
Oracle® C++ Call Interface
Developer's Guide

23c
F46706-02
September 2023

Oracle C++ Call Interface Developer's Guide, 23c

F46706-02

Copyright © 1999, 2023, Oracle and/or its affiliates.

Primary Author: Mamata Basapur

Contributing Authors: Rod Ward

Contributors: Sandeepan Banerjee, Subhranshu Banerjee, Kalyanji Chintakayala, Krishna Itikarlapalli,
Shankar Iyer, Maura Joglekar, Toliver Jue, Ravi Kasamsetty, Srinath Krishnaswamy, Shoaib Lari, Geoff Lee,
Roza Leyderman, Chetan Maiya, Kuassi Mensah, Vipul Modi, Sue Pelski, Rajendra Pingte, John Stewart,
Rekha Vallam, Krishna Verma, Alan Willaims

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxix

Documentation Accessibility xxxix

Related Documents xxxix

Conventions xl

1 Introduction to OCCI

1.1 Changes in This Release for Oracle C++ Call Interface Programmer's Guide 1-1

1.2 Overview of OCCI 1-2

1.2.1 About Benefits of OCCI 1-2

1.2.2 About Building a C++ Application with OCCI 1-2

1.2.3 About Functionality of OCCI 1-3

1.2.4 About Procedural and Nonprocedural Elements 1-4

1.3 About Processing SQL Statements 1-4

1.3.1 About Data Definition Language Statements 1-5

1.3.2 About Control Statements 1-5

1.3.3 About Data Manipulation Language Statements 1-5

1.3.4 About Queries 1-6

1.4 Overview of PL/SQL 1-6

1.5 About Special OCCI/SQL Terms 1-7

1.6 About Object Support 1-8

1.6.1 About Client-Side Object Cache 1-8

1.6.2 About Run-time Environment for Objects 1-9

1.6.3 About Associative and Navigational Interfaces 1-9

1.6.4 About Interoperability with C (OCI) 1-9

1.6.5 About the Metadata Class 1-10

1.6.6 About the Object Type Translator Utility 1-10

1.7 About Additional Support 1-11

1.7.1 Building OCCI Demos 1-11

1.7.2 About OCCI on the Oracle Technology Network 1-11

iii

2 Installation and Upgrading

2.1 About Installing Oracle C++ Call Interface 2-1

2.2 About Upgrading Considerations 2-1

2.3 About Determining the Oracle Database Versions 2-1

2.3.1 Determining the Oracle Client Version During Compilation 2-1

2.3.2 About Determining the Oracle Client and Server Versions at Run Time 2-2

2.4 Oracle Instant Client and Oracle Instant client Basic Light 2-2

2.5 About Using OCCI with Microsoft Visual C++ 2-2

3 Accessing Oracle Database Using C++

3.1 About Connecting to a Database 3-1

3.1.1 Creating and Terminating an Environment 3-1

3.1.2 Opening and Closing a Connection 3-2

3.1.3 About Support for Pluggable Databases 3-3

3.2 About Pooling Connections 3-3

3.2.1 About Using Connection Pools 3-4

3.2.1.1 Creating a Connection Pool 3-4

3.2.1.2 Creating Proxy Connections 3-5

3.2.2 Using Stateless Connection Pooling 3-6

3.2.3 About Database Resident Connection Pooling 3-9

3.2.3.1 Administrating Database Resident Connection Pools 3-10

3.2.3.2 Using Database Resident Connection Pools 3-11

3.3 About Executing SQL DDL and DML Statements 3-12

3.3.1 Creating a Statement Object 3-13

3.3.2 Creating a Statement Object that Executes SQL Commands 3-13

3.3.2.1 Creating a Database Table 3-13

3.3.2.2 Inserting Values into a Database Table 3-13

3.3.3 Reusing the Statement Object 3-14

3.3.4 Terminating a Statement Object 3-14

3.4 About Types of SQL Statements in the OCCI Environment 3-14

3.4.1 About Standard Statements 3-15

3.4.2 Using Parameterized Statements 3-15

3.4.3 Using Callable Statements 3-15

3.4.3.1 Using Callable Statements that Use Array Parameters 3-16

3.4.4 About Streamed Reads and Writes 3-17

3.4.4.1 Binding Data in Streaming Mode; SELECT/DML and PL/SQL 3-17

3.4.4.2 Fetching Data in Streaming Mode: PL/SQL 3-18

3.4.4.3 About Fetching Data in Streaming Mode: ResultSet 3-19

3.4.4.4 Working with Multiple Streams 3-19

3.4.5 About Modifying Rows Iteratively 3-20

iv

3.4.5.1 Setting the Maximum Number of Iterations 3-20

3.4.5.2 Setting the Maximum Parameter Size 3-20

3.4.5.3 Executing an Iterative Operation 3-21

3.5 About Executing SQL Queries 3-21

3.5.1 Using the Result Set 3-21

3.5.2 About Specifying the Query 3-22

3.5.3 About Optimizing Performance by Setting Prefetch Count 3-23

3.6 About Executing Statements Dynamically 3-23

3.6.1 About Statement Status Definitions 3-24

3.6.1.1 UNPREPARED 3-24

3.6.1.2 PREPARED 3-24

3.6.1.3 RESULT_SET_AVAILABLE 3-24

3.6.1.4 UPDATE_COUNT_AVAILABLE 3-25

3.6.1.5 NEEDS_STREAM_DATA 3-25

3.6.1.6 STREAM_DATA_AVAILABLE 3-25

3.7 About Using Larger Row Count and Error Code Range Data Types 3-26

3.7.1 Using Larger Row Count in SELECT Operations 3-26

3.7.2 Using Larger Row Count in INSERT, UPDATE, and DELETE Operations 3-27

3.8 About Committing a Transaction 3-28

3.9 Caching Statements 3-28

3.10 About Handling Exceptions 3-30

3.10.1 About Handling Null and Truncated Data 3-31

4 Object Programming

4.1 Overview of Object Programming 4-1

4.2 About Working with Objects in C++ with OCCI 4-2

4.2.1 About Persistent Objects 4-2

4.2.2 About Transient Objects 4-3

4.2.3 About Values 4-4

4.3 About Representing Objects in C++ Applications 4-4

4.3.1 Creating Persistent and Transient Objects 4-4

4.3.2 Creating Object Representations using the OTT Utility 4-5

4.4 About Developing a C++ Application using OCCI 4-5

4.4.1 Developing Basic Object Program Structure 4-6

4.4.2 About Basic Object Operational Flow 4-7

4.4.2.1 About Initializing OCCI in Object Mode 4-7

4.4.2.2 About Pinning anObject 4-8

4.4.2.3 About Operating on an Object in Cache 4-9

4.4.2.4 About Flushing Changes to the Object 4-9

4.4.2.5 About Deletion of an Object 4-9

v

4.5 Migrating C++ Applications to Oracle Using OCCI 4-9

4.6 Overview of Associative Access 4-10

4.6.1 Using SQL to Access Objects 4-10

4.6.2 Inserting and Modifying Values 4-11

4.7 Overview of Navigational Access 4-11

4.7.1 Retrieving an Object Reference (REF) from the Database Server 4-11

4.7.2 Pinning an Object 4-12

4.7.3 Manipulating Object Attributes 4-13

4.7.4 About Marking Objects and Flushing Changes 4-13

4.7.5 Marking an Object as Modified (Dirty) 4-13

4.7.6 About Recording Changes in the Database 4-13

4.7.7 Collecting Garbage in the Object Cache 4-13

4.7.8 About Ensuring Transactional Consistency of References 4-14

4.8 Overview of Complex Object Retrieval 4-15

4.8.1 Retrieving Complex Objects 4-15

4.8.2 About Prefetching Complex Objects 4-17

4.9 Working with Collections 4-17

4.9.1 Fetching Embedded Objects 4-18

4.9.2 About Nullness 4-19

4.10 About Using Object References 4-19

4.11 About Deleting Objects from the Database 4-19

4.12 About Type Inheritance 4-19

4.12.1 About Substitutability 4-21

4.12.2 Declaring NOT INSTANTIABLE Types and Methods 4-21

4.12.3 About OCCI Support for Type Inheritance 4-22

4.12.3.1 About Connection::getMetaData() 4-22

4.12.3.2 About Bind and Define Functions 4-22

4.12.4 About OTT Support for Type Inheritance 4-22

4.13 A Sample OCCI Application 4-23

5 Data Types

5.1 Overview of Oracle Data Types 5-1

5.1.1 About OCCI Type and Data Conversion 5-1

5.2 Internal Data Types 5-2

5.2.1 Character Strings and Byte Arrays 5-4

5.2.2 Universal Rowid (UROWID) 5-4

5.3 External Data Types 5-4

5.3.1 Description of External Data Types 5-8

5.3.1.1 BFILE 5-9

5.3.1.2 BDOUBLE 5-9

vi

5.3.1.3 BFLOAT 5-10

5.3.1.4 BLOB 5-10

5.3.1.5 CHAR 5-10

5.3.1.6 CHARZ 5-11

5.3.1.7 CLOB 5-11

5.3.1.8 DATE 5-11

5.3.1.9 FLOAT 5-12

5.3.1.10 INTEGER 5-12

5.3.1.11 INTERVAL DAY TO SECOND 5-12

5.3.1.12 INTERVAL YEAR TO MONTH 5-13

5.3.1.13 LONG 5-13

5.3.1.14 LONG RAW 5-13

5.3.1.15 LONG VARCHAR 5-14

5.3.1.16 LONG VARRAW 5-14

5.3.1.17 NCLOB 5-14

5.3.1.18 NUMBER 5-14

5.3.1.19 OCCI BFILE 5-15

5.3.1.20 OCCI BLOB 5-15

5.3.1.21 OCCIBOOL 5-15

5.3.1.22 OCCI BYTES 5-15

5.3.1.23 OCCI CLOB 5-15

5.3.1.24 OCCI DATE 5-16

5.3.1.25 OCCI INTERVALDS 5-16

5.3.1.26 OCCI INTERVALYM 5-16

5.3.1.27 OCCI NUMBER 5-16

5.3.1.28 OCCI POBJECT 5-16

5.3.1.29 OCCI REF 5-16

5.3.1.30 OCCI REFANY 5-17

5.3.1.31 OCCI STRING 5-17

5.3.1.32 OCCI TIMESTAMP 5-17

5.3.1.33 OCCI VECTOR 5-17

5.3.1.34 RAW 5-17

5.3.1.35 REF 5-17

5.3.1.36 ROWID 5-17

5.3.1.37 STRING 5-18

5.3.1.38 TIMESTAMP 5-18

5.3.1.39 TIMESTAMP WITH LOCAL TIME ZONE 5-18

5.3.1.40 TIMESTAMP WITH TIME ZONE 5-18

5.3.1.41 UNSIGNED INT 5-19

5.3.1.42 VARCHAR 5-19

5.3.1.43 VARCHAR2 5-19

vii

5.3.1.44 VARNUM 5-19

5.3.1.45 VARRAW 5-20

5.3.1.46 NATIVE DOUBLE 5-20

5.3.1.47 NATIVE FLOAT 5-20

5.4 Data Conversions 5-20

5.4.1 Data Conversions for LOB Data Types 5-22

5.4.2 Data Conversions for Date, Timestamp, and Interval Data Types 5-23

6 Metadata

6.1 Overview of Metadata 6-1

6.2 Using Identity Column Metadata 6-2

6.3 About Describing Database Metadata 6-3

6.3.1 Using Metadata (Code Examples) 6-4

6.4 Attribute Reference Information 6-8

6.4.1 Parameter Attributes 6-8

6.4.2 Table and View Attributes 6-9

6.4.3 Procedure, Function, and Subprogram Attributes 6-10

6.4.4 Package Attributes 6-11

6.4.5 Type Attributes 6-11

6.4.6 Type Attribute Attributes 6-13

6.4.7 Type Method Attributes 6-13

6.4.8 Collection Attributes 6-14

6.4.9 Synonym Attributes 6-15

6.4.10 Sequence Attributes 6-16

6.4.11 Column Attributes 6-16

6.4.12 Argument and Result Attributes 6-17

6.4.13 List Attributes 6-18

6.4.14 Schema Attributes 6-19

6.4.15 Database Attributes 6-19

7 Programming with LOBs

7.1 Overview of LOBs 7-1

7.1.1 Introducing Internal LOBs 7-1

7.1.2 Introducing External LOBs 7-2

7.1.3 About Storing LOBs 7-2

7.2 Creating LOBs in OCCI Applications 7-2

7.3 Restricting the Opening and Closing of LOBs 7-3

7.4 About Reading and Writing LOBs 7-4

7.4.1 Reading LOBs 7-4

viii

7.4.2 Writing LOBs 7-6

7.4.3 About Enhancing the Performance of LOB Reads and Writes 7-7

7.4.3.1 About Using the getChunkSize() Method 7-7

7.4.4 Updating LOBs 7-7

7.4.5 About Reading and Writing Multiple LOBs 7-8

7.4.5.1 About Using the Interfaces for Reading and Writing Multiple LOBs 7-8

7.5 Using Objects with LOB Attributes 7-9

7.6 About Using SecureFiles 7-10

7.6.1 About Using SecureFile Compression 7-10

7.6.2 About Using SecureFiles Encryption 7-10

7.6.3 About Using SecureFiles Deduplication 7-10

7.6.4 About Combining SecureFiles Compression, Encryption, and Deduplication 7-10

7.6.5 SecureFiles LOB Types and Constants 7-11

8 Object Type Translator Utility

8.1 Overview of the Object Type Translator Utility 8-1

8.2 Using the OTT Utility 8-2

8.3 Creating Types in the Database 8-2

8.4 About Invoking the OTT Utility 8-3

8.4.1 Specifying OTT Parameters 8-3

8.4.1.1 About Setting Parameters on the Command Line 8-3

8.4.1.2 About Setting Parameters in the INTYPE File 8-4

8.4.1.3 About Setting Parameters in the Configuration File 8-4

8.4.2 Invoking the OTT Utility on the Command Line 8-4

8.4.2.1 Elements Used on the OTT Command Line 8-5

8.4.3 OTT Utility Parameters 8-5

8.4.3.1 ATTRACCESS 8-6

8.4.3.2 CASE 8-6

8.4.3.3 CODE 8-7

8.4.3.4 CONFIG 8-7

8.4.3.5 CPPFILE 8-7

8.4.3.6 ERRTYPE 8-7

8.4.3.7 HFILE 8-8

8.4.3.8 INTYPE 8-8

8.4.3.9 MAPFILE 8-8

8.4.3.10 MAPFUNC 8-8

8.4.3.11 OUTTYPE 8-9

8.4.3.12 SCHEMA_NAMES 8-9

8.4.3.13 TRANSITIVE 8-10

8.4.3.14 UNICODE 8-11

ix

8.4.3.15 USE_MARKER 8-12

8.4.3.16 USERID 8-12

8.4.4 Where OTT Parameters Can Appear 8-13

8.4.5 File Name Comparison Restriction 8-13

8.4.6 Using the OTT Command on Microsoft Windows 8-14

8.5 About Using the INTYPE File 8-14

8.5.1 Using the INTYPE File 8-14

8.5.2 Structure of the INTYPE File 8-15

8.5.2.1 INTYPE File Type Specifications 8-16

8.5.3 Using Nested include File Generation 8-17

8.6 Using OTT Utility Data Type Mappings 8-19

8.6.1 Default Name Mapping 8-24

8.7 Overview of the OUTTYPE File 8-25

8.8 Using the OTT Utility and OCCI Applications 8-26

8.9 Generating C++ Classes Generated by the OTT Utility 8-27

8.9.1 Map Registry Function 8-28

8.9.2 Extending C++ Classes 8-28

8.9.3 Carrying Forward User Added Code 8-29

8.9.3.1 How to Use Properties of OTT Markers 8-30

8.9.3.2 Using OTT Markers 8-31

9 Globalization and Unicode Support

9.1 Overview of Globalization and Unicode Support 9-1

9.2 Specifying Charactersets 9-1

9.3 Data Types for Globalization and Unicode Support 9-2

9.3.1 Using the UString Data Type 9-2

9.3.2 Using Multibyte and UTF16 data 9-3

9.3.3 Using CLOB and NCLOB Data Types 9-3

9.4 About Using Objects and OTT Support 9-4

10

Oracle Database Advanced Queuing

10.1 Overview of Oracle Database Advanced Queuing 10-1

10.2 About AQ Implementation in OCCI 10-2

10.2.1 Message 10-3

10.2.2 Agent 10-3

10.2.3 Producer 10-3

10.2.4 Consumer 10-3

10.2.5 Listener 10-4

10.2.6 Subscription 10-4

x

10.3 About Creating Messages 10-4

10.3.1 About Message Payloads 10-4

10.3.1.1 RAW 10-4

10.3.1.2 AnyData 10-5

10.3.1.3 Using User-defined Types as Payloads 10-5

10.3.2 Message Properties 10-5

10.3.2.1 Correlation 10-5

10.3.2.2 Sender 10-6

10.3.2.3 Delay and Expiration 10-6

10.3.2.4 Recipients 10-6

10.3.2.5 Priority and Ordering 10-6

10.4 Enqueuing Messages 10-6

10.5 Dequeuing Messages 10-7

10.5.1 About Dequeuing Options 10-8

10.5.1.1 Correlation 10-8

10.5.1.2 Mode 10-8

10.5.1.3 Navigation 10-8

10.6 Listening for Messages 10-8

10.7 About Registering for Notification 10-9

10.7.1 Publish-Subscribe Notifications 10-9

10.7.1.1 How to Use Direct Registration 10-9

10.7.1.2 Using Open Registration 10-10

10.7.2 About Notification Callback 10-12

10.8 About Message Format Transformation 10-13

11

Oracle XA Library

11.1 Developing Applications with XA and OCCI 11-1

11.2 APIs for XA Support 11-2

12

Optimizing Performance of C++ Applications

12.1 About Transparent Application Failover 12-1

12.1.1 Using Transparent Application Failover 12-2

12.1.2 About Objects and Transparent Application Failover 12-3

12.1.3 Using Connection Pooling and Transparent Application Failover 12-3

12.2 About Connection Sharing 12-6

12.2.1 Introduction to Thread Safety 12-6

12.2.2 Implementing Thread Safety 12-7

12.2.3 About Serialization 12-7

12.2.3.1 Automatic Serialization 12-7

xi

12.2.3.2 Application-Provided Serialization 12-8

12.2.4 Operating System Considerations 12-8

12.3 About Application-Managed Data Buffering 12-9

12.3.1 Using the setDataBuffer() Method 12-9

12.3.2 Using the executeArrayUpdate() Method 12-10

12.4 Using the Array Fetch Using next() Method 12-11

12.5 Modifying Rows Iteratively 12-11

12.6 About Using Oracle Connection Manager in Traffic Director Mode 12-12

12.7 About Run-time Load Balancing of the Stateless Connection Pool 12-15

12.7.1 API Support 12-16

12.8 About Fault Diagnosability 12-16

12.8.1 Using ADR Base Location 12-16

12.8.2 Using ADRCI 12-18

12.8.3 Controlling ADR Creation and Disabling Fault Diagnosability 12-20

12.9 Using Client Result Cache 12-20

12.10 About Client-Side Deployment Parameters and Auto Tuning 12-21

13

OCCI Application Programming Interface

13.1 OCCI Classes and Methods 13-1

13.1.1 Using OCCI Classes 13-2

13.1.2 OCCI Support for Windows NT and z/OS 13-3

13.1.2.1 Working with Collections of Refs 13-4

13.2 Common OCCI Constants 13-5

13.3 Agent Class 13-5

13.3.1 Agent() 13-6

13.3.2 getAddress() 13-6

13.3.3 getName() 13-6

13.3.4 getProtocol() 13-6

13.3.5 isNull() 13-7

13.3.6 operator=() 13-7

13.3.7 setAddress() 13-7

13.3.8 setName() 13-7

13.3.9 setNull() 13-8

13.3.10 setProtocol() 13-8

13.4 AnyData Class 13-8

13.4.1 AnyData() 13-11

13.4.2 getAsBDouble() 13-11

13.4.3 getAsBfile() 13-11

13.4.4 getAsBFloat() 13-12

13.4.5 getAsBytes() 13-12

xii

13.4.6 getAsDate() 13-12

13.4.7 getAsIntervalDS() 13-12

13.4.8 getAsIntervalYM() 13-12

13.4.9 getAsNumber() 13-12

13.4.10 getAsObject() 13-13

13.4.11 getAsRef() 13-13

13.4.12 getAsString() 13-13

13.4.13 getAsTimestamp() 13-13

13.4.14 getType() 13-13

13.4.15 isNull() 13-13

13.4.16 setFromBDouble() 13-13

13.4.17 setFromBfile() 13-14

13.4.18 setFromBFloat() 13-14

13.4.19 setFromBytes() 13-14

13.4.20 setFromDate() 13-15

13.4.21 setFromIntervalDS() 13-15

13.4.22 setFromIntervalYM() 13-15

13.4.23 setFromNumber() 13-15

13.4.24 setFromObject() 13-16

13.4.25 setFromRef() 13-16

13.4.26 setFromString() 13-16

13.4.27 setFromTimestamp() 13-17

13.4.28 setNull() 13-17

13.5 BatchSQLException Class 13-17

13.5.1 getException() 13-17

13.5.2 getFailedRowCount() 13-18

13.5.3 getRowNum() 13-18

13.6 Bfile Class 13-18

13.6.1 Bfile() 13-19

13.6.2 close() 13-20

13.6.3 closeStream() 13-20

13.6.4 fileExists() 13-20

13.6.5 getDirAlias() 13-20

13.6.6 getFileName() 13-21

13.6.7 getStream() 13-21

13.6.8 getUStringDirAlias() 13-21

13.6.9 getUStringFileName() 13-21

13.6.10 isInitialized() 13-21

13.6.11 isNull() 13-22

13.6.12 isOpen() 13-22

13.6.13 length() 13-22

xiii

13.6.14 open() 13-22

13.6.15 operator=() 13-22

13.6.16 operator==() 13-23

13.6.17 operator!=() 13-23

13.6.18 read() 13-23

13.6.19 setName() 13-24

13.6.20 setNull() 13-24

13.7 Blob Class 13-24

13.7.1 Blob() 13-26

13.7.2 append() 13-26

13.7.3 close() 13-27

13.7.4 closeStream() 13-27

13.7.5 copy() 13-27

13.7.6 getChunkSize() 13-28

13.7.7 getContentType() 13-28

13.7.8 getOptions() 13-28

13.7.9 getStream() 13-28

13.7.10 isInitialized() 13-29

13.7.11 isNull() 13-29

13.7.12 isOpen() 13-29

13.7.13 length() 13-29

13.7.14 open() 13-29

13.7.15 operator=() 13-30

13.7.16 operator==() 13-30

13.7.17 operator!= () 13-30

13.7.18 read() 13-31

13.7.19 setContentType() 13-31

13.7.20 setEmpty() 13-31

13.7.21 setNull() 13-32

13.7.22 setOptions() 13-32

13.7.23 trim() 13-32

13.7.24 write() 13-33

13.7.25 writeChunk() 13-33

13.8 Bytes Class 13-34

13.8.1 Bytes() 13-34

13.8.2 byteAt() 13-35

13.8.3 getBytes() 13-35

13.8.4 isNull() 13-35

13.8.5 length() 13-36

13.8.6 operator=() 13-36

13.8.7 setNull() 13-36

xiv

13.9 Clob Class 13-36

13.9.1 Clob() 13-38

13.9.2 append() 13-38

13.9.3 close() 13-38

13.9.4 closeStream() 13-39

13.9.5 copy() 13-39

13.9.6 getCharSetForm() 13-40

13.9.7 getCharSetId() 13-40

13.9.8 getCharSetIdUString() 13-40

13.9.9 getChunkSize() 13-40

13.9.10 getContentType() 13-40

13.9.11 getOptions() 13-40

13.9.12 getStream() 13-41

13.9.13 isInitialized() 13-41

13.9.14 isNull() 13-41

13.9.15 isOpen() 13-42

13.9.16 length() 13-42

13.9.17 open() 13-42

13.9.18 operator=() 13-42

13.9.19 operator==() 13-42

13.9.20 operator!=() 13-43

13.9.21 read() 13-43

13.9.22 setCharSetId() 13-44

13.9.23 setCharSetIdUString() 13-44

13.9.24 setCharSetForm() 13-44

13.9.25 setContentType() 13-45

13.9.26 setEmpty() 13-45

13.9.27 setNull() 13-45

13.9.28 setOptions() 13-46

13.9.29 trim() 13-46

13.9.30 write() 13-46

13.9.31 writeChunk() 13-47

13.10 Connection Class 13-48

13.10.1 changePassword() 13-49

13.10.2 commit() 13-50

13.10.3 createStatement() 13-50

13.10.4 flushCache() 13-51

13.10.5 getClientCharSet() 13-51

13.10.6 getClientCharSetUString() 13-51

13.10.7 getClientNCHARCharSet() 13-51

13.10.8 getClientNCHARCharSetUString() 13-52

xv

13.10.9 getClientVersion() 13-52

13.10.10 getLTXID() 13-52

13.10.11 getMetaData() 13-53

13.10.12 getOCIServer() 13-53

13.10.13 getOCIServiceContext() 13-53

13.10.14 getOCISession() 13-53

13.10.15 getServerVersion() 13-54

13.10.16 getServerVersionUString() 13-54

13.10.17 getStmtCacheSize() 13-54

13.10.18 getTag() 13-54

13.10.19 isCached() 13-54

13.10.20 pinVectorOfRefs() 13-55

13.10.21 postToSubscriptions() 13-55

13.10.22 readVectorOfBfiles() 13-56

13.10.23 readVectorOfBlobs() 13-56

13.10.24 readVectorOfClobs() 13-57

13.10.25 registerSubscriptions() 13-58

13.10.26 rollback() 13-58

13.10.27 setStmtCacheSize() 13-58

13.10.28 setTAFNotify() 13-59

13.10.29 terminateStatement() 13-59

13.10.30 unregisterSubscription() 13-60

13.10.31 writeVectorOfBlobs() 13-60

13.10.32 writeVectorOfClobs() 13-61

13.11 ConnectionPool Class 13-62

13.11.1 createConnection() 13-62

13.11.2 createProxyConnection() 13-63

13.11.3 getBusyConnections() 13-64

13.11.4 getIncrConnections() 13-64

13.11.5 getMaxConnections() 13-64

13.11.6 getMinConnections() 13-64

13.11.7 getOpenConnections() 13-65

13.11.8 getPoolName() 13-65

13.11.9 getStmtCacheSize() 13-65

13.11.10 getTimeOut() 13-65

13.11.11 setErrorOnBusy() 13-65

13.11.12 setPoolSize() 13-65

13.11.13 setStmtCacheSize() 13-66

13.11.14 setTimeOut() 13-66

13.11.15 terminateConnection() 13-66

13.12 Consumer Class 13-67

xvi

13.12.1 Consumer() 13-68

13.12.2 getConsumerName() 13-69

13.12.3 getCorrelationId() 13-69

13.12.4 getDequeueMode() 13-69

13.12.5 getMessageIdToDequeue() 13-70

13.12.6 getPositionOfMessage() 13-70

13.12.7 getQueueName() 13-70

13.12.8 getTransformation() 13-70

13.12.9 getVisibility() 13-70

13.12.10 getWaitTime() 13-70

13.12.11 isNull() 13-71

13.12.12 operator=() 13-71

13.12.13 receive() 13-71

13.12.14 setAgent() 13-71

13.12.15 setConsumerName() 13-72

13.12.16 setCorrelationId() 13-72

13.12.17 setDequeueMode() 13-72

13.12.18 setMessageIdToDequeue() 13-73

13.12.19 setNull() 13-73

13.12.20 setPositionOfMessage() 13-73

13.12.21 setQueueName() 13-73

13.12.22 setTransformation() 13-74

13.12.23 setVisibility() 13-74

13.12.24 setWaitTime() 13-74

13.13 Date Class 13-74

13.13.1 Date() 13-76

13.13.2 addDays() 13-77

13.13.3 addMonths() 13-77

13.13.4 daysBetween() 13-77

13.13.5 fromBytes() 13-77

13.13.6 fromText() 13-78

13.13.7 getDate() 13-79

13.13.8 getSystemDate() 13-79

13.13.9 isNull() 13-79

13.13.10 lastDay() 13-80

13.13.11 nextDay() 13-80

13.13.12 operator=() 13-80

13.13.13 operator==() 13-81

13.13.14 operator!=() 13-81

13.13.15 operator>() 13-81

13.13.16 operator>=() 13-82

xvii

13.13.17 operator<() 13-82

13.13.18 operator<=() 13-82

13.13.19 setDate() 13-83

13.13.20 setNull() 13-83

13.13.21 toBytes() 13-84

13.13.22 toText() 13-84

13.13.23 toZone() 13-84

13.14 Environment Class 13-85

13.14.1 createConnection() 13-87

13.14.2 createConnectionPool() 13-88

13.14.3 createEnvironment() 13-89

13.14.4 createStatelessConnectionPool() 13-90

13.14.5 enableSubscription() 13-91

13.14.6 disableSubscription() 13-91

13.14.7 getCacheMaxSize() 13-91

13.14.8 getCacheOptSize() 13-91

13.14.9 getCacheSortedFlush() 13-92

13.14.10 getCurrentHeapSize() 13-92

13.14.11 getLDAPAdminContext() 13-92

13.14.12 getLDAPAuthentication() 13-92

13.14.13 getLDAPHost() 13-92

13.14.14 getLDAPPort() 13-92

13.14.15 getMap() 13-92

13.14.16 getNLSLanguage() 13-93

13.14.17 getNLSTerritory() 13-93

13.14.18 getOCIEnvironment() 13-93

13.14.19 getXAConnection() 13-93

13.14.20 getXAEnvironment() 13-93

13.14.21 releaseXAConnection() 13-94

13.14.22 releaseXAEnvironment() 13-94

13.14.23 setCacheMaxSize() 13-94

13.14.24 setCacheOptSize() 13-94

13.14.25 setCacheSortedFlush() 13-95

13.14.26 setLDAPAdminContext() 13-95

13.14.27 setLDAPAuthentication() 13-95

13.14.28 setLDAPHostAndPort() 13-96

13.14.29 setLDAPLoginNameAndPassword() 13-96

13.14.30 setNLSLanguage() 13-96

13.14.31 setNLSTerritory() 13-97

13.14.32 terminateConnection() 13-97

13.14.33 terminateConnectionPool() 13-97

xviii

13.14.34 terminateEnvironment() 13-97

13.14.35 terminateStatelessConnectionPool() 13-98

13.15 IntervalDS Class 13-98

13.15.1 IntervalDS() 13-100

13.15.2 fromText() 13-101

13.15.3 fromUText() 13-101

13.15.4 getDay() 13-102

13.15.5 getFracSec() 13-102

13.15.6 getHour() 13-102

13.15.7 getMinute() 13-102

13.15.8 getSecond() 13-102

13.15.9 isNull() 13-102

13.15.10 operator*() 13-103

13.15.11 operator*=() 13-103

13.15.12 operator=() 13-103

13.15.13 operator==() 13-103

13.15.14 operator!=() 13-104

13.15.15 operator/() 13-104

13.15.16 operator/=() 13-104

13.15.17 operator>() 13-105

13.15.18 operator>=() 13-105

13.15.19 operator<() 13-105

13.15.20 operator<=() 13-106

13.15.21 operator-() 13-106

13.15.22 operator-=() 13-106

13.15.23 operator+() 13-107

13.15.24 operator+=() 13-107

13.15.25 set() 13-107

13.15.26 setNull() 13-108

13.15.27 toText() 13-108

13.15.28 toUText() 13-108

13.16 IntervalYM Class 13-109

13.16.1 IntervalYM() 13-110

13.16.2 fromText() 13-111

13.16.3 fromUText() 13-112

13.16.4 getMonth() 13-112

13.16.5 getYear() 13-112

13.16.6 isNull() 13-112

13.16.7 operator*() 13-112

13.16.8 operator*=() 13-113

13.16.9 operator=() 13-113

xix

13.16.10 operator==() 13-113

13.16.11 operator!=() 13-114

13.16.12 operator/() 13-114

13.16.13 operator/=() 13-114

13.16.14 operator>() 13-115

13.16.15 operator>=() 13-115

13.16.16 operator<() 13-115

13.16.17 operator<=() 13-116

13.16.18 operator-() 13-116

13.16.19 operator-=() 13-116

13.16.20 operator+() 13-117

13.16.21 operator+=() 13-117

13.16.22 set() 13-117

13.16.23 setNull() 13-118

13.16.24 toText() 13-118

13.16.25 toUText() 13-118

13.17 Listener Class 13-118

13.17.1 Listener() 13-119

13.17.2 getAgentList() 13-119

13.17.3 getTimeOutForListen() 13-119

13.17.4 listen() 13-120

13.17.5 setAgentList() 13-120

13.17.6 setTimeOutForListen() 13-120

13.18 Map Class 13-120

13.18.1 put() 13-121

13.19 Message Class 13-122

13.19.1 Message() 13-123

13.19.2 getAnyData() 13-124

13.19.3 getAttemptsToDequeue() 13-124

13.19.4 getBytes() 13-124

13.19.5 getCorrelationId() 13-124

13.19.6 getDelay() 13-124

13.19.7 getExceptionQueueName() 13-124

13.19.8 getExpiration() 13-125

13.19.9 getMessageEnqueuedTime() 13-125

13.19.10 getMessageState() 13-125

13.19.11 getObject() 13-125

13.19.12 getOriginalMessageId() 13-125

13.19.13 getPayloadType() 13-125

13.19.14 getPriority() 13-126

13.19.15 getSenderId() 13-126

xx

13.19.16 isNull() 13-126

13.19.17 operator=() 13-126

13.19.18 setAnyData() 13-126

13.19.19 setBytes() 13-127

13.19.20 setCorrelationId() 13-127

13.19.21 setDelay() 13-127

13.19.22 setExceptionQueueName() 13-127

13.19.23 setExpiration() 13-128

13.19.24 setNull() 13-128

13.19.25 setObject() 13-128

13.19.26 setOriginalMessageId() 13-129

13.19.27 setPriority() 13-129

13.19.28 setRecipientList() 13-129

13.19.29 setSenderId() 13-129

13.20 MetaData Class 13-130

13.20.1 MetaData() 13-139

13.20.2 getAttributeCount() 13-139

13.20.3 getAttributeId() 13-139

13.20.4 getAttributeType() 13-140

13.20.5 getBoolean() 13-140

13.20.6 getInt() 13-140

13.20.7 getMetaData() 13-141

13.20.8 getNumber() 13-141

13.20.9 getRef() 13-141

13.20.10 getString() 13-142

13.20.11 getTimeStamp() 13-142

13.20.12 getUInt() 13-142

13.20.13 getUString() 13-142

13.20.14 getVector() 13-143

13.20.15 operator=() 13-143

13.21 NotifyResult Class 13-143

13.21.1 getConsumerName() 13-144

13.21.2 getMessage() 13-144

13.21.3 getMessageId() 13-144

13.21.4 getPayload() 13-144

13.21.5 getQueueName() 13-144

13.22 Number Class 13-144

13.22.1 Number() 13-148

13.22.2 abs() 13-149

13.22.3 arcCos() 13-149

13.22.4 arcSin() 13-149

xxi

13.22.5 arcTan() 13-149

13.22.6 arcTan2() 13-149

13.22.7 ceil() 13-150

13.22.8 cos() 13-150

13.22.9 exp() 13-150

13.22.10 floor() 13-150

13.22.11 fromBytes() 13-150

13.22.12 fromText() 13-151

13.22.13 hypCos() 13-151

13.22.14 hypSin() 13-151

13.22.15 hypTan() 13-152

13.22.16 intPower() 13-152

13.22.17 isNull() 13-152

13.22.18 ln() 13-152

13.22.19 log() 13-152

13.22.20 operator++() 13-153

13.22.21 operator--() 13-153

13.22.22 operator*() 13-153

13.22.23 operator/() 13-154

13.22.24 operator%() 13-154

13.22.25 operator+() 13-154

13.22.26 operator-() 13-155

13.22.27 operator-() 13-155

13.22.28 operator<() 13-155

13.22.29 operator<=() 13-156

13.22.30 operator>() 13-156

13.22.31 operator>=() 13-156

13.22.32 operator==() 13-157

13.22.33 operator!=() 13-157

13.22.34 operator=() 13-157

13.22.35 operator*=() 13-158

13.22.36 operator/=() 13-158

13.22.37 operator%=() 13-158

13.22.38 operator+=() 13-159

13.22.39 operator-=() 13-159

13.22.40 operator char() 13-159

13.22.41 operator signed char() 13-159

13.22.42 operator double() 13-159

13.22.43 operator float() 13-160

13.22.44 operator int() 13-160

13.22.45 operator long() 13-160

xxii

13.22.46 operator long double() 13-160

13.22.47 operator short() 13-160

13.22.48 operator unsigned char() 13-160

13.22.49 operator unsigned int() 13-160

13.22.50 operator unsigned long() 13-161

13.22.51 operator unsigned short() 13-161

13.22.52 power() 13-161

13.22.53 prec() 13-161

13.22.54 round() 13-162

13.22.55 setNull() 13-162

13.22.56 shift() 13-162

13.22.57 sign() 13-162

13.22.58 sin() 13-162

13.22.59 squareroot() 13-163

13.22.60 tan() 13-163

13.22.61 toBytes() 13-163

13.22.62 toText() 13-163

13.22.63 trunc() 13-164

13.23 PObject Class 13-164

13.23.1 PObject() 13-165

13.23.2 flush() 13-166

13.23.3 getConnection() 13-166

13.23.4 getRef() 13-166

13.23.5 getSQLTypeName() 13-166

13.23.6 isLocked() 13-166

13.23.7 isNull() 13-167

13.23.8 lock() 13-167

13.23.9 markDelete() 13-167

13.23.10 markModified() 13-167

13.23.11 operator=() 13-167

13.23.12 operator delete() 13-168

13.23.13 operator new() 13-168

13.23.14 pin() 13-169

13.23.15 setNull() 13-169

13.23.16 unmark() 13-169

13.23.17 unpin() 13-170

13.24 Producer Class 13-170

13.24.1 Producer() 13-171

13.24.2 getQueueName() 13-171

13.24.3 getRelativeMessageId() 13-172

13.24.4 getSequenceDeviation() 13-172

xxiii

13.24.5 getTransformation() 13-172

13.24.6 getVisibility() 13-172

13.24.7 isNull() 13-172

13.24.8 operator=() 13-172

13.24.9 send() 13-173

13.24.10 setNull() 13-173

13.24.11 setQueueName() 13-173

13.24.12 setRelativeMessageId() 13-174

13.24.13 setSequenceDeviation() 13-174

13.24.14 setTransformation() 13-174

13.24.15 setVisibility() 13-175

13.25 Ref Class 13-175

13.25.1 Ref() 13-176

13.25.2 clear() 13-176

13.25.3 getConnection() 13-176

13.25.4 isClear() 13-177

13.25.5 isNull() 13-177

13.25.6 markDelete() 13-177

13.25.7 operator->() 13-177

13.25.8 operator*() 13-177

13.25.9 operator==() 13-178

13.25.10 operator!=() 13-178

13.25.11 operator=() 13-178

13.25.12 ptr() 13-179

13.25.13 setLock() 13-179

13.25.14 setNull() 13-179

13.25.15 setPrefetch() 13-179

13.25.16 unmarkDelete() 13-180

13.26 RefAny Class 13-180

13.26.1 RefAny() 13-181

13.26.2 clear() 13-181

13.26.3 getConnection() 13-182

13.26.4 isNull() 13-182

13.26.5 markDelete() 13-182

13.26.6 operator=() 13-182

13.26.7 operator==() 13-182

13.26.8 operator!=() 13-183

13.26.9 unmarkDelete() 13-183

13.27 ResultSet Class 13-183

13.27.1 cancel() 13-186

13.27.2 closeStream() 13-186

xxiv

13.27.3 getBDouble() 13-186

13.27.4 getBfile() 13-187

13.27.5 getBFloat() 13-187

13.27.6 getBlob() 13-187

13.27.7 getBytes() 13-187

13.27.8 getCharSet() 13-188

13.27.9 getCharSetUString() 13-188

13.27.10 getClob() 13-188

13.27.11 getColumnListMetaData() 13-189

13.27.12 getCurrentStreamColumn() 13-189

13.27.13 getCurrentStreamRow() 13-189

13.27.14 getCursor() 13-189

13.27.15 getDatabaseNCHARParam() 13-190

13.27.16 getDate() 13-190

13.27.17 getDouble() 13-190

13.27.18 getFloat() 13-191

13.27.19 getInt() 13-191

13.27.20 getIntervalDS() 13-191

13.27.21 getIntervalYM() 13-191

13.27.22 getMaxColumnSize() 13-192

13.27.23 getNumArrayRows() 13-192

13.27.24 getNumber() 13-192

13.27.25 getObject() 13-192

13.27.26 getRef() 13-193

13.27.27 getRowid() 13-193

13.27.28 getRowPosition() 13-193

13.27.29 getStatement() 13-193

13.27.30 getStream() 13-194

13.27.31 getString() 13-194

13.27.32 getTimestamp() 13-194

13.27.33 getUInt() 13-194

13.27.34 getUString() 13-195

13.27.35 getVector() 13-195

13.27.36 getVectorOfRefs() 13-198

13.27.37 isNull() 13-198

13.27.38 isTruncated() 13-198

13.27.39 next() 13-199

13.27.40 preTruncationLength() 13-199

13.27.41 setBinaryStreamMode() 13-199

13.27.42 setCharacterStreamMode() 13-200

13.27.43 setCharSet() 13-200

xxv

13.27.44 setCharSetUString() 13-200

13.27.45 setDatabaseNCHARParam() 13-201

13.27.46 setDataBuffer() 13-201

13.27.47 setErrorOnNull() 13-202

13.27.48 setErrorOnTruncate() 13-203

13.27.49 setPrefetchMemorySize() 13-203

13.27.50 setPrefetchRowCount() 13-203

13.27.51 setMaxColumnSize() 13-204

13.27.52 status() 13-204

13.28 SQLException Class 13-204

13.28.1 SQLException() 13-205

13.28.2 getErrorCode() 13-205

13.28.3 getMessage() 13-205

13.28.4 getNLSMessage() 13-205

13.28.5 getNLSUStringMessage() 13-206

13.28.6 getUStringMessage() 13-206

13.28.7 getXAErrorCode() 13-206

13.28.8 isRecoverable() 13-207

13.28.9 setErrorCtx() 13-207

13.28.10 what() 13-207

13.29 StatelessConnectionPool Class 13-207

13.29.1 getAnyTaggedConnection() 13-209

13.29.2 getAnyTaggedProxyConnection() 13-210

13.29.3 getBusyConnections() 13-211

13.29.4 getBusyOption() 13-211

13.29.5 getConnection() 13-211

13.29.6 getIncrConnections() 13-213

13.29.7 getMaxConnections() 13-213

13.29.8 getMinConnections() 13-213

13.29.9 getOpenConnections() 13-213

13.29.10 getPoolName() 13-213

13.29.11 getProxyConnection() 13-214

13.29.12 getStmtCacheSize() 13-215

13.29.13 getTimeOut() 13-215

13.29.14 releaseConnection() 13-216

13.29.15 setBusyOption() 13-216

13.29.16 setPoolSize() 13-216

13.29.17 setTimeOut() 13-217

13.29.18 setStmtCacheSize() 13-217

13.29.19 terminateConnection() 13-217

13.30 Statement Class 13-218

xxvi

13.30.1 addIteration() 13-222

13.30.2 closeResultSet() 13-222

13.30.3 closeStream() 13-222

13.30.4 disableCaching() 13-222

13.30.5 execute() 13-223

13.30.6 executeArrayUpdate() 13-223

13.30.7 executeQuery() 13-224

13.30.8 executeUpdate() 13-224

13.30.9 getAutoCommit() 13-224

13.30.10 getBatchErrorMode() 13-225

13.30.11 getBDouble() 13-225

13.30.12 getBfile() 13-225

13.30.13 getBFloat() 13-225

13.30.14 getBlob() 13-226

13.30.15 getBoolean() 13-226

13.30.16 getBytes() 13-228

13.30.17 getCharSet() 13-228

13.30.18 getCharSetUString() 13-228

13.30.19 getClob() 13-228

13.30.20 getConnection() 13-229

13.30.21 getCurrentIteration() 13-229

13.30.22 getCurrentStreamIteration() 13-229

13.30.23 getCurrentStreamParam() 13-229

13.30.24 getCursor() 13-229

13.30.25 getDatabaseNCHARParam() 13-230

13.30.26 getDate() 13-230

13.30.27 getDMLRowCounts() 13-230

13.30.28 getDouble() 13-231

13.30.29 getFloat() 13-231

13.30.30 getInt() 13-231

13.30.31 getIntervalDS() 13-231

13.30.32 getIntervalYM() 13-232

13.30.33 getMaxIterations() 13-232

13.30.34 getMaxParamSize() 13-232

13.30.35 getNumber() 13-232

13.30.36 getObject() 13-233

13.30.37 getOCIStatement() 13-233

13.30.38 getRef() 13-233

13.30.39 getResultSet() 13-233

13.30.40 getRowCountsOption() 13-234

13.30.41 getRowid() 13-234

xxvii

13.30.42 getSQL() 13-234

13.30.43 getSQLUString() 13-234

13.30.44 getStream() 13-234

13.30.45 getString() 13-235

13.30.46 getTimestamp() 13-235

13.30.47 getUb8RowCount() 13-235

13.30.48 getUInt() 13-235

13.30.49 getUpdateCount() 13-236

13.30.50 getUString() 13-236

13.30.51 getVector() 13-236

13.30.52 getVectorOfRefs() 13-239

13.30.53 isNull() 13-239

13.30.54 isTruncated() 13-240

13.30.55 preTruncationLength() 13-240

13.30.56 registerOutParam() 13-240

13.30.57 setAutoCommit() 13-241

13.30.58 setBatchErrorMode() 13-242

13.30.59 setBDouble() 13-242

13.30.60 setBfile() 13-242

13.30.61 setBFloat() 13-243

13.30.62 setBinaryStreamMode() 13-243

13.30.63 setBlob() 13-243

13.30.64 setBoolean() 13-244

13.30.65 setBytes() 13-244

13.30.66 setCharacterStreamMode() 13-244

13.30.67 setCharSet() 13-245

13.30.68 setCharSetUString() 13-245

13.30.69 setClob() 13-246

13.30.70 setDate() 13-246

13.30.71 setDatabaseNCHARParam() 13-246

13.30.72 setDataBuffer() 13-247

13.30.73 setDataBufferArray() 13-248

13.30.74 setDouble() 13-250

13.30.75 setErrorOnNull() 13-250

13.30.76 setErrorOnTruncate() 13-250

13.30.77 setFloat() 13-251

13.30.78 setInt() 13-251

13.30.79 setIntervalDS() 13-251

13.30.80 setIntervalYM() 13-252

13.30.81 setMaxIterations() 13-252

13.30.82 setMaxParamSize() 13-252

xxviii

13.30.83 setNull() 13-253

13.30.84 setNumber() 13-253

13.30.85 setObject() 13-254

13.30.86 setPrefetchMemorySize() 13-254

13.30.87 setPrefetchRowCount() 13-255

13.30.88 setRef() 13-255

13.30.89 setRowCountsOption() 13-256

13.30.90 setRowid() 13-256

13.30.91 setSQL() 13-256

13.30.92 setSQLUString() 13-257

13.30.93 setString() 13-257

13.30.94 setTimestamp() 13-257

13.30.95 setUInt() 13-258

13.30.96 setUString() 13-258

13.30.97 setVector() 13-258

13.30.98 setVectorOfRefs() 13-266

13.30.99 status() 13-267

13.31 Stream Class 13-267

13.31.1 readBuffer() 13-268

13.31.2 readLastBuffer() 13-268

13.31.3 writeBuffer() 13-269

13.31.4 writeLastBuffer() 13-269

13.31.5 status() 13-270

13.32 Subscription Class 13-270

13.32.1 Subscription() 13-271

13.32.2 getCallbackContext() 13-272

13.32.3 getDatabaseServersCount() 13-272

13.32.4 getDatabaseServerNames() 13-272

13.32.5 getNotifyCallback() 13-272

13.32.6 getPayload() 13-273

13.32.7 getSubscriptionName() 13-273

13.32.8 getSubscriptionNamespace() 13-273

13.32.9 getRecipientName() 13-273

13.32.10 getPresentation() 13-273

13.32.11 getProtocol() 13-273

13.32.12 isNull() 13-274

13.32.13 operator=() 13-274

13.32.14 setCallbackContext() 13-274

13.32.15 setDatabaseServerNames() 13-274

13.32.16 setNotifyCallback() 13-275

13.32.17 setNull() 13-275

xxix

13.32.18 setPayload() 13-275

13.32.19 setPresentation() 13-275

13.32.20 setProtocol() 13-276

13.32.21 setSubscriptionName() 13-276

13.32.22 setSubscriptionNamespace() 13-276

13.32.23 setRecipientName() 13-277

13.33 Timestamp Class 13-277

13.33.1 Timestamp() 13-279

13.33.2 fromText() 13-281

13.33.3 getDate() 13-282

13.33.4 getTime() 13-283

13.33.5 getTimeZoneOffset() 13-283

13.33.6 intervalAdd() 13-283

13.33.7 intervalSub() 13-284

13.33.8 isNull() 13-284

13.33.9 operator=() 13-284

13.33.10 operator==() 13-285

13.33.11 operator!=() 13-285

13.33.12 operator>() 13-285

13.33.13 operator>=() 13-286

13.33.14 operator<() 13-286

13.33.15 operator<=() 13-286

13.33.16 setDate() 13-287

13.33.17 setNull() 13-287

13.33.18 setTime() 13-287

13.33.19 setTimeZoneOffset() 13-288

13.33.20 subDS() 13-288

13.33.21 subYM() 13-288

13.33.22 toText() 13-289

Index

xxx

List of Examples

1-1 Creating a Table 1-5

1-2 Specifying Access to a Table 1-5

1-3 Creating an Object Table 1-5

1-4 Inserting Data Through Input Bind Variables 1-6

1-5 Inserting Objects into the Oracle Database 1-6

1-6 Using the Simple SELECT Statement 1-6

1-7 Using the SELECT Statement with Input Variables 1-6

1-8 Using PL/SQL to Obtain an Output Variable 1-7

1-9 Using PL/SQL to Insert Partial Records into Placeholders 1-7

1-10 Using SQL to Extract Partial Records 1-7

2-1 How to Determine the Major Client Version and Set Performance Features 2-1

3-1 How to Create an OCCI Environment 3-2

3-2 How to Terminate an OCCI Environment 3-2

3-3 How to Use Environment Scope with Blob Objects 3-2

3-4 How to Create an Environment and then a Connection to the Database 3-3

3-5 How to Terminate a Connection to the Database and the Environment 3-3

3-6 The createConnectionPool() Method 3-5

3-7 How to Create a Connection Pool 3-5

3-8 The createProxyConnection() Method 3-5

3-9 How to Use a StatelessConnectionPool 3-7

3-10 How to Create and Use a Homogeneous Stateless Connection Pool 3-7

3-11 How to Create and Use a Heterogeneous Stateless Connection Pool 3-8

3-12 How to Administer the Database Resident Connection Pools 3-10

3-13 How to Get a Connection from a Database Resident Connection Pool 3-11

3-14 Using Client-Side Pool and Server-Side Pool 3-12

3-15 How to Create a Statement 3-13

3-16 How to Create a Database Table Using the executeUpdate() Method 3-13

3-17 How to Add Records Using the executeUpdate() Method 3-14

3-18 How to Specify a SQL Statement Using the setSQL() Method 3-14

3-19 How to Reset a SQL Statement Using the setSQL() Method 3-14

3-20 How to Terminate a Statement Using the terminateStatement() Method 3-14

3-21 How to Use setxxx() Methods to Set Individual Column Values 3-15

3-22 How to Specify the IN Parameters of a PL/SQL Stored Procedure 3-16

3-23 How to Specify OUT Parameters of a PL/SQL Stored Procedure 3-16

3-24 How to Bind Data in a Streaming Mode 3-18

xxxi

3-25 How to Fetch Data in a Streaming Mode Using PL/SQL 3-18

3-26 How to Read and Write with Multiple Streams 3-19

3-27 How to Execute an Iterative Operation 3-21

3-28 How to Fetch Data in Streaming Mode Using ResultSet 3-22

3-29 SELECT with getUb8RowCount(); simple 3-26

3-30 SELECT with getUb8RowCount(); with prefetch 3-26

3-31 SELECT with getUb8RowCount(); array fetch with prefetch 3-27

3-32 INSERT with getUb8RowCount(); simple 3-27

3-33 INSERT with getUb8RowCount(); with iterations 3-27

3-34 UPDATE with getUb8RowCount() 3-28

3-35 Statement Caching without Connection Pooling 3-28

3-36 Statement Caching with Connection Pooling 3-29

4-1 Creating Standalone Objects 4-3

4-2 Creating Embedded Objects 4-3

4-3 Two Methods for Operator new() in the Object Type Translator Utility 4-3

4-4 How to Dynamically Create a Transient Object 4-4

4-5 How to Create a Transient Object as a Local Variable 4-4

4-6 How to Create a Persistent Object 4-4

4-7 How to Create a Transient Object 4-5

4-8 How to Declare a Custom Type in the Database 4-5

4-9 How to Create a VARRAY Collection 4-17

4-10 OTT Support Inheritance 4-22

4-11 Listing of demo2.sql for a Sample OCCI Application 4-23

4-12 Listing of demo2.typ for a Sample OCCI Application 4-23

4-13 Listing of OTT Command that Generates Files for a Sample OCCI Application 4-23

4-14 Listing of mappings.h for a Sample OCCI Application 4-23

4-15 Listing of mappings.cpp for a Sample OCCI Application 4-24

4-16 Listing of demo2.h for a Sample OCCI Application 4-24

4-17 Listing of demo2.cpp for a Sample OCCI Application 4-27

4-18 Listing of myDemo.h for a Sample OCCI Application 4-36

4-19 Listing for myDemo.cpp for a Sample OCCI Application 4-37

4-20 Listing of main.cpp for a Sample OCCI Application 4-38

5-1 Definition of the BDOUBLE Data Type 5-10

5-2 Definition of the BFLOAT Data Type 5-10

6-1 How to use Identity Column Metadata 6-2

6-2 How to Obtain Metadata About Attributes of a Simple Database Table 6-4

6-3 How to Obtain Metadata from a Column Containing User-Defined Types 6-5

xxxii

6-4 How to Obtain Object Metadata from a Reference 6-6

6-5 How to Obtain Metadata About a Select List from a ResultSet Object 6-7

6-6 How to Obtain Domain Information by getMetaData() on Table Name 6-7

6-7 How to Obtain Domain Information by getColumnListMetaData() on resultSet Object. 6-8

7-1 How to Read Non-Streamed BLOBs 7-4

7-2 How to Read Non-Streamed BFILESs 7-5

7-3 How to Read Streamed BLOBs 7-5

7-4 How to Write Non-Streamed BLOBs 7-6

7-5 How to Write Streamed BLOBs 7-6

7-6 Updating a CLOB Value 7-7

7-7 Updating a BFILE Value 7-8

7-8 How to Use a Persistent Object with a BLOB Attribute 7-9

7-9 How to Use a Persistent Object with a BFILE Attribute 7-9

8-1 How to Use the OTT Utility 8-2

8-2 Object Creation Statements of the OTT Utility 8-2

8-3 How to Invoke the OTT Utility to Generate C++ Classes 8-5

8-4 How to use the SCHEMA_NAMES Parameter in OTT Utility 8-9

8-5 How to Define a Schema for Unicode Support in OTT 8-11

8-6 How to Use UNICODE=ALL Parameter in OTT 8-11

8-7 How to Use UNICODE=ONLYCHAR Parameter in OTT 8-12

8-8 How to Create a User Defined INTYPE File Using the OTT Utility 8-15

8-9 Listing of ott95a.h 8-18

8-10 Listing of ott95b.h 8-19

8-11 How to Represent Object Attributes Using the OTT Utility 8-20

8-12 How to Map Object Data Types Using the OTT Utility 8-21

8-13 OUTTYPE File Generated by the OTT Utility 8-25

8-14 How to Generate C++ Classes Using the OTT Utility 8-27

8-15 How to Extend C++ Classes Using the OTT Utility 8-29

9-1 How to Use Globalization and Unicode Support 9-1

9-2 Using wstring Data Type 9-2

9-3 Binding UTF8 Data Using the string Data Type 9-3

9-4 Binding UTF16 Data Using the UString Data Type 9-3

9-5 Using CLOB and NCLOB Data Types 9-3

10-1 Creating an Agent 10-3

10-2 Setting the Agent on the Consumer 10-4

10-3 Creating an AnyData Message with a String Payload 10-5

10-4 Determining the Type of the Payload in an AnyData Message 10-5

xxxiii

10-5 Creating an User-defined Payload 10-5

10-6 Specifying the Correlation identifier 10-6

10-7 Specifying the Sender identifier 10-6

10-8 Specifying the Delay and Expiration times of the message 10-6

10-9 Specifying message recipients 10-6

10-10 Specifying the Priority of a Message 10-6

10-11 Creating a Producer, Setting Visibility, and Enqueuing the Message 10-7

10-12 Creating a Consumer, Naming the Consumer, and Receiving a Message 10-7

10-13 Receiving a Message 10-7

10-14 Specifying dequeuing options 10-8

10-15 Listening for messages 10-8

10-16 How to Register for Notifications; Direct Registration 10-10

10-17 How to Use Open Registration with LDAP 10-11

11-1 How to Use Transaction Managers with XA 11-1

12-1 How to Enable TAF for Connection Pooling 12-4

12-2 How to Insert Records Using the addIteration() method 12-10

12-3 How to Insert Records Using the executeArrayUpdate() Method 12-11

12-4 How to use Array Fetch with a ResultSet 12-11

12-5 How to Modify Rows Iteratively and Handle Errors 12-12

12-6 How to Use ADRCI for OCCI Application Incidents 12-19

12-7 How to Use ADRCI for Instant Client 12-20

12-8 How to Enable and Use the Client Result Cache 12-20

13-1 Converting From an SQL Pre-Defined Type To AnyData Type 13-8

13-2 Creating an SQL Pre-Defined Type From AnyData Type 13-9

13-3 Converting From a User-Defined Type To AnyData Type 13-9

13-4 Converting From a User-Defined Type To AnyData Type 13-9

13-5 How to Get a Date from Database and Use it in Standalone Calculations 13-75

13-6 How to Use an Empty IntervalDS Object through Direct Assignment 13-98

13-7 How to Use an Empty IntervalDS Object Through *Text() Methods 13-99

13-8 How to Use an Empty IntervalYM Object Through Direct Assignment 13-109

13-9 How to Use an IntervalYM Object Through ResultSet and toText() Method 13-109

13-10 How to Retrieve and Use a Number Object 13-145

13-11 Using Default Timestamp Constructor 13-280

13-12 Using fromText() method to Initialize a NULL Timestamp Instance 13-281

13-13 Comparing Timestamps Stored in the Database 13-281

xxxiv

List of Figures

1-1 The OCCI Development Process 1-3

4-1 Basic Object Operational Flow 4-7

8-1 The OTT Utility with OCCI 8-26

xxxv

List of Tables

3-1 Normal Data - Not Null and Not Truncated 3-32

3-2 Null Data 3-32

3-3 Truncated Data 3-32

5-1 Summary of Oracle Internal Data Types 5-2

5-2 External Data Types and Corresponding C++ and OCCI Types 5-5

5-3 Format of the DATE Data Type 5-11

5-4 VARNUM Examples 5-19

5-5 Data Conversions Between External and Internal Data Types 5-21

5-6 Data Conversions for LOBs 5-22

5-7 Data Conversions for Date, Timestamp, and Interval Data Types 5-23

6-1 Attribute Groupings 6-3

6-2 Attributes that Belong to All Elements 6-9

6-3 Attributes that Belong to Tables or Views 6-9

6-4 Attributes Specific to Tables 6-10

6-5 Attributes that Belong to Procedures or Functions 6-10

6-6 Attributes that Belong to Package Subprograms 6-10

6-7 Attributes that Belong to Packages 6-11

6-8 Attributes that Belong to Types 6-11

6-9 Attributes that Belong to Type Attributes 6-13

6-10 Attributes that Belong to Type Methods 6-14

6-11 Attributes that Belong to Collection Types 6-14

6-12 Attributes that Belong to Synonyms 6-15

6-13 Attributes that Belong to Sequences 6-16

6-14 Attributes that Belong to Columns of Tables or Views 6-16

6-15 Attributes that Belong to Arguments / Results 6-17

6-16 Values for ATTR_LIST_TYPE 6-19

6-17 Attributes Specific to Schemas 6-19

6-18 Attributes Specific to Databases 6-19

7-1 Values of Type LobOptionType 7-11

7-2 Values of Type LobOptionValue 7-11

8-1 Summary of OTT Utility Parameters 8-6

8-2 C++ Object Data Type Mappings for Object Type Attributes 8-20

10-1 Notification Result Attributes; ANONYMOUS and AQ Namespace 10-12

13-1 Summary of OCCI Classes 13-1

13-2 Enumerated Values Used by All OCCI Classes 13-5

xxxvi

13-3 Summary of Agent Methods 13-5

13-4 OCCI Data Types supported by AnyData Class 13-10

13-5 Summary of AnyData Methods 13-10

13-6 Summary of BatchSQLException Methods 13-17

13-7 Summary of Bfile Methods 13-19

13-8 Summary of Blob Methods 13-25

13-9 Summary of Bytes Methods 13-34

13-10 Summary of Clob Methods 13-37

13-11 Enumerated Values Used by Connection Class 13-48

13-12 Summary of Connection Methods 13-48

13-13 Summary of ConnectionPool Methods 13-62

13-14 Enumerated Values Used by Consumer Class 13-67

13-15 Summary of Consumer Methods 13-67

13-16 Summary of Date Methods 13-75

13-17 Enumerated Values Used by Environment Class 13-85

13-18 Summary of Environment Methods 13-86

13-19 Fields of IntervalDS Class 13-98

13-20 Summary of IntervalDS Methods 13-99

13-21 Fields of IntervalYM Class 13-109

13-22 Summary of IntervalYM Methods 13-110

13-23 Summary of Listener Methods 13-118

13-24 Summary of Map Methods 13-121

13-25 Enumerated Values Used by Message Class 13-122

13-26 Summary of Message Methods 13-122

13-27 Enumerated Values Used by MetaData Class 13-130

13-28 Summary of MetaData Methods 13-138

13-29 Summary of NotifyResult Methods 13-143

13-30 Summary of Number Methods 13-146

13-31 Enumerated Values Used by PObject Class 13-165

13-32 Summary of PObject Methods 13-165

13-33 Enumerated Values Used by Producer Class 13-170

13-34 Summary of Producer Methods 13-170

13-35 Enumerated Values Used by Ref Class 13-175

13-36 Summary of Ref Methods 13-175

13-37 Summary of RefAny Methods 13-181

13-38 Enumerated Values Used by ResultSet Class 13-183

13-39 Summary of ResultSet Methods 13-184

xxxvii

13-40 Summary of SQLException 13-204

13-41 Enumerated Values Used by StatelessConnectionPool Class 13-207

13-42 Summary of StatelessConnectionPool Methods 13-208

13-43 Enumerated Values used by the Statement Class 13-218

13-44 Statement Methods 13-219

13-45 Enumerated Values Used by Stream Class 13-268

13-46 Summary of Stream Methods 13-268

13-47 Enumerated Values Used by Subscription Class 13-270

13-48 Summary of Subscription Methods 13-270

13-49 Fields of Timestamp and Their Legal Ranges 13-277

13-50 Summary of Timestamp Methods 13-278

xxxviii

Preface

The Oracle C++ Call Interface (OCCI) is an application programming interface (API) that
allows applications written in C++ to interact with one or more Oracle database servers.
OCCI gives your programs the ability to perform the full range of database operations that are
possible with an Oracle database server, including SQL statement processing and object
manipulation.

Audience
The Oracle C++ Call Interface Developer's Guide is intended for programmers, system
analysts, project managers, and other Oracle users who perform, or are interested in learning
about, the following tasks:

• Design and develop database applications in the Oracle environment.

• Convert existing database applications to run in the Oracle environment.

• Manage the development of database applications.

To use this document, you need a basic understanding of object-oriented programming
concepts, familiarity with the use of Structured Query Language (SQL), and a working
knowledge of application development using C++.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle C++ Call Interface product information page for white papers, additional
examples, and so on, at Oracle Technology Network

• Discussion forum for all Oracle C++ Call Interface related information is at Community —
Get Started

• Demos at $ORACLE_HOME/rdbms/demo
• Oracle Database Concepts

xxxix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database SQL Language Reference

• Oracle Database Object-Relational Developer's Guide

• Oracle Database SecureFiles and Large Objects Developer's Guide

• Oracle Database New Features Guide

• Oracle Call Interface Developer's Guide

• Oracle Database Administrator’s Guide

• Oracle Database Advanced Queuing User's Guide

• Oracle Database Globalization Support Guide

• Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how
you can use them yourself.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xl

1
Introduction to OCCI

This chapter provides an overview of Oracle C++ Call Interface (OCCI) and introduces
terminology used in discussing OCCI. You are provided with the background information
needed to develop C++ applications that run in an Oracle environment.

This chapter contains these topics:

• Overview of OCCI

• About Processing SQL Statements

• Overview of PL/SQL

• About Special OCCI/SQL Terms

• About Object Support

• About Additional Support

1.1 Changes in This Release for Oracle C++ Call Interface
Programmer's Guide

This section contains the changes in this book for Oracle Database Release 23c.

New features

• Oracle C++ Call Interface (OCCI) Support for SQL BOOLEAN Data Type:

– Starting Oracle Database release 23c, a new external data type OCCIBOOL is
introduced to represent BOOLEAN type.

See Also:

* OCCIBOOL

* getBoolean()

* setBoolean()

• SQL Domain Metadata Support in OCCI :

See Also:

– getString()

– Updated with examples ifor this feature in section Using Metadata (Code
Examples).

1-1

1.2 Overview of OCCI
Oracle C++ Call Interface (OCCI) is an Application Programming Interface (API) that
provides C++ applications access to data in an Oracle database. OCCI enables C++
programmers to use the full range of Oracle database operations, including SQL
statement processing and object manipulation.

OCCI provides for:

• High performance applications through the efficient use of system memory and
network connectivity

• Scalable applications that can service an increasing number of users and requests

• Comprehensive support for application development by using Oracle database
objects, including client-side access to Oracle database objects

• Simplified user authentication and password management

• n-tiered authentication

• Consistent interfaces for dynamic connection management and transaction
management in two-tier client/server environments or multitiered environments

• Encapsulated and opaque interfaces

OCCI provides a library of standard database access and retrieval functions in the
form of a dynamic run-time library (OCCI classes) that can be linked in a C++
application at run time. This eliminates the requirement to embed SQL or PL/SQL
within third-generation language (3GL) programs.

This section discusses the following topics:

• About Benefits of OCCI

• About Building a C++ Application with OCCI

• About Functionality of OCCI

• About Procedural and Nonprocedural Elements

1.2.1 About Benefits of OCCI
OCCI provides these significant advantages over other methods of accessing an
Oracle database:

• Leverages C++ and the Object Oriented Programming paradigm

• Is easy to use

• Is easy to learn for those familiar with JDBC

• Has a navigational interface to manipulate database objects of user-defined types
as C++ class instances

Note that OCCI does not support nonblocking mode.

1.2.2 About Building a C++ Application with OCCI
As Figure 1-1 shows, you compile and link an OCCI program in the same way that you
compile and link an application that does not use the database.

Chapter 1
Overview of OCCI

1-2

Figure 1-1 The OCCI Development Process

Source Files

Host Language Compiler

Object Files

Host Linker

Application

OCCI Library

OCCI Header Files

Oracle

Server

Oracle supports most popular third-party compilers. The details of linking an OCCI program
vary from system to system. On some platforms, it may be necessary to include other
libraries, in addition to the OCCI library, to properly link your OCCI programs.

See Also:

Your operating system-specific Oracle documentation and the Oracle Database
Installation Guide for more information about compiling and linking an OCCI
application for your specific platform

1.2.3 About Functionality of OCCI
OCCI provides the following functionality:

• APIs to design scalable, multithreaded applications that can support large numbers of
users securely

• SQL access functions, for managing database access, processing SQL statements, and
manipulating objects retrieved from an Oracle database server

• Data type mapping and manipulation functions, for manipulating data attributes of Oracle
types

• Advanced Queuing for message management

Chapter 1
Overview of OCCI

1-3

• XA compliance for distributed transaction support

• Statement caching of SQL and PL/SQL queries

• Connection pooling for managing multiple connections

• Globalization and Unicode support to customize applications for international and
regional language requirement

• Object Type Translator Utility

• Transparent Application Failover support

1.2.4 About Procedural and Nonprocedural Elements
Oracle C++ Call Interface (OCCI) enables you to develop scalable, multithreaded
applications on multitiered architectures that combine nonprocedural data access
power of structured query language (SQL) with procedural capabilities of C++.

In a nonprocedural language program, the set of data to be operated on is specified,
but what operations may performed, or how the operations can be carried out, is not
specified. The nonprocedural nature of SQL makes it an easy language to learn and
use to perform database transactions. It is also the standard language used to access
and manipulate data in modern relational and object-relational database systems.

In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, which are not available in SQL. The procedural nature of these
languages makes them more complex than SQL, but it also makes them very flexible
and powerful.

The combination of both nonprocedural and procedural language elements in an OCCI
program provides easy access to an Oracle database in a structured programming
environment.

OCCI supports all SQL data definition, data manipulation, query, and transaction
control facilities that are available through an Oracle database server. For example, an
OCCI program can run a query against an Oracle database. The queries can require
the program to supply data to the database by using input (bind) variables, as follows:

SELECT name FROM employees WHERE employee_id = :empnum

In this SQL statement, empnum is a placeholder for a value that is supplied by the
application.

In an OCCI application, you can also take advantage of PL/SQL, Oracle's procedural
extension to SQL. The applications you develop can be more powerful and flexible
than applications written in SQL alone. OCCI also provides facilities for accessing and
manipulating objects in an Oracle database server.

1.3 About Processing SQL Statements
One of the main tasks of an OCCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCCI application. Oracle
recognizes several types of SQL statements:

• About Data Definition Language Statements

Chapter 1
About Processing SQL Statements

1-4

• About Control Statements

• About Data Manipulation Language Statements

• About Queries

1.3.1 About Data Definition Language Statements
Data Definition Language (DDL) statements manage schema objects in the database. These
statements create new tables, drop old tables, and establish other schema objects. They also
control access to schema objects. Example 1-1 illustrates how to create a table, and
Example 1-2 shows how to grant and revoke privileges on this table.

DDL statements also allow you to work with objects in the Oracle database, as in
Example 1-3, which illustrates how to create an object table.

Example 1-1 Creating a Table

CREATE TABLE employee_information (
 employee_id NUMBER(6),
 ssn NUMBER(9),
 dependents NUMBER(1),
 mail_address VARCHAR(60))

Example 1-2 Specifying Access to a Table

GRANT UPDATE, INSERT, DELETE ON employee_information TO donna
REVOKE UPDATE ON employee_information FROM jamie

Example 1-3 Creating an Object Table

CREATE TYPE person_info_type AS OBJECT (
 employee_id NUMBER(6),
 ssn NUMBER(9),
 dependents NUMBER(1),
 mail_address VARCHAR(60))

CREATE TABLE person_info_table OF person_info_type

1.3.2 About Control Statements
OCCI applications treat transaction control, connection control, and system control
statements (for example, DML statements).

See Also:

Oracle Database SQL Language Reference for information about control
statements.

1.3.3 About Data Manipulation Language Statements
Data Manipulation Language (DML) statements can change data in database tables. For
example, DML statements insert new rows into a table, update column values in existing
rows, delete rows from a table, lock a table in the database, and explain the execution plan
for a SQL statement.

Chapter 1
About Processing SQL Statements

1-5

DML statements may require an application to supply data to the database by using
input bind variables, as in Example 1-4. This statement can be executed several times
with different bind values, or several rows can be added through array insert in a single
round-trip to the server.

DML statements also enable you to work with objects in the Oracle Database, as in
Example 1-5, which shows the insertion of an instance of a type into an object table.

Example 1-4 Inserting Data Through Input Bind Variables

INSERT INTO departments VALUES(:1,:2,:3)

Example 1-5 Inserting Objects into the Oracle Database

INSERT INTO person_info_table
VALUES (person_info_type('450987','123456789','3','146 Winfield Street'))

1.3.4 About Queries
Queries are statements that retrieve data from tables in a database. A query can
return zero, one, or many rows of data. All queries begin with the SQL keyword
SELECT, as in Example 1-6:

Queries can require the program to supply data to the database server by using input
bind variables, as in Example 1-7:

In this SQL statement, emp_id is a placeholder for a value that is supplied by the
application.

Example 1-6 Using the Simple SELECT Statement

SELECT department_name FROM departments
 WHERE department_id = 30

Example 1-7 Using the SELECT Statement with Input Variables

SELECT first_name, last_name
 FROM employees
 WHERE employee_id = :emp_id

1.4 Overview of PL/SQL
PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language statements. PL/SQL allows several constructs to be grouped into a single
block and executed as a unit. Among these are the following constructs:

• One or more SQL statements

• Variable declarations

• Assignment statements

• Procedural control statements (IF ... THEN ... ELSE statements and loops)

• Exception handling

In addition to calling PL/SQL stored procedures from an OCCI program, you can use
PL/SQL blocks in your OCCI program to perform the following tasks:

• Call other PL/SQL stored procedures and stored functions.

Chapter 1
Overview of PL/SQL

1-6

• Combine procedural control statements with several SQL statements, to be executed as
a unit.

• Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling.

• Use cursor variables.

• Access and manipulate objects in an Oracle database.

A PL/SQL procedure or function can also return an output variable. This is called an out bind
variable, as in Example 1-8:

Here, the first parameter is an input variable that provides the ID number of an employee.
The second parameter, or the out bind variable, contains the return value of employee name.

PL/SQL can also be used to issue a SQL statement to retrieve values from a table of
employees, given a particular employee number. Example 1-9 demonstrates the use of
placeholders in PL/SQL statements.

Note that the placeholders in this statement are not PL/SQL variables. They represent input
and output parameters passed to and from the database server when the statement is
processed. These placeholders must be specified in your program.

Example 1-8 Using PL/SQL to Obtain an Output Variable

GET_EMPLOYEE_NAME(:1, :2);

Example 1-9 Using PL/SQL to Insert Partial Records into Placeholders

SELECT last_name, first_name, salary, commission_pct
 INTO :emp_last, :emp_first, :sal, :comm
 FROM employees
 WHERE employee_id = :emp_id;

1.5 About Special OCCI/SQL Terms
This guide uses special terms to refer to the different parts of a SQL statement. Consider
Example 1-10:

This example contains these parts:

• A SQL command: SELECT
• Three select-list items: first_name, last_name, and email
• A table name in the FROM clause: employees
• Two column names in the WHERE clause: department_id and commission_pct
• A numeric input value in the WHERE clause: 40
• A placeholder for an input bind variable in the WHERE clause: :base
When you develop your OCCI application, you call routines that specify to the database
server the value of, or reference to, input and output variables in your program. In this guide,
specifying the placeholder variable for data is called a bind operation. For input variables,
this is called an in bind operation. For output variables, this is called an out bind operation.

Example 1-10 Using SQL to Extract Partial Records

SELECT first_name, last_name, email
 FROM employees

Chapter 1
About Special OCCI/SQL Terms

1-7

 WHERE department_id = 80
 AND commission_pct > :base;

1.6 About Object Support
OCCI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a person object. That object type
might have attributes, such as first_name, last_name, and age, which represent a
person's identifying characteristics.

The object type definition serves as the basis for creating objects, which represent
instances of the object type. By using the object type as a structural definition, a
person object could be created with the attributes John, Bonivento, and 30. Object
types may also contain methods, or programmatic functions that represent the
behavior of that object type.

See Also:

• Oracle Database Concepts

• Oracle Database Object-Relational Developer's Guidefor a more detailed
explanation of object types and objects

OCCI provides a comprehensive API for programmers seeking to use the Oracle
database server's object capabilities. These features can be divided into several major
categories, which are discussed in subsequent topics:

• About Client-Side Object Cache

• About Run-time Environment for Objects

• About Associative and Navigational Interfaces

• About Interoperability with C (OCI)

• About the Metadata Class

• About the Object Type Translator Utility

1.6.1 About Client-Side Object Cache
The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks objects which have been fetched
by an OCCI application from the server to the client side. The client-side object cache
is created when the OCCI environment is initialized in object mode. Multiple
applications running against the same server have their own object cache. The client-
side object cache tracks the objects that are currently in memory, maintains references
to objects, manages automatic object swapping and tracks the meta-attributes or type
information about objects. The client-side object cache provides the following benefits:

• Improved application performance by reducing the number of client/server round-
trips required to fetch and operate on objects

• Enhanced scalability by supporting object swapping from the client-side cache

Chapter 1
About Object Support

1-8

• Improved concurrency by supporting object-level locking

• Automatic garbage collection when cache thresholds are exceeded

1.6.2 About Run-time Environment for Objects
OCCI provides a run-time environment for objects that offers a set of methods for managing
how Oracle objects are used on the client side. These methods provide the necessary
functionality for performing these tasks:

• Connecting to an Oracle database server to access its object functionality

• Allocating the client-side object cache and tuning its parameters

• Retrieving error and warning messages

• Controlling transactions that access objects in the database

• Associatively accessing objects through SQL

• Describing a PL/SQL procedure or function whose parameters or result are of Oracle
object type

1.6.3 About Associative and Navigational Interfaces
Applications that use OCCI can access objects in the database through several types of
interfaces, such as SQL SELECT, INSERT, and UPDATE statements, and C++ pointers and
references that access objects in the client-side object cache by traversing the corresponding
references.

OCCI provides a set of methods to support object manipulation by using SQL SELECT,
INSERT, and UPDATE statements. To access Oracle objects, these SQL statements use a
consistent set of steps as if they were accessing relational tables. OCCI provides methods to
access objects by using SQL statements for:

• Binding object type instances and references as input and output variables of SQL
statements and PL/SQL stored procedures

• Executing SQL statements that contain object type instances and references

• Fetching object type instances and references

• Retrieving column values from a result set as objects

• Describing a select-list item of an Oracle object type

OCCI provides a seamless interface for navigating objects, enabling you to manipulate
database objects in the same way that you would operate on transient C++ objects. You can
dereference the overloaded arrow (->) operator on an object reference to transparently
materialize the object from the database into the application space.

1.6.4 About Interoperability with C (OCI)
The OCCI application can retrieve the underlying OCI handles and descriptors by calling
getOCIxxx() methods on the OCCI class instances. These handles can be used to call OCI
functions.

Note that the application must be aware that if any properties are changed on the OCI
handles, the corresponding OCCI instances may or may not reflect this.

Chapter 1
About Object Support

1-9

This interoperability between OCCI and OCI is not supported if the application uses
OCI functions for any object-related functionality.

1.6.5 About the Metadata Class
Each Oracle data type is represented in OCCI by a C++ class. The class exposes the
behavior and characteristics of the data type by overloaded operators and methods.
For example, the Oracle data type NUMBER is represented by the Number class. OCCI
provides a metadata class that enables you to retrieve metadata describing database
objects, including object types.

1.6.6 About the Object Type Translator Utility
The Object Type Translator (OTT) utility translates schema information about Oracle
object types into client-side language bindings. That is, OTT translates object type
information into declarations of host language variables, such as structures and
classes. OTT takes an intype file that contains information about Oracle database
schema objects as input. OTT generates an outtype file and the necessary header
and implementation files that must be included in a C++ application that runs against
the object schema.

In summary, OCCI supports object handling in an Oracle database by:

• Improving application developer productivity by eliminating the requirement to
write the host language variables that correspond to schema objects

• Maintaining SQL as the data definition language of choice by providing the ability
to automatically map Oracle database schema objects created by SQL to host
language variables; this allows Oracle to support a consistent, enterprise-wide
model of the user's data

• Facilitating schema evolution of object types by regenerating included header files
when the schema is changed, allowing Oracle applications to support schema
evolution

• Executing SQL statements that manipulate object data and schema information

• Passing object references and instances as input variables in SQL statements

• Declaring object references and instances as variables to receive the output of
SQL statements

• Fetching object references and instances from a database

• Describing properties of SQL statements that return object instances and
references

• Describing PL/SQL procedures or functions with object parameters or results

• Extending commit and rollback calls to synchronize object and relational
functionality

• Advanced queuing of objects

OTT is typically invoked from the command line by specifying the intype file, the
outtype file, and the specific database connection.

Chapter 1
About Object Support

1-10

1.7 About Additional Support
This section discusses how to build the OCCI examples that ship with Oracle Database, and
additional resources:

• Building OCCI Demos

• About OCCI on the Oracle Technology Network

1.7.1 Building OCCI Demos
You must install the demonstration programs as described in Oracle Database Examples
Installation Guide. Parts of these demos are used as examples in this book. To build the
examples, see the following steps:

1. Navigate to the demo directory.

On Windows, this directory is ORACLE_HOME\rdbms\demo.

On Linux and UNIX, this directory is ORACLE_HOME/rdbms/demo.

2. Ensure that this directory contains the file demo_rdbms.mk.

3. Create the OCCI demo using the make command.

• To make all the demos at the same time, use the following parameters:

make -f demo_rdbms.mk occidemos
• To make only one demo, use parameters:

make -f demo_rdbms.mk demoname
• To make a single demo with objects, use parameters:

make -f demo_rdbms.mk buildocci EXE=demoname OBJS=demoname.o
• To make a single demo with static libraries, use parameters:

make -f demo_rdbms.mk buildocci_static EXE=demoname OBJS=demoname.o
• For more options, examine the demo_rdbms.mk file.

1.7.2 About OCCI on the Oracle Technology Network
You can find additional information on OCCI, including a forum, downloads, and white papers,
at: Oracle Technology Network — Oracle C_++_Call Interface.

Chapter 1
About Additional Support

1-11

2
Installation and Upgrading

This chapter provides an overview of installation and upgrading for Oracle C++ Call Interface
(OCCI).

This chapter contains these topics:

• About Installing Oracle C++ Call Interface

• About Upgrading Considerations

• About Determining the Oracle Database Versions

• About Using OCCI with Microsoft Visual C++

2.1 About Installing Oracle C++ Call Interface
OCCI is installed as part of the Oracle Database. To determine additional configuration
requirements, you should refer to the Oracle Database Installation Guide and the Oracle
Database Client Installation Guide that is specific to your platform.

2.2 About Upgrading Considerations
To use the new features available in this release, you must recompile and relink all OCCI
applications, including classes generated through the Object Type Translator Utility, when
upgrading from an earlier Oracle Client release.

2.3 About Determining the Oracle Database Versions
When an application uses several separate code paths with different server versions or client
patchsets, you can verify these options both during compilation and at run time.

This sections includes the following topics:

• Determining the Oracle Client Version During Compilation

• About Determining the Oracle Client and Server Versions at Run Time

2.3.1 Determining the Oracle Client Version During Compilation
The OCCI header files define OCCI_MAJOR_VERSION and OCCI_MINOR_VERSION macros.
Example 2-1 illustrates one way to use these macros:

Example 2-1 How to Determine the Major Client Version and Set Performance
Features

#if (OCCI_MAJOR_VERSION > 9)
 env->setCacheSortedFlush(true); // benefit of performance, if available
#endif

2-1

2.3.2 About Determining the Oracle Client and Server Versions at Run
Time

During run time, you can check both the client and server versions of the current
Connection by using the getClientVersion(), getServerVersion(), and
getServerVersionUString() methods.

2.4 Oracle Instant Client and Oracle Instant client Basic
Light

Oracle Instant Client enables applications to connect to a local or remote Oracle
Database for development and production deployment

• About Oracle Instant Client: The Oracle Instant Client libraries provide the
necessary network connectivity, as well as Oracle Database client-side files to
create and run Oracle Call Interface (OCI), OCCI, ODBC, and JDBC OCI
applications to make full use of Oracle Database.

• About Oracle Instant Client Basic Light: Oracle Instant Client Basic Light further
reduces the disk space requirements of a client installation.

See Also:

Installing Oracle Instant Client

2.5 About Using OCCI with Microsoft Visual C++
The Oracle Database 12c Release 1 (12.1) includes OCCI libraries for developing
applications with Microsoft Visual C++ version 10.0 (.NET 2010 SP1 10.0), Microsoft
Visual C++ version 11.0 (.NET 2012 11.0), Microsoft Visual C++ version 12.0 (.NET
2013 12.0), and Intel 12.1 C compilers with Microsoft Visual Studio 2010 STLs.
Microsoft Visual C++ version 8.0 and version 9.0 are no longer supported.

Microsoft Visual C++ version 10.0 libraries are installed in the following default
locations:

ORACLE_BASE\ORACLE_HOME\bin\oraocci12.dll
ORACLE_BASE\ORACLE_HOME\oci\lib\msvc\oraocci12.lib

Copies of these two files are also installed under the directory:

ORACLE_BASE\ORACLE_HOME\oci\lib\msvc\vc10

Microsoft Visual C++ 2012 OCCI libraries are installed in the following default location:

ORACLE_BASE\ORACLE_HOME\oci\lib\msvc\vc11

When developing OCCI applications with MSVC++ 2012, ensure that the OCCI
libraries are correctly selected from this directory for linking and executing.

Microsoft Visual C++ 2013 OCCI libraries are installed in the following default location:

Chapter 2
Oracle Instant Client and Oracle Instant client Basic Light

2-2

ORACLE_BASE\ORACLE_HOME\oci\lib\msvc\vc12

When developing OCCI applications with MSVC++ 2013, ensure that the OCCI libraries are
correctly selected from this directory for linking and executing.

Applications should link with the appropriate OCCI library. You must ensure that the
corresponding DLL is located in the Windows system PATH.

Applications that link to MSVCRTD.DLL, a debug version of Microsoft C-Runtime, /MDd compiler
flag, should link with these specific OCCI libraries: oraocci12d.lib and oraocci12d.dll.

All Instant Client packages contain the versions of the OCCI DLLs that are compatible with
Microsoft Visual C++ version 10.0.

Chapter 2
About Using OCCI with Microsoft Visual C++

2-3

3
Accessing Oracle Database Using C++

This chapter describes the basics of developing C++ applications using Oracle C++ Call
Interface (OCCI) to work with data stored in relational databases.

This chapter contains these topics:

• About Connecting to a Database

• About Pooling Connections

• About Executing SQL DDL and DML Statements

• About Types of SQL Statements in the OCCI Environment

• About Executing SQL Queries

• About Executing Statements Dynamically

• About Using Larger Row Count and Error Code Range Data Types

• About Committing a Transaction

• Caching Statements

• About Handling Exceptions

3.1 About Connecting to a Database
You have several different options for how your application connects to the database.

This section includes the following topics:

• Creating and Terminating an Environment

• Opening and Closing a Connection

• About Support for Pluggable Databases

3.1.1 Creating and Terminating an Environment
All OCCI processing takes place inside the Environment class. An OCCI environment
provides application modes and user-specified memory management functions. Example 3-1
illustrates how to create an OCCI environment.

All OCCI objects created with the createxxx() methods (connections, connection pools,
statements) must be explicitly terminated. When appropriate, you must also explicitly
terminate the environment. Example 3-2 shows how you terminate an OCCI environment.

In addition, an OCCI environment should have a scope that is larger than the scope of the
following object types created inside that environment: Agent, Bytes, Date, Message,
IntervalDS, IntervalYM, Subscription, and Timestamp. This rule does not apply to BFile,
Blob, and Clob objects, as demonstrated in Example 3-3.

If the application requires access to objects in the global scope, such as static or global
variables, these objects must be set to NULL before the environment is terminated. In the

3-1

preceding example, if b was a global variable, a b.setNull() call has to be made
before the terminateEnvironment() call.

You can use the mode parameter of the createEnvironment() method to specify that
your application:

• Runs in a threaded environment (THREADED_MUTEXED or THREADED_UNMUTEXED)

• Uses objects (OBJECT)

The mode can be set independently in each environment.

