performance in a Synchronous Redo Transport Environment

• Why the Log File Sync Wait Event is Misleading

• Understanding What Causes Outliers

• Effects of Synchronous Redo Transport Remote Writes

• Example of Synchronous Redo Transport Performance Troubleshooting

Understanding How Synchronous Transport Ensures Data Integrity
The following algorithms ensure data consistency in an Oracle Data Guard synchronous redo
transport configuration.

• Log Writer Process (LGWR) redo write on the primary database online redo log and the
Data Guard Network Services Server (NSS) redo write to standby redo log are identical.

• The Data Guard Managed Recovery Process (MRP) at the standby database cannot
apply redo unless the redo has been written to the primary database online redo log, with
the only exception being during a Data Guard failover operation (when the primary is
gone).

In addition to shipping redo synchronously, NSS and LGWR exchange information
regarding the safe redo block boundary that standby recovery can apply up to from its
standby redo logs (SRLs). This prevents the standby from applying redo it may have
received, but which the primary has not yet acknowledged as committed to its own online
redo logs.

The possible failure scenarios include:

Chapter 15
Redo Transport Troubleshooting and Tuning

15-9

• If primary database LGWR cannot write to online redo log, then LGWR and the
instance crash. Instance or crash recovery will recover to the last committed
transaction in the online redo log and roll back any uncommitted transactions. The
current log will be completed and archived.

• On the standby, the partial standby redo log completes with the correct value for
the size to match the corresponding online redo log. If any redo blocks are missing
from the standby redo log, those are shipped over (without reshipping the entire
redo log).

• If the primary database crashes resulting in an automatic or manual zero data loss
failover, then part of the Data Guard failover operation will do "terminal recovery"
and read and recover the current standby redo log.

Once recovery finishes applying all of the redo in the standby redo logs, the new
primary database comes up and archives the newly completed log group. All new
and existing standby databases discard any redo in the online redo logs, flashback
to a consistent system change number (SCN), and only apply the archives coming
from the new primary database. Once again the Data Guard environment is in
sync with the (new) primary database.

Assessing Performance in a Synchronous Redo Transport Environment
When assessing performance in an Oracle Data Guard synchronous redo transport
environment (SYNC) it is important that you know how the different wait events relate
to each other. The impact of enabling synchronous redo transport varies between
applications.

To understand why, consider the following description of work the Log Writer Process
(LGWR) performs when a commit is issued.

1. Foreground process posts LGWR for commit ("log file sync" starts). If there are
concurrent commit requests queued, LGWR will batch all outstanding commit
requests together resulting in a continuous strand of redo.

2. LGWR waits for CPU.

3. LGWR starts redo write ("redo write time" starts).

4. For Oracle RAC database, LGWR broadcasts the current write to other instances.

5. After preprocessing, if there is a SYNC standby, LGWR starts the remote write
(“SYNC remote write” starts).

6. LGWR issues local write ("log file parallel write").

7. If there is a SYNC standby, LGWR waits for the remote write to complete.

8. After checking the I/O status, LGWR ends "redo write time / SYNC remote write".

9. For Oracle RAC database, LGWR waits for the broadcast ack.

10. LGWR updates the on-disk SCN.

11. LGWR posts the foregrounds.

12. Foregrounds wait for CPU.

13. Foregrounds ends "log file sync".

Use the following approaches to assess performance.

• For batch loads, the most important factor is to monitor the elapsed time, because
most of these processes must be completed in a fixed period of time. The

Chapter 15
Redo Transport Troubleshooting and Tuning

15-10

database workloads for these operations are very different than the normal OLTP
workloads. For example, the size of the writes can be significantly larger, so using log file
sync averages does not give you an accurate view or comparison.

• For OLTP workloads, monitor the volume of transactions per second (from Automatic
Workload Repository (AWR)) and the redo rate (redo size per second) from the AWR
report. This information gives you a clear picture of the application throughput and how it
is impacted by enabling synchronous redo transport.

Why the Log File Sync Wait Event is Misleading
Typically, the "log file sync" wait event on the primary database is the first place
administrators look when they want to assess the impact of enabling synchronous redo
transport (SYNC).

If the average log file sync wait before enabling SYNC was 3ms, and after enabling SYNC
was 6ms, then the assumption is that SYNC impacted performance by one hundred percent.
Oracle does not recommend using log file sync wait times to measure the impact of SYNC
because the averages can be very deceiving, and the actual impact of SYNC on response
time and throughput may be much lower than the event indicates.

When a user session commits, the Log Writer Process (LGWR) will go through the process of
getting on the CPU, submitting the I/O, waiting for the I/O to complete, and then getting back
on the CPU to post foreground processes that the commit has completed. This whole time
period is covered by the log file sync wait event. While LGWR is performing its work there
are, in most cases, other sessions committing that must wait for LGWR to finish before
processing their commits. The size and number of sessions waiting are determined by how
many sessions an application has, and how frequently those sessions commit. This batching
up of commits is generally referred to as application concurrency.

For example, assume that it normally takes 0.5ms to perform log writes (log file parallel
write), 1ms to service commits (log file sync), and on average you are servicing 100 sessions
for each commit. If there was an anomaly in the storage tier, and the log write I/O for one
commit took 20ms to complete, then you could have up to 2,000 sessions waiting on log file
sync, while there would only be 1 long wait attributed to log file parallel write. Having a large
number of sessions waiting on one long outlier can greatly skew the log file sync averages.

The output from V$EVENT_HISTOGRAM for the log file sync wait event for a particular period in
time is shown in the following table.

Table 15-1 V$EVENT_HISTOGRAM Output for the Log File Sync Wait Event

Milliseconds Number of Waits Percent of Total Waits

1 17610 21.83%

2 43670 54.14%

4 8394 10.41%

8 4072 5.05%

16 4344 5.39%

32 2109 2.61%

64 460 0.57%

128 6 0.01%

The output shows that 92% of the log file sync wait times are less than 8ms, with the vast
majority less than 4ms (86%). Waits over 8ms are outliers and only make up 8% of wait times

Chapter 15
Redo Transport Troubleshooting and Tuning

15-11

overall, but because of the number of sessions waiting on those outliers (because of
batching of commits) the averages get skewed. The skewed averages are misleading
when log file sync average waits times are used as a metric for assessing the impact
of SYNC.

Understanding What Causes Outliers
Any disruption to the I/O on the primary or standby databases, or spikes in network
latency, can cause high log file sync outliers with synchronous redo transport. You can
see this effect when the standby system's I/O subsytem is inferior to that of the primary
system.

Often administrators host multiple databases such as dev and test on standby
systems, which can impair I/O response. It is important to monitor I/O using iostat to
determine if the disks reach maximum IOPS, because this affects the performance of
SYNC writes.

Frequent log switches are significant cause of outliers. Consider what occurs on the
standby when a log switch on the primary occurs, as follows.

1. Remote file server (RFS) process on the standby must finish updates to the
standby redo log header.

2. RFS then switches into a new standby redo log with additional header updates.

3. Switching logs forces a full checkpoint on the standby.

This causes all dirty buffers in the buffer cache to be written to disk, causing a
spike in write I/O. In a non-symmetric configuration where the standby storage
subsystem does not have the same performance as the primary database, this
results in higher I/O latency.

4. The previous standby redo log must be archived, increasing both read and write
I/O.

Effects of Synchronous Redo Transport Remote Writes
When you enable synchronous redo transport (SYNC), you introduce a remote write
(remote file server (RFS) write to a standby redo log) in addition to the normal local
write for commit processing.

This remote write, depending on network latency and remote I/O bandwidth, can make
commit processing time increase. Because commit processing takes longer, you
observe more sessions waiting on the Log Writer Process (LGWR) to finish its work
and begin work on the commit request, that is, application concurrency has increased.
You can observe increased application concurrency by analyzing database statistics
and wait events.

Consider the example in the following table.

Chapter 15
Redo Transport Troubleshooting and Tuning

15-12

Table 15-2 Affect of Sync Transport Increasing Application Concurrency

SYNC Redo
Rate

Network
Latency

TPS from
AWR

log file
sync
average
(ms)

log file
parallel
write
average
(ms)

RFS
random
I/O

SYNC
remote
write
average
(ms)

Redo
write
size (KB)

Redo
writes

Defer 25MB 0 5,514.94 0.74 0.47 NA NA 10.58 2,246,356

Yes 25MB 0 5,280.20 2.6 .51 .65 .95 20.50 989,791

Impact 0 - -4% +251% +8.5% NA NA +93.8% -55.9%

In the above example, enabling SYNC reduced the number of redo writes, but increased the
size of each redo write. Because the size of the redo write increased, you can expect the time
spent doing the I/O (both local and remote) to increase. The log file sync wait time is higher
because there is more work per wait.

However, at the application level, the impact on the transaction rate or the transaction
response time might change very little as more sessions are serviced for each commit. This
is why it is important to measure the impact of SYNC at the application level, and not depend
entirely on database wait events. It is also a perfect example of why log file sync wait event is
a misleading indicator of the actual impact SYNC has on the application.

Example of Synchronous Redo Transport Performance Troubleshooting
To look at synchronous redo transport performance, calculate the time spent for local redo
writes latency, average redo write size for each write, and overall redo write latency, as
shown here.

Use the following wait events to do the calculations.

• local redo write latency = 'log file parallel write'

• remote write latency = ‘SYNC remote write’

• average redo write size per write = ‘redo size’ / ‘redo writes’

• average commit latency seen by foregrounds = 'log file sync'

Statistics from an Automatic Work Repository (AWR) report on an Oracle database are
provided in the following table. Synchronous redo transport (SYNC) was enabled to a local
standby with a 1ms network latency to compare the performance impact to a baseline with
SYNC disabled.

Table 15-3 Assessing Synchronous Redo Transport Performance with Oracle
Database

Metric Baseline (No SYNC) SYNC Impact

redo rate (MB/s) 25 25 no change

log file sync 0.68 4.60 +576%

log file parallel write
average (ms)

0.57 0.62 +8.8%

TPS 7,814.92 6224.03 -20.3%

RFS random I/O NA 2.89 NA

Chapter 15
Redo Transport Troubleshooting and Tuning

15-13

Table 15-3 (Cont.) Assessing Synchronous Redo Transport Performance with Oracle
Database

Metric Baseline (No SYNC) SYNC Impact

SYNC remote write
average (ms)

NA 3.45 NA

redo writes 2,312,366 897,751 -61,2%

redo write size (KB) 10.58 20.50 +93.8%

In the above example observe that log file sync waits averages increased dramatically
after enabling SYNC. While the local writes remained fairly constant, the biggest factor
in increasing log file sync was the addition of the SYNC remote write. Of the SYNC
remote write the network latency is zero, so focusing on the remote write into the
standby redo log shows an average time of 2.89ms. This is an immediate red flag
given that the primary and standby were using the same hardware, and the SYNC
remote write average time should be similar to the primary's log file parallel write
average time.

In the above example, the standby redo logs have multiple members, and they are
placed in a slower performing disk group. After reducing the standby redo logs to a
single member, and placing them in a fast disk group, you can see results such as
those shown in the following table.

Table 15-4 SYNC Performance After Reducing Standby Redo Logs to a Single
Member and Placing on a Fast Disk Group

Metric Baseline (No SYNC) SYNC Impact

redo rate (MB/s) 25 25 no change

log file sync 0.67 1.60 +139%

log file parallel write 0.51 0.63 +23.5%

TPS 7714.36 7458.08 -3.3%

RFS random I/O NA .89 NA

SYNC remote write
average (ms)

NA 1.45 NA

redo writes 2,364,388 996,532 -57.9%

redo write size (KB) 10.61 20.32 +91.5%

Redo Apply Troubleshooting and Tuning
Most Oracle Data Guard configurations should be able to minimize apply lag by
troubleshooting and tuning redo apply. Redo apply performance is directly dependent
on the performance of the standby systems.

The guidance presented here assumes that the MAA configuration best practices are
followed. As a prerequisites, ensure that the Oracle Data Guard Configuration Best
Practices are implemented.

To improve apply performance holistically, leverage the data gathering and
troubleshooting methodology described in the topics below.

Chapter 15
Redo Apply Troubleshooting and Tuning

15-14

Understanding Redo Apply and Redo Apply Performance Expectations

Standby database recovery is the process of replaying all DML and DDL operations. The high
level process is:

1. Redo is received from the primary database and written into standby redo logs (SRLs).
When the database is an Oracle RAC database, each thread (instance) is stored in it's
assigned SRLs.

2. The log merger process, sometimes known as the recovery coordinator, merges the
threads of redo and places the resulting change vectors into memory buffers.

3. Recovery worker processes identify which data blocks are required and read them into
the buffer cache if they are not already present. Then the worker processes apply the
change vectors to the blocks in the buffer cache.

4. At checkpoint time, database writer processes write the validated buffer changes to data
files, advancing the database's checkpoint time stamp, called the System Commit
Number (SCN). Checkpoint can be the most extensive I/O load in the recovery process.

Redo Apply Performance Expectations

Performance, and the resulting apply rate, mainly depend on the type of workload that is
being recovered and the system resources allocated to and available for recovery.

Oracle recommends that the primary and standby database systems are symmetric, including
equivalent I/O subsystems, memory, and CPU resources. The primary reason for this
recommendation is so that the application performs at the same level, no matter which
database is the primary database; however, redo apply performance also benefits greatly
from symmetric primary and standby databases. Features such as data protection
(DB_BLOCK_CHECKING, DB_BLOCK_CHECKSUM, DB_LOST_WRITE_PROTECT) require CPU and I/O
resources, as does reporting on the standby database using Oracle Active Data Guard.

For the most part, redo apply performance should keep up with the redo generation rates,
resulting in near zero apply lag with system resources are symmetric. During peak workloads,
there may be a slight redo apply gap which should naturally reduce to near zero once
workloads return to normal levels.

OLTP Workloads

Recovering Online Transaction Processing (OLTP) workloads can be very I/O intensive
because an OLTP workload performs small changes to many different blocks. This results in
large numbers of small random block reads into the buffer cache during recovery.
Subsequently, the database writers run large batches of write I/Os to maintain the buffer
cache and to checkpoint the database periodically. Therefore, recovery of OLTP workloads
requires the storage subsystem to handle a high number of I/Os Per Second (IOPS) in order
to achieve optimal rates. This is another reason for recommending that the primary and
standby database systems are symmetric.

Recovery testing of OLTP workloads, generated by swingbench on Oracle Exadata Database
Machine quarter rack systems with no resource bottlenecks, achieved approximately 150
MB/sec apply rates. Rates of 200+ MB/s with single instance redo apply have been observed
by customers on larger Exadata systems. These rates are more challenging to achieve in
non-Exadata systems since the I/O and network throughput are lower.

Batch Workloads

Chapter 15
Redo Apply Troubleshooting and Tuning

15-15

In contrast to OLTP workload recovery, recovering batch workloads is more efficient
because batch workloads consist of large sequential reads and writes. A lot more redo
changes are occurring while reading and modifying significantly fewer data blocks,
resulting in much faster redo apply rates than OLTP workloads. In addition, batch
direct load operation recovery optimizations result in greater efficiency and even higher
recovery rates.

Using batch load or parallel DML (PDML) workloads with no impeding system
resource bottleneck, internal redo apply testing on small Exadata Database Machine
quarter rack systems resulted in approximately 200-300 MB/sec apply rates.
Customers have observed 600+ MB/sec apply rates with single instance redo apply for
their batch workloads for larger Exadata systems. These rates can be achieved by
non-Exadata systems, but system resource capacity and scalable network and I/O
subsystems are required to handle these demanding workloads.

Mixed Workloads

The difference between OLTP and batch recovery performance profiles and different
system shapes explains why applications with variation in their mixtures of OLTP and
batch workloads can have different recovery rates at a standby database, even if the
primary database redo generation rates are similar. Customers have achieved
100-1100 MB/sec redo apply rates with various mixed workloads for various Exadata
systems. These rates can be achieved by non-Exadata systems, but system resource
capacity and scalable database compute, network, and I/O subsystems are required to
handle these demanding workloads. These extreme redo apply rates are rarely
achieved on non-Exadata systems.

Catch Up Redo Apply Performance Expectations

Compared to real-time redo apply, redo apply during a "catch up" period may require
even more system resources. If there is a large redo gap, see Addressing a Very
Large Redo Apply Gap for recommendations.

Verify Apply Lag

Recovery performance can vary with the workload type and the redo generation rate of
the primary database. A lower apply rate does not necessarily indicate a recovery
performance issue. However, a persistent or increasing apply lag, without an
accompanying transport lag, is the best indication of a recovery performance
bottleneck.

To identify and quantify apply lags and transport lags, query the V$DATAGUARD_STATS
view in the standby database.

SQL> select name, value, time_computed, datum_time from
v$dataguard_stats where name=’%lag’;

The DATUM_TIME column is the local time on the standby database when the datum
used to compute the metric was received. The lag metrics are computed based on
data that is periodically received from the primary database. An unchanging value in
this column across multiple queries indicates that the standby database is not
receiving data from the primary database. The potential data loss in this scenario
would be from the last datum time from V$DATAGUARD_STATS to the current time on the
standby.

Chapter 15
Redo Apply Troubleshooting and Tuning

15-16

To obtain a histogram that shows the history of transport or apply lag values since the
standby instance was last started, query the V$STANDBY_EVENT_HISTOGRAM view.

 SQL> select * from v$standby_event_histogram where name like '%lag' and
count >0;

To evaluate the transport or apply lag over a time period, take a snapshot of
V$STANDBY_EVENT_HISTOGRAM in the standby database at the beginning of the time period,
and compare that snapshot with one taken at the end of the time period.

SQL> col NAME format a10
SQL> select NAME,TIME,UNIT,COUNT,LAST_TIME_UPDATED from
V$STANDBY_EVENT_HISTOGRAM
 where name like '%lag' and count >0 order by LAST_TIME_UPDATED;

Example output:

NAME TIME UNIT COUNT LAST_TIME_UPDATED

---------- ------ ---------- ----- -------------------
apply lag 23 seconds 3 02/05/2022 16:30:59
apply lag 135 seconds 1 02/05/2022 16:31:02
apply lag 173 seconds 2 02/05/2022 16:32:03
apply lag 295 seconds 2 02/05/2022 16:34:04

A transport lag can cause an apply lag. If a high apply lag is observed with a near zero
transport lag, continue with this redo apply investigation in Gather Information.

If a high transport lag is observed, first address the transport lag, using the methodology in
Redo Transport Troubleshooting and Tuning.

Gather Information
Gather the following information when an unacceptable apply lag is occurring:

• When did the apply lag occur?

Record the V$DATAGUARD_STATS and V$STANDBY_EVENT_HISTOGRAM data
every 15 to 30 minutes to identify when the lag started and how lag changed over time in
the last 24 hours.

SQL>select name, value, time_computed, datum_time from v$dataguard_stats
where name=’%lag’;

SQL>select * from v$standby_event_histogram where name like '%lag' and
count >0;

• Does the apply lag occur at certain time period, such as daily at 12 midnight for daily
batch operations, monthly during large batch operation, quarterly during quarter end?

• Gather data from the standby Automatic Work Repository (AWR) report
V$RECOVERY_PROGRESS, and take multiple standby AWR snapshots at 30 minute
intervals before and during the apply lag.

Chapter 15
Redo Apply Troubleshooting and Tuning

15-17

See How to Generate AWRs in Active Data Guard Standby Databases (Doc ID
2409808.1).

For example:

SQL> set lines 120 pages 99
SQL> alter session set nls_date_format='YYYY/MM/DD HH24:MI:SS';
SQL> select START_TIME, ITEM, SOFAR, UNITS from
gv$recovery_progress;

Sample output:

START_TIME ITEM SOFAR
UNITS
------------------- -------------------------------- ----------

2022/02/28 23:02:36 Log Files 8
Files
2022/02/28 23:02:36 Active Apply Rate 54385
KB/sec
2022/02/28 23:02:36 Average Apply Rate 12753
KB/sec
2022/02/28 23:02:36 Maximum Apply Rate 65977
KB/sec
2022/02/28 23:02:36 Redo Applied 2092
Megabytes
2022/02/28 23:02:36 Last Applied Redo 0
SCN+Time
2022/02/28 23:02:36 Active Time 41
Seconds
2022/02/28 23:02:36 Apply Time per Log 1
Seconds
2022/02/28 23:02:36 Checkpoint Time per Log 0
Seconds
2022/02/28 23:02:36 Elapsed Time 168
Seconds
2022/02/28 23:02:36 Standby Apply Lag 2
Seconds

The simplest way to determine application throughput in terms of redo volume is to
collect Automatic Workload Repository (AWR) reports on the primary database during
normal and peak workloads, and determine the number of bytes per second of redo
data the production database is producing. Then compare the speed at which redo is
being generated with the Active Apply Rate columns in the
V$RECOVERY_PROGRESS view to determine if the standby database is able to
maintain the pace.

If the apply lag is above your expectations, then evaluate redo apply performance by
querying the V$RECOVERY_PROGRESS view. This view contains the columns
described in the following table.

The most useful statistic is the Active Apply rate because the Average Apply Rate
includes idle time spent waiting for redo to arrive making it less indicative of apply
performance.

Chapter 15
Redo Apply Troubleshooting and Tuning

15-18

https://support.oracle.com/rs?type=doc&id=2409808.1
https://support.oracle.com/rs?type=doc&id=2409808.1

Table 15-5 V$RECOVERY_PROGRESS View Columns

Column Description

Average Apply Rate Redo Applied / Elapsed Time includes time spent
actively applying redo and time spent waiting for
redo to arrive

Active Apply Rate Redo Applied / Active Time is a moving average
over the last 3 minutes, and the rate does not
include time spent waiting for redo to arrive

Maximum Apply Rate Redo Applied / Active Time is peak measured
throughput or maximum rate achieved over a
moving average over last 3 minutes; rate does not
include time spent waiting for redo to arrive

Redo Applied Total amount of data in bytes that has been
applied

Last Applied Redo System change number (SCN) and time stamp of
last redo applied. This is the time as stored in the
redo stream, so it can be used to compare where
the standby database is relative to the primary.

Apply Time per Log Average time spent actively applying redo in a log
file.

Checkpoint Time per Log Average time spent for a log boundary checkpoint.

Active Time Total duration applying the redo, but not waiting for
redo

Elapsed Time Total duration applying the redo, including waiting
for redo

Standby Apply Lag Number of seconds that redo apply has not been
applied for. Possible standby is behind the primary.

Log Files Number of log files applied so far.

Active Session History

In cases where standby AWR is not available, or the standby database is not in open read-
only mode, the top waits can be gathered using the V$ACTIVE_SESSION_HISTORY view.
Standby AWR is strongly recommended due to the additional information and detail provided
but these queries are useful in some cases.

To select to top 10 waits over the last 30 minutes (replace 30 with some other number of
minutes ago from current time):

select * from (
select a.event_id, e.name, sum(a.time_waited) total_time_waited
from v$active_session_history a, v$event_name e
where a.event_id = e.event_id and a.SAMPLE_TIME>=(sysdate-30/(24*60))
group by a.event_id, e.name order by 3 desc)
where rownum < 11;

To select the waits between two timestamps (example shows a 3 hour period between
2021/01/01 00:00:00 and 2021/01/01 03:00:00) :

select * from (
select a.event_id, e.name, sum(a.time_waited) total_time_waited

Chapter 15
Redo Apply Troubleshooting and Tuning

15-19

from v$active_session_history a, v$event_name e
where a.event_id = e.event_id
and a.SAMPLE_TIME
between to_date('2021/01/01 00:00:00','YYYY/MM/DD HH24:MI:SS') and
to_date('2021/01/01 03:00:00','YYYY/MM/DD HH24:MI:SS')
group by a.event_id, e.name
order by 3 desc)
where rownum < 11
/

Compare Redo Generation Rate History on the Primary
There are cases where the primary database's redo generation rate is exceptionally
high for a small period of time, such as during large batch jobs, data loads, data pump
operations, create table as select or PDML operations or end of month, quarter or year
batch updates.

Obtain the redo generation history from the primary database and compare that to
when the redo transport or redo apply lag started. Check if the redo generation rate is
exceptionally high due to additional workloads, such as adding new pluggable
databases (PDBs) or new application services. Additional tuning may be required to
accommodate this additional load.

As part of troubleshooting, gather the following information or address the following
questions:

• Gather daily history of the primary database's redo generation rate using this
query.

SQL> select trunc(completion_time) as "DATE", count(*) as "LOG
SWITCHES", round(sum(blocks*block_size)/1024/1024) as "REDO PER DAY
(MB)"
from v$archived_log
where dest_id=1
group by trunc(completion_time) order by 1;

• Gather the per log redo generation rate, starting 6 hours before the start of any
redo or transport lag.

SQL> alter session set nls_date_format='YYYY/MM/DD HH24:MI:SS';
SQL> select thread#,sequence#,blocks*block_size/1024/1024 MB,
(next_time-first_time)*86400 sec, blocks*block_size/1024/1024)/
((next_time-first_time)*86400) "MB/s" from v$archived_log
where ((next_time-first_time)*86400<>0)
and first_time between to_date('2015/01/15 08:00:00','YYYY/MM/DD
HH24:MI:SS')
and to_date('2015/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS')
and dest_id=1 order by first_time;

• Is this primary redo generation rate exceptionally high compared to prior history?

• If possible, determine the workload that corresponds to the high redo generation
rate, and evaluate if it's transient or if it can be tuned.

For example, for large purge operations, consider truncate or drop partition
operations to reduce the redo generation volumes.

Chapter 15
Redo Apply Troubleshooting and Tuning

15-20

Tune Single Instance Redo Apply

Single instance redo apply (SIRA) tuning is an iterative process and a mandatory prerequisite
before even evaluating multi-instance redo apply (MIRA). The iterative process consists of

1. Evaluating and addressing system resource bottlenecks

2. Tuning based on top standby database wait events

Evaluate System Resource Bottlenecks

First, evaluate system resources such as CPU utilization and I/O subsystem. Use utilities
such as top and iostat or statistics from OSwatcher or ExaWatcher to determine if there is
contention for those resources. Addressing any resource bottlenecks to free up resources
required for redo apply can improve apply performance.

Redo apply can be impacted if:

• The managed recovery node is completely CPU bound

• The standby database's I/O system is saturated

• The standby database SGA, specifically the buffer cache, is not at least the same size (or
larger) than that on the primary database

For optimal recovery performance the standby database system requires:

• Sufficient CPU utilization for Recovery Coordinator (PR00) and recovery workers (PRnn)

• Sufficient I/O bandwidth to maintain low I/O latency during peak rates

• A network interface that can receive the peak redo rate volumes, in addition to any other
network activity across the same interface

• Sufficient memory to accommodate a symmetric SGA and buffer cache; the size of the
log buffer and buffer cache generally have the biggest impact on redo apply performance

What to gather and how?

• Gather standby Automatic Work Repository (AWR) reports with intervals of 30 minutes or
less.

See Managing Automatic Workload Repository in Active Data Guard Standby Databases
in Oracle Database Performance Tuning Guide

• Gather Active Session History (ASH) data for more real time granular waits.

See Generating Active Session History Reports in Oracle Database Performance Tuning
Guide

• Gather Oracle Linux OSwatcher or Oracle Exadata ExaWatcher data to analyze system
resources.

For Exadata systems, see Using ExaWatcher Charts to Monitor Exadata Database
Machine Performance in Oracle Exadata Database Machine Maintenance Guide

• Gather top process information to check if the recovery coordinator (PR00) is CPU
bound by using top or ps commands.

Some common indicators and causes of resource bottlenecks include:

Chapter 15
Redo Apply Troubleshooting and Tuning

15-21

• Low CPU idle time may indicate the system is CPU bound

• Long disk or flash service times or high IOPS may indicate I/O contention or
saturation

• Undersized systems and shared systems with many active databases may cause
contention for these resources

• Reporting workloads in an Active Data Guard standby can also cause contention

Tune Redo Apply by Evaluating Database Wait Events
Once you have verified that there are no system resource bottlenecks, it is time to
assess standby database wait events by looking at the standby Automatic Work
Repository (AWR) reports.

Before assessing database wait events, it is important to understand where the waits
occur during the process flow involved in recovery.

1. Redo is received on the standby by the Remote File Server (RFS) process.

The RFS process writes newly received redo for each thread into the current
standby redo log for that thread. The RFS write operation is tracked by the rfs
random I/O wait event.

2. Once redo has been written, the recovery coordinator process (pr00) reads the
redo from the standby redo logs (or archived logs) for each thread.

This read I/O is tracked by the log file sequential read wait event.

3. The recovery coordinator then merges redo from all threads together and places
the redo into memory buffers for the recovery workers.

The wait events for writing and reading into recovery memory buffers is tracked by
the parallel recovery read buffer free and parallel recovery change buffer free wait
events.

4. The recovery processes retrieve redo or change vectors from the memory buffers
and begin the process of applying the changes to data blocks.

First the recovery workers determine which data blocks need to be recovered and
reads those into the buffer cache if it’s not already present.

This read I/O by the recovery workers is tracked by the recovery read wait event.

5. When a log is switched on the primary for any thread, the standby coordinates a
switch of the standby redo log for that thread at the same time.

In earlier versions a log switch on a standby forces a full checkpoint, which results
in flushing all dirty buffers from the buffer cache out to the data files on the
standby. Starting with Oracle Database 18c, checkpoints also occur at regular time
intervals, thus amortizing checkpoint I/O across all phases.

During checkpoint, multiple database writer processes (DBWR) write the data file
blocks down to the data files, with its write time tracked by the db file parallel write
wait event. The total time for the checkpoint to complete is covered by the
checkpoint complete wait event.

During the apply phase it is normal to observe that the recovery coordinator process
(pr00) has high utilization on a single CPU, while during the checkpoint phase there is
an increase in DB writer processes (dbwn) CPU utilization indicating increased write
I/O to the data files.

Chapter 15
Redo Apply Troubleshooting and Tuning

15-22

The following table provides a description as well as tuning advice for wait events involved in
the recovery process.

Table 15-6 Recovery Process Wait Events

Column Description Tuning Recommendations

Logfile sequential read The parallel recovery coordinator
is waiting on I/O from the online
redo log, standby redo log, or the
archived redo log.

Tune or increase the I/O
bandwidth for the ASM disk
group or storage subsystem
where the archive logs, standby
redo logs, or online redo logs
reside.

Parallel recovery read buffer free This event indicates that all read
buffers are being used by
workers, and usually indicates
that the recovery workers lag
behind the coordinator.

Increase _log_read_buffers
to max 256

Parallel recovery change buffer
free

The parallel recovery coordinator
is waiting for a buffer to be
released by a recovery worker.
Again, this is a sign the recovery
workers are behind the
coordinator.

Tune or increase the I/O
bandwidth for the ASM disk
group or storage subsystem
where data files reside.

Data file init write The parallel recovery coordinator
is waiting for a file resize to
finish, as would occur with file
auto extend.

This is a non-tunable event, but
evaluate your primary database
workload to discover why there
are so many data file resize
operations. Optionally, use a
larger NEXT size when
AUTOEXTEND is enabled

Parallel recovery control
message reply

The parallel recovery coordinator
is waiting for all recovery workers
to respond to a synchronous
control message.

N/A. This is an idle event.

Parallel recovery slave next
change

The parallel recovery worker is
waiting for a change to be
shipped from the coordinator.
This is in essence an idle event
for the recovery worker. To
determine the amount of CPU a
recovery worker is using, divide
the time spent in this event by
the number of workers started,
and subtract that value from the
total elapsed time.

N/A. This is an idle event.

DB File Sequential Read A parallel recovery worker (or
serial recovery process) is
waiting for a batch of
synchronous data block reads to
complete.

Tune or increase the I/O
bandwidth for the ASM disk
group or storage subsystem
where data files reside.

Chapter 15
Redo Apply Troubleshooting and Tuning

15-23

Table 15-6 (Cont.) Recovery Process Wait Events

Column Description Tuning Recommendations

Checkpoint completed Recovery is waiting for
checkpoint to complete, and redo
apply is not applying any
changes currently.

Tune or increase the I/O
bandwidth for the ASM disk
group or storage subsystem
where data files reside.

Also, increase the number of
db_writer_processes until the
checkpoint completed wait event
is lower than the db file parallel
write wait event.

Also consider increasing the
online log file size on the primary
and standby to decrease the
number of full checkpoints at log
switch boundaries.

Recovery read A parallel recovery worker is
waiting for a batched data block
I/O.

Tune or increase the I/O
bandwidth for the ASM disk
group where data files reside.

Recovery apply pending and/or
recovery receive buffer free
(MIRA)

Recovery apply pending = the
time the logmerger process
waited (in centiseconds) for
apply workers to apply all
pending changes up to a certain
SCN.

Recovery receive buffer free =
the time (in centiseconds) spent
by the receiver process on the
instance waiting for apply
workers to apply changes from
received buffers so that they can
be freed for the next change.

Increase
_mira_num_local_buffers
and
_mira_num_receive_buffers
Note that these parameters use
space from the shared pool
equal to the sum of their values
(in MB) multiplied by the number
of apply instances.

See How to Generate AWRs in Active Data Guard Standby Databases (Doc ID
2409808.1) for more information about generating AWRs on the standby database.

Enable Multi-Instance Redo Apply if Required
Multi-instance redo apply (MIRA) has the potential to improve redo apply by running
multiple recovery coordinators and redo apply (worker) processes across Oracle RAC
database instances of the standby database. MIRA is optimized for later Oracle
Database releases, and the redo apply benefits vary based on workloads.

Prerequisites for Considering MIRA

• Single-instance redo apply (SIRA) has been completely tuned and is not I/O
bound.

• Recovery coordinator (PR00) is CPU bound.

Examine the CPU utilization of the recovery coordinator/log merger process
ora_pr00_<SID> over a period of an hour. If the coordinator process has a CPU
utilization % of over 70% for a majority of that time, this may be the bottleneck,
and MIRA may improve recovery performance.

Chapter 15
Redo Apply Troubleshooting and Tuning

15-24

https://support.oracle.com/rs?type=doc&id=2409808.1
https://support.oracle.com/rs?type=doc&id=2409808.1

Shown here are two examples of output from the top command showing the CPU
utilization of the pr00.

If the recovery coordinator CPU utilization is largely below 70% with only a few short
spikes, it is not CPU bound, and there is likely a resource issue or some additional tuning
that will improve performance. If the recovery coordinator is not CPU bound, return to
tuning SIRA.

• Most MIRA optimizations are implemented in Oracle Database 19c and are not available
in earlier database releases. In fact, Oracle recommends the database release be no
earlier than Oracle Database 19.13 because it includes some important fixes, including
29924147, 31290017, 31047740, 31326320, 30559129, 31538891, 29785544,
29715220, 29845691, 30421009, 30412188, 30361070, 32486528, 33821145 and
28389153.

• All Oracle Exadata Database Machine systems based either on InfiniBand network fabric
or on RDMA over Converged Ethernet (RoCE) network fabric require an additional step
on the primary database, as shown in this table.

Table 15-7 Oracle Exadata Database Machine prerequisites to enable MIRA

Exadata System Database Release Steps

Exadata Storage cells with
persistent memory (PMEM)

19.13 and higher No additional steps

Chapter 15
Redo Apply Troubleshooting and Tuning

15-25

Table 15-7 (Cont.) Oracle Exadata Database Machine prerequisites to enable
MIRA

Exadata System Database Release Steps

Without PMEM 19.13 and higher Set dynamic parameter on all
instances
_cache_fusion_pipelined_
updates_enable=FALSE

Any Exadata System 19.12 and lower 1. Apply Patch 31962730

2. Set dynamic parameter on all
instances
_cache_fusion_pipelined_
updates_enable=FALSE

Note:

Only redo generated with the dynamic parameter
_cache_fusion_pipelined_updates_enable or static parameter
_cache_fusion_pipelined_updates set to FALSE can be recovered with
MIRA.

Enable Multi-instance Redo Apply and Tune

1. Enable multi-instance redo apply (MIRA) by indicating the number of apply
instances.

Leave all previous single-instance redo apply (SIRA) tuning changes in place. The
MAA recommendation for MIRA is to use all standby database instances for apply.

2. Enable MIRA using one of these methods.

• Set an Oracle Data Guard Broker property

‘ApplyInstances’=<#|ALL>
• Or run

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT
FROM SESSION INSTANCES ALL;

3. Check for system resource contention after tuning MIRA.

Follow the same practices described in Evaluate System Resource Bottlenecks.

4. Tune MIRA based on wait events described here.

Follow the methodology in Tune Redo Apply by Evaluating Database Wait Events.

If recovery apply pending or recovery receive buffer free are among the top wait
events:

• Increase _mira_num_receive_buffers and _mira_num_local_buffers
incrementally by 100 to reduce this wait event.

These parameters provide additional buffer space to pass blocks between
instances. Evaluate whether there is sufficient memory in the SGA to
accommodate the additional buffer space.

Chapter 15
Redo Apply Troubleshooting and Tuning

15-26

The additional memory requirements for each participating MIRA Oracle RAC
instance = (_mira_num_receive_buffers + _mira_num_local_buffers) * (# of RAC
instances * 2) MB

For example, if _mira_num_receive_buffers=500 and _mira_num_local_buffers=500,
then (500+500) *(4-node RAC *2) = 8000MB from the SGA

• Set _mira_rcv_max_buffers=10000

Addressing a Very Large Redo Apply Gap

If the apply lag is larger than 24 hours, consider using a standby roll forward method to skip
over the gap rather than apply all of the redo. See How to Roll Forward a Standby Database
Using Recover Database From Service (12.2 and higher) (Doc ID 2850185.1)

This approach pulls changed Oracle data blocks directly from the primary database, and can
potentially mitigate a large redo gap in half the time required to apply all of the redo.

The disadvantages of this approach are:

• Logical corruption and lost write detection checks and balances that are inherent to redo
apply and standby databases are skipped

• Manual intervention is required to issue these commands and restart redo apply once it's
completed.

Data blocks are still verified for physical corruptions.

Improving Redo Apply Rates by Sacrificing Data Protection
There are extremely rare conditions where redo apply cannot be tuned to achieve even
higher redo apply rates to stay current with the primary. In these cases it may be necessary to
turn off recommended data protection settings to help improve redo apply performance.

The following table describes some potential interim changes and their potential gains and
trade offs.

Change Potential Gain Potential Trade-offs

Stop redo apply and use recover
from service

See How to Roll Forward a Standby
Database Using Recover Database
From Service (12.2 and higher) (Doc
ID 2850185.1)

Optimized approach to recover from
a large redo transport or redo apply
gap, such as when the gap exceeds
24 hours

No logical block or lost writes data
protection checks

No redo block checksum verification

Mount standby instead of Active Data
Guard

Potential 5-10% redo apply
performance gain, but mostly for
batch workloads

No real-time auto block repair of
physical corruptions

No real-time query on the standby

Neither of the above trade-offs may
be as relevant when the standby is
lagging beyond application threshold

Disable or reduce
DB_BLOCK_CHECKING on the
standby

Reduces CPU utilization during redo
apply

If CPU resources are limited, this
change can improve redo apply by
10-40%

Potential "rare" logical block
corruptions may not be detected and
can be propagated to the standby

Chapter 15
Redo Apply Troubleshooting and Tuning

15-27

https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1
https://support.oracle.com/rs?type=doc&id=2850185.1

Change Potential Gain Potential Trade-offs

Disable Flashback Database Eliminates flashback IOPS
requirement on RECO

If storage IOPS is the constraining
resource, then this change can help
redo apply performance

Lose the ability to quickly rewind the
standby

Disable DB_LOST_WRITE_PROTECT
on the primary and standby

Eliminates additional read IOPS on
the standby due to block read redo
generated on the primary to detect
lost writes

This change is an option if IOPS
capacity is saturated

Lost writes are not detected early on
either primary or standby databases

Role Transition, Assessment, and Tuning
With thorough planning, configuration, and tuning, Oracle Data Guard role transitions
can effectively minimize downtime and ensure that the database environment is
restored with minimal impact on the business.

Using a physical standby database, Oracle MAA testing has determined that
switchover and failover times with Oracle Data Guard have been reduced to seconds.
This section describes best practices for both switchover and failover. While following
best practices, switchover times of approximately 30 seconds for Oracle RAC and less
10 seconds for a single instance database have been observed. Detection time is
separate.

Prerequisite Data Guard Health Check Before Role Transition
Complete the following prerequisites before performing a switchover operation.

Every Quarter
Perform the following steps every quarter.

1. Ensure that your Oracle Data Guard configuration is MAA compliant.

a. Refer to Oracle Database Configuration Best Practices and Oracle Data
Guard Configuration Best Practices to ensure that all recommended Data
Guard configuration practices are in place.

b. Refer to Overview of Oracle Multitenant Best Practices for PDB service
recommendations.

2. Run a simple application test, which includes:

a. Convert existing the standby database to a snapshot standby.

b. Validate the application connection to the read-write test database as if this
was a disaster recovery test. See Configuring Continuous Availability for
Applications for configuration guidance.

3. Test your end-to-end application failover after a Data Guard role transition.

a. Issue a Data Guard switchover.

Chapter 15
Role Transition, Assessment, and Tuning

15-28

b. Orchestrate the entire application failover.

c. Switch back is optional.

One Month Before Switchover
One month before performing a switchover operation, consult the MOS note “Oracle
Database 19c Important Recommended One-off Patches (Doc ID 555.1)” to identify any
critical issues that might affect your release.

Also consider suspending or shutting down long running reporting or jobs including
monitoring, auditing, and database backups that create persistent connections during the
target planned maintenance window that contains the Data Guard switchover operation.

Common configuration issues that impact application service availability while performing a
Data Guard role transition with Oracle Multitenant database are:

• PDB saved state or triggers are used and fail during Data Guard role transition

• PDB default service is leveraged instead of using Oracle clusterware-managed distinct
services for each PDB for your application service

• Wallet/security settings are not the same on the standby

To ensure application service and application failover readiness:

1. Never use PDB default services, nor SAVED STATE (except during relocate operations),
nor database triggers to manage role-based services.

2. Use clusterware-managed distinct services on each PDB for your application service, and
leverage that application service to connect to the database.

3. When defining a clusterware-managed application service, define which PDB and
services will be started, and in which Oracle RAC instance and database role.

4. For Data Guard, always use role-based services by assigning a role to each clusterware-
managed service.

Validate Database Switchover and Failover Readiness

You can use the VALIDATE command to perform a comprehensive set of database checks
before performing a role change. The command checks the following items:

• Whether there is missing redo data on a standby database

• Whether flashback is enabled

• The number of temporary tablespace files configured

• Whether an online data file move is in progress

• Whether online redo logs are cleared for a physical standby database

• Whether standby redo logs are cleared for a primary database

• The online log file configuration

• The standby log file configuration

• Apply-related property settings

• Transport-related property settings

• Whether there are any errors in the Automatic Diagnostic Repository (for example,
control file corruptions, system data file problems, user data file problems)

Chapter 15
Role Transition, Assessment, and Tuning

15-29

The three main VALIDATE commands that should be issued prior to switchover are:

1. VALIDATE DATABASE VERBOSE standby - The VALIDATE DATABASE command shows
a brief summary of the database, and reports any errors or warnings that were
detected. VALIDATE DATABASE VERBOSE shows everything in the brief summary
plus all items that were validated.

2. VALIDATE DATABASE standby SPFILE - The VALIDATE DATABASE SPFILE command
reports any parameter differences between primary and the specified standby
databases.

3. VALIDATE NETWORK CONFIGURATION FOR ALL - The VALIDATE NETWORK
CONFIGURATION command performs network connectivity checks between
members of a configuration.

To summarize how to evaluate Role Transition readiness, review the following:

• PRIMARY DATABASE Section:

– DGMGRL> VALIDATE DATABASE VERBOSE 'Primary_DBName';

– Check if there are PDB saved states in the primary database.

* SELECT * FROM dba_pdb_saved_states;

– Evaluate health with exachk or orachk.

• For each STANDBY DATABASE STANDBY_DB_UNIQUE_NAME Section:

– DGMGRL> VALIDATE DATABASE VERBOSE 'Standby_DBName';

– DGMGRL> VALIDATE DATABASE 'Standby_DBName' SPFILE;

– Evaluate health with exachk or orachk.

– Evaluate if the standby cluster and database are symmetric with the primary
cluster and database. This ensures identical or similar performance after role
transition.

– Evaluate whether the cluster shape and system resources are the same, spfile
memory settings are the same, and number of databases sharing the cluster
resources are the same. If not, highlight the differences and evaluate if system
resources are available by reviewing exawatcher or oswatcher graphs.

• Network Section:

– DGMGRL> VALIDATE NETWORK CONFIGURATION FOR ALL;

• Redo Rate History Section:

– SQL> SELECT thread#,sequence#,blocks*block_size/1024/1024 MB,
(next_time-first_time)*86400 sec,
 blocks*block_size/1024/1024)/((next_time-first_time)*86400)
"MB/s"
 FROM v$archived_log
 WHERE ((next_time-first_time)*86400<>0) and first_time
 between to_date('2015/01/15 08:00:00','YYYY/MM/DD HH24:MI:SS')
 and to_date('2015/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS') and

Chapter 15
Role Transition, Assessment, and Tuning

15-30

dest_id=1
 order by first_time;

Example:

The Oracle Data Guard broker VALIDATE DATABASE command gathers information related to
switchover and failover readiness.

The validation verifies that the standby and primary database are reachable and the apply lag
is less than ApplyLagThreshold for the target database. If these data points are favorable,
the command output displays "Ready for Failover: Yes" as shown below. In addition, if redo
transport is running, the command output displays "Ready for Switchover: Yes".

DGMGRL> validate database [verbose] database_name

Database Role: Physical standby database
 Primary Database: standby_db_unique_name

Ready for Switchover: Yes
 Ready for Failover: Yes (Primary Running)

VALIDATE DATABASE checks additional information that can impact switchover time and
database performance, such as whether the online redo logs have been cleared, number of
temporary tablespaces, parameter mismatches between primary and standby, and the status
of flashback databases.

In most failover cases the primary database has crashed or become unavailable. The Ready
for Failover output indicates if the primary database is running when VALIDATE DATABASE was
issued. This state does not prevent a failover, but it is recommended that you stop the
primary database before issuing a failover to avoid a split-brain scenario where the
configuration has two primary databases. The broker only guarantees split-brain avoidance
on failover when Fast-Start Failover is used.

You should also run VALIDATE DATABASE VERBOSE standby, VALIDATE DATABASE standby
SPFILE, and VALIDATE NETWORK CONFIGURATION FOR ALL periodically as a configuration
monitoring tool.

Days Before Switchover
Perform the following steps days before performing a Data Guard switchover.

1. Set the Data Guard broker trace level.

The Data Guard broker TraceLevel configuration property is used to control the amount
of tracing performed by the broker for every member in the configuration. Setting the
property to USER limits the tracing to completed operations and to any warning or error
messages resulting from an operation or health check. Setting the property to SUPPORT
increases the amount of tracing to include lower-level information needed to troubleshoot
any issues.

DGMGRL> SET TRACE_LEVEL SUPPORT;

2. Enable role transition metrics.

The Time Management Interface (TMI) event is a low overhead event which adds a line
to the alert log whenever certain calls are executed in Oracle.

Chapter 15
Role Transition, Assessment, and Tuning

15-31

These entries in the alert log, or tags, delineate the beginning and end of a call.
The tables in the topics below depict the delineation of key switchover and failover
operations. This method is the most accurate for determining where time is being
spent.

Set the database level event 16453 trace name context forever, level 15 on all
databases. There are two methods of enabling this trace, either using the EVENT
database parameter or setting the EVENTS at the system level. The difference is
that the EVENT parameter is not dynamic but is persistent across restarts. SET
EVENTS is dynamic but NOT persistent across database restarts. See the following
examples.

ALTER SYSTEM SET EVENT=‘16453 trace name contextforever, level 15’
scope=spfile sid=’*’;

ALTER SYSTEM SET EVENTS ‘16453 trace name context forever, level
15’;

Data Guard Role Transition
Always use Oracle Data Guard broker or any Oracle UI or utility that ultimately calls
the Data Guard broker command.

Suspend or shut down any long running reports or batch jobs including monitoring,
auditing, and database backups that have persistent connections.

Use the Oracle Data Guard broker SWITCHOVER command to initiate switchover, and
the FAILOVER command to initiate failover.

As part of a switchover or failover operation the broker does the following.

• Configures redo transport from the new primary database

• Starts redo apply on the new standby database

• Ensures that other standby databases in the broker configuration are viable and
receiving redo from the new primary

• Integrates Oracle Clusterware and Global Data Services to ensure that the role-
based services are started

Before issuing the Data Guard switchover, suspend or shut down long running
reporting or jobs including monitoring, auditing, and database backups that create
persistent connections.

To configure broker to initiate switchover, log in as SYS or SYSDBA and issue:

DGMGRL> SWITCHOVER TO database_name;

To configure broker to initiate failover, run:

DGMGRL> FAILOVER TO database_name [IMMEDIATE];

By default FAILOVER applies all redo that was received before failing over. The
IMMEDIATE clause skips the pending redo and fails over immediately.

Chapter 15
Role Transition, Assessment, and Tuning

15-32

The SWITCHOVER and FAILOVER commands are idempotent and can be re-issued in the
unlikely event of a failed transition.

Monitor Data Guard Role Transitions
Refer to the Data Guard Broker messages while the Data Guard role transition is happening.
To extract detailed role transition status, refer to the primary and standby alert logs and
broker logs for Data Guard switchover and failover messages and tags.

Key Switchover Operations and Alert Log Tags
Switchover is broken down into four main steps as follows.

1. Convert to Standby - terminate any existing production sessions, convert the control file
into a standby control file, and send a message to the standby to continue the switchover.

The Convert to Standby - these steps are found in the alert log of the original primary.
All remaining steps are found in the original standby alert log.

2. Cancel Recovery - apply remaining redo and stop recovery.

3. Convert to Primary - a two-step close (to the mounted state) of instances (one
instance, then all others), clear online redo logs, convert control file to primary control file,
and data Guard Broker bookkeeping.

4. Open New Primary - parallel open of all instances.

Table 15-8 Alert Log Tags Defining the Steps with Time Management Interface Event
Enabled

Step Stage Time Management Interface
Event Enabled

Convert To Standby(primary alert
log)

BEGIN TMI: dbsdrv switchover to target
BEGIN <DATE> <TIMESTAMP>

Convert To Standby(primary alert
log)

END TMI: kcv_switchover_to_target
send 'switchover to primary' msg
BEGIN <DATE> <TIMESTAMP>

Cancel Recovery(standby alert
log)

BEGIN TMI:
kcv_commit_to_so_to_primary
wait for MRP to die BEGIN
<DATE> <TIMESTAMP>

Cancel Recovery(standby alert
log)

END TMI:
kcv_commit_to_so_to_primary
wait for MRP to die END <DATE>
<TIMESTAMP>

Convert to Primary (standby alert
log)

BEGIN TMI:
kcv_commit_to_so_to_primary
BEGIN CTSO to primary
<DATE> <TIMESTAMP>

Convert to Primary (standby alert
log)

END TMI: adbdrv BEGIN 10 <DATE>
<TIMESTAMP>

Open Primary(standby alert log) BEGIN TMI: adbdrv BEGIN 10 <DATE>
<TIMESTAMP>

Open Primary(standby alert log) END TMI: adbdrv END 10 <DATE>
<TIMESTAMP>

Chapter 15
Role Transition, Assessment, and Tuning

15-33

Key Failover Operations and Alert Log Tags
All failover steps are documented in the alert log of the target standby where the
failover was performed.

1. Cancel Recovery - Stop recovery and close all instances (to mounted) in parallel.

2. Terminal Recovery - Archive standby redo logs and recover any unapplied redo.

3. Convert to Primary - Clear online redo logs and convert control file to standby
control file.

4. Open Primary - Open all instances in parallel.

Table 15-9 Failover Alert Log Tags Defining the Steps with Time Management
Interface Event Enabled

Step Stage Time Management Interface
Event Enabled

Cancel Recovery BEGIN TMI: adbdrv termRecovery
BEGIN <DATE>
<TIMESTAMP>

Cancel Recovery END TMI: adbdrv termRecovery
END <DATE> <TIMESTAMP>

Terminal Recovery BEGIN TMI: krdsmr full BEGIN
Starting media recovery
<DATE> <TIMESTAMP>

Terminal Recovery END TMI: krdemr full END end
media recovery <DATE>
<TIMESTAMP>

Convert to Primary BEGIN TMI:
kcv_commit_to_so_to_primary
BEGIN CTSO to primary
<DATE> <TIMESTAMP>

Convert to Primary END TMI: adbdrv BEGIN 10
<DATE> <TIMESTAMP>

Open Primary BEGIN TMI: adbdrv BEGIN 10
<DATE> <TIMESTAMP>

Open Primary END TMI: adbdrv END 10 <DATE>
<TIMESTAMP>

Post Role Transition Validation
Use the SHOW CONFIGURATION VERBOSE command to verify that the switchover or
failover and standby reinstate was successful.

DGMGRL> SHOW CONFIGURATION VERBOSE;
Configuration - DRSolution
Protection Mode: MaxAvailability
Members:
 South_Sales - Primary database
 North_Sales - Physical standby database
 Fast-Start Failover: DISABLED

Chapter 15
Role Transition, Assessment, and Tuning

15-34

 Configuration Status:
 SUCCESS

Troubleshooting Problems During a Switchover Operation
The most important goal after a failed Data Guard switchover or failover operation is to
resume database and application availability as soon as possible.

Sources of Diagnostic Information
The Oracle Data Guard broker provides information about its activities in several forms.

• Database status information - You can use the SHOW DATABASE VERBOSE db_unique_name
command to get a brief description of the database (name, role, and so on), database
status, and information about any health check problems.

DGMGRL> SHOW DATABASE VERBOSE db_unique_name

• Oracle alert log files - The broker records key information in the alert log file for each
instance of each database in a broker configuration. You can check the alert log files for
such information when troubleshooting Oracle Data Guard.

• Oracle Data Guard "broker log files" - For each instance of each database in a broker
configuration, the broker DMON process records important behavior and status
information in a broker log file, useful in diagnosing Oracle Data Guard failures. The
TraceLevel configuration property is used to specify the level of diagnostic information
reported in the broker log files. The broker log file is created in the same directory as the
alert log and is named drc<$ORACLE_SID>.log.

Retry Switchover After Correcting the Initial Problem
If the reported problems can be corrected quickly, you can retry the switchover operation.

If the reported problems cannot be corrected or the switchover operation fails even after
correcting the reported problems, then you can choose another database for the switchover
or restore the configuration to its pre-switchover state and then retry the switchover or refer to
Rolling Back After Unsuccessful Switchover to Maximize Uptime.

DGMGRL> SWITCHOVER TO database_name;

Rolling Back After Unsuccessful Switchover to Maximize Uptime
For physical standby databases in situations where an error occurred, and it is not possible to
continue with the switchover in a timely fashion, revert the new physical standby database
back to the primary role to minimize database downtime.

Take the following steps.

1. Shut down and mount the new standby database (old primary).

2. Start Redo Apply on the new standby database.

3. Verify that the new standby database is ready to be switched back to the primary role.

Chapter 15
Role Transition, Assessment, and Tuning

15-35

Query the SWITCHOVER_STATUS column of the V$DATABASE view on the new standby
database. A value of TO PRIMARY or SESSIONS ACTIVE indicates that the new
standby database is ready to be switched to the primary role. Continue to query
this column until the value returned is either TO PRIMARY or SESSIONS ACTIVE.

4. Issue the following statement to convert the new standby database back to the
primary role:

 SQL> ALTER DATABASE SWITCHOVER TO target_db_name;

If step 4 fails, see Roll Back After Unsuccessful Switchover and Start Over in

Data Guard Performance Observations

Data Guard Role Transition Duration

Oracle Data Guard and Oracle MAA Gold reference architectures provide disaster
recovery and high availability solutions when the primary database, cluster, or site fails
or is inaccessible.

Each Data Guard environment is different and the time to perform role transitions can
vary significantly. Variables including, but not limited to, SGA size, number of Oracle
RAC instances, number of PDBs, data files, and connections to the database at the
time of role transition impact the length of a given role transition.

Generally, Data Guard switchover (planned maintenance) is slightly longer than Data
Guard failover (unplanned outages).

The following information is meant to educate you about ways to optimize role
transitions.

Data Guard Switchover Duration

When attempting to minimize application downtime for planned maintenance:

• Before planned maintenance windows, avoid or defer batch jobs or long running
reports. Peak processing windows should also be avoided.

• Because Data Guard switchover is graceful, which entails a shutdown of the
source primary database, any application drain timeout is respected. See Enabling
Continuous Service for Applications for Oracle Clusterware service drain attributes
and settings.

• Data Guard switchover operations on a single instance (non-RAC) can be less
than 30 seconds.

• Data Guard switchover operations on Real Application Cluster vary, but can be
from 30 seconds to 7 minutes. The duration may increase with more PDBs (for
example, > 25 PDBs), more application services (for example, 200 services), and
if the database has a large number of data files (for example, 1000s of data files).

The following graph and table show one example of how much switchover operation
duration can decrease when MAA tuning recommendations are implemented. Results
will vary.

Chapter 15
Data Guard Performance Observations

15-36

Figure 15-1 Planned maintenance: DR switch duration in seconds

Planned DR Switch
(Switchover)

Initial Configuration Tuned MAA Configuration

Convert Primary to Standby 26 secs 21 sec

Convert Standby to Primary
(C2P)

47 secs 7 secs

Open new Primary (OnP) 152 secs 14 secs

Open PDB and Start Service
(OPDB)

130 secs 39 secs

Total App Downtime 355 secs or 5 mins 55 secs 81 secs (78% drop)

The "Tuned" timings were achieved by implementing the following MAA recommended
practices:

• Use Bigfile Tablespace

• Oracle Data Guard Configuration Best Practices

• Role Transition, Assessment, and Tuning

Data Guard Failover Duration

When attempting to minimize application downtime for DR scenarios:

• To limit Recovery Time Objective (RTO or database down time) and Recovery Point
Objective (RPO or data loss), automatic detection and fail over is required. See Fast-
Start Failover in Oracle Data Guard Broker.

• The database administrator can determine the appropriate "detection time" before
initiating an automatic failover by setting FastStartFailoverThreshold. See Enabling
Fast-Start Failover Task 4: Set the FastStartFailoverThreshold Configuration Property in
Oracle Data Guard Broker.

The MAA recommended setting is between 5 seconds and 60 seconds for a reliable
network. Oracle RAC restart may also recover from a transient error on the primary.
Setting this threshold higher gives the restart a chance to complete and avoid failover,
which can be intrusive in some environments. The trade off is that application downtime
increases in the event an actual failover is required.

Chapter 15
Data Guard Performance Observations

15-37

• Data Guard failover operations on a single instance (non-RAC) can be less than
20 seconds.

• Data Guard failover operations on a Real Application Cluster vary but can be from
20 seconds to 7 minutes. The duration may increase with more PDBs (for
example, > 25 PDBs), more application services (for example, 200 services) and if
the database has a large number of data files (for example, 1000s of data files).

The following graph and table show one example how much failover operation
duration can decrease when MAA tuning recommendations are implemented. Results
will vary.

Figure 15-2 Unplanned DR failover duration in seconds

Unplanned Outage/DR
(Failover)

Initial Configuration Tuned MAA Configuration

Close to Mount (C2M) 21 secs 1 sec

Terminal Recovery (TR) 154 secs 2 secs

Convert to Primary (C2P) 114 secs 5 secs

Open new Primary (OnP) 98 secs 28 secs

Open PDB and Start Service
(OPDB)

146 secs 16 secs

Total App Downtime 533 secs or 8min 53 secs 52 secs (90% drop)

The "Tuned" timings were achieved by implementing the following MAA recommended
practices:

• Evaluate Data Guard Fast-Start Failover and test with different
FastStartFailoverThreshold settings

• Use Bigfile Tablespace

• Oracle Data Guard Configuration Best Practices

• Role Transition, Assessment, and Tuning

Customer Examples

Chapter 15
Data Guard Performance Observations

15-38

Real-world Data Guard role transition duration observations from Oracle customers are
shown in the following table.

Primary and Data Guard Configuration Observed RTO

Single instance database failover in Database
Cloud (DBCS) with heavy OLTP workload. Data
Guard threshold is 5 seconds.

20 secs

Large Commercial Bank POC Results with 4 node
RAC with heavy OLTP workload

51 secs (unplanned DR)

82 secs (planned DR)

ExaDB-D 2-node RAC MAA testing with heavy
OLTP workload

78 secs

ADB-D 2-node RAC MAA testing (25 PDBs, 250
services) with heavy OLTP workload

104 secs

ADB-D 2-node RAC MAA testing (50 PDBs, 600
services) with heavy OLTP workload

180 secs

ADB-D 2-node RAC MAA testing (4 CDBs, 100
PDBs total, 500 services) with heavy OLTP
workload

164 secs

Oracle SaaS Fleet (thousands) of 12-node RAC,
400 GB SGA, 4000+ data files

(note: reducing number of data files to hundreds
can reduce downtime by minutes)

< 6 mins

Third Party SaaS Fleet (thousands) of 7-12 node
RACs with quarterly site switch

< 5 mins

Application Throughput and Response Time Impact with Data Guard
Application throughput and response time impact is near zero when you enable Data Guard
Max Performance protection mode or ASYNC transport. Throughput and application
response time is typically not impacted at all in those cases.

With Data Guard Max Availability or Max Protection mode or SYNC transport, the application
performance impact varies, which is why application performance testing is always
recommended before you enable SYNC transport. With a tuned network and low round-trip
latency (RTT), the impact can also be negligible, even though every log commit has to be
acknowledged to every available SYNC standby database in parallel to preserve a zero data
loss solution.

Here's an example of the application throughput impact but application impact varies based
on workload:

Chapter 15
Data Guard Performance Observations

15-39

Figure 15-3 Application impact with MTU=9000

Notice the lower network RTT latency (x axis), the application (TPS or y axis)
throughput reduces.

Note that in this network environment we observed that increasing MTU from 1500
(default) to 9000 (for example, jumbo frames) helped significantly since log message
size increased significantly with SYNC. With the larger MTU size, the number of
network packets per redo send request are reduced.

See Assessing and Optimizing Network Performance for details about tuning the
network including the socket buffer size and MTU.

Even when throughput decreases significantly with higher RTT latency, you can
increase TPS if your application can increase the concurrency. In the above chart, the
last 2 columns increased the workload concurrency by adding more users.

Application response time with SYNC transport can also increase, but will vary based
on each application workload and network tuning. With SYNC transport, all log writes
have to wait for standby SYNC acknowledgment. This additional wait result in more
foregrounds waiting for commit acknowledgment. Because commits have to be
acknowledged by the standby database and more foregrounds are waiting for
commits, the average log write size increases which affects the redo/data transfer
time, as shown in the following chart.

Chapter 15
Data Guard Performance Observations

15-40

Figure 15-4 Database response time (ms) vs latency (ms) for tuned and default MTU

In this example, we observed from AWR reports that average redo write size increased
significantly, and tuning MTU reduced the response time impact. See Assessing and
Optimizing Network Performance on tuning network including the socket buffer size and
MTU.

After tuning the network, the response time impact was very predictable and low. Note that
response impact varies per application workload.

To get the best application performance with Data Guard, use the following practices:

• Tune the application without Data Guard first and you should observe similar
performance for ASYNC transport

• Implement Oracle Data Guard Configuration Best Practices

• Use Redo Transport Troubleshooting and Tuning methods

• Tune the network to improve application performance with SYNC. See Assessing and
Optimizing Network Performance

• Application workload specific changes that can help increase throughput for SYNC
Transport are:

– Evaluate adding more concurrency or users to increase throughput.

– For non-critical workloads within certain sessions that do not require zero data loss,
evaluate advanced COMMIT_WRITE attribute to NOWAIT.

In this case, you can commit before receiving the acknowledgment. Redo is still sent
to persistent redo logs but is done asynchronously. Recovery is guaranteed for all

Chapter 15
Data Guard Performance Observations

15-41

persistent committed transactions in the redo that is applied. See
COMMIT_WRITE in Oracle Database Reference.

Chapter 15
Data Guard Performance Observations

15-42

16
Monitor an Oracle Data Guard Configuration

Use the following Oracle MAA best practice recommendations to monitor an Oracle Data
Guard configuration.

Monitoring Oracle Data Guard Configuration Health Using the
Broker

The Oracle data Guard broker issues a health check once a minute and updates the
configuration status. To force a health check to occur immediately, run the command show
configuration verbose.

On a primary database, the health check determines if the following conditions are met.

• Database is in the state specified by the user, as recorded in the broker configuration file

• Database is in the correct data protection mode

• Database is using a server parameter file(SPFILE)

• Database is in the ARCHIVELOG mode

• Redo transport services do not have any errors

• Database settings match those specified by the broker configurable properties

• Redo transport settings match those specified by the redo transport-related properties of
the standby databases

• Current data protection level is consistent with configured data protection mode

• Primary database is able to resolve all gaps for all standby databases

On a standby database, the health check determines whether the following conditions are
met.

• Database is in the state specified by the user, as recorded in the broker configuration file

• Database is using a server parameter file (SPFILE)

• Database settings match those specified by the broker configurable properties

• Primary and target standby databases are synchronized or within lag limits if fast-start
failover is enabled

To identify any warnings on the overall configuration, show the status using the SHOW
CONFIGURATION command.

DGMGRL> show configuration;

Configuration – dg

 Protection Mode: MaxPerformance
 Members:

16-1

 tin - Primary database
 can - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS (status updated 18 seconds ago)

If the configuration status is SUCCESS, everything in the broker configuration is working
properly.

However, if you see a status of WARNING or ERROR, then something is wrong in the
configuration. Additional error messages will accompany the WARNING or ERROR status
that should be used to identify current issues.

The next step is to examine each database in the configuration to narrow down what
the specific error is related to.

To identify the warnings on the primary database, get its status using the SHOW
DATABASE command.

DGMGRL> show database tin

Database – tin

 Role: PRIMARY
 Intended State: TRANSPORT-ON
 Instance(s):
 tin1
 tin2

Database Status:
SUCCESS

If the database status is SUCCESS then the database is working properly.

However, if you see a status of WARNING or ERROR, then something is wrong in the
database. Additional error messages will accompany the WARNING or ERROR status that
should be used to identify current issues.

Repeat the same SHOW DATABASE command on the standby database and assess any
error messages.

In addition to the above commands, the broker features a VALIDATE DATABASE
command.

DGMGRL> validate database tin

 Database Role: Primary database
 Ready for Switchover: Yes

DGMGRL> validate database can;

 Database Role: Physical standby database
 Primary Database: tin

Chapter 16
Monitoring Oracle Data Guard Configuration Health Using the Broker

16-2

 Ready for Switchover: No
 Ready for Failover: Yes (Primary Running)

 Capacity Information:
 Database Instances Threads
 tin 2 2
 can 1 2
 Warning: the target standby has fewer instances than the
 primary database, this may impact application performance

 Standby Apply-Related Information:
 Apply State: Not Running
 Apply Lag: Unknown
 Apply Delay: 0 minutes

The VALIDATE DATABASE does not provide a SUCCESS or WARNING status and must be
examined to determine if any action needs to be taken.

It is recommended that you run the VALIDATE DATABASE command after creating the broker
configuration, and before and after any role transition operation.

The VALIDATE DATABASE command performs the following checks.

• Whether there is missing redo data on a standby database

• Whether flashback is enabled

• The number of temporary tablespace files configured

• Whether an online data file move is in progress

• Whether online redo logs are cleared for a physical standby database

• Whether standby redo logs are cleared for a primary database

• The online log file configuration

• The standby log file configuration

• Apply-related property settings

• Transport-related property settings

• Whether there are any errors in the Automatic Diagnostic Repository (for example,
control file corruptions, system data file problems, user data file problems)

Detecting Transport or Apply Lag Using the Oracle Data Guard Broker
Given enough resources, in particular network bandwidth, an Oracle Data Guard standby can
maintain pace with very high workloads. In cases where resources are constrained, the
standby can begin to fall behind, resulting in a transport or apply lag.

A transport lag is the amount of data, measured in time, that the standby has not received
from the primary.

An apply lag is the difference, in elapsed time, between when the last applied change
became visible on the standby and when that same change was first visible on the primary.

Chapter 16
Monitoring Oracle Data Guard Configuration Health Using the Broker

16-3

When using the Data Guard broker, the transport or apply lag can be viewed by using
the SHOW DATABASE command and referencing the standby database, as shown here.

DGMGRL> show database orclsb

Database – orclsb

 Role: PHYSICAL STANDBY
 Intended State: APPLY-ON
 Transport Lag: 0 seconds (computed 0 seconds ago)
 Apply Lag: 0 seconds (computed 1 second ago)
 Average Apply Rate: 792.00 KByte/s
 Real Time Query: ON
 Instance(s):
 orclsb1 (apply instance)
 orclsb2

Database Status:
SUCCESS

The broker TransportDisconnectedThreshold database property (default of 0 in
Oracle Database 11.2, and 30 seconds for Oracle Database 12.1 and later releases)
can be used to generate a warning status for a standby when the last communication
from the primary database exceeds the value specified by the property. The property
value is expressed in seconds.

The following is an example of the warning when a disconnection has occurred.

DGMGRL> show database orclsb;

Database – orclsb

 Role: PHYSICAL STANDBY
 Intended State: APPLY-ON
 Transport Lag: 0 seconds (computed 981 seconds ago)
 Apply Lag: 0 seconds (computed 981 seconds ago)
 Average Apply Rate: 12.00 KByte/s
 Real Time Query: OFF
 Instance(s):
 orclsb1 (apply instance)
 orclsb2

 Database Warning(s):
 ORA-16857: member disconnected from redo source for longer than
specified threshold

The broker also has the following configurable database properties that you can use to
generate warnings when a transport or apply lag exceed a user defined value.

• The ApplyLagThreshold property generates a warning status for a logical or
physical standby when the database's apply lag exceeds the value specified by
the property.

Chapter 16
Monitoring Oracle Data Guard Configuration Health Using the Broker

16-4

The property value is expressed in seconds. A value of 0 seconds results in no warnings
being generated when an apply lag exists. As a best practice, Oracle recommends
setting ApplyLagThreshold to at least 15 minutes.

• The TransportLagThreshold property can be used to generate a warning status for a
logical, physical, or snapshot standby when the database's transport lag exceeds the
value specified by the property.

The property value is expressed in seconds. A value of 0 seconds results in no warnings
being generated when a transport lag exists. As a best practice, Oracle recommends
setting TransportLagThreshold to at least 15 minutes.

Monitoring Oracle Data Guard Configuration Health Using SQL
You can use the queries in the following tables to assess the overall Data Guard configuration
health on the primary database and the standby database.

Table 16-1 Primary Database Queries

Goal Query Expected Results

Check if any remote standby
archive destination is getting
errors

Check if all remote standby
archive destinations is enabled
or VALID

select
sysdate,status,error
 from
gv$archive_dest_status
 where type='PHYSICAL'
 and status!='VALID'
 or error is not null;

Good health = no rows returned

If the query returns rows, then
raise an alert with the returned
data.

Check if any NOLOGGING activity
occurred on the primary
database in the last day

select file#, name,
unrecoverable_change#,
unrecoverable_time
 from v$datafile
 where
unrecoverable_time >
(sysdate - 1);

Good health = no rows returned

If the query returns rows, then
the standby database is
vulnerable, and the files listed in
the output must be refreshed on
the standby.

Detect gaps on the standby
database select

sysdate,database_mode,re
covery_mode, gap_status
 from
v$archive_dest_status
 where type='PHYSICAL'
 and gap_status !='NO
GAP';

Good health = no rows returned

If the query returns rows, then
there's an existing gap between
the primary and the standby
database, and you must run the
same query on the standby
database.

If the output from the primary
and standby is identical, then no
action is required.

If the output on the standby does
not match the output from the
primary, then the datafile on the
standby should be refreshed.

Chapter 16
Monitoring Oracle Data Guard Configuration Health Using SQL

16-5

Table 16-1 (Cont.) Primary Database Queries

Goal Query Expected Results

Assess whether any severe Data
Guard event occurred in the last
day

select *
 from v$dataguard_status
 where severity in
('Error','Fatal')
 and timestamp >
(sysdate -1);

Good health = no rows returned

If the query returns rows, then
raise an alert with the returned
output.

FOR SYNC ENVIRONMENTS
ONLY:

Assess if running in Maximum
Availability mode and
configuration is in sync

select
sysdate,protection_mode,
 synchronized,
synchronization_status
 from
v$archive_dest_status
 where type='PHYSICAL'
 and
synchronization_status !
='OK';

Good health = no rows returned

If the query returns rows, then
raise an alert with the returned
output.

Table 16-2 Physical Standby Database Queries

Goal Query Expected Results

Determine if there is a transport lag
select
name,value,time_computed,da
tum_time
 from v$dataguard_stats
 where name='transport lag'
 and value > '+00
00:01:00';

Good health = no rows returned

If no rows are returned, then this
implies that there is no transport lag

Determine if there is an apply lag
select
name,value,time_computed,da
tum_time
 from v$dataguard_stats
 where name='apply lag'
 and value > '+00
00:01:00';

Good health = no rows returned

If no rows are returned, then this
implies that there is no apply lag

Chapter 16
Monitoring Oracle Data Guard Configuration Health Using SQL

16-6

Table 16-2 (Cont.) Physical Standby Database Queries

Goal Query Expected Results

Standby data file check (offline files
or files that are not accessible) select *

 from v$datafile_header
 where status ='OFFLINE'
 or ERROR is not null;

Good health = no rows returned

Any rows returned list the files that
have I/O or recovery issues

Verify that the Media Recovery
Process is currently running select *

 from v$managed_standby
 where process like 'MRP%';

Good health = rows returned

If no rows are returned, then the
MRP process is not running

Assess whether any severe Data
Guard event occurred in the last day select *

 from v$dataguard_status
 where severity in
('Error','Fatal')
 and timestamp > (sysdate
-1);

Good health = no rows returned

If the query returns rows, then raise
an alert with the returned output

Oracle Data Guard Broker Diagnostic Information
The Oracle Data Guard broker provides information about its activities in several forms.

• Database status information

• Oracle alert log files

The broker records key information in the alert log file for each instance of each database
in a broker configuration.

• Oracle Data Guard broker log files

For each instance of each database in a broker configuration, the broker DMON process
records important behavior and status information in a broker log file, which are useful for
diagnosing Oracle Data Guard failures. The Set the TraceLevel configuration property to
specify the level of diagnostic information reported in the broker log files. The broker log
file is created in the same directory as the alert log and is named drc<$ORACLE_SID>.log.

• Oracle Data Guard command line (DGMGRL) logfile option

If the DGMGRL command-line interface was started with the -logfile optional
parameter, then the resulting log file may contain a useful record of past operations and
error conditions.

Detecting and Monitoring Data Corruption
If corrupt data is written to disk, or if a component failure causes good data to become corrupt
after it is written, then it is critical that you detect the corrupted blocks as soon as possible.

Chapter 16
Oracle Data Guard Broker Diagnostic Information

16-7

To monitor the database for errors and alerts:

• Query the V$DATABASE_BLOCK_CORRUPTION view that is automatically updated when
block corruption is detected or repaired.

• Configure Data Recovery Advisor to automatically diagnose data failures,
determine and present appropriate repair options, and perform repair operations at
your request.

Note that Data Recovery Advisor integrates with the Oracle Enterprise Manager
Support Workbench (Support Workbench), the Health Monitor, and RMAN.

• Use Data Guard to detect physical corruptions and to detect lost writes.

Data Guard can detect physical corruptions when the apply process stops due to a
corrupted block in the redo steam or when it detects a lost write.

Use Enterprise Manager to manage and monitor your Data Guard configuration.

By taking advantage of Automatic Block Media Recovery, a corrupt block found on
either a primary database or a physical standby database can be fixed
automatically when the Active Data Guard option is used.

• Use SQL*Plus to detect data file corruptions and inter-block corruptions.

Run this SQL*Plus statement:

sqlplus> ANALYZE TABLE table_name VALIDATE STRUCTURE CASCADE;

After finding the corruptions, the table can be re-created or another action can be
taken.

• An Recovery Manager (RMAN) backup and recovery strategy can detect physical
block corruptions.
A more intensive RMAN check using the following command can detect logical
block corruptions.

RMAN> BACKUP VALIDATE CHECK LOGICAL;

Chapter 16
Detecting and Monitoring Data Corruption

16-8

Part V
MAA Platinum and Oracle GoldenGate Best
Practices

• MAA Platinum Reference Architecture Overview

• Overview of Oracle GoldenGate Best Practices

• Cloud: Configuring Oracle GoldenGate Hub

• Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata Database
Service Configuration Best Practices

• Cloud MAA Platinum: Oracle GoldenGate Microservices Architecture Integrated with
Active Data Guard

• On-Premises: Oracle GoldenGate Microservices Architecture with Oracle Real
Application Clusters Configuration Best Practices

• On-Premises MAA Platinum: Oracle GoldenGate Microservices Architecture Integrated
with Active Data Guard

• Troubleshooting Oracle GoldenGate

17
MAA Platinum Reference Architecture
Overview

MAA Platinum or Never-Down Architecture, delivers near-zero Recovery Time Objective
(RTO, or downtime incurred during an outage) and potentially zero or near zero Recover
Point Objective (RPO, or data loss potential).

The MAA Platinum reference architecture ensures:

• RTO = zero or near-zero for all local failures using the Oracle Exadata Database Machine
platform with its inherent Oracle RAC, full-stack redundancy, and failover capabilities

• RTO = zero or near-zero for disasters, such as database, cluster, or site failures,
achieved by redirecting the application to an active Oracle GoldenGate source or target

• Zero downtime maintenance for software and hardware updates using Oracle RAC and
Exadata Database Machine platform

• Zero downtime database upgrade or application upgrade by redirecting the application to
an upgraded Oracle GoldenGate source or target database

• RPO = zero or near-zero data loss, depending on the Oracle Data Guard protection
mode setting, which dictates the redo transport (SYNC, FAR SYNC, or ASYNC)

• Fast re-synchronization and zero or near-zero RPO between Oracle GoldenGate source
and target databases after a disaster.

After any database failure, automatic failover to its standby database occurs
automatically. Subsequently, automatic re-synchronization between Oracle GoldenGate
source and target databases will resume. For SYNC transport, this leads to eventual zero
data loss.

Table 17-1 MAA Platinum Outage Matrix

Event RTO/RPO Service Level Objective1

Unplanned Outage

Recoverable node or instance failure Zero or single digit seconds2,3

Disasters including corruptions and site failures Zero3

Planned Maintenance

Most common software and hardware updates Zero2

Major database upgrade or application upgrade Zero3

1RPO=0 unless explicitly specified

2To achieve zero downtime or lowest impact for online processing, apply MAA application
high availability best practices (also known as The Checklist). For long running transactions,
such as batch operations, it's recommended that you defer them outside the planned
maintenance window.

3Application failover is customized or managed with Global Data Services.

17-1

Enabling features of the Platinum MAA solution include:

• Oracle Real Application Clusters with recommended Exadata Database
Machine Platform, Exadata Database Service on Dedicated Infrastructure (ExaDB-
D), or Oracle Exadata Database Service on Cloud@Customer (ExaDB-C@C) for
the source and target databases

• Oracle Active Data Guard with Fast-Start Failover to bound data loss and
automatically fail over to standby in case of database, cluster, or data center
failures. The standby databases are typically in separate Fault Domains (FDs) with
separate power supplies, separate data centers, or Availability Domains (ADs)
with independent power and network. The standbys can also reside across
regions with typically the greatest fault isolation.

• Oracle GoldenGate enables two active read-write database systems that can be
leveraged for applications to fail over immediately after database, cluster, site
failure, or planned outages such as database or application upgrades. The source
and target databases on which Oracle GoldenGate replication is occurring can
reside in the same region, across ADs, or across regions.

MAA Platinum architecture is illustrated in the image below, where two "active read-
write" primary databases, or source or target databases, reside in separate regions.
Oracle GoldenGate replication occurs between the source and target databases
between primary and remote regions. Each primary database is protected by a
standby database in another AD within the same region.

With Data Guard Fast-Start Failover (FSFO), the standby database becomes the new
primary database automatically after primary database, cluster, or AD failure. With
MAA Oracle GoldenGate configuration best practices implemented, replication
resumes automatically between the source and target databases after any Data Guard
role transition. Each database resides on an Exadata platform with its inherent built-in
Real Application Cluster, system and storage redundancy, and low brownout failover
capabilities.

Chapter 17

17-2

Figure 17-1 MAA Platinum Reference Architecture

Primary Region

Remote Region

AD2

AD1

AD1

AD2

Primary
Database

Primary
Database

Standby
Database

Standby
Database

Local Backup

Local Backup

Exadata

Exadata

Exadata

Exadata

Exadata

Exadata

Exadata

Exadata

Data Guard
FSFO

Data Guard
FSFO

Oracle
GoldenGate
Replication

MAA Platinum Architecture Variants

When setting up MAA Platinum architecture, the administrator can decide between setting up
Oracle GoldenGate on each potential source or target database, or creating an Oracle
GoldenGate hub independent from the database servers.

The MAA Oracle GoldenGate hub, shown in the following image, provides the following
advantages:

• Offloads Oracle GoldenGate software installation, configuration, and life cycle
management from source and target Exadata database systems.

• Reduces Oracle GoldenGate resource impact on the source and target database
systems.

Chapter 17

17-3

• Provides high availability by configuring a 2-node cluster server for fast and simple
failover, and disaster recovery by leveraging ACFS replication to another identical
GoldenGate hub server on a separate 2-node cluster server.

• Consolidates Oracle GoldenGate configurations and software deployment for
multiple independent MAA Platinum or Oracle GoldenGate architectures.

Figure 17-2 MAA Oracle GoldenGate Hub

Oracle GoldenGate Hub

GoldenGate DeploymentDatabase 12c
Release 2

Database 19cGoldenGate Deployment

Extract Trail Files Replicate

Service
Manager

Service
Manager

Administration
Server

Administration
Server

Performance
Metrics Server

Performance
Metrics Server

Source
Database

Target
Database

Network Network

An example of MAA Oracle GoldenGate hub with MAA Platinum architecture is shown
in the image below. Each hub is a 2-node cluster providing local high availability, and
for additional protection uses ACFS replication to another hub, typically deployed
across Availability Domains (ADs) or across regions.

Chapter 17

17-4

Figure 17-3 MAA Platinum with Oracle GoldenGate Hub

Primary Region

Remote Region

Availability Domain 1

Availability Domain 1

Availability Domain 2

Availability Domain 2

Application Tier

Application Tier

GGhub

GGhub

GGhub

GGhub

Production-A

Production-B

Standby-A

Standby-B

 Oracle GoldenGate Replication

Legend:

 Active Data Guard Fast-Start Fallover

Sync Transport with

Sync Transport with

Write

Write

Zero Data Loss

Zero Data Loss

Read/

Read/

Read

Read

Chapter 17

17-5

How to Implement the MAA Platinum Solution

To achieve an MAA Platinum solution, review and leverage the technical papers and
documentation referenced in the following steps.

1. Review Oracle MAA Platinum Tier for Oracle Exadata to understand MAA
Platinum benefits and use cases.

2. Decide between implementing the MAA Oracle GoldenGate hub solution, or
setting up Oracle GoldenGate directly on database servers.

• Option 1: (RECOMMENDED) Configure MAA Oracle GoldenGate Hub

– See Cloud: Configuring Oracle GoldenGate Hub for the Oracle Cloud
configuration, or

– Oracle Maximum Availability Architecture (MAA) GoldenGate Hub for on-
premises configuration.

• Option 2: Configure Oracle GoldenGate on the Exadata Database servers

– For Oracle Cloud Service, see

a. Cloud: Oracle GoldenGate Microservices Architecture on Oracle
Exadata Database Service Configuration Best Practices and

b. Cloud MAA Platinum: Oracle GoldenGate Microservices Architecture
Integrated with Active Data Guard

– For on-premises systems, see

a. On-Premises: Oracle GoldenGate Microservices Architecture with
Oracle Real Application Clusters Configuration Best Practices and

b. On-Premises MAA Platinum: Oracle GoldenGate Microservices
Architecture Integrated with Active Data Guard

3. Configure Bidirectional Replication and Automatic Conflict Detection and
Resolution. See Oracle Cloud Infrastructure GoldenGate documentation or the
latest Oracle GoldenGate documentation.

4. Configure application failover options such as

• Global Data Services (see Global Data Services documentation) and

• MAA application high availability configuration (also known as the "Checklist")
at Configuring Continuous Availability for Applications.

Chapter 17

17-6

https://www.oracle.com/a/tech/docs/exadata-maa-platinum-focused.pdf
https://www.oracle.com/docs/tech/maa-goldengate-hub.pdf
https://docs.oracle.com/en/cloud/paas/goldengate-service/index.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/mabooks.html

18
Overview of Oracle GoldenGate Best
Practices

Configure Oracle GoldenGate using Oracle MAA best practices to get the highest availability
and performance out of your Oracle GoldenGate deployment.

Oracle GoldenGate provides the following benefits:

• Uni-directional or bi-directional replication, allowing reads and updates in any replicated
database.

• Data movement is in real-time, reducing latency.

• Replicated databases can run on different hardware platforms, database versions, and
different database or application configurations, allowing for online migration. This
flexibility also allows online database and application upgrades.

• Source and target replicated databases are online, so zero downtime switch over of
applications, during outages and planned maintenance activities is possible. Note, the
application switchover must be customized, rather than using a built-in feature, such as
Transparent Application Continuity.

The following table highlights various Oracle GoldenGate configuration best practices and
MAA Platinum best practices.

Table 18-1 Oracle GoldenGate Use Cases and Best Practices

Use Case Oracle GoldenGate Best Practices

Database migration to Oracle Cloud or Exadata
Platform

Zero Downtime Migration (ZDM) with GoldenGate
(logical migration)

Oracle Zero Downtime Migration – Logical
Migration Performance Guidelines

Database migration requiring minimal or zero
downtime

Database migration involving cross platform or
different database versions

Oracle Database Migration with an Oracle
GoldenGate Hub Configuration

Deploy Oracle GoldenGate off of the database
server in a Hub configuration

Oracle Maximum Availability Architecture (MAA)
GoldenGate Hub

Install and configure Oracle GoldenGate directly
on the Oracle RAC database server or Exadata
database system

Cloud: Oracle GoldenGate Microservices
Architecture on Oracle Exadata Database Service
Configuration Best Practices

On-Premises: Oracle GoldenGate Microservices
Architecture with Oracle Real Application Clusters
Configuration Best Practices

18-1

https://www.oracle.com/database/zero-downtime-migration/
https://www.oracle.com/a/tech/docs/zdm-gg-performance.pdf
https://www.oracle.com/a/tech/docs/zdm-gg-performance.pdf
https://www.oracle.com/a/tech/docs/maa-database-migration-with-a-goldengate-hub.pdf
https://www.oracle.com/a/tech/docs/maa-database-migration-with-a-goldengate-hub.pdf
https://www.oracle.com/docs/tech/maa-goldengate-hub.pdf
https://www.oracle.com/docs/tech/maa-goldengate-hub.pdf

Table 18-1 (Cont.) Oracle GoldenGate Use Cases and Best Practices

Use Case Oracle GoldenGate Best Practices

Implement MAA Platinum or install and configure
Oracle GoldenGate directly on Oracle RAC
database servers with Oracle Active Data Guard

For Oracle Cloud Service, Cloud: Oracle
GoldenGate Microservices Architecture on Oracle
Exadata Database Service Configuration Best
Practices and Cloud MAA Platinum: Oracle
GoldenGate Microservices Architecture Integrated
with Active Data Guard

For on-premises, On-Premises: Oracle
GoldenGate Microservices Architecture with
Oracle Real Application Clusters Configuration
Best Practices and On-Premises MAA Platinum:
Oracle GoldenGate Microservices Architecture
Integrated with Active Data Guard

Application failover options for Oracle GoldenGate Global Data Services Concepts and
Administration Guide and Configuring Continuous
Availability for Applications

Oracle GoldenGate bidirectional replication and
automatic conflict detection and resolution

For Oracle Cloud Service, Oracle Cloud
Infrastructure GoldenGate documentation

For on-premises, the latest Oracle GoldenGate
documentation

Also see Oracle GoldenGate documentation at: https://docs.oracle.com/en/
middleware/goldengate/core/21.1/

Overview of Oracle GoldenGate and Supporting Technologies

The technologies that are required to replicate data between databases are Oracle
GoldenGate and supporting technologies (such as Oracle Grid Infrastructure Agents,
ACFS or DBFS, or GoldenGate hub) to ensure that replication will resume after
various failures. A brief overview of Oracle GoldenGate and supporting technologies
are described here.

Oracle GoldenGate

Oracle GoldenGate provides real-time, log-based change data capture and delivery
between homogenous and heterogeneous systems. This technology lets you construct
a cost-effective and low-impact real-time data integration and continuous availability
solution.

Oracle GoldenGate replicates data from committed transactions with transaction
integrity and minimal overhead on your existing infrastructure. The architecture
supports multiple data replication topologies, such as one-to-many, many-to-many,
cascading, and bidirectional. Its wide variety of use cases includes real-time business
intelligence; query offloading; zero-downtime upgrades and migrations; and active-
active databases for data distribution, data synchronization, and high availability.

Oracle GoldenGate Microservices Architecture provides REST-enabled services. The
REST-enabled services provide remote configuration, administration, and monitoring
through HTML5 web pages, command line interfaces, and APIs.

Recommended Oracle GoldenGate 21c (and higher releases) introduces unified build
support, so that a single software installation supports capturing and applying
replicated data to multiple major Oracle Database versions (11g Release 2 to 21c).
This is possible because an Oracle GoldenGate installation includes the required

Chapter 18

18-2

https://docs.oracle.com/en/cloud/paas/goldengate-service/index.html
https://docs.oracle.com/en/cloud/paas/goldengate-service/index.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/mabooks.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/mabooks.html
https://docs.oracle.com/en/middleware/goldengate/core/21.1/
https://docs.oracle.com/en/middleware/goldengate/core/21.1/

Oracle Database client libraries without requiring a separate database ORACLE_HOME
installation.

Oracle Grid Infrastructure Agents

Oracle Grid Infrastructure Agents (XAG) are Oracle Grid Infrastructure components that
provide the high availability (HA) framework to application resources and resource types
managed through the agent management interface, AGCTL. This framework provides a
complete, ready-to-use solution that contains pre-defined Oracle Grid Infrastructure resource
configurations and agents to integrate applications for complete application HA.

The Oracle Grid Infrastructure Agents provide pre-defined Oracle Clusterware resources for
Oracle GoldenGate, Siebel, Oracle PeopleSoft, JD Edwards, and Oracle WebLogic Server,
as well as Apache and MySQL applications. Using the agent for Oracle GoldenGate
simplifies the creation of dependencies on the source and target databases, the application
VIP, and the file system (ACFS or DBFS) mount point. The agent command line utility
(AGCTL) is used to start and stop Oracle GoldenGate, and can also be used to relocate
Oracle GoldenGate between the nodes in the cluster.

Oracle Database File System (DBFS)

Oracle DBFS can be used to store Oracle GoldenGate files.

The Oracle Database File System (DBFS) creates a file system interface to files stored in the
database. DBFS is similar to NFS in that it provides a shared network file system that looks
like a local file system. Because the data is stored in the database, the file system inherits all
the high availability and disaster recovery capabilities provided by Oracle Database.

With DBFS, the server is the Oracle Database. Files are stored as SecureFiles LOBs.
PL/SQL procedures implement file system access primitives such as create, open, read,
write, and list directory. The implementation of the file system in the database is called the
DBFS SecureFiles Store. The DBFS SecureFiles Store allows users to create file systems
that can be mounted by clients. Each file system has its own dedicated tables that hold the
file system content.

Oracle Advanced Cluster File System (ACFS)

Oracle ACFS can be used to store Oracle GoldenGate files.

Oracle Advanced Cluster File System (Oracle ACFS) is a multi-platform, scalable file system,
and storage management technology that extends Oracle Automatic Storage Management
(Oracle ASM) functionality to support all customer files.

Oracle ACFS leverages Oracle Clusterware for cluster membership state transitions and
resource-based high availability. Oracle ACFS is bundled into the Oracle Grid Infrastructure
(GI) allowing for integrated optimized management of databases, resources, volumes, and
file systems.

Chapter 18

18-3

19
Cloud: Configuring Oracle GoldenGate Hub

Configure and deploy MAA Oracle GoldenGate Hub architecture on Oracle Cloud using the
provided planning considerations, tasks, management, and troubleshooting information.

See the following topics:

• Overview of MAA GoldenGate Hub

• Planning GGHub Placement in the Platinum MAA Architecture

• Task 1: Configure the Source and Target Databases for Oracle GoldenGate

• Task 2: Prepare a Primary and Standby Base System for GGHub

• Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

• Task 4: Configure the Oracle GoldenGate Environment

Overview of MAA GoldenGate Hub
To achieve the highest levels of availability, resulting in zero or near-zero downtime for both
unplanned outages and planned maintenance activities, customers frequently use the
combination of Exadata Database Service on Dedicated Infrastructure (ExaDB-D) or Oracle
Exadata Database Service on Cloud@Customer (ExaDB-C@C), Oracle Active Data Guard,
and Oracle GoldenGate.

This architecture, typically referred as Platinum MAA or Never Down Architecture, delivers
near zero Recovery Time Objective (RTO, or downtime incurred during outage) and
potentially zero or near zero Recovery Point Objective (RPO, or data loss potential).

Traditionally, Oracle GoldenGate is installed and run locally on the database server that the
GoldenGate processes connect to. When used with Oracle Grid Infrastructure Standalone
Agent (XAG), Oracle GoldenGate processes can be configured to seamlessly relocate or fail
over between Oracle RAC nodes and follow Oracle Active Data Guard switchover and
failovers.

Using MAA Oracle GoldenGate (MAA GGHub) moves the GoldenGate software and
processes off of the Exadata database servers, reducing complexity and system resource
utilization. The MAA GGHub centralizes the Oracle GoldenGate management and offloads
the majority of the Oracle GoldenGate processing and associated CPU and storage resource
utilization from Exadata system resources. Connectivity between the GoldenGate processes
and the databases they operate against is managed with Oracle Net Services.

Holistically, to achieve a Platinum MAA solution in the Oracle Cloud, you need to follow these
high level steps:

1. Review Oracle MAA Platinum Tier for Oracle Exadata to understand Platinum MAA
benefits and use cases.

2. Deploy or migrate your database onto Exadata Cloud Service or Exadata
Cloud@Customer.

19-1

https://www.oracle.com/a/tech/docs/exadata-maa-platinum-focused.pdf

3. Add symmetric standby databases in the Oracle Cloud using Oracle Cloud Control
Plan or Cloud automation.

4. Manually configure and deploy Oracle Data Guard Fast Start Failover using the
Oracle MAA best practice recommendations in Configure Fast Start Failover.

5. Set up MAA GGHub.

6. Configure Bidirectional Replication and Automatic Conflict Detection and
Resolution. See Oracle Cloud Infrastructure GoldenGate documentation for
information.

7. Decide on Application Failover Options such as Global Data Services. See
Introduction to Global Data Services

Planning GGHub Placement in the Platinum MAA
Architecture

Extreme availability that delivers zero downtime (RTO=0 or near zero) and zero or
near zero data loss (RPO=0 or near zero) typically requires the following Platinum
MAA architecture.

1. You have the source and target database in an Oracle GoldenGate architecture to
allow your application to fail over immediately in the case of disaster (database,
cluster, or site failure) or switch over in the case of database or application
upgrade. This architecture enables the potential RTO of zero or near zero for
disaster scenarios and database and application upgrade maintenance.

2. Each source and target database is deployed in Exadata cloud systems so any
local failures are tolerated or recovered almost instantly.

3. Each source and target database is configured with a standby database with Data
Guard Fast-Start Failover so any failure of the database results in activating a new
primary database in seconds to minutes. If SYNC transport is leveraged with Max
Availability protection mode, zero data loss Data Guard failover is achieved.

4. Configured with GoldenGate replication using MAA GGhub between the source
and target databases.

5. Configured so that any standby becoming a primary database due to Data Guard
switchover or failover will automatically resynchronize with its target GoldenGate
database. If zero data loss Data Guard switchover or failover occurs, GoldenGate
resychronization ensures zero data loss across the distributed database
environment.

6. Configured with GoldenGate Automatic Conflict Detection and Resolution, which is
required after any Data Guard failover operation occurs.

Where to Place the MAA Primary GGHub and Standby GGHub

1. GGHub Pair (Primary and Standby GGhub) must reside in the same OCI regions
as each primary and standby database. For example,

a. If the primary database is in AD1, Region A and standby database is in AD2,
Region A, then the GGHub pair will reside in Region A.

b. If the primary database is in Region A and standby database is in Region B,
then the GGHub pair will split between Region A and B. The primary or active

Chapter 19
Planning GGHub Placement in the Platinum MAA Architecture

19-2

https://docs.oracle.com/en/cloud/paas/goldengate-service/index.html

GGhub must be co-located in the same OCI region as the target primary database.

2. Performance implications:

a. Primary or active GGhub must reside in the same OCI region as the target database.

b. Primary or active GGhub should be < 90 ms from the source database without
incurring GoldenGate performance degradation (Extract performance). For any
Availability Domain or OCI region within the same country, Oracle cloud will always
meet that requirement.

3. GoldenGate Distribution Path

a. GoldenGate distribution path is required if the source and target GGhubs are in
different regions and latency between the OCI regions is > 90 ms.

b. In Oracle Cloud when your Oracle GoldenGate source and target databases reside in
the same region, or in different regions in the same country, you will never need to
set up a GoldenGate distribution path because the latency is always < 90 ms.

MAA GGHubs Placed in the Same OCI Region
In this scenario, the primary and standby database are located in the same OCI region, and
so the primary (active) GGHub and the standby GGHub are also located in the same region.

As shown in Figure 1, you have the following architectural components:

1. Primary database and associated standby database are configured with Oracle Active
Data Guard Fast Start Failover (FSFO). FSFO can be configured with Data Guard
protection mode with ASYNC or SYNC redo transport depending on your maximum data
loss tolerance.

2. Primary GGHub Active/Passive Cluster: Only one GGHub software deployment and
configuration on the 2-node cluster. This cluster contains the 21c Oracle GoldenGate
software deployment that can support 11.2.0.4 and later database versions. This GGHub
can support many primary databases and encapsulates the GoldenGate processes:
GoldenGate Extract mines transactions from the source database and GoldenGate
Replicat applies the same changes to target database. GoldenGate trail and checkpoint
files will also reside in the GGhub ACFS file system. The HA failover solution is built in to
the GGhub, which includes automatic failover to the passive node in the same cluster,
and restarts GoldenGate processes and activity after a node failure.

3. Standby GGHub Active/Passive Cluster: A Symmetric standby GGhub is configured.
ACFS replication is set up between the primary and standby GGHubs to preserve all
GoldenGate files. Manual GGhub failover, which includes ACFS failover, can be executed
in the rare case that you lose the entire primary GGhub.

Chapter 19
Planning GGHub Placement in the Platinum MAA Architecture

19-3

Figure 19-1 Primary and Standby GGHubs in the Same OCI Region

PHX Region, AD1 PHX Region, AD2

Primary GGHub Standby GGHub

 GGHub Active/Passive Cluster GGHub Active/Passive Cluster

ACFS ACFS

VIP VIP
Oracle

GoldenGate
Installation

Oracle
GoldenGate
Installation

GoldenGate Deployment GoldenGate Deployment

Extracts ExtractsReplicats ReplicatsTrail Files Trail Files

Primary
Database A

Standby
Database A

Standby
Database B

Primary
Database B

1 6

Redo
Transport

2

5

ACFS
Replication

Redo
Transport

3

4

The figure above depicts replicating data from Primary Database A to Primary
Database B and Primary B back to Primary A with the following steps:

1. Primary Database A: Primary A’s Logminer server sends redo changes to a
Primary GGHub Extract process.

2. Primary GGHub: An Extract process writes changes to trail files.

3. Primary GGHub to Primary Database B: A Primary GGHub Replicat process
applies those changes to the target database (Primary B).

4. Primary Database B: Primary B’s Logminer server sends redo to a Primary
GGHub Extract process.

5. Primary GGHub: A Primary GGHub Extract process writes changes to trail files.

6. Primary GGHub to Primary Database A: A Primary GGHub Replicat process
applies those changes to the target database (Primary A).

Note that one GGHub can support multiple source and target databases, even when
the source and target databases are different Oracle Database releases.

Chapter 19
Planning GGHub Placement in the Platinum MAA Architecture

19-4

Table 19-1 Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the Same OCI
Region

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Primary Database A (or Database B)
failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when a new primary
database starts.

1. One primary database is still
available. All activity is routed to
the existing available primary
database to achieve zero
application downtime. Refer to
the Global Data Services Global
Services Failover solution. For
example, application services A-
F are routed to Database A and
application services G-J are
routed to Database B. If
Database A fails, all application
services temporarily go to
Database B.

2. The standby becomes the new
primary automatically with Data
Guard FSFO. Oracle
GoldenGate replication resumes
and the primary databases
resynchronize. Data loss is
bounded by the Data Guard
protection level. If Maximum
Availability or Maximum
Protection is configured, zero
data loss is achieved. All
committed transactions are in
one or both databases.
Workload can be “rebalanced”
when Primary Database A and
Database B are available and in
sync. For example, when
Database A is up and running
and in sync, services A-F can go
back to Database A.

1. The old primary database is
reinstated as the new standby
database to restore redundancy.

2. Optionally performing a Data
Guard switchover to switch back
to the original configuration
ensures that at least one
primary database resides in an
independent AD.

Primary or standby GGHub single
node failure

Impact: No application impact.
GoldenGate replication resumes
automatically after a couple of
minutes.

No action is required. The HA failover
solution built in to the GGHub
includes automatic failover and
restart of GoldenGate processes and
activity. Replication activity is blocked
until GoldenGate processes are
active again. GoldenGate replication
blackout could last a couple of
minutes.

Once the node restarts, active/
passive configuration is re-
established.

Chapter 19
Planning GGHub Placement in the Platinum MAA Architecture

19-5

Table 19-1 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the
Same OCI Region

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Primary GGHub cluster crashes and
is not recoverable

Impact: No application impact.
GoldenGate replication resumes
after restarting the existing GGHub
or executing a manual GGHub
failover operation.

1. If the GGHub cluster can be
restarted, then that’s the
simplest solution.

2. If the primary GGHub is not
recoverable, then execute a
manual GGHub failover to the
standby GGHub, which includes
ACFS failover. This typically
takes several minutes.

3. GoldenGate replication stops
until the new primary GGhub is
available, so executing step 1 or
step 2 should be quick.

If the previous GGHub eventually
restarts, ACFS replication resumes in
the other direction automatically. If
the GGHub cluster is lost or
unrecoverable, you need to rebuild a
new standby GGHub.

Standby GGHub cluster crashes and
not recoverable

Impact: No application or replication
impact.

1. If the GGHub cluster can be
restarted, then that is the
simplest solution, and ACFS
replication can resume.

2. If the standby GGHub is not
recoverable, you can rebuild a
new standby GGHub.

N/A

Chapter 19
Planning GGHub Placement in the Platinum MAA Architecture

19-6

Table 19-1 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the
Same OCI Region

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Complete Data Center or Availability
Domain (AD1 or AD2) failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when the new primary
database starts.

1. One primary database is still
available. All activity is routed to
the existing available primary
database to achieve zero
application downtime. Refer to
the Global Data Services Global
Services Failover solution. For
example, application services A-
F are routed to Database A and
application services G-J are
routed to Database B. If
Database A fails, all services
temporarily go to Database B.

2. If the primary GGHub is still
functional, GoldenGate
replication continues. If the
primary GGHub is lost due to
availability domain (AD) failure,
then a manual GGhub failover is
required. GoldenGate replication
resumes and the primary
databases resynchronize. Data
loss is bounded by the Data
Guard protection level. If
Maximum Availability or
Maximum Protection is
configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
rebalanced when Primary
Database A and Database B are
available and in sync. When
Database A is up and running
and in sync, services A-F can go
back to Database A.

1. When the data center/AD
returns, re-establish
configuration such as reinstate
standby. If the previous GGHub
eventually restarts, ACFS
replication resumes in the other
direction automatically.

2. When possible, perform a Data
Guard switchover (failback) to
get back to the original state
where one primary database
exists in each AD.

MAA GGHubs Placed in Different OCI Regions
In this scenario, the primary and standby database are located in different OCI regions, and
so the primary (active) GGHub is located in the same region as the primary database, and
the standby GGHub is located in the same region as the standby database.