Example 3-1 How to Create an OCCI Environment

Environment *env = Environment::createEnvironment();

Example 3-2 How to Terminate an OCCI Environment

Environment::terminateEnvironment(env);

Example 3-3 How to Use Environment Scope with Blob Objects

const string userName = "HR";
const string password = "password";
const string connectString = "";

Environment *env = Environment::createEnvironment();
{
 Connection *conn = env->createConnection(
 userName, password, connectString);
 Statement *stmt = conn->createStatement(
 "SELECT blobcol FROM mytable");
 ResultSet *rs = stmt->executeQuery();
 rs->next();
 Blob b = rs->getBlob(1);
 cout << "Length of BLOB : " << b.length();
 ...
 stmt->closeResultSet(rs);
 conn->terminateStatement(stmt);
 env->terminateConnection(conn);
}
Environment::terminateEnvironment(env);

3.1.2 Opening and Closing a Connection
The Environment class is the factory class for creating Connection objects. You first
create an Environment instance, and then use it to enable users to connect to the
database through the createConnection() method.

Example 3-4 creates an environment instance and then uses it to create a database
connection for a database user HR with the appropriate password.

You must use the terminateConnection() method shown in the following code
example to explicitly close the connection at the end of the working session. In
addition, the OCCI environment should be explicitly terminated.

You should remember that all objects (Refs, Bfiles, Producers, Consumers, and so on)
created or named within a Connection instance must be within the inner scope of that
instance; the scope of these objects must be explicitly terminated before the

Chapter 3
About Connecting to a Database

3-2

Connection is terminated. Example 3-5 demonstrates how to terminate the connection and
the environment.

Example 3-4 How to Create an Environment and then a Connection to the Database

Environment *env = Environment::createEnvironment();
Connection *conn = env->createConnection("HR", "password");

Example 3-5 How to Terminate a Connection to the Database and the Environment

env->terminateConnection(conn);
Environment::terminateEnvironment(env);

3.1.3 About Support for Pluggable Databases
The multitenant architecture enables an Oracle database to contain a portable collection of
schemas, schema objects, and nonschema objects that appear to an Oracle client as a
separate database. A multitenant container database (CDB) is an Oracle database that
includes one or more pluggable databases (PDBs).

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c.

OCCI clients can connect to a PDB using a service whose pluggable database property has
been set to the relevant PDB.

See:

• Oracle Database Administrator’s Guide for more information about PDBs and
for more details about configuring the services to connect to various PDBs

• Oracle® Call Interface Developer's Guide for information about restrictions
while working with PDBs

3.2 About Pooling Connections
This section discusses how to use the connection pooling feature of OCCI. The information
covered includes the following topics:

• About Using Connection Pools

• Using Stateless Connection Pooling

The primary difference between the two is that StatelessConnectionPools are used for
applications that do not depend on state considerations; these applications can benefit from
performance improvements available through use of pre-authenticated connections.

Chapter 3
About Pooling Connections

3-3

3.2.1 About Using Connection Pools
For many middle-tier applications, connections to the database should be enabled for
a large number of threads. Because each thread exists for a relatively short time,
opening a connection to the database for every thread would be inefficient use of
connections, and would result in poor performance.

By employing the connection pooling feature, your application can create a small set
of connections available to a large number of threads, enabling you to use database
resources very efficiently.

This section includes the following topics:

• Creating a Connection Pool

• Creating Proxy Connections

3.2.1.1 Creating a Connection Pool
To create a connection pool, you use the createConnectionPool() method, as
demonstrated in Example 3-6.

The following parameters are used in Example 3-6:

• poolUserName: The owner of the connection pool

• poolPassword: The password to gain access to the connection pool

• connectString: The database name that specifies the database server to which
the connection pool is related

• minConn: The minimum number of connections to be opened when the connection
pool is created

• maxConn: The maximum number of connections that can be maintained by the
connection pool. When the maximum number of connections are open in the
connection pool, and all the connections are busy, an OCCI method call that
needs a connection waits until it gets one, unless setErrorOnBusy() was called on
the connection pool

• incrConn: The additional number of connections to be opened when all the
connections are busy and a call needs a connection. This increment is
implemented only when the total number of open connections is less than the
maximum number of connections that can be opened in that connection pool.

Example 3-7 demonstrates how you can create a connection pool.

You can also configure all these attributes dynamically. This lets you design an
application that has the flexibility of reading the current load (number of open
connections and number of busy connections) and tune these attributes appropriately.
In addition, you can use the setTimeOut() method to time out the connections that are
idle for more than the specified time. The OCCI terminates idle connections
periodically to maintain an optimum number of open connections.

There is no restriction that one environment must have only one connection pool.
There can be multiple connection pools in a single OCCI environment, and these can
connect to the same or different databases. This is useful for applications requiring
load balancing.

Chapter 3
About Pooling Connections

3-4

Example 3-6 The createConnectionPool() Method

virtual ConnectionPool* createConnectionPool(
 const string &poolUserName,
 const string &poolPassword,
 const string &connectString ="",
 unsigned int minConn =0,
 unsigned int maxConn =1,
 unsigned int incrConn =1) = 0;

Example 3-7 How to Create a Connection Pool

const string connectString = "";
unsigned int maxConn = 5;
unsigned int minConn = 3;
unsigned int incrConn = 2;

ConnectionPool *connPool = env->createConnectionPool(
 poolUserName,
 poolPassword,
 connectString,
 minConn,
 maxConn,
 incrConn);

3.2.1.2 Creating Proxy Connections
If you authorize the connection pool user to act as a proxy for other connections, then no
password is required to log in database users who use connections in the connection pool.

A proxy connection can be created by using either of the following two versions of the
createProxyConnection() method, demonstrated in Example 3-8.

or

ConnectionPool->createProxyConnection(
 const string &username,
 string roles[],
 int numRoles,
 Connection::ProxyType proxyType = Connection::PROXY_DEFAULT);

The following parameters are used in the previous method example:

• roles[]: The roles array specifies a list of roles to be activated after the proxy connection
is activated for the client

• Connection::ProxyType proxyType = Connection::PROXY_DEFAULT: The enumeration
Connection::ProxyType lists constants representing the various ways of achieving proxy
authentication. PROXY_DEFAULT is used to indicate that name represents a database
username and is the only proxy authentication mode currently supported.

Example 3-8 The createProxyConnection() Method

ConnectionPool->createProxyConnection(
 const string &username,
 Connection::ProxyType proxyType = Connection::PROXY_DEFAULT);

Chapter 3
About Pooling Connections

3-5

3.2.2 Using Stateless Connection Pooling
Stateless Connection Pooling is specifically designed for use in applications that
require short connection times and do not deal with state considerations. The primary
benefit of Stateless Connection Pooling is increased performance, since the time
consuming connection and authentication protocols are eliminated.

Stateless Connection Pools create and maintain a group of stateless, authenticated
connection to the database that can be used by multiple threads. Once a thread
finishes using its connection, it should release the connection back to the pool. If no
connections are available, new ones are generated. Thus, the number of connections
in the pool can increase dynamically.

Some connections in the pool may be tagged with specific properties. The user may
request a default connection, set certain attributes, such as Globalization Support
settings, then tag it and return it to the pool. When a connection with same attributes is
needed, a request for a connection with the same tag can be made, and one of
several connections in the pool with the same tag can be reused. The tag on a
connection can be changed or reset.

Proxy connections may also be created and maintained through the Stateless
Connection Pooling interface.

Stateless connection pooling improves the scalability of the mid-tier applications by
multiplexing the connections. However, connections from a StatelessConnectionPool
should not be used for long transactions, as holding connections for long periods leads
to reduced concurrency.

Note:

• OCCI does not check for the correctness of the connection-tag pair. You
are responsible for ensuring that connections with different client-side
properties do not have the same tag.

• Your application should commit or rollback any open transactions before
releasing the connection back to the pool. If this is not done, Oracle
automatically commits any open transactions when the connection is
released.

There are two types of stateless connection pools:

• A homogeneous pool is one in which all the connections are authenticated with
the username and password provided at the time of creation of the pool.
Therefore, all connections have the same authentication context. Proxy
connections are not allowed in such pools.

• Different connections can be authenticated by different usernames in
heterogeneous pools. Proxy connections can also exist in heterogeneous pools,
provided the necessary privileges for creating them are granted on the server.
Additionally, heterogeneous pools support external authentication.

Example 3-9 illustrates a basic usage scenario for connection pools. Example 3-10
presents the usage scenario for creating and using a homogeneous stateless
connection pool, while Example 3-11 covers the use of heterogeneous pools.

Chapter 3
About Pooling Connections

3-6

Example 3-9 How to Use a StatelessConnectionPool

Because the pool size is dynamic, in response to changing user requirements, up to the
specified maximum number of connections. Assume that a stateless connection pool is
created with the following parameters:

• minConn = 5
• incrConn = 2
• maxConn = 10
Five connections are opened when the pool is created:

• openConn = 5
Using get[AnyTagged][Proxy]Connection() methods, the user consumes all 5 open
connections:

• openConn = 5
• busyConn = 5
When the user wants another connection, the pool opens 2 new connections and returns one
of them to the user.

• openConn = 7
• busyConn = 6
The upper limit for the number of connections that can be pooled is maxConn specified at the
time of creation of the pool.

The user can also modify the pool parameters after the pool is created using the call to
setPoolSize() method.

If a heterogeneous pool is created, the incrConn and minConn arguments are ignored.

Example 3-10 How to Create and Use a Homogeneous Stateless Connection Pool

To create a homogeneous stateless connection pool, follow these basic steps and
pseudocode commands:

1. Create a stateless connection pool in the HOMOGENEOUS mode of the Environment with a
createStatelessConnectionPool() call.

StatelessConnectionPool *scp =
 env->createStatelessConnectionPool(
 username, passwd, connectString, maxCon, minCon, incrCon,
 StatelessConnectionPool::HOMOGENEOUS);

2. Get a new or existing connection from the pool by calling the getConnection() method.

Connection *conn=scp->getConnection(tag);

During the execution of this call, the pool is searched for a connection with a matching
tag. If such a connection exists, it is returned to the user. Otherwise, an untagged
connection authenticated by the pool username and password is returned.

Alternatively, you can obtain a connection with getAnyTaggedConnection() call. It returns
a connection with a non-matching tag if neither a matching tag or NULL tag connections
are available. You should verify the tag returned by a getTag() call on Connection.

Chapter 3
About Pooling Connections

3-7

Connection *conn=scp->getAnyTaggedConnection(tag);
string tag=conn->getTag();

3. Use the connection.

4. Release the connection to the StatelessConnectionPool through the
releaseConnection() call.

scp->releaseConnection(conn, tag);

An empty tag, "", untags the Connection.

You have an option of retrieving the connection from the
StatelessConnectionPool using the same tag parameter value in a
getConnection() call.

Connection *conn=scp->getConnection(tag);

Instead of returning the Connection to the StatelessConnectionPool, you may
want to destroy it using the terminateConnection() call.

scp->terminateConnection(conn);
5. Destroy the pool through aterminateStatelessConnectionPool() call on the

Environment object.

env->terminateStatelessConnectionPool(scp);
Example 3-11 How to Create and Use a Heterogeneous Stateless Connection
Pool

To create a heterogeneous stateless connection pool, follow these basic steps and
pseudocode commands:

1. Create a stateless connection pool in the HETEROGENEOUS mode of the Environment
with a createStatelessConnectionPool() call.

StatelessConnectionPool *scp =
 env->createStatelessConnectionPool(
 username, passwd, connectString, maxCon, minCon, incrCon,
 StatelessConnectionPool::HETEROGENEOUS);

If you are enabling external authentication, you must also activate the
USES_EXT_AUTH mode in the createStatelessConnectionPool() call.

StatelessConnectionPool *scp =
 env->createStatelessConnectionPool(
 username, passwd, connectString, maxCon, minCon, incrCon,
 StatelessConnectionPool::PoolType(
 StatelessConnectionPool::USES_EXT_AUTH|
 StatelessConnectionPool::HETEROGENEOUS));

2. Get a new or existing connection from the pool by calling the getConnection()
method of the StatelessConnectionPool that is overloaded for the heterogeneous
pool option.

Connection *conn=scp->getConnection(username, passwd, tag);

During the execution of this call, the heterogeneous pool is searched for a
connection with a matching tag. If such a connection exists, it is returned to the
user. Otherwise, an appropriately authenticated untagged connection with a NULL
tag is returned.

Chapter 3
About Pooling Connections

3-8

Alternatively, you can obtain a connection with getAnyTaggedConnection() call that has
been overloaded for heterogeneous pools. It returns a connection with a non-matching
tag if neither a matching tag or NULL tag connections are available. You should verify the
tag returned by a getTag() call on Connection.

Connection *conn=scp->getAnyTaggedConnection(username, passwd, tag);
string tag=conn->getTag();

You may also want to use proxy connections by getProxyConnection() or
getAnyTaggedProxyConnection() calls on the StatelessConnectionPool.

Connection *pconn = scp->getProxyConnection(proxyName, roles{},
 nuRoles, tag, proxyType);
Connection *pconn = scp->getAnyTaggedProxyConnection(proxyName, tag,
 proxyType);

If the pool supports external authentication, use the following getConnection() call:

Connection *conn=scp->getConnection();
3. Use the connection.

4. Release the connection to the StatelessConnectionPool through the
releaseConnection() call.

scp->releaseConnection(conn, tag);

An empty tag, "", untags the Connection.

You have an option of retrieving the connection from the StatelessConnectionPool using
the same tag parameter value in a getConnection() call.

Connection *conn=scp->getConnection(tag);

Instead of returning the Connection to the StatelessConnectionPool, you may want to
destroy it using the terminateConnection() call.

scp->terminateConnection(conn);
5. Destroy the pool through a terminateStatelessConnectionPool() call on the Environment

object.

env->terminateStatelessConnectionPool(scp);

3.2.3 About Database Resident Connection Pooling
Enterprise-level applications must typically handle a high volume of simultaneous user
sessions that are implemented as persistent connections to the database. The memory
overhead of creating and managing these connections has significant implications for the
performance of the database.

Database Resident Connection Pooling solves the problem of too many persistent
connections by providing a pool of dedicated servers for handling a large set of application
connections, thus enabling the database to scale to tens of thousands of simultaneous
connections. It significantly reduces the memory footprint on the database tier and increases
the scalability of both the database and middle tiers. Database Resident Connection Pooling
is designed for architectures with multi-process application servers and multiple middle tiers
that cannot accommodate connection pooling in the middle tier.

Database Resident Connection Pooling architecture closely follows the default dedicated
model for connecting to an Oracle Database instance; however, it removes the overhead of

Chapter 3
About Pooling Connections

3-9

assigning a specific server to each connection. On the server tier, most connections
are inactive at any given time, and each of these connections consumes memory.
Therefore, database systems that support high connection volumes face the risk of
quickly exhausting all available memory. Database Resident Connection Pooling
allows a connection to use a dedicated server, which combines an Oracle server
process and a user session. Once the connection becomes inactive, it returns its
resources to the pool, for use by similar connections.

In multithreaded middle tiers that are capable of comprehensive connection pooling,
the issue of unused connections is somewhat different. As the number of middle tiers
increases, each middle tier privately holds several connections to the database; these
connections cannot be shared with other middle tiers. Locating the connection pool on
the database instead enables the sharing of connections across similar clients.

Database Resident Connection Pooling supports password-based authentication,
statement caching, tagging, and Fast Application Notification. You can also use client-
side stateless connection pooling with the database resident connection pooling.

Note that clients that hold connections from the database resident connection pool are
persistently connected to a background Connection Broker process. The Connection
Broker implements the pool functionality and multiplexes inbound client connections to
a pool of dedicated server processes. Clients that do not use the connection pool use
dedicated server processes instead.

See Also:

• Oracle Database Concepts for details about the architecture of Database
Resident Connection Pooling

• Oracle Database Administrator’s Guide for details on configuring
Database Resident Connection Pooling

• Oracle Database PL/SQL Packages and Types Reference, for the
DBMS_CONNECTION_POOL package

This section includes the following topics:

• Administrating Database Resident Connection Pools

• Using Database Resident Connection Pools

3.2.3.1 Administrating Database Resident Connection Pools
To implement database resident connection pooling, it must first be enabled on the
system by a user with SYSDBA privileges. See Example 3-12 for steps necessary to
initiate and maintain a database resident connection pool.

Note that in Oracle RAC configurations, the database resident connection pool starts
on all configured nodes. If the pool is not stopped, the starting configuration is
persistent across instance restarts: the pool is started automatically when the instance
comes up.

Example 3-12 How to Administer the Database Resident Connection Pools

A user with SYSDBA privileges must perform the next steps.

Chapter 3
About Pooling Connections

3-10

1. Connect to the database.

SQLPLUS / AS SYSDBA
2. [Optional] Configure the parameters of the database resident connection pool. The

default values of a pool are set in the following way:

DBMS_CONNECTION_POOL.CONFIGURE_POOL('SYS_DEFAULT_CONNECTION_POOL',
 MIN=>10,
 MAX=>200);

3. [Optional] Alter specific parameters of the database resident connection pool without
affecting other parameters.

DBMS_CONNECTION_POOL.ALTER_PARAM('SYS_DEFAULT_CONNECTION_POOL',
 'INACTIVITY_TIMEOUT',
 10);

4. Start the connection pool. After this step, the connection pool is available to all qualified
clients.

DBMS_CONNECTION_POOL.START_POOL('SYS_DEFAULT_CONNECTION_POOL');
5. [Optional] Change the parameters of the database resident connection pool.

DBMS_CONNECTION_POOL.ALTER_PARAM('SYS_DEFAULT_CONNECTION_POOL',
 'MAXSIZE',
 20);

6. [Optional] The configuration of the connection pool can be reset to default values.

DBMS_CONNECTION_POOL.RESTORE_DEFAULTS ('SYS_DEFAULT_CONNECTION_POOL');
7. Stop the pool. Note that pool information is persistent: stopping the pool does not destroy

the pool name and configuration parameters.

DBMS_CONNECTION_POOL.STOP_POOL();

3.2.3.2 Using Database Resident Connection Pools
To use database resident connection pooling, you must specify the connection class and
connection purity. If the application requests a connection that cannot be potentially tainted
with prior connection state, it must specify purity as NEW; Oracle recommends this approach if
clients from different geographic locale settings share the same database instance. When the
application can use a previously used connection, the purity should be set to SELF. In
conjunction with connection class and purity specifications, you can also use an application-
specific tags to choose a previously used connection that has the desired state. The default
connection pool name, as demonstrated in Example 3-12, is SYS_DEFAULT_CONNECTION_POOL.
This feature overloads StatelessConnectionPool Class and Environment Class interfaces for
retrieving a connection (getConnection() and getProxyConnection()) by adding the
parameters that specify connection class and purity. Every connection request outside of a
client-side connection pool has a default purity of NEW. Connection requests inside a client-
side connection pool have a default purity of SELF.

Example 3-13 How to Get a Connection from a Database Resident Connection Pool

conn1 = env->createConnection (/*username */"hr",
 /*password*/ "password", /* database*/ "inst1_cmon",
 /* connection class */"TESTCC", /* purity */Connection::SELF);
stmt1 = conn1->createStatement("select count(*) from emp");
rs=stmt1->executeQuery();
while (rs->next())

Chapter 3
About Pooling Connections

3-11

 {
 int num = rs->getInt(1);
 sprintf((char *)tmp, "%d", num);
 cout << tmp << endl;
 }
stmt1->closeResultSet(rs);
conn1->terminateStatement(stmt1);
env->terminateConnection(conn1);

Example 3-14 Using Client-Side Pool and Server-Side Pool

StatelessConnectionPool *scPool;
OCCIConnection *conn1, *conn2;
 scPool = env->createStatelessConnectionPool
 (poolUserName, poolPassword, connectString, maxConn,
 minConn, incrConn, StatelessConnectionPool::HOMOGENEOUS);

conn1= scPool->getConnection(/* Connection class name */"TESTCC",
 /* Purity */ Connection::SELF);
 /* or, for proxy coonnections */
 conn2= scPool->getProxyConnection(/* username*/ "HR_PROXY",
 /*Connection class */"TESTCC", /* Purity */
Connection::SELF);
/* or, for getting a tagged connection */
conn3 = scPool->getConnection(/*connection class */"TESTCC",
 /*purity*/ Connection::SELF,
 /*tag*/ "TESTTAG");
/* Releasing a tagged connection is done presently */
scPool->releaseConnection(conn3, "TESTTAG");

/* To specify purity as new */
conn4 = scPool->getConnection(/* connection class */"TESTCC",/* purity of new */
 Connection::NEW);

/* Get a connection using username and password */
conn5 = scPool->getConnection (username, password,"TESTCC", Connection::SELF);

/* Using roles when asking for a connection */
conn6 = scPool->getProxyConnection (username, roles, nRoles,"TESTCC",
 Connection::SELF);

...

/* The other code continues as is...writing for clarity */
 ...
 stmt1=conn1->createStatement ("INSERT INTO emp values (:c1, :c2)");
 stmt1->setInt(1, thrid);
 stmt1->setString(2, "Test");
 int count = stmt1->executeUpdate ();
 conn1->commit();
 conn1->terminateStatement(stmt1);
/* Release the connection */
 scPool->releaseConnection (conn1);
...
 env->terminateStatelessConnectionPool (scPool);

3.3 About Executing SQL DDL and DML Statements
SQL is the industry-wide language for working with relational databases. In OCCI you
execute SQL commands through the Statement class.

Chapter 3
About Executing SQL DDL and DML Statements

3-12

This section includes the following topics:

• Creating a Statement Object

• Creating a Statement Object that Executes SQL Commands

• Reusing the Statement Object

• Terminating a Statement Object

3.3.1 Creating a Statement Object
To create a Statement object, call the createStatement() method of the Connection object,
as demonstrated in Example 3-15,

Example 3-15 How to Create a Statement

Statement *stmt = conn->createStatement();

3.3.2 Creating a Statement Object that Executes SQL Commands
Once you have created a Statement object, execute SQL commands by calling the execute(),
executeUpdate() , executeArrayUpdate() , or executeQuery() methods on the Statement
object. These methods are used for the following purposes:

• execute() executes all nonspecific statement types

• executeUpdate() executes DML and DDL statements

• executeArrayUpdate() executes multiple DML statements

• executeQuery() executes a query

This section includes the following topics:

• Creating a Database Table

• Inserting Values into a Database Table

3.3.2.1 Creating a Database Table
Example 3-16 demonstrates how you can create a database table using the executeUpdate()
method.

Example 3-16 How to Create a Database Table Using the executeUpdate() Method

stmt->executeUpdate("CREATE TABLE shopping_basket
 (item_number VARCHAR2(30), quantity NUMBER(3))");

3.3.2.2 Inserting Values into a Database Table
Similarly, you can execute a SQL INSERT statement by invoking the executeUpdate() method,
as demonstrated in Example 3-17.

The executeUpdate() method returns the number of rows affected by the SQL statement.

Chapter 3
About Executing SQL DDL and DML Statements

3-13

See Also:

$ORACLE_HOME/rdbms/demo for a code example that demonstrates how to
perform insert, select, update, and delete operations on table rows.

Example 3-17 How to Add Records Using the executeUpdate() Method

stmt->executeUpdate("INSERT INTO shopping_basket
 VALUES('MANGO', 3)");

3.3.3 Reusing the Statement Object
You can reuse a Statement object to execute SQL statements multiple times. To
repeatedly execute the same statement with different parameters, you should specify
the statement by the setSQL() method of the Statement object, as demonstrated in
Example 3-18.

You may now execute this INSERT statement as many times as required. If at a later
time you want to execute a different SQL statement, you simply reset the statement
object, as demonstrated in Example 3-19.

By using the setSQL() method, OCCI statement objects and their associated
resources are not allocated or freed unnecessarily. To retrieve the contents of the
current statement object at any time, use the getSQL() method.

Example 3-18 How to Specify a SQL Statement Using the setSQL() Method

stmt->setSQL("INSERT INTO shopping_basket VALUES(:1,:2)");

Example 3-19 How to Reset a SQL Statement Using the setSQL() Method

stmt->setSQL("SELECT * FROM shopping_basket WHERE quantity >= :1");

3.3.4 Terminating a Statement Object
You should explicitly terminate and deallocate a Statement object using the
terminateStatement() method, as demonstrated in Example 3-20.

Example 3-20 How to Terminate a Statement Using the terminateStatement()
Method

Connection::conn->terminateStatement(Statement *stmt);

3.4 About Types of SQL Statements in the OCCI
Environment

There are three types of SQL statements in the OCCI environment:

• About Standard Statements use SQL commands with specified values

• Using Parameterized Statements have parameters, or bind variables

• Using Callable Statements call stored PL/SQL procedures and functions

Chapter 3
About Types of SQL Statements in the OCCI Environment

3-14

The methods of the Statement Class are subdivided into those applicable to all statements, to
parameterized statements, and to callable statements. Standard statements are a superset of
parameterized statements, and parameterized statements are a superset of callable
statements.

This section also includes the following topics:

• About Streamed Reads and Writes

• About Modifying Rows Iteratively

3.4.1 About Standard Statements
Both Example 3-16 and Example 3-17 demonstrate standard statements in which you must
explicitly define the values of the statement. In Example 3-16, the CREATE TABLE statement
specifies the name of the table shopping_basket. In Example 3-17, the INSERT statement
stipulates the values that are inserted into the table, ('MANGO', 3).

3.4.2 Using Parameterized Statements
You can execute the same statement with different parameters by setting placeholders for the
input variables of the statement. These statements are referred to as parameterized
statements because they can accept parameter input from a user or a program.

If you want to execute an INSERT statement with different parameters, you must first specify
the statement by the setSQL() method of the Statement object, as demonstrated in
Example 3-18.

You then call the setxxx() methods to specify the parameters, where xxx stands for the type
of the parameter. Provided that the value of the statement object is "INSERT INTO
shopping_basket VALUES(:1,:2)", as specified in Example 3-18, you can use the code in
Example 3-21 to invoke the setString() method and setInt() method to input the values of
these types into the first and second parameters, and the executeUpdate() method to insert
the new row into the table.You can reuse the statement object by re-setting the parameters
and again calling the executeUpdate() method. If your application is executing the same
statement repeatedly, you should avoid changing the input parameter types because this
initiates a rebind operation, and affects application performance.

Example 3-21 How to Use setxxx() Methods to Set Individual Column Values

stmt->setString(1, "Banana"); // value for first parameter
stmt->setInt(2, 5); // value for second parameter
stmt->executeUpdate(); // execute statement
...
stmt->setString(1, "Apple"); // value for first parameter
stmt->setInt(2, 9); // value for second parameter
stmt->executeUpdate(); // execute statement

3.4.3 Using Callable Statements
PL/SQL stored procedures, as their name suggests, are procedures that are stored on the
database server for reuse by an application. In OCCI, a callable statement is a call to a
procedure which contains other SQL statements.

If you want to call a procedure countGroceries(), that returns the quantity of a specified kind
of fruit, you must first specify the input parameters of a PL/SQL stored procedure through the
setXXX() methods of the Statement class, as demonstrated in Example 3-22.

Chapter 3
About Types of SQL Statements in the OCCI Environment

3-15

However, before calling a stored procedure, you must specify the type and size of any
OUT parameters by calling the registerOutParam() method, as demonstrated in
Example 3-23. For IN/OUT parameters, use the setXXX() methods to pass in the
parameter, and getXXX() methods to retrieve the results.

You now execute the statement by calling the procedure:

stmt->executeUpdate(); // call the procedure

Finally, you obtain the output parameters by calling the relevant getxxx() method:

quantity = stmt->getInt(2); // get value of the second (OUT) parameter

Example 3-22 How to Specify the IN Parameters of a PL/SQL Stored Procedure

stmt->setSQL("BEGIN countGroceries(:1, :2); END:");
int quantity;
stmt->setString(1, "Apple"); // specify the first (IN) parameter of procedure

Example 3-23 How to Specify OUT Parameters of a PL/SQL Stored Procedure

stmt->registerOutParam(2, Type::OCCIINT, sizeof(quantity));
 // specify type and size of the second (OUT) parameter

This section includes the following topic: Using Callable Statements that Use Array
Parameters.

3.4.3.1 Using Callable Statements that Use Array Parameters
A PL/SQL stored procedure executed through a callable statement can have array of
values as parameters. The number of elements in the array and the dimension of
elements in the array are specified through the setDataBufferArray() method.

The following example shows the setDataBufferArray() method:

void setDataBufferArray(
 unsigned int paramIndex,
 void *buffer,
 Type type,
 ub4 arraySize,
 ub4 *arrayLength,
 sb4 elementSize,
 ub2 *elementLength,
 sb2 *ind = NULL,
 ub2 *rc = NULL);

The following parameters are used in the previous method example:

• paramIndex: Parameter number

• buffer: Data buffer containing an array of values

• Type: Type of data in the data buffer

• arraySize: Maximum number of elements in the array

• arrayLength: Number of elements in the array

• elementSize: Size of the current element in the array

• elementLength: Pointer to an array of lengths. elementLength[i] has the current
length of the ith element of the array

Chapter 3
About Types of SQL Statements in the OCCI Environment

3-16

• ind: Indicator information

• rc: Returns code

3.4.4 About Streamed Reads and Writes
OCCI supports a streaming interface for insertion and retrieval of very large columns by
breaking the data into a series of small chunks. This approach minimizes client-side memory
requirements. This streaming interface can be used with parameterized statements such as
SELECT and various DML commands, and with callable statements in PL/SQL blocks. The
data types supported by streams are BLOB, CLOB, LONG, LONG RAW, RAW, and VARCHAR2.

Streamed data is of three kinds:

• A writable stream corresponds to a bind variable in a SELECT/DML statement or an IN
argument in a callable statement.

• A readable stream corresponds to a fetched column value in a SELECT statement or an
OUT argument in a callable statement.

• A bidirectional stream corresponds to an IN/OUT bind variable.

Methods of the Stream Class support the stream interface.

The getStream() method of the Statement Class returns a stream object that supports
reading and writing for DML and callable statements:

• For writing, it passes data to a bind variable or to an IN or IN/OUT argument

• For reading, it fetches data from an OUT or IN/OUT argument

The getStream() method of the ResultSet Class returns a stream object that can be used for
reading data.

The status() method of these classes determines the status of the streaming operation.

This section includes the following topics:

• Binding Data in Streaming Mode; SELECT/DML and PL/SQL

• Fetching Data in Streaming Mode: PL/SQL

• About Fetching Data in Streaming Mode: ResultSet

• Working with Multiple Streams

3.4.4.1 Binding Data in Streaming Mode; SELECT/DML and PL/SQL
To bind data in a streaming mode, follow these steps and review Example 3-24:

1. Create a SELECT/DML or PL/SQL statement with appropriate bind placeholders.

2. Call the setBinaryStreamMode() or setCharacterStreamMode() method of the Statement
Class for each bind position that is used in the streaming mode. If the bind position is a
PL/SQL IN or IN/OUT argument type, indicate this by calling the three-argument versions
of these methods and setting the inArg parameter to TRUE.

Chapter 3
About Types of SQL Statements in the OCCI Environment

3-17

Note:

For setBinaryStreamMode(), the size parameter is limited to 32KB
(32,768 bytes).

3. Execute the statement; the status() method of the Statement Class returns
NEEDS_STREAM_DATA.

4. Obtain the stream object through a getStream() method of the Statement Class.

5. Use writeBuffer() and writeLastBuffer() methods of the Stream Class to write data.

6. Close the stream with closeStream() method of the Statement Class.

7. After all streams are closed, the status() method of the Statement Class changes
to an appropriate value, such as UPDATE_COUNT_AVAILABLE.

Example 3-24 How to Bind Data in a Streaming Mode

Statement *stmt = conn->createStatement(
 "Insert Into testtab(longcol) values (:1)"); //longcol is LONG type column
stmt->setCharacterStreamMode(1, 100000);
stmt->executeUpdate();

Stream *instream = stmt->getStream(1);
char buffer[1000];
instream->writeBuffer(buffer, len); //write data
instream->writeLastBuffer(buffer, len); //repeat
stmt->closeStream(instream); //stmt->status() is
 //UPDATE_COUNT_AVAILABLE

Statement *stmt = conn->createStatement("BEGIN testproc(:1); END;");

//if the argument type to testproc is IN or IN/OUT then pass TRUE to
//setCharacterStreamMode or setBinaryStreamMode
stmt->setBinaryStreamMode(1, 32768, TRUE);

3.4.4.2 Fetching Data in Streaming Mode: PL/SQL
To fetch data from a streaming mode, follow these steps and review Example 3-25:

1. Create a SELECT/DML statement with appropriate bind placeholders.

2. Call the setBinaryStreamMode() or setCharacterStreamMode() method of the
Statement Class for each bind position into which data is retrieved from the
streaming mode.

3. Execute the statement; the status() method of the Statement Class returns
STREAM_DATA_AVAILABLE.

4. Obtain the stream object through a getStream() method of the Statement Class.

5. Use readBuffer() and readLastBuffer() methods of the Stream Class to read data.

6. Close the stream with closeStream() method of the Statement Class.

Example 3-25 How to Fetch Data in a Streaming Mode Using PL/SQL

Statement *stmt = conn->createStatement("BEGIN testproc(:1); END;");
 //argument 1 is OUT type
stmt->setCharacterStreamMode(1, 100000);

Chapter 3
About Types of SQL Statements in the OCCI Environment

3-18

stmt->execute();

Stream *outarg = stmt->getStream(1);
 //use Stream::readBuffer/readLastBuffer to read data

3.4.4.3 About Fetching Data in Streaming Mode: ResultSet
About Executing SQL Queries and Example 3-28 provide an explanation of how to use the
streaming interface with result sets.

3.4.4.4 Working with Multiple Streams
If you must work with multiple read and write streams, you must ensure that the read or write
of one stream is completed before reading or writing on another stream. To determine stream
position, use the getCurrentStreamParam() method of the Statement Class or the
getCurrentStreamColumn() method of the ResultSet Class. The status() method of the
Stream Class returns READY_FOR_READ if there is data in the stream available for reading, or it
returns INACTIVE if all the data has been read, as described in Table 13-45. The application
can then read the next streaming column. Example 3-26 demonstrates how to read and write
with two concurrent streams. Note that it is not possible to use these streaming interfaces
with the setDataBuffer() method in the same Statement and ResultSet objects.

See Also:

"About Application-Managed Data Buffering"

Example 3-26 How to Read and Write with Multiple Streams

Statement *stmt = conn->createStatement(
 "Insert into testtab(longcol1, longcol2) values (:1,:2)");
 //longcol1 AND longcol2 are 2 columns inserted in streaming mode

stmt->setBinaryStreamMode(1, 100000);
stmt->setBinaryStreamMode(2, 32768);
stmt->executeUpdate();

Stream *col1 = stmt->getStream(1);
Stream *col2 = stmt->getStream(2);

col1->writeBuffer(buffer, len); //first stream
... //complete writing coll stream

col1->writeLastBuffer(buffer, len); //finish first stream and move to col2

col2->writeBuffer(buffer, len); //second stream

//reading multiple streams
stmt = conn->createStatement("select longcol1, longcol2 from testtab");
ResultSet *rs = stmt->executeQuery();
rs->setBinaryStreamMode(1, 100000);
rs->setBinaryStreamMode(2, 100000);

while (rs->next())
{
 Stream *s1 = rs->getStream(1)

Chapter 3
About Types of SQL Statements in the OCCI Environment

3-19

 while (s1->status() == Stream::READY_FOR_READ)
 {
 s1->readBuffer(buffer,size); //process
 } //first streaming column done
 rs->closeStream(s1);

//move onto next column. rs->getCurrentStreamColumn() returns 2

 Stream *s2 = rs->getStream(2)
 while (s2->status() == Stream::READY_FOR_READ)
 {
 s2->readBuffer(buffer,size); //process
 } //close the stream
 rs->closeStream(s2);
}

3.4.5 About Modifying Rows Iteratively
While you can issue the executeUpdate method repeatedly for each row, OCCI
provides an efficient mechanism for sending data for multiple rows in a single network
round-trip. Use the addIteration() method of the Statement class to perform batch
operations that modify a different row with each iteration.

To execute INSERT, UPDATE, and DELETE operations iteratively, you must:

• Set the maximum number of iterations

• Set the maximum parameter size for variable length parameters

This section includes the following topics:

• Setting the Maximum Number of Iterations

• Setting the Maximum Parameter Size

• Executing an Iterative Operation

3.4.5.1 Setting the Maximum Number of Iterations
For iterative execution, first specify the maximum number of iterations that would be
done for the statement by calling the setMaxIterations() method:

Statement->setMaxIterations(int maxIterations);

You can retrieve the current maximum iterations setting by calling the
getMaxIterations() method.

3.4.5.2 Setting the Maximum Parameter Size
If the iterative execution involves variable-length data types, such as string and
Bytes, then you must set the maximum parameter size so that OCCI can allocate the
maximum size buffer:

Statement->setMaxParamSize(int parameterIndex, int maxParamSize);

You do not have to set the maximum parameter size for fixed-length data types, such
as Number and Date, or for parameters that use the setDataBuffer() method.

You can retrieve the current maximum parameter size setting by calling the
getMaxParamSize() method.

Chapter 3
About Types of SQL Statements in the OCCI Environment

3-20

3.4.5.3 Executing an Iterative Operation
Once you have set the maximum number of iterations and (if necessary) the maximum
parameter size, iterative execution using a parameterized statement is straightforward, as
shown in Example 3-27.

Iterative execution is designed only for use in INSERT, UPDATE and DELETE operations that use
either standard or parameterized statements. It cannot be used for callable statements and
queries. Note that the data type cannot be changed between iterations. For example, if you
use setInt() for parameter 1, then you cannot use setString() for the same parameter in
a later iteration

As shown in the example, you call the addIteration() method after each iteration except the
last, after which you invoke executeUpdate() method. Of course, if you did not have a
second row to insert, then you would not have to call the addIteration() method or make
the subsequent calls to the setxxx() methods.

In order to get the number of rows affected by each iteration in the DML execution in
Example 3-27, use setRowCountsOption() to enables the feature, followed by
getDMLRowCounts() to return the vector of the number of rows. For the total number of rows
affected, you can use the return value of executeUpdate() , or call getUb8RowCount().

Example 3-27 How to Execute an Iterative Operation

stmt->setSQL("INSERT INTO basket_tab VALUES(:1, :2)");

stmt->setString(1, "Apples"); // value for first parameter of first row
stmt->setInt(2, 6); // value for second parameter of first row
stmt->addIteration(); // add the iteration

stmt->setString(1, "Oranges"); // value for first parameter of second row
stmt->setInt(1, 4); // value for second parameter of second row

stmt->executeUpdate(); // execute statement

3.5 About Executing SQL Queries
SQL query statements allow your applications to request information from a database based
on any constraints specified. A result set is returned by the query.

This section includes the following topics:

• Using the Result Set

• About Specifying the Query

• About Optimizing Performance by Setting Prefetch Count

3.5.1 Using the Result Set
Execution of a database query puts the results of the query into a set of rows called the result
set. In OCCI, a SQL SELECT statement is executed by the executeQuery method of the
Statement class. This method returns an ResultSet object that represents the results of a
query.

ResultSet *rs = stmt->executeQuery("SELECT * FROM basket_tab");

Chapter 3
About Executing SQL Queries

3-21

Once you have the data in the result set, you can perform operations on it. For
example, suppose you wanted to print the contents of this table. The next() method of
the ResultSet is used to fetch data, and the getxxx() methods are used to retrieve
the individual columns of the result set, as shown in the following code example:

cout << "The basket has:" << endl;

while (rs->next())
{
 string fruit = rs->getString(1); // get the first column as string
 int quantity = rs->getInt(2); // get the second column as int

 cout << quantity << " " << fruit << endl;
}

The next() and status() methods of the ResultSet class return Status, as defined in
Table 13-38.

If data is available for the current row, then the status is DATA_AVAILABLE. After all the
data has been read, the status changes to END_OF_FETCH. If there are any output
streams to be read, then the status is STREAM_DATA_AVAILABLE, until all the streamed
data are read successfully.

Example 3-28 illustrates how to fetch streaming data into a result set, while section
"About Streamed Reads and Writes" provides the general background.

Example 3-28 How to Fetch Data in Streaming Mode Using ResultSet

char buffer[4096];
ResultSet *rs = stmt->executeQuery
 ("SELECT col1, col2 FROM tab1 WHERE col1 = 11");
rs->setCharacterStreamMode(2, 10000);

while (rs->next ())
{
 unsigned int length = 0;
 unsigned int size = 500;
 Stream *stream = rs->getStream (2);
 while (stream->status () == Stream::READY_FOR_READ)
 {
 length += stream->readBuffer (buffer +length, size);
 }
 cout << "Read " << length << " bytes into the buffer" << endl;
}

3.5.2 About Specifying the Query
The IN bind variables can be used with queries to specify constraints in the WHERE
clause of a query. For example, the following program prints only those items that have
a minimum quantity of 4:

stmt->setSQL("SELECT * FROM basket_tab WHERE quantity >= :1");
int minimumQuantity = 4;
stmt->setInt(1, minimumQuantity); // set first parameter
ResultSet *rs = stmt->executeQuery();
cout << "The basket has:" << endl;

while (rs->next())
 cout << rs->getInt(2) << " " << rs->getString(1) << endl;

Chapter 3
About Executing SQL Queries

3-22

3.5.3 About Optimizing Performance by Setting Prefetch Count
Although the ResultSet method retrieves data one row at a time, the actual fetch of data from
the server need not entail a network round-trip for each row queried. To maximize the
performance, you can set the number of rows to prefetch in each round-trip to the server.

You effect this either by setting the number of rows to be prefetched through the
setPrefetchRowCount() method, or by setting the memory size to be used for prefetching
through the setPrefetchMemorySize() method.

If you set both of these attributes, then the specified number of rows are prefetched unless
the specified memory limit is reached first. If the specified memory limit is reached first, then
the prefetch returns as many rows as can fit in the memory space defined by the call to the
setPrefetchMemorySize() method.

By default, prefetching is turned on and the database fetches an extra row all the time. To
turn prefetching off, set both the prefetch row count and memory size to 0.

Prefetching is not in effect if LONG, LOB or Opaque Type columns (such as XMLType) are part
of the query.

3.6 About Executing Statements Dynamically
When you know that you must execute a DML operation, you use the executeUpdate
method. Similarly, when you know that you must execute a query, you use executeQuery()
method.

If your application must allow for dynamic events and you cannot be sure of which statement
must be executed at run time, then OCCI provides the execute() method. Invoking the
execute() method returns one of the following statuses:

• UNPREPARED

• PREPARED

• RESULT_SET_AVAILABLE

• UPDATE_COUNT_AVAILABLE

• NEEDS_STREAM_DATA

• STREAM_DATA_AVAILABLE

While invoking the execute() method returns one of these statuses, you can further
'interrogate' the statement by using the status() method.

Statement stmt = conn->createStatement();
Statement::Status status = stmt->status(); // status is UNPREPARED
stmt->setSQL("select * from emp");
status = stmt->status(); // status is PREPARED

If a statement object is created with a SQL string, then it is created in a PREPARED state. For
example:

Statement stmt = conn->createStatement("insert into foo(id) values(99)");
Statement::Status status = stmt->status();// status is PREPARED
status = stmt->execute(); // status is UPDATE_COUNT_AVAILABLE

Chapter 3
About Executing Statements Dynamically

3-23

When you set another SQL statement on the Statement, the status changes to
PREPARED. For example:

stmt->setSQL("select * from emp"); // status is PREPARED
status = stmt->execute(); // status is RESULT_SET_AVAILABLE

This section includes the following topic: About Statement Status Definitions.

3.6.1 About Statement Status Definitions
This section describes the possible values of Status related to a statement object:

• UNPREPARED

• PREPARED

• RESULT_SET_AVAILABLE

• UPDATE_COUNT_AVAILABLE

• NEEDS_STREAM_DATA

• STREAM_DATA_AVAILABLE

3.6.1.1 UNPREPARED
If you have not used the setSQL() method to attribute a SQL string to a statement
object, then the statement is in an UNPREPARED state.

Statement stmt = conn->createStatement();
Statement::Status status = stmt->status(); // status is UNPREPARED

3.6.1.2 PREPARED
If a Statement is created with an SQL string, then it is created in a PREPARED state. For
example:

Statement stmt = conn->createStatement("INSERT INTO demo_tab(id) VALUES(99)");
Statement::Status status = stmt->status(); // status is PREPARED

Setting another SQL statement on the Statement changes the status to PREPARED. For
example:

status = stmt->execute(); // status is UPDATE_COUNT_AVAILABLE
stmt->setSQL("SELECT * FROM demo_tab"); // status is PREPARED

3.6.1.3 RESULT_SET_AVAILABLE
A status of RESULT_SET_AVAILABLE indicates that a properly formulated query has been
executed and the results are accessible through a result set.

When you set a statement object to a query, it is PREPARED. Once you have executed
the query, the statement changes to RESULT_SET_AVAILABLE. For example:

stmt->setSQL("SELECT * from EMP"); // status is PREPARED
status = stmt->execute(); // status is RESULT_SET_AVAILABLE

To access the data in the result set, issue the following statement:

ResultSet *rs = Statement->getResultSet();

Chapter 3
About Executing Statements Dynamically

3-24

3.6.1.4 UPDATE_COUNT_AVAILABLE
When a DDL or DML statement in a PREPARED state is executed, its state changes to
UPDATE_COUNT_AVAILABLE, as shown in the following code example:

Statement stmt = conn->createStatement("INSERT INTO demo_tab(id) VALUES(99)");
Statemnt::Status status = stmt->status(); // status is PREPARED
status = stmt->execute(); // status is UPDATE_COUNT_AVAILABLE

This status refers to the number of rows affected by the execution of the statement. It
indicates that:

• The statement did not include any input or output streams.

• The statement was not a query but either a DDL or DML statement.

You can obtain the number of rows affected by issuing the following statement:

stmt->getUb8RowCount();

Note that a DDL statement results in an update count of zero (0). Similarly, an update that
does not meet any matching conditions also produces a count of zero (0). In such a case, you
cannot determine the kind of statement that has been executed from the reported status.

3.6.1.5 NEEDS_STREAM_DATA
If there are any output streams to be written, the execute does not complete until all the
stream data is completely provided. In this case, the status changes to NEEDS_STREAM_DATA to
indicate that a stream must be written. After writing the stream, call the status() method to
find out if more stream data should be written, or whether the execution has completed.

In cases where your statement includes multiple streamed parameters, use the
getCurrentStreamParam() method to discover which parameter must be written.

If you are performing an iterative or array execute, the getCurrentStreamIteration() method
reveals to which iteration the data is to be written.

Once all the stream data has been processed, the status changes to either
RESULT_SET_AVAILABLE or UPDATE_COUNT_AVAILABLE.

3.6.1.6 STREAM_DATA_AVAILABLE
This status indicates that the application requires some stream data to be read in OUT or
IN/OUT parameters before the execution can finish. After reading the stream, call the status
method to find out if more stream data should be read, or whether the execution has
completed.

In cases in which your statement includes multiple streamed parameters, use the
getCurrentStreamParam() method to discover which parameter must be read.

If you are performing an iterative or array execute, then the getCurrentStreamIteration()
method reveals from which iteration the data is to be read.

Once all the stream data has been handled, the status changes to
UPDATE_COUNT_REMOVE_AVAILABLE.

Chapter 3
About Executing Statements Dynamically

3-25

The ResultSet class also has readable streams and it operates similar to the readable
streams of the Statement class.

3.7 About Using Larger Row Count and Error Code Range
Data Types

Starting with Oracle Database Release 12c, Oracle C++ Call Interface supports larger
row count and error code range data types. The method that returns the larger row
count is getUb8RowCount() in Statement Class.

This has two benefits:

• Applications running a statement that affects more than UB4MAXVAL rows may
now see the precise value for the number of rows affected.

• Oracle Database can correctly return newer error codes (above ORA-65535) to
application clients, starting with Oracle Database Release 12c. Older clients
receive an informative message that indicates error code overflow.

This section contains the following topics:

• "Using Larger Row Count in SELECT Operations"

• "Using Larger Row Count in INSERT, UPDATE, and DELETE Operations"

3.7.1 Using Larger Row Count in SELECT Operations
Method getUb8RowCount() returns the number of rows processed after executing the
SELECT statement, as ub8 type. The examples in this section illustrate how to use
getUb8RowCount() in various SELECT scenarios.

• In the simplest scenario in Example 3-29, the number of rows affected is the same
as the number fetched.

• When the prefetch option is set, as demonstrated by Example 3-30, it includes the
number of rows prefetched.

• When using an array fetching mechanism in Example 3-31 by invoking the
setDataBuffer() interface, getUb8RowCount() returns the total number of rows
fetched into user buffers, independent of prefetch option.

Example 3-29 SELECT with getUb8RowCount(); simple

The number of rows affected is the number of rows already fetched.

oraub8 largeRowCount = 0;
Statement *stmt = conn->createStatement("SELECT salary FROM employees");
ResultSet *rs = stmt->executeQuery ();
rs->next();
largeRowCount = stmt->getUb8RowCount();

Example 3-30 SELECT with getUb8RowCount(); with prefetch

Here the number of rows affected is the same as those fetched in previous iterations,
plus the number of rows prefetched in the next() call.

oraub8 largeRowCount = 0;
Statement *stmt = conn->createStatement("SELECT salary FROM employees");
stmt -> setPrefetchRowCount(prefetch_count);

Chapter 3
About Using Larger Row Count and Error Code Range Data Types

3-26

ResultSet *rs = stmt->executeQuery ();
rs->next();
largeRowCount = stmt->getUb8RowCount();

Example 3-31 SELECT with getUb8RowCount(); array fetch with prefetch

Here number of rows affected, value of largeRowCount, is the number of rows fetched into
user buffer in previous iterations, plus the number of rows fetched in either next(max) or
next() call. It is independent of the value of prefetch.

oraub8 largeRowCount = 0;
Statement *stmt=conn->createStatement("SELECT col1 FROM table1");
int max = 20;
int prefetch_count = 10;
ub2 lengthC1[max];
ub4 c1[max];

for (i = 0; i < max; ++i) {
 c1[i] = 0;
 lengthC1[i] = sizeof (c1[i]);
}

stmt -> setPrefetchRowCount(prefetch_count);
ResultSet *rs = stmt->executeQuery();
rs->setDataBuffer (1, c1, OCCIINT, sizeof (ub4), lengthC1);
rs->next(max);

largeRowCount = stmt->getUb8RowCount();

3.7.2 Using Larger Row Count in INSERT, UPDATE, and DELETE
Operations

For INSERT, UPDATE, and DELETE statements, method getUb8RowCount() returns the number
of rows processed by the most recent statement.

Example 3-32 INSERT with getUb8RowCount(); simple

The value of largeRowCount is the number of rows inserted, which is 1.

oraub8 largeRowCount = 0;
Statement *stmt = conn->createStatement("INSERT INTO table1 values (:1)");
stmt->setNumber(1, 100);
stmt->executeUpdate();
largeRowCount = stmt->getUb8RowCount();

Example 3-33 INSERT with getUb8RowCount(); with iterations

Here the value of largeRowCount is equal to max.

int max;
oraub8 largeRowCount = 0;
Statement *stmt=conn->createStatement("INSERT INTO table1 values (:1)");
stmt->setMaxIterations (max);

for(i = 0; i < max-1; i++) {
 stmt->setNumber(1, 100);
 stmt->addIteration ();
}

stmt->setNumber(1, 100);

Chapter 3
About Using Larger Row Count and Error Code Range Data Types

3-27

stmt->executeUpdate();
largeRowCount = stmt->getUb8RowCount();

Example 3-34 UPDATE with getUb8RowCount()

Here the value of largeRowCount is the number of rows updated.

oraub8 largeRowCount = 0;
Statement *stmt=conn->createStatement(
 "UPDATE table1 SET COL1 = COL1+100 WHERE COL1=:1");
stmt->setNumber(1, 200);
stmt->executeUpdate();
largeRowCount = stmt->getUb8RowCount();

3.8 About Committing a Transaction
All SQL DML statements are executed in the context of a transaction. An application
causes the changes made by these statement to become permanent by either
committing the transaction, or undoing them by performing a rollback. While the SQL
COMMIT and ROLLBACK statements can be executed with the executeUpdate() method,
you can also call the Connection::commit() and Connection::rollback() methods.

If you want the DML changes that were made to be committed immediately, you can
turn on the auto commit mode of the Statement class by issuing the following
statement:

Statement::setAutoCommit(TRUE);

Once auto commit is in effect, each change is automatically made permanent. This is
similar to issuing a commit right after each execution.

To return to the default mode, auto commit off, issue the following statement:

Statement::setAutoCommit(FALSE);

3.9 Caching Statements
The statement caching feature establishes and manages a cache of statements within
a session. It improves performance and scalability of application by efficiently using
prepared cursors on the server side and eliminating repetitive statement parsing.

Statement caching can be used with connection and session pooling, and also without
connection pooling. Please review Example 3-35 and Example 3-36 for typical usage
scenarios.

Example 3-35 Statement Caching without Connection Pooling

These steps and accompanying pseudocode implement the statement caching feature
without use of connection pools:

1. Create a Connection by making a createConnection() call on the Environment
object.

Connection *conn = env->createConnection(
 username, password, connecstr);

2. Enable statement caching on the Connection object by using a nonzero size
parameter in the setStmtCacheSize() call.

Chapter 3
About Committing a Transaction

3-28

conn->setStmtCacheSize(10);

Subsequent calls to getStmtCacheSize() would determine the size of the cache, while
setStmtCacheSize() call changes the size of the statement cache, or disables statement
caching if the size parameter is set to zero.

3. Create a Statement by making a createStatement() call on the Connection object; the
Statement is returned if it is in the cache, or a new Statement with a NULL tag is created
for the user.

Statement *stmt = conn->createStatement(sql);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stmt = conn->createStatement(sql, tag);
4. Use the statement to execute SQL commands and obtain results.

5. Return the statement to cache.

conn->terminateStatement(stmt, tag);

If you do not want to cache this statement, use the disableCaching() call and an alternate
from of terminateStatement():

stmt->disableCaching();
conn->terminateStatement(stmt);

If you must verify whether a statement has been cached, issue an isCached() call on the
Connection object.

You can choose to tag a statement at release time and then reuse it for another
statement with the same tag. The tag is used to search the cache. An untagged
statement, where tag is NULL, is a special case of a tagged statement. Two statements
are considered different if they only differ in their tags, and if only one of them is tagged.

6. Terminate the connection.

Example 3-36 Statement Caching with Connection Pooling

These steps and accompanying pseudocode implement the statement caching feature with
connection pooling.

Statement caching is enabled only for connection created after the setStmtCacheSize() call.

If statement cac.hing is not enabled at the pool level, it can still be implemented for individual
connections in the pool.

1. Create a ConnectionPool by making a call to the createConnectionPool() of the
Environment object.

ConnectionPool *conPool = env->createConnectionPool(
 username, password, connecstr,
 minConn, maxConn, incrConn);

If using a StatelessConnectionPool, call createStatelessConnectionPool() instead.
Subsequent operations are the same for ConnectionPool and StatelessConnectionPool
objects.

Stateless ConnectionPool *conPool = env->createStatelessConnectionPool(
 username, password, connecstr,
 minConn, maxConn, incrConn, mode);

Chapter 3
Caching Statements

3-29

2. Enable statement caching for all Connections in the ConnectionPool by using a
nonzero size parameter in the setStmtCacheSize() call.

conPool->setStmtCacheSize(10);

Subsequent calls to getStmtCacheSize() would determine the size of the cache,
while setStmtCacheSize() call changes the size of the statement cache, or
disables statement caching if the size parameter is set to zero.

3. Get a Connection from the pool by making a createConnection() call on the
ConnectionPool object; the Statement is returned if it is in the cache, or a new
Statement with a NULL tag is created for the user.

Connection *conn = conPool->createConnection(username, password, connecstr);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stmt = conn->createStatement(sql, tag);
4. Create a Statement by making a createStatement() call on the Connection object;

the Statement is returned if it is in the cache, or a new Statement with a NULL tag
is created for the user.

Statement *stmt = conn->createStatement(sql);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stmt = conn->createStatement(sql, tag);
5. Use the statement to execute SQL commands and obtain results.

6. Return the statement to cache.

conn->terminateStatement(stmt, tag);

If you do not want to cache this statement, use the disableCaching() call and an
alternate from of terminateStatement():

stmt->disableCaching();
conn->terminateStatement(stmt);

If you must verify whether a statement has been cached, issue an isCached() call
on the Connection object.

7. Release the connection terminateConnection().

conPool->terminateConnection(conn);

3.10 About Handling Exceptions
Each OCCI method can generate an exception if it is not successful. This exception is
of type SQLException. OCCI uses the C++ Standard Template Library (STL), so any
exception that can be thrown by the STL can also be thrown by OCCI methods.

The STL exceptions are derived from the standard exception class. The
exception::what() method returns a pointer to the error text. The error text is
guaranteed to be valid during the catch block

Chapter 3
About Handling Exceptions

3-30

The SQLException class contains Oracle specific error numbers and messages. It is derived
from the standard exception class, so it too can obtain the error text by using the
exception::what() method.

In addition, the SQLException class has two methods it can use to obtain error information.
The getErrorCode() method returns the Oracle error number. The same error text returned
by exception::what() can be obtained by the getMessage() method. The getMessage()
method returns an STL string so that it can be copied like any other STL string.

Based on your error handling strategy, you may choose to handle OCCI exceptions differently
from standard exceptions, or you may choose not to distinguish between the two.

If you decide that it is not important to distinguish between OCCI exceptions and standard
exceptions, your catch block might look similar to the following:

catch (exception &excp)
{
 cerr << excp.what() << endl;
}

Should you decide to handle OCCI exceptions differently than standard exceptions, your
catch block might look like the following:

catch (SQLException &sqlExcp)
{
 cerr <<sqlExcp.getErrorCode << ": " << sqlExcp.getErrorMessage() << endl;
}
catch (exception &excp)
{
 cerr << excp.what() << endl;
}

In the preceding catch block, SQL exceptions are caught by the first block and non-SQL
exceptions are caught by the second block. If the order of these two blocks were to be
reversed, SQL exceptions would never be caught. Since SQLException is derived from the
standard exception, the standard exception catch block would handle the SQL exception as
well.

See Also:

• Description of a special feature for handling errors that arise during batch
updates, described in section "Modifying Rows Iteratively" in Optimizing
Performance of C++ Applications

• Oracle Database Error Messages Referencefor more information about Oracle
error messages.

This section includes the following topic: About Handling Null and Truncated Data.

3.10.1 About Handling Null and Truncated Data
In general, OCCI does not cause an exception when the data value retrieved by using the
getxxx() methods of the ResultSet class or Statement class is NULL or truncated. However,
this behavior can be changed by calling the setErrorOnNull() method or
setErrorOnTruncate() method. If the setErrorxxx() methods are called with

Chapter 3
About Handling Exceptions

3-31

causeException=TRUE, then an SQLException is raised when a data value is NULL or
truncated.

The default behavior is not to raise an SQLException. A column or parameter value
can also be NULL, as determined by a call to isNull() for a ResultSet or Statement
object returning TRUE:

rs->isNull(columnIndex);
stmt->isNull(paramIndex);

If the column or parameter value is truncated, it also returns TRUE as determined by a
isTruncated() call on a ResultSet or Statement object:

rs->isTruncated(columnIndex);
stmt->isTruncated(paramIndex);

For data retrieved through the setDataBuffer() method and setDataBufferArray()
method, exception handling behavior is controlled by the presence or absence of
indicator variables and return code variables as shown in Table 3-1, Table 3-2, and
Table 3-3.

Table 3-1 Normal Data - Not Null and Not Truncated

Return Code Indicator - not provided Indicator - provided

Not provided error = 0 error = 0
indicator = 0

Provided error = 0
return code = 0

error = 0
indicator = 0
return code = 0

Table 3-2 Null Data

Return Code Indicator - not provided Indicator - provided

Not provided SQLException
error = 1405

error = 0
indicator = -1

Provided SQLException
error = 1405
return code = 1405

error = 0
indicator = -1
return code = 1405

Table 3-3 Truncated Data

Return Code Indicator - not provided Indicator - provided

Not provided SQLException
error = 1406

SQLException
error = 1406
indicator = data_len

Chapter 3
About Handling Exceptions

3-32

Table 3-3 (Cont.) Truncated Data

Return Code Indicator - not provided Indicator - provided

Provided error = 24345
return code = 1405

error = 24345
indicator = data_len
return code = 1406

In Table 3-3, data_len is the actual length of the data that has been truncated if this length is
less than or equal to SB2MAXVAL. Otherwise, the indicator is set to -2.

Chapter 3
About Handling Exceptions

3-33

4
Object Programming

This chapter provides information on how to implement object-relational programming using
the Oracle C++ Call Interface (OCCI).

This chapter contains these topics:

• Overview of Object Programming

• About Working with Objects in C++ with OCCI

• About Representing Objects in C++ Applications

• About Developing a C++ Application using OCCI

• Migrating C++ Applications to Oracle Using OCCI

• Overview of Associative Access

• Overview of Navigational Access

• Overview of Complex Object Retrieval

• Working with Collections

• About Using Object References

• About Deleting Objects from the Database

• About Type Inheritance

• A Sample OCCI Application

4.1 Overview of Object Programming
OCCI supports both the associative and navigational style of data access. Traditionally, third-
generation language (3GL) programs manipulate data stored in a database by using the
associative access based on the associations organized by relational database tables. In
associative access, data is manipulated by executing SQL statements and PL/SQL
procedures. OCCI supports associative access to objects by enabling your applications to
execute SQL statements and PL/SQL procedures on the database server without incurring
the cost of transporting data to the client.

Object-oriented programs that use OCCI can also make use of navigational access that is a
key aspect of this programming paradigm. Object relationships between objects are
implemented as references (REFs). Typically, an object application that uses navigational
access first retrieves one or more objects from the database server by issuing a SQL
statement that returns REFs to those objects. The application then uses those REFs to traverse
related objects, and perform computations on these other objects as required. Navigational
access does not involve executing SQL statements, except to fetch the references of an
initial set of objects. By using the OCCI APIs for navigational access, your application can
perform the following functions on Oracle objects:

• Creating, accessing, locking, deleting, copying and flushing objects

• Getting references to objects and navigating through the references

4-1

This chapter gives examples that show you how to create a persistent object, access
an object, modify an object, and flush the changes to the database server. It discusses
how to access the object using both navigational and associative approaches.

4.2 About Working with Objects in C++ with OCCI
Many of the programming principles that govern a relational OCCI applications are
identical for object-relational applications. An object-relational application uses the
standard OCCI calls to establish database connections and process SQL statements.
The difference is that the SQL statements that are issued retrieve object references,
which can then be manipulated with OCCI object functions. An object can also be
directly manipulated as a value (without using its object reference).

Instances of an Oracle type are categorized into persistent objects and transient
objects based on their lifetime. Instances of persistent objects can be further divided
into standalone objects and embedded objects depending on whether they are
referenced by way of an object identifier.

This section discusses the following topics:

• About Persistent Objects

• About Transient Objects

• About Values

4.2.1 About Persistent Objects
A persistent object is an object which is stored in an Oracle database. It may be
fetched into the object cache and modified by an OCCI application. The lifetime of a
persistent object can exceed that of the application which is accessing it. There are
two types of persistent objects:

• A standalone instance is stored in a database table row, and has a unique object
identifier. An OCCI application can retrieve a reference to a standalone object, pin
the object, and navigate from the pinned object to other related objects.
Standalone objects may also be referred to as referenceable objects.

It is also possible to select a persistent object, in which case you fetch the object
by value instead of fetching it by reference.

• An embedded instance is not stored in a database table row, but rather is
embedded within another object. Examples of embedded objects are objects
which are attributes of another object, or objects that exist in an object column of a
database table. Embedded objects do not have object identifiers, and OCCI
applications cannot get REFs to embedded instances.

Embedded objects may also be referred to as nonreferenceable objects or value
instances. You may sometimes see them referred to as values, which is not to be
confused with scalar data values. The context should make the meaning clear.

Users do not have to explicitly delete persistent objects that have been materialized
through references.

Users should delete persistent objects created by application when the transactions
are rolled back

The SQL examples, Example 4-1 and Example 4-2, demonstrate the difference
between these two types of persistent objects.

Chapter 4
About Working with Objects in C++ with OCCI

4-2

Example 4-1 Creating Standalone Objects

Objects that are stored in the object table person_tab are standalone objects. They have
object identifiers and can be referenced. They can be pinned in an OCCI application.

CREATE TYPE person_t AS OBJECT
 (name varchar2(30),
 age number(3));
CREATE TABLE person_tab OF person_t;

Example 4-2 Creating Embedded Objects

Objects which are stored in the manager column of the department table are embedded
objects. They do not have object identifiers, and they cannot be referenced. Therefore, they
cannot be pinned in an OCCI application, and they also never have to be unpinned. They are
always retrieved into the object cache by value.

CREATE TABLE department
 (deptno number,
 deptname varchar2(30),
 manager person_t);

The Array Pin feature allows a vector of references to be dereferenced in one round-trip to
return a vector of the corresponding objects. A new global method, pinVectorOfRefs(),
takes a vector of Refs and populates a vector of PObjects in a single round-trip, saving the
cost of pinning n-1 references in n-1 round-trips.

4.2.2 About Transient Objects
A transient object is an instance of an object type. Its lifetime cannot exceed that of the
application. The application can also delete a transient object at any time.

The Object Type Translator (OTT) utility generates two operator new methods for each C++
class, as demonstrated in Example 4-3Example 4-3:

Example 4-4 demonstrates how to dynamically create a transient object. Transient objects
cannot be converted to persistent objects. Their role is fixed at the time they are instantiated,
and it is your responsibility to free memory by deleting transient objects.

A transient object can also be created on the stack as a local variable, as demonstrated in
Example 4-5. The latter approach guarantees that the transient object is destroyed when the
scope of the variable ends.

See Also:

• Oracle Database Conceptsfor more information about objects

Example 4-3 Two Methods for Operator new() in the Object Type Translator Utility

class Person : public PObject {
 ...
public:
 dvoid *operator new(size_t size); // creates transient instance
 dvoid *operator new(size_t size, Connection &conn, string table);
 // creates persistent instance
}

Chapter 4
About Working with Objects in C++ with OCCI

4-3

Example 4-4 How to Dynamically Create a Transient Object

Person *p = new Person();

Example 4-5 How to Create a Transient Object as a Local Variable

Person p;

4.2.3 About Values
In this manual, a value refers to either:

• A scalar value which is stored in a non-object column of a database table. An
OCCI application can fetch values from a database by issuing SQL statements.

• An embedded (nonreferenceable) object.

The context should make it clear which meaning is intended.

It is possible to SELECT a referenceable object into the object cache, rather than
pinning it, in which case you fetch the object by value instead of fetching it by
reference.

4.3 About Representing Objects in C++ Applications
Before an OCCI application can work with object types, those types must exist in the
database. Typically, you create types with SQL DDL statements, such as CREATE TYPE.

This section discusses the following topics:

• Creating Persistent and Transient Objects

• Creating Object Representations using the OTT Utility

4.3.1 Creating Persistent and Transient Objects
This section discusses how persistent and transient objects are created.

Before you create a persistent object, you must have created the environment and
opened a connection.

A persistent object is created in the database only when one of the following occurs:

• The transaction is committed (Connection::commit())

• The object cache is flushed (Connection::flushCache())

• The object itself is flushed (PObject::flush())

Example 4-6 shows how to create a persistent object, addr, in the database table,
addr_tab.

Example 4-7 shows hot to create an instance of the transient object ADDRESS.

Example 4-6 How to Create a Persistent Object

CREATE TYPE ADDRESS AS OBJECT (
 state CHAR(2),
 zip_code CHAR(5));
CREATE TABLE ADDR_TAB of ADDRESS;
ADDRESS *addr = new(conn, "ADDR_TAB") ADDRESS("CA", "94065");

Chapter 4
About Representing Objects in C++ Applications

4-4

Example 4-7 How to Create a Transient Object

ADDRESS *addr_trans = new ADDRESS("MD", "94111");

4.3.2 Creating Object Representations using the OTT Utility
When your C++ application retrieves instances of object types from the database, it must
have a client-side representation of the objects. The Object Type Translator (OTT) utility
generates C++ class representations of database object types for you. Example 4-8 shows
the declaration of a custom type in the database, and the corresponding C++ class that the
OTT utility generates.

These class declarations in Example 4-8 are automatically written by OTT to a header file
that you name. This header file is included in the source files for an application to provide
access to objects. Instances of a PObject (and also instances of classes derived from
PObjects) can be either transient or persistent. The methods writeSQL() and readSQL() are
used internally by the OCCI object cache to linearize and delinearize the objects and are not
to be used or modified by OCCI clients.

See Also:

Object Type Translator Utility for more information about the OTT utility

Example 4-8 How to Declare a Custom Type in the Database

CREATE TYPE address AS OBJECT (state CHAR(2), zip_code CHAR(5));

The OTT utility produces the following C++ class:

class ADDRESS : public PObject {

 protected:
 string state;
 string zip;

 public:
 void *operator new(size_t size);
 void *operator new(size_t size,
 const Connection* conn,
 const string& table);
 string getSQLTypeName() const;
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 ADDRESS(void *ctx) : PObject(ctx) { };
 static void *readSQL(void *ctx);
 virtual void readSQL(AnyData& stream);
 static void writeSQL(void *obj, void *ctx);
 virtual void writeSQL(AnyData& stream);
}

4.4 About Developing a C++ Application using OCCI
This section discusses the steps involved in developing a basic OCCI object application.

Chapter 4
About Developing a C++ Application using OCCI

4-5

This section discusses the following topics:

• Developing Basic Object Program Structure

• About Basic Object Operational Flow

4.4.1 Developing Basic Object Program Structure
The basic structure of an OCCI application that uses objects is similar to a relational
OCCI application, the difference being object functionality. The steps involved in an
OCCI object program include:

1. Initialize the Environment. Initialize the OCCI programming environment in object
mode. Your application must include C++ class representations of database
objects in a header file. You can create these classes by using the Object Type
Translator (OTT) utility, as described in Object Type Translator Utility.

2. Establish a Connection. Use the environment handle to establish a connection to
the database server.

3. Prepare a SQL statement. This is a local (client-side) step, which may include
binding placeholders. In an object-relational application, this SQL statement
should return a reference (REF) to an object.

4. Access the object.

a. Associate the prepared statement with a database server, and execute the
statement.

b. By using navigational access, retrieve an object reference (REF) from the
database server and pin the object. You can then perform some or all of the
following:

• Manipulate the attributes of an object and mark it as dirty (modified)

• Follow a reference to another object or series of objects

• Access type and attribute information

• Navigate a complex object retrieval graph

• Flush modified objects to the database server

c. By using associative access, you can fetch an entire object by value by using
SQL. Alternately, you can select an embedded (nonreferenceable) object. You
can then perform some or all of the following:

• Insert values into a table

• Modify existing values

5. Commit the transaction. This step implicitly writes all modified objects to the
database server and commits the changes.

6. Free statements and handles; the prepared statements should not be used or
executed again.

Chapter 4
About Developing a C++ Application using OCCI

4-6

See Also:

• Accessing Oracle Database Using C++ for information about using OCCI to
connect to a database server, process SQL statements, and allocate
handles

• Object Type Translator Utility for information about the OTT utility

• OCCI Application Programming Interface for descriptions of OCCI relational
functions and the Connect class and the getMetaData() method

4.4.2 About Basic Object Operational Flow
Figure 4-1 shows a simple program logic flow for how an application might work with objects.
For simplicity, some required steps are omitted.

Figure 4-1 Basic Object Operational Flow

(Brings object into

client-side cache)

Pin Object

Operate on Object

in Cache

Mark Object

as Dirtied

Refresh Object

Flush Changes

to Object

Initialize OCCI in

Object Mode

The steps shown in Figure 4-1 are discussed in the following sections:

• About Initializing OCCI in Object Mode

• About Pinning anObject

• About Operating on an Object in Cache

• About Flushing Changes to the Object

• About Deletion of an Object

4.4.2.1 About Initializing OCCI in Object Mode
If your OCCI application accesses and manipulates objects, then it is essential that you
specify a value of OBJECT for the mode parameter of the createEnvironment() method, the
first call in any OCCI application. Specifying this value for mode indicates to OCCI that your
application works with objects. This notification has the following important effects:

Chapter 4
About Developing a C++ Application using OCCI

4-7

• The object run-time environment is established.

• The object cache is set up.

Note that ithe mode parameter is not set to OBJECT, any attempt to use an object-
related function results in an error.

The following code example demonstrates how to specify the OBJECT mode when
creating an OCCI environment:

Environment *env;
Connection *con;
Statement *stmt;

env = Environment::createEnvironment(Environment::OBJECT);
con = Connection(userName, password, connectString);

Your application does not have to allocate memory when database objects are loaded
into the object cache. The object cache provides transparent and efficient memory
management for database objects. When database objects are loaded into the object
cache, they are transparently mapped into the host language (C++) representation.

The object cache maintains the association between the object copy in the object
cache and the corresponding database object. Upon commit, changes made to the
object copy in the object cache are automatically propagated back to the database.

The object cache maintains a look-up table for mapping references to objects. When
an application dereferences a reference to an object and the corresponding object is
not yet cached in the object cache, the object cache automatically sends a request to
the database server to fetch the object from the database and load it into the object
cache. Subsequent dereferences of the same reference are faster since they are to
the object cache itself and do not incur a round-trip to the database server.

Subsequent dereferences of the same reference fetch from the cache instead of
requiring a round-trip. The exception to this is in a dereferencing operation that occurs
just after a commit. In this case, the latest object copy from the server is returned. This
ensures that the latest object from the database is cached after each transaction.

The object cache maintains a pin count for each persistent object in the object cache.
When an application dereferences a reference to an object, the pin count of the object
is incremented. The subsequent dereferencing of the same reference to the object
does not change the pin count. Until the reference to the object goes out of scope, the
object continues to be pinned in the object cache and be accessible by the OCCI
client.

The pin count functions as a reference count for the object. The pin count of the object
becomes zero (0) only when there are no more references referring to this object,
during which time the object becomes eligible for garbage collection. The object cache
uses a least recently used algorithm to manage the size of the object cache. This
algorithm frees objects with a pin count of 0 when the object cache reaches the
maximum size.

4.4.2.2 About Pinning anObject
In most situations, OCCI users do not have to explicitly pin or unpin the objects
because the object cache automatically keeps track of the pin counts of all the objects
in the cache. As explained earlier, the object cache increments the pin count when a
reference points to the object and decrements it when the reference goes out of scope
or no longer points to the object.

Chapter 4
About Developing a C++ Application using OCCI

4-8

But there is one exception. If an OCCI application uses Ref<T>::ptr() method to get a
pointer to the object, then the pin and unpin methods of the PObject class can be used by
the application to control pinning and unpinning of the objects in the object cache.

4.4.2.3 About Operating on an Object in Cache
Note that the object cache does not manage the contents of object copies; it does not
automatically refresh object copies. Your application must ensure the validity and consistency
of object copies.

4.4.2.4 About Flushing Changes to the Object
Whenever changes are made to object copies in the object cache, your application is
responsible for flushing the changed object to the database.

Memory for the object cache is allocated on demand when objects are loaded into the object
cache.

The client-side object cache is allocated in the program's process space. This object cache is
the memory for objects that have been retrieved from the database server and are available
to your application.

If you initialize the OCCI environment in object mode, your application allocates memory for
the object cache, whether the application actually uses object calls.

There is only one object cache allocated for each OCCI environment. All objects retrieved or
created through different connections within the environment use the same physical object
cache. Each connection has its own logical object cache.

4.4.2.5 About Deletion of an Object
For objects retrieved into the cache by dereferencing a reference, you should not perform an
explicit delete. For such objects, the pin count is incremented when a reference is
dereferenced for the first time and decremented when the reference goes out of scope. When
the pin count of the object becomes 0, indicating that all references to that object are out of
scope, the object is automatically eligible for garbage collection and subsequently deleted
from the cache.

For persistent objects that have been created by calling the new operator, you must call a
delete if you do not commit the transaction. Otherwise, the object is garbage collected after
the commit. This is because when such an object is created using new, its pin count is initially
0. However, because the object is dirty it remains in the cache. After a commit, it is no longer
dirty and thus garbage collected. Therefore, a delete is not required.

If a commit is not performed, then you must explicitly call delete to destroy that object. You
can do this if there are no references to that object. For transient objects, you must delete
explicitly to destroy the object.

You should not call a delete operator on a persistent object. A persistent object that is not
marked/dirty is freed by the garbage collector when its pin count is 0. However, for transient
objects you must delete explicitly to destroy the object.

4.5 Migrating C++ Applications to Oracle Using OCCI
This section describes how to migrate existing C++ applications using OCCI.

Chapter 4
Migrating C++ Applications to Oracle Using OCCI

4-9

The steps of migration are:

1. Determine object model and class hierarchy

2. Use JDeveloper9i to map to Oracle object schema

3. Generate C++ header files using Oracle Type Translator

4. Modify old C++ access classes as required to work with new object type definitions

5. Add functionality for transient and persistent object management, as required.

4.6 Overview of Associative Access
You can employ SQL within OCCI to retrieve objects, and to perform DML operations.

This section discusses the following topics:

• Using SQL to Access Objects

• Inserting and Modifying Values

See Also:

Complete code listing of the demonstration programs

4.6.1 Using SQL to Access Objects
In the previous sections we discussed navigational access, where SQL is used only to
fetch the references of an initial set of objects and then navigate from them to the
other objects. Here we discuss how to fetch the objects using SQL.

The following example shows how to use the ResultSet::getObject() method to
fetch objects through associative access where it gets each object from the table,
addr_tab, using SQL:

string sel_addr_val = "SELECT VALUE(address) FROM ADDR_TAB address";

ResultSet *rs = stmt->executeQuery(sel_addr_val);

while (rs->next())
{
 ADDRESS *addr_val = rs->getObject(1);
 cout << "state: " << addr_val->getState();
}

The objects fetched through associative access are termed value instances and they
behave just like transient objects. Methods such as markModified(), flush(), and
markDeleted() are applicable only for persistent objects.

Any changes made to these objects are not reflected in the database.

Since the object returned is a value instance, it is the user's responsibility to free
memory by deleting the object pointer.

Chapter 4
Overview of Associative Access

4-10

4.6.2 Inserting and Modifying Values
We have just seen how to use SQL to access objects. OCCI also provides the ability to use
SQL to insert new objects or modify existing objects in the database server through the
Statement::setObject method interface.

The following example creates a transient object Address and inserts it into the database
table addr_tab:

ADDRESS *addr_val = new address("NV", "12563"); // new a transient instance
stmt->setSQL("INSERT INTO ADDR_TAB values(:1)");
stmt->setObject(1, addr_val);
stmt->execute();

4.7 Overview of Navigational Access
By using navigational access, you engage in a series of operations.

This section discusses the following topics:

• Retrieving an Object Reference (REF) from the Database Server

• Pinning an Object

• Manipulating Object Attributes

• About Marking Objects and Flushing Changes

• Marking an Object as Modified (Dirty)

• About Recording Changes in the Database

• Collecting Garbage in the Object Cache

• About Ensuring Transactional Consistency of References

See Also:

Complete code listing of the demonstration programs

4.7.1 Retrieving an Object Reference (REF) from the Database Server
To work with objects, your application must first retrieve one or more objects from the
database server. You accomplish this by issuing a SQL statement that returns references
(REFs) to one or more objects.

It is also possible for a SQL statement to fetch value instances, rather than REFs, from a
database.

The following SQL statement retrieves a REF to a single object address from the database
table addr_tab:

string sel_addr = "SELECT REF(address)
 FROM addr_tab address
 WHERE zip_code = '94065'";

Chapter 4
Overview of Navigational Access

4-11

The following code example illustrates how to execute the query and fetch the REF
from the result set.

ResultSet *rs = stmt->executeQuery(sel_addr);
rs->next();
Ref<address> addr_ref = rs->getRef(1);

At this point, you could use the object reference to access and manipulate the object
or objects from the database.

See Also:

"About Executing SQL DDL and DML Statements" for general information
about preparing and executing SQL statements

4.7.2 Pinning an Object
This section deals with a simple pin operation involving a single object at a time. For
information about retrieving multiple objects through complex object retrieval, see the
section Overview of Complex Object Retrieval.

Upon completion of the fetch step, your application has a REF to an object. The actual
object is not currently available to work with. Before you can manipulate an object, it
must be pinned. Pinning an object loads the object into the object cache, and enables
you to access and modify the object's attributes and follow references from that object
to other objects. Your application also controls when modified objects are written back
to the database server.

OCCI requires only that you dereference the REF in the same way you would
dereference any C++ pointer. Dereferencing the REF transparently materializes the
object as a C++ class instance.

Continuing the Address class example from the previous section, assume that the user
has added the following method:

string Address::getState()
{
 return state;
}

To dereference this REF and access the object's attributes and methods:

string state = addr_ref->getState(); // -> pins the object

The first time Ref<T> (addr_ref) is dereferenced, the object is pinned, which is to say
that it is loaded into the object cache from the database server. From then on, the
behavior of operator -> on Ref<T> is just like that of any C++ pointer (T *). The
object remains in the object cache until the REF (addr_ref) goes out of scope. It then
becomes eligible for garbage collection.

Now that the object has been pinned, your application can modify that object.

Chapter 4
Overview of Navigational Access

4-12

4.7.3 Manipulating Object Attributes
Manipulating object attributes is no different from that of accessing them as shown in the
previous section. Let us assume the Address class has the following user defined method
that sets the state attribute to the input value:

void Address::setState(string new_state)
{
 state = new_state;
}

The following example shows how to modify the state attribute of the object, addr:

addr_ref->setState("PA");

As explained earlier, the first invocation of the operator -> on Ref<T> loads the object, if it is
not in the object cache.

4.7.4 About Marking Objects and Flushing Changes
In the example in the previous section, an attribute of an object was changed. This change
exists only in the client-side cache; you must implement specific programmatic steps to write
the changes to the database.

4.7.5 Marking an Object as Modified (Dirty)
The first step is to indicate that the object has been modified. This is done by calling the
markModified() method on the object (derived method of PObject). This method marks the
object as dirty (modified).

Continuing the previous example, after object attributes are manipulated, the object referred
to by addr_ref can be marked dirty as follows:

addr_ref->markModified();

4.7.6 About Recording Changes in the Database
Objects that have had their dirty flag set must be flushed to the database server for the
changes to be recorded in the database. This can be done in three ways:

• Flush a single object marked dirty by calling the method flush, a derived method of
PObject.

• Flush the entire object cache using the Connection::flushCache() method. In this case,
OCCI traverses the dirty list maintained by the object cache and flushes all the dirty
objects.

• Commit a transaction by calling the Connection::commit() method. Doing so also
traverses the dirty list and flushes the objects to the database server. The dirty list
includes newly created persistent objects.

4.7.7 Collecting Garbage in the Object Cache
The object cache has two important associated parameters:

Chapter 4
Overview of Navigational Access

4-13

• The maximum cache size percentage

• The optimal cache size

These parameters refer to levels of cache memory usage, and they help determine
when the cache automatically 'ages out' eligible objects to free up memory.

If the memory occupied by the objects currently in the cache reaches or exceeds the
maximum cache size, the cache automatically begins to free (or age out) unmarked
objects which have a pin count of zero. The cache continues freeing such objects until
memory usage in the cache reaches the optimal size, or until it runs out of objects
eligible for freeing. Note that the cache can grow beyond the specified maximum
cache size.

The maximum object cache size (in bytes) is computed by incrementing the optimal
cache size (optimal_size) by the maximum cache size percentage
(max_size_percentage), as follows:

Maximum cache size = optimal_size + optimal_size * max_size_percentage / 100;

The default value for the maximum cache size percentage is 10%. The default value
for the optimal cache size is 8MB. When a persistent object is created through the
overloaded PObject::new() operator, the newly created object is marked dirty and its
pin count is set to 0.

These parameters can be set or retrieved using the following member functions of the
Environment class:

• void setCacheMaxSize(unsigned int maxSize);
• unsigned int getCacheMaxSize() const;
• void setCacheOptSize(unsigned int OptSize);
• unsigned int getCacheOptSize() const;
"About Pinning anObject" describes how pin count of an object functions as a
reference count and how an unmarked object with a 0 pin count can become eligible
for garbage collection. For a newly created persistent object, the object is unmarked
after the transaction is committed or aborted, and if the object has a 0 pin count.
Because nothing is referencing this object, it becomes a candidate for ageing out.

If you are working with several object that have a large number of string or collection
attributes, most of the memory is allocated from the C++ heap; this is because OCCI
uses STLs. You should therefore set the cache size to a low value to avoid high
memory use before garbage collection activates.

See Also:

OCCI Application Programming Interface for details.

4.7.8 About Ensuring Transactional Consistency of References
As described in the previous section, dereferencing a Ref<T> for the first time results in
the object being loaded into the object cache from the database server. From then on,
the behavior of operator -> on Ref<T> equals any C++ pointer, and it provides access

Chapter 4
Overview of Navigational Access

4-14

to the object copy in the cache. But when the transaction commits or aborts, the object copy
in the cache can no longer be valid because it could be modified by any other client.
Therefore, after the transaction ends, when the Ref<T> is again dereferenced, the object
cache recognizes the fact that the object is no longer valid and fetches the most recent copy
from the database server.

4.8 Overview of Complex Object Retrieval
In the examples discussed earlier, only a single object was fetched or pinned at a time. In
these cases, each pin operation involved a separate database server round-trip to retrieve
the object.

Object-oriented applications often model their problems as a set of interrelated objects that
form graphs of objects. These applications process objects by starting with some initial set of
objects and then using the references in these objects to traverse the remaining objects. In a
client/server setting, each of these traversals could result in costly network round-trips to
fetch objects.

The performance of such applications can be increased with complex object retrieval
(COR). This is a prefetching mechanism in which an application specifies some criteria
(content and boundary) for retrieving a set of linked objects in a single network round-trip.
Using COR does not mean that these prefetched objects are pinned. They are fetched into
the object cache, so that subsequent pin calls are local operations.

A complex object is a set of logically related objects consisting of a root object, and a set of
objects each of which is prefetched based on a given depth level. The root object is explicitly
fetched or pinned. The depth level is the shortest number of references that have to be
traversed from the root object to a given prefetched object in a complex object.

An application specifies a complex object by describing its content and boundary. The
fetching of complex objects is constrained by an environment's prefetch limit, the amount of
memory in the object cache that is available for prefetching objects.

The use of complex object retrieval does not add functionality; it only improves performance,
and so its use is optional.

This section discusses the following topics:

• Retrieving Complex Objects

• About Prefetching Complex Objects

See Also:

Complete code listing of the demonstration programs

4.8.1 Retrieving Complex Objects
An OCCI application can achieve COR by setting the appropriate attributes of a Ref<T>
before dereferencing it using the following methods:

// prefetch attributes of the specified type name up to the specified depth
Ref<T>::setPrefetch(const string &typeName, unsigned int depth);
// prefetch all the attribute types up to the specified depth.
Ref<T>::setPrefetch(unsigned int depth);

Chapter 4
Overview of Complex Object Retrieval

4-15

The application can also choose to fetch all objects reachable from the root object by
way of REFs (transitive closure) to a certain depth. To do so, set the level parameter to
the depth desired. For the preceding two examples, the application could also specify
(PO object REF, OCCI_MAX_PREFETCH_DEPTH) and (PO object REF, 1) respectively
to prefetch required objects. Doing so results in many extraneous fetches but is quite
simple to specify, and requires only one database server round-trip.

As an example for this discussion, consider the following type declaration:

CREATE TYPE customer(...);
CREATE TYPE line_item(...);
CREATE TYPE line_item_varray as VARRAY(100) of REF line_item;
CREATE TYPE purchase_order AS OBJECT
 (po_number NUMBER,
 cust REF customer,
 related_orders REF purchase_order,
 line_items line_item_varray);

The purchase_order type contains a scalar value for po_number, a VARRAY of
line_items, and two references. The first is to a customer type and the second is to a
purchase_order type, indicating that this type can be implemented as a linked list.

When fetching a complex object, an application must specify the following:

• A reference to the desired root object

• One or more pairs of type and depth information to specify the boundaries of the
complex object. The type information indicates which REF attributes should be
followed for COR, and the depth level indicates how many levels deep those links
should be followed.

In the case of the purchase_order object in the preceding example, the application
must specify the following:

• The reference to the root purchase_order object

• One or more pairs of type and depth information for customer, purchase_order, or
line_item

An application prefetching a purchase order needs access to the customer information
for that purchase order. Using simple navigation, this would require two database
server accesses to retrieve the two objects.

Through complex object retrieval, customer can be prefetched when the application
pins the purchase_order object. In this case, the complex object would consist of the
purchase_order object and the customer object it references.

In the previous example, if the application wanted to prefetch a purchase order and the
related customer information, the application would specify the purchase_order object
and indicate that customer should be followed to a depth level of one as follows:

Ref<PURCHASE_ORDER> poref;
poref.setPrefetch("CUSTOMER",1);

If the application wanted to prefetch a purchase order and all objects in the object
graph it contains, the application would specify the purchase_order object and
indicate that both customer and purchase_order should be followed to the maximum
depth level possible as follows:

Chapter 4
Overview of Complex Object Retrieval

4-16

Ref<PURCHASE_ORDER> poref;
poref.setPrefetch("CUSTOMER", OCCI_MAX_PREFETCH_DEPTH);
poref.setPrefetch("PURCHASE_ORDER", OCCI_MAX_PREFETCH_DEPTH);

where OCCI_MAX_PREFETCH_DEPTH specifies that all objects of the specified type reachable
through references from the root object should be prefetched.

If an application wanted to prefetch a purchase order and all the line items associated with it,
the application would specify the purchase_order object and indicate that line_items should
be followed to the maximum depth level possible as follows:

Ref<PURCHASE_ORDER> poref;
poref.setPrefetch("LINE_ITEM", 1);

4.8.2 About Prefetching Complex Objects
After specifying and fetching a complex object, subsequent fetches of objects contained in
the complex object do not incur the cost of a network round-trip, because these objects have
been prefetched and are in the object cache. Keep in mind that excessive prefetching of
objects can lead to a flooding of the object cache. This flooding, in turn, may force out other
objects that the application had pinned, leading to a performance degradation instead of
performance improvement.

Note that if there is insufficient memory in the object cache to hold all prefetched objects,
some objects may not be prefetched. The application then incurs a network round-trip when
those objects are accessed later.

You must have the READ or SELECT privilege for all prefetched objects. Objects in the complex
object for which the application does not have READ or SELECT privilege cannot prefetched.

An entire vector of Refs can be prefetched into object cache in a single round-trip by using
the global pinVectorOfRefs() method of the Connection Class. This method reduces the
number of round-trips for an n-sized vector of Refs from n to 1, and tracks the newly pinned
objects through an OUT parameter vector.

4.9 Working with Collections
Oracle supports two kinds of collections - variable length arrays (ordered collections) and
nested tables (unordered collections). OCCI maps both of them to a Standard Template
Library (STL) vector container, giving you the full power, flexibility, and speed of an STL
vector to access and manipulate the collection elements. Example 4-9 shows the SQL DDL
to create a VARRAY and an object that contains an attribute of type VARRAY, and the resulting
C++ declaration that OTT generates.

See Also:

Complete code listing of the demonstration programs

Example 4-9 How to Create a VARRAY Collection

CREATE TYPE ADDR_LIST AS VARRAY(3) OF REF ADDRESS;
CREATE TYPE PERSON AS OBJECT (name VARCHAR2(20), addr_l ADDR_LIST);

Here is the C++ class declaration generated by OTT:

Chapter 4
Working with Collections

4-17

class PERSON : public PObject
{
 protected:
 string name;
 vector< Ref< ADDRESS > > addr_1;

 public:
 void *operator new(size_t size);
 void *operator new(size_t size,
 const Connection* conn,
 const string& table);
 string getSQLTypeName() const;
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 PERSON (void *ctx) : PObject(ctx) { };
 static void *readSQL(void *ctx);
 virtual void readSQL(AnyData& stream);
 static void writeSQL(void *obj, void *ctx);
 virtual void writeSQL(AnyData& stream);
}

This section includes the following topics:

• Fetching Embedded Objects

• About Nullness

4.9.1 Fetching Embedded Objects
If your application must fetch an embedded object, which is an object stored in a
column of a regular table rather than an object table, you cannot use the REF retrieval
mechanism. Embedded instances do not have object identifiers, so it is not possible to
get a reference to them. Therefore, they cannot serve as the basis for object
navigation. There are still many situations, however, in which an application fetches
embedded instances.

For example, assume that an address type has been created.

CREATE TYPE address AS OBJECT
(street1 varchar2(50),
 street2 varchar2(50),
 city varchar2(30),
 state char(2),
 zip number(5));

You could then use that type as the data type of a column in another table:

CREATE TABLE clients
(name varchar2(40),
 addr address);

Your OCCI application could then issue the following SQL statement:

SELECT addr FROM clients
WHERE name='BEAR BYTE DATA MANAGEMENT';

This statement would return an embedded address object from the clients table. The
application could then use the values in the attributes of this object for other

Chapter 4
Working with Collections

4-18

processing. The application should execute the statement and fetch the object in the same
way as described in the section "Overview of Associative Access".

4.9.2 About Nullness
If a column in a row of a database table has no value, then that column is said to be NULL, or
to contain a NULL. Two different types of NULLs can apply to objects:

• Any attribute of an object can have a NULL value. This indicates that the value of that
attribute of the object is not known.

• An object may be atomically NULL. Therefore, the value of the entire object is unknown.

Atomic NULLness is different from nonexistence. An atomically NULL object still exists, its
value is just not known. It may be thought of as an existing object with no data.

For every type of object attribute, OCCI provides a corresponding class. For instance, NUMBER
attribute type maps to the Number class, REF maps to RefAny, and so on. Each and every
OCCI class that represents a data type provides two methods:

• isNull() — returns whether the object is NULL
• setNull() — sets the object to NULL
Similarly, these methods are inherited from the PObject class by all the objects and can be
used to access and set atomically NULL information about them.

4.10 About Using Object References
OCCI provides the application with the flexibility to access the contents of the objects using
their pointers or their references. OCCI provides the PObject::getRef() method to return a
reference to a persistent object. This call is valid for persistent objects only.

4.11 About Deleting Objects from the Database
OCCI users can use the overloaded PObject::operator new() to create the persistent
objects. However, to delete the object from the database server, it is best to call
ref.markDelete() directly on the Ref; this prevents the object from getting into the client
cache. If the object is in the client cache, it can be removed by an obj.markDelete() call on
the object. The object marked for deletion is permanently removed when the transaction
commits.

4.12 About Type Inheritance
Type inheritance of objects has many similarities to inheritance in C++ and Java. You can
create an object type as a subtype of an existing object type. The subtype is said to inherit all
the attributes and methods (member functions and procedures) of the supertype, which is the
original type. Only single inheritance is supported; an object cannot have multiple supertypes.
The subtype can add new attributes and methods to the ones it inherits. It can also override
(redefine the implementation) of any of its inherited methods. A subtype is said to extend
(that is, inherit from) its supertype.

Chapter 4
About Using Object References

4-19

See Also:

Oracle Database Object-Relational Developer's Guide for a more complete
discussion of this topic

As an example, a type Person_t can have a subtype Student_t and a subtype
Employee_t. In turn, Student_t can have its own subtype, PartTimeStudent_t. A type
declaration must have the flag NOT FINAL so that it can have subtypes. The default is
FINAL, which means that the type can have no subtypes.

All types discussed so far in this chapter are FINAL. All types in applications developed
before Oracle Database release 8.1.7 are FINAL. A type that is FINAL can be altered to
be NOT FINAL. A NOT FINAL type with no subtypes can be altered to be FINAL. Person_
t is declared as NOT FINAL for our example:

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,
 name VARCAHR2(30),
 address VARCHAR2(100)) NOT FINAL;

A subtype inherits all the attributes and methods declared in its supertype. It can also
declare new attributes and methods, which must have different names than those of
the supertype. The keyword UNDER identifies the supertype, like this:

CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER,
 major VARCHAR2(30)) NOT FINAL;

The newly declared attributes deptid and major belong to the subtype Student_t. The
subtype Employee_t is declared as, for example:

CREATE TYPE Employee_t UNDER Person_t
(empid NUMBER,
 mgr VARCHAR2(30));

See Also:

• "About OTT Support for Type Inheritance" for the classes generated by
OTT for this example.

Subtype Student_t can have its own subtype, such as PartTimeStudent_t:

CREATE TYPE PartTimeStuden_t UNDER Student_t (numhours NUMBER) ;

This section includes the following topics:

• About Substitutability

• Declaring NOT INSTANTIABLE Types and Methods

• About OCCI Support for Type Inheritance

• About OTT Support for Type Inheritance

Chapter 4
About Type Inheritance

4-20

4.12.1 About Substitutability
The benefits of polymorphism derive partially from the property substitutability. Substitutability
allows a value of some subtype to be used by code originally written for the supertype,
without any specific knowledge of the subtype being needed in advance. The subtype value
behaves to the surrounding code just like a value of the supertype would, even if it perhaps
uses different mechanisms within its specializations of methods.

Instance substitutability refers to the ability to use an object value of a subtype in a context
declared in terms of a supertype. REF substitutability refers to the ability to use a REF to a
subtype in a context declared in terms of a REF to a supertype.

REF type attributes are substitutable, that is, an attribute defined as REF T can hold a REF to
an instance of T or any of its subtypes.

Object type attributes are substitutable, that is, an attribute defined to be of (an object) type T
can hold an instance of T or any of its subtypes.

Collection element types are substitutable, that is, if we define a collection of elements of type
T, then it can hold instances of type T and any of its subtypes. Here is an example of object
attribute substitutability:

CREATE TYPE Book_t AS OBJECT
(title VARCHAR2(30),
 author Person_t /* substitutable */);

Thus, a Book_t instance can be created by specifying a title string and a Person_t (or any
subtype of Person_t) object:

Book_t('My Oracle Experience',
 Employee_t(12345, 'Joe', 'SF', 1111, NULL))

4.12.2 Declaring NOT INSTANTIABLE Types and Methods
A type can be declared NOT INSTANTIABLE, which means that there is no constructor (default
or user defined) for the type. Thus, it is not be possible to construct instances of this type.
The typical usage would be to define instantiable subtypes for such a type. Here is how this
property is used:

CREATE TYPE Address_t AS OBJECT(...) NOT INSTANTIABLE NOT FINAL;
CREATE TYPE USAddress_t UNDER Address_t(...);
CREATE TYPE IntlAddress_t UNDER Address_t(...);

A method of a type can be declared to be NOT INSTANTIABLE. Declaring a method as NOT
INSTANTIABLE means that the type is not providing an implementation for that method.
Further, a type that contains any NOT INSTANTIABLE methods must necessarily be declared
as NOT INSTANTIABLE. For example:

CREATE TYPE T AS OBJECT
(x NUMBER,
 NOT INSTANTIABLE MEMBER FUNCTION func1() RETURN NUMBER
) NOT INSTANTIABLE;

A subtype of NOT INSTANTIABLE can override any of the NOT INSTANTIABLE methods of the
supertype and provide concrete implementations. If there are any NOT INSTANTIABLE
methods remaining, the subtype must also necessarily be declared as NOT INSTANTIABLE.

Chapter 4
About Type Inheritance

4-21

A NOT INSTANTIABLE subtype can be defined under an instantiable supertype.
Declaring a NOT INSTANTIABLE type to be FINAL is not useful and is not allowed.

4.12.3 About OCCI Support for Type Inheritance
The following calls support type inheritance:

• About Connection::getMetaData()

• About Bind and Define Functions

4.12.3.1 About Connection::getMetaData()
This method provides information specific to inherited types. Additional attributes have
been added for the properties of inherited types. For example, you can get the
supertype of a type.

4.12.3.2 About Bind and Define Functions
The setRef(), setObject() and setVector() methods of the Statement class are
used to bind REF, object, and collections respectively. All these functions support REF,
instance, and collection element substitutability. Similarly, the corresponding getxxx()
methods to fetch the data also support substitutability.

4.12.4 About OTT Support for Type Inheritance
Class declarations for objects with inheritance are similar to the simple object
declarations except that the class is derived from the parent type class and only the
fields corresponding to attributes not in the parent class are included. The structure for
these declarations is listed in Example 4-10:

In this structure, all variables are the same as in the simple object case.
parentTypename refers to the name of the parent type, that is, the class name of the
type from which typename inherits.

Example 4-10 OTT Support Inheritance

class <typename> : public <parentTypename>
{
 protected:
 <OCCItype1> <attributename1>;
 ...
 <OCCItypen> <attributenamen>;

 public:
 void *operator new(size_t size);
 void *operator new(size_t size, const Connection* conn,
 const string& table);
 string getSQLTypeName() const;
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 <typename> (void *ctx) : <parentTypename>(ctx) { };
 static void *readSQL(void *ctx);
 virtual void readSQL(AnyData& stream);
 static void writeSQL(void *obj, void *ctx);

Chapter 4
About Type Inheritance

4-22

 virtual void writeSQL(AnyData& stream);
}

4.13 A Sample OCCI Application
This section describes a sample OCCI application that uses some features discussed in this
chapter.

Example 4-11 Listing of demo2.sql for a Sample OCCI Application

drop table ADDR_TAB
/
drop table PERSON_TAB
/
drop type STUDENT
/
drop type PERSON
/
drop type ADDRESS_TAB
/
drop type ADDRESS
/
drop type FULLNAME
/
CREATE TYPE FULLNAME AS OBJECT (first_name CHAR(20), last_name CHAR(20))
/
CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20))
/
CREATE TYPE ADDRESS_TAB AS VARRAY(3) OF REF ADDRESS
/
CREATE TYPE PERSON AS OBJECT (id NUMBER, name FULLNAME,curr_addr REF ADDRESS,
prev_addr_l ADDRESS_TAB) NOT FINAL
/
CREATE TYPE STUDENT UNDER PERSON (school_name CHAR(20))
/
CREATE TABLE ADDR_TAB OF ADDRESS
/
CREATE TABLE PERSON_TAB OF PERSON
/

Example 4-12 Listing of demo2.typ for a Sample OCCI Application

TYPE FULLNAME GENERATE CFullName as MyFullName
TYPE ADDRESS GENERATE CAddress as MyAddress
TYPE PERSON GENERATE CPerson as MyPerson
TYPE STUDENT GENERATE CStudent as MyStudent

Example 4-13 Listing of OTT Command that Generates Files for a Sample OCCI
Application

OTT attempts to connect with user name demousr; the system prompts for the password.

ott userid=demousr intype=demo2.typ code=cpp hfile=demo2.h
 cppfile=demo2.cpp mapfile=mappings.cpp attraccess=private

Example 4-14 Listing of mappings.h for a Sample OCCI Application

#ifndef MAPPINGS_ORACLE
define MAPPINGS_ORACLE

#ifndef OCCI_ORACLE

Chapter 4
A Sample OCCI Application

4-23

include <occi.h>
#endif

#ifndef DEMO2_ORACLE
include "demo2.h"
#endif

void mappings(oracle::occi::Environment* envOCCI_);

#endif

Example 4-15 Listing of mappings.cpp for a Sample OCCI Application

#ifndef MAPPINGS_ORACLE
include "mappings.h"
#endif

void mappings(oracle::occi::Environment* envOCCI_)
{
 oracle::occi::Map *mapOCCI_ = envOCCI_->getMap();
 mapOCCI_->put("HR.FULLNAME", &CFullName::readSQL, &CFullName::writeSQL);
 mapOCCI_->put("HR.ADDRESS", &CAddress::readSQL, &CAddress::writeSQL);
 mapOCCI_->put("HR.PERSON", &CPerson::readSQL, &CPerson::writeSQL);
 mapOCCI_->put("HR.STUDENT", &CStudent::readSQL, &CStudent::writeSQL);
}

Example 4-16 Listing of demo2.h for a Sample OCCI Application

#ifndef DEMO2_ORACLE
define DEMO2_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

using namespace std;
using namespace oracle::occi;

class MyFullName;
class MyAddress;
class MyPerson;
/* Changes ended here */

/* GENERATED DECLARATIONS FOR THE FULLNAME OBJECT TYPE. */
class CFullName : public oracle::occi::PObject {

private:
 OCCI_STD_NAMESPACE::string FIRST_NAME;
 OCCI_STD_NAMESPACE::string LAST_NAME;

public: OCCI_STD_NAMESPACE::string getFirst_name() const;
 void setFirst_name(const OCCI_STD_NAMESPACE::string &value);
 OCCI_STD_NAMESPACE::string getLast_name() const;
 void setLast_name(const OCCI_STD_NAMESPACE::string &value);
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,

Chapter 4
A Sample OCCI Application

4-24

 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 string getSQLTypeName() const;
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 CFullName();
 CFullName(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~CFullName();
};

/* GENERATED DECLARATIONS FOR THE ADDRESS OBJECT TYPE. */
class CAddress : public oracle::occi::PObject {

private:
 OCCI_STD_NAMESPACE::string STATE;
 OCCI_STD_NAMESPACE::string ZIP;

public:
 OCCI_STD_NAMESPACE::string getState() const;
 void setState(const OCCI_STD_NAMESPACE::string &value);
 OCCI_STD_NAMESPACE::string getZip() const;
 void setZip(const OCCI_STD_NAMESPACE::string &value);
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 string getSQLTypeName() const;
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 CAddress();
 CAddress(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~CAddress();
};

/* GENERATED DECLARATIONS FOR THE PERSON OBJECT TYPE. */
class CPerson : public oracle::occi::PObject {

private:
 oracle::occi::Number ID;
 MyFullName * NAME;
 oracle::occi::Ref< MyAddress > CURR_ADDR;
 OCCI_STD_NAMESPACE::vector< oracle::occi::Ref< MyAddress > > PREV_ADDR_L;

public: oracle::occi::Number getId() const;
 void setId(const oracle::occi::Number &value);
 MyFullName * getName() const;

Chapter 4
A Sample OCCI Application

4-25

 void setName(MyFullName * value);
 oracle::occi::Ref< MyAddress > getCurr_addr() const;
 void setCurr_addr(const oracle::occi::Ref< MyAddress > &value);
 OCCI_STD_NAMESPACE::vector<oracle::occi::Ref< MyAddress>>&
 getPrev_addr_l();
 const OCCI_STD_NAMESPACE::vector<oracle::occi::Ref<MyAddress>>&
 getPrev_addr_l() const;
 void setPrev_addr_l(const OCCI_STD_NAMESPACE::vector
 <oracle::occi::Ref< MyAddress > > &value);
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 string getSQLTypeName() const;
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 CPerson();
 CPerson(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~CPerson();
};

/* GENERATED DECLARATIONS FOR THE STUDENT OBJECT TYPE. */
/* changes to the generated file - declarations for the MyPerson class. */
class MyPerson : public CPerson {

public:
 MyPerson(Number id_i, MyFullName *name_i, const Ref<MyAddress>& addr_i) ;
 MyPerson(void *ctxOCCI_);
 void move(const Ref<MyAddress>& new_addr);
 void displayInfo();
 MyPerson();
};
/* changes end here */

class CStudent : public MyPerson {
private:
 OCCI_STD_NAMESPACE::string SCHOOL_NAME;

public:
 OCCI_STD_NAMESPACE::string getSchool_name() const;
 void setSchool_name(const OCCI_STD_NAMESPACE::string &value);\
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,\
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 string getSQLTypeName() const;

Chapter 4
A Sample OCCI Application

4-26

 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 CStudent();
 CStudent(void *ctxOCCI_) : MyPerson (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~CStudent();
};

/*changes made to the generated file */
/* declarations for the MyFullName class. */
class MyFullName : public CFullName
{ public:
 MyFullName(string first_name, string last_name);
 void displayInfo();
 MyFullName(void *ctxOCCI_);
};

// declarations for the MyAddress class.
class MyAddress : public CAddress
{ public:
 MyAddress(string state_i, string zip_i);
 void displayInfo();
 MyAddress(void *ctxOCCI_);
};

class MyStudent : public CStudent
{
 public :
 MyStudent(void *ctxOCCI_) ;
};
/* changes end here */
#endif

Example 4-17 Listing of demo2.cpp for a Sample OCCI Application

#ifndef DEMO2_ORACLE
include "demo2.h"
#endif

/* GENERATED METHOD IMPLEMENTATIONS FOR THE FULLNAME OBJECT TYPE. */
OCCI_STD_NAMESPACE::string CFullName::getFirst_name() const
{
 return FIRST_NAME;
}

void CFullName::setFirst_name(const OCCI_STD_NAMESPACE::string &value)
{
 FIRST_NAME = value;
}

OCCI_STD_NAMESPACE::string CFullName::getLast_name() const
{
 return LAST_NAME;
}

void CFullName::setLast_name(const OCCI_STD_NAMESPACE::string &value)
{

Chapter 4
A Sample OCCI Application

4-27

 LAST_NAME = value;
}

void *CFullName::operator new(size_t size)
{
 return oracle::occi::PObject::operator new(size);
}

void *CFullName::operator new(size_t size, const oracle::occi::Connection *
 sess, const OCCI_STD_NAMESPACE::string& table)
{
 return oracle::occi::PObject::operator new(size, sess, table,
 (char *) "HR.FULLNAME");
}

void *CFullName::operator new(size_t size, void *ctxOCCI_)
{
 return oracle::occi::PObject::operator new(size, ctxOCCI_);
}

void *CFullName::operator new(size_t size,
 const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema)
{
 return oracle::occi::PObject::operator new(size, sess, tableName,
 typeName, tableSchema, typeSchema);
}

OCCI_STD_NAMESPACE::string CFullName::getSQLTypeName() const
{
 return OCCI_STD_NAMESPACE::string("HR.FULLNAME");
}

void CFullName::getSQLTypeName(oracle::occi::Environment *env,
 void **schemaName, unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const
{
 PObject::getSQLTypeName(env, &CFullName::readSQL, schemaName,
 schemaNameLen, typeName, typeNameLen);
}

CFullName::CFullName()
{
}

void *CFullName::readSQL(void *ctxOCCI_)
{
 MyFullName *objOCCI_ = new(ctxOCCI_) MyFullName(ctxOCCI_);
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);

 try
 {
 if (streamOCCI_.isNull())
 objOCCI_->setNull();
 else
 objOCCI_->readSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)

Chapter 4
A Sample OCCI Application

4-28

 {
 delete objOCCI_;
 excep.setErrorCtx(ctxOCCI_);
 return (void *)NULL;
 }
 return (void *)objOCCI_;
}

void CFullName::readSQL(oracle::occi::AnyData& streamOCCI_)
{
 FIRST_NAME = streamOCCI_.getString();
 LAST_NAME = streamOCCI_.getString();
}

void CFullName::writeSQL(void *objectOCCI_, void *ctxOCCI_){
 CFullName *objOCCI_ = (CFullName *) objectOCCI_;
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);

 try
 {
 if (objOCCI_->isNull())
 streamOCCI_.setNull();
 else
 objOCCI_->writeSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 excep.setErrorCtx(ctxOCCI_);
 }
 return;
}

void CFullName::writeSQL(oracle::occi::AnyData& streamOCCI_)
{
 streamOCCI_.setString(FIRST_NAME);
 streamOCCI_.setString(LAST_NAME);
}

CFullName::~CFullName()
{
 int i;
}

/* GENERATED METHOD IMPLEMENTATIONS FOR THE ADDRESS OBJECT TYPE. */
OCCI_STD_NAMESPACE::string CAddress::getState() const
{
 return STATE;
}

void CAddress::setState(const OCCI_STD_NAMESPACE::string &value)
{
 STATE = value;
}

OCCI_STD_NAMESPACE::string CAddress::getZip() const
{
 return ZIP;
}

void CAddress::setZip(const OCCI_STD_NAMESPACE::string &value)
{

Chapter 4
A Sample OCCI Application

4-29

 ZIP = value;
}

void *CAddress::operator new(size_t size)
{
 return oracle::occi::PObject::operator new(size);
}

void *CAddress::operator new(size_t size,
 const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table)
{
 return oracle::occi::PObject::operator new(size, sess, table,
 (char *) "HR.ADDRESS");
}

void *CAddress::operator new(size_t size, void *ctxOCCI_)
{
 return oracle::occi::PObject::operator new(size, ctxOCCI_);
}

void *CAddress::operator new(size_t size,
 const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema)
{
 return oracle::occi::PObject::operator new(size, sess, tableName,
 typeName, tableSchema, typeSchema);
}

OCCI_STD_NAMESPACE::string CAddress::getSQLTypeName() const
{
 return OCCI_STD_NAMESPACE::string("HR.ADDRESS");
}

void CAddress::getSQLTypeName(oracle::occi::Environment *env,
 void **schemaName,
 unsigned int &schemaNameLen,
 void **typeName,
 unsigned int &typeNameLen) const
{
 PObject::getSQLTypeName(env, &CAddress::readSQL, schemaName,
 schemaNameLen, typeName, typeNameLen);
}

CAddress::CAddress()
{
}

void *CAddress::readSQL(void *ctxOCCI_)
{
 MyAddress *objOCCI_ = new(ctxOCCI_) MyAddress(ctxOCCI_);
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);

 try
 {
 if (streamOCCI_.isNull())
 objOCCI_->setNull();
 else

Chapter 4
A Sample OCCI Application

4-30

 objOCCI_->readSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 delete objOCCI_;
 excep.setErrorCtx(ctxOCCI_);
 return (void *)NULL;
 }
 return (void *)objOCCI_;
}

void CAddress::readSQL(oracle::occi::AnyData& streamOCCI_)
{
 STATE = streamOCCI_.getString();
 ZIP = streamOCCI_.getString();
}

void CAddress::writeSQL(void *objectOCCI_, void *ctxOCCI_)
{
 CAddress *objOCCI_ = (CAddress *) objectOCCI_;
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);

 try
 {
 if (objOCCI_->isNull())
 streamOCCI_.setNull();
 else
 objOCCI_->writeSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 excep.setErrorCtx(ctxOCCI_);
 }
 return;
}

void CAddress::writeSQL(oracle::occi::AnyData& streamOCCI_)
{
 streamOCCI_.setString(STATE);
 streamOCCI_.setString(ZIP);
}

CAddress::~CAddress()
{
 int i;
}

/* GENERATED METHOD IMPLEMENTATIONS FOR THE PERSON OBJECT TYPE. */
oracle::occi::Number CPerson::getId() const
{
 return ID;
}

void CPerson::setId(const oracle::occi::Number &value)
{
 ID = value;
}

MyFullName * CPerson::getName() const
{
 return NAME;

Chapter 4
A Sample OCCI Application

4-31

}

void CPerson::setName(MyFullName * value)
{
 NAME = value;
}

oracle::occi::Ref< MyAddress > CPerson::getCurr_addr() const
{
 return CURR_ADDR;
}

void CPerson::setCurr_addr(const oracle::occi::Ref< MyAddress > &value)
{
 CURR_ADDR = value;
}

OCCI_STD_NAMESPACE::vector< oracle::occi::Ref< MyAddress > >&
 CPerson::getPrev_addr_l()
{
 return PREV_ADDR_L;
}

const OCCI_STD_NAMESPACE::vector< oracle::occi::Ref< MyAddress > >&
 CPerson::getPrev_addr_l() const
{
 return PREV_ADDR_L;
}

void CPerson::setPrev_addr_l(const OCCI_STD_NAMESPACE::vector<
 oracle::occi::Ref< MyAddress > > &value)
{
 PREV_ADDR_L = value;
}
void *CPerson::operator new(size_t size)
{
 return oracle::occi::PObject::operator new(size);
}

void *CPerson::operator new(size_t size,
 const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table)
{
 return oracle::occi::PObject::operator new(size, sess, table,
 (char *) "HR.PERSON");
}

void *CPerson::operator new(size_t size, void *ctxOCCI_)
{
 return oracle::occi::PObject::operator new(size, ctxOCCI_);
}

void *CPerson::operator new(size_t size,
 const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema)
{
 return oracle::occi::PObject::operator new(size, sess, tableName,
 typeName, tableSchema, typeSchema);

Chapter 4
A Sample OCCI Application

4-32

}

OCCI_STD_NAMESPACE::string CPerson::getSQLTypeName() const
{
 return OCCI_STD_NAMESPACE::string("HR.PERSON");
}

void CPerson::getSQLTypeName(oracle::occi::Environment *env,
 void **schemaName,
 unsigned int &schemaNameLen,
 void **typeName,
 unsigned int &typeNameLen) const
{
 PObject::getSQLTypeName(env, &CPerson::readSQL, schemaName,
 schemaNameLen, typeName, typeNameLen);
}

CPerson::CPerson()
{
 NAME = (MyFullName *) 0;
}

void *CPerson::readSQL(void *ctxOCCI_)
{
 MyPerson *objOCCI_ = new(ctxOCCI_) MyPerson(ctxOCCI_);
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);
 try
 {
 if (streamOCCI_.isNull())
 objOCCI_->setNull();
 else
 objOCCI_->readSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 delete objOCCI_;
 excep.setErrorCtx(ctxOCCI_);
 return (void *)NULL;
 }
 return (void *)objOCCI_;
}

void CPerson::readSQL(oracle::occi::AnyData& streamOCCI_)
{
 ID = streamOCCI_.getNumber();
 NAME = (MyFullName *) streamOCCI_.getObject(&MyFullName::readSQL);
 CURR_ADDR = streamOCCI_.getRef();
 oracle::occi::getVectorOfRefs(streamOCCI_, PREV_ADDR_L);
}

void CPerson::writeSQL(void *objectOCCI_, void *ctxOCCI_)
{
 CPerson *objOCCI_ = (CPerson *) objectOCCI_;
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);
 try
 {
 if (objOCCI_->isNull())
 streamOCCI_.setNull();
 else
 objOCCI_->writeSQL(streamOCCI_);
 }

Chapter 4
A Sample OCCI Application

4-33

 catch (oracle::occi::SQLException& excep)
 {
 excep.setErrorCtx(ctxOCCI_);
 }
 return;
}

void CPerson::writeSQL(oracle::occi::AnyData& streamOCCI_)
{
 streamOCCI_.setNumber(ID);
 streamOCCI_.setObject(NAME);
 streamOCCI_.setRef(CURR_ADDR);
 oracle::occi::setVectorOfRefs(streamOCCI_, PREV_ADDR_L);
}

CPerson::~CPerson()
{
 int i;
 delete NAME;
}

/* GENERATED METHOD IMPLEMENTATIONS FOR THE STUDENT OBJECT TYPE. */
OCCI_STD_NAMESPACE::string CStudent::getSchool_name() const
{
 return SCHOOL_NAME;
}

void CStudent::setSchool_name(const OCCI_STD_NAMESPACE::string &value)
{
 SCHOOL_NAME = value;
}

void *CStudent::operator new(size_t size)
{
 return oracle::occi::PObject::operator new(size);
}

void *CStudent::operator new(size_t size,
 const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table)
{
 return oracle::occi::PObject::operator new(size, sess, table,
 (char *) "HR.STUDENT");
}

void *CStudent::operator new(size_t size, void *ctxOCCI_)
{
 return oracle::occi::PObject::operator new(size, ctxOCCI_);
}

void *CStudent::operator new(size_t size,
 const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema)
{
 return oracle::occi::PObject::operator new(size, sess, tableName,
 typeName, tableSchema, typeSchema);
}

Chapter 4
A Sample OCCI Application

4-34

OCCI_STD_NAMESPACE::string CStudent::getSQLTypeName() const
{
 return OCCI_STD_NAMESPACE::string("HR.STUDENT");
}

void CStudent::getSQLTypeName(oracle::occi::Environment *env,
 void **schemaName,
 unsigned int &schemaNameLen,
 void **typeName,
 unsigned int &typeNameLen) const
{
 PObject::getSQLTypeName(env, &CStudent::readSQL, schemaName,
 schemaNameLen, typeName, typeNameLen);
}

CStudent::CStudent()
{
}
void *CStudent::readSQL(void *ctxOCCI_)
{
 MyStudent *objOCCI_ = new(ctxOCCI_) MyStudent(ctxOCCI_);
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);

 try
 {
 if (streamOCCI_.isNull())
 objOCCI_->setNull();
 else
 objOCCI_->readSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 delete objOCCI_;
 excep.setErrorCtx(ctxOCCI_);
 return (void *)NULL;
 }
 return (void *)objOCCI_;
}

void CStudent::readSQL(oracle::occi::AnyData& streamOCCI_)
{
 CPerson::readSQL(streamOCCI_);
 SCHOOL_NAME = streamOCCI_.getString();
}

void CStudent::writeSQL(void *objectOCCI_, void *ctxOCCI_)
{
 CStudent *objOCCI_ = (CStudent *) objectOCCI_;
 oracle::occi::AnyData streamOCCI_(ctxOCCI_);
 try
 {
 if (objOCCI_->isNull())
 streamOCCI_.setNull();
 else
 objOCCI_->writeSQL(streamOCCI_);
 }
 catch (oracle::occi::SQLException& excep)
 {
 excep.setErrorCtx(ctxOCCI_);
 }
 return;

Chapter 4
A Sample OCCI Application

4-35

}

void CStudent::writeSQL(oracle::occi::AnyData& streamOCCI_)
{
 CPerson::writeSQL(streamOCCI_);
 streamOCCI_.setString(SCHOOL_NAME);
}

CStudent::~CStudent()
{
 int i;
}

Let us assume OTT generates FULL_NAME, ADDRSESS, PERSON, and PFGRFDENT class
declarations in demo2.h. The following sample OCCI application extends the classes
generated by OTT, as specified in demo2.typ file in Example 4-12, and adds some
user-defined methods. Note that these class declarations have been incorporated into
demo2.h to ensure correct compilation.

Example 4-18 Listing of myDemo.h for a Sample OCCI Application

#ifndef MYDEMO_ORACLE
#define MYDEMO_ORACLE

#include <string>

#ifndef DEMO2_ORACLE
#include <demo2.h>
#endif

using namespace std;
using namespace oracle::occi;

// declarations for the MyFullName class.
class MyFullName : public CFullName
{ public:
 MyFullName(string first_name, string last_name);
 void displayInfo();
};

// declarations for the MyAddress class.
class MyAddress : public CAddress
{ public:
 MyAddress(string state_i, string zip_i);
 void displayInfo();
};

// declarations for the MyPerson class.
class MyPerson : public CPerson
{ public:
 MyPerson(Number id_i, MyFullname *name_i,
 const Ref<MyAddress>& addr_i);
 void move(const Ref<MyAddress>& new_addr);
 void displayInfo();
};

#endif

Chapter 4
A Sample OCCI Application

4-36

Example 4-19 Listing for myDemo.cpp for a Sample OCCI Application

#ifndef DEMO2_ORACLE
#include <demo2.h>
#endif

using namespace std;

/* initialize MyFullName */
MyFullName::MyFullName(string first_name,string last_name)
{
 setFirst_name(first_name);
 setLast_name(last_name);
}

/* display all the information in MyFullName */
void MyFullName::displayInfo()
{
 cout << "FIRST NAME is" << getFirst_name() << endl;
 cout << "LAST NAME is" << getLast_name() << endl;
}

MyFullName::MyFullName(void *ctxOCCI_):CFullName(ctxOCCI_)
{
}

/* METHOD IMPLEMENTATIONS FOR MyAddress CLASS. */

/* initialize MyAddress */
MyAddress::MyAddress(string state_i, string zip_i)
{
 setState(state_i);
 setZip(zip_i);
}

/* display all the information in MyAddress */
void MyAddress::displayInfo()
{
 cout << "STATE is" << getState() << endl;
 cout << "ZIP is" << getZip() << endl;
}

MyAddress::MyAddress(void *ctxOCCI_) :CAddress(ctxOCCI_)
{
}

/* METHOD IMPLEMENTATIONS FOR MyPerson CLASS. */

/* initialize MyPerson */
MyPerson::MyPerson(Number id_i, MyFullName* name_i,
 const Ref<MyAddress>& addr_i)
{
 setId(id_i);
 setName(name_i);
 setCurr_addr(addr_i);
}

MyPerson::MyPerson(void *ctxOCCI_) :CPerson(ctxOCCI_)
{
}

Chapter 4
A Sample OCCI Application

4-37

/* move Person from curr_addr to new_addr */
void MyPerson::move(const Ref<MyAddress>& new_addr)
{
 // append curr_addr to the vector //
 getPrev_addr_l().push_back(getCurr_addr());
 setCurr_addr(new_addr);

 // mark the object as dirty
 this->markModified();
}

/* display all the information of MyPerson */
void MyPerson::displayInfo()
{
 cout << "ID is" << (int)getId() << endl;
 getName()->displayInfo();

 // de-referencing the Ref attribute using -> operator
 getCurr_addr()->displayInfo();
 cout << "Prev Addr List: " << endl;
 for (int i = 0; i < getPrev_addr_l().size(); i++)
 {
 // access the collection elements using [] operator
 (getPrev_addr_l())[i]->displayInfo();
 }
}

MyPerson::MyPerson()
{
}

MyStudent::MyStudent(void *ctxOCCI_) : CStudent(ctxOCCI_)
{
}

Example 4-20 Listing of main.cpp for a Sample OCCI Application

#ifndef DEMO2_ORACLE
#include <demo2.h>
#endif

#ifndef MAPPINGS_ORACLE
#include <mappings.h>
#endif

#include <iostream>
using namespace std;
using namespace::oracle;

int main()
{
 Environment *env = Environment::createEnvironment(Environment::OBJECT);
 mappings(env);

 try {
 Connection *conn = Connection("HR", "password");

 /* Call the OTT generated function to register the mappings */
 /* create a persistent object of type ADDRESS in the database table,
 ADDR_TAB */
 MyAddress *addr1 = new(conn, "ADDR_TAB") MyAddress("CA", "94065");

Chapter 4
A Sample OCCI Application

4-38

 conn->commit();

 Statement *st = conn->createStatement("select ref(a) from addr_tab a");
 ResultSet *rs = st->executeQuery();
 Ref<MyAddress> r1;
 if (rs->next())
 r1 = rs->getRef(1);
 st->closeResultSet(rs);
 conn->terminateStatement(st);

 MyFullName * name1 = new MyFullName("Joe", "Black");

 /* create a persistent object of type Person in the database table
 PERSON_TAB */
 MyPerson *person1 = new(conn, "PERSON_TAB") MyPerson(1,name1,r1);
 conn->commit();

 /* selecting the inserted information */
 Statement *stmt = conn->createStatement();
 ResultSet *resultSet =
 stmt->executeQuery("SELECT REF(a) from person_tab a where id = 1");

 if (resultSet->next())
 {
 Ref<MyPerson> joe_ref = (Ref<MyPerson>) resultSet->getRef(1);
 joe_ref->displayInfo();

 /* create a persistent object of type ADDRESS in the database table
 ADDR_TAB */
 MyAddress *new_addr1 = new(conn, "ADDR_TAB") MyAddress("PA", "92140");
 joe_ref->move(new_addr1->getRef());
 joe_ref->displayInfo();
 }

 /* commit the transaction which results in the newly created object
 new_addr and the dirty object joe to be flushed to the server.
 Note that joe was marked dirty in move(). */
 conn->commit();

 conn->terminateStatement(stmt);
 env->terminateConnection(conn);
 }

 catch (exception &x)

 {
 cout << x.what () << endl;
 }
 Environment::terminateEnvironment(env);
 return 0;
}

Chapter 4
A Sample OCCI Application

4-39

5
Data Types

This chapter is a reference for Oracle data types used by Oracle C++ Interface applications.
This information helps you to understand the conversions between internal and external
representations of data that occur when you transfer data between your application and the
database server.

This chapter contains these topics:

• Overview of Oracle Data Types

• Internal Data Types

• External Data Types

• Data Conversions

5.1 Overview of Oracle Data Types
Accurate communication between your C++ program and the Oracle database server is
critical. OCCI applications can retrieve data from database tables by using SQL queries or
they can modify existing data with SQL INSERT, UPDATE, and DELETE functions. To facilitate
communication between the host language C++ and the database server, you must be aware
of how C++ data types are converted to Oracle data types and back again.

In the Oracle database, values are stored in columns in tables. Internally, Oracle represents
data in particular formats called internal data types. NUMBER, VARCHAR2, and DATE are
examples of Oracle internal data types.

OCCI applications work with host language data types, or external data types, predefined by
the host language. When data is transferred between an OCCI application and the database
server, the data from the database is converted from internal data types to external data
types.

This section includes the following topic: About OCCI Type and Data Conversion.

5.1.1 About OCCI Type and Data Conversion
OCCI defines an enumerator called Type that lists the possible data representation formats
available in an OCCI application. These representation formats are called external data
types. When data is sent to the database server from the OCCI application, the external data
type indicates to the database server what format to expect the data. When data is requested
from the database server by the OCCI application, the external data type indicates the format
of the data to be returned.

For example, on retrieving a value from a NUMBER column, the program may be set to retrieve
it in OCCIINT format (a signed integer format into an integer variable). Or, the client might be
set to send data in OCCIFLOAT format (floating-point format) stored in a C++ float variable to
be inserted in a column of NUMBER type.

An OCCI application binds input parameters to a Statement, by calling a setxxx() method
(the external datatype is implicitly specified by the method name), or by calling the

5-1

registerOutParam(), setDataBuffer(), or setDataBufferArray() method (the
external data type is explicitly specified in the method call). Similarly, when data values
are fetched through a ResultSet object, the external representation of the retrieved
data must be specified. This is done by calling a getxxx() method (the external
datatype is implicitly specified by the method name) or by calling the
setDataBuffer() method (the external data type is explicitly specified in the method
call).

Note that there are more external data types than internal data types. In some cases,
a single external data type maps to a single internal data type; in other cases, many
external data types map to a single internal data type. The many-to-one mapping
provides you with added flexibility.

See Also:

External Data Types

5.2 Internal Data Types
The internal (built-in) data types provided by Oracle are listed in this section. A brief
summary of internal Oracle data types, including description, code, and maximum
size, appears in Table 5-1.

Table 5-1 Summary of Oracle Internal Data Types

Internal Data Type Maximum Size

BFILE 4 gigabytes

BINARY_DOUBLE 8 bytes

BINARY_FLOAT 4 bytes

CHAR 2,000 bytes

DATE 7 bytes

INTERVAL DAY TO SECOND REF 11 bytes

INTERVAL YEAR TO MONTH REF 5 bytes

LONG 2 gigabytes (2^31-1 bytes)

LONG RAW 2 gigabytes (2^31-1 bytes)

NCHAR 2,000 bytes

Chapter 5
Internal Data Types

5-2

Table 5-1 (Cont.) Summary of Oracle Internal Data Types

Internal Data Type Maximum Size

NUMBER 21 bytes

NVARCHAR2 32,767 bytes

RAW 2000 bytes (standard), 32,767 bytes (extended)

REF Not Applicable

BLOB 4 gigabytes

CLOB 4 gigabytes

NCLOB 4 gigabytes

ROWID 10 bytes

TIMESTAMP 11 bytes

TIMESTAMP WITH LOCAL TIME ZONE 7 bytes

TIMESTAMP WITH TIME ZONE 13 bytes

UROWID 4000 bytes

User-defined type (object type, VARRAY,
nested table)

Not Applicable

VARCHAR2 4000 bytes (standard), 32,767 bytes extended

See Also:

• Oracle Database SQL Language Reference

• Oracle Database Concepts

This section includes the following topics:

• Character Strings and Byte Arrays

• Universal Rowid (UROWID)

Chapter 5
Internal Data Types

5-3

5.2.1 Character Strings and Byte Arrays
You can use five Oracle internal data types to specify columns that contain either
characters or arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.

CHAR, VARCHAR2, and LONG columns normally hold character data. RAW and LONG RAW
hold bytes that are not interpreted as characters, for example, pixel values in a
bitmapped graphics image. Character data can be transformed when passed through
a gateway between networks. For example, character data passed between systems
by using different languages (where single characters may be represented by differing
numbers of bytes) can be significantly changed in length. Raw data is never converted
in this way.

The database designer is responsible for choosing the appropriate Oracle internal data
type for each column in a table. You must be aware of the many possible ways that
character and byte-array data can be represented and converted between variables in
the OCCI program and Oracle database tables.

5.2.2 Universal Rowid (UROWID)
The universal rowid (UROWID) is a data type that can store both the logical and the
physical rowid of rows in Oracle tables and in foreign tables, such as DB2 tables
accessed through a gateway. Logical rowid values are primary key-based logical
identifiers for the rows of index-organized tables.

To use columns of the UROWID data type, the value of the COMPATIBLE initialization
parameter must be set to 8.1 or higher.

The following OCCI_SQLT types can be bound to universal rowids:

• OCCI_SQLT_CHR (VARCHAR2)

• OCCI_SQLT_VCS (VARCHAR)

• OCCI_SQLT_STR (NULL terminated string)

• OCCI_SQLT_LVC (long VARCHAR)

• OCCI_SQLT_AFC (CHAR)
• OCCI_SQLT_AVC (CHARZ)

• OCCI_SQLT_VST (string)

• OCCI_SQLT_RDD (ROWID descriptor)

5.3 External Data Types
OCCI application communicate with the Oracle database server by using external data
types. Specifically, external data types are mapped to C++ data types.

Table 5-2 lists the Oracle external data types, the C++ equivalent (what the Oracle
internal data type is usually converted to), and the corresponding OCCI type. Note the
following conditions:

• In C++ Data Type column, n stands for variable length and depends on program
requirements or operating system.

Chapter 5
External Data Types

5-4

• The usage of types in Statement class methods is as follows:

– setDataBuffer() and setDataBufferArray(): Only types of the form OCCI_SQLT_xxx
(for example, OCCI_SQLT_INT) in the occiCommon.h file are permitted.

– registerOutParam(): Only types of the form OCCIxxx (for example, OCCIDOUBLE,
OCCICURSOR, and so on) on the occiCommon.h file are permitted. However, there are
some exceptions: OCCIANYDATA, OCCIMETADATA, OCCISTREAM, and OCCIBOOL are not
permitted.

• In the ResultSet class, only types of the form OCCI_SQLT_xxx (for example,
OCCI_SQLT_INT) in the occiCommon.h file are permitted for use in setDataBuffer() and
setDataBufferArray() methods.

• The TIMESTAMP and TIMESTAMP WITH TIME ZONE data types are collectively known as
datetimes. The INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND are collectively
known as intervals.

Table 5-2 External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes

16 bit signed INTEGER signed short,
signed int

OCCIINT Use with setDataBuffer(),
setDataBufferArray().

32 bit signed INTEGER signed int,
signed long

OCCIINT Use with setDataBuffer(),
setDataBufferArray().

8 bit signed INTEGER signed char OCCIINT Use with setDataBuffer(),
setDataBufferArray().

BFILE Bfile OCCIBFILE Use with regiserOutParam().

FBFILE OCILobLocator OCCI_SQLT_FILE Use with setDataBuffer(),
setDataBufferArray().

BLOB OCILobLocator OCCI_SQLT_BLOB Use with setDataBuffer(),
setDataBufferArray().

BLOB Blob OCCIBLOB Use with regiserOutParam().

BOOL bool OCCIBOOL Use with regiserOutParam().

BYTES Bytes OCCIBYTES Use with regiserOutParam().

CHAR char[n] OCCI_SQLT_AFC Use with setDataBuffer(),
setDataBufferArray().

CHAR string OCCICHAR Use with regiserOutParam().

CLOB OCILobLocator OCCI_SQLT_CLOB Use with setDataBuffer(),
setDataBufferArray().

CHARZ char[n+1] OCCI_SQLT_RDD Use with setDataBuffer(),
setDataBufferArray().

Chapter 5
External Data Types

5-5

Table 5-2 (Cont.) External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes

CLOB Clob OCCICLOB Use with regiserOutParam().

CURSOR ResultSet OCCICURSOR Use with regiserOutParam().

DATE char[7] OCCI_SQLT_DAT Use with setDataBuffer(),
setDataBufferArray().

DATE Date OCCIDATE Use with regiserOutParam().

DOUBLE double OCCIDOUBLE Use with regiserOutParam().

FLOAT float, double OCCIFLOAT Use with setDataBuffer(),
setDataBufferArray().

FLOAT float OCCIFLOAT Use with regiserOutParam().

INT int OCCIINT Use with regiserOutParam().

INTERVAL DAY TO
SECOND char[11] OCCI_SQLT_INTERVAL_DS Use with setDataBuffer(),

setDataBufferArray().

INTERVAL YEAR TO
MONTH char[5] OCCI_SQLT_INTERVAL_YM Use with setDataBuffer(),

setDataBufferArray().

INTERVALDS IntervalDS OCCIINTERVALDS Use with regiserOutParam().

INTERVALYM IntervalYM OCCIINTERVALYM Use with regiserOutParam().

LONG char[n] OCCI_SQLT_LNG Use with setDataBuffer(),
setDataBufferArray().

LONG RAW unsigned char[n] OCCI_SQLT_LBI Use with setDataBuffer(),
setDataBufferArray().

LONG VARCHAR char[n+siezeof(int
eger)]

OCCI_SQLT_LVC Use with setDataBuffer(),
setDataBufferArray().

LONG VARRAW unsigned
char[n+siezeof(int
eger)]

OCCI_SQLT_LVB Use with setDataBuffer(),
setDataBufferArray().

METADATA MetaData OCCIMETADATA Use with regiserOutParam().

NAMED DATA TYPE struct OCCI_SQLT_NTY Use with setDataBuffer(),
setDataBufferArray().

NATIVE DOUBLE double OCCIBDOUBLE Use with setDataBuffer(),
setDataBufferArray().

Chapter 5
External Data Types

5-6

Table 5-2 (Cont.) External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes

NATIVE DOUBLE Bdouble, double OCCIBDOUBLE Use with regiserOutParam().

NATIVE FLOAT float OCCIBFLOAT Use with setDataBuffer(),
setDataBufferArray().

NATIVE FLOAT BFloat, float OCCIBFLOAT Use with regiserOutParam().

null terminated STRING char[n+1] OCCI_SQLT_STR Use with setDataBuffer(),
setDataBufferArray().

NUMBER unsigned char[21] OCCI_SQLT_NUM Use with setDataBuffer(),
setDataBufferArray().

NUMBER Number OCCINUMBER Use with regiserOutParam().

POBJECT User defined types
generated by OTT
utility.

OCCIPOBJECT Use with regiserOutParam().

RAW unsigned char[n] OCCI_SQLT_BIN Use with setDataBuffer(),
setDataBufferArray().

REF OCIRef OCCI_SQLT_REF Use with setDataBuffer(),
setDataBufferArray().

REF Ref OCCIREF Use with regiserOutParam().

REFANY RefAny OCCIREFANY Use with regiserOutParam().

ROWID OCIRowid OCCI_SQLT_RID Use with setDataBuffer(),
setDataBufferArray().

ROWID Bytes OCCIROWID Use with regiserOutParam().

ROWID descriptor OCIRowid OCCI_SQLT_RDD Use with setDataBuffer(),
setDataBufferArray().

STRING STL string OCCISTRING Use with regiserOutParam().

TIMESTAMP char[11] OCCI_SQLT_TIMESTAMP Use with setDataBuffer(),
setDataBufferArray().

TIMESTAMP Timestamp OCCITIMESTAMP Use with regiserOutParam().

TIMESTAMP WITH
LOCAL TIME ZONE char[7] OCCI_SQLT_TIMESTAMP_LTZ Use with setDataBuffer(),

setDataBufferArray().

TIMESTAMP WITH
TIME ZONE char[13] OCCI_SQLT_TIMESTAMP_TZ Use with setDataBuffer(),

setDataBufferArray().

UNSIGNED INT unsigned int OCCIUNSIGNED_INT Use with setDataBuffer(),
setDataBufferArray().

Chapter 5
External Data Types

5-7

Table 5-2 (Cont.) External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes

UNSIGNED INT unsigned int OCCIUNSIGNED_INT Use with regiserOutParam().

VARCHAR char[n+sizeof(sho
rt integer)]

OCCI_SQLT_VCS Use with setDataBuffer(),
setDataBufferArray().

VARCHAR2 char[n] OCCI_SQLT_CHR Use with setDataBuffer(),
setDataBufferArray().

VARNUM char[22] OCCI_SQLT_VNU Use with setDataBuffer(),
setDataBufferArray().

VARRAW unsigned
char[n+sizeof(sho
rt integer)]

OCCI_SQLT_VBI Use with setDataBuffer(),
setDataBufferArray().

VECTOR STL vector OCCIVECTOR Use with regiserOutParam().

This section includes the following topic: Description of External Data Types.

5.3.1 Description of External Data Types
This section provides a description for each of the external data types:

• BFILE

• BDOUBLE

• BFLOAT

• BLOB

• CHAR

• CHARZ

• CLOB

• DATE

• FLOAT

• INTEGER

• INTERVAL DAY TO SECOND

• INTERVAL YEAR TO MONTH

• LONG

• LONG RAW

• LONG VARCHAR

• LONG VARRAW

• NCLOB

• NUMBER

Chapter 5
External Data Types

5-8

• OCCI BFILE

• OCCI BLOB

• OCCI BYTES

• OCCI CLOB

• OCCI DATE

• OCCI INTERVALDS

• OCCI INTERVALYM

• OCCI NUMBER

• OCCI POBJECT

• OCCI REF

• OCCI REFANY

• OCCI STRING

• OCCI TIMESTAMP

• OCCI VECTOR

• RAW

• REF

• ROWID

• STRING

• TIMESTAMP

• TIMESTAMP WITH LOCAL TIME ZONE

• TIMESTAMP WITH TIME ZONE

• UNSIGNED INT

• VARCHAR

• VARCHAR2

• VARNUM

• VARRAW

• NATIVE DOUBLE

• NATIVE FLOAT

5.3.1.1 BFILE
The external data type BFILE allows read-only byte stream access to large files on the file
system of the database server. A BFILE is a large binary data object stored in operating
system files outside database tablespaces. These files use reference semantics. The Oracle
server can access a BFILE provided the underlying server operating system supports stream-
mode access to these operating system files.

5.3.1.2 BDOUBLE
The BDouble interface in OCCI encapsulates the native double data and the NULL information
of a column or object attribute of the type binary_double. The OCCI methods in AnyData

Chapter 5
External Data Types

5-9

Class, ResultSet Class and Statement Class, and the global methods that take these
class objects as parameters, use the following definition for the BDOUBLE data type:

Example 5-1 Definition of the BDOUBLE Data Type

struct BDouble
{
 double value;
 bool isNull;

 BDouble()
 {
 isNull = false;
 value = 0.;
 }
};

5.3.1.3 BFLOAT
The BFloat interface in OCCI encapsulates the native float data and the NULL
information of a column or object attribute of the type binary_float. The OCCI
methods in AnyData Class, ResultSet Class and Statement Class, and the global
methods that take these class objects as parameters, use the following definition for
the BFLOAT data type:

Example 5-2 Definition of the BFLOAT Data Type

struct BFloat
{
 float value;
 bool isNull;

 BFloat()
 {
 isNull = false;
 value = 0.;
 }
};

5.3.1.4 BLOB
The external data type BLOB stores unstructured binary large objects. A BLOB can be
thought of as a bitstream with no character set semantics. BLOBs can store up to 4
gigabytes of binary data.

BLOB data types have full transactional support. Changes made through OCCI
participate fully in the transaction. BLOB value manipulations can be committed or rolled
back. You cannot save a BLOB locator in a variable in one transaction and then use it in
another transaction or session.

5.3.1.5 CHAR
The external data type CHAR is a string of characters, with a maximum length of 2000
characters. Character strings are compared by using blank-padded comparison
semantics.

Chapter 5
External Data Types

5-10

5.3.1.6 CHARZ
The external data type CHARZ is similar to the CHAR data type, except that the string must be
NULL terminated on input, and Oracle places a NULL terminator character at the end of the
string on output. The NULL terminator serves only to delimit the string on input or output. It is
not part of the data in the table.

5.3.1.7 CLOB
The external data type CLOB stores fixed-width or varying-width character data. A CLOB can
store up to 4 gigabytes of character data. CLOBs have full transactional support. Changes
made through OCCI participate fully in the transaction. CLOB value manipulations can be
committed or rolled back. You cannot save a CLOB locator in a variable in one transaction and
then use it in another transaction or session.

5.3.1.8 DATE
The external data type DATE can update, insert, or retrieve a date value using the Oracle
internal seven byte date binary format, as listed in Table 5-3:

Table 5-3 Format of the DATE Data Type

Example Byte 1:
Century

Byte 2:
Year

Byte 3:
Month

Byte 4:
Day

Byte 5:
Hour

Byte 6:
Minute

Byte 7:
Second

1: 01-JUN-2000, 3:17PM 120 100 6 1 16 18 1

2: 01-JAN-4712 BCE 53 88 1 1 1 1 1

5.3.1.8.1 Example 1, 01-JUN-2000, 3:17PM:
• The century and year bytes (1 and 2) are in excess-100 notation. Dates BCE (Before

Common Era) are less than 100. Dates in the Common Era (CE), 0 and after, are greater
than 100. For dates 0 and after, the first digit of both bytes 1 and 2 signifies that it is of the
CE.

• For byte 1, the second and third digits of the century are calculated as the year (an
integer) divided by 100. With integer division, the fractional portion is discarded. The
following calculation is for the year 1992: 1992 / 100 = 19.

• For byte 1, 119 represents the twentieth century, 1900 to 1999. A value of 120 would
represent the twenty-first century, 2000 to 2099.

• For byte 2, the second and third digits of the year are calculated as the year modulo 100:
1992 % 100 = 92.

• For byte 2, 192 represents the ninety-second year of the current century. A value of 100
would represent the zeroth year of the current century.

• The year 2000 would yield 120 for byte 1 and 100 for byte 2.

• For bytes 3 through 7, valid dates begin at 01-JAN of the year. The month byte ranges
from 1 to 12, the date byte ranges from 1 to 31, the hour byte ranges from 1 to 24, the
minute byte ranges from 1 to 60, and the second byte ranges from 1 to 60.

Chapter 5
External Data Types

5-11

5.3.1.8.2 Example 2, 01-JAN-4712 BCE:
• For years before 0 CE, centuries and years are represented by the difference

between 100 and the number.

• For byte 1, 01-JAN-4712 BCE is century 53: 100 - 47 = 53.
• For byte 2, 01-JAN-4712 BCE is year 88: 100 - 12 = 88.

If no time is specified for a date, the time defaults to midnight and bytes 5 through 6
are set to 1: 1, 1, 1.

When you enter a date in binary format by using the external data type DATE, the
database does not perform consistency or range checking. All data in this format must
be validated before input.

There is little need for the external data type DATE. It is more convenient to convert
DATE values to a character format, because most programs deal with dates in a
character format, such as DD-MON-YYYY. Instead, you may use the Date data type.

When a DATE column is converted to a character string in your program, it is returned
in the default format mask for your session, or as specified in the INIT.ORA file.

This data type is different from OCCI DATE which corresponds to a C++ Date data type.

5.3.1.9 FLOAT
The external data type FLOAT processes numbers with fractional parts. The number is
represented in the host system's floating-point format. Normally, the length is 4 or 8
bytes.

The internal format of an Oracle number is decimal. Most floating-point
implementations are binary. Oracle, therefore, represents numbers with greater
precision than floating-point representations.

5.3.1.10 INTEGER
The external data type INTEGER is used for converting numbers. An external integer is
a signed binary number. Its size is operating system-dependent. If the number being
returned from Oracle is not an integer, then the fractional part is discarded, and no
error is returned. If the number returned exceeds the capacity of a signed integer for
the system, then Oracle returns an overflow on conversion error.

A rounding error may occur when converting between FLOAT and NUMBER. Using a
FLOAT as a bind variable in a query may return an error. You can work around this by
converting the FLOAT to a string and using the OCCI type OCCI_SQLT_CHR or the OCCI
type OCCI_SQLT_STR for the operation.

5.3.1.11 INTERVAL DAY TO SECOND
The external data type INTERVAL DAY TO SECOND stores the difference between two
datetime values in terms of days, hours, minutes, and seconds. Specify this data type
as follows:

INTERVAL DAY [(day_precision)]
 TO SECOND [(fractional_seconds_precision)]

Chapter 5
External Data Types

5-12

This example uses the following placeholders:

• day_precision: Number of digits in the DAY datetime field. Accepted values are 1 to 9.
The default is 2.

• fractional_seconds_precision: Number of digits in the fractional part of the SECOND
datetime field. Accepted values are 0 to 9. The default is 6.

To specify an INTERVAL DAY TO SECOND literal with nondefault day and second precision, you
must specify the precisions in the literal. For example, you might specify an interval of 100
days, 10 hours, 20 minutes, 42 seconds, and 22 hundredths of a second as follows:

INTERVAL '100 10:20:42.22' DAY(3) TO SECOND(2)

You can also use abbreviated forms of the INTERVAL DAY TO SECOND literal. For example:

• INTERVAL '90' MINUTE maps to INTERVAL '00 00:90:00.00' DAY TO SECOND(2)
• INTERVAL '30:30' HOUR TO MINUTE maps to INTERVAL '00 30:30:00.00' DAY TO

SECOND(2)
• INTERVAL '30' SECOND(2,2) maps to INTERVAL '00 00:00:30.00' DAY TO SECOND(2)

5.3.1.12 INTERVAL YEAR TO MONTH
The external data type INTERVAL YEAR TO MONTH stores the difference between two datetime
values by using the YEAR and MONTH datetime fields. Specify INTERVAL YEAR TO MONTH as
follows:

INTERVAL YEAR [(year_precision)] TO MONTH

The placeholder year_precision is the number of digits in the YEAR datetime field. The
default value of year_precision is 2. To specify an INTERVAL YEAR TO MONTH literal with a
nondefault year_precision, you must specify the precision in the literal. For example, the
following INTERVAL YEAR TO MONTH literal indicates an interval of 123 years, 2 months:

INTERVAL '123-2' YEAR(3) TO MONTH

You can also use abbreviated forms of the INTERVAL YEAR TO MONTH literal. For example,

• INTERVAL '10' MONTH maps to INTERVAL '0-10' YEAR TO MONTH
• INTERVAL '123' YEAR(3) maps to INTERVAL '123-0' YEAR(3) TO MONTH

5.3.1.13 LONG
The external data type LONG stores character strings longer than 4000 bytes and up to 2
gigabytes in a column of data type LONG. Columns of this type are only used for storage and
retrieval of long strings. They cannot be used in methods, expressions, or WHERE clauses.
LONG column values are generally converted to and from character strings.

5.3.1.14 LONG RAW
The external data type LONG RAW is similar to the external data type RAW, except that it stores
up to 2 gigabytes.

Chapter 5
External Data Types

5-13

5.3.1.15 LONG VARCHAR
The external data type LONG VARCHAR stores data from and into an Oracle LONG
column. The first four bytes contain the length of the item. The maximum length of a
LONG VARCHAR is 2 gigabytes.

5.3.1.16 LONG VARRAW
The external data type LONG VARRAW store data from and into an Oracle LONG RAW
column. The length is contained in the first four bytes. The maximum length is 2
gigabytes.

5.3.1.17 NCLOB
The external data type NCLOB is a national character version of a CLOB. It stores fixed-
width, multibyte national character set character (NCHAR), or varying-width character set
data. An NCLOB can store up to 4 gigabytes of character text data.

NCLOBs have full transactional support. Changes made through OCCI participate fully
in the transaction. NCLOB value manipulations can be committed or rolled back. You
cannot save an NCLOB locator in a variable in one transaction and then use it in another
transaction or session.

You cannot create an object with NCLOB attributes, but you can specify NCLOB
parameters in methods.

5.3.1.18 NUMBER
You should not have to use NUMBER as an external data type. If you do use it, Oracle
returns numeric values in its internal 21-byte binary format and expects this format on
input. The following discussion is included for completeness only.

Oracle stores values of the NUMBER data type in a variable-length format. The first byte
is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of the
exponent byte is the sign bit; it is set for positive numbers and it is cleared for negative
numbers. The lower 7 bits represent the exponent, which is a base-100 digit with an
offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another
128 if the number is positive. If the number is negative, you do the same, but
subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(0x3e). The decimal exponent is thus (~0x3e)-128-65 = 0xc1-128-65 = 193-128-65
= 0.

Each mantissa byte is a base-100 digit, in the range 1 to 100. For positive numbers,
the digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative
numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa digit
for the number -5 is: 101-5 = 96. Negative numbers have a byte containing 102
appended to the data bytes. However, negative numbers that have 20 mantissa bytes
do not have the trailing 102 byte. Because the mantissa digits are stored in base-100,
each byte can represent two decimal digits. The mantissa is normalized; leading
zeroes are not stored.

Chapter 5
External Data Types

5-14

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to be
accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum precision
of 38 digits for an internal data type NUMBER.

Note that this data type is different from OCCI NUMBER which corresponds to a C++ Number
data type.

5.3.1.19 OCCI BFILE

See Also:

OCCI Application Programming Interface, Bfile Class

5.3.1.20 OCCI BLOB

See Also:

OCCI Application Programming Interface, Blob Class

5.3.1.21 OCCIBOOL
Starting with Oracle Database release 23c, a new external data type OCCIBOOL is introduced
to represent BOOLEAN type.

5.3.1.22 OCCI BYTES

See Also:

OCCI Application Programming Interface, Bytes Class

5.3.1.23 OCCI CLOB

See Also:

OCCI Application Programming Interface, Clob Class

Chapter 5
External Data Types

5-15

5.3.1.24 OCCI DATE

See Also:

OCCI Application Programming Interface, Date Class

5.3.1.25 OCCI INTERVALDS

See Also:

OCCI Application Programming Interface, IntervalDS Class

5.3.1.26 OCCI INTERVALYM

See Also:

OCCI Application Programming Interface, IntervalYM Class

5.3.1.27 OCCI NUMBER

See Also:

OCCI Application Programming Interface, Number Class

5.3.1.28 OCCI POBJECT

See Also:

OCCI Application Programming Interface, PObject Class

5.3.1.29 OCCI REF

See Also:

OCCI Application Programming Interface, Ref Class

Chapter 5
External Data Types

5-16

5.3.1.30 OCCI REFANY

See Also:

OCCI Application Programming Interface, RefAny Class

5.3.1.31 OCCI STRING
The external data type OCCI STRING corresponds to an STL string.

5.3.1.32 OCCI TIMESTAMP

See Also:

OCCI Application Programming Interface, Timestamp Class

5.3.1.33 OCCI VECTOR
The external data type OCCI VECTOR is used to represent collections, for example, a nested
table or VARRAY. CREATE TYPE num_type as VARRAY OF NUMBER(10) can be represented in a
C++ application as vector<int>, vector<Number>, and so on.

5.3.1.34 RAW
The external data type RAW is used for binary data or byte strings that are not to be interpreted
or processed by Oracle. RAW could be used, for example, for graphics character sequences.
The maximum length of a RAW column is 2000 bytes. If the init.ora parameter
max_string_size = standard (default value), the maximum length of a RAW can be 2000
bytes. If the init.ora parameter max_string_size = extended, the maximum length of a
RAW can be 32767 bytes. See the init.ora parameter MAX_STRING_SIZE in Oracle
Database Reference for more information about extended data types.

When RAW data in an Oracle table is converted to a character string, the data is represented
in hexadecimal code. Each byte of RAW data is represented as two characters that indicate the
value of the byte, ranging from 00 to FF. If you input a character string by using RAW, then you
must use hexadecimal coding.

5.3.1.35 REF
The external data type REF is a reference to a named data type. To allocate a REF for use in
an application, declare a variable as a pointer to a REF.

5.3.1.36 ROWID
The external data type ROWID identifies a particular row in a database table. The ROWID is
often returned from a query by issuing a statement similar to the following example:

Chapter 5
External Data Types

5-17

SELECT ROWID, var1, var2 FROM db;

You can then use the returned ROWID in further DELETE statements.

If you are performing a SELECT for an UPDATE operation, then the ROWID is implicitly
returned.

5.3.1.37 STRING
The external data type STRING behaves like the external data type VARCHAR2 (data type
code 1), except that the external data type STRING must be NULL-terminated.

Note that this data type is different from OCCI STRING which corresponds to a C++ STL
string data type.

5.3.1.38 TIMESTAMP
The external data type TIMESTAMP is an extension of the DATE data type. It stores the
year, month, and day of the DATE data type, plus hour, minute, and second values.
Specify the TIMESTAMP data type as follows:

TIMESTAMP [(fractional_seconds_precision)]

The placeholder fractional_seconds_precision optionally specifies the number of
digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6. For example, you specify TIMESTAMP(2) as a literal as
follows:

TIMESTAMP '1997-01-31 09:26:50.10'

Note that this data type is different from OCCI TIMESTAMP.

5.3.1.39 TIMESTAMP WITH LOCAL TIME ZONE
The external data type TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that
includes an explicit time zone displacement in its value. The time zone displacement is
the difference (in hours and minutes) between local time and Coordinated Universal
Time (UTC), formerly Greenwich Mean Time. Specify the TIMESTAMP WITH TIME ZONE
data type as follows:

TIMESTAMP(fractional_seconds_precision) WITH TIME ZONE

The placeholder fractional_seconds_precision optionally specifies the number of
digits in the fractional part of the SECOND datetime field and can be a number in the
range 0 to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the
same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

5.3.1.40 TIMESTAMP WITH TIME ZONE
The external data type TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that
includes a time zone displacement in its value. The time zone displacement is the
difference (in hours and minutes) between local time and Coordinated Universal Time
(UTC), formerly Greenwich Mean Time. Specify the TIMESTAMP WITH TIME ZONE data
type as follows:

Chapter 5
External Data Types

5-18

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

The placeholder fractional_seconds_precision optionally specifies the number of digits in
the fractional part of the SECOND datetime field and can be a number in the range 0 to 9.
The default is 6. For example, you might specify TIMESTAMP(0) WITH TIME ZONE as a literal as
follows:

TIMESTAMP '1997-01-31 09:26:50+02.00'

5.3.1.41 UNSIGNED INT
The external data type UNSIGNED INT is used for unsigned binary integers. The size in bytes
is operating system dependent. The host system architecture determines the order of the
bytes in a word. If the number being output from Oracle is not an integer, the fractional part is
discarded, and no error is returned. If the number to be returned exceeds the capacity of an
unsigned integer for the operating system, Oracle returns an overflow on conversion error.

5.3.1.42 VARCHAR
The external data type VARCHAR store character strings of varying length. The first two bytes
contain the length of the character string, and the remaining bytes contain the actual string.
The specified length of the string in a bind or a define call must include the two length bytes,
meaning the largest VARCHAR string is 65533 bytes long, not 65535. For converting longer
strings, use the LONG VARCHAR external data type.

5.3.1.43 VARCHAR2
The external data type VARCHAR2 is a variable-length string of characters up to 4000 bytes. If
the init.ora parameter max_string_size = standard (default value), the maximum length
of a VARCHAR2 can be 4000 bytes. If the init.ora parameter max_string_size = extended,
the maximum length of a VARCHAR2 can be 32767 bytes. See the init.ora parameter
MAX_STRING_SIZE in Oracle Database Reference for more information about extended
data types.

5.3.1.44 VARNUM
The external data type VARNUM is similar to the external data type NUMBER, except that the first
byte contains the length of the number representation. This length value does not include the
length byte itself. Reserve 22 bytes to receive the longest possible VARNUM. You must set the
length byte when you send a VARNUM value to the database.

Table 5-4 VARNUM Examples

Decimal Value Length Byte Exponent Byte Mantissa Bytes Terminator Byte

0 1 128 NA1 NA

5 2 193 6 NA

-5 3 62 96 102
2767 3 194 28, 68 NA

-2767 4 61 74, 34 102
100000 2 195 11 NA

Chapter 5
External Data Types

5-19

Table 5-4 (Cont.) VARNUM Examples

Decimal Value Length Byte Exponent Byte Mantissa Bytes Terminator Byte

1234567 5 196 2, 24, 46, 68 NA

1 NA means not applicable.

5.3.1.45 VARRAW
The external data type VARRAW is similar to the external data type RAW, except that the
first two bytes contain the length of the data. The specified length of the string in a bind
or a define call must include the two length bytes. So the largest VARRAW string that can
be received or sent is 65533 bytes, not 65535. For converting longer strings, use the
LONG VARRAW data type.

5.3.1.46 NATIVE DOUBLE
This external data type implements the IEEE 754 standard double-precision floating
point data type. It is represented in the host system's native floating point format. The
data type is stored in the Oracle Server in a byte comparable canonical format, and
requires 8 bytes for storage, including the length byte. It is an alternative to Oracle
NUMBER and has the following advantages over NUMBER:

• Fewer bytes used in storage

• Matches data types used by RDBMS Clients

• Supports a wider range of values used in scientific calculations.

5.3.1.47 NATIVE FLOAT
This external data type implements the IEEE 754 single-precision floating point data
type. It is represented in the host system's native floating point format. The data type is
stored in the Oracle Server in a byte comparable canonical format, and requires 4
bytes for storage, including the length byte. It is an alternative to Oracle NUMBER and
has the following advantages over NUMBER:

• Fewer bytes used in storage

• Matches data types used by RDBMS Clients

• Supports a wider range of values used in scientific calculations

5.4 Data Conversions
Table 5-5 lists the supported conversions from Oracle internal data types to external
data types, and from external data types to internal column representations.

Note the following conditions:

• A REF stored in the database is converted to OCCI_SQLT_REF on output.

• An OCCI_SQLT_REF is converted to the internal representation of a REF on input.

Chapter 5
Data Conversions

5-20

• A named data type stored in the database is converted to OCCI_SQLT_NTY (and
represented by a C structure in the application) on output.

• An OCCI_SQLT_NTY (represented by a C structure in an application) is converted to the
internal representation of the corresponding data type on input.

• LOBs and BFILEs are represented by descriptors in OCCI applications, so there are no
input or output conversions.

Also note that in Table 5-5, conversions have the following numeric codes:

1. The data type must be in Oracle ROWID format for input; it is returned in Oracle ROWID
format on output.

2. The data type must be in Oracle DATE format for input; it is returned in Oracle DATE
format on output.

3. The data type must be in hexadecimal format for input; it is returned in hexadecimal
format on output.

4. The data type must represent a valid number for output.

5. The length must be less than or equal to 2000 characters.

6. The data type must be stored in hexadecimal format on output; it is in hexadecimal
format on output.

Table 5-5 Data Conversions Between External and Internal Data Types

NA1 Internal Data Types

External Data
Types

VARCHAR
2

NUMBE
R

LON
G

ROWI
D

DAT
E

RA
W

LONG
RAW

CHAR BFLOA
T

BDOUBL
E

CHAR I/O I/O I/O I/O1 I/O2 I/O3 I3, 5 I/O I/O I/O

CHARZ I/O I/O I/O I/O1 I/O2 I/O3 I3, 5 I/O NA NA

DATE I/O NA I NA I/O NA NA I/O NA NA

DECIMAL I/O4 I/O I NA NA NA NA I/O4 NA NA

FLOAT I/O4 I/O I NA NA NA NA I/O4 I/O I/O

INTEGER I/O4 I/O I NA NA NA NA I/O4 I/O I/O

LONG I/O I/O I/O I/O1 I/O2 I/O3 I/O3, 5 I/O I/O II/O

LONG RAW O6 NA I5, 6 NA NA I/O I/O O6 NA NA

LONG VARCHAR I/O I/O I/O I/O1 I/O2 I/O3 I/O3, 5 I/O I/O I/O

LONG VARRAW I/O6 NA I5, 6 NA NA I/O I/O I/O6 NA NA

NUMBER I/O4 I/O I NA NA NA NA I/O4 I/O I/O

OCCI BDouble I/O 1/O I NA NA NA NA I/O I/O I/O

OCCI BFloat I/O 1/O I NA NA NA NA I/O I/O I/O

OCCI Bytes I/O6 NA I5, 6 NA NA I/O I/O I/O6 NA NA

OCCI Date I/O2 NA I NA I/O NA NA I/O NA NA

OCCI Number I/O4 I/O I NA NA NA NA I/O4 I/O I/O

OCCI Timestamp NA NA NA NA NA NA NA NA NA NA

Chapter 5
Data Conversions

5-21

Table 5-5 (Cont.) Data Conversions Between External and Internal Data Types

NA1 Internal Data Types

External Data
Types

VARCHAR
2

NUMBE
R

LON
G

ROWI
D

DAT
E

RA
W

LONG
RAW

CHAR BFLOA
T

BDOUBL
E

RAW I/O6 NA I5, 6 NA NA I/O I/O I/O6 NA NA

ROWID I NA I I/O NA NA NA I NA NA

STL string I/O I/O I/O I/O1 I/O2 I/O3 I/O3 - I/O4 I/O4

STRING I/O I/O I/O I/O1 I/O2 I/O3 I/O3, 5 I/O I/O I/O

UNSIGNED I/O4 I/O I NA NA NA NA I/O4 I/O I/O

VARCHAR I/O I/O I/O I/O1 I/O2 I/O3 I/O3 NA I/O I/O

VARCHAR2 I/O I/O I/O I/O1 I/O2 I/O3 I/O3, 5 I/O I/O I/O

VARNUM I/O4 I/O I NA NA NA NA I/O4 I/O I/O

VARRAW I/O6 NA I5, 6 NA NA I/O I/O I/O6 NA NA

1 NA means not applicable.
2 I/O = Conversion is valid for input and output, unless otherwise specified.

This section includes the following topics:

• Data Conversions for LOB Data Types

• Data Conversions for Date, Timestamp, and Interval Data Types

5.4.1 Data Conversions for LOB Data Types

Table 5-6 Data Conversions for LOBs

EXTERNAL DATATYPES INTERNAL DATATYPES

CLOB BLOB

VARCHAR I/O1 NA2

CHAR I/O NA

LONG I/O NA

LONG VARCHAR I/O NA

STL String I/O NA

RAW NA I/O

VARRAW NA I/O

LONG RAW NA I/O

LONG VARRAW NA I/O

OCCI Bytes NA I/O

1 I/O = Conversion is valid for input and output.
2 NA means not applicable.

Chapter 5
Data Conversions

5-22

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for an
introduction to LOB data types.

5.4.2 Data Conversions for Date, Timestamp, and Interval Data Types
You can also use a character data type for the host variable used in a fetch or insert
operation from or to a datetime or interval column. Oracle performs the conversion between
the character data type and datetime/interval data type for you.

Table 5-7 Data Conversions for Date, Timestamp, and Interval Data Types

External Types Internal Types

NA1 VARCHAR,
CHAR

DATE TS TSTZ TSLTZ INTERVAL YEAR
TO MONTH

INTERVAL DAY
TO SECOND

VARCHAR2, CHAR I/O2 I/O I/O I/O I/O I/O I/O

STL String I/O I/O I/O I/O I/O I/O I/O

DATE I/O I/O I/O I/O I/O NA NA

OCCI Date I/O I/O I/O I/O I/O NA NA

ANSI DATE I/O I/O I/O I/O I/O NA NA

TIMESTAMP (TS) I/O I/O I/O I/O I/O NA NA

OCCI Timestamp I/O I/O I/O I/O I/O NA NA

TIMESTAMP WITH
TIME ZONE (TSTZ)

I/O I/O I/O I/O I/O NA NA

TIMESTAMP WITH
LOCAL TIME ZONE
(TSLTZ)

I/O I/O I/O I/O I/O NA NA

INTERVAL YEAR TO
MONTH

I/O NA NA NA NA I/O NA

OCCI IntervalYM I/O NA NA NA NA I/O NA

INTERVAL DAY TO
SECOND

I/O NA NA NA NA NA I/O

OCCI IntervalDS I/O NA NA NA NA NA I/O

1 NA means not applicable.
2 I/O = Conversion is valid for input and output.

These consideration apply when converting between Date, Timestamp and Interval data
types:

• When assigning a source with time zone to a target without a time zone, the time zone
portion of the source is ignored. On assigning a source without a time zone to a target
with a time zone, the time zone of the target is set to the session's default time zone.

• When assigning an Oracle DATE to a TIMESTAMP, the TIME portion of the DATE is copied
over to the TIMESTAMP. When assigning a TIMESTAMP to Oracle DATE, the TIME portion of

Chapter 5
Data Conversions

5-23

the result DATE is set to zero. This is done to encourage migration of Oracle DATE
to ANSI compliant DATETIME data types.

• (When assigning an ANSI DATE to an Oracle DATE or a TIMESTAMP, the TIME portion
of the Oracle DATE and the TIMESTAMP are set to zero. When assigning an Oracle
DATE or a TIMESTAMP to an ANSI DATE, the TIME portion is ignored.

• When assigning a DATETIME to a character string, the DATETIME is converted using
the session's default DATETIME format. When assigning a character string to a
DATETIME, the string must contain a valid DATETIME value based on the session's
default DATETIME format.

• When assigning a character string to an INTERVAL, the character string must be a
valid INTERVAL character format.

• When converting from TSLTZ to CHAR, DATE, TIMESTAMP and TSTZ, the value is
adjusted to the session time zone.

• When converting from CHAR, DATE, and TIMESTAMP to TSLTZ, the session time zone
is stored in memory.

• When assigning TSLTZ to ANSI DATE, the time portion is 0.

• When converting from TSTZ, the time zone that the time stamp is in is stored in
memory.

• When assigning a character string to an interval, the character string must be a
valid interval character format.

Chapter 5
Data Conversions

5-24

6
Metadata

This chapter describes how to retrieve metadata about result sets or the database as a
whole.

This chapter contains these topics:

• Overview of Metadata

• Using Identity Column Metadata

• About Describing Database Metadata

• Attribute Reference Information

6.1 Overview of Metadata
Database objects have various attributes that describe them; you can obtain information
about a particular schema object by performing a DESCRIBE operation. The result can be
accessed as an object of the Metadata class by passing object attributes as arguments to the
various methods of the Metadata class.

You can perform an explicit DESCRIBE operation on the database as a whole, on the types and
properties of the columns contained in a ResultSet class, or on any of the following schema
and subschema objects, such as tables, types, sequences, views, type attributes, columns,
procedures, type methods, arguments, functions, collections, results, packages, synonyms,
and lists

You must specify the type of the attribute you are looking for. By using the
getAttributeCount(), getAttributeId(), and getAttributeType() methods of the
MetaData class, you can scan through each available attribute.

All DESCRIBE information is cached until the last reference to it is deleted. Users are in this
way prevented from accidentally trying to access DESCRIBE information that is freed.

You obtain metadata by calling the getMetaData() method on the Connection class in case
of an explicit describe, or by calling the getColumnListMetaData() method on the ResultSet
class to get the metadata of the result set columns. Both methods return a MetaData object
with the describing information. The MetaData class provides the getxxx() methods to
access this information.

See Also:

Table 13-27

When performing DESCRIBE operations, be aware of the following issues:

• The ATTR_TYPECODE returns type codes that represent the type supplied when you
created a new type by using the CREATE TYPE statement. These type codes are of the

6-1

enumerated type TypeCode, which are represented by OCCI_TYPECODE constants.
Internal PL/SQL types (boolean, indexed table) are not supported

• The ATTR_DATA_TYPE returns types that represent the data types of the database
columns. These values are of enumerated type Type. For example, LONG types
return OCCI_SQLT_LNG types.

6.2 Using Identity Column Metadata
Starting with Oracle Database Release 12c, columns may be created as identity
columns. When new rows are inserted into tables, the values for these columns are
generated automatically.

This feature adds a new ColumnAttrId enum to the MetaData Class (see Table 13-27),
and an overloaded form of getBoolean() method in the MetaData Class. Example 6-1
shows how to use this feature.

For more information, see Oracle Database SQL Translation and Migration Guide, and
Oracle Database SQL Language Reference. Additionally, see the changes to Oracle
Database Reference:

• A new IDENTITY_COLUMN column for views ALL_TAB_COLUMNS, DBA_TAB_COLUMNS,
USER_TAB_COLUMNS, ALL_TAB_COLS, DBA_TAB_COLS, and USER_TAB_COLS

• A new HAS_IDENTITY column for views ALL_TABLES, DBA_TABLES, and USER_TABLES
• The new views ALL_TAB_IDENTITY_COLS, DBA_TAB_IDENTITY_COLS, and

USER_TAB_IDENTITY_COLS, which display a table's identity column properties

Example 6-1 How to use Identity Column Metadata

vector<MetaData> v1;
MetaData metaData = conn->getMetaData(tableName);
columnCount = metaData.getInt(MetaData::ATTR_NUM_COLS);
cout << "Number of Columns : " << columnCount << endl;

v1 = metaData.getVector(MetaData::ATTR_LIST_COLUMNS);

for(int i=0; i < v1.size(); i++) {
 MetaData md = v1[i];
 colNames[i] = md.getString(MetaData::ATTR_NAME);
 size[i] = md.getInt(MetaData::ATTR_DATA_SIZE);
 precision[i] = md.getInt(MetaData::ATTR_PRECISION);
 scale[i] = md.getInt(MetaData::ATTR_SCALE);

 if (md.getBoolean(MetaData::ATTR_IS_NULL))
 strcpy (isnull[i], "YES");
 else
 strcpy (isnull[i], "NO");

 if (md.getBoolean(MetaData::ATTR_COL_IS_IDENTITY))
 strcpy (isIdentity[i], "YES");
 else
 strcpy (isIdentity[i], "NO");

 if (md.getBoolean(MetaData::ATTR_COL_IS_GEN_ALWAYS))
 strcpy (isGenAlways[i], "YES");
 else
 strcpy (isGenAlways[i], "NO");

Chapter 6
Using Identity Column Metadata

6-2

 if (md.getBoolean(MetaData::ATTR_COL_IS_GEN_BY_DEF_ON_NULL))
 strcpy (isGenOnNull[i], "YES");
 else
 strcpy (isGenOnNull[i], "NO");
}

cout << "\n columnName isNull isIdentity isGenAlways" << " isGenOnNull "
 << endl;
cout <<"---" << endl;

for(int i=0; i < columnCount; ++i) {
 cout << " " << colNames[i] << " ";
 printf("%10s%10s%12s%12s\n", isnull[i], isIdentity[i], isGenAlways[i],
 isGenOnNull[i]);
}

6.3 About Describing Database Metadata
Describing database metadata is equivalent to an explicit DESCRIBE operation. The object to
describe must be an object in the schema. In describing a type, you call the getMetaData()
method from the connection, passing the name of the object or a RefAny object. You must
first initialize the environment in the OBJECT mode. The getMetaData() method returns an
object of type MetaData. Each type of MetaData object has a list of attributes that are part of
the describe tree. The describe tree can then be traversed recursively to point to subtrees
that contain more information. More information about an object can be obtained by calling
the getxxx() methods.

If you must construct a browser that describes the database and its objects recursively, then
you can access information regarding the number of attributes for each object in the
database (including the database), the attribute ID listing, and the attribute types listing. By
using this information, you can recursively traverse the describe tree from the top node (the
database) to the columns in the tables, the attributes of a type, the parameters of a procedure
or function, and so on.

For example, consider the typical case of describing a table and its contents. You call the
getMetaData() method from the connection, passing the name of the table to be described.
The MetaData object returned contains the table information. Because you are aware of the
type of the object you want to describe (table, column, type, collection, function, procedure,
and so on), you can obtain the attribute list. You can retrieve the value into a variable of the
type specified in the table by calling the corresponding getxxx() method.

Table 6-1 Attribute Groupings

Attribute Type Description

Parameter Attributes Attributes belonging to all
elements

Table and View Attributes Attributes belonging to tables
and views

Procedure, Function, and Subprogram Attributes Attributes belonging to
procedures, functions, and
package subprograms

Package Attributes Attributes belonging to
packages

Type Attributes Attributes belonging to types

Chapter 6
About Describing Database Metadata

6-3

Table 6-1 (Cont.) Attribute Groupings

Attribute Type Description

Type Attribute Attributes Attributes belonging to type
attributes

Type Method Attributes Attributes belonging to type
methods

Collection Attributes Attributes belonging to
collection types

Synonym Attributes Attributes belonging to
synonyms

Sequence Attributes Attributes belonging to
sequences

Column Attributes Attributes belonging to
columns of tables or views

Argument and Result Attributes Attributes belonging to
arguments / results

List Attributes Attributes that designate the
list type

Schema Attributes Attributes specific to
schemas

Database Attributes Attributes specific to
databases

This section includes the following topic: Using Metadata (Code Examples).

6.3.1 Using Metadata (Code Examples)
This section provides code examples for using metadata:

• Example 6-2

• Example 6-3

• Example 6-4

• Example 6-5

• Example 6-6

• Example 6-7

Example 6-2 How to Obtain Metadata About Attributes of a Simple Database
Table

This example demonstrates how to obtain metadata about attributes of a simple
database table:

/* Create an environment and a connection to the HR database */
.
.
/* Call the getMetaData method on the Connection object obtainedv*/
MetaData emptab_metaData = connection->getMetaData(
 "EMPLOYEES", MetaData::PTYPE_TABLE);
/* Now that you have the metadata information on the EMPLOYEES table,

Chapter 6
About Describing Database Metadata

6-4

 call the getxxx methods using the appropriate attributes */

/* Call getString */
cout<<"Schema:"<<
 (emptab_metaData.getString(MetaData::ATTR_OBJ_SCHEMA))<<endl;

if(emptab_metaData.getInt(
 emptab_metaData::ATTR_PTYPE)==MetaData::PTYPE_TABLE)
 cout<<"EMPLOYEES is a table"<<endl;
else
 cout<<"EMPLOYEES is not a table"<<endl;

/* Call getInt to get the number of columns in the table */
int columnCount=emptab_metaData.getInt(MetaData::ATTR_NUM_COLS);
cout<<"Number of Columns:"<<columnCount<<endl;

/* Call getTimestamp to get the timestamp of the table object */
Timestamp tstamp = emptab_metaData.getTimestamp(MetaData::ATTR_TIMESTAMP);
/* Now that you have the value of the attribute as a Timestamp object,
 you can call methods to obtain the components of the timestamp */
int year;
unsigned int month, day;
tstamp.getData(year, month, day);

/* Call getVector for attributes of list type, such as ATTR_LIST_COLUMNS */
vector<MetaData>listOfColumns;
listOfColumns=emptab_metaData.getVector(MetaData::ATTR_LIST_COLUMNS);

/* Each of the list elements represents a column metadata,
 so now you can access the column attributes*/
for (int i=0;i<listOfColumns.size();i++
{
 MetaData columnObj=listOfColumns[i];
 cout<<"Column Name:"<<(columnObj.getString(MetaData::ATTR_NAME))<<endl;
 cout<<"Data Type:"<<(columnObj.getInt(MetaData::ATTR_DATA_TYPE))<<endl;
 .
 .
 /* and so on to obtain metadata on other column specific attributes */
}

Example 6-3 How to Obtain Metadata from a Column Containing User-Defined Types

This example demonstrates how to obtain metadata from a column that contains user-defined
types database table.