As shown in Figure 2, you have the following architectural components:

1. The primary database and associated standby database are configured with Oracle
Active Data Guard Fast Start Failover (FSFO). FSFO can be configured with Data Guard

Chapter 19
Planning GGHub Placement in the Platinum MAA Architecture

19-7

protection mode with ASYNC or SYNC redo transport depending on your
maximum data loss tolerance.

2. Primary GGHub Active/Passive Cluster: In this configuration, there’s a 2-node
cluster with two Oracle GoldenGate software configurations. Because the primary
GGHub needs to be <= 4 ms from the target database and the two regions (PHX
and ASH) network latency > 5 ms, two GGhub configurations are created for each
GGHub cluster. Essentially, a primary GGHub configuration is always be in the
same region as the target database. GGHub is configured with the Oracle
GoldenGate 21c software deployment that can support 11g and later Oracle
Database releases. This GGHub can support many primary databases and
encapsulates the GoldenGate processes: Extract mines transactions from the
source database, and Replicat applies those changes to the target database.
GoldenGate trail and checkpoint files will also reside in the ACFS file system. An
HA failover solution is built in to the GGhub cluster, which includes automatic
failover and restart of GoldenGate processes and activity after a node failure.

Each GGhub configuration contains a GoldenGate service manager and
deployment, ACFS file system with ACFS replication, and separate application
VIP.

3. Standby GGHub Active/Passive Cluster: A symmetric standby GGhub is
configured. ACFS replication is set up between the primary and standby GGHubs
to preserve all GoldenGate files. Manual GGhub failover, which includes ACFS
failover, can be executed if you lose the entire primary GGhub.

Figure 19-2 Primary and Standby GGHubs in Different OCI Regions

PHX Region ASH Region

Primary GGHub for DB_B/Standby GGHub for DB_A Primary GGHub for DB_A/Standby GGHub for DB_B

 GGHub Active/Passive Cluster

 GGHub Active/Passive Cluster

GGHub Active/Passive Cluster

GGHub Active/Passive Cluster

ACFS

ACFS

ACFS

ACFS

VIP

VIP

VIP

VIP

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

GoldenGate Deployment

GoldenGate Deployment

GoldenGate Deployment

GoldenGate Deployment

Extracts

Extracts

Extracts

Extracts

Replicats

Replicats

Replicats

Replicats

Trail Files

Trail Files

Trail Files

Trail Files

Primary
Database A

Standby
Database A

Standby
Database B

Primary
Database B

Redo
Transport

2

5
ACFS

Replication

ACFS
Replication

Redo
Transport

4 3

1

6

Chapter 19
Planning GGHub Placement in the Platinum MAA Architecture

19-8

The figure above depicts replicating data from Primary Database A to Primary Database B
and Primary B back to Primary A with the following steps:

1. Primary Database A: Primary A’s Logminer server sends redo changes to an ASH region
GGHub Extract process, which is on the Primary GGHub for Database A.

2. Primary GGHub: The Extract process writes changes to trail files.

3. Primary GGHub to Primary Database B: An ASH region GoldenGate Replicat process
applies those changes to the target database (Primary B).

4. Primary Database B: Primary B’s Logminer server sends redo to a PHX region GGHub
Extract process, which is on the Primary GGHub for Database B.

5. Primary GGHub: The Extract process writes changes to trail files.

6. Primary GGHub to Primary Database A: A PHX region GoldenGate Replicat process
applies those changes to the target database (Primary A).

Chapter 19
Planning GGHub Placement in the Platinum MAA Architecture

19-9

Table 19-2 Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in Different OCI
Regions

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Primary Database A (or Database B)
failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when the new primary
database starts.

1. One primary database is still
available. All activity is routed to
the existing available primary
database to achieve zero
application downtime. Refer to
the Global Data Services Global
Services Failover solution. For
example, application services A-
F are routed to Database A and
application services G-J are
routed to Database B. If
Database A fails, all services
temporarily go to Database B.

2. The standby becomes the new
primary automatically with Data
Guard FSFO. GoldenGate
replication resumes and the
primary databases
resynchronize. Data loss is
bounded by the Data Guard
protection level. If Maximum
Availability or Maximum
Protection is configured, zero
data loss is achieved. All
committed transactions are in
one or both databases.
Workload can be rebalanced
when primary Database A and
Database B are available and in
sync. For example, when
Database A is up and running
and in sync, services A-F can go
back to Database A.

3. Replicat performance will be
degraded if the primary GGHub
is not in the same region as the
target database. Schedule a
GGHub switchover with ACFS
replication switchover to resume
optimal Replicat performance to
the target database. You may
then experience two active
GGhub configurations on the
same GGHub cluster.

1. The old primary database is
reinstated as the new standby
database to restore redundancy.

2. Optionally performing a Data
Guard switchover, to switch back
to the original configuration,
ensures that at least one
primary database resides in an
independent AD. Schedule a
GGHub switchover with ACFS
replication switchover to resume
optimal Replicat performance to
the target database.

Chapter 19
Planning GGHub Placement in the Platinum MAA Architecture

19-10

Table 19-2 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in
Different OCI Regions

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Primary or standby GGHub single
node failure

Impact: No application impact.
GoldenGate replication resumes
automatically after a couple of
minutes.

No action is required. An HA failover
solution is built in to the GGHub that
includes automatic failover and
restart of GoldenGate processes and
activity. Replication activity is blocked
until GoldenGate processes are
active again. GoldenGate Replication
blackout could last a couple of
minutes.

Once the node restarts, active/
passive configuration is re-
established.

Primary GGHub cluster crashes and
is not recoverable

Impact: No application impact.
GoldenGate replication resumes
after the existing primary GGHub
restarts or manual GGHub failover
completes.

1. If the GGHub cluster can be
restarted, then that’s the
simplest solution.

2. If the primary GGHub is not
recoverable, then execute a
manual GGHub failover to the
standby GGHub, which includes
ACFS failover. This typically
takes several minutes.

3. Replication stops until the new
primary GGhub is started, so
executing step 1 or step 2
should be quick. If there’s any
orchestration, this should be
automated.

1. If the previous GGHub
eventually restarts, ACFS
replication resumes in the other
direction automatically. If the
GGHub cluster is lost or
unrecoverable, you need to
rebuild a new standby GGHub.

2. Replicat performance is
degraded if the primary GGhub
is not in the same region as the
target database. Schedule a
GGHub switchover with ACFS
replication switchover to resume
optimal Replicat performance to
the target database.

Standby GGHub cluster crashes and
is not recoverable

Impact: No application or replication
impact.

1. If the GGHub cluster can be
restarted, then that’s the
simplest solution, and ACFS
replication will resume.

2. If the standby GGHub is not
recoverable, you can rebuild a
new standby GGHub.

N/A

Chapter 19
Planning GGHub Placement in the Platinum MAA Architecture

19-11

Table 19-2 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in
Different OCI Regions

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Complete Regional failure Impact: Near Zero Application
Downtime. GoldenGate replication
resumes once new primary database
starts.

1. One primary database is still
available. All activity is routed to
the existing available primary
database to achieve zero
application downtime. Refer to
the Global Data Services Global
Services Failover solution. For
example, application services A-
F routed to Database A and
application services G-J routed
to Database B. If Database A
fails, all services will temporarily
go to Database B.

2. If the primary GGHub is still
functional, GoldenGate
replication will continue. If the
primary GGHub is lost due to
regional failure, then a manual
GGhub failover is required.
GoldenGate replication resumes
and the primary databases
resynchronize. Data loss is
bounded by the Data Guard
protection level. If Maximum
availability or protection is
configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
rebalanced when Primary
Database A and Database B are
available and in sync. When
Database A is up and running
and in sync, services A-F can go
back to Database A.

1. When the OCI region returns,
re-establish configuration such
as reinstate standby. If the
previous GGHub eventually
restarts, ACFS replication
resumes in the other direction
automatically.

2. When possible, execute a Data
Guard switchover (failback) to
get back to the original state
where one primary database
exists in each region.

3. Replicat performance is
degraded if the primary GGHub
is not in the same region as the
target database. Schedule a
GGHub switchover with ACFS
replication switchover to resume
optimal Replicat performance to
the target database.

Task 1: Configure the Source and Target Databases for
Oracle GoldenGate

The source and target Oracle GoldenGate databases should be configured using the
following recommendations.

Perform the following steps to complete this task:

• Step 1.1 - Database Configuration

Chapter 19
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

19-12

• Step 1.2 - Create the Database Replication Administrator User

• Step 1.3 - Create the Database Services

Step 1.1 - Database Configuration

The source and target Oracle GoldenGate databases should be configured using the
following recommendations:

Configuration Scope Example

Enable Archivelog Mode Source and Target SQL> ARCHIVE LOG LIST
Database log
mode Archive
Mode
Automatic
archival Enabled
Archive
destination
USE_DB_RECOVERY_FILE_DEST
Oldest online log
sequence 110
Next log sequence to
archive 113
Current log
sequence 113

Enable FORCE LOGGING Source and Target ALTER DATABASE FORCE
LOGGING;

ENABLE_GOLDENGATE_REPLICA
TION

Source, Target, and Standbys ALTER SYSTEM SET
ENABLE_GOLDENGATE_REPLICATIO
N=TRUE SCOPE=BOTH SID='*';

Supplemental Logging Source

Required on Target for cases
when replication reverses

ALTER DATABASE ADD
SUPPLEMENTAL LOG DATA;

Add schema or table level
logging for replicated objects

Source

Required on Target for cases
when replication reverses

ADD SCHEMATRANDATA or ADD T

STREAMS_POOL_SIZE Source

Required on Target for cases
when replication reverses

The value of
STREAMS_POOL_SIZE should be
set to the following value:

STREAMS_POOL_SIZE =
(((#Extracts + #Integrated
Replicats) * 1GB) * 1.25)

For example, in a database with
2 Extracts and 2 integrated
Replicats:

STREAMS_POOL_SIZE = 4GB *
1.25 = 5GB

ALTER SYSTEM SET
STREAMS_POOL_SIZE=5G
SCOPE=BOTH SID='*';

Chapter 19
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

19-13

For the steps on preparing the database for Oracle GoldenGate, see Preparing the
Database for Oracle GoldenGate.

Step 1.2 - Create the Database Replication Administrator User

The source and target databases need a GoldenGate administrator user created, with
appropriate privileges assigned as follows:

• For the multitenant container database (CDB):

– Source database, GoldenGate Extract must be configured to connect to a user
in the root container database, using a c##

– Target database, a separate GoldenGate administrator user is needed for
each pluggable database (PDB).

– For further details on creating a GoldenGate administrator in an Oracle
Multitenant Database, see Configuring Oracle GoldenGate in a Multitenant
Container Database.

• For non-CDB databases, see Establishing Oracle GoldenGate Credentials

As the oracle OS user on the source database system, execute the following SQL
instructions to create the database user for Oracle GoldenGate and assign the
required privileges:

[opc@exadb1_node1 ~]$ sudo su - oracle
[oracle@exadb1_node1 ~]$ source dbName.env
[oracle@exadb1_node1 ~]$ sqlplus / as sysdba

Source CDB
SQL>
alter session set container=cdb$root;
create user c##ggadmin identified by "ggadmin_password" container=all
default tablespace USERS temporary tablespace temp;
alter user c##ggadmin quota unlimited on users;
grant set container to c##ggadmin container=all;
grant alter system to c##ggadmin container=all;
grant create session to c##ggadmin container=all;
grant alter any table to c##ggadmin container=all;
grant resource to c##ggadmin container=all;
exec
dbms_goldengate_auth.grant_admin_privilege('c##ggadmin',container=>'all
');

Source PDB
SQL>
alter session set container=pdbName;
create user ggadmin identified by "ggadmin_password" container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

Chapter 19
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

19-14

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-E40B375A-5042-4195-B563-BE7EDC251880

As the oracle OS user on the target system, execute the following SQL instructions to create
the database user for Oracle GoldenGate and assign the required privileges:

[opc@exadb2_node1 ~]$ sudo su - oracle
[oracle@exadb2_node1 ~]$ source dbName.env
[oracle@exadb2_node1 ~]$ sqlplus / as sysdba

Target PDB
SQL>
alter session set container=pdbName;
create user ggadmin identified by "ggadmin_password" container=current;
grant alter system to ggadmin container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
grant dv_goldengate_admin, dv_goldengate_redo_access to ggadmin
container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

Step 1.3 - Create the Database Services

If the source and target databases are running the recommended configuration on an Oracle
RAC cluster with Oracle Data Guard, a role-based service must be created that allows the
Extract or Replicat processes to connect to the correct Data Guard primary database
instance.

When using a source multitenant database, a separate service is required for the root
container database (CDB) and the pluggable database (PDB) that contains the schema being
replicated. For a target multitenant database, a single service is required for the PDB.

As the oracle OS user on the primary database system, use dbaascli to find the CDB and
PDB name, as shown here:

[opc@exadb1_node1 ~]$ sudo su - oracle
[oracle@exadb1_node1 ~]$ source dbName.env
[oracle@exadb1_node1 ~]$ dbaascli database getDetails
 --dbname dbName |egrep 'dbName|pdbName'

 "dbName" : "dbName",
 "pdbName" : "pdbName",

As the oracle OS user on the primary and standby database systems, create and start the
CDB database service using the following command:

[opc@exadb1_node1 ~]$ sudo su - oracle
[oracle@exadb1_node1 ~]$ source dbName.env
[oracle@exadb1_node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service dbName.goldengate.com -preferred ORACLE_SID1
 -available ORACLE_SID2 -role PRIMARY

Chapter 19
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

19-15

As the oracle OS user on the primary and standby database systems, create and start
the PDB database service using the following command:

[oracle@exadb1_node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service dbName.pdbName.goldengate.com -preferred ORACLE_SID1
 -available ORACLE_SID2 -pdb pdbName -role PRIMARY

As the oracle OS user on the primary and standby database systems, start and verify
that the services are running, as shown here:

[oracle@exadb1_node1 ~]$ srvctl start service -db $ORACLE_UNQNAME -role
[oracle@exadb1_node1 ~]$ srvctl status service -d $ORACLE_UNQNAME |
grep goldengate

Service dbName.goldengate.com is running on instance(s) SID1
Service dbName.pdbName.goldengate.com is running on instance(s) SID1

Note:

Repeat step 1.3 in the source and target database system.

Task 2: Prepare a Primary and Standby Base System for
GGHub

Perform the following steps to complete this task:

• Step 2.1 - Deploy Oracle 2-node Cluster System

• Step 2.2 - Remove the Standard Database and Rearrange the Diskgroup Layout

• Step 2.3 - Download the Required Software

• Step 2.4 - Configure Oracle Linux to use the Oracle Public YUM Repository

Step 2.1 - Deploy Oracle 2-node Cluster System

Deploy a minimum of two GGHub per region (primary and standby). Each GGHub
must be deployed as a 2-node Oracle RAC database system as described in Oracle
Base Database Service.

Chapter 19
Task 2: Prepare a Primary and Standby Base System for GGHub

19-16

https://docs.oracle.com/en/cloud/paas/bm-and-vm-dbs-cloud/aboutbmvmdbs/index.html#articletitle
https://docs.oracle.com/en/cloud/paas/bm-and-vm-dbs-cloud/aboutbmvmdbs/index.html#articletitle

Figure 19-3 Oracle GoldenGate Hub Hardware Architecture

Availability Domain 1 Availability Domain 2

Primary GGHUB

2-node RAC
Database system

Standby GGHUB

2-node RAC
Database system

ACFS
Replication

Step 2.2 - Remove the Standard Database and Rearrange the Diskgroup Layout

1. As the oracle OS user on the first GGHub node, remove the standard database:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghubN-node1 ~]$ dbca -deleteDatabase -silent -
sourceDB $ORACLE_UNQNAME
Enter SYS user password: ##############

[WARNING] [DBT-19202] The Database Configuration Assistant will delete
the Oracle instances and datafiles for your database. All information in
the database will be destroyed.
Prepare for db operation
32% complete
Connecting to database
39% complete
...
100% complete
Database deletion completed.
Look at the log file "/u01/app/oracle/cfgtoollogs/dbca/DB0502_fra2pr/
DB0502_fra2pr.log" for further details.

2. As the grid OS user on the second GGHub node, dismount the RECO diskgroup:

[opc@gghub_prim2 ~]$ sudo su - grid
[grid@gghub_prim2 ~]$ sqlplus / as sysasm

SQL> alter diskgroup RECO dismount;

3. As the grid OS user on the first gghub node, drop the RECO diskgroup and assign the
disks to the DATA diskgroup:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ sqlplus / as sysasm

Chapter 19
Task 2: Prepare a Primary and Standby Base System for GGHub

19-17

SQL>
drop diskgroup RECO INCLUDING CONTENTS;
alter diskgroup DATA add disk '/dev/RECODISK1';
alter diskgroup DATA add disk '/dev/RECODISK2';
alter diskgroup DATA add disk '/dev/RECODISK3';
alter diskgroup DATA add disk '/dev/RECODISK4';

4. As the root OS user on all GGhub nodes, reboot the node:

[opc@gghub_prim1 ~]$ sudo reboot

Note:

Repeat this step in the primary and standby GGHubs.

Step 2.3 - Download the Required Software

1. As the opc OS user on all GGHub nodes, create the staging and scripts
directories:

[opc@gghub_prim1 ~]$
sudo mkdir -p /u01/oracle/stage
sudo mkdir /u01/oracle/scripts
sudo chown -R oracle:oinstall /u01/oracle
sudo chmod -R g+w /u01/oracle
sudo chmod -R o+w /u01/oracle/stage

2. As the opc OS user on all GGHub nodes, download the following software in the
directory /u01/oracle/stage:

• Download Oracle GoldenGate 21c (or later release) Microservices software
from Oracle GoldenGate Downloads.

• Download subsequent patches to the base release from the Patches and
Updates tab of My Oracle Support.

– See Installing Patches for Oracle GoldenGate Microservices Architecture
for more information.

– Minimum required version is Patch 35214851: Oracle GoldenGate
21.9.0.0.2 Microservices for Oracle

• Download the latest OPatch release, Patch 6880880, for Oracle Database 21c
(21.0.0.0.0) from My Oracle Support Document 2542082.1.

• Download the Oracle Grid Infrastructure Standalone Agents for Oracle
Clusterware 19c, release 10.2 or later, from Oracle Grid Infrastructure
Standalone Agents for Oracle Clusterware.

• Download the python script (secureServices.py) from My Oracle Support
Document 2826001.1

• Download the Oracle GGHUB Scripts from My Oracle Support Document
2951572.1

Chapter 19
Task 2: Prepare a Primary and Standby Base System for GGHub

19-18

http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html
http://support.oracle.com
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/install-installing-patches-ma.html#GUID-BE9C5FCD-9DC0-4452-B232-123BA82979D0
https://support.oracle.com/rs?type=doc&id=2542082.1
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
https://support.oracle.com/rs?type=doc&id=2826001.1
https://support.oracle.com/rs?type=doc&id=2951572.1
https://support.oracle.com/rs?type=doc&id=2951572.1

3. As the grid OS user on all GGHub nodes, unzip the GGhub scripts file downloaded from
My Oracle Support Document 2951572.1 into the directory /u01/oracle/scripts.

Place the script in the same location on all primary and standby GGhub nodes

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ unzip -q /u01/oracle/stage/
gghub_scripts_YYYYYMMDD.zip -d /u01/oracle/scripts/

Step 2.4 - Configure Oracle Linux to use the Oracle Public YUM Repository

The Oracle Linux yum server hosts software for Oracle Linux and compatible distributions.
These instructions help you get started configuring your Linux system for Oracle Linux yum
server and installing software through yum.

• As the root OS user in all GGHub systems, create the file /etc/yum.repos.d/oracle-
public-yum-ol7.repo with the following contents:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]#
cat > /etc/yum.repos.d/oracle-public-yum-ol7.repo <<EOF
[ol7_latest]
name=Oracle Linux $releasever Latest ($basearch)
baseurl=http://yum$ociregion.oracle.com/repo/OracleLinux/OL7/latest/
\$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
EOF

Task 3: Configure Oracle GoldenGate for the Primary and
Standby GGHub

Perform the following steps to complete this task:

• Step 3.1 - Install and Patch Oracle GoldenGate Software

• Step 3.2 - Setup Oracle GoldenGate Hub Architecture Network Configuration

• Step 3.3 - Configure ACFS File System Replication between GGHUBs in the Same
Region

Step 3.1 - Install and Patch Oracle GoldenGate Software

Install and patch Oracle GoldenGate software locally on all nodes of the primary and standby
GGHub configuration that will be part of the GoldenGate configuration. Make sure the
installation directory is identical on all nodes.

Perform the following sub-steps to complete this step:

• Step 3.1.1 Unzip the Software and Create the Response File for the Installation

• Step 3.1.2 Install Oracle GoldenGate Software

• Step 3.1.3 Installing Patches for Oracle GoldenGate Microservices Architecture

Step 3.1.1 Unzip the Software and Create the Response File for the Installation

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-19

https://support.oracle.com/rs?type=doc&id=2951572.1

As the oracle OS user on all GGHub nodes, unzip the Oracle GoldenGate software:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ unzip
 /u01/oracle/stage/
213000_fbo_ggs_Linux_x64_Oracle_services_shiphome.zip
 -d /u01/oracle/stage

The software includes an example response file for Oracle Database 21c and earlier
supported versions. Copy the response file to a shared file system, so the same file
can be used to install Oracle GoldenGate on all database nodes, and edit the following
parameters:

• INSTALL_OPTION=ora21c
• SOFTWARE_LOCATION=/u01/app/oracle/goldengate/gg21c (recommended

location)
As the oracle OS user on all GGHub nodes, copy and edit the response file for the
installation:

[oracle@gghub_prim1 ~]$ cp
 /u01/oracle/stage/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1/
response/oggcore.rsp
 /u01/oracle/stage
[oracle@gghub_prim1 ~]$ vi /u01/oracle/stage/oggcore.rsp

Before
INSTALL_OPTION=
SOFTWARE_LOCATION=

After
INSTALL_OPTION=ora21c
SOFTWARE_LOCATION=/u01/app/oracle/goldengate/gg21c

Step 3.1.2 Install Oracle GoldenGate Software

As the oracle OS user on all GGHub nodes, run runInstaller to install Oracle
GoldenGate:

[oracle@gghub_prim1 ~]$ cd
 /u01/oracle/stage/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1/
[oracle@gghub_prim1 ~]$./runInstaller -silent -nowait
 -responseFile /u01/oracle/stage/oggcore.rsp

Starting Oracle Universal Installer...

Checking Temp space: must be greater than 120 MB. Actual 32755 MB
Passed
Checking swap space: must be greater than 150 MB. Actual 16383 MB
Passed
Preparing to launch Oracle Universal Installer from
 /tmp/OraInstall2022-07-08_02-54-51PM.
 Please wait ...
You can find the log of this install session at:

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-20

 /u01/app/oraInventory/logs/installActions2022-07-08_02-54-51PM.log
Successfully Setup Software.
The installation of Oracle GoldenGate Services was successful.
Please check
 '/u01/app/oraInventory/logs/silentInstall2022-07-08_02-54-51PM.log'
 for more details.

[oracle@gghub_prim1 ~]$ cat
 /u01/app/oraInventory/logs/silentInstall2022-07-08_02-54-51PM.log

The installation of Oracle GoldenGate Services was successful.

Step 3.1.3 Installing Patches for Oracle GoldenGate Microservices Architecture

As the oracle OS user on all GGHub nodes, install the latest OPatch:

[oracle@gghub_prim1 ~]$ unzip -oq -d
 /u01/app/oracle/goldengate/gg21c
 /u01/oracle/stage/p6880880_210000_Linux-x86-64.zip
[oracle@gghub_prim1 ~]$ cat >> ~/.bashrc <<EOF
export ORACLE_HOME=/u01/app/oracle/goldengate/gg21c
export PATH=$ORACLE_HOME/OPatch:$PATH
EOF
[oracle@gghub_prim1 ~]$. ~/.bashrc
[oracle@gghub_prim1 ~]$ opatch lsinventory |grep
 'Oracle GoldenGate Services'

Oracle GoldenGate Services 21.1.0.0.0

[oracle@gghub_prim1 Disk1]$ opatch version
OPatch Version: 12.2.0.1.37

OPatch succeeded.

As the oracle OS user on all GGHub nodes, run OPatch prereq to validate any conflict
before applying the patch:

[oracle@gghub_prim1 ~]$ unzip -oq -d /u01/oracle/stage/
 /u01/oracle/stage/p35214851_219000OGGRU_Linux-x86-64.zip
[oracle@gghub_prim1 ~]$ cd /u01/oracle/stage/35214851/
[oracle@gghub_prim1 35214851]$ opatch prereq
 CheckConflictAgainstOHWithDetail -ph ./

Oracle Interim Patch Installer version 12.2.0.1.26
Copyright (c) 2023, Oracle Corporation. All rights reserved.

PREREQ session

Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.26
OUI version : 12.2.0.9.0

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-21

Log file location :
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_13-44-16PM_1.log

Invoking prereq "checkconflictagainstohwithdetail"

Prereq "checkConflictAgainstOHWithDetail" passed.

OPatch succeeded.

As the oracle OS user on all GGHub nodes, patch Oracle GoldenGate Microservices
Architecture using OPatch:

[oracle@gghub_prim1 35214851]$ opatch apply

Oracle Interim Patch Installer version 12.2.0.1.37
Copyright (c) 2023, Oracle Corporation. All rights reserved.

Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.37
OUI version : 12.2.0.9.0
Log file location :
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log
Verifying environment and performing prerequisite checks...
OPatch continues with these patches: 35214851

Do you want to proceed? [y|n]
y
User Responded with: Y
All checks passed.

Please shutdown Oracle instances running out of this ORACLE_HOME on
 the local system.
(Oracle Home = '/u01/app/oracle/goldengate/gg21c'

Is the local system ready for patching? [y|n]
y
User Responded with: Y
Backing up files...
Applying interim patch '35214851' to OH '/u01/app/oracle/goldengate/
gg21c'

Patching component oracle.oggcore.services.ora21c, 21.1.0.0.0...
Patch 35214851 successfully applied.
Log file location:
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log

OPatch succeeded.

[oracle@gghub_prim1 35214851]$ opatch lspatches

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-22

35214851;

OPatch succeeded.

Note:

Repeat all of the steps in step 3.1 for the primary and standby GGHub systems.

Step 3.2 - Configure the Cloud Network

You must configure virtual cloud network (VCN) components such as private DNS zones, VIP,
bastion, security lists, and firewalls for Oracle GoldenGate to function correctly.

To learn more about VCNs and security lists, including instructions for creating them, see the
Oracle Cloud Infrastructure Networking documentation.

Perform the following sub-steps to complete this step:

• Step 3.2.1 - Create an Application Virtual IP Address (VIP) for GGhub

• Step 3.2.2 - Add an Ingress Rule for port 443

• Step 3.2.3 - Open Port 443 in the GGhub Firewall

• Step 3.2.4 - Configure Network Connectivity Between the Primary and Standby GGHUB
Systems

• Step 3.2.5 - Configure Private DNS Zones Views and Resolvers

Step 3.2.1 - Create an Application Virtual IP Address (VIP) for GGhub

A dedicated application VIP is required to allow access to the GoldenGate Microservices
using the same host name, regardless of which node of the cluster is hosting the services.
The VIP is assigned to the GGHUB system and is automatically migrated to another node in
the event of a node failure. Two VIPs are required, one for the primary and another one for
the standby GGHUBs.

As the grid OS user on all GGhub nodes, run the following commands to get the vnicId of
the Private Endpoint in the same subnet at resource ora.net1.network:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ crsctl status resource -p -attr NAME,USR_ORA_SUBNET
 -w "TYPE = ora.network.type" |sort | uniq

NAME=ora.net1.network
USR_ORA_SUBNET=10.60.2.0

[grid@gghub_prim1 ~]$ curl 169.254.169.254/opc/v1/vnics

[
 {
 "macAddr": "02:00:17:04:70:AF",
 "privateIp": "10.60.2.120",
 "subnetCidrBlock": "10.60.2.0/24",
 "virtualRouterIp": "10.60.2.1",
 "vlanTag": 3085,

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-23

https://docs.cloud.oracle.com/iaas/Content/Network/Concepts/overview.htm

 "vnicId": "ocid1.vnic.oc1.eu-frankfurt-1.ocid_value"
 },
 {
 "macAddr": "02:00:17:08:69:6E",
 "privateIp": "192.168.16.18",
 "subnetCidrBlock": "192.168.16.16/28",
 "virtualRouterIp": "192.168.16.17",
 "vlanTag": 879,
 "vnicId": "ocid1.vnic.oc1.eu-frankfurt-1.ocid_value"
 }
[grid@gghub_prim2 ~]$ curl 169.254.169.254/opc/v1/vnics

[
 {
 "macAddr": "00:00:17:00:C9:19",
 "privateIp": "10.60.2.148",
 "subnetCidrBlock": "10.60.2.0/24",
 "virtualRouterIp": "10.60.2.1",
 "vlanTag": 572,
 "vnicId": "ocid1.vnic.oc1.eu-frankfurt-1.ocid_value"
 },
 {
 "macAddr": "02:00:17:00:84:B5",
 "privateIp": "192.168.16.19",
 "subnetCidrBlock": "192.168.16.16/28",
 "virtualRouterIp": "192.168.16.17",
 "vlanTag": 3352,
 "vnicId": "ocid1.vnic.oc1.eu-frankfurt-1.ocid_value"
 }

Note:

For the next step, you will need to use the Cloud Shell to assign the private
IP to the GGHUB nodes. See Using Cloud Shell for more information.

As your user on the cloud shell, run the following commands to assign the private IP to
the GGHUB nodes:

username@cloudshell:~ (eu-frankfurt-1)$ export node1_vnic=
'ocid1.vnic.oc1.eu-
frankfurt-1.abtheljrl5udtgryrscypy5btmlfncawqkjlcql3kkpj64e2lb5xbmbrehk
q'
username@cloudshell:~ (eu-frankfurt-1)$ export node2_vnic=
'ocid1.vnic.oc1.eu-
frankfurt-1.abtheljre6rf3xoxtgl2gam3lav4vcyftz5fppm2ciin4wzjxucalzj7b2b
q'
username@cloudshell:~ (eu-frankfurt-1)$ export ip_address='10.60.2.65'
username@cloudshell:~ (eu-frankfurt-1)$ oci network vnic assign-
private-ip
 --unassign-if-already-assigned --vnic-id $node1_vnic --ip-
address $ip_address
username@cloudshell:~ (eu-frankfurt-1)$ oci network vnic assign-

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-24

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/devcloudshellgettingstarted.htm

private-ip
 --unassign-if-already-assigned --vnic-id $node2_vnic --ip-
address $ip_address

Example of the output:
{
 "data": {
 "availability-domain": null,
 "compartment-id": "ocid1.compartment.oc1..ocid_value",
 "defined-tags": {},
 "display-name": "privateip20230292502117",
 "freeform-tags": {},
 "hostname-label": null,
 "id": "ocid1.privateip.oc1.eu-frankfurt-1.ocid_value",
 "ip-address": "10.60.2.65",
 "is-primary": false,
 "subnet-id": "ocid1.subnet.oc1.eu-frankfurt-1.ocid_value",
 "time-created": "2023-07-27T10:21:17.851000+00:00",
 "vlan-id": null,
 "vnic-id": "ocid1.vnic.oc1.eu-frankfurt-1.ocid_value"
 },
 "etag": "da972988"
}

As the root OS user on the first GGhub node, run the following command to create the
application VIP managed by Oracle Clusterware:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_appvip.sh

Application VIP Name: gghub_prim_vip
Application VIP Address: 10.60.2.65
Using configuration parameter file:
 /u01/app/19.0.0.0/grid/crs/install/crsconfig_params
The log of current session can be found at:
 /u01/app/grid/crsdata/gghublb1/scripts/appvipcfg.log

Note:

Repeat all the steps in step 3.2.1 for the primary and standby GGHUB systems.

Step 3.2.2 - Add the Ingress Security List Rules

Using the Cloud Console, add two ingress security list rules in the Virtual Cloud Network
(VCN) assigned to the GGhub.

One ingress rule is for TCP traffic on destination port 443 from authorized source IP
addresses and any source port to connect to the Oracle GoldenGate service using NGINX as
a reverse proxy, and the other is for allowing ICMP TYPE 8 (ECHO) between the primary and
standby GGhubs required to enable ACFS replication. For more information, see Working
with Security Lists and My Oracle Support Document 2584309.1.

After you update the security list, it will have an entry with values similar to the following ones:

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-25

https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/securitylists.htm
https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/securitylists.htm
https://support.oracle.com/rs?type=doc&id=2584309.1

1. NGINX - TCP 443

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: TCP

• Source Port Range: All

• Destination Port Range: 443

• Allows: TCP traffic for ports: 443 HTTPS

• Description: Oracle GoldenGate 443

2. ACFS - ICMP TYPE 8 (ECHO)

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: ICMP

• Allows: ICMP traffic for: 8 Echo

• Description: Required for ACFS replication

Step 3.2.3 - Open Port 443 in the GGhub Firewall

As the opc OS user on all GGhub nodes of the primary and standby system, add the
required rules to IPTables:

[opc@gghub_prim1 ~]$ sudo vi /etc/sysconfig/iptables

-A INPUT -p tcp -m state --state NEW -m tcp --dport 443 -j ACCEPT
 -m comment --comment "Required for access to GoldenGate, Do not remove
 or modify. "
-A INPUT -p tcp -m state --state NEW -m tcp --match multiport
 --dports 9100:9105 -j ACCEPT -m comment --comment "Required for access
 to GoldenGate, Do not remove or modify. "

[opc@gghub_prim1 ~]$ sudo systemctl restart iptables

Note:

See Implementing Oracle Linux Security for more information.

Step 3.2.4 - Configure Network Connectivity Between the Primary and Standby
GGHUB Systems

Oracle ACFS snapshot-based replication uses ssh as the transport between the
primary and standby clusters. To support ACFS replication, ssh must be usable in
either direction between the clusters — from the primary cluster to the standby cluster
and from the standby to the primary. See Configuring ssh for Use With Oracle ACFS
Replication in Oracle Automatic Storage Management Administrator's Guide.

To learn more about whether subnets are public or private, including instructions for
creating the connection, see section Connectivity Choices in the Oracle Cloud
Infrastructure Networking documentation.

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-26

https://docs.oracle.com/en/operating-systems/oracle-linux/7/security/security-ImplementingOracleLinuxSecurity.html#ol7-implement-sec
https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/overview.htm#connectivity

Step 3.2.5 - Configure Private DNS Zones Views and Resolvers

You must create a private DNS zone view and records for each application VIP. This is
required for the primary GGHUB to reach the standby GGHUB deployment VIP host name.

Follow the steps in Configure private DNS zones views and resolvers to create your private
DNS zone and a record entry for each dedicated GGHUB application virtual IP address (VIP)
created in Step 3.2.1.

As the opc OS user on any GGhub node, validate that all application VIPs can be resolved:

[opc@gghub_prim1 ~]$ nslookup
 gghub_prim_vip.frankfurt.goldengate.com |tail -2

Address: 10.60.2.120

[opc@gghub_prim1 ~]$ nslookup
 gghub_stby_vip.frankfurt.goldengate.com |tail -2

Address: 10.60.0.185

Step 3.3 - Configure ACFS File System Replication between GGHUBs in the Same
Region

Oracle GoldenGate Microservices Architecture is designed with a simplified installation and
deployment directory structure. The installation directory: should be placed on local storage
on each database node to minimize downtime during software patching. The deployment
directory: which is created during deployment creation using the Oracle GoldenGate
Configuration Assistant (oggca.sh), must be placed on a shared file system. The deployment
directory contains configuration, security, log, parameter, trail, and checkpoint files. Placing
the deployment in Oracle Automatic Storage Management Cluster File system (ACFS)
provides the best recoverability and failover capabilities in the event of a system failure.
Ensuring the availability of the checkpoint files cluster-wide is essential so that the
GoldenGate processes can continue running from their last known position after a failure
occurs.

It is recommended that you allocate enough trail file disk space for a minimum of 12 hours of
trail files. Doing this will give sufficient space for trail file generation should a problem occur
with the target environment that prevents it from receiving new trail files. The amount of
space needed for 12 hours can only be determined by testing trail file generation rates with
real production data. If you want to build contingency for a long planned maintenance event
of one of the GoldenGate Primary Database or systems, you can allocate sufficient ACFS
space for 2 days. Monitoring space utilization is always recommended regardless of how
much space is allocated.

Note:

If the GoldenGate hub will support multiple service manager deployments using
separate ACFS file systems, the following steps should be repeated for each file
ACFS file system.

Perform the following sub-steps to complete this step:

• Step 3.3.1 - Create the ASM File system

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-27

https://docs.oracle.com/en/learn/oci_private_dns/index.html#introduction

• Step 3.3.2 - Create the Cluster Ready Services (CRS) Resource

• Step 3.3.3 - Verify the Currently Configured ACFS File System

• Step 3.3.4 - Start and Check the Status of the ACFS Resource

• Step 3.3.5 – Create CRS Dependencies Between ACFS and an Application VIP

• Step 3.3.6 – Create the SSH Daemon CRS Resource

• Step 3.3.7 – Enable ACFS Replication

• Step 3.3.8 – Create the ACFS Replication CRS Action Scripts

Step 3.3.1 - Create the ASM File system

As the grid OS user on the first GGHUB node, use asmcmd to create the ACFS
volume:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ asmcmd volcreate -G DATA -s 120G ACFS_GG1

Note:

Modify the file system size according to the determined size requirements.

As the grid OS user on the first GGHUB node, use asmcmd to confirm the “Volume
Device”:

[grid@gghub_prim1 ~]$ asmcmd volinfo -G DATA ACFS_GG1

Diskgroup Name: DATA
 Volume Name: ACFS_GG1
 Volume Device: /dev/asm/acfs_gg1-256
 State: ENABLED
 Size (MB): 1228800
 Resize Unit (MB): 64
 Redundancy: UNPROT
 Stripe Columns: 8
 Stripe Width (K): 1024
 Usage:
 Mountpath:

As the grid OS user on the first GGHUB node, format the partition with the following
mkfs command:

[grid@gghub_prim1 ~]$ /sbin/mkfs -t acfs /dev/asm/acfs_gg1-256

mkfs.acfs: version = 19.0.0.0.0
mkfs.acfs: on-disk version = 46.0
mkfs.acfs: volume = /dev/asm/acfs_gg1-256
mkfs.acfs: volume size = 128849018880 (120.00 GB)
mkfs.acfs: Format complete.

Step 3.3.2 - Create the Cluster Ready Services (CRS) Resource

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-28

As the opc OS user on all GGHUB nodes, create the ACFS mount point:

[opc@gghub_prim1 ~]$ sudo mkdir -p /mnt/acfs_gg1
[opc@gghub_prim1 ~]$ sudo chown oracle:oinstall /mnt/acfs_gg1

Create the file system resource as the root user. Due to the implementation of distributed file
locking on ACFS, unlike DBFS, it is acceptable to mount ACFS on more than one GGhub
node at any one time.

As the root OS user on the first GGHUB node, create the CRS resource for the new ACFS
file system:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]#

cat > /u01/oracle/scripts/add_asm_filesystem.sh <<EOF
Run as ROOT
$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/bin/srvctl
 add filesystem \
-device /dev/asm/<acfs_volume> \
-volume ACFS_GG1 \
-diskgroup DATA \
-path /mnt/acfs_gg1 -user oracle \
-node gghub_prim1,gghub_prim2 \
-autostart NEVER \
-mountowner oracle \
-mountgroup oinstall \
-mountperm 755
EOF
[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_asm_filesystem.sh

Step 3.3.3 - Verify the Currently Configured ACFS File System

As the grid OS user on the first GGHUB node, use the following command to validate the file
system details:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ srvctl config filesystem -volume ACFS_GG1
 -diskgroup DATA

Volume device: /dev/asm/acfs_gg1-256
Diskgroup name: data
Volume name: acfs_gg1
Canonical volume device: /dev/asm/acfs_gg1-256
Accelerator volume devices:
Mountpoint path: /mnt/acfs_gg1
Mount point owner: oracle
Mount point group: oinstall
Mount permissions: owner:oracle:rwx,pgrp:oinstall:r-x,other::r-x
Mount users: grid
Type: ACFS
Mount options:
Description:

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-29

Nodes: gghub_prim1 gghub_prim2
Server pools: *
Application ID:
ACFS file system is enabled
ACFS file system is individually enabled on nodes:
ACFS file system is individually disabled on nodes:

Step 3.3.4 - Start and Check the Status of the ACFS Resource

As the grid OS user on the first gghub node, use the following command to start and
check the file system:

[grid@gghub_prim1 ~]$ srvctl start filesystem -volume ACFS_GG1
 -diskgroup DATA -node `hostname`
[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

The CRS resource created is named using the format
ora.diskgroup_name.volume_name.acfs. Using the above file system example, the
CRS resource is called ora.data.acfs_gg.acfs.

As the grid OS user on the first gghub node, use the following command to see the
ACFS resource in CRS:

[grid@gghub_prim1 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg1.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

Step 3.3.5 – Create CRS Dependencies Between ACFS and an Application VIP

To ensure that the file system is mounted on the same Oracle GGhub node as the VIP,
add the VIP CRS resource as a dependency to the ACFS resource, using the following
example commands. Each separate replicated ACFS file system will have its own
dedicated VIP.

As the grid OS user on the first GGHub node, use the following command determine
the current start and stop dependencies of the VIP resource:

[grid@gghub_prim1 ~]$ export appvip='gghub_prim_vip'
[grid@gghub_prim1 ~]$ crsctl stat res $appvip -f|grep _DEPENDENCIES

START_DEPENDENCIES=hard(ora.net1.network) pullup(ora.net1.network)
STOP_DEPENDENCIES=hard(intermediate:ora.net1.network)

As the grid OS user on the first gghub node, determine the ACFS file system name:

[grid@gghub_prim1 ~]$ crsctl stat res -w "NAME co acfs_gg1"
 |grep NAME

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-30

NAME=ora.data.acfs_gg.acfs

As the root OS user on the first GGHUB node, modify the start and stop dependencies of the
VIP resource:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# export appvip='gghub_prim_vip'

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl modify res $appvip -attr
"START_DEPENDENCIES='hard(ora.net1.network,ora.data.acfs_gg1.acfs)
 pullup(ora.net1.network) pullup:always(ora.data.acfs_gg1.acfs)'"

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl modify res $appvip -attr

"STOP_DEPENDENCIES='hard(intermediate:ora.net1.network,ora.data.acfs_gg1.acfs
)'"

Note:

Substitute acfs_gg1 for the correct ACFS volume name.

As the grid OS user on the first GGHUB node, start the VIP resource:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ export appvip='gghub_prim_vip'

[grid@gghub_prim1 ~]$ crsctl start resource $appvip
CRS-2672: Attempting to start 'gghub_prim_vip' on 'gghub_prim1'
CRS-2676: Start of 'gghub_prim_vip' on 'gghub_prim1' succeeded

Note:

Before moving to the next step, it is important to make sure that the VIP can be
mounted on both GoldenGate Hub nodes.

As the grid OS user on the first GGHUB node, relocate the VIP resource:

[grid@gghub_prim1 ~]$ crsctl relocate resource $appvip -f

CRS-2673: Attempting to stop 'gghub_prim_vip' on 'gghub_prim1'
CRS-2677: Stop of 'gghub_prim_vip' on 'gghub_prim1' succeeded
CRS-2673: Attempting to stop 'ora.data.acfs_gg1.acfs' on 'gghub_prim1'
CRS-2677: Stop of 'ora.data.acfs_gg1.acfs' on 'gghub_prim1' succeeded
CRS-2672: Attempting to start 'ora.data.acfs_gg1.acfs' on 'gghub_prim2'
CRS-2676: Start of 'ora.data.acfs_gg1.acfs' on 'gghub_prim2' succeeded
CRS-2672: Attempting to start 'gghub_prim_vip' on 'gghub_prim2'

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-31

CRS-2676: Start of 'gghub_prim_vip' on 'gghub_prim2' succeeded

[grid@gghub_prim1 ~]$ crsctl status resource $appvip

NAME=gghub_prim_vip
TYPE=app.appviptypex2.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim2

[grid@gghub_prim1 ~]$ crsctl relocate resource $appvip -f

CRS-2673: Attempting to stop 'gghub_prim_vip' on 'gghub_prim2'
CRS-2677: Stop of 'gghub_prim_vip' on 'gghub_prim2' succeeded
CRS-2673: Attempting to stop 'ora.data.acfs_gg1.acfs' on 'gghub_prim2'
CRS-2677: Stop of 'ora.data.acfs_gg1.acfs' on 'gghub_prim2' succeeded
CRS-2672: Attempting to start 'ora.data.acfs_gg1.acfs' on 'gghub_prim1'
CRS-2676: Start of 'ora.data.acfs_gg1.acfs' on 'gghub_prim1' succeeded
CRS-2672: Attempting to start 'gghub_prim_vip' on 'gghub_prim1'
CRS-2676: Start of 'gghub_prim_vip' on 'gghub_prim1' succeeded

As the grid OS user on the first GGHUB node, check the status of the ACFS file
system:

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

Step 3.3.6 – Create the SSH Daemon CRS Resource

ACFS replication uses secure shell (ssh) to communicate between the primary and
standby file systems using the virtual IP addresses that were previously created. When
a server is rebooted, the ssh daemon is started before the VIP CRS resource,
preventing access to the cluster using VIP. The following instructions create an ssh
restart CRS resource that will restart the ssh daemon after the virtual IP resource is
started. A separate ssh restart CRS resource is needed for each replicated file system.

As the grid OS user on all GGHUB nodes, copy the CRS action script to restart the
ssh daemon. Place the script in the same location on all primary and standby GGHUB
nodes:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ unzip /u01/oracle/stage/
gghub_scripts_<YYYYMMDD>.zip
 -d /u01/oracle/scripts/

Archive: /u01/oracle/stage/gghub_scripts_<YYYYMMDD>.zip
 inflating: /u01/oracle/scripts/acfs_primary.scr
 inflating: /u01/oracle/scripts/acfs_standby.scr
 inflating: /u01/oracle/scripts/sshd_restart.scr
 inflating: /u01/oracle/scripts/add_acfs_primary.sh
 inflating: /u01/oracle/scripts/add_acfs_standby.sh
 inflating: /u01/oracle/scripts/add_nginx.sh
 inflating: /u01/oracle/scripts/add_sshd_restart.sh

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-32

 inflating: /u01/oracle/scripts/reverse_proxy_settings.sh
 inflating: /u01/oracle/scripts/secureServices.py

As the root OS user on the first GGHUB node, create the CRS resource using the following
command:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_sshd_restart.sh

Application VIP Name: gghub_prim_vip

As the grid OS user on the first GGHUB node, start and test the CRS resource:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ crsctl stat res sshd_restart
NAME=sshd_restart
TYPE=cluster_resource
TARGET=OFFLINE
STATE=OFFLINE

[grid@gghub_prim1 ~]$ crsctl start res sshd_restart

CRS-2672: Attempting to start 'sshd_restart' on 'gghub_prim1'
CRS-2676: Start of 'sshd_restart' on 'gghub_prim1' succeeded

[grid@gghub_prim1 ~]$ cat /tmp/sshd_restarted
STARTED

[grid@gghubtest1 ~]$ crsctl stop res sshd_restart

CRS-2673: Attempting to stop 'sshd_restart' on 'gghub_prim1'
CRS-2677: Stop of 'sshd_restart' on 'gghub_prim1' succeeded

[grid@gghub1 ~]$ cat /tmp/sshd_restarted
STOPPED

[grid@gghub1 ~]$ crsctl start res sshd_restart

CRS-2672: Attempting to start 'sshd_restart' on 'gghub_prim1'
CRS-2676: Start of 'sshd_restart' on 'gghub_prim1' succeeded

[grid@gghub1 ~]$ crsctl stat res sshd_restart

NAME=sshd_restart
TYPE=cluster_resource
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

Step 3.3.7 – Enable ACFS Replication

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-33

ACFS snapshot-based replication uses openssh to transfer the snapshots from
between the primary and standby hosts using the designated replication user, which is
commonly the grid user.

As the grid OS user in the primary and standby hub systems, follow the instructions
provided in Configuring ssh for Use With Oracle ACFS Replication to configure the ssh
connectivity between the primary and standby nodes.

As the grid OS user on all primary and standby GGHUB nodes, add all VIPs from the
primary and standby system to the known_hosts file for the replication user on all
GGhub nodes:

[grid@gghub_prim1 ~]$ cat ~/.ssh/known_hosts

Example
<hostnanme>,<host_ip>,<vip_name.domain>,<vip> ssh-rsa <ssh-key>

gghub_prim1,10.60.2.65,gghub_prim_vip.frankfurt.goldengate.com,10.60.2.
120
 ssh-rsa <ssh-key>
gghub_prim2,10.60.2.65,gghub_prim_vip.frankfurt.goldengate.com,10.60.2.
148
 ssh-rsa <ssh-key>
gghub_stby1,10.60.0.75,gghub_stby_vip.frankfurt.goldengate.com,10.60.0.
185
 ssh-rsa <ssh-key>
gghub_stby2,10.60.0.75,gghub_stby_vip.frankfurt.goldengate.com,10.60.0.
165
 ssh-rsa <ssh-key>

[grid@gghub_prim1 ~]$ cat ~/.ssh/known_hosts
ssh-rsa <ssh-key> grid@gghub_prim1
ssh-rsa <ssh-key> grid@gghub_prim2
ssh-rsa <ssh-key> grid@gghub_stby1
ssh-rsa <ssh-key> grid@gghub_stby2

As the grid OS user on all primary and standby GGhub nodes, use ssh to test
connectivity between all primary to standby nodes, and in the reverse direction using
ssh as the replication user:

On the Primary GGhub
[grid@gghub_prim1 ~]$ ssh gghub_stby_vip.frankfurt.goldengate.com
hostname
gghub_stby1

[grid@gghub_prim2 ~]$ ssh gghub_stby_vip.frankfurt.goldengate.com
hostname
gghub_stby1

On the Standby GGhub
[grid@gghub_stby1 ~]$ ssh gghub_prim_vip.frankfurt.goldengate.com
hostname
gghub_prim1

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-34

[grid@gghub_stby2 ~]$ ssh gghub_prim_vip.frankfurt.goldengate.com hostname
gghub_prim1

As the grid OS user on the primary and standby GGHUB nodes where ACFS is mounted,
use acfsutil to test connectivity between the primary and the standby nodes:

On the Primary GGhub

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

[grid@gghub_prim1 ~]$ acfsutil repl info -c -u grid
 gghub_prim_vip.frankfurt.goldengate.com
 gghub_stby_vip.frankfurt.goldengate.com /mnt/acfs_gg1
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip.frankfurt.goldengate.com as user grid.

On the Standby GGhub

[grid@gghub_stby1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_stby1

[grid@gghub_stby1 ~]$ acfsutil repl info -c -u grid
 gghub_prim_vip.frankfurt.goldengate.com
gghub_stby_vip.frankfurt.goldengate.com
 /mnt/acfs_gg
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip.frankfurt.goldengate.com as user grid.

If the acfsutil command is run from a GGHUB node where ACFS is not mounted, the error
ACFS-05518 will be shown as expected. Use srvctl status filesytem to find the GGHUB
where ACFS is mounted and re-run the command:

[grid@gghub_prim1 ~]$ acfsutil repl info -c -u
 grid gghub_stby_vip.frankfurt.goldengate.com
 gghub_stby_vip.frankfurt.goldengate.com /mnt/acfs_gg1
acfsutil repl info: ACFS-05518: /mnt/acfs_gg1 is not an ACFS mount point

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim2

[grid@gghub_prim1 ~]$ ssh gghub_prim2
[grid@gghub_prim2 ~]$ acfsutil repl info -c -u grid
 gghub_prim_vip.frankfurt.goldengate.com
 gghub_stby_vip.frankfurt.goldengate.com /mnt/acfs_gg1
A valid 'ssh' connection was detected for standby node

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-35

 gghub_prim_vip.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip.frankfurt.goldengate.com as user grid.

Note:

Make sure the connectivity is verified between all primary nodes to all
standby nodes, as well as in the opposite direction. Only continue when
there are no errors with any of the connection tests.

As the grid OS user on the standby GGhub node where ACFS is currently mounted,
initialize ACFS replication:

[grid@gghub_stby1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_stby1

[grid@gghub_stby1 ~]$ /sbin/acfsutil repl init standby -u grid
 /mnt/acfs_gg1

As the grid OS user on the primary GGhub node where ACFS is currently mounted,
initialize ACFS replication:

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA

ACFS file system /mnt/acfs_gg is mounted on nodes gghub_prim1

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl init primary -C
 -p grid@gghub_prim_vip.frankfurt.goldengate.com
 -s grid@gghub_stby_vip.frankfurt.goldengate.com
 -m /mnt/acfs_gg1 /mnt/acfs_gg1

As the grid OS user on the primary and standby GGhub nodes, monitor the
initialization progress, when the status changes to “Send Completed” it means the
initial primary file system copy has finished and the primary file system is now being
replicated to the standby host:

On the Primary GGhub

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |
 grep Status

Status: Send Completed

On the Standby GGhub

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |
 grep Status

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-36

Status: Receive Completed

As the grid OS user on the primary and standby GGhub nodes, verify and monitor the ACFS
replicated file system:

On the Primary GGhub

[grid@gghub_prim1 ~]$ acfsutil repl util verifystandby /mnt/acfs_gg1

verifystandby returned: 0

On the Standby GGhub

[grid@gghubtest31 ~]$ acfsutil repl util verifyprimary /mnt/acfs_gg1

verifyprimary returned: 0

Note:

Both commands will return a value of 0 (zero) if there are no problems detected.
See Troubleshooting ACFS Replication for monitoring, diagnosing, and resolving
common issues with ACFS Replication before continuing.

As the grid OS user on the primary GGhub node, use the following command to monitor the
status of the ACFS replication:

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Primary
Primary hostname: gghub_prim_vip.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1
Primary status: Running
Background Resources: Active

Standby connect string: grid@gghub_stby_vip.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0 seconds
Sending primary as of: Fri May 05 12:37:02 2023
Status: Send Completed
Lag Time: 00:00:00
Retries made: 0
Last send started at: Fri May 05 12:37:02 2023
Last send completed at: Fri May 05 12:37:12 2023
Elapsed time for last send: 0 days, 0 hours, 0 minutes, 10 seconds
Next send starts at: now
Replicated tags:
Data transfer compression: Off
ssh strict host key checking: On

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-37

Debug log level: 3
Replication ID: 0x4d7d34a

As the grid OS user on the standby GGhub node where ACFS is currently mounted,
use the following command to monitor the status of the ACFS replication:

[grid@gghub_stby1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Standby
Primary hostname: gghub_prim_vip.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1

Standby connect string:
 grid@gghub_stby_vip.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0 seconds
Last sync time with primary: Fri May 05 12:37:02 2023
Receiving primary as of: Fri May 05 12:37:02 2023
Status: Receive Completed
Last receive started at: Fri May 05 12:37:02 2023
Last receive completed at: Fri May 05 12:37:07 2023
Elapsed time for last receive: 0 days, 0 hours, 0 minutes, 5 seconds
Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

Step 3.3.8 – Create the ACFS Replication CRS Action Scripts

To determine the health of the ACFS primary and standby file systems, CRS action
scripts are used. At predefined intervals the action scripts report the health of the file
systems into the CRS trace file crsd_scriptagent_grid.trc, located in the Grid
Infrastructure trace file directory /u01/app/grid/diag/crs/<node_name>/crs/trace
on each of the primary and standby file system of the GGhub nodes.

On both, the primary and standby file system clusters, there are two scripts required.
One to monitor the local primary file system, and if the remote standby file system is
available, and one to monitor the local standby file system and check remote primary
file systems’ availability. Example scripts are provided to implement the ACFS
monitoring, but you must edit them to suit your environment.

Each replicated file system will need its own acfs_primary and acfs_standby action
scripts.

Step 3.3.8.1 - Action Script acfs_primary.scr

The acfs_primary CRS resource checks whether the current ACFS mount is a
primary file system and confirms that the standby file system is accessible and
receiving replicated data. The resource is used to automatically determine if Oracle
GoldenGate can start processes on the primary Oracle GoldenGate hub. If the
standby file system is not accessible by the primary, the example script makes multiple
attempts to verify the standby file system.

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-38

The acfs_primary CRS resource runs on both, the primary and standby hosts, but only
returns success when the current file system is the primary file system, and the standby file
system is accessible. The script must be placed in the same location on all primary and
standby file system nodes.

The following parameters use suggested default settings, which should be tested before
changing their values:

• MOUNT_POINT=/mnt/acfs_gg1
The replicated ACFS mount point

• PATH_NAME=$MOUNT_POINT/status/acfs_primary
Must be unique from other mount files

• ATTEMPTS=3
Number of attempts to check the remote standby file system

• INTERVAL=10
Number of seconds between each attempt

As the grid OS user on all primary and standby GGHUB nodes, edit the acfs_primary.scr
script to match the environment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/acfs_primary.scr

As the oracle OS user on the primary GGhub node where ACFS is currently mounted, run
the following commands to create the status directory:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ mkdir /mnt/acfs_gg1/status
[oracle@gghub_prim1 ~]$ chmod g+w /mnt/acfs_gg1/status

As the grid OS user on the primary and standby GGHUB node where ACFS is currently
mounted, run the following command to register the acfs_primary action script for monitoring
the primary and standby file system:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/add_acfs_primary.sh

crsctl add resource acfs_primary \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=/u01/oracle/scripts/acfs_primary.scr, \
 CHECK_INTERVAL=60, \
 START_DEPENDENCIES='hard(ora.data.acfs_gg1.acfs)
 pullup:always(ora.data.acfs_gg1.acfs)', \
 STOP_DEPENDENCIES='hard(ora.data.acfs_gg1.acfs)', \
 HOSTING_MEMBERS=<hostname>, \
 PLACEMENT=favored, \
 INSTANCE_FAILOVER=0, \
 SERVER_POOLS=*, \
 SCRIPT_TIMEOUT=80, \
 OFFLINE_CHECK_INTERVAL=0, \
 RESTART_ATTEMPTS=0"

[grid@gghub_prim1 ~]$ sh /u01/oracle/scripts/add_acfs_primary.sh

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-39

Note:

Set the HOSTING_MEMBERS parameter to the name of the preferred GGhub
node to mount the primary file system. When running, if the preferred node is
not available, it will automatically run on one of the other nodes.

As the grid OS user on the primary GGhub node where ACFS is currently mounted,
start and check the status of the acfs_primary resource:

[grid@gghub_prim1 ~]$ crsctl start resource acfs_primary

CRS-2672: Attempting to start 'acfs_primary' on 'gghub_prim1'
CRS-2676: Start of 'acfs_primary' on 'gghub_prim1' succeeded

[grid@gghub_prim1 ~]$ crsctl stat resource acfs_primary

NAME=acfs_primary
TYPE=cluster_resource
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

[grid@gghub_prim1 ~]$ grep acfs_primary
 /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc
 |grep check

2023-05-05 12:57:40.372 :CLSDYNAM:2725328640: [acfs_primary]
{1:33562:34377}
 [check] Executing action script:
 /u01/oracle/scripts/acfs_primary.scr[check]
2023-05-05 12:57:42.376 :CLSDYNAM:2725328640: [acfs_primary]
{1:33562:34377}
 [check] SUCCESS: STANDBY file system /mnt/acfs_gg1 is ONLINE

As the grid OS user on the standby GGhub node where ACFS is currently mounted,
start and check the status of the acfs_primary resource. This step should fail because
acfs_primary should ONLY be online on the primary GGhub:

[grid@gghub_stby1 ~]$ crsctl start res acfs_primary -n `hostname`

CRS-2672: Attempting to start 'acfs_primary' on 'gghub_stby1'
CRS-2674: Start of 'acfs_primary' on 'gghub_stby1' succeeded
CRS-2679: Attempting to clean 'acfs_primary' on 'gghub_stby1'
CRS-2681: Clean of 'acfs_primary' on 'gghub_stby1' succeeded
CRS-4000: Command Start failed, or completed with errors.

[grid@gghub_stby1 ~]$ crsctl stat res acfs_primary

NAME=acfs_primary
TYPE=cluster_resource

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-40

TARGET=ONLINE
STATE=OFFLINE

[grid@gghub_stby1 trace]$ grep acfs_primary
 /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc
 |grep check

2023-05-05 13:09:53.343 :CLSDYNAM:3598239488: [acfs_primary]{1:8532:2106}
 [check] Executing action script: /u01/oracle/scripts/acfs_primary.scr[check]
2023-05-05 13:09:53.394 :CLSDYNAM:3598239488: [acfs_primary]{1:8532:2106}
 [check] Detected local standby file system
2023-05-05 13:09:53.493 :CLSDYNAM:1626130176: [acfs_primary]{1:8532:2106}
 [clean] Clean/Abort -- Stopping ACFS file system type checking...

Note:

The status of the acfs_primary resources will only be ONLINE if the ACFS file
system is the primary file system. When starting the resources on a node which is
not currently on the primary cluster an error will be reported because the resource
fails due to being the standby file system. This error can be ignored. The resource
will be in OFFLINE status on the ACFS standby cluster.

Step 3.3.8.2 - Action Script acfs_standby.scr

The acfs_standby resource checks that the local file system is a standby file system and
verifies the remote primary file system status. If the primary file system fails verification
multiple times (controlled by the action script variables), a warning is output to the CRS trace
file crsd_scriptagent_grid.trc located in the Grid Infrastructure trace file
directory /u01/app/grid/diag/crs/<node_name>/crs/trace.

This resource runs on both the primary and standby hosts, but only returns success when the
current file system is the standby file system, and the primary file system is accessible.

The following parameters use suggested default settings, which should be tested before
changing their values.

• MOUNT_POINT=/mnt/acfs_gg
This is the replicated ACFS mount point

• ATTEMPTS=3
Number of tries to check the remote primary file system

• INTERVAL=10
Number of seconds between each attempt

As the grid OS user on all primary and standby GGHUB nodes, edit the acfs_standby.scr
script to match the environment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/acfs_standby.scr

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-41

As the grid OS user on the primary GGHUB node where ACFS is currently mounted,
run the following command to register the acfs_standby action script for monitoring
the primary and standby file system:

[grid@gghub_prim1 ~]$ crsctl stat res -w "TYPE co appvip"
 |grep NAME

NAME=gghub_prim_vip

[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/add_acfs_standby.sh

crsctl add resource acfs_standby \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=/u01/oracle/scripts/acfs_standby.scr, \
 CHECK_INTERVAL=150, \
 CHECK_TIMEOUT=140, \
 START_DEPENDENCIES='hard(ora.data.acfs_gg1.acfs,gghub_prim_vip)
 pullup:always(ora.data.acfs_gg1.acfs,gghub_prim_vip)', \
 STOP_DEPENDENCIES='hard(ora.data.acfs_gg1.acfs,gghub_prim_vip)' \
 OFFLINE_CHECK_INTERVAL=300, \
 RESTART_ATTEMPTS=0, \
 INSTANCE_FAILOVER=0"

[grid@gghub_prim1 ~]$ sh /u01/oracle/scripts/add_acfs_standby.sh

As the grid OS user on the primary GGHUB node where ACFS is currently mounted,
start and check the status of the acfs_standby resource:

[grid@gghub_prim1 ~]$ crsctl start res acfs_standby

CRS-2672: Attempting to start 'acfs_standby' on 'gghub_prim1'
CRS-2676: Start of 'acfs_standby' on 'gghub_prim1' succeeded

[grid@gghub_prim1 ~]$ grep acfs_standby
 /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc
 |egrep 'check|INFO'

2023-05-05 13:22:09.612 :CLSDYNAM:2725328640: [acfs_standby]
{1:33562:34709}
 [start] acfs_standby.scr starting to check ACFS remote primary at
 /mnt/acfs_gg1
2023-05-05 13:22:09.612 :CLSDYNAM:2725328640: [acfs_standby]
{1:33562:34709}
 [check] Executing action script: /u01/oracle/scripts/
acfs_standby.scr[check]
2023-05-05 13:22:09.663 :CLSDYNAM:2725328640: [acfs_standby]
{1:33562:34709}
 [check] Local PRIMARY file system /mnt/acfs_gg1

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-42

As the grid OS user on the standby GGHUB node where ACFS is currently mounted, run the
following command to register the acfs_standby action script for monitoring the primary and
standby file system:

[grid@gghub_stby1 ~]$ crsctl stat res -w "TYPE co appvip"
 |grep NAME

NAME=gghub_stby_vip

[grid@gghub_stby1 ~]$ vi /u01/oracle/scripts/add_acfs_standby.sh

crsctl add resource acfs_standby \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=/u01/oracle/scripts/acfs_standby.scr, \
 CHECK_INTERVAL=150, \
 CHECK_TIMEOUT=140, \
 START_DEPENDENCIES='hard(ora.data.acfs_gg1.acfs,gghub_stby_vip)
 pullup:always(ora.data.acfs_gg1.acfs,gghub_stby_vip)', \
 STOP_DEPENDENCIES='hard(ora.data.acfs_gg1.acfs,gghub_stby_vip)' \
 OFFLINE_CHECK_INTERVAL=300, \
 RESTART_ATTEMPTS=0, \
 INSTANCE_FAILOVER=0"

[grid@gghub_stby1 ~]$ sh /u01/oracle/scripts/add_acfs_standby.sh

As the grid OS user on the primary GGHUB node where ACFS is currently mounted, start
and check the status of the acfs_standby resource:

[grid@gghub_stby1 ~]$ crsctl start res acfs_standby

CRS-2672: Attempting to start 'acfs_standby' on 'gghub_stby1'
CRS-2676: Start of 'acfs_standby' on 'gghub_stby1' succeeded

[grid@gghub_stby1 ~]$ grep acfs_standby
 /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc
 |egrep 'check|INFO'
2023-05-05 13:25:20.699 :CLSDYNAM:1427187456: [acfs_standby]{1:8532:2281}
 [check] SUCCESS: PRIMARY file system /mnt/acfs_gg1 is ONLINE
2023-05-05 13:25:20.699 : AGFW:1425086208: [INFO] {1:8532:2281}
 acfs_standby 1 1 state changed from: STARTING to: ONLINE
2023-05-05 13:25:20.699 : AGFW:1425086208: [INFO] {1:8532:2281}
 Started implicit monitor for [acfs_standby 1 1]
 interval=150000 delay=150000
2023-05-05 13:25:20.699 : AGFW:1425086208: [INFO] {1:8532:2281}
 Agent sending last reply for: RESOURCE_START[acfs_standby 1 1]
 ID 4098:8346

Step 3.3.9 – Test ACFS GGhub Node Relocation

It is very important to test planned and unplanned ACFS GGhub node relocations and server
role transitions before configuring Oracle GoldenGate.

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-43

As the grid OS user on the primary and standby GGHUB nodes, run the following
command to relocate ACFS between the GGhub nodes:

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

[grid@gghub_prim1 ~]$ srvctl relocate filesystem -diskgroup DATA
 -volume acfs_gg1 -force

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim2

As the grid OS user on the primary and standby GGHUB nodes, verify that the file
system is mounted on another node, along with the VIP, sshd_restart, and the two
ACFS resources (acfs_primary and acfs_standby) using the following example
command:

[grid@gghub_prim1 ~]$ crsctl stat res sshd_restart acfs_primary
 acfs_standby ora.data.acfs_gg1.acfs sshd_restart -t

Name Target State Server State
details

Cluster Resources

acfs_primary
 1 ONLINE ONLINE gghub_prim2 STABLE
acfs_standby
 1 ONLINE ONLINE STABLE
gghubfad2
 1 ONLINE ONLINE gghub_prim2 STABLE
ora.data.acfs_gg1.acfs
 1 ONLINE ONLINE gghub_prim2 mounted
on /mnt/acfs

 _gg1,STABLE
sshd_restart
 1 ONLINE ONLINE gghub_prim2 STABLE

[grid@gghub_stby1 ~]$ crsctl stat res sshd_restart acfs_primary
acfs_standby
 ora.data.acfs_gg1.acfs sshd_restart -t

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-44

Name Target State Server State details

Cluster Resources

acfs_primary
 1 ONLINE OFFLINE STABLE
acfs_standby
 1 ONLINE ONLINE gghub_stby2 STABLE
ora.data.acfs_gg1.acfs
 1 ONLINE ONLINE gghub_stby2 mounted on /mnt/
acfs
 _gg1,STABLE
sshd_restart
 1 ONLINE ONLINE gghub_stby2 STABLE

Step 3.3.10 – Test ACFS Switchover Between the Primary and Standby GGhub

As the grid OS user on the standby GGHUB node, run the following command to issue an
ACFS switchover (role reversal) between the primary and standby GGhub:

[grid@gghub_stby2 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_stby2

[grid@gghub_stby2 ~]$ acfsutil repl failover /mnt/acfs_gg1

[grid@gghub_stby2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Primary
Primary hostname: gghub_stby_vip.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1
Primary status: Running
Background Resources: Active

Standby connect string: gghub_prim_vip.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0 seconds
Sending primary as of: Fri May 05 13:51:37 2023
Status: Send Completed
Lag Time: 00:00:00
Retries made: 0
Last send started at: Fri May 05 13:51:37 2023
Last send completed at: Fri May 05 13:51:48 2023
Elapsed time for last send: 0 days, 0 hours, 0 minutes, 11 seconds

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-45

Next send starts at: now
Replicated tags:
Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

As the grid OS user on the new standby GGHUB node (old primary), run the following
command to issue an ACFS switchover (role reversal) between the primary and
standby GGhub. This step is optional but recommended to return the sites to the
original role:

[grid@gghub_prim2 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg1.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim2

[grid@gghub_prim2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |
grep Site
Site: Standby

[grid@gghub_prim2 ~]$ acfsutil repl failover /mnt/acfs_gg1

[grid@gghub_prim2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |
grep Site

Site: Primary

Step 3.4 - Create the Oracle GoldenGate Deployment

Once the Oracle GoldenGate software has been installed in GGHUB, the next step is
to create a response file to create the GoldenGate deployment using the Oracle
GoldenGate Configuration Assistant.

Due the unified build feature introduced in Oracle GoldenGate 21c, a single
deployment can now manage Extract and Replicat processes that attach to different
Oracle Database versions. Each deployment is created with an Administration Server
and (optionally) Performance Metrics Server. If the GoldenGate trail files don’t need to
be transferred to another hub or GoldenGate environment, there is no need to create a
Distribution or Receiver Server.

There are two limitations that currently exist with Oracle GoldenGate and XAG:

1. A Service Manager that is registered with XAG can only manage a single
deployment. If multiple deployments are required, each deployment must use their
own Service Manager. Oracle GoldenGate release 21c simplifies this requirement
because it uses a single deployment to support Extract and Replicat processes
connecting to different versions of the Oracle Database.

2. Each Service Manager registered with XAG must belong to separate OGG_HOME
software installation directories. Instead of installing Oracle GoldenGate multiple
times, the recommended approach is to install Oracle GoldenGate one time, and

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-46

then create a symbolic link for each Service Manager OGG_HOME. The symbolic link and
OGG_HOME environment variable must be configured before running the Oracle
GoldenGate Configuration Assistant on all Oracle RAC nodes.

Create a Response File

For a silent configuration, please copy the following example file and paste it into any location
the oracle user can access. Edit the following values appropriately:

• CONFIGURATION_OPTION
• DEPLOYMENT_NAME
• ADMINISTRATOR_USER
• SERVICEMANAGER_DEPLOYMENT_HOME
• OGG_SOFTWARE_HOME
• OGG_DEPLOYMENT_HOME
• ENV_TNS_ADMIN
• OGG_SCHEMA
Example Response File (oggca.rsp):

As the oracle OS user on the primary GGHUB node where ACFS is currently mounted,
create and edit the response file oggca.rsp to create the Oracle GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ vi /u01/oracle/stage/oggca.rsp

oracle.install.responseFileVersion=/oracle/install/
rspfmt_oggca_response_schema_v21_1_0
CONFIGURATION_OPTION=ADD
DEPLOYMENT_NAME=gghub1
ADMINISTRATOR_USER=oggadmin
ADMINISTRATOR_PASSWORD=<password_for_oggadmin>
SERVICEMANAGER_DEPLOYMENT_HOME=/mnt/acfs_gg1/deployments/ggsm01
HOST_SERVICEMANAGER=localhost
PORT_SERVICEMANAGER=9100
SECURITY_ENABLED=false
STRONG_PWD_POLICY_ENABLED=true
CREATE_NEW_SERVICEMANAGER=true
REGISTER_SERVICEMANAGER_AS_A_SERVICE=false
INTEGRATE_SERVICEMANAGER_WITH_XAG=true
EXISTING_SERVICEMANAGER_IS_XAG_ENABLED=false
OGG_SOFTWARE_HOME=/u01/app/oracle/goldengate/gg21c
OGG_DEPLOYMENT_HOME=/mnt/acfs_gg1/deployments/gg01
ENV_LD_LIBRARY_PATH=${OGG_HOME}/lib/instantclient:${OGG_HOME}/lib
ENV_TNS_ADMIN=/u01/app/oracle/goldengate/network/admin
FIPS_ENABLED=false
SHARDING_ENABLED=false
ADMINISTRATION_SERVER_ENABLED=true
PORT_ADMINSRVR=9101
DISTRIBUTION_SERVER_ENABLED=true
PORT_DISTSRVR=9102
NON_SECURE_DISTSRVR_CONNECTS_TO_SECURE_RCVRSRVR=false
RECEIVER_SERVER_ENABLED=true

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-47

PORT_RCVRSRVR=9103
METRICS_SERVER_ENABLED=true
METRICS_SERVER_IS_CRITICAL=false
PORT_PMSRVR=9104
UDP_PORT_PMSRVR=9105
PMSRVR_DATASTORE_TYPE=BDB
PMSRVR_DATASTORE_HOME=/u01/app/oracle/goldengate/datastores/gghub1
OGG_SCHEMA=ggadmin

Create the Oracle GoldenGate Deployment

As the oracle OS user on the primary GGHUB node where ACFS is currently
mounted, run oggca.sh to create the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/
gg21c
[oracle@gghub_prim1 ~]$ $OGG_HOME/bin/oggca.sh -silent
 -responseFile /u01/oracle/stage/oggca.rsp

Successfully Setup Software.

Create the Oracle GoldenGate Datastores and TNS_ADMIN Directories

As the oracle OS user on all GGHUB nodes of the primary and standby systems, run
the following commands to create the Oracle GoldenGate Datastores and TNS_ADMIN
directories:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ mkdir -p /u01/app/oracle/goldengate/network/
admin
[oracle@gghub_prim1 ~]$ mkdir -p /u01/app/oracle/goldengate/datastores/
gghub1

Step 3.5 - Configure Oracle Grid Infrastructure Agent (XAG)

The following step-by-step procedure shows how to configure Oracle Clusterware to
manage GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG).
Using XAG automates the ACFS file system mounting, as well as the stopping and
starting of the GoldenGate deployment when relocating between Oracle GGhub
nodes.

Step 3.5.1 - Install the Oracle Grid Infrastructure Standalone Agent

It is recommended to install the XAG software as a standalone agent outside the Grid
Infrastructure ORACLE_HOME. This way, you can use the latest XAG release available,
and the software can be updated without impact to the Grid Infrastructure.

Install the XAG standalone agent outside of the Oracle Grid Infrastructure home
directory. XAG must be installed in the same directory on all GGhub nodes in the
system where GoldenGate is installed.

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-48

As the grid OS user on the first GGHub node of the primary and standby systems, unzip the
software and run xagsetup.sh:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ unzip /u01/oracle/stage/p31215432_190000_Generic.zip
 -d /u01/oracle/stage
[grid@gghub_prim1 ~]$ /u01/oracle/stage/xag/xagsetup.sh --install
 --directory /u01/app/grid/xag --all_nodes

Installing Oracle Grid Infrastructure Agents on: gghub_prim1
Installing Oracle Grid Infrastructure Agents on: gghub_prim2
Updating XAG resources.
Successfully updated XAG resources.

As the grid OS user on all GGHUB nodes of the primary and standby systems, add the
location of the newly installed XAG software to the PATH variable so that the location of
agctl is known when the grid user logs on to the machine.

[grid@gghub_prim1 ~]$ vi ~/.bashrc

PATH=/u01/app/grid/xag/bin:$PATH:/u01/app/19.0.0.0/grid/bin; export PATH

Note:

It is essential to ensure that the XAG bin directory is specified BEFORE the Grid
Infrastructure bin directory to ensure the correct agctl binary is found. This should
be set in the grid user environment to take effect when logging on, such as in
the .bashrc file when the Bash shell is in use.

Step 3.5.2 - Register Oracle Grid Infrastructure Agent on the Primary and Standby
GGhubs
The following procedure shows how to configure Oracle Clusterware to manage Oracle
GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG). Using XAG
automates the mounting of the shared file system as well as the stopping and starting of the
Oracle GoldenGate deployment when relocating between Oracle GGhub nodes.

Oracle GoldenGate must be registered with XAG so that the deployment is started and
stopped automatically when the database is started, and the file system is mounted.

To register Oracle GoldenGate Microservices Architecture with XAG, use the following
command format.

agctl add goldengate <instance_name>
--gg_home <GoldenGate_Home>
--service_manager
--config_home <GoldenGate_SvcMgr_Config>
--var_home <GoldenGate_SvcMgr_Var Dir>
--port <port number>
--oracle_home <$OGG_HOME/lib/instantclient>
--adminuser <OGG admin user>
--user <GG instance user>
--group <GG instance group>

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-49

--file systems <CRS_resource_name>
--db_services <service_name>
--use_local_services
--attribute START_TIMEOUT=60

Where:

• --gg_home specifies the location of the GoldenGate software.

• --service_manager indicates this is an GoldenGate Microservices instance.

• --config_home specifies the GoldenGate deployment configuration home
directory.

• --var_home specifies the GoldenGate deployment variable home directory.

• --oracle_home specifies the Oracle Instant Client home

• --port specifies the deployment Service Manager port number.

• --adminuser specifies the GoldenGate Microservices administrator account name.

• --user specifies the name of the operating system user that owns the GoldenGate
deployment.

• --group specifies the name of the operating system group that owns the
GoldenGate deployment.

• --filesystems specifies the CRS file system resource that must be ONLINE
before the deployment is started. This will be the acfs_primary resource created in
a previous step.

• --filesystem_verify specifies if XAG should check the existence of the
directories specified by the config_home and var_home parameters. This should be
set to yes for the active ACFS primary file system. When adding the GoldenGate
instance on the standby cluster, specify no.

• --filesystems_always specifies that XAG will start the GoldenGate Service
Manager on the same GGhub node as the file system CRS resources, specified
by the --filesystems parameter.

• --attributes specifies that the target status of the resource is online. This is
required to automatically start the GoldenGate deployment when the
acfs_primary resource starts.

The GoldenGate deployment must be registered on the primary and standby GGHUBs
where ACFS is mounted in either read-write or read-only mode.

As the grid OS user on the first GGHUB node of the primary and standby systems,
run the following command to determine which node of the cluster the file system is
mounted on:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ crsctl stat res acfs_standby |grep STATE
STATE=ONLINE on gghub_prim1

Step 3.5.2.1 - Register the Primary Oracle GoldenGate Microservices
Architecture with XAG

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-50

As the root OS user on the first node of the primary GGHUB, register Oracle GoldenGate
Microservices Architecture with XAG using the following command format:

[opc@gghub_prim1 ~]$ sudo su - root
[root@gghub_prim1 ~]# vi /u01/oracle/scripts/add_xag_goldengate.sh

Run as ROOT:
/u01/app/grid/xag/bin/agctl add goldengate gghub1 \
--gg_home /u01/app/oracle/goldengate/gg21c \
--service_manager \
--config_home /mnt/acfs_gg1/deployments/ggsm01/etc/conf \
--var_home /mnt/acfs_gg1/deployments/ggsm01/var \
--oracle_home /u01/app/oracle/goldengate/gg21c/lib/instantclient \
--port 9100 \
--adminuser oggadmin \
--user oracle \
--group oinstall \
--filesystems acfs_primary \
--filesystems_always yes \
--filesystem_verify yes \
--attribute TARGET_DEFAULT=online

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_xag_goldengate.sh
Enter password for 'oggadmin' : ##########

As the grid OS user on the first node of the primary GGHUB, verify that Oracle GoldenGate
Microservices Architecture is registered with XAG:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

Step 3.5.2.2 - Register the Standby Oracle GoldenGate Microservices Architecture with
XAG

As the root OS user on the first node of the standby GGHUB, register Oracle GoldenGate
Microservices Architecture with XAG using the following command format:

[opc@gghub_stby1 ~]$ sudo su - root
[root@gghub_stby1 ~]# vi /u01/oracle/scripts/add_xag_goldengate.sh

Run as ROOT:
/u01/app/grid/xag/bin/agctl add goldengate gghub1 \
--gg_home /u01/app/oracle/goldengate/gg21c \
--service_manager \
--config_home /mnt/acfs_gg1/deployments/ggsm01/etc/conf \
--var_home /mnt/acfs_gg1/deployments/ggsm01/var \
--oracle_home /u01/app/oracle/goldengate/gg21c/lib/instantclient \
--port 9100 --adminuser oggadmin --user oracle --group oinstall \
--filesystems acfs_primary \
--filesystems_always yes \
--filesystem_verify no \
--attribute TARGET_DEFAULT=online

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-51

[root@gghub_stby1 ~]# sh /u01/oracle/scripts/add_xag_goldengate.sh
Enter password for 'oggadmin' : ##########

Note:

When adding the GoldenGate instance on the standby cluster, specify --
filesystem_verify no.

As the grid OS user on the first node of the standby GGHUB, verify that Oracle
GoldenGate Microservices Architecture is registered with XAG:

[opc@gghub_stby1 ~]$ sudo su - grid
[grid@gghub_stby1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

Step 3.5.3 - Start the Oracle GoldenGate Deployment

Below is some example agctl commands used to manage the GoldenGate deployment
with XAG.

As the grid OS user on the first node of the primary GGHUB, run the following
command to start and check Oracle GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid

[grid@gghub_prim1 ~]$ agctl start goldengate gghub1

[grid@gghub_prim1 ~]$ agctl status goldengate
Goldengate instance 'gghub1' is running on gghub_prim1

As the grid OS user on the first GGHUB node, run the following command to validate
the configuration parameters for the Oracle GoldenGate resource:

[grid@gghub_prim1 ~]$ agctl config goldengate gghub1

Instance name: gghub1
Application GoldenGate location is: /u01/app/oracle/goldengate/gg21c
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory:
 /mnt/acfs_gg1/deployments/ggsm01/etc/conf
Goldengate Service Manager var directory:
 /mnt/acfs_gg1/deployments/ggsm01/var
Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: no
ORACLE_HOME location is:
 /u01/app/oracle/goldengate/gg21c/lib/instantclient

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-52

File System resources needed: acfs_primary
CRS additional attributes set: TARGET_DEFAULT=online

For more information see Oracle Grid Infrastructure Bundled Agent.

Step 3.6 - Configure NGINX Reverse Proxy

The GoldenGate reverse proxy feature allows a single point of contact for all the GoldenGate
microservices associated with a GoldenGate deployment. Without a reverse proxy, the
GoldenGate deployment microservices are contacted using a URL consisting of a hostname
or IP address and separate port numbers, one for each of the services. For example, to
contact the Service Manager, you could use http://gghub.example.com:9100, then the
Administration Server is http://gghub.example.com:9101, the second Service Manager may
be accessed using http://gghub.example.com:9110, and so on.

When running Oracle GoldenGate in a High Availability (HA) configuration on Oracle Exadata
Database Service with the Grid Infrastructure agent (XAG), there is a limitation preventing
more than one deployment from being managed by a GoldenGate Service Manager.
Because of this limitation, creating a separate virtual IP address (VIP) for each Service
Manager/deployment pair is recommended. This way, the microservices can be accessed
directly using the VIP.

With a reverse proxy, port numbers are not required to connect to the microservices because
they are replaced with the deployment name and the host name’s VIP. For example, to
connect to the console via a web browser, use the URLs:

GoldenGate Services URL

Service Manager https://localhost:localPort

Administration Server https://localhost:localPort/instance_name/
adminsrvr

Distribution Server https://localhost:localPort/instance_name/distsrvr

Performance Metric Server https://localhost:localPort/instance_name/pmsrvr

Receiver Server https://localhost:localPort/instance_name/recvsrvr

Note:

To connect to Oracle GoldenGate in OCI, you must create a bastion and an SSH
port forwarding session (see Step 6.1). After this, you can connect to the Oracle
GoldenGate Services using https://locahost:localPort.

A reverse proxy is mandatory to ensure easy access to microservices and enhance security
and manageability.

When running multiple Service Managers, the following instructions will provide configuration
using a separate VIP for each Service Manager. NGINX uses the VIP to determine which
Service Manager an HTTPS connection request is routed to.

An SSL certificate is required for clients to authenticate the server they connect to through
NGINX. Contact your systems administrator to follow your corporate standards to create or
obtain the server certificate before proceeding. A separate certificate is required for each VIP
and Service Manager pair.

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-53

http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html

Note:

The common name in the CA-signed certificate must match the target
hostname/VIP used by NGINX.

Follow the instructions to install and configure NGINX Reverse Proxy with an SSL
connection and ensure all external communication is secure.

Step 3.6.1 - Secure Deployments Requirements (Certificates)

A secure deployment involves making RESTful API calls and conveying trail data
between the Distribution Server and Receiver Server, over SSL/TLS. You can use your
own existing business certificate from your Certificate Authority (CA) or you might
create your own certificates. Contact your systems administrator to follow your
corporate standards to create or obtain the server certificate before proceeding. A
separate certificate is required for each VIP and Service Manager pair.

Step 3.6.2 - Install NGINX Reverse Proxy Server

As the root OS user on all GGHUB nodes, set up the yum repository by creating the
file /etc/yum.repos.d/nginx.repo with the following contents:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# cat > /etc/yum.repos.d/nginx.repo <<EOF
[nginx-stable]
name=nginx stable repo
baseurl=http://nginx.org/packages/rhel/7/\$basearch/
gpgcheck=1
enabled=1
gpgkey=https://nginx.org/keys/nginx_signing.key
module_hotfixes=true
EOF

As the root OS user on all GGHUB nodes, run the following commands to install,
enable, and start NGINX:

[root@gghub_prim1 ~]# yum install -y python-requests python-urllib3
nginx
[root@gghub_prim1 ~]# systemctl enable nginx

As the root OS user on all GGHUB node, disable the NGINX repository after the
software has been installed:

[root@gghub_prim1 ~]# yum-config-manager --disable nginx-stable

Step 3.6.3 - Create the NGINX Configuration File

You can configure Oracle GoldenGate Microservices Architecture to use a reverse
proxy. Oracle GoldenGate MA includes a script called ReverseProxySettings that
generates a configuration file for only the NGINX reverse proxy server.

The script requires the following parameters:

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-54

• The --user parameter should mirror the GoldenGate administrator account specified with
the initial deployment creation.

• The GoldenGate administrator password will be prompted.

• The reverse proxy port number specified by the --port parameter should be the default
HTTPS port number (443) unless you are running multiple GoldenGate Service
Managers using the same --host. In this case, specify an HTTPS port number that does
not conflict with previous Service Manager reverse proxy configurations. For example, if
running two Service Managers using the same hostname/VIP, the first reverse proxy
configuration is created with '--port 443 --host hostvip01', and the second is created with
'--port 444 --host hostvip01'. If using separate hostnames/VIPs, the two Service Manager
reverse proxy configurations would be created with '--port 443 --host hostvip01' and '--
port 443 --host hostvip02'.

• Lastly, the HTTP port number (9100) should match the Service Manager port number
specified during the deployment creation.

Repeat this step for each additional GoldenGate Service Manager.

As the oracle OS user on the first GGHUB node, use the following command to create the
Oracle GoldenGate NGINX configuration file:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/gg21c
[oracle@gghub_prim1 ~]$ export PATH=$PATH:$OGG_HOME/bin
[oracle@gghub_prim1 ~]$ cd /u01/oracle/scripts
[oracle@gghub_prim1 ~]$ $OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings
 --user oggadmin --port 443 --output ogg_<gghub1>.conf http://localhost:9100
 --host <VIP hostname>
Password: <oggadmin_password>

Step 3.6.4 - Modify NGINX Configuration Files

When multiple GoldenGate Service Managers are configured to use their IP/VIPs with the
same HTTPS 443 port, some small changes are required to the NGINX reverse proxy
configuration files generated in the previous step. With all Service Managers sharing the
same port number, they are independently accessed using their VIP/IP specified by the --
host parameter.

As the oracle OS user on the first GGHUB node, determine the deployment name managed
by this Service Manager listed in the reverse proxy configuration file and change all
occurrences of “_ServiceManager” by prepending the deployment name before the
underscore:

[oracle@gghub_prim1 ~]$ cd /u01/oracle/scripts

[oracle@gghub_prim1 ~]$ grep "Upstream Servers" ogg_<gghub1>.conf

Upstream Servers for Deployment 'gghub1'

[oracle@gghub_prim1 ~]$ sed -i 's/_ServiceManager/<gghub1>_ServiceManager/'
 ogg_<gghub1>.conf

Step 3.6.5 - Install the Server Certificates for NGINX

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-55

As the root OS user on the first GGHUB node, copy the server certificates and key
files in the /etc/nginx/ssl directory, owned by root with file permissions 400 (-
r--------):

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# mkdir /etc/nginx/ssl
[root@gghub_prim1 ~]# cp <ssl_keys> /etc/nginx/ssl/.
[root@gghub_prim1 ~]# chmod 400 /etc/nginx/ssl
[root@gghub_prim1 ~]# ll /etc/nginx/ssl

-r-------- 1 root root 2750 May 17 06:12 gghub1.chained.crt
-r-------- 1 root root 1675 May 17 06:12 gghub1.key

As the oracle OS user on the first GGHUB node, set the correct file names for the
certificate and key files for each reverse proxy configuration file:

[root@gghub_prim1 ~]$ vi /u01/oracle/scripts/ogg_<gghub1>.conf

Before
 ssl_certificate /etc/nginx/ogg.pem;
 ssl_certificate_key /etc/nginx/ogg.pem;

After
 ssl_certificate /etc/nginx/ssl/gghub1.chained.crt;
 ssl_certificate_key /etc/nginx/ssl/gghub1.key;

When using CA-signed certificates, the certificate named with the ssl_certificate
NGINX parameter must include the 1) CA signed, 2) intermediate, and 3) root
certificates in a single file. The order is significant; otherwise, NGINX fails to start and
displays the error message:

(SSL: error:0B080074:x509 certificate routines:
 X509_check_private_key:key values mismatch)

The root and intermediate certificates can be downloaded from the CA-signed
certificate provider.

As the root OS user on the first GGHUB node, generate the SSL certificate single file
by using the following example command:

[root@gghub_prim1 ~]# cd /etc/nginx/ssl
[root@gghub_prim1 ~]# cat CA_signed_cert.crt
 intermediate.crt root.crt > gghub1.chained.crt

The ssl_certificate_key file is generated when creating the Certificate Signing
Request (CSR), which is required when requesting a CA-signed certificate.

Step 3.6.6 - Install the NGINX Configuration File

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-56

As the root OS user on the first GGhub node, copy the deployment configuration file to /etc/
nginx/conf.d directory and remove the default configuration file:

[root@gghub_prim1 ~]# cp /u01/oracle/scripts/ogg_<gghub1>.conf
 /etc/nginx/conf.d
[root@gghub_prim1 ~]# rm /etc/nginx/conf.d/default.conf

As the root OS user on the first GGHUB node, validate the NGINX configuration file. If there
are errors in the file, they will be reported with the following command:

[root@gghub_prim1 ~]# nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginxconf test is successful

As the root OS user on the first GGHUB node, restart NGINX to load the new configuration:

[root@gghub_prim1 ~]# systemctl restart nginx

Step 3.6.7 - Test GoldenGate Microservices Connectivity

As the root OS user on the first GGHUB node, create a curl configuration file (access.cfg)
that contains the deployment user name and password:

[root@gghub_prim1 ~]# vi access.cfg
user = "oggadmin:<password>"

[root@gghub_prim1 ~]# curl -svf
 -K access.cfg https://<VIP hostname>:<port#>/services/v2/config/health
 -XGET && echo -e "\n*** Success"

Sample output:
* About to connect() to gghub_prim_vip.frankfurt.goldengate.com port 443 (#0)
* Trying 10.40.0.75...
* Connected to gghub_prim_vip.frankfurt.goldengate.com (10.40.0.75) port 443
(#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb
* CAfile: /etc/pki/tls/certs/ca-bundle.crt
 CApath: none
* skipping SSL peer certificate verification
* NSS: client certificate not found (nickname not specified)
* SSL connection using TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
* Server certificate:
* subject: CN=gghub_prim_vip.frankfurt.goldengate.com,OU=Oracle MAA,
O=Oracle,L=Frankfurt,ST=Frankfurt,C=GE
* start date: Jul 27 15:59:00 2023 GMT
* expire date: Jul 26 15:59:00 2024 GMT
* common name: gghub_prim_vip.frankfurt.goldengate.com
* issuer: OID.2.5.29.19=CA:true,
CN=gghub_prim_vip.frankfurt.goldengate.com,OU=Oracle
MAA,O=Oracle,L=Frankfurt,C=EU
* Server auth using Basic with user 'oggadmin'
> GET /services/v2/config/health HTTP/1.1

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-57

> Authorization: Basic b2dnYWRtaW46V0VsY29tZTEyM19fXw==
> User-Agent: curl/7.29.0
> Host: gghub_prim_vip.frankfurt.goldengate.com
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: nginx/1.24.0
< Date: Thu, 27 Jul 2023 16:25:26 GMT
< Content-Type: application/json
< Content-Length: 941
< Connection: keep-alive
< Set-Cookie:

ogg.sca.mS+pRfBERzqE+RTFZPPoVw=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ
pc3MiOiJv
Z2cuc2NhIiwiZXhwIjozNjAwLCJ0eXAiOiJ4LVNDQS1BdXRob3JpemF0aW9uIiwic3ViIjo
ib2dnYWRta
W4iLCJhdWQiOiJvZ2cuc2NhIiwiaWF0IjoxNjkwNDc1MTI2LCJob3N0IjoiZ2dodWJsYV92
aXAubG9uZG
9uLmdvbGRlbmdhdGUuY29tIiwicm9sZSI6IlNlY3VyaXR5IiwiYXV0aFR5cGUiOiJCYXNpY
yIsImNyZWQ
iOiJFd3VqV0hOdzlGWDNHai9FN1RYU3A1N1dVRjBheUd4OFpCUTdiZDlKOU9RPSIsInNlcn
ZlcklEIjoi
ZmFkNWVkN2MtZThlYi00YmE2LTg4Y2EtNmQxYjk3ZjdiMGQ3IiwiZGVwbG95bWVudElEIjo
iOTkyZmE5N
DUtZjA0NC00NzNhLTg0ZjktMTRjNTY0ZjNlODU3In0=.knACABXPmZE4BEyux7lZQ5GnrSC
Ch4x1zBVBL
aX3Flo=; Domain=gghub_prim_vip.frankfurt.goldengate.com; Path=/;
HttpOnly; Secure;
 SameSite=strict
< Set-Cookie:

ogg.csrf.mS+pRfBERzqE+RTFZPPoVw=1ae439e625798ee02f8f7498438f27c7bad036b
270d6bfc9
5aee60fcee111d35ea7e8dc5fb5d61a38d49cac51ca53ed9307f9cbe08fab812181cf16
3a743bfc7;
 Domain=gghub_prim_vip.frankfurt.goldengate.com; Path=/; Secure;
SameSite=strict
< Cache-Control: max-age=0, no-cache, no-store, must-revalidate
< Expires: 0
< Pragma: no-cache
< Content-Security-Policy: default-src 'self' 'unsafe-eval'
 'unsafe-inline';img-src 'self' data:;frame-ancestors
 https://gghub_prim_vip.frankfurt.goldengate.com;child-src
 https://gghub_prim_vip.frankfurt.goldengate.com blob:;
< X-Content-Type-Options: nosniff
< X-XSS-Protection: 1; mode=block
< X-OGG-Proxy-Version: v1
< Strict-Transport-Security: max-age=31536000 ; includeSubDomains
<
* Connection #0 to host gghub_prim_vip.frankfurt.goldengate.com left
intact
{"$schema":"api:standardResponse","links":[{"rel":"canonical",
"href":"https://gghub_prim_vip.frankfurt.goldengate.com/services/v2/
config/health",

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-58

"mediaType":"application/json"},{"rel":"self",
"href":"https://gghub_prim_vip.frankfurt.goldengate.com/services/v2/config/
health",
"mediaType":"application/json"},{"rel":"describedby",
"href":"https://gghub_prim_vip.frankfurt.goldengate.com/services/
ServiceManager/v2/metadata-catalog/health",
"mediaType":"application/schema+json"}],"messages":[],
"response":{"$schema":"ogg:health","deploymentName":"ServiceManager",
"serviceName":"ServiceManager","started":"2023-07-27T15:39:41.867Z","healthy"
:true,
"criticalResources":
[{"deploymentName":"gghubl1","name":"adminsrvr","type":"service",
"status":"running","healthy":true},
{"deploymentName":"gghub1","name":"distsrvr",
"type":"service","status":"running","healthy":true},
{"deploymentName":"gghub1",
"name":"recvsrvr","type":"service","status":"running","healthy":true}]}}
*** Success

[root@gghub_prim1 ~]# rm access.cfg

Note:

If the environment is using self-signed SSL certificates, add the flag --insecure to
the curl command to avoid the error "NSS error -8172
(SEC_ERROR_UNTRUSTED_ISSUER)".

Step 3.6.8 - Remove NGINX default.conf Configuration File

As the root OS user on all GGhub GGHUB, remove the default configuration file
(default.conf) created in /etc/nginx/conf.d:

[opc@gghub_prim1 ~]$ sudo rm -f /etc/nginx/conf.d/default.conf
[opc@gghub_prim1 ~]$ sudo nginx -s reload

Step 3.6.9 - Distribute the GoldenGate NGINX Configuration Files

Once all the reverse proxy configuration files have been created for the GoldenGate Service
Managers, they must be copied to the second GoldenGate Hub node.

As the opc OS user on the first GGHUB node, distribute the NGINX configuration files to all
database nodes:

[opc@gghub_prim1 ~]$ sudo tar fczP /tmp/nginx_conf.tar /etc/nginx/conf.d/
 /etc/nginx/ssl/
[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ scp /tmp/nginx_conf.tar gghub_prim2:/tmp/.

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-59

As the opc OS user on the second GGHUB node, extract the NGINX configuration files
and remove the default configuration file:

[opc@gghub_prim2 ~]$ sudo tar fxzP /tmp/nginx_conf.tar
[opc@gghub_prim2 ~]$ sudo rm /etc/nginx/conf.d/default.conf

As the opc OS user on the second GGHUB node, restart NGINX:

[opc@gghub_prim2 ~]$ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

[root@gghub_prim2 ~]$ sudo systemctl restart nginx

Note:

Repeat all the steps in section 3.6 for the primary and standby GGHUB
systems.

Step 3.7 - Securing GoldenGate Microservices to Restrict Non-secure Direct
Access

After configuring the NGINX reverse proxy with an unsecured Oracle GoldenGate
Microservices deployment, the microservices can continue accessing HTTP (non-
secure) using the configured microservices port numbers. For example, the following
non-secure URL could be used to access the Administration Server: http://vip-
name:9101.

Oracle GoldenGate Microservices' default behavior for each server (Service Manager,
adminserver, pmsrvr. distsrvr, and recsrvr) is to listen using a configured port number
on all network interfaces. This is undesirable for more secure installations, where
direct access using HTTP to the Microservices needs to be disabled and only
permitted using NGINX HTTPS.

Use the following commands to alter the Service Manager and deployment services
listener address to use only the localhost address. Access to the Oracle GoldenGate
Microservices will only be permitted from the localhost, and any access outside of the
localhost will only succeed using the NGINX HTTPS port.

Step 3.7.1 - Stop the Service Manager

As the grid OS user on the first GGHUB node, stop the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl stop goldengate gghub1
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

Step 3.7.2 - Modify the Service Manager Listener Address

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-60

As the oracle OS user on the first GGHUB node, modify the listener address with the
following commands. Use the correct port number for the Service Manager being altered:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/gg21c
[oracle@gghub_prim1 ~]$ export OGG_VAR_HOME=/mnt/acfs_gg1/deployments/
ggsm01/var
[oracle@gghub_prim1 ~]$ export OGG_ETC_HOME=/mnt/acfs_gg1/deployments/
ggsm01/etc
[oracle@gghub_prim1 ~]$ $OGG_HOME/bin/ServiceManager
 --prop=/config/network/serviceListeningPort
 --value='{"port":9100,"address":"127.0.0.1"}' --type=array --persist --exit

Step 3.7.3 - Restart the Service Manager and Deployment

As the grid OS user on the first GGHUB node, restart the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl start goldengate gghub1
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is running on exadb-node1

Step 3.7.4 - Modify the GoldenGate Microservices listener address

As the oracle OS user on the first GGHUB node, modify all the GoldenGate microservices
(adminsrvr, pmsrvr, distsrvr, recvsrvr) listening address to localhost for the deployments
managed by the Service Manager using the following command:

[opc@gghub_prim1 ~]$ sudo chmod g+x /u01/oracle/scripts/secureServices.py
[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ /u01/oracle/scripts/secureServices.py http://
localhost:9100
 --user oggadmin

Password for 'oggadmin': <oggadmin_password>

*** Securing deployment - gghub1
Current value of "/network/serviceListeningPort" for "gghub1/adminsrvr" is
9101
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/adminsrvr" is
{
 "address": "127.0.0.1",
 "port": 9101
}.
Current value of "/network/serviceListeningPort" for "gghub1/distsrvr" is
9102
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/distsrvr" is
{
 "address": "127.0.0.1",
 "port": 9102
}.

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-61

Current value of "/network/serviceListeningPort" for "gghub1/pmsrvr"
is 9104
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/pmsrvr" is
{
 "address": "127.0.0.1",
 "port": 9104
}.
Current value of "/network/serviceListeningPort" for "gghub1/recvsrvr"
is 9103
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/recvsrvr" is
{
 "address": "127.0.0.1",
 "port": 9103
}.

Note:

To modify a single deployment (adminsrvr, pmsrvr, distsrvr, recvsrvr), add the
flag “--deployment <instance_name>”

Step 3.8 - Create a Clusterware Resource to Manage NGINX

Oracle Clusterware needs to have control over starting the NGINX reverse proxy so
that it can be started automatically before the GoldenGate deployments are started.

As the grid OS user on the first GGHUB node, use the following command to get the
application VIP resource name required to create the NGINX resource with a
dependency on the underlying network CRS resource:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ crsctl stat res -w "TYPE =
app.appviptypex2.type" |grep NAME

NAME=gghub_prim_vip

As the root OS user on the first GGHUB node, use the following command to create a
Clusterware resource to manage NGINX. Replace the HOSTING_MEMBERS and
CARDINALITY values to match your environment:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# vi /u01/oracle/scripts/add_nginx.sh

Run as ROOT
$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/bin/crsctl add
resource nginx
 -type generic_application
 -attr "ACL='owner:root:rwx,pgrp:root:rwx,other::r--,group:oinstall:r-
x,
user:oracle:rwx',EXECUTABLE_NAMES=nginx,START_PROGRAM='/bin/systemctl
 start -f nginx',STOP_PROGRAM='/bin/systemctl stop

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-62

 -f nginx',CHECK_PROGRAMS='/bin/systemctl status nginx'
 ,START_DEPENDENCIES='hard(<gghub_prim_vip>)
 pullup(<gghub_prim_vip>)',
STOP_DEPENDENCIES='hard(intermediate:<gghub_prim_vip>)',
 RESTART_ATTEMPTS=0, HOSTING_MEMBERS='<gghub_prim1>,<gghub_prim2>',
CARDINALITY=2"

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_nginx.sh

The NGINX resource created in this example will run on the named database nodes
simultaneously, specified by HOSTING_MEMBERS. This is recommended when multiple
GoldenGate Service Manager deployments are configured and can independently move
between database nodes.

Once the NGINX Clusterware resource is created, the GoldenGate XAG resources need to
be altered so that NGINX must be started before the GoldenGate deployments are started.

As the root OS user on the first GGHUB node, modify the XAG resources using the following
example commands.

Determine the current --file systems parameter:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl config goldengate gghub1 |grep -i "file system"

File System resources needed: acfs_primary

Modify the --file systems parameter:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# /u01/app/grid/xag/bin/agctl modify goldengate gghub1
 --filesystems acfs_primary,nginx

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl config goldengate gghub1 |grep -i "File system"

File System resources needed: acfs_primary,nginx

Note:

Repeat the above commands for each XAG GoldenGate registration relying on
NGINX.
Repeat all the steps in section 3.8 for the primary and standby GGHUB systems.