/* Create an environment and a connection to the HR database */
...
/* Call the getMetaData method on the Connection object obtained */
MetaData custtab_metaData = connection->getMetaData(
 "CUSTOMERS", MetaData::PTYPE_TABLE);

/* Have metadata information on CUSTOMERS table; call the getxxx methods */
/* Call getString */
cout<<"Schema:"<<(custtab_metaData.getString(MetaData::ATTR_OBJ_SCHEMA))
 <<endl;

if(custtab_metaData.getInt(custtab_metaData::ATTR_PTYPE)==MetaData::PTYPE_TABLE)

 cout<<"CUSTOMERS is a table"<<endl;
else
 cout<<"CUSTOMERS is not a table"<<endl;

Chapter 6
About Describing Database Metadata

6-5

/* Call getVector to obtain list of columns in the CUSTOMERS table */
vector<MetaData>listOfColumns;
listOfColumns=custtab_metaData.getVector(MetaData::ATTR_LIST_COLUMNS);

/* Assuming metadata for column cust_address_typ is fourth element in list*/
MetaData customer_address=listOfColumns[3];

/* Obtain the metadata for the customer_address attribute */
int typcode = customer_address.getInt(MetaData::ATTR_TYPECODE);
if(typcode==OCCI_TYPECODE_OBJECT)
 cout<<"customer_address is an object type"<<endl;
else
 cout<<"customer_address is not an object type"<<endl;

string objectName=customer_address.getString(MetaData::ATTR_OBJ_NAME);

/* Now that you have the name of the address object,
 the metadata of the attributes of the type can be obtained by using
 getMetaData on the connection by passing the object name
*/
MetaData address = connection->getMetaData(objectName);

/* Call getVector to obtain the list of the address object attributes */
vector<MetaData> attributeList =
 address.getVector(MetaData::ATT_LIST_TYPE_ATTRS);

/* and so on to obtain metadata on other address object specific attributes */

Example 6-4 How to Obtain Object Metadata from a Reference

This example demonstrates how to obtain metadata about an object when using a
reference to it:

Type ADDRESS(street VARCHAR2(50), city VARCHAR2(20));
Table Person(id NUMBER, addr REF ADDRESS);

/* Create an environment and a connection to the HR database */
.
.
/* Call the getMetaData method on the Connection object obtained */
MetaData perstab_metaData = connection->getMetaData(
 "Person", MetaData::PTYPE_TABLE);

/* Now that you have the metadata information on the Person table,
 call the getxxx methods using the appropriate attributes */
/* Call getString */
cout<<"Schema:"<<(perstab_metaData.getString(MetaData::ATTR_OBJ_SCHEMA))<<endl;

if(perstab_metaData.getInt(perstab_metaData::ATTR_PTYPE)==MetaData::PTYPE_TABLE)
 cout<<"Person is a table"<<endl;
else
 cout<<"Person is not a table"<<endl;

/* Call getVector to obtain the list of columns in the Person table*/
vector<MetaData>listOfColumns;
listOfColumns=perstab_metaData.getVector(MetaData::ATTR_LIST_COLUMNS);

/* Each of the list elements represents a column metadata,
 so now get the data type of the column by passing ATTR_DATA_TYPE
 to getInt */
for(int i=0;i<numCols;i++)

Chapter 6
About Describing Database Metadata

6-6

{
 int dataType=colList[i].getInt(MetaData::ATTR_DATA_TYPE);
 /* If the data type is a reference, get the Ref and obtain the metadata
 about the object by passing the Ref to getMetaData */
 if(dataType==SQLT_REF)
 RefAny refTdo=colList[i].getRef(MetaData::ATTR_REF_TDO);

 /* Now you can obtain the metadata about the object as shown
 MetaData tdo_metaData=connection->getMetaData(refTdo);

 /* Now that you have the metadata about the TDO, you can obtain the metadata
 about the object */
}

Example 6-5 How to Obtain Metadata About a Select List from a ResultSet Object

This example demonstrates how to obtain metadata about a select list from a ResultSet.

/* Create an environment and a connection to the database */
...
/* Create a statement and associate it with a select clause */
string sqlStmt="SELECT * FROM EMPLOYEES";
Statement *stmt=conn->createStatement(sqlStmt);

/* Execute the statement to obtain a ResultSet */
ResultSet *rset=stmt->executeQuery();

/* Obtain the metadata about the select list */
vector<MetaData>cmd=rset->getColumnListMetaData();

/* The metadata is a column list and each element is a column metaData */
int dataType=cmd[i].getInt(MetaData::ATTR_DATA_TYPE);
...

The getMetaData method is called for the ATTR_COLLECTION_ELEMENT attribute only.

Example 6-6 How to Obtain Domain Information by getMetaData() on Table Name

//Domain Information by getMetaData() on table name
MetaData tableMD; // MetaData of table
vector<MetaData> colListMD; // MetaData of column list of table
MetaData colMD; // MetaData of column
tableMD = conn->getMetaData("ExampleTable");
colListMD = tableMD.getVector(MetaData::ATTR_LIST_COLUMNS);
// MetaData of the columns
for(int i = 0; i < colListMD.size(); i++)
 {
 colMD = colListMD[i];
 ...
 cout << "Domain Name: " <<
 colMD.getString(MetaData::ATTR_DOMAIN_NAME) << endl;
 cout << "Domain Schema: " <<
 colMD.getString(MetaData::ATTR_DOMAIN_SCHEMA) << endl;
 ...
 }

Chapter 6
About Describing Database Metadata

6-7

Example 6-7 How to Obtain Domain Information by getColumnListMetaData()
on resultSet Object.

//Domain Information by getColumnListMetaData() on resultSet object.
vector<MetaData> colListMD; // MetaData of column list of table
MetaData colMD; // MetaData of column
string sel_string = "select * from EMP";
...
ResultSet *resultSet = stmt->executeQuery(sel_string);
colListMD = resultSet->getColumnListMetaData();
// MetaData of the columns
 for(int i = 0; i < colListMD.size(); i++)
 {
 colMD = colListMD[i];
 ...
 cout << "Domain Name: " <<
 colMD.getString(MetaData::ATTR_DOMAIN_NAME) << endl;
 cout << "Domain Schema: " <<
 colMD.getString(MetaData::ATTR_DOMAIN_SCHEMA) << endl;
 ...
 }

6.4 Attribute Reference Information
This section describes the following attributes that belong to schema and subschema
objects:

• Parameter Attributes

• Table and View Attributes

• Procedure, Function, and Subprogram Attributes

• Package Attributes

• Type Attributes

• Type Attribute Attributes

• Type Method Attributes

• Collection Attributes

• Synonym Attributes

• Sequence Attributes

• Column Attributes

• Argument and Result Attributes

• List Attributes

• Schema Attributes

• Database Attributes

6.4.1 Parameter Attributes
All elements have some attributes specific to that element and some generic
attributes. Table 6-2 describes the attributes that belong to all elements:

Chapter 6
Attribute Reference Information

6-8

Table 6-2 Attributes that Belong to All Elements

Attribute Description Attribute Data Type

ATTR_OBJ_ID Object or schema ID unsigned int
ATTR_OBJ_NAME Object, schema, or database name string
ATTR_OBJ_SCHEMA Schema where object is located string
ATTR_OBJ_PTYPE Type of information described by the parameter.

Possible values are:

PTYPE_TABLE, Table

PTYPE_VIEW, View

PTYPE_PROC, Procedure

PTYPE_FUNC, Function

PTYPE_PKG, Package

PTYPE_TYPE, Type

PTYPE_TYPE_ATTR, Attribute of a type

PTYPE_TYPE_COLL, Collection type information

PTYPE_TYPE_METHOD, A method of a type

PTYPE_SYN, Synonym

PTYPE_SEQ, Sequence

PTYPE_COL, Column of a table or view

PTYPE_ARG, Argument of a function or procedure

PTYPE_TYPE_ARG, Argument of a type method

PTYPE_TYPE_RESULT, Results of a method

PTYPE_SCHEMA, Schema

PTYPE_DATABASE, Database

int

ATTR_TIMESTAMP The TIMESTAMP of the object this description is based
on (Oracle DATE format).

Timestamp

The sections that follow list attributes specific to different types of elements.

6.4.2 Table and View Attributes
A parameter for a table or view (type PTYPE_TABLE or PTYPE_VIEW) has the following type-
specific attributes described in Table 6-3:

Table 6-3 Attributes that Belong to Tables or Views

Attribute Description Attribute Data Type

ATTR_OBJID Object ID unsigned int
ATTR_NUM_COLS Number of columns int
ATTR_LIST_COLUMNS Column list (type PTYPE_LIST) vector<MetaData>
ATTR_REF_TDO REF to the object type that is being described RefAny
ATTR_IS_TEMPORARY Identifies whether the table or view is temporary bool
ATTR_IS_TYPED Identifies whether the table or view is typed bool

Chapter 6
Attribute Reference Information

6-9

Table 6-3 (Cont.) Attributes that Belong to Tables or Views

Attribute Description Attribute Data Type

ATTR_DURATION Duration of a temporary table. Values can be:

• DURATION_SESSION (session)

• DURATION_TRANS (transaction)

• DURATION_NULL (table not temporary)

int

The additional attributes belonging to tables are described in Table 6-4.

Table 6-4 Attributes Specific to Tables

Attribute Description Attribute Data
Type

ATTR_DBA Data block address of the segment
header

unsigned int

ATTR_TABLESPACE Tablespace the table resides on int
ATTR_CLUSTERED Identifies whether the table is clustered bool
ATTR_PARTITIONED Identifies whether the table is partitioned bool
ATTR_INDEX_ONLY Identifies whether the table is index only bool

6.4.3 Procedure, Function, and Subprogram Attributes
A parameter for a procedure or function (type PTYPE_PROC or PTYPE_FUNC) has the
type-specific attributes described in Table 6-5.

Table 6-5 Attributes that Belong to Procedures or Functions

Attribute Description Attribute Data Type

ATTR_LIST_ARGUMENTS Argument list; refer to List
Attributes .

vector<MetaData>

ATTR_IS_INVOKER_RIGHTS Identifies whether the procedure or
function has invoker's rights.

int

The additional attributes belonging to package subprograms are described in
Table 6-6.

Table 6-6 Attributes that Belong to Package Subprograms

Attribute Description Attribute Data
Type

ATTR_NAME Name of procedure or function string

Chapter 6
Attribute Reference Information

6-10

Table 6-6 (Cont.) Attributes that Belong to Package Subprograms

Attribute Description Attribute Data
Type

ATTR_OVERLOAD_ID Overloading ID number (relevant in case
the procedure or function is part of a
package and is overloaded). Values
returned may be different from direct
query of a PL/SQL function or
procedure.

int

6.4.4 Package Attributes
A parameter for a package (type PTYPE_PKG) has the type-specific attributes described in
Table 6-7.

Table 6-7 Attributes that Belong to Packages

Attribute Description Attribute Data Type

ATTR_LIST_SUBPROGRAMS Subprogram list; refer to List
Attributes.

vector<MetaData>

ATTR_IS_INVOKER_RIGHTS Identifies whether the package has
invoker's rights

bool

6.4.5 Type Attributes
A parameter for a type (type PTYPE_TYPE) has attributes described in Table 6-8.

Table 6-8 Attributes that Belong to Types

Attribute Description Attribute Data Type

ATTR_REF_TDO Returns the in-memory ref of
the type descriptor object for
the type, if the column type
is an object type.

RefAny

ATTR_TYPECODE Type code. Can be:

• OCCI_TYPECODE_OBJEC
T

• OCCI_TYPECODE_NAMED
COLLECTION

int

ATTR_COLLECTION_TYPECODE Type code of collection if
type is collection; invalid
otherwise. Can be:

• OCCI_TYPECODE_VARRA
Y

• OCCI_TYPECODE_TABLE

int

ATTR_VERSION A NULL-terminated string
containing the user-assigned
version

string

Chapter 6
Attribute Reference Information

6-11

Table 6-8 (Cont.) Attributes that Belong to Types

Attribute Description Attribute Data Type

ATTR_IS_FINAL_TYPE Identifies whether this is a
final type

bool

ATTR_IS_INSTANTIABLE_TYPE Identifies whether this is an
instantiable type

bool

ATTR_IS_SUBTYPE Identifies whether this is a
subtype

bool

ATTR_SUPERTYPE_SCHEMA_NAME Name of the schema
containing the supertype

string

ATTR_SUPERTYPE_NAME Name of the supertype string
ATTR_IS_INVOKER_RIGHTS Identifies whether this type is

invoker's rights
bool

ATTR_IS_INCOMPLETE_TYPE Identifies whether this type is
incomplete

bool

ATTR_IS_SYSTEM_TYPE Identifies whether this is a
system type

bool

ATTR_IS_PREDEFINED_TYPE Identifies whether this is a
predefined type

bool

ATTR_IS_TRANSIENT_TYPE Identifies whether this is a
transient type

bool

ATTR_IS_SYSTEM_GENERATED_TYPE Identifies whether this is a
system-generated type

bool

ATTR_HAS_NESTED_TABLE Identifies whether this type
contains a nested table
attribute

bool

ATTR_HAS_LOB Identifies whether this type
contains a LOB attribute

bool

ATTR_HAS_FILE Identifies whether this type
contains a FILE attribute

bool

ATTR_COLLECTION_ELEMENT Handle to collection element

Refer to Collection Attributes

MetaData

ATTR_NUM_TYPE_ATTRS Number of type attributes unsigned int
ATTR_LIST_TYPE_ATTRS List of type attributes

Refer to List Attributes

vector<MetaData>

ATTR_NUM_TYPE_METHODS Number of type methods unsigned int
ATTR_LIST_TYPE_METHODS List of type methods

Refer to List Attributes

vector<MetaData>

ATTR_MAP_METHOD Map method of type

Refer to Type Method
Attributes

MetaData

ATTR_ORDER_METHOD Order method of type; refer
to Type Method Attributes

MetaData

Chapter 6
Attribute Reference Information

6-12

6.4.6 Type Attribute Attributes
A parameter for an attribute of a type (type PTYPE_TYPE_ATTR) has the attributes described in
Table 6-9.

Table 6-9 Attributes that Belong to Type Attributes

Attribute Description Attribute Data
Type

ATTR_DATA_SIZE Maximum size of the type attribute. This length is
returned in bytes and not characters for strings
and raws. Returns 22 for NUMBER.

int

ATTR_TYPECODE Type code int
ATTR_DATA_TYPE Data type of the type attribute int
ATTR_NAME A pointer to a string that is the type attribute name string
ATTR_PRECISION Precision of numeric type attributes. If the

precision is nonzero and scale is -127, then it is a
FLOAT; otherwise a NUMBER(p, s). If precision is
0, then NUMBER(p, s) can be represented
simply by NUMBER.

int

ATTR_SCALE Scale of numeric type attributes. If the precision is
nonzero and scale is -127, then it is a FLOAT;
otherwise a NUMBER(p, s). If precision is 0, then
NUMBER(p, s) can be represented simply as
NUMBER.

int

ATTR_TYPE_NAME A string that is the type name. The returned value
contains the type name if the data type is
SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, then the name of the named data
type's type is returned. If the data type is
SQLT_REF, then the type name of the named data
type pointed to by the REF is returned.

string

ATTR_SCHEMA_NAME String with the schema name under which the
type has been created

string

ATTR_REF_TDO Returns the in-memory REF of the TDO for the
type, if the column type is an object type.

RefAny

ATTR_CHARSET_ID Character set ID, if the type attribute is of a string
or character type

int

ATTR_CHARSET_FORM Character set form, if the type attribute is of a
string or character type

int

ATTR_FSPRECISION The fractional seconds precision of a datetime or
interval

int

ATTR_LFPRECISION The leading field precision of an interval int

6.4.7 Type Method Attributes
A parameter for a method of a type (type PTYPE_TYPE_METHOD) has the attributes described in
Table 6-10.

Chapter 6
Attribute Reference Information

6-13

Table 6-10 Attributes that Belong to Type Methods

Attribute Description Attribute Data Type

ATTR_NAME Name of method (procedure or function) string
ATTR_ENCAPSULATION Encapsulation level of the method; can

be:

• OCCI_TYPEENCAP_PRIVATE
• OCCI_TYPEENCAP_PUBLIC)

int

ATTR_LIST_ARGUMENTS Argument list vector<MetaData>
ATTR_IS_CONSTRUCTOR Identifies whether the method is a

constructor
bool

ATTR_IS_DESTRUCTOR Identifies whether the method is a
destructor

bool

ATTR_IS_OPERATOR Identifies whether the method is an
operator

bool

ATTR_IS_SELFISH Identifies whether the method is selfish bool
ATTR_IS_MAP Identifies whether the method is a map

method
bool

ATTR_IS_ORDER Identifies whether the method is an order
method

bool

ATTR_IS_RNDS Identifies whether "Read No Data State"
is set for the method

bool

ATTR_IS_RNPS Identifies whether "Read No Process
State" is set for the method

bool

ATTR_IS_WNDS Identifies whether "Write No Data State"
is set for the method

bool

ATTR_IS_WNPS Identifies whether "Write No Process
State" is set for the method

bool

ATTR_IS_FINAL_METHOD Identifies whether this is a final method bool
ATTR_IS_INSTANTIABLE_METHOD Identifies whether this is an instantiable

method
bool

ATTR_IS_OVERRIDING_METHOD Identifies whether this is an overriding
method

bool

6.4.8 Collection Attributes
A parameter for a collection type (type PTYPE_COLL) has the attributes described in
Table 6-11.

Table 6-11 Attributes that Belong to Collection Types

Attribute Description Attribute Data
Type

ATTR_DATA_SIZE Maximum size of the type attribute. This length
is returned in bytes and not characters for
strings and raws. Returns 22 for NUMBER.

int

ATTR_TYPECODE Typecode. int

Chapter 6
Attribute Reference Information

6-14

Table 6-11 (Cont.) Attributes that Belong to Collection Types

Attribute Description Attribute Data
Type

ATTR_DATA_TYPE The data type of the type attribute. int
ATTR_NUM_ELEMENTS Number of elements in an array; only valid for

collections that are arrays.
unsigned int

ATTR_NAME A pointer to a string that is the type attribute
name

string

ATTR_PRECISION Precision of numeric type attributes. If the
precision is nonzero and scale is -127, then it
is a FLOAT; otherwise a NUMBER(p, s). If
precision is 0, then NUMBER(p, s) can be
represented simply as NUMBER.

int

ATTR_SCALE Scale of numeric type attributes. If the
precision is nonzero and scale is -127, then it
is a FLOAT; otherwise a NUMBER(p, s). If
precision is 0, then NUMBER(p, s) can be
represented simply as NUMBER.

int

ATTR_TYPE_NAME String that is the type name. The returned
value contains the type name if the data type
is SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, then the name of the named data
type's type is returned. If the data type is
SQLT_REF, then the type name of the named
data type pointed to by the REF is returned

string

ATTR_SCHEMA_NAME String with the schema name under which the
type has been created

string

ATTR_REF_TDO Returns the in memory REF of the TDO for the
type.

RefAny

ATTR_CHARSET_ID Typecode. int
ATTR_CHARSET_FORM The data type of the type attribute. int

6.4.9 Synonym Attributes
A parameter for a synonym (type PTYPE_SYN) has the attributes described in Table 6-12.

Table 6-12 Attributes that Belong to Synonyms

Attribute Description Attribute Data
Type

ATTR_OBJID Object ID unsigned int
ATTR_SCHEMA_NAME Null-terminated string containing the schema name

of the synonym translation
string

ATTR_NAME Null-terminated string containing the object name of
the synonym translation

string

ATTR_LINK Null-terminated string containing the database link
name of the synonym translation

string

Chapter 6
Attribute Reference Information

6-15

6.4.10 Sequence Attributes
A parameter for a sequence (type PTYPE_SEQ) has the attributes described in
Table 6-13.

Table 6-13 Attributes that Belong to Sequences

Attribute Description Attribute Data
Type

ATTR_OBJID Object ID unsigned int
ATTR_MIN Minimum value (in Oracle number format) Number
ATTR_MAX Maximum value (in Oracle number format) Number
ATTR_INCR Increment (in Oracle number format) Number
ATTR_CACHE Number of sequence numbers cached; zero if the

sequence is not a cached sequence (in Oracle
number format)

Number

ATTR_ORDER Identifies whether the sequence is ordered bool
ATTR_HW_MARK High-water mark (in Oracle number format) Number

6.4.11 Column Attributes
A parameter for a column of a table or view (type PTYPE_COL) has the attributes
described in Table 6-14.

Table 6-14 Attributes that Belong to Columns of Tables or Views

Attribute Description Attribute Data
Type

ATTR_DATA_SIZE Maximum size of the column. This length is
returned in bytes and not characters for strings
and raws. Returns 22 for NUMBER..

int

ATTR_DATA_TYPE The data type of the column. Type
ATTR_NAME Pointer to a string that is the column name. string
ATTR_PRECISION Returns the precision. int
ATTR_SCALE Scale of numeric columns. If the precision is

nonzero and scale is -127, then it is a FLOAT;
otherwise a NUMBER(p, s). If precision is 0,
then NUMBER(p, s) can be represented simply
as NUMBER.

int

ATTR_IS_NULL Returns FALSE if null values are not permitted
for the column.

bool

Chapter 6
Attribute Reference Information

6-16

Table 6-14 (Cont.) Attributes that Belong to Columns of Tables or Views

Attribute Description Attribute Data
Type

ATTR_TYPE_NAME Returns a string that is the type name. The
returned value contains the type name if the
data type is OCCI_SQLT_NTY or
OCCI_SQLT_REF. If the data type is
OCCI_SQLT_NTY, then the name of the named
data type's type is returned. If the data type is
OCCI_SQLT_REF, then the type name of the
named data type pointed to by the REF is
returned.

string

ATTR_SCHEMA_NAME Returns a string with the schema name under
which the type has been created.

string

ATTR_REF_TDO The REF of the TDO for the type, if the column
type is an object type.

RefAny

ATTR_CHARSET_ID Character set ID for character column. If not set,
the character set ID defaults to the character set
ID set in the direct path context.

int

ATTR_CHARSET_FORM Character set form of the column. Setting this
attribute specifies the use of the database or
national character set on the client side.

int

6.4.12 Argument and Result Attributes
A parameter for an argument or a procedure or function type (type PTYPE_ARG), for a type
method argument (type PTYPE_TYPE_ARG), or for method results (type PTYPE_TYPE_RESULT)
has the attributes described in Table 6-15.

Table 6-15 Attributes that Belong to Arguments / Results

Attribute Description Attribute Data Type

ATTR_NAME Returns a pointer to a string which is the
argument name

string

ATTR_POSITION Position of the argument in the argument list.
Always returns 0.

int

ATTR_TYPECODE Typecode. int
ATTR_DATA_TYPE Data type of the argument. int
ATTR_DATA_SIZE Size of the data type of the argument. This

length is returned in bytes and not characters for
strings and raws. Returns 22 for NUMBER.

int

ATTR_PRECISION Precision of numeric arguments. If the precision
is nonzero and scale is -127, then it is a FLOAT;
otherwise a NUMBER(p, s). If precision is 0,
then NUMBER(p, s) can be represented simply
as NUMBER.

int

Chapter 6
Attribute Reference Information

6-17

Table 6-15 (Cont.) Attributes that Belong to Arguments / Results

Attribute Description Attribute Data Type

ATTR_SCALE Scale of numeric arguments. If the precision is
nonzero and scale is -127, then it is a FLOAT;
otherwise a NUMBER(p, s). If precision is 0,
then NUMBER(p, s) can be represented simply
as NUMBER.

int

ATTR_LEVEL Data type levels. This attribute always returns 0. int
ATTR_HAS_DEFAULT Indicates whether an argument has a default int
ATTR_LIST_ARGUMENTS The list of arguments at the next level (when the

argument is of a record or table type)
vector<MetaData>

ATTR_IOMODE Indicates the argument mode; valid values are:

• 0 for IN (OCCI_TYPEPARAM_IN)

• 1 for OUT (OCCI_TYPEPARAM_OUT)

• 2 for IN/OUT (OCCI_TYPEPARAM_INOUT)

int

ATTR_RADIX Returns a radix (if number type) int
ATTR_IS_NULL Returns FALSE if NULL values are not permitted

for the column.
bool

ATTR_TYPE_NAME Returns a string that is the type name (or the
package name for local package types). The
returned value contains the type name if the
data type is SQLT_NTY or SQLT_REF. If the data
type is SQLT_NTY, then the name of the named
data type's type is returned. If the data type is
SQLT_REF, then the type name of the named
data type pointed to by the REF is returned.

string

ATTR_SCHEMA_NAME For SQLT_NTY or SQLT_REF, returns a string
with the schema name under which the type was
created (or for local package types, the package
name).

string

ATTR_SUB_NAME For SQLT_NTY or SQLT_REF, returns a string
with the type name.

string

ATTR_LINK For SQLT_NTY or SQLT_REF, returns a string
with the database link name of the database on
which the type exists. This can happen only for
package-ocal types, when the package is
remote.

string

ATTR_REF_TDO Returns the REF of the TDO for the type, if the
argument type is an object.

RefAny

ATTR_CHARSET_ID Returns the character set ID if the argument is
of a string or character type.

int

ATTR_CHARSET_FORM Returns the character set form if the argument is
of a string or character type.

int

6.4.13 List Attributes
A list type of attribute can be described for all the elements in the list. In case of a
function argument list, position 0 has a parameter for return values (PTYPE_ARG).

Chapter 6
Attribute Reference Information

6-18

The list is described iteratively for all the elements. The results are stored in a C++
vector<MetaData>. Call the getVector() method to describe list type of attributes. Table 6-16
displays the list attributes.

Table 6-16 Values for ATTR_LIST_TYPE

Possible Values Description

ATTR_LIST_COLUMNS Column list

ATTR_LIST_ARGUMENTS Procedure or function arguments list

ATTR_LIST_SUBPROGRAMS Subprogram list

ATTR_LIST_TYPE_ATTRIBUTES Type attribute list

ATTR_LIST_TYPE_METHODS Type method list

ATTR_LIST_OBJECTS Object list within a schema

ATTR_LIST_SCHEMAS Schema list within a database

6.4.14 Schema Attributes
A parameter for a schema type (type PTYPE_SCHEMA) has the attributes described in
Table 6-17.

Table 6-17 Attributes Specific to Schemas

Attribute Description Attribute Data Type

ATTR_LIST_OBJECTS List of objects in the schema string

6.4.15 Database Attributes
A parameter for a database (type PTYPE_DATABASE) has the attributes described in Table 6-18.

Table 6-18 Attributes Specific to Databases

Attribute Description Attribute Data Type

ATTR_VERSION Database version string
ATTR_CHARSET_ID Database character set ID from the server

handle
int

ATTR_NCHARSET_ID Database native character set ID from the
server handle

int

ATTR_LIST_SCHEMAS List of schemas (type PTYPE_SCHEMA) in
the database

vector<MetaData>

ATTR_MAX_PROC_LEN Maximum length of a procedure name unsigned int
ATTR_MAX_COLUMN_LEN Maximum length of a column name unsigned int

Chapter 6
Attribute Reference Information

6-19

Table 6-18 (Cont.) Attributes Specific to Databases

Attribute Description Attribute Data Type

ATTR_CURSOR_COMMIT_BEHAVIOR How a COMMIT operation affects cursors
and prepared statements in the database;
values are:

• OCCI_CURSOR_OPEN for preserving
cursor state as before the commit
operation

• OCCI_CURSOR_CLOSED for cursors
that are closed on COMMIT, although
the application can execute the
statement for the second time without
preparing it again

int

ATTR_MAX_CATALOG_NAMELEN Maximum length of a catalog (database)
name

int

ATTR_CATALOG_LOCATION Position of the catalog in a qualified table;
values are:

• OCCI_CL_START
• OCCI_CL_END

int

ATTR_SAVEPOINT_SUPPORT Identifies whether the database supports
savepoints; values are:

• OCCI_SP_SUPPORTED
• OCCI_SP_UNSUPPORTED

int

ATTR_NOWAIT_SUPPORT Identifies whether the database supports
the nowait clause; values are:

• OCCI_NW_SUPPORTED
• OCCI_NW_UNSUPPORTED

int

ATTR_AUTOCOMMIT_DDL Identifies whether the autocommit mode
is required for DDL statements; values
are:

• OCCI_AC_DDL
• OCCI_NO_AC_DDL

int

ATTR_LOCKING_MODE Locking mode for the database; values
are:

• OCCI_LOCK_IMMEDIATE
• OCCI_LOCK_DELAYED

int

Chapter 6
Attribute Reference Information

6-20

7
Programming with LOBs

This chapter provides an overview of LOBs and their use in OCCI.

This chapter contains these topics:

• Overview of LOBs

• Creating LOBs in OCCI Applications

• Restricting the Opening and Closing of LOBs

• About Reading and Writing LOBs

• Using Objects with LOB Attributes

• About Using SecureFiles

See also:

Oracle Database SecureFiles and Large Objects Developer's Guide for extensive
information about LOBs

7.1 Overview of LOBs
Oracle C++ Call Interface includes classes and methods for performing operations on large
objects, LOBs. LOBs are either internal or external depending on their location with respect to
the database.

This section includes the following topics:

• Introducing Internal LOBs

• Introducing External LOBs

• About Storing LOBs

7.1.1 Introducing Internal LOBs
Internal LOBs are stored inside database tablespaces in a way that optimizes space and
enables efficient access. Internal LOBs use copy semantics and participate in the
transactional model of the server. You can recover internal LOBs after transaction or media
failure, and any changes to an internal LOB value can be committed or rolled back. There are
three SQL data types for defining instances of internal LOBs:

• BLOB: A LOB whose value is composed of unstructured binary (raw) data

• CLOB: A LOB whose value is composed of character data that corresponds to the
database character set defined for the Oracle database

• NCLOB: A LOB whose value is composed of character data that corresponds to the
national character set defined for the Oracle database

7-1

The copy semantics for LOBs dictate that when you insert or update a LOB with a LOB
from another row in the same table, both the LOB locator and the LOB value are
copied. In other words, each row has a copy of the LOB value.

7.1.2 Introducing External LOBs
BFILEs are large binary (raw) data objects data stored in operating system files outside
database tablespaces; therefore, they are referred to as external LOBs. These files
use reference semantics, where only the locator for the LOB is reproduced when
inserting or updating in the same table. Apart from conventional secondary storage
devices such as hard disks, BFILEs may also be located on tertiary block storage
devices such as CD-ROMs, PhotoCDs and DVDs. The BFILE data type allows read-
only byte stream access to large files on the file system of the database server. Oracle
can access BFILEs if the underlying server operating system supports stream mode
access to these files.

External LOBs do not participate in transactions. Any support for integrity and
durability must be provided by the underlying file and operating systems. An external
LOB must reside on a single device; it may not be striped across a disk array.

7.1.3 About Storing LOBs
The size of the LOB value, among other things, dictates where it is stored. The LOB
value is either stored inline with the row data or outside the row.

• Locator storage: a LOB locator, a pointer to the actual location of the LOB value,
is stored inline with the row data and indicates where the LOB value is stored.

For internal LOBs, the LOB column stores a locator to the LOB value stored in a
database tablespace. Each internal LOB column and attribute for a particular row
has its own unique LOB locator and a distinct copy of the LOB value stored in the
database tablespace.

For external LOBs, the LOB column stores a locator to the external operating
system file that houses the BFILE. Each external LOB column and attribute for a
given row has its own BFILE locator. However, two different rows can contain a
BFILE locator that points to the same operating system file.

• Inline storage: Data stored in a LOB is termed the LOB value. The value of an
internal LOB may or may not be stored inline with the other row data. If you do not
set DISABLE STORAGE IN ROW, and if the internal LOB value is less than
approximately 4,000 bytes, then the value is stored inline.Otherwise, it is stored
outside the row.

Since LOBs are intended to be large objects, inline storage is only relevant if your
application mixes small and large LOBs.The LOB value is automatically moved out
of the row once it extends beyond approximately 4,000 bytes.

7.2 Creating LOBs in OCCI Applications
Follow these steps to use LOBs in your application:

• Initialize a new LOB locator in the database.

• Assign a value to the LOB. In case of BFILEs, assign a reference to a valid
external file.

Chapter 7
Creating LOBs in OCCI Applications

7-2

• To access and manipulate LOBs, see the OCCI classes that implement the methods for
using LOBs in an application. All are detailed in OCCI Application Programming Interface:

– Bfile Class contains the APIs for BFILEs, as summarized in Table 13-7.

– Blob Class contains the APIs for BLOBs, as summarized in Table 13-8.

– Clob Class contains the APIs for CLOBs and NCLOBs, as summarized in Table 13-10.

• Whenever you want to modify an internal LOB column or attribute using write, copy, trim,
and similar operations, you must lock the row that contains the target LOB. Use a
SELECT...FOR UPDATE statement to select the LOB locator.

• A transaction must be open before a LOB write command succeeds. Therefore, you must
write the data before committing a transaction (since COMMIT closes the transaction).
Otherwise, you must lock the row again by reissuing the SELECT...FOR UPDATE
statement. Each of the LOB class implementations in OCCI have open() and close()
methods. To check whether a LOB is open, call the isOpen() method of the class.

• The methods open(), close() and isOpen() should also be used to mark the beginning
and end of a series of LOB operations. Whenever a LOB modification is made, it triggers
updates on extensible indexes. If these modifications are made within open()...close()
code blocks, the individual triggers are disabled until after the close() call, and then all
are issued at the same time. This implementation enables the efficient processing of
maintenance operations, such as updating indexes, when the LOBs are closed. However,
this also means that extensive indexes are not valid during the execution of the
open()...close() code block.

Note that for internal LOBs, the concept of openness is associated with the LOB and not
the LOB locator. The LOB locator does not store any information about whether the LOB
to which it refers is open. It is possible for multiple LOB locators to point to the same
open LOB. However, for external LOBs, openness is associated with a specific external
LOB locator. Therefore, multiple open() calls can be made on the same BFILE using
different external LOB locators.

7.3 Restricting the Opening and Closing of LOBs
The definition of a transaction within which an open LOB value must be closed is one of the
following:

• Between SET TRANSACTION and COMMIT
• Between DATA MODIFYING DML and COMMIT
• Between SELECT...FOR UPDATE and COMMIT
• Within an autonomous transaction block

The LOB opening and closing mechanism has the following restrictions:

• An application must close all previously opened LOBs before committing a transaction.
Failing to do so results in an error. If a transaction is rolled back, then all open LOBs are
discarded along with the changes made, so associated triggers are not fired.

• While there is no limit to the number of open internal LOBs, there is a limit on the number
of open files. Note that assigning an opened locator to another locator does not count as
opening a new LOB.

• It is an error to open or close the same internal LOB twice within the same transaction,
either with different locators or with the same locator.

Chapter 7
Restricting the Opening and Closing of LOBs

7-3

• It is an error to close a LOB that has not been opened.

7.4 About Reading and Writing LOBs
There are two general methods for reading and writing LOBs: non-streamed, and
streamed.

This section includes the following topics:

• Reading LOBs

• Writing LOBs

• About Enhancing the Performance of LOB Reads and Writes

• Updating LOBs

• About Reading and Writing Multiple LOBs

7.4.1 Reading LOBs
Example 7-1 illustrates how to get data from a non-NULL internal LOB, using a non-
streamed method. This method requires that you keep track of the read offset and the
amount remaining to be read, and pass these values to the read() method.

Example 7-2 is similar as it demonstrates how to read data from a BFILE, where the
BFILE locator is not NULL, by using a non-streamed read.

In contrast to Example 7-1 and Example 7-2, the streamed reading demonstrated in
Example 7-3 on a non-NULL BLOB does not require keeping track of the offset.

Example 7-1 How to Read Non-Streamed BLOBs

ResultSet *rset=stmt->executeQuery("SELECT ad_composite FROM print_media
 WHERE product_id=6666");
while(rset->next())
{
 Blob blob=rset->getBlob(1);
 if(blob.isNull())
 cerr <<"Null Blob"<<endl;
 else
 {
 blob.open(OCCI_LOB_READONLY);

 const unsigned int BUFSIZE=100;
 char buffer[BUFSIZE];
 unsigned int readAmt=BUFSIZE;
 unsigned int offset=1;

 //reading readAmt bytes from offset 1
 blob.read(readAmt,buffer,BUFSIZE,offset);

 //process information in buffer
 ...
 blob.close();
 }
}
stmt->closeResultSet(rset);

Chapter 7
About Reading and Writing LOBs

7-4

Example 7-2 How to Read Non-Streamed BFILESs

ResultSet *rset=stmt->executeQuery("SELECT ad_graphic FROM print_media
 WHERE product_id=6666");
while(rset->next())
{
 Bfile file=rset->getBfile(1);
 if(bfile.isNull())
 cerr <<"Null Bfile"<<endl;
 else
 {
 //display the directory alias and the file name of the BFILE
 cout <<"File Name:"<<bfile.getFileName()<<endl;
 cout <<"Directory Alias:"<<bfile.getDirAlias()<<endl;

 if(bfile.fileExists())
 {
 unsigned int length=bfile.length();
 char *buffer=new char[length];
 bfile.read(length, buffer, length, 1);
 //read all the contents of the BFILE into buffer, then process
 ...
 delete[] buffer;
 }
 else
 cerr <<"File does not exist"<<endl;
 }
}
stmt->closeResultSet(rset);

Example 7-3 How to Read Streamed BLOBs

ResultSet *rset=stmt->executeQuery("SELECT ad_composite FROM print_media
 WHERE product_id=6666");
while(rset->next())
{
 Blob blob=rset->getBlob(1);
 if(blob.isNull())
 cerr <<"Null Blob"<<endl;
 else
 {
 Stream *instream=blob.getStream(1,0);
 //reading from offset 1 to the end of the BLOB

 unsigned int size=blob.getChunkSize();
 char *buffer=new char[size];

 while((unsigned int length=instream->readBuffer(buffer,size))!=-1)
 {
 //process "length" bytes read into buffer
 ...
 }
 delete[] buffer;
 blob.closeStream(instream);
 }
}
stmt->closeResultSet(rset);

Chapter 7
About Reading and Writing LOBs

7-5

7.4.2 Writing LOBs
Example 7-4 demonstrates how to write data to an internal non-NULL LOB by using a
non-streamed write. The writeChunk() method is enclosed by the open() and
close() methods; it operates on a LOB that is currently open and ensures that triggers
do not fire for every chunk read. The write() method can be used for the
writeChunk() method; however, the write() method implicitly opens and closes the
LOB.

Example 7-5 demonstrates how to write data to an internal LOB that is populated by
using a streamed write.

Example 7-4 How to Write Non-Streamed BLOBs

ResultSet *rset=stmt->executeQuery("SELECT ad_composite FROM print_media
 WHERE product_id=6666 FOR UPDATE");
while(rset->next())
{
 Blob blob=rset->getBlob(1);
 if(blob.isNull())
 cerr <<"Null Blob"<<endl;
 else
 {
 blob.open(OCCI_LOB_READWRITE);

 const unsigned int BUFSIZE=100;
 char buffer[BUFSIZE];
 unsigned int writeAmt=BUFSIZE;
 unsigned int offset=1;

 //writing writeAmt bytes from offset 1
 //contents of buffer are replaced after each writeChunk(),
 //typically with an fread()
 while(<fread "BUFSIZE" bytes into buffer succeeds>)
 {
 blob.writeChunk(writeAmt, buffer, BUFSIZE, offset);
 offset += writeAmt;
 }
 blob.writeChunk(<remaining amt>, buffer, BUFSIZE, offset);

 blob.close();
 }
}
stmt->closeResultSet(rset);
conn->commit();

Example 7-5 How to Write Streamed BLOBs

ResultSet *rset=stmt->executeQuery("SELECT ad_composite FROM print_media
 WHERE product_id=6666 FOR UPDATE");
while(rset->next())
{
 Blob blob=rset->getBlob(1);
 if(blob.isNull())
 cerr <<"Null Blob"<<endl;
 else
 {
 char buffer[BUFSIZE];
 Stream *outstream=blob.getStream(1,0);

Chapter 7
About Reading and Writing LOBs

7-6

 //writing from buffer beginning at offset 1 until
 //a writeLastBuffer() method is issued.
 //contents of buffer are replaced after each writeBuffer(),
 //typically with an fread()
 while(<fread "BUFSIZE" bytes into buffer succeeds>)
 ostream->writeBuffer(buffer,BUFSIZE);
 ostream->writeLastBuffer(buffer,<remaining amt>);
 blob.closeStream(outstream);
 }
}
stmt->closeResultSet(rset);
conn->commit();

7.4.3 About Enhancing the Performance of LOB Reads and Writes
Reading and writing of internal LOBs can be improved by using either getChunkSize()
method.

This section includes the following topic: About Using the getChunkSize() Method.

7.4.3.1 About Using the getChunkSize() Method
The getChunkSize() method returns the usable chunk size in bytes for BLOBs, and in
characters for CLOBs and NCLOBs. Performance improves when a read or a write begins on a
multiple of the usable chunk size, and the request size is also a multiple of the usable chunk
size. You can specify the chunk size for a LOB column when you create a table that contains
the LOB.

Calling the getChunkSize() method returns the usable chunk size of the LOB. An application
can batch a series of write operations until an entire chunk can be written, rather than issuing
multiple LOB write calls that operate on the same chunk

To read through the end of a LOB, use the read() method with an amount of 4 GB. This
avoids the round-trip involved with first calling the getLength() method because the read()
method with an amount of 4 GB reads until the end of the LOB is reached.

For LOBs that store variable width characters, the GetChunkSize() method returns the
number of Unicode characters that fit in a LOB chunk.

7.4.4 Updating LOBs
To update a value of a LOB in the database, you must assign the new value to the LOB,
execute a SQL UPDATE command in the database, and then commit the transaction.
Example 7-6 demonstrates how to update an existing CLOB (in this case, by setting it to
empty), while Example 7-7 demonstrates how to update a BFILE.

Example 7-6 Updating a CLOB Value

Clob clob(conn);
clob.setEmpty();
stmt->setSQL("UPDATE print_media SET ad_composite = :1
 WHERE product_id=6666");
stmt->setClob(1, clob);
stmt->executeUpdate();
conn->commit();

Chapter 7
About Reading and Writing LOBs

7-7

Example 7-7 Updating a BFILE Value

Bfile bfile(conn);
bfile.setName("MEDIA_DIR", "img1.jpg");
stmt->setSQL("UPDATE print_media SET ad_graphic = :1
 WHERE product_id=6666");
stmt->setBfile(1, bfile);
stmt->executeUpdate();
conn->commit();

7.4.5 About Reading and Writing Multiple LOBs
As of Oracle Database 10g Release 2, OCCI has new interfaces that enhance
application performance while reading and writing multiple LOBs, such as Bfiles,
Blobs, Clobs and NClobs.

These interfaces have several advantages over the standard methods for reading and
writing a single LOB at a time:

• Reading and writing multiple LOBs through OCCI in a single server round-trip
improves performance by decreasing I/O time between the application and the
back end.

• The new APIs provide support for LOBs that are larger than the previous limit of
4 GB. The new interfaces accept the oraub8 data type for amount, offsets, buffer
and length parameters. These parameters are mapped to the appropriate 64-bit
native data type, which is determined by the compiler and the operating system.

• For Clob-related methods, the user can specify the data amount read or written in
terms of character counts or byte counts.

New APIs for this features are described in OCCI Application Programming Interface,
section on Connection Class, and include readVectorOfBfiles(), readVectorOfBlobs(),
readVectorOfClobs() (overloaded to support general charactersets, and the UTF16
characterset in particular), writeVectorOfBlobs(), and writeVectorOfClobs() (overloaded
to support general charactersets, and the UTF16 characterset in particular).

This section includes the following topic: About Using the Interfaces for Reading and
Writing Multiple LOBs.

7.4.5.1 About Using the Interfaces for Reading and Writing Multiple LOBs
Each of the readVectorOfxxx() and writeVectorOfxxx() interface uses the following
parameters:

• conn, a Connection class object

• vec, a vector of LOB objects: Bfile, Blob, Clob, or NClob
• byteAmts, array of amounts, in bytes, for reading or writing

• charAmts, array of amounts, in characters, for reading or writing (only applicable
for Clobs and NClobs)

• offsets, array of offsets, in bytes for Bfiles and Blobs, and in characters for
Clobs and NClobs

• buffers, array of buffer pointers

• bufferLengths, array of buffer lengths.

Chapter 7
About Reading and Writing LOBs

7-8

If there are errors in either reading or writing of one of the LOBs in the vector, the whole
operation is cancelled. The byteAmts or charAmts parameters should be checked to
determine the actual number of bytes or characters read or written.

7.5 Using Objects with LOB Attributes
An OCCI application can use the operator new() to create a persistent object with a LOB
attribute. By default, all LOB attributes are constructed by using the default constructor, and
are initialized to NULL.

Example 7-8 demonstrates how to create and use persistent objects with internal LOB
attributes. Example 7-9 demonstrates how to create and use persistent objects with external
LOB attributes.

Example 7-8 How to Use a Persistent Object with a BLOB Attribute

1. Create a persistent object with a BLOB attribute:

Person *p=new(conn,"PERSON_TAB")Person();
p->imgBlob = Blob(conn);

2. Either initialize the Blob object to empty:

p->imgBlob.setEmpty();

Or set it to some existing value

3. Mark the Blob object as dirty:

p->markModified();
4. Flush the object:

p->flush();
5. Repin the object after obtaining a REF to it, thereby retrieving a refreshed version of the

object from the database and acquiring an initialized LOB:

Ref<Person> r = p->getRef();
delete p;
p = r.ptr();

6. Write the data:

p->imgBlob.write(...);
Example 7-9 How to Use a Persistent Object with a BFILE Attribute

1. Create a persistent object with a BFILE attribute:

Person *p=new(conn,"PERSON_TAB")Person();
p->imgBFile = BFile(conn);

2. Initialize the Bfile object:

p->setName(directory_alias, file_name);
3. Mark the Bfile object as dirty:

p->markModified();
4. Flush the object:

p->flush();

Chapter 7
Using Objects with LOB Attributes

7-9

5. Read the data:

p->imgBfile.read(...);

7.6 About Using SecureFiles
Introduced with Oracle Database 11g Release 1, SecureFiles LOBs add powerful new
features for LOB compression, encryption, and deduplication.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

This section includes the following topics:

• About Using SecureFile Compression

• About Using SecureFiles Encryption

• About Using SecureFiles Deduplication

• About Combining SecureFiles Compression, Encryption, and Deduplication

• SecureFiles LOB Types and Constants

7.6.1 About Using SecureFile Compression
SecureFiles compression enables server-side compression of LOB data, transparent
to the application. Using SecureFiles compression saves storage space with minimal
impact on reading and updating performance for SecureFiles LOB data.

7.6.2 About Using SecureFiles Encryption
SecureFiles introduce a new encryption capability for LOB data and extend
Transparent Data Encryption by enabling efficient random read and write access to
encrypted SecureFiles LOBs.

7.6.3 About Using SecureFiles Deduplication
SecureFiles deduplication allows the Oracle Database to automatically detect
duplicate LOB data, and to conserve space by storing a single copy of the SecureFiles
LOB.

7.6.4 About Combining SecureFiles Compression, Encryption, and
Deduplication

You can combine compression, encryption and deduplication in any combination.
Oracle Database applies these features according to the following rules:

• Deduplicate detection, if enabled, is performed before compression and
encryption. This prevents potentially unnecessary and expensive compression and
encryption operations on duplicate SecureFiles LOBs.

Chapter 7
About Using SecureFiles

7-10

• Compression is performed before encryption, to allow for the highest possible
compression ratios.

7.6.5 SecureFiles LOB Types and Constants
The following types for SecureFiles LOBs enable additional flexibility for compression,
encryption, and deduplication. Table 7-1 lists options for the LobOptionType, while Table 7-2
lists options for the LobOptionValue.

Table 7-1 Values of Type LobOptionType

Value Description

OCCI_LOB_OPT_COMPRESS Compression option type

OCCI_LOB_OPT_ENCRYPT Encryption option type

OCCI_LOB_OPT_DEDUPLICATE Deduplicate option type

Table 7-2 Values of Type LobOptionValue

Value Description

OCCI_LOB_COMPRESS_OFF Turns off SecureFiles compression

OCCI_LOB_COMPRESS_ON Turns on SecureFiles compression

OCCI_LOB_ENCRYPT_OFF Turns off SecureFiles encryption

OCCI_LOB_ENCRYPT_ON Turns on SecureFiles encryption

OCCI_LOB_DEDUPLICATE_OFF Turns off SecureFiles deduplication

OCCI_LOB_DEDUPLICATE_ON Turns off LOB deduplication

Chapter 7
About Using SecureFiles

7-11

8
Object Type Translator Utility

This chapter discusses the Object Type Translator (OTT) utility, which is used to map
database object types, LOB types, and named collection types to C++ class declarations for
use in OCCI applications.

This chapter contains these topics:

• Overview of the Object Type Translator Utility

• Using the OTT Utility

• Creating Types in the Database

• About Invoking the OTT Utility

• About Using the INTYPE File

• Using OTT Utility Data Type Mappings

• Overview of the OUTTYPE File

• Using the OTT Utility and OCCI Applications

• Carrying Forward User Added Code

See Also:

$ORACLE_HOME/rdbms/demo for a complete code listing of the demonstration
program used in this chapter, and the class and method implementation generated
by the OTT utility.

8.1 Overview of the Object Type Translator Utility
The Object Type Translator (OTT) utility assists in the development of applications that make
use of user-defined types in an Oracle database server.

You can create object types using the SQL CREATE TYPE statement. The definitions of these
types are stored in the database, and can be subsequently used to create database tables.
Once these tables are populated, an OCCI programmer can access objects stored in the
tables.

An application that accesses object data must be able to represent the data in a host
language format. This is accomplished by representing object types classes in C++.

You could code structures or classes manually to represent database object types, but this is
time-consuming and error-prone. The OTT utility simplifies this step by automatically
generating the appropriate classes for C++.

For OCCI, the application must include and link the following files:

• Include the header file containing the generated class declarations

8-1

• Include the header file containing the prototype for the function to register the
mappings

• Link with the C++ source file containing the static methods to be called by OCCI
while instantiating the objects

• Link with the file containing the function to register the mappings with the
environment and call this function

8.2 Using the OTT Utility
To translate database types to C++ representation, you must explicitly invoke the OTT
utility. OCCI programmers must register the mappings with the environment. This
function is generated by the OTT utility.

On most operating systems, the OTT utility is invoked on the command line. It takes as
input an INTYPE file, and generates an OUTTYPE file, one or more C++ header files that
contain the prototype information, and additional C++ method files that register
generated mappings.

See Also:

Extending C++ Classes for a complete C++ example

Example 8-1 How to Use the OTT Utility

The following command invokes the OTT utility and generates C++ classes. OTT
attempts to connect with user name demousr; the system prompts for the password.

ott userid=demousr intype=demoin.typ outtype=demoout.typ code=cpp
 hfile=demo.h cppfile=demo.cpp mapfile=RegisterMappings.cpp

OTT utility uses the demoin.typ file as the INTYPE file, and the demoout.typ file as the
OUTTYPE file. The resulting declarations are output to the file demo.h in C++, specified
by the CODE=cpp parameter, the method implementations written to the file demo.cpp,
and the functions to register mappings is written to RegisterMappings.cpp with its
prototype written to RegisterMappings.h.

8.3 Creating Types in the Database
The first step in using the OTT utility is to create object types or named collection
types and store them in the database. This is accomplished by the SQL CREATE TYPE
statement.

Example 8-2 Object Creation Statements of the OTT Utility

CREATE TYPE FULL_NAME AS OBJECT (first_name CHAR(20), last_name CHAR(20));
CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20));
CREATE TYPE ADDRESS_TAB AS VARRAY(3) OF REF ADDRESS;
CREATE TYPE PERSON AS OBJECT (id NUMBER, name FULL_NAME, curr_addr REF ADDRESS,
 prev_addr_1 ADDRESS_TAB) NOT FINAL;
CREATE TYPE STUDENT UNDER PERSON (school_name CHAR(20));

Chapter 8
Using the OTT Utility

8-2

8.4 About Invoking the OTT Utility
After creating types in the database, the next step is to invoke the OTT utility.

This section includes the following topics:

• Specifying OTT Parameters

• Invoking the OTT Utility on the Command Line

• OTT Utility Parameters

• Where OTT Parameters Can Appear

• File Name Comparison Restriction

• Using the OTT Command on Microsoft Windows

8.4.1 Specifying OTT Parameters
You can specify OTT parameters either on the command line or in a configuration file. Certain
parameters can also be specified in the INTYPE file.

If you specify a parameter in multiple locations, then its value on the command line takes
precedence over its value in the INTYPE file. The value in the INTYPE file takes precedence
over its value in a user-defined configuration file, which takes precedence over its value in the
default configuration file.

Parameter precedence then is as follows:

1. OTT command line

2. Value in INTYPE file

3. User-defined configuration file

4. Default configuration file

For global options (that is, options on the command line or options at the beginning of the
INTYPE file before any TYPE statements), the value on the command line overrides the value
in the INTYPE file. (The options that can be specified globally in the INTYPE file are CASE,
INITFILE, INITFUNC, MAPFILE and MAPFUNC, but not HFILE or CPPFILE.) Anything in the INTYPE
file in a TYPE specification applies to a particular type only and overrides anything on the
command line that would otherwise apply to the type. So if you enter TYPE person
HFILE=p.h, then it applies to person only and overrides the HFILE on the command line. The
statement is not considered a command line parameter.

This section includes the following topics:

• About Setting Parameters on the Command Line

• About Setting Parameters in the INTYPE File

• About Setting Parameters in the Configuration File

8.4.1.1 About Setting Parameters on the Command Line
Parameters (also called options) set on the command line override any parameters or option
set elsewhere.

Chapter 8
About Invoking the OTT Utility

8-3

8.4.1.2 About Setting Parameters in the INTYPE File
The INTYPE file gives a list of types for the OTT utility to translate.

The parameters CASE, CPPFILE, HFILE, INITFILE, INITFUNC, MAPFILE, and MAPFUNC can
appear in the INTYPE file.

8.4.1.3 About Setting Parameters in the Configuration File
A configuration file is a text file that contains OTT parameters. Each nonblank line in
the file contains one parameter, with its associated value or values. If multiple
parameters are on the same line, then only the first one is used. No blank space is
allowed on any nonblank line of a configuration file.

A configuration file can be named on the command line. In addition, a default
configuration file is always read. This default configuration file must always exist, but
can be empty. The name of the default configuration file is ottcfg.cfg, and the
location of the file is operating system-specific.

See Also:

Your operating system-specific documentation for more information about the
location of the default configuration file.

8.4.2 Invoking the OTT Utility on the Command Line
On most platforms, the OTT utility is invoked on the command line. You can specify
the input and output files and the database connection information at the command
line, among other things.

See Also:

Your operating system-specific documentation to see how to invoke the OTT
utility on your operating system

Note:

No spaces are permitted around the equals sign (=) on the OTT command
line.

An OTT command line statement consists of the command OTT, followed by a list of
OTT utility parameters.

The HFILE parameter is almost always used. If omitted, then HFILE must be specified
individually for each type in the INTYPE file. If the OTT utility determines that a type not
listed in the INTYPE file must be translated, then an error is reported. Therefore, it is

Chapter 8
About Invoking the OTT Utility

8-4

safe to omit the HFILE parameter only if the INTYPE file was previously generated as an OTT
OUTTYPE file.

If the INTYPE file is omitted, then the entire schema is translated. See the parameter
descriptions in the following section for more information.

Example 8-3 How to Invoke the OTT Utility to Generate C++ Classes

OTT attempts to connect with user name demousr; the system prompts for the password.

ott userid=demousr intype=demoin.typ outtype=demoout.typ code=cpp
 hfile=demo.h cppfile=demo.cpp mapfile=RegisterMappings.cpp

This section includes the following topic: Elements Used on the OTT Command Line.

8.4.2.1 Elements Used on the OTT Command Line
Elements used on the OTT command line are:

• OTT command that invokes the OTT utility. It must be the first item on the command line.

• USERID parameter

• INTYPE parameter

• OUTTYPE parameter.

• CODE parameter.

• HFILE parameter.

• CPPFILE parameter.

• MAPFILE parameter.

8.4.3 OTT Utility Parameters
To generate C++ using the OTT utility, the CODE parameter must be set to CODE=CPP. Once
CODE=CPP is specified, you are required to specify the CPPFILE and MAPFILE parameters to
define the filenames for the method implementation file and the mappings registration
function file. The name of the mapping function is derived by the OTT utility from the MAPFILE
or you may specify the name with the MAPFUNC parameter. ATTRACCESS is also an optional
parameter that can be specified to change the generated code. These parameters control the
generation of C++ classes.

• Enter parameters on the OTT command line where parameter is the literal parameter
string and value is a valid parameter setting. The literal parameter string is not case
sensitive:

parameter=value
• Separate command line parameters by using either spaces or tabs.

• Parameters can also appear within a configuration file, but, in that case, no whitespace is
permitted within a line, and each parameter must appear on a separate line. Additionally,
the parameters CASE, CPPFILE, HFILE, INITFILE, INTFUNC, MAPFILE, and MAPFUNC can
appear in the INTYPE file.

Table 8-1 lists all OTT Utility parameters:

Chapter 8
About Invoking the OTT Utility

8-5

Table 8-1 Summary of OTT Utility Parameters

Parameter Description

ATTRACCESS Specifies whether the access to type attributes is PROTECTED or
PRIVATE.

CASE Affects the letter case of generated C++ identifiers

CODE Specifies the target language for the translation. Use CPP.

CONFIG Specifies the name of the OTT configuration file that lists
commonly used parameter specifications.

CPPFILE Specifies the name of the C++ source file into which the method
implementations are written.

ERRTYPE Specifies the name of the error message output file.

HFILE Specifies the name of the C++ header file to which the generated
C++ classes are written.

INTYPE Specifies the name of the INTYPE file.

MAPFILE Specifies the name of the mapping file and the corresponding
header file generated by the OTT utility.

MAPFUNC Specifies the name of the function used to register generated
mappings.

OUTTYPE Specifies the name of the OUTTYPE file.

SCHEMA_NAMES Controls the qualifying the database name of a type from the
default schema

TRANSITIVE Indicates whether to translate type dependency that are not
explicitly listed in the INTYPE.

UNICODE Indicates whether the application should provide UTF16 support
generate UString types.

USE_MARKER Indicates whether OTT markers should be supported to carry
forward user added cod

USERID Specifies the database connection information that the OTT utility
uses.

8.4.3.1 ATTRACCESS
This parameter specifies access to type attributes:

• PROTECTED is the default.

• PRIVATE indicates that the OTT utility generates accessory and mutator methods
for each type attribute, getXXX() and setXXX().

8.4.3.2 CASE
This parameter affects the letter case of generated C++ identifiers. The valid values of
CASE are:

• SAME is the case of letters remains unchanged when converting database type and
attribute names to C++ identifiers.

• LOWER indicates that all uppercase letters are converted to lowercase.

Chapter 8
About Invoking the OTT Utility

8-6

• UPPER indicates that all lowercase letters are converted to uppercase.

• OPPOSITE indicates that all uppercase letters are converted to lowercase, and all
lowercase letters are converted to uppercase.

This parameter affects only those identifiers (attributes or types not explicitly listed) not
mentioned in the INTYPE file. Case conversion takes place after a legal identifier has been
generated.

Case insensitive SQL identifiers not mentioned in the INTYPE file appear in uppercase if
CASE=SAME, and in lowercase if CASE=OPPOSITE. A SQL identifier is case insensitive if it was
not quoted when it was declared.

8.4.3.3 CODE
This parameter specifies the host language to be output by the OTT utility. CODE=CPP must be
specified for the OTT utility to generate C++ code for OCCI applications.

8.4.3.4 CONFIG
This parameter specifies the name of the OTT configuration file that lists commonly used
parameter specifications. Parameter specifications are also read from a system configuration
file found in an operating system-dependent location. All remaining parameter specifications
must appear either on the command line or in the INTYPE file.

The CONFIG parameter can only be specified on the OTT command line. It is not allowed in
the CONFIG file.

8.4.3.5 CPPFILE
This parameter specifies the name of the C++ source file that contains the method
implementations generated by the OTT utility. The methods generated in this file are called by
OCCI while instantiating the objects and are not to be called directly in the an application.

This parameter is required under the following conditions:

• A type not mentioned in the INTYPE file must be generated and two or more CPPFILEs are
being generated. In this case, the unmentioned type goes in the CPPFILE specified on the
command line.

• The INTYPE parameter is not specified, and you want the OTT utility to translate all the
types in the schema.

This parameter is optional when the CPPFILE is specified for individual types in the INTYPE
file.

8.4.3.6 ERRTYPE
This parameter specifies the name of the error message output file. Information and error
messages are sent to the standard output regardless of whether the ERRTYPE parameter is
specified. Essentially, the ERRTYPE file is a copy of the INTYPE file with error messages added.
In most cases, an error message includes a pointer to the text that caused the error.

If the filename specified for the ERRTYPE parameter on the command line does not include an
extension, a platform-specific extension, like .TLS or .tls, is added automatically.

Chapter 8
About Invoking the OTT Utility

8-7

8.4.3.7 HFILE
This parameter specifies the name of the header (.h) file to be generated by the OTT
utility. The HFILE specified on the command line contains the declarations of types that
are mentioned in the INTYPE file but whose header files are not specified there.

This parameter is required unless the header file for each type is specified individually
in the INTYPE file. This parameter is also required if a type not mentioned in the INTYPE
file must be generated because other types require it, and these other types are
declared in two or more different files.

If the filename specified for the HFILE parameter on the command line or in the INTYPE
file does not include an extension, a platform-specific extension, like .H or .h, is added
automatically.

8.4.3.8 INTYPE
This parameter specifies the name of the file from which to read the list of object type
specifications. The OTT utility translates each type in the list. If the INTYPE parameter
is not specified, all types in the user's schema is translated.

If the filename specified for the INTYPE parameter on the command line does not
include an extension, a platform-specific extension, like .TYP or .typ, is automatically
added.

INTYPE= may be omitted if USERID and INTYPE are the first two parameters, in that
order, and USERID= is omitted.

The INTYPE file can be thought of as a makefile for type declarations. It lists the types
for which C++ classes are needed.

See Also:

"Structure of the INTYPE File" for more information about the format of the
INTYPE file

8.4.3.9 MAPFILE
This parameter specifies the name of the mapping file (XXX.cpp) and corresponding
header file (XXX.h) that are generated by the OTT utility. The XXX.cpp file contains the
implementation of the functions to register the mappings, while the XXX.h file contains
the prototype for the function.

This parameter may be specified either on the command line or in the INTYPE file.

8.4.3.10 MAPFUNC
This parameter specifies the name of the function to be used to register the mappings
generated by the OTT utility.

If this parameter is omitted, then the name of the function to register the mappings is
derived from the filename specified in the MAPFILE parameter.

Chapter 8
About Invoking the OTT Utility

8-8

This parameter may be specified either on the command line or in the INTYPE file.

8.4.3.11 OUTTYPE
This parameter specifies the name of the file into which the OTT utility writes type information
for all the object data types it processes. This file includes all types explicitly named in the
INTYPE file, and may include additional types that are translated because they are used in the
declarations of other types that must be translated. This file may be used as an INTYPE file in
a future invocation of the OTT utility.

If the INTYPE and OUTTYPE parameters refer to the same file, then the new INTYPE information
replaces the old information in the INTYPE file. This provides a convenient way for the same
INTYPE file to be used repeatedly in the cycle of altering types, generating type declarations,
editing source code, precompiling, compiling, and debugging.

If the filename specified for the OUTTYPE parameter on the command line or in the INTYPE file
does not include an extension, a platform-specific extension, like.TYP or .typ, is
automatically added.

8.4.3.12 SCHEMA_NAMES
This parameter offers control in qualifying the database name of a type from the default
schema that is named in the OUTTYPE file. The OUTTYPE file generated by the OTT utility
contains information about the types processed by the OTT utility, including the type names.
Valid values include:

• ALWAYS (default) indicates that all type names in the OUTTYPE file are qualified with a
schema name.

• IF_NEEDED indicates that the type names in the OUTTYPE file that belong to the default
schema are not qualified with a schema name. Type names belonging to other schemas
are qualified with the schema name.

• FROM_INTYPE indicates that a type mentioned in the INTYPE file is qualified with a
schema name in the OUTTYPE file only if it was qualified with a schema name in the
INTYPE file. A type in the default schema that is not mentioned in the INTYPE file but
generated because of type dependency is written with a schema name only if the first
type encountered by the OTT utility that depends on it is also written with a schema
name. However, a type that is not in the default schema to which the OTT utility is
connected is always written with an explicit schema name.

The name of a type from a schema other that the default schema is always qualified with a
schema name in the OUTTYPE file.

The schema name, or its absence, determines in which schema the type is found during
program execution.

Example 8-4 How to use the SCHEMA_NAMES Parameter in OTT Utility

Consider an example where the SCHEMA_NAMES parameter is set to FROM_INTYPE, and the
INTYPE file contains the following:

TYPE Person
TYPE joe.Dept
TYPE sam.Company

If the OTT utility and the application both connect to schema joe, then the application uses
the same type (joe.Person) that the OTT utility uses. If the OTT utility connects to schema

Chapter 8
About Invoking the OTT Utility

8-9

joe but the application connects to schema mary, then the application uses the type
mary.Person. This behavior is appropriate only if the same CREATE TYPE Person
statement has been executed in schema joe and schema mary.

On the other hand, the application uses type joe.Dept regardless of which schema the
application is connected to. If this is the behavior you want, then be sure to include
schema names with your type names in the INTYPE file.

In some cases, the OTT utility translates a type that the user did not explicitly name.
For example, consider the following SQL declarations:

CREATE TYPE Address AS OBJECT
(
 street VARCHAR2(40),
 city VARCHAR(30),
 state CHAR(2),
 zip_code CHAR(10)
);

CREATE TYPE Person AS OBJECT
(
 name CHAR(20),
 age NUMBER,
 addr ADDRESS
);

Suppose that the OTT utility connects to schema joe, SCHEMA_NAMES=FROM_INTYPE is
specified, and the user's INTYPE files include either TYPE Person or TYPE joe.Person.
The INTYPE file does not mention the type joe.Address, which is used as a nested
object type in type joe.Person.

• If Type Person appears in the INTYPE file, then TYPE Person and TYPE Address
appears in the OUTTYPE file.

• If TYPE joe.Person appears in the INTYPE file, then TYPE joe.Person and TYPE
joe.Address appear in the OUTTYPE file.

• If the joe.Address type is embedded in several types translated by the OTT utility,
but it is not explicitly mentioned in the INTYPE file, then the decision of whether to
use a schema name is made the first time the OTT utility encounters the
embedded joe.Address type. If, for some reason, the user wants type
joe.Address to have a schema name but does not want type Person to have one,
then you must explicitly request this in the INTYPE file: TYPE joe.Address.

In the usual case in which each type is declared in a single schema, it is safest for you
to qualify all type names with schema names in the INTYPE file.

8.4.3.13 TRANSITIVE
This parameter indicates whether type dependencies not explicitly listed in the INTYPE
file are to be translated. Valid values are:

• TRUE (default): types needed by other types and not mentioned in the INTYPE file
are generated

• FALSE: types not mentioned in the INTYPE file are not generated, even if they are
used as attribute types of other generated types.

Chapter 8
About Invoking the OTT Utility

8-10

8.4.3.14 UNICODE
This parameter specifies whether the application provides unicode (UTF16) support.

• NONE (default)

• ALL: All CHAR (CHAR/VARCHAR) and NCHAR (NCHAR/NVARCHAR2) type attributes are declared as
UString type in the OTT generated C++ class files. The corresponding getXXX()/
setXXX() return values or parameters are UString types. The generated persistent
operator new would also take only UString arguments.

This setting is necessary when both the client characterset and the national characterset
is UTF16.

• ONLYNCHAR: Similar to the ALL option, but only NCHAR type attributes are declared as
UString.

This setting is necessary when the application sets only the Environment's national
characterset to UTF16.

Example 8-5 How to Define a Schema for Unicode Support in OTT

create type CitiesList as varray(100) of varchar2(100);

create type Country as object
(CNo Number(10),
 CName Varchar2(100),
 CNationalName NVarchar2(100),
 MainCities CitiesList);

Example 8-6 How to Use UNICODE=ALL Parameter in OTT

class Country : public oracle::occi::PObject
{
 private:
 oracle::occi::Number CNO;
 oracle::occi::UString CNAME;
 oracle::occi::UString CNATIONALNAME;
 OCCI_STD_NAMESPACE:::vector< oracle::occi::UString > MAINCITIES;

 public:

 oracle::occi::Number getCno() const;
 void setCno(const oracle::occi::Number &value);

 oracle::occi::UString getCname() const;
 void setCname(const oracle::occi::UString &value);

 oracle::occi::UString getCnationalname() const;
 void setCnationalname(const oracle::occi::UString &value);

 OCCI_STD_NAMESPACE::vector< oracle::occi::UString >& getMaincities();
 const OCCI_STD_NAMESPACE::vector< oracle::occi::UString >&
 getMaincities() const;
 void setMaincities(const OCCI_STD_NAMESPACE::vector< oracle::occi::UString
 > &value);
...
}

Chapter 8
About Invoking the OTT Utility

8-11

Example 8-7 How to Use UNICODE=ONLYCHAR Parameter in OTT

class Country : public oracle::occi::PObject
{
 private:
 oracle::occi::Number CNO;
 oracle::occi::string CNAME;
 oracle::occi::UString CNATIONALNAME;
 OCCI_STD_NAMESPACE::vector< std::string > MAINCITIES;

 public:

 oracle::occi::Number getCno() const;
 void setCno(const oracle::occi::Number &value);

 oracle::occi::string getCname() const;
 void setCname(const OCCI_STD_NAMESPACE::string &value);

 oracle::occi::UString getCnationalname() const;
 void setCnationalname(const oracle::occi::UString &value);

 OCCI_STD_NAMESPACE::vector< OCCI_STD_NAMESPACE::string>&
 getMaincities();
 const OCCI_STD_NAMESPACE::vector< OCCI_STD_NAMESPACE::string >&
 getMaincities() const;
 void setMaincities(const OCCI_STD_NAMESPACE::vector
 < OCCI_STD_NAMESPACE::string > &value);
...
}

8.4.3.15 USE_MARKER
This parameter indicates whether to support OTT markers for carrying forward user
added code. Valid values are:

• FALSE (default): User-supplied code is not carried forward, even if the code is
added between OTT_USERCODE_START and OTT_USERCODE_END markers.

• TRUE: User-supplied code, between the markers OTT_USER_CODESTART and
OTT_USERCODE_END, is carried forward when the same file is generated again.

8.4.3.16 USERID
This parameter specifies the Oracle username and optional database name (Oracle
Net database specification string). If the database name is omitted, the default
database is assumed.

USERID=username[@db_name]

If this is the first parameter, then USERID= may be omitted as shown:

OTT username ...

Note that the system prompts you for the password that corresponds to the user id.

This parameter is optional. If omitted, the OTT utility automatically attempts to connect
to the default database as user OPS$username, where username is the user's operating
system username.

Chapter 8
About Invoking the OTT Utility

8-12

8.4.4 Where OTT Parameters Can Appear
Supply OTT parameters on the command line, in a CONFIG file named on the command line,
or both. Some parameters are also allowed in the INTYPE file.

The OTT utility is invoked as follows:

OTT parameters

You can name a configuration file on the command line with the CONFIG parameter as follows:

CONFIG=filename

If you name this parameter on the command line, then additional parameters are read from
the configuration file named filename.

In addition, parameters are also read from a default configuration file that resides in an
operating system-dependent location. This file must exist, but can be empty. If you choose to
enter data in the configuration file, note that no white space is allowed on a line and
parameters must be entered one to a line.

If the OTT utility is executed without any arguments, then an online parameter reference is
displayed.

The types for the OTT utility to translate are named in the file specified by the INTYPE
parameter. The parameters CASE, CPPFILE, HFILE, INITFILE, INITFUNC, MAPFILE, and MAPFNC
may also appear in the INTYPE file. OUTTYPE files generated by the OTT utility include the CASE
parameter, and include the INITFILE, and INITFUNC parameters if an initialization file was
generated or the MAPFILE and MAPFUNC parameters if C++ codes was generated. The OUTTYPE
file and the CPPFILE for C++ specify the HFILE individually for each type.

The case of the OTT command is operating system-dependent.

8.4.5 File Name Comparison Restriction
Currently, the OTT utility determines if two files are the same by comparing the filenames
provided by the user either on the command line or in the INTYPE file. But one potential
problem can occur when the OTT utility must know if two filenames refer to the same file. For
example, if the OTT-generated file foo.h requires a type declaration written to foo1.h, and
another type declaration written to /private/smith/foo1.h, then the OTT utility should
generate one #include if the two files are the same, and two #includes if the files are
different. In practice, though, it concludes that the two files are different, and generates two
#includes as follows:

#ifndef FOO1_ORACLE
#include "foo1.h"
#endif
#ifndef FOO1_ORACLE
#include "/private/smith/foo1.h"
#endif

If foo1.h and /private/smith/foo1.h are different files, then only the first one is included. If
foo1.h and /private/smith/foo1.h are the same file, then a redundant #include is written.

Therefore, if a file is mentioned several times on the command line or in the INTYPE file, then
each mention of the file should use the same filename.

Chapter 8
About Invoking the OTT Utility

8-13

8.4.6 Using the OTT Command on Microsoft Windows
OTT executable on Microsoft Windows in the current release is ott.bat, instead of
ott.exe as in the earlier releases. This may break Windows batch scripts, as the
scripts exit immediately after executing ott. To fix this problem, OTT should be invoked
as follows, in Windows batch scripts:

call ott [arguments]

Note:

ORACLE_HOME\precomp\admin\ott.exe can be used until the scripts are fixed,
as an intermediate solution. However, this intermediate solution will not be
provided in future releases.

8.5 About Using the INTYPE File
When you run the OTT utility, the INTYPE file tells the OTT utility which database types
should be translated. The INTYPE file also controls the naming of the generated
structures or classes. You can either create an INTYPE file or use the OUTTYPE file of a
previous invocation of the OTT utility. If you do not use an INTYPE file, then all types in
the schema to which the OTT utility connects are translated.

This section includes the following topics:

• Using the INTYPE File

• Structure of the INTYPE File

• Using Nested include File Generation

8.5.1 Using the INTYPE File
The OTT utility may have to translate additional types that are not listed in the INTYPE
file. This is because the OTT utility analyzes the types in the INTYPE file for type
dependencies before performing the translation, and it translates other types as
necessary. For example, if the ADDRESS type were not listed in the INTYPE file, but the
Person type had an attribute of type ADDRESS, then the OTT utility would still translate
ADDRESS because it is required to define the Person type.

You may indicate whether the OTT utility should generate required object types that
are not specified in the INTYPE file. Set TRANSITIVE=FALSE so the OTT utility does not
to generate required object types. The default is TRANSITIVE=TRUE.

A normal case insensitive SQL identifier can be spelled in any combination of
uppercase and lowercase in the INTYPE file, and is not quoted.

Use quotation marks, such as TYPE "Person" to reference SQL identifiers that have
been created in a case sensitive manner, for example, CREATE TYPE "Person". A SQL
identifier is case sensitive if it was quoted when it was declared. Quotation marks can
also be used to refer to a SQL identifier that is an OTT-reserved word, for example,
TYPE "CASE". In this case, the quoted name must be in uppercase if the SQL identifier

Chapter 8
About Using the INTYPE File

8-14

was created in a case insensitive manner, for example, CREATE TYPE Case. If an OTT-
reserved word is used to refer to the name of a SQL identifier but is not quoted, then the OTT
utility reports a syntax error in the INTYPE file.

See Also:

• "Structure of the INTYPE File" for a more detailed specification of the structure
of the INTYPE file and the available options.

• "CASE" for further information regarding the CASE parameter

Example 8-8 How to Create a User Defined INTYPE File Using the OTT Utility

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE "Person"
TYPE PURCHASE_ORDER AS p_o

• In the first line, the CASE parameter indicates that generated C identifiers should be in
lowercase. However, this CASE parameter is only applied to those identifiers that are not
explicitly mentioned in the INTYPE file. Thus, employee and ADDRESS would always result
in C structures employee and ADDRESS, respectively. The members of these structures are
named in lowercase.

• The lines that begin with the TYPE keyword specify which types in the database should be
translated. In this case, the EMPLOYEE, ADDRESS, ITEM, PERSON, and PURCHASE_ORDER types
are set to be translated.

• The TRANSLATE...AS keywords specify that the name of an object attribute should be
changed when the type is translated into a C structure. In this case, the SALARY$ attribute
of the employee type is translated to salary.

• The AS keyword in the final line specifies that the name of an object type should be
changed when it is translated into a structure. In this case, the purchase_order database
type is translated into a structure called p_o.

8.5.2 Structure of the INTYPE File
The INTYPE and OUTTYPE files list the types translated by the OTT utility and provide all the
information needed to determine how a type or attribute name is translated to a legal C or C+
+ identifier. These files contain one or more type specifications, and may also contain
specifications of CASE, CPPFILE, HFILE, INITFILE, INITFUNC, MAPFILE, or MAPFUNC.

If the CASE, INITFILE, INITFUNC, MAPFILE, or MAPFUNC options are present, then they must
precede any type specifications. If these options appear both on the command line and in the
INTYPE file, then the value on the command line is used.

Chapter 8
About Using the INTYPE File

8-15

See Also:

"Overview of the OUTTYPE File" for an example of a simple user-defined
INTYPE file and of the full OUTTYPE file that the OTT utility generates from it

This section includes the following topic: INTYPE File Type Specifications.

8.5.2.1 INTYPE File Type Specifications
A type specification in the INTYPE file names an object data type that is to be
translated. The following is an example of a user-created INTYPE file:

TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE PURCHASE_ORDER AS p_o

The structure of a type specification is as follows:

TYPE type_name
[GENERATE type_identifier]
[AS type_identifier]
[VERSION [=] version_string]
[HFILE [=] hfile_name]
[CPPFILE [=] cppfile_name]
[TRANSLATE{member_name [AS identifier]}...]

The type_name syntax follows this form:

[schema_name.]type_name

In this syntax, schema_name is the name of the schema that owns the given object data
type, and type_name is the name of the type. The default schema, if one is not
specified, is that of the userID invoking the OTT utility. To use a specific schema, you
must use schema_name.

The components of the type specification are:

• type_name: Name of the object data type.

• type_identifier: C / C++ identifier used to represent the class. The GENERATE
clause is used to specify the name of the class that the OTT utility generates. The
AS clause specifies the name of the class that you write. The GENERATE clause is
typically used to extend a class. The AS clause, when optionally used without the
GENERATE clause, specifies the name of the C structure or the C++ class that
represents the user-defined type.

• version_string: Version string of the type that was used when the code was
generated by the previous invocation of the OTT utility. The version string is
generated by the OTT utility and written to the OUTTYPE file, which can later be
used as the INTYPE file in later invocations of the OTT utility. The version string
does not affect how the OTT utility operates, but can be used to select which
version of the object data type is used in the running program.

Chapter 8
About Using the INTYPE File

8-16

• hfile_name: Name of the header file into which the declarations of the corresponding
class are written. If you omit the HFILE clause, then the file specified by the command line
HFILE parameter is used.

• cppfile_name: Name of the C++ source file into which the method implementations of the
corresponding class is written. If you omit the CPPFILE clause, the file specified by the
command line CPPFILE parameter is used.

• member_name: Name of an attribute (data member) that is to be translated to the identifier.

• identifier: C / C++ identifier used to represent the attribute in the program. You can
specify identifiers in this way for any number of attributes. The default name mapping
algorithm is used for the attributes not mentioned.

An object data type may be translated for one of two reasons:

• It appears in the INTYPE file.

• It is required to declare another type that must be translated, and the TRANSITIVE
parameter is set to TRUE.

If a type that is not mentioned explicitly is necessary to types declared in exactly one file, then
the translation of the required type is written to the same files as the explicitly declared types
that require it.

If a type that is not mentioned explicitly is necessary to types declared in multiple files, then
the translation of the required type is written to the global HFILE file.

You may indicate whether the OTT utility should generate required object types that are not
specified in the INTYPE file. Set TRANSITIVE=FALSE so the OTT utility does not to generate
required object types. The default is TRANSITIVE=TRUE.

8.5.3 Using Nested include File Generation
HFILE files generated by the OTT utility #include other necessary files, and #define a
symbol constructed from the name of the file. This symbol #define can then be used to
determine if the related HFILE file has been included. Consider, for example, a database with
the following types:

create type px1 AS OBJECT (col1 number, col2 integer);
create type px2 AS OBJECT (col1 px1);
create type px3 AS OBJECT (col1 px1);

The INTYPE file contains the following information:

CASE=lower
type pxl
 hfile tott95a.h
type px3
 hfile tott95b.h

You invoke the OTT utility as follows:

>ott hr intype=tott95i.typ outtype=tott95o.typ code=cpp
...
Enter password: password

The OTT utility then generates the following two header files, named tott95a.h and
tott95b.h. They are listed in

Chapter 8
About Using the INTYPE File

8-17

In the tott95b.h file, the symbol TOTT95B_ORACLE is #define d at the beginning of the
file. This enables you to conditionally #include this header file in another file, using the
following construct:

#ifndef TOTT95B_ORACLE
#include "tott95b.h"
#endif

By using this technique, you can #include tott95b.h in, say foo.h, without having to
know whether some other file #included in foo.h also #includes tott95b.h.

Next, the file tott95a.h is included because it contains the declaration of struct px1,
that tott95b.h requires. When the INTYPE file requests that type declarations be
written to multiple files, the OTT utility determines which other files each HFILE must
#include, and generates each necessary #include.

Note that the OTT utility uses quotes in this #include. When a program including
tott95b.h is compiled, the search for tott95a.h begins where the source program
was found, and thereafter follows an implementation-defined search rule. If tott95a.h
cannot be found in this way, then a complete filename (for example, a UNIX absolute
path name beginning with a slash character (/)) is necessary in the INTYPE file to
specify the location of tott95a.h.

Example 8-9 Listing of ott95a.h

#ifndef TOTT95A_ORACLE
define TOTT95A_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

/**/
// generated declarations for the PX1 object type.
/**/

class px1 : public oracle::occi::PObject {

protected:
 oracle::occi::Number col1;
 oracle::occi::Number col2;

public:
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 px1();
 px1(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);

Chapter 8
About Using the INTYPE File

8-18

 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~px1();
};

#endif

Example 8-10 Listing of ott95b.h

#ifndef TOTT95B_ORACLE
define TOTT95B_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

#ifndef TOTT95A_ORACLE
include "tott95a.h"
#endif

/**/
// generated declarations for the PX3 object type.
/**/

class px3 : public oracle::occi::PObject {

protected:
 px1 * col1;

public:
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 px3();
 px3(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~px3();
};
#endif

8.6 Using OTT Utility Data Type Mappings
When the OTT utility generates a C++ class from a database type, the structure or class
contains one element corresponding to each attribute of the object type. The data types of
the attributes are mapped to types that are used in Oracle object data types. The data types
found in Oracle include a set of predefined, primitive types and provide for the creation of
user-defined types, like object types and collections.

Chapter 8
Using OTT Utility Data Type Mappings

8-19

The set of predefined types includes standard types that are familiar to most
programmers, including number and character types. It also includes large object data
types (for example, BLOB or CLOB).

Table 8-2 C++ Object Data Type Mappings for Object Type Attributes

Object Attribute Types C++ Mapping

BFILE Bfile
BLOB Blob
BINARY_DOUBLE BDouble
BINARY_FLOAT BFloat
CHAR(n), CHARACTER(n) string
CLOB Clob
DATE Date
DEC, DEC(n), DEC(n,n) Number
DECIMAL, DECIMAL(n), DECIMAL(n,n) Number
FLOAT, FLOAT(n), DOUBLE PRECISION Number
INT, INTEGER, SMALLINT Number
INTERVAL DAY TO SECOND IntervalDS
INTERVAL YEAR TO MONTH IntervalYM
Nested Object Type C++ name of the nested object type

NESTED TABLE vector<attribute_type>
NUMBER, NUMBER(n), NUMBER(n,n) Number
NUMERIC, NUMERIC(n), NUMERIC(n,n) Number
RAW Bytes
REAL Number
REF Ref<attribute_type>
TIMESTAMP,TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME ZONE

Timestamp

VARCHAR(n) string
VARCHAR2(n) string
VARRAY vector<attribute_type>

Example 8-11 How to Represent Object Attributes Using the OTT Utility

Oracle also includes a set of predefined types that are used to represent object type
attributes in C++ classes. Consider the following object type definition, and its
corresponding OTT-generated structure declarations:

CREATE TYPE employee AS OBJECT
(name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary NUMBER
);

Chapter 8
Using OTT Utility Data Type Mappings

8-20

The OTT utility, assuming that the CASE parameter is set to LOWER and there are no explicit
mappings of type or attribute names, produces the following output:

#ifndef DATATYPES_ORACLE
define DATATYPES_ORACLE

#ifndef OCCI_ORACLE
include <occi.h>
#endif

/**/
// generated declarations for the EMPLOYEE object type.
/**/

class employee : public oracle::occi::PObject {

protected:
 OCCI_STD_NAMESPACE::string NAME;
 oracle::occi::Number EMPNO;
 oracle::occi::Number DEPTNO; oracle::occi::Date HIREDATE;
 oracle::occi::Number SALARY;

public:
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void *operator new(size_t, void *ctxOCCI_);
 void *operator new(size_t size, const oracle::occi::Connection *sess,
 const OCCI_STD_NAMESPACE::string &tableName,
 const OCCI_STD_NAMESPACE::string &typeName,
 const OCCI_STD_NAMESPACE::string &tableSchema,
 const OCCI_STD_NAMESPACE::string &typeSchema);
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 employee();
 employee(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
 ~employee();

};

#endif

Table 8-2 lists the mappings from types that can be used as attributes to object data types
that are generated by the OTT utility.