Step 3.9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

To provide local database connections for the Oracle GoldenGate processes when switching
between nodes, create a TNS alias on all nodes of the cluster where Oracle GoldenGate
may be started. Create the TNS alias in the tnsnames.ora file in the TNS_ADMIN directory
specified in the deployment creation.

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-63

If the source database is a multitenant database, two TNS alias entries are required,
one for the container database (CDB) and one for the pluggable database (PDB) that
is being replicated. For a target Multitenant database, the TNS alias connects the PDB
to where replicated data is being applied. The pluggable database SERVICE_NAME
should be set to the database service created in an earlier step (refer to Step 2.3:
Create the Database Services in Task 2: Prepare a Primary and Standby Base System
for GGHub).

As the oracle OS user on any database node of the primary and the standby
database systems, use dbaascli to find the database domain name and the SCAN
name:

Primary DB
[opc@exadb1_node1]$ sudo su - oracle
[oracle@exadb1_node1]$ source db_name.env
[oracle@exadb1_node1]$ dbaascli database getDetails --dbname <db_name>
 |grep 'connectString'

 "connectString" : "<primary_scan_name>:1521/<service_name>"

Standby DB
[opc@exadb2_node1]$ sudo su - oracle
[oracle@exadb2_node1]$ source db_name.env
[oracle@exadb2_node1]$ dbaascli database getDetails --dbname <db_name>
 |grep 'connectString'

 "connectString" : "<standby_scan_name>:1521/<service_name>"

As the oracle OS user on all nodes of the primary and standby GGHUB, add the
recommended parameters for Oracle GoldenGate in the sqlnet.ora file:

[opc@gghub_prim1]$ sudo su - oracle
[oracle@gghub_prim1]$ mkdir -p /u01/app/oracle/goldengate/network/admin
[oracle@gghub_prim1]$
cat > /u01/app/oracle/goldengate/network/admin/sqlnet.ora <<EOF
DEFAULT_SDU_SIZE = 2097152
EOF

As the oracle OS user on all nodes of the primary and standby GGHUB, follow the
steps to create the TNS alias definitions:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$

cat > /u01/app/oracle/goldengate/network/admin/tnsnames.ora <<EOF

Source
<source_cbd_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)
(FAILOVER=on)(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)
(PORT=1521)))

Chapter 19
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

19-64

 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)
(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<source_cbd_service_name>.goldengate.com)))

<source_pdb_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)
(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)
(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<source_pdb_service_name>.goldengate.com)))

Target
<target_pdb_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)
(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)
(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<target_pdb_service_name>.goldengate.com)))

EOF

[oracle@gghub_prim1 ~]$ scp /u01/app/oracle/goldengate/network/admin/*.ora
 gghub_prim2:/u01/app/oracle/goldengate/network/admin

Note:

When the tnsnames.ora or sqlnet.ora (located in the TNS_ADMIN directory for the
Oracle GoldenGate deployment) are modified, the deployment needs to be
restarted to pick up the changes.

Task 4: Configure the Oracle GoldenGate Environment
Perform the following steps to complete this task:

• Step 4.1 - Create the Database Credentials

• Step 4.2 - Create the Autostart Profile

Chapter 19
Task 4: Configure the Oracle GoldenGate Environment

19-65

• Step 4.3 - Configure Oracle GoldenGate Processes

Step 4.1 - Create the Database Credentials

With the Oracle GoldenGate deployment created, use the Oracle GoldenGate
Administration Service home page to create the database credentials using the above
TNS alias names. See figure 4 below for an example of the database credential
creation using the TNS alias.

From a client machine with access to the GGHUB, create a ssh tunnel to connect to
the Oracle GoldenGate Administration Service:

$ ssh -N -L <local_port>:<vip>:443 -p 22 <gghub-node>

As the oggadmin user, create the database credentials:

1. Log in into the Administration Service: https://localhost:<localPort>/
<instance_name>/adminsrvr.

2. Click Configuration under Administration Service.

3. Click the plus button to Add Credentials under the Database tab.

4. Add the required information for the source and target CDB and PDB:

Region Container Domain Alias User ID

Region 1 CDB GoldenGate Reg1_CDB c##ggadmin@<t
ns_alias>

Region 1 PDB GoldenGate Reg1_PDB ggadmin@<tns_
alias>

Region 2 CDB GoldenGate Reg2_CDB c##ggadmin@<t
ns_alias>

Region 2 PDB GoldenGate Reg2_PDB ggadmin@<tns_
alias>

Step 4.2 - Create the Autostart Profile

Create a new profile to automatically start the Extract and Replicat processes when
the Oracle GoldenGate Administration Server is started. Then, restart if any Extract or
Replicat processes are abandoned. With GoldenGate Microservices, auto start and
restart is managed by Profiles.

Using the Oracle GoldenGate Administration Server GUI, create a new profile that can
be assigned to each of the Oracle GoldenGate processes:

1. Log in to the Administration Service on the Source and Target GoldenGate.

2. Click on Profile under Administration Service.

3. Click the plus (+) sign next to Profiles on the Managed Process Settings home
page.

4. Enter the details as follows:

• Profile Name: Start_Default

• Description: Default auto-start/resteart profile

• Default Profile: Yes

• Auto Start: Yes

Chapter 19
Task 4: Configure the Oracle GoldenGate Environment

19-66

• Auto Start Options

– Startup Delay: 1 min

– Auto Restart: Yes

• Auto Restart Options

– Max Retries: 5

– Retry Delay: 30 sec

– Retries Window: 30 min

– Restart on Failure only: Yes

– Disable Task After Retries Exhausted: Yes

5. Click Submit

Step 4.3 - Configure Oracle GoldenGate Processes

When creating Extract, Distribution Paths, and Replicat processes with Oracle GoldenGate
Microservices Architecture, all files that need to be shared between the GGHub nodes are
already shared with the deployment files stored on a shared file system.

Listed below are essential configuration details recommended for running Oracle GoldenGate
Microservices on GGhub for Extract, Distribution Paths, and Replicat processes.

Perform the following sub-steps to complete this step:

• Step 4.3.1 - Create the Database Credentials

• Step 4.3.2 - Replicat Configuration

• Step 4.3.3 - Distribution Path Configuration

Step 4.3.1 - Extract Configuration

When creating an Extract using the Oracle GoldenGate Administration Service GUI interface,
leave the Trail SubDirectory parameter blank so that the trail files are automatically created in
the deployment directories stored on the shared file system. The default location for trail files
is the /<deployment directory>/var/lib/data directory.

Note:

To capture from a multitenant database, you must use an Extract configured at the
root level using a c## account. To apply data into a multitenant database, a
separate Replicat is needed for each PDB because a Replicat connects at the PDB
level and doesn't have access to objects outside of that PDB.

For GoldenGate Extract processes using Data Guard configurations that are using redo
transport Maximum Performance or Maximum Availability modes, the following parameter
must be added to the Extract process parameter file on the primary system to avoid losing
transactions and resulting in logical data inconsistencies:

TRANLOGOPTIONS HANDLEDLFAILOVER

This parameter prevents Extract from extracting transaction data from redo that has not yet
been applied to the Data Guard standby database. This is crucial to preventing Oracle

Chapter 19
Task 4: Configure the Oracle GoldenGate Environment

19-67

GoldenGate from replicating data to a target database that does not exist in the source
standby database.

If this parameter is not specified, after a data loss failover of the source database it is
possible to have data in the target database that is not present in the source database,
leading to logical data inconsistencies.

By default, after 60 seconds, a warning message will be written to the Extract report
file when the Extract is stalled due to not being able to query the standby database
applied SCN information. For example:

WARNING OGG-02721 Extract has been waiting for the standby database
for 60 seconds.

The amount of time before the warning message is written to Extract report file can be
adjusted using the Extract parameter "TRANLOGOPTIONS HANDLEDLFAILOVER
STANDBY_WARNING".

If the Extract is still not able to query the standby database applied SCN information
after 30 minutes (default), the Extract process will abend, logging the following
message in the Extract report file:

ERROR OGG-02722 Extract abended waiting for 1,800 seconds for the
 standby database to be accessible or caught up with the primary
database.

If the standby database becomes available before the default 30 timeout expires,
Extract continues mining data from the source database and reports the following
message to the report file:

INFO OGG-02723 Extract resumed from stalled state and started
 processing LCRs.

The timeout value of 30 minutes can be adjusted using the Extract parameter
"TRANLOGOPTIONS HANDLEDLFAILOVER STANDBY_ABEND <value>", where
value is the number of seconds the standby is unavailable before abending.

If the standby database will be unavailable for a prolonged duration, such as during a
planned maintenance outage, and you wish Extract to continue extracting data from
the primary database, remove the "TRANLOGOPTIONS HANDLEDLFAILOVER"
parameter from the Extract parameter file and restart Extract (see example below in
Figures 4 to 6). Remember to set the parameter after the standby becomes available.

Note:

If extracting from a primary database continues while the standby is
unavailable, a data loss failover could result after the standby becomes
available, and not all the primary redo was applied before a failover. The
GoldenGate target database will contain data that does not exist in the
source database.

Chapter 19
Task 4: Configure the Oracle GoldenGate Environment

19-68

If the Extract process has been assigned an auto restart profile, as documented in Cloud:
Oracle GoldenGate Microservices Architecture on Oracle Exadata Database Service
Configuration Best Practices , after a Data Guard role transition, the Extract process will
automatically restart. Extract will continue to mine redo data from the new primary database,
ignoring the current state of the new standby database, until a default 5-minute timeout
period expires. After this time, if the standby is not available Extract will abend with the
following errors:

INFO OGG-25053 Timeout waiting for 300 seconds for standby database
 reinstatement. Now enforcing HANDLEDLFAILOVER.
ERROR OGG-06219 Unable to extract data from the Logmining server
OGG$CAP_XXXXX.
ERROR OGG-02078 Extract encountered a fatal error in a processing thread
and is
 abending.

Extract will continue to automatically restart, based on the GoldenGate Microservices auto
restart profile, and failing due to reaching the HANDLEDLFAILOVER timeout, until the number
retries is reached or the new standby database becomes available.

During the timeout period following a database role transition, the HANDLEDLFAILOVER
parameter is automatically suspended, so data will be replicated to the Oracle GoldenGate
replica database without consideration of the source standby database not being kept up to
date. The timeout period for the standby database to start up before Extract abends can be
adjusted using the Extract parameter TRANLOGOPTIONS DLFAILOVER_TIMEOUT.

It is recommended that you leave DLFAILOVER_TIMEOUT at the default of 5 minutes, to allow
the old primary to convert to a standby. If the new standby database will be unavailable for an
extended period of time or completely gone, then in order for Extract to start and remain
running, you must remove the HANDLEDLFAILOVER parameter from the Extract parameter file.
After removing the parameter, Extract no longer waits until redo has been applied to the
standby database before extracting the data.

During the time it takes for the standby database to come back online and apply all the redo
from the primary database, there will be data divergence between it and the Oracle
GoldenGate replica database. This will be resolved once the standby database is up to date.
At which point, add the HANDLEDLFAILOVER parameter back into the integrated Extract process
parameter file, and then stop and restart the Extract.

When Oracle Data Guard Fast-Start Failover is disabled, such that the broker can
automatically fail over to a standby database in the event of loss of the primary database, you
must specify an additional integrated Extract parameter shown below.

TRANLOGOPTIONS FAILOVERTARGETDESTID n

This parameter identifies which standby database the Oracle GoldenGate Extract process
must remain behind, with regards to not extracting redo data that has not yet been applied to
the standby database.

If Oracle Data Guard Fast-Start Failover is disabled, and you don’t specify the additional
integrated Extract parameter FAILOVERTARGETDESTID, the extract will abend with the following
errors:

ERROR OGG-06219 Unable to extract data from the Logmining server
OGG$CAP_XXXXX.

Chapter 19
Task 4: Configure the Oracle GoldenGate Environment

19-69

ERROR OGG-02078 Extract encountered a fatal error in a processing
thread and is
 abending.

To determine the correct value for FAILOVERTARGETDESTID, use the
LOG_ARCHIVE_DEST_N parameter from the GoldenGate source database which is used
for sending redo to the source standby database. For example, if LOG_ARCHIVE_DEST_2
points to the standby database, then use a value of 2.

As the oracle user on the primary database system, execute the following command:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ source <db_name>.env
[oracle@exapri-node1 ~]$ sqlplus / as sysdba

SQL> show parameters log_archive_dest

NAME TYPE VALUE
--------------------- -----------

log_archive_dest_1 string location=USE_DB_RECOVERY_FILE_DEST,
 valid_for=(ALL_LOGFILES, ALL_ROLES)

log_archive_dest_2 string service="<db_name>", SYNC AFFIRM
delay=0
 optional compression=disable
max_failure=0 reopen=300
 db_unique_name="<db_name>"
net_timeout=30,
 valid_for=(online_logfile,all_roles)

In this example, the Extract parameter would be set to the following:

TRANLOGOPTIONS FAILOVERTARGETDESTID 2

Create the Extract:

1. Log in to the Oracle GoldenGate Administration Server

2. Click in Overview under Administration Service

3. Click the plus button to Add Extract

4. Select Integrated Extract

5. Add the required information as follows:

• Process Name: EXT_1

• Description: Extract for Region 1 CDB

• Intent: Unidirection

• Begin: Now

• Trail Name: aa

• Credential Domain: GoldenGate

Chapter 19
Task 4: Configure the Oracle GoldenGate Environment

19-70

• Credential Alias: Reg1_CDB

• Register to PDBs: PDB Name

6. Click Next

7. If using CDB Root Capture from PDB, add the SOURCECATALOG parameter with the PDB
Name

8. Click Create and Run

Step 4.3.2 - Replicat Configuration

Oracle generally recommends using integrated parallel Replicat which offers better apply
performance for most workloads when the GGHUB is in the same region as the target Oracle
GoldenGate database.

The best apply performance can be achieved when the network latency between the GGHUB
and the target database is as low as possible. The following configuration is recommended
for the remote Replicat running on the Oracle GGHUB.

• APPLY_PARALLELISM – Disables automatic parallelism, instead of using
MAX_APPLY_PARALLELISM and MIN_APPLY_PARALLELISM, and allows the highest amount of
concurrency to the target database. It is recommended to set this as high as possible
based on available CPU of the hub and the target database server.

• MAP_PARALLELISM – Should be set with a value of 2 to 5. With a larger number of appliers,
increasing the Mappers increases the ability to hand work to the appliers.

• BATCHSQL – applies DML using array processing which reduces the amount network
overheads with a higher latency network. Be aware that if there are many data conflicts,
BATCHSQL results in reduced performance, as rollback of the batch operations followed by
a re-read from trail file to apply in non-batch mode.

Step 4.3.2.1 - Create the Checkpoint Table

The checkpoint table is a required component for Oracle GoldenGate Replicat processes.
After connecting to the database from the Credentials page of the Administration Service, you
can create the checkpoint table.

Create the checkpoint table in the target deployment:

1. Log in to the Oracle GoldenGate Administration Server

2. Click in Configuration under Administration Service.

3. Click on Database and Connect to the target database or PDB:

4. Click the plus (+) sign next to Checkpoint. The Add Checkpoint page is displayed.

5. Enter the details as follows:

• Checkpoint Table: ggadmin.chkp_table

6. Click Submit

Refer to Oracle GoldenGate with Oracle Database Guide for more information on the
checkpoint table.

Step 4.3.2.2 - Add a Replicat

After you’ve set up your database connections and verified them, you can add a Replicat for
the deployment by following these steps:

1. Log in to the Oracle GoldenGate Administration Server

Chapter 19
Task 4: Configure the Oracle GoldenGate Environment

19-71

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-apply.html#GUID-3DFBE2BE-20C5-48AA-B96A-7697126D77FE

2. Click theplus (+) sign next to Replicats on the Administration Service home page.
The Add Replicat page is displayed.

3. Select a Replicat type and click Next.

4. Enter the details as follows:

• Process Name: REP_1

• Description: Replicat for Region 2 PDB

• Intent: Unidirectional

• Credential Domain: GoldenGate

• Credential Alias: Reg2_PDB

• Source: Trail

• Trail Name: aa

• Begin: Position in Log

• Checkpoint Table: "GGADMIN"."CHKP_TABLE"

5. Click Next

6. From the Action Menu, click Start.

Step 4.3.3 - Distribution Path Configuration

Distribution paths are only necessary when trail files need to be sent to an additional
Oracle GoldenGate Hub in a different, or even the same, region as described in the
following figure.

Figure 19-4 Oracle GoldenGate Distribution Path

Region 2Region 1

Source Deployment Target Deployment

Target
Database

Replicat

Trail
Files

Source
Database

Trail
Files

Extract

Distribution
Path

When using Oracle GoldenGate Distribution paths with the NGINX Reverse Proxy,
additional steps must be carried out to ensure the path client and server certificates
are configured.

More instructions about creating distribution paths are available in Using Oracle
GoldenGate Microservices Architecture. A step-by-step example is in the following

Chapter 19
Task 4: Configure the Oracle GoldenGate Environment

19-72

https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/working-paths.html#GUID-7F9F7045-AA27-4007-9852-BC69C2F301A1.
https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/working-paths.html#GUID-7F9F7045-AA27-4007-9852-BC69C2F301A1.

video, “Connect an on-premises Oracle GoldenGate to OCI GoldenGate using NGINX,” to
correctly configure the certificates.

Here are the steps performed in this sub-step:

• Step 4.3.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

• Step 4.3.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate
to use

• Step 4.3.3.3 - Create a Credential in the Source Oracle GoldenGate

• Step 4.3.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

• Step 4.3.3.5 - Verify the Connection in the Target Deployment Console Receiver Service

Step 4.3.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

Download the target deployment server’s root certificate and add the CA certificate to the
source deployment Service Manager.

1. Log in to the Administration Service on the Target GoldenGate.

2. Follow “Step 2 - Download the target server’s root certificate” in the video “Connect an
on-premises Oracle GoldenGate to OCI GoldenGate using NGINX.”

Step 4.3.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate
to use

Create a user in the target deployment for the distribution path to connect to:

1. Log in to the Administration Service on the Target GoldenGate.

2. Click on Administrator under Administration Service.

3. Click the plus (+) sign next to Users.

4. Enter the details as follows:

• Username: ggnet

• Role: Operator

• Type: Password

5. Click Submit

Step 4.3.3.3 - Create a Credential in the Source Oracle GoldenGate

Create a credential in the source deployment connecting the target deployment with the user
created in the previous step. For example, a domain of OP2C and an alias of WSSNET.

1. Log in to the Administration Service on the Source Oracle GoldenGate.

2. Click in Configuration under Administration Service.

3. Click the plus (+) sign next to Credentials on the Database home page.

4. Enter the details as follows:

• Credential Domain: OP2C

• Credential Alias: wssnet

• User ID: ggnet

Chapter 19
Task 4: Configure the Oracle GoldenGate Environment

19-73

https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

5. Click Submit

Step 4.3.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the
Target Deployment

A path is created to send trail files from the Distribution Server to the Receiver Server.
You can create a path from the Distribution Service. To add a path for the source
deployment:

1. Log in to the Distribution Service on the Source Oracle Goldengate.

2. Click the plus (+) sign next to Path on the Distribution Service home page. The
Add Path page is displayed.

3. Enter the details as follows:

Option Description

Path Name Select a name for the path.

Source: Trail Name Select the Extract name from the drop-down
list, which populates the trail name
automatically. If it doesn’t, enter the trail
name you provided while adding the Extract.

Generated Source URI Specify localhost for the server’s name; this
allows the distribution path to be started on
any of the Oracle RAC nodes.

Target Authentication Method Use ‘UserID Alias’

Target Set the Target transfer protocol to wss
(secure web socket). Set the Target Host to
the target hostname/VIP that will be used for
connecting to the target system along with
the Port Number that NGINX was
configured with (default is 443).

Domain Set the Domain to the credential domain
created above in Step 11.3.3, for example,
OP2C.

Alias The Alias is set to the credential alias
wssnet, also created in Step 11.3.3.

Auto Restart Options Set the distribution path to restart when the
Distribution Server starts automatically. This
is required, so that manual intervention is
not required after a RAC node relocation of
the Distribution Server. It is recommended to
set the number of Retries to 10. Set the
Delay, which is the time in minutes to pause
between restart attempts, to 1.

4. Click Create Path.

5. From the Action Menu, click Start.

Chapter 19
Task 4: Configure the Oracle GoldenGate Environment

19-74

20
Cloud: Oracle GoldenGate Microservices
Architecture on Oracle Exadata Database
Service Configuration Best Practices

Use these best practices for configuring Oracle GoldenGate Microservices Architecture to
work with Oracle Exadata Database Service on Dedicated Infrastructure (ExaDB-D) or Oracle
Exadata Database Service on Cloud@Customer (ExaDB-C@C), and with Oracle Database
File System (DBFS) or Oracle ASM Cluster File System (ACFS).

See the following topics:

• Overview of Oracle GoldenGate Microservices Architecture Configuration on Oracle
Exadata Database Service

• Task 1 - Before You Begin

• Task 2 - Configure the Oracle Database for GoldenGate

• Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

• Task 4 - Install Oracle GoldenGate

• Task 5 - Create the Oracle GoldenGate Deployment

• Task 6 - Configure the Network

• Task 7 - Configure Oracle Grid Infrastructure Agent

• Task 8 - Configure NGINX Reverse Proxy

• Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

• Task 10 - Create a New Profile

• Task 11 - Configure Oracle GoldenGate Processes

• Troubleshooting Oracle GoldenGate on Oracle RAC

• Example Configuration Problems

Overview of Oracle GoldenGate Microservices Architecture
Configuration on Oracle Exadata Database Service

The target Oracle Exadata Database Service that hosts Oracle GoldenGate Microservices
Architecture can act as the source database, the target database, or in some cases, as both
source and target databases for Oracle GoldenGate. These best practices are applicable for
configuring Oracle GoldenGate Microservices Architecture with Oracle Exadata Database
Service on Dedicated Infrastructure or Cloud@Customer.

Follow this roadmap to configure Oracle GoldenGate on Oracle Exadata Database Service
on Dedicated Infrastructure (ExaDB-D) or Oracle Exadata Database Service on
Cloud@Customer.

20-1

• Task 1 - Before You Begin: To configure Oracle GoldenGate on Oracle Exadata
Cloud Infrastructure or Cloud@Customer, you need an ExaDB-D or ExaDB-C@C
system, CA certificates, and configure some extra software.

• Task 2 - Configure the Oracle Database for GoldenGate: Use best practices to
configure the source and target databases in an Oracle GoldenGate replicated
environment.

• Task 3 - Create a Shared File System to Store the Oracle GoldenGate
Deployment: Set up either Oracle DBFS or Oracle ACFS for configuring HA on
Oracle Cloud Infrastructure with Oracle GoldenGate. If your architecture has a
GoldenGate replica database protected by a cloud physical standby database
(Oracle Data Guard), use Oracle DBFS; otherwise use ACFS.

• Task 4 - Install Oracle GoldenGate: Use best practices to install and configure
Oracle GoldenGate components on Oracle Cloud Infrastructure.

• Task 5 - Create the Oracle GoldenGate Deployment: Create a response file to
create the GoldenGate deployment using the Oracle GoldenGate Configuration
Assistant.

• Task 6 - Configure the Network: Configure virtual cloud network (VCN)
components such as private DNS zones, VIP, bastion, security lists and firewalls
for Oracle GoldenGate to function properly.

• Task 7 - Configure Oracle Grid Infrastructure Agent: Configure Oracle GoldenGate
for HA on Oracle Cloud Infrastructure.

• Task 8 - Configure NGINX Reverse Proxy: Configure reverse proxy and HA by
using Nginx.

• Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database
Connections: Create a TNS alias to simplify database connectivity for the Oracle
GoldenGate processes when switching between Oracle RAC nodes.

• Task 10 - Create a New Profile: Create a new profile to automatically start the
Extract and Replicat processes when the Oracle GoldenGate Administration
Server is started.

• Task 11 - Configure Oracle GoldenGate Processes: Create and configure Oracle
GoldenGate Extract, Replicat, and Path processes need for data replication

Task 1 - Before You Begin
Perform the following steps to complete this task:

• Step 1.1 - Set Up the Oracle Cloud Infrastructure DB System

• Step 1.2 - Download the Required Software

• Step 1.3 - Configure Your System to Install Software from Oracle Linux Yum
Server

• Step 1.4 - Secure Deployments Requirements (Certificates)

Step 1.1 - Set Up the Oracle Cloud Infrastructure DB System

To get started, you need an Oracle Exadata Database Service on Dedicated
Infrastructure or Cloud@Customer for Oracle GoldenGate deployment.

You can deploy Oracle GoldenGate with an existing ExaDB-D/ExaDB-C@C system or
launch a new system, according to your business needs.

Chapter 20
Task 1 - Before You Begin

20-2

For instructions on launching and managing an ExaDB-D system, see Oracle Exadata
Database Service on Dedicated Infrastructure or for ExaDB-C@C see Oracle Exadata
Database Service on Cloud@Customer.

Step 1.2 - Download the Required Software

1. Create the staging directory to download all the required software.

[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]# mkdir /u02/app_acfs/goldengate
[root@exadb-node1 ~]# chown oracle:oinstall /u02/app_acfs/goldengate
[root@exadb-node1 ~]# chmod g+w /u02/app_acfs/goldengate

2. Download subsequent patches to the base release, go to the Patches and Updates tab of
My Oracle Support.

• See Installing Patches for Oracle GoldenGate Microservices Architecture for more
information.

• The minimum required version is Patch 35214851: Oracle GoldenGate 21.9.0.0.2
Microservices for Oracle

3. Download the latest OPatch release, Patch 6880880, for Oracle Database 21c
(21.0.0.0.0) from My Oracle Support Document 2542082.1.

4. Download the Oracle GoldenGate 21c Microservices software, or higher, from Oracle
GoldenGate Downloads.

5. Download the Oracle Grid Infrastructure Standalone Agents for Oracle Clusterware 19c,
version 10.2 or higher, from Oracle Grid Infrastructure Standalone Agents for Oracle
Clusterware.

6. Download the mount-dbfs-version.zip file with mount-dbfs.sh and mount-dbfs.conf
from My Oracle Support Document 1054431.1.

7. Download the python script (secureServices.py) from My Oracle Support Document
2826001.1.

Step 1.3 - Configure Your System to Install Software from Oracle Linux Yum Server

Oracle Linux yum server hosts software for Oracle Linux and compatible distributions. These
instructions help you get started configuring your Linux system for Oracle Linux yum server
and installing software via yum.

1. As the root OS user, create the file /etc/yum.repos.d/oracle-public-yum-ol7.repo
with the following contents:

[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]#
cat > /etc/yum.repos.d/oracle-public-yum-ol7.repo <<EOF
[ol7_latest]
name=Oracle Linux $releasever Latest ($basearch)
baseurl=http://yum$ociregion.oracle.com/repo/OracleLinux/OL7/latest/
\$basearch/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
EOF

Chapter 20
Task 1 - Before You Begin

20-3

https://docs.oracle.com/en-us/iaas/exadatacloud/index.html
https://docs.oracle.com/en-us/iaas/exadatacloud/index.html
https://docs.oracle.com/en-us/iaas/exadata/index.html
https://docs.oracle.com/en-us/iaas/exadata/index.html
http://support.oracle.com/
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/install-installing-patches-ma.html#GUID-BE9C5FCD-9DC0-4452-B232-123BA82979D0
https://support.oracle.com/rs?type=doc&id=2542082.1
http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html
http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
https://support.oracle.com/rs?type=doc&id=1054431.1
https://support.oracle.com/rs?type=doc&id=2826001.1
https://support.oracle.com/rs?type=doc&id=2826001.1

2. As the root OS user, follow Doc ID 2397264.1 to modify the configuration
file /etc/yum.conf and validate the software repositories are enabled:

[root@exadb-node1 ~]# yum repolist
repo id repo name
 status
!public_ol7_latest Oracle Linux 7.9-6.0.1.el7_9 Latest
(x86_64) 19,712+4,957
repolist: 19,992

Step 1.4 - Secure Deployments Requirements (Certificates)

A secure deployment involves making RESTful API calls and conveying trail data
between the Distribution Server and Receiver Server, over SSL or TLS.

You can use your own existing business certificate from your Certificate Authority (CA)
or you might create your own certificates.

Contact your systems administrator to follow your corporate standards to create or
obtain the server certificate before proceeding. A separate certificate is required for
each VIP and Service Manager pair.

Task 2 - Configure the Oracle Database for GoldenGate
The source and target Oracle GoldenGate databases should be configured using the
following recommendations.

Perform the following steps to complete this task:

• Step 2.1 - Database Configuration

• Step 2.2 - Create the Database Replication Administrator User

• Step 2.3 - Create the Database Services

Step 2.1 - Database Configuration

The source and target Oracle GoldenGate databases should be configured using the
following recommendations.

1. Enable Oracle GoldenGate replication by setting the database initialization
parameter.

2. Source Oracle GoldenGate Database:

• Run the database in ARCHIVELOG mode

• Enable FORCE LOGGING mode

• Enable minimal supplemental logging

• Additionally, add schema or table level logging for all replicated objects

3. Configure the streams pool in the System Global Area (SGA) on the source
database using the STREAMS_POOL_SIZE initialization parameter. The streams pool
is only needed on the target database if integrated Replicat will be used.

For the steps on preparing the database for Oracle GoldenGate, refer to Using Oracle
GoldenGate Classic Architecture with Oracle Database.

Chapter 20
Task 2 - Configure the Oracle Database for GoldenGate

20-4

https://support.oracle.com/rs?type=doc&id=2397264.1
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41

1. As the oracle OS user on the source and target systems, issue the following SQL
instructions to configure the database:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ source <db_name>.env
[oracle@exadb-node1 ~]$ sqlplus / as sysdba
SQL> alter system set ENABLE_GOLDENGATE_REPLICATION=true scope=both
sid='*';
SQL> alter system set STREAMS_POOL_SIZE=<SIZE_IN_GB> scope=both sid='*';

2. As the oracle OS user on the source system, issue the following SQL instructions to
configure the database:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ source <db_name>.env
[oracle@exadb-node1 ~]$ sqlplus / as sysdba
SQL> ALTER DATABASE FORCE LOGGING;
SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination USE_DB_RECOVERY_FILE_DEST
Oldest online log sequence 110
Next log sequence to archive 113
Current log sequence 113

Step 2.2 - Create the Database Replication Administrator User

The source and target Oracle databases need a GoldenGate Administrator user created, with
appropriate privileges assigned:

• For multitenant container database (CDB):

– Source database, GoldenGate Extract must be configured to connect to a user in the
root container database, using a c##

– Target database, a separate GoldenGate administrator user is needed for each
pluggable database (PDB). For details about creating a GoldenGate Administrator in
an Oracle Multitenant Database, see Configuring Oracle GoldenGate in a Multitenant
Container Database.

• For non-CDB databases, see Establishing Oracle GoldenGate Credentials.

1. As the oracle OS user on the source system, issue the following SQL instructions to
create the database user for Oracle GoldenGate and assign the required privileges:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ source <db_name>.env
[oracle@exadb-node1 ~]$ sqlplus / as sysdba

CDB
alter session set container=cdb$root;
create user c##ggadmin identified by "<ggadmin_password>" container=all
default
 tablespace USERS temporary tablespace temp;
alter user c##ggadmin quota unlimited on users;
grant set container to c##ggadmin container=all;

Chapter 20
Task 2 - Configure the Oracle Database for GoldenGate

20-5

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-E40B375A-5042-4195-B563-BE7EDC251880

grant alter system to c##ggadmin container=all;
grant create session to c##ggadmin container=all;
grant alter any table to c##ggadmin container=all;
grant resource to c##ggadmin container=all;
exec
dbms_goldengate_auth.grant_admin_privilege('c##ggadmin',container=>'
all');

Source PDB
alter session set container=<PDB_name>;
create user ggadmin identified by "<ggadmin_password>"
container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

2. As the oracle OS user on the target system, issue the following SQL instructions
to create the database user for Oracle GoldenGate and assign the required
privileges:

Target PDB
[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ source <db_name>.env
[oracle@exadb-node1 ~]$ sqlplus / as sysdba
alter session set container=<PDB_name>;
create user ggadmin identified by "<ggadmin_password>"
container=current;
grant alter system to ggadmin container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
grant dv_goldengate_admin, dv_goldengate_redo_access to ggadmin
container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

Step 2.3 - Create the Database Services

A database service is required so that the Oracle Grid Infrastructure Agent will
automatically start the Oracle GoldenGate deployment when the database is opened.
When DBFS is used for the shared file system, the database service is also used to
mount DBFS to the correct RAC instance.

When using a source multitenant database, a separate service is required for the root
container database (CDB) and the pluggable database (PDB) that contains the
schema being replicated. For a target multitenant database, a single service is
required for the PDB.

1. As the oracle OS user, create and start the CDB database service using the
following command:

[oracle@exadb-node1 ~]$ source <db_name>.env
[oracle@exadb-node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service `echo $ORACLE_UNQNAME`_ogg -preferred <SID1> -available
<SID2>
 -role PRIMARY

Chapter 20
Task 2 - Configure the Oracle Database for GoldenGate

20-6

[oracle@exadb-node1 ~]$ srvctl start service -db $ORACLE_UNQNAME
 -service `echo $ORACLE_UNQNAME`_ogg

If your database is part of a multitenant environment, remember to create the service at
the pluggable database (PDB).

2. As the oracle OS user, create and start the PDB database service using the following
command:

[oracle@exadb-node1 ~]$ dbaascli database getDetails
 --dbname <db_name> |grep pdbName
 "pdbName" : "<PDB_NAME>",
[oracle@exadb-node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service <PDB_NAME>_ogg -preferred <SID1>,<SID2> -pdb <PDB_NAME> -role
PRIMARY
[oracle@exadb-node1 ~]$ srvctl start service -db $ORACLE_UNQNAME
 -service <PDB_NAME>_ogg

3. As the oracle OS user, verify that the services are running:

[oracle@exadb-node1 ~]$ srvctl status service -d $ORACLE_UNQNAME |grep
_ogg
Service <ORACLE_UNQNAME>_ogg is running on instance(s) <SID1>
Service <PDB_NAME>_ogg is running on instance(s) <SID1>

See Server Control Utility Reference in Oracle Real Application Clusters Administration and
Deployment Guide for details about creating database services.

Task 3 - Create a Shared File System to Store the Oracle
GoldenGate Deployment

Oracle GoldenGate Microservices Architecture is designed with a simplified installation and
deployment directory structure.

• The installation directory should be placed on local storage on each database node to
minimize downtime during software patching.

• The deployment directory which is created during deployment creation using the Oracle
GoldenGate Configuration Assistant (oggca.sh), must be placed on a shared file system.
The deployment directory contains configuration, security, log, parameter, trail, and
checkpoint files.

Placing the deployment in DBFS or Oracle Automatic Storage Management Cluster File
System (ACFS) provides the best recoverability and failover capabilities in the event of a
system failure. Ensuring the availability of the checkpoint files cluster-wide is essential so that
the GoldenGate processes can continue running from their last known position after a failure
occurs.

If Oracle GoldenGate will be configured along with Oracle Data Guard, the recommended file
system is DBFS. DBFS is contained in the database protected by Data Guard and can be
fully integrated with XAG. In the event of a Data Guard role transition, the file system can be
automatically mounted on the new primary server, followed by the automated start-up Oracle
GoldenGate. This is currently not possible with ACFS since it is not part of the Oracle Data
Guard configuration.

Chapter 20
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

20-7

Note:

This document does not include steps to configure Oracle GoldenGate with
Oracle Data Guard.

If Oracle Data Guard is not present, the recommended file system is ACFS. ACFS is a
multi-platform, scalable file system and storage management technology that extends
Oracle Automatic Storage Management (Oracle ASM) functionality to support
customer files maintained outside the Oracle Database.

Perform one of the following steps to complete this task, based on your file system
requirements:

• Step 3a - Oracle Database File System (DBFS)

• Step 3b - Oracle ASM Cluster File System (ACFS)

Step 3a - Oracle Database File System (DBFS)

You must create the DBFS tablespace inside the same database to which the Oracle
GoldenGate processes are connected. For example, if an Oracle GoldenGate
integrated Extract process is extracted from a database called GGDB, the DBFS
tablespace would be located in the same GGDB database.

Create a file system for storing the Oracle GoldenGate deployment files. You should
allocate enough trail file disk space to permit storage of up to 12 hours of trail files.
Doing this will give sufficient space for trail file generation should a problem occur with
the target environment that prevents it from receiving new trail files. The amount of
space needed for 12 hours can only be determined by testing trail file generation rates
with real production data.

Perform the following sub-steps to complete this step:

• Step 3a.1 - Configuring DBFS on Oracle Exadata Database Service

• Step 3a.2 - Create the DBFS Repository

• Step 3a.3 - (Only for CDB) Create an Entry in TNSNAMES

• Step 3a.4 - Download and Edit the mount-dbfs Scripts

• Step 3a.5 - Register the DBFS Resource with Oracle Clusterware

• Step 3a.6 - Start the DBFS Resource

Step 3a.1 - Configuring DBFS on Oracle Exadata Database Service

1. As the opc OS user, add the grid user to the fuse group:

[opc@exadb-node1]$ sudo -u grid $(grep ^crs_home /etc/oracle/
olr.loc | cut -d= -f2)/bin/olsnodes > ~/dbs_group
[opc@exadb-node1]$ dcli -g ~/dbs_group -l opc sudo usermod -a -G
fuse grid

Chapter 20
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

20-8

2. As the opc OS user, validate that the file /etc/fuse.conf exists and contains the
user_allow_other option:

[opc@exadb-node1]$ cat /etc/fuse.conf
mount_max = 1000
user_allow_other

3. Skip this step if the option user_allow_other is already in the /etc/fuse.conf file.
Otherwise, run the following commands as the opc OS user to add the option:

[opc@exadb-node1]$ dcli -g ~/dbs_group -l opc "echo user_allow_other |
sudo tee -a /etc/fuse.conf"

4. As the opc OS user, create an empty directory that will be used as the mount point for the
DBFS file system:

[opc@exadb-node1]$ dcli -g ~/dbs_group -l opc sudo mkdir -p /mnt/dbfs

5. As the opc OS user, change ownership on the mount point directory so the grid OS user
can access it:

[opc@exadb-node1]$ dcli -g ~/dbs_group -l opc sudo chown
oracle:oinstall /mnt/dbfs

Step 3a.2 - Create the DBFS Repository
Create the DBFS repository inside the target database. To create the repository, create a new
tablespace within the target PDB to hold the DBFS objects and a database user that will own
the objects.

Note:

When using an Oracle Multitenant Database, the DBFS tablespace MUST be
created in a Pluggable Database (PDB). It is recommended that you use the same
PDB that the GoldenGate Extract or Replicat processes connect to, allowing DBFS
to use the same database service created above for its database dependency.

1. As the oracle OS user, create the tablespace in the database:

[opc@exadb-node1]$ sudo su - oracle
[oracle@exadb-node1]$ source DB_NAME.env
[oracle@exadb-node1]$ sqlplus / as sysdba
SQL> alter session set container=<pdb_name>;
SQL> create bigfile tablespace dbfstb1 datafile size 32g autoextend on
next 8g
 maxsize 300g NOLOGGING EXTENT MANAGEMENT LOCAL AUTOALLOCATE SEGMENT SPACE
 MANAGEMENT AUTO;
SQL> create user dbfs_user identified by "<dbfs_user_password>"
 default tablespace dbfstb1 quota unlimited on dbfstb1;
SQL> grant connect, create table, create view, create procedure,
 dbfs_role to dbfs_user;

Chapter 20
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

20-9

2. As the oracle OS user, create the database objects that will hold DBFS. This
script takes two arguments:

• dbfstb1: tablespace for the DBFS database objects

• goldengate: file system name - this can be any string and will appear as a
directory under the mount point

 [oracle@exadb-node1]$ sqlplus
dbfs_user/"<dbfs_user_password>"@<db_name>_dbfs
SQL> start $ORACLE_HOME/rdbms/admin/dbfs_create_filesystem dbfstb1
goldengate

Step 3a.3 - (Only for CDB) Create an Entry in TNSNAMES

1. As the oracle OS user, find the database domain name:

[opc@exadb-node1]$ sudo su - oracle
[oracle@exadb-node1]$ source DB_NAME.env
[oracle@exadb-node1]$ sqlplus / as sysdba
SQL> show parameter db_domain

NAME TYPE VALUE
------------------------------------ -----------

db_domain string <db_domain_name>

2. As the oracle OS user, add a connect entry in $TNS_ADMIN/tnsnames.ora file:

[oracle@exadb-node1]$ vi $TNS_ADMIN/tnsnames.ora
dbfs =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = <pdb_service_name>.<db_domain_name>)
)
)

3. As the oracle OS user, distribute the $TNS_ADMIN/tnsnames.ora file to the rest of
the nodes:

[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
 -f $TNS_ADMIN/tnsnames.ora -d $TNS_ADMIN/

Step 3a.4 - Edit the mount-dbfs Scripts

1. Unzip the zip file and edit the variable settings in the file mount-dbfs.conf for your
environment.
Comments in the file will help you to confirm the values for these variables:

• DBNAME: echo $ORACLE_UNQNAME
• MOUNT_POINT: /mnt/dbfs/goldengate
• ORACLE_HOME (RDBMS ORACLE_HOME directory): echo $ORACLE_HOME

Chapter 20
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

20-10

• GRID_HOME (GRID INFRASTRUCTURE HOME directory): echo $(grep
^crs_home /etc/oracle/olr.loc | cut -d= -f2)

• DBFS_PASSWD (used only if WALLET=false)

• DBFS_PWDFILE_BASE (used only if WALET=false)

• WALLET (must be true or false)

• TNS_ADMIN (used only if WALLET=true or PDB): echo $TNS_ADMIN
• DBFS_LOCAL_TNSALIAS (used only if WALLET=true)

• IS_PDB (set to true if using PDB)

• PDB (PDB name, if applicable): PDB name
• PDB_SERVICE (the database service created in step 2.3, if applicable):

PDB_SERVICE_NAME

• MOUNT_OPTIONS: allow_other,direct_io,failover,nolock
– The failover option forces all file writes to be committed to the DBFS database

in an IMMEDIATE WAIT mode. This prevents data from getting lost when it has
been written into the dbfs_client cache, but not yet written to the database at
the time of a database or node failure.

– The nolock mount option is required if you use Oracle Database 18c or later
versions because of a change in the DBFS file locking, which can cause issues
for GoldenGate processes after an Oracle RAC node failure when a file is
currently locked.

2. As the grid OS user, unzip the mount-dbfs-<version>.zip and edit the configuration file
mount-dbfs.conf:

[opc@exadb-node1]$ sudo su - grid
[grid@exadb-node1]$ cd /u02/app_acfs/goldengate
[grid@exadb-node1]$ unzip mount-dbfs-<version>.zip
[grid@exadb-node1]$ vi mount-dbfs.conf

Example of mount-dbfs.conf:

DBNAME=<DB_UNIQUE_NAME>
MOUNT_POINT=/mnt/dbfs/goldengate
DBFS_USER=dbfs_user
GRID_HOME=$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)
if [-z "${GRID_HOME}"]; then
 echo "GRID_HOME is unset or set to the empty string"
fi
ORACLE_HOME=$($GRID_HOME/bin/srvctl config database -d $DBNAME |grep
'Oracle home:' | cut -d: -f2 |sed 's/ //g')
if [-z "${ORACLE_HOME}"]; then
 echo "ORACLE_HOME is unset or set to the empty string"
fi
LOGGER_FACILITY=user
MOUNT_OPTIONS=allow_other,direct_io,failover,nolock
PERL_ALARM_TIMEOUT=14
DBFS_PASSWD=<DBFS_USER_PASSWORD>

Chapter 20
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

20-11

DBFS_PWDFILE_BASE=/tmp/.dbfs-passwd.txt
WALLET=false
TNS_ADMIN=$ORACLE_HOME/network/admin/<DB_NAME>
IS_PDB=true
PDB=<PDB_NAME>
PDB_SERVICE=<PDB_SERVICE_NAME>

3. As the grid OS user, modify the mount-dbfs.sh script to force unmounting of
DBFS when the CRS resource is stopped:

[grid@exadb-node1]$ vi /u02/app_acfs/goldengate/mount-dbfs.sh

Change two occurrences of:
$FUSERMOUNT -u $MOUNT_POINT
To the following:
$FUSERMOUNT -uz $MOUNT_POINT

4. As the opc OS user, copy mount-dbfs.conf (rename it if desired or needed) to the
directory /etc/oracle on database nodes and set proper permissions on it:

[opc@exadb-node1]$ sudo -u grid $(grep ^crs_home /etc/oracle/
olr.loc | cut
 -d= -f2)/bin/olsnodes > ~/dbs_group
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc -d /tmp
 -f /u02/app_acfs/goldengate/mount-dbfs.conf
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 cp /u02/app_acfs/goldengate/mount-dbfs.conf /etc/oracle
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 chown grid:oinstall /etc/oracle/mount-dbfs.conf
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 chmod 660 /etc/oracle/mount-dbfs.conf

5. As the opc OS user, copy mount-dbfs.sh (rename it if desired or needed) to the
proper directory ($GI_HOME/crs/script) on database nodes and set proper
permissions on it:

[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 mkdir $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/
script
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
chown
 grid:oinstall $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -
f2)/crs/script
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l grid
 -d $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script
 -f /u02/app_acfs/goldengate/mount-dbfs.sh
[opc@exadb-node1]$ /usr/local/bin/dcli -g ~/dbs_group -l grid chmod
770
 $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script/
mount-dbfs.sh

Step 3a.5 - Register the DBFS Resource with Oracle Clusterware

Chapter 20
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

20-12

When registering the resource with Oracle Clusterware, create it as a cluster_resource.

The reason for using cluster_resource is so the file system can only be mounted on a single
node at one time, preventing mounting of DBFS from concurrent nodes creating the potential
of concurrent file writes, and causing file corruption problems.

1. As the grid OS user, find the resource name for the database service created in a
previous step for the DBFS service dependency:

[opc@exadb-node1]$ sudo su - grid
[grid@exadb-node1]$ crsctl stat res |grep <PDB_NAME>
NAME=ora.<DB_UNIQUE_NAME>.<SERVICE_NAME>.svc

2. As the oracle OS user, register the Clusterware resource by running the following script:

[opc@exadb-node1]$ sudo su - oracle
[oracle@exadb-node1]$ vi /u02/app_acfs/goldengate/add-dbfs-resource.sh

start script add-dbfs-resource.sh
#!/bin/bash
ACTION_SCRIPT=$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/
script/mount-dbfs.sh
RESNAME=dbfs_mount
DEPNAME=ora.<DB_UNIQUE_NAME>.<SERVICE_NAME>.svc
ORACLE_HOME=$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)
PATH=$ORACLE_HOME/bin:$PATH
export PATH ORACLE_HOME
crsctl add resource $RESNAME \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=$ACTION_SCRIPT, \
 CHECK_INTERVAL=30,RESTART_ATTEMPTS=10, \
 START_DEPENDENCIES='hard($DEPNAME)pullup($DEPNAME)',\
 STOP_DEPENDENCIES='hard($DEPNAME)',\
 SCRIPT_TIMEOUT=300"
end script add-dbfs-resource.sh

[oracle@exadb-node1]$ sh /u02/app_acfs/goldengate/add-dbfs-resource.sh

Note:

After creating the $RESNAME resource, to stop the $DBNAME database when
the $RESNAME resource is ONLINE, you specify the force flag when using srvctl.

For example: srvctl stop database -d fsdb -f

Step 3a.6 - Start the DBFS Resource

As the grid OS user, start the resource:

 [opc@exadb-node1]$ sudo su - grid
[grid@exadb-node1]$ crsctl start res dbfs_mount -n `hostname`
CRS-2672: Attempting to start 'dbfs_mount' on 'exadb-node1'

Chapter 20
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

20-13

CRS-2676: Start of 'dbfs_mount' on 'exadb-node1' succeeded

[grid@exadb-node1]$ crsctl stat res dbfs_mount -t

Name Target State Server State
details

Cluster Resources

dbfs_mount
 1 ONLINE ONLINE exadb-node1 STABLE

Note:

Leave the shared file system mounted. It is required for creating the Oracle
GoldenGate deployment in a later step.

Step 3b - Oracle ASM Cluster File System (ACFS)
Oracle ACFS is an alternative to DBFS for the shared Oracle GoldenGate files in an
Oracle RAC configuration. Create a single ACFS file system for storing the Oracle
deployment files.

It is recommended that you allocate enough trail file disk space to permit the storage
of up to 12 hours of trail files. Doing this will give sufficient space for trail file generation
should a problem occur with the target environment that prevents it from receiving new
trail files. The amount of space needed for 12 hours can only be determined by testing
trail file generation rates with real production data.

Perform the following sub-steps to complete this step:

• Step 3b.1 - Create the ASM File System

• Step 3b.2 - Make the File System

• Step 3b.3 - Create the Cluster Ready Services (CRS) Resource

• Step 3b.4 - Verify the Currently Configured ACFS File Systems

• Step 3b.5 - Start and Check the Status of the ACFS Resource

• Step 3b.6- Create GoldenGate ACFS Directory

Step 3b.1 - Create the ASM File System

As the grid OS user, use asmcmd to create the volume:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ asmcmd volcreate -G DATAC1 -s 1200G ACFS_GG

Chapter 20
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

20-14

Note:

Modify the file system size according to the determined size requirements.

Step 3b.2 - Make the File System

1. As the grid OS user, use asmcmd to confirm the “Volume Device”:

[grid@exadb-node1 ~]$ asmcmd volinfo -G DATAC1 ACFS_GG

Following is an example of the ACFS volume device output:

Diskgroup Name: DATAC1
 Volume Name: ACFS_GG
 Volume Device: /dev/asm/acfs_gg-151
 State: ENABLED
 Size (MB): 1228800
 Resize Unit (MB): 64
 Redundancy: MIRROR
 Stripe Columns: 8
 Stripe Width (K): 1024
 Usage:
 Mountpath:

2. As the grid OS user, make the file system with the following mkfs command:

[grid@exadb-node1 ~]$ /sbin/mkfs -t acfs /dev/asm/acfs_gg-151

Step 3b.3 - Create the Cluster Ready Services (CRS) Resource

1. As the opc OS user, create the ACFS mount point:

[opc@exadb-node1 ~]$ dcli -l opc -g ~/dbs_group sudo mkdir -p /mnt/acfs_gg
[opc@exadb-node1 ~]$ dcli -l opc -g ~/dbs_group sudo chown
 oracle:oinstall /mnt/acfs_gg

2. Create the file system resource as the root user.
Because the implementation of distributed file locking on ACFS, unlike DBFS, it is
acceptable to mount ACFS on more than one Oracle RAC node at any one time.

3. As the root OS user, create the ACFS resource for the new ACFS file system:

[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -
f2)/bin/srvctl
 add filesystem -device /dev/asm/acfs_gg-151 -volume ACFS_GG -diskgroup
DATAC1
 -path /mnt/acfs_gg -user oracle

Step 3b.4 - Verify the Currently Configured ACFS File Systems

Chapter 20
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

20-15

As the grid OS user, use the following command to view the file system details:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ srvctl config filesystem -volume ACFS_GG -
diskgroup DATAC1

Volume device: /dev/asm/acfs_gg-151
Diskgroup name: datac1
Volume name: acfs_gg
Canonical volume device: /dev/asm/acfs_gg-151
Accelerator volume devices:
Mountpoint path: /mnt/acfs_gg
Mount point owner: oracle
Mount point group: oinstall
Mount permissions: owner:oracle:rwx,pgrp:oinstall:r-x,other::r-x
Mount users: grid
Type: ACFS
Mount options:
Description:
ACFS file system is enabled
ACFS file system is individually enabled on nodes:
ACFS file system is individually disabled on nodes:

Step 3b.5 - Start and Check the Status of the ACFS Resource

As the grid OS user, use the following command to start and check the file system:

[grid@exadb-node1 ~]$ srvctl start filesystem -volume ACFS_GG
 -diskgroup DATAC1 -node `hostname`
[grid@exadb-node1 ~]$ srvctl status filesystem -volume ACFS_GG -
diskgroup DATAC1

ACFS file system /mnt/acfs_gg is mounted on nodes exadb-node1
The CRS resource created is named using the format
ora.diskgroup_name.volume_name.acfs. Using the above file system example, the
CRS resource is called ora.datac1.acfs_gg.acfs.

To see all ACFS file system CRS resources that currently exist, use the following
command.

[grid@exadb-node1 ~]$ crsctl stat res -w "((TYPE = ora.acfs.type) OR
(TYPE = ora.acfs_cluster.type))"

NAME=ora.datac1.acfs_gg.acfs
TYPE=ora.acfs.type
TARGET=ONLINE , OFFLINE
STATE=ONLINE on exadb-node1, OFFLINE
NAME=ora.datac1.acfsvol01.acfs
TYPE=ora.acfs.type
TARGET=ONLINE , ONLINE
STATE=ONLINE on exadb-node1, ONLINE on exadb-node2

Step 3b.6- Create GoldenGate ACFS Directory

Chapter 20
Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment

20-16

As the grid OS user, create the directory for storing the Oracle GoldenGate deployments.

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ mkdir -p /mnt/acfs_gg/deployments

Refer to the Oracle Automatic Storage Management Cluster File System Administrator’s
Guide for more information about ACFS.

Note:

Leave the shared file system mounted. It is required for creating the Oracle
GoldenGate deployment in a later step.

Task 4 - Install Oracle GoldenGate
Install the Oracle GoldenGate software locally on all nodes in the Oracle Exadata Database
Service configuration that will be part of the Oracle GoldenGate configuration. Make sure the
installation directory is identical on all nodes.

Perform the following steps to complete this task:

• Step 4.1 - Unzip the Software and Create the Response File for the Installation

• Step 4.2 - Install Oracle GoldenGate

• Step 4-3 - Patch Oracle GoldenGate

Step 4.1 - Unzip the Software and Create the Response File for the Installation

1. As the oracle OS user on the first database node, unzip the software:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ unzip
 /u02/app_acfs/goldengate/
213000_fbo_ggs_Linux_x64_Oracle_services_shiphome.zip
 -d /u02/app_acfs/goldengate

The software includes an example response file for Oracle Database release 21c and
earlier supported releases. Copy the response file to a shared file system, so the same
file can be used to install Oracle GoldenGate on all database nodes, and edit the
following parameters:

• INSTALL_OPTION=ora21c
• SOFTWARE_LOCATION=/u02/app/oracle/goldengate/gg21c (recommended location)

2. As the oracle OS user on the first database node, copy and edit the response file for the
installation.

[oracle@exadb-node1 ~]$ cp
 /u02/app_acfs/goldengate/fbo_ggs_Linux_x64_Oracle_services_shiphome/
Disk1/response/oggcore.rsp
 /u02/app_acfs/goldengate

Chapter 20
Task 4 - Install Oracle GoldenGate

20-17

https://docs.oracle.com/en/database/oracle/oracle-database/21/acfsg/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/acfsg/index.html

[oracle@exadb-node1 ~]$ vi /u02/app_acfs/goldengate/oggcore.rsp

Before edit
INSTALL_OPTION=
SOFTWARE_LOCATION=

After edit
INSTALL_OPTION=ora21c
SOFTWARE_LOCATION=/u02/app/oracle/goldengate/gg21c

Step 4.2 - Install Oracle GoldenGate

As the oracle OS user on all database nodes install Oracle GoldenGate:

[oracle@exadb-node1 ~]$ cd
 /u02/app_acfs/goldengate/fbo_ggs_Linux_x64_Oracle_services_shiphome/
Disk1/
[oracle@exadb-node1 ~]$./runInstaller -silent -nowait
 -responseFile /u02/app_acfs/goldengate/oggcore.rsp

Starting Oracle Universal Installer...

Checking Temp space: must be greater than 120 MB. Actual 32755 MB
Passed
Checking swap space: must be greater than 150 MB. Actual 16383 MB
Passed
Preparing to launch Oracle Universal Installer from
 /tmp/OraInstall2022-07-08_02-54-51PM. Please wait ...
You can find the log of this install session at:
 /u01/app/oraInventory/logs/installActions2022-07-08_02-54-51PM.log
Successfully Setup Software.
The installation of Oracle GoldenGate Services was successful.
Please check '/u01/app/oraInventory/logs/
silentInstall2022-07-08_02-54-51PM.log'
 for more details.

[oracle@exadb-node1 ~]$ cat
 /u01/app/oraInventory/logs/silentInstall2022-07-08_02-54-51PM.log
The installation of Oracle GoldenGate Services was successful.

[oracle@exadb-node1 ~]$ ssh exadb-node2
[oracle@exadb-node2 ~]$ cd
 /u02/app_acfs/goldengate/fbo_ggs_Linux_x64_Oracle_services_shiphome/
Disk1
[oracle@exadb-node2 ~]$./runInstaller -silent -nowait
 -responseFile /u02/app_acfs/goldengate/oggcore.rsp

Starting Oracle Universal Installer...

Checking Temp space: must be greater than 120 MB. Actual 32755 MB
Passed
Checking swap space: must be greater than 150 MB. Actual 16383 MB
Passed
Preparing to launch Oracle Universal Installer from
 /tmp/OraInstall2022-07-08_03-54-51PM. Please wait ...

Chapter 20
Task 4 - Install Oracle GoldenGate

20-18

You can find the log of this install session at:
 /u01/app/oraInventory/logs/installActions2022-07-08_03-54-51PM.log
Successfully Setup Software.
The installation of Oracle GoldenGate Services was successful.
Please check '/u01/app/oraInventory/logs/
silentInstall2022-07-08_03-54-51PM.log'
 for more details.

[oracle@exadb-node1 ~]$ cat
 /u01/app/oraInventory/logs/silentInstall2022-07-08_03-54-51PM.log
The installation of Oracle GoldenGate Services was successful.

Patch Oracle Goldengate

As the oracle OS user on all database nodes, install the latest OPatch:

[oracle@exadb-node1 ~]$ unzip -oq -d /u01/app/oracle/goldengate/gg21c
 /u02/app_acfs/goldengate /p6880880_210000_Linux-x86-64.zip
[oracle@exadb-node1 ~]$ cat >> ~/.bashrc <<EOF
export ORACLE_HOME=/u01/app/oracle/goldengate/gg21c
export PATH=$ORACLE_HOME/OPatch:$PATH
EOF
[oracle@exadb-node1 ~]$. ~/.bashrc
[oracle@exadb-node1 ~]$ opatch lsinventory |grep 'Oracle GoldenGate Services'

Oracle GoldenGate Services
21.1.0.0.0

[oracle@gghub_prim1 Disk1]$ opatch version

OPatch Version: 12.2.0.1.37

As the oracle OS user, run OPatch prereq to validate any conflict before applying the patch:

[oracle@exadb-node1 ~]$ unzip -oq -d /u02/app_acfs/goldengate
 /u02/app_acfs/goldengate /p35214851_219000OGGRU_Linux-x86-64.zip
[oracle@exadb-node1 ~]$ cd /u02/app_acfs/goldengate/35214851/
[oracle@exadb-node1 35214851]$ opatch prereq
CheckConflictAgainstOHWithDetail -ph ./

Oracle Interim Patch Installer version 12.2.0.1.26
Copyright (c) 2023, Oracle Corporation. All rights reserved.

PREREQ session
Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.26
OUI version : 12.2.0.9.0
Log file location : /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_13-44-16PM_1.log

Invoking prereq "checkconflictagainstohwithdetail"

Chapter 20
Task 4 - Install Oracle GoldenGate

20-19

Prereq "checkConflictAgainstOHWithDetail" passed.

As the oracle OS user on all database nodes, patch Oracle GoldenGate
Microservices Architecture using OPatch:

[oracle@exadb-node1 ~]$ cd /u02/app_acfs/goldengate/35214851/
[oracle@exadb-node1 35214851]$ opatch apply

Oracle Interim Patch Installer version 12.2.0.1.37
Copyright (c) 2023, Oracle Corporation. All rights reserved.

Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.37
OUI version : 12.2.0.9.0
Log file location : /u01/app/oracle/goldengate/gg21c/cfgtoollogs/
opatch/opatch2023-04-21_19-40-41PM_1.log
Verifying environment and performing prerequisite checks...
OPatch continues with these patches: 35214851

Do you want to proceed? [y|n]
y
User Responded with: Y
All checks passed.

Please shutdown Oracle instances running out of this ORACLE_HOME on
the local system.
(Oracle Home = '/u01/app/oracle/goldengate/gg21c')

Is the local system ready for patching? [y|n]
y
User Responded with: Y
Backing up files...
Applying interim patch '35214851' to OH '/u01/app/oracle/goldengate/
gg21c'

Patching component oracle.oggcore.services.ora21c, 21.1.0.0.0...
Patch 35214851 successfully applied.
Log file location: /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log

OPatch succeeded.

[oracle@exadb-node1 35214851]$ opatch lspatches

35214851;

Chapter 20
Task 4 - Install Oracle GoldenGate

20-20

Task 5 - Create the Oracle GoldenGate Deployment
When the Oracle GoldenGate software has been installed, your next step is to create a
response file to create the Oracle GoldenGate deployment using the Oracle GoldenGate
Configuration Assistant.

Perform the following steps to complete this task:

• Step 5.1 - Create a Response File

• Step 5.2 - Create the GoldenGate Deployment

• Step 5.3 - (only if using DBFS) Move the GoldenGate Deployment Temp Directory

Step 5.1 - Create a Response File

For a silent configuration, as the oracle OS user, create and edit the response file oggca.rsp
to create the Oracle GoldenGate deployment:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ vi /u02/app_acfs/goldengate/oggca.rsp
oracle.install.responseFileersion=/oracle/install/
rspfmt_oggca_response_schema_v21_1_0

CONFIGURATION_OPTION=ADD
DEPLOYMENT_NAME=<ggNN>
ADMINISTRATOR_USER=oggadmin
ADMINISTRATOR_PASSWORD=<password_for_oggadmin>
SERVICEMANAGER_DEPLOYMENT_HOME=<ACFS or DBFS mount point>/deployments/
<ggsmNN>
HOST_SERVICEMANAGER=localhost
PORT_SERVICEMANAGER=9100
SECURITY_ENABLED=false
STRONG_PWD_POLICY_ENABLED=true
CREATE_NEW_SERVICEMANAGER=true
REGISTER_SERVICEMANAGER_AS_A_SERVICE=false
INTEGRATE_SERVICEMANAGER_WITH_XAG=true
EXISTING_SERVICEMANAGER_IS_XAG_ENABLED=false
OGG_SOFTWARE_HOME=/u02/app/oracle/goldengate/gg21c
OGG_DEPLOYMENT_HOME=<ACFS or DBFS mount point>/deployments/<ggNN>
ENV_LD_LIBRARY_PATH=${OGG_HOME}/lib/instantclient:${OGG_HOME}/lib
ENV_TNS_ADMIN=/u02/app/oracle/goldengate/network/admin
FIPS_ENABLED=false
SHARDING_ENABLED=false
ADMINISTRATION_SERVER_ENABLED=true
PORT_ADMINSRVR=9101
DISTRIBUTION_SERVER_ENABLED=true
PORT_DISTSRVR=9102
NON_SECURE_DISTSRVR_CONNECTS_TO_SECURE_RCVRSRVR=false
RECEIVER_SERVER_ENABLED=true
PORT_RCVRSRVR=9103
METRICS_SERVER_ENABLED=true
METRICS_SERVER_IS_CRITICAL=false
PORT_PMSRVR=9104
UDP_PORT_PMSRVR=9105
PMSRVR_DATASTORE_TYPE=BDB

Chapter 20
Task 5 - Create the Oracle GoldenGate Deployment

20-21

PMSRVR_DATASTORE_HOME=/u02/app/oracle/goldengate/datastores/
<instance_name>
OGG_SCHEMA=<goldengate_database_schema>

In the response file, edit the following values appropriately:

• CONFIGURATION_OPTION
• DEPLOYMENT_NAME
• ADMINISTRATOR_USER
• SERVICEMANAGER_DEPLOYMENT_HOME
• OGG_SOFTWARE_HOME
• OGG_DEPLOYMENT_HOME
• ENV_TNS_ADMIN
• OGG_SCHEMA
Step 5.2 - Create the GoldenGate Deployment

As the oracle OS user on the first database node, run oggca.sh to create the Oracle
GoldenGate deployment:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ export OGG_HOME=/u02/app/oracle/goldengate/
gg21c
[oracle@exadb-node1 ~]$ $OGG_HOME/bin/oggca.sh -silent
 -responseFile /u02/app_acfs/goldengate/oggca.rsp
Successfully Setup Software.

Step 5.3 - (only if using DBFS) Move the GoldenGate Deployment Temp Directory

After the deployment has been created, if you use DBFS for the shared file system,
run the following commands to move the GoldenGate deployment temp directory from
DBFS to local storage.

1. As the oracle OS user on the first database node, move the GoldenGate
deployment temporary directory to the local storage:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ dcli -l oracle -g ~/dbs_group mkdir
 -p /u02/app/oracle/goldengate/deployments/<instance_name>
[oracle@exadb-node1 ~]$ mv
 /mnt/dbfs/goldengate/deployments/<instance_name>/var/temp
 /u02/app/oracle/goldengate/datastores/<instance_name>
[oracle@exadb-node1 ~]$ ln -s
 /u02/app/oracle/goldengate/deployments/<instance_name>/temp
 /mnt/dbfs/goldengate/deployments/<instance_name>/var/temp

2. As the oracle OS user on the rest of the database nodes, create a directory on
the local storage:

[oracle@exadb-node2 ~]$ mkdir
 /u02/app/oracle/goldengate/deployments/<instance_name>

Chapter 20
Task 5 - Create the Oracle GoldenGate Deployment

20-22

Task 6 - Configure the Network
The way you configure the network depends on your Exadata platform. The first method
described in Step 6a applies to ExaDB-D only, and the second method described in Step 6b
applies to ExaDB-C@C only.

Perform one of the following steps to complete this task:

• Step 6a - (ExaDB-D only) Configure Oracle Cloud Infrastructure Networking

• Step 6b - (ExaDB-C@C only) Prepare for Application Virtual IP Address Creation

Step 6a - (ExaDB-D only) Configure Oracle Cloud Infrastructure Networking

You must configure virtual cloud network (VCN) components such as private DNS zones, VIP,
bastion, security lists, and firewalls for Oracle GoldenGate to function correctly.

To learn more about VCNs and security lists, including instructions for creating them, see
Oracle Cloud Infrastructure Networking.

Perform the following sub-steps to complete this step:

• Step 6a.1 - Connect to GoldenGate Microservices Web Interface Using a Private IP

• Step 6a.2 - Create an Application Virtual IP Address (VIP)

• Step 6a.3 - Add Ingress Rule

• Step 6a.4 - Open Port 443 in the Firewall

• Step 6a.5 - Connecting your Source and Target VIP

• Step 6a.5 - Configuring Network Connectivity Between GoldenGate Source and Target

• Step 6a.6 - Configure Private DNS Zones Views and Resolvers

Step 6a.1 - Connect to GoldenGate Microservices Web Interface Using a Private IP
GoldenGate Microservices web interface is only accessible using a private endpoint from
within the OCI network or through a bastion host that secures access to OCI resources.

If OCI Bastion service is unavailable in your region, you can use your OCI Compute Instance
as a bastion. Follow the steps in OCI Bastion As A Service to create your bastion. You will
need one bastion for each region where Oracle GoldenGate Microservices is running.

Note:

After creating a bastion or using a compute instance as a bastion, you need to
create an SSH port forwarding session to use https://localhost:local_port to
connect to Oracle GoldenGate Microservices.

Step 6a.2 - Create an Application Virtual IP Address (VIP)

A dedicated application VIP is required to allow access to the Oracle GoldenGate
Microservices using the same host name, regardless of which Oracle RAC node is hosting
the services. An application VIP will also ensure the Oracle GoldenGate Distribution Server
can communicate with the Distribution Receiver running the current Oracle RAC node.

Chapter 20
Task 6 - Configure the Network

20-23

https://docs.cloud.oracle.com/iaas/Content/Network/Concepts/overview.htm
https://www.ateam-oracle.com/post/oci-bastion-as-a-service

The VIP is a cluster resource that Oracle Clusterware manages. The VIP is assigned
to a database node and is automatically migrated to another node in the event of a
node failure.

Using the Console, assign the VIP to the Oracle Exadata Database Service:

1. Open the navigation menu. Click Oracle Database, then click Exadata on Oracle
Public Cloud.

2. Choose your compartment.

3. Click Exadata VM Cluster under Oracle Exadata Database Service on Dedicated
Infrastructure.

4. Navigate to the Exadata VM Cluster you want to create the new VIP.

5. Under Resources, click Virtual IP Address.

6. Click Attach Virtual IP Address.

7. In the Attach Virtual IP Address dialog, enter the following mandatory information:

• Subnet: The client subnet

• Virtual IP address hostname: Use the SCAN DNS Name and replace the
SCAN word for Oracle GoldenGate (Example: exadb-xxxx-ggN)

8. Click Create.

When the Virtual IP Address creation is complete, the status changes from
Provisioning to Available, and the assigned IP will be shown in the Virtual IP Address.
Make a note of the fully qualified domain name; this is the host name required to
connect the source with the target Oracle GoldenGate deployment.

Note:

Adding a new VIP is available in most tenancies; log a Service Request if
you have any issues.

Step 6a.3 - Add an Ingress Rule

Using the Console, open ingress port 443 to connect the Oracle GoldenGate service
using NGINX as a reverse proxy. For more information, see Working with Security
Lists.

After you update the security list, it will have an entry with values similar to the
following:

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: TCP

• Source Port Range: All

• Destination Port Range: 443

• Allows: TCP traffic for ports: 443 HTTPS

• Description: Oracle GoldenGate 443

Chapter 20
Task 6 - Configure the Network

20-24

https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/securitylists.htm
https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/securitylists.htm

Step 6a.4 - Open Port 443 in the Firewall

As the opc OS user, validate if the chains are currently figured to accept traffic:

[opc@exadb-node1 ~]$ sudo iptables --list |grep policy

Chain INPUT (policy ACCEPT)
Chain FORWARD (policy ACCEPT)
Chain OUTPUT (policy ACCEPT)

If the policy is ACCEPT, you can skip this step and proceed with Task 7. Otherwise, contact
your network administrator to update the firewall to open port 443 for ingress activity.

Step 6a.5 - Configuring Network Connectivity Between the GoldenGate Source and
Target

You can set up your VCN to access the internet if you like. You can also privately connect
your VCN to public Oracle Cloud Infrastructure services such as Object Storage, your on-
premises network, or another VCN.

To learn more about whether subnets are public or private, including instructions for creating
the connection, see Connectivity Choices in the Oracle Cloud Infrastructure Networking
documentation.

Step 6a.6 - Configure Private DNS Zones Views and Resolvers

If the source and target Oracle GoldenGate deployments are in different regions, you must
create a private DNS view in the source region with a private zone. This is required for the
source Oracle GoldenGate Distribution Path to reach the target Oracle GoldenGate
deployment VIP host name.

Follow the steps in Configure private DNS zones views and resolvers to create your private
DNS view and zone.

As the opc OS user on the source system, use the command nslookup to resolve the Fully
qualified domain name (from Step 6.2) of the target Oracle GoldenGate deployment:

[opc@exadb-node1 ~]$ nslookup <target_vip_fully_qualified_domain_name>
Server: <DNS_IP>
Address: <DNS_IP>#53

Non-authoritative answer:
Name: <target_vip_fully_qualified_domain_name>
Address: <target_vip_ip>

Step 6b - (ExaDB-C@C only) Prepare for Application Virtual IP Address Creation

A dedicated application VIP is required to allow access to the Oracle GoldenGate
Microservices using the same host name, regardless of which Oracle RAC node is hosting
the services. An application VIP will also ensure that the Oracle GoldenGate Distribution
Server can communicate with the Distribution Receiver running the current Oracle RAC node.

The VIP is a cluster resource that Oracle Clusterware manages. The VIP is assigned to a
database node and is automatically migrated to another node in the event of a node failure.

Your system administrator must provide the IP address for the new Application VIP. This IP
address must be in the same subnet as the system environment as determined above.

Chapter 20
Task 6 - Configure the Network

20-25

https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/overview.htm#connectivity
https://docs.oracle.com/en/learn/oci_private_dns/index.html#introduction

The VIP will be created in the next Task when you configure the Oracle Grid
Infrastructure Agent.

Task 7 - Configure Oracle Grid Infrastructure Agent
The following procedure shows you how to configure Oracle Clusterware to manage
Oracle GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG).

Using XAG automates the mounting of the shared file system (DBFS or ACFS) as well
as the stopping and starting of the Oracle GoldenGate deployment when relocating
between Oracle RAC nodes.

Perform the following steps to complete this task:

• Step 7.1 - Install the Oracle Grid Infrastructure Standalone Agent

• Step 7.2 - Configure Oracle Grid Infrastructure Agent

• Step 7.2 - Start the Oracle GoldenGate Deployment

Step 7.1 - Install the Oracle Grid Infrastructure Standalone Agent

It is recommended that you install the XAG software as a standalone agent outside the
Grid Infrastructure ORACLE_HOME. This way, you can use the latest XAG release
available, and the software can be updated without impact to the Grid Infrastructure.

XAG must be installed in the same directory on all Oracle RAC database nodes in the
system where Oracle GoldenGate is installed.

1. As the grid OS user on the first database node, unzip the software and run
sagsetup.sh:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ unzip /u02/app_acfs/goldengate/
p31215432_190000_Generic.zip
 -d /u02/app_acfs/goldengate
[grid@exadb-node1 ~]$ /u02/app_acfs/goldengate/xag/xagsetup.sh --
install
 --directory /u01/app/grid/xag --all_nodes
Installing Oracle Grid Infrastructure Agents on: exadb-node1
Installing Oracle Grid Infrastructure Agents on: exadb-node2
Updating XAG resources.
Successfully updated XAG resources.

2. Add the location of the newly installed XAG software to the PATH variable so that
the location of agctl is known when the grid user logs on to the machine.

[grid@exadb-node1 ~]$ grep PATH ~/.bashrc
PATH=
/u01/app/grid/xag/bin:/sbin:/bin:/usr/sbin:/usr/bin:/u01/app/
19.0.0.0/grid/bin:/u01/app/19.0.0.0/grid/OPatch;
 export PATH

Chapter 20
Task 7 - Configure Oracle Grid Infrastructure Agent

20-26

Note:

It is essential that you ensure that the XAG bin directory is specified before the
Grid Infrastructure bin directory to ensure that the correct agctl binary is found.
This should be set in the grid user environment to take effect when logging on,
such as in the .bashrc file when the Bash shell is in use.

Step 7.2 - Configure Oracle Grid Infrastructure Agent

The following procedure shows you how to configure Oracle Clusterware to manage Oracle
GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG).

Using XAG automates the mounting of the shared file system (DBFS or ACFS) as well as the
stopping and starting of the Oracle GoldenGate deployment when relocating between Oracle
RAC nodes.

Oracle GoldenGate must be registered with XAG so that the deployment is started and
stopped automatically when the database is started and the file system is mounted.

To register Oracle GoldenGate Microservices Architecture with XAG, use the following
command format:

agctl add goldengate <instance_name>
--gg_home <GoldenGate_Home>
--service_manager
--config_home <GoldenGate_SvcMgr_Config>
--var_home <GoldenGate_SvcMgr_Var Dir>
--port <port number>
--oracle_home <$OGG_HOME/lib/instantclient>
--adminuser <OGG admin user>
--user <GG instance user>
--group <GG instance group>
--network <network_number>
--ip <ip_address>
--vip_name <vip_name>
--filesystems <CRS_resource_name>
--db_services <service_name>
--use_local_services
--attribute START_TIMEOUT=60
--nodes <node1, node2, ... ,nodeN>

Where:

• --gg_home specifies the location of the Oracle GoldenGate software.

• --service_manager indicates this is a GoldenGate Microservices instance.

• --config_home specifies the GoldenGate Service Manager deployment configuration
home directory.

• --var_home specifies the GoldenGate Service Manager deployment variable home
directory.

• --port specifies the deployment Service Manager port number.

Chapter 20
Task 7 - Configure Oracle Grid Infrastructure Agent

20-27

• --oracle_home specifies the location of the Oracle database libraries that are
included as part of Oracle GoldenGate 21c and later releases.
Example: $OGG_HOME/lib/instantclient

• --adminuser specifies the Oracle GoldenGate Microservices administrator
account name.

• --user specifies the name of the operating system user that owns the Oracle
GoldenGate deployment.

• --group specifies the name of the operating system group that owns the Oracle
GoldenGate deployment.

• --network specifies the network subnet for the VIP.

• --ip specifies the IP address for the VIP.
If you have already created a VIP, specify it using the --vip_name vip_name
parameter in place of --network and --ip.

• --vip_name specifies a CRS resource name for an application VIP previously
created.
This parameter replaces --network and ––ip (optional).

• --filesystems specifies the DBFS or ACFS CRS file system resource that must
be mounted before the deployment is started.

• --db_services specifies the ora.<database>.<service_name>.svc service name
created in the previous step.
If you are using Oracle Multitenant Database, specify the PDB database service
for Replicat or the CDB database service for an Extract. If using Replicat and
Extract, specify both service names, separated by a comma.

• --use_local_services specifies that the Oracle GoldenGate instance must be co-
located on the same Oracle RAC node where the db_services service is running.

• --attribute name=value specifies attributes that can be applied.
It is recommended that you modify the attribute START_TIMEOUT=60 to optimize the
blackout after a database crash and restart.

• --nodes specifies which of the Oracle RAC nodes this GoldenGate instance can
run on.
If Oracle GoldenGate is configured to run on any of the Oracle RAC nodes in the
cluster, this parameter should still be used to determine the preferred order of
nodes to run Oracle GoldenGate.

Perform one of the following steps to complete this task:

• Step 7.2a - GoldenGate Deployments on DBFS

• Step 7.2b - GoldenGate Deployments on ACFS

Step 7.2a - GoldenGate Deployments on DBFS

1. As the grid OS user on the first database node, run the following command to
identify the network number:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ srvctl config network
Network 1 exists
Subnet IPv4: 10.1.0.0/255.255.255.0/bondeth0, static
Subnet IPv6:

Chapter 20
Task 7 - Configure Oracle Grid Infrastructure Agent

20-28

Ping Targets: 10.1.0.1
Network is enabled
Network is individually enabled on nodes:
Network is individually disabled on nodes:

2. As the root OS user on the first database node, register Oracle GoldenGate
Microservices Architecture with XAG using the following command format:

[opc@exadb-node1 ~]$ sudo su -

[root@exadb-node1 ~]# /u01/app/grid/xag/bin/agctl add goldengate
<instance_name> \
--gg_home /u02/app/oracle/goldengate/gg21c
 \
--service_manager
 \
--config_home /mnt/dbfs/deployments/ggsm01/etc/conf
 \
--var_home /mnt/dbfs/deployments/ggsm01/var
 \
--port 9100
 \
--oracle_home /u02/app/oracle/goldengate/gg21c/lib/instantclient
 \
--adminuser oggadmin
 \
--user oracle
 \
--group oinstall
 \
--network 1 --ip <virtual_IP_address>
 \
--filesystems <dbfs_mount_name>
 \
--db_services ora.<db_service_name>.svc , ora.<pdb_service_name>.svc
 \
--use_local_services
 \
--attribute START_TIMEOUT=60
 \
--nodes <exadb-node1>, <exadb-node2>

Enter password for 'oggadmin' : <oggadmin_password>

Step 7.2b - GoldenGate Deployments on ACFS

1. As the grid OS user on the first database node, run the following command to identify
the network number:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ srvctl config network
Network 1 exists
Subnet IPv4: 10.1.0.0/255.255.255.0/bondeth0, static
Subnet IPv6:
Ping Targets: 10.1.0.1

Chapter 20
Task 7 - Configure Oracle Grid Infrastructure Agent

20-29

Network is enabled
Network is individually enabled on nodes:
Network is individually disabled on nodes:

2. As the root OS user on the first database node, register Oracle GoldenGate
Microservices Architecture with XAG using the following command format:

[root@exadb-node1 ~]# /u01/app/grid/xag/bin/agctl add goldengate
<instance_name> \
--gg_home /u02/app/oracle/goldengate/gg21c
 \
--service_manager
 \
--config_home /mnt/acfs_gg/deployments/ggsm01/etc/conf
 \
--var_home /mnt/acfs_gg/deployments/ggsm01/var
 \
--port 9100
 \
--oracle_home /u02/app/oracle/goldengate/gg21c/lib/instantclient
 \
--adminuser oggadmin
 \
--user oracle
 \
--group oinstall
 \
--network 1 --ip <virtual_IP_address>
 \
--filesystems ora.<acfs_name>.acfs
 \
--db_services ora.<db_service_name>.svc
 \
--use_local_services
 \
--attribute START_TIMEOUT=60
 \
--nodes <exadb-node1>,<exadb-node2>

Step 7.3 - Start the Oracle GoldenGate Deployment

Below are some example agctl commands used to manage the Oracle GoldenGate
deployment with XAG.

1. As the grid OS user, run the following command to start the Oracle GoldenGate
deployment:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ agctl start goldengate <instance_name>

Chapter 20
Task 7 - Configure Oracle Grid Infrastructure Agent

20-30

2. As the grid OS user, run the following command to check the status of the Oracle
GoldenGate:

[grid@exadb-node1 ~]$ agctl status goldengate
Goldengate instance <instance_name> is running on exadb-node1

3. As the grid OS user, run the following command to view the configuration parameters for
the Oracle GoldenGate resource:

[grid@exadb-node1 ~]$ agctl config goldengate <instance_name>
Instance name: <instance_name>
Application GoldenGate location is: /u02/app/oracle/goldengate/gg21c_MS
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory:
 /mnt/acfs_gg/deployments/ggsm01/etc/conf
Goldengate Service Manager var directory: /mnt/acfs_gg/deployments/
ggsm01/var
Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: no
Configured to run on Nodes: exadb-node1 exadb-node2
ORACLE_HOME location is: /u02/app/oracle/goldengate/gg21c/lib/
instantclient
Database Services needed: ora.<db_unique_name>.<service_name>.svc
[use_local_services]
File System resources needed: ora.datac1.acfs_gg.acfs
Network: 1, IP:NN.NN.NN.NN, User:oracle, Group:oinstall

See Oracle Grid Infrastructure Standalone Agents for Oracle Clusterware 11g Rel. 2, 12c,
18c and 19c for more information about Oracle Grid Infrastructure Bundled Agent.

Task 8 - Configure NGINX Reverse Proxy
The Oracle GoldenGate reverse proxy feature allows a single point of contact for all of the
Oracle GoldenGate Microservices associated with an Oracle GoldenGate deployment.

Without a reverse proxy, the Oracle GoldenGate deployment microservices are contacted
using a URL consisting of a host name or IP address and separate port numbers, one for
each of the services.

For example, to contact the Service Manager, you could use http://gghub.example.com:9100,
then the Administration Server is http://gghub.example.com:9101, the second Service
Manager may be accessed using http://gghub.example.com:9110, and so on.

When running Oracle GoldenGate in a High Availability (HA) configuration on Oracle Exadata
Database Service with the Grid Infrastructure agent (XAG), there is a limitation preventing
more than one deployment from being managed by a GoldenGate Service Manager.
Because of this limitation, creating a separate virtual IP address (VIP) for each Service
Manager and deployment pair is recommended. This way, the microservices can be
accessed directly using the VIP.

With a reverse proxy, port numbers are not required to connect to the microservices because
they are replaced with the deployment name and the host name’s VIP. For example, to
connect to the console with a web browser, use the URLs.

Chapter 20
Task 8 - Configure NGINX Reverse Proxy

20-31

https://www.oracle.com/database/technologies/xag-agents-download.html
https://www.oracle.com/database/technologies/xag-agents-download.html

Service URL

Service Manager https://localhost:localPort

Administration Server https://localhost:localPort/instance_name/
adminsrvr

Distribution Server https://localhost:localPort/instance_name/
distsrvr

Performance Metric Server https://localhost:localPort/instance_name/
pmsrvr

Receiver Server https://localhost:localPort/instance_name/
recvsrvr

Note:

To connect to Oracle GoldenGate in OCI, you must create a bastion and an
SSH port forwarding session (see Step 6.1). After this, you can connect to
the Oracle GoldenGate Services using https://locahost:<localPort>.

A reverse proxy is mandatory to ensure easy access to microservices and enhance
security and manageability.

Follow the instructions to install and configure NGINX Reverse Proxy with an SSL
connection and ensure all external communication is secure.

Note:

When using CA Signed Certificates with NGINX, make sure the NGINX
ssl_certificate parameter points to a certificate file that contains the
certificates in the correct order of CA signed certificate, intermediate
certificate, and root certificate.

Perform the following steps to complete this task:

• Step 8.1 - Install NGINX

• Step 8.2 - Configure NGINX Reverse Proxy

• Step 8.3 - Securing GoldenGate Microservices to Restrict Non-secure Direct
Access

• Step 8.4 - Create a Clusterware Resource to Manage NGINX

Step 8.1 - Install NGINX Reverse Proxy Server

1. As the root OS user on all nodes, set up the YUM repository by creating the
file /etc/yum.repos.d/nginx.repo with the following contents:

[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]# cat > /etc/yum.repos.d/nginx.repo <<EOF
[nginx-stable]
name=nginx stable repo
baseurl=http://nginx.org/packages/rhel/7/\$basearch/

Chapter 20
Task 8 - Configure NGINX Reverse Proxy

20-32

gpgcheck=1
enabled=1
gpgkey=https://nginx.org/keys/nginx_signing.key
module_hotfixes=true
EOF

2. As the root OS user, run the following commands to install, enable, and start NGINX:

[root@exadb-node1 ~]# yum install -y python-requests python-urllib3 nginx
[root@exadb-node1 ~]# systemctl enable nginx

3. As the root OS user, disable the NGINX repository after the software has been installed:

[root@exadb-node1 ~]# yum-config-manager --disable nginx-stable

Step 8.2 - Configure NGINX Reverse Proxy

A separate reverse proxy configuration is required for each Oracle GoldenGate Home.

When running multiple Service Managers, the following instructions will provide configuration
using a separate VIP for each Service Manager. NGINX uses the VIP to determine which
Service Manager an HTTPS connection request is routed to.

An SSL certificate is required for clients to authenticate the server they connect to through
NGINX. Contact your systems administrator to follow your corporate standards to create or
obtain the server certificate before proceeding. A separate certificate is required for each VIP
and Service Manager pair.

Note:

The common name in the CA-signed certificate must match the target
hostname/VIP used by NGINX.

Perform the following sub-steps to complete this step:

• Step 8.2.1 - Create the NGINX Configuration File

• Step 8.2.2 - Modify NGINX Configuration Files

• Step 8.2.3 - Install Server Certificates for NGINX

• Step 8.2.4 - Install the NGINX Configuration File

• Step 8.2.5 - Test the New NGINX Configuration

• Step 8.2.6 - Reload NGINX and the New Configuration

• Step 8.2.7 - Test GoldenGate Microservices Connectivity

• Step 8.2.8 - Distribute the GoldenGate NGINX Configuration Files

Step 8.2.1 - Create the NGINX Configuration File

You can configure Oracle GoldenGate Microservices Architecture to use a reverse proxy.
Oracle GoldenGate Microservices Architecture includes a script called
ReverseProxySettings that generates a configuration file for only the NGINX reverse proxy
server.

The script requires the following parameters:

Chapter 20
Task 8 - Configure NGINX Reverse Proxy

20-33

• The --user parameter should mirror the GoldenGate administrator account
specified with the initial deployment creation.

• The GoldenGate administrator password will be prompted.

• The reverse proxy port number specified by the --port parameter should be the
default HTTPS port number (443) unless you are running multiple GoldenGate
Service Managers using the same --host. In this case, specify an HTTPS port
number that does not conflict with previous Service Manager reverse proxy
configurations.
For example, if you are running two Service Managers using the same hostname/
VIP, the first reverse proxy configuration is created with --port 443 --host
hostvip01, and the second is created with --port 444 --host hostvip01.

If you are using separate hostnames/VIPs, the two Service Manager reverse proxy
configurations would be created with --port 443 --host hostvip01 and --port
443 --host hostvip02.

• Lastly, the HTTP port number (9100) should match the Service Manager port
number specified during the deployment creation.

Repeat this step for each additional GoldenGate Service Manager.

As the oracle OS user, use the following command to create the Oracle GoldenGate
NGINX configuration file:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ export OGG_HOME=/u02/app/oracle/goldengate/
gg21c
[oracle@exadb-node1 ~]$ export PATH=$PATH:$OGG_HOME/bin
[oracle@exadb-node1 ~]$ cd /u02/app_acfs/goldengate
[oracle@exadb-node1 ~]$ $OGG_HOME/lib/utl/reverseproxy/
ReverseProxySettings
 --user oggadmin --port 443 --output ogg_<instance_name>.conf http://
localhost:9100
 --host <VIP hostname/IP>
Password: <oggadmin_password>

Step 8.2.2 - Modify NGINX Configuration Files

When multiple GoldenGate Service Managers are configured to use their IP/VIPs with
the same HTTPS 443 port, some small changes are required to the NGINX reverse
proxy configuration files generated in the previous step.

With all Service Managers sharing the same port number, they are independently
accessed using their VIP/IP specified by the --host parameter.

1. As the oracle OS user, determine the deployment name managed by this Service
Manager. If not already known, the deployment name is listed in the reverse proxy
configuration file:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ cd /u02/app_acfs/goldengate
[oracle@exadb-node1 ~]$ grep "Upstream Servers"
ogg_<instance_name>.conf
Upstream Servers for Deployment '<instance_name>'

Chapter 20
Task 8 - Configure NGINX Reverse Proxy

20-34

In this example, the deployment is called SOURCE.

2. As the oracle OS user, change all occurrences of _ServiceManager by prepending the
deployment name before the underscore:

$ sed -i 's/_ServiceManager/<instance_name>_ServiceManager/'
 ogg_<instance_name>.conf

Step 8.2.3 - Install Server Certificates for NGINX

1. As the root OS user, copy the server certificates and key files in the /etc/nginx/ssl
directory, owned by root with file permissions 400 (-r--------):

[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]# mkdir /etc/nginx/ssl
[root@exadb-node1 ~]# chmod 400 /etc/nginx/ssl

2. As the root OS user, set the correct filenames for the certificate and key files for each
reverse proxy configuration file generated in Step 8.2.1:

[oracle@exadb-node1 ~]$ vi /u02/app_acfs/goldengate/
ogg_<instance_name>.conf

Before
 ssl_certificate /etc/nginx/ogg.pem;
 ssl_certificate_key /etc/nginx/ogg.pem;

After
 ssl_certificate /etc/nginx/ssl/server.chained.crt;
 ssl_certificate_key /etc/nginx/ssl/server.key;

When using CA-signed certificates, the certificate named with the ssl_certificate NGINX
parameter must include the 1) CA signed, 2) intermediate, and 3) root certificates in a single
file. The order is significant; otherwise, NGINX fails to start and displays the error message:

(SSL: error:0B080074:x509 certificate routines: X509_check_private_key:key
values mismatch)
The root and intermediate certificates can be downloaded from the CA-signed certificate
provider.

The SSL certificate single file can be generated using the following example command:

[root@exadb-node1 ~]# cat
 CA_signed_cert.crt intermediate.crt root.crt > server.chained.crt

The ssl_certificate_key file is generated when creating the Certificate Signing Request
(CSR), which is required when requesting a CA-signed certificate.

Step 8.2.4 - Install the NGINX Configuration File

Chapter 20
Task 8 - Configure NGINX Reverse Proxy

20-35

As the root OS user, copy the deployment configuration file (or files if multiple files
were created in Step 8.2.1) to /etc/nginx/conf.d directory:

[root@exadb-node1 ~]# mv /u02/app_acfs/goldengate/
ogg_<instance_name>.conf
 /etc/nginx/conf.d

Step 8.2.5 - Test the New NGINX Configuration

As the root OS user, validate the NGINX configuration file.

If there are errors in the file, they will be reported with the following command:

[root@exadb-node1 ~]# nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginxconf test is successful

Step 8.2.6 - Reload NGINX and the New Configuration

As the root OS user, restart NGINX to load the new configuration:

[root@exadb-node1 ~]# systemctl restart nginx

Step 8.2.7 - Test GoldenGate Microservices Connectivity

1. As the root OS user, create a curl configuration file (access.cfg) that contains the
deployment username and password:

[root@exadb-node1 ~]# vi access.cfg
user = "oggadmin:<password>"

2. As the root OS user, query the health of the deployments using the following
command:

[root@exadb-node1 ~]# curl -svf
 -K access.cfg https://<VIP hostname/IP>:<port#>/services/v2/config/
health
 -XGET && echo -e "\n*** Success"

Sample output:

{"$schema":"api:standardResponse","links":
[{"rel":"canonical","href":"https://gg-prmy-vip1/services/v2/config/
health",
"mediaType":"application/json"},
{"rel":"self","href":"https://gg-prmy-vip1/services/v2/config/
health",
"mediaType":"application/json"},{"rel":"describedby",
"href":"https://gg-prmy-vip1/services/ServiceManager/v2/metadata-
catalog/health",
"mediaType":"application/schema+json"}],"messages":[],
"response":

Chapter 20
Task 8 - Configure NGINX Reverse Proxy

20-36

{"$schema":"ogg:health","deploymentName":"ServiceManager",
"serviceName":"ServiceManager","started":"2021-12-09T23:33:03.425Z","healt
hy":true,
"criticalResources":
[{"deploymentName":"SOURCE","name":"adminsrvr","type":"service",
"status":"running","healthy":true},
{"deploymentName":"SOURCE","name":"distsrvr",
"type":"service","status":"running","healthy":true},
{"deploymentName":"SOURCE","name":"recvsrvr","type":"service","status":"ru
nning",
"healthy":true}]}}
*** Success ***

3. As the root OS user, remove the curl configuration file (access.cfg) that contains the
deployment username and password:

[root@exadb-node1 ~]# rm access.cfg
rm: remove regular file ‘access.cfg’? y

Step 8.2.8 - Distribute the GoldenGate NGINX Configuration Files
When all of the reverse proxy configuration files have been created for the GoldenGate
Service Managers, they must be copied to all the database nodes.

1. As the opc OS user, distribute the NGINX configuration files to all database nodes:

[opc@exadb-node1 ~]$ sudo tar fczP nginx_conf.tar
 /etc/nginx/conf.d/ /etc/nginx/ssl/
[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc -d /tmp
 -f nginx_conf.tar
[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo tar
fxzP
 /tmp/nginx_conf.tar

2. As the opc OS user, test the new NGINX configuration on all nodes the new configuration
files were copied to:

[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo nginx
-t

exadb-node1: nginx: the configuration file /etc/nginx/nginx.conf syntax
is ok
exadb-node1: nginx: configuration file /etc/nginx/nginx.conf test is
successful
exadb-node2: nginx: the configuration file /etc/nginx/nginx.conf syntax
is ok
exadb-node2: nginx: configuration file /etc/nginx/nginx.conf test is
successful

3. As the opc OS user, restart NGINX to load the new configuration on all nodes:

[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
systemctl
 restart nginx

Chapter 20
Task 8 - Configure NGINX Reverse Proxy

20-37

Step 8.3 - Securing GoldenGate Microservices to Restrict Non-secure Direct
Access

After configuring the NGINX reverse proxy with an unsecured Oracle GoldenGate
Microservices deployment, the microservices can continue accessing HTTP (non-
secure) using the configured microservices port numbers.

For example, the following non-secure URL could be used to access the
Administration Server: http://<vip-name>:9101.

Oracle GoldenGate Microservices' default behavior for each server (Service Manager,
adminserver, pmsrvr. distsrvr, and recsrvr) is to listen using a configured port
number on all network interfaces. This is undesirable for more secure installations,
where direct access using HTTP to the microservices needs to be disabled and only
permitted using NGINX HTTPS.

Use the following commands to alter the Service Manager and deployment services
listener address to use only the localhost address. Access to the Oracle GoldenGate
Microservices will only be permitted from the localhost, and any access outside of the
localhost will only succeed using the NGINX HTTPS port.

Step 8.3.1 - Stop the Service Manager

As the grid OS user, stop the service manager:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ agctl stop goldengate <instance_name>
[grid@exadb-node1 ~]$ agctl status goldengate
Goldengate instance '<instance_name>' is not running

Step 8.3.2 - Modify the Service Manager Listener Address

As the oracle OS user, modify the listener address with the following commands.

Use the correct port number for the Service Manager being altered. The server will fail
to start, ignore the error, and proceed with the next step:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ export OGG_HOME=/u02/app/oracle/goldengate/
gg21c
[oracle@exadb-node1 ~]$ export
 OGG_VAR_HOME=<acfs or dbfs mount point>/deployments/ggsm01/var
[oracle@exadb-node1 ~]$ export OGG_ETC_HOME=<acfs or
 dbfs mount point>/deployments/ggsm01/etc
[oracle@exadb-node1 ~]$ $OGG_HOME/bin/ServiceManager
 --prop=/config/network/serviceListeningPort
 --value='{"port":9100,"address":"127.0.0.1"}'
 --type=array --persist --exit
[oracle@exadb-node1 ~]$

Step 8.3.3 - Restart the Service Manager and Deployment

As the grid OS user, restart the Service Manager and deployment:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ agctl start goldengate <instance_name>

Chapter 20
Task 8 - Configure NGINX Reverse Proxy

20-38

[grid@exadb-node1 ~]$ agctl status goldengate
Goldengate instance '<instance_name>' is running on exadb-node1

Step 8.3.4 - Modify the GoldenGate Microservices listener address

As the oracle OS user, modify all the GoldenGate microservices (adminsrvr, pmsrvr,
distsrvr, recvsrvr) listening address to localhost for the deployments managed by the
Service Manager using the following command:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ cd /u02/app_acfs/goldengate
[oracle@exadb-node1 ~]$ chmod u+x secureServices.py
[oracle@exadb-node1 ~]$./secureServices.py http://localhost:9100 --user
oggadmin
Password for 'oggadmin': <oggadmin_password>

*** Securing deployment - ogg_deployment

Current value of "/network/serviceListeningPort" for "<instance_name>/
adminsrvr" is
{
 "address": "127.0.0.1",
 "port": 9101
}
Current value of "/network/serviceListeningPort" for "<instance_name>/
distsrvr" is
{
 "address": "127.0.0.1",
 "port": 9102
}
Current value of "/network/serviceListeningPort" for "<instance_name>/
pmsrvr" is
{
 "address": "127.0.0.1",
 "port": 9104
}
Current value of "/network/serviceListeningPort" for "<instance_name>/
recvsrvr" is
{
 "address": "127.0.0.1",
 "port": 9103
}

Note:

To modify a single deployment (adminsrvr, pmsrvr, distsrvr, recvsrvr), add the
flag --deployment instance_name

Step 8.3.5 - Remove NGINX default.conf Configuration File

Chapter 20
Task 8 - Configure NGINX Reverse Proxy

20-39

As the opc OS user, remove the default configuration file (default.conf) created
in /etc/nginx/conf.d:

[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo rm
 -f /etc/nginx/conf.d/default.conf
[opc@exadb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
nginx -s reload

Step 8.4 - Create a Clusterware Resource to Manage NGINX
Oracle Clusterware needs to have control over starting the NGINX reverse proxy so
that it can be started automatically before the Oracle GoldenGate deployments are
started.

1. As the grid OS user, use the following command to get the network CRS resource
name required to create the NGINX resource with a dependency on the underlying
network CRS resource:

[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ crsctl stat res -w "TYPE == ora.network.type"|
grep NAME

NAME=ora.net1.network

2. As the root OS user, use the following example command to create a Clusterware
resource to manage NGINX. Replace the HOSTING_MEMBERS and CARDINALITY to
match your environment:

[opc@exadb-node1 ~]$ sudo su -

[root@exadb-node1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -
d= -f2)/bin/crsctl
 add resource nginx -type generic_application -attr
 "ACL='owner:root:rwx,pgrp:root:rwx,other::r--,group:oinstall:r-
x,user:oracle:rwx',
EXECUTABLE_NAMES=nginx,START_PROGRAM='/bin/systemctl start
 -f nginx',STOP_PROGRAM='/bin/systemctl stop
 -f nginx',CHECK_PROGRAMS='/bin/systemctl status nginx'
 ,START_DEPENDENCIES='hard(ora.net1.network)
pullup(ora.net1.network)',
 STOP_DEPENDENCIES='hard(intermediate:ora.net1.network)',
 RESTART_ATTEMPTS=0, HOSTING_MEMBERS='<exadb-node1, exadb-node2>',
CARDINALITY=2"

The NGINX resource created in this example will run on the named database
nodes simultaneously, specified by HOSTING_MEMBERS. This is recommended when
multiple GoldenGate Service Manager deployments are configured and can
independently move between database nodes.

Once the NGINX Clusterware resource is created, the GoldenGate XAG resources
need to be altered so that NGINX must be started before the GoldenGate
deployments are started.

Chapter 20
Task 8 - Configure NGINX Reverse Proxy

20-40

3. As the root OS user, modify the XAG resources using the following example commands.

Determine the current --filesystems parameter:
[opc@exadb-node1 ~]$ sudo su - grid
[grid@exadb-node1 ~]$ agctl config goldengate <instance_name> |grep "File
System"
File System resources needed: <file_system_resource_name>

Modify the --filesystems parameter:
[opc@exadb-node1 ~]$ sudo su -
[root@exadb-node1 ~]# /u01/app/grid/xag/bin/agctl modify goldengate
<instance_name>
 --filesystems <file_system_resource_name>,nginx

4. Repeat the above commands for each XAG GoldenGate registration relying on NGINX.

Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate
Database Connections

To provide local database connections for the Oracle GoldenGate processes when switching
between Oracle RAC nodes, create a TNS alias on all of the Oracle RAC nodes where
Oracle GoldenGate may be started.

Create the TNS alias in the tnsnames.ora file in the TNS_ADMIN directory specified in the
deployment creation.

Perform the following steps to complete this task:

• Step 9.1 - Create the TNS Alias Definitions

• Step 9.2 - Create the Database Credentials

Step 9.1 - Create the TNS Alias Definitions
If the source database is a multitenant database, two TNS alias entries are required, one for
the container database (CDB) and one for the pluggable database (PDB) that is being
replicated.

For a target Multitenant database, the TNS alias connects the PDB to where replicated data
is being applied. The pluggable database SERVICE_NAME should be set to the database
service created in an earlier step (Step 2.3: Create the Database Services).

1. As the oracle OS user, find the database domain name:

[opc@exadb-node1]$ sudo su - oracle
[oracle@exadb-node1]$ source DB_NAME.env
[oracle@exadb-node1]$ sqlplus / as sysdba
SQL> show parameter db_domain

NAME TYPE VALUE
------------------------------------ -----------

db_domain string <db_domain_name>

Chapter 20
Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

20-41

2. As the oracle OS user on the first database node, follow the steps to create the
TNS alias definitions and distribute them to all database nodes:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ dcli -l oracle -g ~/dbs_group mkdir -
p /u02/app/oracle/goldengate/network/admin
[oracle@exadb-node1 ~]$ vi /u02/app/oracle/goldengate/network/admin/
tnsnames.ora

OGGSRV_CDB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = <cdb_service_name>.<db_domain_name>)
)
)
OGGSRV_<PDB_NAME> =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =

 (SERVICE_NAME = <pdb_service_name>.<db_domain_name>)
)
)
[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/
dbs_group -f /u02/app/oracle/goldengate/network/admin/*.ora -
d /u02/app/oracle/goldengate/network/admin

Note:

When the tnsnames.ora or sqlnet.ora located in the TNS_ADMIN directory
for the Oracle GoldenGate deployment are modified; the deployment needs
to be restarted to pick up the changes.

Step 9.2 - Create the Database Credentials
With the Oracle GoldenGate deployment created, use the Oracle GoldenGate
Administration Service home page to create the database credentials using the above
TNS alias names.

As the oggadmin user, create the database credentials:

1. Log in into the Administration Service: https://localhost:<localPort>/
<instance_name>/adminsrvr

2. Click on Configuration under Administration Service.

3. Click the plus button to Add Credentials.

4. Add the required information.
If the source database is a Multitenant Database, create database credentials for
the CDB and PDB. If the target database is a Multitenant Database, create a
single credential for the PDB.

Chapter 20
Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

20-42

Task 10 - Create a New Profile
Create a new profile to automatically start the Extract and Replicat processes when the
Oracle GoldenGate Administration Server is started.

Then, restart if any Extract or Replicat processes are abandoned. With GoldenGate
Microservices, auto start and restart is managed by Profiles.