Example 8-12 How to Map Object Data Types Using the OTT Utility

The example assumes that the following database types are created:

CREATE TYPE my_varray AS VARRAY(5) of integer;

CREATE TYPE object_type AS OBJECT
 (object_name VARCHAR2(20));

CREATE TYPE other_type AS OBJECT
 (object_number NUMBER);

Chapter 8
Using OTT Utility Data Type Mappings

8-21

CREATE TYPE my_table AS TABLE OF object_type;

CREATE TYPE many_types AS OBJECT
(
 the_varchar VARCHAR2(30),
 the_char CHAR(3),
 the_blob BLOB,
 the_clob CLOB,
 the_object object_type,
 another_ref REF other_type,
 the_ref REF many_types,
 the_varray my_varray,
 the_table my_table,
 the_date DATE,
 the_num NUMBER,
 the_raw RAW(255)
);

An INTYPE file exists, and includes the following:

CASE = LOWER
TYPE many_types

The following is an example of the OTT type mappings for C++, given the types
created in the example in the previous section, and an INTYPE file that includes the
following:

CASE = LOWER
TYPE many_types

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCCI_ORACLE
#include <occi.h>
#endif

/**/
// generated declarations for the OBJECT_TYPE object type.
/**/

class object_type : public oracle::occi::PObject
{
 protected:
 OCCI_STD_NAMESPACE::string object_name;

 public:
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 object_type();
 object_type(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
};

Chapter 8
Using OTT Utility Data Type Mappings

8-22

/**/
// generated declarations for the OTHER_TYPE object type.
/**/

class other_type : public oracle::occi::PObject
{
 protected:
 oracle::occi::Number object_number;

 public:
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 other_type();
 other_type(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
};

/**/
// generated declarations for the MANY_TYPES object type.
/**/

class many_types : public oracle::occi::PObject
{
 protected:
 OCCI_STD_NAMESPACE::string the_varchar;
 OCCI_STD_NAMESPACE::string the_char;
 oracle::occi::Blob the_blob;
 oracle::occi::Clob the_clob;
 object_type * the_object;
 oracle::occi::Ref< other_type > another_ref;
 oracle::occi::Ref< many_types > the_ref;
 OCCI_STD_NAMESPACE::vector< oracle::occi::Number > the_varray;
 OCCI_STD_NAMESPACE::vector< object_type * > the_table;
 oracle::occi::Date the_date;
 oracle::occi::Number the_num;
 oracle::occi::Bytes the_raw;

 public:
 void *operator new(size_t size);
 void *operator new(size_t size, const oracle::occi::Connection * sess,
 const OCCI_STD_NAMESPACE::string& table);
 void getSQLTypeName(oracle::occi::Environment *env, void **schemaName,
 unsigned int &schemaNameLen, void **typeName,
 unsigned int &typeNameLen) const;
 many_types();
 many_types(void *ctxOCCI_) : oracle::occi::PObject (ctxOCCI_) { };
 static void *readSQL(void *ctxOCCI_);
 virtual void readSQL(oracle::occi::AnyData& streamOCCI_);
 static void writeSQL(void *objOCCI_, void *ctxOCCI_);
 virtual void writeSQL(oracle::occi::AnyData& streamOCCI_);
};

#endif

Chapter 8
Using OTT Utility Data Type Mappings

8-23

The OTT utility generates the following C++ class declarations (comments are not part
of the OTT output, and are added only to clarify the example):

For C++, when TRANSITIVE=TRUE, the OTT utility automatically translates any types
that are used as attributes of a type being translated, including types that are only
being accessed by a pointer or REF in an object type attribute. Even though only the
many_types object was specified in the INTYPE file for the C++ example, a class
declaration was generated for all the object types, including the other_type object,
which was only accessed by a REF in the many_types object.

This section includes the following topic: Default Name Mapping.

8.6.1 Default Name Mapping
When the OTT utility creates a C or C++ identifier name for an object type or attribute,
it translates the name from the database character set to a legal C or C++ identifier.
First, the name is translated from the database character set to the character set used
by the OTT utility. Next, if a translation of the resulting name is supplied in the INTYPE
file, that translation is used. Otherwise, the OTT utility translates the name character-
by-character to the compiler character set, applying the character case specified in the
CASE parameter. The following text describes this in more detail.

When the OTT utility reads the name of a database entity, the name is automatically
translated from the database character set to the character set used by the OTT utility.
In order for the OTT utility to read the name of the database entity successfully, all the
characters of the name must be found in the OTT character set, although a character
may have different encodings in the two character sets.

The easiest way to guarantee that the character set used by the OTT utility contains all
the necessary characters is to make it the same as the database character set. Note,
however, that the OTT character set must be a superset of the compiler character set.
That is, if the compiler character set is 7-bit ASCII, then the OTT character set must
include 7-bit ASCII as a subset, and if the compiler character set is 7-bit EBCDIC, then
the OTT character set must include 7-bit EBCDIC as a subset. The user specifies the
character set that the OTT utility uses by setting the NLS_LANG environment variable, or
by some other operating system-specific mechanism.

Once the OTT utility has read the name of a database entity, it translates the name
from the character set used by the OTT utility to the compiler's character set. If a
translation of the name appears in the INTYPE file, then the OTT utility uses that
translation.

Otherwise, the OTT utility attempts to translate the name as follows:

1. If the OTT character set is a multibyte character set, all multibyte characters in the
name that have single-byte equivalents are converted to those single-byte
equivalents.

2. The name is converted from the OTT character set to the compiler character set.
The compiler character set is a single-byte character set such as US7ASCII.

3. The case of letters is set according to how the CASE parameter is defined, and any
character that is not legal in a C or C++ identifier, or that has no translation in the
compiler character set, is replaced by an underscore character (_). If at least one
character is replaced by an underscore, then the OTT utility gives a warning
message. If all the characters in a name are replaced by underscores, the OTT
utility gives an error message.

Chapter 8
Using OTT Utility Data Type Mappings

8-24

Character-by-character name translation does not alter underscores, digits, or single-byte
letters that appear in the compiler character set, so legal C or C++ identifiers are not altered.

Name translation may, for example, translate accented single-byte characters such as o with
an umlaut or an a with an accent grave to o or a, with no accent, and may translate a
multibyte letter to its single-byte equivalent. Name translation typically fails if the name
contains multibyte characters that lack single-byte equivalents. In this case, the user must
specify name translations in the INTYPE file.

The OTT utility does not detect a naming clash caused by two or more database identifiers
being mapped to the same C name, nor does it detect a naming problem where a database
identifier is mapped to a C keyword.

8.7 Overview of the OUTTYPE File
The OUTTYPE file is named on the OTT command line. When the OTT utility generates a C++
header file, it also writes the results of the translation into the OUTTYPE file. This file contains
an entry for each of the translated types, including its version string and the header file to
which its C++ representation was written.

The OUTTYPE file from one OTT utility run can be used as the INTYPE file for a subsequent
invocation of the OTT utility.

The OTT utility analyzes the types in the INTYPE file for type dependencies before performing
the translation, and translates other types as necessary.

You may indicate whether the OTT utility should generate required object types that are not
specified in the INTYPE file. Set TRANSITIVE=FALSE so the OTT utility does not generate
required object types. The default is TRANSITIVE=TRUE.

Example 8-13 OUTTYPE File Generated by the OTT Utility

In this INTYPE file, the programmer specifies the case for OTT-generated C++ identifiers, and
provides a list of types that should be translated. In two of these types, naming conventions
are specified. This is what the OUTTYPE file looks like after running the OTT utility:

The following example shows what t:

CASE = LOWER
TYPE EMPLOYEE AS employee
 VERSION = "$8.0"
 HFILE = demo.h
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS AS ADDRESS
 VERSION = "$8.0"
 HFILE = demo.h
TYPE ITEM AS item
 VERSION = "$8.0"
 HFILE = demo.h
TYPE "Person" AS Person
 VERSION = "$8.0"
 HFILE = demo.h
TYPE PURCHASE_ORDER AS p_o
 VERSION = "$8.0"
 HFILE = demo.h

Chapter 8
Overview of the OUTTYPE File

8-25

When examining the contents of the OUTTYPE file, you might discover types listed that
were not included in the INTYPE file specification. For example, consider the case
where the INTYPE file only specified that the person type was to be translated:

CASE = LOWER
TYPE PERSON

If the definition of the person type includes an attribute of type address, then the
OUTTYPE file includes entries for both PERSON and ADDRESS. The person type cannot be
translated completely without first translating address.

8.8 Using the OTT Utility and OCCI Applications
The OTT utility generates objects and maps SQL data types to C++ classes. The OTT
utility also implements a few methods called by OCCI when instantiating objects and a
function that is called in the OCCI application to register the mappings with the
environment. These declarations are stored in a header file that you include
(#include) in your OCCI application. The prototype for the function that registers the
mappings is written to a separate header file, which you also include in your OCCI
application. The method implementations are stored in a C++ source code file (with
extension .cpp) that is linked with the OCCI application. The function that registers the
mappings is stored in a separate C++ (xxx.cpp) file that is also linked with the
application.

Figure 8-1 shows the steps involved in using the OTT utility with OCCI. These steps
are described following the figure.

Figure 8-1 The OTT Utility with OCCI

O
C

C
I

lib
ra

ry

E
x
e

c
u

ta
b

le

O
b

je
c
t

fi
le

L
in

k
e

r

T
y

p
e

D

e
fi

n
it

io
n

s

C
o

m
p

ile
r

O
T

T

O
C

C
I

s
o

u
rc

e

S
Q

L
 D

D
L

IN
T

Y
P

E
 f

ile

D
a

ta
b

a
s

e

S
e

rv
e

r

T
y

p
e

D

e
fi

n
it

io
n

s

O
T

T

C
P

P
F

IL
E

 f
ile

M
A

P
F

IL
E

 f
ile

H
F

IL
E

 f
ile

O
U

T
T

Y
P

E
 f

ile

Chapter 8
Using the OTT Utility and OCCI Applications

8-26

1. Create the type definitions in the database by using the SQL DLL.

2. Create the INTYPE file that contains the database types to be translated by the OTT utility.

3. Specify that C++ should be generated and invoke the OTT utility.

The OTT utility then generates the following files:

• A header file (with the extension .h) that contains C++ class representations of object
types; the filename is specified on the OTT command line by the HFILE parameter.

• A header file that contains the prototype of the function (MAPFUNC) that registers the
mappings.

• A C++ source file (with the extension .cpp) that contains the static methods called by
OCCI while instantiating the objects; the filename is specified on the OTT command
line by the CPPFILE parameter. Do not call these methods directly from your OCCI
application.

• A file that contains the function used to register the mappings with the environment
(with the extension .cpp); the filename is specified on the OTT command line by the
MAPFILE parameter.

• A file (OUTTYPE file) that contains an entry for each of the translated types, including
the version string and the file into which it is written; the filename is specified on the
OTT command line by the OUTTYPE parameter.

4. Write the OCCI application and include the header files created by the OTT utility in the
OCCI source code file.

The application declares an environment and calls the function MAPFUNC to register the
mappings.

5. Compile the OCCI application to create the OCCI object code, and link the object code
with the OCCI libraries to create the program executable.

8.9 Generating C++ Classes Generated by the OTT Utility
When the OTT utility generates a C++ class from a database object type, the class
declaration contains one element corresponding to each attribute of the object type. The data
types of the attribute are mapped to types that are used in Oracle object data types, as
defined in Table 8-2.

For each class, two new operators, readSQL() and writeSQL() methods are generated. They
are used by OCCI to marshall and unmarshall objects.

By default, the C++ classes generated by the OTT utility for an object type are derived from
the PObject class, so the generated constructor in the class also derives from the PObject
class. For inherited database types, the class is derived from the parent type class as is the
generated constructor and only the elements corresponding to attributes not in the parent
class are included.

Class declarations that include the elements corresponding to the database type attributes
and the method declarations are included in the header file generated by the OTT utility. The
method implementations are included in the CPPFILE file generated by the OTT utility.

Example 8-14 How to Generate C++ Classes Using the OTT Utility

This example demonstrates how to generate C++ classes using the OTT utility:

1. Define the types:

Chapter 8
Generating C++ Classes Generated by the OTT Utility

8-27

CREATE TYPE FULL_NAME AS OBJECT (first_name CHAR(20),
 last_name CHAR(20));
CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20));
CREATE TYPE ADDRESS_TAB AS VARRAY(3) of REF ADDRESS;
CREATE TYPE PERSON AS OBJECT (id NUMBER, name FULL_NAME,
 curr_addr REF ADDRESS, prev_addr_l ADDRESS_TAB) NOT FINAL;
CREATE TYPE STUDENT UNDER PERSON (school_name CHAR(20));

2. Provide an INTYPE file:

CASE = SAME
MAPFILE = RegisterMappings_3.cpp
TYPE FULL_NAME AS FullName
 TRANSLATE first_name as FirstName
 last_name as LastName
TYPE ADDRESS
TYPE PERSON
TYPE STUDENT

3. Invoke the OTT utility:

ott userid=demousr intype=demoin_3.typ outype=demoout_3.typ
 code=cpp hfile=demo_3.h cppfile=demo_3.cpp

This section includes the following topics:

• Map Registry Function

• Extending C++ Classes

• Carrying Forward User Added Code

8.9.1 Map Registry Function
One function to register the mappings with the environment is generated by the OTT
utility. The function contains the mappings for all the types translated by the invocation
of the OTT utility. The function name is either specified in the MAPFUNC parameter or, if
that parameter is not specified, derived from MAPFILE parameter. The only argument
to the function is the pointer to Environment.

The function uses the provided Environment to get Map and then registers the mapping
of each translated type.

8.9.2 Extending C++ Classes
To enhance the functionality of a class generated by the OTT utility, you can derive
new classes. You can also add methods to a class, but Oracle does not recommend
doing so due to an inherent risk.

See Also:

"Carrying Forward User Added Code" for details on how to use OTT markers
to retain code you want to add in OTT generated files

To generate both CAddress and MyAddress classes from the SQL object type ADDRESS,
MyAddress class can be derived from CAddress class. The OTT utility must then alter
the code it generates in the following ways:

Chapter 8
Generating C++ Classes Generated by the OTT Utility

8-28

• By using the MyAddress class instead of the CAddress class to represent attributes whose
database type is ADDRESS

• By using the MyAddress class instead of the CAddress class to represent vector and REF
elements whose database type is ADDRESS

• By using the MyAddress class instead of the CAddress class as the base class for
database object types that are inherited from ADDRESS. Even though a derived class is a
subtype of MyAddress, the readSQL() and writeSQL() methods called are those of the
CAddress class.

Note:

When a class is both extended and used as a base class for another generated
class, the inheriting type class and the inherited type class must be generated in
separate files.

Example 8-15 How to Extend C++ Classes Using the OTT Utility

To use the OTT utility to generate the CAddress class, which is derived from MyAddress
class), the following clause must be specified in the TYPE statement:

TYPE ADDRESS GENERATE CAdress AS MyAddress

Given the database types FULL_NAME, ADDRESS, PERSON, and PFGRFDENT as they were created
before and changing the INTYPE file to include the GENERATE...AS clause:

CASE = SAME
MAPFILE = RegisterMappings_5.cpp

TYPE FULL_NAME GENERATE CFullName AS MyFullName
 TRANSLATE first_name as FirstName
 last_name as LastName

TYPE ADDRESS GENERATE CAddress AS MyAddress
TYPE PERSON GENERATE CPerson AS MyPerson
TYPE STUDENT GENERATE CStudent AS MyStudent

8.9.3 Carrying Forward User Added Code
To extend the functionality of OTT generated code, at times programmers may want to add
code in the OTT generated file. The way OTT can distinguish between OTT generated code
and code added by the user is by looking for some predefined markers (tags). OTT
recognizes OTT_USERCODE_START as the start of user code marker, and OTT_USERCODE_END as
the end of user code marker.

For OTT marker support, a user block is defined as

OTT_USERCODE_START + user added code + OTT_USERCODE_END

OTT marker support enables carrying forward the user added blocks in *.h and *.cpp files.

This section includes the following topics:

• How to Use Properties of OTT Markers

Chapter 8
Generating C++ Classes Generated by the OTT Utility

8-29

• Using OTT Markers

8.9.3.1 How to Use Properties of OTT Markers
These items describe the properties of OTT Markers Support:

1. User must use the command line option USE_MARKER=TRUE from the very first time
OTT is invoked to generate a file.

2. User should treat markers like other C++ statements; a marker defined by OTT in
the generated file as follows when the command line option USE_MARKER=TRUE is
used:

 #ifndef OTT_USERCODE_START
 #define OTT_USERCODE_START
 #endif
 #ifndef OTT_USERCODE_END
 #define OTT_USERCODE_END
 #endif

3. The markers, OTT_USERCODE_START and OTT_USERCODE_END, must be preceded and
followed by white space.

4. OTT copies the text or code given within markers verbatim, along with the
markers, while generating the code next time.

User modified code:

 1 // --- modified generated code
 2 OTT_USERCODE_START
 3 // --- including "myfullname.h"
 4 #ifndef MYFULLNAME_ORACLE
 5 #include "myfullname.h"
 6 #endif
 7 OTT_USERCODE_END
 8 // --- end of code addition

Carried forward code:

 1 OTT_USERCODE_START
 2 // --- including "myfullname.h"
 3 #ifndef MYFULLNAME_ORACLE
 4 #include "myfullname.h"
 5 #endif
 6 OTT_USERCODE_END

5. OTT does not carry forward user-added code properly if the database TYPE or
INTYPE file undergoes changes as shown in the following cases:

• If user modifies the case of the type name, OTT fails to determine the class
name with which the code was associated earlier, as the case of the class
name is modified by the user in the INTYPE file.

CASE=UPPER CASE=LOWER
TYPE employee TYPE employee
TRANSLATE SALARY$ AS salary TRANSLATE SALARY$ AS salary
 DEPTNO AS department DEPTNO AS department
TYPE ADDRESS TYPE ADDRESS
TYPE item TYPE item
TYPE "Person" TYPE "Person"
TYPE PURCHASE_ORDER AS p_o TYPE PURCHASE_ORDER AS p_o

Chapter 8
Generating C++ Classes Generated by the OTT Utility

8-30

• If user asks to generate the class with a different name (GENERATE AS clause of
INTYPE file), OTT fails to determine the class name with which the code was
associated earlier as the class name was modified by the user in the INTYPE file.

CASE=LOWER CASE=LOWER
TYPE employee TYPE employee
TRANSLATE SALARY$ AS salary TRANSLATE SALARY$ AS salary
 DEPTNO AS department DEPTNO AS department
TYPE ADDRESS TYPE ADDRESS
TYPE item TYPE item
TYPE "Person" TYPE "Person"
TYPE PURCHASE_ORDER AS p_o TYPE PURCHASE_ORDER AS
 purchase_order

6. If OTT encounters an error while parsing an .h or .cpp file, it reports the error and leaves
the file having error as it is so that the user can go back and correct the error reported,
and rerun OTT.

7. OTT flags an error if:

• it does not find a matching OTT_USERCODE_END for OTT_USERCODE_START encountered

• markers are nested (OTT finds next OTT_USERCODE_START before OTT_USERCODE_END
is found for the previous OTT_USERCODE_START)

• OTT_USERCODE_END is encountered before OTT_USERCODE_START

8.9.3.2 Using OTT Markers
The user must use command line option USE_MARKER=TRUE to turn on marker support. There
are two general ways in which OTT markers can carry forward user added code:

1. User code added in .h file.

• User code added in global scope. This is typically the case when user must include
different header files, forward declaration, and so on. Refer to the code example
provided later.

• User code added in class declaration. At any point of time OTT generated class
declaration has private scope for data members and public scope for methods, or
protected scope for data members and public scope for methods. User blocks can be
added after all OTT generated declarations in either access specifiers.

How to Add User Code to a Header File Using OTT Utility

...
#ifndef OTT_USERCODE_START
#define OTT_USERCODE_START
#endif
#ifndef OTT_USERCODE_END
#define OTT_USERCODE_END
#endif

#ifndef OCCI_ORACLE
#include <occi.h>
#endif

OTT_USERCODE_START // user added code
...
OTT_USERCODE_END

#ifndef ... // OTT generated include

Chapter 8
Generating C++ Classes Generated by the OTT Utility

8-31

#include " ... "
#endif

OTT_USERCODE_START // user added code
...
OTT_USERCODE_END

class <class_name_1> : public oracle::occi::PObject
{ protected:
 ... // OTT generated data members
 OTT_USERCODE_START // user added code for data member / method
 ... // declaration / inline method
 OTT_USERCODE_END

 public:
 void *operator new(size_t size);
 ...
 OTT_USERCODE_START // user added code for data member / method
 ... // declaration / inline method definition
 OTT_USERCODE_END
};

OTT_USERCODE_START // user added code
...
OTT_USERCODE_END

class <class_name_2> : public oracle::occi::PObject
{
 ...
};

OTT_USERCODE_START // user added code
...
OTT_USERCODE_END
...
#endif // end of .h file

2. User code added in .cpp file. OTT supports adding a new user defined method
within OTT markers. The user block must be added at the beginning of the file, just
after the includes and before the definition of OTT-generated methods. If there are
multiple OTT-generated includes, user code can also be added between OTT
generated includes. User code added in any other part of a xxx.cpp file is not
carried forward.

How to Add User Code to the Source File Using the OTT Utility

#ifndef OTT_USERCODE_START
#define OTT_USERCODE_START
#endif

#ifndef OTT_USERCODE_END
#define OTT_USERCODE_END
#endif
...
 OTT_USERCODE_START // user added code
 ...
 OTT_USERCODE_END
...
 OTT_USERCODE_START // user added code
 ...
 OTT_USERCODE_END

Chapter 8
Generating C++ Classes Generated by the OTT Utility

8-32

/***
/ generated method implementations for the ... object type.
/***/

void *<class_name_1>::operator new(size_t size)
{
 return oracle::occi::PObject::operator new(size);
}
...
// end of .cpp file

Chapter 8
Generating C++ Classes Generated by the OTT Utility

8-33

9
Globalization and Unicode Support

This chapter describes OCCI support for multibyte and Unicode charactersets.

This chapter contains these topics:

• Overview of Globalization and Unicode Support

• Specifying Charactersets

• Data Types for Globalization and Unicode Support

• About Using Objects and OTT Support

9.1 Overview of Globalization and Unicode Support
OCCI now enables application development in all Oracle supported multibyte and Unicode
charactersets. The UTF16 encoding of Unicode is fully supported. Application programs can
specify their charactersets when the OCCI Environment is created. OCCI interfaces that take
character string arguments (such as SQL statements, user names, error messages, object
names, and so on) have been extended to handle data in any characterset. Character data
from relational tables or objects can be in any characterset. OCCI can be used to develop
multi-lingual, global and Unicode applications.

9.2 Specifying Charactersets
OCCI applications must specify the client characterset and client national characterset when
initializing the OCCI Environment. The client characterset specifies the characterset for all
SQL statements, object/user names, error messages, and data of all CHAR data type (CHAR,
VARCHAR2, LONG) columns/attributes. The client national characterset specifies the
characterset for data of all NCHAR data type (NCHAR, NVARCHAR2) columns/attributes.

A new createEnvironment() interface that takes the client characterset and client national
characterset is now provided. This allows OCCI applications to set characterset information
dynamically, independent of the NLS_LANG and NLS_CHAR initialization parameter.

Note that if an application specifies OCCIUTF16 as the client characterset (first argument), then
the application should use only the UTF16 interfaces of OCCI. These interfaces take UString
argument types.

The charactersets in the OCCI Environment are client-side only. They indicate the
charactersets the OCCI application uses to interact with Oracle. The database characterset
and database national characterset are specified when the database is created. Oracle
converts all data from the client characterset/national characterset to the database
characterset/national characterset before the server processes the data.

Example 9-1 How to Use Globalization and Unicode Support

Environment *env = Environment:createEnvironment("JA16SJIS","UTF8");

9-1

This statement creates an OCCI Environment with JA16SJIS as the client characterset
and UTF8 as the client national characterset.

Any valid Oracle characterset name (except AL16UTF16) can be passed to
createEnvironment(). An OCCI specific string OCCIUTF16 (in uppercase) can be
passed to specify UTF16 as the characterset.

Environment *env = Environment::createEnvironment("OCCIUTF16","OCCIUTF16");
Environment *env = Environment::createEnvironment("US7ASCII", "OCCIUTF16");

9.3 Data Types for Globalization and Unicode Support
The data types used for supporting globalization and use of unicode include:

• Using the UString Data Type

• Using Multibyte and UTF16 data

• Using CLOB and NCLOB Data Types

9.3.1 Using the UString Data Type
UString is a data type that enables applications and the OCCI library to pass and
receive Unicode data in UTF-16 encoding. UString is templated from the C++ STL
basic_string with Oracle's utext data type.

typedef basic_string<utext> UString;

Oracle's utext data type is a 2 byte short data type and represents Unicode
characters in the UTF-16 encoding. A Unicode character's codepoint can be
represented in 1 utext or 2 utexts (2 or 4 bytes). Characters from European and most
Asian scripts are represented in a single utext. Supplementary characters defined in
the Unicode 3.1 standard are represented with 2 utext elements.

In Microsoft Windows platforms, UString is equivalent to the C++ standard wstring
data type. This is because the wchar_t data type is type defined to a 2 byte short in
these platforms, which is same as Oracle's utext, allowing applications to use a
wstring type variable where a UString would be normally required. Consequently,
applications can also pass wide-character string literals, created by prefixing the literal
with the letter 'L', to OCCI Unicode APIs.

OCCI applications should use the UString data type for data in UTF16 characterset

Example 9-2 Using wstring Data Type

//bind Unicode data using wstring data type
//binding the Euro symbol, UTF16 codepoint 0x20AC
wchar_t eurochars[] = {0x20AC,0x00};
wstring eurostr(eurochars);
stmt->setUString(1,eurostr);

//Call the Unicode version of createConnection by
//passing widechar literals
Connection *conn = Connection(L"HR",L"password",L"");

Chapter 9
Data Types for Globalization and Unicode Support

9-2

9.3.2 Using Multibyte and UTF16 data
For data in multibyte charactersets like JA16SJIS and UTF8, applications should use the C++
string type. The existing OCCI APIs that take string arguments can handle data in any
multibyte characterset. Due to the use of string type, OCCI supports only byte length
semantics for multibyte characterset strings.

Example 9-3 Binding UTF8 Data Using the string Data Type

//bind UTF8 data
//binding the Euro symbol, UTF8 codepoint : 0xE282AC
char eurochars[] = {0xE2,0x82,0xAC,0x00};
string eurostr(eurochars)
stmt->setString(1,eurostr);//use the string interface

For Unicode data in the UTF16 characterset, the OCCI specific data type: UString and the
OCCI UTF16 interfaces must be used.

Example 9-4 Binding UTF16 Data Using the UString Data Type

//bind Unicode data using UString data type
//binding the Euro symbol, UTF16 codepoint 0x20AC
utext eurochars[] = {0x20AC,0x00};
UString eurostr(eurochars);
stmt->setUString(1,eurostr);//use the UString interface

9.3.3 Using CLOB and NCLOB Data Types
Oracle provides the CLOB and NCLOB data types for storing and processing large amounts of
character data. CLOBs represent data in the database characterset and NCLOBs represent data
in the database national characterset. CLOBs and NCLOBs can be used as column types in
relational tables and as attributes in object types.

The OCCI Clob class is used to work with both CLOB and NCLOB data types. If the database
type is NCLOB, then the Clob set CharSetForm() method should be called with
OCCI_SQLCS_NCHAR before reading/writing from the LOB.

The OCCI Clob class has support for multibyte and UTF16 charactersets. By default, the
Clob interfaces assume the data is encoded in the client-side characterset (for both CLOBs
and NCLOBs). To specify a different characterset or to specify the client-side national
characterset for a NCLOB, call the setCharSetId() or setCharSetIdUString() methods with
the appropriate characterset. The OCCI specific string 'OCCIUTF16' can be passed to
indicate UTF16 as the characterset.

To read or write data in multibyte charactersets, use the existing read and write interfaces
that take a char buffer. New overloaded interfaces that take utext buffers for UTF16 data have
been added to the Clob Class as read(), write() and writeChunk() methods. The
arguments and return values for these methods are either bytes or characters, depending on
the characterset of the LOB.

Example 9-5 Using CLOB and NCLOB Data Types

//client characterset - ZHT16BIG5, national characterset - UTF16
Environment *env = Environment::createEnvironment("ZHT16BIG5","OCCIUTF16");...
Clob nclobvar;
//for NCLOBs, must call setCharSetForm method.
nclobvar.setCharSetForm(OCCI_SQLCS_NCHAR);...

Chapter 9
Data Types for Globalization and Unicode Support

9-3

//if reading/writing data in UTF16 for this NCLOB, still must
//explicitly call setCharSetId
nclobvar.setCharSetId("OCCIUTF16")

9.4 About Using Objects and OTT Support
Multibyte and UTF16 charactersets are supported for handling character data in object
attributes. All CHAR data type (CHAR or VARCHAR2) attributes hold data in the client-side
characterset, while all NCHAR data type (NCHAR or NVARCHAR2) attributes hold data in the
client-side national characterset. A member variable of UString data type represents
an attribute in UTF16 characterset.

See Also:

• OCCI Application Programming Interface: two new versions of operator
new() that have been added to the PObject Class for object support

• Object Type Translator Utility: a new UNICODE parameter that has been
added for OTT utility support.

Chapter 9
About Using Objects and OTT Support

9-4

10
Oracle Database Advanced Queuing

This chapter describes the OCCI implementation of Oracle Database Advanced Queuing
(AQ) for messages.

This chapter contains these topics:

• Overview of Oracle Database Advanced Queuing

• About AQ Implementation in OCCI

• About Creating Messages

• Enqueuing Messages

• Dequeuing Messages

• Listening for Messages

• About Registering for Notification

• About Message Format Transformation

See Also:

• Oracle Database Advanced Queuing User's Guide for basic concepts of
Advanced Queuing

• OCCI Application Programming Interface

10.1 Overview of Oracle Database Advanced Queuing
Oracle Streams is a new information sharing feature that provides replication, message
queuing, data warehouse loading, and event notification. It is also the foundation behind
Oracle Database Advanced Queuing (AQ).

Advanced Queuing is the integrated message queuing feature that exposes message
queuing capabilities of Oracle Database AQ enables applications to:

• Perform message queuing operations similar to SQL operations from the Oracle
database

• Communicate asynchronously through messages in AQ queues

• Integrate with database for unprecedented levels of operational simplicity, reliability, and
security to message queuing

• Audit and track messages

• Supports both synchronous and asynchronous modes of communication

The advantages of using AQ in OCCI applications include:

10-1

• Create applications that communicate with each other in a consistent, reliable,
secure, and autonomous manner

• Store messages in database tables, bringing the reliability and recoverability of the
database to your messaging infrastructure

• Retain messages in the database automatically for auditing and business
intelligence

• Create applications that leverage messaging without having to deal with a different
security, data type, or operational mode

• Leverage transactional characteristics of the database

Since traditional messaging solutions have single subscriber queues, a queue must be
created for each pair of applications that communicate with each other. The publish/
subscribe protocol of the AQ makes it easy to add additional applications (subscribers)
to a conversation between multiple applications.

10.2 About AQ Implementation in OCCI
OCCI AQ is a set of interfaces that allows messaging clients to access the Advanced
Queuing feature of Oracle for enterprise messaging applications. Currently, OCCI AQ
supports only the operational interfaces and not the administrative interface, but
administrative operations can be accessed through embedded PL/SQL calls.

See Also:

Package DBMS_AQADM in Oracle Database PL/SQL Packages and Types
Reference for administrative operations in AQ support through PL/SQL

The AQ feature can be used with other interfaces available through OCCI for sending,
receiving, publishing, and subscribing in a message-enabled database. Synchronous
and asynchronous message consumption is available based on a message selection
rule.

Enqueuing refers to sending a message to a queue and dequeuing refers to receiving
one. A client application can create a message, set the desired properties on it and
enqueue it by storing the message in the queue, a table in the database. When
dequeuing a message, an application can either dequeue it synchronously by calling
receive methods on the queue, or asynchronously by waiting for a notification from the
database.

The AQ feature is implemented through the following abstractions:

• Message

• Agent

• Producer

• Consumer

• Listener

• Subscription

Chapter 10
About AQ Implementation in OCCI

10-2

10.2.1 Message
A message is the basic unit of information being inserted into and retrieved from a queue. A
message consists of control information and payload data. The control information represents
message properties used by AQ to manage messages. The payload data is the information
stored in the queue and is transparent to AQ.

See Also:

Message Class documentation in OCCI Application Programming Interface

10.2.2 Agent
An Agent represents and identifies a user of the queue, either producer or consumer of the
message, either an end-user or an application. An Agent is identified by a name, an address
and a protocol. The name can be either assigned by the application, or be the application
itself. The address is determined in terms of the communication protocol. If the protocol is 0
(default), the address is of the form[schema.]queuename[@dblink], a database link.

Agents on the same queue must have a unique combination of name, address, and protocol.
Example 10-1 demonstrates an instantiation of a new Agent object in a client program.

See Also:

Agent Class documentation in OCCI Application Programming Interface

Example 10-1 Creating an Agent

Agent agt(env, "Billing_app", "billqueue", 0);

10.2.3 Producer
A client uses a Producer object to enqueue Messages into a queue. It is also used to specify
various enqueue options.

See Also:

Producer Class documentation in OCCI Application Programming Interface

10.2.4 Consumer
A client uses a Consumer object to dequeue Messages that have been delivered to a queue. It
also specifies various dequeuing options.

Before a consumer can receive messages,

Chapter 10
About AQ Implementation in OCCI

10-3

See Also:

Consumer Class documentation in OCCI Application Programming Interface

Example 10-2 Setting the Agent on the Consumer

Consumer cons(conn);
...
cons.setAgent(ag);
cons.receive();

10.2.5 Listener
A Listener listens for Messages for registered Agents at specified queues.

See Also:

Listener Class documentation in OCCI Application Programming Interface

10.2.6 Subscription
A Subscription encapsulates the information and operations necessary for registering
a subscriber for notifications.

10.3 About Creating Messages
As mentioned previously, a Message is a basic unit of information that contains both the
properties of the message and its content, or payload. Each message is enqueued by
the Producer and dequeued by the Consumer objects.

This section includes the following topics:

• About Message Payloads

• Message Properties

10.3.1 About Message Payloads
OCCI supports three types of message payloads:

• RAW

• AnyData

• Using User-defined Types as Payloads

10.3.1.1 RAW
RAW payloads are mapped as objects of the Bytes Class in OCCI.

Chapter 10
About Creating Messages

10-4

10.3.1.2 AnyData
The AnyData type models self-descriptive data encapsulation; it contains both the type
information and the actual data value. Data values of most SQL types can be converted to
AnyData, and then be converted to the original data type. AnyData also supports user-defined
data types. The advantage of using AnyData payloads is that it ensures both type
preservation after an enqueue and dequeue process, and that it allows the user to use a
single queue for all types used in the application. Example 10-3 demonstrates how to create
an AnyData message. Example 10-4 shows how to retrieve the original data type from the
message.

Example 10-3 Creating an AnyData Message with a String Payload

AnyData any(conn);
any.setFromString("item1");
Message mes(env);
mes.setAnyData(any);

Example 10-4 Determining the Type of the Payload in an AnyData Message

TypeCode tc = any.getType();

10.3.1.3 Using User-defined Types as Payloads
OCCI supports enqueuing and dequeuing of user-defined types as payloads. Example 10-5
demonstrates how to create a payload with a user-defined Employee object.

Example 10-5 Creating an User-defined Payload

// Assuming type Employee (name varchar2(25),
// deptid number(10),
// manager varchar2(25))
Employee *emp = new Employee();
emp.setName("Scott");
emp.setDeptid(10);
emp.setManager("James");
Message mes(env);
mes.setObject(emp);

10.3.2 Message Properties
Aside from payloads, the user can specify several additional message properties, such as:

• Correlation

• Sender

• Delay and Expiration

• Recipients

• Priority and Ordering

10.3.2.1 Correlation
Applications can specify a correlation identifier of the message during the enqueuing process,
as demonstrated in Example 10-6. This identifier can then be used by the dequeuing
application.

Chapter 10
About Creating Messages

10-5

Example 10-6 Specifying the Correlation identifier

mes.setCorrelationId("enq_corr_di");

10.3.2.2 Sender
Applications can specify the sender of the message, as demonstrated in
Example 10-7. The sender identifier can then be used by the receiver of the message.

Example 10-7 Specifying the Sender identifier

mes.setSenderId(agt);

10.3.2.3 Delay and Expiration
Time settings control the delay and expiration times of the message in seconds, as
demonstrated in Example 10-8.

Example 10-8 Specifying the Delay and Expiration times of the message

mes.setDelay(10);
mes.setExpirationTime(60);

10.3.2.4 Recipients
The agents for whom the message is intended can be specified during message
encoding, as demonstrated in Example 10-9. This ensures that only the specified
recipients can access the message.

Example 10-9 Specifying message recipients

vector<Agent> agt_list;
for (i=0; i<num_recipients; i++)
 agt_list.push_back(Agent(name, address, protocol));
mes.setRecipientList(agt_list);

10.3.2.5 Priority and Ordering
By assigning a priority level to a message, the sender can control the order in which
the messages are dequeued by the receiver. Example 10-10 demonstrates how to set
the priority of a message.

Example 10-10 Specifying the Priority of a Message

mes.setPriority(3);

10.4 Enqueuing Messages
Messages are enqueued by the Producer. The Producer Class is also used to specify
enqueue options. A Producer object can be created on a valid connection where
enqueuing is performed, as illustrated in Example 10-11.

The transactional behavior of the enqueue operation can be defined based on
application requirements. The application can make the effect of the enqueue
operation visible externally either immediately after it is completed, as in
Example 10-11, or only after the enclosing transaction has been committed.

Chapter 10
Enqueuing Messages

10-6

To enqueue the message, use the send() method, as demonstrated in Example 10-11. A
client may retain the Message object after it is sent, modify it, and send it again.

Example 10-11 Creating a Producer, Setting Visibility, and Enqueuing the Message

Producer prod(conn);
...
prod.setVisibility(Producer::ENQ_IMMEDIATE);
...
Message mes(env);
...
mes.setBytes(obj); // obj represents the content of the message
prod.send(mes, queueName); // queueName is the name of the queue

10.5 Dequeuing Messages
Messages delivered to a queue are dequeued by the Consumer. The Consumer Class is also
used to specify dequeue options. A Consumer object can be created on a valid connection to
the database where a queue exists, as demonstrated in Example 10-12.

In applications that support multiple consumers in the same queue, the name of the
consumer has to be specified as a registered subscriber to the queue, as shown in
Example 10-12.

To dequeue the message, use the receive() method, as demonstrated in Example 10-12.
The typeName and schemaName parameters of the receive() method specify the type of
payload and the schema of the payload type.

When the queue payload type is either RAW or AnyData, schemaName and typeName are
optional, but you must specify these parameters explicitly when working with user-defined
payloads. This is illustrated in Example 10-13.

Example 10-12 Creating a Consumer, Naming the Consumer, and Receiving a
Message

Consumer cons(conn);
...
// Name must be registered with the queue through administrative interface
cons.setConsumerName("BillApp");
cons.setQueueName(queueName);
...
Message mes = cons.receive(Message::OBJECT, "BILL_TYPE", "BILL_PROCESSOR");
...
// obj is is assigned the content of the message
obj = mes.getObject();

Example 10-13 Receiving a Message

//receiving a RAW message
Message mes = cons.receive(Message::RAW);
...
//receiving an ANYDATA message
Message mes = cons.receive(Message::ANYDATA);
...

This section includes the following topic: About Dequeuing Options.

Chapter 10
Dequeuing Messages

10-7

10.5.1 About Dequeuing Options
The dequeuing application can specify several dequeuing options before it begins to
receive messages. These include:

• Correlation

• Mode

• Navigation

10.5.1.1 Correlation
The message can be dequeued based on the value of its correlation identifier using
the setCorrelationId() method, as shown in Example 10-14.

10.5.1.2 Mode
Based on application requirements, the user can choose to only browse through
messages in the queue, remove the messages from the queue, or lock messages
using the setDequeueMode() method, as shown in Example 10-14.

10.5.1.3 Navigation
Messages enqueued in a single transaction can be viewed as a single group by
implementing the setPositionOfMessage() method, as shown in Example 10-14.

Example 10-14 Specifying dequeuing options

cons.setCorrelationId(corrId);
...
cons.setDequeueMode(deqMode);
...
cons.setPositionOfMessage(Consumer::DEQ_NEXT_TRANSACTION);

10.6 Listening for Messages
The Listener listens for messages on queues on behalf of its registered clients. The
Listener Class implements the listen() method, which is a blocking call that returns
when a queue has a message for a registered agent, or throws an error when the time
out period expires. Example 10-15 illustrates the listening protocol.

Example 10-15 Listening for messages

Listener listener(conn);

vector<Agent> agtList;
for(int i=0; i<num_agents; i++)
 agtList.push_back(Agent(name, address, protocol);

listener.setAgentList(agtList);
listener.setTimeOutForListen(10);

Agent agt(env);

try{

Chapter 10
Listening for Messages

10-8

 agt = listener.listen();
}
catch{
 cout<<e.getMessage()<<endl;
}

10.7 About Registering for Notification
The Subscription Class implements the publish-subscribe notification feature. It allows an
OCCI AQ application to receive client notifications directly, register an e-mail address to
which notifications can be sent, register an HTTP URL to which notifications can be posted,
or register a PL/SQL procedure to be invoked on a notification. Registered clients are notified
asynchronously when events are triggered or on an explicit AQ enqueue. Clients do not have
to be connected to a database.

An OCCI application can do all of the following:

• Register interest in notification in the AQ namespace, and be notified when an enqueue
occurs.

• Register interest in subscriptions to database events, and receive notifications when
these events are triggered.

• Manage registrations, such as disable registrations temporarily, or dropping registrations
entirely.

• Post (or send) notifications to registered clients.

This section includes the following topics:

• Publish-Subscribe Notifications

• About Message Format Transformation

10.7.1 Publish-Subscribe Notifications
Notifications can work in several ways. They can be:

• received directly by the OCCI application

• sent to a pre-specified e-mail address

• sent to a pre-defined HTTP URL

• invoke a pre-specified database PL/SQL procedure

Registered clients are notified asynchronously when events are triggered, or on an explicit
AQ enqueue. Clients do not have to be connected to a database for notifications to work.
Registration can be accomplished either as:

• How to Use Direct Registration

• Using Open Registration

10.7.1.1 How to Use Direct Registration
You can register directly with the database. This is relatively simple, and the registration takes
effect immediately. Example 10-16 outlines the required steps to successfully register for
direct event notification. It is assumed that the appropriate event trigger or queue is in
existence, and that the initialization parameter COMPATIBLE is set to 8.1 or higher.

Chapter 10
About Registering for Notification

10-9

Example 10-16 How to Register for Notifications; Direct Registration

1. Create the environment in Environment::EVENTS mode.

2. Create the Subscription object.

3. Set these Subscription attributes.

The namespace can be set to these options:

• To receive notifications from AQ queues, namespace must be set to
Subscription::NS_AQ. The subscription name is then either of the form
SCHEMA.QUEUE when registering on a single consumer queue, or
SCHEMA.QUEUE:CONSUMER_NAME when registering on a multiconsumer queue.

• To receive notifications from other applications that use conn-
>postToSubscription() method, namespace must be set to
Subscription::NS_ANONYMOUS

The protocol can be set to these options:

• If an OCCI client must receive an event notification, this attribute should be set
to Subscription::PROTO_CBK. You also must set the notification callback and
the subscription context before registering the Subscription. The notification
callback is called when the event occurs.

• For an e-mail notification, set the protocol to Subscription::PROTO_MAIL. You
must set the recipient name before subscribing to avoid an application error.

• For an HTTP URL notification, set the protocol to Subscription::HTTP. You
must set the recipient name before subscribing to avoid an application error.

• To invoke PL/SQL procedures in the database on event notification, set
protocol to Subscription::PROTO_SERVER. You must set the recipient name
before subscribing to avoid an application error.

4. Register the subscriptions using connection->registerSubscriptions().

10.7.1.2 Using Open Registration
You can also register through an intermediate LDAP that sends the registration
request to the database. This is used when the client cannot have a direct database
connection; for example, the client wants to register for an open event while the
database is down. This approach is also used when a client wants to register for the
same event(s) in multiple databases, concurrently.

Example 10-17 outlines the LDAP open registration using the Oracle Enterprise
Security Manager (OESM). Open registration has these prerequisites:

• The client must be an enterprise user

– In each enterprise domain, create an enterprise role
ENTERPRISE_AQ_USER_ROLE

– For each database in the enterprise domain, add a global role
GLOBAL_AQ_USER_ROLE to enterprise the role ENTERPRISE_AQ_USER_ROLE.

– For each enterprise domain, add an enterprise role ENTERPRISE_AQ_USER_ROLE
to the privilege group cn=OracleDBAQUsers under cn=oraclecontext in the
administrative context

Chapter 10
About Registering for Notification

10-10

– For each enterprise user that is authorized to register for events in the database,
grant enterprise the role ENTERPRISE_AQ_USER_ROLE

• The compatibility of the database must be 9.0 or higher

• LDAP_REGISTRATION_ENABLED must be set to TRUE (default is FALSE):

ALTER SYSTEM SET LDAP_REGISTRATION_ENABLED=TRUE
• LDAP_REG_SYNC_INTERVAL must be set to the time_interval (in seconds) to refresh

registrations from LDAP (default is 0, do not refresh):

ALTER SYSTEM SET LDAP_REG_SYNC_INTERVAL = time_interval
To force a database refresh of LDAP registration information immediately, issue this
command:

ALTER SYSTEM REFRESH LDAP_REGISTRATION

Open registration takes effect when the database accesses LDAP to pick up new
registrations. The frequency of pick-ups is determined by the value of REG_SYNC_INTERVAL.

Clients can temporarily disable subscriptions, re-enable them, or permanently unregister from
future notifications.

Example 10-17 How to Use Open Registration with LDAP

1. Create the environment in Environment::EVENTS|Environment::USE_LDAP mode.

2. Set the Environment object for accessing LDAP:

• The host and port on which the LDAP server is residing and listening

• The authentication method; only simple username and password authentication is
currently supported

• The username (distinguished name) and password for authentication with the LDAP
server

• The administrative context for Oracle in the LDAP server

3. Create the Subscription object.

4. Set the distinguished names of the databases in which the client wants to receive
notifications on the Subscription object.

5. Set these Subscription attributes.

The namespace can be set to these options:

• To receive notifications from AQ queues, namespace must be set to
Subscription::NS_AQ. The subscription name is then either of the form
SCHEMA.QUEUE when registering on a single consumer queue, or
SCHEMA.QUEUE:CONSUMER_NAME when registering on a multiconsumer queue.

• To receive notifications from other applications that use conn-
>postToSubscription() method, namespace must be set to
Subscription::NS_ANONYMOUS

The protocol can be set to these options:

• If an OCCI client must receive an event notification, this attribute should be set to
Subscription::PROTO_CBK. You also must set the notification callback and the
subscription context before registering the Subscription. The notification callback is
called when the event occurs.

Chapter 10
About Registering for Notification

10-11

• For an e-mail notification, set the protocol to Subscription::PROTO_MAIL. You
must then set the recipient name to the e-mail address to which the
notifications must be sent.

• For an HTTP URL notification, set the protocol to Subscription::HTTP. You
must set the recipient name to the URL to which the notification must be
posted.

• To invoke PL/SQL procedures in the database on event notification, set
protocol to Subscription::PROTO_SERVER. You must set the recipient name to
the database procedure invoked on notification.

6. Register the subscription: environment->registerSubscriptions().

10.7.2 About Notification Callback
The client must register a notification callback. This callback is invoked only when
there is some activity on the registered subscription. In the Database AQ namespace,
this happens when a message of interest is enqueued.

The callback must return 0, and it must have the following specification:

typedef unsigned int (*callbackfn) (Subscription &sub, NotifyResult *nr);

where:

• The sub parameter is the Subscription object which was used when the callback
was registered.

• The nr parameter is the NotifyResult object holding the notification info.

Ensure that the subscription object used to register for notifications is not destroyed
until it explicitly unregisters the subscription.

The user can retrieve the payload, message, message id, queue name and consumer
name from the NotifyResult object, depending on the source of notification. These
results are summarized in Table 10-1. Only a bytes payload is currently supported, and
you must explicitly dequeue messages from persistent queues in the AQ namespace.
If notifications come from non-persistent queues, messages are available to the
callback directly; only RAW payloads are supported. If notifications come from persistent
queues, the message has to be explicitly dequeued; all payload types are supported.

Table 10-1 Notification Result Attributes; ANONYMOUS and AQ Namespace

Notification Result
Attribute

ANONYMOUS
Namespace

AQ Namespace,
Persistent Queue

AQ Namespace, Non-
Persistent Queue

payload valid invalid invalid

message invalid invalid valid

messageID invalid valid valid

consumer name invalid valid valid

queue name invalid valid valid

Chapter 10
About Registering for Notification

10-12

10.8 About Message Format Transformation
Applications often use data in different formats, and this requires a type transformation. A
transformation is implemented as a SQL function that takes the source data type as input and
returns an object of the target data type.Transformations can be applied when message are
enqueued, dequeued, or when they are propagated to a remote subscriber.

See Also:

The following chapters of the Oracle Database Advanced Queuing User's Guide for
information of format transformation:

• Oracle Streams AQ Administrative Interface

• Oracle Streams AQ Administrative Interface: Views

• Oracle Streams AQ Operational Interface: Basic Operations

Chapter 10
About Message Format Transformation

10-13

11
Oracle XA Library

The Oracle XA library is an external interface that allows transaction managers other than the
Oracle server to coordinate global transactions. The XA library supports non-Oracle resource
managers in distributed transactions. This is particularly useful in transactions between
several databases and resources.

The implementation of the Oracle XA library conforms to the X/Open Distributed Transaction
Processing (DTP) software architecture's XA interface specification. The Oracle XA Library is
installed as part of the Oracle Database Enterprise Edition.

This chapter contains these topics:

• Developing Applications with XA and OCCI

• APIs for XA Support

See Also:

• http://www.opengroup.org
• Oracle Database Development Guide for more details on the Oracle XA library

and architecture

• OCCI Application Programming Interface

11.1 Developing Applications with XA and OCCI
For connection, disconnection, and transaction control on Oracle databases, applications
must interface with a transaction manager. OCCI has APIs for interacting with Environment
and Connection objects within XA and make them available for Oracle database access,
such as SELECT queries, DML statements, object access, and so on.

Example 11-1 How to Use Transaction Managers with XA

/* Transaction manager opens connection to the Oracle server*/
tpopen("oracle_xa+acc=p/HR/password+sestm=10", 1, TMNOFLAGS);
/* Transaction manager issues XA commands to start a global transaction*/
tpbegin();

/* Access the underlying Oracle database using OCCI */
Environment *xaenv = Environment::getXAEnvironment(
 "oracle_xa+acc=p/HR/password+sestm=10");
Connection *xaconn = xaenv->getXAConnection(
 "oracle_xa+acc=p/HR/password+sestm=10");

/* Use the Environment & Connection objects */
Statement *stmt = xaconn->createStatement(
 "Update Emp set sal = sal * 0.2");

11-1

http://www.opengroup.org

...

/* Release the Environment & Connection objects */
xaenv->releaseXAConnection(xaconn);
Environment::releaseXAEnvironment(xaenv);

11.2 APIs for XA Support
The following methods of the Environment Class support use of XA libraries:

• getXAConnection()

• releaseXAEnvironment()

• releaseXAConnection()

• releaseXAEnvironment()

In addition, the getXAErrorCode() method of SQLException Class is necessary for XA
enabled applications to determine if thrown exceptions are due to an SQL error
(XA_OK) or an XA error (an XA error code).

Chapter 11
APIs for XA Support

11-2

12
Optimizing Performance of C++ Applications

This chapter describes a few suggestions that lead to better performance for your OCCI
custom applications.

This chapter contains these topics:

• About Transparent Application Failover

• About Connection Sharing

• About Application-Managed Data Buffering

• Using the Array Fetch Using next() Method

• Modifying Rows Iteratively

• About Using Oracle Connection Manager in Traffic Director Mode

• About Run-time Load Balancing of the Stateless Connection Pool

• About Fault Diagnosability

• Using Client Result Cache

• About Client-Side Deployment Parameters and Auto Tuning

See Also:

• OCCI Application Programming Interface

12.1 About Transparent Application Failover
OCCI Transparent Application Failover (TAF) enables OCCI to be more robust in handling
database instance failures in distributed applications at run time. If a server node becomes
unavailable, applications automatically reconnect to another surviving node.

TAF occurs when the client application, during a roundtrip operation, detects that the
database instance is down. It establishes a connection to the backup database configured for
TAF. This backup can be another node in an Oracle RAC configuration, a hot standby
database, or the same database instance itself.

The OCCI/OCI API responsible for the roundtrip on the failed connection will typically return
one of the following errors:

• ORA-25401: can not continue fetches
• ORA-25402: transaction must roll back
• ORA-25408: can not safely replay call
The new connection is may be used for subsequent application requests and for any ongoing
work that must be restarted.Idle connections in the application are not affected.

12-1

Some design options should be considered when including Transparent Application
Failover in an application:

• Because of the delays inherent to failover processing, the design of the application
may include a notice to the user that a failover is in progress and that normal
operation should resume shortly.

• If the session on the initial instance received ALTER SESSION commands before the
failover began, they are not automatically replayed on the second instance.

Consequently, the developer may want to replay these ALTER SESSION commands
on the second instance.

It is the user's responsibility to track changes to the SESSION parameters.

To address these problems, the application can register a failover callback function.
After a failover, the callback function is invoked at different times while reestablishing
the user's session.

• The first call to the callback function occurs when Oracle first detects an instance
connection loss. This callback is intended to allow the application to inform the
user of an upcoming delay.

• If failover is successful, a second call to the callback function occurs when the
connection is reestablished and usable. At this time the client may want to replay
ALTER SESSION commands and inform the user that failover has happened. Note
that you must keep track of SESSION parameter changes and then replay them
after the failover is complete.

If failover is unsuccessful, then the callback function is called to inform the
application that failover cannot take place.

• An initial attempt at failover may not always successful. The failover callback
should return FO_RETRY to indicate that the failover should be attempted again.

See Also:

– Definition of FailOverType and FailOverEventType in Table 13-11 in
OCCI Application Programming Interface

– Oracle Database Net Services Administrator's Guide for more
detailed information about application failover.

This section includes the following topics:

• Using Transparent Application Failover

• About Objects and Transparent Application Failover

• Using Connection Pooling and Transparent Application Failover

12.1.1 Using Transparent Application Failover
To enable TAF, the connect string has to be configured for failover and registered on
Connection (created from Environment, ConnectionPool and
StatelessConnectionPool). To register the callback function, use the Connection
Class interface setTAFNotify():

Chapter 12
About Transparent Application Failover

12-2

void Connection::setTAFNotify(
 int (*notifyFn)(
 Environment *env,
 Connection *conn,
 void *ctx,
 FailOverType foType,
 FailOverEventType foEvent),
 void *ctxTAF);

Note that TAF support for ConnectionPools does not include BACKUP and PRECONNECT
clauses; these should not be used in the connect string.

12.1.2 About Objects and Transparent Application Failover
Transparent application failover works with the OCCI navigational and associative access
models and the object cache. In a non-Oracle RAC setup, you must ensure that the object
type definitions and object OIDs in primary and backup instances are identical.

If the application receives ORA-25402: transaction must roll back error after the failover,
then it must initiate a rollback to correctly reset the object cache on the client. If a transaction
has not started before the failover, the application should still initiate a rollback after the
failover to refresh the objects on the client object cache from the new instance.

12.1.3 Using Connection Pooling and Transparent Application Failover
If the transparent application failover feature is activated, connections created in a connection
pool are also failed over. The application failover callback must be specified for each
connection obtained from the connection pool; these connections are failed over when used
after the primary instance failure.

Note that connections in a custom connection pool must be explicitly cleaned and repaired.
Consider an application that has 500 connections in a pool; 10 of the connections are busy
(doing a round-trip) and 490 are free or idle. If the database instance fails, then TAF will work
on 10 active connections, and client requests on these connections must be restarted. When
each of the other 490 connections are picked up by the application, TAF is performed and
OCCI returns one of error codes ORA-25401, ORA-24502, or ORA-25408, forcing a restart of the
user request. The application can avoid these errors on the 490 idle connections by repairing
or purging these connections by using the knowledge that TAF was previously activated on
10 connections in the connection pool.

To repair connections in OCCI, use the Connection Class interface getServerVersion(), a
light-weight, data-neutral database call for starting TAF on connections to failed instances:

string getServerVersion() const;

In the OCCI TAF callback, applications may invoke getServerVersion() on idle connections in
the custom pool, to start and complete failover for these connections.

Example 12-1 demonstrates how to use OCCI for TAF callbacks and for repairing bad
connections. Note that the example does not show custom pool data structure or mutexing
and concurrency control.

Note that TAF behavior is the same for standalone connections and connections in a custom
connection pool.

Chapter 12
About Transparent Application Failover

12-3

Example 12-1 How to Enable TAF for Connection Pooling

#include <occi.h>
#include <iostream>
#include <time.h>

using namespace std;
using namespace oracle::occi;

//Application custom pool of 3 connections
Environment *env;
Connection *conn1,*conn2,*conn3;
bool conn1free,conn2free,conn3free;
bool repairing = false;

int taf_callback(Environment *env, Connection *conn, void *ctx,
 Connection::FailOverType foType, Connection::FailOverEventType foEvent)
{
 cout << "TAF callback for connection " << conn << endl;

 if(foEvent == Connection::FO_ERROR)
 {
 cout << "Retrying" << endl;
 return FO_RETRY;
 }

 if (foEvent == Connection::FO_END)
 {
 cout << "TAF complete for connnection " << conn << endl;
 if (repairing == false)
 {
 repairing = true;
 cout << "repairing other idle connections" << endl;

 //ignore errors during TAF
 try
 {
 if (conn1free) conn1->getServerVersion();
 }
 catch (...)
 {
 }
 try
 {
 if (conn2free) conn2->getServerVersion();
 }
 catch (...)
 {
 }
 try
 {
 if (conn3free) conn3->getServerVersion();
 }
 catch (...)
 {
 }
 repairing = false;
 }//if
 }//if

 return 0; //continue failover

Chapter 12
About Transparent Application Failover

12-4

}

main()
{
try
{
env = Environment::createEnvironment(Environment::THREADED_MUTEXED);
//open 3 connections;
 conn1 = env->createConnection("hr","password","inst1_failback");
 conn2 = env->createConnection("hr","password","inst1_failback");
 conn3 = env->createConnection("hr","password","inst1_failback");

//all connections are 'free'
conn1free = conn2free = conn3free = true;

//set TAF callbacks on all connection
conn1->setTAFNotify(taf_callback,NULL);
conn2->setTAFNotify(taf_callback,NULL);
conn3->setTAFNotify(taf_callback,NULL);

//use 1 connection
conn1free=false;
cout << "Using conn1" << endl;
Statement *stmt = conn1->createStatement ("select * from employees");
ResultSet *rs = stmt->executeQuery();
while (rs->next())
{
 cout << (rs->getString(2)) << endl;
}
stmt->closeResultSet(rs);
conn1->terminateStatement(stmt);

cout << "Shutdown and restart the database" << endl;
string buf;
cin >> buf;

Statement *stmt2;
try
{
 cout << "Trying a update on EMP table" << endl;
 stmt2 = conn1->createStatement("delete from employees");
 stmt2->executeUpdate();
}
catch (SQLException &ex)
{
 cout << "Update EMPLOYEES returned error : " << ex.getMessage() << endl;
 cin >> buf;
}

cout << "Done" << endl;
env->terminateConnection(conn1);
env->terminateConnection(conn2);
env->terminateConnection(conn3);
Environment::terminateEnvironment(env);
}
catch(SQLException &ex)
{
cout << ex.getMessage() << endl;
}
}

Chapter 12
About Transparent Application Failover

12-5

12.2 About Connection Sharing
This section covers the following topics:

• Introduction to Thread Safety

• Implementing Thread Safety

• About Serialization

• Operating System Considerations

12.2.1 Introduction to Thread Safety
Threads are lightweight processes that exist within a larger process. Threads each
share the same code and data segments, but have their own program counters,
system registers, and stack. Global and static variables are common to all threads,
and a mutual exclusivity mechanism may be required to manage access to these
variables from multiple threads within an application.

Once spawned, threads run asynchronously to one another. They can access common
data elements and make OCCI calls in any order. Because of this shared access to
data elements, a mechanism is required to maintain the integrity of data being
accessed by multiple threads. The mechanism to manage data access takes the form
of mutexes (mutual exclusivity locks), which ensure that no conflicts arise between
multiple threads that are accessing shared resources within an application. In OCCI,
mutexes are granted on an OCCI environment basis.

This thread safety feature of the Oracle database server and OCCI library enables
developers to use OCCI in a multithreaded application with these added benefits:

• Multiple threads of execution can make OCCI calls with the same result as
successive calls made by a single thread.

• When multiple threads make OCCI calls, there are no side effects between
threads.

• Even if you do not write a multithreaded program, you do not pay any performance
penalty for including thread-safe OCCI calls.

• Use of multiple threads can improve program performance. You can discern gains
on multiprocessor systems where threads run concurrently on separate
processors, and on single processor systems where overlap can occur between
slower operations and faster operations.

In addition to client/server applications, where the client can be a multithreaded
program, thread safety is typically used in three-tier or client/agent/server
architectures. In this architecture, the client is concerned only with presentation
services. The agent (or application server) processes the application logic for the client
application. Typically, this relationship is a many-to-one relationship, with multiple
clients sharing the same application server.

The server tier in the three-tier architecture is an Oracle database server. The
applications server (agent) supports multithreading, with each thread serving a
separate client application. In an Oracle environment, this middle-tier application
server is an OCCI or precompiler program.

Chapter 12
About Connection Sharing

12-6

12.2.2 Implementing Thread Safety
To take advantage of thread safety by using OCCI, an application must be running in a
thread-safe operating system. Then the application must inform OCCI that the application is
running in multithreaded mode by specifying THREADED_MUTEXED or THREADED_UNMUTEXED for
the mode parameter of the createEnvironment() method. For example, to turn on mutual
exclusivity locking, issue the following statement:

Environment *env = Environment::createEnvironment(
 Environment::THREADED_MUTEXED);

Note that once createEnvironment is called with THREADED_MUTEXED or THREADED_UNMUTEXED,
all subsequent calls to the createEnvironment method must also be made with
THREADED_MUTEXED or THREADED_UNMUTEXED modes.

If a multithreaded application is running in a thread-safe operating system, then the OCCI
library manages mutexes for the application on a for each-OCCI-environment basis.
However, you can override this feature and have your application maintain its own mutex
scheme. This is done by specifying a mode value of THREADED_UNMUTEXED to the
createEnvironment() method.

Applications that run on non-thread-safe platforms should not pass a value of
THREADED_MUTEXED or THREADED_UNMUTEXED to the createEnvironment() method.

If an application is single threaded, regardless of whether the platform is thread safe, the
application should pass a value of Environment::DEFAULT to the createEnvironment()
method. This is also the default value for the mode parameter. Single threaded applications
which run in THREADED_MUTEXED mode may incur performance degradation.

OCCI does not support nonblocking mode.

12.2.3 About Serialization
As an application programmer, you have two basic options regarding concurrency in a
multithreaded application:

• Automatic Serialization, in which you use OTIS's transparent mechanisms

• Application-Provided Serialization, in which you manage the contingencies involved in
maintaining multiple threads

12.2.3.1 Automatic Serialization
In cases where there are multiple threads operating on objects (connections and connection
pools) derived from an OCCI environment, you can elect to let OCCI serialize access to those
objects. The first step is to pass a value of THREADED_MUTEXED to the createEnvironment
method. At this point, the OCCI library automatically acquires a mutex on thread-safe objects
in the environment.

When the OCCI environment is created with THREADED_MUTEXED mode, then only the
Environment, Map, ConnectionPool, StatelessConnectionPool and Connection objects are
thread-safe. That is, if two threads make simultaneous calls on one of these objects, then
OCCI serializes them internally. However, note that all other OCCI objects, such as
Statement, ResultSet, SQLException, Stream, and so on, are not thread-safe as, applications
should not operate on these objects simultaneously from multiple threads.

Chapter 12
About Connection Sharing

12-7

Note that the bulk of processing for an OCCI call happens on the server, so if two
threads that use OCCI calls go to the same connection, then one of them could be
blocked while the other finishes processing at the server.

12.2.3.2 Application-Provided Serialization
In cases where there are multiple threads operating on objects derived from an OCCI
environment, you can chose to manage serialization. The first step is to pass a value
of THREADED_UNMUTEXED for the createEnvironment mode. In this case the application
must mutual exclusively lock OCCI calls made on objects derived from the same OCCI
environment. This has the advantage that the mutex scheme can be optimized based
on the application design to gain greater concurrency.

When an OCCI environment is created in this mode, OCCI recognizes that the
application is running in a multithreaded application, but that OCCI need not acquire its
internal mutexes. OCCI assumes that all calls to methods of objects derived from that
OCCI environment are serialized by the application. You can achieve this two different
ways:

• Each thread has its own environment. That is, the environment and all objects
derived from it (connections, connection pools, statements, result sets, and so on)
are not shared across threads. In this case your application need not apply any
mutexes.

• If the application shares an OCCI environment or any object derived from the
environment across threads, then it must serialize access to those objects (by
using a mutex, and so on) such that only one thread is calling an OCCI method on
any of those objects.

In both cases, no mutexes are acquired by OCCI. You must ensure that only one
OCCI call is in process on any object derived from the OCCI environment at any given
time when THREADED_UNMUTEXED is used.

OCCI is optimized to reuse objects as much as possible. Since each environment has
its own heap, multiple environments result in increased consumption of memory.
Having multiple environments may imply duplicating work regarding connections,
connection pools, statements, and result set objects. This results in further memory
consumption.

Having multiple connections to the server results in more resource consumption on
both the server and the network. Having multiple environments normally entails more
connections.

12.2.4 Operating System Considerations
Some operating systems provide facilities for spawning processes that allow child
processes to reuse states created by their parent process.

After a parent process spawns a child process, the child process must not use the
database connection created by the parent. Because SQL*Net expects only one user
process to use a particular connection to the database, attempts by the child process
to use the same database connection as the parent may cause undesired connection
interference, and result in intermittent ORA-03137 errors.

When the application requires multiple concurrent connections, Oracle recommends
using threads on platforms that support threading. Oracle supports concurrent
connections in both single-threaded and multi-threaded applications.

Chapter 12
About Connection Sharing

12-8

See "Introduction to Thread Safety" and "Implementing Thread Safety" for more information
about threads.

For improving performance with many concurrently opened connections, see "About Pooling
Connections".

12.3 About Application-Managed Data Buffering
When you provide data for bind parameters by the setxxx methods in parameterized
statements, the values are copied into an internal data buffer, and the copied values are then
provided to the database server for insertion. To reduce overhead of copying string type
data that is available in user buffers, use the setDataBuffer() and next() methods of the
ResultSet Class and the execute() method of the Statement Class.

This section includes the following topics:

• Using the setDataBuffer() Method

• Using the executeArrayUpdate() Method

12.3.1 Using the setDataBuffer() Method
For high performance applications, OCCI provides the setDataBuffer method whereby the
data buffer is managed by the application. The following example shows the setDataBuffer()
method:

void setDataBuffer(int paramIndex,
 void *buffer,
 Type type,
 sb4 size,
 ub2 *length,
 sb2 *ind = NULL,
 ub2 *rc = NULL);

The following parameters are used in the previous method example:

• paramIndex: Parameter number

• buffer: Data buffer containing data

• type: Type of the data in the data buffer

• size: Size of the data buffer

• length: Current length of data in the data buffer

• ind: Indicator information. This indicates whether the data is NULL or not. For
parameterized statements, a value of -1 means a NULL value is to be inserted. For data
returned from callable statements, a value of -1 means NULL data is retrieved.

• rc: Return code. This variable is not applicable to data provided to the Statement
method. However, for data returned from callable statements, the return code specifies
parameter-specific error numbers.

Not all data types can be provided and retrieved by the setDataBuffer() method. For
instance, C++ Standard Library strings cannot be provided with the setDataBuffer()
interface.

Chapter 12
About Application-Managed Data Buffering

12-9

See Also:

Table 5-2 in Data Types for specific cases

There is an important difference between the data provided by the setxxx() methods
and setDataBuffer() method. When data is copied in the setxxx() methods, the
original can change once the data is copied. For example, you can use a
setString(str1) method, then change the value of str1 before execute. The value of
str1 that is used is the value at the time setString(str1) is called. However, for data
provided by the setDataBuffer() method, the buffer must remain valid until the
execution is completed.

If iterative executes or the executeArrayUpdate() method is used, then data for
multiple rows and iterations can be provided in a single buffer. In this case, the data for
the ith iteration is at buffer + (i-1) *size address and the length, indicator, and
return codes are at *(length + i), *(ind + i), and *(rc + i) respectively.

This interface is also meant for use with array executions and callable statements that
have array or OUT bind parameters.

The same method is available in the ResultSet class to retrieve data without re-
allocating the buffer for each fetch.

12.3.2 Using the executeArrayUpdate() Method
If all data is provided with the setDataBuffer() methods or output streams (that is, no
setxxx() methods besides setDataBuffer() or getStream() are called), then there is
a simplified way of doing iterative execution.

In this case, you should not call setMaxIterations() and setMaxParamSize().
Instead, call the setDataBuffer() or getStream() method for each parameter with the
appropriate size arrays to provide data for each iteration, followed by the
executeArrayUpdate(int arrayLength) method. The arrayLength parameter
specifies the number of elements provided in each buffer. Essentially, this is same as
setting the number of iterations to arrayLength and executing the statement.

Since the stream parameters are specified only once, they can be used with array
executes as well. However, if any setxxx() methods are used, then the
addIteration() method is called to provide data for multiple rows. To compare the
two approaches, consider Example 12-2 that inserts two employees in the employees
table:

However, if the first parameter could also be provided through the setDataBuffer()
interface, then, instead of the addIteration() method, you would use the
executeArrayUpdate() method, as shown in Example 12-3:

Example 12-2 How to Insert Records Using the addIteration() method

Statement *stmt = conn->createStatement(
 "insert into departments (department_id, department_name) values(:1, :2)");
char dnames[][100] = {"Community Outreach", "University Recruiting"};
ub2 dnameLen[2];

for (int i = 0; i < 2; i++)

Chapter 12
About Application-Managed Data Buffering

12-10

 dnameLen[i] = strlen(dnames[i] + 1);

stmt->setMaxIterations(2); // set maximum number of iterations

stmt->setInt(1, 7369); // specify data for the first row
stmt->setDataBuffer(2, dnames, OCCI_SQLT_STR, sizeof(dnames[0]), dnameLen);
stmt->addIteration();

stmt->setInt(1, 7654); // specify data for the second row
 // a setDatBuffer is unnecessary for the second
 // bind parameter as data provided through
 // setDataBuffer is specified only once.
stmt->executeUpdate();

Example 12-3 How to Insert Records Using the executeArrayUpdate() Method

Statement *stmt = conn->createStatement(
 "insert into departments (department_id, department_name) values(:1, :2)");
char dnames[][100] = {"Community Outreach", "University Recruiting"};
ub2 dnameLen[2];

for (int i = 0; i < 2; i++)
 dnameLen[i] = strlen(dnames[i] + 1);

int ids[2] = {7369, 7654};
ub2 idLen[2] = {sizeof(ids[0]), sizeof(ids[1])};
stmt->setDataBuffer(1, ids, OCCIINT, sizeof(ids[0]), idLen);
stmt->setDataBuffer(2, dnames, OCCI_SQLT_STR, sizeof(dnames[0]), dnameLen);

stmt->executeArrayUpdate(2); // data for two rows is inserted.

12.4 Using the Array Fetch Using next() Method
If the application is fetching data with only the setDataBuffer() interface or the stream
interface, then an array fetch can be executed. The array fetch is implemented through the
next() method of the ResultSet class. You must process the results obtained through next()
before calling it again.

This causes up to numRows amount of data to be fetched for each column. The buffers
specified with the setDataBuffer() interface should large enough to hold at least numRows of
data.

Example 12-4 How to use Array Fetch with a ResultSet

ResultSet *resultSet = stmt->executeQuery(...);
resultSet->setDataBuffer(...);
while (resultSet->next(numRows) == DATA_AVAILABLE)
 process(resultSet->getNumArrayRows());

12.5 Modifying Rows Iteratively
To process batch errors, specify that the Statement object is in a batchMode of execution
using the setBatchErrorMode() method. Once the batchMode is set and a batch update runs,
any resulting errors are reported through the BatchSQLException Class.

The BatchSQLException class provides methods that handle batch errors. Example 12-5
illustrates how batch handling can be implemented within any OCCI application.

Chapter 12
Using the Array Fetch Using next() Method

12-11

Example 12-5 How to Modify Rows Iteratively and Handle Errors

1. Create the Statement object and set its batch error mode to TRUE.

Statement *stmt = conn->createStatement ("...");
stmt->setBatchErrorMode (true);

2. Perform programmatic changes necessary by the application.

3. Update the statement.

try {
 updateCount = stmt->executeUpdate ();
}

4. Catch and handle any errors generated during the batch insert or update.

catch (BatchSQLException &batchEx)
{
 cout<<"Batch Exception: "<<batchEx.what()<<endl;
 int errCount = batchEx.getFailedRowCount();
 cout << "Number of rows failed " << errCount <endl;
 for (int i = 0; i < errCount; i++)
 {
 SQLException err = batchEx.getException(i);
 unsigned int rowIndex = batchEx.getRowNum(i);
 cout<<"Row " << rowIndex << " failed because of "
 << err.getErrorCode() << endl;
 }
 // take recovery action on the failed rows
}

5. Catch and handle other errors generated during the statement update. Note that
statement-level errors are still thrown as instances of a SQLException.

catch(SQLException &ex) // to catch other SQLExceptions.
{
 cout << "SQLException: " << e.what() << endl;
}

12.6 About Using Oracle Connection Manager in Traffic
Director Mode

Oracle Connection Manager in Traffic Director Mode is a proxy that is placed between
supported database clients and database instances.

Supported clients from Oracle Database 11g Release 2 (11.2) and later can connect to
Oracle Connection Manager in Traffic Director Mode. Oracle Connection Manager in
Traffic Director Mode provides improved high availability (HA) for planned and
unplanned database server outages, connection multiplexing support, and load
balancing. Support for Oracle Connection Manager in Traffic Director Mode is
described in more detail in the following sections

• Modes of Operation

• Key Features

Modes of Operation

Oracle Connection Manager in Traffic Director Mode supports the following modes of
operation:

Chapter 12
About Using Oracle Connection Manager in Traffic Director Mode

12-12

• In pooled connection mode, Oracle Connection Manager in Traffic Director Mode
supports any application using the following database client releases:

– OCI, OCCI, and Open Source Drivers (Oracle Database 11g release 2 (11.2.0.4) and
later))

– JDBC (Oracle Database 12c release 1 (12.1) and later)

– ODP.NET (Oracle Database 12c release 2 (12.2) and later)

In addition, applications must use DRCP. That is, the application must enable DRCP in
the connect string (or in the tnsnames.ora alias).

• In non-pooled connection (or dedicated) mode, Oracle Connection Manager in Traffic
Director Mode supports any application using database client releases Oracle Database
11g release 2 (11.2.0.4) and later. In this mode, some capabilities, such as connection
multiplexing are not available.

Key Features

Oracle Connection Manager in Traffic Director Mode furnishes support for the following:

• Transparent performance enhancements and connection multiplexing, which includes:

– Statement caching, rows prefetching, and result set caching are auto-enabled for all
modes of operation.

– Database session multiplexing (pooled mode only) using the proxy resident
connection pool (PRCP), where PRCP is a proxy mode of Database Resident
Connection Pooling (DRCP). Applications get transparent connect-time load
balancing and run-time load balancing between Oracle Connection Manager in
Traffic Director Mode and the database.

– For multiple Oracle Connection Manager in Traffic Director Mode instances,
applications get increased scalability through client-side connect time load balancing
or with a load balancer (BIG-IP, NGINX, and others)

• Zero application downtime

– Planned database maintenance or pluggable database (PDB) relocation

* Pooled mode

Oracle Connection Manager in Traffic Director Mode responds to Oracle
Notification Service (ONS) events for planned outages and redirects work.
Connections are drained from the pool on Oracle Connection Manager in Traffic
Director Mode when the request completes. Service relocation is supported for
Oracle Database 11g release 2 (11.2.0.4) and later.

For PDB relocation, Oracle Connection Manager in Traffic Director Mode
responds to in-band notifications when a PDB is relocated, that is even when
ONS is not configured (for Oracle Database release 18c, version 18.1 and later
server only)

* Non-pooled or dedicated mode

When there is no request boundary information from the client, Oracle
Connection Manager in Traffic Director Mode supports planned outage for many
applications (as long as only simple session state and cursor state need to be
preserved across the request/transaction boundaries). This support includes:

* Stop service/PDB at the transaction boundary or it leverages Oracle
Database release 18c continuous application availability to stop the service
at the request boundary

Chapter 12
About Using Oracle Connection Manager in Traffic Director Mode

12-13

* Oracle Connection Manager in Traffic Director Mode leverages
Transparent Application Failover (TAF) failover restore to reconnect
and restore simple states.

– Unplanned database outages for read-mostly workloads

• High Availability of Oracle Connection Manager in Traffic Director Mode to avoid a
single point of failure. This is supported by:

– Multiple instances of Oracle Connection Manager in Traffic Director Mode
using a load balancer or client side load balancing/failover in the connect
string

– Rolling upgrade of Oracle Connection Manager in Traffic Director Mode
instances

– Graceful close of existing connections from client to Oracle Connection
Manager in Traffic Director Mode for planned outages

– In-band notifications to Oracle Database release 18c and later clients

– For older clients, notifications are sent with the response of the current request

• For security and isolation, Oracle Connection Manager in Traffic Director Mode
furnishes:

– Database Proxy supporting transmission control protocol/transmission control
protocol secure (TCP/TCPS) and protocol conversion

– Firewall based on the IP address, service name, and secure socket layer/
transport layer security (SSL/TLS) wallets

– Tenant isolation in a multi-tenant environment

– Protection against denial-of-service and fuzzing attacks

– Secure tunneling of database traffic across Oracle Database on-premises and
Oracle Cloud

Chapter 12
About Using Oracle Connection Manager in Traffic Director Mode

12-14

See Also:

• Oracle Database Net Services Administrator's Guide for information about
configuring cman.ora configuration file to set up Oracle Connection Manager in
Traffic Director Mode

• Oracle Database Net Services Administrator's Guide for information about
configuring databases for Oracle Connection Manager in Traffic Director Mode
proxy authentication

• Oracle Database Net Services Administrator's Guide for information about
configuring Oracle Connection Manager in Traffic Director Mode for unplanned
down events

• Oracle Database Net Services Administrator's Guide for information about
configuring Oracle Connection Manager in Traffic Director Mode for planned
down events

• Oracle Database Net Services Administrator's Guide for information about
configuring proxy resident connection pools for use by Oracle Connection
Manager in Traffic Director Mode

• Oracle Database Net Services Administrator's Guide for information about
functionality not supported for all drivers with Oracle Connection Manager in
Traffic Director Mode

• Oracle Database Net Services Reference for an overview of Oracle CMAN
configuration file

12.7 About Run-time Load Balancing of the Stateless
Connection Pool

Run-time load balancing in a stateless connection pool dynamically routs connection
requests to the least loaded instance of the database. This is achieved by use of service
metrics, which are distributed by the Oracle RAC load-balancing advisory.

The feature modifies the stateless connection pool in the following ways:

• The pool receives periodic notifications about the instance load.

• When a request for a connection is received, the pool picks the best possible connection
for the type of request, based on the load of the instance.

• The stateless connection pool periodically terminates connections of overloaded
instances, maintaining the connection topology that corresponds to the instance load.

• Since the connections to overloaded instances may be terminated, the pool creates new
connections to maintain the concurrency requirement. These new connections are
created using the connect-time load balancing of the Oracle RAC listener.

Run-time load balancing is turned on by default when the OCCI environment is created in
THREADED_MUTEXED and EVENTS modes, and when the server is configured to issue event
notifications.

Chapter 12
About Run-time Load Balancing of the Stateless Connection Pool

12-15

See Also:

Oracle Call Interface Developer's Guide

This section includes the following topic: API Support.

12.7.1 API Support
New NO_RLB option for the PoolType attribute of the StatelessConnectionPool Class
disables run-time load balancing.

12.8 About Fault Diagnosability
Fault diagnosability captures diagnostic data, such as dump files or core dump files,
on the OCCI client when a problem incident occurs. For each incident, the fault
diagnosability feature creates an Automatic Diagnostic Repository (ADR) subdirectory
for storing this diagnostic data. For example, if either a Linux or a UNIX application
fails with a null pointer reference, then the core file appears in the ADR home directory
(if it exists), not in the operating system directory. This section discusses the ADR
subdirectory structure and the utility to manage its output, the ADR Command
Interpreter (ADRCI).

An ADR home is the root directory for all diagnostic data for an instance of a product,
such as OCCI, and a particular operating system user. All ADR homes appear under
the same root directory, the ADR base.

See Also:

Oracle Database Administrator’s Guide

This section includes the following topics:

• Using ADR Base Location

• Using ADRCI

• Controlling ADR Creation and Disabling Fault Diagnosability

12.8.1 Using ADR Base Location
The location of the ADR base is determined in the following order:

1. In the sqlnet.ora file (on Windows, in the %TNS_ADMIN% directory, or on Linux or
UNIX, in the $TNS_ADMIN directory).

If there is no TNS_ADMIN directory, then sqlnet.ora is stored in the current
directory.

If the ADR base is listed in the sqlnet.ora file, it is a statement of the type:

ADR_BASE=/directory/adr

Chapter 12
About Fault Diagnosability

12-16

where:

• The adr argument is a directory that must exist and be writable by all operating
system users who execute OCCI applications and want to share the same ADR
base.

• The directory argument is the path name

If ADR_BASE is set, and if all users share a single sqlnet.ora file, then OCCI stops
searching when directory adr does not exist or if it is not writable. If ADR_BASE is not set,
then OCCI continues the search, testing for the existence of other specific directories.

For example, if sqlnet.ora contains the entry ADR_BASE=/home/chuck/test then:

• ADR base is:

/home/chuck/test/oradiag_chuck
• ADR home may be:

/home/chuck/test/oradiag_chuck/diag/clients/user_chuck/host_4144260688_11
2. If the Oracle base exists (on Windows: %ORACLE_BASE%, or on Linux and

UNIX: $ORACLE_BASE), the client subdirectory also exists because it is created by the
Oracle Universal Installer when the database is installed.

For example, if $ORACLE_BASE is /home/chuck/obase , then:

• ADR base is:

/home/chuck/obase
• ADR home may be:

/home/chuck/obase/diag/clients/user_chuck/host_4144260688_11
3. If the Oracle home exists (on Windows: %ORACLE_HOME%, or on Linux and

UNIX: $ORACLE_HOME), the client subdirectory also exists because it is created by the
Oracle Universal Installer when the database is installed.

For example, if $ORACLE_HOME is /ade/chuck_l1/oracle , then:

• ADR base is:

/ade/chuck_l1/oracle/log
• ADR home may be:

/ade/chuck_l1/oracle/log/diag/clients/user_chuck/host_4144260688_11
4. On the operating system home directory.

• On Windows, the operating system home directory is %USERPROFILE%.

The location of folder Oracle is at:

C:\Documents and Settings\chuck

If the application runs as a service, the home directory option is skipped.

• On Linux and UNIX, the operating system home directory is $HOME.

The location may be:

/home/chuck/oradiag_chuck
For example, in an Instant Client, if $HOME is /home/chuck, then:

• ADR base is:

Chapter 12
About Fault Diagnosability

12-17

/home/chuck/oradiag_chuck
• ADR home may be:

/home/chuck/oradiag_chuck/diag/clients/user_chuck/host_4144260688_11
5. In the temporary directory.

• On Windows, the temporary directories are searched in the following order:

– %TMP%
– %TEMP%
– %USERPROFILE%
– Windows system directory

• On Linux and UNIX, the temporary directory is in /var/tmp.

For example, in an Instant Client, if $HOME is not writable, then:

• ADR base is:

/var/tmp/oradiag_chuck
• ADR home may be:

/var/tmp/oradiag_chuck/diag/clients/user_chuck/host_4144260688_11
If none of these directory choices are available and writable, ADR is not created and
diagnostics are not stored.

See Also:

Oracle Database Net Services Reference

12.8.2 Using ADRCI
ADRCI is a command-line tool that enables you to view diagnostic data within the
ADR, and to package incident and problem information into a zip file that can be
shared with Oracle Support. ADRCI can be used either interactively and through a
script.

A problem is a critical error in OCI or the client. Each problem has a problem key. An
incident is a single occurrence of a problem, and it is identified by a unique numeric
incident ID. Each incident has a problem key which has a set of attributes: the ORA
error number, error parameter values, and similar information. Two incidents have the
same root cause if their problem keys match.

The following examples demonstrate how to use ADRCI on a Linux operating system.
Note that ARDCI commands are case-insensitive. All user input is in bold typeface.

See Also:

• Oracle Database Utilitiesfor an introduction to the ADRCI

Chapter 12
About Fault Diagnosability

12-18

Example 12-6 How to Use ADRCI for OCCI Application Incidents

To launch ADRCI in a Linux system, use the adrci command. Once ADRCI starts, find out
the particulars of the show base command with help, and then determine the base of a
particular client using the -product client option (necessary for OCCI applications). To set
the ADRCI base, use the set base command. Once ADRCI starts, then the default ADR base
is for the rdbms server. The $ORACLE_HOME is set to /ade/chuck_l3/oracle. To view the
incidents, use the show incidents command. to exit ADRCI, use the quit command.

% adrci

ADRCI: Release 11.2. - on Wed November 25 16:16:55 2008

Copyright (c) 1982, 2008, Oracle. All rights reserved.

adrci> help show base

 Usage: SHOW BASE [-product <product_name>]

 Purpose: Show the current ADR base setting.

 Options:
 [-product <product_name>]: This option allows users to show the
 given product's ADR Base location. The current registered products are
 "CLIENT" and "ADRCI".

 Examples:
 show base -product client
 show base

adrci> show base -product client
ADR base is "/ade/chuck_l3/oracle/log"

adrci> help set base

 Usage: SET BASE <base_str>

 Purpose: Set the ADR base to use in the current ADRCI session.
 If there are valid ADR homes under the base, all homes
 are added to the current ADRCI session.

 Arguments:
 <base_str>: It is the ADR base directory, which is a system-dependent
 directory path string.

 Notes:
 On platforms that use "." to signify current working directory,
 it can be used as base_str.

 Example:
 set base /net/sttttd1/scratch/someone/view_storage/someone_v1/log
 set base .

adrci> set base /ade/chuck_l3/oracle/log

adrci> show incidents
...
adrci> quit

Chapter 12
About Fault Diagnosability

12-19

Example 12-7 How to Use ADRCI for Instant Client

Because Instant Client does not use $ORACLE_HOME, the default ADR base is the user's
home directory.

adrci> show base -product client
ADR base is "/home/chuck/oradiag_chuck"
adrci> set base /home/chuck/oradiag_chuck
adrci> show incidents

ADR Home = /home/chuck/oradiag_chuck/diag/clients/user_chuck/host_4144260688_11:

INCIDENT_ID PROBLEM_KEY CREATE_TIME

1 oci 24550 [6] 2007-05-01 17:20:02.803697
-07:00
1 rows fetched

adrci> quit

12.8.3 Controlling ADR Creation and Disabling Fault Diagnosability
To disable the fault diagnosability feature, you must turn off the capture of diagnostics.
Edit the sqlnet.ora file by changing the values of the DIAG_ADR_ENABLED and
DIAG_DDE_ENABLED parameters to either FALSE or OFF; the default values are either
TRUE or ON.

To turn off the OCCI signal handler and to re-enable standard operating system failure
processing, edit the sqlnet.ora file by adding the corresponding parameter:
DIAG_SIGHANDLER_ENABLED=FALSE.

See Also:

Oracle Call Interface Developer's Guide

12.9 Using Client Result Cache
The Client Result Cache improves the response times of queries that are executed
repeatedly. This feature uses client memory to cache results of SQL queries executed
and fetched from the database. Subsequent execution of the same query fetches the
results from the client cache, reducing server CPU usage. Because database round-
trips are eliminated, applications have improved response times.

OCCI applications may transparently use the Client Result Cache feature by enabling
OCCI statement caching. Note that SELECT queries that must be cached are annotated
with a /*+ result_cache */ hint. Example 12-8 shows how to create a OCCI
Statement object that uses such a SELECT query.

For usage guidelines, cache consistency, and restrictions, see Oracle Call Interface
Developer's Guide.

Example 12-8 How to Enable and Use the Client Result Cache

Connection *conn;
Statement *stmt;

Chapter 12
Using Client Result Cache

12-20

ResultSet *rs;

...
//enable OCCI Statement Caching
conn->setStmtCacheSize(20);

//Specify the hint in the SELECT query
stmt = conn->createStatement("select /*+ result_cache */ * from products \
 where product_id = :1");

//the following execute fetches rows from the client cache if
//the query results are cached. If this is the first execute
//of the query, the results fetched from the server are
//cached on the client side.
rs = stmt->executeQuery();

12.10 About Client-Side Deployment Parameters and Auto
Tuning

Starting with Oracle Database Release 12c Release 1 (12.1), Oracle provides
oraaccess.xml, a client-side configuration file that can be used to configure selected
properties, allowing the application behavior to be changed during deployment without
modifying the source code.

Note:

Do not use the prefetch deployment parameter if the OCCI application is already
using the setPrefetchRowCount() or setPrefetchMemorySize() methods.

See:

Oracle Call Interface Developer's Guide for more information about client-side
deployment parameters and auto tuning

Chapter 12
About Client-Side Deployment Parameters and Auto Tuning

12-21

13
OCCI Application Programming Interface

This chapter describes the OCCI classes and methods for C++.

See Also:

• Format Models in Oracle Database SQL Language Reference

• Table A-1 in Oracle Database Globalization Support Guide

13.1 OCCI Classes and Methods
Table 13-1 provides a brief description of all the OCCI classes. This section is followed by
detailed descriptions of each class and its methods.

Table 13-1 Summary of OCCI Classes

Class Description

Agent Class Represents an agent in the Advanced Queuing context.

AnyData Class Provides methods for the Object Type Translator (OTT) utility,
read and write SQL methods for linearization of objects, and
conversions to and from other data types.

BatchSQLException Class Provides methods for handling batch processing errors; extends
the SQLException Class.

Bfile Class Provides access to a SQL BFILE value.

Blob Class Provides access to a SQL BLOB value.

Bytes Class Examines individual bytes of a sequence for comparing bytes,
searching bytes, and extracting bytes.

Clob Class Provides access to a SQL CLOB value.

Connection Class Represents a connection with a specific database.

ConnectionPool Class Represents a connection pool with a specific database.

Consumer Class Supports dequeuing of Messages and controls the dequeuing
options.

Date Class Specifies abstraction for SQL DATE data items. Also provides
formatting and parsing operations to support the OCCI escape
syntax for date values.

Environment Class Provides an OCCI environment to manager memory and other
resources of OCCI objects. An OCCI driver manager maps to
an OCCI environment handle.

IntervalDS Class Represents a time period in terms of days, hours, minutes, and
seconds.

13-1

Table 13-1 (Cont.) Summary of OCCI Classes

Class Description

IntervalYM Class Represents a time period in terms of year and months.

Listener Class Listens on behalf of one or more agents on one or more
queues.

Map Class Used to store the mapping of the SQL structured type to C++
classes.

Message Class A unit that is enqueued or dequeued.

MetaData Class Used to determine types and properties of columns in a
ResultSet, that of existing schema objects in the database, or
the database as a whole.

NotifyResult Class Used to hold notification information from the Database AQ
callback function.

Number Class Models the numeric data type.

PObject Class When defining types, enables specification of persistent or
transient instances. Class instances derived from PObject can
be either persistent or transient. If persistent, a class instance
derived from PObject inherits from the PObject class; if
transient, there is no inheritance.

Producer Class Supports enqueuing options and enqueues Messages.

Ref Class The mapping in C++ for the SQL REF value, which is a
reference to a SQL structured type value in the database.

RefAny Class The mapping in C++ for the SQL REF value, which is a
reference to a SQL structured type value in the database.

ResultSet Class Provides access to a table of data generated by executing an
OCCI Statement.

SQLException Class Provides information on database access errors.

StatelessConnectionPool Class Represents a pool of stateless, authenticated connections to
the database.

Statement Class Used for executing SQL statements, including both query
statements and insert / update / delete statements.

Stream Class Used to provide streamed data (usually of the LONG data type)
to a prepared DML statement or stored procedure call.

Subscription Class Encapsulates the information and operations necessary for
registering a subscriber for notification.

Timestamp Class Specifies abstraction for SQL TIMESTAMP data items. Also
provides formatting and parsing operations to support the OCCI
escape syntax for time stamp values.

13.1.1 Using OCCI Classes
OCCI classes are defined in the oracle::occi namespace. An OCCI class name
within the oracle::occi namespace can be referred to in one of three ways:

• Use the scope resolution operator (::) for each OCCI class name.

• Use the using declaration for each OCCI class name.

Chapter 13
OCCI Classes and Methods

13-2

• Use the using directive for all OCCI class name.

Using Scope Resolution Operator for OCCI

The scope resolution operator (::) is used to explicitly specify the oracle::occi namespace
and the OCCI class name. To declare myConnection, a Connection object, using the scope
resolution operator, you would use the following syntax:

oracle::occi::Connection myConnection;

Using Declaration in OCCI

The using declaration is used when the OCCI class name can be used in a compilation unit
without conflict. To declare the OCCI class name in the oracle::occi namespace, you would
use the following syntax:

using oracle::occi::Connection;

Connection now refers to oracle::occi::Connection, and myConnection can be declared as
Connection myConnection;.

Using Directive in OCCI

The using directive is used when all OCCI class names can be used in a compilation unit
without conflict. To declare all OCCI class names in the oracle::occi namespace, you would
use the following syntax:

using oracle::occi;

Then, just as with the using declaration, the following declaration would now refer to the
OCCI class Connection as Connection myConnection;.

Using Advanced Queuing in OCCI

The Advanced Queuing classes Producer, Consumer, Message, Agent, Listener,
Subscription and NotifyResult are defined in oracle::occi::aq namespace.

13.1.2 OCCI Support for Windows NT and z/OS
When building OCCI application on Windows, a preprocessor definition for WIN32COMMON has
to be added.

The following global methods are designed for accessing collections of Refs in ResultSet
Class and Statement Class on Windows NT and z/OS. While method names changed, the
number of parameters and their types remain the same.

• Use getVectorOfRefs() instead of getVector() on Windows NT and z/OS.

• Use setVectorOfRefs() instead of setVector() on Windows NT and z/OS.

Applications on Windows NT and z/OS should be calling these new methods only for
retrieving and inserting collections of references. Applications not running on Windows NT or
z/OS can use either set of accessors. However, Oracle recommends the use of the new
methods for any vector operations with Refs.

This section includes the following topic: Working with Collections of Refs.

Chapter 13
OCCI Classes and Methods

13-3

13.1.2.1 Working with Collections of Refs
Collections of Refs can be fetched and inserted using methods of the following
classes:

13.1.2.1.1 ResultSet Class

Fetching Collection of Refs

Use the following version of getVectorOfRefs() to return a column of references:

void getVectorOfRefs(
 ResultSet *rs,
 unsigned int index,
 vector<Ref<T> > &vect);

13.1.2.1.2 Statement Class

Fetching Collection of Refs

Use getVectorOfRefs() to return a collection of references from a column:

void getVectorOfRefs(
 Statement *stmt,
 unsigned int index,
 vector<Ref<T> > &vect);

Inserting a Collection of Refs

Use setVectorOfRefs() to insert a collection of references into a column:

template <class T>
void setVectorOfRefs(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Ref<T> > &vect,
 const string &sqltype);

Inserting a Collection of Refs: Multibyte Support

The following method is necessary for multibyte support:

void setVectorOfRefs(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Ref<T> > &vect,
 const string &schemaName,
 const string &typeName);

Inserting a Collection of Refs: UString (UTF16) Support

The following method is necessary for UString support:

template <class T>
void setVectorOfRefs(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Ref<T> > &vect,

Chapter 13
OCCI Classes and Methods

13-4

 const UString &schemaName,
 const UString &typeName);

13.2 Common OCCI Constants
Table 13-2 defines the common constants used by all OCCI classes. Constants that are
defined for use within specific classes are summarized at the beginning of class-specific
sections.

Table 13-2 Enumerated Values Used by All OCCI Classes

Attribute Options

LockOptions • OCCI_LOCK_NONE clears the lock setting on the Ref object.

• OCCI_LOCK_X indicates that the object should be locked, and to wait for the
lock to be available if the object is locked by another session.

• OCCI_LOCK_X_NOWAIT indicates that the object should be locked, and
returns an error if it is locked by another session.

CharSetForm • OCCI_SQLCS_IMPLICIT indicates that the local database character set
must be used.

• OCCI_SQLCS_NCHAR indicates that the local database NCHAR set must be
used.

• OCCI_SQLCS_EXPLICIT indicates that the character set is specified
explicitly.

• OCCI_SQLCS_FLEXIBLE means that the character set is a PL/SQL flexible
parameter.

ReturnStatus • OCCI_SUCCESS indicates that the call has been made successfully
(transaction failover mode).

• FO_RETRY indicates that the call should be retried (transaction failover
mode).

13.3 Agent Class
The Agent class represents an agent in the Advanced Queuing context.

Table 13-3 Summary of Agent Methods

Method Summary

Agent() Agent class constructor.

getAddress() Returns the address of the Agent.

getName() Returns the name of the Agent.

getProtocol() Returns the protocol of the Agent.

isNull() Tests whether the Agent object is NULL.

operator=() Assignment operator for Agent.

setAddress() Sets address of the Agent object.

setName() Sets name of the Agent object.

setNull() Sets Agent object to NULL.

setProtocol() Sets protocol of the Agent object.

Chapter 13
Common OCCI Constants

13-5

13.3.1 Agent()
Agent class constructor.

Syntax Description

Agent(
 const Environment *env);

Creates an Agent object initialized to its default
values.

Agent(
 const Agent& agent);

Copy constructor.

Agent(
 const Environment *env,
 const string& name,
 const string& address,
 unsigned int protocol = 0);

Creates an Agent object with specified Agent's
name, address, and protocol.

Parameter Description

env Environment

name Name

agent Original agent

address Address

protocol Protocol

13.3.2 getAddress()
Returns a string containing Agent's address.

Syntax

string getAddress() const;

13.3.3 getName()
Returns a string containing Agent's name.

Syntax

string getName() const;

13.3.4 getProtocol()
Returns a numeric code representing Agent's protocol.

Chapter 13
Agent Class

13-6

Syntax

unsigned int getProtocol() const;

13.3.5 isNull()
Tests whether the Agent object is NULL. If the Agent object is NULL, then TRUE is returned;
otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.3.6 operator=()
Assignment operator for Agent class.

Syntax

void operator=(
const Agent& agent);

Parameter Description

agent The original Agent object.

13.3.7 setAddress()
Sets the address of the Agent object.

Syntax

void setAddress(
 const string& addr);

Parameter Description

addr The name of the Agent object.

13.3.8 setName()
Sets the name of the Agent object.

Syntax

void setName(
 const string& name);

Parameter Description

name The name of the Agent object.

Chapter 13
Agent Class

13-7

13.3.9 setNull()
Sets the Agent object to NULL. Unless operating in an inner scope, this call should be
made before terminating the Connection used to create this Agent.

Syntax

void setNull();

13.3.10 setProtocol()
Sets the protocol of the Agent object.

Syntax

void setProtocol(
 unsigned int protocol = 0);

Parameter Description

protocol The protocol of the Agent object.

13.4 AnyData Class
The AnyData class models self-descriptive data by encapsulating the type information
with the actual data. AnyData is used primarily with OCCI Advanced Queuing feature,
to represent and enqueue data and to receive messages from queues as AnyData
instances.

Most SQL and user-defined types can be converted into an AnyData type using the
setFromxxx() methods. An AnyData object can be converted into most SQL and user-
defined types using getAsxxx() methods. SYS.ANYDATA type models AnyData both in
SQL and PL/SQL. See Table 13-4 for supported data types.

The getType() call returns the TypeCode represented by an AnyData object, while the
isNull() call determines if AnyData contains a NULL value. The setNull() method sets the
value of AnyData to NULL.

To use the OCCI AnyData type, the environment has to be initiated in OBJECT mode.

Example 13-1 Converting From an SQL Pre-Defined Type To AnyData Type

This example demonstrates how to convert types from string to AnyData.

Connection *conn;
...
AnyData any(conn);
string str("Hello World");
any.setFromString(str);
...

Chapter 13
AnyData Class

13-8

Example 13-2 Creating an SQL Pre-Defined Type From AnyData Type

This example demonstrates how to convert an AnyData object back to a string object. Note
the use of getType() and isNull() methods to validate AnyData before conversion.

Connection *conn;
string str;
...
if(!any.isNULL())
{ if(any.getType()==OCCI_TYPECODE_VARCHAR2)
 {
 str = any.getAsString();
 cout<<str;
 }
}
...

Example 13-3 Converting From a User-Defined Type To AnyData Type

This example demonstrates how to convert from a user-defined type to AnyData type.

Connection *conn;
...
// Assume an OBJECT of type Person with the following defined fields
// CREATE TYPE person as OBJECT (
// FRIST_NAME VARCHAR2(20),
// LAST_NAME VARCHAR2(25),
// EMAIL VARCHAR2(25),
// SALARY NUMBER(8,2)
//);
// Assume relevant classes have been generated by OTT.
...
Person *pers new Person("Steve", "Addams",
 "steve.addams@anycompany.com", 50000.00);
AnyData anyObj(conn);
anyObj.setFromObject(pers);
...

Example 13-4 Converting From a User-Defined Type To AnyData Type

This example demonstrates how to convert an AnyData object back to a user-defined type.
Note the use of getType() and isNull() methods to validate AnyData before conversion.

Connection *conn;
// Assume an OBJECT of type Person with the following defined fields
// CREATE TYPE person as OBJECT (
// FRIST_NAME VARCHAR2(20),
// LAST_NAME VARCHAR2(25),
// EMAIL VARCHAR2(25),
// SALARY NUMBER(8,2)
//);
// Assume relevant classes have been generated by OTT.
Person *pers = new Person();
...
If(!anyObj.isNull())
{ if(anyObj.getType()==OCCI_TYPECODE_OBJECT)
 pers = anyObj.getAsObject();
}
...

Chapter 13
AnyData Class

13-9

Table 13-4 OCCI Data Types supported by AnyData Class

Data Type TypeCode

BDouble OCCI_TYPECODE_BDOUBLE

BFile OCCI_TYPECODE_BFILE

BFloat OCCI_TYPECODE_BFLOAT

Bytes OCCI_TYPECODE_RAW

Date OCCI_TYPECODE_DATE

IntervalDS OCCI_TYPECODE_INTERVAL_DS

IntervalYM OCCI_TYPECODE_INTERVAL_YM

Number OCCI_TYPECODE_NUMBERB

PObject OCCI_TYPECODE_OBJECT

Ref OCCI_TYPECODE_REF

string OCCI_TYPECODE_VARCHAR2

TimeStamp OCCI_TYPECODE_TIMESTAMP

Table 13-5 Summary of AnyData Methods

Method Summary

AnyData() AnyData class constructor.

getAsBDouble() Converts an AnyData object into BDouble.

getAsBfile() Converts an AnyData object into Bfile.

getAsBFloat() Converts an AnyData object into BFloat.

getAsBytes() Converts an AnyData object into Bytes.

getAsDate() Converts an AnyData object into Date.

getAsIntervalDS() Converts an AnyData object into IntervalDS.

getAsIntervalYM() Converts an AnyData object into IntervalYM.

getAsNumber() Converts an AnyData object into Number.

getAsObject() Converts an AnyData object into PObject.

getAsRef() Converts an AnyData object into RefAny.

getAsString() Converts an AnyData object into a namespace string.

Chapter 13
AnyData Class

13-10

Table 13-5 (Cont.) Summary of AnyData Methods

Method Summary

getAsTimestamp() Converts an AnyData object into Timestamp.
getType() Retrieves the DataType held by the AnyData object. See

Table 13-4.

isNull() Tests whether AnyData object is NULL.

setFromBDouble() Converts a BDouble into Anydata.

setFromBfile() Converts a Bfile into Anydata.

setFromBFloat() Converts a BFloat into Anydata.

setFromBytes() Converts a Bytes into Anydata.

setFromDate() Converts a Date into Anydata.

setFromIntervalDS() Converts an IntervalDS into Anydata.

setFromIntervalYM() Converts an IntervalYM into Anydata.

setFromNumber() Converts a Number into Anydata.

setFromObject() Converts a PObject into Anydata.

setFromRef() Converts a RefAny into Anydata.

setFromString() Converts a namespace string into Anydata.

setFromTimestamp() Converts a Timestamp into Anydata.

setNull() Sets AnyData object to NULL.

13.4.1 AnyData()
AnyData constructor.

Syntax

AnyData(
 const Connection *conn);

Parameter Description

conn The connection.

13.4.2 getAsBDouble()
Converts an AnyData object into BDouble.

Syntax

BDouble getAsBDouble() const;

13.4.3 getAsBfile()
Converts an AnyData object into Bfile.

Chapter 13
AnyData Class

13-11

Syntax

Bfile getAsBfile() const;

13.4.4 getAsBFloat()
Converts an AnyData object into BFloat.

Syntax

BFloat getAsBFloat() const;

13.4.5 getAsBytes()
Converts an AnyData object into Bytes.

Syntax

Bytes getAsBytes() const;

13.4.6 getAsDate()
Converts an AnyData object into Date.

Syntax

Date getAsDate() const;

13.4.7 getAsIntervalDS()
Converts an AnyData object into IntervalDS.

Syntax

IntervalDS getAsIntervalDS() const;

13.4.8 getAsIntervalYM()
Converts an AnyData object into IntervalYM.

Syntax

IntervalYS getAsIntervalYM() const;

13.4.9 getAsNumber()
Converts an AnyData object into Number.

Syntax

Number getAsNumber() const;

Chapter 13
AnyData Class

13-12

13.4.10 getAsObject()
Converts an AnyData object into PObject.

Syntax

PObject* getAsObject() const;

13.4.11 getAsRef()
Converts an AnyData object into RefAny.

Syntax

RefAny getAsRef() const;

13.4.12 getAsString()
Converts an AnyData object into a namespace string.

Syntax

string getAsString() const;

13.4.13 getAsTimestamp()
Converts an AnyData object into Timestamp.

Syntax

Timestamp getAsTimestamp() const;

13.4.14 getType()
Retrieves the data type held by the AnyData object. Refer to Table 13-4 for valid values for
TypeCode.

Syntax

TypeCode getType();

13.4.15 isNull()
Tests whether the AnyData object is NULL. If the AnyData object is NULL, then TRUE is returned;
otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.4.16 setFromBDouble()
Converts a BDouble into AnyData.

Chapter 13
AnyData Class

13-13

Syntax

void setFromBDouble(
 const BDouble& bdouble);

Parameter Description

bdouble The BDouble that is converted into AnyData.

13.4.17 setFromBfile()
Converts a Bfile into AnyData.

Syntax

void setFromBfile(
 const Bfile& bfile);

Parameter Description

bfile The Bfile that is converted into AnyData.

13.4.18 setFromBFloat()
Converts a BFloat into AnyData.

Syntax

void setFromBFloat(
 const BFloat& bfloat);

Parameter Description

bfloat The BFloat that is converted into AnyData.

13.4.19 setFromBytes()
Converts a Bytes into AnyData.

Syntax

void setFromBytes(
 const Bytes& bytes);

Parameter Description

bytes The Bytes that is converted into AnyData.

Chapter 13
AnyData Class

13-14

13.4.20 setFromDate()
Converts a Date into AnyData.

Syntax

void setFromDate(
 const Date& date);

Parameter Description

date The Date that is converted into AnyData.

13.4.21 setFromIntervalDS()
Converts an IntervalDS into AnyData.

Syntax

void setFromIntervalDS(
 const IntervalDS& intervalds);

Parameter Description

invtervalds The IntervalDS that is converted into AnyData.

13.4.22 setFromIntervalYM()
Converts an IntervalYM into AnyData.

Syntax

void setFromIntervalYM(
 const IntervalYM& intervalym);

Parameter Description

invalym The IntervalYM that is converted into AnyData.

13.4.23 setFromNumber()
Converts a Number into AnyData.

Syntax

void setFromNumber(
 const Number& num);

Chapter 13
AnyData Class

13-15

Parameter Description

num The Number that is converted into AnyData.

13.4.24 setFromObject()
Converts a PObject into AnyData.

Syntax

void setFromObject(
 const PObject* objptr);

Parameter Description

objptr The PObject that is converted into AnyData.

13.4.25 setFromRef()
Converts a PObject into AnyData.

Syntax

void setFromRef(
 const RefAny& ref
 const string &typeName,
 const string &schema);

Parameter Description

ref The RefAny that is converted into AnyData.

typeName The name of the type.

schema The name of the schema where the type is defined.

13.4.26 setFromString()
Converts a namespace string into AnyData.

Syntax

void setFromString(
 string& str);

Parameter Description

str The namespace string that is converted into AnyData.

Chapter 13
AnyData Class

13-16

13.4.27 setFromTimestamp()
Converts a Timestamp into AnyData.

Syntax

void setFromTimestamp(
 const Timestamp& timestamp);

Parameter Description

timestamp The Timestamp that is converted into AnyData.

13.4.28 setNull()
Sets AnyData object to NULL.

Syntax

void setNull();

13.5 BatchSQLException Class
The BatchSQLException class provides methods for handling batch processing errors.
Because BatchSQLException class is derived from the SQLException Class, all
BatchSQLException instances support all methods of SQLException, in addition to the
methods summarized in Table 13-6.

See Also:

"Modifying Rows Iteratively" section in Optimizing Performance of C++ Applications.

Table 13-6 Summary of BatchSQLException Methods

Method Summary

getException() Returns the exception.

getFailedRowCount() Returns the number of rows with failed inserts or updates.

getRowNum() Returns the number of the row that has an insert or updated
error

13.5.1 getException()
Returns the exception that matches the specified index.

Syntax

SQLException getSQLException (
 unsigned int index) const;

Chapter 13
BatchSQLException Class

13-17

Parameter Description

index The index into the list of errors returned by the batch process.

13.5.2 getFailedRowCount()
Returns the number of rows for which the statement insert or update failed.

Syntax

unsigned int getFailedRowCount() const;

13.5.3 getRowNum()
Returns the number of the row with an error, matching the specified index.

Syntax

unsigned int getRowNum(
 unsigned int index) const;

Parameter Description

index The index into the list of errors returned by the batch process.

13.6 Bfile Class
The Bfile class defines the common properties of objects of type BFILE. A BFILE is a
large binary file stored in an operating system file outside of the Oracle database. A
Bfile object contains a logical pointer to a BFILE, not the BFILE itself.

Methods of the Bfile class enable you to perform specific tasks related to Bfile
objects.

Methods of the ResultSet and Statement classes, such as getBfile() and
setBfile(), enable you to access an SQL BFILE value.

The only methods valid on a NULL Bfile object are setName(), isNull(), and
operator=() .

A Bfile object can be initialized by:

• The setName() method. The BFILE can then be modified by inserting this BFILE
into the table and then retrieving it using SELECT...FOR UPDATE. The write()
method modifies the BFILE; however, the modified data is flushed to the table only
when the transaction is committed. Note that an INSERT operation is not required.

• Assigning an initialized Bfile object to it.

Chapter 13
Bfile Class

13-18

See Also:

In-depth discussion of LOBs in the introductory chapter of Oracle Database
SecureFiles and Large Objects Developer's Guide,

Table 13-7 Summary of Bfile Methods

Method Summary

Bfile() Bfile class constructor.

close() Closes a previously opened BFILE.

closeStream() Closes the stream obtained from the BFILE.

fileExists() Tests whether the BFILE exists.

getDirAlias() Returns the directory object of the BFILE.

getFileName() Returns the name of the BFILE.

getStream() Returns data from the BFILE as a Stream object.

getUStringDirAlias() Returns a UString containing the directory object associated
with the BFILE.

getUStringFileName() Returns a UString containing the file name associated with
the BFILE.

isInitialized() Tests whether the Bfile object is initialized.

isNull() Tests whether the Bfile object is atomically NULL.

isOpen() Tests whether the BFILE is open.

length() Returns the number of bytes in the BFILE.

open() Opens the BFILE with read-only access.

operator=() Assigns a BFILE locator to the Bfile object.

operator==() Tests whether two Bfile objects are equal.

operator!=() Tests whether two Bfile objects are not equal.

operator==() Reads a specified portion of the BFILE into a buffer.

setName() Sets the directory object and file name of the BFILE.

setNull() Sets the Bfile object to atomically NULL.

13.6.1 Bfile()
Bfile class constructor.

Syntax Description

Bfile(); Creates a NULL Bfile object.

Bfile(
 const Connection *connectionp);

Creates an uninitialized Bfile object.

Chapter 13
Bfile Class

13-19

Syntax Description

Bfile(
 const Bfile &srcBfile);

Creates a copy of a Bfile object.

Parameter Description

connectionp The connection pointer

srcBfile The source Bfile object

13.6.2 close()
Closes a previously opened Bfile.

Syntax

void close();

13.6.3 closeStream()
Closes the stream obtained from the Bfile.

Syntax

void closeStream(
 Stream *stream);

Parameter Description

stream The stream to be closed.

13.6.4 fileExists()
Tests whether the BFILE exists. If the BFILE exists, then TRUE is returned; otherwise,
FALSE is returned.

Syntax

bool fileExists() const;

13.6.5 getDirAlias()
Returns a string containing the directory object associated with the BFILE.

Syntax

string getDirAlias() const;

Chapter 13
Bfile Class

13-20

13.6.6 getFileName()
Returns a string containing the file name associated with the BFILE.

Syntax

string getFileName() const;

13.6.7 getStream()
Returns a Stream object read from the BFILE. If a stream is open, it is disallowed to open
another stream on the Bfile object. The stream must be closed before performing any Bfile
object operations.

Syntax

Stream* getStream(
 unsigned int offset = 1,
 unsigned int amount = 0);

Parameter Description

offset The starting position at which to begin reading data from the BFILE. If offset is not
specified, the data is written from the beginning of the BLOB. Valid values are numbers
greater than or equal to 1.

amount The total number of bytes to be read from the BFILE; if amount is 0, the data is read in
a streamed mode from input offset until the end of the BFILE.

13.6.8 getUStringDirAlias()
Returns a UString containing the directory object associated with the BFILE. Note the
UString object is in UTF16 character set. The environment associated with BFILE should be
associated with UTF16 characterset.

Syntax

UString getUStringDirAlias() const;

13.6.9 getUStringFileName()
Returns a UString containing the file name associated with the BFILE. Note the UString
object is in UTF16 characterset. The environment associated with BFILE should be
associated with UTF16 characterset.

Syntax

UString getUStringFileName() const;

13.6.10 isInitialized()
Tests whether the Bfile object has been initialized. If the Bfile object has been initialized,
then TRUE is returned; otherwise, FALSE is returned.

Chapter 13
Bfile Class

13-21

Syntax

bool isInitialized() const;

13.6.11 isNull()
Tests whether the Bfile object is atomically NULL. If the Bfile object is atomically
NULL, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.6.12 isOpen()
Tests whether the BFILE is open. The BFILE is considered to be open only if it was
opened by a call on this Bfile object. (A different Bfile object could have opened this
file as multiple open() calls can be performed on the same file by associating the file
with different Bfile objects). If the BFILE is open, then TRUE is returned; otherwise,
FALSE is returned.

Syntax

bool isOpen() const;

13.6.13 length()
Returns the number of bytes (inclusive of the end of file marker) in the BFILE.

Syntax

unsigned int length() const;

13.6.14 open()
Opens an existing BFILE for read-only access. This function is meaningful the first
time it is called for a Bfile object.

Syntax

void open();

13.6.15 operator=()
Assigns a Bfile object to the current Bfile object. The source Bfile object is
assigned to this Bfile object only when this Bfile object gets stored in the database.

Syntax

Bfile& operator=(
 const Bfile &srcBfile);

Chapter 13
Bfile Class

13-22

Parameter Description

srcBfile The Bfile object to be assigned to the current Bfile object.

13.6.16 operator==()
Compares two Bfile objects for equality. The Bfile objects are equal if they both refer to the
same BFILE. If the Bfile objects are NULL, then FALSE is returned. If the Bfile objects are
equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator==(
 const Bfile &srcBfile) const;

Parameter Description

srcBfile The Bfile object to be compared with the current Bfile object.

13.6.17 operator!=()
Compares two Bfile objects for inequality. The Bfile objects are equal if they both refer to
the same BFILE. If the Bfile objects are not equal, then TRUE is returned; otherwise, FALSE is
returned.

Syntax

bool operator!=(
 const Bfile &srcBfile) const;

Parameter Description

srcBfile The Bfile object to be compared with the current Bfile object.

13.6.18 read()
Reads a part or all of the BFILE into the buffer specified, and returns the number of bytes
read.

Syntax

unsigned int read(
 unsigned int amt,
 unsigned char *buffer,
 unsigned int bufsize,
 unsigned int offset = 1) const;

Chapter 13
Bfile Class

13-23

Parameter Description

amt The number of bytes to be read. Valid values are numbers greater
than or equal to 1.

buffer The buffer that the BFILE data is to be read into. Valid values are
numbers greater than or equal to amt.

buffsize The size of the buffer that the BFILE data is to be read into. Valid
values are numbers greater than or equal to amt.

offset The starting position at which to begin reading data from the BFILE.
If offset is not specified, the data is written from the beginning of
the BFILE.

13.6.19 setName()
Sets the directory object and file name of the BFILE.

Syntax Description

void setName(
 const string &dirAlias,
 const string &fileName);

Sets the directory object and file name of
the BFILE.

void setName(
 const UString &dirAlias,
 const UString &fileName);

Sets the directory object and file name of
the BFILE (Unicode support). The client
Environment should be initialized in
OCCIUTIF16 mode.

Parameter Description

dirAlias The directory object to be associated with the BFILE.

fileName The file name to be associated with the BFILE.

13.6.20 setNull()
Sets the Bfile object to atomically NULL.

Syntax

void setNull();

13.7 Blob Class
The Blob class defines the common properties of objects of type BLOB. A BLOB is a
large binary object stored as a column value in a row of a database table. A Blob
object contains a logical pointer to a BLOB, not the BLOB itself.

Methods of the Blob class enable you to perform specific tasks related to Blob objects.

Chapter 13
Blob Class

13-24

Methods of the ResultSet and Statement classes, such as getBlob() and setBlob(), enable
you to access an SQL BLOB value.

The only methods valid on a NULL Blob object are setName(), isNull(), and operator=() .

An uninitialized Blob object can be initialized by:

• The setEmpty() method. The BLOB can then be modified by inserting this BLOB into the
table and then retrieving it using SELECT...FOR UPDATE. The write() method modifies the
BLOB; however, the modified data is flushed to the table only when the transaction is
committed. Note that an update is not required.

• Assigning an initialized Blob object to it.

See Also:

• In-depth discussion of LOBs in Oracle Database SecureFiles and Large
Objects Developer's Guide

Table 13-8 Summary of Blob Methods

Method Summary

Blob() Blob class constructor.

append() Appends a specified BLOB to the end of the current BLOB.

close() Closes a previously opened BLOB.

closeStream() Closes the Stream object obtained from the BLOB.

copy() Copies a specified portion of a BFILE or BLOB into the current
BLOB.

getChunkSize() Returns the smallest data size to perform efficient writes to the
BLOB.

getContentType() Returns the content type of the Blob.

getOptions() Returns the BLOB's LobOptionValue for a specified
LobOptionType.

getStream() Returns data from the BLOB as a Stream object.

isInitialized() Tests whether the Blob object is initialized

isNull() Tests whether the Blob object is atomically NULL.

isOpen() Tests whether the BLOB is open.

length() Returns the number of bytes in the BLOB.

open() Opens the BLOB with read or read/write access.

operator=() Assigns a BLOB locator to the Blob object.

operator==() Tests whether two Blob objects are equal.

operator!= () Tests whether two Blob objects are not equal.

read() Reads a portion of the BLOB into a buffer.

setContentType() Sets the content type of the Blob.

setEmpty() Sets the Blob object to empty.

Chapter 13
Blob Class

13-25

Table 13-8 (Cont.) Summary of Blob Methods

Method Summary

setNull() Sets the Blob object to atomically NULL.

setOptions() Specifies a LobOptionValue for a particular LobOptionType.
Enables advanced compression, encryption and deduplication
of BLOBs.

trim() Truncates the BLOB to a specified length.

write() Writes a buffer into an unopened BLOB.

writeChunk() Writes a buffer into an open BLOB.

13.7.1 Blob()
Blob class constructor.

Syntax Description

Blob(); Creates a NULL Blob object.

Blob(
 const Connection *connectionp);

Creates an uninitialized Blob object.

Blob(
 const Blob &srcBlob);

Creates a copy of a Blob object.

Parameter Description

connectionp The connection pointer

srcBlob The source Blob object.

13.7.2 append()
Appends a BLOB to the end of the current BLOB.

Syntax

void append(
 const Blob &srcBlob);

Parameter Description

srcBlob The BLOB object to be appended to the current BLOB object.

Chapter 13
Blob Class

13-26

13.7.3 close()
Closes a BLOB.

Syntax

void close();

13.7.4 closeStream()
Closes the Stream object obtained from the BLOB.

Syntax

void closeStream(
 Stream *stream);

Parameter Description

stream The Stream to be closed.

13.7.5 copy()
Copies a part or all of a BFILE or BLOB into the current BLOB.

Syntax Description

void copy(
 const Bfile &srcBfile,
 unsigned int numBytes,
 unsigned int dstOffset = 1,
 unsigned int srcOffset = 1);

Copies a part of a BFILE into the current BLOB.

void copy(
 const Blob &srcBlob,
 unsigned int numBytes,
 unsigned int dstOffset = 1,
 unsigned int srcOffset = 1);

Copies a part of a BLOB into the current BLOB.

If the destination BLOB has deduplication enabled,
and the source and destination BLOBs are in the
same column, the new BLOB is created as copy-
on-write. All other settings are inherited from the
source BLOB. If the destination BLOB has
deduplication disabled, it is a completely new copy
of the BLOB.

Parameter Description

srcBfile The BFILE from which the data is to be copied.

srcBlob The BLOB from which the data is to be copied.

numBytes The number of bytes to be copied from the source BFILE or BLOB. Valid values
are numbers greater than 0.

Chapter 13
Blob Class

13-27

Parameter Description

dstOffset The starting position at which to begin writing data into the current BLOB. Valid
values are numbers greater than or equal to 1.

srcOffset The starting position at which to begin reading data from the source BFILE or
BLOB. Valid values are numbers greater than or equal to 1.

13.7.6 getChunkSize()
Returns the smallest data size to perform efficient writes to the BLOB.

Syntax

unsigned int getChunkSize() const;

13.7.7 getContentType()
Returns the content type of the Blob. If a content type has not been assigned, returns
a NULL string.

Syntax

string getContentType();

13.7.8 getOptions()
Returns the BLOB's LobOptionValue for a specified LobOptionType.

Throws an exception if attempting to retrieve a value for an option that is not
configured on the database column or partition that stores the BLOB.

Syntax

LobOptionValue getOptions(
 LobOptionType optType);

Parameter Description

optType The LobOptionType setting requested. These may be combined using
bitwise or (|) to avoid server round trips. See Table 7-1 and Table 7-2

13.7.9 getStream()
Returns a Stream object from the BLOB. If a stream is open, it is disallowed to open
another stream on Blob object, so the user must always close the stream before
performing any Blob object operations.

Syntax

Stream* getStream(
 unsigned int offset = 1,
 unsigned int amount = 0);

Chapter 13
Blob Class

13-28

Parameter Description

offset The starting position at which to begin reading data from the BLOB. If offset is not
specified, the data is written from the beginning of the BLOB. Valid values are numbers
greater than or equal to 1.

amount The total number of bytes to be read from the BLOB; if amount is 0, the data is read in
a streamed mode from input offset until the end of the BLOB.

13.7.10 isInitialized()
Tests whether the Blob object is initialized. If the Blob object is initialized, then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isInitialized() const;

13.7.11 isNull()
Tests whether the Blob object is atomically NULL. If the Blob object is atomically NULL, then
TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.7.12 isOpen()
Tests whether the BLOB is open. If the BLOB is open, then TRUE is returned; otherwise, FALSE is
returned.

Syntax

bool isOpen() const;

13.7.13 length()
Returns the number of bytes in the BLOB.

Syntax

unsigned int length() const;

13.7.14 open()
Opens the BLOB in read/write or read-only mode.

Syntax

void open(
 LobOpenMode mode = OCCI_LOB_READWRITE);

Chapter 13
Blob Class

13-29

Parameter Description

mode The mode the BLOB is to be opened in. Valid values are:

• OCCI_LOB_READWRITE
• OCCI_LOB_READONLY

13.7.15 operator=()
Assigns a BLOB to the current BLOB. The source BLOB gets copied to the destination
BLOB only when the destination BLOB gets stored in the table.

Syntax

Blob& operator=(
 const Blob &srcBlob);

Parameter Description

srcBlob The source BLOB from which to copy data.

13.7.16 operator==()
Compares two Blob objects for equality. Two Blob objects are equal if they both
refer to the same BLOB. Two NULL Blob objects are not considered equal. If the Blob
objects are equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator==(
 const Blob &srcBlob) const;

Parameter Description

srcBlob The source BLOB to be compared with the current BLOB.

13.7.17 operator!= ()
Compares two Blob objects for inequality. Two Blob objects are equal if they both
refer to the same BLOB. Two NULL Blob objects are not considered equal. If the Blob
objects are not equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator!=(
 const Blob &srcBlob) const;

Parameter Description

srcBlob The source BLOB to be compared with the current BLOB.

Chapter 13
Blob Class

13-30

13.7.18 read()
Reads a part or all of the BLOB into a buffer. The actual number of bytes read is returned.

Syntax

unsigned int read(
 unsigned int amt,
 unsigned char *buffer,
 unsigned int bufsize,
 unsigned int offset = 1) const;

Parameter Description

amt The number of bytes to be read. Valid values are numbers greater than or equal to 1.

buffer The buffer that the BLOB data is to be read into. Valid values are numbers greater
than or equal to amt.

buffsize The size of the buffer that the BLOB data is to be read into. Valid values are numbers
greater than or equal to amt.

offset The starting position at which to begin reading data from the BLOB. If offset is not
specified, the data is written from the beginning of the BLOB.

13.7.19 setContentType()
Sets the content type of the Blob. If the Blob is not a SecureFile, throws an exception.

Syntax

void setContentType(
 const string contenttype);

Parameter Description

contenttype The content type of the Blob; an ASCII Mime compliant string.

13.7.20 setEmpty()
Sets the Blob object to empty.

Syntax Description

void setEmpty(); Sets the Blob object to empty.

void setEmpty(
 const Connection* connectionp);

Sets the Blob object to empty and initializes the
connection pointer to the passed parameter.

Chapter 13
Blob Class

13-31

Parameter Description

connectionp The new connection pointer for the BLOB object.

13.7.21 setNull()
Sets the Blob object to atomically NULL.

Syntax

void setNull();

13.7.22 setOptions()
Specifies a LobOptionValue for a particular LobOptionType. Enables advanced
compression, encryption and deduplication of BLOBs. See Table 7-1 and Table 7-2.

Throws an exception if attempting to set or un-set an option that is not configured on
the database column or partition that stores the BLOB.

Throws an exception if attempting to turn off encryption in an encrypted BLOB column.

Syntax

void setOptions(
 LobOptionType optType,
 LobOptionValue optValue);

Parameter Description

optType The LobOptionType setting being specified. These may be combined
using bitwise or (|) to avoid server round trips.

optValue The LobOptionValue setting for the LobOptionType specified by the
optType parameter

13.7.23 trim()
Truncates the BLOB to the new length specified.

Syntax

void trim(
 unsigned int newlen);

Parameter Description

newlen The new length of the BLOB. Valid values are numbers less than or
equal to the current length of the BLOB.

Chapter 13
Blob Class

13-32

13.7.24 write()
Writes data from a buffer into a BLOB. This method implicitly opens the BLOB, copies the buffer
into the BLOB, and implicitly closes the BLOB. If the BLOB is open, use writeChunk() instead.
The actual number of bytes written is returned.

Syntax

unsigned int write(
 unsigned int amt,
 unsigned char *buffer,
 unsigned int bufsize,
 unsigned int offset = 1);

Parameter Description

amt The number of bytes to be written to the BLOB.

buffer The buffer containing the data to be written to the BLOB.

buffsize The size of the buffer containing the data to be written to the BLOB.
Valid values are numbers greater than or equal to amt.

offset The starting position at which to begin writing data into the BLOB. If offset is not
specified, the data is written from the beginning of the BLOB. Valid values are
numbers greater than or equal to 1.

13.7.25 writeChunk()
Writes data from a buffer into a previously opened BLOB. The actual number of bytes written is
returned.

Syntax

unsigned int writeChunk(
 unsigned int amount,
 unsigned char *buffer,
 unsigned int bufsize,
 unsigned int offset = 1);

Parameter Description

amt The number of bytes to be written to the BLOB.

buffer The buffer containing the data to be written to the BLOB.

buffsize The size of the buffer containing the data to be written to the BLOB. Valid values are
numbers greater than or equal to amt.

offset The starting position at which to begin writing data into the BLOB. If offset is not
specified, the data is written from the beginning of the BLOB. Valid values are
numbers greater than or equal to 1.

Chapter 13
Blob Class

13-33

13.8 Bytes Class
Methods of the Bytes class enable you to perform specific tasks related to Bytes
objects.

Table 13-9 Summary of Bytes Methods

Method Summary

Bytes() Bytes class constructor.

byteAt() Returns the byte at the specified position of the Bytes object.

getBytes() Returns a byte array from the Bytes object.

isNull() Tests whether the Bytes object is NULL.

length() Returns the number of bytes in the Bytes object.

operator=() Assignment operator for Bytes class.

setNull() Sets the Bytes object to NULL.

13.8.1 Bytes()
Bytes class constructor.

Syntax Description

Bytes(
 Environment *env = NULL);

Creates a Bytes object.

Bytes(
 unsigned char *value,
 unsigned int count
 unsigned int offset = 0,
 const Environment *env =
NULL);

Creates a Bytes object that contains a subarray of
bytes from a character array.

Bytes(
 const Bytes &e);

Creates a copy of a Bytes object, use the syntax

Parameter Description

env Environment

value Initial value of the new object

count The size of the subset of the character array that is copied into the new bytes
object

offset The first position from which to begin copying the character array

Chapter 13
Bytes Class

13-34

Parameter Description

e The source Bytes object.

13.8.2 byteAt()
Returns the byte at the specified position in the Bytes object.

Syntax

unsigned char byteAt(
 unsigned int index) const;

Parameter Description

index The position of the byte to be returned from the Bytes object; the first
byte of the Bytes object is at 0.

13.8.3 getBytes()
Copies bytes from a Bytes object into the specified byte array.

Syntax

void getBytes(
 unsigned char *dst,
 unsigned int count,
 unsigned int srcBegin = 0,
 unsigned int dstBegin = 0) const;

Parameter Description

dst The destination buffer into which data from the Bytes object is to be written.

count The number of bytes to copy.

srcBegin The starting position at which data is to be read from the Bytes object; the position
of the first byte in the Bytes object is at 0.

dstBegin The starting position at which data is to be written in the destination buffer; the
position of the first byte in dst is at 0.

13.8.4 isNull()
Tests whether the Bytes object is atomically NULL. If the Bytes object is atomically NULL, then
TRUE is returned; otherwise FALSE is returned.

Syntax

bool isNull() const;

Chapter 13
Bytes Class

13-35

13.8.5 length()
This method returns the length of the Bytes object.

Syntax

unsigned int length() const;

13.8.6 operator=()
Assignment operator for Bytes class.

Syntax

void operator=(
 const Bytes& bytes);

Parameter Description

bytes The original Bytes.

13.8.7 setNull()
This method sets the Bytes object to atomically NULL.

Syntax

void setNull();

13.9 Clob Class
The Clob class defines the common properties of objects of type CLOB. A Clob is a
large character object stored as a column value in a row of a database table. A Clob
object contains a logical pointer to a CLOB, not the CLOB itself.

Methods of the Clob class enable you to perform specific tasks related to Clob objects,
including methods for getting the length of a SQL CLOB, for materializing a CLOB on the
client, and for extracting a part of the CLOB.

The only methods valid on a NULL CLOB object are setName(), isNull(), and
operator=() .

Methods in the ResultSet and Statement classes, such as getClob() and setClob(),
enable you to access an SQL CLOB value.

An uninitialized CLOB object can be initialized by:

• The setEmpty() method. The CLOB can then be modified by inserting this CLOB into
the table and retrieving it using SELECT...FOR UPDATE. The write() method
modifies the CLOB; however, the modified data is flushed to the table only when the
transaction is committed. Note that an insert is not required.

• Assigning an initialized Clob object to it.

Chapter 13
Clob Class

13-36

See Also:

• In-depth discussion of LOBs in the introductory chapter of Oracle Database
SecureFiles and Large Objects Developer's Guide,

Table 13-10 Summary of Clob Methods

Method Summary

Clob() Clob class constructor.

append() Appends a Clob at the end of the current Clob.

close() Closes a previously opened Clob.

closeStream() Closes the Stream object obtained from the current Clob.

copy() Copies all or a portion of a Clob or BFILE into the current
Clob.

getCharSetForm() Returns the character set form of the Clob.

getCharSetId() Returns the character set ID of the Clob.

getCharSetIdUString() Retrieves the characterset name associated with the Clob;
UString version.

getChunkSize() Returns the smallest data size to perform efficient writes to the
CLOB.

getContentType() Returns the content type of the Clob.

getOptions() Returns the CLOB's LobOptionValue for a specified
LobOptionType.

getStream() Returns data from the CLOB as a Stream object.

isInitialized() Tests whether the Clob object is initialized.

isNull() Tests whether the Clob object is atomically NULL.

isOpen() Tests whether the Clob is open.

length() Returns the number of characters in the current CLOB.

open() Opens the CLOB with read or read/write access.

operator=() Assigns a CLOB locator to the current Clob object.

operator==() Tests whether two Clob objects are equal.

operator!=() Tests whether two Clob objects are not equal.

read() Reads a portion of the CLOB into a buffer.

setCharSetId() Sets the character set ID associated with the Clob.

setCharSetIdUString() Sets the character set ID associated with the Clob; used when
the environment character set is UTF16.

setCharSetForm() Sets the character set form associated with the Clob.

setContentType() Sets the content type of the Clob.

setEmpty() Sets the Clob object to empty.

setNull() Sets the Clob object to atomically NULL.

Chapter 13
Clob Class

13-37

Table 13-10 (Cont.) Summary of Clob Methods

Method Summary

setOptions() Specifies a LobOptionValue for a particular LobOptionType.
Enables advanced compression, encryption and deduplication
of CLOBs.

trim() Truncates the Clob to a specified length.

write() Writes a buffer into an unopened CLOB.

writeChunk() Writes a buffer into an open CLOB.

13.9.1 Clob()
Clob class constructor.

Syntax Description

Clob(); Creates a NULL Clob object.

Clob(
 const Connection *connectionp);

Creates an uninitialized Clob object.

Clob(
 const Clob *srcClob);

Creates a copy of a Clob object.

Parameter Description

connectionp Connection pointer

srcClob The source Clob object

13.9.2 append()
Appends a CLOB to the end of the current CLOB.

Syntax

void append(
 const Clob &srcClob);

Parameter Description

srcClob The CLOB to be appended to the current CLOB.

13.9.3 close()
Closes a CLOB.

Chapter 13
Clob Class

13-38

Syntax

void close();

13.9.4 closeStream()
Closes the Stream object obtained from the CLOB.

Syntax

void closeStream(
 Stream *stream);

Parameter Description

stream The Stream object to be closed.

13.9.5 copy()
Copies a part or all of a BFILE or CLOB into the current CLOB.

OCCI does not perform any characterset conversions when loading data from a Bfile into a
Clob; therefore, ensure that the contents of the Bfile are character data in the server's Clob
storage characterset.

Syntax Description

void copy(
 const Bfile &srcBfile,
 unsigned int numBytes,
 unsigned int dstOffset = 1,
 unsigned int srcOffset = 1);

Copies a BFILE into the current CLOB.

void copy(
 const Clob &srcClob,
 unsigned int numBytes,
 unsigned int dstOffset = 1,
 unsigned int srcOffset = 1);

Copies a CLOB into the current CLOB.

If the destination CLOB has deduplication enabled,
and the source and destination CLOBs are in the
same column, the new CLOB is created as copy-
on-write. All other settings are inherited from the
source CLOB. If the destination CLOB has
deduplication disabled, it is a completely new copy
of the CLOB.

Parameter Description

srcBfile The BFILE from which the data is to be copied.

srcClob The CLOB from which the data is to be copied.

numBytes The number of bytes to be copied from the source BFILE or CLOB. Valid values
are numbers greater than 0.

Chapter 13
Clob Class

13-39

Parameter Description

dstOffset The starting position at which data is to be is at 0.

The starting position at which to begin writing data into the current CLOB Valid values
are numbers greater than or equal to 1 written in the destination buffer; the position
of the first byte.

srcOffset The starting position at which to begin reading data from the source BFILE or CLOB.
Valid values are numbers greater than or equal to 1.

13.9.6 getCharSetForm()
Returns the character set form of the CLOB.

Syntax

CharSetForm getCharSetForm() const;

13.9.7 getCharSetId()
Returns the character set ID of the CLOB, in string form.

Syntax

string getCharSetId() const;

13.9.8 getCharSetIdUString()
Retrieves the characterset name associated with the Clob; UString version.

Syntax

UString getCharSetIdUString() const;

13.9.9 getChunkSize()
Returns the smallest data size to perform efficient writes to the CLOB.

Syntax

unsigned int getChunkSize() const;

13.9.10 getContentType()
Returns the content type of the Clob. If a content type has not been assigned, returns
a NULL string.

Syntax

string getContentType();

13.9.11 getOptions()
Returns the CLOB's LobOptionValue for a specified LobOptionType.

Chapter 13
Clob Class

13-40

Throws an exception if attempting to retrieve a value for an option that is not configured on
the database column or partition that stores the CLOB.

Syntax

LobOptionValue getOptions(
 LobOptionType optType);

Parameter Description

optType The LobOptionType setting requested. These may be combined using
bitwise or (|) to avoid server round trips. See Table 7-1 and Table 7-2

13.9.12 getStream()
Returns a Stream object from the CLOB. If a stream is open, it is disallowed to open another
stream on CLOB object, so the user must always close the stream before performing any Clob
object operations. The client's character set id and form is used by default, unless they are
explicitly set through setCharSetId() and setEmpty() calls.

Syntax

Stream* getStream(
 unsigned int offset = 1,
 unsigned int amount = 0);

Parameter Description

offset The starting position at which to begin reading data from the CLOB. If offset is not
specified, the data is written from the beginning of the CLOB. Valid values are
numbers greater than or equal to 1.

amount The total number of consecutive characters to be read. If amount is 0, the data is
read from the offset value until the end of the CLOB.

13.9.13 isInitialized()
Tests whether the Clob object is initialized. If the Clob object is initialized, TRUE is returned;
otherwise, FALSE is returned.

Syntax

bool isInitialized() const;

13.9.14 isNull()
Tests whether the Clob object is atomically NULL. If the Clob object is atomically NULL, TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

Chapter 13
Clob Class

13-41

13.9.15 isOpen()
Tests whether the CLOB is open. If the CLOB is open, TRUE is returned; otherwise, FALSE
is returned.

Syntax

bool isOpen() const;

13.9.16 length()
Returns the number of characters in the CLOB.

Syntax

unsigned int length() const;

13.9.17 open()
Opens the CLOB in read/write or read-only mode.

Syntax

void open(
 LObOpenMode mode = OCCI_LOB_READWRITE);

Parameter Description

mode The mode the CLOB is to be opened in. Valid values are:
• OCCI_LOB_READWRITE
• OCCI_LOB_READONLY

13.9.18 operator=()
Assigns a CLOB to the current CLOB. The source CLOB gets copied to the destination
CLOB only when the destination CLOB gets stored in the table.

Syntax

Clob& operator=(
 const Clob &srcClob);

Parameter Description

srcClob The Clob from which the data must be copied.

13.9.19 operator==()
Compares two Clob objects for equality. Two Clob objects are equal if they both refer
to the same CLOB. Two NULL Clob objects are not considered equal. If the Blob objects
are equal, then TRUE is returned; otherwise, FALSE is returned.

Chapter 13
Clob Class

13-42

Syntax

bool operator==(
 const Clob &srcClob) const;

Parameter Description

srcClob The Clob object to be compared with the current Clob object.

13.9.20 operator!=()
Compares two Clob objects for inequality. Two Clob objects are equal if they both refer to
the same CLOB. Two NULL Clob objects are not considered equal. If the Clob objects are not
equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator!=(
 const Clob &srcClob) const;

Parameter Description

srcClob The Clob object to be compared with the current Clob object.

13.9.21 read()
Reads a part or all of the CLOB into a buffer.

Returns the actual number of characters read for fixed-width charactersets, such as UTF16,
or the number of bytes read for multibyte charactersets, including UTF8.

The client's character set id and form is used by default, unless they are explicitly set through
setCharSetId(), setCharSetIdUString() and setCharSetForm() calls.

Note that for the second version of the method, the return value represents either the number
of characters read for fixed-width charactersets (UTF16), or the number of bytes read for
multibyte charactersets (including UTF8).

Syntax Description

unsigned int read(
 unsigned int amt,
 unsigned char *buffer,
 unsigned int bufsize,
 unsigned int offset=1) const;

Reads a part or all of the CLOB into a buffer.

unsigned int read(
 unsigned int amt,
 unsigned utext *buffer,
 unsigned int bufsize,
 unsigned int offset=1) const;

Reads a part or all of the CLOB into a buffer;
globalization enabled. Should be called after
setting character set to OCCIUTF16 using
setCharSetId() method.

Chapter 13
Clob Class

13-43

Parameter Description

amt The number of bytes to be read. from the CLOB.

buffer The buffer that the CLOB data is to be read into.

buffsize The size of the buffer. Valid values are numbers greater than or
equal to amt.

offset The starting position at which to begin reading data from the CLOB.
If offset is not specified, the data is written from the beginning of
the CLOB. Valid values are numbers greater than or equal to 1.

13.9.22 setCharSetId()
Sets the Character set Id associated with Clob. The characterset id set is used for
read/write and getStream() operations. If no value is set explicitly, the default client's
character set id is used. List of character sets supported is given in Globalization
Support Guide Appendix A.

Syntax

void setCharSetId(
 const string &charset);

Parameter Description

charset Oracle supported characterset name, such as E8DEC, ZHT16BIG5,
or OCCIUTF16.

13.9.23 setCharSetIdUString()
Sets the characterset id associated with Clob; used when the environment's
characterset is UTF16. The charset id set is used for read, write and getStream()
operations.

Syntax

void setCharSetIdUSString(
 const string &charset);

Parameter Description

charset Oracle supported characterset name, such as WE8DEC, ZHT16BIG5,
or OCCIUTF16 in UString (UTF16 characterset).

13.9.24 setCharSetForm()
Sets the character set form associated with the CLOB. The charset form set is used for
read, write and getStream() operations. If no value is set explicitly, by default,
OCCI_SQLCS_IMPLICIT is used.

Chapter 13
Clob Class

13-44

Syntax

void setCharSetForm(
 CharSetForm csfrm);

Parameter Description

csfrm The charset form for Clob.

13.9.25 setContentType()
Sets the content type of the Clob. If the Clob is not a SecureFile, throws an exception.

Syntax

void setContentType(
 const string contenttype);

Parameter Description

contenttype The content type of the Clob; an ASCII Mime compliant string.

13.9.26 setEmpty()
Sets the Clob object to empty.

Syntax Description

void setEmpty(); Sets the Clob object to empty.

void setEmpty(
 const Connection* connectionp);

Sets the Clob object to empty and initializes the
connection pointer to the passed parameter.

Parameter Description

connectionp The new connection pointer for the Clob object.

13.9.27 setNull()
Sets the Clob object to atomically NULL.

Syntax

void setNull();

Chapter 13
Clob Class

13-45

13.9.28 setOptions()
Specifies a LobOptionValue for a particular LobOptionType. Enables advanced
compression, encryption and deduplication of CLOBs. See Table 7-1 and Table 7-2.

Throws an exception if attempting to set or un-set an option that is not configured on
the database column or partition that stores the CLOB.

Throws an exception if attempting to turn off encryption in an encrypted CLOB column.

Syntax

void setOptions(
 LobOptionType optType,
 LobOptionValue optValue);

Parameter Description

optType The LobOptionType setting being specified. These may be combined
using bitwise or (|) to avoid server round trips.

optValue The LobOptionValue setting for the LobOptionType specified by the
optType parameter

13.9.29 trim()
Truncates the CLOB to the new length specified.

Syntax

void trim(
 unsigned int newlen);

Parameter Description

newlen The new length of the CLOB. Valid values are numbers less than or equal to the
current length of the CLOB.

13.9.30 write()
Writes data from a buffer into a CLOB.

This method implicitly opens the CLOB, copies the buffer into the CLOB, and implicitly
closes the CLOB. If the CLOB is open, use writeChunk() instead. The actual number of
characters written is returned. The client's character set id and form is used by default,
unless they are explicitly set through setCharSetId() and setCharSetForm() calls.

Syntax Description

unsigned int write(
 unsigned int amt,
 unsigned char *buffer,
 unsigned int bufsize,
 unsigned int offset=1);

Writes data from a buffer into a CLOB.

Chapter 13
Clob Class

13-46

Syntax Description

unsigned int write(
 unsigned int amt,
 utext *buffer,
 unsigned int bufsize,
 unsigned int offset=1);

Writes data from a UTF16 buffer into a CLOB;
globalization enabled. Should be called after setting
character set to OCCIUTF16 using
setCharSetIdUString() method.

Parameter Description

amt The amount parameter represents:

• number of characters written for fixed-width charactersets (UTF16)
• number of bytes written for multibyte charactersets (including UTF8)

buffer The buffer containing the data to be written to the CLOB.

buffsize The size of the buffer containing the data to be written to the CLOB. Valid values
are numbers greater than or equal to amt.

offset The starting position at which to begin writing data into the CLOB. If offset is not
specified, the data is written from the beginning of the CLOB. Valid values are
numbers greater than or equal to 1.

13.9.31 writeChunk()
Writes data from a buffer into a previously opened CLOB. Returns the actual number of
characters. The client's character set id and form is used by default, unless they are explicitly
set through setCharSetId() and setCharSetForm() calls.

Syntax Description

unsigned int writeChunk(
 unsigned int amt,
 unsigned char *buffer,
 unsigned int bufsize,
 unsigned int offset=1);

Writes data from a buffer into a previously
opened CLOB.

unsigned int writeChunk(
 unsigned int amt,
 utext *buffer,
 unsigned int bufsize,
 unsigned int offset=1);

Writes data from a UTF16 buffer into a CLOB;
globalization enabled. Should be called after
setting characterset to OCCIUTF16 using
setCharSetIdUString() method.

Parameter Description

amt The amount parameter represents either a number of characters written for fixed-
width charactersets (UTF16) or a number of bytes written for multibyte charactersets
(including UTF8)

buffer The buffer containing the data to be written to the CLOB.

buffsize The size of the buffer containing the data to be written to the CLOB. Valid values are
numbers greater than or equal to amt.

Chapter 13
Clob Class

13-47

Parameter Description

offset The starting position at which to begin writing data into the CLOB. If offset is not
specified, the data is written from the beginning of the CLOB. Valid values are
numbers greater than or equal to 1.

13.10 Connection Class
The Connection class represents a connection with a specific database. Inside the
connection, SQL statements are executed and results are returned.

Table 13-11 Enumerated Values Used by Connection Class

Attribute Options

FailOverEventType • FO_BEGIN indicates that a lost connection has been detected;
failover is starting.

• FO_END indicates that a failover completed successfully; the
Connection is ready for use.

• FO_ABORT indicates that the failover was unsuccessful; it is not
be attempted again.

• FO_REAUTH indicates that the user session has been
reauthenticated.

• FO_ERROR indicates that a failover was unsuccessful; the
application can handle the error and retry failover.

FailOverType • FO_NONE indicates that the user requested no protection for
failover.

• FO_SESSION indicates that the user requested only session
failover.

• FO_SELECT indicates that the use requested select failover.

ProxyType • PROXY_DEFAULT is the database user name.

Table 13-12 Summary of Connection Methods

Method Summary

changePassword() Changes the password for the current user.

commit() Commits changes made since the previous commit or
rollback and release any database locks held by the
session.

createStatement() Creates a Statement object to execute SQL statements.

flushCache() Flushes the object cache associated with the connection.

getClientCharSet() Returns the default client character set.

getClientCharSetUString() Returns the globalization enabled client character set in
UString.

getClientNCHARCharSet() Returns the default client NCHAR character set.

getClientNCHARCharSetUString() Returns the globalization enabled client NCHAR character
set in UString.

Chapter 13
Connection Class

13-48

Table 13-12 (Cont.) Summary of Connection Methods

Method Summary

getClientVersion() Returns the version of the client used.

getLTXID() Returns logical transaction id that may be used in various
calls of package DBMS_APP_CONT.

getMetaData() Returns the metadata for an object accessible from the
connection.

getOCIServer() Returns the OCI server context associated with the
connection.

getOCIServiceContext() Returns the OCI service context associated with the
connection.

getOCISession() Returns the OCI session context associated with the
connection.

getServerVersion() Returns the version of the Oracle server used, as
string.

getServerVersionUString() Returns the version of the Oracle server used, as a
UString.

getStmtCacheSize() Retrieves the size of the statement cache.

getTag() Returns the tag associated with the connection.

isCached() Determines if the specified statement is cached.

pinVectorOfRefs() Pins an entire vector of Ref objects into object cache in a
single round trip; pinned objects are available through an
OUT parameter vector.

postToSubscriptions() Posts notifications to subscriptions.

readVectorOfBfiles() Reads multiple Bfiles in a single server round-trip.

readVectorOfBlobs() Reads multiple Blobs in a single server round-trip.

readVectorOfClobs() Reads multiple Clobs in a single server round-trip.

registerSubscriptions() Registers several Subscriptions for notification.

rollback() Rolls back all changes made since the previous commit
or rollback and release any database locks held by the
session.

setStmtCacheSize() Enables or disables statement caching.

setTAFNotify() Registers failover callback function on the Connection
object.

terminateStatement() Closes a Statement object and free all resources
associated with it.

unregisterSubscription() Unregisters a Subscription, turns off its notifications.

writeVectorOfBlobs() Writes multiple Blobs in a single server round-trip.

writeVectorOfClobs() Writes multiple Clobs in a single server round-trip.

13.10.1 changePassword()
Changes the password of the user currently connected to the database.

Chapter 13
Connection Class

13-49

Syntax Description

void changePassword(
 const string &user,
 const string &oldPassword,
 const string &newPassword)=0;

Changes the password of the user.

void changePassword(
 const UString &user,
 const UString &oldPassword,
 const UString &newPassword)=0;

Changes the password of the user (Unicode
support). The client Environment should be
initialized in OCCIUTIF16 mode.

Parameter Description

user The user currently connected to the database.

oldPassword The current password of the user.

newPassword The new password of the user.

13.10.2 commit()
Commits all changes made since the previous commit or rollback, and releases any
database locks currently held by the session.

Syntax

void commit()=0;

13.10.3 createStatement()
Creates a Statement object with the SQL statement specified.

Note that for the caching-enabled version of this method, the cache is initially
searched for a statement with a matching tag, which is returned. If no match is found,
the cache is searched again for a statement that matches the sql parameter, which is
returned. If no match is found, a new statement with a NULL tag is created and
returned. If the sql parameter is empty and the tag search fails, this call generates an
ERROR.

Also note that non-caching versions of this method always create and return a new
statement.

Syntax Description

Statement* createStatement(
 const string &sql="")=0;

Searches the cache for a specified SQL
statement and returns it; if not found,
creates a new statement.

Chapter 13
Connection Class

13-50

Syntax Description

Statement* createStatement(
 const string &sql,
 const string &tag)=0;

Searches the cache for a statement with a
matching tag; if not found, creates a new
statement with the specified SQL content.

Statement* createStatement(
 const UString &sql)=0;

Searches the cache for a specified SQL
statement and returns it; if not found,
creates a new statement. Globalization
enabled.

Statement* createStatement(
 const Ustring &sql,
 const Ustring &tag)=0;

Searches the cache for a matching tag and
returns it; if not found, creates a new
statement with the specified SQL content.
Globalization enabled.

Parameter Description

sql The SQL string to be associated with the statement object.

tag The tag whose associated statement must be retrieved from the cache.
Ignored if statement caching is disabled.

13.10.4 flushCache()
Flushes the object cache associated with the connection.

Syntax

void flushCache()=0;

13.10.5 getClientCharSet()
Returns the session's character set.

Syntax

string getClientCharSet() const=0;

13.10.6 getClientCharSetUString()
Returns the globalization enabled client character set in UString.

Syntax

UString getClientCharSetUString() const=0;

13.10.7 getClientNCHARCharSet()
Returns the session's NCHAR character set.

Syntax

string getClientNCHARCharSet() const=0;

Chapter 13
Connection Class

13-51

13.10.8 getClientNCHARCharSetUString()
Returns the globalization enabled client NCHAR character set in UString.

Syntax

UString getClientNCHARCharSetUString() const=0;

13.10.9 getClientVersion()
Returns the version of the client library the application is using at run time.

This is used by applications to determine the version of the OCCI client at run time,
and if the application uses several separate code paths that use several different client
patchsets.

The values of parameters majorVersion and minorVersion use macros
OCCI_MAJOR_VERSION and OCCI_MINOR_VERSION, respectively. These macros define the
major and minor versions of the OCCI client library. Compares the versions returned.

Syntax

void getClientVersion(
 int &majorVersion,
 int &minorVersion,
 int &updateNum,
 int &patchNumber,
 int &portUpdateNum)

Parameter Description

majorVersion The major version of the client library.

minorVersion The minor version of the client library.

updateNum The update number.

patchNumber The number of the patch applied to the library.

portUpdateNumber The number of the port-specific port update applied to the library.

13.10.10 getLTXID()
Returns logical transaction id that may be used in various calls of package
DBMS_APP_CONT.

Syntax

Bytes getLTXID() const = 0

Chapter 13
Connection Class

13-52

13.10.11 getMetaData()
Returns metadata for an object in the database.

Syntax Description

MetaData getMetaData(
 const string &object,
 MetaData::ParamType prmtyp=MetaData::PTYPE_UNK) const=0;

Returns metadata for an
object in the database.

MetaData getMetaData(
 const UString &object,
 MetaData::ParamType prmtyp=MetaData::PTYPE_UNK) const=0;

Returns metadata for a
globalization enabled
object in the database.

MetaData getMetaData(
 const RefAny &ref) const=0;

Returns metadata for an
object in the database
through a reference.

Parameter Description

object The SQL string to be associated with the statement object.

prmtyp The type of the schema object being described, as defined by the
enumerated ParamType of the MetaData class, Table 13-27

ref A REF to the Type Descriptor Object (TDO) of the type to be described.

13.10.12 getOCIServer()
Returns the OCI server context associated with the connection.

Syntax

OCIServer* getOCIServer() const=0;

13.10.13 getOCIServiceContext()
Returns the OCI service context associated with the connection.

Syntax

OCISvcCtx* getOCIServiceContext() const=0;

13.10.14 getOCISession()
Returns the OCI session context associated with the connection.

Syntax

OCISession* getOCISession() const=0;

Chapter 13
Connection Class

13-53

13.10.15 getServerVersion()
Returns the version of the database server, as a string, used by the current
Connection object. This can be used when an application uses several separate code
paths and connects to several different server versions.

Syntax

string getServerVersion() const;

13.10.16 getServerVersionUString()
Returns the version of the database server, as a UString, used by the current
Connection object. This can be used when an application uses several separate code
paths and connects to several different server versions.

Syntax

UString getServerVersionUString() const;

13.10.17 getStmtCacheSize()
Retrieves the size of the statement cache.

Syntax

unsigned int getStmtCacheSize() const=0;

13.10.18 getTag()
Returns the tag associated with the connection. Valid only for connections from a
stateless connection pool.

Syntax

string getTag() const=0;

13.10.19 isCached()
Determines if the specified statement is cached.

Syntax Description

bool isCached(
 const string &sql,
 const string &tag="")=0;

Searches the cache for a statement with
a matching tag. If the tag is not specified,
the cache is searched for a matching
SQL statement.

bool isCached(
 const Ustring &sql,
 const Ustring &tag)=0;

Searches the cache for a statement with
a matching tag. If the tag is not specified,
the cache is searched for a matching
SQL statement. Globalization enabled.

Chapter 13
Connection Class

13-54

Parameter Description

sql The SQL string to be associated with the statement object.

tag The tag whose associated statement must be retrieved from the cache.
Ignored if statement caching is disabled.

13.10.20 pinVectorOfRefs()
Pins an entire vector of Ref objects into object cache in a single round-trip. Pinned objects
are available through an OUT parameter vector.

Syntax Description

template <class T> void pinVectorOfRefs(
 const Connection *conn,
 vector <Ref<T>> & vect,
 vector <T*> &vectObj,
 LockOptions lockOpt=OCCI_LOCK_NONE);

Returns the objects.

template <class T> void pinVectorOfRefs(
 const Connection *conn,
 vector <Ref<T>> & vect,
 LockOptions lockOpt=OCCI_LOCK_NONE);

Does not explicitly return the objects; an application
must dereference a particular Ref object by a
ptr() call, which returns a previously pinned
object.

Parameter Description

conn Connection

vect Vector of Ref objects that are pinned.

vectObj Vector that contains objects after the pinning operation is complete; an OUT
parameter.

lockOpt Lock option used during the pinning of the array, as defined by LockOptions in
Table 13-2. The only supported value is OCCI_LOCK_NONE.

13.10.21 postToSubscriptions()
Posts notifications to subscriptions.

The Subscription object must have a valid subscription name, and the namespace should
be set to NS_ANONYMOUS. The payload must be set before invoking this call; otherwise, the
payload is assumed to be NULL and is not delivered.

The caller has to preserve the payload until the posting call is complete. This call provides a
best-effort guarantee; a notification is sent to registered clients at most once.This call is
primarily used for light-weight notification and is useful for dealing with several system
events. If the application needs more rigid guarantees, it can use the Oracle Database
Advanced Queuing functionality.

Chapter 13
Connection Class

13-55

Syntax

void postToSubscriptions(
 const vector<aq::Subscription>& sub)=0;

Parameter Description

sub The vector of subscriptions that receive postings.

13.10.22 readVectorOfBfiles()
Reads multiple Bfiles in a single server round-trip. All Bfiles must be open for
reading.

Syntax

void readVectorOfBfiles(
 const Connection *conn,
 vector<Bfile> &vec,
 oraub8 *byteAmts,
 oraub8 *offsets,
 unsigned char *buffers[],
 oraub8 *bufferLengths);

Parameter Description

conn Connection.

vec Vector of Bfile objects; each Bfile must be open for reading.

byteAmts Array of amount of bytes to read from the individual Bfiles. The actual
number of bytes read from each Bfile is returned in this array.

offsets Array of offsets, starting position where reading from the Bfiles starts.

buffers Array of pointers to buffers into which the data is read.

bufferLengths Array of sizes of each buffer, in bytes.

13.10.23 readVectorOfBlobs()
Reads multiple BLOBs in a single server round-trip.

Syntax

void readVectorOfBlobs(
 const Connection *conn,
 vector<Blob> &vec,
 oraub8 *byteAmts,
 oraub8 *offsets,
 unsigned char *buffers[],
 oraub8 *bufferLengths);

Chapter 13
Connection Class

13-56

Parameter Description

conn Connection.

vec Vector of Blob objects.

byteAmts Array of amount of bytes to read from the individual Blobs. The actual
number of bytes read from each Blob is returned in this array.

offsets Array of offsets, starting position where reading from the Blobs starts.

buffers Array of pointers to buffers into which the data is read.

bufferLengths Array of sizes of each buffer, in bytes.

13.10.24 readVectorOfClobs()
Reads multiple Clobs in a single server round-trip. All Clobs should be in the same
characterset form and belong to the same characterset ID.

Syntax Description

void readVectorOfClobs(
 const Connection *conn,
 vector<Clob> &vec,
 oraub8 *byteAmts,
 araub8 *charAmts,
 oraub8 *offsets,
 unsigned char *buffers[],
 oraub8 *bufferLengths);

General form of the method.

void readVectorOfClobs(
 const Connection *conn,
 vector<Clob> &vec,
 oraub8 *byteAmts,
 araub8 *charAmts,
 oraub8 *offsets,
 utext *buffers[],
 oraub8 *bufferLengths);

Form of the method used with utext
buffers, when data is in UTF16
characterset encoding.

Parameter Description

conn Connection.

vec Vector of Clob objects.

byteAmts Array of amount of bytes to read from the individual Clobs. Only used if the
charAmts is NULL, or 0 for any Clob index. Returns the number of bytes
read for each Clob.

Chapter 13
Connection Class

13-57

Parameter Description

charAmts Array of amount of characters to read from individual Clobs. Returns the
number of characters read for each Clob.

offsets Array of offsets, starting position where reading from the Clobs starts, in
characters.

buffers Array of pointers to buffers into which the data is read.

bufferLengths Array of sizes of each buffer, in bytes.

13.10.25 registerSubscriptions()
Registers Subscriptions for notification.

New client processes and existing processes that restart after a shut down must
register for all subscriptions of interest. If the client stays up during a server shut down
and restart, this client continues to receive notifications for DISCONNECTED registrations,
but not for CONNECTED registrations because they are lost during the server down time.

Syntax

void registerSubscriptions(
 const vector<aq::Subscription>& sub)=0;

Parameter Description

sub Vector of subscriptions that are registered for notification.

13.10.26 rollback()
Drops all changes made since the previous commit or rollback, and releases any
database locks currently held by the session.

Syntax

void rollback()=0;

13.10.27 setStmtCacheSize()
Enables or disables statement caching. A nonzero value enables statement caching,
with a cache of specified size. A zero value disables caching.

Syntax

void setStmtCacheSize(
 unsigned int cacheSize)=0;

Chapter 13
Connection Class

13-58

Parameter Description

cacheSize The maximum number of statements in the cache.

13.10.28 setTAFNotify()
Registers the failover callback function on the Connection object for which failover is
configured and must be detected.

The failover callback should return OCCI_SUCCESS to indicate that OCCI can continue with
default processing. The failover event, foEvent, is defined in Table 13-11. When the foEvent
is FO_ERROR, the callback function may return either FO_RETRY to indicate that failover must be
attempted again, or OCCI_SUCCESS to end failover attempts.

Syntax

void setTAFNotify(
 int (*notifyFn)(
 Environment *env,
 Connection *conn,
 void *ctx,
 FailOverType foType,
 FailOverEventType foEvent),
 void *ctxTAF)

Parameter Description

notifyFn The user defined callback function invoked during failover events.

env Environment object from which the failing Connection was created.

conn The failing Connection on which the callback function is registered.

ctx Context supplied by the user when registering the callback.

foType The configured FailOverType, values FO_SESSION or FO_SELECT, as defined in
Table 13-11.

foEvent Failover event type that is triggering the callback; the FailOverEventType, values
FO_BEGIN, FO_END, FO_ABORT and FO_ERROR as defined in Table 13-11.

ctxTAF User context passed back to the callback function at invocation.

13.10.29 terminateStatement()
Closes a Statement object.

Chapter 13
Connection Class

13-59

Syntax Description

void terminateStatement(
 Statement *stmt)=0;

Closes a Statement object and frees all
resources associated with it.

void terminateStatement(
 Statement *stmt,
 const string &tag)=0;

Releases statement back to the cache after
adding an optional tag, a string.

void terminateStatement(
 Statement* stmt,
 const UString &tag) = 0;

Releases statement back to the cache after
adding an optional tag, a UString.

Parameter Description

stmt The Statement to be closed.

tag The tag associated with the statement, either a string or a UString.

13.10.30 unregisterSubscription()
Unregisters a Subscription, turning off its notifications.

Syntax

void unregisterSubscription(
 const aq::Subscription& sub)=0;

Parameter Description

sub Subscription whose notifications is turned off.

13.10.31 writeVectorOfBlobs()
Writes multiple Blobs in a single server round-trip.

Syntax

void writeVectorOfBlobs(
 const Connection *conn,
 vector<Blob> &vec,
 oraub8 *byteAmts,
 oraub8 *offsets,
 unsigned char *buffers[],
 oraub8 *bufferLengths);

Parameter Description

conn Connection.

Chapter 13
Connection Class

13-60

Parameter Description

vec Vector of Blob objects.

byteAmts Array of amount of bytes to write to the individual Blobs.

offsets Array of offsets, starting position where writing to the Blobs starts.

buffers Array of pointers to buffers from which the data is written.

bufferLengths Array of sizes of each buffer, in bytes.

13.10.32 writeVectorOfClobs()
Writes multiple Clobs in a single server round-trip. All Clobs should be in the same
characterset form and belong to the same characterset ID.

Syntax Description

void writeVectorOfClobs(
 const Connection *conn,
 vector<Clob> &vec,
 oraub8 *byteAmts,
 araub8 *charAmts,
 oraub8 *offsets,
 unsigned char *buffers[],
 oraub8 *bufferLengths);

General form of the method.

void writeVectorOfClobs(
 const Connection *conn,
 vector<Clob> &vec,
 oraub8 *byteAmts,
 araub8 *charAmts,
 oraub8 *offsets,
 utext *buffers[],
 oraub8 *bufferLengths);

Form of the method used with utext
buffers, when data is in UTF16
characterset encoding.

Parameter Description

conn Connection.

vec Vector of Clob objects.

byteAmts Array of amount of bytes to write to the individual Clobs. Only used if the
charAmts is NULL or 0 for any Clob index. Returns the number of bytes written
for each Clob.

charAmts Array of amount of characters to write to individual Clobs. Returns the number
of characters read for each Clob.

Chapter 13
Connection Class

13-61

Parameter Description

offsets Array of offsets, starting position where writing to the Clobs starts, in characters.

buffers Array of pointers to buffers from which the data is written.

bufferLengths Array of sizes of each buffer, in bytes.

13.11 ConnectionPool Class
The ConnectionPool class represents a pool of connections for a specific database.

Table 13-13 Summary of ConnectionPool Methods

Method Summary

createConnection() Creates a pooled connection.

createProxyConnection() Creates a proxy connection.

getBusyConnections() Returns the number of busy connections in the connection
pool.

getIncrConnections() Returns the number of incremental connections in the
connection pool.

getMaxConnections() Returns the maximum number of connections in the
connection pool.

getMinConnections() Returns the minimum number of connections in the
connection pool.

getOpenConnections() Returns the number of open connections in the connection
pool.

getPoolName() Returns the name of the connection pool.

getStmtCacheSize() Retrieves the size of the statement cache.

getTimeOut() Returns the time out period for a connection in the
connection pool.

setErrorOnBusy() Specifies that a SQLException should be generated when
all connections in the connection pool are busy and no
further connections can be opened.

setPoolSize() Sets the minimum, maximum, and incremental number of
pooled connections for the connection pool.

setStmtCacheSize() Enables or disables statement caching.

setTimeOut() Sets the time out period, in seconds, for a connection in
the connection pool.

terminateConnection() Destroys the connection.

13.11.1 createConnection()
Creates a pooled connection.

Chapter 13
ConnectionPool Class

13-62

Syntax Description

Connection* createConnection(
 const string &userName,
 const string &password)=0;

Creates a pooled connection. If the userName and
password are both NULL, the connection is externally
authenticated.

Connection* createConnection(
 const UString &username,
 const UString &password)=0;

Creates a globalization enabled pooled connection.

Parameter Description

userName The name of the user with which to connect.

password The password of the user.

13.11.2 createProxyConnection()
Creates a proxy connection from the connection pool.

Syntax Description

Connection* createProxyConnection(
 const string &name,
 Connection::ProxyType
 proxyType=Connection::PROXY_DEFAULT)=0;

Creates a proxy connection.

Connection* createProxyConnection(
 const UString &name,
 Connection::ProxyType
 proxyType=Connection::PROXY_DEFAULT)=0;

Creates a globalization enabled proxy
connection.

Connection* createProxyConnection(
 const string &name,
 string roles[],
 int numRoles,
 Connection::ProxyType
 proxyType=Connection::PROXY_DEFAULT)=0;

Creates a proxy connection for several
roles.

Connection* createProxyConnection(
 const UString &name,
 string roles[],
 unsigned int numRoles,
 Connection::ProxyType
 proxyType=Connection::PROXY_DEFAULT)=0;

Creates a globalization enabled proxy
connection for several roles.

Chapter 13
ConnectionPool Class

13-63

Parameter Description

name The user name to connect with.

roles The roles to activate on the database server.

numRoles The number of roles to activate on the database server.

proxyType The type of proxy authentication to perform, ProxyType, defined in
Table 13-11. Valid values are:

• PROXY_DEFAULT representing a database user name.

13.11.3 getBusyConnections()
Returns the number of busy connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the
Connection Broker.

Syntax

unsigned int getBusyConnections() const=0;

13.11.4 getIncrConnections()
Returns the number of incremental connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax

unsigned int getIncrConnections() const=0;

13.11.5 getMaxConnections()
Returns the maximum number of connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax

unsigned int getMaxConnections() const=0;

13.11.6 getMinConnections()
Returns the minimum number of connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax

unsigned int getMinConnections() const=0;

Chapter 13
ConnectionPool Class

13-64

13.11.7 getOpenConnections()
Returns the number of open connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the Connection
Broker.

Syntax

unsigned int getOpenConnections() const=0;

13.11.8 getPoolName()
Returns the name of the connection pool.

Syntax

string getPoolName() const=0;

13.11.9 getStmtCacheSize()
Retrieves the size of the statement cache.

Syntax

unsigned int getStmtCacheSize() const=0;

13.11.10 getTimeOut()
Returns the time out period of a connection in the connection pool.

Syntax

unsigned int getTimeOut() const=0;

13.11.11 setErrorOnBusy()
Specifies that a SQLException is to be generated when all connections in the connection pool
are busy and no further connections can be opened.

Syntax

void setErrorOnBusy()=0;

13.11.12 setPoolSize()
Sets the minimum, maximum, and incremental number of pooled connections for the
connection pool.

Syntax

void setPoolSize(
 unsigned int minConn = 0,
 unsigned int maxConn = 1,
 unsigned int incrConn = 1)=0;

Chapter 13
ConnectionPool Class

13-65

Parameter Description

minConn The minimum number of connections for the connection pool.

maxConn The maximum number of connections for the connection pool.

incrConn The incremental number of connections for the connection pool.

13.11.13 setStmtCacheSize()
Enables or disables statement caching. A nonzero value enables statement caching,
with a cache of specified size. A zero value disables caching.

Syntax

void setStmtCacheSize(
 unsigned int cacheSize)=0;

Parameter Description

cacheSize The size of the statement cache.

13.11.14 setTimeOut()
Sets the time out period for a connection in the connection pool. OCCI terminates any
connections related to this connection pool that have been idle for longer than the time
out period specified.

If this attribute is not set, the least recently used sessions are timed out when pool
space is required. Oracle only checks for timed out sessions when it releases a
session back to the pool.

Syntax

void setTimeOut(
 unsigned int connTimeOut = 0)=0;

Parameter Description

connTimeOut The timeout period in number of seconds.

13.11.15 terminateConnection()
Terminates the pooled connection or proxy connection.

Syntax

void terminateConnection(
 Connection *connection)=0;

Chapter 13
ConnectionPool Class

13-66

Parameter Description

connection The pooled connection or proxy connection to terminate.

13.12 Consumer Class
The Consumer class supports dequeuing of Messages and controls the dequeuing options.

Table 13-14 Enumerated Values Used by Consumer Class

Attribute Options

DequeMode • DEQ_BROWSE indicates that the message should be read without
acquiring a lock; equivalent to a SELECT.

• DEQ_LOCKED indicates that the message should be read. Get its write
lock, which lasts s for the duration of the transaction; equivalent to a
SELECT FOR UPDATE.

• DEQ_REMOVE indicates that the message should be read. Update or
delete it; the message can be retained in the queue table based on the
retention properties. This is the default setting.

• DEQ_REMOVE_NODATA indicates that the receipt of the message should
be confirmed, but its actual content should not be delivered.

Navigation • DEQ_FIRST_MSG indicates that the first available message on the
queue that matches the search criteria must be retrieved. Resets the
position to the beginning of the queue.

• DEQ_NEXT_TRANSACTION indicates that the next available message
on the queue that matches the search criteria must be retrieved. If the
previous message belongs to a message group, AQ retrieves the next
available message that matches the search criteria and belongs to the
message group. This is the default setting.

• DEQ_NEXT_MSG indicates that the remainder of the current transaction
group, if any, should be skipped. The first message of the next
transaction group may then be retrieved. This option can only be used
if message grouping is enabled for the current queue.

Visibility • DEQ_IMMEDIATE indicates that the dequeued message is not part of
the current transaction. It constitutes a transaction on its own.

• DEQ_ON_COMMIT indicates that the dequeue is part of the current
transaction. This is the default setting.

DequeWaitOption • DEQ_WAIT_FOREVER indicates that the consumer waits for the
Message indefinitely.

• DEQ_NO_WAIT indicates that there should be not wait if there are no
messages on the queue.

Table 13-15 Summary of Consumer Methods

Method Description

Consumer() Consumer class constructor.

getConsumerName() Retrieves the name of the Consumer.

getCorrelationId() Retrieves she correlation id of the message that is to be
dequeued.

Chapter 13
Consumer Class

13-67

Table 13-15 (Cont.) Summary of Consumer Methods

Method Description

getDequeueMode() Retrieves the dequeue mode of the Consumer.

getMessageIdToDequeue() Retrieves the id of the message that is dequeued.

getQueueName() Gets the name of the queue used by the consumer.

getPositionOfMessage() Retrieves the position of the Message that is dequeued.

getTransformation() Retrieves the transformation applied before a Message is
dequeued.

getVisibility() Retrieves the transactional behavior of the dequeue
operation.

getWaitTime() Retrieves the specified behavior of the Consumer when
waiting for a Message with matching search criteria.

isNull() Tests whether the Consumer object is NULL.

operator=() Assignment operator for the Consumer class.

receive() Receives and dequeues a Message
setAgent() Sets the Agent's name and address (queue name) on the

consumer.

setConsumerName() Sets the Consumer name.

setCorrelationId() Specifies the correlation identifier of the message to be
dequeued.

setDequeueMode() Specifies the locking behavior associated with dequeuing.

setMessageIdToDequeue() Specifies the identifier of the Message to be dequeued.

setNull() Nullifies the Consumer; frees the memory associated with
this object.

setPositionOfMessage() Specifies position of the Message to be retrieved.

setQueueName() Specifies the name of a queue before dequeuing Messages.

setTransformation() Specifies transformation applied before dequeuing a
Message.

setVisibility() Specifies if Message should be dequeued as part of the
current transaction.

setWaitTime() Specifies wait conditions if there are no Messages with
matching criteria.

13.12.1 Consumer()
Consumer class constructor.

Syntax Description

Consumer(
 const Connection *conn);

Creates a new Consumer object with
the specified Connection handle.

Chapter 13
Consumer Class

13-68

Syntax Description

Consumer(
 const Connection *conn
 const Agent& agent);

Creates a new Consumer object with
specified Connection and properties
of the specified Agent.

Consumer(
 const Connection *conn,
 const string& queue);

Creates a new Consumer object with
specified Connection and queue.

Consumer(
 const Consumer& consumer);

Copy constructor.

Parameter Description

conn The connection in which the Consumer is created.

agent Agent assigned to the Consumer.

queue Queue at which the Consumer retrieves messages.

consumer Original Consumer object.

13.12.2 getConsumerName()
Retrieves the name of the Consumer.

Syntax

string getConsumerName() const;

13.12.3 getCorrelationId()
Retrieves she correlation id of the message that is to be dequeued

Syntax

string geCorrelationId() const;

13.12.4 getDequeueMode()
Retrieves the dequeue mode of the Consumer. DequeueMode is defined in Table 13-14.

Syntax

DequeueMode getDequeueMode() const;

Chapter 13
Consumer Class

13-69

13.12.5 getMessageIdToDequeue()
Retrieves the id of the message that is dequeued.

Syntax

Bytes getMessageToDequeue() const;

13.12.6 getPositionOfMessage()
Retrieves the position, or navigation, of the message that is dequeued. Navigation is
defined in Table 13-14.

Syntax

Navigation getPositionOfMessage() const;

13.12.7 getQueueName()
Gets the name of the queue used by the consumer.

Syntax

string getQueueName() const;

13.12.8 getTransformation()
Retrieves the transformation applied before a Message is dequeued.

Syntax

string getTransformation() const;

13.12.9 getVisibility()
Retrieves the transactional behavior of the dequeue operation, or visibility. Visibility
is defined in Table 13-14.

Syntax

Visibility getVisibility() const;

13.12.10 getWaitTime()
Retrieves the specified behavior of the Consumer when waiting for a Message with
matching search criteria. DequeWaitOption is defined in Table 13-14.

Syntax

DequeWaitOption getWaitTime() const;

Chapter 13
Consumer Class

13-70

13.12.11 isNull()
Tests whether the Consumer object is NULL. If the Consumer object is NULL, TRUE is returned;
otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.12.12 operator=()
Assignment operator for Consumer class.

Syntax

void operator=(
 const Consumer& consumer);

Parameter Description

consumer The original Consumer.

13.12.13 receive()
Receives and dequeues a Message.

Syntax

Message receive(
 Message::PayloadType pType,
 const string& type="",
 const string& schema="");

Parameter Description

pType The type of payload expected. Payload Type is defined in Table 13-14.

type The type of the payload when type is OBJECT.

schema The schema in which the type is defined when pType is OBJECT.

13.12.14 setAgent()
Sets the Agent's name and address (queue name) on the consumer.