Using the Oracle GoldenGate Administration Server GUI, create a new profile that can be
assigned to each of the Oracle GoldenGate processes:

1. Log in to the Administration Service on the Source and Target GoldenGate.

2. Click on Profile under Administration Service.

3. Click the plus (+) sign next to Profiles on the Managed Process Settings home
page. The Add Profile page is displayed.

4. Enter the details.

5. Click Submit.

Task 11 - Configure Oracle GoldenGate Processes
When creating Extract, Distribution Paths, and Replicat processes with Oracle GoldenGate
Microservices Architecture, all files that need to be shared between Oracle RAC nodes are
already shared with the deployment files stored on a shared file system (DBFS or ACFS).

Listed below are the essential configuration details recommended for running Oracle
GoldenGate Microservices on Oracle RAC for Extract, Distribution Paths, and Replicat
processes.

Perform the following steps to complete this task:

• Step 11.1 - Extract Configuration

• Step 11.2 - (DBFS only) Place the Temporary Cache Files on the Shared Storage

• Step 11.3 - Distribution Path Configuration

• Step 11.4 - Replicat Configuration

Step 11.1 - Extract Configuration

When creating an Extract using the Oracle GoldenGate Administration Service GUI interface,
leave the Trail SubDirectory parameter blank so that the trail files are automatically
created in the deployment directories stored on the shared file system. The default location
for trail files is the /<deployment directory>/var/lib/data directory.

Note:

To capture from a multitenant database, you must use an Extract configured at the
root level using a c## account. To apply data into a multitenant database, a
separate Replicat is needed for each PDB because a Replicat connects at the PDB
level and doesn't have access to objects outside of that PDB

Chapter 20
Task 10 - Create a New Profile

20-43

Create the database credentials:

1. Log in to the Oracle GoldenGate Administration Server in the Source Oracle
GoldenGate.

2. Click in Overview under Administration Service.

3. Click the plus button to Add Extract.

4. Select Integrated Extract.

5. Add the required information.

6. Click Next.

7. If using CDB Root Capture from PDB, add the SOURCATALOG parameter with the
PDB Name.

8. Click Create.

Step 11.2 - (DBFS only) Place the Temporary Cache Files on the Shared Storage

If you are using DBFS for shared storage, and the deployment var/temp directory was
moved to local storage as described in Task 5 - Create the Oracle GoldenGate
Deployment, it is recommended that you use the Extract CACHEMGR parameter to place
the temporary cache files on the shared storage.

1. As the oracle OS user, create a new directory under the DBFS deployment mount
point.:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ mkdir
 /mnt/dbfs/goldengate/deployments/<instance_name>/temp_cache

2. Set the Extract parameter to the new directory:

CACHEMGR CACHEDIRECTORY
 /mnt/dbfs/goldengate/deployments/<instance_name>/temp_cache

More instructions about creating an Extract process are available in Using Oracle
GoldenGate Classic Architecture with Oracle Database.

Step 11.3 - Distribution Path Configuration

When using Oracle GoldenGate Distribution paths with the NGINX Reverse Proxy,
additional steps must be carried out to ensure the path client and server certificates
are configured.

More instructions about creating distribution paths are available in Oracle GoldenGate
Microservices Documentation. A step-by-step example is in the following video,
“Connect an on-premises Oracle GoldenGate to OCI GoldenGate using NGINX,” to
correctly configure the certificates.

Perform the following sub-steps to complete this step:

• Step 11.3.1 - Download the Target Server’s Root Certificate, and then upload it to
the source Oracle GoldenGate

• Step 11.3.2 - Create a user in the Target Deployment for the Source Oracle
GoldenGate to use

• Step 11.3.3 - Create a Credential in the Source Oracle GoldenGate

Chapter 20
Task 11 - Configure Oracle GoldenGate Processes

20-44

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/index.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/index.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

• Step 11.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

• Step 11.3.5 - Verify the Connection in the Target Deployment Console Receiver Service

Step 11.3.1 - Download the Target Server’s Root Certificate, and then upload it to the
source Oracle GoldenGate

Download the target deployment server’s root certificate and add the CA certificate to the
source deployment Service Manager.

1. Log in to the Administration Service on the Target GoldenGate.

2. Follow “Step 2 - Download the target server’s root certificate” in the video “Connect an
on-premises Oracle GoldenGate to OCI GoldenGate using NGINX.”

Step 11.3.2 - Create a user in the Target Deployment for the Source Oracle GoldenGate
to use

Create a user in the target deployment for the distribution path to connect to:

1. Log in to the Administration Service on the Target GoldenGate.

2. Click Administrator under Administration Service.

3. Click the plus (+) sign next to Users.

4. Enter the details.

Step 11.3.3 - Create a Credential in the Source Oracle GoldenGate

Create a credential in the source deployment connecting the target deployment with the user
created in the previous step. For example, a domain of OP2C and an alias of WSSNET.

1. Log in to the Administration Service on the Source Oracle GoldenGate.

2. Click Configuration under Administration Service.

3. Click the plus (+) sign next to Credentials on the Database home page. The Add
Credentials page is displayed.

4. Enter the details.

Step 11.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

A path is created to send trail files from the Distribution Server to the Receiver Server. You
can create a path from the Distribution Service.

To add a path for the source deployment:

1. Log in to the Distribution Service on the Source Oracle Goldengate.

2. Click the plus (+) sign next to Path on the Distribution Service home page. The Add Path
page is displayed.

3. Enter the details as follows:

Option Description

Path Name Select a name for the path.

Source: Trail Name Select the Extract name from the drop-down list,
which populates the trail name automatically. If it
doesn’t, enter the trail name you provided while
adding the Extract.

Chapter 20
Task 11 - Configure Oracle GoldenGate Processes

20-45

https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

Option Description

Generated Source URI Specify localhost for the server’s name; this
allows the distribution path to be started on any
of the Oracle RAC nodes.

Target Authentication Method Use UserID Alias
Target Set the Target transfer protocol to wss (secure

web socket). Set the Target Host to the target
hostname/VIP that will be used for connecting to
the target system along with the Port Number
that NGINX was configured with (default is 443).

Domain Set the Domain to the credential domain
created above in Step 11.3.3, for example,
OP2C.

Alias The Alias is set to the credential alias wssnet,
also created in Step 11.3.3.

Auto Restart Options Set the distribution path to restart when the
Distribution Server starts automatically. This is
required, so that manual intervention is not
required after an Oracle RAC node relocation of
the Distribution Server. It is recommended to set
the number of Retries to 10. Set the Delay,
which is the time in minutes to pause between
restart attempts, to 1.

4. Click Create Path.

5. From the Action Menu, click Start.

6. Verify that the Distribution Service is running.

Step 11.3.5 - Verify the Connection in the Target Deployment Console Receiver
Service

1. Log in to the Administration Service on the Target Deployment Console.

2. Click on Receiver Service.

Step 11.4 - Replicat Configuration

The Replicat process receives the trail data and applies it to the database.

Perform the following sub-steps to complete this step:

• Step 11.4.1 - Create the Checkpoint Table

• Step 11.4.2 - Add a Replicat

Step 11.4.1 - Create the Checkpoint Table

The checkpoint table is a required component for Oracle GoldenGate Replicat
processes. After connecting to the database from the Credentials page of the
Administration Service, you can create the checkpoint table.

Create the checkpoint table in the target deployment:

1. Log in to the Administration Service on the Target GoldenGate.

2. Click Configuration under Administration Service.

3. Click Database and Connect to the target database or PDB.

4. Click the plus (+) sign next to Checkpoint. The Add Checkpoint page is displayed.

Chapter 20
Task 11 - Configure Oracle GoldenGate Processes

20-46

5. Enter the details.

See About Checkpoint Table for more information about the checkpoint table.

Step 11.4.2 - Add a Replicat

After you set up your database connections and verified them, you can add a Replicat for the
deployment by following these steps:

1. Log in to the Administration Service on the Target GoldenGate.

2. Click the plus (+) sign next to Replicats on the Administration Service home page. The
Add Replicat page is displayed.

3. Select a Replicat type and click Next.

4. Enter the details as follows:

Option Description

Process Name The name of the Replicat process

Credential Domain Credential domain created in Step 9.2. In our
example is GoldenGate

Credential Alias Credential alias created in Step 9.2. Our
example is Target_PDB

Source Select the source to use Trail.

Trail Name A two-character trail name.

Checkpoint Table Set the use of an existing checkpoint table.

5. Click Create Path.

6. From the Action Menu, click Start.

7. Verify that the Replicat is running.

Chapter 20
Task 11 - Configure Oracle GoldenGate Processes

20-47

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-apply.html#GUID-3DFBE2BE-20C5-48AA-B96A-7697126D77FE

21
Cloud MAA Platinum: Oracle GoldenGate
Microservices Architecture Integrated with
Active Data Guard

The combination and integration of Oracle GoldenGate Microservices and Oracle Data Guard
enables you to achieve an MAA Platinum service-level configuration that achieves zero or
near zero downtime for all planned and unplanned outages.

Overview
With these configuration and operational best practices, Oracle GoldenGate can be
configured to work seamlessly with Oracle Data Guard after any zero data loss or data loss
role transition.

By using Database File System (DBFS) as the file system for the Oracle GoldenGate
Microservices deployment files, Oracle GoldenGate Extract, Distribution Paths, and Replicat
processes continue to stay synchronized with the database after a role transition.

Implement these best practices for configuring Oracle GoldenGate Microservices Architecture
on Oracle Exadata Database Service on Dedicated Infrastructure (ExaDB-D), or Oracle
Exadata Database Service on Cloud@Customer (ExaDB-C@C), to work seamlessly with
Oracle Data Guard, using Oracle Real Application Clusters (Oracle RAC), Oracle
Clusterware, and Oracle Database File System (DBFS).

These best practices enable Oracle GoldenGate Microservices replication using a database
that is protected by a Data Guard standby, to work following an Oracle Data Guard role
transition transparently and seamlessly, no matter which Data Guard protection mode is
configured (Maximum Performance, Maximum Availability, or Maximum Protection).

There are several key software requirements:

• Oracle Grid Infrastructure 19c or later
Oracle Grid Infrastructure provides the necessary components needed to manage high
availability for any business-critical applications. Using Oracle Clusterware (a component
of Oracle Grid Infrastructure) network, database, and Oracle GoldenGate resources can
be managed to provide availability in the event of a failure.

• Oracle Grid Infrastructure Agent version 10.2 or later
The Oracle Grid Infrastructure Agent leverages the Oracle Grid Infrastructure
components to provide integration between Oracle GoldenGate and its dependent
resources, such as the database, network, and file system. The agent also integrates
Oracle GoldenGate with Oracle Data Guard so that Oracle GoldenGate is restarted on
the new primary database following a role transition.

• Oracle Database 19c or later
Refer to My Oracle Support note 2193391.1 for a full list of recommended Oracle
Database patches when using Oracle GoldenGate.

• Oracle GoldenGate Microservices version 21c or later

21-1

https://support.oracle.com/rs?type=doc&id=2193391.1

Oracle GoldenGate 21c introduces unified build support so a single software
installation supports capturing and applying replicated data to multiple major
Oracle Database versions (11g Release 2 to 21c). This is possible because an
Oracle GoldenGate installation includes the required Oracle Database client
libraries without requiring a separate database ORACLE_HOME installation.

• Oracle DBFS to protect and replicate critical Oracle GoldenGate files
The Oracle Database File System (DBFS) is the only MAA-validated and
recommended file system for an Oracle Data Guard and Oracle GoldenGate
configuration, because it allows the storage of the required Oracle GoldenGate
files, such as the checkpoint and trail files, to be located inside the same database
that is protected with Oracle Data Guard, ensuring consistency between the
Oracle GoldenGate files and the database in a seamless fashion.

Task 1 - Before You Begin
To get started, complete the following prerequisites:

• Procure Oracle Exadata Database Service on Dedicated Infrastructure or
Cloud@Customer for the Oracle GoldenGate deployment.

You can deploy Oracle GoldenGate with an existing ExaDB-D or ExaDB-C@C
system or launch a new system, according to your business needs. For
instructions on launching and managing an ExaDB-D system, see Oracle Exadata
Database Service on Dedicated Infrastructure or for ExaDB-C@C see Oracle
Exadata Database Service on Cloud@Customer.

• Have Oracle GoldenGate configured as detailed in Cloud: Oracle GoldenGate
Microservices Architecture on Oracle Exadata Database Service Configuration
Best Practices .

DBFS is required for critical Oracle GoldenGate files when integrating with Data
Guard.

• The Oracle Data Guard standby database should also be configured and
operational before continuing.

For more information about Oracle Data Guard see Getting Started with Oracle
Data Guard.

• A secure deployment involves making RESTful API calls and conveying trail data
between the Distribution Server and Receiver Server, over SSL/TLS. You can use
your own existing business certificate from your Certificate Authority (CA) or you
might create your own certificates.

Contact your systems administrator to follow your corporate standards to create or
obtain the server certificate before proceeding. A separate certificate is required
for each VIP and Service Manager pair.

Task 2 - Configure the Oracle Database for GoldenGate
Perform the following steps to complete this task:

• Step 2.1 - Configure the Standby Database for Oracle GoldenGate

• Step 2.2 - Modify the Primary Database Service

• Step 2.3 - Create the Standby Database Service

Chapter 21
Task 1 - Before You Begin

21-2

https://docs.oracle.com/en-us/iaas/exadatacloud/index.html
https://docs.oracle.com/en-us/iaas/exadatacloud/index.html
https://docs.oracle.com/en-us/iaas/exadata/index.html
https://docs.oracle.com/en-us/iaas/exadata/index.html

Step 2.1 - Configure the Standby Database for Oracle GoldenGate

The standby database initialization parameters should match those of the primary database,
as specified in Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata
Database Service Configuration Best Practices .

This includes the following parameters:

• ENABLE_GOLDENGATE_REPLICATION=TRUE
• For Oracle GoldenGate source databases, enable FORCE LOGGING mode and enable

minimal supplemental logging.

• If an Oracle GoldenGate source database or running integrated Replicat (parallel or non-
parallel), configure the STREAMS_POOL_SIZE.

Step 2.2 - Modify the Primary Database Service

On the primary database server, validate the existing database services that were created as
part of the original Oracle GoldenGate on Oracle Exadata Database Service configuration.

By default, the service role is defined as PRIMARY, so that the service is only started when the
database becomes the Data Guard primary database role after a role transition.

As the oracle OS user on the primary system, validate the service role using the following
command:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ source <db_name>.env
[oracle@exapri-node1 ~]$ srvctl config service -db $ORACLE_UNQNAME |
 egrep 'Service name|role|Pluggable database name'
Service name: <CDB_SERVICE_NAME>
Service role: PRIMARY
Pluggable database name:
Service name: <PDB_SERVICE_NAME>
Service role: PRIMARY
Pluggable database name: <PDB_NAME>

If the roles is not PRIMARY, modify the service using the following command:

[oracle@exapri-node1 ~]$ srvctl modify service -db $ORACLE_UNQNAME
 -service <service_name> -role PRIMARY

If your database is part of a multitenant environment, remember to modify both the
multitenant container database (CDB) and pluggable database (PDB) services.

Step 2.3 - Create the Standby Database Service
On the standby Oracle Exadata Database Service, a database service is required for the
standby database so that the Oracle Grid Infrastructure Agent will automatically start the
Oracle GoldenGate deployment when the database is opened with the primary role.

When a source database is in a multitenant environment, a separate service is required for
the root container database (CDB) and the pluggable database (PDB) that contains the
schema being replicated. For a multitenant environment target database, a single service is
required for the PDB.

Create the service in the standby database as it was created on the primary database. It is
recommended that you use the same service name as was specified on the primary system.

Chapter 21
Task 2 - Configure the Oracle Database for GoldenGate

21-3

The service must be created as a singleton service, using the -preferred option,
because the application Virtual IP address (VIP), DBFS, and Oracle GoldenGate will
run on the system node where the service is running.

1. As the oracle OS user, get the Fully Qualified Domain Name (FQDN):

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ hostname -f
exadb-node1.<FQDN>

2. As the oracle OS user on the standby system, create the service using the
following command:

[opc@exastb-node1 ~]$ sudo su - oracle
[oracle@exastb-node1 ~]$ source <db_name>.env
[oracle@exastb-node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service <CDB_SERVICE_NAME>.<FQDN> -preferred <SID1> -available
<SID2>
 -role PRIMARY
[oracle@exastb-node1 ~]$ srvctl add service -db $ORACLE_UNQNAME
 -service <PDB_SERVICE_NAME>.<FQDN> -preferred <SID1> -available
<SID2>
 -pdb <PDB name> -role PRIMARY

Task 3 - Configure Oracle Database File System
The Database File System (DBFS) is the only recommended solution when
configuring Oracle GoldenGate with Oracle Data Guard.

The DBFS user, tablespace, and file system in the database was previously created in
the primary database, as detailed in Cloud: Oracle GoldenGate Microservices
Architecture on Oracle Exadata Database Service Configuration Best Practices .

Perform the following steps to complete this task:

• Step 3.1 - Configuring DBFS on Oracle Exadata Database Service

• Step 3.2 - (PDB Only) Create an Entry in TNSNAMES

• Step 3.3 - Copy and Edit the mount-dbfs Scripts from the Primary System

• Step 3.4 - Register the DBFS Resource with Oracle Clusterware

Step 3.1 - Configuring DBFS on Oracle Exadata Database Service

1. As the opc OS user on the standby system, add the grid user to the fuse group:

[opc@exastb-node1 ~]$ sudo -u grid
 $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/bin/olsnodes >
~/dbs_group
[opc@exadb-node1 ~]$ dcli -g ~/dbs_group -l opc sudo usermod -a -G
fuse grid

Chapter 21
Task 3 - Configure Oracle Database File System

21-4

2. As the opc OS user on the standby system, validate that the file /etc/fuse.conf exists
and contains the user_allow_other option:

[opc@exastb-node1 ~]$ cat /etc/fuse.conf
mount_max = 1000
user_allow_other

3. As the opc OS user on the standby system, skip this step if the option user_allow_other
is already in the /etc/fuse.conf file. Otherwise run the following commands to add the
option:

[opc@exastb-node1 ~]$ dcli -g ~/dbs_group -l opc “echo user_allow_other |
 sudo tee -a /etc/fuse.conf”

4. As the opc OS user on the standby system, create an empty directory that will be used as
the mount point for the DBFS filesystem.

Note:

It is important that the mount point is identical as the one in the primary system,
because the physical location of the Oracle GoldenGate deployment is included
within the deployment configuration files.

[opc@exastb-node1 ~]$ dcli -g ~/dbs_group -l opc sudo mkdir -p /mnt/dbfs

5. As the opc OS user on the standby system, change ownership on the mount point
directory so the grid OS user can access it:

[opc@exastb-node1 ~]$ dcli -g ~/dbs_group -l opc
 sudo chown oracle:oinstall /mnt/dbfs

Step 3.2 - (PDB Only) Create an Entry in TNSNAMES

1. As the oracle OS user on the standby system, add a connect entry in $TNS_ADMIN/
tnsnames.ora file. Use the PDB service name created in Step 2.3:

[oracle@exadb-node1 ~]$ vi $TNS_ADMIN/tnsnames.ora
dbfs =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = <PDB_SERVICE_NAME>)
)
)

2. As the oracle OS user, distribute the $TNS_ADMIN/tnsnames.ora file to the rest of the
nodes:

[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
 -f $TNS_ADMIN/tnsnames.ora -d $TNS_ADMIN/

Chapter 21
Task 3 - Configure Oracle Database File System

21-5

Step 3.3 - Copy and Edit the mount-dbfs Scripts from the Primary System

1. As the root OS user on the primary system, create a zip file with the files mount-
dbfs.conf and mount-dbfs.sh:

[opc@exapri-node1 ~]$ sudo su -
[root@exapri-node1 ~]# zip -j /tmp/mount-dbfs.zip
 $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script/
mount-dbfs.sh
 /etc/oracle/mount-dbfs.conf
 adding: mount-dbfs.sh (deflated 67%)
 adding: mount-dbfs.conf (deflated 58%)

2. As the opc OS user on the standby system, copy the mount-dbfs.zip file from the
primary system to the standby system:

[opc@exastb-node1 ~]$ scp exapri-node1.oracle.com:/tmp/mount-
dbfs.zip /tmp

3. As the opc OS user on the standby system, unzip the mount-dbfs.zip file and edit
the configuration file mount-dbfs.conf:

[opc@exastb-node1 ~]$ unzip /tmp/mount-dbfs.zip -d /tmp
Archive: /tmp/mount-dbfs.zip
 inflating: /tmp/mount-dbfs.sh
 inflating: /tmp/mount-dbfs.conf
[opc@exastb-node1 ~]$ vi /tmp/mount-dbfs.conf

It is recommended that you place them in the same directory as the primary
system. You will need to modify the following parameters in the mount-dbfs.conf
file to match the standby database:

• DBNAME
• TNS_ADMIN
• PDB_SERVICE

4. As the opc OS user on the standby system, copy mount-dbfs.conf to the
directory /etc/oracle on database nodes and set proper permissions on it:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc -
d /tmp
 -f /tmp/mount-dbfs.conf
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 cp /tmp/mount-dbfs.conf /etc/oracle
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 chown oracle:oinstall /etc/oracle/mount-dbfs.conf
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 chmod 660 /etc/oracle/mount-dbfs.conf

Chapter 21
Task 3 - Configure Oracle Database File System

21-6

5. As the opc OS user on the standby system, copy mount-dbfs.sh to the
directory $GI_HOME/crs/script on database nodes and set proper permissions on it:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo mkdir
 $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo chown
 grid:oinstall $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/
script
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l grid
 -d $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script
 -f /tmp/mount-dbfs.sh
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l grid chmod 770
 $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/crs/script/mount-
dbfs.sh

Step 3.3 - Register the DBFS Resource with Oracle Clusterware

When registering the resource with Oracle Clusterware, be sure to create it as a
cluster_resource. The reason for using cluster_resource is so the file system can only by
mounted on a single node at one time, preventing mounting of DBFS from concurrent nodes
creating the potential of concurrent file writes, causing file corruption problems.

If using Oracle Multitenant, make sure to use the service name for the same PDB that
contains the DBFS repository as was created in the primary database.

1. As the grid OS user on the standby system, find the resource name for the database
service created in a previous step for the DBFS service dependency:

[opc@exastb-node1 ~]$ sudo su - grid
[grid@exastb-node1 ~]$ crsctl stat res |grep <PDB_NAME>
NAME=ora.<DB_UNIQUE_NAME>.<PDB_SERVICE_NAME>.svc

2. As the oracle OS user on the standby system, register the Clusterware resource by
executing the following script:

[opc@exadb-node1 ~]$ sudo su - oracle
[oracle@exadb-node1 ~]$ vi add-dbfs-resource.sh
start script add-dbfs-resource.sh
#!/bin/bash
ACTION_SCRIPT=$(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/crs/script/mount-dbfs.sh
RESNAME=dbfs_mount
DEPNAME=ora.<DB_UNIQUE_NAME>.<PDB_SERVICE_NAME>.svc
ORACLE_HOME=$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)
PATH=$ORACLE_HOME/bin:$PATH
export PATH ORACLE_HOME
crsctl add resource $RESNAME \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=$ACTION_SCRIPT, \
 CHECK_INTERVAL=30,RESTART_ATTEMPTS=10, \
 START_DEPENDENCIES='hard($DEPNAME)pullup($DEPNAME)',\
 STOP_DEPENDENCIES='hard($DEPNAME)',\
 SCRIPT_TIMEOUT=300"
end script add-dbfs-resource.sh
[oracle@exadb-node1 ~]$ sh add-dbfs-resource.sh

Chapter 21
Task 3 - Configure Oracle Database File System

21-7

Note:

After creating the $RESNAME resource, in order to stop the $DBNAME database
when the $RESNAME resource is ONLINE, you will have to specify the force flag
when using srvctl.

For example: srvctl stop database -d $ORACLE_UNQNAME -f

Task 4 - Install Oracle GoldenGate
Install the Oracle GoldenGate software locally on all nodes in the Oracle Exadata
Database Service configuration that will be part of the GoldenGate configuration.

Note:

Make sure the installation directory is the identical on all nodes to match the
primary system installation directory.

1. As the opc OS user on the standby system, copy the oggcore.rsp response file
from the primary system to the standby system:

[opc@standby_node_1 ~]$ scp
 primary_node_1:/u02/app_acfs/goldengate/oggcore.rsp
 /u02/app_acfs/goldengate

2. On the standby system, follow “Step 4.2 - Install Oracle GoldenGate” as detailed in
Task 4 - Install Oracle GoldenGate.

Task 5 - Create Oracle GoldenGate Deployment Directories
The Oracle GoldenGate Service Manager and deployment were already created on
the primary system, but certain directories and symbolic links need to be configured on
the standby system nodes. These directories and symbolic links were created on the
primary system, as detailed in Cloud: Oracle GoldenGate Microservices Architecture
on Oracle Exadata Database Service Configuration Best Practices .

1. As the oracle OS user on the primary system, determine the datastore directory:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ grep RepoDatastorePath /mnt/dbfs/goldengate
 /deployments/<instance_name>/var/log/pmsrvr.log|uniq
"RepoDatastorePath": "",
 "RepoDatastorePath": "/u02/app/oracle/goldengate/datastores/
<instance_name>",

Chapter 21
Task 4 - Install Oracle GoldenGate

21-8

2. As the oracle OS user on the standby system, create the directory on all database
nodes:

[oracle@exastb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
mkdir
 -p /u02/app/oracle/goldengate/datastores/<gg_deployment_name>

Create the Oracle GoldenGate deployment temp directory local storage to match the
symbolic link created on the primary system.

3. As the oracle OS user on the primary system, determine the datastore directory:

[oracle@exapri-node1 ~]$ ls -l
 /mnt/dbfs/goldengate/deployments/<instance_name>/var |grep temp
lrwxrwxrwx 1 oracle oinstall 49 Oct 3 10:20 temp ->
 /u02/app/oracle/goldengate/deployments/<instance_name>/temp

4. As the oracle OS user on the standby system, create the same directory on the standby
database nodes:

[oracle@exastb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
mkdir
 -p /u02/app/oracle/goldengate/deployments/<instance_name>/temp

Task 6 - Network Configuration
On the standby system, follow the instructions in Task 6 - Configure the Network from
Chapter Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata Database
Service Configuration Best Practices .

Task 7 - Configure Standby NGINX Reverse Proxy
The Oracle GoldenGate reverse proxy feature allows a single point of contact for all of the
Oracle GoldenGate microservices associated with an Oracle GoldenGate deployment.

Without reverse proxy, the GoldenGate deployment microservices are contacted using a URL
consisting of a host name or IP address and separate port numbers, one for each of the
services. Reverse proxy is mandatory to ensure easy access to microservices and provide
enhanced security and manageability.

Perform the following steps to complete this task:

• Step 7.1 - Install NGINX Reverse Proxy

• Step 7.2 - Copy NGINX Configuration Files from the Primary System

• Step 7.3 - Install Server Certificates for NGINX

• Step 7.4 - Test and Reload the New NGINX Configuration

• Step 7.5 - Distribute the GoldenGate NGINX Configuration Files

• Step 7.6 - Create a Clusterware Resource to Manage NGINX

Step 7.1 - Install NGINX Reverse Proxy

Chapter 21
Task 6 - Network Configuration

21-9

On the standby system, follow the instructions in “Step 8.1 - Install NGINX Reverse
Proxy Server” of Task 8 - Configure NGINX Reverse Proxy to install NGINX.

Step 7.2 - Copy NGINX Configuration Files from the Primary System

1. As the opc user on the standby system, copy the NGINX configuration file from the
primary to the standby database system:

[opc@standby_node_1 ~]$ scp
primary_node_1.oracle.com:/etc/nginx/conf.d/
ogg_<deployment_name>.conf
 /tmp

2. As the root user on the standby system, copy the NGINX configuration file from
the directory /tmp to the directory /etc/nginx/conf.d:

[opc@exastb-node1 ~]$ sudo su -
[root@exastb-node1 ~]# cp /tmp/ogg_<deployment_name>.conf /etc/
nginx/conf.d

Step 7.3 - Install Server Certificates for NGINX

The standby system will need a different CA signed certificate due to using a different
VIP name/address than the primary system. Contact your systems administrator to
follow your corporate standards to create or obtain the server certificate before
proceeding. A separate certificate is required for each VIP and Service Manager pair.

1. As the root user on the standby system, copy the server CA certificates and key
files in the /etc/nginx/ssl directory, owned by root with file permissions 400 (-
r--------):

[opc@exastb-node1 ~]$ sudo su -
[root@exastb-node1 ~]# mkdir /etc/nginx/ssl
[root@exastb-node1 ~]# chmod 400 /etc/nginx/ssl

2. As the root user on the standby system, set the correct filenames for the
certificate and key file to match the same the filenames in the NGINX configuration
file:

[root@exastb-node1 ~]# grep
 ssl_certificate /etc/nginx/conf.d/ogg_<deployment_name>.conf
 ssl_certificate /etc/nginx/ssl/server.chained.crt;
 ssl_certificate_key /etc/nginx/ssl/server.key;

Note:

If you have copied multiple reverse proxy configuration files copied from
the primary system, you will need to repeat this process for each file.

When using CA signed certificates, the certificate named with the
ssl_certificate NGINX parameter must include the 1) CA signed, 2)

Chapter 21
Task 7 - Configure Standby NGINX Reverse Proxy

21-10

intermediate and 3) root certificates in a single file. The order is very important, otherwise
NGINX fails to start and displays the error message:

(SSL: error:0B080074:x509 certificate routines: X509_check_private_key:key
values mismatch).
The root and intermediate certificates can be downloaded from the CA signed certificate
provider.

The single file can be generated using the following example command:

[root@exastb-node1 ~]# cat CA_signed_cert.crt intermediate.crt root.crt >
 /etc/nginx/ssl/server.chained.crt

The ssl_certificate_key file is the key file generated when creating the Certificate
Signing Request (CSR), which is required when requesting a CA signed certificate.

3. As the root user on the standby system, change the server_name parameter to the
correct VIP name in the reverse proxy configuration file copied from the primary system:

[root@exastb-node1 ~]# vi /etc/nginx/conf.d/ogg_<deployment_name>.conf
Before:
server_name exapri-vip.oracle.com;
After:
server_name exastb-vip.oracle.com;

Step 7.4 - Test and Reload the New NGINX Configuration

Because the VIP will not be running on the standby system until the primary database service
is running, there is a parameter that needs to be set in the /etc/sysctl.conf file.

1. As the opc user on the standby system, add the following parameter to the file /etc/
sysctl.conf:

[opc@exastb-node1 ~]$ sudo vi /etc/sysctl.conf
allow processes to bind to the non-local address
net.ipv4.ip_nonlocal_bind = 1

2. As the opc user on the standby system, distribute the /etc/sysctl.conf file:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc
 -d /tmp -f /etc/sysctl.conf
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
 cp /tmp/sysctl.conf /etc/sysctl.conf

3. As the opc user on the standby system, reload the modified configuration:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc sudo
sysctl
 -p /etc/sysctl.conf

Chapter 21
Task 7 - Configure Standby NGINX Reverse Proxy

21-11

4. As the opc user on the standby system, validate the NGINX configuration file to
detect any errors in the configuration. If there are errors in the file, they will be
reported by the following command:

[opc@exastb-node1 ~]$ sudo nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginxconf test is successful

5. As the opc user on the standby system, restart NGINX with the new configuration:

[opc@exastb-node1 ~]$ sudo systemctl restart nginx

Step 7.5 - Distribute the GoldenGate NGINX Configuration Files

Once all the reverse proxy configuration files have been created for the GoldenGate
Service Managers, they need to be copied to all the database nodes.

1. As the opc OS user on the standby system, distribute the NGINX configuration
files to all the database nodes:

[opc@exastb-node1 ~]$ sudo tar fczP nginx_conf.tar
 /etc/nginx/conf.d/ /etc/nginx/ssl/
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc
 -d /tmp -f nginx_conf.tar
[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc
 sudo tar fxzP /tmp/nginx_conf.tar

2. As the opc OS user on the standby system, test the new NGINX configuration on
all nodes the new configuration files were copied to:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc
sudo nginx -t

exastb-node1: nginx: the configuration file /etc/nginx/nginx.conf
syntax is ok
exastb-node1: nginx: configuration file /etc/nginx/nginx.conf test
is successful
exastb-node2: nginx: the configuration file /etc/nginx/nginx.conf
syntax is ok
exastb-node2: nginx: configuration file /etc/nginx/nginx.conf test
is successful

3. As the opc OS user on the standby system, restart NGINX to load the new
configuration on all nodes:

[opc@exastb-node1 ~]$ /usr/local/bin/dcli -g ~/dbs_group -l opc
 sudo systemctl restart nginx

Step 7.6 - Create a Clusterware Resource to Manage NGINX

Oracle Clusterware needs to have control over starting the NGINX reverse proxy so
that it can be started automatically before the GoldenGate deployments are started.

Chapter 21
Task 7 - Configure Standby NGINX Reverse Proxy

21-12

1. As the grid OS user on the standby system, use the following command to get the
network CRS resource name required to create the NGINX resource with a dependency
on the underlying network CRS resource:

[opc@exastb-node1 ~]$ sudo su - grid
[grid@exastb-node1 ~]$ crsctl stat res -w "TYPE == ora.network.type"|grep
NAME
NAME=ora.net1.network

2. As the root user on the standby system, use the following example command to create a
Clusterware resource to manage NGINX. Replace HOSTING_MEMBERS and CARDINALITY to
match your environment:

[opc@exastb-node1 ~]$ sudo su -

[root@exastb-node1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl add resource nginx -type generic_application -attr
 "ACL='owner:root:rwx,pgrp:root:rwx,other::r--,group:oinstall:r-
x,user:oracle:rwx',
EXECUTABLE_NAMES=nginx,START_PROGRAM='/bin/systemctl start -f nginx',
STOP_PROGRAM='/bin/systemctl stop -f nginx',
CHECK_PROGRAMS='/bin/systemctl status nginx' ,
START_DEPENDENCIES='hard(ora.net1.network) pullup(ora.net1.network)',
STOP_DEPENDENCIES='hard(intermediate:ora.net1.network)',
RESTART_ATTEMPTS=0,
HOSTING_MEMBERS='<exastb-node1, exastb-node2>', CARDINALITY=2"

The NGINX resource created in this example will run on the named database nodes at the
same time, specified by HOSTING_MEMBERS. This is recommended when multiple GoldenGate
Service Manager deployments are configured, and they can independently move between
database nodes.

Task 8 - Configure Oracle Grid Infrastructure Agent
The following procedure shows you how to configure Oracle Clusterware to manage Oracle
GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG).

Using XAG automates the mounting of the shared file system (DBFS) as well as the stopping
and starting of the Oracle GoldenGate deployment when relocating between Oracle RAC
nodes.

Perform the following steps to complete this task:

• Step 8.1 - Modify the Primary Cluster XAG GoldenGate Instance

• Step 8.2 - Install Oracle Grid Infrastructure Agent

• Step 8.3 - Configure Oracle Grid Infrastructure Agent

Step 8.1 - Modify the Primary Cluster XAG GoldenGate Instance
The Oracle Grid Infrastructure Standalone Agent (XAG) GoldenGate instance on the primary
system, must be modified to identify that it is part of an Oracle Data Guard configuration.

Chapter 21
Task 8 - Configure Oracle Grid Infrastructure Agent

21-13

As the root user on the primary system, use the following command to modify the
Oracle Data Guard autostart flag:

[opc@exapri-node1 ~]$ sudo su -
[root@exapri-node1 ~]# /u01/app/grid/xag/bin/agctl modify goldengate
<instance_name>
 --dataguard_autostart yes

Step 8.2 - Install Oracle Grid Infrastructure Agent

On the standby system, follow the instructions in “Step 7.1 - Install the Oracle Grid
Infrastructure Standalone Agent” from Task 7 - Configure Oracle Grid Infrastructure
Agent.

Step 8.3 - Configure Oracle Grid Infrastructure Agent

The parameters used to register Oracle GoldenGate Microservices with XAG are
similar to those used when registering with the primary system.

1. As the grid user on the primary system, use the following command to determine
the current parameters in the primary system:

[grid@exapri-node1 ~]$ agctl config goldengate <instance_name>
Instance name: <instance_name>
Application GoldenGate location is: /u02/app/oracle/goldengate/gg21c
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory:
 /mnt/dbfs/goldengate/deployments/<instance_name>/etc/conf
Goldengate Service Manager var directory:
 /mnt/dbfs/goldengate/deployments/<instance_name>/var
Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: yes
Configured to run on Nodes: exapri-node1 exapri-node2
ORACLE_HOME location is: /u02/app/oracle/goldengate/gg21c/lib/
instantclient
Database Services needed:
ora.<DB_UNIQUE_NAME>.<SERVICE_NAME>.<FQDN>.svc
File System resources needed: dbfs_mount,nginx
Network: 1, IP:<VIP>, User:oracle, Group:oinstall

In addition, the XAG parameter --filesystem_verify no must be specified to
prevent XAG from checking the existence of the DBFS deployment directory when
registering the Oracle GoldenGate instance. Without setting this parameter, the
XAG registration will fail, because DBFS is not mounted on the standby system.

Note:

It is recommended to use the same GoldenGate instance name when
registering GoldenGate with XAG as was used in the primary system.

Chapter 21
Task 8 - Configure Oracle Grid Infrastructure Agent

21-14

2. As the root user on the standby system, register Oracle GoldenGate Microservices
Architecture with XAG use the following command format:

https://support.oracle.com/rs?type=doc&id=2193391.1

http://www.oracle.com/pls/topic/lookup?ctx=db19&id=SBYDB

[root@exastb-node1 ~]# /u01/app/grid/xag/bin/agctl add goldengate
<instance_name> \
--gg_home /u02/app/oracle/goldengate/gg21c \
--service_manager \
--config_home /mnt/dbfs/goldengate/deployments/<ggsm1>/etc/conf \
--var_home /mnt/dbfs/goldengate/deployments/<ggsm1>/var \
--port 9100 \
--oracle_home /u02/app/goldengate/gg21c/lib/instantclient \
--adminuser oggadmin \
--user oracle \
--group oinstall \
--network 1 --ip <virtual_IP_address> \
--filesystems dbfs_mount,nginx \
--db_services ora.<DB_UNIQUE_NAME>.<SERVICE_NAME>.<FQDN>.svc \
--use_local_services \
--nodes <exastb-node1>,<exastb-node2> \
--filesystem_verify no \
--dataguard_autostart yes

Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate
Database Connections

The same TNS aliases created on the primary system for the primary database using the IPC
protocol must be created with the same alias names on each database node of the standby
system, using the IPC communication protocol as specified in Cloud: Oracle GoldenGate
Microservices Architecture on Oracle Exadata Database Service Configuration Best
Practices .

The location of the tnsnames.ora used by the Oracle GoldenGate deployment must be
identical on the standby system nodes as it is on the primary system.

1. As the oracle user on the primary system, use the following query REST API call to
query the TNS_ADMIN location:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ grep -1 TNS_ADMIN
 /mnt/dbfs/goldengate/deployments/ggsm1/etc/conf/deploymentRegistry.dat
 {
 "name": "TNS_ADMIN",
 "value": "/u02/app/oracle/goldengate/network/admin"

Make sure the tnsnames.ora is in this same directory on all standby database nodes.

Chapter 21
Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

21-15

2. As the oracle OS user on the standby system, follow the steps to create the TNS
alias definitions and distribute to all database nodes:

[opc@exastb-node1 ~]$ sudo su - oracle
[oracle@exastb-node1 ~]$ dcli -l oracle -g ~/dbs_group mkdir
 -p /u02/app/oracle/goldengate/network/admin
[oracle@exastb-node1 ~]$ vi /u02/app/oracle/goldengate/network/
admin/tnsnames.ora

OGGSRV_CDB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = <CDB_SERVICE_NAME>)
)
)

OGGSRV_<PDB_NAME> =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = <PDB_SERVICE_NAME>)
)
)

[oracle@exastb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/
dbs_group
 -f /u02/app/oracle/goldengate/network/admin/*.ora
 -d /u02/app/oracle/goldengate/network/admin

Note:

When the tnsnames.ora or sqlnet.ora located in the TNS_ADMIN directory for
the Oracle GoldenGate deployment are modified, the deployment needs to
be restarted in order to pick up the changes.

Task 10 - Configure Oracle GoldenGate Processes
In addition to the advice provided in Cloud: Oracle GoldenGate Microservices
Architecture on Oracle Exadata Database Service Configuration Best Practices , follow
the recommendations provided below for Extract, Distribution Paths, and Replicats.

Perform the following steps to complete this task:

• Step 10.1 - Modify the Extract Configuration on the Primary System

• Step 10.2 - Modify the Distribution Path Configuration on the Primary and Standby
Systems

Step 10.1 - Modify the Extract Configuration on the Primary System

Chapter 21
Task 10 - Configure Oracle GoldenGate Processes

21-16

For Extract processes using Data Guard configurations that are using redo transport
Maximum Performance or Maximum Availability modes, the following parameter must be
added to the Extract process parameter file on the primary system to avoid losing
transactions and resulting in logical data inconsistencies:

TRANLOGOPTIONS HANDLEDLFAILOVER

This parameter prevents Extract from extracting transaction data from redo that has not yet
been applied to the Data Guard standby database. This is crucial to preventing Oracle
GoldenGate from replicating data to a target database that does not exist in the source
standby database.

If this parameter is not specified, after a data loss failover of the source database it is
possible to have data in the target database that is not present in the source database,
leading to logical data inconsistencies.

By default, after 60 seconds, a warning message will be written to the Extract report file when
the Extract is stalled due to not being able to query the standby database applied SCN
information. For example:

WARNING OGG-02721 Extract has been waiting for the standby database for 60
seconds.
The amount of time before the warning message is written to Extract report file can be
adjusted using the Extract parameter TRANLOGOPTIONS HANDLEDLFAILOVER STANDBY_WARNING.

If the Extract is still not able to query the standby database applied SCN information after 30
minutes (default), the Extract process will abend, logging the following message in the Extract
report file:

ERROR OGG-02722 Extract abended waiting for 1,800 seconds for the standby
database to be accessible or caught up with the primary database.
If the standby database becomes available before the default 30 timeout expires, Extract
continues mining data from the source database and reports the following message to the
report file:

INFO OGG-02723 Extract resumed from stalled state and started processing LCRs.
The timeout value of 30 minutes can be adjusted using the Extract parameter
TRANLOGOPTIONS HANDLEDLFAILOVER STANDBY_ABEND <value>, where value is the number of
seconds the standby is unavailable before abending.

If the standby database will be unavailable for a prolonged duration, such as during a
planned maintenance outage, and you wish Extract to continue extracting data from the
primary database, remove the TRANLOGOPTIONS HANDLEDLFAILOVER parameter from the
Extract parameter file and restart Extract. Remember to set the parameter after the standby
becomes available.

Note:

If extracting from a primary database continues while the standby is unavailable, a
data loss failover could result after the standby becomes available, and not all the
primary redo was applied before a failover. The Oracle GoldenGate target database
will contain data that does not exist in the source database.

Chapter 21
Task 10 - Configure Oracle GoldenGate Processes

21-17

If the Extract process has been assigned an auto restart profile, as documented in
Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata Database
Service Configuration Best Practices , after a Data Guard role transition, the Extract
process will automatically restart. Extract will continue to mine redo data from the new
primary database, ignoring the current state of the new standby database, until a
default 5-minute timeout period expires. After this time, if the standby is not available
Extract will abend with the following errors:

INFO OGG-25053 Timeout waiting for 300 seconds for standby database
reinstatement. Now enforcing HANDLEDLFAILOVER.
ERROR OGG-06219 Unable to extract data from the Logmining server
OGG$CAP_XXXXX.
ERROR OGG-02078 Extract encountered a fatal error in a processing thread
and is abending.
Extract will continue to automatically restart, based on the Oracle GoldenGate
Microservices auto restart profile, and failing due to reaching the HANDLEDLFAILOVER
timeout, until the number retries is reached or the new standby database becomes
available.

During the timeout period following a database role transition, the HANDLEDLFAILOVER
parameter is automatically suspended, so data will be replicated to the Oracle
GoldenGate replica database without consideration of the source standby database
not being kept up to date. The timeout period for the standby database to start up
before Extract abends can be adjusted using the Extract parameter TRANLOGOPTIONS
DLFAILOVER_TIMEOUT.

It is recommended that you leave DLFAILOVER_TIMEOUT at the default of 5 minutes, to
allow the old primary to convert to a standby. If the new standby database will be
unavailable for an extended period of time or completely gone, then in order for Extract
to start and remain running, you must remove the HANDLEDLFAILOVER parameter from
the Extract parameter file. After removing the parameter, Extract no longer waits until
redo has been applied to the standby database before extracting the data.

During the time it takes for the standby database to come back online and apply all the
redo from the primary database, there will be data divergence between it and the
Oracle GoldenGate replica database. This will be resolved once the standby database
is up to date. At which point, add the HANDLEDLFAILOVER parameter back into the
integrated Extract process parameter file, and then stop and restart the Extract.

When Oracle Data Guard Fast-Start Failover is disabled, such that the broker can
automatically fail over to a standby database in the event of loss of the primary
database, you must specify an additional integrated Extract parameter shown below.

TRANLOGOPTIONS FAILOVERTARGETDESTID n
This parameter identifies which standby database the Oracle GoldenGate Extract
process must remain behind, with regards to not extracting redo data that has not yet
been applied to the standby database.

If Oracle Data Guard Fast-Start Failover is disabled, and you don’t specify the
additional integrated Extract parameter FAILOVERTARGETDESTID, the extract will abend
with the following errors:

ERROR OGG-06219 Unable to extract data from the Logmining server
OGG$CAP_XXXXX.

Chapter 21
Task 10 - Configure Oracle GoldenGate Processes

21-18

ERROR OGG-02078 Extract encountered a fatal error in a processing thread and is
abending.
To determine the correct value for FAILOVERTARGETDESTID, use the LOG_ARCHIVE_DEST_N
parameter from the Oracle GoldenGate source database which is used for sending redo to
the source standby database. For example, if LOG_ARCHIVE_DEST_2 points to the standby
database, then use a value of 2.

As the oracle user on the primary system, execute the following command:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ source <db_name>.env
[oracle@exapri-node1 ~]$ sqlplus / as sysdba

SQL> show parameters log_archive_dest
NAME TYPE VALUE
--------------------- -----------

log_archive_dest_1 string location=USE_DB_RECOVERY_FILE_DEST,
 valid_for=(ALL_LOGFILES, ALL_ROLES)

log_archive_dest_2 string service="<db_name>", SYNC AFFIRM delay=0
 optional compression=disable max_failure=0
reopen=300
 db_unique_name="<db_name>" net_timeout=30,
 valid_for=(online_logfile,all_roles)

In this example, the Extract parameter would be set to the following:

TRANLOGOPTIONS FAILOVERTARGETDESTID 2
To add the parameters to the Extract parameter file:

1. Log in into the Oracle GoldenGate Administration Server in the Source Oracle
GoldenGate.

2. Click in Overview under Administration Service.

3. Click the Action button next to the Extract that you want to modify.

4. Select Details.

5. Select the Parameters tab, and then select the pencil icon to edit the current parameter
file.

6. Add the TRANLOGOPTIONS parameters and select Apply to save the changes.

For the new parameters to take effect, the Extract process needs to be stopped and
restarted, which can be done using the Administration Server.

See Reference for Oracle GoldenGate for further information about the Extract
TRANLOGOPTIONS parameters.

Step 10.2 - Modify the Distribution Path Configuration on the Primary and Standby
Systems

When the target database of an Oracle GoldenGate environment, where the Receiver Server
runs, is protected with Oracle Data Guard, there is an important consideration that must be
given to any Distribution Path that are sending trail files to the Receiver Server. When the

Chapter 21
Task 10 - Configure Oracle GoldenGate Processes

21-19

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF

Receiver Server moves to a different system after an Oracle Data Guard role
transition, any Distribution Path must be altered to reflect the new target system
address.

You can automatically change the Distribution Paths using a database role transition
trigger in the target database on the Receiver Server system.

If the primary and standby system VIPs use different root CA certificates, the standby
certificate will need to be added to the source deployment Service Manager, as
detailed in the "Step 11.3 - Distribution Path Configuration” of Task 11 - Configure
Oracle GoldenGate Processes

Follow the instructions below to create a database role transition trigger to modify the
Distribution Path target address when the receiver server moves between the primary
and standby system, during target database Data Guard role transitions.

Perform the following sub-steps to complete this step:

• Step 10.2.1 - Create a Shell Script to Modify the Distribution Paths

• Step 10.2.2 - Create a DBMS_SCHEDULER job

• Step 10.2.3 - Create the Deployment Config File

• Step 10.2.4 - Create the Database Role Transition Trigger

Step 10.2.1 - Create a Shell Script to Modify the Distribution Paths

Example Distribution Path Target Change Script contains an example shell script that
can be used to modify a distribution path target address. Refer to the example script
comments for setting appropriate variable values.

Note:

The script should be placed in the same local directory on all Oracle RAC
nodes of the TARGETprimary and standby database systems. Set the
script file permissions to 6751.

As the oracle OS user on the TARGET primary and standby systems, follow the steps
to create and distribute the script change_path_target.sh:

[opc@exadb-node1 ~]$ sudo su – oracle
[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
mkdir
 -p /u02/app/oracle/goldengate/scripts
[oracle@exadb-node1 ~]$ vi /u02/app/oracle/goldengate/scripts/
change_path_target.sh
Paste the script from Example Distribution Path Target Change
 Script
[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
 -f /u02/app/oracle/goldengate/scripts/change_path_target.sh
 -d /u02/app/oracle/goldengate/scripts

Step 10.2.2 - Create a DBMS_SCHEDULER job

Chapter 21
Task 10 - Configure Oracle GoldenGate Processes

21-20

Creating a DBMS_SCHEDULER job is required to run an operating system shell script from within
PL/SQL.

1. As the oracle OS user on the TARGET primary system, create the scheduler job as a
SYSDBA user in the root container database (CDB):

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ source <db_name>.env
[oracle@exapri-node1 ~]$ sqlplus / as sysdba
SQL> exec dbms_scheduler.create_job(job_name=>'gg_change_path_target',
 job_type=>'EXECUTABLE', number_of_arguments => 6,
 job_action=>'/u02/app/oracle/goldengate/scripts/change_path_target.sh',
 enabled=>FALSE);

To run an external job, you must set the run_user and run_group parameters in
the $ORACLE_HOME/rdbms/admin/externaljob.ora file to the Oracle database operating
system user and group.

2. As the root OS user on the TARGET primary and standby systems, create file
externaljob.ora:

[opc@exadb-node1 ~]$ sudo su –
[root@exadb-node1 ~]# export DB_NAME=<database_name>
[root@exadb-node1 ~]# dbaascli database getDetails
 --dbname $DB_NAME |grep homePath |uniq
 "homePath" : "/u02/app/oracle/product/19.0.0.0/dbhome_1",

[root@exadb-node1 ~]# vi
 /u02/app/oracle/product/19.0.0.0/dbhome_1/rdbms/admin/externaljob.ora
Before
run_user = nobody
run_group = nobody
After
run_user = oracle
run_group = oinstall

3. Repeat this step on all nodes on the primary and standby systems.

Note:

The extrernaljob.ora must be configured on all Oracle RAC nodes of the
primary and standby database systems.

Step 10.2.3 - Create the Deployment Config File

The example shell script uses REST API calls to access the Oracle GoldenGate distribution
path. In order to make the REST API calls secure, it is recommended that you include the
user name and password in a configuration file, which is read by curl.

As the oracle OS user on the TARGET primary and standby systems, create the configuration
file containing the deployment credentials:

[opc@exadb-node1 ~]$ sudo su – oracle
[oracle@exadb-node1 ~]$

Chapter 21
Task 10 - Configure Oracle GoldenGate Processes

21-21

cat > /u02/app/oracle/goldengate/scripts/<INSTANCE_NAME>.cfg << EOF
 user = "oggadmin:<password>"
EOF
[oracle@exadb-node1 ~]$ chmod 600 /u02/app/oracle/goldengate/scripts/
<INSTANCE_NAME>.cfg
[oracle@exadb-node1 ~]$ /usr/local/bin/dcli -l oracle -g ~/dbs_group
 -f /u02/app/oracle/goldengate/scripts/<INSTANCE_NAME>.cfg
 -d /u02/app/oracle/goldengate/scripts

Step 10.2.4 - Create the Database Role Transition Trigger

Create a role transition trigger on the Oracle GoldenGate source database that will be
fire when a standby database becomes a primary database, changing the distribution
path target address.

As the oracle OS user on the TARGET primary system, execute the following SQL
sentence to create the role transition trigger:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ source <db_name>.env
[oracle@exapri-node1 ~]$ sqlplus / as sysdba
CREATE OR REPLACE TRIGGER gg_change_path
AFTER db_role_change ON DATABASE
declare
 role varchar2(30);
 hostname varchar2(64);
begin
 select database_role into role from v$database;
 select host_name into hostname from v$instance;

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',1,'<PRIMA
RY Source VIP');

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',2,'<STAND
BY Source VIP');

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',4,'<Distr
ibution path name');

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',5,'<Insta
nce name>'

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',6,'<Confi
g file containing the deployment credentials>');
 if role = 'PRIMARY' and hostname like '<primary target cluster
name>%'
 then

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',3,'<PRIMA
RY Target VIP>:443');
 elsif role = 'PRIMARY'
 then

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',3,'<STAND
BY Target VIP>:443');

Chapter 21
Task 10 - Configure Oracle GoldenGate Processes

21-22

 end if;
 DBMS_SCHEDULER.RUN_JOB(job_name=>'gg_change_path_target');
end;
/

Step 10.3 - Replicat Configuration on the Primary System

As documented in “Step 11.4 - Replicat Configuration” of Task 11 - Configure Oracle
GoldenGate Processes, a checkpoint table in the target database is required for all Oracle
GoldenGate Replicat processes. There are no other configuration requirements for Replicat
when configured with Oracle Data Guard.

Example Distribution Path Target Change Script
The following example script can be used to change a source Oracle GoldenGate
deployment distribution path target address to reflect the new location of the receiver server
after an Oracle Data Guard role transition. This example assumes the source Oracle
GoldenGate deployment is configured in an MAA architecture with Data Guard, such that the
distribution server can relocate between a primary and standby systems.

#!/bin/bash

change_path_target.sh - changes the target host of a GG Distribution Path
when the target moves between primary/standby systems.
Example usage:
./change_path_target.sh <primary source VIP>:443 <standby source VIP>:443
<path target VIP> <path name> <deployment name> <credentials file>

SOURCE1=$1 # PRIMARY Distribution Server VIP
SOURCE2=$2 # STANDBY Distribution Server VIP
TARGET=$3 # Distribution path target VIP
DPATH=$4 # Distribution path name
DEP=$5 # Deployment name
ACCESS=$6 # Config file containing the deployment credentials.
 # Example contents:
 # user = "oggadmin:<password>"

CONNECT=0

#echo "#${i} - `date`:"
LOGFILE=/tmp/ogg_dpatch_change.txt

result=$(curl -si -K
 $ACCESS https://$SOURCE1/$DEP/distsrvr/services/v2/sources/$DPATH
 -X GET| grep HTTP | awk '{print $2}')

Will return NULL of nginx not running, 502 if cannot contact server, 200
if
contact to server good, and others (404) for other bad reasons:

if [[-z $result || $result -ne 200]]; then # Managed to access the Distr
Server
 echo "`date` - Couldn't contact Distribution Server at $SOURCE1

Chapter 21
Example Distribution Path Target Change Script

21-23

 Deployment $DEP ****" >> $LOGFILE
else # Try the other source host:
 echo "`date` - Got status of Distribution Server at $SOURCE1
Deployment
 $DEP ***" >> $LOGFILE
 SOURCE=$SOURCE1
 CONNECT=1
fi

if [$CONNECT -eq 1]; then
For secure NGINX patch destination (wss)
 PAYLOAD='{"target":{"uri":"wss://'${TARGET}'/services/ggnorth/v2/
targets?trail=bb"}}'
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/
sources/$DPATH
 -X PATCH --data '{"status": "stopped"}'

Set new target for path:
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/
sources/$DPATH
 -X PATCH --data "$PAYLOAD"
 echo "`date` - Set path $DPATH on $SOURCE deployment $DEP:"
>> $LOGFILE

 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/
sources/$DPATH
 -X GET | python -m json.tool | grep uri >> $LOGFILE
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/
sources/$DPATH
 -X PATCH --data '{"status": "running"}'
 exit 0
else
 echo "`date` - ERROR: COULDN'T CHANGE DISTRIBUTION PATH ($DPATH) in
Deployement
 $DEP at $SOURCE! ***" >> $LOGFILE
fi

If here, means we couldn't connect to either Distribution Servers
exit 1

Chapter 21
Example Distribution Path Target Change Script

21-24

22
On-Premises: Configuring Oracle GoldenGate
Hub

Configure and deploy the MAA Oracle GoldenGate Hub architecture using the provided
planning considerations, tasks, management, and troubleshooting information.

Topics:

• Overview of MAA GoldenGate Hub

• Planning GGHub Placement in the Platinum MAA Architecture

• Task 1: Configure the Source and Target Databases for Oracle GoldenGate

• Task 2: Prepare a Primary and Standby Base System for GGHub

• Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

• Task 4: Configure the Oracle GoldenGate Environment

Overview of MAA GoldenGate Hub
To achieve the highest levels of availability, resulting in zero or near-zero downtime for both
unplanned outages and planned maintenance activities, customers frequently use the
combination of Oracle Real Application Clusters (Oracle RAC), Oracle Active Data Guard,
and Oracle GoldenGate.

This architecture, typically referred as Platinum MAA or Never Down Architecture, delivers
near zero Recovery Time Objective (RTO, or downtime incurred during outage) and
potentially zero or near zero Recovery Point Objective (RPO, or data loss potential).

Traditionally, Oracle GoldenGate is installed and run locally on the database server that the
GoldenGate processes connect to. When used with Oracle Grid Infrastructure Standalone
Agent (XAG), Oracle GoldenGate processes can be configured to seamlessly relocate or
failover between Oracle RAC nodes and follow Oracle Active Data Guard switchover and
failovers.

This section highlights benefits of MAA GoldenGate Hub (MAA GGhub) solution and how to
configure and deploy it with high availability and disaster recovery protection. The MAA
GGHub centralizes the Oracle GoldenGate management and offloads the majority of the
Oracle GoldenGate processing and associated CPU and storage resource utilization from
Exadata system resources. Connectivity between the GoldenGate processes and the
databases they operate against is managed with Oracle Net Services.

To achieve a Platinum MAA solution, you need to follow these high-level steps:

1. Review Oracle MAA Platinum Tier for Oracle Exadata to understand Platinum MAA
benefits and use cases.

2. Add symmetric standby databases.

3. Manually configure and deploy Oracle Data Guard Fast-Start Failover using the Oracle
MAA best practice recommendations in Configure Fast Start Failover.

22-1

https://www.oracle.com/a/tech/docs/exadata-maa-platinum-focused.pdf

4. Set up the MAA GGhub, which is the main topic of this document.

5. Configure Bidirectional Replication and Automatic Conflict Detection and
Resolution. See Oracle Cloud Infrastructure GoldenGate Documentation for
information.

6. Decide on Application Failover Options such as Global Data Services.

Planning GGHub Placement in the Platinum MAA
Architecture

Extreme availability that delivers zero downtime (RTO=0 or near zero) and zero or
near zero data loss (RPO=0 or near zero) typically requires the following Platinum
MAA architecture where:

1. You have the source and target database in an Oracle GoldenGate architecture to
allow your application to fail over immediately in the case of disaster (database,
cluster, or site failure) or switch over in the case of a database or application
upgrade. This architecture enables the potential RTO of zero or near zero for
disaster scenarios and database and application upgrade maintenance.

2. Each source and target database is deployed in Exadata systems so any local
failures are tolerated or recovered almost instantly.

3. Each source and target database is configured with a standby database with Data
Guard Fast-Start Failover so any failure of the database results in activating a new
primary database in seconds to minutes. If SYNC transport is leveraged with Max
Availability protection mode, zero data loss Data Guard failover is achieved.

4. Configured with GoldenGate replication using MAA GGhub between the source
and target databases.

5. Configured so that any standby becoming a primary database due to Data Guard
switchover or failover will automatically resynchronize with its target GoldenGate
database. If zero data loss Data Guard switchover or failover occurs, GoldenGate
resychronization ensures zero data loss across the distributed database
environment.

6. Configured with GoldenGate Automatic Conflict Detection and Resolution if bi-
directional replication is configured or required.

Where to Place the MAA Primary GGHub and Standby GGHub

1. GGHub Pair (Primary and Standby GGhub) must reside in the same region (round
trip latency of less 4ms) as each primary and standby database. For example,

a. If the primary database is in Data Center 1, Region A and standby database is
in Data Center 2, Region A, then the GGHub pair will reside in Region A.

b. If the primary database is in Region A and standby database is in Region B,
then the GGHub pair will split between Region A and B. The primary or active
GGhub must be co-located in the same region as the target primary database.

2. Performance implications:

a. Primary or active GGhub must reside in the same data center as the target
database to ensure round trip latency of 4ms or less. (Replicat performance)

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-2

https://docs.oracle.com/en/cloud/paas/goldengate-service/index.html

b. Primary or active GGhub should be < 90 ms from the source database without
incurring GoldenGate performance degradation (Extract performance).

3. GoldenGate Distribution Path

a. GoldenGate distribution path is required if the source and target GGhubs are in
different areas with a latency > 90 ms.

b. With bi-directional replication, or when there are multiple target databases in different
data centers, it may be necessary to have additional hubs with distribution paths
sending trail files between them.

MAA GGHubs Placed in the Same Data Center
In this scenario, the primary and standby database are located in the same data center
(latency less 4ms), and so the primary (active) GGHub and the standby GGHub are also
located in the same data center.

The example below has two data centers, or availability domains (ADs), in the same data
center.

As shown in Figure 1, you have the following architectural components:

1. Primary database and associated standby database are configured with Oracle Active
Data Guard Fast Start Failover (FSFO). FSFO can be configured with Data Guard
protection mode with ASYNC or SYNC redo transport depending on your maximum data
loss tolerance.

2. Primary GGHub Active/Passive Cluster: Only one GGHub software deployment and
configuration on the 2-node cluster. This cluster contains the 21c Oracle GoldenGate
software deployment that can support 11.2.0.4 and later database versions. This GGHub
can support many primary databases and encapsulates the GoldenGate processes:
GoldenGate Extract mines transactions from the source database and GoldenGate
Replicat applies the same changes to target database. GoldenGate trail and checkpoint
files will also reside in the GGhub ACFS file system. The HA failover solution is built in to
the GGhub, which includes automatic failover to the passive node in the same cluster,
and restarts GoldenGate processes and activity after a node failure.

3. Standby GGHub Active/Passive Cluster: A Symmetric standby GGhub is configured.
ACFS replication is set up between the primary and standby GGHubs to preserve all
GoldenGate files. Manual GGhub failover, which includes ACFS failover, can be executed
in the rare case that you lose the entire primary GGhub.

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-3

Figure 22-1 Primary and Standby GGHubs in the same data center with two
separate Availability Domains

PHX Region, AD1 PHX Region, AD2

Primary GGHub Standby GGHub

 GGHub Active/Passive Cluster GGHub Active/Passive Cluster

ACFS ACFS

VIP VIP
Oracle

GoldenGate
Installation

Oracle
GoldenGate
Installation

GoldenGate Deployment GoldenGate Deployment

Extracts ExtractsReplicats ReplicatsTrail Files Trail Files

Primary
Database A

Standby
Database A

Standby
Database B

Primary
Database B

1 6

Redo
Transport

2

5

ACFS
Replication

Redo
Transport

3

4

The figure above depicts replicating data from Primary Database A to Primary
Database B and Primary B back to Primary A with the following steps:

1. Primary Database A: Primary A’s Logminer server sends redo changes to a
Primary GGHub Extract process.

2. Primary GGHub: An Extract process writes changes to trail files.

3. Primary GGHub to Primary Database B: A Primary GGHub Replicat process
applies those changes to the target database (Primary B).

4. Primary Database B: Primary B’s Logminer server sends redo to a Primary
GGHub Extract process.

5. Primary GGHub: A Primary GGHub Extract process writes changes to trail files.

6. Primary GGHub to Primary Database A: A Primary GGHub Replicat process
applies those changes to the target database (Primary A).

Note that one GGHub can support multiple source and target databases, even when
the source and target databases are different Oracle Database releases.

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-4

Table 22-1 Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the Same Data
Center

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Primary Database A (or Database B)
failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when a new primary
database starts.

1. One primary database is still
available. All activity is routed to
the existing available primary
database to achieve zero
application downtime. Refer to
the Global Data Services Global
Services Failover solution. For
example, application services A-
F are routed to Database A and
application services G-J are
routed to Database B. If
Database A fails, all application
services temporarily go to
Database B.

2. The standby becomes the new
primary automatically with Data
Guard FSFO. Oracle
GoldenGate replication resumes
and the primary databases
resynchronize. Data loss is
bounded by the Data Guard
protection level. If Maximum
Availability or Maximum
Protection is configured, zero
data loss is achieved. All
committed transactions are in
one or both databases.
Workload can be “rebalanced”
when Primary Database A and
Database B are available and in
sync. For example, when
Database A is up and running
and in sync, services A-F can go
back to Database A.

1. The old primary database is
reinstated as the new standby
database to restore redundancy.

2. Optionally performing a Data
Guard switchover to switch back
to the original configuration
ensures that at least one
primary database resides in an
independent AD.

Primary or standby GGHub single
node failure

Impact: No application impact.
GoldenGate replication resumes
automatically after a couple of
minutes.

No action is required. The HA failover
solution built in to the GGHub
includes automatic failover and
restart of GoldenGate processes and
activity. Replication activity is blocked
until GoldenGate processes are
active again. GoldenGate replication
blackout could last a couple of
minutes.

Once the node restarts, active/
passive configuration is re-
established.

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-5

Table 22-1 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the
Same Data Center

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Primary GGHub cluster crashes and
is not recoverable

Impact: No application impact.
GoldenGate replication resumes
after restarting the existing GGHub
or executing a manual GGHub
failover operation.

1. If the GGHub cluster can be
restarted, then that’s the
simplest solution.

2. If the primary GGHub is not
recoverable, then execute a
manual GGHub failover to the
standby GGHub, which includes
ACFS failover. This typically
takes several minutes.

3. GoldenGate replication stops
until the new primary GGhub is
available, so executing step 1 or
step 2 should be quick.

If the previous GGHub eventually
restarts, ACFS replication resumes in
the other direction automatically. If
the GGHub cluster is lost or
unrecoverable, you need to rebuild a
new standby GGHub.

Standby GGHub cluster crashes and
not recoverable

Impact: No application or replication
impact.

1. If the GGHub cluster can be
restarted, then that is the
simplest solution, and ACFS
replication can resume.

2. If the standby GGHub is not
recoverable, you can rebuild a
new standby GGHub.

N/A

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-6

Table 22-1 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in the
Same Data Center

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Complete Data Center or Availability
Domain (AD1 or AD2) failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when the new primary
database starts.

1. One primary database is still
available. All activity is routed to
the existing available primary
database to achieve zero
application downtime. Refer to
the Global Services Failover
solution. For example,
application services A-F are
routed to Database A and
application services G-J are
routed to Database B. If
Database A fails, all services
temporarily go to Database B.

2. If the primary GGHub is still
functional, GoldenGate
replication continues. If the
primary GGHub is lost due to
availability domain (AD) failure,
then a manual GGhub failover is
required. GoldenGate replication
resumes and the primary
databases resynchronize. Data
loss is bounded by the Data
Guard protection level. If
Maximum Availability or
Maximum Protection is
configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
rebalanced when Primary
Database A and Database B are
available and in sync. When
Database A is up and running
and in sync, services A-F can go
back to Database A.

1. When the data center/AD
returns, re-establish
configuration such as reinstate
standby. If the previous GGHub
eventually restarts, ACFS
replication resumes in the other
direction automatically.

2. When possible, perform a Data
Guard switchover (failback) to
get back to the original state
where one primary database
exists in each AD.

MAA GGHubs Placed in Different Data Centers
In this scenario, the primary and standby databases are located in different data centers, and
so the primary (active) GGHub is located in the same data center as the primary database,
and the standby GGHub is located in the same data center as the standby database.

To keep the example simple, latency between data centers < 90 ms in this scneario.

As shown in Figure 2, you have the following architectural components:

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-7

1. The primary database and associated standby database are configured with
Oracle Active Data Guard Fast Start Failover (FSFO). FSFO can be configured
with Data Guard protection mode with ASYNC or SYNC redo transport depending
on your maximum data loss tolerance.

2. Primary GGHub Active/Passive Cluster: In this configuration, there’s a 2-node
cluster with two Oracle GoldenGate software configurations. Because the primary
GGHub needs to be <= 4 ms from the target database and the two data centers
network latency > 5 ms, two GGhub configurations are created for each GGHub
cluster. Essentially, a primary GGHub configuration is always in the same data
center as the target database. GGHub is configured with the Oracle GoldenGate
21c software deployment that can support 11g and later Oracle Database
releases. This GGHub can support many primary databases and encapsulates the
GoldenGate processes: Extract mines transactions from the source database, and
Replicat applies those changes to the target database. GoldenGate trail and
checkpoint files will also reside in the ACFS file system. An HA failover solution is
built in to the GGhub cluster, which includes automatic failover and restart of
GoldenGate processes and activity after a node failure.

Each GGhub configuration contains a GoldenGate service manager and
deployment, ACFS file system with ACFS replication, and a separate application
VIP.

3. Standby GGHub Active/Passive Cluster: A symmetric standby GGhub is
configured. ACFS replication is set up between the primary and standby GGHubs
to preserve all GoldenGate files. Manual GGhub failover, which includes ACFS
failover, can be executed if you lose the entire primary GGhub.

Figure 22-2 Primary and Standby GGHubs in Different Daa Centers

PHX Region ASH Region

Primary GGHub for DB_B/Standby GGHub for DB_A Primary GGHub for DB_A/Standby GGHub for DB_B

 GGHub Active/Passive Cluster

 GGHub Active/Passive Cluster

GGHub Active/Passive Cluster

GGHub Active/Passive Cluster

ACFS

ACFS

ACFS

ACFS

VIP

VIP

VIP

VIP

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

Oracle
GoldenGate
Installation

GoldenGate Deployment

GoldenGate Deployment

GoldenGate Deployment

GoldenGate Deployment

Extracts

Extracts

Extracts

Extracts

Replicats

Replicats

Replicats

Replicats

Trail Files

Trail Files

Trail Files

Trail Files

Primary
Database A

Standby
Database A

Standby
Database B

Primary
Database B

Redo
Transport

2

5
ACFS

Replication

ACFS
Replication

Redo
Transport

4 3

1

6

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-8

The figure above depicts replicating data from Primary Database A to Primary Database B
and Primary B back to Primary A with the following steps:

1. Primary Database A: Primary A’s Logminer server sends redo changes to an PHX
DataCenter GGHub Extract process, which is on the Primary GGHub for Database A.

2. Primary GGHub: The Extract process writes changes to trail files.

3. Primary GGHub to Primary Database B: An PHX DataCenter GoldenGate Replicat
process applies those changes to the target database (Primary B).

4. Primary Database B: Primary B’s Logminer server sends redo to a ASH DataCenter
GGHub Extract process, which is on the Primary GGHub for Database B.

5. Primary GGHub: The Extract process writes changes to trail files.

6. Primary GGHub to Primary Database A: A ASH DataCenter GoldenGate Replicat
process applies those changes to the target database (Primary A).

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-9

Table 22-2 Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in Different Data
Centers

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Primary Database A (or Database B)
failure

Impact: Near-zero application
downtime. GoldenGate replication
resumes when the new primary
database starts.

1. One primary database is still
available. All activity is routed to
the existing available primary
database to achieve zero
application downtime. Refer to
the Global Data Services Global
Services Failover solution. For
example, application services A-
F are routed to Database A and
application services G-J are
routed to Database B. If
Database A fails, all services
temporarily go to Database B.

2. The standby becomes the new
primary automatically with Data
Guard FSFO. GoldenGate
replication resumes and the
primary databases
resynchronize. Data loss is
bounded by the Data Guard
protection level. If Maximum
Availability or Maximum
Protection is configured, zero
data loss is achieved. All
committed transactions are in
one or both databases.
Workload can be rebalanced
when primary Database A and
Database B are available and in
sync. For example, when
Database A is up and running
and in sync, services A-F can go
back to Database A.

3. Replicat performance will be
degraded if the primary GGHub
is not in the same data center as
the target database. Schedule a
GGHub switchover with ACFS
replication switchover to resume
optimal Replicat performance to
the target database. You may
then experience two active
GGhub configurations on the
same GGHub cluster.

1. The old primary database is
reinstated as the new standby
database to restore redundancy.

2. Optionally performing a Data
Guard switchover, to switch back
to the original configuration,
ensures that at least one
primary database resides in an
independent AD. Schedule a
GGHub switchover with ACFS
replication switchover to resume
optimal Replicat performance to
the target database.

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-10

Table 22-2 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in
Different Data Centers

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Primary or standby GGHub single
node failure

Impact: No application impact.
GoldenGate replication resumes
automatically after a couple of
minutes.

No action is required. An HA failover
solution is built in to the GGHub that
includes automatic failover and
restart of GoldenGate processes and
activity. Replication activity is blocked
until GoldenGate processes are
active again. GoldenGate Replication
blackout could last a couple of
minutes.

Once the node restarts, active/
passive configuration is re-
established.

Primary GGHub cluster crashes and
is not recoverable

Impact: No application impact.
GoldenGate replication resumes
after the existing primary GGHub
restarts or manual GGHub failover
completes.

1. If the GGHub cluster can be
restarted, then that’s the
simplest solution.

2. If the primary GGHub is not
recoverable, then execute a
manual GGHub failover to the
standby GGHub, which includes
ACFS failover. This typically
takes several minutes.

3. Replication stops until the new
primary GGhub is started, so
executing step 1 or step 2
should be quick. If there’s any
orchestration, this should be
automated.

1. If the previous GGHub
eventually restarts, ACFS
replication resumes in the other
direction automatically. If the
GGHub cluster is lost or
unrecoverable, you need to
rebuild a new standby GGHub.

2. Replicat performance is
degraded if the primary GGhub
is not in the same data center as
the target database. Schedule a
GGHub switchover with ACFS
replication switchover to resume
optimal Replicat performance to
the target database.

Standby GGHub cluster crashes and
is not recoverable

Impact: No application or replication
impact.

1. If the GGHub cluster can be
restarted, then that’s the
simplest solution, and ACFS
replication will resume.

2. If the standby GGHub is not
recoverable, you can rebuild a
new standby GGHub.

N/A

Chapter 22
Planning GGHub Placement in the Platinum MAA Architecture

22-11

Table 22-2 (Cont.) Outage Scenarios, Repair, and Restoring Redundancy for GGHubs in
Different Data Centers

Outage Scenario Application Availability and Repair Restoring Redundancy and
Pristine State

Complete Regional failure Impact: Near Zero Application
Downtime. GoldenGate replication
resumes once new primary database
starts.

1. One primary database is still
available. All activity is routed to
the existing available primary
database to achieve zero
application downtime. Refer to
the Global Data Services Global
Services Failover solution. For
example, application services A-
F routed to Database A and
application services G-J routed
to Database B. If Database A
fails, all services will temporarily
go to Database B.

2. If the primary GGHub is still
functional, GoldenGate
replication will continue. If the
primary GGHub is lost due to
regional failure, then a manual
GGhub failover is required.
GoldenGate replication resumes
and the primary databases
resynchronize. Data loss is
bounded by the Data Guard
protection level. If Maximum
availability or protection is
configured, zero data loss is
achieved. All committed
transactions are in one or both
databases. Workload can be
rebalanced when Primary
Database A and Database B are
available and in sync. When
Database A is up and running
and in sync, services A-F can go
back to Database A.

1. When the data center returns,
re-establish configuration such
as reinstate standby. If the
previous GGHub eventually
restarts, ACFS replication
resumes in the other direction
automatically.

2. When possible, execute a Data
Guard switchover (failback) to
get back to the original state
where one primary database
exists in each data center.

3. Replicat performance is
degraded if the primary GGHub
is not in the same data center as
the target database. Schedule a
GGHub switchover with ACFS
replication switchover to resume
optimal Replicat performance to
the target database.

Task 1: Configure the Source and Target Databases for
Oracle GoldenGate

The source and target Oracle GoldenGate databases should be configured using the
following recommendations.

Perform the following steps to complete this task:

• Step 1.1 - Database Configuration

Chapter 22
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

22-12

• Step 1.2 - Create the Database Replication Administrator User

• Step 1.3 - Create the Database Services

Step 1.1 - Database Configuration

The source and target Oracle GoldenGate databases should be configured using the
following recommendations:

Configuration Scope Example

Enable Archivelog Mode Source and Target SQL> ARCHIVE LOG LIST
Database log
mode Archive
Mode
Automatic
archival Enabled
Archive
destination
USE_DB_RECOVERY_FILE_DEST
Oldest online log
sequence 110
Next log sequence to
archive 113
Current log
sequence 113

Enable FORCE LOGGING Source and Target ALTER DATABASE FORCE
LOGGING;

ENABLE_GOLDENGATE_REPLICA
TION

Source, Target, and Standbys ALTER SYSTEM SET
ENABLE_GOLDENGATE_REPLICATIO
N=TRUE SCOPE=BOTH SID='*';

Supplemental Logging Source

Required on Target for cases
when replication reverses

ALTER DATABASE ADD
SUPPLEMENTAL LOG DATA;

Add schema or table level
logging for replicated objects

Source

Required on Target for cases
when replication reverses

ADD SCHEMATRANDATA or ADD T

STREAMS_POOL_SIZE Source

Required on Target for cases
when replication reverses

The value of
STREAMS_POOL_SIZE should be
set to the following value:

STREAMS_POOL_SIZE =
(((#Extracts + #Integrated
Replicats) * 1GB) * 1.25)

For example, in a database with
2 Extracts and 2 integrated
Replicats:

STREAMS_POOL_SIZE = 4GB *
1.25 = 5GB

ALTER SYSTEM SET
STREAMS_POOL_SIZE=5G
SCOPE=BOTH SID='*';

Chapter 22
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

22-13

For the steps on preparing the database for Oracle GoldenGate, see Preparing the
Database for Oracle GoldenGate.

Step 1.2 - Create the Database Replication Administrator User

The source and target databases need a GoldenGate administrator user created, with
appropriate privileges assigned as follows:

• For the multitenant container database (CDB):

– Source database, GoldenGate Extract must be configured to connect to a user
in the root container database, using a c##

– Target database, a separate GoldenGate administrator user is needed for
each pluggable database (PDB).

– For more details about creating a GoldenGate administrator in an Oracle
Multitenant Database, see Configuring Oracle GoldenGate in a Multitenant
Container Database.

• For non-CDB databases, see Establishing Oracle GoldenGate Credentials

As the oracle OS user on the source database system, run the following SQL
instructions to create the database user for Oracle GoldenGate and assign the
required privileges:

[oracle@exadb1_node1 ~]$ sqlplus / as sysdba

Source CDB
SQL>
alter session set container=cdb$root;
create user c##ggadmin identified by "<ggadmin_password>"
container=all default tablespace USERS temporary tablespace temp;
alter user c##ggadmin quota unlimited on users;
grant set container to c##ggadmin container=all;
grant alter system to c##ggadmin container=all;
grant create session to c##ggadmin container=all;
grant alter any table to c##ggadmin container=all;
grant resource to c##ggadmin container=all;
exec
dbms_goldengate_auth.grant_admin_privilege('c##ggadmin',container=>'all
');

Source PDB
SQL>
alter session set container=<pdbName>;
create user ggadmin identified by "<ggadmin_password>"
container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

Chapter 22
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

22-14

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-E40B375A-5042-4195-B563-BE7EDC251880

As the oracle OS user on the target database system, run the following SQL instructions to
create the database user for Oracle GoldenGate and assign it the required privileges:

[oracle@exadb2_node1 ~]$ sqlplus / as sysdba

Target PDB
SQL>
alter session set container=<pdbName>;
create user ggadmin identified by "<ggadmin_password>" container=current;
grant alter system to ggadmin container=current;
grant create session to ggadmin container=current;
grant alter any table to ggadmin container=current;
grant resource to ggadmin container=current;
grant dv_goldengate_admin, dv_goldengate_redo_access to ggadmin
container=current;
exec dbms_goldengate_auth.grant_admin_privilege('ggadmin');

Step 1.3 - Create the Database Services

If the source and target databases are running the recommended configuration on an Oracle
RAC cluster with Oracle Data Guard, a role-based service must be created that allows the
Extract or Replicat processes to connect to the correct Data Guard primary database
instance.

When using a source multitenant database, a separate service is required for the root
container database (CDB) and the pluggable database (PDB) that contains the schema being
replicated. For a target multitenant database, a single service is required for the PDB.

As the oracle OS user on the primary and standby database systems, create and start the
CDB database service using the following command:

[oracle@exadb1_node1 ~]$ srvctl add service -db <dbName>
 -service <dbName>_goldengate -preferred <ORACLE_SID1> -available
<ORACLE_SID2>
 -role PRIMARY

As the oracle OS user on the primary and standby database systems, create and start the
PDB database service using the following command:

[oracle@exadb1_node1 ~]$ srvctl add service -db <dbName>
 -service <dbName>_<pdbName>_goldengate -preferred <ORACLE_SID1>
 -available <ORACLE_SID2> -pdb <pdbName> -role PRIMARY

As the oracle OS user on the primary and standby database systems, start and verify that
the services are running, as shown here:

[oracle@exadb1_node1 ~]$ srvctl start service -db <dbName> -role
[oracle@exadb1_node1 ~]$ srvctl status service -db <dbName> |grep goldengate

Service <dbName>_goldengate is running on instance(s) <SID1>
Service <dbName>_<pdbName>_goldengate is running on instance(s) <SID1>

Chapter 22
Task 1: Configure the Source and Target Databases for Oracle GoldenGate

22-15

Note:

Repeat step 1.3 in the source and target database system.

Task 2: Prepare a Primary and Standby Base System for
GGHub

Perform the following steps to complete this task:

• Step 2.1 - Deploy Oracle 2-node Cluster System

• Step 2.2 - Download the Required Software

• Step 2.3 - Configure Oracle Linux to use the Oracle Public YUM Repository

Step 2.1 - Deploy Oracle 2-node Cluster System

Deploy a minimum of two GGHubs for each data center (primary and standby). Each
GGHub must be deployed as a 2-node Oracle Grid Infrastructure system as described
in Installing Oracle Grid Infrastructure.

After installing Oracle Grid Infrastructure 19c on both the primary and standby hub
servers, download and apply the latest release 19c update. The minimum required
release update version is 19.20 or higher.

Figure 22-3 Oracle GoldenGate Hub Hardware Architecture

Availability Domain 1 Availability Domain 2

Primary GGHUB

2-node RAC
Database system

Standby GGHUB

2-node RAC
Database system

ACFS
Replication

Step 2.2 - Download the Required Software

1. As the root OS user on all GGHub nodes, create the staging and scripts
directories:

[root@gghub_prim1 ~]#
mkdir -p /u01/oracle/stage
mkdir /u01/oracle/scripts
chown -R oracle:oinstall /u01/oracle

Chapter 22
Task 2: Prepare a Primary and Standby Base System for GGHub

22-16

http://www.oracle.com/pls/topic/lookup?ctx=db19&id=CWLIN-GUID-D4E3FADF-360E-49EB-89A2-E4CBBB9CC61F

chmod -R g+w /u01/oracle
chmod -R o+w /u01/oracle/stage

2. As the opc OS user on all GGHub nodes, download the following software in the
directory /u01/oracle/stage:

• Download Oracle GoldenGate 21c (or later release) Microservices software from
Oracle GoldenGate Downloads.

• Download subsequent patches to the base release from the Patches and Updates
tab of My Oracle Support.

– See Installing Patches for Oracle GoldenGate Microservices Architecture for
more information.

– Minimum required version is Patch 35214851: Oracle GoldenGate 21.9.0.0.2
Microservices for Oracle

• Download the latest OPatch release, Patch 6880880, for Oracle Database 21c
(21.0.0.0.0) from My Oracle Support Document 2542082.1.

• Download the Oracle Grid Infrastructure Standalone Agents for Oracle Clusterware
19c, release 10.2 or later, from Oracle Grid Infrastructure Standalone Agents for
Oracle Clusterware.

• Download the python script (secureServices.py) from My Oracle Support Document
2826001.1

• Download the Oracle GGHUB Scripts from My Oracle Support Document 2951572.1

3. As the grid OS user on all GGHub nodes, unzip the GGhub scripts file downloaded from
My Oracle Support Document 2951572.1 into the directory /u01/oracle/scripts.

Place the script in the same location on all primary and standby GGhub nodes

[grid@gghub_prim1 ~]$ unzip
 -q /u01/oracle/stage/gghub_scripts_<YYYYYMMDD>.zip
 -d /u01/oracle/scripts/

Step 2.3 - Configure Oracle Linux to use the Oracle Public YUM Repository

The Oracle Linux yum server hosts software for Oracle Linux and compatible distributions.
These instructions help you get started configuring your Linux system for Oracle Linux yum
server and installing software through yum.

For example, as the root OS user in all GGHub systems, create the file /etc/yum.repos.d/
oracle-public-yum-ol7.repo with the following contents:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]#
cat > /etc/yum.repos.d/oracle-public-yum-ol7.repo <<EOF
[ol7_latest]
name=Oracle Linux $releasever Latest ($basearch)
baseurl=http://yum.oracle.com/repo/OracleLinux/OL7/latest/\$basearch
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1
EOF

Chapter 22
Task 2: Prepare a Primary and Standby Base System for GGHub

22-17

http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html
http://support.oracle.com
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/install-installing-patches-ma.html#GUID-BE9C5FCD-9DC0-4452-B232-123BA82979D0
https://support.oracle.com/rs?type=doc&id=2542082.1
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
https://support.oracle.com/rs?type=doc&id=2826001.1
https://support.oracle.com/rs?type=doc&id=2826001.1
https://support.oracle.com/rs?type=doc&id=2951572.1
https://support.oracle.com/rs?type=doc&id=2951572.1

Task 3: Configure Oracle GoldenGate for the Primary and
Standby GGHub

Perform the following steps to complete this task:

• Step 3.1 - Install and Patch Oracle GoldenGate Software

• Step 3.2 - Setup Oracle GoldenGate Hub Architecture Network Configuration

• Step 3.3 - Configure ACFS File System Replication between GGHubs in the Same
Region

Step 3.1 - Install and Patch Oracle GoldenGate Software

Install and patch Oracle GoldenGate software locally on all nodes of the primary and
standby GGHub configuration that will be part of the GoldenGate configuration. Make
sure the installation directory is identical on all nodes.

Perform the following sub-steps to complete this step:

• Step 3.1.1 Unzip the Software and Create the Response File for the Installation

• Step 3.1.2 Install Oracle GoldenGate Software

• Step 3.1.3 Installing Patches for Oracle GoldenGate Microservices Architecture

Step 3.1.1 Unzip the Software and Create the Response File for the Installation

As the oracle OS user on all GGHub nodes, unzip the Oracle GoldenGate software:

[oracle@gghub_prim1 ~]$ unzip
 -q /u01/oracle/stage/
213000_fbo_ggs_Linux_x64_Oracle_services_shiphome.zip
 -d /u01/oracle/stage

The software includes an example response file for Oracle Database 21c and earlier
supported versions.

Copy the response file to a shared file system, so the same file can be used to install
Oracle GoldenGate on all database nodes, and edit the following parameters:

• INSTALL_OPTION=ora21c
• SOFTWARE_LOCATION=/u01/app/oracle/goldengate/gg21c (recommended

location)
As the oracle OS user on all GGHub nodes, copy and edit the response file for the
installation:

[oracle@gghub_prim1 ~]$ cp
 /u01/oracle/stage/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1/
response/oggcore.rsp
 /u01/oracle/stage
[oracle@gghub_prim1 ~]$ vi /u01/oracle/stage/oggcore.rsp

Before
INSTALL_OPTION=

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-18

SOFTWARE_LOCATION=

After
INSTALL_OPTION=ora21c
SOFTWARE_LOCATION=/u01/app/oracle/goldengate/gg21c

Step 3.1.2 Install Oracle GoldenGate Software

As the oracle OS user on all GGHub nodes, run runInstaller to install Oracle GoldenGate:

[oracle@gghub_prim1 ~]$ cd
 /u01/oracle/stage/fbo_ggs_Linux_x64_Oracle_services_shiphome/Disk1/
[oracle@gghub_prim1 ~]$./runInstaller -silent -nowait
 -responseFile /u01/oracle/stage/oggcore.rsp

Starting Oracle Universal Installer...

Checking Temp space: must be greater than 120 MB. Actual 32755 MB Passed
Checking swap space: must be greater than 150 MB. Actual 16383 MB Passed
Preparing to launch Oracle Universal Installer from
 /tmp/OraInstall2022-07-08_02-54-51PM. Please wait ...
You can find the log of this install session at:
 /u01/app/oraInventory/logs/installActions2022-07-08_02-54-51PM.log
Successfully Setup Software.
The installation of Oracle GoldenGate Services was successful.
Please check '/u01/app/oraInventory/logs/
silentInstall2022-07-08_02-54-51PM.log'
 for more details.

[oracle@gghub_prim1 ~]$ cat
 /u01/app/oraInventory/logs/silentInstall2022-07-08_02-54-51PM.log

The installation of Oracle GoldenGate Services was successful.

Step 3.1.3 Install Patches for Oracle GoldenGate Microservices Architecture

As the oracle OS user on all GGHub nodes, install the latest OPatch:

[oracle@gghub_prim1 ~]$ unzip -oq
 -d /u01/app/oracle/goldengate/gg21c
 /u01/oracle/stage/p6880880_210000_Linux-x86-64.zip
[oracle@gghub_prim1 ~]$ cat >> ~/.bashrc <<EOF
export ORACLE_HOME=/u01/app/oracle/goldengate/gg21c
export PATH=/u01/app/oracle/goldengate/gg21c/OPatch:$PATH
EOF
[oracle@gghub_prim1 ~]$. ~/.bashrc
[oracle@gghub_prim1 ~]$ opatch lsinventory |grep 'Oracle GoldenGate Services'

Oracle GoldenGate Services
21.1.0.0.0

[oracle@gghub_prim1 Disk1]$ opatch version
OPatch Version: 12.2.0.1.37

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-19

OPatch succeeded.

As the oracle OS user on all GGHub nodes, run OPatch prereq to validate any
conflict before applying the patch:

[oracle@gghub_prim1 ~]$ unzip -oq
 -d /u01/oracle/stage/ /u01/oracle/stage/p35214851_219000OGGRU_Linux-
x86-64.zip

[oracle@gghub_prim1 ~]$ cd /u01/oracle/stage/35214851/
[oracle@gghub_prim1 35214851]$ opatch prereq
CheckConflictAgainstOHWithDetail -ph ./

Oracle Interim Patch Installer version 12.2.0.1.26
Copyright (c) 2023, Oracle Corporation. All rights reserved.

PREREQ session

Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.26
OUI version : 12.2.0.9.0
Log file location :
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_13-44-16PM_1.log

Invoking prereq "checkconflictagainstohwithdetail"

Prereq "checkConflictAgainstOHWithDetail" passed.

OPatch succeeded.

As the oracle OS user on all GGHub nodes, patch Oracle GoldenGate Microservices
Architecture using OPatch:

[oracle@gghub_prim1 35214851]$ opatch apply

Oracle Interim Patch Installer version 12.2.0.1.37
Copyright (c) 2023, Oracle Corporation. All rights reserved.

Oracle Home : /u01/app/oracle/goldengate/gg21c
Central Inventory : /u01/app/oraInventory
 from : /u01/app/oracle/goldengate/gg21c/oraInst.loc
OPatch version : 12.2.0.1.37
OUI version : 12.2.0.9.0
Log file location :
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log
Verifying environment and performing prerequisite checks...
OPatch continues with these patches: 35214851

Do you want to proceed? [y|n]

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-20

y
User Responded with: Y
All checks passed.

Please shutdown Oracle instances running out of this ORACLE_HOME on the
local system.
(Oracle Home = '/u01/app/oracle/goldengate/gg21c')

Is the local system ready for patching? [y|n]
y
User Responded with: Y
Backing up files...
Applying interim patch '35214851' to OH '/u01/app/oracle/goldengate/gg21c'

Patching component oracle.oggcore.services.ora21c, 21.1.0.0.0...
Patch 35214851 successfully applied.
Log file location:
 /u01/app/oracle/goldengate/gg21c/cfgtoollogs/opatch/
opatch2023-04-21_19-40-41PM_1.log

OPatch succeeded.

[oracle@gghub_prim1 35214851]$ opatch lspatches
35214851;

OPatch succeeded.

Note:

Repeat all of the sub steps in step 3.1 for the primary and standby GGHub systems.

Step 3.2 - Create Application Virtual IP Address (VIP)

A dedicated application virtual IP address (VIP) is required on each hub cluster to ensure that
the primary ACFS replication process sends file system data to the correct hub standby node
where the file system is currently mounted. This is accomplished by co-locating the VIP and
the ACFS CRS resources on the same node. The VIP is a cluster resource that Oracle
Clusterware manages, and is migrated to another cluster node in the event of a node failure.

As the root OS user on the first GGHub node, run the following command to identify the
network number:

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl status resource -p -attr NAME,USR_ORA_SUBNET
 -w "TYPE = ora.network.type" |sort | uniq

NAME=ora.net1.network
USR_ORA_SUBNET=10.128.26.0

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-21

As the root OS user on the first GGHub node, run the following command to create
the application VIP managed by Oracle Clusterware:

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_appvip.sh

Application VIP Name: gghub_prim_vip1
Application VIP Address: 10.128.26.200
Using configuration parameter file: /u01/app/19.0.0.0/grid/crs/install/
crsconfig_params
The log of current session can be found at:
 /u01/app/grid/crsdata/gghub_prim1/scripts/appvipcfg.log

Step 3.3 - Configure ACFS File System Replication between GGHubs in the
Same Region

Oracle GoldenGate Microservices Architecture is designed with a simplified installation
and deployment directory structure. The installation directory should be placed on local
storage on each database node to minimize downtime during software patching. The
deployment directory, which is created during deployment creation using the Oracle
GoldenGate Configuration Assistant (oggca.sh), must be placed on a shared file
system.

The deployment directory contains configuration, security, log, parameter, trail, and
checkpoint files. Placing the deployment in Oracle Automatic Storage Management
Cluster File system (ACFS) provides the best recoverability and failover capabilities in
the event of a system failure. Ensuring the availability of the checkpoint files cluster-
wide is essential so that the GoldenGate processes can continue running from their
last known position after a failure occurs.

It is recommended that you allocate enough trail file disk space for a minimum of 12
hours of trail files. This will provide sufficient space for trail file generation should a
problem occur with the target environment that prevents it from receiving new trail
files. The amount of space needed for 12 hours can only be determined by testing trail
file generation rates with real production data.

If you want to build contingency for a long planned maintenance event of one of the
GoldenGate Primary Database or systems, you can allocate sufficient ACFS space for
2 days. Monitoring space utilization is always recommended regardless of how much
space is allocated.

Note:

If the GoldenGate hub will support multiple service manager deployments
using separate ACFS file systems, the following steps should be repeated for
each file ACFS file system.

Perform the following sub-steps to complete this step:

• Step 3.3.1 - Create the ASM File system

• Step 3.3.2 - Create the Cluster Ready Services (CRS) Resource

• Step 3.3.3 - Verify the Currently Configured ACFS File System

• Step 3.3.4 - Start and Check the Status of the ACFS Resource

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-22

• Step 3.3.5 – Create CRS Dependencies Between ACFS and an Application VIP

• Step 3.3.6 – Create the SSH Daemon CRS Resource

• Step 3.3.7 – Enable ACFS Replication

• Step 3.3.8 – Create the ACFS Replication CRS Action Scripts

Step 3.3.1 - Create the ASM File system

As the grid OS user on the first GGHub node, use asmcmd to create the ACFS volume:

[grid@gghub_prim1 ~]$ asmcmd volcreate -G DATA -s 120G ACFS_GG1

Note:

Modify the file system size according to the determined size requirements.

As the grid OS user on the first GGHub node, use asmcmd to confirm the “Volume Device”:

[grid@gghub_prim1 ~]$ asmcmd volinfo -G DATA ACFS_GG1

Diskgroup Name: DATA
 Volume Name: ACFS_GG1
 Volume Device: /dev/asm/acfs_gg1-256
 State: ENABLED
 Size (MB): 1228800
 Resize Unit (MB): 64
 Redundancy: UNPROT
 Stripe Columns: 8
 Stripe Width (K): 1024
 Usage:
 Mountpath:

As the grid OS user on the first GGHub node, format the partition with the following mkfs
command:

[grid@gghub_prim1 ~]$ /sbin/mkfs -t acfs /dev/asm/acfs_gg1-256

mkfs.acfs: version = 19.0.0.0.0
mkfs.acfs: on-disk version = 46.0
mkfs.acfs: volume = /dev/asm/acfs_gg1-256
mkfs.acfs: volume size = 128849018880 (120.00 GB)
mkfs.acfs: Format complete.

Step 3.3.2 - Create the Cluster Ready Services (CRS) Resource

As the root OS user on all GGHub nodes, create the ACFS mount point:

[root@gghub_prim1 ~]# mkdir -p /mnt/acfs_gg1
[root@gghub_prim1 ~]# chown oracle:oinstall /mnt/acfs_gg1

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-23

Create the file system resource as the root user. Due to the implementation of
distributed file locking on ACFS, unlike DBFS, it is acceptable to mount ACFS on more
than one GGHub node at any one time.

As the root OS user on the first GGHub node, create the CRS resource for the new
ACFS file system:

[root@gghub_prim1 ~]# vi /u01/oracle/scripts/add_asm_filesystem.sh
Run as ROOT
$(grep ^crs_home /etc/oracle/olr.loc | cut -d= -f2)/bin/srvctl add
filesystem \
-device /dev/asm/<acfs_volume> \
-volume ACFS_GG1 \
-diskgroup DATA \
-path /mnt/acfs_gg1 -user oracle \
-node gghub_prim1,gghub_prim2 \
-autostart NEVER \
-mountowner oracle \
-mountgroup oinstall \
-mountperm 755

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_asm_filesystem.sh

Step 3.3.3 - Verify the Currently Configured ACFS File System

As the grid OS user on the first GGHub node, use the following command to validate
the file system details:

[grid@gghub_prim1 ~]$ srvctl config filesystem -volume ACFS_GG1
 -diskgroup DATA

Volume device: /dev/asm/acfs_gg1-256
Diskgroup name: data
Volume name: acfs_gg1
Canonical volume device: /dev/asm/acfs_gg1-256
Accelerator volume devices:
Mountpoint path: /mnt/acfs_gg1
Mount point owner: oracle
Mount point group: oinstall
Mount permissions: owner:oracle:rwx,pgrp:oinstall:r-x,other::r-x
Mount users: grid
Type: ACFS
Mount options:
Description:
Nodes: gghub_prim1 gghub_prim2
Server pools: *
Application ID:
ACFS file system is enabled
ACFS file system is individually enabled on nodes:
ACFS file system is individually disabled on nodes:

Step 3.3.4 - Start and Check the Status of the ACFS Resource

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-24

As the grid OS user on the first GGHub node, use the following command to start and check
the file system:

[grid@gghub_prim1 ~]$ srvctl start filesystem -volume ACFS_GG1
 -diskgroup DATA -node `hostname`
[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

The CRS resource created is named using the format
ora.diskgroup_name.volume_name.acfs. Using the above file system example, the CRS
resource is called ora.data.acfs_gg.acfs.

As the grid OS user on the first GGHub node, use the following command to see the ACFS
resource in CRS:

[grid@gghub_prim1 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg1.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

Step 3.3.5 – Create CRS Dependencies Between ACFS and an Application VIP

To ensure that the file system is mounted on the same Oracle GGHub node as the VIP, add
the VIP CRS resource as a dependency to the ACFS resource, using the following example
commands. Each separate replicated ACFS file system will have its own dedicated VIP.

As the root OS user on the first GGHub node, use the following command to determine the
current start and stop dependencies of the VIP resource:

[root@gghub_prim1 ~]# export APPVIP=`$(grep ^crs_home /etc/oracle/olr.loc |
cut
 -d= -f2)/bin/crsctl stat res -w "TYPE co appvip" |grep NAME | cut -f2 -d"="`
gghub_prim_vip1

[root@gghub_prim1 ~]# export APPVIP=gghub_prim_vip1
[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d= -
f2)/bin/crsctl
 stat res $APPVIP -f|grep _DEPENDENCIES

START_DEPENDENCIES=hard(ora.net1.network) pullup(ora.net1.network)
STOP_DEPENDENCIES=hard(intermediate:ora.net1.network)

As the root OS user on the first GGHub node, determine the ACFS file system name:

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl stat res -w "NAME co acfs_gg1" |grep NAME

NAME=ora.data.acfs_gg.acfs

[root@gghub_prim1 ~]# export ACFS_NAME=ora.data.acfs_gg1.acfs

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-25

As the root OS user on the first GGHub node, modify the start and stop dependencies
of the VIP resource:

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl modify res $APPVIP
 -attr "START_DEPENDENCIES='hard(ora.net1.network,$ACFS_NAME)
pullup(ora.net1.network)

pullup:always($ACFS_NAME)',STOP_DEPENDENCIES='hard(intermediate:ora.net
1.network,$ACFS_NAME)',HOSTING_MEMBERS=,PLACEMENT=balanced"

As the grid OS user on the first GGHub node, start the VIP resource:

[grid@gghub_prim1 ~]$ $(grep ^crs_home /etc/oracle/olr.loc | cut -d=
 -f2)/bin/crsctl stat res -w "TYPE co appvip" |grep NAME | cut -f2 -
d"="
gghub_prim_vip1

[grid@gghub_prim1 ~]$ export APPVIP=gghub_prim_vip1

[grid@gghub_prim1 ~]$ crsctl start resource $APPVIP

CRS-2672: Attempting to start 'gghub_prim_vip1' on 'gghub_prim1'
CRS-2676: Start of 'gghub_prim_vip1' on 'gghub_prim1' succeeded

Note:

Before moving to the next step, it is important to make sure that the VIP can
be mounted on both GGHub nodes.

As the grid OS user on the first GGHub node, relocate the VIP resource:

[grid@gghub_prim1 ~]$ crsctl relocate resource $APPVIP -f

CRS-2673: Attempting to stop 'gghub_prim_vip1' on 'gghub_prim1'
CRS-2677: Stop of 'gghub_prim_vip1' on 'gghub_prim1' succeeded
CRS-2673: Attempting to stop 'ora.data.acfs_gg1.acfs' on 'gghub_prim1'
CRS-2677: Stop of 'ora.data.acfs_gg1.acfs' on 'gghub_prim1' succeeded
CRS-2672: Attempting to start 'ora.data.acfs_gg1.acfs' on 'gghub_prim2'
CRS-2676: Start of 'ora.data.acfs_gg1.acfs' on 'gghub_prim2' succeeded
CRS-2672: Attempting to start 'gghub_prim_vip1' on 'gghub_prim2'
CRS-2676: Start of 'gghub_prim_vip1' on 'gghub_prim2' succeeded

[grid@gghub_prim1 ~]$ crsctl status resource $APPVIP

NAME=gghub_prim_vip1
TYPE=app.appviptypex2.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim2

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-26

[grid@gghub_prim1 ~]$ crsctl relocate resource $APPVIP -f

CRS-2673: Attempting to stop 'gghub_prim_vip1' on 'gghub_prim2'
CRS-2677: Stop of 'gghub_prim_vip1' on 'gghub_prim2' succeeded
CRS-2673: Attempting to stop 'ora.data.acfs_gg1.acfs' on 'gghub_prim2'
CRS-2677: Stop of 'ora.data.acfs_gg1.acfs' on 'gghub_prim2' succeeded
CRS-2672: Attempting to start 'ora.data.acfs_gg1.acfs' on 'gghub_prim1'
CRS-2676: Start of 'ora.data.acfs_gg1.acfs' on 'gghub_prim1' succeeded
CRS-2672: Attempting to start 'gghub_prim_vip1' on 'gghub_prim1'
CRS-2676: Start of 'gghub_prim_vip1' on 'gghub_prim1' succeeded

As the grid OS user on the first GGHub node, check the status of the ACFS file system:

[grid@gghub_prim1 ~]$ srvctl status filesystem
 -volume ACFS_GG1 -diskgroup DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

Step 3.3.6 – Create the SSH Daemon CRS Resource

ACFS replication uses a secure shell (ssh) to communicate between the primary and standby
file systems using the virtual IP addresses that were previously created. When a server is
rebooted, the ssh daemon is started before the VIP CRS resource, preventing access to the
cluster using VIP.

The following instructions create a ssh restart CRS resource that will restart the ssh daemon
after the virtual IP resource is started. A separate ssh restart CRS resource is needed for
each replicated file system.

As the root OS user on the first GGHub node, create the CRS resource using the following
command:

[root@gghub_prim1 ~]# $(grep ^crs_home /etc/oracle/olr.loc | cut
 -d= -f2)/bin/crsctl stat res -w "TYPE co appvip" |grep NAME | cut -f2 -d"="
gghub_prim_vip1

[root@gghub_prim1 ~]# export APPVIP=gghub_prim_vip1
[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_sshd_restart.sh

As the grid OS user on the first GGHub node, start and test the CRS resource:

[grid@gghub_prim1 ~]$ crsctl stat res sshd_restart
NAME=sshd_restart
TYPE=cluster_resource
TARGET=OFFLINE
STATE=OFFLINE

[grid@gghub_prim1 ~]$ crsctl start res sshd_restart

CRS-2672: Attempting to start 'sshd_restart' on 'gghub_prim1'
CRS-2676: Start of 'sshd_restart' on 'gghub_prim1' succeeded
[grid@gghub_prim1 ~]$ cat /tmp/sshd_restarted
STARTED

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-27

[grid@gghubtest1 ~]$ crsctl stop res sshd_restart

CRS-2673: Attempting to stop 'sshd_restart' on 'gghub_prim1'
CRS-2677: Stop of 'sshd_restart' on 'gghub_prim1' succeeded
[grid@gghub1 ~]$ cat /tmp/sshd_restarted
STOPPED

[grid@gghub1 ~]$ crsctl start res sshd_restart

CRS-2672: Attempting to start 'sshd_restart' on 'gghub_prim1'
CRS-2676: Start of 'sshd_restart' on 'gghub_prim1' succeeded
[grid@gghub1 ~]$ crsctl stat res sshd_restart

NAME=sshd_restart
TYPE=cluster_resource
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

Step 3.3.7 – Enable ACFS Replication

ACFS snapshot-based replication uses openssh to transfer the snapshots from
between the primary and standby hosts using the designated replication user, which is
commonly the grid user.

As the grid OS user in the primary and standby hub systems, follow the instructions in
Configuring ssh for Use With Oracle ACFS Replication to configure the ssh
connectivity between the primary and standby nodes.

As the grid OS user on all primary and standby GGHub nodes, use ssh to test
connectivity between all primary to standby nodes, and in the reverse direction using
ssh as the replication user:

On the Primary GGhub
[grid@gghub_prim1 ~]$ ssh gghub_stby_vip1.frankfurt.goldengate.com
hostname
gghub_stby1

[grid@gghub_prim2 ~]$ ssh gghub_stby_vip1.frankfurt.goldengate.com
hostname
gghub_stby1

On the Standby GGhub

[grid@gghub_stby1 ~]$ ssh gghub_prim_vip1.frankfurt.goldengate.com
hostname
gghub_prim1

[grid@gghub_stby2 ~]$ ssh gghub_prim_vip1.frankfurt.goldengate.com
hostname
gghub_prim1

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-28

As the grid OS user on the primary and standby GGHub nodes where ACFS is mounted,
use acfsutil to test connectivity between the primary and the standby nodes:

On the Primary GGhub

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim1

[grid@gghub_prim1 ~]$ acfsutil repl info -c
-u grid gghub_prim_vip1.frankfurt.goldengate.com
 gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg1
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip1.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip1.frankfurt.goldengate.com as user grid.

On the Standby GGhub

[grid@gghub_stby1 ~]$ srvctl status filesystem -volume ACFS_GG1
 -diskgroup DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_stby1

[grid@gghub_stby1 ~]$ acfsutil repl info -c
 -u grid gghub_prim_vip1.frankfurt.goldengate.com
 gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip1.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip1.frankfurt.goldengate.com as user grid.

If the acfsutil command is run from a GGHub node where ACFS is not mounted, the error
ACFS-05518 will be shown as expected.

Use srvctl status filesytem to find the GGHub where ACFS is mounted and re-run the
command:

[grid@gghub_prim1 ~]$ acfsutil repl info -c
 -u grid gghub_stby_vip1.frankfurt.goldengate.com
gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg1
acfsutil repl info: ACFS-05518: /mnt/acfs_gg1 is not an ACFS mount point

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -diskgroup
DATA
ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_prim2

[grid@gghub_prim1 ~]$ ssh gghub_prim2
[grid@gghub_prim2 ~]$ acfsutil repl info -c -u
 grid gghub_prim_vip1.frankfurt.goldengate.com

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-29

gghub_stby_vip1.frankfurt.goldengate.com
 /mnt/acfs_gg1
A valid 'ssh' connection was detected for standby node
 gghub_prim_vip1.frankfurt.goldengate.com as user grid.
A valid 'ssh' connection was detected for standby node
 gghub_stby_vip1.frankfurt.goldengate.com as user grid.

Note:

Make sure the connectivity is verified between all primary nodes to all
standby nodes, as well as in the opposite direction. Only continue when
there are no errors with any of the connection tests.

As the grid OS user on the standby GGhub node where ACFS is currently mounted,
initialize ACFS replication:

[grid@gghub_stby1 ~]$ srvctl status filesystem -volume ACFS_GG1 -
diskgroup DATA

ACFS file system /mnt/acfs_gg1 is mounted on nodes gghub_stby1

[grid@gghub_stby1 ~]$ /sbin/acfsutil repl init standby -u grid /mnt/
acfs_gg1

As the grid OS user on the primary GGhub node where ACFS is currently mounted,
initialize ACFS replication:

[grid@gghub_prim1 ~]$ srvctl status filesystem -volume ACFS_GG1 -
diskgroup DATA

ACFS file system /mnt/acfs_gg is mounted on nodes gghub_prim1

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl init primary -C -p
 grid@gghub_prim_vip1.frankfurt.goldengate.com -s
 grid@gghub_stby_vip1.frankfurt.goldengate.com -m /mnt/acfs_gg1 /mnt/
acfs_gg1

As the grid OS user on the primary and standby GGhub nodes, monitor the
initialization progress.

When the status changes to “Send Completed” it means that the initial primary file
system copy has finished and the primary file system is now being replicated to the
standby host:

On the Primary GGhub

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |
grep Status

Status: Send Completed

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-30

On the Standby GGhub

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 | grep
Status

Status: Receive Completed

As the grid OS user on the primary and standby GGhub nodes, verify and monitor the ACFS
replicated file system:

On the Primary GGhub

[grid@gghub_prim1 ~]$ acfsutil repl util verifystandby /mnt/acfs_gg1

verifystandby returned: 0

On the Standby GGhub

[grid@gghubtest31 ~]$ acfsutil repl util verifyprimary /mnt/acfs_gg1

verifyprimary returned: 0

Note:

Both commands will return a value of 0 (zero) if there are no problems detected.
See Troubleshooting ACFS Replication for monitoring, diagnosing, and resolving
common issues with ACFS Replication before continuing.

As the grid OS user on the primary GGhub node, use the following command to monitor the
status of the ACFS replication:

[grid@gghub_prim1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Primary
Primary hostname: gghub_prim_vip1.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1
Primary status: Running
Background Resources: Active

Standby connect string:
grid@gghub_stby_vip1.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0 seconds
Sending primary as of: Fri May 05 12:37:02 2023
Status: Send Completed
Lag Time: 00:00:00
Retries made: 0
Last send started at: Fri May 05 12:37:02 2023
Last send completed at: Fri May 05 12:37:12 2023
Elapsed time for last send: 0 days, 0 hours, 0 minutes, 10 seconds
Next send starts at: now
Replicated tags:

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-31

Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

As the grid OS user on the standby GGhub node where ACFS is currently mounted,
use the following command to monitor the status of the ACFS replication:

[grid@gghub_stby1 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Standby
Primary hostname:
gghub_prim_vip1.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1

Standby connect string:
grid@gghub_stby_vip1.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0
seconds
Last sync time with primary: Fri May 05 12:37:02 2023
Receiving primary as of: Fri May 05 12:37:02 2023
Status: Receive Completed
Last receive started at: Fri May 05 12:37:02 2023
Last receive completed at: Fri May 05 12:37:07 2023
Elapsed time for last receive: 0 days, 0 hours, 0 minutes, 5
seconds
Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

Step 3.3.8 – Create the ACFS Replication CRS Action Scripts

To determine the health of the ACFS primary and standby file systems, CRS action
scripts are used. At predefined intervals the action scripts report the health of the file
systems into the CRS trace file crsd_scriptagent_grid.trc (or
crsd_scriptagent_oracle.trc if role separation is not used) located in the Grid
Infrastructure trace file directory /u01/app/grid/diag/crs/node_name/crs/trace on
each of the primary and standby file system of the GGhub nodes.

On both the primary and standby file system clusters, there are two scripts required.
One to monitor the local primary file system, and if the remote standby file system is
available, and one to monitor the local standby file system and check remote primary
file systems’ availability. Example scripts are provided to implement the ACFS
monitoring, but you must edit them to suit your environment.

Each replicated file system will need its own acfs_primary and acfs_standby action
scripts.

Step 3.3.8.1 - Action Script acfs_primary.scr

The acfs_primary CRS resource checks whether the current ACFS mount is a
primary file system and confirms that the standby file system is accessible and
receiving replicated data. The resource is used to automatically determine if Oracle

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-32

GoldenGate can start processes on the primary Oracle GoldenGate hub. If the standby file
system is not accessible by the primary, the example script makes multiple attempts to verify
the standby file system.

The acfs_primary CRS resource runs on both, the primary and standby hosts, but only
returns success when the current file system is the primary file system, and the standby file
system is accessible. The script must be placed in the same location on all primary and
standby file system nodes.

The following parameters use suggested default settings, which should be tested before
changing their values:

• MOUNT_POINT=/mnt/acfs_gg1
The replicated ACFS mount point

• PATH_NAME=$MOUNT_POINT/status/acfs_primary
Must be unique from other mount files

• ATTEMPTS=3
Number of attempts to check the remote standby file system

• INTERVAL=10
Number of seconds between each attempt

As the grid OS user on all primary and standby GGHub nodes, edit the acfs_primary.scr
script to match the environment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/acfs_primary.scr

As the oracle OS user on the primary GGhub node where ACFS is currently mounted, run
the following commands to create the status directory:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ mkdir /mnt/acfs_gg1/status
[oracle@gghub_prim1 ~]$ chmod g+w /mnt/acfs_gg1/status

As the grid OS user on the primary and standby GGHub node where ACFS is currently
mounted, run the following command to register the acfs_primary action script for monitoring
the primary and standby file system:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ sh /u01/oracle/scripts/add_acfs_primary.sh

###
###
List of ACFS resources:
ora.data.acfs_gg1.acfs
###
###
ACFS resource name: <ora.data.acfs_gg1.acfs>

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-33

As the grid OS user on the primary GGhub node where ACFS is currently mounted,
start and check the status of the acfs_primary resource:

[grid@gghub_prim1 ~]$ crsctl start resource acfs_primary

CRS-2672: Attempting to start 'acfs_primary' on 'gghub_prim1'
CRS-2676: Start of 'acfs_primary' on 'gghub_prim1' succeeded

[grid@gghub_prim1 ~]$ crsctl stat resource acfs_primary

NAME=acfs_primary
TYPE=cluster_resource
TARGET=ONLINE
STATE=ONLINE on gghub_prim1

[grid@gghub_prim1 ~]$
 grep acfs_primary /u01/app/grid/diag/crs/`hostname`/crs/trace/
crsd_scriptagent_grid.trc
 |grep check

2023-05-05 12:57:40.372 :CLSDYNAM:2725328640: [acfs_primary]
{1:33562:34377} [check]
 Executing action script: /u01/oracle/scripts/acfs_primary.scr[check]
2023-05-05 12:57:42.376 :CLSDYNAM:2725328640: [acfs_primary]
{1:33562:34377} [check]
 SUCCESS: STANDBY file system /mnt/acfs_gg1 is ONLINE

As the grid OS user on the standby GGhub node where ACFS is currently mounted,
start and check the status of the acfs_primary resource.

This step should fail because acfs_primary should ONLY be online on the primary
GGhub:

[grid@gghub_stby1 ~]$ crsctl start res acfs_primary -n `hostname`

CRS-2672: Attempting to start 'acfs_primary' on 'gghub_stby1'
CRS-2674: Start of 'acfs_primary' on 'gghub_stby1' succeeded
CRS-2679: Attempting to clean 'acfs_primary' on 'gghub_stby1'
CRS-2681: Clean of 'acfs_primary' on 'gghub_stby1' succeeded
CRS-4000: Command Start failed, or completed with errors.

[grid@gghub_stby1 ~]$ crsctl stat res acfs_primary

NAME=acfs_primary
TYPE=cluster_resource
TARGET=ONLINE
STATE=OFFLINE

[grid@gghub_stby1 trace]$ grep
 acfs_primary /u01/app/grid/diag/crs/`hostname`/crs/trace/
crsd_scriptagent_grid.trc
 |grep check

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-34

2023-05-05 13:09:53.343 :CLSDYNAM:3598239488: [acfs_primary]{1:8532:2106}
[check]
 Executing action script: /u01/oracle/scripts/acfs_primary.scr[check]
2023-05-05 13:09:53.394 :CLSDYNAM:3598239488: [acfs_primary]{1:8532:2106}
[check]
 Detected local standby file system
2023-05-05 13:09:53.493 :CLSDYNAM:1626130176: [acfs_primary]{1:8532:2106}
[clean]
 Clean/Abort -- Stopping ACFS file system type checking...

Note:

The status of the acfs_primary resources will only be ONLINE if the ACFS file
system is the primary file system. When starting the resources on a node which is
not currently on the primary cluster, an error is reported because the resource fails
due to being the standby file system. This error can be ignored. The resource will
be in OFFLINE status on the ACFS standby cluster.

Step 3.3.8.2 - Action Script acfs_standby.scr

The acfs_standby resource checks that the local file system is a standby file system and
verifies the remote primary file system status. If the primary file system fails verification
multiple times (controlled by the action script variables), a warning is output to the CRS trace
file crsd_scriptagent_grid.trc (or crsd_scriptagent_oracle.trc if role separation is not
used) located in the Grid Infrastructure trace file directory /u01/app/grid/diag/crs/
node_name/crs/trace.

This resource runs on both the primary and standby hosts, but only returns success when the
current file system is the standby file system, and the primary file system is accessible.

The following parameters use suggested default settings, which should be tested before
changing their values.

• MOUNT_POINT=/mnt/acfs_gg1
This is the replicated ACFS mount point

• ATTEMPTS=3
Number of tries to check the remote primary file system

• INTERVAL=10
Number of seconds between each attempt

As the grid OS user on all primary and standby GGHub nodes, edit the acfs_standby.scr
script to match the environment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ vi /u01/oracle/scripts/acfs_standby.scr

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-35

As the grid OS user on the primary and standby GGHub node where ACFS is
currently mounted, run the following command to register the acfs_standby action
script for monitoring the primary and standby file system:

[grid@gghub_prim1 ~]$ sh /u01/oracle/scripts/add_acfs_standby.sh

###
#########
List of VIP resources:
gghub_prim1_vip1
gghub_prim1_vip2
###
#########
Application VIP CRS Resource: <gghub_prim1_vip1>
###
#########
List of ACFS resources:
ora.data.acfs_gg1.acfs
###
#########
ACFS resource name: <ora.data.acfs_gg1.acfs>

As the grid OS user on the primary and standby GGHub node where ACFS is
currently mounted, start and check the status of the acfs_standby resource:

[grid@gghub_prim1 ~]$ crsctl start res acfs_standby

CRS-2672: Attempting to start 'acfs_standby' on 'gghub_prim1'
CRS-2676: Start of 'acfs_standby' on 'gghub_prim1' succeeded

[grid@gghub_prim1 ~]$ grep acfs_standby
 /u01/app/grid/diag/crs/`hostname`/crs/trace/crsd_scriptagent_grid.trc
|egrep 'check|INFO'

2023-05-05 13:22:09.612 :CLSDYNAM:2725328640: [acfs_standby]
{1:33562:34709} [start]
 acfs_standby.scr starting to check ACFS remote primary at /mnt/
acfs_gg1
2023-05-05 13:22:09.612 :CLSDYNAM:2725328640: [acfs_standby]
{1:33562:34709} [check]
 Executing action script: /u01/oracle/scripts/acfs_standby.scr[check]
2023-05-05 13:22:09.663 :CLSDYNAM:2725328640: [acfs_standby]
{1:33562:34709} [check]
 Local PRIMARY file system /mnt/acfs_gg1

Step 3.3.9 – Test ACFS GGhub Node Relocation

It is very important to test planned and unplanned ACFS GGhub node relocations and
server role transitions before configuring Oracle GoldenGate.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-36

As the grid OS user on the primary and standby GGHub nodes, copy the scripts from node 1
to node 2:

[grid@gghub_prim1 ~]$ scp -rq /u01/oracle/scripts gghub_prim2:/u01/oracle

[grid@gghub_stby1 ~]$ scp -rq /u01/oracle/scripts gghub_stby2:/u01/oracle

As the grid OS user on the primary and standby GGHub nodes, verify that the file system is
mounted on another node, along with the VIP, sshd_restart, and the two ACFS resources
(acfs_primary and acfs_standby) using the following example command:

[grid@gghub_prim1 ~]$ crsctl stat res sshd_restart acfs_primary
 acfs_standby ora.data.acfs_gg1.acfs sshd_restart -t

Name Target State Server State
details

Cluster Resources

acfs_primary
 1 ONLINE ONLINE gghub_prim2 STABLE
acfs_standby
 1 ONLINE ONLINE STABLE
gghubfad2
 1 ONLINE ONLINE gghub_prim2 STABLE
ora.data.acfs_gg1.acfs
 1 ONLINE ONLINE gghub_prim2 mounted
on /mnt/acfs
 _gg1,STABLE
sshd_restart
 1 ONLINE ONLINE gghub_prim2 STABLE

[grid@gghub_stby1 ~]$ crsctl stat res sshd_restart acfs_primary acfs_standby
 ora.data.acfs_gg1.acfs sshd_restart -t

Name Target State Server State details

Cluster Resources

acfs_primary
 1 ONLINE OFFLINE STABLE
acfs_standby
 1 ONLINE ONLINE gghub_stby2 STABLE
ora.data.acfs_gg1.acfs

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-37

 1 ONLINE ONLINE gghub_stby2 mounted
on /mnt/acfs

_gg1,STABLE
sshd_restart
 1 ONLINE ONLINE gghub_stby2 STABLE

Step 3.3.10 – Test ACFS Switchover Between the Primary and Standby GGhub

As the grid OS user on the standby GGHub node, run the following command to issue
an ACFS switchover (role reversal) between the primary and standby GGhub:

[grid@gghub_stby2 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_stby2

[grid@gghub_stby2 ~]$ acfsutil repl failover /mnt/acfs_gg1

[grid@gghub_stby2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1

Site: Primary
Primary hostname:
gghub_stby_vip1.frankfurt.goldengate.com
Primary path: /mnt/acfs_gg1
Primary status: Running
Background Resources: Active

Standby connect string:
gghub_prim_vip1.frankfurt.goldengate.com
Standby path: /mnt/acfs_gg1
Replication interval: 0 days, 0 hours, 0 minutes, 0
seconds
Sending primary as of: Fri May 05 13:51:37 2023
Status: Send Completed
Lag Time: 00:00:00
Retries made: 0
Last send started at: Fri May 05 13:51:37 2023
Last send completed at: Fri May 05 13:51:48 2023
Elapsed time for last send: 0 days, 0 hours, 0 minutes, 11
seconds
Next send starts at: now
Replicated tags:
Data transfer compression: Off
ssh strict host key checking: On
Debug log level: 3
Replication ID: 0x4d7d34a

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-38

As the grid OS user on the new standby GGHub node (old primary), run the following
command to issue an ACFS switchover (role reversal) between the primary and standby
GGhub.

This step is optional but recommended to return the sites to the original role:

[grid@gghub_prim2 ~]$ crsctl stat res ora.data.acfs_gg1.acfs

NAME=ora.data.acfs_gg1.acfs
TYPE=ora.acfs_cluster.type
TARGET=ONLINE
STATE=ONLINE on gghub_prim2

[grid@gghub_prim2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |grep Site
Site: Standby

[grid@gghub_prim2 ~]$ acfsutil repl failover /mnt/acfs_gg1

[grid@gghub_prim2 ~]$ /sbin/acfsutil repl info -c -v /mnt/acfs_gg1 |grep Site

Site: Primary

Step 3.4 - Create the Oracle GoldenGate Deployment

Once the Oracle GoldenGate software has been installed in the GGHub, the next step is to
create a response file to create the GoldenGate deployment using the Oracle GoldenGate
Configuration Assistant.

The unified build feature introduced in Oracle GoldenGate 21c means a single deployment
can now manage Extract and Replicat processes that attach to different Oracle Database
versions. Each deployment is created with an Administration Server and (optionally)
Performance Metrics Server. If the GoldenGate trail files don’t need to be transferred to
another hub or GoldenGate environment, there is no need to create a Distribution or Receiver
Server.

Two limitations currently exist with Oracle GoldenGate and XAG:

1. A Service Manager that is registered with XAG can only manage a single deployment. If
multiple deployments are required, each deployment must use its own Service Manager.
Oracle GoldenGate release 21c simplifies this requirement because it uses a single
deployment to support Extract and Relicat processes connecting to different versions of
the Oracle Database.

2. Each Service Manager registered with XAG must belong to separate OGG_HOME
software installation directories. Instead of installing Oracle GoldenGate multiple times,
the recommended approach is to install Oracle GoldenGate one time, and then create a
symbolic link for each Service Manager OGG_HOME. The symbolic link and
OGG_HOME environment variable must be configured before running the Oracle
GoldenGate Configuration Assistant on all Oracle RAC nodes.

Create a Response File

For a silent configuration, copy the following example file and paste it into any location the
oracle user can access. Edit the following values appropriately:

• CONFIGURATION_OPTION
• DEPLOYMENT_NAME

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-39

• ADMINISTRATOR_USER
• SERVICEMANAGER_DEPLOYMENT_HOME
• OGG_SOFTWARE_HOME
• OGG_DEPLOYMENT_HOME
• ENV_TNS_ADMIN
• OGG_SCHEMA
Example Response File (oggca.rsp):

As the oracle OS user on the primary GGHub node where ACFS is currently
mounted, create and edit the response file oggca.rsp to create the Oracle GoldenGate
deployment:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ vi /u01/oracle/scripts/oggca.rsp

oracle.install.responseFileVersion=/oracle/install/
rspfmt_oggca_response_schema_v21_1_0
CONFIGURATION_OPTION=ADD
DEPLOYMENT_NAME=<GG_DEPLOYMENT_NAME>
ADMINISTRATOR_USER=oggadmin
ADMINISTRATOR_PASSWORD=<password_for_oggadmin>
SERVICEMANAGER_DEPLOYMENT_HOME=/mnt/acfs_gg1/deployments/ggsm01
HOST_SERVICEMANAGER=localhost
PORT_SERVICEMANAGER=9100
SECURITY_ENABLED=false
STRONG_PWD_POLICY_ENABLED=true
CREATE_NEW_SERVICEMANAGER=true
REGISTER_SERVICEMANAGER_AS_A_SERVICE=false
INTEGRATE_SERVICEMANAGER_WITH_XAG=true
EXISTING_SERVICEMANAGER_IS_XAG_ENABLED=false
OGG_SOFTWARE_HOME=/u01/app/oracle/goldengate/gg21c
OGG_DEPLOYMENT_HOME=/mnt/acfs_gg1/deployments/gg01
ENV_LD_LIBRARY_PATH=${OGG_HOME}/lib/instantclient:${OGG_HOME}/lib
ENV_TNS_ADMIN=/u01/app/oracle/goldengate/network/admin
FIPS_ENABLED=false
SHARDING_ENABLED=false
ADMINISTRATION_SERVER_ENABLED=true
PORT_ADMINSRVR=9101
DISTRIBUTION_SERVER_ENABLED=true
PORT_DISTSRVR=9102
NON_SECURE_DISTSRVR_CONNECTS_TO_SECURE_RCVRSRVR=false
RECEIVER_SERVER_ENABLED=true
PORT_RCVRSRVR=9103
METRICS_SERVER_ENABLED=true
METRICS_SERVER_IS_CRITICAL=false
PORT_PMSRVR=9104
UDP_PORT_PMSRVR=9105
PMSRVR_DATASTORE_TYPE=BDB
PMSRVR_DATASTORE_HOME=/u01/app/oracle/goldengate/datastores/
<GG_DEPLOYMENT_NAME>
OGG_SCHEMA=ggadmin

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-40

Create the Oracle GoldenGate Deployment

As the oracle OS user on the primary GGHub node where ACFS is currently mounted, run
oggca.sh to create the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/gg21c
[oracle@gghub_prim1 ~]$ $OGG_HOME/bin/oggca.sh -silent
 -responseFile /u01/oracle/scripts/oggca.rsp

Successfully Setup Software.

Create the Oracle GoldenGate Datastores and TNS_ADMIN Directories

As the oracle OS user on all GGHub nodes of the primary and standby systems, run the
following commands to create the Oracle GoldenGate Datastores and TNS_ADMIN directories:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ mkdir -p /u01/app/oracle/goldengate/network/admin
[oracle@gghub_prim1 ~]$ mkdir -p /u01/app/oracle/goldengate/datastores/
<GG_DEPLOYMENT_NAME>

Step 3.5 - Configure Oracle Grid Infrastructure Agent (XAG)

The following step-by-step procedure shows you how to configure Oracle Clusterware to
manage GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG). Using
XAG automates the ACFS file system mounting, as well as the stopping and starting of the
GoldenGate deployment when relocating between Oracle GGhub nodes.

Step 3.5.1 - Install the Oracle Grid Infrastructure Standalone Agent

It is recommended that you install the XAG software as a standalone agent outside the Grid
Infrastructure ORACLE_HOME so that you can use the latest XAG release available, and the
software can be updated without impact to the Grid Infrastructure.

Install the XAG standalone agent outside of the Oracle Grid Infrastructure home directory.
XAG must be installed in the same directory on all GGhub nodes in the system where
GoldenGate is installed.

As the grid OS user on the first GGHub node of the primary and standby systems, unzip the
software and run xagsetup.sh:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ unzip /u01/oracle/stage/p31215432_190000_Generic.zip
 -d /u01/oracle/stage
[grid@gghub_prim1 ~]$ /u01/oracle/stage/xag/xagsetup.sh --install
 --directory /u01/app/grid/xag --all_nodes

Installing Oracle Grid Infrastructure Agents on: gghub_prim1
Installing Oracle Grid Infrastructure Agents on: gghub_prim2
Updating XAG resources.
Successfully updated XAG resources.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-41

As the grid OS user on all GGHub nodes of the primary and standby systems, add
the location of the newly installed XAG software to the PATH variable so that the
location of agctl is known when the grid user logs on to the machine.

[grid@gghub_prim1 ~]$ vi ~/.bashrc

PATH=/u01/app/grid/xag/bin:$PATH:/u01/app/19.0.0.0/grid/bin; export
PATH

Note:

It is essential to ensure that the XAG bin directory is specified BEFORE the
Grid Infrastructure bin directory to ensure the correct agctl binary is found.
This should be set in the grid user environment to take effect when logging
on, such as in the .bashrc file when the Bash shell is in use.

Step 3.5.2 - Register Oracle Grid Infrastructure Agent on the Primary and
Standby GGHubs
The following procedure shows you how to configure Oracle Clusterware to manage
Oracle GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG).
Using XAG automates the mounting of the shared file system as well as the stopping
and starting of the Oracle GoldenGate deployment when relocating between Oracle
GGhub nodes.

Oracle GoldenGate must be registered with XAG so that the deployment is started and
stopped automatically when the database is started, and the file system is mounted.

To register Oracle GoldenGate Microservices Architecture with XAG, use the following
command format.

agctl add goldengate <instance_name>
--gg_home <GoldenGate_Home>
--service_manager
--config_home <GoldenGate_SvcMgr_Config>
--var_home <GoldenGate_SvcMgr_Var Dir>
--oracle_home <$OGG_HOME/lib/instantclient>
--port <port number>
--adminuser <OGG admin user>
--user <GG instance user>
--group <GG instance group>
--file systems <CRS_resource_name>
--filesystems_always yes
--filesystem_verify <yes/no>
--attribute TARGET_DEFAULT=online

Where:

• --gg_home specifies the location of the GoldenGate software.

• --service_manager indicates this is an GoldenGate Microservices instance.

• --config_home specifies the GoldenGate deployment configuration home
directory.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-42

• --var_home specifies the GoldenGate deployment variable home directory.

• --oracle_home specifies the Oracle Instant Client home

• --port specifies the deployment Service Manager port number.

• --adminuser specifies the GoldenGate Microservices administrator account name.

• --user specifies the name of the operating system user that owns the GoldenGate
deployment.

• --group specifies the name of the operating system group that owns the GoldenGate
deployment.

• --filesystems specifies the CRS file system resource that must be ONLINE before the
deployment is started. This will be the acfs_primary resource created in a previous step.

• --filesystem_verify specifies if XAG should check the existence of the directories
specified by the config_home and var_home parameters. This should be set to ‘yes’ for
the active ACFS primary file system. When adding the GoldenGate instance on the
standby cluster, specify ‘no’.

• --filesystems_always specifies that XAG will start the GoldenGate Service Manager on
the same GGhub node as the file system CRS resources, specified by the --
filesystems parameter.

• --attributes specifies that the target status of the resource is online. This is required to
automatically start the GoldenGate deployment when the acfs_primary resource starts.

The GoldenGate deployment must be registered on the primary and standby GGHubs where
ACFS is mounted in either read-write or read-only mode.

As the grid OS user on the first GGHub node of the primary and standby systems, run the
following command to determine which node of the cluster the file system is mounted on:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ crsctl stat res acfs_standby |grep STATE
STATE=ONLINE on gghub_prim1

Step 3.5.2.1 - Register the Primary Oracle GoldenGate Microservices Architecture with
XAG

As the root OS user on the first node of the primary GGHub, register Oracle GoldenGate
Microservices Architecture with XAG using the following command format:

[opc@gghub_prim1 ~]$ sudo su - root
[root@gghub_prim1 ~]# grep DEPLOYMENT_NAME= /u01/oracle/scripts/oggca.rsp
DEPLOYMENT_NAME=<gghub1>
[root@gghub_prim1 ~]# export GG_DEPLOYMENT_NAME=<gghub1>

[root@gghub_prim1 ~]# vi /u01/oracle/scripts/add_xag_goldengate_prim.sh

Run as ROOT:

/u01/app/grid/xag/bin/agctl add goldengate $GG_DEPLOYMENT_NAME \
--gg_home /u01/app/oracle/goldengate/gg21c \
--service_manager \
--config_home /mnt/acfs_gg1/deployments/ggsm01/etc/conf \
--var_home /mnt/acfs_gg1/deployments/ggsm01/var \

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-43

--oracle_home /u01/app/oracle/goldengate/gg21c/lib/instantclient \
--port 9100 \
--adminuser oggadmin \
--user oracle \
--group oinstall \
--filesystems acfs_primary \
--filesystems_always yes \
--filesystem_verify yes \
--attribute TARGET_DEFAULT=online

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_xag_goldengate_prim.sh
Enter password for 'oggadmin' : ##########

As the grid OS user on the first node of the primary GGHub, verify that Oracle
GoldenGate Microservices Architecture is registered with XAG:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

As the grid OS user on the first node of the primary GGHub, add the environment
variable GG_DEPLOYMENT_NAME to the ~/.bashrc file:

[grid@gghub_prim1 ~]$ cat >> ~/.bashrc <<EOF
export GG_DEPLOYMENT_NAME=`/u01/app/grid/xag/bin/agctl status
goldengate |
 awk '{print $3}' | tr -d "'"`
EOF

[grid@gghub_prim1 ~]$. ~/.bashrc
[grid@gghub_prim1 ~]$ echo $GG_DEPLOYMENT_NAME

gghub1

Step 3.5.2.2 - Register the Standby Oracle GoldenGate Microservices
Architecture with XAG

As the root OS user on the first node of the standby GGHub, register Oracle
GoldenGate Microservices Architecture with XAG using the following command
format:

[opc@gghub_stby1 ~]$ sudo su - root
[root@gghub_stby1 ~]# vi /u01/oracle/scripts/add_xag_goldengate_stby.sh
[root@gghub_stby1 ~]# export GG_DEPLOYMENT_NAME=<gghub1>

Run as ROOT:

/u01/app/grid/xag/bin/agctl add goldengate $GG_DEPLOYMENT_NAME \
--gg_home /u01/app/oracle/goldengate/gg21c \
--service_manager \
--config_home /mnt/acfs_gg1/deployments/ggsm01/etc/conf \
--var_home /mnt/acfs_gg1/deployments/ggsm01/var \

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-44

--oracle_home /u01/app/oracle/goldengate/gg21c/lib/instantclient \
--port 9100 --adminuser oggadmin --user oracle --group oinstall \
--filesystems acfs_primary \
--filesystems_always yes \
--filesystem_verify no \
--attribute TARGET_DEFAULT=online

[root@gghub_stby1 ~]# sh /u01/oracle/scripts/add_xag_goldengate_stby.sh
Enter password for 'oggadmin' : ##########

Note:

When adding the GoldenGate instance on the standby cluster, specify --
filesystem_verify no.

As the grid OS user on the first node of the standby GGHub, verify that Oracle GoldenGate
Microservices Architecture is registered with XAG:

[opc@gghub_stby1 ~]$ sudo su - grid
[grid@gghub_stby1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

As the grid OS user on the first node of the standby GGHub, add the environment variable
GG_DEPLOYMENT_NAME to the ~/.bashrc file:

[grid@gghub_stby1 ~]$ cat >> ~/.bashrc <<EOF
export GG_DEPLOYMENT_NAME=`/u01/app/grid/xag/bin/agctl status goldengate |
 awk '{print $3}' | tr -d "'"`
EOF

[grid@gghub_stby1 ~]$. ~/.bashrc
[grid@gghub_prim1 ~]$ echo $GG_DEPLOYMENT_NAME

gghub1

Step 3.5.3 - Start the Oracle GoldenGate Deployment

Below are some example agctl commands used to manage the GoldenGate deployment
with XAG.

As the grid OS user on the first node of the primary GGHub, execute the following command
to start and check Oracle GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid

[grid@gghub_prim1 ~]$ agctl start goldengate $GG_DEPLOYMENT_NAME

[grid@gghub_prim1 ~]$ agctl status goldengate
Goldengate instance 'gghub1' is running on gghub_prim1

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-45

As the grid OS user on the first GGHub node, run the following command to validate
the configuration parameters for the Oracle GoldenGate resource:

[grid@gghub_prim1 ~]$ agctl config goldengate $GG_DEPLOYMENT_NAME

Instance name: gghub1
Application GoldenGate location is: /u01/app/oracle/goldengate/gg21c
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory: /mnt/acfs_gg1/
deployments/ggsm01/etc/conf
Goldengate Service Manager var directory: /mnt/acfs_gg1/deployments/
ggsm01/var
Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: no
ORACLE_HOME location is: /u01/app/oracle/goldengate/gg21c/lib/
instantclient
File System resources needed: acfs_primary
CRS additional attributes set: TARGET_DEFAULT=online

For more information see Oracle Grid Infrastructure Bundled Agent.

Step 3.6 - Configure NGINX Reverse Proxy

The Oracle GoldenGate reverse proxy feature allows a single point of contact for all
the GoldenGate microservices associated with a GoldenGate deployment. Without a
reverse proxy, the GoldenGate deployment microservices are contacted using a URL
consisting of a hostname or IP address and separate port numbers, one for each of
the services. For example, to contact the Service Manager, you could use http://
gghub.example.com:9100, then the Administration Server is http://
gghub.example.com:9101, the second Service Manager may be accessed using http://
gghub.example.com:9110, and so on.

When running Oracle GoldenGate in a High Availability (HA) configuration on Oracle
Exadata Database Service with the Grid Infrastructure agent (XAG), there is a
limitation preventing more than one deployment from being managed by a GoldenGate
Service Manager. Because of this limitation, creating a separate virtual IP address
(VIP) for each Service Manager/deployment pair is recommended. This way, the
microservices can be accessed directly using the VIP.

With a reverse proxy, port numbers are not required to connect to the microservices
because they are replaced with the deployment name and the hostname's VIP. For
example, to connect to the console via a web browser, use the URLs:

GoldenGate Services URL

Service Manager https://localhost:443

Administration Server https://localhost:443/instance_name/adminsrvr

Distribution Server https://localhost:443/instance_name/distsrvr

Performance Metric Server https://localhost:443/instance_name/pmsrvr

Receiver Server https://localhost:443/instance_name/recvsrvr

When running multiple Service Managers, the following instructions will provide
configuration using a separate VIP for each Service Manager. NGINX uses the VIP to
determine which Service Manager an HTTPS connection request is routed to.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-46

http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html

An SSL certificate is required for clients to authenticate the server they connect to through
NGINX. Contact your systems administrator to follow your corporate standards to create or
obtain the server certificate before proceeding. A separate certificate is required for each VIP
and Service Manager pair.

Note:

The common name in the CA-signed certificate must match the target
hostname/VIP used by NGINX.

Follow the instructions to install and configure NGINX Reverse Proxy with an SSL connection
and ensure all external communication is secure.

Step 3.6.1 - Secure Deployments Requirements (Certificates)

A secure deployment involves making RESTful API calls and conveying trail data between
the Distribution Server and Receiver Server, over SSL/TLS.

You can use your own existing business certificate from your Certificate Authority (CA) or you
might create your own certificates.

Contact your systems administrator to follow your corporate standards to create or obtain the
server certificate before proceeding. A separate certificate is required for each VIP and
Service Manager pair.

Step 3.6.2 - Install NGINX Reverse Proxy Server

As the root OS user on all GGHub nodes, set up the yum repository by creating the file /etc/
yum.repos.d/nginx.repo with the following contents:

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# cat > /etc/yum.repos.d/nginx.repo <<EOF
[nginx-stable]
name=nginx stable repo
baseurl=http://nginx.org/packages/rhel/7/\$basearch/
gpgcheck=1
enabled=1
gpgkey=https://nginx.org/keys/nginx_signing.key
module_hotfixes=true
EOF

As the root OS user on all GGHub nodes, run the following commands to install, enable, and
start NGINX:

[root@gghub_prim1 ~]# yum install -y python-requests python-urllib3 nginx
[root@gghub_prim1 ~]# systemctl enable nginx

As the root OS user on all GGHub node, disable the NGINX repository after the software has
been installed:

[root@gghub_prim1 ~]# yum-config-manager --disable nginx-stable

Step 3.6.3 - Create the NGINX Configuration File

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-47

You can configure Oracle GoldenGate Microservices Architecture to use a reverse
proxy. Oracle GoldenGate MA includes a script called ReverseProxySettings that
generates a configuration file for only the NGINX reverse proxy server.

The script requires the following parameters:

• The --user parameter should mirror the GoldenGate administrator account
specified with the initial deployment creation.

• The GoldenGate administrator password will be prompted.

• The reverse proxy port number specified by the --port parameter should be the
default HTTPS port number (443) unless you are running multiple GoldenGate
Service Managers using the same --host. In this case, specify an HTTPS port
number that does not conflict with previous Service Manager reverse proxy
configurations. For example, if running two Service Managers using the same
hostname/VIP, the first reverse proxy configuration is created with '--port 443 --
host VIP_NAME1.FQDN', and the second is created with '--port 444 --host
VIP_NAME2.FQDN'. If using separate hostnames/VIPs, the two Service Manager
reverse proxy configurations would be created with '--port 443 --host
VIP_NAME1.FQDN' and '--port 443 --host VIP_NAME2.FQDN'.

• The --host parameter is the VIP_NAME.FQDN configured in the Private DNS Zone
View

• Lastly, the HTTP port number (9100) should match the Service Manager port
number specified during the deployment creation.

Repeat this step for each additional GoldenGate Service Manager.

As the oracle OS user on the first GGHub node, use the following command to create
the Oracle GoldenGate NGINX configuration file:

[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/
gg21c
[oracle@gghub_prim1 ~]$ export PATH=$PATH:$OGG_HOME/bin
[oracle@gghub_prim1 ~]$ cd /u01/oracle/scripts
[oracle@gghub_prim1 ~]$ $OGG_HOME/lib/utl/reverseproxy/
ReverseProxySettings
 --user oggadmin --port 443 --output ogg_$GG_DEPLOYMENT_NAME.conf
http://localhost:9100
 --host <VIP_NAME.FQDN>
Password: <oggadmin_password>

Step 3.6.4 - Modify NGINX Configuration Files

When multiple GoldenGate Service Managers are configured to use their IP/VIPs with
the same HTTPS 443 port, some small changes are required to the NGINX reverse
proxy configuration files generated in the previous step. With all Service Managers
sharing the same port number, they are independently accessed using their VIP/IP
specified by the --host parameter.

As the oracle OS user on the first GGHub node, determine the deployment name
managed by this Service Manager listed in the reverse proxy configuration file and

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-48

change all occurrences of “_ServiceManager” by prepending the deployment name before
the underscore:

[oracle@gghub_prim1 ~]$ cd /u01/oracle/scripts
[oracle@gghub_prim1 ~]$ grep "Upstream Servers" ogg_$GG_DEPLOYMENT_NAME.conf

Upstream Servers for Deployment 'gghub1'

[oracle@gghub_prim1 ~]$ sed -i 's/_ServiceManager/
<REPLACE_WITH_DEPLOYMENT_NAME>_ServiceManager/' ogg_$GG_DEPLOYMENT_NAME.conf

Step 3.6.5 - Install the Server Certificates for NGINX

As the root OS user on the first GGHub node, copy the server certificates and key files in
the /etc/nginx/ssl directory, owned by root with file permissions 400 (-r--------):

[opc@gghub_prim1 ~]$ sudo su -
[root@gghub_prim1 ~]# mkdir /etc/nginx/ssl
[root@gghub_prim1 ~]# cp <ssl_keys> /etc/nginx/ssl/.
[root@gghub_prim1 ~]# chmod -R 400 /etc/nginx/ssl
[root@gghub_prim1 ~]# ll /etc/nginx/ssl

-r-------- 1 root root 2750 May 17 06:12 gghub1.chained.crt
-r-------- 1 root root 1675 May 17 06:12 gghub1.key

As the oracle OS user on the first GGHub node, set the correct file names for the certificate
and key files for each reverse proxy configuration file:

[oracle@gghub_prim1 ~]$ vi /u01/oracle/scripts/ogg_$GG_DEPLOYMENT_NAME.conf

Before
 ssl_certificate /etc/nginx/ogg.pem;
 ssl_certificate_key /etc/nginx/ogg.pem;

After
 ssl_certificate /etc/nginx/ssl/gghub1.chained.crt;
 ssl_certificate_key /etc/nginx/ssl/gghub1.key;

When using CA-signed certificates, the certificate named with the ssl_certificate NGINX
parameter must include the 1) CA signed, 2) intermediate, and 3) root certificates in a single
file. The order is significant; otherwise, NGINX fails to start and displays the error message:

(SSL: error:0B080074:x509 certificate routines:
 X509_check_private_key:key values mismatch)

The root and intermediate certificates can be downloaded from the CA-signed certificate
provider.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-49

As the root OS user on the first GGHub node, generate the SSL certificate single file
by using the following example command:

[root@gghub_prim1 ~]# cd /etc/nginx/ssl
[root@gghub_prim1 ~]# cat CA_signed_cert.crt
 intermediate.crt root.crt > gghub1.chained.crt

The ssl_certificate_key file is generated when creating the Certificate Signing
Request (CSR), which is required when requesting a CA-signed certificate.

Step 3.6.6 - Install the NGINX Configuration File

As the root OS user on the first GGhub node, copy the deployment configuration file
to /etc/nginx/conf.d directory and remove the default configuration file:

[root@gghub_prim1 ~]# cp /u01/oracle/scripts/ogg_<gghub1>.conf
 /etc/nginx/conf.d
[root@gghub_prim1 ~]# rm /etc/nginx/conf.d/default.conf

As the root OS user on the first GGHub node, validate the NGINX configuration file. If
there are errors in the file, they will be reported with the following command:

[root@gghub_prim1 ~]# nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginxconf test is successful

As the root OS user on the first GGHub node, restart NGINX to load the new
configuration:

[root@gghub_prim1 ~]# systemctl restart nginx

Step 3.6.7 - Test GoldenGate Microservices Connectivity

As the root OS user on the first GGHub node, create a curl configuration file
(access.cfg) that contains the deployment user name and password:

[root@gghub_prim1 ~]# vi access.cfg
user = "oggadmin:<password>"

[root@gghub_prim1 ~]# curl <--insecure> -svf -K access.cfg
 https://<vip_name.FQDN>:<port#>/services/v2/config/health -XGET &&
echo -e
 "\n*** Success"

Sample output:
* About to connect() to .frankfurt.goldengate.com port 443 (#0)
* Trying 10.40.0.75...
* Connected to gghub_prim_vip1.frankfurt.goldengate.com (10.40.0.75)
port 443 (#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb
* CAfile: /etc/pki/tls/certs/ca-bundle.crt
 CApath: none

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-50

* skipping SSL peer certificate verification
* NSS: client certificate not found (nickname not specified)
* SSL connection using TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
* Server certificate:
* subject: CN=gghub_prim_vip1.frankfurt.goldengate.com,OU=Oracle
 MAA,O=Oracle,L=Frankfurt,ST=Frankfurt,C=GE
* start date: Jul 27 15:59:00 2023 GMT
* expire date: Jul 26 15:59:00 2024 GMT
* common name: gghub_prim_vip1.frankfurt.goldengate.com
* issuer:
OID.2.5.29.19=CA:true,CN=gghub_prim_vip1.frankfurt.goldengate.com,OU=Oracle
MAA,O=Oracle,L=Frankfurt,C=EU
* Server auth using Basic with user 'oggadmin'
> GET /services/v2/config/health HTTP/1.1
> Authorization: Basic b2dnYWRtaW46V0VsY29tZTEyM19fXw==
> User-Agent: curl/7.29.0
> Host: gghub_prim_vip1.frankfurt.goldengate.com
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: nginx/1.24.0
< Date: Thu, 27 Jul 2023 16:25:26 GMT
< Content-Type: application/json
< Content-Length: 941
< Connection: keep-alive
< Set-Cookie:
ogg.sca.mS+pRfBERzqE+RTFZPPoVw=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiO
iJvZ2cuc2NhIiwiZXhwIjozNjAwLCJ0eXAiOiJ4LVNDQS1BdXRob3JpemF0aW9uIiwic3ViIjoib2
dnYWRtaW4iLCJhdWQiOiJvZ2cuc2NhIiwiaWF0IjoxNjkwNDc1MTI2LCJob3N0IjoiZ2dodWJsYV9
2aXAubG9uZG9uLmdvbGRlbmdhdGUuY29tIiwicm9sZSI6IlNlY3VyaXR5IiwiYXV0aFR5cGUiOiJC
YXNpYyIsImNyZWQiOiJFd3VqV0hOdzlGWDNHai9FN1RYU3A1N1dVRjBheUd4OFpCUTdiZDlKOU9RP
SIsInNlcnZlcklEIjoiZmFkNWVkN2MtZThlYi00YmE2LTg4Y2EtNmQxYjk3ZjdiMGQ3IiwiZGVwbG
95bWVudElEIjoiOTkyZmE5NDUtZjA0NC00NzNhLTg0ZjktMTRjNTY0ZjNlODU3In0=.knACABXPmZ
E4BEyux7lZQ5GnrSCCh4x1zBVBLaX3Flo=;
Domain=gghub_prim_vip1.frankfurt.goldengate.com; Path=/; HttpOnly; Secure;
SameSite=strict
< Set-Cookie:
ogg.csrf.mS+pRfBERzqE+RTFZPPoVw=1ae439e625798ee02f8f7498438f27c7bad036b270d6b
fc95aee60fcee111d35ea7e8dc5fb5d61a38d49cac51ca53ed9307f9cbe08fab812181cf163a7
43bfc7; Domain=gghub_prim_vip1.frankfurt.goldengate.com; Path=/; Secure;
SameSite=strict
< Cache-Control: max-age=0, no-cache, no-store, must-revalidate
< Expires: 0
< Pragma: no-cache
< Content-Security-Policy: default-src 'self' 'unsafe-eval' 'unsafe-
inline';img-src 'self' data:;frame-ancestors https://
gghub_prim_vip1.frankfurt.goldengate.com;child-src https://
gghub_prim_vip1.frankfurt.goldengate.com blob:;
< X-Content-Type-Options: nosniff
< X-XSS-Protection: 1; mode=block
< X-OGG-Proxy-Version: v1
< Strict-Transport-Security: max-age=31536000 ; includeSubDomains
<
* Connection #0 to host gghub_prim_vip1.frankfurt.goldengate.com left intact
{"$schema":"api:standardResponse","links":

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-51

[{"rel":"canonical","href":"https://
gghub_prim_vip1.frankfurt.goldengate.com/services/v2/config/
health","mediaType":"application/json"},{"rel":"self","href":"https://
gghub_prim_vip1.frankfurt.goldengate.com/services/v2/config/
health","mediaType":"application/json"},
{"rel":"describedby","href":"https://
gghub_prim_vip1.frankfurt.goldengate.com/services/ServiceManager/v2/
metadata-catalog/health","mediaType":"application/
schema+json"}],"messages":[],"response":
{"$schema":"ogg:health","deploymentName":"ServiceManager","serviceName"
:"ServiceManager","started":"2023-07-27T15:39:41.867Z","healthy":true,"
criticalResources":
[{"deploymentName":"gghubl1","name":"adminsrvr","type":"service","statu
s":"running","healthy":true},
{"deploymentName":"gghub1","name":"distsrvr","type":"service","status":
"running","healthy":true},
{"deploymentName":"gghub1","name":"recvsrvr","type":"service","status":
"running","healthy":true}]}}
*** Success

[root@gghub_prim1 ~]# rm access.cfg

Note:

If the environment is using self-signed SSL certificates, add the flag --
insecure to the curl command to avoid the error "NSS error -8172
(SEC_ERROR_UNTRUSTED_ISSUER)".

Step 3.6.8 - Remove NGINX default.conf Configuration File

As the root OS user on all GGHubs, remove the default configuration file
(default.conf) created in /etc/nginx/conf.d:

[opc@gghub_prim1 ~]$ sudo rm -f /etc/nginx/conf.d/default.conf
[opc@gghub_prim1 ~]$ sudo nginx -s reload

Step 3.6.9 - Distribute the GoldenGate NGINX Configuration Files

Once all of the reverse proxy configuration files have been created for the GoldenGate
Service Managers, they must be copied to the second GoldenGate Hub node.

As the opc OS user on the first GGHub node, distribute the NGINX configuration files
to all database nodes:

[opc@gghub_prim1 ~]$ sudo tar fczP /tmp/nginx_conf.tar /etc/nginx/
conf.d/
 /etc/nginx/ssl/
[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ scp /tmp/nginx_conf.tar gghub_prim2:/tmp/.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-52

As the opc OS user on the second GGHub node, extract the NGINX configuration files and
remove the default configuration file:

[opc@gghub_prim2 ~]$ sudo tar fxzP /tmp/nginx_conf.tar
[opc@gghub_prim2 ~]$ sudo rm /etc/nginx/conf.d/default.conf

As the opc OS user on the second GGHub node, restart NGINX:

[opc@gghub_prim2 ~]$ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

[root@gghub_prim2 ~]$ sudo systemctl restart nginx

Note:

Repeat all of the steps in section 3.6 for the primary and standby GGHub systems.

Step 3.7 - Securing GoldenGate Microservices to Restrict Non-secure Direct Access

After configuring the NGINX reverse proxy with an unsecured Oracle GoldenGate
Microservices deployment, the microservices can continue accessing HTTP (non-secure)
using the configured microservices port numbers. For example, the following non-secure URL
could be used to access the Administration Server: http://<vip-name>:9101.

Oracle GoldenGate Microservices' default behavior for each server (Service Manager,
adminserver, pmsrvr. distsrvr, and recsrvr) is to listen using a configured port number on all
network interfaces. This is undesirable for more secure installations, where direct access
using HTTP to the Microservices needs to be disabled and only permitted using NGINX
HTTPS.

Use the following commands to alter the Service Manager and deployment services listener
address to use only the localhost address. Access to the Oracle GoldenGate Microservices
will only be permitted from the localhost, and any access outside of the localhost will only
succeed using the NGINX HTTPS port.

Step 3.7.1 - Stop the Service Manager

As the grid OS user on the first GGHub node, stop the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl stop goldengate $GG_DEPLOYMENT_NAME
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is not running

Step 3.7.2 - Modify the Service Manager Listener Address

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-53

As the oracle OS user on the first GGHub node, modify the listener address with the
following commands. Use the correct port number for the Service Manager being
altered:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ export OGG_HOME=/u01/app/oracle/goldengate/
gg21c
[oracle@gghub_prim1 ~]$ export OGG_VAR_HOME=/mnt/acfs_gg1/deployments/
ggsm01/var
[oracle@gghub_prim1 ~]$ export OGG_ETC_HOME=/mnt/acfs_gg1/deployments/
ggsm01/etc
[oracle@gghub_prim1 ~]$ $OGG_HOME/bin/ServiceManager
 --prop=/config/network/serviceListeningPort
 --value='{"port":9100,"address":"127.0.0.1"}' --type=array --persist
--exit

Step 3.7.3 - Restart the Service Manager and Deployment

As the grid OS user on the first GGHub node, restart the GoldenGate deployment:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl start goldengate $GG_DEPLOYMENT_NAME
[grid@gghub_prim1 ~]$ agctl status goldengate

Goldengate instance 'gghub1' is running on gghub_prim1

Step 3.7.4 - Modify the GoldenGate Microservices listener address

As the oracle OS user on the first GGHub node, modify all the GoldenGate
microservices (adminsrvr, pmsrvr, distsrvr, recvsrvr) listening address to localhost for
the deployments managed by the Service Manager using the following command:

[opc@gghub_prim1 ~]$ sudo chmod g+x /u01/oracle/scripts/
secureServices.py
[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$ /u01/oracle/scripts/secureServices.py http://
localhost:9100
 --user oggadmin

Password for 'oggadmin': <oggadmin_password>

*** Securing deployment - gghub1

Current value of "/network/serviceListeningPort" for "gghub1/
adminsrvr" is 9101
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/adminsrvr" is
{
 "address": "127.0.0.1",
 "port": 9101

}.
Current value of "/network/serviceListeningPort" for "gghub1/distsrvr"
is 9102

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-54

Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/distsrvr" is
{
 "address": "127.0.0.1",
 "port": 9102
}.
Current value of "/network/serviceListeningPort" for "gghub1/pmsrvr" is 9104
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/pmsrvr" is
{
 "address": "127.0.0.1",
 "port": 9104
}.
Current value of "/network/serviceListeningPort" for "gghub1/recvsrvr" is
9103
Setting new value and restarting service.
New value of "/network/serviceListeningPort" for "gghub1/recvsrvr" is
{
 "address": "127.0.0.1",
 "port": 9103
}.

Note:

To modify a single deployment (adminsrvr, pmsrvr, distsrvr, recvsrvr), add the flag
--deployment instance_name

Step 3.8 - Create a Clusterware Resource to Manage NGINX

Oracle Clusterware needs to have control over starting the NGINX reverse proxy so that it
can be started automatically before the GoldenGate deployments are started.

As the root OS user on the first GGHub node, use the following command to create a
Clusterware resource to manage NGINX. Replace HOSTING_MEMBERS and CARDINALITY to
match your environment:

[root@gghub_prim1 ~]# sh /u01/oracle/scripts/add_nginx.sh

#######################
List of VIP resources:

gghub_prim1_vip1

Application VIP CRS Resource: <gghub_prim1_vip1>

########################
List of Hosting Members

gghub_prim1
gghub_prim2

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-55

HOSTING_MEMBERS: gghub_prim1,gghub_prim2

The NGINX resource created in this example will run on the named database nodes
simultaneously, specified by HOSTING_MEMBERS. This is recommended when multiple
GoldenGate Service Manager deployments are configured and can independently
move between database nodes.

Once the NGINX Clusterware resource is created, the GoldenGate XAG resources
need to be altered so that NGINX must be started before the GoldenGate deployments
are started.

As the root OS user on the first GGHub node, modify the XAG resources using the
following example commands.

Determine the current --file systems parameter:

[opc@gghub_prim1 ~]$ sudo su - grid
[grid@gghub_prim1 ~]$ agctl config goldengate $GG_DEPLOYMENT_NAME
 |grep -i "file system"

File System resources needed: acfs_primary

Modify the --file systems parameter:

[opc@gghub_prim1 ~]$ /u01/app/grid/xag/bin/agctl modify goldengate
 $GG_DEPLOYMENT_NAME
 --filesystems acfs_primary,nginx

Validate the current --file systems parameter:

[grid@gghub_prim1 ~]$ agctl config goldengate $GG_DEPLOYMENT_NAME
 |grep -i "File system"

File System resources needed: acfs_primary,nginx

Note:

• Repeat the above commands for each XAG GoldenGate registration
relying on NGINX.

• Repeat all the steps in step 3.8 for the primary and standby GGHub
systems.

Step 3.9 - Create an Oracle Net TNS Alias for Oracle GoldenGate Database
Connections

To provide local database connections for the Oracle GoldenGate processes when
switching between nodes, create a TNS alias on all nodes of the cluster where Oracle
GoldenGate may be started. Create the TNS alias in the tnsnames.ora file in the
TNS_ADMIN directory specified in the deployment creation.

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-56

If the source database is a multitenant database, two TNS alias entries are required, one for
the container database (CDB) and one for the pluggable database (PDB) that is being
replicated. For a target Multitenant database, the TNS alias connects the PDB to where
replicated data is being applied. The pluggable database SERVICE_NAME should be set to the
database service created in an earlier step (refer to Step 2.3: Create the Database Services
in Task 2: Prepare a Primary and Standby Base System for GGHub).

As the oracle OS user on any database node of the primary and the standby database
systems, use dbaascli to find the database domain name and the SCAN name:

Primary DB
[opc@exadb1_node1]$ sudo su - oracle
[oracle@exadb1_node1]$ source <dbName>.env
[oracle@exadb1_node1]$ dbaascli database getDetails --dbname <dbName> |grep
'connectString'

 "connectString" : "<primary_scan_name>:1521/<service_name>"

Standby DB

[opc@exadb2_node1]$ sudo su - oracle
[oracle@exadb2_node1]$ source dbName.env
[oracle@exadb2_node1]$ dbaascli database getDetails --dbname <dbName> |grep
'connectString'

 "connectString" : "<standby_scan_name>:1521/<service_name>"

As the oracle OS user on all nodes of the primary and standby GGHub, add the
recommended parameters for Oracle GoldenGate in the sqlnet.ora file:

[opc@gghub_prim1]$ sudo su - oracle
[oracle@gghub_prim1]$ mkdir -p /u01/app/oracle/goldengate/network/admin
[oracle@gghub_prim1]$
cat > /u01/app/oracle/goldengate/network/admin/sqlnet.ora <<EOF

DEFAULT_SDU_SIZE = 2097152
EOF

As the oracle OS user on all nodes of the primary and standby GGHub, follow the steps to
create the TNS alias definitions:

[opc@gghub_prim1 ~]$ sudo su - oracle
[oracle@gghub_prim1 ~]$

cat > /u01/app/oracle/goldengate/network/admin/tnsnames.ora <<EOF

Source
<source_cbd_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)(FAILOVER=on)
(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)

Chapter 22
Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub

22-57

(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)
(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<source_cbd_service_name>.goldengate.com)))

<source_pdb_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)
(FAILOVER=on)(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)
(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)
(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<source_pdb_service_name>.goldengate.com)))

Target
<target_pdb_service_name>=
 (DESCRIPTION =
 (CONNECT_TIMEOUT=3)(RETRY_COUNT=2)(LOAD_BALANCE=off)
(FAILOVER=on)(RECV_TIMEOUT=30)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<primary_scan_name>)
(PORT=1521)))
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST=<standby_scan_name>)
(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME =
<target_pdb_service_name>.goldengate.com)))

EOF

[oracle@gghub_prim1 ~]$ scp /u01/app/oracle/goldengate/network/admin/
*.ora
 gghub_prim2:/u01/app/oracle/goldengate/network/admin

Note:

When the tnsnames.ora or sqlnet.ora (located in the TNS_ADMIN directory
for the Oracle GoldenGate deployment) are modified, the deployment needs
to be restarted to pick up the changes.

Task 4: Configure the Oracle GoldenGate Environment
Perform the following steps to complete this task:

• Step 4.1 - Create the Database Credentials

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-58

• Step 4.2 - Create the Autostart Profile

• Step 4.3 - Configure Oracle GoldenGate Processes

Step 4.1 - Create the Database Credentials

With the Oracle GoldenGate deployment created, use the Oracle GoldenGate Administration
Service home page to create the database credentials using the above TNS alias names.

As the oggadmin user, create the database credentials:

1. Log in into the Administration Service: https://gghub.example.com:443/
deployment_name/adminsrvr

2. Click Configuration under Administration Service.

3. Click the plus (+) to Add Credentials under the Database tab.

4. Add the required information for the source and target CDB and PDB:

Data Center Container Domain Alias User ID

DC 1 CDB GoldenGate DC1_CDB c##ggadmin@<tn
s_alias>

DC 1 PDB GoldenGate DC1_PDB ggadmin@<tns_al
ias>

DC 2 CDB GoldenGate DC2_CDB c##ggadmin@<tn
s_alias>

DC 2 PDB GoldenGate DC2_PDB ggadmin@<tns_al
ias>

Step 4.2 - Create the Autostart Profile

Create a new profile to automatically start the Extract and Replicat processes when the
Oracle GoldenGate Administration Server is started. Then, restart if any Extract or Replicat
processes are abandoned. With GoldenGate Microservices, auto start and restart is
managed by Profiles.

Using the Oracle GoldenGate Administration Server GUI, create a new profile that can be
assigned to each of the Oracle GoldenGate processes:

1. Log in to the Administration Service on the Source and Target GoldenGate.

2. Click on Profile under Administration Service.

3. Click the plus (+) sign next to Profiles on the Managed Process Settings home page.

4. Enter the details as follows:

• Profile Name: Start_Default

• Description: Default auto-start/restart profile

• Default Profile: Yes

• Auto Start: Yes

• Auto Start Options

– Startup Delay: 1 min

– Auto Restart: Yes

• Auto Restart Options

– Max Retries: 5

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-59

– Retry Delay: 30 sec

– Retries Window: 30 min

– Restart on Failure only: Yes

– Disable Task After Retries Exhausted: Yes

5. Click Submit

Step 4.3 - Configure Oracle GoldenGate Processes

When creating Extract, Distribution Paths, and Replicat processes with Oracle
GoldenGate Microservices Architecture, all files that need to be shared between the
GGHub nodes are already shared with the deployment files stored on a shared file
system.

Below are essential configuration details recommended for running Oracle
GoldenGate Microservices on GGHub for Extract, Distribution Paths, and Replicat
processes.

Perform the following sub-steps to complete this step:

• Step 4.3.1 - Extract Configuration

• Step 4.3.2 - Replicat Configuration

• Step 4.3.3 - Distribution Path Configuration

• Step 4.3.4 - Set up a Heartbeat Table for Monitoring Lag Times

Step 4.3.1 - Extract Configuration

When creating an Extract using the Oracle GoldenGate Administration Service GUI
interface, leave the Trail SubDirectory parameter blank so that the trail files are
automatically created in the deployment directories stored on the shared file system.
The default location for trail files is the /<deployment directory>/var/lib/data
directory.

Note:

To capture from a multitenant database, you must use an Extract configured
at the root level using a c## account. To apply data into a multitenant
database, a separate Replicat is needed for each PDB because a Replicat
connects at the PDB level and doesn't have access to objects outside of that
PDB.

For GoldenGate Extract processes using Oracle Data Guard configurations that are
using redo transport Maximum Performance or Maximum Availability modes, the
following parameter must be added to the Extract process parameter file on the
primary system to avoid losing transactions and resulting in logical data
inconsistencies:

TRANLOGOPTIONS HANDLEDLFAILOVER

This parameter prevents Extract from extracting transaction data from redo that has
not yet been applied to the Data Guard standby database. This is crucial to preventing

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-60

Oracle GoldenGate from replicating data to a target database that does not exist in the
source standby database.

If this parameter is not specified, after a data loss failover of the source database it is
possible to have data in the target database that is not present in the source database,
leading to logical data inconsistencies.

By default, after 60 seconds, a warning message will be written to the Extract report file when
the Extract is stalled due to not being able to query the standby database applied SCN
information. For example:

WARNING OGG-02721 Extract has been waiting for the standby database for 60
seconds.

The amount of time before the warning message is written to Extract report file can be
adjusted using the Extract parameter TRANLOGOPTIONS HANDLEDLFAILOVER STANDBY_WARNING.

If the Extract is still not able to query the standby database applied SCN information after 30
minutes (default), the Extract process will abend, logging the following message in the Extract
report file:

ERROR OGG-02722 Extract abended waiting for 1,800 seconds for the
 standby database to be accessible or caught up with the primary database.

If the standby database becomes available before the default 30 timeout expires, Extract
continues mining data from the source database and reports the following message to the
report file:

INFO OGG-02723 Extract resumed from stalled state and started
 processing LCRs.

The timeout value of 30 minutes can be adjusted using the Extract parameter
TRANLOGOPTIONS HANDLEDLFAILOVER STANDBY_ABEND <value>, where value is the number of
seconds the standby is unavailable before abending.

If the standby database will be unavailable for a prolonged duration, such as during a
planned maintenance outage, and you wish Extract to continue extracting data from the
primary database, remove the TRANLOGOPTIONS HANDLEDLFAILOVER parameter from the
Extract parameter file and restart Extract (see example below in Figures 4 to 6). Remember
to set the parameter after the standby becomes available.

Note:

If extracting from a primary database continues while the standby is unavailable, a
data loss failover could result after the standby becomes available, and not all the
primary redo was applied before a failover. The GoldenGate target database will
contain data that does not exist in the source database.

If the Extract process has been assigned an auto restart profile, as documented in On-
Premises: Oracle GoldenGate Microservices Architecture with Oracle Real Application
Clusters Configuration Best Practices, after a Data Guard role transition, the Extract process
will automatically restart. Extract will continue to mine redo data from the new primary

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-61

database, ignoring the current state of the new standby database, until a default 5-
minute timeout period expires. After this time, if the standby is not available Extract will
abend with the following errors:

INFO OGG-25053 Timeout waiting for 300 seconds for standby database
 reinstatement. Now enforcing HANDLEDLFAILOVER.
ERROR OGG-06219 Unable to extract data from the Logmining server
OGG$CAP_XXXXX.
ERROR OGG-02078 Extract encountered a fatal error in a processing
thread and is
 abending.

Extract will continue to automatically restart, based on the GoldenGate Microservices
auto restart profile, and failing due to reaching the HANDLEDLFAILOVER timeout, until the
number retries is reached or the new standby database becomes available.

During the timeout period following a database role transition, the HANDLEDLFAILOVER
parameter is automatically suspended, so data will be replicated to the Oracle
GoldenGate replica database without consideration of the source standby database
not being kept up to date. The timeout period for the standby database to start up
before Extract abends can be adjusted using the Extract parameter TRANLOGOPTIONS
DLFAILOVER_TIMEOUT.

It is recommended that you leave DLFAILOVER_TIMEOUT at the default of 5 minutes, to
allow the old primary to convert to a standby. If the new standby database will be
unavailable for an extended period of time or completely gone, then in order for Extract
to start and remain running, you must remove the HANDLEDLFAILOVER parameter from
the Extract parameter file. After removing the parameter, Extract no longer waits until
redo has been applied to the standby database before extracting the data.

During the time it takes for the standby database to come back online and apply all the
redo from the primary database, there will be data divergence between it and the
Oracle GoldenGate replica database. This will be resolved once the standby database
is up to date. At which point, add the HANDLEDLFAILOVER parameter back into the
integrated Extract process parameter file, and then stop and restart the Extract.

When Oracle Data Guard Fast-Start Failover is disabled, such that the broker can
automatically fail over to a standby database in the event of loss of the primary
database, you must specify an additional integrated Extract parameter shown below.

TRANLOGOPTIONS FAILOVERTARGETDESTID n

This parameter identifies which standby database the Oracle GoldenGate Extract
process must remain behind, with regards to not extracting redo data that has not yet
been applied to the standby database.

If Oracle Data Guard Fast-Start Failover is disabled, and you don’t specify the
additional integrated Extract parameter FAILOVERTARGETDESTID, the extract will abend
with the following errors:

ERROR OGG-06219 Unable to extract data from the Logmining server
OGG$CAP_XXXXX.
ERROR OGG-02078 Extract encountered a fatal error in a processing

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-62

thread and is
 abending.

To determine the correct value for FAILOVERTARGETDESTID, use the LOG_ARCHIVE_DEST_N
parameter from the GoldenGate source database which is used for sending redo to the
source standby database. For example, if LOG_ARCHIVE_DEST_2 points to the standby
database, then use a value of 2.

As the oracle user on the primary database system, run the following command:

[opc@exapri-node1 ~]$ sudo su - oracle
[oracle@exapri-node1 ~]$ source <dbName>.env
[oracle@exapri-node1 ~]$ sqlplus / as sysdba

SQL> show parameters log_archive_dest

NAME TYPE VALUE
--------------------- -----------

log_archive_dest_1 string location=USE_DB_RECOVERY_FILE_DEST,
 valid_for=(ALL_LOGFILES, ALL_ROLES)

log_archive_dest_2 string service="<dbName>", SYNC AFFIRM delay=0
 optional compression=disable max_failure=0
reopen=300
 db_unique_name="<dbName>" net_timeout=30,
 valid_for=(online_logfile,all_roles)

In this example, the Extract parameter would be set to the following:

TRANLOGOPTIONS FAILOVERTARGETDESTID 2

Create the Extract:

1. Log in to the Oracle GoldenGate Administration Server

2. Click in Overview under Administration Service

3. Click the plus (+) button to Add Extract

4. Select Integrated Extract

5. Add the required information as follows:

• Process Name: EXT_1

• Description: Extract for DC 1 CDB

• Intent: Unidirectional

• Begin: Now

• Trail Name: aa

• Credential Domain: GoldenGate

• Credential Alias: DC1_CDB

• Register to PDBs: PDB Name

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-63

6. Click Next

7. If using CDB Root Capture from PDB, add the SOURCECATALOG parameter with the
PDB Name

8. For Oracle Data Guard configurations, add the TRANLOGOPTIONS parameter, if
required, as explained earlier in this step:

• Add the parameter TRANLOGOPTIONS HANDLEDLFAILOVER
• Add the parameter TRANLOGOPTIONS FAILOVERTARGETDESTID

<log_archive_dest_numer> only if Oracle Data Guard Fast-Start Failover
(FSFO) is NOT in use.

9. Click Create and Run

Step 4.3.2 - Replicat Configuration

Oracle generally recommends using integrated parallel Replicat which offers better
apply performance for most workloads when the GGHub is in the same data center as
the target Oracle GoldenGate database.

The best apply performance can be achieved when the network latency between the
GGHub and the target database is as low as possible. The following configuration is
recommended for the remote Replicat running on the Oracle GGHub.

• APPLY_PARALLELISM – Disables automatic parallelism, instead of using
MAX_APPLY_PARALLELISM and MIN_APPLY_PARALLELISM, and allows the highest
amount of concurrency to the target database. It is recommended to set this as
high as possible based on available CPU of the hub and the target database
server.

• MAP_PARALLELISM – Should be set with a value of 2 to 5. With a larger number of
appliers, increasing the Mappers increases the ability to hand work to the appliers.

• BATCHSQL – applies DML using array processing which reduces the amount
network overheads with a higher latency network. Be aware that if there are many
data conflicts, BATCHSQL results in reduced performance, as rollback of the batch
operations followed by a re-read from trail file to apply in non-batch mode.

Step 4.3.2.1 - Create the Checkpoint Table

The checkpoint table is a required component for Oracle GoldenGate Replicat
processes. After connecting to the database from the Credentials page of the
Administration Service, you can create the checkpoint table.

Create the checkpoint table in the target deployment:

1. Log in to the Oracle GoldenGate Administration Server

2. Click in Configuration under Administration Service.

3. Click on Database and Connect to the target database or PDB:

4. Click the plus (+) sign next to Checkpoint. The Add Checkpoint page is displayed.

5. Enter the details as follows:

• Checkpoint Table: ggadmin.chkp_table

6. Click Submit

Refer to Oracle GoldenGate with Oracle Database Guide for more information on the
checkpoint table.

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-64

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-apply.html#GUID-3DFBE2BE-20C5-48AA-B96A-7697126D77FE

Step 4.3.2.2 - Add a Replicat

After you’ve set up your database connections and verified them, you can add a Replicat for
the deployment by following these steps:

1. Log in to the Oracle GoldenGate Administration Server

2. Click theplus (+) sign next to Replicats on the Administration Service home page. The
Add Replicat page is displayed.

3. Select a Replicat type and click Next.

4. Enter the details as follows:

• Process Name: REP_1

• Description: Replicat for DC 2 PDB

• Intent: Unidirectional

• Credential Domain: GoldenGate

• Credential Alias: DC2_PDB

• Source: Trail

• Trail Name: aa

• Begin: Position in Log

• Checkpoint Table: "GGADMIN"."CHKP_TABLE"

5. Click Next

6. From the Action Menu, click Start.

Step 4.3.3 - Distribution Path Configuration

Distribution paths are only necessary when trail files need to be sent to an additional Oracle
GoldenGate Hub in a different, or even the same, data center as described in the following
figure.

Figure 22-4 Oracle GoldenGate Distribution Path

Region 2Region 1

Source Deployment Target Deployment

Target
Database

Replicat

Trail
Files

Source
Database

Trail
Files

Extract

Distribution
Path

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-65

When using Oracle GoldenGate Distribution paths with the NGINX Reverse Proxy,
additional steps must be carried out to ensure the path client and server certificates
are configured.

More instructions about creating distribution paths are available in Using Oracle
GoldenGate Microservices Architecture. A step-by-step example is in the following
video, “Connect an on-premises Oracle GoldenGate to OCI GoldenGate using
NGINX,” to correctly configure the certificates.

Here are the steps performed in this sub-step:

• Step 4.3.3.1 - Download the Target Server’s Root Certificate, and then upload it to
the source Oracle GoldenGate

• Step 4.3.3.2 - Create a user in the Target Deployment for the Source Oracle
GoldenGate to use

• Step 4.3.3.3 - Create a Credential in the Source Oracle GoldenGate

• Step 4.3.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the
Target Deployment

• Step 4.3.3.5 - Distribution Path Recommendations

Step 4.3.3.1 - Download the Target Server’s Root Certificate, and then upload it
to the source Oracle GoldenGate

Download the target deployment server’s root certificate and add the CA certificate to
the source deployment Service Manager.

1. Log in to the Administration Service on the Target GoldenGate deployment.

2. Follow “Step 2 - Download the target server’s root certificate” in the video
“Connect an on-premises Oracle GoldenGate to OCI GoldenGate using NGINX.”

Step 4.3.3.2 - Create a user in the Target Deployment for the Source Oracle
GoldenGate to use

Create a user in the target deployment for the distribution path to connect to:

1. Log in to the Administration Service on the Target GoldenGate.

2. Click on Administrator under Administration Service.

3. Click the plus (+) sign next to Users.

4. Enter the details as follows:

• Username: ggnet

• Role: Operator

• Type: Password

5. Click Submit

Step 4.3.3.3 - Create a Credential in the Source Oracle GoldenGate Deployment

Create a credential in the source deployment connecting the target deployment with
the user created in the previous step. For example, a domain of OP2C and an alias of
WSSNET.

1. Log in to the Administration Service on the Source Oracle GoldenGate.

2. Click in Configuration under Administration Service.

3. Click the plus (+) sign next to Credentials on the Database home page.

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-66

https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/working-paths.html#GUID-7F9F7045-AA27-4007-9852-BC69C2F301A1.
https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/working-paths.html#GUID-7F9F7045-AA27-4007-9852-BC69C2F301A1.
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

4. Enter the details as follows:

• Credential Domain: OP2C

• Credential Alias: wssnet

• User ID: ggnet

5. Click Submit

Step 4.3.3.4 - Create a Distribution Path on the Source Oracle GoldenGate to the Target
Deployment

A path is created to send trail files from the Distribution Server to the Receiver Server. You
can create a path from the Distribution Service. To add a path for the source deployment:

1. Log in to the Distribution Service on the Source Oracle Goldengate.

2. Click the plus (+) sign next to Path on the Distribution Service home page. The Add Path
page is displayed.

3. Enter the details as follows:

Option Description

Path Name Select a name for the path.

Source: Trail Name Select the Extract name from the drop-down list,
which populates the trail name automatically. If it
doesn’t, enter the trail name you provided while
adding the Extract.

Generated Source URI Specify localhost for the server’s name; this
allows the distribution path to be started on any
of the Oracle RAC nodes.

Target Authentication Method Use ‘UserID Alias’

Target Set the Target transfer protocol to wss (secure
web socket). Set the Target Host to the target
hostname/VIP that will be used for connecting to
the target system along with the Port Number
that NGINX was configured with (default is 443).

Domain Set the Domain to the credential domain
created above, for example, OP2C.

Alias The Alias is set to the credential alias wssnet.

Auto Restart Options Set the distribution path to restart when the
Distribution Server starts automatically. This is
required, so that manual intervention is not
required after a RAC node relocation of the
Distribution Server. It is recommended to set the
number of Retries to 10. Set the Delay, which is
the time in minutes to pause between restart
attempts, to 1.

4. Click Create Path.

5. From the Action Menu, click Start.

Step 4.3.3.5 - Distribution Path Recommendations

If there are any GoldenGate distribution paths sending trail files to the GGHub, after a role
transition of the GGHub, the paths will need to be altered to send the trail files to the new
primary GGHub system. This can be done using the following example REST call:

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-67

curl -s -K src_access.cfg
 https://Source_VIP/Source_Deployment_Name/distsrvr/services/v2/sources/
Distribution_Path_Name
 -X PATCH --data '{"target":{"uri":"ogg://Target_VIP:9103/services/v2/targets?
trail=dd"}}' | python
 -m json.tool

You can automate changing the source distribution path target address after a hub role
transition using the sample shell script shown in Managing Planned and Unplanned
Outages for Oracle GoldenGate Hub which is called by the acfs_standby CRS action
script when a file system switchover/failover occurs.

The source distribution paths must be configured to restart automatically after it has
failed so that if the target GoldenGate deployment relocates between Oracle RAC
nodes or to the standby hub, the distribution paths will restart. If a distribution path was
created without automatic restart enabled, it can be enabled through the distribution
server web UI or a REST call. For example:

$ curl -s -K
 access.cfg https://<Source VIP>/<Source Deployment Name>/distsrvr/
services/v2/sources/ggs_to_gghub
 -X PATCH --data '{"options":{"autoRestart":{"delay": 2,"retries":
10}}}' | python -m json.tool

To check the current configuration of a distribution path, use the following example:

$ curl -s -K
 access.cfg https://<Source VIP>/<Source Deployment Name>/distsrvr/
services/v2/sources/ggs_to_gghub
 -X GET | python -m json.tool

Sample output:
"name": "scam_to_gghub",
 "options": {
 "autoRestart": {
 "delay": 2,
 "retries": 10
 },

Step 4.3.4 - Set up a Heartbeat Table for Monitoring Lag Times

Use the instructions in Steps to add Heartbeat Table in OCI GoldenGate to implement
the best practices for creating a heartbeat process that can be used to determine
where and when lag is developing between a source and target system.

This document guides you through the step-by-step process of creating the necessary
tables and added table mapping statements needed to keep track of processing times
between a source and target database. Once the information is added into the data
flow, the information is then stored into a target tables that can be analyzed to
determine when and when the lag is introduced between the source and target
systems.

Chapter 22
Task 4: Configure the Oracle GoldenGate Environment

22-68

https://blogs.oracle.com/dataintegration/post/steps-to-add-heartbeat-table-in-oci-goldengate

23
On-Premises: Oracle GoldenGate
Microservices Architecture with Oracle Real
Application Clusters Configuration Best
Practices

Use these best practices for configuring Oracle GoldenGate Microservices Architecture for
on-premises systems, including Oracle Exadata, to work with Oracle Real Application
Clusters (RAC), Oracle Clusterware, and Oracle Database File System (DBFS) or Oracle
Advanced Cluster File System (ACFS).

The target Oracle RAC system that hosts Oracle GoldenGate Microservices Architecture can
act as the source database, as the target database, or in some cases as both source and
target databases, for Oracle GoldenGate operations.

See the following topics:

• Summary of Recommendations when Deploying Oracle GoldenGate on Oracle RAC

• Task 1: Configure the Oracle Database for Oracle GoldenGate

• Task 2: Create the Database Replication Administrator User

• Task 3: Create the Database Services

• Task 4: Set Up a File System on Oracle RAC

• Task 5: Install Oracle GoldenGate

• Task 6: Create the Oracle GoldenGate Deployment

• Task 7: Oracle Clusterware Configuration

• Task 8: Configure NGINX Reverse Proxy

• Task 9: Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

• Task 10: Configure Oracle GoldenGate Processes

• Task 11: Configure Autostart of Extract and Replicat Processes

Summary of Recommendations when Deploying Oracle
GoldenGate on Oracle RAC

When configuring Oracle GoldenGate in an Oracle RAC environment, follow these
recommendations.

• Install the latest version of Oracle GoldenGate software locally on each Oracle RAC
node, making sure that the software location is the same on all Oracle RAC nodes.

• Use the Oracle Database File System (DBFS) or Oracle Advanced Cluster File System
(ACFS) for the file system where the Oracle GoldenGate files are stored (trail,
checkpoint, temporary, report, and parameter files).

23-1

• Use the same DBFS or ACFS mount point on all of the Oracle RAC nodes that
may run Oracle GoldenGate.

• When creating the GoldenGate deployment, specify either DBFS or ACFS for the
deployment location.

• Install Grid Infrastructure agent (XAG) version 10 or later on all Oracle RAC nodes
that will run Oracle GoldenGate.

• Configure the GoldenGate processes to automatically start and restart when the
deployment is started.

Task 1: Configure the Oracle Database for Oracle
GoldenGate

The source and target Oracle GoldenGate databases should be configured using the
following recommendations.

• Enable Oracle GoldenGate replication by setting the database initialization
parameter ENABLE_GOLDENGATE_REPLICATION=TRUE.

• Run the Oracle GoldenGate source database in ARCHIVELOG mode.

• Enable FORCE LOGGING mode in the Oracle GoldenGate source database.

• Enable minimal supplemental logging in the source database. Additionally, add
schema or table level logging for all replicated objects.

• If the Replicat process will be used, configure the streams pool in the System
Global Area (SGA) on the source database using the STREAMS_POOL_SIZE
initialization parameter.

Note that the streams pool is only needed on the target database if integrated
Replicat will be used.

Use the following equation to determine the value for STREAMS_POOL_SIZE:

STREAMS_POOL_SIZE = (#Extracts and #Integrated Replicats * 1GB) * 1.25

For example, in a database with 2 Extracts and 2 integrated Replicats:

STREAMS_POOL_SIZE = 4GB * 1.25 = 5GB

When adding Extract or Replicat processes, it is important to recalculate and
configure the new streams pool size requirement.

For more information about preparing the database for Oracle GoldenGate, see
Preparing the Database for Oracle GoldenGate.

Task 2: Create the Database Replication Administrator User
The source and target Oracle databases need a GoldenGate Administrator user with
appropriate privileges assigned.

For single tenant (non-CDB architecture) databases, see Establishing Oracle
GoldenGate Credentials

For a multitenant source database, GoldenGate Extract must be configured to connect
to a user in the root container database, using a c## account. For a multitenant target

Chapter 23
Task 1: Configure the Oracle Database for Oracle GoldenGate

23-2

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/preparing-database-oracle-goldengate.html#GUID-E06838BD-0933-4027-8A6C-D4A17BDF4E41
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-F9EBB989-E22F-4355-BE60-40F957B8515E
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/establishing-oracle-goldengate-credentials.html#GUID-F9EBB989-E22F-4355-BE60-40F957B8515E

database, a separate GoldenGate administrator user is needed for each PDB that a Replicat
applies data to.

For more details about creating a GoldenGate Administrator in an Oracle Multitenant
Database, see Configuring Oracle GoldenGate in a Multitenant Container Database

Task 3: Create the Database Services
A database service is required so that the Oracle Grid Infrastructure Agent automatically
starts the GoldenGate deployment when the database is opened. When DBFS is used for the
shared file system, the database service is also used to mount DBFS to the correct Oracle
RAC instance.

When using a source multitenant database, a separate service is required for the root
container database (CDB) and the pluggable database (PDB) that contains the schema being
replicated. For a target multitenant database, a single service is required for the PDB.

Create the service using the following command, as the oracle user.

$ srvctl add service -db db_name -service service_name
 -preferred instance_1 -available instance_2, instance_3 etc.
 -pdb PDB_name

For example:

$ srvctl add service -db ggdb -service oggserv_pdb -preferred ggdb1
 -available ggdb2 –pdb GGPDB01

It you are not using Oracle Multitenant Database, omit the -pdb parameter.

Task 4: Set Up a File System on Oracle RAC
Oracle GoldenGate Microservices Architecture is designed with a simplified installation and
deployment directory structure. The installation directory should be placed on local storage
on each Oracle RAC node to provide minimized downtime during software patching.

The deployment directory, which is created during deployment creation using the Oracle
GoldenGate Configuration Assistant (oggca.sh), must be placed on a shared file system. The
deployment directory contains configuration, security, log, parameter, trail, and checkpoint
files.

Placing the deployment in DBFS or ACFS provides the best recovery and failover capabilities
in the event of a system failure. Ensuring the availability of the checkpoint files cluster-wide is
essential so that after a failure occurs the GoldenGate processes can continue running from
their last known position.

If Oracle GoldenGate will be configured along with Oracle Data Guard, the recommended file
system is DBFS. DBFS is contained in the database protected by Data Guard, and can be
fully integrated with XAG. In the event of a Data Guard role transition, the file system can be
automatically mounted on the new primary server, followed by automated start-up of Oracle
GoldenGate. This is currently not possible with ACFS, because it is not part of the Oracle
Data Guard configuration.

Chapter 23
Task 3: Create the Database Services

23-3

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-multitenant-container-database-1.html#GUID-0B0CEB35-51C6-4319-BEE1-FA208FF4DE05

Follow the instructions in the appropriate section below to configure the file system for
either DBFS or ACFS.

Oracle Database File System (DBFS)

It is required that you create the DBFS tablespace inside the same database that the
Oracle GoldenGate processes are connected to. For example, if a GoldenGate
integrated Extract process is extracting from a database called GGDB, the DBFS
tablespace would be located in the same GGDB database.

Follow instructions in My Oracle Support note 869822.1 to install the required FUSE
libraries if they are not already installed.

Use the instructions in My Oracle Support note 1054431.1 to configure the database,
tablespace, database user, tnsnames.ora Oracle Net connection alias, and
permissions on source or target GoldenGate environments required for DBFS.

Note:

When using an Oracle Multitenant Database, the DBFS tablespace MUST be
created in a Pluggable Database (PDB). It is recommended that you use the
same PDB that the GoldenGate Extract or Replicat processes are
connecting to, allowing DBFS to use the same database service, created
above in Task 2, for its database dependency.

When you create a file system for storing the GoldenGate deployment files, it is
recommended that you allocate enough trail file disk space to permit storage of up to
12 hours of trail files. Doing this provides sufficient space for trail file generation should
a problem occur with the target environment that prevents it from receiving new trail
files. The amount of space needed for 12 hours can only be determined by testing trail
file generation rates with real production data.

Example DBFS creation:

$ cd $ORACLE_HOME/rdbms/admin
$ sqlplus dbfs_user/dbfs_password@database_tns_alias
SQL> start dbfs_create_filesystem dbfs_gg_tbs goldengate

Follow the instructions in My Oracle Support note 1054431.1 to configure the newly
created DBFS file system so that the DBFS instance and mount point resources are
automatically started by Cluster Ready Services (CRS) after a node failure, with the
following DBFS configuration and script file modifications.

1. Change the mount-dbfs.conf parameters to reflect your database environment.

Modify the MOUNT_OPTIONS parameter to the following:

MOUNT_OPTIONS=allow_other,direct_io,failover,nolock

The failover option forces all file writes to be committed to the DBFS database in
an IMMEDIATE WAIT mode. This prevents data getting lost when it has been written
into the dbfs_client cache but not yet written to the database at the time of a
database or node failure.

Chapter 23
Task 4: Set Up a File System on Oracle RAC

23-4

https://support.oracle.com/rs?type=doc&id=869822.1
https://support.oracle.com/rs?type=doc&id=1054431.1
https://support.oracle.com/rs?type=doc&id=1054431.1

The nolock mount option is required if you are using Oracle Database 18c or a later
release, due to a change in the DBFS file locking which can cause issues for GoldenGate
processes after an Oracle RAC node failure when a file is currently locked.

If you are using a dbfs_client from Oracle Database 12c Release 2 (12.2), make sure
you have applied the latest release update that includes the fix for bug 27056711. Once
the fix has been applied, the MOUNT_OPTIONS should also include the nolock option.

2. Modify the mount-dbfs.sh script to force unmounting of DBFS when the CRS resource is
stopped.

Change two occurrences of:

$FUSERMOUNT -u $MOUNT_POINT
To the following:

$FUSERMOUNT -uz $MOUNT_POINT
3. When registering the resource with Oracle Clusterware, be sure to create it as a

cluster_resource instead of a local_resource, as specified in the My Oracle Support
note.

The reason for using cluster_resource is so that the file system can only be mounted
on a single node at a time, preventing mounting of DBFS from concurrent nodes, which
creates the potential for concurrent file writes, causing file corruption problems.

Make sure to use the database service name created in a previous step for the DBFS
service dependency.

For example:

DBNAME=ggdb
DEPNAME=ora.$DBNAME.oggserv.svc

crsctl add resource $RESNAME \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=$ACTION_SCRIPT, \
 CHECK_INTERVAL=30,RESTART_ATTEMPTS=10, \
START_DEPENDENCIES='hard($DEPNAME)pullup($DEPNAME)',\
 STOP_DEPENDENCIES='hard($DEPNAME)',\
 SCRIPT_TIMEOUT=300"

Once the DBFS resource has been created, the file system should be mounted and
tested.

$ crsctl start res dbfs_mount
$ crsctl stat res dbfs_mount

After the file system is mounted, create the directory for storing the GoldenGate files.

$ cd /mnt/dbfs/goldengate
$ mkdir deployments

Chapter 23
Task 4: Set Up a File System on Oracle RAC

23-5

Note:

Leave the shared file system mounted. It is required for creating the
GoldenGate deployment in a later step.

Oracle Advanced Cluster File System (ACFS)

Oracle ACFS is an alternative to DBFS for the shared GoldenGate files in an Oracle
RAC configuration.

Refer to My Oracle Support note 1929629.1 for more information about ACFS
configuration requirements for Oracle Exadata Database Machine.

Create a single ACFS file system for storing the Oracle deployment files.

It is recommended that you allocate enough trail file disk space to permit storage of up
to 12 hours of trail files. Doing this provides sufficient space for trail file generation
should a problem occur with the target environment that prevents it from receiving new
trail files. The amount of space needed for 12 hours can only be determined by testing
trail file generation rates with real production data.

1. Create the file system using ASMCMD as the Oracle ASM administrator user.

ASMCMD [+] > volcreate -G datac1 -s 1200G ACFS_GG

Note:

Modify the file system size according to the determined size
requirements.

ASMCMD> volinfo -G datac1 acfs_gg

Diskgroup Name: DATAC1
 Volume Name: ACFS_GG
 Volume Device: /dev/asm/acfs_gg-151
 State: ENABLED
 Size (MB): 1228800
 Resize Unit (MB): 64
 Redundancy: MIRROR
 Stripe Columns: 8
 Stripe Width (K): 1024
 Usage:
 Mountpath:

Make the file system with the following mkfs command.

$ /sbin/mkfs -t acfs /dev/asm/acfs-gg-151

2. Create the CRS resource for the newly created ACFS file system, if not already
created.

Chapter 23
Task 4: Set Up a File System on Oracle RAC

23-6

https://support.oracle.com/rs?type=doc&id=1929629.1

Check to see if the file system resource was already created.

$ srvctl status filesystem -volume ACFS_GG -diskgroup DATAC1

ACFS file system /mnt/acfs_gg is mounted on nodes oggadm07, oggadm08

If not already created, create the ACFS mount point on all of the Oracle RAC nodes.

mkdir -p /mnt/acfs_gg

Create the file system resource as the root user. Due to the implementation of distributed
file locking on ACFS, unlike DBFS, it is acceptable to mount ACFS on more than one
RAC node at any one time.

Create the ACFS resource using srvctl from the Oracle Grid Infrastructure
ORACLE_HOME.

srvctl add filesystem -device /dev/asm/acfs_gg-151 -volume ACFS_GG
-diskgroup DATAC1 -path /mnt/acfs_gg -user oracle -autostart RESTORE

To verify the currently configured ACFS file systems, use the following command to view
the file system details.

$ srvctl config filesystem

Volume device: /dev/asm/acfs_gg-151
Diskgroup name: datac1
Volume name: ACFS_GG
Canonical volume device: /dev/asm/acfs_gg-151
Accelerator volume devices:
Mountpoint path: /mnt/acfs_gg
Mount point owner: oracle

Check the status of the ACFS resource and mount it.

$ srvctl status filesystem -volume ACFS_GG -diskgroup DATAC1

ACFS file system /mnt/acfs is not mounted

$ srvctl start filesystem -volume ACFS_GG -diskgroup DATAC1 –node
dc1north01

The CRS resource that is created is named using the format
ora.diskgroup_name.volume_name.acfs. Using the above file system example, the CRS
resource is called ora.datac1.acfs_gg.acfs.

To see all ACFS file system CRS resources that currently exist, use the following
command.

$ crsctl stat res -w "((TYPE = ora.acfs.type) OR (TYPE =
ora.acfs_cluster.type))"

NAME=ora.datac1.acfs_gg.acfs

Chapter 23
Task 4: Set Up a File System on Oracle RAC

23-7

TYPE=ora.acfs.type
TARGET=ONLINE , OFFLINE
STATE=ONLINE on dc1north01, OFFLINE

3. Create a GoldenGate deployment directory on ACFS.

After the file system is mounted, create the directory for storing the GoldenGate
deployments.

$ cd /mnt/acfs_gg
$ mkdir deployments

Note:

Leave the shared file system mounted. It is required for creating the
GoldenGate deployment in a later Task.

Task 5: Install Oracle GoldenGate
Download and install the Oracle GoldenGate 21c Microservices software, or later
release.

Download the software at https://www.oracle.com/middleware/technologies/
goldengate-downloads.html.

Install the Oracle GoldenGate software locally on all nodes in the Oracle RAC
configuration that will be part of the GoldenGate configuration. Make sure the
installation directory is identical on all nodes.

Follow the generic installation instructions detailed in Oracle GoldenGate
Microservices Documentation.

Task 6: Create the Oracle GoldenGate Deployment
Once the Oracle GoldenGate software has been installed, the next step is to create a
deployment using the Oracle GoldenGate Configuration Assistant (oggca).

There are two limitations that currently exist with Oracle GoldenGate and XAG:

1. A Service Manager that is registered with XAG can only manage a single
deployment. If multiple deployments are required, each deployment must use their
own Service Manager. Oracle GoldenGate release 21c simplifies this requirement
because it uses a single deployment to support Extract and Replicat processes
connecting to different versions of the Oracle Database.

2. Each Service Manager registered with XAG must belong to separate OGG_HOME
software installation directories. Instead of installing Oracle GoldenGate multiple
times, the recommended approach is to install Oracle GoldenGate one time, and
then create a symbolic link for each Service Manager OGG_HOME.

Chapter 23
Task 5: Install Oracle GoldenGate

23-8

https://www.oracle.com/middleware/technologies/goldengate-downloads.html
https://www.oracle.com/middleware/technologies/goldengate-downloads.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/install1.html#GUID-50852868-55A2-4E10-8362-D69B7F62B5D8
https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/install1.html#GUID-50852868-55A2-4E10-8362-D69B7F62B5D8

For example:

$ echo $OGG_HOME
/u01/oracle/goldengate/gg21c_MS

$ ln –s /u01/oracle/goldengate/gg21c_MS /u01/oracle/goldengate/
gg21c_MS_ggnorth

$ export OGG_HOME=/u01/oracle/goldengate/gg21c_MS_ggnorth
$ $OGG_HOME/bin/oggca.sh

The symbolic link and OGG_HOME environment variable must be configured before running the
Oracle GoldenGate Configuration Assistant on all Oracle RAC nodes.

Recommendations for creating the GoldenGate deployment in the Oracle GoldenGate
Configuration Assistant are as follows.

1. In Service Manager Options, specify the following for the creation of a new Service
Manager.

a. In the Service Manager Details pane, select Create New Service Manager.

b. Enter the Service Manager Deployment Home location on the shared DBFS or
ACFS file system.

c. Select to Integrate with XAG.

d. In the Service Manager Connection Details pane, specify localhost in the Listening
hostname/address field.

Using localhost allows the deployment to be started on all of the Oracle RAC nodes
without the need for a Virtual IP address (VIP).

e. Enter the port number in Listening port.

2. In Deployment Directories, specify the Deployment home directory on the shared DBFS
or ACFS file system.

3. In Environment Variables, specify a correct TNS_ADMIN directory.

Starting with Oracle GoldenGate release 21.3, a database ORACLE_HOME is no longer
required because the required database libraries are installed as part of the Oracle
GoldenGate installation. It is recommended that you use TNS_ADMIN directory outside of
any existing ORACLE_HOME directories.

4. In Security Options, do not select SSL/TLS Security.

External access to the Oracle GoldenGate Microservices server is achieved by using
NGINX Reverse Proxy SSL-termination. Secure access and communication to the
GoldenGate deployments will be exclusively through the SSL port 443. Internal
connectivity within the same local host between NGINX and GoldenGate does not require
SSL.

5. In Port Settings, if the Management Pack for Oracle GoldenGate has been licensed,
select Enable Monitoring to use the performance metric server using either Berkeley
Database (BDB) or Lightening Memory Database (LMDB).

For both BDB and LMDB Metrics Service DataStore types, set the Metrics Service
DataStore home directory to a local directory that exists on all Oracle RAC nodes. For
example: /u01/oracle/goldengate/datastores/deployment name

Chapter 23
Task 6: Create the Oracle GoldenGate Deployment

23-9

6. Continue through the Oracle GoldenGate Configuration Assistant until the
deployment is created.

7. After the deployment has been created, if you are using DBFS for the shared file
system and the database version is a release earlier than Oracle Database
Release 21c (21.3), run the following commands to move the Oracle GoldenGate
deployment temp directory from DBFS to local storage.

On the first node:

$ cd <DBFS GoldenGate deployment home directory/var
$ mkdir -p local_storage_directory/deployment_name
$ mv temp local_storage_directory/deployment_name
$ ln -s local_storage_directory/deployment_name/temp temp

On all other nodes:

$ mkdir local_storage_directory/deployment_name/temp

First node example:

$ cd /mnt/dbfs/goldengate/deployments/ggnorth/var
$ mkdir –p /u01/oracle/goldengate/deployments/ggnorth
$ mv temp /u01/oracle/goldengate/deployments/ggnorth
$ ln -s /u01/oracle/goldengate/deployments/ggnorth/temp temp

On all other nodes:

$ mkdir /u01/oracle/goldengate/deployments/ggnorth/temp

Task 7: Oracle Clusterware Configuration
The following procedure shows you how to configure Oracle Clusterware to manage
Oracle GoldenGate using the Oracle Grid Infrastructure Standalone Agent (XAG).

Using XAG automates the mounting of the shared file system (DBFS or ACFS) and
the stopping and starting of the GoldenGate deployment when relocating between
Oracle RAC nodes.

1. Install the Oracle Grid Infrastructure Standalone Agent.

It is recommended that you install the XAG software as a standalone agent
outside of the Grid Infrastructure ORACLE_HOME. This allows you to use the
latest XAG release available, and the software can be updated without impact to
the Grid Infrastructure.

When using Oracle GoldenGate Microservices Architecture you MUST use XAG
version 10.2 or later.

The latest agent software is available for download from the following location:

http://www.oracle.com/technetwork/database/database-technologies/clusterware/
downloads/xag-agents-downloads-3636484.html

Chapter 23
Task 7: Oracle Clusterware Configuration

23-10

http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html

Install the XAG standalone agent outside of the Oracle Grid Infrastructure home directory.
XAG must be installed in the same directory on all RAC nodes in the cluster where
Oracle GoldenGate is installed.

For example, as the Oracle Grid Infrastructure user, the default of oracle:

$./xagsetup.sh --install --directory /u01/oracle/xag --all_nodes

Add the location of the newly installed XAG software to the PATH variable so that the
location of agctl is known when the oracle user logs on to the machine.

$ cat .bashrc
export PATH=/u01/oracle/xag/bin:$PATH

Note:

It is important to make sure that the XAG bin directory is specified BEFORE the
Grid Infrastructure bin directory, to ensure the correct agctl binary is found. Set
this location in the oracle user environment to take effect at time of logging on,
such as in the .bashrc file when the Bash shell is in use.

2. Prepare for Application Virtual IP Address (VIP) Creation.

A dedicated application VIP is required to allow access to the GoldenGate Microservices
using the same host name, regardless of which Oracle RAC node is hosting the services.
An application VIP also ensures that the GoldenGate Distribution Server can
communicate with the Distribution Receiver running the current Oracle RAC node.

The VIP is a cluster resource that Oracle Clusterware manages. The VIP is assigned to a
cluster node and is automatically migrated to another node in the event of a node failure.

There are two pieces of information needed before creating the application VIP:

• The network number, which can be identified using the following command.

$ crsctl status resource -p -attr ADDRESS_TYPE,NAME,USR_ORA_SUBNET -w
"TYPE = ora.network.type" |sort | uniq

ADDRESS_TYPE=IPV4
NAME=ora.net1.network

USR_ORA_SUBNET=10.133.16.0

The net1 in NAME=ora.net1.network indicates that this is network 1, and it is of type
IPV4.

• The IP address for the new Application VIP, provided by your system administrator.
This IP address must be in the same subnet of the cluster environment as
determined above.

The VIP will be created in the next step, when configuring the Oracle Grid
Infrastructure Agent.

3. Configure Oracle Grid Infrastructure Agent (XAG).

Chapter 23
Task 7: Oracle Clusterware Configuration

23-11

Oracle GoldenGate must be registered with XAG so that the deployment is started
and stopped automatically when the database is started and the file system is
mounted.

To register Oracle GoldenGate Microservices Architecture with XAG use the
following command format.

agctl add goldengate instance_name
 --gg_home GoldenGate_Home
 --service_manager
 --config_home GoldenGate_SvcMgr_Config
 --var_home GoldenGate_SvcMgr_Var_Dir
 --port port_number
 --oracle_home $OGG_HOME/lib/instantclient
 --adminuser OGG_admin_user
 --user GG_instance_user
 --group GG_instance_group
 --network network_number
 --ip ip_address
 --vip_name vip_name
 --filesystems CRS_resource_name
 --db_services service_name
 --use_local_services
 --nodes node1, node2, ... ,nodeN

Where:

--gg_home specifies the location of the Oracle GoldenGate software. Specify the
OGG_HOME symbolic link for the OGG_HOME if registering multiple Service Managers
(see Task 6: Create the Oracle GoldenGate Deployment).

--service_manager indicates this is a GoldenGate Microservices instance.

--config_home specifies the GoldenGate Service Manager deployment
configuration home directory.

--var_home specifies the GoldenGate Service Manager deployment variable home
directory.

--port specifies the deployment Service Manager port number.

--oracle_home specifies the location of the Oracle database libraries that are
included as part of Oracle GoldenGate 21c and later releases.
Example: $OGG_HOME/lib/instantclient
--adminuser specifies the Oracle GoldenGate Microservices administrator
account name.

--user specifies the name of the operating system user that owns the GoldenGate
deployment.