Syntax

void setAgent(
 const Agent& agent);

Chapter 13
Consumer Class

13-71

Parameter Description

agent Name of the Agent.

13.12.15 setConsumerName()
Sets the Consumer name. Only messages with matching consumer name can be
accessed. If a queue is not set up for multiple consumer, this option should be set to
NULL.

Syntax

void setConsumerName(
 const string& name);

Parameter Description

name Name of the Consumer.

13.12.16 setCorrelationId()
Specifies the correlation identifier of the message to be dequeued. Special pattern
matching characters, such as the percent sign (%) and the underscore(_) can be used.
If several messages satisfy the pattern, the order of dequeuing is undetermined.

Syntax

void setCorrelationId
 const string& id);

Parameter Description

id The identifier of the Message.

13.12.17 setDequeueMode()
Specifies the locking behavior associated with dequeuing.

Syntax

void setDequeueMode(
 DequeueMode mode);

Parameter Description

mode Behavior of enqueuing. DequeMode is defined in Table 13-14.

Chapter 13
Consumer Class

13-72

13.12.18 setMessageIdToDequeue()
Specifies the identifier of the Message to be dequeued.

Syntax

void setMessageIdToDequeue(
 const Bytes& msgid);

Parameter Description

msgid Identifier of the Message to be dequeued.

13.12.19 setNull()
Nullifies the Consumer; frees the memory associated with this object.

Syntax

void setNull();

13.12.20 setPositionOfMessage()
Specifies position of the Message to be retrieved.

Syntax

void setPositionOfMessage(
 Navigation pos);

Parameter Description

pos Position of the message, Navigation, is defined in Table 13-14.

13.12.21 setQueueName()
Specifies the name of a queue before dequeuing Messages. Typically used when dequeuing
multiple messages from the same queue.

Syntax

void setQueueName(
 const string& queue);

Parameter Description

queue The name of a valid queue in the database.

Chapter 13
Consumer Class

13-73

13.12.22 setTransformation()
Specifies transformation applied before dequeuing the Message.

Syntax

void setTransformation(
 string &fName);

Parameter Description

fName SQL transformation function.

13.12.23 setVisibility()
Specifies if Message should be dequeued as part of the current transaction. Visibility
parameter is ignored when in DEQ_BROWSE mode.

Syntax

void setVisibility(
 Visibility option);

Parameter Description

option Visibility option being set, defined in Table 13-14.

13.12.24 setWaitTime()
Specifies wait conditions if there are no Messages with matching criteria. The wait
parameter is ignored if messages in the same group are being dequeued.

Syntax

void setWaitTime(
 DequeWaitOption wait);

Parameter Description

wait Waiting conditions. DequeWaitOption is defined in Table 13-14.

13.13 Date Class
The Date class specifies the abstraction for a SQL DATE data item. The Date class also
adds formatting and parsing operations to support the OCCI escape syntax for date
values.

Since the SQL standard DATE is a subset of Oracle Date, this class can be used to
support both.

Chapter 13
Date Class

13-74

Objects from the Date class can be used as standalone class objects in client side numeric
computations and also used to fetch from, and set to, the database.

Example 13-5 How to Get a Date from Database and Use it in Standalone Calculations

This example demonstrates a Date column value being retrieved from the database, a bind
using a Date object, and a computation using a standalone Date object.

/* Create a connection */
Environment *env = Environment::createEnvironment(Environment::DEFAULT);
Connection *conn = Connection(user, passwd, db);

/* Create a statement and associate a DML statement to it */
string sqlStmt = "SELECT job-id, start_date from JOB_HISTORY
 where end_date = :x";
Statement *stmt = conn->createStatement(sqlStmt);

/* Create a Date object and bind it to the statement */
Date edate(env, 2000, 9, 3, 23, 30, 30);
stmt->setDate(1, edate);
ResultSet *rset = stmt->executeQuery();

/* Fetch a date from the database */
while(rset->next())
{
 Date sd = rset->getDate(2);
 Date temp = sd; /*assignment operator */
 /* Methods on Date */
 temp.getDate(year, month, day, hour, minute, second);
 temp.setMonths(2);
 IntervalDS inter = temp.daysBetween(sd);
 .
 .
}

Table 13-16 Summary of Date Methods

Method Summary

Date() Date class constructor.

addDays() Returns a Date object with n days added.

addMonths() Returns a Date object with n months added.

daysBetween() Returns the number of days between the current Date object
and the date specified.

fromBytes() Convert an external Bytes representation of a Date object to a
Date object.

fromText() Convert the date from a given input string with format and NLS
parameters specified.

getDate()() Returns the date and time components of the Date object.

getSystemDate() Returns a Date object containing the system date.

isNull() Returns TRUE if Date is NULL; otherwise returns false.

lastDay() Returns a Date that is the last day of the month.

nextDay() Returns a Date that is the date of the next day of the week.

operator=() Assigns the values of a date to another.

Chapter 13
Date Class

13-75

Table 13-16 (Cont.) Summary of Date Methods

Method Summary

operator==() Returns TRUE if a and b are the same, false otherwise.

operator!=() Returns TRUE if a and b are unequal, false otherwise.

operator>() Returns TRUE if a is past b, false otherwise.

operator>=() Returns TRUE if a is past b or equal to b, false otherwise.

operator=() Returns TRUE if a is before b, false otherwise.

operator>() Returns TRUE if a is before b, or equal to b, false otherwise.

setDate() Sets the date from the date components input.

setNull() Sets the object state to NULL.

toBytes() Converts the Date object into an external Bytes
representation.

toText() Returns the Date object as a string.

toZone() Returns a Date object converted from one time zone to
another.

13.13.1 Date()
Date class constructor.

Syntax Description

Date(); Creates a NULL Date object.

Date(
 const Date &srcDate);

Creates a copy of a Date object.

Date(
 const Environment *envp,
 int year = 1,
 unsigned int month = 1,
 unsigned int day = 1,
 unsigned int hour = 0,
 unsigned int minute = 0,
 unsigned int seconds = 0);

Creates a Date object using integer parameters.

Parameter Description

year -4712 to 9999, except 0

month 1 to 12

day 1 to 31

minutes 0 to 59

seconds 0 to 59

Chapter 13
Date Class

13-76

13.13.2 addDays()
Adds a specified number of days to the Date object and returns the new date.

Syntax

Date addDays(
 int val) const;

Parameter Description

val The number of days to be added to the current Date object.

13.13.3 addMonths()
Adds a specified number of months to the Date object and returns the new date.

Syntax

Date addMonths(
 int val) const;

Parameter Description

val The number of months to be added to the current Date object.

13.13.4 daysBetween()
Returns the number of days between the current Date object and the date specified.

Syntax

IntervalDS daysBetween(
 const Date &date) const;

Parameter Description

date The date to be used to compute the days between.

13.13.5 fromBytes()
Converts a Bytes object to a Date object.

Syntax

void fromBytes(
 const Bytes &byteStream,
 const Environment *envp = NULL);

Chapter 13
Date Class

13-77

Parameter Description

byteStream Date in external format in the form of Bytes.

envp The OCCI environment.

13.13.6 fromText()
Sets Date object to value represented by a string or UString.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are
used.

See Also:

Oracle Database SQL Language Reference for information on TO_DATE

Syntax Description

void fromText(
 const string &datestr,
 const string &fmt = "",
 const string &nlsParam = "",
 const Environment *envp = NULL);

Sets Date object to value represented by
a string.

void fromText(
 const UString &datestr,
 const UString &fmt,
 const UString &nlsParam,
 const Environment *envp = NULL);

Sets Date object to value represented by
a UString; globalization enabled.

Parameter Description

envp The OCCI environment.

datestr The date string to be converted to a Date object.

fmt The format string; default is DD-MON-YY.

nlsParam The NLS parameters string. If nlsParam is specified, this
determines the NLS parameters to be used for the conversion. If
nlsParam is not specified, the NLS parameters are picked up from
envp.

Chapter 13
Date Class

13-78

13.13.7 getDate()
Returns the date in the form of the date components year, month, day, hour, minute, seconds.

Syntax

void getDate(
 int &year,
 unsigned int &month,
 unsigned int &day,
 unsigned int &hour,
 unsigned int &min,
 unsigned int &seconds) const;

Parameter Description

year The year component of the date.

month The month component of the date.

day The day component of the date.

hour The hour component of the date.

min The minutes component of the date.

seconds The seconds component of the date.

13.13.8 getSystemDate()
Returns the system date.

Syntax

static Date getSystemDate(
 const Environment *envp);

Parameter Description

envp The environment in which the system date is returned.

13.13.9 isNull()
Tests whether the Date is NULL. If the Date is NULL, TRUE is returned; otherwise, FALSE is
returned.

Syntax

bool isNull() const;

Chapter 13
Date Class

13-79

13.13.10 lastDay()
Returns a date representing the last day of the current month.

Syntax

Date lastDay() const;

13.13.11 nextDay()
Returns a date representing the day after the day of the week specified.

See Also:

Oracle Database SQL Language Reference for information on TO_DATE

Syntax Description

Date nextDay(
 const string &dow) const;

Returns a date representing the day after the day of
the week specified.

Date nextDay(
 const UString &dow) const;

Returns a date representing the day after the day of
the week specified.; globalization enabled. The
parameter should be in the character set associated
with the environment from which the date was
created.

Parameter Description

dow A string representing the day of the week.

13.13.12 operator=()
Assigns the date object on the right side of the equal (=) sign to the date object on the
left side of the equal (=) sign.

Syntax

Date& operator=(
 const Date &d);

Parameter Description

date The date object that is assigned.

Chapter 13
Date Class

13-80

13.13.13 operator==()
Compares the dates specified. If the dates are equal, TRUE is returned; otherwise, FALSE is
returned.

Syntax

bool operator==(
 const Date &first,
 const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

13.13.14 operator!=()
Compares the dates specified. If the dates are not equal then TRUE is returned; otherwise,
FALSE is returned.

Syntax

bool operator!=(
 const Date &first,
 const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

13.13.15 operator>()
Compares the dates specified. If the first date is in the future relative to the second date then
TRUE is returned; otherwise, FALSE is returned. If either date is NULL then FALSE is returned. If
the dates are of different type, then FALSE is returned.

Syntax

bool operator>(
 const Date &first,
 const Date &second);

Parameter Description

first The first date to be compared.

Chapter 13
Date Class

13-81

Parameter Description

second The second date to be compared.

13.13.16 operator>=()
Compares the dates specified. If the first date is in the future relative to the second
date or the dates are equal then TRUE is returned; otherwise, FALSE is returned. If either
date is NULL then FALSE is returned. If the dates are of a different type, then FALSE is
returned.

Syntax

bool operator>=(
 const Date &first,
 const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

13.13.17 operator<()
Compares the dates specified. If the first date precedes the second date, then TRUE is
returned; otherwise, FALSE is returned. If either date is NULL then FALSE is returned. If
the dates are of a different type, then FALSE is returned.

Syntax

bool operator<(
 const Date &first,
 const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

13.13.18 operator<=()
Compares the dates specified. If the first date precedes the second date or the dates
are equal then TRUE is returned; otherwise, FALSE is returned. If either date is NULL then
FALSE is returned. If the dates are of a different type, then FALSE is returned.

Chapter 13
Date Class

13-82

Syntax

bool operator<=(
 const Date &first,
 const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

13.13.19 setDate()
Sets the date to the values specified.

Syntax

void setDate(
 int year = 1,
 unsigned int month = 1,
 unsigned int day = 1,
 unsigned int hour = 0,
 unsigned int minute = 0,
 unsigned int seconds = 0);

Parameter Description

year The argument specifying the year value. Valid values are -4713 through 9999.

month The argument specifying the month value. Valid values are 1 through 12.

day The argument specifying the day value. Valid values are 1 through 31.

hour The argument specifying the hour value. Valid values are 0 through 23.

min The argument specifying the minutes value. Valid values are 0 through 59.

seconds The argument specifying the seconds value. Valid values are 0 through 59.

13.13.20 setNull()
Sets the Date to atomically NULL.

Syntax

void setNull();

Chapter 13
Date Class

13-83

13.13.21 toBytes()
Returns the date in Bytes representation.

Syntax

Bytes toBytes() const;

13.13.22 toText()
Returns a string or UString with the value of this date formatted using fmt and
nlsParam.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are
used.

See Also:

Oracle Database SQL Language Reference for information on TO_DATE

Syntax Description

string toText(
 const string &fmt = "",
 const string &nlsParam = "") const;

Returns a string with the value of
this date formatted using fmt and
nlsParam.

UString toText(
 const UString &fmt,
 const UString &nlsParam) const;

Returns a UString with the value of
this date formatted using fmt and
nlsParam.

Parameter Description

fmt The format string; default is DD-MON-YY.

nlsParam The NLS parameters string. If nlsParam is specified, this determines the NLS
parameters to be used for the conversion. If nlsParam is not specified, the NLS
parameters are picked up from envp.

13.13.23 toZone()
Returns Date value converted from one time zone to another.

Syntax

Date toZone(
 const string &zone1,
 const string &zone2) const;

Chapter 13
Date Class

13-84

Parameter Description

zone1 A string representing the time zone to be converted from.

zone2 A string representing the time zone to be converted to.

Valid time zone codes are:

Zone code Value

AST, ADT Atlantic Standard or Daylight Time

BST, BDT Bering Standard or Daylight Time

CST, CDT Central Standard or Daylight Time

EST, EDT Eastern Standard or Daylight Time

GMT Greenwich Mean Time

HST, HDT Alaska-Hawaii Standard Time or Daylight Time

MST, MDT Mountain Standard or Daylight Time

NST Newfoundland Standard Time

PST, PDT Pacific Standard or Daylight Time

YST, YDT Yukon Standard or Daylight Time

13.14 Environment Class
The Environment class provides an OCCI environment to manage memory and other
resources for OCCI objects.

The application can have multiple OCCI environments. Each environment would have its own
heap and thread-safety mutexes.

Table 13-17 Enumerated Values Used by Environment Class

Attribute Options

Mode • DEFAULT is used for creating an Environment object; it has no thread safety or
object support.

• OBJECT is for creating an Environment object; it uses object features.

• SHARED is for creating an Environment object.

• NO_USERCALLBACKS is for creating an Environment object; it does not support user
callbacks.

• THREADED_MUTEXED is a thread safe mode for creating an Environment object,
mutexed internally by OCCI.

• THREADED_UNMUTEXED is a thread safe mode for creating an Environment object;
the client is responsible for mutexing.

• EVENTS supports registration for event notification used in Oracle Database
Advanced Queuing.

• USE_LDAP supports registration with LDAP.

Chapter 13
Environment Class

13-85

Table 13-18 Summary of Environment Methods

Method Summary

createConnection() Establishes a connection to the specified database.

createConnectionPool() Creates a connection pool.

createEnvironment() Creates an Environment object.

createStatelessConnectionPool() Creates a stateless connection pool.

enableSubscription() Enables subscription notification

disableSubscription() Disables subscription notification

getCacheMaxSize() Retrieves the Cache Max heap size.

getCacheOptSize() Retrieves the cache optimal heap size.

getCacheSortedFlush() Retrieves the setting of the cache sorting flag.

getClientVersion() Returns the version of the client library.

getCurrentHeapSize() Returns the current amount of memory allocated to all
objects in the current environment.

getLDAPAdminContext() Returns the administrative context when using LDAP
open notification registration.

getLDAPAuthentication() Returns the authentication mode when using LDAP open
notification registration.

getLDAPHost() Returns the host on which the LDAP server runs.

getLDAPPort() Returns the port on which the LDAP server is listening.

getMap()() Returns the Map for the current environment.

getNLSLanguage() Returns the NLS Language for the current environment.

getNLSTerritory() Returns the NLS Territory for the current environment.

getOCIEnvironment() Returns the OCI environment associated with the current
environment.

getXAConnection() Creates an XA connection to a database.

getXAEnvironment() Creates an XA Environment object.

releaseXAConnection() Releases all resources allocated by a
getXAConnection() call.

releaseXAEnvironment() Releases all resources allocated by a
getXAEnvironment() call.

setCacheMaxSize() Specifies the maximum size for the client-side object
cache as a percentage of the optimal size.

setCacheOptSize() Specifies the optimal size for the client-side object cache
in bytes.

setCacheSortedFlush() Specifies whether to sort cache in table order before
flushing.

setLDAPAdminContext() Specifies the administrative context for the LDAP client.

setLDAPAuthentication() Specifies the LDAP authentication mode.

setLDAPHostAndPort() Specifies the LDAP server host and port.

setLDAPLoginNameAndPassword() Specifies the login name and password when connecting
to an LDAP server.

setNLSLanguage() Specifies the NLS Language for the current environment.

Chapter 13
Environment Class

13-86

Table 13-18 (Cont.) Summary of Environment Methods

Method Summary

setNLSTerritory() Specifies the NLS Territory for the current environment.

terminateConnection() Closes the connection pool and free all related
resources.

terminateConnectionPool() Closes the connection pool and free all related
resources.

terminateEnvironment() Destroys the environment.

terminateStatelessConnectionPool() Closes the stateless connection pool and free all related
resources.

13.14.1 createConnection()
This method establishes a connection to the database specified.

Syntax Description

Connection * createConnection(
 const string &userName,
 const string &password,
 const string &connectString="")=0;

Creates a default connection; if the
userName and password are NULL,
the connection may be
authenticated externally.

Connection * createConnection(
 const UString &userName,
 const UString &password,
 const UString &connectString)=0;

Creates a connection (Unicode
support). The client Environment
should be initialized in
OCCIUTIF16 mode.

Connection * createConnection(
 const string &userName,
 const string &password,
 const string &connectString,
 const string &connectionClass,
 const Connection::Purity &purity)=0;

Creates a connection for database
resident connection pooling.

Connection * createConnection(
 const UString &userName,
 const UString &password,
 const UString &connectString,
 const UString &connectionClass
 const Connection::Purity &purity)=0;

Creates a connection for database
resident connection pooling
(Unicode support). The client
Environment should be initialized
in OCCIUTIF16 mode.

Parameter Description

userName The name of the user with which to connect.

password The password of the user.

Chapter 13
Environment Class

13-87

Parameter Description

connectString The database to which the connection is made.

purity The purity of the connection used for database resident connection pooling;
either SELF or NEW.

connectionClass The connection class used for database resident connection pooling.

13.14.2 createConnectionPool()
Creates a connection pool based on the parameters specified.

Syntax Description

ConnectionPool* createConnectionPool(
 const string &poolUserName,
 const string &poolPassword,
 const string &connectString = "",
 unsigned int minConn = 0,
 unsigned int maxConn = 1,
 unsigned int incrConn = 1)=0;

Creates a default connection pool.

ConnectionPool* createConnectionPool(
 const UString &poolUserName,
 const UString &poolPassword,
 const UString &connectString,
 unsigned int minConn = 0,
 unsigned int maxConn = 1,
 unsigned int incrConn = 1)=0;

Creates a connection pool (Unicode
support). The client Environment
should be initialized in OCCIUTIF16
mode.

Parameter Description

poolUserName The pool user name.

poolPassword The pool password.

connectString The connection string for the server

minConn The minimum number of connections in the pool. The minimum number
of connections are opened by this method. Additional connections are
opened only when necessary. Generally, minConn should be set to the
number of concurrent statements the application is expected to run.

maxConn The maximum number of connections in the pool. Valid values are 1
and greater.

incrConn The increment by which to increase the number of connections to be
opened if the current number of connections is less than maxConn.
Valid values are 1 and greater.

Chapter 13
Environment Class

13-88

13.14.3 createEnvironment()
Creates an Environment object. It is created with the specified memory management
functions specified in the setMemMgrFunctions() method. If no memory manager functions
are specified, then OCCI uses its own default functions. An Environment object must
eventually be closed to free all the system resources it has acquired.

If the Mode is specified is either THREADED_MUTEXED or THREADED_UNMUTEXED as defined in
Table 13-17, then all three memory management functions must be thread-safe.

Syntax Description

static Environment * createEnvironment(
 Mode mode = DEFAULT,
 void *ctxp = 0,
 void *(*malocfp)(void *ctxp,
 size_t size) = 0,
 void *(*ralocfp)(void *ctxp,
 void *memptr,
 size_t newsize) = 0,
 void (*mfreefp)(void *ctxp,
 void *memptr) = 0);

Creates a default environment.

static Environment * createEnvironment(
 const string &charset,
 const string &ncharset,
 Mode mode = DEFAULT,
 void *ctxp = 0,
 void *(*malocfp)(void *ctxp,
 size_t size) = 0,
 void *(*ralocfp)(void *ctxp,
 void *memptr,
 size_t newsize) = 0,
 void (*mfreefp)(void *ctxp,
 void *memptr) = 0);

Creates an environment with the specified
character set and NCHAR character set ids
(Unicode support). The client
Environment should be initialized in
OCCIUTIF16 mode.

Parameter Description

mode Values are defined as part of Mode in Table 13-17: DEFAULT,
THREADED_MUTEXED, THREADED_UNMUTEXED, OBJECT.

ctxp Context pointer for user-defined memory management function.

size The size of the memory allocated by user-defined memory allocation function.

newsize The new size of the memory to be reallocated.

memptr The existing memory that must be reallocated to new size.

malocfp User-defined memory allocation function.

Chapter 13
Environment Class

13-89

Parameter Description

ralocfp User-defined memory reallocation function.

mfreefp User-defined memory free function.

charset Character set id that replaces the one specified in NLS_LANG.

ncharset Character set id that replaces the one specified in NLS_NCHAR.

13.14.4 createStatelessConnectionPool()
Creates a StatelessConnectionPool object with specified pool attributes.

Syntax Description

StatelessConnectionPool* createStatelessConnectionPool(
 const string &poolUserName,
 const string &poolPassword,
 const string connectString="",
 unsigned int maxConn=1,
 unsigned int minConn=0,
 unsigned int incrConn=1,
 StatelessConnectionPool::PoolType
 pType=StatelessConnectionPool::HETEROGENEOUS);

Support for string.

StatelessConnectionPool* createStatelessConnectionPool(
 const UString &poolUserName,
 const UString &poolPassword,
 const UString &connectString,
 unsigned int maxConn = 1,
 unsigned int minConn = 0,
 unsigned int incrConn = 1,
 StatelessConnectionPool::PoolType
 pType=StatelessConnectionPool::HETEROGENEOUS);

Support for UString.

Parameter Description

poolUserName The pool user name.

poolPassword The pool password.

connectString The connection string for the server.

maxConn The maximum number of connections that can be opened the pool;
additional sessions cannot be open.

minConn The number of connections initially created in a pool. This parameter is
considered only if the PoolType is set to HOMOGENEOUS, as defined in
Table 13-41 .

Chapter 13
Environment Class

13-90

Parameter Description

incrConn The number of connections by which to increment the pool if all open
connections are busy, up to a maximum open connections specified by
maxConn parameter. This parameter is considered only if the PoolType
is set to HOMOGENEOUS, as defined in Table 13-41 .

pType The PoolType of the connection pool, defined in Table 13-41 .

13.14.5 enableSubscription()
Enables subscription notification.

Syntax

void enableSubscription(
 const aq::Subscription &sub);

Parameter Description

sub The Subscription.

13.14.6 disableSubscription()
Disables subscription notification.

Syntax

void disableSubscription(
 Subscription &subscr);

Parameter Description

subscr The Subscription.

13.14.7 getCacheMaxSize()
Retrieves the maximum size of the cache.

Syntax

unsigned int getCacheMaxSize() const;

13.14.8 getCacheOptSize()
Retrieves the Cache optimal heap size.

Syntax

unsigned int getCacheOptSize() const;

Chapter 13
Environment Class

13-91

13.14.9 getCacheSortedFlush()
Retrieves the current setting of the cache sorting flag; TRUE or FALSE.

Syntax

bool getCacheSortedFlush() const;

13.14.10 getCurrentHeapSize()
Returns the amount of memory currently allocated to all objects in this environment.

Syntax

unsigned int getCurrentHeapSize() const;

13.14.11 getLDAPAdminContext()
Returns the administrative context when using LDAP open notification registration.

Syntax

string getLDAPAdminContext() const;

13.14.12 getLDAPAuthentication()
Returns the authentication mode when using LDAP open notification registration.

Syntax

unsigned int getLDAPAuthentication() const;

13.14.13 getLDAPHost()
Returns the host on which the LDAP server runs.

Syntax

string getLDAPHost() const;

13.14.14 getLDAPPort()
Returns the port on which the LDAP server is listening.

Syntax

unsigned int getLDAPPort() const;

13.14.15 getMap()
Returns a pointer to the map for this environment.

Chapter 13
Environment Class

13-92

Syntax

Map *getMap() const;

13.14.16 getNLSLanguage()
Returns the NLS Language for the current environment.

Syntax

string getNLSLanguage() const;

13.14.17 getNLSTerritory()
Returns the NLS Territory for the current environment.

Syntax

string getNLSTerritory() const;

13.14.18 getOCIEnvironment()
Returns a pointer to the OCI environment associated with this environment.

Syntax

OCIEnv *getOCIEnvironment() const;

13.14.19 getXAConnection()
Returns a pointer to an OCCI Connection object that corresponds to the one opened by the
XA library.

Syntax

Connection* getXAConnection(
 const string &dbname);

Parameter Description

dbname The database name; same as the optional dbname provided in the Open String
(and used in connection to the Resource Manager).

13.14.20 getXAEnvironment()
Returns a pointer to an OCCI Environment object that corresponds to the one opened by the
XA library.

Syntax

Environment *getXAEnvironment(
 const string &dbname);

Chapter 13
Environment Class

13-93

Parameter Description

dbname The database name; same as the optional dbname provided in the Open
String (and used in connection to the Resource Manager).

13.14.21 releaseXAConnection()
Release/deallocate all resources allocated by the getXAConnection() method.

Syntax

void releaseXAConnection(
 Connection* conn);

Parameter Description

conn The connection returned by the getXAConnection() method.

13.14.22 releaseXAEnvironment()
Release/deallocate all resources allocated by the getXAEnvironment() method.

Syntax

void releaseXAEnvironment(
 Environment* env);

Parameter Description

env The environment returned by the getXAEnvironment() method.

13.14.23 setCacheMaxSize()
Sets the maximum size for the client-side object cache as a percentage of the optimal
size. The default value is 10%.

Syntax

void setCacheMaxSize(
 unsigned int maxSize);

Parameter Description

maxSize The value of the maximum size, as a percentage.

13.14.24 setCacheOptSize()
Sets the optimal size for the client-side object cache in bytes. The default value is
8MB.

Chapter 13
Environment Class

13-94

Syntax

void setCacheOptSize(
 unsigned int optSize);

Parameter Description

optSize The value of the optimal size, in bytes.

13.14.25 setCacheSortedFlush()
Sets the cache flushing protocol. By default, objects in cache are flushed in the order they are
modified; flag=FALSE. To improve server-side performance, set flag=TRUE, so that the
objects in cache are sorted in table order before flushing from client cache.

Syntax

void setCacheSortedFlush(
 bool flag);

Parameter Description

flag FALSE (default): no sorting; TRUE: sorting in table order

13.14.26 setLDAPAdminContext()
Sets the administrative context of the client. This is usually the root of the Oracle RDBMS
LDAP schema in the LDAP server.

Syntax

void setLDAPAdminContext(
 const string &ctx);

Parameter Description

ctx The client context

13.14.27 setLDAPAuthentication()
Specifies the authentication mode. Currently the only supported value is 0x1: Simple
authentication; username/password authentication.

Syntax

void setLDAPAuthentication(
 unsigned int mode);

Chapter 13
Environment Class

13-95

Parameter Description

mode The authentication mode

13.14.28 setLDAPHostAndPort()
Specifies the host on which the LDAP server is running, and the port on which it is
listening for requests.

Syntax

void setLDAPHostAndPort(
 const string &host,
 unsigned int port);

Parameter Description

host The host for LDAP

port The port for LDAP

13.14.29 setLDAPLoginNameAndPassword()
Specifies the login distinguished name and password used when connecting to an
LDAP server.

Syntax

void setLDAPLoginNameAndPassword(
 const string &login,
 const &passwd);

Parameter Description

login The login name

passwd The login password

13.14.30 setNLSLanguage()
Specifies the NLS Language for the current environment. The setting is effective for
the connections created after this method has been called. The setting overrides the
value set through the process environment variable NLS_LANG.

Syntax

void setNLSLanguage(
 const string &lang);

Chapter 13
Environment Class

13-96

Parameter Description

lang The language of the current environment

13.14.31 setNLSTerritory()
Specifies the NLS Territory for the current environment. The setting is effective for the
connections created after this method has been called. The setting overrides the value set
through the process environment variable NLS_LANG.

Syntax

void setNLSTerritory(
 const string &Terr);

Parameter Description

Terr The territory of the current environment

13.14.32 terminateConnection()
Closes the connection to the environment, and frees all related system resources.

Syntax

void terminateConnection(
 Connection *connection);

Parameter Description

connection A pointer to the connection instance to be terminated.

13.14.33 terminateConnectionPool()
Closes the connections in the connection pool, and frees all related system resources.

Syntax

void terminateConnectionPool(
 ConnectionPool *poolPointer);

Parameter Description

poolPointer A pointer to the connection pool instance to be terminated.

13.14.34 terminateEnvironment()
Closes the environment, and frees all related system resources.

Chapter 13
Environment Class

13-97

Syntax

void terminateEnvironment(
 Environment *env);

Parameter Description

env Environment to be closed.

13.14.35 terminateStatelessConnectionPool()
Destroys the specified StatelessConnectionPool.

Syntax

void termimnateStatelessConnectionPool(
 StatelessConnectionPool* poolPointer,
 StatelessConnectionPool::DestroyMode mode=StatelessConnectionPool::DEFAULT);

Parameter Description

poolPointer The StatelessConnectionPool to be destroyed.

mode DestroyMode as defined Table 13-41: DEFAULT or SPF_FORCE.

13.15 IntervalDS Class
The IntervalDS class encapsulates time interval calculations in terms of days, hours,
minutes, seconds, and fractional seconds. Leading field precision is determined by
number of decimal digits in day input. Fraction second precision is determined by
number of fraction digits on input.

Table 13-19 Fields of IntervalDS Class

Field Type Description

day int Day component. Valid values are -10^9 through 10^9.

hour int Hour component. Valid values are -23 through 23.

minute int Minute component. Valid values are -59 through 59.

second int Second component. Valid values are -59 through 59.

fs int Fractional second component. Constructs a NULL IntervalDS
object. A NULL intervalDS can be initialized by assignment or
calling fromText method. Methods that can be called on NULL
intervalDS objects are setName() and isNull().

Example 13-6 How to Use an Empty IntervalDS Object through Direct
Assignment

This example demonstrates how the default constructor creates a NULL value, and how
you can assign a non NULL value to a day-second interval and then perform operations
on it.

Chapter 13
IntervalDS Class

13-98

Environment *env = Environment::createEnvironment();

// Create a NULL day-second interval
IntervalDS ds;
if(ds.isNull())
 cout << "\n ds is null";

// Assign a non-NULL value to ds
IntervalDS anotherDS(env, "10 20:14:10.2");
ds = anotherDS;

// Now all operations on IntervalDS are valid
int DAY = ds.getDay();

Example 13-7 How to Use an Empty IntervalDS Object Through *Text() Methods

This example demonstrates how to create a NULL day-second interval, initialize the day-
second interval by using the fromText() method, add to the day-second interval by using the
+= operator, multiply by using the * operator, compare 2 day-second intervals, and convert a
day-second interval to a string by using the toText method:

Environment *env = Environment::createEnvironment();

// Create a null day-second interval
IntervalDS ds1

// Initialize a null day-second interval by using the fromText method
ds1.fromText("20 10:20:30.9","",env);

IntervalDS addWith(env,2,1);
ds1 += addWith; //call += operator

IntervalDS mulDs1=ds1 * Number(env,10);
 //call * operator
if(ds1==mulDs1) //call == operator
 .
 .
string strds=ds1.toText(2,4); //2 is leading field precision
 //4 is the fractional field precision

Table 13-20 Summary of IntervalDS Methods

Method Summary

IntervalDS() IntervalDS class constructor.

fromText() Returns an IntervalDS converted from a string.

fromUText() Returns an IntervalDS converted from a UString.

getDay() Returns day interval values.

getFracSec() Returns fractional second interval values.

getFracSec() Returns hour interval values.

getMinute() Returns minute interval values.

getSecond() Returns second interval values.

isNull() Returns true if IntervalDS is NULL, false otherwise.

operator*() Returns the product of two IntervalDS values.

operator*=() Multiplication assignment.

Chapter 13
IntervalDS Class

13-99

Table 13-20 (Cont.) Summary of IntervalDS Methods

Method Summary

operator=() Simple assignment.

operator==() Checks if a and b are equal.

operator!=() Checks if a and b are not equal.

operator/() Returns an IntervalDS with value (a / b).

operator/=() Division assignment.

operator>() Checks if a is greater than b
operator>=() Checks if a is greater than or equal to b.

operator<() Checks if a is less than b.

operator<=() Checks if a is less than or equal to b.

operator-() Returns an IntervalDS with value (a - b).

operator-=() Subtraction assignment.

operator+() Returns the sum of two IntervalDS values.

operator+=() Addition assignment.

set() Sets day-second interval.

setNull() Sets day-second interval to NULL.

toText() Converts to a string representation for the interval.

toUText() Converts to a UString representation for the interval.

13.15.1 IntervalDS()
IntervalDS class constructor.

Syntax Description

IntervalDS(); Constructs a NULL IntervalDS object. A NULL IntervalDS
can be initialized by assignment or calling fromText() method.
Methods that can be called on NULL IntervalDS objects are
setName() and isNull().

IntervalDS(
 const Environment *env,
 int day = 0,
 int hour = 0,
 int minute = 0,
 int second = 0,
 int fs = 0);

Constructs an IntervalDS object within a specified
Environment.

IntervalDS(
 const IntervalDS &src);

Constructs an IntervalYM object from src.

Chapter 13
IntervalDS Class

13-100

Parameter Description

env The Environment.

day The day field of IntervalDS.

hour The hour field of IntervalDS.

minute The minute field of IntervalDS.

second The second field of IntervalDS.

fs The fs field of IntervalDS.

src The source that the IntervalDS object is copied from.

13.15.2 fromText()
Creates the interval from the string specified. The string is converted using the nls
parameters associated with the relevant environment. The nls parameters are picked up
from env. If env is NULL, the nls parameters are picked up from the environment associated
with the instance, if any.

Syntax

void fromText(
 const string &inpstr,
 const string &nlsParam = "",
 const Environment *env = NULL);

Parameter Description

inpstr Input string representing a day second interval of the form 'days
hours:minutes:seconds', for example, '10 20:14:10.2'

nlsParam The NLS parameter string. If nlsParam is specified, this determines the NLS
parameters to be used for the conversion. If nlsParam is not specified, the NLS
parameters are picked up from envp.

env Environment whose NLS parameters are used.

13.15.3 fromUText()
Creates the interval from the UString specified.

Syntax

void fromUText(
 const UString &inpstr,
 const Environment *env=NULL);

Chapter 13
IntervalDS Class

13-101

Parameter Description

inpstr Input UString representing a day second interval of the form 'days
hours:minutes:seconds', for example, '10 20:14:10.2'

env The Environment.

13.15.4 getDay()
Returns the day component of the interval.

Syntax

int getDay() const;

13.15.5 getFracSec()
Returns the fractional second component of the interval.

Syntax

int getFracSec() const;

13.15.6 getHour()
Returns the hour component of the interval.

Syntax

int getHour() const;

13.15.7 getMinute()
Returns the minute component of this interval.

Syntax

int getMinute() const;

13.15.8 getSecond()
Returns the seconds component of this interval.

Syntax

int getSecond() const;

13.15.9 isNull()
Tests whether the interval is NULL. If the interval is NULL then TRUE is returned;
otherwise, FALSE is returned.

Chapter 13
IntervalDS Class

13-102

Syntax

bool isNull() const;

13.15.10 operator*()
Multiplies an interval by a specified value and returns the result.

Syntax

const IntervalDS operator*(
 const IntervalDS &interval,
 const Number &val);

Parameter Description

interval Interval to be multiplied.

val Value by which interval is to be multiplied.

13.15.11 operator*=()
Assigns the product of IntervalDS and a to IntervalDS.

Syntax

IntervalDS& operator*=(
 const IntervalDS &factor);

Parameter Description

factor A day second interval.

13.15.12 operator=()
Assigns the specified value to the interval.

Syntax

IntervalDS& operator=(
 const IntervalDS &src);

Parameter Description

src Value to be assigned.

13.15.13 operator==()
Compares the intervals specified. If the intervals are equal, then TRUE is returned; otherwise,
FALSE is returned. If either interval is NULL then SQLException is thrown.

Chapter 13
IntervalDS Class

13-103

Syntax

bool operator==(
 const IntervalDS &first,
 const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.14 operator!=()
Compares the intervals specified. If the intervals are not equal then TRUE is returned;
otherwise, FALSE is returned. If either interval is NULL then SQLException is thrown.

Syntax

bool operator!=(
 const IntervalDS &first,
 const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.15 operator/()
Returns the result of dividing an interval by a constant value.

Syntax

const IntervalDS operator/(
 const IntervalDS ÷nd,
 const Number &factor);

Parameter Description

dividend The interval to be divided.

factor Value by which interval is to be divided.

13.15.16 operator/=()
Assigns the quotient of IntervalDS and val to IntervalDS.

Chapter 13
IntervalDS Class

13-104

Syntax

IntervalDS& operator/=(
 const IntervalDS &factor);

Parameter Description

factor A day second interval.

13.15.17 operator>()
Compares the intervals specified. If the first interval is greater than the second interval then
TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then SQLException is
thrown.

Syntax

bool operator>(
 const IntervalDS &first,
 const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.18 operator>=()
Compares the intervals specified. If the first interval is greater than or equal to the second
interval then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then
SQLException is thrown.

Syntax

bool operator>=(
 const IntervalDS &first,
 const IntervalDS &first);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.19 operator<()
Compares the intervals specified. If the first interval is less than the second interval then TRUE
is returned; otherwise, FALSE is returned. If either interval is NULL then SQLException is
thrown.

Chapter 13
IntervalDS Class

13-105

Syntax

bool operator<(
 const IntervalDS &first,
 const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.20 operator<=()
Compares the intervals specified. If the first interval is less than or equal to the second
interval then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL
then SQLException is thrown.

Syntax

bool operator<=(
 const IntervalDS &first,
 const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.21 operator-()
Returns the difference between the intervals first and second.

Syntax

const IntervalDS operator-(
 const IntervalDS &first,
 const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.22 operator-=()
Assigns the difference between IntervalDS and val to IntervalDS.

Chapter 13
IntervalDS Class

13-106

Syntax

IntervalDS& operator-=(
 const IntervalDS &val);

Parameter Description

val A day second interval.

13.15.23 operator+()
Returns the sum of the intervals specified.

Syntax

const IntervalDS operator+(
 const IntervalDS &first,
 const IntervalDS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.24 operator+=()
Assigns the sum of IntervalDS and val to IntervalDS.

Syntax

IntervalDS& operator+=(
 const IntervalDS &val);

Parameter Description

val A day second interval.

13.15.25 set()
Sets the interval to the values specified.

Syntax

void set(
 int day,
 int hour,
 int minute,
 int second,
 int fracsec);

Chapter 13
IntervalDS Class

13-107

Parameter Description

day Day component.

hour Hour component.

min Minute component.

second Second component.

fracsec Fractional second component.

13.15.26 setNull()
Sets the IntervalDS to NULL.

Syntax

void setNull();

13.15.27 toText()
Converts to a string representation for the interval.

Syntax

string toText(
 unsigned int lfprec,
 unsigned int fsprec,
 const string &nlsParam = "") const;

Parameter Description

lfprec Leading field precision.

fsprec Fractional second precision.

nlsParam The NLS parameters string. If nlsParam is specified, this
determines the NLS parameters to be used for the conversion. If
nlsParam is not specified, the NLS parameters are picked up from
envp.

13.15.28 toUText()
Converts to a UString representation for the interval.

Syntax

UString toUText(
 unsigned int lfprec,
 unsigned int fsprec) cosnt;

Chapter 13
IntervalDS Class

13-108

Parameter Description

lfprec Leading field precision.

fsprec Fractional second precision.

13.16 IntervalYM Class
IntervalYM supports the SQL standard data type Year-Month Interval.

Leading field precision is determined by number of decimal digits on input.

Table 13-21 Fields of IntervalYM Class

Field Type Description

year int Year component. Valid values are -10^9 through 10^9.

month int Month component. Valid values are -11 through 11.

Example 13-8 How to Use an Empty IntervalYM Object Through Direct Assignment

This example demonstrates that the default constructor creates a NULL value, and how you
can assign a non NULL value to a year-month interval and then perform operations on it:

Environment *env = Environment::createEnvironment();

// Create a NULL year-month interval
IntervalYM ym
if(ym.isNull())
 cout << "\n ym is null";

// Assign a non-NULL value to ym
IntervalYM anotherYM(env, "10-30");
ym=anotherYM;

// Now all operations on YM are valid
int yr = ym.getYear();

Example 13-9 How to Use an IntervalYM Object Through ResultSet and toText()
Method

This example demonstrates how to get the year-month interval column from a result set, add
to the year-month interval by using the += operator, multiply by using the * operator, compare
2 year-month intervals, and convert a year-month interval to a string by using the toText()
method.

//SELECT WARRANT_PERIOD from PRODUCT_INFORMATION
//obtain result set
resultset->next();

//get interval value from resultset
IntervalYM ym1 = resultset->getIntervalYM(1);

IntervalYM addWith(env, 10, 1);
ym1 += addWith; //call += operator

Chapter 13
IntervalYM Class

13-109

IntervalYM mulYm1 = ym1 * Number(env, 10); //call * operator
if(ym1<mulYm1) //comparison
 .
 .
string strym = ym1.toText(3); //3 is the leading field precision

Table 13-22 Summary of IntervalYM Methods

Method Summary

IntervalYM() IntervalYM class constructor.

fromText() Converts a string into an IntervalYM.

fromUText() Converts a UString into an IntervalYM.

getMonth() Returns month interval value.

getYear() Returns year interval value.

isNull() Checks if the interval is NULL.

operator*() Returns the product of two IntervalYM values.

operator*=() Multiplication assignment.

operator=() Simple assignment.

operator==() Checks if a and b are equal.

operator!=() Checks if a and b are not equal.

operator/() Returns an interval with value (a/b).

operator/=() Division assignment.

operator>() Checks if a is greater than b.

operator>=() Checks if a is greater than or equal to b.

operator<() Checks if a is less than b.

operator<=() Checks if a is less than or equal to b.

operator-() Returns an interval with value (a - b).

operator-=() Subtraction assignment.

operator+() Returns the sum of two IntervalYM values.

operator+=() Addition assignment.

set() Sets the interval to the values specified.

setNull() Sets the interval to NULL.

toText() Converts to a string representation of the interval.

toUText() Converts to a UString representation of the interval.

13.16.1 IntervalYM()
IntervalYM class constructor.

Chapter 13
IntervalYM Class

13-110

Syntax Description

IntervalYM(); Constructs a NULL IntervalYM object. A NULL IntervalYM can
be initialized by assignment or calling operator*() method. Methods
that can be called on NULL IntervalYM objects are setName()
and isNull().

IntervalYM(
 const Environment *env,
 int year = 0,
 int month = 0);

Creates an IntervalYM object within the specified Environment.

IntervalDS(
 const IntervalYM &src);

Copy constructor.

Parameter Description

env The Environment.

year The year field of the IntervalYM object.

month The month field of the IntervalYM object.

src The source that the IntervalYM object is copied from.

13.16.2 fromText()
This method initializes the interval to the values in inpstr. The string is interpreted using the
NLS parameters set in the environment.

The NLS parameters are picked up from env. If env is NULL, the NLS parameters are picked
up from the environment associated with the instance, if any.

Syntax

void fromText(
 const string &inpStr,
 const string &nlsParam = "",
 const Environment *env = NULL);

Parameter Description

inpStr Input string representing a year month interval of the form 'year-month'.

nlsParam The NLS parameters string. If nlsParam is specified, this determines the NLS
parameters to be used for the conversion. If nlsParam is not specified, the NLS
parameters are picked up from envp.

env Environment whose NLS parameters are used.

Chapter 13
IntervalYM Class

13-111

13.16.3 fromUText()
Creates the interval from the UString specified.

Syntax

void fromUText(
 const UString &inpStr,
 const Environment *env=NULL);

Parameter Description

inpStr Input UString representing a year month interval of the form 'year-month'.

env The Environment.

13.16.4 getMonth()
This method returns the month component of the interval.

Syntax

int getMonth() const;

13.16.5 getYear()
This method returns the year component of the interval.

Syntax

int getYear() const;

13.16.6 isNull()
This method tests whether the interval is NULL. If the interval is NULL then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.16.7 operator*()
This method multiplies the interval by a factor and returns the result.

Syntax

const IntervalYM operator*(
 const IntervalDS &interval
 const Number &val);

Chapter 13
IntervalYM Class

13-112

Parameter Description

interval Interval to be multiplied.

val Value by which interval is to be multiplied.

13.16.8 operator*=()
This method multiplies the interval by a specified value.

Syntax

IntervalYM& operator*=(
 const Number &factor);

Parameter Description

factor Value to be multiplied.

13.16.9 operator=()
This method assigns the specified value to the interval.

Syntax

IntervalYM& operator=(
 const IntervalYM &src);

Parameter Description

src Value to be assigned.

13.16.10 operator==()
This method compares the intervals specified. If the intervals are equal then TRUE is returned;
otherwise, FALSE is returned. If either interval is NULL then SQLException is thrown.

Syntax

bool operator==(
 const IntervalYM &first,
 const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

Chapter 13
IntervalYM Class

13-113

13.16.11 operator!=()
This method compares the intervals specified. If the intervals are not equal then TRUE
is returned; otherwise, FALSE is returned. If either interval is NULL then SQLException is
thrown.

Syntax

bool operator!=(
 const IntervalYM &first,
 const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.12 operator/()
This method returns the result of dividing the interval by a factor.

Syntax

const IntervalYM operator/(
 const IntervalYM ÷nd,
 const Number &factor);

Parameter Description

dividend The interval to be divided.

factor Value by which interval is to be divided.

13.16.13 operator/=()
This method divides the interval by a factor.

Syntax

IntervalYM& operator/=(
 const Number &factor);

Parameter Description

factor A day second interval.

Chapter 13
IntervalYM Class

13-114

13.16.14 operator>()
This method compares the intervals specified. If the first interval is greater than the second
interval then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then
SQLException is thrown.

Syntax

bool operator>(
 const IntervalYM &first,
 const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.15 operator>=()
This method compares the intervals specified. If the first interval is greater than or equal to
the second interval then TRUE is returned; otherwise, FALSE is returned. If either interval is
NULL then SQLException is thrown.

Syntax

bool operator>=(
 const IntervalYM &first,
 const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.16 operator<()
This method compares the intervals specified. If the first interval is less than the second
interval then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then
SQLException is thrown.

Syntax

bool operator<(
 const IntervalYM &first,
 const IntervalYM &second);

Chapter 13
IntervalYM Class

13-115

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.17 operator<=()
This method compares the intervals specified. If the first interval is less than or equal
to the second interval then TRUE is returned; otherwise, FALSE is returned. If either
interval is NULL then SQLException is thrown

Syntax

bool operator<=(
 const IntervalYM &first,
 const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.18 operator-()
This method returns the difference between the intervals specified.

Syntax

const IntervalYM operator-(
 const IntervalYM &first,
 const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.19 operator-=()
This method computes the difference between itself and another interval.

Syntax

IntervalYM& operator-=(
 const IntervalYM &val);

Chapter 13
IntervalYM Class

13-116

Parameter Description

val A day second interval.

13.16.20 operator+()
This method returns the sum of the intervals specified.

Syntax

const IntervalYM operator+(
 const IntervalYM &first,
 const IntervalYM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.21 operator+=()
This method assigns the sum of IntervalYM and val to IntervalYM.

Syntax

IntervalYM& operator+=(
 const IntervalYM &val);

Parameter Description

val A day second interval.

13.16.22 set()
This method sets the interval to the values specified.

Syntax

void set(
 int year,
 int month);

Parameter Description

year Year component. Valid values are -10^9 through 10^9.

month Month component. Valid values are -11 through 11.

Chapter 13
IntervalYM Class

13-117

13.16.23 setNull()
This method sets the interval to NULL.

Syntax

void setNull();

13.16.24 toText()
This method returns the string representation of the interval.

Syntax

string toText(
 unsigned int lfprec,
 const string &nlsParam = "") const;

Parameter Description

lfprec Leading field precision.

nlsParam The NLS parameters string. If nlsParam is specified, this
determines the NLS parameters to be used for the conversion. If
nlsParam is not specified, the NLS parameters are picked up from
envp.

13.16.25 toUText()
Converts to a UString representation for the interval.

Syntax

UString toUText(
 unsigned int lfprec) cosnt;

Parameter Description

lfprec Leading field precision.

13.17 Listener Class
The Listener class encapsulates the ability to listen for Messages, on behalf of
registered Agents, at specified queues.

Table 13-23 Summary of Listener Methods

Method Summary

Listener() Listener class constructor.

Chapter 13
Listener Class

13-118

Table 13-23 (Cont.) Summary of Listener Methods

Method Summary

getAgentList() Retrieves the list of Agents for which the Listener
provides its services.

getTimeOutForListen() Retrieves the time out for a call.

listen() Listens for Messages and returns the name of the
Agent for whom a Message is intended.

setAgentList() Specifies the list of Agents for which the Listener
provides its services.

setTimeOutForListen() Specifies the time out for a listen() call.

13.17.1 Listener()
Listener class constructor.

Syntax Description

Listener(
 const Connection* conn);

Creates a Listener object.

Listener(
 const Connection* conn
 vector<Agent> &aglist,
 int waitTime=0);

Creates a Listener object and sets the list of
Agents on behalf of which it listens on queues.
Also sets the waiting time; default: no waiting.

Parameter Description

conn The connection of the new Listener object.

aglist The list of agents on behalf of which the Listener object waits on queues;
clients of this Listener.

waitTime The time to wait on queues for messages of interest for the clients; in seconds.

13.17.2 getAgentList()
Retrieves the list of Agents for which the Listener provides its services.

Syntax

vector<Agent> getAgentList() const;

13.17.3 getTimeOutForListen()
Retrieves the time out for a call.

Chapter 13
Listener Class

13-119

Syntax

int getTimeOutForListen() const;

13.17.4 listen()
Listens for Messages on behalf of specified Agents for the amount of time specified by
a previous setTimeOutForListen() call. Returns the Agent for which there is a Message.

Note that this is a blocking call. Before this call, complete the following steps:

• Registers each Agent listener through a setAgentList() call.

• Make a blocking call to setTimeOutForListen() that returns when a Message for one
of the Agents on the list arrives. If no Messages arrive before the wait time expires,
the call returns an error.

Syntax

Agent listen();

13.17.5 setAgentList()
Specifies the list of Agents for which the Listener provides its services.

Syntax

void setAgentList(
 vector<Agent>& agList);

Parameter Description

agList The list of Agents.

13.17.6 setTimeOutForListen()
Specifies the time out for a listen() call.

Syntax

void setTimeOutForListen(
 int waitTime);

Parameter Description

waitTime The time interval, in seconds, during which the Listener is waiting for
Messages at specified queues.

13.18 Map Class
The Map class is used to store the mapping of the SQL structured type to C++ classes.

Chapter 13
Map Class

13-120

For each user defined type, the Object Type Translator (OTT) generates a C++ class
declaration and implements the static methods readSQL() and writeSQL(). The readSQL()
method is called when the object from the server appears in the application as a C++ class
instance. The writeSQL() method is called to marshal the object in the application cache to
server data when it is being written / flushed to the server. The readSQL() and writeSQL()
methods generated by OTT are based upon the OCCI standard C++ mappings.

If you want to override the standard OTT generated mappings with customized mappings,
you must implement a custom C++ class along with the readSQL() and writeSQL() methods
for each SQL structured type you must customize. In addition, you must add an entry for
each such class into the Map member of the Environment.

Table 13-24 Summary of Map Methods

Method Summary

put() Adds a map entry for the type type_name.

13.18.1 put()
Adds a map entry for the type, type_name, that must be customized; you must implement the
type_name C++ class.

You must then add this information into a map object, which should be registered with the
connection if the user wants the standard mappings to overridden.This registration can be
done by calling the this method after the environment is created passing the environment.

Syntax Description

void put(
 const string &schemaType,
 void *(*rSQL)(void *),
 void (*wSQL) (void *, void *));

Registers a type and its corresponding C++
readSQL and writeSQL functions.

void put(
 const string& schName,
 const string& typName,
 void *(*rSQL)(void *),
 void (*wSQL)(void *, void *));

Registers a type and its corresponding C++
readSQL and writeSQL functions; multibyte
support.

void put(
 const UString& schName,
 const UString& typName,
 void *(*rSQL)(void *),
 void (*wSQL)(void *, void *));

Registers a type and its corresponding C++
readSQL and writeSQL functions; unicode
support.

Parameter Description

schemaType The schema and typename, separated by ".", like HR.TYPE1

schName Name of the schema

Chapter 13
Map Class

13-121

Parameter Description

typName Name of the type

rDQL The readSQL function pointer of the C++ class that corresponds to the type

wSQL The writeSQL function pointer of the C++ class that corresponds to the type

13.19 Message Class
A message is the unit that is enqueued dequeued. A Message object holds both its
content, or payload, and its properties. This class provides methods to get and set
message properties.

Table 13-25 Enumerated Values Used by Message Class

Attribute Options

MessageState • MSG_WAITING indicates that the message delay time has not been
reached

• MSG_READY indicates that the message is ready to be processed

• MSG_PROCESSED indicates that the message has been processed,
and is being retained

• MSG_EXPIRED indicates that the message has been moved to the
exception queue.

PayloadType • RAW
• ANYDATA
• OBJECT

Table 13-26 Summary of Message Methods

Method Summary

Message() Message class constructor.

getAnyData() Retrieves AnyData payload of the message.

getAttemptsToDequeue() Retrieves the number of attempts made to dequeue the
message.

getBytes() Retrieves Bytes payload of the message.

getCorrelationId() Retrieves the identification string.

getDelay() Retrieves delay with which message was enqueued.

getExceptionQueueName() Retrieves name of queue to which Message is moved
when it cannot be processed.

getExpiration() Retrieves the expiration of the message.

getMessageEnqueuedTime() Retrieves time at which message was enqueued.

getMessageState() Retrieves state of the message at time of enqueuing.

getObject() Retrieves object payload of the message.

Chapter 13
Message Class

13-122

Table 13-26 (Cont.) Summary of Message Methods

Method Summary

getOriginalMessageId() Retrieves the Id of the message that generated this
message on the last queue.

getPayloadType() Retrieves the type of the payload.

getPriority() Retrieves the priority of the message.

getSenderId() Retrieves the agent who send the Message.

isNull() Tests whether the Message object is NULL.

operator=() Assignment operator for Message.

setAnyData() Specifies AnyData payload of the message.

setBytes() Specifies Bytes payload of the message.

setCorrelationId() Specifies the identification string.

setDelay() Specifies the number of seconds to delay the enqueued
Message.

setExceptionQueueName() Specifies the name of the queue to which the Message
object is moved if it cannot be precessed.

setExpiration() Specifies the duration of time that Message can be
dequeued before it expires.

setNull() Sets the Message object to NULL.

setObject() Specifies object payload of the message.

setOriginalMessageId() Specifies id of last queue that generated the Message.

setPriority() Specifies priority of the Message object.

setRecipientList() Specifies the list of agents for whom the message is
intended.

setSenderId() Specifies the sender of the Message.

13.19.1 Message()
Message class constructor.

Syntax Description

Message(
 const Environment *env);

Creates a Message object within the specified
Environment.

Message(
 const Message& mes);

Copy constructor.

Parameter Description

env The environment of the Message.

Chapter 13
Message Class

13-123

Parameter Description

mes The original Message.

13.19.2 getAnyData()
Retrieves the AnyData payload of the Message.

Syntax

AnyData getAnyData() const;

13.19.3 getAttemptsToDequeue()
Retrieves the number of attempts made to dequeue the message. This property
cannot be retrieved while enqueuing.

Syntax

int getAttemptsToDequeue() const;

13.19.4 getBytes()
Retrieves Bytes payload of the Message.

Syntax

Bytes getBytes() const;

13.19.5 getCorrelationId()
Retrieves the identification string.

Syntax

string getCorrelationId() const;

13.19.6 getDelay()
Retrieves the delay (in seconds) with which the Message was enqueued.

Syntax

int getDelay() const;

13.19.7 getExceptionQueueName()
Retrieves the name of the queue to which the Message is moved, in cases when the
Message cannot be processed successfully.

Syntax

string getExceptionQueueName() const;

Chapter 13
Message Class

13-124

13.19.8 getExpiration()
Retrieves the expiration time of the Message (in seconds). This is the duration for which the
message is available for dequeuing.

Syntax

int getExpiration() const;

13.19.9 getMessageEnqueuedTime()
Retrieves the time at which the message was enqueued, in Date format. This value is
determined by the system, and cannot be set by the user.

Syntax

Date getMessageEnqueuedTime() const;

13.19.10 getMessageState()
Retrieves the state of the message at the time of enqueuing. This parameter cannot be set
an enqueuing time. MessageState is defined in Table 13-25.

Syntax

MessageState getMessageState() const;

13.19.11 getObject()
Retrieves object payload of the Message.

Syntax

PObject* getObject();

13.19.12 getOriginalMessageId()
Retrieves the original message Id. When a message is propagated from one queue to
another, gets the ID to the last queue that generated this message.

Syntax

Bytes getOriginalMessageId() const;

13.19.13 getPayloadType()
Retrieves the type of the payload, as defined for PayloadType in Table 13-25.

Syntax

PayloadType getPayloadType() const;

Chapter 13
Message Class

13-125

13.19.14 getPriority()
Retrieves the priority of the Message.

Syntax

int getPriority() const;

13.19.15 getSenderId()
Retrieves the agent who send the Message.

Syntax

Agent getSenderId() const;

13.19.16 isNull()
Tests whether the Message object is NULL. If the Message object is NULL, then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.19.17 operator=()
Assignment operator for Message.

void operator=(
 const Message& mes);

Parameter Description

mes Original message.

13.19.18 setAnyData()
Specifies AnyData payload of the Message.

Syntax

void setAnyData(
 const AnyData& anydata);

Parameter Description

anydata Data content of the Message.

Chapter 13
Message Class

13-126

13.19.19 setBytes()
Specifies Bytes payload of the Message.

Syntax

void setBytes(
 const Bytes& bytes);

Parameter Description

bytes Data content of the Message.

13.19.20 setCorrelationId()
Specifies the identification string. This parameter is set at enqueuing time by the Producer.
Messages can be dequeued with this id. The id can contain wildcard characters.

Syntax

void setCorrelationId(
 const string& id);

Parameter Description

id The id; upper limit of 128 bytes.

13.19.21 setDelay()
Specifies the time (in seconds) to delay the enqueued Message. After the delay ends, the
Message is available for dequeuing.

Note that dequeuing by msgid overrides the delay specification. A Message enqueued with
delay is in the WAITING state. Delay is set by the producer of the Message.

Syntax

void setDelay(
 int delay);

Parameter Description

delay The delay.

13.19.22 setExceptionQueueName()
Specifies the name of the queue to which the Message object is moved if it cannot be
processed successfully. The queue name must be valid.

Chapter 13
Message Class

13-127

Note that if the exception queue does not exist at the time of the move, the Message is
moved to the default exception queue associated with the queue table; a warning is
logged in the alert log.

Also note that if the default exception queue is used, the parameter returns a NULL
value at enqueuing time; the attribute must refer to a valid queue name.

Syntax

void setExceptionQueueName(
 const string& queue);

Parameter Description

queue The name of the exception queue.

13.19.23 setExpiration()
Specifies the duration time (in seconds) that the Message object is available for
dequeuing. A Message expires after this time.

Syntax

void setExpiration(
 int exp);

Parameter Description

exp The duration of expiration.

13.19.24 setNull()
Sets the Message object to NULL. Before the Connection is destroyed by the
terminateConnection() call of the Environment Class, all Message objects must be set
to NULL.

Syntax

void setNull();

13.19.25 setObject()
Specifies object payload of the Message.

Syntax

void setObject(
 PObject& pobj);

Parameter Description

pobj Content of the data

Chapter 13
Message Class

13-128

13.19.26 setOriginalMessageId()
Sets the Id of the last queue that generated the message, when a message is propagated
from one queue to another.

Syntax

void setOriginalMessageId(
 const Bytes& queue);

Parameter Description

queue The last queue.

13.19.27 setPriority()
Specifies the priority of the Message object. This property is set during enqueuing time, and
can be negative. Default is 0.

Syntax

void setPriority(
 int priority);

Parameter Description

priority The priority of the Message.

13.19.28 setRecipientList()
Specifies the list of Agents for whom the Message is intended. These recipients are not
identical to subscribers of the queue. The property is set during enqueuing. All Agents in the
list must be valid. The recipient list overrides the default subscriber list.

Syntax

void setRecipientList(
 vector<Agent>& agentList);

Parameter Description

agentList The list of Agents.

13.19.29 setSenderId()
Specifies the sender of the Message.

Chapter 13
Message Class

13-129

Syntax

void setSenderId(
 const Agent& sender);

Parameter Description

sender Sender id.

13.20 MetaData Class
A MetaData object can be used to describe the types and properties of the columns in
a ResultSet or the existing schema objects in the database. It also provides
information about the database as a whole. The enumerated values of MetaData are
in Table 13-27, and the summary of its methods is in Table 13-28.

Table 13-27 Enumerated Values Used by MetaData Class

Attribute Options

ParamType The parameter types for objects are:

• PTYPE_ARG is the argument of a function or procedure.

• PTYPE_COL is the column of a table or view.

• PTYPE_DATABASE is the database.

• PTYPE_FUNC is the function.

• PTYPE_PKG is the package.

• PTYPE_PROC is the procedure.

• PTYPE_SCHEMA is the schema.

• PTYPE_SEQ is the sequence.

• PTYPE_SYN is the synonym.

• PTYPE_TABLE is the table.

• PTYPE_TYPE is the type.

• PTYPE_TYPE_ARG is the argument of a type method.

• PTYPE_TYPE_ATTR is the attribute of a type.

• PTYPE_TYPE_COLL is the collection type information.

• PTYPE_TYPE_METHOD is the method of a type.

• PTYPE_TYPE_RESULT is the results of a method.

• PTYPE_UNK is the object of an unknown type.

• PTYPE_VIEW is the view.

AttrId common to
all parameters

Attributes of all parameters:

• ATTR_OBJ_ID is the object or schema id.

• ATTR_OBJ_NAME is either the database name, or the object name in
a schema.

• ATTR_OBJ_SCHEMA is the name of the schema describing the
object.

• ATTR_PTYPE is the type of information described by a parameter,
ParamType

• ATTR_TIMESTAMP is the timestamp of an object.

Chapter 13
MetaData Class

13-130

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrId for Tables
and Views

Parameters for a table or view (ParamType of PTYPE_TABLE and
PTYPE_VIEW) have the following type-specific attributes:

• ATTR_OBJID is the object id

• ATTR_NUM_COLS is the number of columns

• ATTR_LIST_COLUMNS is the column list

• ATTR_REF_TDO is the REF to the TDO of the base type in case of
extent tables

• ATTR_IS_TEMPORARY indicates the table is temporary

• ATTR_IS_TYPED indicates the table is typed

• ATTR_DURATION is the duration of a temporary table. Values can be
DURATION_SESSION, DURATION_TRANS, and
DURATION_NULL, as defined for attribute AttrValues

AttrId for Tables
only

Parameters for a tables only (ParamType of PTYPE_TABLE):

• ATTR_RDBA indicates the data block address of the segment header

• ATTR_TABLESPACE indicates the tablespace the table resides in

• ATTR_CLUSTERED indicates the table is clustered

• ATTR_PARTITIONED indicates the table is partitioned

• ATTR_INDEX_ONLY indicates the table is index-only

AttrId for
Functions and
Procedures

Parameters for functions and procedures (ParamType of PTYPE_FUNC
and PTYPE_PROC, respectively):

• ATTR_LIST_ARGUMENTS indicates the argument list

• ATTR_IS_INVOKER_RIGHTS indicates the procedure or function has
invoker's rights

• ATTR_NAME indicates the name of the procedure or function

• ATTR_OVERLOAD_ID indicates the overloading ID number, relevant
when the procedure or function is part of a class and it is
overloaded; values returned may be different from direct query of a
PL/SQL function or procedure

AttrId for
Packages

Parameters for packages (Paramtype of PTYPE_PKG):

• ATTR_LIST_SUBPROGRAMS indicates the subprogram list

• ATTR_IS_INVOKER_RIGHTS indicates the procedure or function has
invoker's rights

Chapter 13
MetaData Class

13-131

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrId for Types Parameter is for types (ParamType of PTYPE_TYPE):

• ATTR_REF_TDO indicates the in-memory REF of the type descriptor
for the type, if the column type is an object type. If space has not
been reserved, then it is allocated implicitly in the cache. The caller
can then pin the object.

• ATTR_TYPECODE indicates the data type code

• ATTR_COLLECTION_TYPECODE indicates the typecode of collection,
if type is collection

• ATTR_IS_INCOMPLETE_TYPE indicates that this is an incomplete
type

• ATTR_IS_SYSTEM_TYPE indicates that this is a system generated
type

• ATTR_IS_PREDEFINED_TYPE indicates that this is a predefined type

• ATTR_IS_TRANSIENT_TYPE indicates that this is a transient type

• ATTR_IS_SYSTEM_GENERATED_TYPE indicates that this is a system
generated type

• ATTR_HAS_NESTED_TABLE indicates that this type contains a
nested table attribute

• ATTR_HAS_LOB indicates that this type contains a LOB attribute

• ATTR_HAS_FILE indicates that this type contains a BFILE attribute

• ATTR_COLLECTION_ELEMENT indicates a reference to a collection
element

• ATTR_NUM_TYPE_ATTRS indicates the number of type attributes

• ATTR_LIST_TYPE_ATTRS indicates the list of type attributes

• ATTR_NUM_TYPE_METHODS indicates the number of type methods

• ATTR_LIST_TYPE_METHODS indicates the list of type methods

• ATTR_MAP_METHOD indicates the map method of the type

• ATTR_ORDER_METHOD indicates the order method of the type

• ATTR_IS_INVOKER_RIGHTS indicates the type has invoker's rights

• ATTR_NAME indicates the type attribute name

• ATTR_SCHEMA_NAME indicates the schema where the type is
created

• ATTR_IS_FINAL_TYPE indicates this is a final type

• ATTR_IS_INSTANTIABLE_TYPE indicates this is an instantiable
type

• ATTR_IS_SUBTYPE indicates this is a subtype

• ATTR_SUPERTYPE_SCHEMA_NAME indicates the name of the schema
that contains the supertype

• ATTR_SUPERTYPE_NAME indicates the name of the supertype

Chapter 13
MetaData Class

13-132

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrId for Type
Attributes

Parameter is for attributes of types (ParamType of PTYPE_TYPE_ATTR):

• ATTR_DATA_SIZE indicates the maximum size of the type attribute

• ATTR_TYPECODE indicates the data type code

• ATTR_DATA_TYPE indicates the data type of the type attribute

• ATTR_NAME indicates the name of the procedure or function

• ATTR_PRECISION indicates the precision of numeric type attributes.

• ATTR_SCALE indicates the scale of the numeric type attributes

• ATTR_TYPE_NAME indicates a type name

• ATTR_SCHEMA_NAME indicates the name of the schema where the
type has been created

• ATTR_REF_TDO indicates the in-memory REF of the type, if the
column type is an object type. If the space has not been reserved, it
is allocated implicitly in the cache. The caller can then pin the
object.

• ATTR_CHARSET_ID indicates the characterset ID

• ATTR_CHARSET_FORM indicates the characterset form

• ATTR_FSPRECISION indicates the fractional seconds precision of a
Timestamp, IntervalDS or IntervalYM

• ATTR_LFPRECISION indicates the leading field precision of an
IntervalDS or IntervalYM

AttrId for Type
Methods

Parameter is for methods of types (ParamType of PTYPE_METHOD):

• ATTR_NAME indicates the name of the procedure or function

• ATTR_ENCAPSULATION indicates the method's level of
encapsulation

• ATTR_LIST_ARGUMENTS indicates the argument list

• ATTR_IS_CONSTRUCTOR indicates the method is a constructor

• ATTR_IS_DESTRUCTOR indicates the method is a destructor

• ATTR_IS_OPERATOR indicates the method is an operator

• ATTR_IS_SELFISH indicates the method is selfish

• ATTR_IS_MAP indicates the method is a map method

• ATTR_IS_ORDER indicates the method is an order method

• ATTR_IS_RNDS indicates that the method is in "read no data" state

• ATTR_IS_RNPS indicates that the method is in a "read no process"
state

• ATTR_IS_WNDS indicates that the method is in "write no data" state

• ATTR_IS_WNPS indicates that the method is in "write no process"
state

• ATTR_IS_FINAL_METHOD indicates that this is a final method

• ATTR_IS_INSTANTIABLE_METHOD indicates that this is an
instantiable method

• ATTR_IS_OVERRIDING_METHOD indicates that this is an overriding
method

Chapter 13
MetaData Class

13-133

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrId for
Collections

Parameter is for collections (ParamType of PTYPE_TYPE_COLL):

• ATTR_DATA_SIZE indicates ...

• ATTR_TYPECODE indicates ...

• ATTR_DATA_TYPE indicates the data type of the type attribute

• ATTR_NUM_ELEMS indicates the number of elements in a collection

• ATTR_NAME indicates the name of the type attribute

• ATTR_PRECISION indicates the precision of a numeric attribute

• ATTR_SCALE indicates the scale of a numeric attribute

• ATTR_TYPE_NAME indicates the type name

• ATTR_SCHEMA_NAME indicates the schema where the type has been
created

• ATTR_REF_TDO indicates the in-memory REF of the type, if the
column type is an object type. If the space has not been reserved, it
is allocated implicitly in the cache. The caller can then pin the
object.

• ATTR_CHARSET_ID indicates the characterset id

• ATTR_CHARSET_FORM indicates the characterset form

• ATTR_IS_IDENTITY indicates that the column may be auto-
incremented

AttrId for
Synonyms

Parameter is for synonyms (ParamType of PTYPE_SYN):

• ATTR_OBJID indicates the object id

• ATTR_SCHEMA_NAME indicates the schema name of the synonym
translation

• ATTR_NAME indicates a NULL-terminated object name of the
synonym translation

• ATTR_LINK indicates a NULL-terminated database link name of the
synonym installation

AttrId for
Sequences

Parameter is for sequences (ParamType of PTYPE_SEQ):

• ATTR_OBJID indicates the object id

• ATTR_MIN indicates the minimum value

• ATTR_MAX indicates the maximum value

• ATTR_INCR indicates the increment

• ATTR_CACHE indicates the number of sequence numbers cached; 0
if the sequence is not cached

• ATTR_ORDER indicates whether the sequence is ordered

• ATTR_HW_MARK indicates the "high-water mark"

Chapter 13
MetaData Class

13-134

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrId for Columns Parameter is for columns of tables or views (ParamType of PTYPE_COL):

• ATTR_CHAR_USED indicates the type of length semantics of the
column. 0 means byte-length semantics and 1 means character-
length semantics.

• ATTR_CHAR_SIZE indicates the column character length, or number
of characters allowed in a column

• ATTR_DATA_SIZE indicates the maximum size of a column, or
number of bytes allowed in a column

• ATTR_DATA_TYPE indicates the data type of the column

• ATTR_NAME indicates the column name

• ATTR_PRECISION indicates the precision of numeric columns

• ATTR_SCALE indicates the scale of numeric columns

• ATTR_IS_NULL indicates 0 if NULL values are not permitted for the
column

• ATTR_TYPE_NAME indicates a type name

• ATTR_SCHEMA_NAME indicates the schema where the type was
created

• ATTR_REF_TDO indicates the REF for the type, if the column is of
object type

• ATTR_CHARSET_ID indicates the characterset ID

• ATTR_CHARSET_FORM indicates the characterset form

Chapter 13
MetaData Class

13-135

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrId for
Arguments and
Results

Parameter for arguments of a procedure or function (PTYPE_ARG), a
method (PTYPE_TYPE_ARG), or a result (PTYPE_TYPE_RESULT)

• ATTR_NAME indicates the argument name

• ATTR_POSITION indicates the position of the argument in the list

• ATTR_TYPECODE indicates the typecode

• ATTR_DATA_TYPE indicates the data type

• ATTR_DATA_SIZE indicates the size of the data type

• ATTR_PRECISION indicates the precision of a numeric argument

• ATTR_SCALE indicates the scale of a numeric argument

• ATTR_LEVEL indicates the data type level

• ATTR_HAS_DEFAULT indicates whether an argument has a default

• ATTR_LIST_ARGUMENTS indicates the list of arguments at the next
level, for records or table types

• ATTR_IOMODE indicates the argument mode: 0 for IN, 1 for OUT, 2
for IN/OUT

• ATTR_RADIX indicates the radix of a number type

• ATTR_IS_NULL indicates 0 if NULL values are not permitted

• ATTR_TYPE_NAME indicates the type name

• ATTR_SCHEMA_NAME indicates the schema name where the type
was created

• ATTR_SUB_NAME indicates the type name for package local types

• ATTR_LINK indicates a NULL-terminated database link name where
the type is defined, for package local types when the package is
remote

• ATTR_REF_TDO is the REF to the TDO of the type if the argument is
an object

• ATTR_CHARSET_ID indicates the characterset ID

• ATTR_CHARSET_FORM indicates the characterset form

AttrId for Schemas Parameter is for schemas (ParamType of PTYPE_SCHEMA):

• ATTR_LIST_OBJECTS indicates the list of objects in the schema

AttrId for Lists Parameter is for list of columns, arguments or subprograms:

• ATTR_LIST_COLUMNS indicates a column list

• ATTR_LIST_ARGUMENTS indicates a procedure or function
argument list

• ATTR_LIST_SUBPROGRAMS indicates a subprogram list

• ATTR_LIST_TYPE_ATTRIBS indicates a type attribute list

• ATTR_TYPE_METHODS indicates a type method list

• ATTR_TYPE_OBJECTS indicates a list of objects in a schema

• ATTR_LIST_SCHEMAS indicates a list of schemas in a database

Chapter 13
MetaData Class

13-136

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrId for
Databases

Parameter is for list of columns, arguments or subprograms (ParamType
of PTYPE_DATABASE):

• ATTR_VERSION indicates the database version

• ATTR_CHARSET_ID indicates the characterset ID of the database

• ATTR_NCHARSET_ID indicates the national characterset of the
database

• ATTR_LIST_SCHEMAS indicates the list of schemas,
PTYPE_SCHEMA

• ATTR_MAX_PROC_LEN indicates the maximum length of a procedure
name

• ATTR_MAX_COLUMN_LEN indicates the maximum length of a column
name

• ATTR_CURSOR_COMMIT_BEHAVIOR indicates how a commit affects
cursors and prepared statements. Values can be CURSOR_OPEN
and CURSER_CLOSED, as defined for attribute AttrValues

• ATTR_MAX_CATALOG_NAMELEN indicates the maximum length of a
database (catalog) name

• ATTR_CATALOG_LOCATION indicates the position of the catalog in a
qualified table. Values can be CL_START and CL_END, as defined
for attribute AttrValues

• ATTR_SAVEPOINT_SUPPORT indicates whether the database
supports savepoints. Values can be SP_SUPPORTED and
SP_UNSUPPORTED, as defined for attribute AttrValues

• ATTR_NOWAIT_SUPPORT indicates whether the database supports
the "no wait" condition. Values can be NW_SUPPORTED and
NW_UNSUPPORTED, as defined for attribute AttrValues

• ATTR_AUTOCOMMIT_DDL indicates if an autocommit mode is
required for DDL statements. Values can be AC_DDL and
NO_AC_DDL, as defined for attribute AttrValues

• ATTR_LOCKING_MODE indicates the locking mode for the database.
Values can be LOCK_IMMEDIATE and LOCK_DELAYED, as
defined for attribute AttrValues

Chapter 13
MetaData Class

13-137

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

Attribute Options

AttrValues Attribute values are returned on executing a getxxx() method and
passing in an attribute, for which these are the results:

• DURATION_SESSION is the duration of a temporary table: session.

• DURATION_TRANS is the duration of a temporary table: transaction.

• DURATION_NULL is the duration of a temporary table: table not
temporary.

• TYPEENCAP_PRIVATE is the encapsulation level of the method:
private.

• TYPEENCAP_PUBLIC is the encapsulation level of the method:
public.

• TYPEPARAM_IN is the argument mode: IN.

• TYPEPARAM_OUT is the argument mode: OUT.

• TYPEPARAM_INOUT is the argument mode: IN/OUT.

• CURSOR_OPEN is the effect of COMMIT operation on cursors and
prepared statements in the database: preserve cursor state as
before the COMMIT operation.

• CURSER_CLOSED is the effect of COMMIT operation on cursors and
prepared statements in the database: cursors are closed on
COMMIT, but the application can still rerun the statement without
preparing it again.

• CL_START is the position of the catalog in a qualified table: start.

• CL_END is the position of the catalog in a qualified table: end.

• SP_SUPPORTED is the database supports savepoints.

• SP_UNSUPPORTED is the database does not support savepoints.

• NW_SUPPORTED is the database supports nowait clause.

• NW_UNSUPPORTED is the database does not supports nowait clause.

• AC_DDL is the autocommit mode required for DDL statements.

• NO_AC_DDL is the autocommit mode not required for DDL
statements.

• LOCK_IMMEDIATE is the locking mode for the database: immediate.

• LOCK_DELAYED is the locking mode for the database: delayed.

ColumnAttrId Attributes for column identity enable automatic increment support.
Possible values are:

• ATTR_COL_IS_IDENTITY is true when column is an identity
column.

• ATTR_COL_IS_GEN_ALWAYS is true when the column is always
generated.

• ATTR_COL_IS_GEN_BY_DEF_ON_NULL is true when the identity
column is generated by default on null.

Table 13-28 Summary of MetaData Methods

Method Description

MetaData() MetaData class constructor.

getAttributeCount() Gets the count of the attribute as a MetaData object

getAttributeId() Gets the ID of the specified attribute

Chapter 13
MetaData Class

13-138

Table 13-28 (Cont.) Summary of MetaData Methods

Method Description

getAttributeType() Gets the type of the specified attribute.

getBoolean() Gets the value of the attribute as a C++ boolean.

getInt() Gets the value of the attribute as a C++ int.

getMetaData() Gets the value of the attribute as a MetaData object

getNumber() Returns the specified attribute as a Number object.

getRef() Gets the value of the attribute as a Ref<T>.

getString() Gets the value of the attribute as a string.

getTimeStamp() Gets the value of the attribute as a Timestamp object

getUInt() Gets the value of the attribute as a C++ unsigned int.

getUString() Returns the value of the attribute as a UString in the
character set associated with the metadata.

getVector() Gets the value of the attribute as an C++ vector.

operator=() Assigns one metadata object to another.

13.20.1 MetaData()
MetaData class constructor.

Syntax

MetaData(
 const MetaData &omd);

Parameter Description

cmd The source that the MetaData object is copied from.

13.20.2 getAttributeCount()
This method returns the number of attributes related to the metadata object.

Syntax

unsigned int getAttributeCount() const;

13.20.3 getAttributeId()
This method returns the attribute ID, such as ATTR_NUM_COLS, of the attribute represented by
the attribute number specified.

Syntax

AttrId getAttributeId(
 unsigned int attributeNum) const;

Chapter 13
MetaData Class

13-139

Parameter Description

attributeNum The number of the attribute for which the attribute ID is to be returned.

13.20.4 getAttributeType()
This method returns the attribute type, such as NUMBER or INT, of the attribute
represented by attribute number specified.

Syntax

Type getAttributeType(
 unsigned int attributeNum) const;

Parameter Description

attributeNum The number of the attribute for which the attribute type is to be returned.

13.20.5 getBoolean()
This method returns the value of the attribute as a C++ boolean. If the value is a SQL
NULL, the result is FALSE. The overloaded version returns the value of the column
attribute.

Syntax Description

bool getBoolean(
 MetaData::AttrId attributeId) const;

Returns the value of the
attribute.

bool getBoolean(
 MetaData::ColumnAttrId colAttributeId) const;

Returns the value of the
column attribute

Parameter Description

attributeId The attribute ID

colAttributeId The column attribute ID

13.20.6 getInt()
This method returns the value of the attribute as a C++ int. If the value is SQL NULL,
the result is 0.

Syntax

int getInt(
 MetaData::AttrId attributeId) const;

Chapter 13
MetaData Class

13-140

Parameter Description

attributeId The attribute ID

13.20.7 getMetaData()
This method returns a MetaData instance holding the attribute value. A metadata attribute
value can be retrieved as a MetaData instance. This method can only be called on attributes
of the metadata type.

Syntax

MetaData getMetaData(
 MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

13.20.8 getNumber()
This method returns the value of the attribute as a Number object. If the value is a SQL NULL,
the result is NULL.

Syntax

Number getNumber(
 MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

13.20.9 getRef()
This method returns the value of the attribute as a RefAny, or Ref to a TDO. If the value is SQL
NULL, the result is NULL.

Syntax

RefAny getRef(
 MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

Chapter 13
MetaData Class

13-141

13.20.10 getString()
This method returns the value of the attribute as a string. If the value is SQL NULL, the
result is NULL.

Starting Oracle Database Release 23c, the following two new attributes are
introduced: MetaData::ATTR_DOMAIN_NAME and MetaData::ATTR_DOMAIN_SCHEMA for
class MetaData to represent domain name and domain schema respectively.

Syntax

string getString(
 MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

13.20.11 getTimeStamp()
This method returns the value of the attribute as a Timestamp object. If the value is a
SQL NULL, the result is NULL.

Syntax

Timestamp getTimestamp(
 MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

13.20.12 getUInt()
This method returns the value of the attribute as a C++ unsigned int. If the value is a
SQL NULL, the result is 0.

Syntax

unsigned int getUInt(
 MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

13.20.13 getUString()
Returns the value of an attribute as a UString in the character set associated with the
metadata.

Chapter 13
MetaData Class

13-142

Syntax

UString getUString(
 MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

13.20.14 getVector()
This method returns a C++ vector containing the attribute value. A collection attribute value
can be retrieved as a C++ vector instance. This method can only be called on attributes of a
list type.

Syntax

vector<MetaData> getVector(
 MetaData::AttrId attributeId) const;

Parameter Description

attributeId The attribute ID

13.20.15 operator=()
This method assigns one MetaData object to another. This increments the reference count of
the MetaData object that is assigned.

Syntax

void operator=(
 const MetaData &omd);

Parameter Description

cmd MetaData object to be assigned

13.21 NotifyResult Class
A NotifyResult object holds the notification information in the Database AQ notification
callback. It is created by OCCI before invoking a user-callback, and is destroyed after the
user-callback returns.

Table 13-29 Summary of NotifyResult Methods

Method Summary

getConsumerName() Returns the name of the notification consumer.

Chapter 13
NotifyResult Class

13-143

Table 13-29 (Cont.) Summary of NotifyResult Methods

Method Summary

getMessage() Returns the message.

getMessageId() Returns the message ID.

getPayload() Returns the payload.

getQueueName() Returns the name of the queue.

13.21.1 getConsumerName()
Gets the name of the consumer for which the message has been enqueued. In a
single consumer queue, this is a empty string.

string getConsumerName() const;

13.21.2 getMessage()
Gets the message which has been enqueued into the non-persistent queue.

Message getMessage() const;

13.21.3 getMessageId()
Gets the id of the message which has been enqueued.

Bytes getMessageId() const;

13.21.4 getPayload()
Gets the payload in case of a notification from NS_ANONYMOUS namespace.

Bytes getPayload() const;

13.21.5 getQueueName()
Gets the name of the queue on which the enqueue has happened

string getQueueName() const;

13.22 Number Class
The Number class handles limited-precision signed base 10 numbers. A Number
guarantees 38 decimal digits of precision. All positive numbers in the range displayed
here can be represented to a full 38-digit precision:

10^-130

and

9.99999999999999999999999999999999999999*10^125

The range of representable negative numbers is symmetrical.

Chapter 13
Number Class

13-144

The number zero can be represented exactly. Also, Oracle numbers have representations for
positive and negative infinity. These are generally used to indicate overflow.

The internal storage type is opaque and private. Scale is not preserved when Number
instances are created.

Number does not support the concept of NaN and is not IEEE-754-85 compliant. Number does
support +Infinity and -Infinity.

Objects from the Number class can be used as standalone class objects in client side numeric
computations. They can also be used to fetch from and set to the database.

Example 13-10 How to Retrieve and Use a Number Object

This example demonstrates a Number column value being retrieved from the database, a bind
using a Number object, and a comparison using a standalone Number object.

/* Create a connection */
Environment *env = Environment::createEnvironment(Environment::DEFAULT);
Connection *conn = Connection(user, passwd, db);

/* Create a statement and associate a select clause with it */
string sqlStmt = "SELECT department_id FROM DEPARTMENTS";
Statement *stmt = conn->createStatement(sqlStmt);

/* Run the statement to get a result set */
ResultSet *rset = stmt->executeQuery();
while(rset->next())
{
 Number deptId = rset->getNumber(1);
 /* Display the department id with the format string 9,999 */
 cout << "Department Id" << deptId.toText(env, "9,999");

 /* Use the number obtained as a bind value in the following query */
 stmt->setSQL("SELECT * FROM EMPLOYEES WHERE department_id = :x");
 stmt->setNumber(1, deptId);
 ResultSet *rset2 = stmt->executeQuery();
 .
 .
}
/* Using a Number object as a standalone and the operations on them */

/* Create a number to a double value */
double value = 2345.123;
Number nu1 (value);

/* Some common Number methods */
Number abs = nu1.abs(); /* absolute value */
Number sqrt = nu1.squareroot(); /* square root */
Environment *env = Environment::createEnvironment();

//create a null year-month interval
IntervalYM ym
if(ym.isNull())
 cout << "\n ym is null";

//assign a non null value to ym
IntervalYM anotherYM(env, "10-30");
ym = anotherYM;

Chapter 13
Number Class

13-145

//now all operations are valid on ym
int yr = ym.getYear();

Table 13-30 Summary of Number Methods

Method Summary

Number() Number class constructor.

abs() Returns the absolute value of the number.

arcCos() Returns the arcCosine of the number.

arcSin() Returns the arcSine of the number.

arcTan() Returns the arcTangent of the number.

arcTan2() Returns the arcTangent2 of the input number y and this
number x.

ceil() Returns the smallest integral value not less than the value of
the number.

cos() Returns the cosine of the number.

exp() Returns the natural exponent of the number.

floor() Returns the largest integral value not greater than the value
of the number.

fromBytes() Returns a Number derived from a Bytes object.

fromText() Returns a Number from a given number string, format string
and NLS parameters specified.

hypCos() Returns the hyperbolic cosine of the number.

hypSin() Returns the hyperbolic sine of the number.

hypTan() Returns the hyperbolic tangent of the number.

intPower() Returns the number raised to the integer value specified.

isNull() Checks if Number is NULL.

ln() Returns the natural logarithm of the number.

log() Returns the logarithm of the number to the base value
specified.

operator++() Increments the number.

operator--() Decrements the number.

operator*() Returns the product of two Numbers.

operator/() Returns the quotient of two Numbers.

operator%() Returns the modulo of two Numbers.

operator+() Returns the sum of two Numbers.

operator-() Returns the negated value of Number.
operator-() Returns the difference between two Numbers.

operator<() Checks if a number is less than an other number.

operator<=() Checks if a number is less than or equal to an other number.

operator>() Checks if a number is greater than an other number.

operator>=() Checks if a number is greater than or equal to an other
number.

operator=() Assigns one number to another.

Chapter 13
Number Class

13-146

Table 13-30 (Cont.) Summary of Number Methods

Method Summary

operator==() Checks if two numbers are equal.

operator!=() Checks if two numbers are not equal.

operator*=() Multiplication assignment.

operator/=() Division assignment.

operator%=() Modulo assignment.

operator+=() Addition assignment.

operator-=() Subtraction assignment.

operator char() Returns Number converted to native char.

operator signed char() Returns Number converted to native signed char.

operator double() Returns Number converted to a native double.

operator float() Returns Number converted to a native float.

operator int() Returns Number converted to native integer.

operator long() Returns Number converted to native long.

operator long double() Returns Number converted to a native long double.

operator short() Returns Number converted to native short integer.

operator unsigned char() Returns Number converted to an unsigned native char.

operator unsigned int() Returns Number converted to an unsigned native integer.

operator unsigned long() Returns Number converted to an unsigned native long.

operator unsigned short() Returns Number converted to an unsigned native short
integer.

power() Returns Number raised to the power of another number
specified.

prec() Returns Number rounded to digits of precision specified.

round() Returns Number rounded to decimal place specified.
Negative values are allowed.

setNull() Sets Number to NULL.

shift() Returns a Number that is equivalent to the passed value *
10^n, where n may be positive or negative.

sign() Returns the sign of the value of the passed value: -1 for the
passed value < 0, 0 for the passed value == 0, and 1 for the
passed value > 0.

sin() Returns sine of the number.

squareroot() Returns the square root of the number.

tan() Returns tangent of the number.

toBytes() Returns a Bytes object representing the Number.

toText() Returns the number as a string formatted based on the
format and NLS parameters.

trunc() Returns a Number with the value truncated at n decimal
place(s). Negative values are allowed.