--group specifies the name of the operating system group that owns the
GoldenGate deployment.

--network specifies the network subnet for the VIP, determined above.

--ip specifies the IP address for the VIP, which was determined above. If you
have already created a VIP, then specify it using the --vip_name parameter in
place of --network and --ip.

Chapter 23
Task 7: Oracle Clusterware Configuration

23-12

--vip_name specifies a CRS resource name for an application VIP that has previously
been created. This parameter replaces --network and -–ip (optional).

--filesystems specifies the DBFS or ACFS CRS file system resource that must be
mounted before the deployment is started.

--db_services specifies the ora.database.service_name.svc service name that was
created in the previous step. If using Oracle Multitenant Database, specify the PDB
database service for Replicat, or the CDB database service for an Extract. If using both
Replicat and Extract, specify both services names, separated by a comma.

--use_local_services specifies that the GoldenGate instance must be co-located on the
same Oracle RAC node where the db_services service is running.

--nodes specifies which of the Oracle RAC nodes this GoldenGate instance can run on.
If GoldenGate is configured to run on any of the Oracle RAC nodes in the cluster, this
parameter should still be used to determine the preferred order of nodes to run Oracle
GoldenGate.

Notes:

• The GoldenGate instance registration with XAG MUST be run as the root user.

• The user and group parameters are mandatory because the GoldenGate registration
with XAG is run as the root user.

Below are some examples of registering Oracle GoldenGate with XAG.

Example 1: Oracle RAC cluster using DBFS, using an already created application VIP

agctl add goldengate GGNORTH \
--gg_home /u01/oracle/goldengate/gg21c_MS \
--service_manager \
--config_home /mnt/dbfs/goldengate/deployments/ggsm01/etc/conf \
--var_home /mnt/dbfs/goldengate/deployments/ggsm01/var \
--port 9100 \
--oracle_home /u01/oracle/goldengate/gg21c_MS/lib/instantclient
--adminuser oggadmin
--user oracle \
--group oinstall \
--vip_name gg_vip_prmy \
--filesystems dbfs_mount \
--db_services ora.ds19c.oggserv.svc \
--use_local_services \
--nodes dc1north01,dc1north02

Where:

• GoldenGate instance is GGNORTH

• GoldenGate home directory is /u01/oracle/goldengate/gg21c_MS
• This is an Oracle GoldenGate Microservices Architecture instance (--service_manager)

• GoldenGate deployment configuration home directory is /mnt/dbfs/goldengate/
deployments/ggsm01/etc/conf

• GoldenGate deployment variable home directory is /mnt/dbfs/goldengate/
deployments/ggsm01/var

Chapter 23
Task 7: Oracle Clusterware Configuration

23-13

• Deployment Service Manager port number is 9100

• Oracle GoldenGate Microservices administrator account name is oggadmin
• The GoldenGate user is oracle in the group oinstall
• Application VIP name, managed by CRS, is called gg_vip_prmy
• The CRS resource name for the file system the deployment depends on is

dbfs_mount
• The GoldenGate instance will be started on the same Oracle RAC node as the

CRS service called ora.ds19c.oraserv.svc will be co-located on the same node
as this GoldenGate instance.

Example 2: Oracle RAC cluster, using ACFS, with an application VIP running on
a subset of the nodes in the cluster.

agctl add goldengate GGNORTH \
--gg_home /u01/oracle/goldengate/gg21c_MS \
--service_manager \
--config_home /mnt/acfs/goldengate/deployments/ggsm01/etc/conf \
--var_home /mnt/acfs/goldengate/deployments/ggsm01/var \
--port 9100 \
--oracle_home /u01/oracle/goldengate/gg21c_MS/lib/instantclient
--adminuser admin \
--user oracle \
--group oinstall \
--network 1 --ip 10.13.11.203 \
--filesystems ora.datac1.acfs_gg.acfs \
--db_services ora.ds19c.oraserv.svc \
--use_local_services \
--nodes dc1north01,dc1north02

Where:

• GoldenGate instance is GGNORTH

• GoldenGate home directory is /u01/oracle/goldengate/gg21c_MS
• This is an Oracle GoldenGate Microservices Architecture instance (--

service_manager)

• GoldenGate deployment configuration home directory is /mnt/acfs/goldengate/
deployments/ggsm02/etc/conf

• GoldenGate deployment variable home directory is /mnt/acfs/goldengate/
deployments/ggsm02/var

• Deployment Service Manager port number is 9100

• Oracle GoldenGate Microservices administrator account name is admin
• GoldenGate user is oracle in the group oinstall
• The network is the default ora.net1.network and the VIP is 10.13.11.203
• The CRS resource name for the file system the deployment depends on is

ora.datac1.acfs_gg.acfs

Chapter 23
Task 7: Oracle Clusterware Configuration

23-14

• This GoldenGate instance will be started on the same Oracle RAC node as the CRS
service called ora.ds19c.oraserv.svc will be co-located on the same node as this
GoldenGate instance

• Oracle GoldenGate will only run on Oracle RAC nodes dc1north01 and dc1north02, listed
in priority order.

Example AGCTL Commands

Below are some example agctl commands that are used to manage the Oracle GoldenGate
deployment with XAG.

To check the status of Oracle GoldenGate:

% agctl status goldengate
Goldengate instance 'GGNORTH' is running on dc1north01

To start the GoldenGate deployment, and all Extract/Replicat processes that have been
configured to autostart (instructions in a later step):

% agctl start goldengate GGNORTH --node dc1north02

To stop the GoldenGate deployment:

% agctl stop goldengate GGNORTH

To manually relocate the GoldenGate deployment to another node:

% agctl relocate goldengate GGNORTH --node dc1north02

To view the configuration parameters for the GoldenGate resource:

% agctl config goldengate GGNORTH

Instance name: GGNORTH
Application GoldenGate location is: /u01/oracle/goldengate/gg21c_MS
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory: /mnt/dbfs/goldengate/
deployments/ggsm01/etc/conf

Goldengate Service Manager var directory: /mnt/dbfs/goldengate/deployments/
ggsm01/var

Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: no
Configured to run on Nodes: dc1north01 dc1north02
ORACLE_HOME location is: /u01/oracle/goldengate/gg21c_MS/lib/instantclient
Database Services needed: ora.cdb1.oggcdb.svc [use_local_services]
File System resources needed: ora.datac1.acfs_gg.acfs
Network: 1, IP: 10.13.11.203, User:oracle, Group:oinstall

Chapter 23
Task 7: Oracle Clusterware Configuration

23-15

To delete the GoldenGate XAG resource:

$ agctl stop goldengate GGNORTH
agctl remove goldengate GGNORTH

For more information about the Oracle Grid Infrastructure Bundled Agent see Oracle
Grid Infrastructure Standalone Agents for Oracle Clusterware 11g Rel. 2, 12c, 18c and
19c.

Task 8: Configure NGINX Reverse Proxy
Follow the instructions provided in My Oracle Support note 2826001.1 to install and
configure NGINX Reverse Proxy with SSL connection, and to ensure all external
communication is completely secure.

Note:

When using CA Signed Certificates with NGINX, make sure the NGINX
ssl_certificate parameter points to a certificate file that contains the
certificates in the correct order of CA signed certificate, intermediate
certificate and root certificate.

Oracle Clusterware needs to have control over starting the NGINX reverse proxy so
that it can be started automatically before the GoldenGate deployments are started.

The NGINX resource is created with a dependency on the underlying network CRS
resource, the name of which can be determined using the following command:

$ $GRID_HOME/bin/crsctl stat res -w "TYPE == ora.network.type"|grep
NAME

NAME=ora.net1.network

As the root user, use the following example command to create a Clusterware
resource to manage NGINX.

$GRID_HOME/bin/crsctl add resource nginx -type generic_application -
attr
 "ACL='owner:root:rwx,pgrp:root:rwx,other::r--,group:oinstall:r-
x,user:oracle:rwx',
EXECUTABLE_NAMES=nginx,START_PROGRAM='/bin/systemctl
 start -f nginx',STOP_PROGRAM='/bin/systemctl
 stop -f nginx',CHECK_PROGRAMS='/bin/systemctl
 status nginx' ,START_DEPENDENCIES='hard(ora.net1.network)
 pullup(ora.net1.network)',
STOP_DEPENDENCIES='hard(intermediate:ora.net1.network)',
 RESTART_ATTEMPTS=0, HOSTING_MEMBERS='dc1north01,dc1north02',
CARDINALITY=2"

Chapter 23
Task 8: Configure NGINX Reverse Proxy

23-16

https://www.oracle.com/database/technologies/xag-agents-download.html
https://www.oracle.com/database/technologies/xag-agents-download.html
https://www.oracle.com/database/technologies/xag-agents-download.html
https://support.oracle.com/rs?type=doc&id=2826001.1

The NGINX resource created in this example run on the named cluster nodes at the same
time, specified by HOSTING_MEMBERS. This is recommended when multiple GoldenGate
Service Manager deployments are configured, and they can independently move between
cluster nodes.

Once the NGINX Clusterware resource is created, alter the GoldenGate XAG resources so
that NGINX must be started before the GoldenGate deployments are started.

As the oracle user, modify the XAG resources using the following example commands.

Determine the current --filesystems parameter:

$ agctl config goldengate SOURCE|grep "File System"

File System resources needed: ora.datac1.acfs_gg.acfs

Modify the --filesystems parameter:

$ agctl modify goldengate SOURCE --filesystems ora.datac1.acfs_gg.acfs,nginx

Repeat the above commands for each of the XAG GoldenGate registrations relying on
NGINX.

Task 9: Create Oracle Net TNS Alias for Oracle GoldenGate
Database Connections

Create a TNS alias on all of the Oracle RAC nodes where Oracle GoldenGate may be
started to provide local database connections for the GoldenGate processes when switching
between Oracle RAC nodes. Create the TNS alias in the tnsnames.ora file in the TNS_ADMIN
directory specified in the deployment creation.

If the source database is a multitenant database, two TNS alias entries are required: one for
the container database (CDB) and one for the pluggable database (PDB) that is being
replicated. For a target multitenant database, the TNS alias connects the PDB where
replicated data is being applied to. The pluggable database SERVICE_NAME should be set to
the database service created in an earlier step (refer to Task 3: Create the Database
Services).

Below are some example source database TNS alias definitions using the IPC protocol,
which must be defined locally on all RAC nodes.

OGGSOURCE_CDB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = oggserv_cdb)
)
)

OGGSOURCE_PDB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL=IPC)(KEY=LISTENER))

Chapter 23
Task 9: Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections

23-17

 (CONNECT_DATA =

 (SERVICE_NAME = oggserv_pdb)
)
)

Note:

When the tnsnames.ora or sqlnet.ora, located in the TNS_ADMIN directory
for the GoldenGate deployment, are modified, the deployment needs to be
restarted in order to pick up the changes.

With the GoldenGate deployment created, use the Administration Server home page
to create the database credentials using the above TNS alias names. See Figure 6
below for an example of the database credential creation using the TNS alias
appended to the database user name in the ‘User ID” field.

If the source database is a multitenant database, create database credentials for the
CDB and PDB. If the target database is a multitenant database, create a single
credential for the PDB.

Task 10: Configure Oracle GoldenGate Processes
When creating Extract, Distribution Paths, and Replicat processes with Oracle
GoldenGate Microservices Architecture, all files that need to be shared between
Oracle RAC nodes are already shared with the deployment files stored on a shared file
system (DBFS or ACFS).

Listed below are important configuration details that are recommended for running
Oracle GoldenGate Microservices on Oracle RAC for Extract, Distribution Paths and
Replicat processes.

Extract Configuration

1. When creating an Extract using the Oracle GoldenGate Administration Server GUI
interface, leave the Trail SubDirectory parameter blank, so that the trail files are
automatically created in the deployment directories stored on the shared file
system.

The default location for trail files is the /<deployment directory>/var/lib/data
2. If you are using DBFS for shared storage, and the deployment var/temp directory

was moved to local storage as described in Task 6: Create the Oracle GoldenGate
Deployment, it is recommended that you use the Extract CACHEMGR parameter to
place the temporary cache files on the shared storage.

Create a new directory under the DBFS deployment mount point. For example:

$ mkdir –p /mnt/dbfs/goldengate/deployments/ggnorth/temp_cache

Chapter 23
Task 10: Configure Oracle GoldenGate Processes

23-18

Set the Extract parameter to the new directory:

CACHEMGR CACHEDIRECTORY /mnt/dbfs/goldengate/deployments/ggnorth/temp_cache

Shown below is an example of how the parameters specified for an integrated Extract with
the Oracle GoldenGate Administration Server GUI looks in the UI.

Figure 23-1 Extract parameters for defining the temporary cache files

Distribution Path Configuration

When using Oracle GoldenGate distribution paths with the NGINX Reverse Proxy, there are
additional steps that must be performed to ensure that the path server certificates are
configured.

Follow the instructions provided in the following video to correctly configure the certificates:
https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

Configuration highlights presented in this video:

1. Create a client certificate for the source deployment and add the client certificate to the
source deployment Service Manager. (This is not required when using Oracle
GoldenGate 21c or later releases.)

2. Download the target deployment server’s root certificate and add the CA certificate to the
source deployment Service Manager.

3. Create a user in the target deployment for the distribution path to connect to.

4. Create a credential in the source deployment connecting to the target deployment with
the user created in the previous step.

For example, a domain of GGNORTH_to_GGSOUTH and an alias of PathReceiver.

Chapter 23
Task 10: Configure Oracle GoldenGate Processes

23-19

https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:31380

After configuring the client and server certificates, the following configuration options
need to be set. Refer to the figures below to see where these options are set in the UI.

1. Change the Generated Source URI specifying localhost for the server name.

This allows the distribution path to be started on any of the Oracle RAC nodes.

2. Set the Target Authentication Method to UserID Alias and the Target transfer
protocol to wss (secure web socket).

Set the Target Host to the target host name/VIP that will be used for connecting to
the target system along with the Port Number that NGINX was configured with
(default is 443).

The target host name/VIP should match the common name in the CA signed
certificate used by NGINX.

3. Set the Domain to the credential domain created above in step 4 and presented in
the video, for example GGNORTH_to_GGSOUTH.

The Alias is set to the credential alias, also created in step 4 in the video.

4. Set the distribution path to automatically restart when the Distribution Server
starts.

This is required so that manual intervention is not required after an Oracle RAC
node relocation of the Distribution Server. It is recommended that you set the
number of Retries to 10. Set the Delay, which is the amount of time in minutes to
pause between restart attempts, to 1.

Chapter 23
Task 10: Configure Oracle GoldenGate Processes

23-20

Figure 23-2 Distribution Path Creation steps 1-3

Chapter 23
Task 10: Configure Oracle GoldenGate Processes

23-21

Figure 23-3 Distribution Path Creation step 4

Replicat Configuration

1. The checkpoint table is a required component for GoldenGate Replicat processes.
Make sure that a checkpoint table has been created in the database GoldenGate
administrator (GGADMIN) schema.

The checkpoint table can be created using the Oracle GoldenGate Administration
Server GUI, clicking on the ‘+’ button and entering the checkpoint table name in
the format of schema.tablename. This is shown in the image below

Figure 23-4 Creating the checkpoint table for Replicat processes

See About Checkpoint Table for more information about creating a checkpoint
table.

2. When creating a Replicat using the Oracle GoldenGate Administration Server GUI
interface, set the Trail SubDirectory parameter to the location where the
distribution path or local Extract are creating the trail files.

3. If a checkpoint table was created previously, select the table name from the
Checkpoint Table pulldown list.

Chapter 23
Task 10: Configure Oracle GoldenGate Processes

23-22

https://docs.oracle.com/en/middleware/goldengate/core/21.3/oracle-db/configuring-oracle-goldengate-apply.html#GUID-3DFBE2BE-20C5-48AA-B96A-7697126D77FE

Figure 23-5 Replicat creation with Trail SubDirectory and Checkpoint Table

Task 11: Configure Autostart of Extract and Replicat Processes
Configure the Extract and Replicat processes to automatically start when the Oracle
GoldenGate Administration Server is started, and then to restart if any Extract or Replicat
processes abend. With GoldenGate Microservices auto start and restart is managed by
Profiles.

Using the Oracle GoldenGate Administration Server GUI, create a new profile which can be
assigned to each of the Oracle GoldenGate processes.

Profile Configuration Option Recommended Setting

Default Profile Enabled

Auto Start Enabled

Startup Delay 1 minute

Auto Restart Enabled

Max Retries 5

Retry Delay 30 seconds

Retries Window 30 minutes

Restart on Failure only Enabled

Chapter 23
Task 11: Configure Autostart of Extract and Replicat Processes

23-23

Profile Configuration Option Recommended Setting

Disable Task After Retries Exhausted Enabled

After the profile has been created, and set as the default profile, all new GoldenGate
processes created are assigned this profile. For all existing processes, the profile must
be assigned to each process.

In the Overview pane, on the Process Information tab, select the Profile Name under
Managed Options.

Note:

When using Oracle GoldenGate Microservices with XAG, it is strongly
recommended not to enable the ‘Critical to deployment health’ flag for any
Extract or Replicat processes. Doing so can cause an entire GoldenGate
deployment outage from a single Extract or Replicat failure, and also
prevents XAG from being able to restart GoldenGate. Refer to
Troubleshooting Oracle GoldenGate on Oracle RAC for an example of
troubleshooting an outage caused by setting a Replicat to critical.

Chapter 23
Task 11: Configure Autostart of Extract and Replicat Processes

23-24

24
On-Premises MAA Platinum: Oracle
GoldenGate Microservices Architecture
Integrated with Active Data Guard

The combination and integration of Oracle GoldenGate Microservices and Oracle Data Guard
enables you to achieve an MAA Platinum service-level configuration that achieves zero or
near zero downtime for all planned and unplanned outages.

Follow these configuration best practices to enable Oracle GoldenGate Microservices
replication using a database that is protected by a Data Guard standby, to transparently and
seamlessly work following an Oracle Data Guard role transition, no matter which Data Guard
protection mode is configured (Maximum Performance, Maximum Availability, or Maximum
Protection).

Topics:

• Prerequisites

• Task 1: Configure the Standby Database for Oracle GoldenGate

• Task 2: Modify the Primary Database Service

• Task 3: Create the Standby Database Service

• Task 4: Configure DBFS on the Standby Cluster Nodes

• Task 5: Install Oracle GoldenGate Software

• Task 6: Create Oracle GoldenGate Deployment Directories

• Task 7: Configure the Standby NGINX Reverse Proxy

• Task 8: Configure Oracle Clusterware

• Task 9: Create Oracle Net TNS Aliases for Oracle GoldenGate Database Connections

• Task 10: Configure Oracle GoldenGate Processes

• Example Distribution Path Target Change Script

Prerequisites
Be sure to complete the following prerequisites before performing any tasks for on-premises
MAA Platinum architecture configuration.

• As a prerequisite for MAA Platinum on-premises, have Oracle GoldenGate configured as
detailed in On-Premises: Oracle GoldenGate Microservices Architecture with Oracle Real
Application Clusters Configuration Best Practices.

• The Database File System (DBFS) is required for critical Oracle GoldenGate files when
integrating with Data Guard.

• The Oracle Data Guard standby database should also be configured and operational
before continuing.

24-1

The following are software requirements that the MAA Platinum configuration is based
on:

• Oracle Grid Infrastructure 19c or later

Oracle Grid Infrastructure provides the necessary components needed to manage
high availability for any business-critical applications. Using Oracle Clusterware (a
component of Oracle Grid Infrastructure) network, database, and Oracle
GoldenGate resources can be managed to provide availability in the event of a
failure.

• Oracle Grid Infrastructure Agent version 10.2 or later

The Oracle Grid Infrastructure Agent leverages the Oracle Grid Infrastructure
components to provide integration between Oracle GoldenGate and its dependent
resources, such as the database, network, and file system. The agent also
integrates Oracle GoldenGate with Oracle Data Guard so that Oracle GoldenGate
is restarted on the new primary database following a role transition.

• Oracle Database 19c or later

See My Oracle Support Document 2193391.1 for a full list of recommended Oracle
Database patches when using Oracle GoldenGate.

• Oracle GoldenGate Microservices version 21c or later

Oracle GoldenGate 21c introduces unified build support so a single software
installation supports capturing and applying replicated data to multiple major
Oracle Database versions (11g Release 2 to 21c). This is possible because an
Oracle GoldenGate installation includes the required Oracle Database client
libraries without requiring a separate database ORACLE_HOME installation.

• Oracle DBFS to protect and replicate critical Oracle GoldenGate files

The Oracle Database File System (DBFS) is the only MAA-validated and
recommended file system for an Oracle Data Guard and Oracle GoldenGate
configuration, because it allows the storage of the required Oracle GoldenGate
files, such as the checkpoint and trail files, to be located inside the same database
that is protected with Oracle Data Guard, ensuring consistency between the
Oracle GoldenGate files and the database in a seamless fashion.

When the prerequisites are met, follow the configuration best practices in the Tasks
that follow. These tasks should be performed to ensure the seamless integration of
Oracle GoldenGate Microservices with Oracle Data Guard, which in turn ensures that
GoldenGate continues running after any Data Guard role transition.

Task 1: Configure the Standby Database for Oracle
GoldenGate

The standby database initialization parameters should match those of the primary
database.

See Task 1: Configure the Oracle Database for Oracle GoldenGate for details. This
includes the following parameters:

• ENABLE_GOLDENGATE_REPLICATION=TRUE
• For Oracle GoldenGate source databases, enable FORCE LOGGING mode and

enable minimal supplemental logging.

Chapter 24
Task 1: Configure the Standby Database for Oracle GoldenGate

24-2

https://support.oracle.com/rs?type=doc&id=2193391.1

• If a GoldenGate source database, or running integrated Replicat (parallel or non-parallel),
configure the STREAMS_POOL_SIZE.

Task 2: Modify the Primary Database Service
On the primary database server, modify the existing database service that was created as
part of the original Oracle GoldenGate on Oracle RAC configuration.

Set the service role to PRIMARY, so that the service is only be started when the database
becomes the Data Guard primary database role after a role transition.

As the oracle user, modify the service using the following command:

$ srvctl modify service -db dbName -service service_name
 -role PRIMARY

If your database is part of a multitenant environment, remember to modify both the
multitenant container database (CDB) and pluggable database (PDB) services.

Task 3: Create the Standby Database Service
On the standby cluster, a database service is required for the standby database so that the
Oracle Grid Infrastructure Agent automatically starts the Oracle GoldenGate deployment
when the database is opened with the primary role.

When a source database is in a multitenant environment, a separate service is required for
the root container database (CDB) and the pluggable database (PDB) that contains the
schema being replicated. For a multitenant environment target database, a single service is
required for the PDB.

Create the service using the following command, as the oracle user, the same way the
service was created on the primary cluster.

$ srvctl add service -db dbName -service service_name
 -preferred instance_1 -available instance_2, instance_3 etc.
 -pdb pdbName -role PRIMARY

It is recommended that you use the same service name as was specified on the primary
cluster. The service must be created as a singleton service, using the –preferred option,
because the application Virtual IP address (VIP), DBFS, and Oracle GoldenGate run on the
cluster node where the service is running.

If the database is not in a multitenant environment, or the database is a target database for
Oracle GoldenGate, omit the -pdb parameter.

Task 4: Configure DBFS on the Standby Cluster Nodes
The Database File System (DBFS) is the only recommended solution when configuring
Oracle GoldenGate with Oracle Data Guard.

The DBFS user, tablespace, and file system in the database was previously created in the
primary database, as detailed in Task 4: Set Up a File System on Oracle RAC.

Chapter 24
Task 2: Modify the Primary Database Service

24-3

The remaining configuration steps are required on all nodes of the standby cluster
where Oracle GoldenGate may run.

1. Install the required FUSE libraries, if they are not already installed, by following the
instructions in My Oracle Support Document 869822.1.

2. Create the tnsnames.ora Oracle Net connection alias using the IPC protocol,
similar to the one created on the primary cluster.

dbfs =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY=LISTENER))
 (CONNECT_DATA =
 (SERVICE_NAME = NAME)
)
)

3. Create the same mount point for DBFS that is used on the primary cluster.

It is important that the mount point is identical, because the physical location of the
Oracle GoldenGate deployment is included in the deployment configuration files.

For example:

mkdir /mnt/dbfs

4. Copy the mount-dbfs.conf and mount-dbfs.sh files from the primary cluster to the
standby cluster nodes.

It is recommended that you place them in the same directory as the primary
cluster.

5. Register the DBFS resource with Oracle Clusterware, using the following example
command.

If you are using Oracle Multitenant, make sure to use the service name for the
same PDB that contains the DBFS repository as was created in the primary
database.

DBNAME=dbName
DEPNAME=ora.$DBNAME.oggserv_pdb.svc

crsctl add resource $RESNAME \
 -type cluster_resource \
 -attr "ACTION_SCRIPT=$ACTION_SCRIPT, \
 CHECK_INTERVAL=30,RESTART_ATTEMPTS=10, \
 START_DEPENDENCIES='hard($DEPNAME)pullup($DEPNAME)',\
 STOP_DEPENDENCIES='hard($DEPNAME)',\
 SCRIPT_TIMEOUT=300"

Task 5: Install Oracle GoldenGate Software
Install the Oracle GoldenGate software locally on all nodes in the standby cluster that
will be part of the Oracle GoldenGate configuration.

Make sure the installation directory is identical on all nodes to match the primary
cluster installation directory.

Chapter 24
Task 5: Install Oracle GoldenGate Software

24-4

https://support.oracle.com/rs?type=doc&id=869822.1

Download the Oracle GoldenGate 21c software, or later version, at this location:

http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html

Task 6: Create Oracle GoldenGate Deployment Directories
The Oracle GoldenGate Service Manager and deployment are already created on the
primary cluster, as required by the prerequisites, but certain directories and symbolic links
need to be configured on the standby cluster nodes.

These directories and symbolic links were created on the primary cluster, in the tasks you
performed as part of On-Premises: Oracle GoldenGate Microservices Architecture with
Oracle Real Application Clusters Configuration Best Practices.

Now you create the following directories and symbolic links on the all Oracle RAC nodes on
the standby cluster as follows.

1. If there are multiple GoldenGate Service Managers configured on the primary cluster,
each with their own deployment, and individually registered with XAG, they must belong
to separate OGG_HOME software installation directories.

The same directories and symbolic links for the OGG_HOME directories that were configured
on primary cluster, must match on the standby cluster.

2. If the GoldenGate deployment was created with the Performance Metric Server enabled,
the metric datastore home directory must be created on the standby Oracle RAC nodes.

For example, determine the datastore directory on the primary cluster nodes:

$ grep RepoDatastorePath <deployment directory>/var/log/pmsrvr.log|uniq

"RepoDatastorePath": "",
 "RepoDatastorePath": "/u01/oracle/goldengate/datastores/ggnorth",

Then create the directory on all standby cluster nodes:

$ mkdir -p /u01/oracle/goldengate/datastores/ggnorth

3. If the database release is earlier than Oracle Database 21c (21.3), create the Oracle
GoldenGate deployment temp directory local storage to match the symbolic link created
on the primary cluster.

For example, on the primary cluster if you have:

$ ls –lrt DBFS_GoldenGate_deployment_home_directory/var/temp

lrwxrwxrwx 1 oracle oinstall 32 Aug 31 12:27 temp
 -> /u01/oracle/goldengate/deployments/ggnorth/temp

Then create the same directory on the standby cluster nodes:

$ mkdir –p /u01/oracle/goldengate/deployments/ggnorth/temp

Chapter 24
Task 6: Create Oracle GoldenGate Deployment Directories

24-5

http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html

Task 7: Configure the Standby NGINX Reverse Proxy
Follow these steps to configure the standby NGINX reverse proxy.

1. Install NGINX Reverse Proxy.

If NGINX Reverse Proxy has not already been installed, follow the installation
instructions at https://nginx.org/en/linux_packages.html.

As the root user, copy the Oracle GoldenGate deployment NGINX configuration
files from a primary cluster node to a single standby node directory /etc/nginx/
conf.d.

For example:

[root@dc2north01]# scp dc1north01:/etc/nginx/conf.d/ogg_north.conf
 /etc/nginx/conf.d

The standby cluster will need a different CA signed certificate due to using a
different VIP name/address than the primary cluster. Contact your systems
administrator to follow your corporate standards to create or obtain the server
certificate before proceeding. A separate certificate is required for each VIP and
Service Manager pair.

2. Install server certificates for NGINX.

Install the server CA certificates and key files in the /etc/nginx/ssl directory,
owned by root with file permissions 400 (-r--------):

mkdir /etc/nginx/ssl
chmod 400 /etc/nginx/ssl

For each reverse proxy configuration file copied from the primary cluster, set the
correct file names for the certificate and key file using the following example:

ssl_certificate /etc/nginx/ssl/gg-stby-vip1.pem;
ssl_certificate_key /etc/nginx/ssl/gg-stby-vip1.key;

When using CA signed certificates, the certificate named with the
ssl_certificate NGINX parameter must include the root, intermediate, and CA
signed certificates in a single file. The order is very important, otherwise NGINX
fails to start and displays the error message

(SSL: error:0B080074:x509 certificate routines:
X509_check_private_key:key values mismatch).
The root and intermediate certificates can be downloaded from the CA signed
certificate provider.

The single file can be generated using the following example command:

cat CA_signed_cert.crt intermediate.crt root.crt
 > gg-stby-vip1.pem

Chapter 24
Task 7: Configure the Standby NGINX Reverse Proxy

24-6

https://nginx.org/en/linux_packages.html

The ssl_certificate_key file is the key file generated when creating the Certificate
Signing Request (CSR), which is required when requesting a CA signed certificate.

Change the server_name parameter in the reverse proxy configuration file copied from
the primary cluster, setting to the correct VIP name. For example:

Before:

server_name dc1north-vip1.example.com;
After:

server_name dc2north-vip1.example.com;
3. Validate and restart NGINX.

Because the VIP will not be running on the standby cluster until the primary database
service is running, there is a parameter that needs to be set in the /etc/sysctl.conf file.

a. As the root user, make the following modifications to /etc/sysctl.conf.

vi /etc/sysctl.conf

b. Add the following parameter:

allow processes to bind to the non-local address

net.ipv4.ip_nonlocal_bind = 1

c. Reload the modified configuration:

sysctl -p /etc/sysctl.conf

d. Validate the NGINX configuration file to detect any errors in the configuration. If there
are errors in the file, they will be reported by the following command.

nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginxconf test is successful

e. Restart NGINX with the new configuration:

systemctl restart nginx

When the NGINX configuration is complete, copy the configuration file and certificates to
matching directories on the other standby cluster nodes.

4. Create an NGINX Clusterware resource.

Oracle Clusterware needs to have control over starting the NGINX reverse proxy so that
it can be started automatically before the GoldenGate deployments are started.

The NGINX resource is created with a dependency on the underlying network CRS
resource, the name of which can be determined using the following command:

$ $GRID_HOME/bin/crsctl stat res -w "TYPE == ora.network.type"|grep NAME
NAME=ora.net1.network

Chapter 24
Task 7: Configure the Standby NGINX Reverse Proxy

24-7

a. As the root user, use the following example command to create a Clusterware
resource to manage NGINX.

$GRID_HOME/bin/crsctl add resource nginx -type
generic_application
 -attr
"ACL='owner:root:rwx,pgrp:root:rwx,other::r--,group:oinstall:r-
x,user:oracle:rwx',EXECUTABLE_NAMES=nginx,START_PROGRAM='/bin/
systemctl
 start -f nginx',STOP_PROGRAM='/bin/systemctl
 stop -f nginx',CHECK_PROGRAMS='/bin/systemctl
 status nginx' ,START_DEPENDENCIES='hard(ora.net1.network)
pullup(ora.net1.network)',
 STOP_DEPENDENCIES='hard(intermediate:ora.net1.network)',
 RESTART_ATTEMPTS=0, HOSTING_MEMBERS='dc1north01,dc1north02',
CARDINALITY=2"

The NGINX resource created in this example runs on the named cluster nodes
at the same time, specified by HOSTING_MEMBERS. This is recommended when
multiple GoldenGate Service Manager deployments are configured, and they
can independently move between cluster nodes.

b. When the NGINX Clusterware resource is created, alter the GoldenGate XAG
resources so that NGINX must be started before the GoldenGate deployments
are started.

As the root user, modify the XAG resources using the following example
commands.

Determine the current --filesystems parameter:

agctl config goldengate GGNORTH | grep "File System"

File System resources needed: dbfsgg

Task 8: Configure Oracle Clusterware
1. Modify the primary cluster XAG GoldenGate instance.

The Oracle Grid Infrastructure Standalone Agent (XAG) GoldenGate instance on
the primary cluster must be modified as the root user, to identify that it is part of an
Oracle Data Guard configuration using the following example command.

agctl modify goldengate instance_name --dataguard_autostart yes

2. On the standby cluster, follow the instructions in Task 7: Oracle Clusterware
Configuration to do steps 3-5 below.

3. Install the XAG software on each standby cluster node.

It is recommended that you install the XAG software into the same directory as the
primary cluster.

4. Prepare for the XAG application VIP creation.

Chapter 24
Task 8: Configure Oracle Clusterware

24-8

It is assumed that the VIP and VIP name will be different from that of the primary cluster,
so the VIP address will need to be allocated by your systems administrator for the
standby cluster.

5. Register Oracle GoldenGate Microservices with XAG.

The parameters used to register Oracle GoldenGate Microservices with XAG are similar
to those used when registering with the primary cluster.

a. Determine the current parameters in the primary cluster using the following
command:

$ agctl config goldengate GoldenGate_instance_name

Instance name: GoldenGate_instance_name
Application GoldenGate location is: /u01/oracle/goldengate/gg21c_MS
Goldengate MicroServices Architecture environment: yes
Goldengate Service Manager configuration directory:
 /mnt/dbfs/goldengate/deployments/ggnorth_sm/etc/conf
Goldengate Service Manager var directory:
 /mnt/dbfs/goldengate//deployments/ggnorth_sm/var
Service Manager Port: 9100
Goldengate Administration User: oggadmin
Autostart on DataGuard role transition to PRIMARY: yes
Configured to run on Nodes: dc1north01,dc1north02
ORACLE_HOME location is: /u01/oracle/goldengate/gg21c_MS/lib/
instantclient
Database Services needed:
ora.ggdg.oggserv_cdb.svc,ora.ggdg.oggserv_pdb.svc
File System resources needed: dbfsgg,nginx
VIP name: gg_vip_prmy

In addition, the XAG parameter --filesystem_verify no must be specified to
prevent XAG from checking the existence of the DBFS deployment directory when
registering the GoldenGate instance. Without setting this parameter, the XAG
registration will fail, because DBFS is not mounted on the standby cluster.

Note:

It is recommended that you use the same GoldenGate instance name when
registering GoldenGate with XAG as was used in the primary cluster.

b. Register GoldenGate with XAG on the standby cluster, as the root user:

agctl add goldengate GoldenGate_instance_name \
--gg_home /u01/oracle/goldengate/gg21c_MS \
--service_manager \
--config_home /mnt/dbfs/goldengate/deployments/ggnorth_sm/etc/conf \
--var_home /mnt/dbfs/goldengate/deployments/ggnorth_sm/var \
--port 9100 \
--oracle_home /u01/goldengate/gg21c_MS/lib/instantclient \
--adminuser oggadmin \
--user oracle \
--group oinstall \

Chapter 24
Task 8: Configure Oracle Clusterware

24-9

--vip_name gg_vip_stby \
--filesystems dbfsgg,nginx \
--db_services
ora.ggdgs.oggserv_cdb.svc,ora.ggdgs.oggserv_pdb.svc \
--use_local_services \
--nodes dc2north01,dc2north02 \
--filesystem_verify no \
--dataguard_autostart yes

For more information about the Oracle Grid Infrastructure Bundled Agent, see http://
www.oracle.com/technetwork/database/database-technologies/clusterware/
downloads/xag-agents-downloads-3636484.html

Task 9: Create Oracle Net TNS Aliases for Oracle
GoldenGate Database Connections

The same TNS aliases created on the primary cluster for the primary database using
the IPC protocol must be created with the same alias names on each node of the
standby cluster, using the IPC communication protocol as specified in Task 9: Create
Oracle Net TNS Alias for Oracle GoldenGate Database Connections.

The location of tnsnames.ora used by the Oracle GoldenGate deployment must be
the same on the standby cluster nodes as it is on the primary cluster.

Use the following query REST API call to query the TNS_ADMIN location on the primary
cluster.

$ curl -s -u OGG_admin_username
 https://vip_name/services/v2/deployments/deployment_name
 -XGET|python -m json.tool|grep TNS_ADMIN -A1

You will be prompted to enter the Oracle GoldenGate Service Manager administrator
user password.

For example:

$ curl -s -u oggadmin https://dc1north01-vip1/services/v2/deployments/
ggnorth
 -XGET|python -m json.tool|grep TNS_ADMIN -A1

 "name": "TNS_ADMIN",
 "value": "/u01/goldengate/network/admin"

Make sure the tnsnames.ora is located in this same directory on all standby cluster
nodes.

Example TNS alias for the GoldenGate database:

ggnorth_pdb =
 (DESCRIPTION =
 (SDU = 2097152)
 (ADDRESS = (PROTOCOL = IPC)(KEY=LISTENER))

Chapter 24
Task 9: Create Oracle Net TNS Aliases for Oracle GoldenGate Database Connections

24-10

http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html
http://www.oracle.com/technetwork/database/database-technologies/clusterware/downloads/xag-agents-downloads-3636484.html

 (CONNECT_DATA =
 (SERVICE_NAME = oggserv_pdb.example.com)
)
)

Task 10: Configure Oracle GoldenGate Processes
In addition to the guidance provided in Task 10: Configure Oracle GoldenGate Processes,
follow the recommendations provided below for Extract, Distribution Paths, and Replicats.

Extract Configuration on the Primary Cluster

For GoldenGate Extract processes using Data Guard configurations that are using redo
transport Maximum Performance or Maximum Availability modes, the following parameter
must be added to the Extract process parameter file on the primary cluster to avoid losing
transactions and resulting in logical data inconsistencies:

TRANLOGOPTIONS HANDLEDLFAILOVER

This parameter prevents Extract from extracting transaction data from redo that has not yet
been applied to the Data Guard standby database. This is crucial to preventing Oracle
GoldenGate from replicating data to a target database that does not exist in the source
standby database.

If this parameter is not specified, after a data loss failover of the source database it is
possible to have data in the target database that is not present in the source database,
leading to logical data inconsistencies.

By default, after 60 seconds, a warning message will be written to the Extract report file when
the Extract is stalled due to not being able to query the standby database applied SCN
information. For example:

WARNING OGG-02721 Extract has been waiting for the standby database for 60
seconds.
The amount of time before the warning message is written to Extract report file can be
adjusted using the Extract parameter TRANLOGOPTIONS HANDLEDLFAILOVER STANDBY_WARNING.

If the Extract is still not able to query the standby database applied SCN information after 30
minutes (default), the Extract process will abend, logging the following message in the Extract
report file:

ERROR OGG-02722 Extract abended waiting for 1,800 seconds for the standby
database to be accessible or caught up with the primary database.
If the standby database becomes available before the 30 default timeout expires, Extract
continues mining data from the source database and reports the following message to the
report file:

INFO OGG-02723 Extract resumed from stalled state and started processing LCRs.
The timeout value of 30 minutes can be adjusted using the Extract parameter
TRANLOGOPTIONS HANDLEDLFAILOVER STANDBY_ABEND value, where value is the number of
seconds the standby is unavailable before abending.

Chapter 24
Task 10: Configure Oracle GoldenGate Processes

24-11

If the standby database will be unavailable for a prolonged duration, such as during a
planned maintenance outage, and you wish Extract to continue extracting data from
the primary database, remove the TRANLOGOPTIONS HANDLEDLFAILOVER parameter from
the Extract parameter file and restart Extract. Remember to set the parameter after the
standby becomes available.

Note:

If extracting from a primary database continues while the standby is
unavailable, a data loss failover could result after the standby becomes
available, and not all the primary redo was applied before a failover. The
GoldenGate target database will contain data that does not exist in the
source database.

See Oracle GoldenGate Reference Guide for more information about the
TRANLOGOPTIONS HANDLEDLFAILOVER parameters at https://docs.oracle.com/en/
middleware/goldengate/core/21.3/reference/reference-oracle-goldengate.pdf.

If the Extract process has been assigned an auto restart profile, as documented in
Task 11: Configure Autostart of Extract and Replicat Processes, after a Data Guard
role transition, the Extract process will automatically restart. Extract will continue to
mine redo data from the new primary database, ignoring the current state of the new
standby database, until a default 5 minute timeout period expires. After this time, if the
standby is not available Extract will abend with the following errors:

INFO OGG-25053 Timeout waiting for 300 seconds for standby database
reinstatement. Now enforcing HANDLEDLFAILOVER.
ERROR OGG-06219 Unable to extract data from the Logmining server
OGG$CAP_EXT1.
ERROR OGG-02078 Extract encountered a fatal error in a processing thread
and is abending.
Extract will continue to automatically restart, based on the Oracle GoldenGate
Microservices auto restart profile, and failing due to reaching the HANDLEDLFAILOVER
timeout, until the number retries is reached or the new standby database becomes
available.

During the timeout period following a database role transition, the HANDLEDLFAILOVER
parameter is automatically suspended, so data will be replicated to the Oracle
GoldenGate replica database without consideration of the source standby database
not being kept up to date. The timeout period for the standby database to start up
before Extract abends can be adjusted using the Extract parameter TRANLOGOPTIONS
DLFAILOVER_TIMEOUT.

It is recommended that you leave DLFAILOVER_TIMEOUT at the default of 5 minutes, to
allow the old primary to convert to a standby. If the new standby database will be
unavailable for an extended period of time or completely gone, then in order for Extract
to start and remain running, you must remove the HANDLEDLFAILOVER parameter from
the Extract parameter file. After removing the parameter, Extract no longer waits until
redo has been applied to the standby database before extracting the data.

During the time it takes for the standby database to come back online and apply all the
redo from the primary

Chapter 24
Task 10: Configure Oracle GoldenGate Processes

24-12

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/reference-oracle-goldengate.pdf
https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/reference-oracle-goldengate.pdf

database, there will be data divergence between it and the Oracle GoldenGate replica
database. This will be resolved once the standby database is up to date. At which point, add
the HANDLEDLFAILOVER parameter back into the integrated Extract process parameter file, and
then stop and restart the Extract.

When Oracle Data Guard is configured with fast-start failover, such that the broker can
automatically fail over to a standby database in the event of loss of the primary database, you
must specify an additional integrated Extract parameter shown below.

TRANLOGOPTIONS FAILOVERTARGETDESTID n
This parameter identifies which standby database the Oracle GoldenGate Extract process
must remain behind, with regards to not extracting redo data that has not yet been applied to
the standby database.

To determine the correct value for FAILOVERTARGETDESTID, use the LOG_ARCHIVE_DEST_N
parameter from the GoldenGate source database which is used for sending redo to the
source standby database. For example, if LOG_ARCHIVE_DEST_2 points to the standby
database, then use a value of 2.

For example:

SQL> show parameters log_archive_dest

NAME TYPE VALUE
--------------------- --------

log_archive_dest_1 string location=USE_DB_RECOVERY_FILE_DEST,
 valid_for=(ALL_LOGFILES, ALL_ROLES)

log_archive_dest_2 string service="ggnorths", SYNC AFFIRM delay=0
 optional compression=disable max_failure=0
reopen=300
 db_unique_name="GGNORTHS" net_timeout=30,
 valid_for=(online_logfile,all_roles)

In this example, the Extract parameter would be set to the following:

TRANLOGOPTIONS FAILOVERTARGETDESTID 2
To add the parameters to the Extract parameter file, use the Oracle GoldenGate
Administration Server to select display the Extract details

1. "On the Administration Service tab, select the Actions menu for the Extract and
choose Details."

2. In the Extract details view select the Parameters tab, and then select the pencil icon to
edit the current parameter file

3. Add the TRANLOGOPTIONS parameters and select Apply to save the changes.

For the new parameters to take effect, the Extract process needs to be stopped and
restarted, which can be done using the Administration Server.

More information about the Extract TRANLOGOPTIONS parameters mentioned above, can be
found in the Reference for Oracle GoldenGate at https://docs.oracle.com/en/middleware/
goldengate/core/21.3/reference/tranlogoptions.html#GUID-
B6ADFEC9-10E6-456D-9477-088513E113AF.

Chapter 24
Task 10: Configure Oracle GoldenGate Processes

24-13

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF
https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF
https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/tranlogoptions.html#GUID-B6ADFEC9-10E6-456D-9477-088513E113AF

Distribution Path Configuration on the Primary and Standby Cluster

When the target database of an Oracle GoldenGate environment, where the Receiver
Server runs, is protected with Oracle Data Guard, there is an important consideration
that must be given to any Distribution Paths that are sending trail files to the Receiver
Server. When the Receiver Server moves to a different cluster after an Oracle Data
Guard role transition, any distribution paths must be altered to reflect the new target
cluster address.

You can automatically change the distribution paths using a database role transition
trigger in the target database on the Receiver Server cluster.

If the primary and standby cluster VIPs use different root CA certificates, the standby
certificate will need to be added to the source deployment Service Manager, as
detailed in On-Premises: Oracle GoldenGate Microservices Architecture with Oracle
Real Application Clusters Configuration Best Practices.

Follow the instructions below to create a database role transition trigger to modify the
distribution path target address when the receiver server moves between the primary
and standby cluster, during target database Data Guard role transitions.

1. Create a shell script to modify the distribution paths.

Example Distribution Path Target Change Script contains an example shell script
that can be used to modify a distribution path target address. Refer to the example
script comments for setting appropriate variable values.

The script should be placed in the same local directory on all Oracle RAC nodes
of the primary and standby database clusters. Set the script file permissions to
6751.

For example:

$ chmod 6751 /u01/oracle/goldengate/scripts/change_path_target.sh

The example shell script uses REST API calls to access the GoldenGate
distribution path. In order to make the REST API calls secure, it is recommended
that you include the GoldenGate deployment administrator user name and
password in a configuration file (access.cfg), as shown here.

$ cat /u01/oracle/goldengate/scripts/access.cfg

user = "oggadmin:<password>"

The access.cfg file is also referenced in the database role transition trigger below.

2. Create a DBMS_SCHEDULER job.

Creating a DBMS_SCHEDULER job is required to run an operating system shell script
from within PL/SQL. Create the scheduler job as a SYSDBA user in the root
container database (CDB).

For example:

SQL> exec dbms_scheduler.drop_job('gg_change_path_target');
SQL> exec
dbms_scheduler.create_job(job_name=>'gg_change_path_target',
 job_type=>'EXECUTABLE', number_of_arguments => 6,

Chapter 24
Task 10: Configure Oracle GoldenGate Processes

24-14

 job_action=>'/u01/oracle/goldengate/scripts/change_path_target.sh',
 enabled=>FALSE);

To run an external job, you must set the run_user and run_group parameters in
the $ORACLE_HOME/rdbms/admin/externaljob.ora file to the Oracle database operating
system user and group.

For example:

run_user = oracle
run_group = oinstall

The extrernaljob.ora must be configured on all Oracle RAC nodes of the primary and
standby database clusters.

3. Create the database role transition trigger.

Create a role transition trigger on the GoldenGate target database that will fire when a
standby database becomes a primary database, changing the distribution path target
address, using the following example.

CREATE OR REPLACE TRIGGER gg_change_path
AFTER db_role_change ON DATABASE
declare
 role varchar2(30);
 hostname varchar2(64);
begin
 select database_role into role from v$database;
 select host_name into hostname from v$instance;

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',1,'source_pr
imary_cluster_VIP');

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',2,'source_st
andby_cluster_VIP');

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',4,'dist_path
_name');

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',5,'deploymen
t_name');
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',6, '<dir/
access.cfg>');

 if role = 'PRIMARY' and hostname like 'primary_target_cluster_name%'
 then

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',3,'primary_t
arget_cluster_VIP:443');
 elsif role = 'PRIMARY'
 then

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('gg_change_path_target',3,'standby_t

Chapter 24
Task 10: Configure Oracle GoldenGate Processes

24-15

arget_cluster_VIP:443');
 end if;
 DBMS_SCHEDULER.RUN_JOB(job_name=>'gg_change_path_target');
end;
/

After creating the database trigger, switch the log file on the primary database to
ensure the code is propagated to the standby database using the following
command:

SQL> alter system switch all logfile;

Replicat Configuration on the Primary Cluster

As documented in On-Premises: Oracle GoldenGate Microservices Architecture with
Oracle Real Application Clusters Configuration Best Practices, a checkpoint table in
the target database is required for all Oracle GoldenGate Replicat processes. There
are no other configuration requirements for Replicat when configured with Oracle Data
Guard.

Example Distribution Path Target Change Script
The following example script can be used to change a source GoldenGate deployment
distribution path target address to reflect the new location of the receiver server after a
Data Guard role transition. This example assumes the source GoldenGate deployment
is configured in an MAA architecture with Data Guard, such that the distribution server
can relocate between a primary and standby cluster.

#!/bin/bash

change_path_target.sh - changes the target host of a GG Distribution
Path when the target
moves between primary/standby clusters.
Example usage:
./change_path_target.sh <primary source VIP>:443 <standby source
VIP>:443 <path target VIP> <path name> <deployment name> <credentials
file>

SOURCE1=$1 # PRIMARY Distribution Server VIP
SOURCE2=$2 # STANDBY Distribution Server VIP
TARGET=$3 # Distribution path target VIP
DPATH=$4 # Distribution path name
DEP=$5 # Deployment name
ACCESS=$6 # access.cfg file containing the deployment
credentials. Example contents:
 # user = "oggadmin:<password>"

CONNECT=0

#echo "#${i} - `date`:"
LOGFILE=/tmp/ogg_dpatch_change.txt

result=$(curl -si -K $ACCESS https://$SOURCE1/$DEP/distsrvr/

Chapter 24
Example Distribution Path Target Change Script

24-16

services/v2/sources/$DPATH -X GET| grep HTTP | awk '{print $2}')

Will return NULL of nginx not running, 502 if cannot contact server, 200
if contact to server good, and others (404) for other bad reasons:

if [[-z $result || $result -ne 200]]; then # Managed to access the Distr
Server
 echo "`date` - Couldn't contact Distribution Server at $SOURCE1
Deployment $DEP ****" >> $LOGFILE
else # Try the other source host:
 echo "`date` - Got status of Distribution Server at $SOURCE1
Deployment $DEP ***" >> $LOGFILE
 SOURCE=$SOURCE1
 CONNECT=1
fi

if [$CONNECT -eq 1]; then
For secure NGINX patch destination (wss)
 PAYLOAD='{"target":{"uri":"wss://'${TARGET}'/services/ggnorth/v2/targets?
trail=bb"}}'
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/
sources/$DPATH -X PATCH --data '{"status": "stopped"}'

Set new target for path:
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/
sources/$DPATH -X PATCH --data "$PAYLOAD"
 echo "`date` - Set path $DPATH on $SOURCE deployment $DEP:" >> $LOGFILE

 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/
sources/$DPATH -X GET | python -m json.tool | grep uri >> $LOGFILE
 curl -s -K $ACCESS https://$SOURCE/$DEP/distsrvr/services/v2/
sources/$DPATH -X PATCH --data '{"status": "running"}'

exit 0
else
 echo "`date` - ERROR: COULDN'T CHANGE DISTRIBUTION PATH ($DPATH) in
Deployement $DEP at $SOURCE! ***" >> $LOGFILE
fi

If here, means we couldn't connect to either Distribution Servers
exit 1

Chapter 24
Example Distribution Path Target Change Script

24-17

25
Managing Planned and Unplanned Outages
for Oracle GoldenGate Hub

There are a number of considerations that must be taken into account when the hub
undergoes a planned or unplanned outage of either the primary or standby file system
clusters.

Managing Planned Outages
When there is a requirement to perform planned maintenance on the GoldenGate hub, some
of the CRS resources should be stopped and disabled to prevent them from restarting, or
from causing undesirable results when incorrectly instigating a file system failover, or
stopping GoldenGate from running. Use the following recommendations in the event of a
planned outage of the primary or standby hub clusters.

For all planned maintenance events:

• Operating system software or hardware updates and patches

• Oracle Grid Infrastructure interim or diagnostic patches

• Oracle Grid Infrastructure quarterly updates under the Critical Patch Update (CPU)
program, or Oracle Grid Infrastructure release upgrades

• GGHub software life cycle, including:

– Oracle GoldenGate

– Oracle Grid Infrastructure Agent

– NGINX

High Availability Solutions with Target Outage Time:

Seconds to minutes where GoldenGate replication is temporarily suspended

Step 1: Software update of idle GGHub node

Step 2: GGhub Node Relocate

Step 3: Software update of the remaining inactive GGHub node

GGHub Node Relocate

As the grid OS user on the primary GGHub system, relocate the Oracle GoldenGate
Instance:

[grid@gghubad11 ~]$ agctl status goldengate

Goldengate instance 'gghub' is running on gghubad12

[grid@gghubad11 ~]$ time agctl relocate goldengate gghubfs

25-1

real 0m43.984s
user 0m0.156s
sys 0m0.049s

As the grid OS user on the primary GGHub system, check the status of the Oracle
GoldenGate Instance:

[grid@gghubad11 ~]$ agctl status goldengate

Goldengate instance 'gghub' is running on gghubad11

GGHub Role Reversal for DR events or to move GGHub in the same region as
the target database

GGHUB role reversal performs an ACFS role reversal so that the standby becomes
the new primary. With both primary and standby file systems online, the acfsutil repl
failover command ensures that all outstanding primary file system changes are
transferred and applied to the standby before the role reversal completes.

When should we use GGHUB role reversal:

• To move the GGHUB deployment close to the target database for replication
performance.

• To support site outage

• To support site maintenance

As the grid OS user on the current standby GGhub node, create the script to perform
the ACFS role reversal:

[grid@gghub_stby1]$ vi /u01/oracle/scripts/acfs_role_reversal.sh

acfs_mount_point=/mnt/acfs_gg1 # Specify the correct mount point
gghub_name=gghub1 # Specify the correct Goldengate
instance name
log_file=`date +${gghub_name}_role_reversal_%Y-%m-%d_%H:%M:%S.log`
echo "`date` - Begin Role Reversal" | tee -a ${log_file}
/sbin/acfsutil repl failover ${acfs_mount_point}
echo "`date` - End Role Reversal" | tee -a ${log_file}
echo "`date` - Begin Start GG ${gghub_name}" | tee -a ${log_file}
agctl start goldengate ${gghub_name}
echo "`date` - End Start GG ${gghub_name}" | tee -a ${log_file}

As the grid OS user on the current standby file system GGhub node, execute the script
to perform the ACFS role reversal:

[grid@gghub_stby1]$ sh /u01/oracle/scripts/acfs_role_reversal.sh

[grid@gghub_stby1]$ cat /tmp/
gghubfs_role_reversal_2023-06-16_08:21:06.log

Chapter 25
Managing Planned Outages

25-2

Fri Jun 16 08:21:06 UTC 2023 - Begin Role Reversal
Fri Jun 16 08:22:27 UTC 2023 - End Role Reversal
Fri Jun 16 08:22:27 UTC 2023 - Begin Start GG gghubfs
Fri Jun 16 08:23:15 UTC 2023 - End Start GG gghubfs

As the grid OS user on the current new primary file system GGhub node, check the status of
the Oracle GoldenGate deployment:

[grid@gghub_stby1]$ agctl status goldengate

Goldengate instance 'gghub1' is running on gghub_stby1

Managing Unplanned Outages
Expected Impact with Unplanned Outages

When an unplanned outage occurs on either the primary or standby GGHub clusters, there
are some instructions to ensure the continuous operation of GoldenGate. Use the following
GGHUB failure use cases to guide you in the event of an unplanned outage of the primary
and standby GGHUB systems.

Use case #1 – Standby Hub Failure or Primary GGHub Cannot Communicate with the
Standby GGHub

If the primary GGhub cannot communicate with the standby GGhub, the following messages
will be output into the primary CRS trace file (crsd_scriptagent_grid.trc) on the active cluster
node:

2023-06-21 12:06:59.506 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] Executing action script: /u01/oracle/scripts/acfs_primary.scr[check]
2023-06-21 12:07:05.666 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] WARNING: STANDBY not accessible (attempt 1 of 3))
2023-06-21 12:07:18.683 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] WARNING: STANDBY not accessible (attempt 2 of 3))
2023-06-21 12:07:31.751 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] WARNING: STANDBY not accessible (attempt 3 of 3))
2023-06-21 12:07:31.751 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] WARNING: Problem with STANDBY file system (error: 222)

At this time, the standby file system is no longer receiving the primary file system changes.
The primary file system and Oracle GoldenGate will continue to function unimpeded.

Use the following action plan with this scenario.

• Check the standby file system, using the command ‘acfsutil repl util verifystandby /mnt/
acfs_gg –v’ to determine why the standby hub is inaccessible.

• After fixing the cause of the communication errors, the standby will automaitically catch
up applying the outstanding primary file system changes. The warning messages will no
longer be reported into the CRS trace file, being replaced with the following message:

2023-06-21 12:15:01.720 :CLSDYNAM:1427187456: [acfs_primary]{1:8532:12141}
[check] SUCCESS: STANDBY file system /mnt/acfs_gg is ONLINE

Chapter 25
Managing Unplanned Outages

25-3

Use case #2 – Primary GGHub Failure or Standby GGHub Cannot Communicate
with the Primary GGHub

If the standby GGhub cannot communicate with the primary GGhub, the the following
messages will be output into the standby CRS trace file (crsd_scriptagent_grid.trc) on
the active cluster node:

2023-06-21 12:24:03.823 :CLSDYNAM:4156544768: [acfs_standby]
{1:10141:2} [check] Executing action script: /u01/oracle/scripts/
acfs_standby.scr[check]
2023-06-21 12:24:06.928 :CLSDYNAM:4156544768: [acfs_standby]
{1:10141:2} [check] WARNING: PRIMARY not accessible (attempt 1 of 3)
2023-06-21 12:24:19.945 :CLSDYNAM:4156544768: [acfs_standby]
{1:10141:2} [check] WARNING: PRIMARY not accessible (attempt 2 of 3)
2023-06-21 12:24:32.962 :CLSDYNAM:4156544768: [acfs_standby]
{1:10141:2} [check] WARNING: PRIMARY not accessible (attempt 3 of 3)
2023-06-21 12:24:32.962 :CLSDYNAM:4156544768: [acfs_standby]
{1:10141:2} [check] WARNING: Problem with PRIMARY file system (error:
222)

At this time, it is unlikely that the standby file system is receiving file system changes
from the primary file system.

Use the following action plan with this scenario.

• Check the primary file system, using the command ‘acfsutil repl util
verifyprimary /mnt/acfs_gg -v’ to determine why the primary hub is inaccessible.

• If the primary file system cluster is down and cannot be restarted, issue an ACFS
failover on the standby GGhub:

[grid@gghub_stby1]$ /sbin/acfsutil repl failover /mnt/
acfs_gg # Specify the correct mount point

[grid@gghub_stby1]$ acfsutil repl info -c -v /mnt/acfs_gg |egrep
'Site:|Primary status|Background Resources:'

Site: Primary
Primary status: Running
Background Resources: Active

• Run the following commands to prepare the acfs_primary resource to start on the
new primary hub, and then restart GoldenGate:

[grid@gghub_stby1]$ echo "RESTART" > /mnt/acfs_gg/status/
acfs_primary

[grid@gghub_stby1]$ agctl start goldengate
<instance_name> # Specify the GoldenGate instance name

[grid@gghub_stby1]$ agctl status goldengate

Goldengate instance '<instance_name>' is running on gghubstby-node1

Chapter 25
Managing Unplanned Outages

25-4

• When the old primary file system comes back online, if connectivity is resumed between
the new primary and old primary, the old primary file system will automatically convert to
the standby.

• If the old primary file system comes back online, but connectivity cannot be established
between the primary and standby file systems the acfs_primary resource will detect that
node had crashed, and because connectivity to the standby cannot be confirmed,
GoldenGate will not be started. This avoids a ‘split-brain’ where two file systems think
they are both the primary because they cannot commnunicate with each other.

Use case #3 – Double Failure Case: Primary GGHub Failure and Standby GGHub
Connectivity Failure

If the primary GGhub crashes and communication cannot be established with the standby file
system when it comes back online, the following messages will be output into the primary
CRS trace file (crsd_scriptagent_grid.trc) on the active cluster node:

2023-06-21 17:08:52.621:[acfs_primary]{1:40360:36312} [start] WARNING:
PRIMARY file system /mnt/acfs_gg previously crashed
2023-06-21 17:08:55.678:[acfs_primary]{1:40360:36312} [start] WARNING:
STANDBY not accessible - disabling acfs_primary

If an attempt is made to manually restart the primary file system, an additional message will
be output into the CRS trace file:

2023-06-21 17:25:54.224:[acfs_primary]{1:40360:37687} [start] WARNING:
 PRIMARY /mnt/acfs_gg disabled to prevent split brain

Use the following action plan with this scenario.

• Check the standby file system, using the command ‘acfsutil repl util verifystandby /mnt/
acfs_gg -v’ to determine why the standby hub is inaccessible.

• If communication with the the standby file system can re-established, restart GoldenGate
on the primary hub:

[grid@gghub_prim1]$ agctl start goldengate <instance_name> # Specify the
GoldenGate instance name

[grid@gghub_prim1]$ agctl status goldengate

Goldengate instance '<instance_name>' is running on gghub_prim1

• If communication with the standby file system cannot be re-established, use the following
commands to restart GoldenGate on the primary hub:

[grid@gghub_prim1]$ echo "RESTART" > /mnt/acfs_gg/status/acfs_primary

[grid@gghub_prim1]$ agctl start goldengate <instance_name> #
Specify the GoldenGate instance name

[grid@gghub_prim1]$ agctl status goldengate

Goldengate instance '<instance_name>' is running on gghub_prim1

Chapter 25
Managing Unplanned Outages

25-5

• When communication with the standby file system is restored, ACFS Replication
will continue to replicate primary file system changes.

Chapter 25
Managing Unplanned Outages

25-6

26
Troubleshooting Oracle GoldenGate

Topics:

• Troubleshooting MAA GoldenGate Hub

• Troubleshooting Oracle GoldenGate on Oracle RAC

Troubleshooting MAA GoldenGate Hub

Troubleshooting ACFS Replication

The health of ACFS replication is determined by the acfsutil repl util verifyprimary/
verifystandby commands. These commands are called by the example CRS action scripts
acfs_primary.scr and acfs_standby.scr, but they are also implicitly called during a file system
role transition.

Both commands will return a value of ‘0’ if there are no problems detected. If a non-zero
value is returned, run the same command with verbose flag to see comprehensive output of
the verification tests.

As the grid user on the standby GGHub system, verify the ACFS replication with the primary
GGHub:

[grid@gghub_stby1]$ acfsutil repl util verifyprimary /mnt/acfs_gg -v

- Attempting to ping clust1-vip1
- ping successful
- Attempting to ssh
 '/usr/bin/ssh -o BatchMode=true -o Ciphers=aes128-ctr -o
ConnectTimeout=3 -x oracle@clust1-vip1 true 2>&1'
- ssh output: Host key verification failed.
- ssh output: Host key verification failed.
- ssh attempt failed, ret=255
verifyprimary return code: 255

The errors reported by the verify command, Host key verification failed, clearly showing
why it failed. In this example, there is a problem with the ssh configuration between the
standby and the primary file system GGHubs. Once the problem has been resolved, rerun
the verify commands to ensure there are no further problems.

After a failover has completed, it is recommended to check the acfsutil trace files for the
reason behind the failover. The acfsutil trace files are located in the CRS trace file directory,
which defaults to /u01/app/grid/diag/crs/`hostname`/crs/trace/
crsd_scriptagent_grid.trc.

26-1

Below are some common failures that can occur with incorrect ACFS replication
configuration.

SSH daemon is shutdown or not configured to run on the VIP

When using an application VIP on the ACFS primary and standby GGHubs, the ssh
daemon must be configured to listen for incoming connections on the VIP address. If
this configuration is not done, or the ssh daemon is not running on either of the current
primary/standby hosts the verifyprimary or verifystandby commands will fail with the
following error.

As the grid user on the primary GGHub system, verify the ACFS recplication with the
standby GGHub:

[grid@gghub_prim1]$ acfsutil repl util verifystandby /mnt/acfs_gg -v

- Attempting to ping gghubstby.goldengate.com
- ping successful
- Attempting to ssh
 '/usr/bin/ssh -o BatchMode=true -o Ciphers=aes128-ctr -o
ConnectTimeout=3 -x oracle@gghub_stby-avip true 2>&1'

- ssh output: ssh: connect to host gghub_stby1 port 22: Connection
refused
- ssh output: ssh: connect to host gghub_stby2 port 22: Connection
refused

- ssh attempt failed, ret=255
verifystandby return code: 255

As the grid user on the standby GGHub system, check that the resource application
VIP and sshd_restart are running and restart them if not:

[grid@gghub_stby1 ~]$ crsctl stat res -w "TYPE co app.appviptypex2"

NAME=gghubstby
TYPE=app.appviptypex2.type
TARGET=OFFLINE
STATE=OFFLINE

[grid@gghub_stby1 ~]$ crsctl start res gghubstby

CRS-2672: Attempting to start 'gghubstby' on 'gghub_stby1'
CRS-2676: Start of 'gghubstby' on 'gghub_stby1' succeeded
CRS-2672: Attempting to start 'sshd_restart' on 'gghub_stby1'
CRS-2676: Start of 'sshd_restart' on 'gghub_stby1' succeeded

Check that acfsutil repl verifystandby/verifyprimary returns a result of ‘0’ from
both the primary and standby host.

Primary ACFS background resources are not running

1. The primary or standby ACFS servers are not accessible

2. ACFS Replication ssh user problem

Chapter 26
Troubleshooting MAA GoldenGate Hub

26-2

3. SSH Host key verification failed

Troubleshooting Oracle GoldenGate

There may be occasions when GoldenGate processes are not successfully started on an
Oracle RAC node. There are number of files generated by GoldenGate, XAG, and CRS that
should be reviewed to determine the cause of the problem.

Below is a list of important log and trace files, along with their example locations and some
example output.

XAG log file

Location: <XAG installation directory>/log/<hostname>

Example location: /u01/app/grid/xag/log/`hostname`

File name: agctl_goldengate_grid.trc

Contains all commands executed with agctl along with the output from the commands,
including those that CRS executes.

2022-04-18 11:52:21: stop resource success
2022-04-18 11:52:38: agctl start goldengate <instance_name>
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl status
res xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl status
res xag.<INSTANCE_NAME>.goldengate -f
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl start
resource xag.<INSTANCE_NAME>.goldengate -f
2022-04-18 11:52:45: Command output:
> CRS-2672: Attempting to start 'xag.<INSTANCE_NAME>.goldengate' on 'exadb-
node1'
> CRS-2676: Start of 'xag.<INSTANCE_NAME>.goldengate' on 'exadb-node1'
succeeded
>End Command output
2022-04-18 11:52:45: start resource success

XAG GoldenGate instance trace file

Location: <XAG installation directory>/log/<hostname>

Example location: /u01/app/grid/xag/log/`hostname`

File name: <GoldenGate_instance_name>_agent_goldengate.trc

It contains the output from the commands executed by agctl, the environment variables used,
and any debug output enabled for the underlying commands.

2022-04-18 12:14:46: Exported ORACLE_SID ggdg1
2022-04-18 12:14:46: Exported GGS_HOME /u01/oracle/goldengate/gg21c_MS
2022-04-18 12:14:46: Exported OGG_CONF_HOME /mnt/dbfs/goldengate/deployments/
ggsm01/etc/conf
2022-04-18 12:14:46: Exported LD_LIBRARY_PATH
/u01/oracle/goldengate/gg21c_MS:/u01/app/19.0.0.0/grid/lib:/etc/
ORCLcluster/lib

Chapter 26
Troubleshooting MAA GoldenGate Hub

26-3

2022-04-18 12:14:46: Exported LD_LIBRARY_PATH_64 /u01/oracle/
goldengate/gg21c_MS
2022-04-18 12:14:46: Exported LIBPATH /u01/oracle/goldengate/gg21c_MS
2022-04-18 12:14:46: ogg input = {"oggHome":"/u01/oracle/goldengate/
gg21c_MS","serviceManager":{"oggConfHome":"/mnt/dbfs/goldengate/
deployments/ggsm01/etc/
conf","portNumber":9100},"username":"<username>","credential":"*****"}
2022-04-18 12:14:46: About to exec /u01/oracle/goldengate/gg21c_MS/bin/
XAGTask HealthCheck
2022-04-18 12:14:47: XAGTask retcode = 0

CRS trace file

Location: /u01/app/grid/diag/crs/<hostname>/crs/trace

Example location: /u01/app/grid/diag/crs/`hostname`/crs/trace

File name: crsd_scriptagent_oracle.trc

Contains the output created by any CRS resource action scripts, like XAG or
dbfs_mount. This trace file is crucial to determining why DBFS or GoldenGate did not
start on a RAC node.

2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063} Agent
received the message: RESOURCE_START[xag.<INSTANCE_NAME>.goldengate 1
1] ID 4098:4125749
2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063} Preparing
START command for: xag.<INSTANCE_NAME>.goldengate 1 1
2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063}
xag.<INSTANCE_NAME>.goldengate 1 1 state changed from: OFFLINE to:
STARTING
2022-04-18 11:52:38.634 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] Executing
action script: /u01/oracle/XAG_MA/bin/aggoldengatescaas[start]
2022-04-18 11:52:38.786 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] GG agent
running command 'start' on xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:42.140 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] ServiceManager
fork pid = 265747
2022-04-18 11:52:42.140 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] Waiting
for /mnt/dbfs/goldengate/deployments/ggsm01/var/run/ServiceManager.pid
2022-04-18 11:52:42.140 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] Waiting for SM
to start
2022-04-18 11:52:42.140 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] ServiceManager
PID = 265749
2022-04-18 11:52:43.643 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] XAGTask
retcode = 0
2022-04-18 11:52:43.643 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] XAG
HealthCheck after start returned 0
2022-04-18 11:52:43.643 : AGFW:558036736: {1:30281:59063} Command:

Chapter 26
Troubleshooting MAA GoldenGate Hub

26-4

start for resource: xag.<INSTANCE_NAME>.goldengate 1 1 completed with
status: SUCCESS
2022-04-18 11:52:43.643 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [check] Executing action script: /u01/oracle/XAG_MA/bin/
aggoldengatescaas[check]
2022-04-18 11:52:43.644 : AGFW:549631744: {1:30281:59063} Agent sending
reply for: RESOURCE_START[xag.<INSTANCE_NAME>.goldengate 1 1] ID 4098:4125749
2022-04-18 11:52:43.795 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [check] GG agent running command 'check' on
xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:45.548 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [check] XAGTask retcode = 0
2022-04-18 11:52:45.548 : AGFW:549631744: {1:30281:59063}
xag.<INSTANCE_NAME>.goldengate 1 1 state changed from: STARTING to: ONLINE

GoldenGate deployment log files

Location: <Goldengate_deployment_directory>/<instance_name>/var/log

Example location: /mnt/dbfs/goldengate/deployments/<instance_name>/var/log

File names: adminsrvr.log, recvsrvr.log, pmsrvr.log, distsrvr.log

Contains the output of start, stop, and status checks of the Oracle GoldenGate deployment
processes (Administration Server, Distribution Server, Receiver Server, and Performance
Metrics Server).

2022-04-18T11:52:42.645-0400 INFO | Setting deploymentName to
'<instance_name>'. (main)
2022-04-18T11:52:42.665-0400 INFO | Read SharedContext from store for length
19 of file '/mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/conf/
adminsrvr-resources.dat'. (main)
2022-04-18T11:52:42.723-0400 INFO | XAG Integration enabled (main)
2022-04-18T11:52:42.723-0400 INFO | Configuring security. (main)
2022-04-18T11:52:42.723-0400 INFO | Configuring user authorization secure
store path as '/mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/
credential/secureStore/'. (main)
2022-04-18T11:52:42.731-0400 INFO | Configuring user authorization as
ENABLED. (main)
2022-04-18T11:52:42.749-0400 INFO | Set network configuration. (main)
2022-04-18T11:52:42.749-0400 INFO | Asynchronous operations are enabled with
default synchronous wait time of 30 seconds (main)
2022-04-18T11:52:42.749-0400 INFO | HttpServer configuration complete. (main)
2022-04-18T11:52:42.805-0400 INFO | SIGHUP handler installed. (main)
2022-04-18T11:52:42.813-0400 INFO | SIGINT handler installed. (main)
2022-04-18T11:52:42.815-0400 INFO | SIGTERM handler installed. (main)
2022-04-18T11:52:42.817-0400 WARN | Security is configured as 'disabled'.
(main)
2022-04-18T11:52:42.818-0400 INFO | Starting service listener... (main)
2022-04-18T11:52:42.819-0400 INFO | Mapped 'ALL' interface to address
'ANY:9101' with default IPV4/IPV6 options identified by 'exadb-
node1.domain'. (main)
2022-04-18T11:52:42.821-0400 INFO | Captured 1 interface host names: 'exadb-
node1.domain' (main)
2022-04-18T11:52:42.824-0400 INFO | The Network ipACL specification is
empty. Accepting ANY address on ALL interfaces. (main)

Chapter 26
Troubleshooting MAA GoldenGate Hub

26-5

2022-04-18T11:52:42.826-0400 INFO | Server started at
2022-04-18T11:52:42.827-05:00 (2022-04-18T15:52:42.827Z GMT) (main)

GoldenGate report files

Location: <Goldengate_deployment_directory>/<instance_name>/var/lib/report

Example location: /mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/report

The GoldenGate report files contain important information, warning messages, and
errors for all GoldenGate processes, including the Manager processes. If any of the
GoldenGate processes fail to start or abend when running, the process report file will
contain important information that can be used to determine the cause of the failure.

2022-04-23 13:01:50 ERROR OGG-00446 Unable to lock file " /mnt/
acfs_gg/deployments/<instance_name>/var/lib/checkpt/EXT_1A.cpe" (error
95, Operation not supported).
2022-04-23 13:01:50 ERROR OGG-01668 PROCESS ABENDING.

Troubleshooting Oracle GoldenGate on Oracle RAC
There may be occasions when Oracle GoldenGate processes are not successfully
started on an Oracle RAC node. Several files generated by Oracle GoldenGate, XAG,
and CRS should be reviewed to determine the cause of the problem.

Below is a list of important log and trace files, their example locations, and some
examples of output.

XAG log file

Location: <XAG installation directory>/log/<hostname>

Example location: /u01/app/grid/xag/log/`hostname`

File name: agctl_goldengate_grid.trc

Contains all commands executed with agctl along with the output from the commands,
including those that CRS executes.

Example:

2022-04-18 11:52:21: stop resource success
2022-04-18 11:52:38: agctl start goldengate <instance_name>
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl
status res xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl
status res xag.<INSTANCE_NAME>.goldengate -f
2022-04-18 11:52:38: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl
start resource xag.<INSTANCE_NAME>.goldengate -f
2022-04-18 11:52:45: Command output:
> CRS-2672: Attempting to start 'xag.<INSTANCE_NAME>.goldengate' on
'exadb-node1'
> CRS-2676: Start of 'xag.<INSTANCE_NAME>.goldengate' on 'exadb-
node1' succeeded

Chapter 26
Troubleshooting Oracle GoldenGate on Oracle RAC

26-6

>End Command output
2022-04-18 11:52:45: start resource success

XAG GoldenGate instance trace file

Location: <XAG installation directory>/log/<hostname>

Example location: /u01/app/grid/xag/log/`hostname`

File name: <GoldenGate_instance_name>_agent_goldengate.trc

It contains the output from the commands executed by agctl, the environment variables used,
and any debug output enabled for the underlying commands.

Example:

2022-04-18 12:14:46: Exported ORACLE_SID ggdg1
2022-04-18 12:14:46: Exported GGS_HOME /u01/oracle/goldengate/gg21c_MS
2022-04-18 12:14:46: Exported OGG_CONF_HOME /mnt/dbfs/goldengate/deployments/
ggsm01/etc/conf
2022-04-18 12:14:46: Exported LD_LIBRARY_PATH
/u01/oracle/goldengate/gg21c_MS:/u01/app/19.0.0.0/grid/lib:/etc/
ORCLcluster/lib
2022-04-18 12:14:46: Exported LD_LIBRARY_PATH_64 /u01/oracle/goldengate/
gg21c_MS
2022-04-18 12:14:46: Exported LIBPATH /u01/oracle/goldengate/gg21c_MS
2022-04-18 12:14:46: ogg input = {"oggHome":"/u01/oracle/goldengate/
gg21c_MS","serviceManager":{"oggConfHome":"/mnt/dbfs/goldengate/deployments/
ggsm01/etc/conf","portNumber":9100},"username":"admin","credential":"xyz"}
2022-04-18 12:14:46: About to exec /u01/oracle/goldengate/gg21c_MS/bin/
XAGTask HealthCheck
2022-04-18 12:14:47: XAGTask retcode = 0

CRS trace file

Location: /u01/app/grid/diag/crs/<hostname>/crs/trace

Example location: /u01/app/grid/diag/crs/`hostname`/crs/trace

File name: crsd_scriptagent_oracle.trc

Contains the output created by any CRS resource action scripts, like XAG or dbfs_mount.
This trace file is crucial to determining why DBFS or GoldenGate did not start on a RAC
node.

Example:

2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063} Agent received
the message: RESOURCE_START[xag.<INSTANCE_NAME>.goldengate 1 1] ID
4098:4125749
2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063} Preparing START
command for: xag.<INSTANCE_NAME>.goldengate 1 1
2022-04-18 11:52:38.634 : AGFW:549631744: {1:30281:59063}
xag.<INSTANCE_NAME>.goldengate 1 1 state changed from: OFFLINE to: STARTING
2022-04-18 11:52:38.634 :CLSDYNAM:558036736: [xag.<INSTANCE_NAME>.goldengate]
{1:30281:59063} [start] Executing action script: /u01/oracle/XAG_MA/bin/
aggoldengatescaas[start]

Chapter 26
Troubleshooting Oracle GoldenGate on Oracle RAC

26-7

2022-04-18 11:52:38.786 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] GG agent
running command 'start' on xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:42.140 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] ServiceManager
fork pid = 265747
2022-04-18 11:52:42.140 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] Waiting
for /mnt/dbfs/goldengate/deployments/ggsm01/var/run/ServiceManager.pid
2022-04-18 11:52:42.140 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] Waiting for SM
to start
2022-04-18 11:52:42.140 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] ServiceManager
PID = 265749
2022-04-18 11:52:43.643 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] XAGTask
retcode = 0
2022-04-18 11:52:43.643 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [start] XAG
HealthCheck after start returned 0
2022-04-18 11:52:43.643 : AGFW:558036736: {1:30281:59063} Command:
start for resource: xag.<INSTANCE_NAME>.goldengate 1 1 completed with
status: SUCCESS
2022-04-18 11:52:43.643 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [check] Executing
action script: /u01/oracle/XAG_MA/bin/aggoldengatescaas[check]
2022-04-18 11:52:43.644 : AGFW:549631744: {1:30281:59063} Agent
sending reply for: RESOURCE_START[xag.<INSTANCE_NAME>.goldengate 1 1]
ID 4098:4125749
2022-04-18 11:52:43.795 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [check] GG agent
running command 'check' on xag.<INSTANCE_NAME>.goldengate
2022-04-18 11:52:45.548 :CLSDYNAM:558036736:
[xag.<INSTANCE_NAME>.goldengate]{1:30281:59063} [check] XAGTask
retcode = 0
2022-04-18 11:52:45.548 : AGFW:549631744: {1:30281:59063}
xag.<INSTANCE_NAME>.goldengate 1 1 state changed from: STARTING to:
ONLINE

GoldenGate deployment log files

Location: <Goldengate_deployment_directory>/<instance_name>/var/log

Example location: /mnt/dbfs/goldengate/deployments/<instance_name>/var/log

File names: adminsrvr.log, recvsrvr.log, pmsrvr.log, distsrvr.log

Contains the output of start, stop, and status checks of the Oracle GoldenGate
deployment processes (Administration Server, Distribution Server, Receiver Server,
and Performance Metrics Server).

Example:

2022-04-18T11:52:42.645-0400 INFO | Setting deploymentName to
'<instance_name>'. (main)

Chapter 26
Troubleshooting Oracle GoldenGate on Oracle RAC

26-8

2022-04-18T11:52:42.665-0400 INFO | Read SharedContext from store for length
19 of file '/mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/conf/
adminsrvr-resources.dat'. (main)
2022-04-18T11:52:42.723-0400 INFO | XAG Integration enabled (main)
2022-04-18T11:52:42.723-0400 INFO | Configuring security. (main)
2022-04-18T11:52:42.723-0400 INFO | Configuring user authorization secure
store path as '/mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/
credential/secureStore/'. (main)
2022-04-18T11:52:42.731-0400 INFO | Configuring user authorization as
ENABLED. (main)
2022-04-18T11:52:42.749-0400 INFO | Set network configuration. (main)
2022-04-18T11:52:42.749-0400 INFO | Asynchronous operations are enabled with
default synchronous wait time of 30 seconds (main)
2022-04-18T11:52:42.749-0400 INFO | HttpServer configuration complete. (main)
2022-04-18T11:52:42.805-0400 INFO | SIGHUP handler installed. (main)
2022-04-18T11:52:42.813-0400 INFO | SIGINT handler installed. (main)
2022-04-18T11:52:42.815-0400 INFO | SIGTERM handler installed. (main)
2022-04-18T11:52:42.817-0400 WARN | Security is configured as 'disabled'.
(main)
2022-04-18T11:52:42.818-0400 INFO | Starting service listener... (main)
2022-04-18T11:52:42.819-0400 INFO | Mapped 'ALL' interface to address
'ANY:9101' with default IPV4/IPV6 options identified by 'exadb-
node1.domain'. (main)
2022-04-18T11:52:42.821-0400 INFO | Captured 1 interface host names: 'exadb-
node1.domain' (main)
2022-04-18T11:52:42.824-0400 INFO | The Network ipACL specification is
empty. Accepting ANY address on ALL interfaces. (main)
2022-04-18T11:52:42.826-0400 INFO | Server started at
2022-04-18T11:52:42.827-05:00 (2022-04-18T15:52:42.827Z GMT) (main)

GoldenGate report files

Location: <Goldengate_deployment_directory>/<instance_name>/var/lib/report

Example location: /mnt/dbfs/goldengate/deployments/<instance_name>/var/lib/report

The GoldenGate report files contain important information, warning messages, and errors for
all GoldenGate processes, including the Manager processes. If any of the GoldenGate
processes fail to start or abend when running, the process report file will contain important
information that can be used to determine the cause of the failure.

Example errors from an Extract report file:

2022-04-23 13:01:50 ERROR OGG-00446 Unable to lock file " /mnt/acfs_gg/
deployments/<instance_name>/var/lib/checkpt/EXT_1A.cpe" (error 95, Operation
not supported).
2022-04-23 13:01:50 ERROR OGG-01668 PROCESS ABENDING.

Chapter 26
Troubleshooting Oracle GoldenGate on Oracle RAC

26-9

Example Configuration Problems
Below are some configuration problems that can be encountered with GoldenGate in a
RAC environment and how to diagnose and resolve them.

Incorrect parameter settings in the mount-dbfs.conf file

When XAG fails to mount DBFS, the failure will be reported either on the command
line (if you are running the manual agctl command) or in the XAG log file:

$ agctl start goldengate <instance_name> --node exadb-node1

CRS-2672: Attempting to start 'dbfs_mount' on 'exadb-node1'
CRS-2674: Start of 'dbfs_mount' on 'exadb-node1' failed
CRS-2679: Attempting to clean 'dbfs_mount' on 'exadb-node1'
CRS-2681: Clean of 'dbfs_mount' on 'exadb-node1' succeeded
CRS-4000: Command Start failed, or completed with errors.

The XAG log file (agctl_goldengate_grid.trc) has the advantage that it shows
timestamps that can be used when looking at other log or trace files:

2022-04-19 15:32:16: executing cmd: /u01/app/19.0.0.0/grid/bin/crsctl
start resource xag.<INSTANCE_NAME>.goldengate -f -n exadb-node1
2022-04-19 15:32:19: Command output:
> CRS-2672: Attempting to start 'dbfs_mount' on 'exadb-node1'
> CRS-2674: Start of 'dbfs_mount' on 'exadb-node1' failed
> CRS-2679: Attempting to clean 'dbfs_mount' on 'exadb-node1'
> CRS-2681: Clean of 'dbfs_mount' on 'exadb-node1' succeeded
> CRS-4000: Command Start failed, or completed with errors.
>End Command output
2022-04-19 15:32:19: start resource failed rc=1

Next, check the CRS trace file (crsd_scriptagent_oracle.trc), which shows why DBFS
failed to mount. Below are some example errors caused by incorrect parameter
settings in the mount-dbfs.conf file.

• Incorrect DBNAME

2022-04-19 15:32:16.679 : AGFW:1190405888: {1:30281:17383}
dbfs_mount
 1 1 state changed from: UNKNOWN to: STARTING
2022-04-19 15:32:16.680 :CLSDYNAM:1192507136: [dbfs_mount]
{1:30281:17383} [start]
 Executing action script: /u01/oracle/scripts/mount-dbfs.sh[start]
2022-04-19 15:32:16.732 :CLSDYNAM:1192507136: [dbfs_mount]
{1:30281:17383} [start]
 mount-dbfs.sh mounting DBFS at /mnt/dbfs from database ggdg
2022-04-19 15:32:17.883 :CLSDYNAM:1192507136: [dbfs_mount]
{1:30281:17383} [start]
 ORACLE_SID is
2022-04-19 15:32:17.883 :CLSDYNAM:1192507136: [dbfs_mount]
{1:30281:17383} [start]
 No running ORACLE_SID available on this host, exiting

Chapter 26
Troubleshooting Oracle GoldenGate on Oracle RAC

26-10

2022-04-19 15:32:17.883 : AGFW:1192507136: {1:30281:17383} Command:
start for
 resource: dbfs_mount 1 1 completed with invalid status: 2

• Incorrect MOUNT_POINT

2022-04-19 16:45:14.534 : AGFW:1734321920: {1:30281:17604} dbfs_mount
 1 1 state changed from: UNKNOWN to: STARTING
2022-04-19 16:45:14.535 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 Executing action script: /u01/oracle/scripts/mount-dbfs.sh[start]
2022-04-19 16:45:14.586 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 mount-dbfs.sh mounting DBFS at /mnt/dbfs from database ggdgs
2022-04-19 16:45:15.638 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 ORACLE_SID is ggdg1
2022-04-19 16:45:15.738 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 spawning dbfs_client command using SID ggdg1
2022-04-19 16:45:20.745 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 fuse: bad mount point `/mnt/dbfs': No such file or directory
2022-04-19 16:45:21.747 :CLSDYNAM:1736423168: [dbfs_mount]{1:30281:17604}
[start]
 Start - OFFLINE
2022-04-19 16:45:21.747 : AGFW:1736423168: {1:30281:17604} Command:
start for
 resource: dbfs_mount 1 1 completed with status: FAIL

• Incorrect DBFS_USER or DBFS_PASSWD

2022-04-19 16:47:47.855 : AGFW:1384478464: {1:30281:17671} dbfs_mount
 1 1 state changed from: UNKNOWN to: STARTING
2022-04-19 16:47:47.856 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 Executing action script: /u01/oracle/scripts/mount-dbfs.sh[start]
2022-04-19 16:47:47.908 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 mount-dbfs.sh mounting DBFS at /mnt/dbfs from database ggdgs
2022-04-19 16:47:48.959 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 ORACLE_SID is ggdg1
2022-04-19 16:47:49.010 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 spawning dbfs_client command using SID ggdg1
2022-04-19 16:47:55.118 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
 Fail to connect to database server. Error: ORA-01017: invalid username/
password;
 logon denied
2022-04-19 16:47:55.118 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]
2022-04-19 16:47:56.219 :CLSDYNAM:1386579712: [dbfs_mount]{1:30281:17671}
[start]

Chapter 26
Troubleshooting Oracle GoldenGate on Oracle RAC

26-11

 Start - OFFLINE
2022-04-19 16:47:56.220 : AGFW:1386579712: {1:30281:17671}
Command: start for
 resource: dbfs_mount 1 1 completed with status: FAIL

• Incorrect ORACLE_HOME

2022-04-19 16:50:38.952 : AGFW:567502592: {1:30281:17739}
dbfs_mount
 1 1 state changed from: UNKNOWN to: STARTING
2022-04-19 16:50:38.953 :CLSDYNAM:569603840: [dbfs_mount]
{1:30281:17739} [start]
 Executing action script: /u01/oracle/scripts/mount-dbfs.sh[start]
2022-04-19 16:50:39.004 :CLSDYNAM:569603840: [dbfs_mount]
{1:30281:17739} [start]
 mount-dbfs.sh mounting DBFS at /mnt/dbfs from database ggdgs
2022-04-19 16:50:39.004 :CLSDYNAM:569603840: [dbfs_mount]
{1:30281:17739} [start]
 /u01/oracle/scripts/mount-dbfs.sh: line 136:
 /u01/app/oracle/product/19.0.0.0/rdbms/bin/srvctl: No such file or
directory
2022-04-19 16:50:39.004 :CLSDYNAM:569603840: [dbfs_mount]
{1:30281:17739} [start]
 /u01/oracle/scripts/mount-dbfs.sh: line 139:
 /u01/app/oracle/product/19.0.0.0/rdbms/bin/srvctl: No such file or
directory
2022-04-19 16:50:39.004 :CLSDYNAM:569603840: [dbfs_mount]
{1:30281:17739} [start]
 ORACLE_SID is
2022-04-19 16:50:39.004 :CLSDYNAM:569603840: [dbfs_mount]
{1:30281:17739} [start]
 No running ORACLE_SID available on this host, exiting
2022-04-19 16:50:39.004 : AGFW:569603840: {1:30281:17739}
Command: start for
 resource: dbfs_mount 1 1 completed with invalid status: 2

To resolve these configuration issues, set the correct parameter values in mount-
dbfs.conf.

Problems with file locking on DBFS

If using Oracle Database 12c Release 2 (12.2) and the nolock DBFS mount option is
not used, there can be problems with GoldenGate processes trying to lock checkpoint
or trail files. The same problem will be encountered if using Oracle Database 11g
Release 2 (11.2.0.4) or 12c Release 1 (12.1) with a patch for bug 22646150 applied.
This patch changes how DBFS handles file locking to match Oracle Database 12c
Release 2 (12.2). To add the nolock DBFS mount option, a patch for bug 27056711
must be applied to the database. If the patch for bug 22646150 has not been applied
to the database, the patch for bug 27056711 and the nolock mount option is not
required.

Below is an example of diagnosing a GoldenGate Microservices Architecture locking
problem.

Chapter 26
Troubleshooting Oracle GoldenGate on Oracle RAC

26-12

When starting a deployment with XAG, one or more processes may not start due to detecting
a locking conflict on one or more files. This will often occur after a RAC node failover where
the deployment did not get a chance to shut down cleanly.

When one of the deployment server processes fails to start (Administration Server,
Performance Metrics Server, Distribution Server, Receiver Server, or Service Manager),
check the log file for the particular server located in the deployment var/log directory.

For example, the log file /mnt/dbfs/goldengate/deployments/<INSTANCE_NAME>/var/log/
pmsrvr.log shows the following error on startup:

2022-04-11T12:41:57.619-0700 ERROR| SecureStore failed on open after
 retrying due to extended file lock. (main)
2022-04-11T12:41:57.619-0700 ERROR| SecureStore failed to close (28771).
(main)
2022-04-11T12:41:57.619-0700 INFO | Set network configuration. (main)
2022-04-11T12:41:57.619-0700 INFO | Asynchronous operations are enabled with
default
 synchronous wait time of 30 seconds (main)
2022-04-11T12:41:57.619-0700 INFO | HttpServer configuration complete. (main)
2022-04-11T12:42:07.674-0700 ERROR| Unable to lock process file, Error is
[1454]
 - OGG-01454 (main)
2022-04-11T12:42:07.675-0700 ERROR| Another Instance of PM Server is Already
Running
 (main)

An Extract process will report start-up failures in the ER-events.log logfile located in the
deployment log file directory.

For example, /mnt/dbfs/goldengate/deployments/<instance_name>/var/log/ER-events.log
shows the following error:

2022-04-11T00:14:56.845-0700 ERROR OGG-01454 Oracle GoldenGate Capture
for
 Oracle, EXT1.prm: Unable to lock file
 "/mnt/dbfs/goldengate/deployments/<instance_name>/var/run/EXT1.pce" (error
11, Resource
 temporarily unavailable). Lock currently held by process id (PID) 237495.
2022-04-11T00:14:56.861-0700 ERROR OGG-01668 Oracle GoldenGate Capture
for Oracle,
 EXT1.prm: PROCESS ABENDING.

Next, check to ensure the process failing to start up is not running on any of the RAC nodes.

Example:

$ ps -ef|grep EXT1|grep -v grep

Once it has been determined that the process is not running, the deployment must be
shutdown cleanly, the file system unmounted, and the correct DBFS patch applied.

Chapter 26
Troubleshooting Oracle GoldenGate on Oracle RAC

26-13

Example:

$ agctl stop goldengate <INSTANCE_NAME>
$ crsctl stop resource dbfs_mount

Check the DBFS mount options:

$ ps -ef|grep dbfs_client

oracle 204017 1 0 14:37 ?
 00:00:00 /u01/app/oracle/product/19.1.0.0/dbhome_1/bin/
dbfs_client dbfs@dbfs.local
 -o allow_other,failover,direct_io /mnt/dbfs

It is clear the nolock mount option was not used, which leads to the locking errors.

Use the guidelines above to determine if a DBFS patch is required. After which, add
the nolock mount option to the mount-dbfs.conf file on all Oracle RAC nodes that are
part of the deployment.

Example:

MOUNT_OPTIONS=allow_other,direct_io,failover,nolock

Finally, restart the deployment:

$ agctl start goldengate <INSTANCE_NAME>

Chapter 26
Troubleshooting Oracle GoldenGate on Oracle RAC

26-14

Part VI
Oracle Database Cloud Best Practices

• Oracle Maximum Availability Architecture and Oracle Autonomous Database

• Oracle Maximum Availability Architecture in Oracle Exadata Cloud Systems

• Oracle Data Guard Hybrid Cloud Configuration

Oracle Data Guard Hybrid Cloud
Configuration

A hybrid Oracle Data Guard configuration consists of a primary database and one or more
standby databases residing partially on-premises and partially in the cloud. The process
detailed here uses the Oracle Zero Downtime Migration tool to create a cloud standby
database from an existing on-premises primary database.

Zero Downtime Migration streamlines and simplifies the process of creating the standby
database on the cloud, while incorporating MAA best practices

After establishing the cloud standby database as described here, you can perform a role
transition so that the primary database runs in the cloud instead of on-premises.

Benefits Of Hybrid Data Guard in the Oracle Cloud
The following are the primary benefits to using a hybrid Data Guard configuration in the
Oracle Cloud.

• Oracle manages the cloud data center and infrastructure.

• Ability to switch over (planned events) or fail over (unplanned events) production to the
standby database in the cloud during scheduled maintenance or unplanned outages.
Once a failed on-premises database is repaired, it can be synchronized with the current
production database in the cloud. Then, production can be switched back to the on-
premises database.

• Use the same Oracle MAA best practices as the on-premises deployment. Additional
Oracle MAA best practices specific to hybrid Data Guard deployments are specified in
the topics that follow. When configured with MAA practices, a hybrid Data Guard
configuration provides:

– Recovery Time Objective (RTO) of seconds with automatic failover when configured
with Data Guard fast start failover

– Recovery Point Objective (RPO) less than a second for Data Guard with ASYNC
transport

– RPO zero for Data Guard in a SYNC or FAR SYNC configuration

Note:

Data Guard life cycle management operations, such as switchover, failover,
and reinstatement, are manual processes in a hybrid Data Guard
configuration.

MAA Recommendations for using Exadata Cloud for
Disaster Recovery

When deploying Exadata Cloud for Disaster Recovery, Oracle MAA recommends:

• Create a cloud database system target that is symmetric or similar to the on-
premises primary database to ensure performance SLAs can be met after a role
transition. For example, create an Oracle RAC target for an Oracle RAC source,
Exadata for Exadata, and so on.

• Ensure that network bandwidth can handle peak redo rates in addition to existing
network traffic.

My Oracle Support document Assessing and Tuning Network Performance for
Data Guard and RMAN (Doc ID 2064368.1) provides additional network bandwidth
troubleshooting guidance for assessing and tuning network performance for Data
Guard and RMAN.

• Ensure network reliability and security between on-premises and the Cloud
environment.

• Use Oracle Active Data Guard for additional automatic block repair, data
protection, and offloading benefits.

• Use Oracle Transparent Data Encryption (TDE) for both primary and standby
databases.

My Oracle Support document Oracle Database Tablespace Encryption Behavior in
Oracle Cloud (Doc ID 2359020.1) has additional details on TDE behavior in cloud
configurations.

• Automatic cloud backups should be configured after an optional Data Guard role
transition which makes the cloud instance the primary database.

Service Level Requirements
Oracle Data Guard hybrid deployments are user-managed environments. The service
level expectations for availability, data protection, and performance that are practical
for a given configuration and application must be determined by your requirements.

Service levels must be established for each of the following dimensions relevant to
disaster recovery that are applicable to any Data Guard configuration:

• Recovery Time Objective (RTO) describes the maximum acceptable downtime if
an outage occurs. This includes the time required to detect the outage and to fail
over the database and application connections so that service is resumed.

• Recovery Point Objective (RPO) describes the maximum amount of data loss
that can be tolerated. Achieving the desired RPO depends on:

https://support.oracle.com/rs?type=doc&id=2064368.1
https://support.oracle.com/rs?type=doc&id=2064368.1
https://support.oracle.com/rs?type=doc&id=2359020.1
https://support.oracle.com/rs?type=doc&id=2359020.1

– Available bandwidth relative to network volume

– The ability of the network to provide reliable, uninterrupted transmission

– The Data Guard transport method used: asynchronous for near-zero data loss
protection, synchronous for zero data loss protection

• Data Protection - You can configure the most comprehensive block corruption detection,
prevention, and auto-repair with Oracle Active Data Guard and MAA.

• Performance - Database response time may be different after a fail over if not enough
capacity for compute, memory, I/O, and so on, is provisioned at the standby system,
compared to the on-premises production system.

This occurs when administrators intentionally under-configure standby resources to
reduce cost, accepting a reduced service level while in DR mode. MAA best practices
recommend configuring symmetrical capacity on both the primary and standby database
hosts so there is no change in response time after a fail over.

Rapid provisioning available with the cloud facilitates a middle ground where there is less
capacity deployed during steady-state, but the new primary database system is rapidly
scaled-up should a fail over be required.

Note:

The reduced resources during steady state in a rapid provisioning approach could
impact the ability of recovery to keep the standby database current with the primary
database, creating an apply lag and impacting RTO. This approach should only be
considered after thorough testing.

See High Availability and Data Protection – Getting From Requirements to Architecture for
more details about determining RTO and RPO requirements along with other considerations.

See Detecting and Monitoring Data Corruption .

Security Requirements and Considerations
Oracle MAA best practices recommend using Oracle Transparent Data Encryption (TDE) to
encrypt the primary and standby databases to ensure that data is encrypted at-rest.

Using TDE to protect data is an essential part of improving the security of the system;
however, you must be aware of certain considerations when using any encryption solution,
including:

• Additional CPU overhead - Encryption requires additional CPU cycles to calculate
encrypted and decrypted values. TDE, however, is optimized to minimize the overhead
by taking advantage of database caching capabilities and leveraging hardware
acceleration within Exadata. Most TDE users see little performance impact on their
production systems after enabling TDE.

• Lower data compression - Encrypted data compresses poorly because it must reveal
no information about the original plain text data, so any compression applied to data
encrypted with TDE has low compression ratios.

When TDE encryption is used, redo transport compression is not recommended;
however, when TDE is used in conjunction with Oracle Database compression
technologies such as Advanced Compression or Hybrid Columnar Compression,

compression is performed before the encryption occurs, and the benefits of
compression and encryption are both achieved.

• Key management - Encryption is only as strong as the encryption key used and
the loss of the encryption key is tantamount to losing all data protected by that key.

If encryption is enabled on a few databases, keeping track of the key and its life
cycle is relatively easy. As the number of encrypted databases grows, managing
keys becomes an increasingly difficult problem. If you are managing a large
number of encrypted databases, it is recommended that Oracle Key Vault be used
on-premises to store and manage TDE master keys.

Data can be converted during the migration process, but it is recommended that TDE
be enabled before beginning the migration to provide the most secure Oracle Data
Guard environment. A VPN connection or Oracle Net encryption is also required for
inflight encryption for any other database payload that is not encrypted by TDE, such
as data file or redo headers for example. See My Oracle Support document Oracle
Database Tablespace Encryption Behavior in Oracle Cloud (Doc ID 2359020.1) for
more information.

If the on-premises database is not already enabled with TDE, see My Oracle Support
document Primary Note For Transparent Data Encryption (TDE) (Doc ID 1228046.1)
to enable TDE and create wallet files.

If TDE cannot be enabled for the on-premises database, see Encryption of
Tablespaces in an Oracle Data Guard Environment in Oracle Database Advanced
Security Guide for information about decrypting redo operations in hybrid cloud
disaster recovery configurations where the Cloud database is encrypted with TDE and
the on-premises database is not.

Platform, Database, and Network Prerequisites
The following requirements must be met to ensure a successful migration to a Cloud
standby database.

Requirement Type On-Premises Requirements Oracle Cloud Requirements

Operating System Linux, Windows or Solaris X86 (My
Oracle Support Note 413484.1 for
Data Guard cross-platform
compatibility)

Oracle Enterprise Linux (64-bit)

Oracle Database Version* All Oracle releases supported by
Zero Downtime Migration*

See Supported Database Versions
for Migration for details about Oracle
releases and edition support for the
on-premises source database.

Extreme performance / BYOL*

See Supported Database Editions
and Versions for information about
database service options in Oracle
Cloud.

Oracle Database Architecture Oracle RAC or single-instance Oracle RAC or single-instance

Oracle Multitenant For Oracle 12.1 and above, the
primary database must be a
multitenant container database
(CDB)

Multitenant container database
(CDB) or non-CDB

Physical or Virtual Host Physical or Virtual Exadata Virtual

https://support.oracle.com/rs?type=doc&id=2359020.1
https://support.oracle.com/rs?type=doc&id=2359020.1
https://support.oracle.com/rs?type=doc&id=1228046.1
https://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/zero-downtime-migration/21.3/zdmug&id=GUID-13AC85E5-53FF-4D2A-A075-DDB975090CE3
https://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/zero-downtime-migration/21.3/zdmug&id=GUID-13AC85E5-53FF-4D2A-A075-DDB975090CE3
https://docs.oracle.com/en-us/iaas/dbcs/doc/bare-metal-and-virtual-machine-db-systems.html#DBSCB-GUID-AFDF235F-FED1-4FF4-A10D-D067ACD80C9D
https://docs.oracle.com/en-us/iaas/dbcs/doc/bare-metal-and-virtual-machine-db-systems.html#DBSCB-GUID-AFDF235F-FED1-4FF4-A10D-D067ACD80C9D

Requirement Type On-Premises Requirements Oracle Cloud Requirements

Database Size Any size Any size.

For shape limits please consult
Exadata Cloud documentation

TDE Encryption Recommended Mandatory for Cloud databases

* The Oracle Database release on the primary and standby databases must match during
initial instantiation. For database software updates that are standby-first compatible, the
primary and standby database Oracle Home software can be different. See Oracle Patch
Assurance - Data Guard Standby-First Patch Apply (Doc ID 1265700.1).

Cloud Network Prerequisites
Data transfers from on-premises to Oracle Cloud Infrastructure (OCI) use the public network,
VPN, and/or the high bandwidth option provided by Oracle FastConnect.

In an Oracle Data Guard configuration, the primary and standby databases must be able to
communicate bi-directionally. This requires additional network configuration to allow access to
ports between the systems.

Note:

Network connectivity configuration is not required for Oracle Exadata Database
Service on Cloud@Customer because it is deployed on the on-premises network.
Skip to On-Premises Prerequisites if using ExaDB-C@C.

Secure Connectivity

For Oracle Exadata Database Service (not required for ExaDB-C@C) there are two options
to privately connect the virtual cloud network to the on-premises network: FastConnect and
IPSec VPN. Both methods require a Dynamic Routing Gateway (DRG) to connect to the
private Virtual Cloud Network (VCN).

See Access to Your On-Premises Network for details about creating a DRG.

• OCI FastConnect - Provides an easy way to create a dedicated, private connection
between the data center and OCI. FastConnect provides higher bandwidth options and a
more reliable and consistent networking experience compared to internet-based
connections. See FastConnect Overview. (link https://docs.oracle.com/en-us/iaas/
Content/Network/Concepts/fastconnectoverview.htm) for details.

• IPSec VPN - Internet Protocol Security or IP Security (IPSec) is a protocol suite that
encrypts the entire IP traffic before the packets are transferred from the source to the
destination. See Site-to-Site VPN Overview for an overview of IPSec in OCI.

Public Internet Connectivity

Connectivity between OCI and on-premises can also be achieved using the public internet.

This method is not secure by default; additional steps must be taken to secure transmissions.
The steps for hybrid Data Guard configuration assume public internet connectivity.

https://support.oracle.com/rs?type=doc&id=1265700.1
https://support.oracle.com/rs?type=doc&id=1265700.1
https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/connectivityonprem.htm
https://docs.cloud.oracle.com/iaas/Content/Network/Concepts/fastconnectoverview.htm
https://docs.oracle.com/iaas/Content/Network/Tasks/overviewIPsec.htm

By default, cloud security for port 1521 is disabled. Also, this default pre-configured
port in the cloud for either a Virtual Machine (VM) or Bare Metal (BM) has open access
from the public internet.

1. If a Virtual Cloud Network (VCN) for the standby database doesn't have an
Internet Gateway, one must be added.

To create an internet gateway see Internet Gateway.

2. Ingress and egress rules must be configured in the VCN security list to connect
from and to the on-premises database.

See Security Lists for additional information.

On-Premises Prerequisites
The following prerequisites must be met before instantiating the standby database.

Evaluate Network Using oratcptest

In an Oracle Data Guard configuration, the primary and standby databases transmit
information in both directions. This requires basic configuration, network tuning, and
opening of ports at both the primary and standby databases.

It is vital that the bandwidth exists to support the redo generation rate of the primary
database.

Follow instructions in Assessing and Tuning Network Performance for Data Guard and
RMAN (Doc ID 2064368.1) to assess and tune the network link between the on-
premises and cloud environments.

Configuration

• Name resolution

– For ExaDB-C@C, because the clusters reside on the on-premises network,
the on-premises DNS should resolve each cluster, and no further configuration
should be necessary.

– For Oracle Exadata Database Service, name resolution between the clusters
must be configured.

This can be done either using a static file like /etc/hosts, or by configuring the
on-premises DNS to properly resolve the public IP address of the OCI
instance. In addition, the on-premises firewall must have Access Control Lists
configured to allow SSH and Oracle Net to be accessed from the on-premises
system to OCI.

• Oracle Data Guard in a DR configuration requires access from the Cloud instance
to the on-premises database; the primary database listener port must be opened
with restricted access from the Cloud IP addresses using features like iptables.

Because every corporation has different network security policies, the network
administrator must perform operations like the cloud-side network configuration
shown in Cloud Network Prerequisites.

• Prompt-less SSH from Oracle Cloud to the on-premises machine. This is
configured both for on-premises to Cloud during the provisioning process and from
the Cloud to on-premises.

• The configuration of the on-premises firewall to allow inbound SSH connectivity
from the Cloud to the on-premises machine.

https://docs.oracle.com/iaas/Content/Network/Tasks/managingIGs.htm
https://docs.oracle.com/iaas/Content/Network/Concepts/securitylists.htm
https://support.oracle.com/rs?type=doc&id=2064368.1
https://support.oracle.com/rs?type=doc&id=2064368.1

• It is strongly recommended that you complete the network assessment described above
in Evaluate Network Using oratcptest. Setting the appropriate TCP socket buffers sizes is
especially important for ASYNC redo transport.

• The RDBMS software must be the same on the primary and standby database for
instantiation. If the current on-premises Oracle Database release is not available in
Oracle Exadata Database Service, then the primary database must be patched or
upgraded to an available cloud bundle patch.

Implement MAA Best Practice Parameter Settings on the Primary Database

Most MAA best practices for Data Guard are part of the process described here; however, the
Standby Redo Log should be created on the primary database before starting this process.

See Oracle Data Guard Configuration Best Practices for information.

Validating Connectivity between On-Premises and Exadata Cloud Hosts

After the networking steps are implemented successfully, run the command below to validate
that the connection is successful between all sources and all targets in both directions.

On the on-premises host run:

[root@onpremise1 ~]# telnet TARGET-HOST-IP-ADDRESS PORT
Trying xxx.xxx.xxx.xxx...
Connected to xxx.xxx.xxx.xxx.
Escape character is '^]'.
^C^]q
telnet> q
Connection closed.

On the Cloud hosts run:

[root@oci2 ~]# telnet TARGET-HOST-IP-ADDRESS PORT
Trying xxx.xxx.xxx.xxx...
Connected to xxx.xxx.xxx.xxx.
Escape character is '^]'.
^]q
telnet> q
Connection closed.

If telnet is successful, proceed to the next step.

Note:

netcat (nc -zv) can be used in place of telnet.

Instantiate the Standby Using Zero Downtime Migration
Prepare the Zero Downtime Migration environment and instantiate the standby database
using the physical migration method.

Each task references procedures from the latest Zero Downtime Migration
documentation in Move to Oracle Cloud Using Zero Downtime Migration and then
includes additional information pertaining to hybrid Data Guard configuration.

For the Oracle Data Guard hybrid use case, a Zero Downtime Migration migration can
also be called a standby database instantiation.

After the standby database is instantiated, but before completing the full migration
work flow, the migration job is stopped leaving the standby in place on the cloud.
Some additional 'fix-ups' are needed to complete the hybrid Data Guard configuration.

Task 1: Install and Configure Zero Downtime Migration
The Zero Downtime Migration architecture includes a Zero Downtime Migration service
host, which is separate from the primary and standby database hosts. Zero Downtime
Migration software is installed and configured on the Zero Downtime Migration service
host.

Any Linux Server, for example a DBCS compute resource, can be used as the service
host if it meets the requirements and can be accessed bidirectionally by the target and
source database systems.

See Setting Up Zero Downtime Migration Software for the host configuration and
installation instructions.

Task 2: Prepare for a Physical Database Instantiation
The hybrid Data Guard configuration process uses the Zero Downtime Migration
physical database online migration work flow with the option to pause the migration job
after the target database instantiation.

When the standby database is instantiated and verified, the migration job can be
stopped, leaving the standby database in place.

To prepare for a physical migration follow the instructions in Preparing for a Physical
Database Migration in Move to Oracle Cloud Using Zero Downtime Migration.

Additional information specific to hybrid Data Guard configuration is detailed below.

Configuring Transparent Data Encryption on the Source Database

Transparent Data Encryption (TDE) is required on Oracle Cloud databases, including
any standby database which is part of a hybrid Data Guard configuration.

While it is strongly recommended that the on-premises database also be encrypted,
leaving the primary database unencrypted as part of a hybrid Data Guard configuration
can be configured, and is better supported by new parameters in Oracle Database 19c
(19.16) and later releases.

For all TDE configurations with Oracle Data Guard, the encryption wallet must be
created on the primary database and the master key must be set.

The parameters required for TDE configuration differ depending with Oracle Database
releases. The values may be different for each database in the Data Guard
configuration.

• In Oracle Database release 19c (19.16) and later, the parameters
TABLESPACE_ENCRYPTION, WALLET_ROOT, and TDE_CONFIGURATION are required to properly
configure TDE.

• For Oracle Database 19c releases before 19.16, set parameters WALLET_ROOT,
TDE_CONFIGURATION, and ENCRYPT_NEW_TABLESPACES.

• For releases earlier than Oracle Database19c, set parameters
ENCRYPTION_WALLET_LOCATION and ENCRYPT_NEW_TABLESPACES.

Note:

Unless otherwise specified by the TABLESPACE_ENCRYPTION=DECRYPT_ONLY
parameter, a new tablespace's encryption on the standby database will be the same
as that of the primary.

In the following table use the links to find references for setting the primary and standby
database parameters.

Parameters Definition All Oracle Database
releases before 19c

Oracle Database
release 19.15 and
earlier

Oracle Database
release 19.16 and
later

ENCRYPTION_WALLE
T_LOCATION

Defines the location
of the wallet

See About the
Keystore Location in
the sqlnet.ora File

RECOMMENDED DEPRECATED DEPRECATED

WALLET_ROOT and
TDE_CONFIGURATIO
N

WALLET_ROOT sets
the location of the
root of the directory
for wallet storage for
each PDB in a CDB.
See WALLET_ROOT

TDE_CONFIGURATIO
N defines the type of
keystore. For
example, FILE for a
wallet keystore. The
keystore type must
be set to the same
value on the primary
and standby
database. See
TDE_CONFIGURATI
ON

N/A RECOMMENDED RECOMMENDED

Parameters Definition All Oracle Database
releases before 19c

Oracle Database
release 19.15 and
earlier

Oracle Database
release 19.16 and
later

ENCRYPT_NEW_TABL
ESPACES

Indicates whether a
new tablespace on
the primary database
should be encrypted

The
ENCRYPT_NEW_TABL
ESPACES parameter
can be set as follows:

• CLOUD_ONLY -
Default setting.
Any new
tablespaces
created are
transparently
encrypted with
the AES128
algorithm, unless
a different
algorithm is
specified in the
ENCRYPTION
clause in the
CREATE
TABLESPACE
statement. For
on-premises
databases,
tablespaces are
only encrypted if
the CREATE
TABLESPACE...
ENCRYPTION
clause is
specified.

• ALWAYS - Any
new tablespace
created in a
primary
database, on-
premises or in
the cloud, will be
transparently
encrypted with
the AES128
algorithm, unless
a different
encryption
algorithm is
specified in the
CREATE
TABLESPACE
ENCRYPTION
clause.

RECOMMENDED RECOMMENDED NOT
RECOMMENDED

Override with
recommended setting
for
TABLESPACE_ENCR
YPTION

Parameters Definition All Oracle Database
releases before 19c

Oracle Database
release 19.15 and
earlier

Oracle Database
release 19.16 and
later

• DDL - Allows you
to create
tablespaces with
or without
encryption
following the
CREATE
TABLESPACE
statement, and
also lets you
change the
encryption
algorithm. Note:
This value is not
applicable for
cloud primary
databases with
releases from
Oracle Database
19c (19.16) and
later because
tablespace
encryption is
enforced.

See
ENCRYPT_NEW_TA
BLESPACES

Parameters Definition All Oracle Database
releases before 19c

Oracle Database
release 19.15 and
earlier

Oracle Database
release 19.16 and
later

TABLESPACE_ENCRY
PTION (see note
above)

Oracle Database 19c
(19.16) and later
releases - indicates
whether a new
tablespace should be
encrypted. Available
options are
AUTO_ENABLE,
MANUAL_ENABLE, and
DECRYPT_ONLY.

Starting with Oracle
Database 19c
(19.16), Oracle Cloud
forces encryption for
all tablespaces in the
cloud database. This
cannot be overridden.

To prevent encrypted
tablespaces on an
on-premises
database (primary or
standby) set the
TABLESPACE_ENCRY
PTION parameter to
DECRYPT_ONLY.

DECRYPT_ONLY is
only valid in an on-
premises database.

See
TABLESPACE_ENCR
YPTION

N/A N/A RECOMMENDED

To configure TDE, follow the steps in Setting Up the Transparent Data Encryption
Wallet in Move to Oracle Cloud Using Zero Downtime Migration.

Checking the TDE Master Key Before Instantiation

Even in cases where the primary database remains unencrypted, TDE must be
configured on the primary database. This configuration includes creating the
encryption wallet and setting the master key.

During the process the wallet is copied to the standby database. The master key
stored in the wallet will be used by the standby database for encryption.

In the event of a switchover where the cloud standby database becomes the primary
database, the key is used by the unencrypted on-premises database to decrypt the
encrypted redo from the cloud database.

Failure to set the master key will result in failure of Data Guard managed recovery.

To confirm the master key is set properly:

• Verify that the MASTERKEYID column in V$DATABASE_KEY_INFO matches a key
existing in V$ENCRYPTION_KEYS on the source database.

https://docs.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19/haovw&id=ZDMUG-GUID-B294CAD7-63AD-44BA-BE22-C8BAAE211643
https://docs.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19/haovw&id=ZDMUG-GUID-B294CAD7-63AD-44BA-BE22-C8BAAE211643

In a multitenant container database (CDB) environment, check CDB$ROOT and all the
PDBs except PDB$SEED.

Configuring Online Redo Logs

Redo log switches can have a significant impact on redo transport and apply performance.
Follow these best practices for sizing the online redo logs on the primary database before
instantiation.

• All online redo log groups should have identically sized logs (to the byte).

• Online redo logs should reside on high performing disks (DATA disk groups).

• Create a minimum of three online redo log groups per thread of redo on Oracle RAC
instances.

• Create online redo log groups on shared disks in an Oracle RAC environment.

• Multiplex online redo logs (multiple members per log group) unless they are placed on
high redundancy disk groups.

• Size online redo logs to switch no more than 12 times per hour (every ~5 minutes). In
most cases a log switch every 15 to 20 minutes is optimal even during peak workloads.

Sizing Redo Logs
Size redo logs based on the peak redo generation rate of the primary database.

You can determine the peak rate by running the query below for a time period that includes
the peak workload. The peak rate could be seen at month-end, quarter-end, or annually. Size
the redo logs to handle the highest rate in order for redo apply to perform consistently during
these workloads.

SQL> SELECT thread#,sequence#,blocks*block_size/1024/1024 MB,
(next_time-first_time)*86400 sec,
 blocks*block_size/1024/1024)/((next_time-first_time)*86400) "MB/s"
 FROM v$archived_log
 WHERE ((next_time-first_time)*86400<>0)
 and first_time between to_date('2015/01/15 08:00:00','YYYY/MM/DD
HH24:MI:SS')
 and to_date('2015/01/15 11:00:00','YYYY/MM/DD HH24:MI:SS')
 and dest_id=1 order by first_time;

 THREAD# SEQUENCE# MB SEC MB/s
---------- ---------- ---------- ---------- ----------
 2 2291 29366.1963 831 35.338383
 1 2565 29365.6553 781 37.6000708
 2 2292 29359.3403 537 54.672887
 1 2566 29407.8296 813 36.1719921
 2 2293 29389.7012 678 43.3476418
 2 2294 29325.2217 1236 23.7259075
 1 2567 11407.3379 2658 4.29169973
 2 2295 29452.4648 477 61.7452093
 2 2296 29359.4458 954 30.7751004
 2 2297 29311.3638 586 50.0193921
 1 2568 3867.44092 5510 .701894903

Choose the redo log size based on the peak generation rate with the following chart.

Peak Redo Rate Recommended Redo Log Size

<= 1 MB/s 1 GB

<= 5 MB/s 4 GB

<= 25 MB/s 16 GB

<= 50 MB/s 32 GB

> 50 MB/s 64 GB

Creating the Target Database

The target database, which will become the standby database, is initially created by
the Oracle Cloud automation. This approach ensures that the database is visible in the
Oracle Cloud user interface and is available for a subset of cloud automation, such as
patching.

Note:

Oracle Data Guard operations, such as switchover, failover, and reinstate,
are manual operations performed with Data Guard Broker. Data Guard Life
Cycle Management is not supported by the user interface in hybrid Data
Guard configurations.

Once the database is created, the Zero Downtime Migration work flow removes the
existing files and instantiates the standby database in its place.

The following are exceptions in a hybrid Data Guard configuration (as compared to
Zero Downtime Migration) for the target database:

• The target database must use the same db_name as the source database.

• The target database must use a different db_unique_name.

Choosing an Instantiation Method

The two recommended options for a hybrid Data Guard standby instantiation with Zero
Downtime Migration are direct data transfer and Object Storage Service.

• Direct data transfer - DATA_TRANSFER_MEDIUM=DIRECT - copies data files directly
from the primary database using RMAN.

• Object Storage Service - DATA_TRANSFER_MEDIUM=OSS - performs a backup of the
primary database to an OSS bucket and instantiates the standby database from
the backup.

There are additional options for instantiating from an existing backup or an existing
standby which are not covered by this procedure. See Using an Existing RMAN
Backup as a Data Source and Using an Existing Standby to Instantiate the Target
Database in Move to Oracle Cloud Using Zero Downtime Migration for details.

Setting Zero Downtime Migration Parameters

The Zero Downtime Migration physical migration response file parameters listed below
are the key parameters to be set in most cases.

• TGT_DB_UNIQUE_NAME - The db_unique_name for the target cloud database as
registered with clusterware (srvctl)

• MIGRATION_METHOD=ONLINE_PHYSICAL - Hybrid Data Guard setups all use
ONLINE_PHYSICAL method

• DATA_TRANSFER_MEDIUM=DIRECT | OSS - DIRECT is not supported for source databases on
versions earlier than Oracle 12.1

• PLATFORM_TYPE=EXACS | EXACC | VMDB - Choose the correct target Oracle Cloud
platform to ensure proper configuration

• HOST=cloud-storage-REST-endpoint-URL - Required if using OSS data transfer medium

• OPC_CONTAINER=object-storage-bucket - Required if using OSS data transfer medium

• ZDM_RMAN_COMPRESSION_ALGORITHM=BASIC
• ZDM_USE_DG_BROKER=TRUE - Data Guard Broker is an MAA configuration best practice

If bastion hosts or other complexities are involved, see Setting Physical Migration Parameters
in Move to Oracle Cloud Using Zero Downtime Migration for details.

Task 3: Instantiate the Standby Database
After the preparations are complete you can run a Zero Downtime Migration online physical
migration job to instantiate the cloud standby database.

You will actually run two jobs using the Zero Downtime Migration commands in ZDMCLI: an
evaluation job and the actual migration job.

1. Run the evaluation job.

The evaluation job analyzes your topography configuration and migration job settings to
ensure that the process will succeed when you run it against the production database.

Use the -eval option in the ZDMCLI migrate database command to run an evaluation
job, as shown here.

zdmuser> $ZDM_HOME/bin/zdmcli migrate database
 -sourcedb source_db_unique_name_value
 -sourcenode source_database_server_name
 -srcauth zdmauth
 -srcarg1 user:source_database_server_login_user_name
 -srcarg2 identity_file:ZDM_installed_user_private_key_file_location
 -srcarg3 sudo_location:/usr/bin/sudo
 -targetnode target_database_server_name
 -backupuser Object_store_login_user_name
 -rsp response_file_location
 -tgtauth zdmauth
 -tgtarg1 user:target_database_server_login_user_name
 -tgtarg2 identity_file:ZDM_installed_user_private_key_file_location
 -tgtarg3 sudo_location:/usr/bin/sudo
 -eval

There are more examples of the evaluation job options in Evaluate the Migration Job in
Move to Oracle Cloud Using Zero Downtime Migration.

Note:

Because the hybrid Data Guard cloud standby instantiation process is a
physical migration, the Cloud Premigration Advisor Tool (CPAT) is not
supported.

2. Run the migration job.

By default, Zero Downtime Migration performs a switchover operation immediately
after the target database is instantiated, so the -stopafter option is used in the
ZDMCLI migrate database command to stop the migration job after the standby
database is created.

Use the -stopafter option and set it to ZDM_CONFIGURE_DG_SRC as shown here.

zdmuser> $ZDM_HOME/bin/zdmcli migrate database
 -sourcedb source_db_unique_name_value
 -sourcenode source_database_server_name
 -srcauth zdmauth
 -srcarg1 user:source_database_server_login_user_name
 -srcarg2 identity_file:ZDM_installed_user_private_key_file_location
 -srcarg3 sudo_location:/usr/bin/sudo
 -targetnode target_database_server_name
 -backupuser Object_store_login_user_name
 -rsp response_file_location
 -tgtauth zdmauth
 -tgtarg1 user:target_database_server_login_user_name
 -tgtarg2
identity_file:ZDM_installed_user_private_key_file_location
 -tgtarg3 sudo_location:/usr/bin/sudo
 -stopafter ZDM_CONFIGURE_DG_SRC

The job ID is shown in the command output when the database migration job is
submitted. Save this information in case later diagnosis is required.

There are more examples of the ZDMCLI migrate database command usage
shown in Migrate the Database in Move to Oracle Cloud Using Zero Downtime
Migration.

Task 4: Validate the Standby Database
When the Zero Downtime Migration job has stopped after the standby database is
instantiated, validate the standby database.

Check the Oracle Data Guard Broker Configuration

Using the parameter ZDM_USE_DG_BROKER=TRUE in the Zero Downtime Migration
response file creates a Data Guard Broker configuration. Data Guard Broker will be
the primary utility to manage the life cycle operations for hybrid Data Guard
configurations, because the Oracle Cloud user interface is not aware of the on-
premises database.

Using DGMGRL, validate the Data Guard Broker configuration. Data Guard Broker
commands listed can be run form the primary or standby database.

DGMGRL> show configuration

Configuration - ZDM_primary db_unique_name

 Protection Mode: MaxPerformance
 Members:
 primary db_unique_name - Primary database
 standby db_unique_name - Physical standby database

Fast-Start Failover: Disabled

Configuration Status:
SUCCESS (status updated 58 seconds ago)

Configuration Status should be SUCCESS. If any other status is shown, re-run the command
after waiting 2 minutes to give the Broker time to update. If issues persist, see the Oracle
Data Guard Broker documentation to diagnose and correct any issues.

Validate the Standby Database

Using DGMGRL, validate the standby database.

DGMGRL> validate database standby db_unique_name

 Database Role: Physical standby database
 Primary Database: primary db_unique_name

 Ready for Switchover: Yes
 Ready for Failover: Yes (Primary Running)

 Flashback Database Status:
 primary db_unique_name: On
 standby db_unique_name: Off <- see note below

 Managed by Clusterware:
 primary db_unique_name: YES
 standby db_unique_name: YES

Note:

Steps to enable flashback database on the standby will be addressed in a future
step.

Task 5: Implement Recommended MAA Best Practices
After standby instantiation, evaluate implementing the following Oracle MAA best
practices to achieve better data protection and availability.

Key best practices are listed below. Also see Oracle Data Guard Configuration Best
Practices for details about Oracle MAA recommended best practices for Oracle Data
Guard.

Enable Flashback Database

Flashback Database allows reinstatement of the old primary database as a standby
database after a failover. Without Flashback Database enabled, the old primary
database would have to be recreated as a standby after a failover. If flashback
database has not already been enabled, enable it now.

To enable flashback database, make sure you have sufficient space and I/O
throughput in your Fast Recovery Area or RECO disk group, and evaluate any
performance impact.

1. On the primary database, run the command below to enable flashback database
on the primary if it is not already enabled.

SQL> alter database flashback on;
Database altered.

2. On the standby database, to enable flashback database, first disable redo apply,
enable flashback database, then re-enable redo apply.

DGMGRL> edit database standby-database set state=apply-off;
Succeeded.

SQL> alter database flashback on;
Database altered.

DGMGRL> edit database standby-database set state=apply-on;
Succeeded.

Set CONTROL_FILES Parameter and Change Default Open Mode of Standby

An Oracle MAA best practice recommendation is to have only one control file when
placed on a high redundancy disk group. All Oracle Cloud offerings use high
redundancy, therefore only one control file is required.

1. On the standby database, edit the CONTROL_FILES parameter.

SQL> show parameter control_files

NAME TYPE VALUE
------------------------------------ -----------

control_files string controlfile-1
 , controlfile-2

SQL> ALTER SYSTEM SET control_files='controlfile-1' scope=spfile

sid='*';
System altered.

2. Stop the database as the oracle user, and then, as the grid user, remove the extra
control file (su to the grid user from the opc user).

$ srvctl stop database -db standby-unique-name
[grid@standby-host1 ~]$ asmcmd rm controlfile-2

3. While the database is down, modify the start option so the standby database default is
open read only, and then start the database.

$ srvctl modify database -db standby-unique-name -startoption 'read only'
$ srvctl start database -db standby-unique-name

Note:

The Oracle MAA best practice is for the standby to be open read-only to enable
Automatic Block Media Recovery; however, Oracle Cloud supports a mounted
standby. If a mounted standby is your preferred configuration it can be configured.

Set Alternate Local Archive Log Location

In the event that space is exhausted in the recovery area, a primary database will stop
archiving and all operations will halt until space is made available to archive the online redo
logs.

To avoid this scenario, create an alternate local archive location on the DATA disk group.

1. Set LOG_ARCHIVE_DEST_10 to use the DATA disk group and set the state to ALTERNATE.

SQL> ALTER SYSTEM SET log_archive_dest_10='LOCATION=+DATAC1
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES) MAX_FAILURE=1
 REOPEN=5 DB_UNIQUE_NAME=standby-unique-name
 ALTERNATE=LOG_ARCHIVE_DEST_1' scope=both sid=’*’;

SQL> ALTER SYSTEM SET log_archive_dest_state_10=ALTERNATE scope=both
sid=’*’;

2. Set LOG_ARCHIVE_DEST_1 to use LOG_ARCHIVE_DEST_10 as an alternate.

SQL> ALTER SYSTEM SET
log_archive_dest_1='LOCATION=USE_DB_RECOVERY_FILE_DEST
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES) MAX_FAILURE=1
 REOPEN=5 DB_UNIQUE_NAME=standby-unique-name
 ALTERNATE=LOG_ARCHIVE_DEST_10' scope=both sid=’*’;

Note:

When backups are not configured, by default archived logs older than 24
hours are swept every 30 minutes.

Set Data Protection Parameters

MAA best practice recommendations include the following settings on the primary and
standby databases.

db_block_checksum=TYPICAL
db_lost_write_protect=TYPICAL
db_block_checking=MEDIUM

SQL> show parameter db_block_checksum

NAME TYPE VALUE
------------------------------------ -----------

db_block_checksum string TYPICAL

SQL> alter system set db_block_checksum=TYPICAL scope=both sid='*';

SQL> show parameter db_lost_write_protect

NAME TYPE VALUE
------------------------------------ -----------

db_lost_write_protect string typical

SQL> alter system set db_lost_write_protect=TYPICAL scope=both sid='*';

SQL> show parameter db_block_checking

NAME TYPE VALUE
------------------------------------ -----------

db_block_checking string OFF

SQL> alter system set db_block_checking=MEDIUM scope=both sid='*';

Note that the db_block_checking setting has an impact on primary database
performance and should be thoroughly tested with a production workload in a lower,
production-like environment.

If the performance impact is determined to be unacceptable on the primary database,
the standby database should set db_block_checking=MEDIUM and set the
cloudautomation Data Guard Broker property to '1' for both databases so that the
value will be changed appropriately after a role transition.

DGMGRL> edit database primary-unique-name set property
cloudautomation=1;

Property "cloudautomation" updated

DGMGRL> edit database standby-unique-name set property cloudautomation=1;
Property "cloudautomation" updated

Note that the cloudautomation property must be set on both databases to work properly.

Configure Redo Transport - Oracle Net Encryption

To protect against plain text or unencrypted tablespace redo from being visible on the WAN,
place the following entries in the sqlnet.ora file on all on-premises and cloud databases.

Cloud deployments use the TNS_ADMIN variable to separate tnsnames.ora and sqlnet.ora in
shared database homes. Therefore, the cloud sqlnet.ora, and by extension tnsnames.ora, for
a given database are located in $ORACLE_HOME/network/admin/db_name.

These values should already be set by the deployment tool in cloud configurations.

SQLNET.ORA ON ON-PREMISES HOST(S)
SQLNET.ENCRYPTION_SERVER=REQUIRED
SQLNET.CRYPTO_CHECKSUM_SERVER=REQUIRED
SQLNET.ENCRYPTION_TYPES_SERVER=(AES256,AES192,AES128)
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER=(SHA1)
SQLNET.ENCRYPTION_CLIENT=REQUIRED
SQLNET.CRYPTO_CHECKSUM_CLIENT=REQUIRED
SQLNET.ENCRYPTION_TYPES_CLIENT=(AES256,AES192,AES128)
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT=(SHA1)

Note:

If all tablespaces and data files are encrypted with TDE, Oracle Net encryption is
redundant and can be omitted.

Configure Redo Transport - Reconfigure Redo Transport Using Full Connect
Descriptors

For simplicity, Zero Downtime Migration uses an EZconnect identifier to set up Oracle Data
Guard redo transport.

For short lived configurations, like those with a full Zero Downtime Migration work flow, this
solution is acceptable. However, for hybrid Data Guard configurations, the MAA best practice
recommendation is to use a full connect descriptor configured in tnsnames.ora.

Use the following example, replacing attribute values with values relevant to your
configuration.

The TNS descriptors for the databases will be different depending on whether the SCAN
listeners are resolvable from the other system.

The description below assumes that the SCAN name is resolvable and can be used in the
TNS descriptor. If a SCAN name cannot be resolved, an ADDRESS_LIST can be used. See
Multiple Address Lists in tnsnames.ora for details.

Add the following descriptors to a shared tnsnames.ora file on the primary and standby
database systems after making the appropriate replacements.

standby-db_unique_name =
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= standby-cluster-scan-name)
 (PORT=standby-database-listener-port))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= standby-database-service-name)))
primary-db_unique_name=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=primary-cluster-scan-name)
 (PORT=primary-database-listener-port))
 (CONNECT_DATA=
 (SERVER=DEDICATED)
 (SERVICE_NAME=primary-database-service-name)
))

Note:

A descriptor with the name of the primary db_unique_name may have been
created by cloud automation or Zero Downtime Migration. Replace this entry,
because it points to the wrong database.

Configure Redo Transport - Modify Data Guard Broker Settings for Redo
Transport

Change the EZconnect identifier, which was set during the Zero Downtime Migration
work flow, to use the connect descriptors added to the tnsnames.ora files for each
database.

DGMGRL> show database primary-db_unique_name DGConnectIdentifier
DGConnectIdentifier = 'ZDM-created-EZconnect-string>'
DGMGRL> edit database primary-db_unique_name
 set property DGConnectIdentifier=’primary-db_unique_name’;
DGMGRL> show database standby-db_unique_name DGConnectIdentifier
DGConnectIdentifier = 'ZDM-created-EZconnect-string'
DGMGRL> edit database standby-db_unique_name
 set property DGConnectIdentifier=’standby-db_unique_name’;

Configure Standby Automatic Workload Repository

Standby Automatic Workload Repository (AWR) allows the AWR reports to be
produced against the standby. These reports are very important when diagnosing redo
apply and other performance issues on a standby database.

It is strongly recommended that you configure standby AWR for all Oracle Data Guard
configurations.

See My Oracle Support note How to Generate AWRs in Active Data Guard Standby
Databases (Doc ID 2409808.1) for information.

Health Check and Monitoring
After instantiating the standby database, a health check should be performed to ensure that
the Oracle Data Guard databases (primary and standby) are compliant with Oracle MAA best
practices.

It is also recommended that you perform the health check monthly, and before and after
database maintenance. Oracle Autonomous Health Framework and automated tools
including an Oracle MAA Scorecard using OraChk or ExaChk are recommended for checking
the health of a Data Guard configuration.

Regular monitoring of the Oracle Data Guard configuration is not provided in a hybrid Data
Guard configuration and must be done manually. See Monitor an Oracle Data Guard
Configuration for more information.

https://support.oracle.com/rs?type=doc&id=2409808.1
https://support.oracle.com/rs?type=doc&id=2409808.1
https://docs.oracle.com/en/engineered-systems/health-diagnostics/autonomous-health-framework/ahfug/overview-ahf.html#GUID-BAB39863-892E-450D-86EE-CEC1BECAF64B
https://docs.oracle.com/en/engineered-systems/health-diagnostics/exachk/index.html

27
Oracle Maximum Availability Architecture and
Oracle Autonomous Database

Oracle Maximum Availability Architecture (MAA) is a set of best practices developed by
Oracle engineers over many years for the integrated use of Oracle High Availability, data
protection, and disaster recovery technologies.

The key goal of Oracle MAA is to meet Recovery Time Objectives (RTO) and Recovery Point
Objectives (RPO) for Oracle databases and applications running on our system and database
platforms using Oracle Cloud MAA architectures and solutions.

See Oracle MAA Reference Architectures for an overview of the MAA reference architectures
and their associated benefits and potential RTO and RPO targets. Also, see Oracle Maximum
Availability Architecture in Oracle Exadata Cloud Systems for the inherent differentiated
Oracle Exadata Cloud HA and data protection benefits, because Autonomous Database
Cloud runs on the Exadata Cloud platform.

Note that Maximum Availability Architectures leverage Chaos Engineering throughout its
testing and development life cycles to ensure that end-to-end application and database
availability is preserved, or at its optimal levels, for any fault or maintenance event in Oracle
Cloud. Chaos Engineering is the discipline of experimenting on a system to build confidence
in the system’s capability to withstand turbulent conditions in production. Specifically, MAA
aggressively injects various faults and planned maintenance events to evaluate application
and database impact throughout our development, stress, and testing cycles. With that
experimentation, best practices, defects, and lessons learned are derived, and that
knowledge is put back into practice to evolve and improve our cloud MAA solutions.

Oracle Autonomous Database with Default High Availability
Option (MAA Silver)

High availability is suitable for all development, test, and production databases that have high
uptime requirements and zero or low data loss tolerance. By default, Autonomous Databases
are highly available, incorporating a multi-node configuration to protect against localized
software and hardware failures.

Each Autonomous Database application service resides in at least one Oracle Real
Application Clusters (Oracle RAC) instance, with the option to fail over to another available
Oracle RAC instance for unplanned outages or planned maintenance activities, enabling zero
or near-zero downtime.

Autonomous Database automatic backups are stored in Oracle Cloud Infrastructure Object
Storage and are replicated to another availability domain if available. These backups can be
used to restore the database in the event of a disaster. For Autonomous Database with
Exadata Cloud at Customer, customers have an option to backup to NFS or Zero Data Loss
Recovery Appliance (ZDLRA); however, replication of those backups is the responsibility of
the customer.

Major database upgrades are automated. For Autonomous Database Serverless, the
downtime is minimal.

27-1

http://www.oracle.com/pls/topic/lookup?ctx=db23&id=HAIAD

The uptime service-level agreements (SLAs) per month is 99.95% (a maximum of 22
minutes of downtime per month). To achieve the application uptime SLAs where most
months would be zero downtime, see Maintaining Application Uptime below.

The following table describes the recovery-time objectives and recovery-point
objectives (data loss tolerance) for different outages.

Table 27-1 Default High Availability Policy Recovery Time (RTO) and Recovery Point (RPO)
Service-level Objectives

Failure and Maintenance
Events

Database Downtime Service-level Downtime
(RTO)

Potential Service-level
Data Loss (RPO)

Localized events, including:

• Exadata cluster
network topology
failures

• Storage (disk and
flash) failures

• Database instance
failures

• Database server
failures

• Periodic software and
hardware maintenance
updates

Zero Near-zero Zero

Events that require
restoring from backup
because the standby
database does not exist:

• Data corruptions
• Full database failures
• Complete storage

failures
• Availability domain

(AD) for multi-AD
regions

Minutes to hours

(without Autonomous Data
Guard)

Minutes to hours

(without Autonomous Data
Guard)

15 minutes for Oracle
Autonomous Database on
Dedicated Exadata
Infrastructure

1 minute for Autonomous
Database Serverless

(without Autonomous Data
Guard)

Events that require non-
rolling software updates or
database upgrades

Less than 10 minutes for
Autonomous Database
Serverless

Minutes to hour for
Autonomous Database on
Dedicated Infrastructure

(without Autonomous Data
Guard)

Less than 10 minutes for
Autonomous Database
Serverless

Minutes to hour for
Autonomous Database on
Dedicated Infrastructure

(without Autonomous Data
Guard)

Zero

In the table above, the amount of downtime for events that require restoring from a
backup varies depending on the nature of the failure. In the most optimistic case,
physical block corruption is detected and the block is repaired with block media
recovery in minutes. In this case, only a small portion of the database is affected with
zero data loss. In a more pessimistic case, the entire database or cluster fails, then the
database is restored and recovered using the latest database backup, including all
archives.

Data loss is limited by the last successful archive log backup, the frequency of which is
every 15 minutes for Autonomous Database on Dedicated Infrastructure and 1 minute

Chapter 27
Oracle Autonomous Database with Default High Availability Option (MAA Silver)

27-2

for Autonomous Database Serverless. Archive or redo are backed up to Oracle Cloud
Infrastructure Object Storage or File Storage Service for future recovery purposes. Data loss
can be seconds, or, at worst minutes of data loss, around the last successful archive log and
remaining redo in the online redo logs that were not archived to external storage.

Oracle Autonomous Database with Autonomous Data Guard
Option (MAA Gold)

Enable Autonomous Data Guard for mission-critical production databases that require better
uptime requirements for disasters from data corruptions, and database or site failures, while
still reaping the Autonomous Database High Availability Option benefits.

Additionally, the read-only standby database provides expanded application services to
offload reporting, queries, and some updates. The read-only standby database is only
available with Autonomous Data Guard on Dedicated Infrastructure.

Enabling Autonomous Data Guard adds one symmetric standby database to an Exadata rack
that is located in the same availability domain, another availability domain, or in another
region. The primary and standby database systems are configured symmetrically to ensure
that performance service levels are maintained after Data Guard role transitions.
Autonomous Database Serverless supports configuring two standby databases, and
Autonomous Database on Dedicated Infrastructure is restricted to a single database at this
time. For Autonomous Database Serverless, a multiple standby configuration consists of a
local standby database in the same region and a cross-region standby database.

Oracle Autonomous Data Guard features asynchronous redo transport (in maximum
performance mode) by default to ensure zero application performance impact. The standby
database can be placed within the same availability domain, across availability domains, or
across regions. MAA recommends placing the standby in separate availability domain or in a
different region for the best fault isolation. Data Guard zero data loss protection can be
achieved by configuring synchronous redo transport (in maximum availability mode);
however, maximum availability database protection mode with synchronous redo transport is
only available with Autonomous Database on Dedicated Infrastructure, and the standby
database is typically placed in a different availability domain in the same region, or across
multiple regions if the round trip latency between regions is minimal (< 5ms) to ensure a
negligible impact on application response time and throughput while providing fault isolation.
Furthermore, local and remote virtual cloud network peering provides a secure, high-
bandwidth network across availability domains and regions for any traffic between the primary
and standby servers.

Backups are scheduled automatically on both primary and standby databases, and they are
stored in Oracle Cloud Infrastructure Object Storage. Autonomous Database with Exadata
Cloud at Customer, provides you with an option to backup to NFS or Zero Data Loss
Recovery Appliance; however, replication of those backups is the responsibility of the
customer. Those backups can be used to restore databases in the event of a double disaster,
where both primary and standby databases are lost.

The uptime service-level agreement (SLA) per month is 99.995% (maximum 132 seconds of
downtime per month) and recovery time objectives (downtime) and recovery point objectives
(data loss) are low, as described in the table below. To achieve the application uptime SLAs
where most months would be zero downtime, refer to Maintaining Application Uptime
(XREF).

Automatic Data Guard failover with Autonomous Database Serverless supports a data loss
threshold service level which will initiate an automatic failover to the standby database if the

Chapter 27
Oracle Autonomous Database with Autonomous Data Guard Option (MAA Gold)

27-3

data loss is below that threshold. Zero data loss failover is not guaranteed for
Autonomous Database Serverless but possible when the primary database fails while
primary system container and infrastructure is still available allowing the remaining
redo to be sent and applied to the standby database. Automatic Data Guard failover
with Autonomous Database on Dedicated Infrastructure supports zero data loss or low
data loss threshold service levels. In all cases, automatic Autonomous Data Guard
failover will occur for primary database, cluster, or data center failures when those data
loss service levels can be guaranteed. The target standby becomes the new primary
database, and all application services are enabled automatically. A manual Data
Failover option is provided in the OCI Console. For the manual Data Guard failover
option, the calculated downtime for the uptime SLA starts with the time to execute the
Data Guard failover operation and ends when the new primary service is enabled.

You can choose whether your database failover site is located in the same availability
domain, in a different availability domain within the same region, or in a different
region, contingent upon application or business requirements and data center
availability.

Table 27-2 Autonomous Data Guard Recovery Time (RTO) and Recovery Point (RPO) Service-
level Objectives

Failure and Maintenance Events Service-level Downtime (RTO)1 Potential Service-level Data Loss
(RPO)

Localized events, including:

• Exadata cluster network fabric
failures

• Storage (disk and flash) failures
• Database instance failures
• Database server failures
• Periodic software and hardware

maintenance updates

Zero or Near Zero Zero

Events that require failover to the
standby database using Autonomous
Data Guard, including:

• Data corruptions (because Data
Guard has automatic block
repair for physical corruptions2,
a failover operation is required
only for logical corruptions or
extensive data corruptions)

• Full database failures
• Complete storage failures
• Availability domain or region

failures3

Few seconds to two minutes4 Zero with maximum availability
protection mode (uses synchronous
redo transport). Most commonly
used for intra-region standby
databases. This is available for
Autonomous Data Guard on
Dedicated Infrastructure.

Near zero for maximum performance
protection mode (uses asynchronous
redo transport). Most commonly
used for cross-region standby
databases. Also used for intra-
regional standby databases and to
ensure zero application impact. This
is applicable for both Autonomous
Data Guard on Dedicated
Infrastructure and Autonomous
Database Serverless. RPO is less 10
seconds.

RPO may be impacted by network
bandwidth and throughput between
primary and standby clusters.

Chapter 27
Oracle Autonomous Database with Autonomous Data Guard Option (MAA Gold)

27-4

1 Service-Level Downtime (RTO) excludes detection time that includes multiple heartbeats to
ensure the source is indeed inaccessible before initiating an automatic failover.

2 The Active Data Guard automatic block repair for physical corruptions feature is only
available for Autonomous Data Guard on Dedicated Infrastructure.

3Regional failure protection is only available if the standby is located across regions.

4 The back end Autonomous Data Guard role transition timings are much faster than what is
indicated by the Cloud Console refresh rates.

Both Autonomous Database on Dedicated Infrastructure and Autonomous Database
Serverless have been MAA Gold validated and certified. Autonomous Database on
Dedicated Infrastructure was validated with a standby database in the same region, and also
with a standby database in a different region, and the above SLAs were met when the
standby target was symmetric to the primary. RTO and RPO SLAs were met with redo rates
of up to 1000 MB/sec. Autonomous Database Serverless was validated and certified with a
standby database in the same region only, and met the above SLAs when the standby target
had symmetric resources. RTO and RPO SLAs were met with redo rates up to 300 MB/sec
for the entire Container Database (CDB) where the target Autonomous Data Guard pluggable
database resides.

Maintaining Application Uptime
Ensure that network connectivity to Oracle Cloud Infrastructure is reliable so that you can
access your tenancy's Autonomous Database resources.

Follow the guidelines to connect to your Autonomous Database (see Autonomous Database
Serverless, or Autonomous Database on Dedicated Exadata Infrastructure). Applications
must connect to the predefined service name and download client credentials that include the
proper tnsnsames.ora and sqlnet.ora files. You can also change your specific application
service’s drain_timeout attribute to fit your requirements.

For more details about enabling continuous application service through planned and
unplanned outages, see Configuring Continuous Availability for Applications. Oracle
recommends that you test your application readiness by following Validating Application
Failover Readiness (Doc ID 2758734.1).

For Oracle Exadata Cloud Infrastructure planned maintenance events that require restarting
database instance, Oracle automatically relocates services and drain sessions to another
available Oracle RAC instance before stopping any Oracle RAC instance. For OLTP
applications that follow the MAA checklist, draining and relocating services results in zero
application downtime.

Some applications, such as long running batch jobs or reports, may not be able to drain and
relocate gracefully, even with a longer drain timeout. For those applications, Oracle
recommends that you schedule the software planned maintenance window excluding these
types of activities, or stop these activities before the planned maintenance window. For
example, you can reschedule a planned maintenance window so that it is outside your batch
windows, or stop batch jobs before a planned maintenance window.

Chapter 27
Maintaining Application Uptime

27-5

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/connect-autonomous-database.html#GUID-94719269-9218-4FAF-870E-6F0783E209FD
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/connect-autonomous-database.html#GUID-94719269-9218-4FAF-870E-6F0783E209FD
https://docs.oracle.com/en/cloud/paas/autonomous-database/dedicated/adbbd/index.html#articletitle
https://support.oracle.com/rs?type=doc&id=2758734.1
https://support.oracle.com/rs?type=doc&id=2758734.1

28
Oracle Maximum Availability Architecture in
Oracle Exadata Cloud Systems

Oracle Maximum Availability Architecture in Oracle Exadata Cloud Infrastructure (ExaDB-D)
and Oracle Exadata Cloud@Customer (ExaDB-C@C) provides inherent high availability, data
protection, and disaster recovery protection integrated with both cloud automation and life
cycle operations, enabling Oracle Exadata Cloud systems to be the best cloud solution for
enterprise databases and applications.

See Oracle Cloud: Maximum Availability Architecture for detailed walk-through of Oracle
Cloud MAA architectures and features.

Oracle Maximum Availability Architecture Benefits
• Deployment: Oracle Exadata Cloud systems (ExaDB-D and ExaDB-C@C)) are

deployed using Oracle Maximum Availability Architecture best practices, including
configuration best practices for storage, network, operating system, Oracle Grid
Infrastructure, and Oracle Database. ExaDB-D is optimized to run enterprise Oracle
databases with extreme scalability, availability, and elasticity.

• Oracle Maximum Availability Architecture database templates: All Oracle Cloud
databases created with Oracle Cloud automation use Oracle Maximum Availability
Architecture default settings, which are optimized for ExaDB-D.

Oracle does not recommend that you use custom scripts to create cloud databases.
Other than adjusting memory and system resource settings, avoid migrating previous
database parameter settings, especially undocumented parameters. One beneficial
database data protection parameter, DB_BLOCK_CHECKING, is not enabled by default due to
its potential overhead. MAA recommends evaluating the performance impact for your
application and enabling this setting if performance impact is reasonable.

• Backup and restore automation: When you configure automatic backup to Oracle
Cloud Infrastructure Object Storage, backup copies provide additional protection when
multiple availability domains exist in your region, and RMAN validates cloud database
backups for any physical corruptions.

Database backups occur daily, with a full backup occurring once per week and
incremental backups occurring on all other days. Archive log backups occur frequently to
reduce potential data loss in case of disaster. The archive log frequency is typically 30
minutes.

• Oracle Exadata Database Machine inherent benefits: Oracle Exadata Database
Machine is the best Oracle Maximum Availability Architecture platform that Oracle offers.
Exadata is engineered with hardware, software, database, and availability innovations
that support the most mission-critical enterprise applications.

Specifically, Exadata provides unique high availability, data protection, and quality-of-
service capabilities that set Oracle apart from any other platform or cloud vendor. Sizing
Exadata cloud systems to meet your application and database system resource needs
(for example, sufficient CPU, memory, and I/O resources) is very important to maintain

28-1

https://www.oracle.com/a/tech/docs/cloud-maa-overview.pdf

the highest availability, stability, and performance. Proper sizing is especially
important when consolidating many databases on the same cluster.

For a comprehensive list of Oracle Maximum Availability Architecture benefits for
Oracle Exadata Database Machine systems, see Exadata Database Machine:
Maximum Availability Architecture Best Practices.

Examples of these benefits include:

• High availability and low brownout: Fully-redundant, fault-tolerant hardware
exists in the storage, network, and database servers. Resilient, highly-available
software, such as Oracle Real Application Clusters (Oracle RAC), Oracle
Clusterware, Oracle Database, Oracle Automatic Storage Management, Oracle
Linux, and Oracle Exadata Storage Server enable applications to maintain
application service levels through unplanned outages and planned maintenance
events.

For example, Exadata has instant failure detection that can detect and repair
database node, storage server, and network failures in less than two seconds, and
resume application and database service uptime and performance. Other
platforms can experience 30 seconds, or even minutes, of blackout and extended
application brownouts for the same type of failures. Only the Exadata platform
offers a wide range of unplanned outage and planned maintenance tests to
evaluate end-to-end application and database brownouts and blackouts.

• Data protection: Exadata provides Oracle Database with physical and logical
block corruption prevention, detection, and, in some cases, automatic remediation.

The Exadata Hardware Assisted Resilient Data (HARD) checks include support for
server parameter files, control files, log files, Oracle data files, and Oracle Data
Guard broker files, when those files are stored in Exadata storage. This intelligent
Exadata storage validation stops corrupted data from being written to disk when a
HARD check fails, which eliminates a large class of failures that the database
industry had previously been unable to prevent.

Examples of the Exadata HARD checks include:

– Redo and block checksum

– Correct log sequence

– Block type validation

– Block number validation

– Oracle data structures, such as block magic number, block size, sequence
number, and block header and tail data structures

Exadata HARD checks are initiated from Exadata storage software (cell services)
and work transparently after enabling a database DB_BLOCK_CHECKSUM parameter,
which is enabled by default in the cloud. Exadata is the only platform that currently
supports the HARD initiative.

Furthermore, Oracle Exadata Storage Server provides non-intrusive, automatic
hard disk scrub and repair. This feature periodically inspects and repairs hard
disks during idle time. If bad sectors are detected on a hard disk, then Oracle
Exadata Storage Server automatically sends a request to Oracle Automatic
Storage Management (ASM) to repair the bad sectors by reading the data from
another mirror copy.

Finally, Exadata and Oracle ASM can detect corruptions as data blocks are read
into the buffer cache, and automatically repair data corruption with a good copy of

Chapter 28
Oracle Maximum Availability Architecture Benefits

28-2

https://www.oracle.com/database/technologies/high-availability/exadata-maa-best-practices.html
https://www.oracle.com/database/technologies/high-availability/exadata-maa-best-practices.html

the data block on a subsequent database write. This inherent intelligent data protection
makes Exadata Database Machine and ExaDB-D the best data protection storage
platform for Oracle databases.

For comprehensive data protection, a Maximum Availability Architecture best practice is
to use a standby database on a separate Exadata instance to detect, prevent, and
automatically repair corruptions that cannot be addressed by Exadata alone. The standby
database also minimizes downtime and data loss for disasters that result from site,
cluster, and database failures.

• Response time quality of service: Only Exadata has end-to-end quality-of-service
capabilities to ensure that response time remains low and optimum. Database server I/O
latency capping and Exadata storage I/O latency capping ensure that read or write I/O
can be redirected to partnered cells when response time exceeds a certain threshold.

If storage becomes unreliable (but not failed) because of poor and unpredictable
performance, then the disk or flash cache can be confined offline, and later brought back
online if heuristics show that I/O performance is back to acceptable levels. Resource
management can help prioritize key database network or I/O functionality, so that your
application and database perform at an optimized level.

For example, database log writes get priority over backup requests on Exadata network
and storage. Furthermore, rapid response time is maintained during storage software
updates by ensuring that partner flash cache is warmed so flash misses are minimized.

• End-to-end testing and holistic health checks: Because Oracle owns the entire Oracle
Exadata Cloud Infrastructure, end-to-end testing and optimizations benefit every Exadata
customer around the world, whether hosted on-premises or in the cloud. Validated
optimizations and fixes required to run any mission-critical system are uniformly applied
after rigorous testing. Health checks are designed to evaluate the entire stack.

The Exadata health check utility EXACHK is Exadata cloud-aware and highlights any
configuration and software alerts that may have occurred because of customer changes.
No other cloud platform currently has this kind of end-to-end health check available. For
Oracle Autonomous Database, EXACHK runs automatically to evaluate Maximum
Availability Architecture compliance. For non-autonomous databases, Oracle
recommends running EXACHK at least once a month, and before and after any software
updates, to evaluate any new best practices and alerts.

• Higher Uptime: The uptime service-level agreement per month is 99.95% (a maximum
of 22 minutes of downtime per month), but when you use MAA best practices for
continuous service, most months would have zero downtime.

Full list of Exadata features and benefits: Whats New in Oracle Exadata Database
Machine

Oracle Maximum Availability Architecture best practices paper: Oracle Maximum
Availability Architecture (MAA) engineering collaborates with Oracle Cloud teams to integrate
Oracle MAA practices that are optimized for Oracle Cloud Infrastructure and security. See
MAA Best Practices for the Oracle Cloud for additional information about continuous
availability, Oracle Data Guard, Hybrid Data Guard, Oracle GoldenGate, and other Maximum
Availability Architecture-related topics.

Expected Impact with Unplanned Outages
The following table lists various unplanned outages and the associated potential database
downtime, application level Recovery Time Objective (RTO), and data loss potential or
recovery point objective (RPO). For Oracle Data Guard architectures, the database downtime

Chapter 28
Expected Impact with Unplanned Outages

28-3

https://www.oracle.com/database/technologies/high-availability/oracle-cloud-maa.html

or service level downtime does not include detection time or the time it takes before a
customer initiates the Cloud Console Data Guard failover operation.

Table 28-1 Availability and Performance Impact for Exadata Cloud Software Updates

Failure and Maintenance
Events

Database Downtime Service-Level Downtime
(RTO)

Potential Service-Level
Data Loss (RPO)

Localized events, including:

Exadata cluster network
topology failures

Storage (disk and flash)
failures

Database instance failures

Database server failures

Zero Near-zero Zero

Events that require
restoring from backup
because a standby
database does not exist:

Data corruptions

Full database failures

Complete storage failures

Availability domain

Minutes to hours

(without Data Guard)

Minutes to hours

(without Data Guard)

30 minutes

(without Data Guard)

Events using Data Guard to
fail over:

Data corruptions

Full database failures

Complete storage failures

Availability domain or
region failures

Seconds to minutes1

Zero downtime for physical
corruptions due to auto-
block repair feature

Seconds to minutes1

The foreground process
that detects the physical
corruption pauses while
auto block repair completes

Zero for Max Availability
(SYNC)

Near Zero for Max
Performance (ASYNC)

1 To protect from regional failure, you will need a standby database in a different region
than the primary database.

Expected Impact with Planned Maintenance
The following table lists various software updates and the associated database and
application impact. This is applicable for all Oracle Exadata Cloud infrastructures,
including Oracle Exadata Cloud@Customer (ExaDB-C@C), Oracle Exadata Cloud
Infrastructure (ExaDB-D) Gen2, and Oracle Autonomous Database (ADB).

Table 28-2 Availability and Performance Impact for Oracle Exadata Cloud Software Updates

Software Update Database Impact Application Impact Scheduled By Performed By

Exadata Network
Fabric Switches

Zero downtime with
No Database Restart

Zero to single-digit
seconds brownout

Oracle schedules
based on customer
preferences and
customer can
reschedule

Oracle Cloud for both
ADB and non-ADB

Chapter 28
Expected Impact with Planned Maintenance

28-4

Table 28-2 (Cont.) Availability and Performance Impact for Oracle Exadata Cloud Software
Updates

Software Update Database Impact Application Impact Scheduled By Performed By

Exadata Storage
Servers

Zero downtime with
No Database Restart

Zero to single-digit
seconds brownout

Exadata storage
servers are updated
in rolling manner
maintaining
redundancy

Oracle Exadata
System Software pre-
fetches the
secondary mirrors of
the OLTP data that is
most frequently
accessed into the
flash cache,
maintaining
application
performance during
storage server
restarts

Exadata smart flash
for database buffers
is maintained across
storage server restart

With Exadata 21.2
software, Persistent
Storage Index and
Persistent Columnar
Cache features
enable consistent
query performance
after a storage server
software update

Oracle schedules
based on customer
preferences and
customer can
reschedule

Oracle Cloud for both
ADB and non-ADB

Exadata Database
Host - Monthly
Infrastructure
Security Maintenance

Zero downtime with
No Host or Database
Restart

Zero downtime Oracle schedules and
customer can
reschedule

Oracle Cloud for both
ADB and non-ADB

Exadata Database
Host - Quarterly
Infrastructure
Maintenance

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources
are reduced until
planned maintenance
completes

Oracle schedules
based on customer
preferences and
customer can
reschedule

Oracle Cloud for both
ADB and non-ADB

Exadata Database
Guest

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources
are reduced until
planned maintenance
completes

Customer for ADB Oracle Cloud for ADB

Customer using
Oracle Cloud
Console/APIs for
non-ADB

Chapter 28
Expected Impact with Planned Maintenance

28-5

https://docs.oracle.com/en/engineered-systems/exadata-database-machine/dbmso/new-features-exadata-system-software-release-21.html#GUID-3C74128F-3305-40EC-9481-81843C0B2075
https://docs.oracle.com/en/engineered-systems/exadata-database-machine/dbmso/new-features-exadata-system-software-release-21.html#GUID-3C74128F-3305-40EC-9481-81843C0B2075
https://docs.oracle.com/en/engineered-systems/exadata-database-machine/dbmso/new-features-exadata-system-software-release-21.html#GUID-88E0A908-C2E7-4D86-B880-C6AF0F46FD60
https://docs.oracle.com/en/engineered-systems/exadata-database-machine/dbmso/new-features-exadata-system-software-release-21.html#GUID-88E0A908-C2E7-4D86-B880-C6AF0F46FD60

Table 28-2 (Cont.) Availability and Performance Impact for Oracle Exadata Cloud Software
Updates

Software Update Database Impact Application Impact Scheduled By Performed By

Oracle Database
quarterly update or
custom image update

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources
are reduced until
planned maintenance
completes

Special consideration
is required during
rolling database
quarterly updates for
applications that use
database OJVM. See
MOS Note 2217053.1
for details.

Customer for ADB Oracle Cloud for
ADB. For ADB-D,
standby-first patch
practices are
automatically applied.

Customer using
Oracle Cloud
Console/APIs or
dbaascli utility for
non-ADB. In-place via
database home
patch, and out-of-
place via database
move, software
updates exist. Works
for Data Guard and
standby databases
(refer to MOS
2701789.1)

Oracle Grid
Infrastructure
quarterly update or
upgrade

Zero downtime with
Oracle RAC rolling
updates

Zero downtime

Exadata Database
compute resources
are reduced until
planned maintenance
completes

Customer for ADB Oracle Cloud for ADB

Customer using
Oracle Cloud
Console/APIs or
dbaascli utility for
non-ADB

Oracle Database
upgrade with
downtime

Minutes to Hour(s)
downtime

Minutes to Hour(s)
downtime

Customer for ADB Oracle Cloud for ADB

Customer using
Oracle Cloud
Console/APIs or
dbaascli utility for
non-ADB

Works for Data Guard
and standby
databases (refer to
MOS 2628228.1)

Chapter 28
Expected Impact with Planned Maintenance

28-6

Table 28-2 (Cont.) Availability and Performance Impact for Oracle Exadata Cloud Software
Updates

Software Update Database Impact Application Impact Scheduled By Performed By

Oracle Database
upgrade with near
zero downtime

Minimal downtime
with
DBMS_ROLLING,
Oracle GoldenGate
replication, or with
pluggable database
relocate

Minimal downtime
with
DBMS_ROLLING,
Oracle GoldenGate
replication, or with
pluggable database
relocate

Customer for non-
ADB

Oracle Cloud for ADB
on Shared Exadata
Infrastructure (ADB-
S) can run pluggable
database relocate for
upgrade use cases

Customer using
dbaascli for non-
autonomous
leveraging
DBMS_ROLLING.
Refer to Exadata
Cloud Database 19c
Rolling Upgrade With
DBMS_ROLLING
(Doc ID 2832235.1)

Customer using
generic Maximum
Availability
Architecture best
practices for non-
ADB

Exadata cloud systems have many elastic capabilities that can be used to adjust database
and application performance needs. By rearranging resources on need, you can maximize
system resources to targeted databases and applications and you can minimize costs. The
following table lists elastic Oracle Exadata Cloud Infrastructure and VM Cluster updates, and
the impacts associated with those updates on databases and applications. All of these
operations can be performed using Oracle Cloud Console or APIs unless specified otherwise.

Table 28-3 Availability and Performance Impact for Exadata Elastic Operations

VM Cluster Changes Database Impact Application Impact

Scale Up or Down VM Cluster
Memory

Zero downtime with Oracle RAC
rolling updates

Zero to single-digit seconds
brownout

Scale Up or Down VM Cluster CPU Zero downtime with No Database
Restart

Zero downtime

Application performance and
throughput can be impacted by
available CPU resources

Scale Up or Down (resize) ASM
Storage for Database usage

Zero downtime with No Database
Restart

Zero downtime

Application performance might be
minimally impacted.

Scale Up VM Local /u02 File System
Size (Exadata X8M and later
systems)

Zero downtime with No Database
Restart

Zero downtime

Scale Up VM Local /u02 File System
Size (Exadata X8 and earlier
systems)

Zero downtime with Oracle RAC
rolling updates

Zero to single-digit seconds
brownout

Chapter 28
Expected Impact with Planned Maintenance

28-7

https://support.oracle.com/rs?type=doc&id=2832235.1
https://support.oracle.com/rs?type=doc&id=2832235.1
https://support.oracle.com/rs?type=doc&id=2832235.1
https://support.oracle.com/rs?type=doc&id=2832235.1
https://support.oracle.com/rs?type=doc&id=2832235.1

Table 28-3 (Cont.) Availability and Performance Impact for Exadata Elastic Operations

VM Cluster Changes Database Impact Application Impact

Scale Down VM Local /u02 File
System Size

Zero downtime with Oracle RAC
rolling updates for scaling down

Zero to single-digit seconds
brownout

Adding Exadata Storage Cells Zero downtime with No Database
Restart

Zero to single-digit seconds
brownout

Application performance might be
minimally impacted

Adding Exadata Database Servers Zero downtime with No Database
Restart

Zero to single-digit seconds
brownout

Application performance and
throughput may increase by adding
Oracle RAC instances and CPU
resources

Adding/Dropping Database Nodes in
Virtual Machines (VMs) Cluster

Zero downtime with No Database
Restart

Zero to single-digit seconds
brownout

Application performance and
throughput may increase or decrease
by adding or dropping Oracle RAC
instances and CPU resources

Because some of these elastic changes may take significant time, and may impact
available resources for your application, some planning is required.

Note that “scale down” and “drop” changes will decrease available resources. Care
must be taken to not reduce resources below the amount required for database and
application stability and to meet application performance targets. Refer to the following
table for estimated timings and planning recommendations.

Chapter 28
Expected Impact with Planned Maintenance

28-8

Table 28-4 Customer Planning Recommendations for Exadata Elastic Operations

VM Cluster Changes Estimated Timings Customer Planning
Recommendations

Scale Up or Down VM Cluster
Memory

Time to drain services and Oracle
RAC rolling restart

Typically 15-30 minutes per node, but
may vary depending on application
draining

Understanding application draining.

See Achieving Continuous
Availability For Your Applications

Before scaling down memory, ensure
that database SGAs can still be
stored in hugepages, and that
application performance is still
acceptable.

To preserve predictable application
performance and stability:

• Monitor and scale up before
important high workload
patterns require the memory
resources

• Avoid memory scale down
unless all your Databases' SGA
and PGA memory fit into the
new memory size and that all
SGAs are accommodated by
system's hugepages.

Scale Up or Down VM Cluster CPU Online operation, typically less than 5
minutes per VM cluster. Scaling up
from a very low value to very high
value (10+ oCPU increase) may take
10 minutes.

To preserve predictable application
performance and stability:

• Monitor and scale up before
important high workload
patterns require the CPU
resources or when consistently
reaching an OCPU threshold for
tolerated amount of time.

• Only scale down if the load
average is below a threshold for
at least 30 minutes or scale
down based on fixed workload
schedules (e.g. business hours
with 60 OCPUs, non-business
hours with 10 OCPUs and batch
with 100 oCPUs)

• Avoid more than one scale down
requests within 2 hours period

Chapter 28
Expected Impact with Planned Maintenance

28-9

Table 28-4 (Cont.) Customer Planning Recommendations for Exadata Elastic Operations

VM Cluster Changes Estimated Timings Customer Planning
Recommendations

Scale Up or Down (resize) ASM
Storage for Database usage

Time varies based on utilized
database storage capacity and
database activity. The higher
percentage of utilized database
storage, the longer the resize
operation (which includes ASM
rebalance) will take.

Typically minutes to hours.

Oracle ASM rebalance is initiated
automatically. Storage redundancy is
retained. Due to inherent best
practices of using non-intrusive ASM
power limit, application workload
impact is minimal.

Choose a non-peak window so
resize and rebalance operations can
be optimized.

Since the time may vary significantly,
plan for the operation to complete in
hours. To estimate the time that an
existing resize or rebalance
operation per VM cluster, query
GV$ASM_OPERATION. For example, a
customer can run the following query
every 30 minutes to evaluate how
much work (EST_WORK) and how
much more time (EST_MINUTES)
potentially is required:

select operation, pass,
state, sofar, est_work,
est_minutes from
gv$asm_operation where
operation='REBAL';
Note the estimated statistics tend to
become more accurate as the
rebalance progresses but can vary
based on the concurrent workload.

Scale Up VM Local /u02 File System
Size (Exadata X8M and later)

Online operation, typically less than 5
minutes per VM cluster

VM local file system space is
allocated on local database host
disks, which is shared by all VM
guests for all VM clusters provisioned
on that database host. Do not scale
up space for Local /u02 File System
unnecessarily on one VM cluster
such that no space remains to scale
up on other VM clusters on the same
Exadata Infrastructure because
Local /u02 File System scale down
must be performed in a RAC rolling
manner, which may cause
application disruption.

Scale Up VM Local /u02 File System
Size (Exadata X8 and earlier)

Time to drain services and Oracle
RAC rolling restart. Typically 15-30
minutes per node, but may vary
depending on application draining
settings.

Understanding application draining.

See Achieving Continuous
Availability For Your Applications

Chapter 28
Expected Impact with Planned Maintenance

28-10

Table 28-4 (Cont.) Customer Planning Recommendations for Exadata Elastic Operations

VM Cluster Changes Estimated Timings Customer Planning
Recommendations

Scale Down VM Local /u02 File
System Size

Time to drain services and Oracle
RAC rolling restart. Typically 15-30
minutes per node, but may vary
depending on application draining
settings.

Understanding application draining

See Achieving Continuous
Availability For Your Applications

Adding Exadata Storage Cells Online operation to create more
available space for administrator to
choose how to distribute.

Typically 3-72 hours per operation
depending number of VM clusters,
database storage usage and storage
activity. With very active database
and heavy storage activity, this can
take up to take 72 hours.

As part of the add storage cell
operation, there are two parts to this
operation. 1) storage is added to the
system as part the add storage, 2)
administrator needs to decide which
VM cluster to expand its ASM disk
groups as a separate operation.

Plan to add storage when your
storage capacity utilization will hit
80% within a month's time since the
operation may complete in days.

Oracle ASM rebalance is initiated
automatically. Storage redundancy is
retained. Due to inherent best
practices of using non-intrusive ASM
power limit, application workload
impact is minimal.

Since the time may vary significantly,
plan for the operation to complete in
days before the storage is available.
To estimate the time that an existing
resize or rebalance operation per VM
cluster, query GV$ASM_OPERATION.
For example a customer can run the
following query every 30 minutes to
evaluate how much work
(EST_WORK) and how much more
time (EST_MINUTES) potentially is
required:

select operation, pass,
state, sofar, est_work,
est_minutes from
gv$asm_operation where
operation='REBAL';
Note the estimated statistics tend to
become more accurate as the
rebalance progresses, but can vary
based on the concurrent workload.

Chapter 28
Expected Impact with Planned Maintenance

28-11

Table 28-4 (Cont.) Customer Planning Recommendations for Exadata Elastic Operations

VM Cluster Changes Estimated Timings Customer Planning
Recommendations

Adding Exadata Database Servers Online operation to expand your VM
cluster. One step process to add the
Database Compute to the ExaDB-D
and then expand the VM cluster.

Approximately 1 to 6 hours per
Exadata Database Server

Plan to add Database Compute
when your Database resource
utilization will hit 80% within a
month's time. Be aware and plan for
this operation to take many hours to
a day.

Choose a non-peak window so that
the add Database Compute
operation can complete faster

Each Oracle RAC database
registered by Oracle Clusterware and
visible in the Oracle Cloud Console is
extended. If a database was
configured outside the Oracle Cloud
Console or without dbaascli, then
those databases will not be
extended.

Adding/Dropping Database Nodes in
Virtual Machines (VMs) Cluster

Zero database downtime when
adding Database Nodes in VM
cluster typically takes 3-6 hours,
depending on the number of
databases in the VM cluster

Zero database downtime with
dropping Database Nodes in VM
cluster typically takes 1-2 hours,
depending on number of databases
in the VM cluster

Understand that the add/drop
operation is not instantaneous, and
operation may take several hours to
complete

Drop operation reduces Database
compute, OCPU and memory
resources, so application
performance can be impacted

Achieving Continuous Availability For Your Applications
As part of Oracle Exadata Database Service (ExaDB-D and ExaDB-C@C) all software
updates (except for non-rolling database upgrades or non-rolling patches) can be done
online or with Oracle RAC rolling updates to achieve continuous database up time.
Furthermore, any local failures of storage, Exadata network, or Exadata database
server are managed automatically, and database up time is maintained.

To achieve continuous application up time during Oracle RAC switchover or failover
events, follow these application-configuration best practices:

• Use Oracle Clusterware-managed database services to connect your application.
For Oracle Data Guard environments, use role based services.

• Use recommended connection string with built-in timeouts, retries, and delays, so
that incoming connections do not see errors during outages.

• Configure your connections with Fast Application Notification.

• Drain and relocate services. Refer to the table below and use recommended best
practices that support draining, such as test connections, when borrowing or
starting batches of work, and return connections to pools between uses.

Chapter 28
Achieving Continuous Availability For Your Applications

28-12

• Leverage Application Continuity or Transparent Application Continuity to replay in-flight
uncommitted transactions transparently after failures.

For more details on the above checklist, refer to Configuring Continuous Availability for
Applications. Oracle recommends testing your application readiness by following Validating
Application Failover Readiness (Doc ID 2758734.1).

Depending on the Oracle Exadata Database Service planned maintenance event, Oracle
attempts to automatically drain and relocate database services before stopping any Oracle
RAC instance. For OLTP applications, draining and relocating services typically work very
well and result in zero application downtime.

Some applications, such as long running batch jobs or reports, may not be able to drain and
relocate gracefully within the maximum draining time. For those applications, Oracle
recommends scheduling the software planned maintenance window around these types of
activities or stopping these activities before the planned maintenance window. For example,
you can reschedule a planned maintenance window to run outside your batch windows, or
stop batch jobs before a planned maintenance window.

Special consideration is required during rolling database quarterly updates for applications
that use database OJVM. See MOS Note 2217053.1 for details.

The following table lists planned maintenance events that perform Oracle RAC instance
rolling restart, and the relevant service drain timeout variables that may impact your
application.

Table 28-5 Application Drain Attributes for Exadata Cloud Software Updates and
Elastic Operations

Oracle Exadata Database Service Software
Updates or Elastic Operations

Drain Timeout Variables

Oracle DBHOME patch apply and database
MOVE

Oracle Cloud software automation stops/relocates
database services while honoring drain_timeout
settings defined by database service configuration
(for example, srvctl).1

You can override drain_timeout defined on
services by using option –
drainTimeoutInSeconds with command line
operation dbaascli dbHome patch or
dbaascli database move.

The Oracle Cloud internal maximum draining time
supported is 2 hours.

Oracle Grid Infrastructure (GI) patch apply and
upgrade

Oracle Cloud software automation stops/relocates
database services while honoring drain_timeout
settings defined by database service configuration
(for example,. srvctl).1

You can override drain_timeout defined on
services by using option –
drainTimeoutInSeconds with command line
operation dbaascli grid patch or dbaascli
grid upgrade.

The Oracle cloud internal maximum draining time
supported is 2 hours.

Chapter 28
Achieving Continuous Availability For Your Applications

28-13

https://support.oracle.com/rs?type=doc&id=2758734.1
https://support.oracle.com/rs?type=doc&id=2758734.1

Table 28-5 (Cont.) Application Drain Attributes for Exadata Cloud Software Updates
and Elastic Operations

Oracle Exadata Database Service Software
Updates or Elastic Operations

Drain Timeout Variables

Virtual machine operating system software update
(Exadata Database Guest)

Exadata patchmgr/dbnodeupdate software
program calls drain orchestration (rhphelper).

Drain orchestration has the following drain timeout
settings (See Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1) for details):

• DRAIN_TIMEOUT – if a service does not
have drain_timeout defined, then this value is
used. Default value is 180 seconds.

• MAX_DRAIN_TIMEOUT - overrides any
higher drain_timeout value defined by
database service configuration. Default value
is 300 seconds. There is no maximum value.

DRAIN_TIMEOUT settings defined by database
service configuration are honored during service
stop/relocate.

Exadata X8 and earlier systems

• Scale up and down VM local /u02 file system
size

• Scale up or down VM cluster memory

Exadata X8 and earlier systems local file system
resize operation calls drain orchestration
(rhphelper).

Drain orchestration has the following drain timeout
settings (See Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1) for details):

• DRAIN_TIMEOUT – if a service does not
have drain_timeout defined, then this value is
used. Default value is 180 seconds.

• MAX_DRAIN_TIMEOUT - overrides any
higher drain_timeout value defined by
database service configuration. Default value
is 300 seconds.

DRAIN_TIMEOUT settings defined by database
service configuration are honored during service
stop/relocate.

The Oracle Cloud internal maximum draining time
supported for this operation is 300 seconds.

Chapter 28
Achieving Continuous Availability For Your Applications

28-14

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1

Table 28-5 (Cont.) Application Drain Attributes for Exadata Cloud Software Updates
and Elastic Operations

Oracle Exadata Database Service Software
Updates or Elastic Operations

Drain Timeout Variables

Exadata X8M and later systems

• Scale down VM local file system size

Exadata X8M and later systems call drain
orchestration (rhphelper).

Drain orchestration has the following drain timeout
settings (See Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1) for details):

• DRAIN_TIMEOUT – if a service does not
have drain_timeout defined, then this value is
used. Default value is 180 seconds.

• MAX_DRAIN_TIMEOUT - overrides any
higher drain_timeout value defined by
database service configuration. Default value
is 300 seconds.

DRAIN_TIMEOUT settings defined by database
service configuration are honored during service
stop/relocate.

The Oracle Cloud internal maximum draining time
supported for this operation is 300 seconds.

Exadata X8M and later systems

• Scale up or down VM cluster memory

Exadata X8M and later systems call drain
orchestration (rhphelper).

Drain orchestration has the following drain timeout
settings (See Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1) for details):

• DRAIN_TIMEOUT – if a service does not
have drain_timeout defined, then this value is
used. Default value is 180 seconds.

• MAX_DRAIN_TIMEOUT - overrides any
higher drain_timeout value defined for a given
service, default 300.

DRAIN_TIMEOUT settings defined by database
service configuration are honored during service
stop/relocate.

The Oracle Cloud internal maximum draining time
supported for this operation is 300 seconds.

Chapter 28
Achieving Continuous Availability For Your Applications

28-15

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1

Table 28-5 (Cont.) Application Drain Attributes for Exadata Cloud Software Updates
and Elastic Operations

Oracle Exadata Database Service Software
Updates or Elastic Operations

Drain Timeout Variables

Oracle Exadata Cloud Infrastructure (ExaDB-D)
software update

The ExaDB-D database host calls drain
orchestration (rhphelper).

Drain orchestration has the following drain timeout
settings (See Using RHPhelper to Minimize
Downtime During Planned Maintenance on
Exadata (Doc ID 2385790.1) for details):

• DRAIN_TIMEOUT – if a service does not
have drain_timeout defined, then this value is
used. Default value is 180 seconds.

• MAX_DRAIN_TIMEOUT - overrides any
higher drain_timeout value defined by
database service configuration. Default value
is 300 seconds.

DRAIN_TIMEOUT settings defined by database
service configuration are honored during service
stop/relocate.

The Oracle Cloud internal maximum draining time
supported for this operation is

• For Exadata X8 and earlier systems, the
timeout is 300 seconds.

• For Exadata X8M and later systems, the
timeout is 500 seconds.

Enhanced Infrastructure Maintenance Controls
feature:

To achieve draining time longer than the Oracle
Cloud internal maximum, leverage the custom
action capability of the Enhanced Infrastructure
Maintenance Controls feature, which allows you to
suspend infrastructure maintenance before the
next database server update starts, then directly
stop/relocate database services running on the
database server, and then resume infrastructure
maintenance to proceed to the next database
server. This feature is also currently available for
Oracle Exadata Cloud@Customer (ExaDB-C@C).
See Configure Oracle-Managed Infrastructure
Maintenance in Oracle Cloud Infrastructure
Documentation for details.

1 Minimum software requirements to achieve this service drain capability is 1) Oracle
Database 12.2 and later and 2) the latest Oracle Cloud DBaaS tooling software

Oracle Maximum Availability Architecture Reference
Architectures in Oracle Exadata Cloud

Oracle Exadata Cloud (ExaDB-D and ExaDB-C@C) supports all Oracle Maximum
Availability Architecture reference architectures, providing support for all Oracle
Databases, regardless of their specific high availability, data protection, and disaster

Chapter 28
Oracle Maximum Availability Architecture Reference Architectures in Oracle Exadata Cloud

28-16

https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://support.oracle.com/rs?type=doc&id=2385790.1
https://docs.oracle.com/en-us/iaas/exadata/doc/ecc-vw-maint-hist.html
https://docs.oracle.com/en-us/iaas/exadata/doc/ecc-vw-maint-hist.html

recovery service-level agreements. See MAA Best Practices for the Oracle Cloud for more
information about Oracle Maximum Availability Architecture in the Oracle Exadata Cloud.

Chapter 28
Oracle Maximum Availability Architecture Reference Architectures in Oracle Exadata Cloud

28-17

https://www.oracle.com/database/technologies/high-availability/oracle-cloud-maa.html

Part VII
Continuous Availability for Applications

• Configuring Continuous Availability for Applications

29
Configuring Continuous Availability for
Applications

Ensure that your applications are configured to quickly and automatically shift workload to
available Oracle RAC instances or standby databases during planned maintenance and
unplanned outages.

Application up time is maximized by following these recommendations when there are
outages.

The primary audience for this document is application developers and application owners.
Operational examples are included for database administrators and PDB administrators.

Topics:

• About Application High Availability Levels

• Configuring Level 1: Basic Application High Availability

• Configuring Level 2: Prepare Applications for Planned Maintenance

• Configuring Level 3: Mask Unplanned and Planned Failovers from Applications

• Reference

About Application High Availability Levels
Depending on your application's high availability requirements, you can implement the level
of high availability (HA) protection that you need.

HA protection levels are defined in the table below, and each increase in level builds upon the
previous level.

29-1

HA Level Configuration Experience Benefits

Level 1: Basic Application
High Availability

See Configuring Level 1:
Basic Application High
Availability

Database or Security
Administrator:

• Configure role-based
database services

• Leverage
recommended
database connection
string, and optionally
configure LDAP and
wallets

• Enable Fast
Application Notification
(FAN) for immediate
interrupts during
outages

Application Developer:

• Use MAA
recommended connect
string

• Use Basic exception
handling

Implementation effort:
Minimal - estimated 1 hour
for administrator, and less
than 1 hour for developers

Implementing Level 1
protection provides
significant benefits
compared to third party
application failover
solutions due to application
+ Oracle integration and
intelligence to reduce
application impact.

• Reduced application
downtime

• Applications see errors
during planned
maintenance and
unplanned outages,
and automatically
reconnect to another
Oracle RAC instance
or database with the
target service

• Applicable for
unplanned outages
and planned
maintenance. In some
cases, long running
transactions should be
deferred or suspended
during planned
maintenance.

High availability with
application automatically
failing over and
reconnecting

• Quick timeouts and
automated connection
retry with database
connect string

• Location transparency
with services: role-
based services for
standby and read-only
databases so that
applications are
automatically routed to
the proper instance
with the correct role

• FAN auto-configured
with database connect
string

• Immediate interrupt on
outages when using
FAN (no need to tune
timeouts and wait for
them)

• Clusterware is aware
of RAC and VIP
health, so there is no
waiting on downed end
points thanks to FAN

Level 2: Prepare
Applications for Planned
Maintenance

See Configuring Level 2:
Prepare Applications for
Planned Maintenance

Level 1 configuration +

Application Developer:

• Use Oracle connection
pools or connection
tests and return your
connection to the pool
between uses

Additional
implementation effort for
developers: Minimal effort
with Oracle Connection
pools - up to hours of effort
when using an application
server (or days when not
using an application server
depending on application
complexity) for developers
to identify connection tests
used in the application and
possibly create new ones in
the database

• Avoids errors during
planned maintenance
(errors still possible for
unplanned outages)

• Ability to drain and
move workload
gracefully without
application interruption

• Applicable for
unplanned outages
and planned
maintenance events. In
some cases, long
running transactions
should be deferred or
suspended during
planned maintenance.

Workload moves gracefully
across instances with a
slight delay and no errors
during planned
maintenance

Chapter 29
About Application High Availability Levels

29-2

HA Level Configuration Experience Benefits

Level 3: Mask Unplanned
and Planned Failovers from
Applications

See Configuring Level 3:
Mask Unplanned and
Planned Failovers from
Applications

Level 1 and 2 configuration
+ "Application Continuity"
Solution

Database or Security
Administrator:

• Additional security and
privileges required

Application Developers:

• External actions (for
example, side effects)
outside the database
need to be considered

Additional
implementation effort:
Days to weeks of
collaboration between
developers and database
administrators to review
protection coverage
(depending on application
complexity)

• In-flight transactions
automatically
acknowledge the
commit or replay
without application
code changes

• Database
administrators and
application developers
coordinate to ensure
readiness using AWR
statistics to assess
protection coverage,
and use ACCHK
(application continuity
health check) to
identify coverage or
exceptions when
transactions can or
cannot be replayed

Masks unplanned and
planned fail overs from
applications

• Applications avoid
seeing errors during
planned maintenance
and outages

• In-flight uncommitted
transactions are
replayed; committed
transactions are
acknowledged and not
replayed

All of the HA Levels described in the table above are superior to connection management
approaches using load balancers as single connection VIP endpoints for the following
reasons:

• Smart Service Health and Intelligent Reconnect: Oracle Clusterware and Oracle Data
Guard Broker closely monitor the health and state of the clusters and databases to
ensure connections are routed to the database service that is opened on a primary.

• Transparent and Automatic Failover: There is no need to query the health of
databases and decide which is the proper one to move a VIP; everything is transparent in
the high availability approaches described in the table.

• Fast Notification and Automatic Connection Retries: The disconnection of already
connected sessions is immediate, and happens intelligently when Oracle Clusterware
and Data Guard Broker detect outages or role changes on the primary and standby
databases.

Terms

The following terms are used throughout this document:

• Draining: Move a connection from one instance to another available instance.

Draining to move sessions gracefully from one instance to another is used during
planned maintenance and load rebalancing. The connection is moved when the
application returns the connection to a pool and then obtains a new connection or
another rule is satisfied.

• Fail over: Reestablish an equivalent session at a new instance that offers the service.

Fail over occurs during unplanned outages and during planned maintenance when
sessions do not drain within an allotted period of time. The application should not receive
errors when Application Continuity is configured.

Chapter 29
About Application High Availability Levels

29-3

Software Recommendations

The following software is recommended for HA Level configurations:

• Oracle Real Application Clusters (Oracle RAC) and Oracle Clusterware (which
provides services and infrastructure to efficiently manage outages), preferably with
Oracle Grid Infrastructure (GI) release 19c or later

• Oracle Active Data Guard is recommended for protection from database, cluster,
storage or site failures

• Oracle Database 19c client and database or a later long-term support version, with
the most recent patch level

Configuring Level 1: Basic Application High Availability
Implement a level of high availability that allows applications to immediately react to
instance, node, or database failures, and quickly establish new connections to
surviving database instances.

With application HA Level 1, downtime is minimized for unplanned and planned
outages. You get these benefits by ensuring that the application configuration
implements these recommendations. No code changes are required.

At a high level, the steps to implement Level 1 are:

• Step 1: Configure High Availability Database Services

• Step 2: Configure the Connection String for High Availability

• Step 3: Ensure That FAN Is Used

• Step 4: Ensure Application Implements Reconnection Logic

Step 1: Configure High Availability Database Services
Create a non-default, role-based database service to use high-availability features.

A database service is a logical abstraction for managing workloads or a group of
applications sharing similar SLAs or types of workloads (for example, OLTP vs. batch).
Database services provide location transparency and hide complex aspects of the
underlying system from the client.

Your application must connect to a non-default database service to use high-
availability features. You must explicitly create a service (or several services as
needed for different application workloads) instead of using the default database
service or the default PDB service (that is, the service with the same name as the
database or PDB).

On Oracle Autonomous Database, services are created for you using recommended
attributes.

About Server-Side Configuration for Services

These services are configured by a database administrator to set up services through
Oracle Clusterware.

When using Oracle Data Guard and standby databases, create services using the
primary role to ensure that applications connect to the primary database for read/write

Chapter 29
Configuring Level 1: Basic Application High Availability

29-4

operations, and standby role for services to optionally offload read-only and small infrequent
writes to the standby database.

Services start and stop automatically after a Data Guard role transition (for example,
switchover or failover) based on their roles.

Configure your services according to your architecture in one of the following sections:

• Configure High Availability Services

• Configure High Availability Services for Oracle Active Data Guard or Standby Roles

Note:

Services must be started so that they can be used after creating them. Use a
command like this:

$ srvctl start service -db mydb -service my_service

See also:

Using Oracle Services in Oracle Real Application Clusters Administration and Deployment
Guide

Configure High Availability Services
Create a non-default, role-based database service to use high-availability features.

A service may be configured to direct connections to a single preferred instance, or
alternatively, if the preferred instance is down, to an available instance. When a service is
available only on one instance, it is called a singleton service. This allows you to isolate
workloads among instances in a cluster.

You could also configure a service to put connections on multiple instances of a cluster, to
spread work across all instances. Also, if one instance is down, connections can be made on
the surviving instances.

There are other combinations where you can configure a subset of instances as "preferred"
and another subset of instances as "available". These subsets provide for spreading load
across some instances while isolating work from others (and still have instances available in
case of a failure).

Example 1: Singleton Service

This example creates a singleton service called MyService for the primary role, where the
connections are made on instance inst1, unless that instance is not available. If the instance
is not available, connections are made on inst2. It also configures a default drain timeout of
300 seconds to wait for sessions to drain; at the end of that time any remaining sessions are
terminated due to the IMMEDIATE option.

The settings for commit_outcome and failovertype enable Transparent Application
Continuity (TAC) for the future, if you decide to implement it (this is an advanced feature; see
Oracle Application Continuity on Oracle MAA for details). Enabling TAC has no detrimental

Chapter 29
Configuring Level 1: Basic Application High Availability

29-5

https://www.oracle.com/database/technologies/maximum-availability-architecture/#rc30p3

impact and automatically provides benefits when prerequisites are met, if you should
decide to move to HA Level 3.

$ srvctl add service -db mydb -service my_service -pdb mypdb
 –preferred inst1 -available inst2 -commit_outcome TRUE
 -failovertype AUTO -notification TRUE -drain_timeout 300
 -stopoption IMMEDIATE -role PRIMARY

If you want your application to gracefully switch to another Oracle RAC instance with
no application blackout, set the drain_timeout interval to a sufficient timeout that
allows your applications to close their connections between transactions and gracefully
stop or move to another instance. The drain_timeout interval is best leveraged for
short OLTP applications. For large batch operations, it's best defer or suspend these
operations before a planned maintenance window.

Example 2: Service with Multiple Instances

This example creates a service that is similar to the singleton above but spreads
connections across multiple instances in this cluster:

$ srvctl add service -db mydb -service my_service -pdb mypdb
 –preferred inst1,inst2 -commit_outcome TRUE -failovertype AUTO
 -notification TRUE -drain_timeout 300 -stopoption IMMEDIATE
 -role PRIMARY

Configure High Availability Services for Oracle Active Data Guard or Standby
Roles

Create a service used to connect to a standby database (read-only physical standby).

Create a service as shown in the following example:

$ srvctl add service -db mydb -service my_standby_service
 -pdb mypdb –preferred inst1 -available inst2 -notification TRUE
 -drain_timeout 300 -stopoption IMMEDIATE -role PHYSICAL_STANDBY

Step 2: Configure the Connection String for High Availability
Oracle recommends that your application use the connection string configuration
shown here to connect successfully during various scenarios including database
switchover and failover to other sites.

Example 1: Connect string with Oracle RAC primary database and no standby

Alias = (DESCRIPTION =
(CONNECT_TIMEOUT= 90)(RETRY_COUNT=20)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=1000ms)
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=clu_site1-scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME = my_service)))

Chapter 29
Configuring Level 1: Basic Application High Availability

29-6

Example 2: Connect string with Oracle RAC primary and standby databases

This example makes connections to an Oracle RAC primary database or a standby database,
depending on which one is available.

Alias = (DESCRIPTION =
(CONNECT_TIMEOUT= 90)(RETRY_COUNT=100)(RETRY_DELAY=3)
(TRANSPORT_CONNECT_TIMEOUT=1000ms)
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=clu_site1-scan)(PORT=1521)))
 (ADDRESS_LIST =
 (LOAD_BALANCE=on)
 (ADDRESS = (PROTOCOL = TCP)(HOST=clu_site2-scan)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME = my_service)))

Note:

clu_site1-scan and clu_site2-scan refer to SCAN listeners in a cluster on site1 and
site2, respectively.

It's recommended that you use the most recent drivers, but all Oracle drivers from release
12.2 and later should use the example connection strings above. Specific values can be
tuned, but the values shown in this example are reasonable starting points, and so usable for
almost all cases.

It is highly recommended that you maintain your connect string or URL in a central location,
such as LDAP or tnsnames.ora. Do not scatter the connect string or URL in property files or
private locations, as doing so makes it extremely difficult to maintain. Using a centralized
location helps you preserve standard format, tuning, and service settings. Oracle's solution
for this is to use LDAP with the Oracle Unified Directory product.

See also:

• Connection Time Estimates During Data Guard Switchover or Failover

• Oracle Net TNS String Parameters

• Oracle Unified Directory in Administering Oracle Unified Directory

• Overview of Local Naming Parameters in Oracle Database Net Services Reference

Step 3: Ensure That FAN Is Used
FAN provides an intelligent and immediate interrupt when outages occur allowing for a much
smaller application impact or brownout.

When a service needs to drain for routine maintenance, or unplanned failures (such as node
or network outages), the application needs to be informed in real time, so that it moves
connections quickly to another instance or site. This is accomplished using Oracle's Fast
Application Notification (FAN) feature. Enable FAN to prevent applications from hanging when
physical failures, such as node, network, or site failures occur.

Chapter 29
Configuring Level 1: Basic Application High Availability

29-7

https://docs.oracle.com/en/middleware/idm/unified-directory/12.2.1.4/oudag/introduction-oracle-unified-directory.html#GUID-53DE34B1-370C-4C09-93EB-F5FAE76CCA02

FAN uses Oracle Clusterware's Oracle Notification Service (ONS) to receive events
from the cluster. ONS requires ports to be available between the client and the
servers, and in some cases this requires a firewall port to be opened.

Registration to receive FAN events is enabled automatically when using the
recommended service and connect string in steps 1 and 2 above.

The ONS port (by default, 6200) needs to be opened on all of your database servers,
the firewall, and Oracle Active Data Guard nodes. For cloud environments, this step is
very important, including for Oracle Autonomous Database on Dedicated Exadata
Infrastructure (ADB-D), Exadata Database Service on Dedicated Infrastructure
(ExaDB-D), and Oracle Exadata Database Service on Cloud@Customer (ExaDB-
C@C), as shown in the example.

Enabling FAN for Clients

There are no application code changes to use FAN. FAN only requires an Oracle
driver and the recommended database connect string.

FAN is auto-configured and is enabled out of the box. When connecting to the Oracle
database, the database uses the URL or TNS connect string to auto-configure FAN at
the client.

It is important to use the TNS formats shown in Step 2 for auto-configuration of FAN;
using a different format syntax can prevent FAN from being auto-configured. To use
FAN, you must connect to a database service (That you configured in Step 1) and you
must be able to receive events from the Oracle Notification Service (ONS), which may
require a port to be opened, as mentioned above.

FAN may also be configured manually using connection pool settings (see below), if
needed.

See below for configuration requirements with different pool types.

JDBC FAN Requirements

For client drivers using UCP:

• Use the recommended connection URL/string (see above) for auto-configuration
of ONS.

• Include JDBC JAR files ojdbc8.jar (or later), ons.jar, and simplefan.jar on the
CLASSPATH (plus optional wallet jars, if needed: osdt_cert.jar, osdt_core.jar,
and oraclepki.jar).

• Set the pool or driver property to enable Fast Connection Failover (for example, in
UCP it is set for the PoolDataSource using
setFastConnectionFailoverEnabled(true)).

• Disable auto-commit connection property (for example, in UCP it is disabled for
the PoolDataSource using
setConnectionProperty(OracleConnection.CONNECTION_PROPERTY_AUTOCOMMIT,
"false");)

• For third-party JDBC pools, Oracle recommends using Universal Connection Pool
(UCP) as a data source.

• Open port 6200 for ONS communication from your database server (6200 is the
default port, a different port may have been chosen).

Chapter 29
Configuring Level 1: Basic Application High Availability

29-8

If you are not able to use the recommended connect URL/string, configure your clients
manually by setting:

oracle.ons.nodes=Node01:6200, Node02:6200, Node03:6200

Additional settings might be needed when configuring manually. For example walletfile and
walletpassword.

Connection pools other than UCP will have analogous requirements.

OCI FAN Requirements

• For Oracle Call Interface (OCI) clients:

OCI clients embed FAN at the driver level so that all clients can use them regardless of
the pooling solution.

The database service must have the attribute "-notification TRUE" set

If oraaccess.xml is in use, ensure that the events tag is TRUE:

<oraaccess> xmlns="http://xmlns.oracle.com/oci/oraaccess"
 xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
 schemaLocation="http://xmlns.oracle.com/oci/oraaccess
 http://xmlns.oracle.com/oci/oraaccess.xsd">
 <default_parameters>
 <events>true</events>
 </default_parameters>
</oraaccess>

• For ODP.Net clients

Specify HA events in the connect string

"user id=oracle; password=oracle; data source=HA; pooling=true; HA
events=true;"

See also:

Overview of Oracle Integrated Clients and FAN in Oracle Real Application Clusters
Administration and Deployment Guide

Step 4: Ensure Application Implements Reconnection Logic
Applications should be written to catch connection failure exceptions and errors during
database calls so they can obtain new connections and continue with new work.

For JDBC-based apps, the SQLRecoverableException can be caught to distinguish
connection errors from typical application or SQL errors. If a connection error is caught, then
a new connection should be obtained. This is simpler and more robust than checking for
individual Oracle errors (which can adjust by Oracle Database release) in the SQLException
class.

See also:

Connection Retry Logic Examples

Chapter 29
Configuring Level 1: Basic Application High Availability

29-9

Configuring Level 2: Prepare Applications for Planned
Maintenance

Building on application HA Level 1: Basic Application High Availability, Level 2 adds
session draining configuration for minimal application impact during planned
maintenance.

After implementing Level 1, you are ready to implement a planned maintenance
solution appropriate to your application from one of the choices below. You can use
planned operations to relocate or stop services, or to switch over, allowing for graceful
completion of the users' work.

The recommended approach, to avoid impacting applications, is to drain work in an
Oracle RAC rolling fashion. Typically a period of time is allocated to perform the
draining. Our recommended choice is to use Oracle connection pools that are
integrated with FAN to initiate draining.

If you are unable to drain, an alternative approach is to drain work before maintenance
starts.

Other choices can be used if you aren't able to use Oracle connection pools.

Employ the following practices to increase your application high availability to level 2:

• Recommended Option: Use an Oracle Connection Pool - Use an Oracle
Connection Pool and return your connection to the pool between requests.

Alternatively, configure UCP with a Third-Party Connection Pool or a Pool with
Request Boundaries.

• Alternate Option: Use Connection Tests - If you cannot use an Oracle connection
pool, you can use connection tests.

• Leverage Server-Side Operations for Planned Maintenance

• Ensure that sufficient node capacity is available so that the load from one instance
can be spread to other available instances without impacting the workload during a
maintenance period.

Recommended Option: Use an Oracle Connection Pool
Using a FAN-aware Oracle connection pool is the recommended solution for managing
planned maintenance.

Oracle pools provide full lifecycle management: draining, reconnecting, and
rebalancing across nodes and sites. As the maintenance progresses and completes
(for each instance or node), sessions are moved and rebalanced across instances.
There is no impact to users when your application uses an Oracle Pool with FAN and
returns connections to the pool between requests.

Supported Oracle Pools include:

• Universal Connection Pool (UCP)

• WebLogic Active GridLink

• Tuxedo

Chapter 29
Configuring Level 2: Prepare Applications for Planned Maintenance

29-10

• OCI Session Pool

• ODP.NET Managed and Unmanaged providers

• Oracle Session Pool for Python

When using these pools, no application changes are needed other than ensuring that your
connections are returned to the pool between requests.

It is a best practice that an application obtains a connection only for the time that it needs it,
and then returns the connection to the pool as soon as it is finished making its database calls.
Holding a connection instead of returning it to the pool prevents the pool from gracefully
moving sessions to available instances, and it uses resources inefficiently, requiring many
more connections than would otherwise be used. An application should, therefore, obtain a
connection and then return that connection immediately after the work is complete. The
connections are then available for later use by other threads, or your thread when needed
again. Returning connections to a connection pool is a general recommendation regardless
of how draining is implemented.

Note:

The syntax for obtaining and returning a connection varies by pool implementation.
For example, in UCP you use the getConnection() method of the PoolDataSource
object to obtain a connection, and the close() method to return it after you've done
some work in the database.

Oracle Connection Pools validate a connection whenever a connection is borrowed to ensure
that the connection can be used without any errors.

See Universal Connection Pool Developer's Guide

Alternate Option: Use Connection Tests
If you cannot use an Oracle Pool, then the Oracle client drivers 19c or Oracle Database 19c
will drain the sessions for you.

When services are relocated or stopped, or there is a switchover to a standby site via Oracle
Data Guard, the Oracle Database and Oracle client drivers are notified to look for safe places
to release connections according to the following:

• Standard connection tests for connection validity (for example isValid() in JDBC)

• Custom SQL tests for connection validity

For custom batch applications, test the connection between batches. When the connection
test fails, create or borrow another connection.

For third-party connection pools, enable connection tests offered by the vendor. When the
connection test fails, the third-party pool will close the connection and allow you to borrow
another one.

Chapter 29
Configuring Level 2: Prepare Applications for Planned Maintenance

29-11

Note:

• When you use a connection test, the outcome of the connection test
applies to that session only. Do not use connection tests to make general
decisions about the instance and to make a determination to stop more
than the session to which the test applies.

• Disable connection pool properties for flushing and destroying the pool
on connection test failure when using Oracle WebLogic Server data
sources.

• A monitor is functionality that makes a decision about the health of an
instance. With FAN and Runtime Load Balancing such monitors are no
longer needed and not susceptible to incorrect decisions. If you do want
a monitor, SQL in that monitor must NOT be misinterpreted as a
connection test for draining the application. There are a few ways to
avoid this misinterpretation:

– Disable a monitor's specific health query using the
dbms_app_cont_admin package:

dbms_app_cont_admin.disable_connection_test(dbms_app_cont
_admin.sql_test,'SELECT COUNT(1) FROM DUAL’);

Here, the query used by the monitor, 'SELECT COUNT(1) FROM
DUAL’, is not considered a connection test. If there are any
connection tests that also use this query, then they would be
disabled and a different query would be needed.

– Embed a comment into the monitor query to distinguish it from any of
the registered connection tests:

SELECT /* My Health monitor query */ COUNT(1) monitor
FROM DUAL

Use Standard Connection Tests to Drain at the JDBC Thin Driver

For non-Oracle pools, to use connection tests with the JDBC thin driver, do the
following steps.

1. Enable connection tests in your pool (implementation varies by third-party pool)
and use the following test, java.sql.Connection.isValid(int timeout)

2. Set the Java system properties

• -Doracle.jdbc.fanEnabled=true
• -Doracle.jdbc.defaultConnectionValidation=SOCKET (in Oracle Database

19c the isValid() call is local to the client and will not require a trip to the
database)

Use OCI Connection Tests to Drain at the OCI Driver

Chapter 29
Configuring Level 2: Prepare Applications for Planned Maintenance

29-12

When using Oracle Call Interface (OCI) session pool, this connection check is done for you.
When using the OCI driver directly, use OCI_ATTR_SERVER_STATUS. This is the only method
that is a code change.

In your code, check the server handle when borrowing and returning connections to see if the
session is disconnected. When the service is stopped or relocated, the value
OCI_ATTR_SERVER_STATUS is set to OCI_SERVER_NOT_CONNECTED.

The following code sample shows you how to use OCI_ATTR_SERVER_STATUS.

ub4 serverStatus = 0
OCIAttrGet((dvoid *)srvhp, OCI_HTYPE_SERVER,
 (dvoid *)&serverStatus, (ub4 *)0, OCI_ATTR_SERVER_STATUS, errhp);
if (serverStatus == OCI_SERVER_NORMAL)
printf("Connection is up.\n");
else if (serverStatus == OCI_SERVER_NOT_CONNECTED)
 printf("Connection is down.\n");
/* Close connection and get a new one */

Use Connection Tests to Drain at the Oracle Database

The Oracle Database 19c can drain your sessions. When your connection test is executed
during maintenance, the database closes your session and the application server closes the
connection.

Use the view DBA_CONNECTION_TESTS to see the connection tests and rules that are enabled
for you. If you are using a SQL-based connection test, use the same SQL that is enabled in
the database (the same identical statement) at your connection pool or application server.

If you need additional connection tests, you can add, delete, enable, or disable connection
tests for a service, a pluggable database, or non-container database.

For example:

SQL> EXECUTE
 dbms_app_cont_admin.add_sql_connection_test('SELECT COUNT(1) FROM DUAL');

SQL> EXECUTE
 dbms_app_cont_admin.enable_connection_test(dbms_app_cont_admin.sql_test,
 'SELECT COUNT(1) FROM DUAL');

SQL> SELECT * FROM DBA_CONNECTION_TESTS

Use the USERENV Function to Drain PL/SQL-Based Workloads

Use the function USERENV to know whether your session is in draining mode. For example,
use this function to decide when to stop and acquire a new connection in the case of a long
running PL/SQL loop that is processing records.

SQL> select SYS_CONTEXT('USERENV', 'DRAIN_STATUS') from dual ;

SYS_CONTEXT('USERENV','DRAIN_STATUS')

--

Chapter 29
Configuring Level 2: Prepare Applications for Planned Maintenance

29-13

DRAINING

SQL> select SYS_CONTEXT('USERENV', 'DRAIN_STATUS') from dual ;

SYS_CONTEXT('USERENV','DRAIN_STATUS')

NONE

Leverage Server-Side Operations for Planned Maintenance
Server-side operations are required to manage connections for planned maintenance.

Note that services connected to the Oracle Database are configured with connection
tests and a drain timeout specifying how long to allow for draining, and the stopoption
(typically IMMEDIATE), that applies after the drain timeout expires. The stop, relocate,
and switchover commands managed by SRVCTL include a drain_timeout and
stopoption switch to override values set on the service if needed.

Oracle recommends configuring services with the required drain timeout applicable to
that service, so they are used automatically during maintenance operations.

Maintenance commands are similar to the commands described in the examples in
Server-Side Planned Maintenance Command Examples. You can use these
commands to start draining. Include additional options, if needed, as described in My
Oracle Support (MOS) Note: Doc ID 1593712.1. Oracle tools, such as Fleet Patching
and Provisioning (FPP) use these commands as well.

Oracle Clusterware can start instances that are not currently running, but can run a
service that requires that instance. Services that cannot be relocated or do not need
relocation, are stopped. If a singleton service is defined with no other available
instances, then it may incur complete downtime, which is expected behavior. It is
better to have preferred instances and at least one available instance always defined.

After the maintenance is complete and the instance is restarted, no additional SRVCTL
action is required because the Oracle Clusterware service attribute automatically
determines where services will end up.

See also:

Server Draining Ahead of Planned Maintenance in Oracle Real Application Clusters
Administration and Deployment Guide

Configuring Level 3: Mask Unplanned and Planned
Failovers from Applications

Building on Level 1 and Level 2, Application Continuity is highly recommended to
mask database interruptions from the applications and to handle timeouts and
outages.

Database interruptions from the applications can include application workload that
won't drain (planned failover). Application Continuity is enabled on the database
service where it can be configured to operate in two modes, AC and TAC.

Chapter 29
Configuring Level 3: Mask Unplanned and Planned Failovers from Applications

29-14

Application Continuity (AC)

Application Continuity hides outages, starting with Oracle Database 12.1 for JDBC thin
applications, and Oracle Database 12.2.0.1 for OCI and ODP.NET applications with support
for open-source drivers, such as Node.js, and Python, beginning with Oracle Database 19c.

Application Continuity rebuilds and recovers the session from a known point, which includes
session states and transactional states, then it replays all interrupted in-flight work (if it is
already committed, it is not replayed). When the replay is complete, the results are returned
to the application as if no interruption occurred.

Application Continuity is recommended for OLTP applications using an Oracle connection
pool. It is enabled on the database service through which the application is connecting to the
database.

Transparent Application Continuity (TAC)

Starting with Oracle Database19c, Transparent Application Continuity (TAC) automatically
tracks and records the session and transactional states, so the database session can be
recovered and rebuilt following recoverable outages. This is done with no reliance on
application knowledge or application code changes, allowing you to enable TAC for your
applications.

Application transparency and failover are achieved by consuming the state-tracking
information that captures and categorizes the session state usage as the application issues
calls to the database. Set FAILOVERTYPE to AUTO on your service.

If you are not using an Oracle connection pool (as with SQL*PLUS), or you do not have
knowledge about the application, then enable TAC on your database service.

Planned Failover with AC and TAC

Planned failover is failover that is invoked by the Oracle Database at points where the
database decides that a session is replayable and is expected not to drain.

Planned failover is enabled by default when using AC or TAC. It improves situations where
other draining methods are not active, for example, because FAN or connection tests are not
configured.

Planned failover expedites maintenance by failing over early when replay is enabled.

For example, planned failover with TAC is the maintenance solution used with SQL*Plus.

See also:

• Ensuring Application Continuity and Restrictions and Other Considerations for Application
Continuity in Oracle Real Application Clusters Administration and Deployment Guide

• https://database-heartbeat.com/category/application-continuity/ blog

Return Connections to the Connection Pool
Request boundaries are required for Application Continuity (AC) and are recommended for
Transparent Application Continuity (TAC).

Using an Oracle connection pool, such as Universal Connection Pool (UCP) or OCI Session
Pool, the request boundaries are automatically embedded in the session for you, without
changing the application, at appropriate points. The application should return the connection
to the Oracle connection pool when the unit of work, the database request, is completed in

Chapter 29
Configuring Level 3: Mask Unplanned and Planned Failovers from Applications

29-15

https://database-heartbeat.com/category/application-continuity/

order to insert the end of request boundary. This also applies to using ODP.Net
Unmanaged Provider, WebLogic Active GridLink, and RedHat.

Transparent Application Continuity (TAC), in addition, will discover request boundaries.
The conditions for discovering such a boundary in Oracle Database 19c are:

• No transaction is in progress

• Cursors are returned to the statement cache or canceled (cursor does not remain
open across transactions)

• No un-restorable session state exists (PL/SQL globals, OJVM, populated
temporary tables)

Set FAILOVER_RESTORE on the Service
To restore your session state at failover, set the attribute FAILOVER_RESTORE on your
database service.

An application can be written to change the database session state (using ALTER
SESSION commands typically), and these states need to be in place if you want the
work to be replayed after failover.

In the service configuration, use FAILOVER_RESTORE LEVEL1 for Application Continuity,
or FAILOVER_RESTORE AUTO for TAC. Following the application HA Level 1 steps, the
service is created with FAILVOERTYPE AUTO which automatically sets
FAILOVER_RESTORE AUTO.

The use of wallets is highly recommended; AC and TAC leverage wallets to ensure all
modifiable database parameters are restored automatically with FAILOVER_RESTORE.
Wallets are enabled for ADB-D and ADB-S and are the same as those used for
database links.

See also:

Configuring a Keystore for FAILOVER_RESTORE in Oracle Real Application Clusters
Administration and Deployment Guide to learn how to set up wallets for databases.

Restore Original Function Values During Replay

Oracle Database 19c keeps the values of SYSDATE, SYSTIMESTAMP, SYS_GUID, and
sequence.NEXTVAL, CURRENT_TIMESTAMP, and LOCALTIMESTAMP for SQL during replay.

If you are using PL/SQL, then GRANT KEEP for application users, and use the KEEP
clause for a sequence owner. When the KEEP privilege is granted, replay applies the
original function result at replay.

SQL> GRANT KEEP DATE TIME to scott;
SQL> GRANT KEEP SYSGUID to scott;
SQL> GRANT KEEP SEQUENCE mySequence on mysequence.myobject to scott;

Side Effects

When a database request includes an external call from the database, such as
sending MAIL or transferring a file, this is termed a side effect.

Chapter 29
Configuring Level 3: Mask Unplanned and Planned Failovers from Applications

29-16

When replay occurs, there is a choice as to whether side effects should be replayed. Many
applications want to repeat side effects such as journal entries, sending mail, and file writes.
For Application Continuity, side effects are replayed, but can be programmatically avoided.
Conversely, Transparent Application Continuity does not replay side effects.

JDBC Configuration

Use oracle.jdbc.replay.OracleDataSourceImpl in a standalone manner, or configure it as
connection factory class for a Java connection pool (such as UCP) or a WebLogic AGL
Server connection pool.

See Configuring the Data Source for Application Continuity in Oracle Universal Connection
Pool Developer's Guide for information about enabling AC/TAC on UCP. You would configure
the JDBC driver data source class oracle.jdbc.replay.OracleDataSourceImpl as the
connection factory class on the UCP data source PoolDataSourceImpl.

Note that the exact data source and connection pool configuration is always specific to a
particular vendor product, such as 3rd-party connection pool, framework, application server,
container, for example.

Monitoring
Application Continuity collects statistics to monitor your protection levels.

These statistics are saved in the Automatic Workload Repository (AWR) and are available in
Automatic Workload Repository reports. Review the statistics to determine the extent of
protected calls or If the protected call count or protected time decreases. Use the ACCHK
utility for details as to the cause.

See also:

Application Continuity Protection Check in Oracle Real Application Clusters Administration
and Deployment Guide

Reference
Reference topics for Configuring Continuous Availability for Applications.

Topics:

• Connection Time Estimates During Data Guard Switchover or Failover

• Oracle Net TNS String Parameters

• Connection Retry Logic Examples

• Server-Side Planned Maintenance Command Examples

Connection Time Estimates During Data Guard Switchover or Failover
The settings in the connect string allow for the following maximum times to connect during
switchover or failover.

• Data Guard Switchover:

RETRY_COUNT X RETRY_DELAY = 100 x 3 sec = 300 sec.

Chapter 29
Reference

29-17

• Data Guard Failover:

(3 SCANs x TRANSPORT_CONNECT_TIMEOUT) + (RETRY_COUNT x
(RETRY_DELAY + (3 SCANS x TRANSPORT_CONNECT_TIMEOUT))) = (3 x 1)
+ (100 x (3 + (3 x 1)) = 3 + 600 = 603 sec

After Data Guard switchover / Data Guard failover to clu-site2, initial connections to
clu-site2 take 3 seconds when clu-site1 is down (use of a connection pool helps
mitigate this delay). When clu-site1 is reachable again (when it becomes a standby)
connections are nearly instantaneous because the listener on the standby will answer
immediately that the service is not there, prompting the client to connect to the other
ADDRESS_LIST.

• If the switchover or failover completes much earlier than the maximum time, the
application will experience less impact.

• Increase RETRY_COUNT if your system might take longer than 300 sec to
complete a switchover or failover. If you need more time to complete a Data Guard
switchover, then change RETRY_COUNT greater than 100.

• If you aren't using Oracle Clusterware, then your HOST address will not reference
a SCAN VIP but a single VIP. This means that TRANSPORT_CONNECT_TIMEOUT must
be set to higher or lower values to account for network latency.

Oracle Net TNS String Parameters
The parameters used in the connect string are explained here.

CONNECT_TIMEOUT

Applies when a connection to a listener address is attempted.

This setting represents the maximum time in which a connection using a specific
ADDRESS endpoint has to complete. It includes the transport connection time and any
other actions that must happen (redirection from SCAN VIP to listener VIP and finally
to the foreground spawned process).

CONNECT_TIMEMOUT should be larger than TRANSPORT_CONNECT_TIMEOUT, otherwise
TRANSPORT_CONNECT_TIMEOUT is effectively capped by CONNECT_TIMEOUT. When
TRANSPORT_CONNECT_TIMEOUT is not specified, then CONNECT_TIMEOUT acts as the
timeout for the entire connection attempt to an ADDRESS endpoint, both transport and
final connection to the database foreground.

Oracle recommends the value for CONNECT_TIMEOUT be large enough to account for the
value of TRANSPORT_CONNECT_TIMEOUT, in addition to potential delays that may occur
when connecting to busy listeners and hosts. The value of 90 seconds in the example
connect string is very generous and might need to be shortened in some cases. But, if
it is too short, then the setting could be counter-productive because it causes
additional attempts that can also fail, and can introduce more unproductive workload
on the servers to handle connection requests that might be prematurely abandoned.

RETRY_COUNT

If a connection attempt fails across all ADDRESS_LISTS, then additional attempts to
connect beginning with the first ADDRESS_LIST will be made RETRY_COUNT times.

This is useful when a switchover or failover to a standby is in progress and the
connection needs to keep trying until the operation is complete.

Chapter 29
Reference

29-18

RETRY_DELAY

Seconds in between retry attempts.

A short amount of time is given to allow the new primary database time to open. This
parameter is used with RETRY_COUNT to wait a reasonable amount of time to connect to a
newly opened database.

It is better to have short retry delays with many retry counts so the connection can complete
close to the time the primary database opened.

TRANSPORT_CONNECT_TIMEOUT=1000ms

Allow up to 1000 milliseconds to connect to the listener using TCP hosts in the ADDRESS. If
no connection is made, then try the next ADDRESS.

When an Oracle RAC SCAN host name is used, each IP in the SCAN address is expanded
internally into a separate ADDRESS string. Each ADDRESS is then attempted if a connection
attempt fails.

Adjust this parameter for your environment to minimize the time spent waiting for the listener
endpoint connection to succeed. If the time is too short, you might give up on a connection
attempt too soon, causing more delays and potentially a failure to connect. If the time is too
long, then if the listener endpoint is unreachable, you might spend too much time waiting
before giving up and trying another endpoint.

The host names specify SCAN VIPs. They are always available when using a cluster. This
means that if a node or network is down, the VIP sends an instant reply, so that when
connecting, the next address is used immediately if the service is not offered at the VIP
address.

LOAD_BALANCE=ON within ADDRESS_LIST

When a HOST inside an ADDRESS resolves to multiple addresses for Oracle RAC SCAN, then
all of the addresses are tried in a random order.

If you set LOAD_BALANCE=OFF, then the order is the same every time, which might overburden
one of the SCAN listeners, so its recommended to set it to ON.

Connection Retry Logic Examples
Reference code examples for reconnection logic.

See Step 4: Ensure Application Implements Reconnection Logic for more information.

Simple Retry (SANITY CHECK)

Connection jdbcConnection = getConnection();
int iterationCount = 0;
int maxIterations = 10;
for (int i = 0; i < maxIterations, i++)) {
 try {
 // apply the raise (DML + commit):
 giveRaiseToAllEmployees(jdbcConnection, i * 5);
 // no exception, the procedure completed:
 iterationCount++;
 Thread.sleep(1000);

Chapter 29
Reference

29-19

 } catch (SQLRecoverableException recoverableException) {
 // Get a new connection only if the error was recoverable.
 System.out.println("SQLRecoverableException on iteration " +
iterationCount)
 System.out.println("DB Connection lost - will attempt to get a
new connection to continue with the other iterations")

 // IF its OK to lose this work and move onto the next
 // iteration you could now try to get a new connection
 // This depends on what the code is doing; in many use
 // cases you must stop working, in others you can proceed
 // after logging a message to a log file
 // In our example, we assume we can proceed with the rest
 // of the loop if possible.
 // Using Transaction Guard, we can know if the work
 // committed and move on safely (covered in another example).
 try {
 jdbcConnection.close(); // close old connection:
 System.out.println("Connection closed - getting a new one")
 jdbcConnection = getConnection(); // reconnect to continue
with other iterations
 } catch (Exception ex) {
 System.out.println("Unable to close or get a new connection
- giving up")
 throw ex;
 }
 } catch (SQLException nonRecoverableException) {
 // This is not a recoverable exception, so give up
 System.out.println("SQL UN-recoverable exception...give up the
rest of the iterations")
 throw nonRecoverableException;
 }
}

Connection Retry Logic with Transaction Guard

Connection jdbcConnection = getConnection();
boolean isJobDone = false;
while (!isJobDone) {
 try {
 // apply the raise (DML + commit):
 giveRaiseToAllEmployees(jdbcConnection, 5);
 // no exception, the procedure completed:
 isJobDone = true;
 } catch (SQLRecoverableException recoverableException) {
 // Retry only if the error was recoverable.
 try {
 jdbcConnection.close(); // close old connection:
 } catch (Exception ex) {} // pass through other exceptions
 Connection newJDBCConnection = getConnection(); // reconnect
to allow retry
 // Use Transacton Guard to force last request: committed or
uncommitted
 LogicalTransactionId ltxid

Chapter 29
Reference

29-20

 = ((OracleConnection) jdbcConnection).getLogicalTransactionId();
 isJobDone = getTransactionOutcome(newJDBCConnection, ltxid);
 jdbcConnection = newJDBCConnection;
 }
}

void giveRaiseToAllEmployees(Connection conn, int percentage) throws
SQLException {
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate("UPDATE emp SET sal=sal+(sal*" + percentage + "/
100)");
 } catch (SQLException sqle) {
 throw sqle;
 } finally {
 if (stmt != null)
 stmt.close();
 }
 // At the end of the request we commit our changes:
 conn.commit(); // commit can succeed but the commit outcome is lost
}

/**
 * GET_LTXID_OUTCOME_WRAPPER wraps DBMS_APP_CONT.GET_LTXID_OUTCOME
 */
private static final String GET_LTXID_OUTCOME_WRAPPER =
 "DECLARE PROCEDURE GET_LTXID_OUTCOME_WRAPPER(" +
 " ltxid IN RAW," +
 " is_committed OUT NUMBER) " +
 "IS " +
 " call_completed BOOLEAN; " +
 " committed BOOLEAN; " +
 "BEGIN " +
 " DBMS_APP_CONT.GET_LTXID_OUTCOME(ltxid, committed, call_completed); " +
 " if committed then is_committed := 1; else is_committed := 0; end if;
" +
 "END; " +
 "BEGIN GET_LTXID_OUTCOME_WRAPPER(?,?); END;";

/**
 * getTransactionOutcome returns true if the LTXID committed or false
otherwise.
 * note that this particular version is not considering user call completion

 */
boolean getTransactionOutcome(Connection conn, LogicalTransactionId ltxid)
throws SQLException {
 boolean committed = false;
 CallableStatement cstmt = null;
 try {
 cstmt = conn.prepareCall(GET_LTXID_OUTCOME_WRAPPER);
 cstmt.setObject(1, ltxid); // use this starting in 12.1.0.2
 cstmt.registerOutParameter(2, OracleTypes.BIT);
 cstmt.execute();

Chapter 29
Reference

29-21

 committed = cstmt.getBoolean(2);
 } catch (SQLException sqlexc) {
 throw sqlexc;
 } finally {
 if (cstmt != null)
 cstmt.close();
 }
 return committed;
}

Server-Side Planned Maintenance Command Examples

Note:

• If you are using these commands in scripts, you may find it helpful to
include wait = yes.

• The parameters, -force -failover cause the service to start on other
available instances configured on each service.

• For more details see Managing a Group of Services for Maintenance in
Oracle Real Application Clusters Administration and Deployment Guide.

To stop all instances on a node (node1) with all associated services' configured -
drain_timeout and -stopoption parameters.

srvctl stop instance -db myDB -node node1 -force -failover
 -role primary

To stop one instance (inst1) with all associated services' configured -drain_timeout
and -stopoption parameters

srvctl stop instance -db myDB -instance inst1 -force -failover
 -role primary

Stop all instances with explicit draining parameters that override the parameters
configured for associated services.

srvctl stop instance -db db_name -node node_name
 -stopoption IMMEDIATE -drain_timeout <#> -force -failover

Stop a service with explicit draining parameters.

srvctl stop service -db db_name -service service_name
 -instance instance_name -drain_timeout <#> -stopoption IMMEDIATE
 -force -failover

Chapter 29
Reference

29-22

To stop a service named GOLD on an instance named inst1 (a given instance) with a 5
minute drain timeout and an IMMEDIATE stop option.

srvctl stop service -db myDB -service GOLD -instance inst1
 -drain_timeout 300 -stopoption IMMEDIATE -force -failover

Stop a Data Guard instance with explicit draining parameters.

srvctl stop instance -db db_name -node node_name
 -stopoption IMMEDIATE -drain_timeout <#> -force -failover
 -role primary

Relocate all services by database, node, or PDB.

srvctl relocate service -database db_unique_name
 -pdb pluggable_database
 {-oldinst old_inst_name [-newinst new_inst_name] |
 -currentnode current_node
 [-targetnode target_node]}
 -drain_timeout timeout -stopoption stop_option -force

srvctl relocate service -database db_unique_name
 -oldinst old_inst_name [-newinst new_inst_name]
 -drain_timeout timeout -stopoption stop_option
 -force

srvctl relocate service -database db_unique_name
 -currentnode current_node [-targetnode target_node]
 -drain_timeout timeout -stopoption stop_option
 -force

To switch over to a Data Guard secondary site with a wait timeout of 60 seconds, using Data
Guard Broker.

SWITCHOVER TO dg_south WAIT 60

To switch over to Data Guard secondary site with a wait timeout from the services, using Data
Guard Broker.

SWITCHOVER TO dg_south WAIT

Chapter 29
Reference

29-23

Part VIII
Oracle Multitenant Best Practices

• Overview of Oracle Multitenant Best Practices

• PDB Switchover and Failover in a Multitenant Configuration

30
Overview of Oracle Multitenant Best Practices

Oracle Multitenant is Oracle's strategic product for database consolidation.

The benefits of the Oracle Multitenant architecture include:

• Access isolation between individual Pluggable Databases (PDBs) stored in the same
Container Database (CDB)

• Ability to manage many databases with the simplicity of managing just one CDB that
contains many PDBs. By backing up your CDB, updating the CDB software or setting up
a standby CDB for disaster recovery, you are essentially reducing the complexity and
steps by administrating one CDB instead of applying the same administrative steps on
many independent databases. You reduce administrative tasks, steps and errors.

• Sharing of system resources to reduce CAPEX with the flexibility to set resource limits for
things like memory, I/O and on a per PDB level

• Flexibility to operate on an individual PDB, for example relocating a single PDB into
another container and upgrading just that PDB

• Rapid cloning and provisioning

• Tight integration with Oracle RAC

The following table highlights various Oracle Multitenant configuration and operational best
practices.

Table 30-1 Oracle Multitenant configuration and operational best practices

Use Case Best Practices

Pluggable Database (PDB) configuration For all Oracle RDBMS releases 12c Release 2 (12.2) to
21c, configure the CDB with local undo mode

See Undo Modes in 12.2 Multitenant Databases - Local
and Shared Modes (Doc ID 2169828.1)

30-1

https://support.oracle.com/rs?type=doc&id=2169828.1
https://support.oracle.com/rs?type=doc&id=2169828.1

Table 30-1 (Cont.) Oracle Multitenant configuration and operational best practices

Use Case Best Practices

PDB service management Mandatory MAA best practices for any Oracle databases
with Oracle Clusterware (for example, Oracle RAC and
single instance databases with Oracle Clusterware
installed)

1. Never use PDB default services, nor SAVED STATE
(except during relocate operations), nor database
triggers to manage role-based services.

2. Use clusterware-managed distinct services per PDB
for your application service, and leverage that
application service to connect to the database.

3. When defining a clusterware-managed application
service, define which PDB and services will be
started and in which RAC instance and database
role.

4. For Data Guard, always use role-based services by
assigning a role to each clusterware-managed
service.

If the above practices are applied, you will have
predictable service management during PDB open and
Data Guard role transitions. This will lead to higher
application service availability and avoid application
errors.

For single instance databases without MAA-
recommended Oracle clusterware setup, follow these
practices:

1. Never use PDB default services.

2. Use distinct services per PDB for your application
service, and leverage that application service to
connect to the database.

3. For non-Data Guard, use only SAVED state to open
PDBs and start up explicit application services OR
for Data Guard, use only AFTER STARTUP
database triggers to programmatically manage
which application services should be started
depending on primary, READ ONLY, or snapshot
standby database role.

See Best Practices for Pluggable Database End User
and Application Connection and Open on Database
Startup (Doc ID 2833029.1)

Chapter 30

30-2

https://support.oracle.com/rs?type=doc&id=2833029.1
https://support.oracle.com/rs?type=doc&id=2833029.1
https://support.oracle.com/rs?type=doc&id=2833029.1

Table 30-1 (Cont.) Oracle Multitenant configuration and operational best practices

Use Case Best Practices

Using Data Guard with Oracle Multitenant The following My Oracle Support notes provide
operational best practice recommendations when using
Oracle Multitenant in an Oracle Data Guard
configuration.

• Data Guard Impact on Oracle Multitenant
Environments (Doc ID 2049127.1)

• Making Use Deferred PDB Recovery and the
STANDBYS=NONE Feature with Oracle Multitenant
(Doc ID 1916648.1) during use cases: PDB
creation, PDB migration, and PDB cloning

• Reusing the Source Standby Database Files When
Plugging a PDB into the Primary Database of a
Data Guard Configuration (Doc ID 2273829.1) for
PDB migration

• Reusing the Source Standby Database Files When
Plugging a non-CDB as a PDB into the Primary
Database of a Data Guard Configuration (Doc ID
2273304.1) for PDB migration

• Using standby_pdb_source_file_dblink and
standby_pdb_source_file_directory to Maintain
Standby Databases when Performing PDB Remote
Clones or Plugins (Doc ID 2274735.1) for PDB
remote clone or PDB plug-in

• Parameter enabled_pdbs_on_standby and
STANDBYS Option With Data Guard Subset
Standby (Doc ID 2417018.1) to support subset
standby

Data Guard: PDB switchover and failover use cases Using Data Guard Broker to Migrate a Pluggable
Database to a New Data Guard Configuration Document
2887844.1

PDB Failover in a Data Guard environment: Using Data
Guard Broker to Unplug a Single Failed PDB from a
Standby Database and Plugging into a New Container
or Migrate a Single PDB into a New Container
Document 2088201.1

PDB migration The following My Oracle Support notes provide
operational best practices for different types of PDB
migration with minimal downtime:

• Use Zero Downtime Migration if your target is
Exadata platform or cloud. See https://
www.oracle.com/database/technologies/rac/
zdm.html

• Step by Step Process of Migrating non-CDBs and
PDBs Using ASM for File Storage (Doc ID
1576755.1)

• Cloning a Pluggable Database from an RMAN
Container Database Backup (Doc ID 2042607.1)

• Using Data Guard Broker to Migrate a Pluggable
Database to a New Data Guard Configuration
Document 2887844.1

Chapter 30

30-3

https://support.oracle.com/rs?type=doc&id=2049127.1
https://support.oracle.com/rs?type=doc&id=2049127.1
https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=2273829.1
https://support.oracle.com/rs?type=doc&id=2273829.1
https://support.oracle.com/rs?type=doc&id=2273829.1
https://support.oracle.com/rs?type=doc&id=2273304.1
https://support.oracle.com/rs?type=doc&id=2273304.1
https://support.oracle.com/rs?type=doc&id=2273304.1
https://support.oracle.com/rs?type=doc&id=2273304.1
https://support.oracle.com/rs?type=doc&id=2274735.1
https://support.oracle.com/rs?type=doc&id=2274735.1
https://support.oracle.com/rs?type=doc&id=2274735.1
https://support.oracle.com/rs?type=doc&id=2274735.1
https://support.oracle.com/rs?type=doc&id=2417018.1
https://support.oracle.com/rs?type=doc&id=2417018.1
https://support.oracle.com/rs?type=doc&id=2417018.1
https://support.oracle.com/rs?type=doc&id=2887844.1
https://support.oracle.com/rs?type=doc&id=2887844.1
https://support.oracle.com/rs?type=doc&id=2887844.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://www.oracle.com/database/technologies/rac/zdm.html
https://www.oracle.com/database/technologies/rac/zdm.html
https://www.oracle.com/database/technologies/rac/zdm.html
https://support.oracle.com/rs?type=doc&id=1576755.1
https://support.oracle.com/rs?type=doc&id=1576755.1
https://support.oracle.com/rs?type=doc&id=1576755.1
https://support.oracle.com/rs?type=doc&id=2042607.1
https://support.oracle.com/rs?type=doc&id=2042607.1
https://support.oracle.com/rs?type=doc&id=2887844.1
https://support.oracle.com/rs?type=doc&id=2887844.1
https://support.oracle.com/rs?type=doc&id=2887844.1

Table 30-1 (Cont.) Oracle Multitenant configuration and operational best practices

Use Case Best Practices

PDB relocation • Using PDB Relocation to Upgrade an Individual
PDB (Doc ID 2771716.1)

• Using PDB Relocation to Move a Single PDB to
Another CDB Without Upgrade (Doc ID 2771737.1)

PDB resource management The following My Oracle Support note provides
operational use cases for Oracle Multitenant resource
management:

How to Control and Monitor the Memory Usage (Both
SGA and PGA) Among the PDBs in Mutitenant
Database- 12.2 New Feature (Doc ID 2170772.1)

With Oracle Multitenant MAA solutions, you can achieve administration and system
resource savings while still benefiting from various MAA solutions. The following tables
highlight zero and near-zero downtime and data loss for various unplanned outages
and planned maintenance activities.

Table 30-2 Unplanned Outages

Unplanned Outages Key Features for
Solution

RTO RPO

Recoverable node or
instance failures

Real Application Cluster
(RAC)

Application Continuity (AC)

Seconds Zero

Database, cluster, and site
failures

Active Data Guard fast-
start failover

<2 Minutes Zero or Seconds

Data corruptions Active Data Guard that
includes auto block repair
of physical corruptions

Zero Zero

PDB unrecoverable failure
or "sick" PDB

PDB failover using Data
Guard migrate command

Another target CDB on the
same cluster is required

See PDB Failover in a Data
Guard environment: Using
Data Guard Broker to
Unplug a Single Failed
PDB from a Standby
Database and Plugging
into a New Container or
Migrate a Single PDB into
a New Container (Doc ID
2088201.1)

<2 Minutes Zero or Seconds

Chapter 30

30-4

https://support.oracle.com/rs?type=doc&id=2771716.1
https://support.oracle.com/rs?type=doc&id=2771716.1
https://support.oracle.com/rs?type=doc&id=2771737.1
https://support.oracle.com/rs?type=doc&id=2771737.1
https://support.oracle.com/rs?type=doc&id=2170772.1
https://support.oracle.com/rs?type=doc&id=2170772.1
https://support.oracle.com/rs?type=doc&id=2170772.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1
https://support.oracle.com/rs?type=doc&id=2088201.1

Table 30-2 (Cont.) Unplanned Outages

Unplanned Outages Key Features for
Solution

RTO RPO

PDB failover to active
replica

Option 1: Failover entire
CDB with Primary and
Standby CDB Data Guard
architecture

Option 2: Create PDB
replica with Oracle
GoldenGate. Perform PDB
active failover using PDB
replica in a different CDB.

Use Global Data Services
and practices from
Application Checklist for
Continuous Service for
MAA Solutions help with
the application failover

Potentially Zero Zero or Seconds

Table 30-3 Planned Maintenance

Planned Downtime Solution RTO

Software and hardware updates Real Application Cluster (RAC)

Application Checklist for Continuous
Service for MAA Solutions

Zero

Major database upgrade for entire
CDB

Active Data Guard DBMS_ROLLING Seconds

Major database upgrade for single
PDB within CDB

PDB Relocate + Upgrade

See Using PDB Relocation to
Upgrade an Individual PDB (Doc ID
2771716.1)

Minutes

Migration to remote CDB PDB Relocate

See Using PDB Relocation to Move
a Single PDB to Another CDB
Without Upgrade (Doc ID 2771737.1)

Minutes

Migration to remote CDB (logical
migration)

Data Pump and Oracle GoldenGate
or Zero Downtime Migration

Potentially Zero

Chapter 30

30-5

https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://www.oracle.com/a/tech/docs/application-checklist-for-continuous-availability-for-maa.pdf
https://support.oracle.com/rs?type=doc&id=2771716.1
https://support.oracle.com/rs?type=doc&id=2771716.1
https://support.oracle.com/rs?type=doc&id=2771716.1
https://support.oracle.com/rs?type=doc&id=2771737.1
https://support.oracle.com/rs?type=doc&id=2771737.1
https://support.oracle.com/rs?type=doc&id=2771737.1

31
PDB Switchover and Failover in a Multitenant
Configuration

The use cases documented here demonstrate how to set up single pluggable database
(PDB) failover and switchover for an Oracle Data Guard configuration with a container
database (CDB) with many PDBs.

With Oracle Multitenant and the ability to consolidate multiple pluggable databases (PDBs) in
a container database (CDB), you can manage many databases that have similar SLAs and
planned maintenance requirements with fewer system resources, and more importantly with
less operational investment. Leveraging Oracle Multitenant and its CDBs/PDBs technologies
with Oracle’s resource management, it is an effective means to reduce overall hardware and
operational costs.

Planning and sizing are key prerequisites in determining which databases to consolidate in
the same CDB. For mission critical databases that require HA and DR protection and minimal
downtime for planned maintenance, it’s important that you

• Size and leverage resource management to ensure sufficient resources for each PDB to
perform within response and throughput expectations

• Target PDB databases that have the same planned maintenance requirements and
schedule

• Target PDB databases that can all fail over to same CDB standby in case of unplanned
outages such as CDB, cluster, or site failures

Note that Data Guard failover and switchover times can increase as you add more PDBs and
their associated application services. A good rule is to have fewer than 25 PDBs per CDB for
mission critical “Gold” CDBs with Data Guard if you want to reduce Data Guard switchover
and failover timings.

Separating mission critical databases and dev/test databases into different CDBs is
important. For example a mission critical “Gold” CDB with a standby may have only 5 PDBs
with identical HA/DR requirements and may be sized to have ample system resource
headroom while an important CDB with standby can contain 100 PDBs for dev, UAT and
application testing purposes and may set up some level of over subscription to reduce costs.
Refer to Overview of Oracle Multitenant Best Practices for more information on Multitenant
MAA and Multitenant best practices.

This use case provides an overview and step by step instructions for the exception cases
where a complete CDB Data Guard switchover and failover operation is not possible. With
PDB failover and switchover steps, you can isolate the Data Guard role transition to one PDB
to achieve Recovery Time Objective (RTO) of less 5 minutes and zero or near zero Recovery
Point Objective (RPO or data loss).

Starting with Oracle RDBMS 19c (19.15) you can use Data Guard broker command line
interface (DGMGRL) to migrate PDBs from one Data Guard configuration to another. Using
broker, you can initiate PDB disaster recovery (DR) and switchover operations in isolation
without impacting other PDBs in the same CDB.

The following primary use cases are described below for Data Guard broker migration:

31-1

• PDB switchover use case - Planned maintenance DR validation which invokes a
PDB switchover operation without impacting existing PDBs in a Data Guard CDB

• PDB Failover use case - Unplanned outage DR which invokes a PDB failover
without impacting existing PDBs in a Data Guard CDB

Note:

To relocate a single PDB when upgrade is not required without impacting
other PDBs in a CDB see Using PDB Relocation to Move a Single PDB to
Another CDB Without Upgrade (Doc ID 2771737.1). To relocate a single
PDB requiring upgrade without impacting other PDBs in a CDB see .

PDB Switchover Use Case
In this PDB switchover or "DR Test” use case, a PDB is migrated from one Oracle
Data Guard protected CDB to another Data Guard protected CDB.

As part of this use case, the files for the PDB on both the primary and standby
databases of the source CDB are used directly in the respective primary and standby
databases of the destination CDB.

The source CDB contains multiple PDBs, but we perform role transition testing on only
one PDB because the others are not able to accept the impact. Before starting the
migration, a second CDB must be created and it must have the same database
options as the source CDB. The destination CDB is also in a Data Guard
configuration, but it contains no PDBs at the start. The two corresponding primary and
standby databases share the same storage and no data file movement is performed.

Prerequisites
Make sure your environment meets these prerequisites for the use case.

The Oracle Data Guard broker CLI (DGMGRL) supports maintaining configurations
with a single physical standby database.

Using the method described here, for the PDB being migrated (the source), the data
files of both the primary and the standby databases physically remain in their existing
directory structure at the source and are consumed by the destination CDB and its
standby database.

• Oracle patches/versions required

– Oracle RDBMS 19c (19.15) or later

– Patch 33358233 installed on the source and destination CDB RDBMS Oracle
Homes to provide the broker functionality to manage the switchover process.
You don't need to apply the patch on Oracle RDBMS 19c (19.18) and later; it
is included.

– Patch 34904997 installed on the source and destination CDB RDBMS Oracle
Homes to provide the functionality to migrate the PDB back to the original
configuration after performing the PDB Failover Use Case.

• Configuration

Chapter 31
PDB Switchover Use Case

31-2

https://support.oracle.com/rs?type=doc&id=2771737.1
https://support.oracle.com/rs?type=doc&id=2771737.1

– DB_CREATE_FILE_DEST = ASM_Disk_Group
– DB_FILE_NAME_CONVERT=””
– STANDBY_FILE_MANAGEMENT=AUTO
– The source and destination standby CDBs must run on the same cluster

– The source and destination primary CDBs should run from the same Oracle Home,
and the source and destination standby CDBs should run from the same Oracle
Home

– The source and destination primary CDBs must run on the same host

– The source and destination primary databases must use the same ASM disk group,
and the source and destination standby databases must use the same ASM disk
group

• You must have access to the following

– Password for the destination CDB sysdba user

– Password for the standby site ASM sysasm user (to manage aliases)

– Password for the destination CDB Transparent Data Encryption (TDE) keystore if
TDE is enabled

Note:

PDB snapshot clones and PDB snapshot clone parents are not supported for
migration or failover.
For destination primary databases with multiple physical standby databases you
must either use the manual steps in Reusing the Source Standby Database Files
When Plugging a PDB into the Primary Database of a Data Guard Configuration
(Doc ID 2273829.1), or use the ENABLED_PDBS_ON_STANDBY initialization parameter
in the standby databases, to limit which standby will be managed by this process.
See Creating a Physical Standby of a CDB in Oracle Data Guard Concepts and
Administration for information about using ENABLED_PDBS_ON_STANDBY.

Existing ASM aliases for the source PDB migrated are managed by the broker
during the migrate process. ASM only allows one alias per file, so existing aliases
pointing to a different location must be removed and new ones in the correct
location created.

Configuring PDB Switchover
You configure the "DR test" PDB switchover use case in the following steps.

The sample commands included in the steps below use the following CDB and PDB names.

• CDB100 (source CDB)

– Contains PDB001, PDB002, PDB003; PDB001 will be configured for switchover

• CDB100_STBY (source standby CDB)

• CDB200 (destination CDB)

• CDB200_STBY (destination standby CDB)

Chapter 31
PDB Switchover Use Case

31-3

https://support.oracle.com/rs?type=doc&id=2273829.1
https://support.oracle.com/rs?type=doc&id=2273829.1
https://support.oracle.com/rs?type=doc&id=2273829.1

Step 1: Extract PDB Clusterware managed services on the source database

Determine any application and end user services created for the source PDB that have
been added to CRS.

Because there are certain service attributes such as database role not stored in the
database, the detail attributes should be retrieved from CRS using SRVCTL CONFIG
SERVICE.

1. Retrieve the service names from the primary PDB (PDB001 in our example).

PRIMARY_HOST $ sqlplus sys@cdb100 as sysdba
SQL> alter session set container=pdb001;
SQL> select name from dba_services;

2. For each service name returned, retrieve the configuration including
DATABASE_ROLE.

PRIMARY_HOST $ srvctl config service -db cdb100 -s SERVICE_NAME

Step 2: Create an empty target database

Create an empty CDB (CDB200 in our example) on the same cluster as the source
CDB (CDB100) which will be the destination for the PDB.

Allocate resources for this CDB to support the use of the PDB for the duration of the
testing.

Step 3: Create a target standby database

Enable Oracle Data Guard on the target CDB to create a standby database
(CDB200_STBY).

The standby database must reside on the same cluster as the source standby
database.

The configuration should resemble the image below.

Chapter 31
PDB Switchover Use Case

31-4

Step 4: Migrate the PDB

Migrate the PDB (PDB001) from the source CDB (CDB100) to the destination CDB
(CDB200).

1. Start a connection to the source primary database using Oracle Data Guard broker
command line (DGMGRL).

This session should run on a host that contains instances of both the source primary
CDB and the destination primary CDB. The session should be started with a sysdba user.

The broker CLI should be run from the command line on the primary CDB environment
and run while connected to the source primary CDB. If you are using a TNS alias to
connect to the source primary, it should connect to the source primary instance running
on the same host as the broker CLI session.

The host and environment settings when running the broker CLI must have access to
SQL*Net aliases for:

• Destination primary CDB – This alias should connect to the destination primary
instance that is on the same host as the broker CLI session/source primary database
instance to ensure the plug-in operation can access the PDB unplug manifest file that
will be created.

• Destination standby CDB, this can connect to any instance in the standby
environment.

• Standby site ASM instance, this can connect to any instance in the standby
environment.

PRIMARY_HOST1 $ dgmgrl sys@cdb100_prim_inst1 as sysdba

This session should run on a host that contains instances of both the source primary
CDB and the destination primary CDB and connected to a sysdba user. Use specific

Chapter 31
PDB Switchover Use Case

31-5

host/instance combinations instead of SCAN to ensure connections are made
to the desired instances.

2. Run the DGMGRL MIGRATE PLUGGABLE DATABASE command.

The STANDBY FILES keyword is required.

See Full Example Commands with Output for examples with complete output and
MIGRATE PLUGGABLE DATABASE for additional information about the
command line arguments.

• Sample command example without TDE:

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB200
 USING ‘/tmp/PDB001.xml’ CONNECT AS sys/password@cdb200_inst1
 STANDBY FILES sys/standby_asm_sys_password@standby_asm_inst1
 SOURCE STANDBY CDB100_STBY DESTINATION STANDBY CDB200_STBY ;

• Sample command example with TDE

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB200
 USING ‘/tmp/pdb001.xml’ CONNECT AS sys/password@cdb200_inst1
 SECRET "some_value" KEYSTORE IDENTIFIED BY
"destination_TDE_keystore_passwd"
 STANDBY FILES sys/standby_asm_sys_password@standby_asm_inst1
 SOURCE STANDBY cdb100_stby DESTINATION STANDBY cdb200_stby;

When the command is executed, it:

1. Connects to the destination database and ASM instances to ensure credentials
and connect strings are correct

2. Performs a variety of prechecks - If any precheck fails, the command stops
processing and returns control to the user, an error is returned, and no changes
are made on the target CDB

3. Creates a flashback guaranteed restore point in the destination standby CDB -
This requires a short stop and start of redo apply

4. Closes the PDB on the source primary

5. Unplugs the PDB on the source primary - If TDE is in use, the keys are included in
the manifest file generated as part of the unplug operation

6. Drops the PDB on the source primary database with the KEEP DATAFILES clause,
ensuring that the source files are not dropped

7. Waits for the drop PDB redo to be applied to the source standby database - It must
wait because the files are still owned by the source standby database until the
drop redo is applied

The command waits a maximum of TIMEOUT minutes (default 10). If the redo hasn't
been applied by then the command fails and you must manually complete the
process.

8. Manages the ASM aliases for the PDB files at the standby, removing any existing
aliases and creating new aliases as needed - If the standby files already exist in
the correct location, all aliases for the standby copy of the PDB are removed

9. Plugs in the PDB into the destination primary CDB - If TDE is in use, the keys are
imported into the destination primary keystore as part of the plug-in

Chapter 31
PDB Switchover Use Case

31-6

10. Ships and applies redo for the plug-in operation to the destination CDB, which uses any
created aliases (if necessary) to access the files and incorporate them into the standby
database

11. Validates that the standby files are added to the destination standby using redo apply

12. Opens the PDB in the destination primary database

13. Stops redo apply

14. Drops the flashback guaranteed restore point from the destination standby database

15. If TDE is enabled, redo apply remains stopped, if TDE is not enabled, redo apply is
restarted

Step 5: Post Migration - Optional TDE Configuration Step and Restart Apply

If TDE is in use, redo apply will have been stopped by the broker MIGRATE PLUGGABLE
DATABASE operation on the destination standby (CDB200_STBY) to allow the new TDE keys
to be managed. Copy the keystore for the destination primary (CDB200) to the destination
standby keystore and start redo apply.

SOURCE_HOST $ scp DESTINATION_PRIMARY_WALLET_LOCATION/*>
 DESTINATION_HOST:DESTINATION_STANDBY_WALLET_LOCATION/

$ dgmgrl sys/password@CDB200 as sysdba
DGMGRL> edit database cdb200_stby set state=’APPLY-ON’;

Step 6: Post Migration - Enable Services

Add any application services for the PDB to Cluster Ready Services (CRS), associating them
with the PDB and correct database role in the destination CDB, and remove the
corresponding service from the source CDB.

1. For each service on both the primary and standby environments, run the following:

PRIMARY_HOST $ srvctl add service -db cdb200 -s SERVICE_NAME
 -pdb pdb001 -role [PRIMARY|PHYSICAL_STANDBY]….
STANDBY_HOST $ srvctl add service -db cdb200_stby -s SERVICE_NAME
 -pdb pdb001 -role [PRIMARY|PHYSICAL_STANDBY]….

PRIMARY_HOST $ srvctl remove service -db cdb100 -s SERVICE_NAME
STANDBY_HOST $ srvctl remove service -db cdb100_stby -s SERVICE_NAME

2. Start the required services for the appropriate database role.

a. Start each PRIMARY role database service

PRIMARY_HOST $ srvctl start service -db cdb200 -s SERVICE_NAME

b. Start each PHYSICAL_STANDBY role database service:

STANDBY_HOST $ srvctl start service -db cdb200_stby -s SERVICE_NAME

Step 7: Perform PDB role transition testing

Chapter 31
PDB Switchover Use Case

31-7

After completing the migration, you can now perform required Oracle Data Guard role
transitions or DR test with the PDB in destination CDB (CDB200). No other PDBs in
the source CDB (CDB100) are impacted.

In addition, you continue to maintain the Data Guard benefits for both the source and
destination CDB, such as DR readiness, Automatic Block Media Recovery for data
corruptions, Fast-Start Failover to bound recovery time, Lost Write detection for logical
corruptions, offloading reads to the standby to reduce scale and reduce impact of the
primary, and so on. etc.

• Connect to the destination CDB using DGMGRL and perform the switchover.

$ dgmgrl sys@cdb200 as sysdba
DGMGRL> switchover to CDB200_STBY;

You can continue performing your DR testing for the PDB.

Once the DR testing for the PDB is complete, you can switch back and subsequently
migrate the PDB back to the original source CDB.

• Connect to the destination CDB (CDB200) using DGMGRL and perform the
switchback operation.

$ dgmgrl sys@cdb200 as sysdba
DGMGRL> switchover to CDB200;

Step 8: Return the PDB to the original CDB

After migration and role transition testing, switch back to the original configuration for
this CDB and migrate the PDB back to the original Data Guard configuration, again
automatically maintaining the standby database files. Data Guard broker migration
handles any aliases that need to be dropped or created as part of the migration
process.

See Full Example Commands with Output for examples with complete output.

• Start a connection to the source primary using Data Guard Broker command line
(DGMGRL)

$ dgmgrl
DGMGRL> connect sys/@cdb200_inst1 as sysdba

– Command without TDE

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB100
 USING ‘/tmp/PDB001_back.xml’ CONNECT AS sys/
password@cdb100_inst1
 STANDBY FILES sys/standby_asm_sys_password@standby_asm_inst
 SOURCE STANDBY CDB200_STBY DESTINATION STANDBY CDB100_STBY ;

– Command with TDE

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB100
 USING ‘/tmp/PDB001_back.xml’ CONNECT AS sys/
password@cdb100_inst1
 SECRET "some_value" KEYSTORE

Chapter 31
PDB Switchover Use Case

31-8

 IDENTIFIED BY "destination_TDE_keystore_passwd"
 STANDBY FILES sys/standby_asm_sys_password@standby_asm_inst
 SOURCE STANDBY CDB200_STBY DESTINATION STANDBY CDB100_STBY ;

Step 9: Post Migration - Enable Services

Add any application services for the PDB to Cluster Ready Services (CRS), associating them
with the PDB and correct database role in the destination CDB (CDB100), and remove the
corresponding service from the source CDB (CDB200).

• For each service on both the primary and standby environments, run the following:

PRIMARY_HOST $ srvctl add service -db cdb100 -s SERVICE_NAME
 -pdb pdb001 -role [PRIMARY|PHYSICAL_STANDBY]….
STANDBY_HOST $ srvctl add service -db cdb100_stby -s SERVICE_NAME
 -pdb pdb001 -role [PRIMARY|PHYSICAL_STANDBY]….

<PRIMARY_HOST>PRIMARY_HOST $ srvctl remove service -db cdb200 -s
SERVICE_NAME
STANDBY_HOST $ srvctl remove service -db cdb200_stby -s SERVICE_NAME

• Start the required services for the appropriate database role.

1. Start each PRIMARY role database service.

PRIMARY_HOST $ srvctl start service -db cdb100 -s SERVICE_NAME

2. Start each PHYSICAL_STANDBY role database service.

STANDBY_HOST $ srvctl start service -db cdb100_stby -s SERVICE_NAME

PDB Failover Use Case
This is a very rare use case since a real disaster that encompasses CDB, cluster, or site
failure should always leverage a complete CDB Data Guard failover operation to bound
downtime, reduce potential data loss, and reduce administrative steps.

Even with widespread logical or data corruptions or inexplicable database hangs, it's more
efficient to issue a CDB Data Guard role transition operation because the source environment
may be suspect and root cause analysis may take a long time.

When does a PDB failover operation make sense? PDB failover may be viable if the
application is getting fatal errors such as data integrity or corruption errors, or simply is not
performing well (not due to system resources). If the source CDB and its corresponding
PDBs are still running well, and the standby did not receive any errors for the target sick
PDB, then you can fail over just the target sick PDB from the standby without impacting any
other PDBs in the source primary CDB.

The process below describes how to set up a PDB failover of a sick PDB that migrates the
standby’s healthy PDB from the source CDB standby (CDB100_STBY) to an empty
destination CDB (CDB200). Before starting the migration, the destination CDB must be
created and it must have the same database options as the source standby CDB. The
destination CDB will contain no PDBs. The source and destination CDBs share the same
storage and no data file movement is performed.

Chapter 31
PDB Failover Use Case

31-9

Prerequisites
Make sure your environment meets these prerequisites for the use case.

In addition to the prerequisites listed in the PDB switchover use case, above, the
following prerequisites exist for failing over.

• Oracle recommends that you shut down the services on both the primary and the
standby that are accessing the PDB before starting the migration process.

If the PDB is not closed on the primary before running the DGMGRL MIGRATE
PLUGGABLE DATABASE command, an error is returned stating that you will incur data
loss. Closing the PDB on the primary resolves this issue. All existing connections
to the PDB are terminated as part of the migration.

Assuming a destination CDB is already in place and patched correctly on the standby
site, the entire process of moving the PDB can be completed in less than 15 minutes.

Additional Considerations
The following steps assume the source CDB database (either primary for migration or
standby for failover) and the destination CDB database have access to the same
storage, so copying data files is not required.

• Oracle Active Data Guard is required for the source CDB standby for failover
operations.

• Create an empty CDB to be the destination for the PDB on the same cluster as the
source CDB.

• Ensure that the TEMP file in the PDB has already been created in the source CDB
standby before performing the migration.

• If the destination CDB is a later Oracle release the PDB will be plugged in but left
closed to allow for manual upgrade as a post-migration task.

• After processing is completed, you may need to clean up leftover database files
from the source databases.

• The plugin operation at the destination CDB is performed with STANDBYS=NONE, so
you will need to manually enable recovery at any standby databases upon
completion of the migration. See Making Use Deferred PDB Recovery and the
STANDBYS=NONE Feature with Oracle Multitenant (Doc ID 1916648.1) for steps
to enable recovery of a PDB.

Configuring PDB Failover
You configure the DR PDB failover use case in the following steps.

In this use case, the example topology has source primary CDB100 with 3 PDBs
(PDB001, PDB002, PDB003). CDB100 also has a Data Guard physical standby
(CDB100_STBY).

On the same environment as the standby CDB, we will create a new CDB (CDB200)
which is a read-write database that becomes the new host for one of the source PDBs.

Step 1: Extract PDB Clusterware managed services on the source database

Chapter 31
PDB Failover Use Case

31-10

https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1

Determine any application and end user services created for the source PDB that have been
added to CRS.

Because there are certain service attributes such as database role not stored in the
database, the detail attributes should be retrieved from CRS using SRVCTL CONFIG SERVICE.

1. Retrieve the service names from the primary PDB (PDB002 in our example).

PRIMARY_HOST $ sqlplus sys@cdb100 as sysdba
SQL> alter session set container=pdb002;
SQL> select name from dba_services;

2. For each service name returned, retrieve the configuration including DATABASE_ROLE.

PRIMARY_HOST $ srvctl config service -db cdb100 -s SERVICE_NAME

Step 2: Create an empty target database

Create an empty CDB (CDB200 in our example) on the same cluster as the source standby
CDB (CDB100_STBY) which will be the destination for the PDB (PDB002).

Allocate resources for this CDB to support the use of the PDB while it remains in this CDB.

Step 3: Create an Oracle Data Guard configuration for the empty target database

To allow Data Guard broker to access the new CDB (CDB200), it must be part of a Data
Guard configuration. This configuration can consist of only a primary database.

1. Configure the database for broker.

STANDBY_HOST $ sqlplus sys@cdb200 as sysdba
SQL> alter system set dg_broker_config_file1='+DATAC1/cdb200/
dg_broker_1.dat';
SQL> alter system set dg_broker_config_file2='+DATAC1/cdb200/
dg_broker_2.dat';
SQL> alter system set dg_broker_start=TRUE;

2. Create the configuration and add the database as the primary.

STANDBY_HOST $ dgmgrl
DGMGRL> connect sys@cdb200 as sysdba
DGMGRL> create configuration failover_dest as primary database is cdb200
 connect identifier is 'cdb200';
DGMGRL> enable configuration;

The configuration should resemble the image below.

Chapter 31
PDB Failover Use Case

31-11

In this image, the source primary CDB (CDB100) and all PDBs are running normally.
the source standby CDB (CDB100_STBY) must run in Active Data Guard mode to
allow for the "unplug" operation to succeed without impacting other PDBs. The
destination CDB (CDB200) is currently empty.

Assume that one of the source primary PDBs (PDB002) experiences a failure, as
shown in the image below, which requires a long recovery period, but the failure does
not impact the other PDBs (PDB001 and PDB003), and the standby for the source
CDB continues to apply redo without error.

Chapter 31
PDB Failover Use Case

31-12

This configuration will use files from PDB002 at the standby site (CDB100_STBY) to plug into
the destination CDB (CDB200) to restore read/write application access and then drop the sick
PDB (PDB002) from the source primary CDB (CDB100). This will not be a native unplug
operation because native unplug requires a read/write CDB and in this scenario we're
extracting from the standby.

Step 4: Stop services for the failed PDB

Although not required, stop all services on both the source primary database and any
standby database(s) pertaining to the PDB (PDB002) to be migrated.

The following commands stop all services defined in CRS but does not close the PDB.

SOURCE_PRIMARY $ srvctl stop service -d CDB100 -pdb PDB002
SOURCE_PRIMARY $ srvctl stop service -d CDB100_STBY -pdb PDB002

Step 5: Fail over the PDB from the standby

Fail over the sick PDB (PDB002) from the standby CDB (CDB100_STBY) to the destination
CDB (CDB200).

1. Start a DGMGRL session connecting to the source configuration standby database
(CDB100_STBY).

You must connect to the source standby database as SYSDBA using something similar
to the following:

$ dgmgrl
DGMGRL> connect sys@cdb100_stby_inst1 as sysdba

2. Run the DGMGRL MIGRATE PLUGGABLE DATABASE command to perform the failover.

Note:

The DGMGRL FAILOVER command has a similar format to the MIGRATE PLUGGABLE
DATABASE command.
Do not use the STANDBY FILES keyword for the failover operation.

If data loss is detected (SCN in the header of the first SYSTEM tablespace
standby data file is less than the corresponding SCN of the file in the primary)
and IMMEDIATE has not been specified, the MIGRATE PLUGGABLE DATABASE
command will fail. The most common reason is that the PDB in the primary
CDB is still open, the PDB on the primary should be closed before attempting a
failover.

You must resolve the SCN discrepancy or accept the data loss with the
IMMEDIATE clause.

3. Fail over the PDB

See Full Example Commands with Output for examples with complete output.

The CONNECT alias should connect to the destination primary instance that is on the
same host as the broker CLI session/source standby database instance to ensure that
the plugin operation can access the PDB unplug manifest file that will be created.

Chapter 31
PDB Failover Use Case

31-13

Note:

In the following examples, you will be prompted for the SYSDBA
password for the destination CDB (CDB200) when the broker attempts to
connect to the CDB200_INST1 instance.

• For non-TDE enabled environments:

DGMGRL> migrate pluggable database PDB002 to container CDB200
 using '/tmp/PDB002.xml>' connect as sys@”CDB200_INST1”;

• For TDE enabled environments:

DGMGRL> migrate pluggable database PDB002 to container CDB200
 using '/tmp/PDB002.xml>' connect as sys@”CDB200_INST1”
 secret “some_value”
 keystore identified by “destination_keystore_password”
 keyfile ‘/tmp/pdb002_key.dat’
 source keystore identified by “source_keystore_password”;

Note:

For TDE environments, if SECRET, KEYSTORE, KEYFILE, or SOURCE
KEYSTORE are not specified in the command line, the MIGRATE
PLUGGABLE DATABASE command fails.

Once the connection to the destination is established the command will:

1. Perform all necessary validations for the failover operation

2. If TDE is enabled, export the TDE keys for the PDB from the source standby
keystore

3. Stop redo apply on the source standby if it is running

4. Create the manifest on the standby at the location specified in the command using
the DBMS_PDB.DESCRIBE command

5. Disable recovery of the PDB at the source standby

6. If TDE is enabled, import TDE keys into the destination CDB keystore to allow the
plugin to succeed

7. Plugin the PDB in the destination database using the standby's data files (NOCOPY
clause) and with STANDBYS=NONE.

8. Open the PDB in all instances of the destination primary database

9. If TDE is enabled, issue ADMINISTER KEY MANAGEMENT USE KEY in the context of
the PDB to associate the imported key and the PDB.

10. Unplug the PDB from the source primary. If errors occur on unplug messaging is
provided to user to perform cleanup manually

Chapter 31
PDB Failover Use Case

31-14

11. If unplug succeeds, drop the PDB from the source primary with the KEEP DATAFILES
clause. This will also drop the PDB in all of the source standby databases.

Step 6: Post Migration - Enable Services

Add any application services for the PDB to Cluster Ready Services (CRS), associating them
with the PDB and correct database role in the destination CDB, and remove the
corresponding service from the source CDB.

1. For each service on both the primary and standby environments, run the following:

DESTINATION_PRIMARY_HOST $ srvctl add service -db cdb200 -s SERVICE_NAME
 -pdb pdb002 -role [PRIMARY|PHYSICAL_STANDBY]….

SOURCE_PRIMARY_HOST $ srvctl remove service -db cdb100 -s SERVICE_NAME
SOURCE_STANDBY_HOST $ srvctl remove service -db cdb100_stby -s
SERVICE_NAME

2. Start the required services for the appropriate database role.

Start each PRIMARY role database service

DESTINATION_PRIMARY_HOST $ srvctl start service -db cdb200 -s SERVICE_NAME

Step 7: Back up the PDB

Back up the PDB in the destination CDB (CDB200) to allow for recovery going forward.

DESTINATION_PRIMARY_HOST $ rman
RMAN> connect target sys@cdb200
RMAN> backup pluggable database pdb002;

Step 8: Optionally enable recovery of the PDB

Follow the steps in Making Use Deferred PDB Recovery and the STANDBYS=NONE Feature
with Oracle Multitenant (Doc ID 1916648.1) to enable recovery of the PDB at any standby
databases to establish availability and disaster recovery requirements.

Step 9: Optionally to Migrate Back

See the migration steps in Configuring PDB Switchover.

Resolving Errors
For cases where the plugin to the destination primary CDB succeeds but there are issues
such as file not found at the destination standby, you can use the GRP created on the
destination CDB standby database to help in resolution.

If the broker detects an error at the standby it ends execution without removing the GRP, it
can be used to help resolve errors. The GRP name is displayed in the output from the CLI
command execution.

Before using this method, ensure that all patches from the prerequisites section have been
applied.

1. Turn off redo apply in Data Guard Broker so it does not automatically start

Chapter 31
Resolving Errors

31-15

https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1

DGMGRL> edit database CDB200_STBY set state=’APPLY-OFF’;
2. Restart the destination CDB standby in mount mode, ensuring in RAC

environments only one instance is running.

• For Oracle RAC
$ srvctl stop database –d cdb200_stby –o immediate
$ srvctl start instance –d cdb200_stby –i cdb200s1 –o mount

• For SIDB
SQL> shutdown immediate
SQL> startup mount

3. Connect to the PDB in the destination CDB standby database and disable
recovery of the PDB.

SQL> alter session set container=pdb001;
SQL> alter pluggable database disable recovery;

4. Connect to the CDB$root of the destination CDB standby database and flashback
the standby database.
SQL> alter session set container=cdb$root;
SQL> flashback database to restore point <GRP from execution>;

5. Repair any issues that caused redo apply to fail (e.g. missing ASM aliases).

6. Staying in mount mode on the CDB standby, start redo apply.

SQL> recover managed standby database disconnect;
Redo apply will now start applying all redo from the GRP forward, including
rescanning for all the files for the newly plugged in PDB. The flashback GRP rolls
back the destination CDB standby to the point where the PDB is unknown to the
standby, so the disabling of recovery for the PDB is backed out as well.

Steps 1-6 can be repeated as many times as is required until all files are added to the
standby and additional redo is being applied at which point you would:

1. Stop recovery

DGMGRL> edit database CDB200_STBY set state='APPLY-OFF';
2. Connect to the CDB$root of the destination CDB standby database and drop the

GRP from the destination standby database:

SQL> drop restore point <GRP from execution>;
3. Restart redo apply

DGMGRL> edit database CDB200_STBY set state=’APPLY-ON’;
If you continue to have issues and require that your CDB standby database maintain
protection of additional PDBs in the standby during problem resolution:

• Disable recovery of the PDB as noted above

• Restart redo apply so that the other PDBs in the CDB standby are protected

• Follow the Enable Recovery steps in Making Use Deferred PDB Recovery and the
STANDBYS=NONE Feature with Oracle Multitenant (Doc ID 1916648.1) to enable
recovery of the failed PDB.

• Drop the GRP from the destination CDB standby.

Chapter 31
Resolving Errors

31-16

https://support.oracle.com/rs?type=doc&id=1916648.1
https://support.oracle.com/rs?type=doc&id=1916648.1

During testing if there are repetitive errors on the standby that cannot be resolved:

1. Enable PDB operation debugging for redo apply on the standby.

SQL> alter system set "_pluggable_database_debug"=256 comment=’set to help
debug PDB plugin issues for PDB100, reset when done’ scope=both;

2. Follow the steps above to flashback the destination CDB standby database.

3. Restart redo apply.

After the new failure, gather the redo apply trace files from the standby host that was running
redo apply (..../trace/<SID>_pr*.trc) and open a bug.

Once debugging is done:

1. Reset the parameter to turn off debugging.

SQL> alter system reset “_pluggable_database_debug” scope=spfile;
2. Bounce the CDB standby database.

Reference
Note that the following examples may generate different output as part of the DGMGRL MIGRATE
command than you will see while executing the command, based on the different states of
PDBs and items found by DGMGRL running prechecks in your environment. In addition, Oracle
does not ship message files with bug fixes, so instead of displaying full messages you may
receive something similar to the following:

Message 17241 not found; product=rdbms; facility=DGM
This does not mean it's an error or a problem, it means that the text we want to display is
missing from the message file. All messages are displayed in their entirety in the first release
containing all of the fixes.

Full Example Commands with Output
The following are examples of the commands with output.

Example 31-1 Migrate without TDE

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB200
 USING ‘/tmp/PDB001.xml’ CONNECT AS sys/password@cdb200_inst1
 STANDBY FILES sys/standby_asm_sys_passwd@standby_asm_inst1
 SOURCE STANDBY CDB100_STBY DESTINATION STANDBY CDB200_STBY ;

Beginning migration of pluggable database PDB001.
Source multitenant container database is CDB100.
Destination multitenant container database is CDB200.
Connecting to "+ASM1".
Connected as SYSASM.
Stopping Redo Apply services on multitenant container database cdb200_stby.
The guaranteed restore point "<GRP name>" was created for multitenant
container database "cdb2001_stby".
Restarting redo apply services on multitenant container database cdb200_stby.
Closing pluggable database PDB001 on all instances of multitenant container
database CDB100.

Chapter 31
Reference

31-17

Unplugging pluggable database PDB001 from multitenant container
database cdb100.
Pluggable database description will be written to /tmp/pdb001.xml
Dropping pluggable database PDB001 from multitenant container database
CDB100.
Waiting for the pluggable database PDB001 to be dropped from standby
multitenant container database cdb100_stby.
Creating pluggable database PDB100 on multitenant container database
CDB200.
Checking whether standby multitenant container database cdb200_stby
has added all data files for pluggable database PDB001.
Opening pluggable database PDB001 on all instances of multitenant
container database CDB200.
The guaranteed restore point "<GRP_name>" was dropped for multitenant
container database "cdb200_stby".
Migration of pluggable database PDB001 completed.

Succeeded.

Example 31-2 Migrate with TDE

DGMGRL> MIGRATE PLUGGABLE DATABASE PDB001 TO CONTAINER CDB200 USING
‘/tmp/pdb001.xml’
 CONNECT AS sys/password@cdb200_inst1 SECRET "some_value"
 KEYSTORE IDENTIFIED BY "destination_TDE_keystore_passwd"
 STANDBY FILES sys/standby_ASM_sys_passwd@standby_asm_inst1
 SOURCE STANDBY cdb100_stby DESTINATION STANDBY cdb200_stby;

Master keys of the pluggable database PDB001 to need to be migrated.
Keystore of pluggable database PDB001 is open.
Beginning migration of pluggable database PDB001.
Source multitenant container database is cdb100.
Destination multitenant container database is cdb200.
Connecting to "+ASM1".
Connected as SYSASM.
Stopping Redo Apply services on multitenant container database
cdb200_stby.
The guaranteed restore point "..." was created for multitenant
container database "cdb200_stby".
Restarting redo apply services on multitenant container database
cdb200_stby.
Closing pluggable database PDB001 on all instances of multitenant
container database cdb100.
Unplugging pluggable database PDB001 from multitenant container
database cdb100.
Pluggable database description will be written to /tmp/pdb001.xml
Dropping pluggable database PDBT001 from multitenant container
database cdb100.
Waiting for the pluggable database PDB001 to be dropped from standby
multitenant container
database cdb100_stby.
Creating pluggable database PDB1001 on multitenant container database
cdb200.
Checking whether standby multitenant container database cdb200_stby

Chapter 31
Reference

31-18

has added all data files for pluggable database PDB001.
Stopping Redo Apply services on multitenant container database cdb200_stby.
Opening pluggable database PDB001 on all instances of multitenant container
database cdb400.
The guaranteed restore point "..." was dropped for multitenant container
database "cdb200_stby".

Please complete the following steps to finish the operation:
1. Copy keystore located in <cdb200 primary keystore location> for migration
destination primary database to <cdb200 standby keystore location> for
migration destination standby database.
2. Start DGMGRL, connect to multitenant container database cdb200_stby, and
issue command "EDIT DATABASE cdb200_stby SET STATE=APPLY-ON".
3. If the clusterware is configured on multitenant container databases
cdb200 or cdb200_stby, add all non-default services for the migrated
pluggable database in cluster ready services.
Migration of pluggable database PDB001 completed.

Succeeded.

Example 31-3 Failover without TDE

DGMGRL> migrate pluggable database PDB002 immediate to container CDB200
 using '/tmp/<pdb002.xml>';
Username: USERNAME@cdb200
Password:
Connected to "cdb200"
Connected as SYSDBA.

Beginning migration of pluggable database pdb002.
Source multitenant container database is cdb100_stby.
Destination multitenant container database is cdb200.

Connected to "cdb100"
Closing pluggable database pdb002 on all instances of multitenant container
database cdb100.
Continuing with migration of pluggable database pdb002 to multitenant
container database cdb200.
Stopping Redo Apply services on source multitenant container database
cdb100_stby.
Succeeded.
Pluggable database description will be written to /tmp/pdb002.xml.
Closing pluggable database pdb002 on all instances of multitenant container
database cdb100_stby.
Disabling media recovery for pluggable database pdb002.
Restarting redo apply services on source multitenant container database
cdb100_stby.
Succeeded.
Creating pluggable database pdb002 on multitenant container database cdb200.
Opening pluggable database pdb002 on all instances of multitenant container
database cdb200.
Unplugging pluggable database pdb002 from multitenant container database
cdb100.
Pluggable database description will be written to /tmp/pdb002_temp.xml.

Chapter 31
Reference

31-19

Dropping pluggable database pdb002 from multitenant container database
cdb100.
Unresolved plug in violations found while migrating pluggable database
pdb002 to multitenant container database cdb200.
Please examine the PDB_PLUG_IN_VIOLATIONS view to see the violations
that need to be resolved.
Migration of pluggable database pdb002 completed.
Succeeded.

Example 31-4 Filover with TDE

NOTE: ORA-46655 errors in the output can be ignored.

DGMGRL> migrate pluggable database PDB002 to container CDB200
 using '/tmp/PDB002.xml>' connect as sys@”CDB200” secret “some_value”
 keystore identified by “destination_keystore_password” keyfile ‘/tmp/
pdb002_key.dat’
 source keystore identified by “source_keystore_password”;
Connected to "cdb200"
Connected as SYSDBA.
Master keys of the pluggable database PDB002 need to be migrated.
Keystore of pluggable database PDB002 is open.

Beginning migration of pluggable database PDB002.
Source multitenant container database is adg.
Destination multitenant container database is cdb200.

Connected to "cdb1001"
Exporting master keys of pluggable database PDB002.
Continuing with migration of pluggable database PDB002 to multitenant
container database cdb200.
Stopping Redo Apply services on multitenant container database adg.
Pluggable database description will be written to /tmp/PDB002.xml.
Closing pluggable database PDB002 on all instances of multitenant
container database adg.
Disabling media recovery for pluggable database PDB002.
Restarting redo apply services on multitenant container database adg.
Unplugging pluggable database PDB002 from multitenant container
database cdb100.
Pluggable database description will be written to /tmp/
ora_tfilSxnmva.xml.
Dropping pluggable database PDB002 from multitenant container database
cdb100.
Importing master keys of pluggable database PDB002 to multitenant
container database cdb200.
Creating pluggable database PDB002 on multitenant container database
cdb200.
Opening pluggable database PDB002 on all instances of multitenant
container database cdb200.
ORA-46655: no valid keys in the file from which keys are to be imported

Closing pluggable database PDB002 on all instances of multitenant
container database cdb200.
Opening pluggable database PDB002 on all instances of multitenant
container database cdb200.

Chapter 31
Reference

31-20

Please complete the following steps to finish the operation:
If the Oracle Clusterware is configured on multitenant container database
CDB200, add all non-default services for the migted pluggable database in
Cluster Ready Services.

Migration of pluggable database PDB002 completed.
Succeeded.

Keyword Definitions
The DGMGRL MIGRATE command keywords are explained below.

Syntax

DGMGRL> MIGRATE PLUGGABLE DATABASE pdb-name
TO CONTAINER dest-cdb-name
USING XML-description-file
CONNECT AS { /@dest-cdb-connect-identifer |
 dest-cdb-user/dest-cdb-password@dest-cdb-connect-identifier}
[SECRET “secret” KEYSTORE IDENTIFIED BY (EXTERNAL STORE | wallet-
password) ;]
STANDBY FILES { /@asm-instance-connect-identifer |
 sysasm-user/sysasm-password@asm-instance-connect-identifier}
SOURCE STANDBY source-standby-cdb-name
DESTINATION STANDBY dest-standby-cdb-name
[TIMEOUT timeout]

These are the keyword definitions used on the PDB migrate command

• pdb-name - The name of the PDB to be migrated.

• dest-cdb-name - The database unique name of the CDB to receive the PDB to be
migrated.

• XML-description-file - An XML file that contains the description of the PDB to be
migrated. This file is automatically created by the SQL statements executed by the
MIGRATE PLUGGABLE DATABASE command and the location of the file must be directly
accessible by both the source and destination primary database instances. It cannot exist
prior to command execution.

• dest-cdb-user - The user name of the user that has SYSDBA access to the destination
CDB.

• dest-cdb-password - The password associated with the user name specified for dest-
cdb-user.

• dest-cdb-connect-identifier - An Oracle Net connect identifier used to reach the
destination CDB.

• secret - A word used to encrypt the export file containing the exported encryption keys of
the source PDB. This clause is only required for TDE enabled environments.

• keyfile - A data file that contains the exported encryption keys for the source PDB. This
file is created by SQL statements executed by the MIGRATE PLUGGABLE DATABASE

Chapter 31
Reference

31-21

command in the failover use case and the location of the file must be directly
accessible by the source standby instance and the destination primary instance.

• wallet-password - The password of the destination CDB keystore containing the
encryption keys. This is required if the source PDB was encrypted using a
password keystore in TDE enabled environments.

• asm-instance-connect-identifier - The connect identifier to the ASM instance
having the source standby database file.

• sysasm-user - A user having SYSASM privilege for ASM instance.

• sysasm-password - The password for sysasm-user.

• source-standby-cdb-name - DB_UNIQUE_NAME of the migration source CDB’s
standby database.

• dest-standby-cdb-name - DB_UNIQUE_NAME of the migration destination CDB’s
standby database.

• timeout - The timeout value in seconds when waiting for the destination standby
database picks up the data files during migration. This is optional. The default if
the TIMEOUT clause is omitted is 5 minutes.

Messages
The following is the list of messages possibly produced by the DGMGRL MIGRATE
function:

For generic processing

17180 - "Pluggable database %s must be open prior to starting a migration operation."

17217 - "Migration cannot be performed when the source multitenant container
database (%(1)s) is a physical standby running a different version of Oracle than
%(2)s."

17235 - "Investigate why the pluggable database %s could not be unplugged."

17236 - "Resolve the issue and then manually unplug and drop the pluggable
database from database %s."

17237 - "Migration of pluggable database %s completed."

17238 - "Migration of pluggable database %s completed with warnings."

17239 - "Failed to migrate pluggable database %s."

17240 - "Media recovery is disabled for pluggable database %(1)s on multitenant
container database %(2)s."

17241 - "Warning: either source or destination multitenant container database does not
have local undo enabled."

17242 - "Migration from pluggable database %s not possible since it is either a
snapshot child or snapshot parent."

17243 - "Pluggable database %s could not be opened because it was migrated to a
database running a higher Oracle version."

17244 - "Please run the appropriate upgrade procedures prior to opening the
pluggable database."

Chapter 31
Reference

31-22

17245 - "The file location specified (%s) is not accessible."

17246 - "A file name was not specified."

17247 - "An invalid file name (%s) was specified."

17248 - "Retry the command after the lag is resolved or use the IMMEDIATE option to ignore
the data loss."

17249 - "Media recovery is disabled for pluggable database %(1)s on multitenant container
database %(2)s."

17250 - "Warning: either source or destination multitenant container database does not have
local undo enabled."

17251 - "Migration from pluggable database %s not possible since it is either a snapshot child
or snapshot parent."

For addition of TDE support

17413 - "Failed to open keystore of pluggable database %s."

17414 - "Keystore of pluggable database %s is not open."

17415 - "Keystore password of pluggable database %s is required."

17416 - "Keystore password of multitenant container database %s is required."

17427 - "Unable to fetch keystore status of pluggable database %s."

17428 - "Keystore of pluggable database %s is open."

17429 - "Keystore password of pluggable database %s is not correct."

17430 - "Keystore password of multitenant container database %s is not correct."

For standby file support

17510 - "The standby database \"%s\" is not using or connected to an ASM instance."

17511 - "The standby database of the source multitenant container database is using a
different ASM disk group than that of the destination multitenant container database."

17512 - "The initialization parameter DB_FILE_NAME_CONVERT of the migration
destination standby database is not NULL."

17513 - "The initialization parameter STANDBY_FILE_MANAGEMENT of the migration
source standby database is not AUTO."

17514 - "The multitenant container database %s is not a physical standby database."

17515 - "The ASM alias of data file %s is not in the expected location."

17516 - "A multitenant container standby database in the Data Guard Broker configuration
must be specified."

17517 - "Data files cannot be reused when the source multitenant container database is a
standby database."

17518 - "The ASM alias %s refers to an ASM file that is not in the expected location."

17519 - "The guaranteed restore point \"%(1)s\" was created for multitenant container
database \"%(2)s\"."

Chapter 31
Reference

31-23

17520 - "The guaranteed restore point \"%(1)s\" was dropped for multitenant container
database \"%(2)s\"."

17521 - “Connected as SYSASM.”

17522 - "The multitenant container database \"%(1)s\" failed to find the data file
\"%(2)s\"."

17523 - "The multitenant container database \"%s\" is in an unstable state."

17524 - "The multitenant container database \"%(1)s\" can be restored using the
restore point \"%(2)s\"."

17525 - "Redo apply stopped or failed on multitenant container database \"%s\"."

17530 - "The standby multitenant container database %(1)s failed to add all data files
for pluggable database %(2)s."

17532 - "Failed to drop the pluggable database %(1)s from standby multitenant
container database %(2)s."

17533 - "The specified file (%s) must not exist."

17534 - "A path was not specified."

17536 - "Unable to fetch keystore mode of pluggable database %s."

17537 - "KEYFILE and SOURCE IDENTIFIED BY clauses are required."

17539 - "Importing master keys of pluggable database %(1)s to multitenant container
database %(2)s."

Sample Oracle Database Net Services Connect Aliases
The following Net Services connect aliases must be accessible to DGMGRL when
starting the broker session. This can be through default tnsnames.ora location or by
setting TNS_ADMIN in the environment before starting DGMGRL.

PDB Switchover

The host names in the following examples reference Oracle Single Client Access
Name (SCAN) host names. There is overlap in the host names between the source
and destination databases as they must reside on the same hosts. In all cases the
connect strings should connect to the cdb$root of the database.

Source primary database

CDB100 =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)
(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-primary-scan-name>)
 (PORT = <source-primary-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <source-primary-service-name>)

Chapter 31
Reference

31-24

 (FAILOVER_MODE =
 (TYPE = select)
 (METHOD = basic)
)
)
)

Source primary database local instance

CDB100_INST1 =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)
(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-primary-scan-name>)
 (PORT = <source-primary-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <source-primary-cdb$root-service-name>)
 (INSTANCE_NAME = <source-primary-local-instance-name>)
)
)

Destination primary database

CDB200=
 (DESCRIPTION=
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= <source-primary-scan-name>)
 (PORT= <source-primary-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= <destination-primary-cdb$root-service-name>)))

Destination primary local instance

This must connect to an instance on the same host that dgmgrl is being executed

CDB200_INST1=
 (DESCRIPTION=
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= <source-primary-scan-name>)
 (PORT= <source-primary-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= <destination-primary-cdb$root-service-name>)
 (INSTANCE_NAME = <destination-primary-local-instance-name>)

Chapter 31
Reference

31-25

)
)

Source standby database

CDB100_STBY =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)
(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-standby-scan-name)
 (PORT = <source-standby-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <source-standby-cdb$root-service-name>)
 (FAILOVER_MODE =
 (TYPE = select)
 (METHOD = basic)
)
)
)

Destination standby database

CDB200_STBY =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)
(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-standby-scan-name>)
 (PORT = <source-standby-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <destination-standby=cdb$root-service-
name>)
 (FAILOVER_MODE =
 (TYPE = select)
 (METHOD = basic)
)
)
)

Standby environment ASM

This must connect to an ASM instance running on the same host as one instance each
of the source standby and destination standby

STANDBY_ASM_INST1=
 (DESCRIPTION=

Chapter 31
Reference

31-26

 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)(RETRY_COUNT=3)
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST = <source-standby-scan-name>)
 (PORT= <source-standby-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= +ASM)
 (INSTANCE_NAME=<ASM_instance_name>)
)
)

PDB Failover

Source primary database

CDB100 =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)
(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-primary-scan-name>)
 (PORT = <source-primary-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <source-primary-cdb$root-service-name>)
 (FAILOVER_MODE =
 (TYPE = select)
 (METHOD = basic)
)
)
)

Source standby database

CDB100_STBY =
 (DESCRIPTION =
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)
(RETRY_COUNT=3)
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = <source-standby-scan-name>)
 (PORT = <source-standby-listener-port>)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = <source-standby-cdb$root-service-name>)
 (FAILOVER_MODE =
 (TYPE = select)
 (METHOD = basic)
)
)

Chapter 31
Reference

31-27

)

Source standby database local instance

This must connect to an instance on the same host that dgmgrl is being executed

CDB100_STBY_INST1=
 (DESCRIPTION=
 (CONNECT_TIMEOUT=120)(TRANSPORT_CONNECT_TIMEOUT=90)
(RETRY_COUNT=3)
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= <source-standby-scan-name>)
 (PORT= <source-standby-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= <source-standby-cdb$root-service-name>)
 (INSTANCE_NAME = <source-standby-local-instance-name>)
)
)

Destination primary database

CDB200=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= <source-standby-scan-name>)
 (PORT= <source-standby-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= <destination-primary-cdb$root-service-name>)))

Destination primary local instance

This must connect to an instance on the same host that dgmgrl is being executed

CDB200_INST1=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL= TCP)
 (HOST= <source-standby-scan-name>)
 (PORT= <source-standby-listener-port>))
 (CONNECT_DATA=
 (SERVER= DEDICATED)
 (SERVICE_NAME= <destination-primary-cdb$root-service-name>)
 (INSTANCE_NAME = <destination-primary-local-instance-name>)
)
)

Chapter 31
Reference

31-28

Part IX
Full Site Switch in Oracle Cloud or On-
Premises

• Full Site Switch in Oracle Cloud or On-Premise

32
Full Site Switch in Oracle Cloud or On-
Premise

A complete-site or full site failure results in both the application and database tiers being
unavailable. To maintain availability users must be redirected to a secondary site that hosts a
redundant application tier and a synchronized copy of the production database. MAA best
practice is to use Data Guard to maintain the synchronized copy of the production database.
Upon site failure a WAN traffic manager or load balancer is used to perform a DNS failover
(either manually or automatically) to redirect all users to the application tier at standby site
while a Data Guard failover transitions the standby database to the primary production role.

During normal runtime operations the following occurs:

1. Client requests enter the client tier of the primary site and travel by the WAN traffic
manager.

2. Client requests are sent to the application server tier.

3. Requests are forwarded through the active load balancer to the application servers.

4. Requests are sent into the database server tier.

5. The application requests, if required, are routed to an Oracle RAC instance.

6. Responses are sent back to the application and clients by a similar path.

The following illustrates the possible network routes before site switchover:

Figure 32-1 Sites before switchover

32-1

The following steps describe the effect of a site switchover:

1. The administrator has failed over or switched over the primary database to the
secondary site. This is automatic if you are using Data Guard Fast-Start Failover.
Autonomous Database on Dedicated Hardware supports Data Guard Fast-Start
Failover.

2. The administrator starts the middle-tier application servers on the secondary site, if
they are not running. In some cases the same middle-tier application servers can
be leveraged if they do not reside in the failed site.

3. The wide-area traffic manager selection of the secondary site can be automatic for
an entire site failure.

4. The wide-area traffic manager at the secondary site returns the virtual IP address
of a load balancer at the secondary site and clients are directed automatically on
the subsequent reconnect. In this scenario, the site failover is accomplished by an
automatic domain name system (DNS) failover.

The following figure illustrates the network routes after site failover. Client or
application requests enter the secondary site at the client tier and follow the same path
on the secondary site that they followed on the primary site.

Figure 32-2 Sites after switchover

Failover also depends on the client's web browser. Most browser applications cache
the DNS entry for a period. Consequently, sessions in progress during an outage might
not fail over until the cache timeout expires. To resume service to such clients, close
the browser and restart it.

Performing Role Transitions Between Regions
Examples below leverage Oracle Public Cloud. However similar steps can be done on-
premise or hybrid cloud scenarios.

Chapter 32
Performing Role Transitions Between Regions

32-2

Failover to Another Region

A failover operation is performed when the primary site becomes unavailable, and it is
commonly an unplanned operation. You can role-transition a standby database to a primary
database when the original primary database fails and there is no possibility of recovering the
primary database in a timely manner. There may or may not be data loss depending upon
whether your primary and target standby databases were consistent at the time of the
primary database failure.

To perform a manual failover in a DR configuration follow these steps:

1. Switchover DNS name.

Perform the required DNS push in the DNS server hosting the names used by the system
or alter the file host resolution in clients to point the front-end address of the system to
the public IP used by load balancer in site2. For scenarios where DNS is used for the
external front-end resolution (OCI DNS, commercial DNS, etc.), appropriate API can be
used to push the change. An example that push this change in an OCI DNS:

The following is an OCI client script that updates a front end DNS entry, such as
ordscsdroci.domainexample.com, to the site 1 load balancer's public IP address (for
example: 111.111.111.123).

oci dns record rrset update
 --config-file /home/opc/scripts/.oci_ordscsdr/config
 --zone-name-or-id "domainexample.com"
 --domain "ordscsdroci.domainexample.com"
 --rtype "A"
 --items
'[{"domain":"ordscsdroci.domainexample.com","rdata":"111.111.111.123","rty
pe":"A","ttl":60}]'
 --force

2. Failover database.

On Oracle Cloud:

Use Oracle Control Plane and issue a Data Guard switchover or failover operation.

On-Premises:

Use Data Guard broker in secondary database host to perform the failover. As user
oracle:

[oracle@drdbwlmp1b ~]$ dgmgrl sys/your_sys_password@secondary_db_unqname
DGMGRL> failover to “secondary_db_unqname”

3. Start the servers in the secondary site.

Restart the secondary application servers.

Switchover

A switchover is a planned operation where an administrator reverts the roles of the two sites.
The roles change from the primary to the standby as well as from standby to primary. This is
known as a manual switchover. To perform a manual switchover follow these steps:

1. Propagate any pending configuration changes.

For non-database files, you can use rsync or Object Storage Service (OSS) to replicate
to your secondary site.

Chapter 32
Performing Role Transitions Between Regions

32-3

2. Stop servers in the primary site.

Use scripts to stop managed servers / mid tiers in primary Site.

3. Switchover DNS name

Perform the required DNS push in the DNS server hosting the names used by the
system or alter the file host resolution in clients to point the front-end address of
the system to the public IP used by load balancer in site 2. For scenarios where
DNS is used for the external front-end resolution (OCI DNS, commercial DNS,
etc.), appropriate API can be used to push the change.

The following example pushes this change in an OCI DNS.

The OCI client script updates the front end DNS entry, for example
ordscsdroci.domainexample.com, to the site1 load balancer's public IP address
(for example: 111.111.111.123).

oci dns record rrset update
 --config-file /home/opc/scripts/.oci_ordscsdr/config
 --zone-name-or-id "domainexample.com"
 --domain "ordscsdroci.domainexample.com"
 --rtype "A"
 --items
'[{"domain":"ordscsdroci.domainexample.com","rdata":"111.111.111.123
","rtype":"A","ttl":60}]'
 --force

Note that the TTL value of the DNS entry will affect to the effective RTO of the
switchover: if the TTL is high (example, 20 mins), the DNS change will take that
time to be effective in the clients. Using lower TTL values will make this to be
faster, however, this can cause an overhead because the clients check the DNS
more frequently. A good approach is to set the TTL to a low value temporarily
(example, 1 min), before the change in the DNS. Then, perform the change, and
once the switchover procedure is completed, set the TTL to the normal value
again.

4. Perform database switchover.

On Oracle Cloud:

Use Oracle Control Plane and issue a Data Guard switchover operation.

On-Premises:

Use Data Guard broker on the primary database host to perform the switchover.

As user oracle:

$ dgmgrl sys/your_sys_password@primary_db_unqname
DGMGRL> switchover to “secondary_db_unqname”

5. Start the servers in secondary site (new primary).

Restart the secondary managed servers and mid tiers.

Best Practices for Full Site Switchover
Oracle recommends the following best practices:

Chapter 32
Best Practices for Full Site Switchover

32-4

• Maintain the same configuration in primary and standby sites: any changes applied to the
primary system must be performed in the secondary system too, so both primary and
secondary systems have the same configuration. For example: a modification in the
primary load balancer, any modifications to the operating system, and so on.

• Perform regular switchovers to verify the health of the secondary site.

• Perform any switchover related activity that does not require downtime before you stop
the primary servers. For example, the WLS configuration replication based on
config_replica.sh script does not require downtime, you can perform it while the primary
system is up and running. Other example is to start any shutdown host in the standby
site.

• If required to restart the application servers, stop and start the managed servers / mid
tiers in parallel.

• The front-end update in DNS is customer dependent. Use a low TTL value in the
appropriate DNS entry (at least during the switchover operation) to reduce the time for
update. Once the switchover finished, the TTL can be reverted to its original value.

• The OCI load balancer takes some time also to realize that the servers are up and to
start sending requests to them. It is usually some seconds, depending on the frequency
of the OCI load balancer health checks. Lower the interval used for the checks is, faster it
realizes that the servers are up. However, be cautious when you use too low intervals: if
the health check is a heavy check, it could overload the back end.

More Information About Full Site Switchover
The previous topics describe full site failover in a generic fashion. For detailed information for
full site failover for specific applications refer to the following sources:

• SOA Suite on Oracle Cloud Infrastructure Marketplace Disaster Recovery

• Oracle WebLogic Server for Oracle Cloud Infrastructure Disaster Recovery

• Full Stack Disaster Recovery

• Oracle Cloud Infrastructure Full Stack Disaster Recovery

Chapter 32
More Information About Full Site Switchover

32-5

https://www.oracle.com/a/tech/docs/maa-soamp-dr.pdf
https://www.oracle.com/a/otn/docs/middleware/maa-wls-mp-dr.pdf
https://www.oracle.com/cloud/full-stack-disaster-recovery/
https://docs.oracle.com/en/cloud/iaas/disaster-recovery/index.html

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Oracle Database High Availability Overview
	1 Overview of High Availability
	What Is High Availability?
	Importance of Availability
	Cost of Downtime
	Causes of Downtime
	Chaos Engineering
	Roadmap to Implementing the Maximum Availability Architecture

	2 High Availability and Data Protection – Getting From Requirements to Architecture
	High Availability Requirements
	A Methodology for Documenting High Availability Requirements
	Business Impact Analysis
	Cost of Downtime
	Recovery Time Objective
	Recovery Point Objective
	Manageability Goal
	Total Cost of Ownership and Return on Investment

	Mapping Requirements to Architectures
	Oracle MAA Reference Architectures
	Bronze Reference Architecture
	Silver Reference Architecture
	Gold Reference Architecture
	Platinum Reference Architecture
	High Availability and Data Protection Attributes by Tier

	3 Features for Maximizing Availability
	Oracle Data Guard
	Oracle Active Data Guard
	Oracle Data Guard Advantages Over Traditional Solutions
	Data Guard and Planned Maintenance
	Data Guard Redo Apply and Standby-First Patching
	Data Guard Transient Logical Rolling Upgrades
	Rolling Upgrade Using Oracle Active Data Guard

	Oracle GoldenGate
	Best Practice: Oracle Active Data Guard and Oracle GoldenGate
	When to Use Oracle Active Data Guard
	When to Use Oracle GoldenGate
	When to Use Oracle Active Data Guard and Oracle GoldenGate Together

	Recovery Manager
	Oracle Real Application Clusters and Oracle Clusterware
	Benefits of Using Oracle Clusterware
	Benefits of Using Oracle Real Application Clusters and Oracle Clusterware
	Oracle RAC Advantages Over Traditional Cold Cluster Solutions

	Oracle RAC One Node
	Oracle Automatic Storage Management
	Fast Recovery Area
	Corruption Prevention, Detection, and Repair
	Data Recovery Advisor
	Oracle Flashback Technology
	Oracle Flashback Query
	Oracle Flashback Version Query
	Oracle Flashback Transaction
	Oracle Flashback Transaction Query
	Oracle Flashback Table
	Oracle Flashback Drop
	Restore Points
	Oracle Flashback Database
	Flashback Pluggable Database
	Block Media Recovery Using Flashback Logs or Physical Standby Database
	Flashback Data Archive

	Oracle Data Pump and Data Transport
	Oracle Replication Technologies for Non-Database Files
	Oracle Advanced Cluster File System
	Oracle Database File System
	Oracle Solaris ZFS Storage Appliance Replication

	Oracle Multitenant
	Oracle Sharding
	Oracle Restart
	Online Reorganization and Redefinition
	Zero Data Loss Recovery Appliance
	Fleet Patching and Provisioning
	Edition-Based Redefinition

	4 Oracle Database High Availability Solutions for Unplanned Downtime
	Outage Types and Oracle High Availability Solutions for Unplanned Downtime
	Managing Unplanned Outages for MAA Reference Architectures and Multitenant Architectures

	5 Oracle Database High Availability Solutions for Planned Downtime
	Oracle High Availability Solutions for Planned Maintenance
	High Availability Solutions for Migration

	6 Enabling Continuous Service for Applications
	7 Operational Prerequisites to Maximizing Availability
	Understand Availability and Performance SLAs
	Implement and Validate a High Availability Architecture That Meets Your SLAs
	Establish Test Practices and Environment
	Configuring the Test System and QA Environments
	Performing Preproduction Validation Steps

	Set Up and Use Security Best Practices
	Establish Change Control Procedures
	Apply Recommended Patches and Software Periodically
	Perform Disaster Recovery Validation
	Establish Escalation Management Procedures
	Configure Monitoring and Service Request Infrastructure for High Availability
	Run Database Health Checks Periodically
	Configure Oracle Enterprise Manager Monitoring Infrastructure for High Availability
	Configure Automatic Service Request Infrastructure

	Check the Latest MAA Best Practices

	Part II Oracle Database High Availability Best Practices
	8 Overview of Oracle Database High Availability Best Practices
	9 Oracle Database Configuration Best Practices
	Use a Server Parameter File (SPFILE)
	Enable Archive Log Mode and Forced Logging
	Configure an Alternate Local Archiving Destination
	Use a Fast Recovery Area
	Enable Flashback Database
	Set FAST_START_MTTR_TARGET Initialization Parameter
	Protect Against Data Corruption
	Set the LOG_BUFFER Initialization Parameter to 128MB or Higher
	Set USE_LARGE_PAGES=ONLY
	Use Bigfile Tablespace
	Use Automatic Shared Memory Management and Avoid Memory Paging
	Use Oracle Clusterware

	10 Oracle Flashback Best Practices
	Oracle Flashback Performance Observations
	Oracle Flashback Configuration Best Practices
	Oracle Flashback Operational Best Practices
	Oracle Flashback Performance Tuning for Specific Application Use Cases

	Part III Oracle RAC and Clusterware Best Practices
	11 Overview of Oracle RAC and Clusterware Best Practices

	Part IV Oracle Data Guard Best Practices
	12 Overview of MAA Best Practices for Oracle Data Guard
	13 Plan an Oracle Data Guard Deployment
	Oracle Data Guard Architectures
	Application Considerations for Oracle Data Guard Deployments
	Deciding Between Full Site Failover or Seamless Connection Failover
	Full Site Failover Best Practices
	Configuring Seamless Connection Failover

	Assessing and Optimizing Network Performance
	Gather Topology Information
	Understanding Network Usage of Data Guard
	Understanding Targets and Goals for Instantiation
	Understanding Throughput Requirements and Average Redo Write Size for Redo Transport
	Verify Average Redo Write Size
	Understand Current Network Throughput
	Optimizing Redo Transport with One and Many Processes
	Using This Data

	Determining Oracle Data Guard Protection Mode
	Offloading Queries to a Read-Only Standby Database

	14 Configure and Deploy Oracle Data Guard
	Oracle Data Guard Configuration Best Practices
	Apply Oracle Database Configuration Best Practices First
	Use Recovery Manager to Create Standby Databases
	Use Oracle Data Guard Broker with Oracle Data Guard
	Example Broker Installation and Configuration
	Configure Redo Transport Mode
	Validate the Broker Configuration
	Configure Fast Start Failover
	Fast Start Failover with Multiple Standby Databases

	Set Log Buffer Optimally
	Set Send and Receive Buffer Sizes
	Set SDU Size to 65535 for Synchronous Transport Only
	Configure Online Redo Logs Appropriately
	Sizing Redo Logs

	Use Standby Redo Log Groups
	Protect Against Data Corruption
	Use Flashback Database for Reinstatement After Failover
	Use Force Logging Mode
	Configure Fast Start Failover to Bound RTO and RPO (MAA Gold Requirement)
	Configure Standby AWR

	Configuring Multiple Standby Databases
	Managing Oracle Data Guard Configurations with Multiple Standby Databases
	Multiple Standby Databases and Redo Routes
	Using the RedoRoutes Property for Remote Alternate Destinations

	Fast Start Failover with Multiple Standby Databases
	Setting FastStartFailoverTarget
	Switchover with FastStartFailoverTarget Set
	Fast-Start Failover Outage Handling

	Oracle Active Data Guard Far Sync Solution
	About Far Sync
	Offloading to a Far Sync Instance

	Far Sync Deployment Topologies
	Case 1: Zero Data Loss Protection Following Role Transitions
	Case 2: Reader Farm Support
	Case 3: Cloud Deployment With Far Sync Hub
	Far Sync High Availability Topologies
	Choosing a Far Sync Deployment Topology

	Far Sync Configuration Best Practices
	Configuring the Active Data Guard Far Sync Architecture
	Configuring the Far Sync Instances
	Setting Up HA Far Sync Instances
	Configuring Far Sync Instances with Oracle RAC or Oracle Clusterware

	Encrypting a Database Using Data Guard and Fast Offline Encryption

	15 Tune and Troubleshoot Oracle Data Guard
	Overview of Oracle Data Guard Tuning and Troubleshooting
	Redo Transport Troubleshooting and Tuning
	Gather Topology Information
	Verify Transport Lag and Understand Redo Transport Configuration
	Gather Information to Troubleshoot Transport Lag
	Compare Redo Generation Rate History on the Primary
	Evaluate the Transport Network and Tune
	Gather and Monitor System Resources
	Tune to Meet Data Guard Resource Requirements
	Advanced Troubleshooting: Determining Network Time with Asynchronous Redo Transport
	Tuning and Troubleshooting Synchronous Redo Transport
	Understanding How Synchronous Transport Ensures Data Integrity
	Assessing Performance in a Synchronous Redo Transport Environment
	Why the Log File Sync Wait Event is Misleading
	Understanding What Causes Outliers
	Effects of Synchronous Redo Transport Remote Writes
	Example of Synchronous Redo Transport Performance Troubleshooting

	Redo Apply Troubleshooting and Tuning
	Understanding Redo Apply and Redo Apply Performance Expectations
	Verify Apply Lag
	Gather Information
	Compare Redo Generation Rate History on the Primary
	Tune Single Instance Redo Apply
	Evaluate System Resource Bottlenecks
	Tune Redo Apply by Evaluating Database Wait Events

	Enable Multi-Instance Redo Apply if Required
	Addressing a Very Large Redo Apply Gap
	Improving Redo Apply Rates by Sacrificing Data Protection

	Role Transition, Assessment, and Tuning
	Prerequisite Data Guard Health Check Before Role Transition
	Every Quarter
	One Month Before Switchover
	Days Before Switchover

	Data Guard Role Transition
	Monitor Data Guard Role Transitions
	Key Switchover Operations and Alert Log Tags
	Key Failover Operations and Alert Log Tags

	Post Role Transition Validation
	Troubleshooting Problems During a Switchover Operation
	Sources of Diagnostic Information
	Retry Switchover After Correcting the Initial Problem
	Rolling Back After Unsuccessful Switchover to Maximize Uptime

	Data Guard Performance Observations
	Data Guard Role Transition Duration
	Application Throughput and Response Time Impact with Data Guard

	16 Monitor an Oracle Data Guard Configuration
	Monitoring Oracle Data Guard Configuration Health Using the Broker
	Detecting Transport or Apply Lag Using the Oracle Data Guard Broker

	Monitoring Oracle Data Guard Configuration Health Using SQL
	Oracle Data Guard Broker Diagnostic Information
	Detecting and Monitoring Data Corruption

	Part V MAA Platinum and Oracle GoldenGate Best Practices
	17 MAA Platinum Reference Architecture Overview
	18 Overview of Oracle GoldenGate Best Practices
	19 Cloud: Configuring Oracle GoldenGate Hub
	Overview of MAA GoldenGate Hub
	Planning GGHub Placement in the Platinum MAA Architecture
	Where to Place the MAA Primary GGHub and Standby GGHub
	MAA GGHubs Placed in the Same OCI Region
	MAA GGHubs Placed in Different OCI Regions

	Task 1: Configure the Source and Target Databases for Oracle GoldenGate
	Task 2: Prepare a Primary and Standby Base System for GGHub
	Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub
	Task 4: Configure the Oracle GoldenGate Environment

	20 Cloud: Oracle GoldenGate Microservices Architecture on Oracle Exadata Database Service Configuration Best Practices
	Overview of Oracle GoldenGate Microservices Architecture Configuration on Oracle Exadata Database Service
	Task 1 - Before You Begin
	Task 2 - Configure the Oracle Database for GoldenGate
	Task 3 - Create a Shared File System to Store the Oracle GoldenGate Deployment
	Task 4 - Install Oracle GoldenGate
	Task 5 - Create the Oracle GoldenGate Deployment
	Task 6 - Configure the Network
	Task 7 - Configure Oracle Grid Infrastructure Agent
	Task 8 - Configure NGINX Reverse Proxy
	Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections
	Task 10 - Create a New Profile
	Task 11 - Configure Oracle GoldenGate Processes

	21 Cloud MAA Platinum: Oracle GoldenGate Microservices Architecture Integrated with Active Data Guard
	Overview
	Task 1 - Before You Begin
	Task 2 - Configure the Oracle Database for GoldenGate
	Task 3 - Configure Oracle Database File System
	Task 4 - Install Oracle GoldenGate
	Task 5 - Create Oracle GoldenGate Deployment Directories
	Task 6 - Network Configuration
	Task 7 - Configure Standby NGINX Reverse Proxy
	Task 8 - Configure Oracle Grid Infrastructure Agent
	Task 9 - Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections
	Task 10 - Configure Oracle GoldenGate Processes
	Example Distribution Path Target Change Script

	22 On-Premises: Configuring Oracle GoldenGate Hub
	Overview of MAA GoldenGate Hub
	Planning GGHub Placement in the Platinum MAA Architecture
	Where to Place the MAA Primary GGHub and Standby GGHub
	MAA GGHubs Placed in the Same Data Center
	MAA GGHubs Placed in Different Data Centers

	Task 1: Configure the Source and Target Databases for Oracle GoldenGate
	Task 2: Prepare a Primary and Standby Base System for GGHub
	Task 3: Configure Oracle GoldenGate for the Primary and Standby GGHub
	Task 4: Configure the Oracle GoldenGate Environment

	23 On-Premises: Oracle GoldenGate Microservices Architecture with Oracle Real Application Clusters Configuration Best Practices
	Summary of Recommendations when Deploying Oracle GoldenGate on Oracle RAC
	Task 1: Configure the Oracle Database for Oracle GoldenGate
	Task 2: Create the Database Replication Administrator User
	Task 3: Create the Database Services
	Task 4: Set Up a File System on Oracle RAC
	Task 5: Install Oracle GoldenGate
	Task 6: Create the Oracle GoldenGate Deployment
	Task 7: Oracle Clusterware Configuration
	Task 8: Configure NGINX Reverse Proxy
	Task 9: Create Oracle Net TNS Alias for Oracle GoldenGate Database Connections
	Task 10: Configure Oracle GoldenGate Processes
	Task 11: Configure Autostart of Extract and Replicat Processes

	24 On-Premises MAA Platinum: Oracle GoldenGate Microservices Architecture Integrated with Active Data Guard
	Prerequisites
	Task 1: Configure the Standby Database for Oracle GoldenGate
	Task 2: Modify the Primary Database Service
	Task 3: Create the Standby Database Service
	Task 4: Configure DBFS on the Standby Cluster Nodes
	Task 5: Install Oracle GoldenGate Software
	Task 6: Create Oracle GoldenGate Deployment Directories
	Task 7: Configure the Standby NGINX Reverse Proxy
	Task 8: Configure Oracle Clusterware
	Task 9: Create Oracle Net TNS Aliases for Oracle GoldenGate Database Connections
	Task 10: Configure Oracle GoldenGate Processes
	Example Distribution Path Target Change Script

	25 Managing Planned and Unplanned Outages for Oracle GoldenGate Hub
	Managing Planned Outages
	Managing Unplanned Outages

	26 Troubleshooting Oracle GoldenGate
	Troubleshooting MAA GoldenGate Hub
	Troubleshooting ACFS Replication
	Troubleshooting Oracle GoldenGate

	Troubleshooting Oracle GoldenGate on Oracle RAC
	Example Configuration Problems

	Part VI Oracle Database Cloud Best Practices
	27 Oracle Maximum Availability Architecture and Oracle Autonomous Database
	Oracle Autonomous Database with Default High Availability Option (MAA Silver)
	Oracle Autonomous Database with Autonomous Data Guard Option (MAA Gold)
	Maintaining Application Uptime

	28 Oracle Maximum Availability Architecture in Oracle Exadata Cloud Systems
	Oracle Maximum Availability Architecture Benefits
	Expected Impact with Unplanned Outages
	Expected Impact with Planned Maintenance
	Achieving Continuous Availability For Your Applications
	Oracle Maximum Availability Architecture Reference Architectures in Oracle Exadata Cloud

	Oracle Data Guard Hybrid Cloud Configuration
	Benefits Of Hybrid Data Guard in the Oracle Cloud
	MAA Recommendations for using Exadata Cloud for Disaster Recovery
	Service Level Requirements
	Security Requirements and Considerations
	Platform, Database, and Network Prerequisites
	Cloud Network Prerequisites
	On-Premises Prerequisites

	Instantiate the Standby Using Zero Downtime Migration
	Task 1: Install and Configure Zero Downtime Migration
	Task 2: Prepare for a Physical Database Instantiation
	Task 3: Instantiate the Standby Database
	Task 4: Validate the Standby Database
	Task 5: Implement Recommended MAA Best Practices

	Health Check and Monitoring

	Part VII Continuous Availability for Applications
	29 Configuring Continuous Availability for Applications
	About Application High Availability Levels
	Configuring Level 1: Basic Application High Availability
	Step 1: Configure High Availability Database Services
	Configure High Availability Services
	Configure High Availability Services for Oracle Active Data Guard or Standby Roles

	Step 2: Configure the Connection String for High Availability
	Step 3: Ensure That FAN Is Used
	Step 4: Ensure Application Implements Reconnection Logic

	Configuring Level 2: Prepare Applications for Planned Maintenance
	Recommended Option: Use an Oracle Connection Pool
	Alternate Option: Use Connection Tests
	Leverage Server-Side Operations for Planned Maintenance

	Configuring Level 3: Mask Unplanned and Planned Failovers from Applications
	Return Connections to the Connection Pool
	Set FAILOVER_RESTORE on the Service
	Restore Original Function Values During Replay
	Side Effects
	JDBC Configuration
	Monitoring

	Reference
	Connection Time Estimates During Data Guard Switchover or Failover
	Oracle Net TNS String Parameters
	Connection Retry Logic Examples
	Server-Side Planned Maintenance Command Examples

	Part VIII Oracle Multitenant Best Practices
	30 Overview of Oracle Multitenant Best Practices
	31 PDB Switchover and Failover in a Multitenant Configuration
	PDB Switchover Use Case
	Prerequisites
	Configuring PDB Switchover

	PDB Failover Use Case
	Prerequisites
	Additional Considerations
	Configuring PDB Failover

	Resolving Errors
	Reference
	Full Example Commands with Output
	Keyword Definitions
	Messages
	Sample Oracle Database Net Services Connect Aliases

	Part IX Full Site Switch in Oracle Cloud or On-Premises
	32 Full Site Switch in Oracle Cloud or On-Premise
	Performing Role Transitions Between Regions
	Best Practices for Full Site Switchover
	More Information About Full Site Switchover