Chapter 13
Number Class

13-147

13.22.1 Number()
Number class constructor.

Syntax Description

Number(); Default constructor.

Number(
 const Number &srcNum);

Creates a copy of a Number.

Number(
 long double &val);

Translates a native long double into a Number. The Number
is created using the precision of the platform-specific
constant LDBL_DIG.

Number(
 double val);

Translates a native double into a Number. The Number is
created using the precision of the platform-specific constant
DBL_DIG.

Number(
 float val);

Translates a native float into a Number. The Number is
created using the precision of the platform-specific constant
FLT_DIG.

Number(
 long val);

Translates a native long into a Number.

Number(
 int val);

Translates a native int into a Number.

Number(
 shot val);

Translates a native short into a Number.

Number(
 char val);

Translates a native char into a Number.

Number(
 signed char val);

Translates a native signed char into a Number.

Number(
 unsigned long val);

Translates an native unsigned long into a Number.

Number(
 unsigned int val);

Translates a native unsigned int into a Number.

Number(
 unsigned short val);

Translates a native unsigned short into a Number.

Number(
 unsigned char val);

Translates the unsigned character array into a Number.

Chapter 13
Number Class

13-148

Parameter Description

srcNum The source Number copied into the new Number object.

val The value assigned to the Number object.

13.22.2 abs()
This method returns the absolute value of the Number object.

Syntax

const Number abs() const;

13.22.3 arcCos()
This method returns the arccosine of the Number object.

Syntax

const Number arcCos() const;

13.22.4 arcSin()
This method returns the arcsine of the Number object.

Syntax

const Number arcSin() const;

13.22.5 arcTan()
This method returns the arctangent of the Number object.

Syntax

const Number arcTan() const;

13.22.6 arcTan2()
This method returns the arctangent of the Number object with the parameter specified. It
returns atan2 (val, x) where val is the parameter specified and x is the current number
object.

Syntax

const Number arcTan2(
 const Number &val) const;

Chapter 13
Number Class

13-149

Parameter Description

val Number parameter val to the arcTangent function atan2(val,x).

13.22.7 ceil()
This method returns the smallest integer that is greater than or equal to the Number
object.

Syntax

const Number ceil() const;

13.22.8 cos()
This method returns the cosine of the Number object.

Syntax

const Number cos() const;

13.22.9 exp()
This method returns the natural exponential of the Number object.

Syntax

const Number exp() const;

13.22.10 floor()
This method returns the largest integer that is less than or equal to the Number object.

Syntax

const Number floor() const;

13.22.11 fromBytes()
This method returns a Number object represented by the byte string specified.

Syntax

void fromBytes(
 const Bytes &str);

Parameter Description

str A byte string.

Chapter 13
Number Class

13-150

13.22.12 fromText()
Sets Number object to value represented by a string or UString.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are used.

See Also:

Oracle Database SQL Language Reference for information on TO_NUMBER

Syntax Description

void fromText(
 const Environment *envp,
 const string &number,
 const string &fmt,
 const string &nlsParam = "");

Sets Number object to value represented by a
string.

void fromText(
 const Environment *envp,
 const UString &number,
 const UString &fmt,
 const UString &nlsParam);

Sets Number object to value represented by a
UString.

Parameter Description

envp The OCCI environment.

number The number string to be converted to a Number object.

fmt The format string.

nlsParam The NLS parameters string. If nlsParam is specified, this determines
the NLS parameters to be used for the conversion. If nlsParam is not
specified, the NLS parameters are picked up from envp.

13.22.13 hypCos()
This method returns the hypercosine of the Number object.

Syntax

const Number hypCos() const;

13.22.14 hypSin()
This method returns the hypersine of the Number object.

Chapter 13
Number Class

13-151

Syntax

const Number hypSin() const;

13.22.15 hypTan()
This method returns the hypertangent of the Number object.

Syntax

const Number hypTan() const;

13.22.16 intPower()
This method returns a Number whose value is the number object raised to the power of
the value specified.

Syntax

const Number intPower(
 int val) const;

Parameter Description

val Power to which the number is raised.

13.22.17 isNull()
This method tests whether the Number object is NULL. If the Number object is NULL, then
TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.22.18 ln()
This method returns the natural logarithm of the Number object.

Syntax

const Number ln() const;

13.22.19 log()
This method returns the logarithm of the Number object with the base provided by the
parameter specified.

Syntax

const Number log(
 const Number &val) const;

Chapter 13
Number Class

13-152

Parameter Description

val The base to be used in the logarithm calculation.

13.22.20 operator++()
Unary operator++(). This is a postfix operator.

Syntax Description

Number& operator++(); This method returns the Number object incremented by 1.

const Number operator++(
 int incr);

This method returns the Number object incremented by the
integer specified.

Parameter Description

incr The number by which the Number object is incremented.

13.22.21 operator--()
Unary operator--(). This is a prefix operator.

Syntax Description

Number& operator--(); This method returns the Number object decremented by 1.

const Number operator--(
 int decr);

This method returns the Number object decremented by the
integer specified.

Parameter Description

decr The number by which the Number object is decremented.

13.22.22 operator*()
This method returns the product of the parameters specified.

Syntax

Number operator*(
 const Number &first,

 const Number &second);

Chapter 13
Number Class

13-153

Parameter Description

first First multiplicand.

second Second multiplicand.

13.22.23 operator/()
This method returns the quotient of the parameters specified.

Syntax

Number operator/(
 const Number ÷nd,
 const Number &divisor);

Parameter Description

dividend The number to be divided.

divisor The number by which to divide.

13.22.24 operator%()
This method returns the remainder of the division of the parameters specified.

Syntax

Number operator%(
 const Number ÷nd,
 const Number ÷r);

Parameter Description

dividend The number to be divided.

divizor The number by which to divide.

13.22.25 operator+()
This method returns the sum of the parameters specified.

Syntax

Number operator+(
 const Number &first,
 const Number &second);

Chapter 13
Number Class

13-154

Parameter Description

first First number to be added.

second Second number to be added.

13.22.26 operator-()
Unary operator-(). This method returns the negated value of the Number object.

Syntax

const Number operator-();

13.22.27 operator-()
This method returns the difference between the parameters specified.

Syntax

Number operator-(
 const Number &subtrahend,
 const Number &subtractor);

Parameter Description

subtrahend The number to be reduced.

subtractor The number to be subtracted.

13.22.28 operator<()
This method checks whether the first parameter specified is less than the second parameter
specified. If the first parameter is less than the second parameter, then TRUE is returned;
otherwise, FALSE is returned. If either parameter equals infinity, then FALSE is returned.

Syntax

bool operator<(
 const Number &first,
 const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

Chapter 13
Number Class

13-155

13.22.29 operator<=()
This method checks whether the first parameter specified is less than or equal to the
second parameter specified. If the first parameter is less than or equal to the second
parameter, then TRUE is returned; otherwise, FALSE is returned. If either parameter
equals infinity, then FALSE is returned.

Syntax

bool operator<=(
 const Number &first,
 const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

13.22.30 operator>()
This method checks whether the first parameter specified is greater than the second
parameter specified. If the first parameter is greater than the second parameter, then
TRUE is returned; otherwise, FALSE is returned. If either parameter equals infinity, then
FALSE is returned.

Syntax

bool operator>(
 const Number &first,
 const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

13.22.31 operator>=()
This method checks whether the first parameter specified is greater than or equal to
the second parameter specified. If the first parameter is greater than or equal to the
second parameter, then TRUE is returned; otherwise, FALSE is returned. If either
parameter equals infinity, then FALSE is returned.

Syntax

bool operator>=(
 const Number &first,
 const Number &second);

Chapter 13
Number Class

13-156

Parameter Description

first First number to be compared.

second Second number to be compared.

13.22.32 operator==()
This method checks whether the parameters specified are equal. If the parameters are equal,
then TRUE is returned; otherwise, FALSE is returned. If either parameter equals +infinity or -
infinity, then FALSE is returned.

Syntax

bool operator==(
 const Number &first,
 const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

13.22.33 operator!=()
This method checks whether the first parameter specified equals the second parameter
specified. If the parameters are not equal, TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator!=(
 const Number &first,
 const Number &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

13.22.34 operator=()
This method assigns the value of the parameter specified to the Number object.

Syntax

Number& operator=(
 const Number &num);

Chapter 13
Number Class

13-157

Parameter Description

num A parameter of type Number.

13.22.35 operator*=()
This method multiplies the Number object by the parameter specified, and assigns the
product to the Number object.

Syntax

Number& operator*=(
 const Number &num);

Parameter Description

num A parameter of type Number.

13.22.36 operator/=()
This method divides the Number object by the parameter specified, and assigns the
quotient to the Number object.

Syntax

Number& operator/=(
 const Number &num);

Parameter Description

num A parameter of type Number.

13.22.37 operator%=()
This method divides the Number object by the parameter specified, and assigns the
remainder to the Number object.

Syntax

Number& operator%=(
 const Number &num);

Parameter Description

num A parameter of type Number.

Chapter 13
Number Class

13-158

13.22.38 operator+=()
This method adds the Number object and the parameter specified, and assigns the sum to
the Number object.

Syntax

Number& operator+=(
 const Number &num);

Parameter Description

num A parameter of type Number.

13.22.39 operator-=()
This method subtracts the parameter specified from the Number object, and assigns the
difference to the Number object.

Syntax

Number& operator-=(
 const Number &num);

Parameter Description

num A parameter of type Number.

13.22.40 operator char()
This method returns the value of the Number object converted to a native char.

Syntax

operator char() const;

13.22.41 operator signed char()
This method returns the value of the Number object converted to a native signed char.

Syntax

operator signed char() const;

13.22.42 operator double()
This method returns the value of the Number object converted to a native double.

Syntax

operator double() const;

Chapter 13
Number Class

13-159

13.22.43 operator float()
This method returns the value of the Number object converted to a native float.

Syntax

operator float() const;

13.22.44 operator int()
This method returns the value of the Number object converted to a native int.

Syntax

operator int() const;

13.22.45 operator long()
This method returns the value of the Number object converted to a native long.

Syntax

operator long() const;

13.22.46 operator long double()
This method returns the value of the Number object converted to a native long double.

Syntax

operator long double() const;

13.22.47 operator short()
This method returns the value of the Number object converted to a native short integer.

Syntax

operator short() const;

13.22.48 operator unsigned char()
This method returns the value of the Number object converted to a native unsigned
char.

Syntax

operator unsigned char() const;

13.22.49 operator unsigned int()
This method returns the value of the Number object converted to a native unsigned
int.

Chapter 13
Number Class

13-160

Syntax

operator unsigned int() const;

13.22.50 operator unsigned long()
This method returns the value of the Number object converted to a native unsigned long.

Syntax

operator unsigned long() const;

13.22.51 operator unsigned short()
This method returns the value of the Number object converted to a native unsigned short
integer.

Syntax

operator unsigned short() const;

13.22.52 power()
This method returns the value of the Number object raised to the power of the value provided
by the parameter specified.

Syntax

const Number power(
 const Number &val) const;

Parameter Description

val The power to which the number has to be raised.

13.22.53 prec()
This method returns the value of the Number object rounded to the digits of precision provided
by the parameter specified.

Syntax

const Number prec(
 int digits) const;

Parameter Description

digits The number of digits of precision.

Chapter 13
Number Class

13-161

13.22.54 round()
This method returns the value of the Number object rounded to the decimal place
provided by the parameter specified.

Syntax

const Number round(
 int decPlace) const;

Parameter Description

decPlace The number of digits to the right of the decimal point.

13.22.55 setNull()
This method sets the value of the Number object to NULL.

Syntax

void setNull();

13.22.56 shift()
This method returns the Number object multiplied by 10 to the power provided by the
parameter specified.

Syntax

const Number shift(
 int val) const;

Parameter Description

val An integer value.

13.22.57 sign()
This method returns the sign of the value of the Number object. If the Number object is
negative, then create a Date object using integer parameters is returned. If the Number
object equals 0, then create a Date object using integer parameters is returned. If the
Number object is positive, then 1 is returned.

Syntax

const int sign() const;

13.22.58 sin()
This method returns the sin of the Number object.

Chapter 13
Number Class

13-162

Syntax

const Number sin() const;

13.22.59 squareroot()
This method returns the square root of the Number object.

Syntax

const Number squareroot() const;

13.22.60 tan()
This method returns the tangent of the Number object.

Syntax

const Number tan() const;

13.22.61 toBytes()
This method converts the Number object into a Bytes object. The bytes representation is
assumed to be in length excluded format, that is, the Byte.length() method gives the length
of valid bytes and the 0th byte is the exponent byte.

Syntax

Bytes toBytes() const;

13.22.62 toText()
Convert the Number object to a formatted string or UString based on the parameters
specified.

See Also:

Oracle Database SQL Language Referencefor information on TO_NUMBER

Syntax Description

string toText(
 const Environment *envp,
 const string &fmt,
 const string &nlsParam = "") const;

Convert the Number object to a
formatted string based on the
parameters specified.

UString toText(
 const Environment *envp,
 const UString &fmt,
 const UString &nlsParam) const;

Convert the Number object to a UString
based on the parameters specified.

Chapter 13
Number Class

13-163

Parameter Description

envp The OCCI environment.

fmt The format string.

nlsParam The NLS parameters string. If nlsParam is specified, this
determines the NLS parameters to be used for the conversion. If
nlsParam is not specified, the NLS parameters are picked up from
envp.

13.22.63 trunc()
This method returns the Number object truncated at the number of decimal places
provided by the parameter specified.

Syntax

const Number trunc(
 int decPlace) const;

Parameter Description

decPlace The number of places to the right of the decimal place at which the
value is to be truncated.

13.23 PObject Class
OCCI provides object navigational calls that enable applications to perform any of the
following on objects:

• Creating, accessing, locking, deleting, copying, and flushing objects

• Getting references to the objects

This class enables the type definer to specify when a class can have persistent or
transient instances. Instances of classes derived from PObject are either persistent or
transient. For example, class A that is persistent-capable inherits from the PObject
class:

class A : PObject { ... }

The only methods valid on a NULL PObject are setName(), isNull(), and operator=().

Some methods, such as lock(), apply only for persistent instances, not for transient
instances.

Chapter 13
PObject Class

13-164

Table 13-31 Enumerated Values Used by PObject Class

Attribute Options

LockOption • OCCI_LOCK_WAIT instructs the cache to pin the object only after acquiring
a lock; if the object is locked by another user, the pin call with this option
waits until it can acquire the lock before returning to the caller; equivalent
to SELECT FOR UPDATE

• OCCI_LOCK_NOWAIT instructs the cache to pin the object only after
acquiring a lock; does not wait if the object is currently locked by another
user; equivalent to SELECT FOR UPDATE WITH NOWAIT

UnpinOption • OCCI_PINCOUNT_RESET resets the object's pin count to 0
• OCCI_PINCOUNT_DECR decrements the object's pin count by 1

Table 13-32 Summary of PObject Methods

Method Summary

PObject() PObject class constructor.

flush() Flushes a modified persistent object to the database server.

getConnection() Returns the connection from which the PObject object was
instantiated.

getRef() Returns a reference to a given persistent object.

getSQLTypeName() Returns the Oracle database typename for this class.

isLocked() Tests whether the persistent object is locked.

isNull() Tests whether the object is NULL.

lock() Lock a persistent object on the database server. The default
mode is to wait for the lock if not available.

markDelete() Marks a persistent object as deleted.

markModified() Marks a persistent object as modified or dirty.

operator=() Assigns one PObject to another.

operator delete() Remove the persistent object from the application cache only.

operator new() Creates a new persistent / transient instance.

pin() Pins an object.

setNull() Sets the object value to NULL.

unmark() Unmarks an object as dirty.

unpin() Unpins an object. In the default mode, the pin count of the
object is decremented by one.

13.23.1 PObject()
PObject class constructor.

Syntax Description

PObject(); Creates a NULL PObject.

Chapter 13
PObject Class

13-165

Syntax Description

PObject(
 const PObject &obj);

Creates a copy of PObject.

Parameter Description

obj The source object.

13.23.2 flush()
This method flushes a modified persistent object to the database server.

Syntax

void flush();

13.23.3 getConnection()
Returns the connection from which the persistent object was instantiated.

Syntax

const Connection *getConnection() const;

13.23.4 getRef()
This method returns a reference to the persistent object.

Syntax

RefAny getRef() const;

13.23.5 getSQLTypeName()
Returns the Oracle database typename for this class.

Syntax

string getSQLTypeName() const;

13.23.6 isLocked()
This method test whether the persistent object is locked. If the persistent object is
locked, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isLocked() const;

Chapter 13
PObject Class

13-166

13.23.7 isNull()
This method tests whether the persistent object is NULL. If the persistent object is NULL, then
TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.23.8 lock()
Locks a persistent object on the database server.

Syntax

void lock(
 PObject::LockOption lock_option);

Parameter Description

lock_option Locking options; see Table 13-31.

13.23.9 markDelete()
This method marks a persistent object as deleted.

Syntax

void markDelete();

13.23.10 markModified()
This method marks a persistent object as modified or dirty.

Syntax

void mark_Modified();

13.23.11 operator=()
This method assigns the value of a persistent object this PObject object. The nature
(transient or persistent) of the object is maintained. NULL information is copied from the
source instance.

Syntax

PObject& operator=(
 const PObject& obj);

Chapter 13
PObject Class

13-167

Parameter Description

obj The object from which the assigned value is obtained.

13.23.12 operator delete()
Deletes a persistent or transient object. The delete operator on a persistent object
removes the object from the application cache only. To delete the object from the
database server, invoke the markDelete() method.

Syntax

void operator delete(
 void *obj,
 size_t size);

Parameter Description

obj The pointer to object to be deleted

size (Optional) Size is implicitly obtained from the object

13.23.13 operator new()
This method creates a new object. A persistent object is created if the connection and
table name are provided. Otherwise, a transient object is created.

Syntax Description

void *operator new(
 size_t size);

Creates a default new object, with a size
specification only

void *operator new(
 size_t size,
 const Connection *conn,
 const string& tableName,
 const char *typeName);

Used for creating transient objects when
client side characterset is multibyte.

void *operator new(
 size_t size,
 const Connection *conn,
 const string& tableName,
 const string& typeName,
 const string& schTableName="",
 const string& schTypeName="");

Used for creating persistent objects when
client side characterset is multibyte.

Chapter 13
PObject Class

13-168

Syntax Description

void *operator new(
 size_t size,
 const Connection *conn,
 const UString& tableName,
 const UString& typeName,
 const UString& schTableName="",
 const UString& schTypeName="");

Used for creating persistent objects when
client side characterset is unicode
(UTF16).

Parameter Description

size size of the object

conn The connection to the database in which the persistent object is to be
created.

tableName The name of the table in the database server.

typeName The SQL type name corresponding to this C++ class. The format is
<schemaname>.<typename>.

schTableName The schema table name.

schTypeName The schema type name.

13.23.14 pin()
This method pins the object and increments the pin count by one. If the object is pinned, it is
not freed by the cache even if there are no references to this object instance.

Syntax

void pin();

13.23.15 setNull()
This method sets the object value to NULL.

Syntax

void setNull();

13.23.16 unmark()
This method unmarks a persistent object as modified or deleted.

Syntax

void unmark();

Chapter 13
PObject Class

13-169

13.23.17 unpin()
This method unpins a persistent object. In the default mode, the pin count of the object
is decremented by one. When this method is invoked with OCCI_PINCOUNT_RESET, the
pin count of the object is reset. If the pin count is reset, this method invalidates all the
references (Refs) pointing to this object. The cache sets the object eligible to be freed,
if necessary, reclaiming memory.

Syntax

void unpin(
 UnpinOption mode=OCCI_PINCOUNT_DECR);

Parameter Description

mode Specifies whether the UnpinOption mode, or the pin count, should
be decremented or reset to 0. See Table 13-31. Valid values are
OCCI_PINCOUNT_RESET and OCCI_PINCOUNT_DECR.

13.24 Producer Class
The Producer enqueues Messages into a queue and defines the enqueue options.

Table 13-33 Enumerated Values Used by Producer Class

Attribute Options

EnqueueSequence • ENQ_BEFORE indicates that the message is enqueued before the
message specified by the related message id.

• ENQ_TOP indicates that the message is enqueued before any other
messages.

Visibility • ENQ_IMMEDIATE indicates that the enqueue is not part of the
current transaction. The operation constitutes a transaction of its
own.

• ENQ_ON_COMMIT indicates that the enqueue is part of the current
transaction. The operation is complete when the transaction
commits. This is the default setting.

Table 13-34 Summary of Producer Methods

Method Summary

Producer() Producer class constructor.

getQueueName() Retrieves the name of a queue on which the Messages is
enqueued.

getRelativeMessageId() Retrieves the Message id that is referenced in a sequence
deviation operation.

getSequenceDeviation() Retrieves information regarding whether the Message
should be dequeued ahead of other Messages in the
queue.

Chapter 13
Producer Class

13-170

Table 13-34 (Cont.) Summary of Producer Methods

Method Summary

getTransformation() Retrieves the transformation applied before a Message is
enqueued.

getVisibility() Retrieves the transactional behavior of the enqueue
request.

isNull() Tests whether the Producer is NULL.

send() Enqueues and sends a Message.

operator=() Assignment operator for Producer.

setNull() Frees memory if the scope of the Producer extends
beyond the Connection on which it was created.

setQueueName() Specifies the name of a queue on which the Messages is
enqueued.

setRelativeMessageId() Specifies the Message id to be referenced in the
sequence deviation operation.

setSequenceDeviation() Specifies whether Message should be dequeued before
other Messages in the queue.

setTransformation() Specifies transformation applied before enqueuing a
Message.

setVisibility() Specifies transaction behavior of the enqueue request.

13.24.1 Producer()
Producer object constructor.

Syntax Description

Producer(
 const Connection *conn);

Creates a Producer object with the
specified Connection.

Producer(
 const Connection *conn,
 const string& queue);

Creates a Producer object with the
specified Connection and queue name.

Parameter Description

conn The connection of the new Producer object.

queue The queue that is used by the new Producer object.

13.24.2 getQueueName()
Retrieves the name of a queue on which the Messages are enqueued.

Chapter 13
Producer Class

13-171

Syntax

string getQueueName() cosnt;

13.24.3 getRelativeMessageId()
Retrieves the Message id that is referenced in a sequence deviation operation. Used
only if a sequence deviation is specified; ignored otherwise.

Syntax

Bytes getRelativeMessageId() const;

13.24.4 getSequenceDeviation()
Retrieves information regarding whether the Message should be dequeued ahead of
other Messages in the queue. Valid return values are ENQ_BEFORE and ENQ_TOP, as
defined in Table 13-33.

Syntax

EnqueueSequence getSequenceDeviation() const;

13.24.5 getTransformation()
Retrieves the transformation applied before a Message is enqueued.

Syntax

string getTransformation() const;

13.24.6 getVisibility()
Retrieves the transactional behavior of the enqueue request. Visibility is defined in
Table 13-33.

Syntax

Visibility getVisibility() const;

13.24.7 isNull()
Tests whether the Producer is NULL. If the Producer is NULL, then TRUE is returned;
otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.24.8 operator=()
The assignment operator for Producer.

Chapter 13
Producer Class

13-172

Syntax

void operator=(
 const Producer& prod);

Parameter Description

prod The original Producer

13.24.9 send()
Enqueues and sends a Message.

Syntax Description

Bytes send(
 Message& msg);

Used when queueName has been previously set by the
setQueueName() method.

Bytes send(
 Message& msg,
 string& queue);

Enqueue the Message to the specified queueName.

Parameter Description

msg The Message that is enqueued.

queue The name of a valid queue in the database.

13.24.10 setNull()
Frees memory associated with the Producer. Unless working in inner scope, this call should
be made before terminating the Connection.

Syntax

void setNull();

13.24.11 setQueueName()
Specifies the name of a queue on which the Messages are enqueued. Typically used when
enqueuing multiple messages to the same queue.

Syntax

void setQueueName(
 const string& queue);

Chapter 13
Producer Class

13-173

Parameter Description

queue The name of a valid queue in the database, to which the Messages
are enqueued.

13.24.12 setRelativeMessageId()
Specifies the Message id to be referenced in the sequence deviation operation. If the
sequence deviation is not specified, this parameter is ignored. Can be set for each
enqueuing of a Message.

Syntax

void setRelativeMessageId(
 const Bytes& msgid);

Parameter Description

msgid The id of the relative Message.

13.24.13 setSequenceDeviation()
Specifies whether Message being enqueued should be dequeued before other
Message(s) in the queue. Can be set for each enqueuing of a Message.

Syntax

void setSequenceDeviation(
 EnqueueSequence option);

Parameter Description

option The enqueue sequence being set, defined in Table 13-33.

13.24.14 setTransformation()
Specifies transformation function applied before enqueuing the Message.

Syntax

void setTransformation(
 string &fName);

Parameter Description

fName SQL transformation function.

Chapter 13
Producer Class

13-174

13.24.15 setVisibility()
Specifies transaction behavior of the enqueue request. Can be set for each enqueuing of a
Message.

Syntax

void setVisibility(
 Visibility option);

Parameter Description

option Visibility option being set, defined in Table 13-33.

13.25 Ref Class
The mapping in the C++ programming language of an SQL REF value, which is a reference
to an SQL structured type value in the database.

Each REF value has a unique identifier of the object it refers to. An SQL REF value may be
used instead of the SQL structured type it references; it may be used as either a column
value in a table or an attribute value in a structured type.

Because an SQL REF value is a logical pointer to an SQL structured type, a Ref object is by
default also a logical pointer; thus, retrieving an SQL REF value as a Ref object does not
materialize the attributes of the structured type on the client.

The only methods valid on a NULL Ref object are isNull(), and operator=().

A Ref object can be saved to persistent storage and is de-referenced through operator*(),
operator->() or ptr() methods. T must be a class derived from PObject. In the following
sections, T* and PObject* are used interchangeably.

Table 13-35 Enumerated Values Used by Ref Class

Attribute Options

LockOptions • OCCI_LOCK_NONE clears the lock setting on the Ref object.

• OCCI_LOCK_X indicates that the object should be locked, and to wait for
the lock to be available if the object is locked by another session.

• OCCI_LOCK_X_NOWAIT indicates that the object should be locked, and
returns an error if it is locked by another session.

PrefetchOption • OCCI_MAX_PREFETCH_DEPTH indicates that the fetch should be done to
maximum depth.

Table 13-36 Summary of Ref Methods

Method Summary

Ref() Ref object constructor.

clear() Clears the reference.

getConnection() Returns the connection this ref was created from.

Chapter 13
Ref Class

13-175

Table 13-36 (Cont.) Summary of Ref Methods

Method Summary

isClear() Checks if the Ref is cleared.

isNull() Checks if the Ref is NULL.

markDelete() Marks the referred object as deleted.

operator->() Dereferences the Ref and pins the object if necessary.

operator*() Dereferences the Ref and pins or fetches the object if
necessary.

operator==() Checks if the Ref and the pointer refer to the same object.

operator!=() Checks if the Ref and the pointer refer to different objects.

operator=() Assignment operator.

ptr() Returns a pointer to a PObject. Dereferences the Ref and pins
or fetches the object if necessary.

setLock() Sets the lock option for the object referred from this.

setNull() Sets the Ref to NULL.

setPrefetch() Sets the prefetch options for complex object retrieval.

unmarkDelete() Unmarks for delete the object referred by this.

13.25.1 Ref()
Ref object constructor.

Syntax Description

Ref(); Creates a NULL Ref.

Ref(
 const Ref<T> &src);

Creates a copy of Ref.

Parameter Description

src The Ref that is being copied.

13.25.2 clear()
This method clears the Ref object.

Syntax

void clear();

13.25.3 getConnection()
Returns the connection from which the Ref object was instantiated.

Chapter 13
Ref Class

13-176

Syntax

const Connection *getConnection() const;

13.25.4 isClear()
This method checks if Ref object is cleared.

Syntax

bool isClear() const;

13.25.5 isNull()
This method tests whether the Ref object is NULL. If the Ref object is NULL, then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.25.6 markDelete()
This method marks the referenced object as deleted.

Syntax

void markDelete();

13.25.7 operator->()
This method dereferences the Ref object and pins, or fetches the referenced object if
necessary. This might result in prefetching a graph of objects if prefetch attributes of the
referenced object are set.

Syntax Description

T *operator->(); Dereferences and pins or fetches a non-const Ref object.

const T *operator->() const; Dereferences and pins or fetches a const Ref object.

13.25.8 operator*()
This method dereferences the Ref object and pins or fetches the referenced object if
necessary. This might result in prefetching a graph of objects if prefetch attributes of the
referenced object are set. The object does not have to be deleted. Destructor would be
automatically called when it goes out of scope.

Chapter 13
Ref Class

13-177

Syntax Description

T& operator*(); Dereferences and pins or fetches a non-const Ref object.

const T& operator*()
const;

Dereferences and pins or fetches a const Ref object.

13.25.9 operator==()
This method tests whether two Ref objects are referencing the same object. If the Ref
objects are referencing the same object, then TRUE is returned; otherwise, FALSE is
returned.

Syntax

bool operator == (
 const Ref<T> &ref) const;

Parameter Description

ref The Ref object of the object to be compared.

13.25.10 operator!=()
This method tests whether two Ref objects are referencing the same object. If the Ref
objects are not referencing the same object, then TRUE is returned; otherwise, FALSE is
returned.

Syntax

bool operator!= (
 const Ref<T> &ref) const;

Parameter Description

ref The Ref object of the object to be compared.

13.25.11 operator=()
Assigns the Ref or the object to a Ref. For the first case, the Refs are assigned and for
the second case, the Ref is constructed from the object and then assigned.

Syntax Description

Ref<T>& operator=(
 const Ref<T> &src);

Assigns a Ref to a Ref.

Chapter 13
Ref Class

13-178

Syntax Description

Ref<T>& operator=(
 const T *)obj;

Assigns a Ref to an object.

Parameter Description

src The source Ref object to be assigned.

obj The source object pointer whose Ref object is to be assigned.

13.25.12 ptr()
Returns a pointer to a PObject. This operator dereferences the Ref and pins or fetches the
object if necessary. This might result in prefetching a graph of objects if prefetch attributes of
the Ref are set.

Syntax Description

T *ptr(); Returns a pointer of a non-const Ref object.

const T *ptr() const; Returns a pointer of a const Ref object.

13.25.13 setLock()
This method specifies how the object should be locked when dereferenced.

Syntax

void setLock(lockOptions);

Argument Description

lockOptions The lock options as defined by LockOptions in Table 13-35 .

13.25.14 setNull()
This method sets the Ref object to NULL.

Syntax

void setNull();

13.25.15 setPrefetch()
Sets the prefetching options for complex object retrieval. This method specifies depth up to
which all objects reachable from this object through Refs (transitive closure) should be

Chapter 13
Ref Class

13-179

prefetched. If only selected attribute types are to be prefetched, then the first version
of the method must be used. This method specifies which Ref attributes of the object it
refers to should be followed for prefetching of the objects (complex object retrieval)
and how many levels deep those links should be followed.

Syntax Description

void setPrefetch(
 const string &typeName,
 unsigned int depth);

Sets the prefetching options for complex object
retrieval, using type name and depth.

void setPrefetch(
 unsigned int depth);

Sets the prefetching options for complex object
retrieval, using depth only.

void setPrefetch(
 const string &schName,
 const string &typeName,
 unsigned int depth);

Sets the prefetching options for complex object
retrieval, using schema, type name, and depth.

void setPrefetch(
 const UString &schName,
 const UString &typeName,
 unsigned int depth);

Sets the prefetching options for complex object
retrieval, using schema, type name, and depth, and
UString support.

Parameter Description

typeName Type of the Ref attribute to be prefetched.

schName Schema name of the Ref attribute to be prefetched.

depth Depth level to which the links should be followed; can use
PrefetchOption as defined in Table 13-35 .

13.25.16 unmarkDelete()
This method unmarks the referred object as dirty and available for deletion.

Syntax

void unmarkDelete();

13.26 RefAny Class
The RefAny class is designed to support a reference to any type. Its primary purpose is
to handle generic references and allow conversions of Ref in the type hierarchy. A
RefAny object can be used as an intermediary between any two types, Ref<x> and
Ref<y>, where x and y are different types.

Chapter 13
RefAny Class

13-180

Table 13-37 Summary of RefAny Methods

Method Summary

RefAny() Constructor for RefAny class.

clear() Clears the reference.

getConnection() Returns the connection this ref was created from.

isNull() Checks if the RefAny object is NULL.

markDelete() Marks the object as deleted.

operator=() Assignment operator for RefAny.

operator==() Checks if this RefAny object equals a specified RefAny.

operator!=() Checks if not equal.

unmarkDelete() Unmarks the object as deleted.

13.26.1 RefAny()
A Ref<T> can always be converted to a RefAny; there is a method to perform the conversion
in the Ref<T> template. Each Ref<T> has a constructor and assignment operator that takes a
reference to RefAny.

Syntax Description

RefAny(); Creates a NULL RefAny.

RefAny(
 const Connection *sessptr,
 const OCIRef *ref);

Creates a RefAny from a session pointer and a reference.

RefAny(
 const RefAny& src);

Creates a RefAny as a copy of another RefAny object.

Parameter Description

sessptr Session pointer

ref A reference

src The source RefAny object to be assigned

13.26.2 clear()
This method clears the reference.

Syntax

void clear();

Chapter 13
RefAny Class

13-181

13.26.3 getConnection()
Returns the connection from which this reference was instantiated.

Syntax

const Connection* getConnection() const;

13.26.4 isNull()
Returns TRUE if the object pointed to by this ref is NULL else FALSE.

Syntax

bool isNull() const;

13.26.5 markDelete()
This method marks the referred object as deleted.

Syntax

void markDelete();

13.26.6 operator=()
Assignment operator for RefAny.

Syntax

RefAny& operator=(
 const RefAny& src);

Parameter Description

src The source RefAny object to be assigned.

13.26.7 operator==()
Compares this ref with a RefAny object and returns TRUE if both the refs are referring
to the same object in the cache, otherwise it returns FALSE.

Syntax

bool operator== (
 const RefAny &refAnyR) const;

Parameter Description

refAnyR RefAny object to which the comparison is made.

Chapter 13
RefAny Class

13-182

13.26.8 operator!=()
Compares this ref with the RefAny object and returns TRUE if both the refs are not referring to
the same object in the cache, otherwise it returns FALSE.

Syntax

bool operator!= (
 const RefAny &refAnyR) const;

Parameter Description

refAnyR RefAny object to which the comparison is made.

13.26.9 unmarkDelete()
This method unmarks the referred object as dirty.

Syntax

void unmarkDelete();

13.27 ResultSet Class
A ResultSet provides access to a table of data generated by executing a Statement. Table
rows are retrieved in sequence. Within a row, column values can be accessed in any order.

A ResultSet maintains a cursor pointing to its current row of data. Initially the cursor is
positioned before the first row. The next method moves the cursor to the next row.

The getxxx() methods retrieve column values for the current row. You can retrieve values
using the index number of the column. Columns are numbered beginning at 1. For the
getxxx() methods, OCCI attempts to convert the underlying data to the specified C++ type
and returns a C++ value. SQL types are mapped to C++ types with the ResultSet::getxxx()
methods.

The number, types and properties of a ResultSet's columns are provided by the MetaData
object returned by the getColumnListMetaData() method.

Table 13-38 Enumerated Values Used by ResultSet Class

Attribute Options

Status • DATA_AVAILABLE indicates that data for one or more rows was successfully fetched
from the server; up to the requested number of rows (numRows) were returned. When
in streamed mode, use the getNumArrayRows() method to determine the exact
number of rows retrieved when numRows is greater than 1.

• STREAM_DATA_AVAILABLE indicates that the application should call the
getCurrentStreamColumn() method and read stream.

• END_OF_FETCH indicates that no data was available for fetching.

Chapter 13
ResultSet Class

13-183

Table 13-39 Summary of ResultSet Methods

Method Description

cancel() Cancels the ResultSet.

closeStream() Closes the specified Stream.

getBDouble() Returns the value of a column in the current row as a
BDouble.

getBfile() Returns the value of a column in the current row as a
Bfile.

getBFloat() Returns the value of a column in the current row as a
BFloat.

getBlob() Returns the value of a column in the current row as a
Blob object.

getBytes() Returns the value of a column in the current row as a
Bytes array.

getCharSet() Returns the character set in which data would be
fetched.

getCharSetUString() Returns the character set in which data would be
fetched as a UString.

getClob() Returns the value of a column in the current row as a
Clob object.

getColumnListMetaData() Returns the describe information of the result set
columns as a MetaData object.

getCurrentStreamColumn() Returns the column index of the current readable
Stream.

getCurrentStreamRow() Returns the current row of the ResultSet being
processed.

getCursor() Returns the nested cursor as a ResultSet.

getDate() Returns the value of a column in the current row as a
Date object.

getDatabaseNCHARParam() Returns whether data is in NCHAR character set or not.

getDouble() Returns the value of a column in the current row as a
C++ double.

getFloat() Returns the value of a column in the current row as a
C++ float.

getInt() Returns the value of a column in the current row as a
C++ int.

getIntervalDS() Returns the value of a column in the current row as a
IntervalDS.

getIntervalYM() Returns the value of a column in the current row as a
IntervalYM.

getMaxColumnSize() Returns the value set by setMaxColumnSize().

getNumArrayRows() Returns the actual number of rows fetched in the last
array fetch.

getNumber() Returns the value of a column in the current row as a
Number object.

Chapter 13
ResultSet Class

13-184

Table 13-39 (Cont.) Summary of ResultSet Methods

Method Description

getObject() Returns the value of a column in the current row as a
PObject.

getRef() Returns the value of a column in the current row as a
Ref.

getRowid() Returns the current ROWID for a SELECT FOR UPDATE
statement.

getRowPosition() Returns the row id of the current row position.

getStatement() Returns the Statement of the ResultSet.

getStream()getStream() Returns the value of a column in the current row as a
Stream.

getString() Returns the value of a column in the current row as a
string.

getTimestamp() Returns the value of a column in the current row as a
Timestamp object.

getUInt() Returns the value of a column in the current row as a
C++ unsigned int

getUString() Returns the value of a column in the current row as a
UString.

getVector() Returns the specified collection parameter as a vector.

getVectorOfRefs() Returns the column in the current position as a vector
of Refs.

isNull() Checks whether the value is NULL.

isTruncated() Checks whether truncation has occurred.

next() Makes the next row the current row in a ResultSet.

preTruncationLength() Returns the actual length of the parameter before
truncation.

setBinaryStreamMode() Specifies that a column is to be returned as a binary
stream.

setCharacterStreamMode() Specifies that a column is to be returned as a character
stream.

setCharSet() Specifies the character set in which the data is to be
returned.

setCharSetUString() Specifies the character set in which the data is to be
returned.

setDatabaseNCHARParam() If the parameter is going to be retrieved from a column
that contains data in the database's NCHAR character
set, then OCCI must be informed by passing a true
value.

setDataBuffer() Specifies the data buffer into which data is to be
fetched, or the gather and scatter binds and defines
made.

setErrorOnNull() Enables Or Disables exception when NULL value is
read.

setErrorOnTruncate() Enables Or Disables exception when truncation occurs.

Chapter 13
ResultSet Class

13-185

Table 13-39 (Cont.) Summary of ResultSet Methods

Method Description

setPrefetchMemorySize() Sets the amount of memory that is used internally by
OCCI to store data fetched during each round trip to the
server.

setPrefetchRowCount() Sets the number of rows that are fetched internally by
OCCI during each round trip to the server.

setMaxColumnSize() Specifies the maximum amount of data in bytes to read
from a column. It should be based on the environment's
character set, in which the env has been created.

status() Returns the current status of the ResultSet.

13.27.1 cancel()
This method cancels the result set.

Syntax

void cancel();

13.27.2 closeStream()
This method closes the stream specified by the parameter stream.

Syntax

void closeStream(
 Stream *stream);

Parameter Description

stream The Stream to be closed.

13.27.3 getBDouble()
This method returns the value of a column in the current row as a BDouble. If the value
is SQL NULL, the result is NULL.

Syntax

BDouble getBDouble(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Chapter 13
ResultSet Class

13-186

13.27.4 getBfile()
This method returns the value of a column in the current row as a Bfile. Returns the column
value; if the value is SQL NULL, the result is NULL.

Syntax

Bfile getBfile(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.5 getBFloat()
This method returns the value of a column in the current row as a BFloat. If the value is SQL
NULL, the result is NULL.

Syntax

BFloat getBFloat(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.6 getBlob()
Get the value of a column in the current row as an Blob. Returns the column value; if the
value is SQL NULL, the result is NULL.

Syntax

Blob getBlob(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.7 getBytes()
Get the value of a column in the current row as a Bytes array. The bytes represent the raw
values returned by the server. Returns the column value; if the value is SQL NULL, the result
is NULL array

Chapter 13
ResultSet Class

13-187

Syntax

Bytes getBytes(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.8 getCharSet()
Gets the character set in which data would be fetched, as a string.

Syntax

string getCharSet(
 unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.9 getCharSetUString()
Gets the character set in which data would be fetched, as a string.

Syntax

UString getCharSetUString(
 unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.10 getClob()
Get the value of a column in the current row as a Clob. Returns the column value; if
the value is SQL NULL, the result is NULL.

Syntax

Clob getClob(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Chapter 13
ResultSet Class

13-188

13.27.11 getColumnListMetaData()
The number, types and properties of a ResultSet's columns are provided by the getMetaData
method. Returns the description of a ResultSet's columns. This method returns the value of
the given column as a PObject. The type of the C++ object is the C++ PObject type
corresponding to the column's SQL type registered with Environment's map. This method is
used to materialize data of SQL user-defined types.

Syntax

vector<MetaData> getColumnListMetaData() const;

13.27.12 getCurrentStreamColumn()
If the result set has any input Stream parameters, this method returns the column index of the
current input Stream that must be read. If no output Stream must be read, or there are no
input Stream columns in the result set, this method returns 0. Returns the column index of the
current input Stream column that must be read.

Syntax

unsigned int getCurrentStreamColumn() const;

13.27.13 getCurrentStreamRow()
If the result has any input Streams, this method returns the current row of the result set that is
being processed by OCCI. If this method is called after all the rows in the set of array of rows
have been processed, it returns 0. Returns the row number of the current row that is being
processed. The first row is numbered 1 and so on.

Syntax

unsigned int getCurrentStreamRow() const;

13.27.14 getCursor()
Get the nested cursor as an ResultSet. Data can be fetched from this result set. A nested
cursor results from a nested query with a CURSOR(SELECT...) clause:

SELECT last_name,
 CURSOR(SELECT department_name FROM departments)
FROM employees WHERE last_name = 'JONES'

Note that if there are multiple REF CURSORs being returned, data from each cursor must be
completely fetched before retrieving the next REF CURSOR and starting fetch on it. Returns A
ResultSet for the nested cursor.

Syntax

ResultSet * getCursor(
 unsigned int colIndex);

Chapter 13
ResultSet Class

13-189

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.15 getDatabaseNCHARParam()
Returns whether data is in NCHAR character set or not.

Syntax

bool getDatabaseNCHARParam(
 unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

13.27.16 getDate()
Get the value of a column in the current row as a Date object. Returns the column
value; if the value is SQL NULL, the result is NULL.

Syntax

Date getDate(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.17 getDouble()
Gets the value of a column in the current row as a C++ double. Returns the column
value; if the value is SQL NULL, the result is 0.

Syntax

double getDouble(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

Chapter 13
ResultSet Class

13-190

13.27.18 getFloat()
Get the value of a column in the current row as a C++ float. Returns the column value; if the
value is SQL NULL, the result is 0.

Syntax

float getFloat(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.19 getInt()
Get the value of a column in the current row as a C++ int. Returns the column value; if the
value is SQL NULL, the result is 0.

Syntax

int getInt(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.20 getIntervalDS()
Get the value of a column in the current row as a IntervalDS object. Returns the column
value; if the value is SQL NULL, the result is NULL.

Syntax

IntervalDS getIntervalDS(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.21 getIntervalYM()
Get the value of a column in the current row as a IntervalYM object. Returns the column
value; if the value is SQL NULL, the result is NULL.

Chapter 13
ResultSet Class

13-191

Syntax

IntervalYM getIntervalYM(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.22 getMaxColumnSize()
Get the value set by setMaxColumnSize() .

Syntax

unsigned int getMaxColumnSize(
 unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.23 getNumArrayRows()
Returns the actual number of rows fetched in the last array fetch. Used in conjunction
with the next() method. This method cannot be used for non-array fetches.

Syntax

unsigned int getNumArrayRows() const;

13.27.24 getNumber()
Get the value of a column in the current row as a Number object. Returns the column
value; if the value is SQL NULL, the result is NULL.

Syntax

Number getNumber(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.25 getObject()
Returns a pointer to a PObject holding the column value.

Chapter 13
ResultSet Class

13-192

Syntax

PObject * getObject(
 unsigned int colIndex);

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

13.27.26 getRef()
Get the value of a column in the current row as a RefAny. Retrieving a Ref value does not
materialize the data to which Ref refers. Also the Ref value remains valid while the session or
connection on which it is created is open. Returns a RefAny holding the column value.

Syntax

RefAny getRef(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.27 getRowid()
Get the current row id for a SELECT...FOR UPDATE statement. The row id can be bound to a
prepared DELETE statement and so on. Returns current rowid for a SELECT...FOR UPDATE
statement.

Syntax

Bytes getRowid(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.28 getRowPosition()
Get the rowid of the current row position.

Syntax

Bytes getRowPosition() const;

13.27.29 getStatement()
This method returns the statement of the ResultSet.

Chapter 13
ResultSet Class

13-193

Syntax

Statement* getStatement() const;

13.27.30 getStream()
This method returns the value of a column in the current row as a Stream.

Syntax

Stream * getStream(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.31 getString()
Get the value of a column in the current row as a string. Returns the column value; if
the value is SQL NULL, the result is an empty string.

Syntax

string getString(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.32 getTimestamp()
Get the value of a column in the current row as a Timestamp object. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax

Timestamp getTimestamp(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.33 getUInt()
Get the value of a column in the current row as a C++ int. Returns the column value;
if the value is SQL NULL, the result is 0.

Chapter 13
ResultSet Class

13-194

Syntax

unsigned int getUInt(
 unsigned int colIndex);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.34 getUString()
Returns the value as a UString.

This method should be called only if the environment's character set is UTF16, or if
setCharset() method has been called to explicitly retrieve UTF16 data.

Syntax

UString getUString(
 unsigned int colIndex);

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

13.27.35 getVector()
This method returns the column in the current position as a vector. The column should be a
collection type (varray or nested table). The SQL type of the elements in the collection should
be compatible with the data type of the objects in the vector.

Syntax Description

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<BDouble> &vect);

Used for BDouble vectors.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<Bfile> &vect);

Used for Bfile vectors.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<BFloat> &vect);

Used for BFloat vectors.

Chapter 13
ResultSet Class

13-195

Syntax Description

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<Blob> &vect);

Used for Blob vectors.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<Bytes> &vect);

Used for vectors of Bytes Class.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<Clob> &vect);

Used for Clob vectors.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<Date> &vect);

Used for vectors of Date Class.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<double> &vect);

Used for vectors of double type.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<float> &vect);

Used for vectors of float type.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<int> &vect);

Used for vectors of int type.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<IntervalDS> &vect);

Used for vectors of IntervalDS Class.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<IntervalYM> &vect);

Used for vectors of IntervalYM Class.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<Number> &vect);

Used for vectors of Number Class.

Chapter 13
ResultSet Class

13-196

Syntax Description

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<Ref<T>> &vect);

Available only on platforms where partial ordering of
function templates is supported. This function may be
deprecated in the future. getVectorOfRefs() can be
used instead.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<RefAny> &vect);

Used for vectors of RefAny Class.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<string> &vect);

Used for vectors of string type.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<T *> &vect);

Intended for use on platforms where partial ordering
of function templates is supported.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<T> &vect);

Intended for use on platforms where partial ordering
of function templates is not supported, such as
Windows NT and z/OS.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<Timestamp> &vect);

Used for vectors of Timestamp Class.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<unsigned int> &vect);

Used for vectors of unsigned int type.

void getVector(
 ResultSet *rs,
 unsigned int colIndex,
 vector<UString> &vect);

Used for vectors of UString Class; globalization
enabled.

Parameter Description

rs The result set

colIndex Column index, first column is 1, second is 2, and so on.

vect The reference to the vector (OUT parameter).

Chapter 13
ResultSet Class

13-197

13.27.36 getVectorOfRefs()
Returns the column in the current position as a vector of REFs. The column should be a
collection type (varray or nested table) of REFs. It is recommend to use this function
instead of specialized method getVector() for Ref<T>.

Syntax

void getVectorOfRefs(
 ResultSet *rs,
 unsigned int colIndex,
 vector< Ref<T> > &vect);

Parameter Description

rs The result set

colIndex Column index, first column is 1, second is 2, and so on.

vect The reference to the vector of REFs (OUT parameter).

13.27.37 isNull()
A column may have the value of SQL NULL; isNull() reports whether the last column
read had this special value. Note that you must first call getxxx() on a column to try to
read its value and then call isNull() to find if the value was the SQL NULL. Returns
TRUE if last column read was SQL NULL.

Syntax

bool isNull(
 unsigned int colIndex) const;

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

13.27.38 isTruncated()
This method checks whether the value of the parameter is truncated. If the value of the
parameter is truncated, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isTruncated(
 unsigned int paramIndex) const;

Chapter 13
ResultSet Class

13-198

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

13.27.39 next()
This method fetches a specified number of rows, numRows, from a previously executed query,
and reports the Status of this fetch as defined in Table 13-38.

For non-streamed mode, next() only returns the status of DATA_AVAILABLE or END_OF_FETCH.

• When fetching one row at a time (numRows=1), process the data using getxxx() methods.

• When fetching several rows at once (numRows>1), as in an Array Fetch, you must use the
setDataBuffer() method to specify the location of your preallocated buffers before
invoking next().

Up to numRows data records would populate the buffers specified by the setDataBuffer() call.
To determine exactly how many records were returned, use the getNumArrayRows() method.

Syntax

Status next(
 unsigned int numRows =1);

Parameter Description

numRows Number of rows to fetch for array fetches.

13.27.40 preTruncationLength()
Returns the actual length of the parameter before truncation.

Syntax

int preTruncationLength(
 unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

13.27.41 setBinaryStreamMode()
Defines that a column is to be returned as a binary stream by the getStream method.

Syntax

void setBinaryStreamMode(
 unsigned int colIndex,
 unsigned int size);

Chapter 13
ResultSet Class

13-199

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

size The amount of data to be read as a binary stream.

13.27.42 setCharacterStreamMode()
Defines that a column is to be returned as a character stream by the getStream()
method.

Syntax

void setCharacterStreamMode(
 unsigned int colIndex,
 unsigned int size);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

size The amount of data to be read as a character stream.

13.27.43 setCharSet()
Overrides the default character set for the specified column. Data is converted from
the database character set to the specified character set for this column.

Syntax

void setCharSet(
 unsigned int colIndex,
 string charSet);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

charSet Desired character set, as a string.

13.27.44 setCharSetUString()
Specifies the character set value as a UString in which the data is returned.

Syntax

UString setCharSetUString(
 unsigned int colIndex,
 const UString &charSet);

Chapter 13
ResultSet Class

13-200

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

charSet Desired character set, as a string.

13.27.45 setDatabaseNCHARParam()
If the parameter is going to be retrieved from a column that contains data in the database's
NCHAR character set, then OCCI must be informed by passing a TRUE value. A FALSE can be
passed to restore the default.

Syntax

void setDatabaseNCHARParam(
 unsigned int paramIndex,
 bool isNCHAR);

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

isNCHAR TRUE or FALSE.

13.27.46 setDataBuffer()
Specifies a data buffer where data would be fetched or bound. The buffer parameter is a
pointer to a user allocated data buffer. The current length of data must be specified in the
length parameter. The amount of data should not exceed the size parameter. Finally, type is
the data type of the data. Only non OCCI and non C++ specific types can be used, such as
STL string. OCCI classes like Bytes and Date cannot be used.

If setDataBuffer() is used to fetch data for array fetches, it should be called only once for each
result set. Data for each row is assumed to be at buffer (i- 1)location, where i is the row
number. Similarly, the length of the data would be assumed to be at (length+(i-1)).
For more information on the version of this method that uses 32K length parameter, see
Oracle Database SQL Language Reference.

Syntax Description

void setDataBuffer(
 unsigned int colIndex,
 void *buffer,
 Type type,
 sb4 size = 0,
 ub2 *length = NULL,
 sb2 *ind = NULL,
 ub2 *rc = NULL);

Uses ub2 length buffer. This limits VARCHAR2 and
NVARCHAR2 length to 4,000 bytes, and RAW data types to
2,000 bytes.

Chapter 13
ResultSet Class

13-201

Syntax Description

void setDataBuffer(
 unsigned int colIndex,
 void *buffer,
 Type type,
 sb4 size = 0,
 ub4 *length = NULL,
 sb2 *ind = NULL,
 ub2 *rc = NULL);

Uses ub4 length buffer (32K). This increases the length of
VARCHAR2, NVARCHAR2 and RAW data types.

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

buffer Pointer to user-allocated buffer. For array fetches, it should have
numRows * size bytes in it. For gather or scatter binds and defines,
this structure stores the address of OCIIOVec and the number of
OCIIOVec elements that start at that address.

type Type of the data that is provided (or retrieved) in the buffer.

size Size of the data buffer. For array fetches, it is the size of each
element of the data items.

length Pointer to the length of data in the buffer; for array fetches, it should
be an array of length data for each buffer element; the size of the
array should be equal to arrayLength.

ind Pointer to an indicator variable or array (IN/OUT).

rc Pointer to array of column level return codes (OUT).

13.27.47 setErrorOnNull()
This method enables/disables exceptions for reading of NULL values on colIndex
column of the result set.

Syntax

void setErrorOnNull(
 unsigned int colIndex,
 bool causeException);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

causeException Enable exceptions if TRUE. Disable if FALSE.

Chapter 13
ResultSet Class

13-202

13.27.48 setErrorOnTruncate()
This method enables/disables exceptions when truncation occurs.

Syntax

void setErrorOnTruncate(
 unsigned int paramIndex,
 bool causeException);

Parameter Description

paramIndex Parameter index, first parameter is 1, second is 2, and so on.

causeException Enable exceptions if TRUE. Disable if FALSE.

13.27.49 setPrefetchMemorySize()
Sets the amount of memory that is used internally by OCCI to store data fetched during each
round trip to the server. A value of 0 means that the amount of data fetched during the round
trip is constrained by the FetchRowCount parameter. If both parameters are nonzero, the
smaller of the two is used.

Syntax

void setPrefetchMemorySize(
 unsigned int bytes);

Parameter Description

bytes Number of bytes used for storing data fetched during each server round trip.

13.27.50 setPrefetchRowCount()
Sets the number of rows that are fetched internally by OCCI during each round trip to the
server. A value of 0 means that the amount of data fetched during the round trip is
constrained by the FetchMemorySize parameter. If both parameters are nonzero, the smaller
of the two is used. If both of these parameters are zero, row count internally defaults to 1 row
and that is the value returned from the getFetchRowCount() method.

Syntax

void setPrefetchRowCount(
 unsigned int rowCount);

Parameter Description

rowCount Number of rows to fetch for each round trip to the server.

Chapter 13
ResultSet Class

13-203

13.27.51 setMaxColumnSize()
Specifies the maximum amount of data in bytes to read from a column. It should be
based on the environment's character set, in which the env has been created.

Syntax

void setMaxColumnSize(
 unsigned int colIndex,
 unsigned int max);

Parameter Description

colIndex Column index, first column is 1, second is 2, and so on.

max The maximum amount of data in bytes to be read.

13.27.52 status()
Returns the current Status of the result set, as defined in Table 13-38. This method
can be called repeatedly.

Syntax

Status status() const;

13.28 SQLException Class
The SQLException class provides information on generated errors, their codes and
associated messages.

Table 13-40 Summary of SQLException

Method Description

SQLException() SQLException constructor.

getErrorCode() Returns the database error code.

getMessage() Returns the error message string for this exception.

getNLSMessage() Returns the error message string for this exception
(Unicode support).

getNLSUStringMessage() Returns the error message UString for this exception
(Unicode support).

getUStringMessage() Returns the error message UString for this exception.

getXAErrorCode() Returns the error message string for this exception.

isRecoverable() Determines whether an application can failover and
recover from an error.

setErrorCtx() Sets the error context.

Chapter 13
SQLException Class

13-204

Table 13-40 (Cont.) Summary of SQLException

Method Description

what() Returns the error message associated with the
SQLException.

13.28.1 SQLException()
This is the SQLException constructor.

Syntax Description

SQLException(); Constructs a NULL SQLException object.

SQLException(
 const SQLException &e);

Constructs an SQLException object as a copy of another
SQLException object.

Parameter Description

e The SQLException to be copied.

13.28.2 getErrorCode()
Gets the database error code.

Syntax

int getErrorCode() const;

13.28.3 getMessage()
Returns the error message string of this SQLException if it was created with an error
message string. Returns NULL if the SQLException was created with no error message.

Syntax

string getMessage() const;

13.28.4 getNLSMessage()
Returns the error message string of this SQLException if it was created with an error
message string. Passes the globalization enabled environment. Returns a NULL string if
the SQLException was created with no error message. The error message is in the character
set associated with the environment.

Syntax

string getNLSMessage(
 Environment *env) const;

Chapter 13
SQLException Class

13-205

Parameter Description

env The globalization enabled environment.

13.28.5 getNLSUStringMessage()
Returns the error message UString of this SQLException if it was created with an error
message UString. Passes the globalization enabled environment. Returns a NULL
UString if the SQLException was created with no error message. The error message is
in the character set associated with the environment.

Syntax

UString getNLSUStringMessage(
 Environment *env) const;

Parameter Description

env The globalization enabled environment.

13.28.6 getUStringMessage()
Returns the error message UString of this SQLException if it was created with an error
message UString. Returns a NULL UString if the SQLException was created with no
error message. The error message is in the character set associated with the
environment.

Syntax

UString getUStringMessage() const;

13.28.7 getXAErrorCode()
Determine if the thrown exception is due to an XA or an SQL error.

Used by C++ XA applications with dynamic registration. Returns an XA error code if
the exception is due to XA, or XA_OK otherwise.

Syntax

int getXAErrorCode(
 const string &dbname) const;

Parameter Description

dbname The database name; same as the optional dbname provided in the Open
String and used when connecting to the Resource Manager.

Chapter 13
SQLException Class

13-206

13.28.8 isRecoverable()
Determines whether an application can failover and recover from an error. Returns TRUE if
recoverable.

For example, an application may recover from ORA-03113, but not from ORA-942.

Syntax

bool isRecoverable();

13.28.9 setErrorCtx()
Sets the pointer to the error context.

Syntax

void setErrorCtx(
 void *ctx);

Parameter Description

ctx The pointer to the error context.

13.28.10 what()
Standard C++ compliant function; returns the error message associated with the
SQLException.

Syntax

const char *what() const throw();

13.29 StatelessConnectionPool Class
This class represents a pool of stateless, authenticated connections to the database.

Table 13-41 Enumerated Values Used by StatelessConnectionPool Class

Attribute Options

PoolType • HETEROGENEOUS is the default state; connections with different
authentication contexts can be created in the same pool. This pool type
also supports external authentication.

• HOMOGENEOUS indicates that all connections in the pool are authenticated
with the username and password provided during pool creation. No proxy
connections can be created. minConn and incrConn values are
considered only in these HOMOGENEOUS pools.

• NO_RLB turns off run-time load balancing in the connection pool. Can be
used with both HETEROGENEOUS and HOMOGENEOUS pools.

• USES_EXT_AUTH indicates that the connections in the pool support
external authentication. Can only be used with HETEROGENEOUS pools.

Chapter 13
StatelessConnectionPool Class

13-207

Table 13-41 (Cont.) Enumerated Values Used by StatelessConnectionPool Class

Attribute Options

BusyOption • WAIT indicates that the thread waits and blocks until the connection
becomes free.

• NOWAIT throws and error.

• FORCEGET indicates that a new connection is created, even when
maximum number of connections is opened and all are busy.

DestroyMode • DEFAULT indicates that if are still active busy connections in the pool,
ORA24422 error is thrown

• SPD_FORCE indicates that any busy connections in the pool are forcefully
terminated and the pool is destroyed; the user loses memory
corresponding to the number of connections forcefully terminated.

Table 13-42 Summary of StatelessConnectionPool Methods

Method Description

getAnyTaggedConnection() Returns a pointer to the connection object, without the
restriction of a matching tag.

getAnyTaggedProxyConnection() Returns a proxy connection from a connection pool.

getBusyConnections() Returns the number of busy connections in the
connection pool.

getBusyOption() Returns the behavior of the stateless connection pool
when all the connections in the pool are busy and the
number of connections have reached maximum

getConnection() Returns a pointer to the Connection object.

getIncrConnections() Returns the number of incremental connections in the
connection pool.

getMaxConnections() Returns the maximum number of connections in the
connection pool.

getMinConnections() Returns the minimum number of connections in the
connection pool.

getOpenConnections() Returns the number of open connections in the
connection pool.

getPoolName() Returns the name of the connection pool.

getProxyConnection() Returns a proxy connection from a connection pool.

getTimeOut() Returns the timeout period of a connection in the
connection pool.

releaseConnection() Releases the connection back to the pool with an
optional tag.

setBusyOption() Specifies the behavior of the stateless connection pool
when:

• all the connections in the pool are busy, and
• the number of connections have reached

maximum.

setPoolSize() Sets the maximum, minimum, and incremental number
of pooled connections for the connection pool.

Chapter 13
StatelessConnectionPool Class

13-208

Table 13-42 (Cont.) Summary of StatelessConnectionPool Methods

Method Description

setTimeOut() Sets the timeout period of a connection in the
connection pool.

terminateConnection() Closes the connection and remove it from the pool.

13.29.1 getAnyTaggedConnection()
Returns a pointer to the connection object, without the restriction of a matching tag.

This method works in an environment with enabled database resident connection pooling.

During the execution of this call, the pool is first searched based on the tag provided. If a
connection with the specified tag exists, it is returned to the user. If a matching connection is
not available, an appropriately authenticated untagged connection (with a NULL tag) is
returned. In cases where an undated connection is not free, an appropriately authenticated
connection with a different tag is returned.

A getTag() call to the Connection verifies that the connection tag is received.

Syntax Description

Connection *getAnyTaggedConnection(
 string &tag="")=0;

Returns a pointer to the connection object from a
homogeneous stateless connection pool, without the
restriction of a matching tag; string support.

Connection* getAnyTaggedConnection(
 const UString &tag)=0;

Returns a pointer to the connection object from a
homogeneous stateless connection pool, without the
restriction of a matching tag; UString support.

Connection *getAnyTaggedConnection(
 const string &userNname,
 const string &password,
 const string &tag="")=0;

Returns a pointer to the connection object from a
heterogeneous stateless connection pool, without the
restriction of a matching tag; string support.

Connection* getAnyTaggedConnection(
 const UString &userName,
 const UString &Password,
 const UString &tag)=0 ;

Returns a pointer to the connection object from a
heterogeneous stateless connection pool, without the
restriction of a matching tag; UString support.

Parameter Description

userName The database username

password The database password.

tag User-defined type of connection requested. This parameter can be ignored if a
default connection is requested.

Chapter 13
StatelessConnectionPool Class

13-209

13.29.2 getAnyTaggedProxyConnection()
Returns a proxy connection from a connection pool.

This method works in an environment with enabled database resident connection
pooling.

During the execution of this call, the pool is first searched based on the tag provided. If
a connection with the specified tag exists, it is returned to the user. If a matching
connection is not available, an appropriately authenticated connection with a different
tag is returned. In cases where an undated connection is not free, an appropriately
authenticated connection with a different tag is returned.

Restrictions for matching the tag may be removed by passing an empty tag argument
parameter.

A getTag() call to the connection verifies the connection tag received.

Syntax Description

Connection *getAnyTaggedProxyConnection(
 const string &name,
 string roles[],
 unsigned int numRoles,
 const string tag="",
 Connection::ProxyType
 proxyType=Connection::PROXY_DEFAULT);

Get a proxy connection with role
specifications from a connection pool;
includes support for roles and string
support.

Connection* getAnyTaggedProxyConnection(
 const UString &name,
 string roles[],
 unsigned int numRoles,
 const UString &tag,
 Connection::ProxyType
 proxyType =
Connection::PROXY_DEFAULT);

Get a proxy connection with role
specifications from a connection pool;
includes support for roles and UString
support.

Connection *getAnyTaggedProxyConnection(
 const string &name,
 const string tag="",
 Connection::ProxyType
 proxyType=Connection::PROXY_DEFAULT);

Get a proxy connection with role
specifications from a connection pool;
string support.

Connection* getAnyTaggedProxyConnection(
 const UString &name,
 const UString &tag,
 Connection::ProxyType
 proxyType =
Connection::PROXY_DEFAULT);

Get a proxy connection within role
specifications from the connection pool;
UString support.

Parameter Description

name The username.

Chapter 13
StatelessConnectionPool Class

13-210

Parameter Description

roles The roles to activate on the database server

numRoles The number of roles to activate on the database server

tag User defined tag associated with the connection.

proxyType The type of proxy authentication to perform; ProxyType is defined
in Table 13-11.

13.29.3 getBusyConnections()
Returns the number of busy connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the Connection
Broker.

Syntax

unsigned int getBusyConnections() const=0;

13.29.4 getBusyOption()
Returns the behavior of the stateless connection pool when all the connections in the pool
are busy, and when the number of connections have reached maximum. The return values
are defined for BusyOption in Table 13-41.

Syntax

BusyOption getBusyOption()=0;

13.29.5 getConnection()
Returns a pointer to the connection object of a StatelessConnectionPool.

This method works in an environment with enabled database resident connection pooling.

Syntax Description

Connection *getConnection()=0; Returns a connection that can be
authenticated externally.

Connection *getConnection(
 string &tag="")=0;

Returns an authenticated connection,
with a connection pool username and
password; string support.

Connection* getConnection(
 const UString &tag)=0;

Returns an authenticated connection,
with a connection pool username and
password; UString support.

Chapter 13
StatelessConnectionPool Class

13-211

Syntax Description

Connection *getConnection(
 const string &userName,
 const string &password,
 const string &tag="")=0;

Returns a pointer to the connection
object from a heterogeneous stateless
connection pool; string support.

Connection* getConnection(
 const UString &userName,
 const UString &password,
 const UString &tag)=0;

Returns a pointer to the connection
object from a heterogeneous stateless
connection pool; UString support.

Connection *getConnection(
 const string &connectionClass,
 const Connection::Purity &purity)=0;

Returns a pointer to the connection
object from a database resident
connection pool; string support.

Connection* getConnection(
 const UString &connectionClass,
 const Connection::Purity &purity)=0;

Returns a pointer to the connection
object from a database resident
connection pool; UString support.

Connection *getConnection(
 const string &userName,
 const string &password,
 const string &connectionClass,
 const Connection::Purity &purity)=0;

Returns a pointer to the connection
object from a database resident
connection pool; user name and
password authentication; string
support.

Connection* getConnection(
 const UString &userName,
 const UString &password,
 const UString &connectionClass,
 const Connection::Purity &purity)=0;

Returns a pointer to the connection
object from a database resident
connection pool; user name and
password authentication; UString
support.

Connection *getConnection(
 const string &connectionClass,
 const Connection::Purity &purity,
 const string &tag)=0;

Returns a tagged connection object
from a database resident connection
pool; string support.

Connection* getConnection(
 const UString &connectionClass,
 const Connection::Purity &purity,
 const UString &tag)=0;

Returns a tagged connection object
from a database resident connection
pool; UString support.

Parameter Description

userName The database username.

password The database password.

tag The user defined tag associated with the connection. During the
call, the pool is first searched based on the tag provided. If a
connection with the specified tag exists it is returned; otherwise a
new connection is created and returned.

Chapter 13
StatelessConnectionPool Class

13-212

Parameter Description

connectionClass The class of connection used by database resident connection pool.

purity The purity of connection used by database resident connection
pool; either SELF or NEW.

13.29.6 getIncrConnections()
Returns the number of incremental connections in the connection pool. This call is useful only
in cases of homogeneous connection pools. When using database resident connection
pooling, this is the number of persistent connections to the Connection Broker.

Syntax

unsigned int getIncrConnections() const=0;

13.29.7 getMaxConnections()
Returns the maximum number of connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the Connection
Broker.

Syntax

unsigned int getMaxConnections() const=0;

13.29.8 getMinConnections()
Returns the minimum number of connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the Connection
Broker.

Syntax

unsigned int getMinConnections() const=0;

13.29.9 getOpenConnections()
Returns the number of open connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the Connection
Broker.

Syntax

unsigned int getOpenConnections() const=0;

13.29.10 getPoolName()
Returns the name of the connection pool.

Chapter 13
StatelessConnectionPool Class

13-213

Syntax

string getPoolName() const=0;

13.29.11 getProxyConnection()
Returns a proxy connection from a connection pool.

This method works in an environment with enabled database resident connection
pooling.

Syntax Description

Connection *getProxyConnection(
 const string &userName,
 string roles[],
 unsigned int numRoles,
 const string& tag="",
 Connection::ProxyType
 proxyType=Connection::PROXY_DEFAULT)=0;

Get a proxy connection with
role specifications from a
connection pool; support for
roles and string support.

Connection* getProxyConnection(
 const UString &userName,
 UString roles[],
 unsigned int numRoles,
 const UString &tag,
 Connection::ProxyType
 proxyType = Connection::PROXY_DEFAULT);

Get a proxy connection with
role specifications from a
connection pool; support for
roles and UString support.

Connection *getProxyConnection(
 const string &userName,
 const string &connectionClass,
 const Connection::Purity &purity)=0;

Get a proxy connection from a
database resident connection
pool; string support.

Connection *getProxyConnection(
 const UString &userName,
 const UString &connectionClass,
 const Connection::Purity &purity)=0;

Get a proxy connection from a
database resident connection
pool; UString support.

Connection *getProxyConnection(
 const string &userName,
 string roles[],
 unsigned int numRoles,
 const string &connectionClass,
 const Connection::Purity &purity)=0;

Get a proxy connection with
role specifications from a
connection pool; support for
roles and database resident
connection pooling; string
support.

Connection* getProxyConnection(
 const UString &userName,
 UString roles[],
 unsigned int numRoles,
 const UString &connectionClass,
 const Connection::Purity &purity)=0;

Get a proxy connection with
role specifications from a
connection pool; support for
roles and database resident
connection pooling; UString
support.

Chapter 13
StatelessConnectionPool Class

13-214

Syntax Description

Connection *getProxyConnection(
 const string &userName,
 const string& tag="",
 Connection::ProxyType
 proxyType=Connection::PROXY_DEFAULT)=0;

Get a proxy connection
without role specifications
from a connection pool;
string support.

Connection* getProxyConnection(
 const UString &userName,
 const UString &tag,
 Connection::ProxyType
 proxyType = Connection::PROXY_DEFAULT)

Get a proxy connection
without role specifications
from a connection pool;
UString support.

Parameter Description

userName The user name.

roles The roles to activate on the database server.

numRoles The number of roles to activate on the database server.

tag The user defined tag associated with the connection. During the
execution of this call, the pool is first searched based on the tag provided.
If a connection with the specified tag exists it is returned; otherwise, a
new connection is created and returned.

proxyType The type of proxy authentication to perform; ProxyType is defined in
Table 13-11.

connectionClass The class of connection used by database resident connection pool.

purity The purity of connection used by database resident connection pool;
either SELF or NEW.

13.29.12 getStmtCacheSize()
Retrieves the size of the statement cache.

Syntax

unsigned int getStmtCacheSize() const=0;

13.29.13 getTimeOut()
Returns the timeout period of a connection in the connection pool.

Syntax

unsigned int getTimeOut() const=0;

Chapter 13
StatelessConnectionPool Class

13-215

13.29.14 releaseConnection()
Releases the connection back to the pool with an optional tag.

This method works in an environment with enabled database resident connection
pooling.

Syntax Description

void releaseConnection(
 Connection *connection,
 const string& tag="");

Support for string tag.

void releaseConnection(
 Connection *connection,
 const UString &tag);

Support for UString tag.

Parameter Description

connection The connection to be released.

tag The user defined tag associated with the connection. The default of
this parameter is "", which untags the connection.

13.29.15 setBusyOption()
Specifies the behavior of the stateless connection pool when all the connections in the
pool are busy, and when the number of connections have reached maximum.

Syntax

void setBusyOption(
 BusyOption busyOption)=0;

Parameter Description

busyOption Valid values are defined in BusyOption in Table 13-41.

13.29.16 setPoolSize()
Sets the maximum, minimum, and incremental number of pooled connections for the
connection pool.

Syntax

void setPoolSize(
 unsigned int maxConn=1,
 unsigned int minConn=0,
 unsigned int incrConn=1)=0;

Chapter 13
StatelessConnectionPool Class

13-216

Parameter Description

maxConn The maximum number of connections in the connection pool.

minConn The minimum number of connections, in homogeneous pools only.

incrConn The incremental number of connections, in homogeneous pools only.

13.29.17 setTimeOut()
Sets the time out period of a connection in the connection pool. OCCI terminates any
connections related to this connection pool that have been idle for longer than the timeout
period specified.

If this attribute is not set, the least recently used connection is timed out when pool space is
required. Oracle only checks for timed out connections when it releases a connection back to
the pool.

Syntax

void setTimeOut(
 unsigned int connTimeOut=0)=0;

Parameter Description

connTimeOut The time out period, given in seconds.

13.29.18 setStmtCacheSize()
Enables or disables statement caching. A nonzero value enables statement caching, with a
cache of specified size. A zero value disables caching.

If the user changes the cache size of individual connections and subsequently returns the
connection back to the pool with a tag, the cache size does not revert to the one set for the
pool. If the connection is untagged, the cache size is reset to equal the cache size specified
for the pool.

Syntax

void setStmtCacheSize(
 unsigned int cacheSize)=0;

Parameter Description

cacheSize The size of the statement cache

13.29.19 terminateConnection()
Closes the connection and removes it from the pool.

Chapter 13
StatelessConnectionPool Class

13-217

This method works in an environment with enabled database resident connection
pooling.

Syntax

void terminateConnection(
 Connection *connection)=0;

Parameter Description

connection The connection to be terminated

13.30 Statement Class
A Statement object is used for executing SQL statements. The statement may be a
query returning result set, or a non-query statement returning an update count. Non-
query SQL can be insert, update, or delete statements. Non-query SQL statements
can also be DML statements (such as create, grant, and so on) or stored procedure
calls.

A query, insert / update / delete, or stored procedure call statements may have IN bind
parameters, while a stored procedure call statement may have either OUT bind
parameters or bind parameters that are both IN and OUT, referred to as IN/OUT
parameters.

The Statement class methods are divided into three categories:

• Statement methods applicable to all statements

• Methods applicable to prepared statements with IN bind parameters

• Methods applicable to callable statements with OUT or IN/OUT bind parameters.

Table 13-43 Enumerated Values used by the Statement Class

Attribute Options

Status • NEEDS_STREAM_DATA indicates that output Streams must be written for
the streamed IN bind parameters. If there are multiple streamed
parameters, call the getCurrentStreamParam() method to find out the bind
parameter that needs the stream. If the statement is executed iteratively,
call getCurrentIteration() to find the iteration for the stream that must to be
written.

• PREPARED indicates that the Statement is set to a query.

• RESULT_SET_AVAILABLE indicates that the getResultSet() method must
be called to get the result set.

• STREAM_DATA_AVAILABLE indicates that the input Streams must be read
for the streamed OUT bind parameters. If there are multiple streamed
parameters, call the getCurrentStreamParam() method to find out the bind
parameter that needs the stream. If the statement is executed iteratively,
call getCurrentIteration() to find the iteration for the stream that must be
read.

• UPREPARED indicates that the Statement object is not set to a query.

• UPDATE_COUNT_AVAILABLE indicates that the getUb8RowCount() method
must be called to find out the update count.

Chapter 13
Statement Class

13-218

Table 13-44 Statement Methods

Method Description

addIteration() Adds an iteration for execution.

closeResultSet() Immediately releases a result set's database and OCCI
resources instead of waiting for automatic release.

closeStream() Closes the stream specified by the parameter stream.

disableCaching() Disables statement caching.

execute() Runs the SQL statement.

executeArrayUpdate() Runs insert, update, and delete statements that use only the
setDataBuffer() or stream interface for bind parameters.

executeQuery() Runs a SQL statement that returns a single ResultSet.

executeUpdate() Runs a SQL statement that does not return a ResultSet.

getAutoCommit() Returns the current auto-commit state.

getBatchErrorMode() Returns the state of the batch error mode.

getBDouble() Returns the value of an IEEE754 DOUBLE as a BDouble object.

getBfile() Returns the value of a BFILE as a Bfile object.

getBFloat() Returns the value of a IEEE754 FLOAT as a BFloat object.

getBlob() Returns the value of a BLOB as a Blob object.

getBytes() Returns the value of a SQL BINARY or VARBINARY parameter
as Bytes.

getCharSet() Returns the characterset that is in effect for the specified
parameter, as a string.

getCharSetUString() Returns the characterset that is in effect for the specified
parameter, as a UString.

getClob() Returns the value of a CLOB as a Clob object.

getConnection() Returns the connection from which the Statement object was
instantiated.

getCurrentIteration() Returns the iteration number of the current iteration that is
being processed.

getCurrentStreamIteration() Returns the current iteration for which stream data is to be read
or written.

getCurrentStreamParam() Returns the parameter index of the current output Stream that
must be read or written.

getCursor() Returns the REF CURSOR value of an OUT parameter as a
ResultSet.

getDatabaseNCHARParam() Returns whether data is in NCHAR character set.

getDate() Returns the value of a parameter as a Date object

getDMLRowCounts() Returns the row counts affected by each iteration of the current
DML statement when it executes with multiple iterations.

getDouble() Returns the value of a parameter as a C++ double.

getBFloat() Returns the value of a parameter as an IEEE754 float.

getFloat() Returns the value of a parameter as a C++ float.

Chapter 13
Statement Class

13-219

Table 13-44 (Cont.) Statement Methods

Method Description

getInt() Returns the value of a parameter as a C++ int.

getIntervalDS() Returns the value of a parameter as a IntervalDS object.

getIntervalYM() Returns the value of a parameter as a IntervalYM object.

getMaxIterations() Returns the current limit on maximum number of iterations.

getMaxParamSize() Returns the current max parameter size limit.

getNumber() Returns the value of a parameter as a Number object.

getObject() Returns the value of a parameter as a PObject.

getOCIStatement() Returns the OCI statement handle associated with the
Statement.

getRef() Returns the value of a REF parameter as RefAny
getResultSet() Returns the current result as a ResultSet.

getRowCountsOption() Determines if the DML row counts option is enabled.

getRowid() Returns the row id parameter value as a Bytes object.

getSQL() Returns the current SQL string associated with the Statement
object.

getSQLUString() Returns the current SQL string associated with the Statement
object; globalization enabled.

getStream() Returns the value of the parameter as a stream.

getString() Returns the value of the parameter as a string.

getTimestamp() Returns the value of the parameter as a Timestamp object.

getUb8RowCount() Returns the number of rows processed.

getUInt() Returns the value of the parameter as a C++ unsigned integer.

getUpdateCount() Returns the number of rows processed.

getUString() Returns the value of a UString.

getVector() Returns the specified parameter as a vector.

getVectorOfRefs() Returns the column in the current position as a vector of REFs.

isNull() Checks whether the parameter is NULL.

isTruncated() Checks whether the value is truncated.

preTruncationLength() Returns the actual length of the parameter before truncation.

registerOutParam() Registers the type and max size of the OUT parameter.

setAutoCommit() Specifies auto commit mode.

setBatchErrorMode() Enables or disables the batch error processing mode.

setBDouble() Sets a parameter to an IEEE double value.

setBfile() Sets a parameter to a Bfile value.

setBFloat() Sets a parameter to an IEEE float value.

setBinaryStreamMode() Specifies that a column is to be returned as a binary stream.

setBlob() Sets a parameter to a Blob value.

setBytes() Sets a parameter to a Bytes array.

Chapter 13
Statement Class

13-220

Table 13-44 (Cont.) Statement Methods

Method Description

setCharacterStreamMode() Specifies that a column is to be returned as a character stream.

setCharSet() Specifies the characterset as a string.

setCharSetUString() Specifies the character set as a UString.

setClob() Sets a parameter to a Clob value.

setDate() Sets a parameter to a Date value.

setDatabaseNCHARParam() Sets to true if the data is to be in the NCHAR character set of
the database; set to false to restore the default.

setDataBuffer() Specifies a data buffer where data would be available for
reading or writing.

setDataBufferArray() Specifies an array of data buffers where data would be
available for reading or writing.

setDouble() Sets a parameter to a C++ double value.

setErrorOnNull() Enables Or Disables exceptions for reading of NULL values.

setErrorOnTruncate() Enables Or Disables exception when truncation occurs.

setFloat() Sets a parameter to a C++ float value.

setInt() Sets a parameter to a C++ int value.

setIntervalDS() Sets a parameter to a IntervalDS value.

setIntervalYM() Sets a parameter to a IntervalYM value.

setMaxIterations() Sets the maximum number of invocations that area made for
the DML statement.

setMaxParamSize() Sets the maximum amount of data that can sent or returned
from the parameter.

setNull() Sets a parameter to SQL NULL.

setNumber() Sets a parameter to a Number value.

setObject() Sets the value of a parameter using an object.

setPrefetchMemorySize() Sets the amount of memory that is used internally by OCCI to
store data fetched during each round trip to the server.

setPrefetchRowCount() Sets the number of rows that are fetched internally by OCCI
during each round trip to the server.

setRef() Sets the value of a parameter to a reference.

setRowCountsOption() Set flag to TRUE to enable return of DML row counts per
iteration when invoking getDMLRowCounts().

setRowid() Sets a row id bytes array for a bind position.

setSQL() Associates new SQL string with Statement object.

setSQLUString() Associates new SQL string with Statement object;
globalization enabled.

setString() Sets a parameter for a specified index.

setTimestamp() Sets a parameter to a Timestamp value.

setUInt() Sets a parameter to a C++ unsigned int value.

setUString() Sets a parameter for a specified index; globalization enabled.

Chapter 13
Statement Class

13-221

Table 13-44 (Cont.) Statement Methods

Method Description

setVector() Sets a parameter to a vector of unsigned int.

setVectorOfRefs() Sets a parameter to a vector; is necessary when the type is a
collection of REFs.

status() Returns the current status of the statement. This is useful when
there is streamed data to be written.

13.30.1 addIteration()
After specifying set parameters, an iteration is added for execution.

Syntax

void addIteration();

13.30.2 closeResultSet()
Immediately releases the specified resultSet's database and OCCI resources when
the result set is not needed.

Syntax

void closeResultSet(
 ResultSet *resultSet);

Parameter Description

resultSet The result set to be closed; may be a result of getResultSet() ,
executeQuery() , or getCursor() calls on the current statement, or by a
getCursor() call of another result set on the same statement.

13.30.3 closeStream()
Closes the stream specified by the parameter stream.

Syntax

void closeStream(
 Stream *stream);

Parameter Description

stream The stream to be closed.

13.30.4 disableCaching()
Disables statement caching. Used if a user wants to destroy a statement instead of
caching it. Effective only if statement caching is enabled.

Chapter 13
Statement Class

13-222

Syntax

void disableCaching();

13.30.5 execute()
Executes an SQL statement that may return either a result set or an update count. The
statement may have read-able streams which may have to be written, in which case the
results of the execution may not be readily available. The returned value Status is defined in
Table 13-43.

If output streams are used for OUT bind variables, they must be completely read in order. The
getCurrentStreamParam() method would indicate which stream must be read. Similarly,
getCurrentIteration() would indicate the iteration for which data is available.

Syntax Description

Status execute(
 const string &sql="");

Executes the SQL Statement.

Status execute(
 const UString &sql);

Executes the SQL Statement; globalization enabled.

Parameter Description

sql The SQL statement to be executed. This can be NULL if the executeArrayUpdate()
method was used to associate the sql with the statement.

13.30.6 executeArrayUpdate()
Executes insert/update/delete statements which use only the setDataBuffer() or stream
interface for bind parameters. The bind parameters must be arrays of size arrayLength
parameter. The statement may have writable streams which may have to be written. The
returned value Status is defined in Table 13-43.

If output streams are used for OUT bind variables, they must be completely read in order. The
getCurrentStreamParam() method would indicate which stream must be read. Similarly,
getCurrentIteration() would indicate the iteration for which data is available.

Note that you cannot perform array executes for queries or callable statements.

Syntax

Status executeArrayUpdate(
 unsigned int arrayLength);

Parameter Description

arrayLength The number of elements provided in each buffer of bind variables.

Chapter 13
Statement Class

13-223

13.30.7 executeQuery()
Runs a SQL statement that returns a ResultSet. Should not be called for a statement
which is not a query, has streamed parameters. Returns a ResultSet that contains the
data produced by the query.

Syntax Description

ResultSet* executeQuery(
 const string &sql="");

Executes the SQL Statement that returns a ResultSet.

ResultSet* executeQuery(
 const UString &sql);

Executes the SQL Statement that returns a ResultSet;
globalization enabled.

Parameter Description

sql The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with
the statement.

13.30.8 executeUpdate()
Executes a non-query statement such as a SQL INSERT, UPDATE, DELETE statement, a
DDL statement such as CREATE/ALTER and so on, or a stored procedure call. Returns
either the row count for INSERT, UPDATE or DELETE or 0 for SQL statements that return
nothing.

If the number of rows processed as a result of this call exceeds UB4MAXVAL, it may
throw an exception. In such scenarios, use execute() instead, followed by
getUb8RowCount() to obtain the number of rows processed.

Syntax Description

unsigned int executeUpdate(
 const string &sql="");

Executes a non-query statement.

unsigned int executeUpdate(
 const UString &sql);

Executes a non-query statement; globalization
enabled.

Parameter Description

sql The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with
the statement.

13.30.9 getAutoCommit()
Returns the current auto-commit state.

Chapter 13
Statement Class

13-224

Syntax

bool getAutoCommit() const;

13.30.10 getBatchErrorMode()
Returns the state of the batch error mode; TRUE if the batch error mode is enabled, FALSE
otherwise.

Syntax

bool getBatchErrorMode() const;

13.30.11 getBDouble()
Returns the value of an IEEE754 DOUBLE column, which has been defined as an OUT bind. If
the value is SQL NULL, the result is 0.

Syntax

BDouble getBDouble(
 unsigned int paramIndex) = 0;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.12 getBfile()
Returns the value of a BFILE parameter as a Bfile object.

Syntax

Bfile getBfile(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.13 getBFloat()
Gets the value of an IEEE754 FLOAT column, which has been defined as an OUT bind. If the
value is SQL NULL, the result is 0.

Syntax

BFloat getBFloat(
 unsigned int paramIndex) = 0;

Chapter 13
Statement Class

13-225

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.14 getBlob()
Returns the value of a BLOB parameter as a Blob.

Syntax

Blob getBlob(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.15 getBoolean()
Gets the output values of IN/OUT and OUT parameters of the BOOLEAN type in
PL/SQL procedures and functions.

Syntax

virtual bool getBoolean (unsigned int paramIndex) = 0;

Parameter Description

paramIndex Parameter index; first parameter is 1, second
is 2, and so on. Index of BOOLEAN type.

Sample usage scenarios of Statement::getBoolean()

OUT BIND PL/SQL using getBoolean()

This returns an OUT bind parameter value at a given position in a statement object as
a boolean value.

/*---
// OUT param of boolean
 type */OCCIStatement *stmt =
 conn->createStatement("BEGIN myproc (:1); END;"); try{
 stmt->registerOutParam(1, Type::OCCIBOOL)
 stmt->execute(); bool b = stmt->getBoolean (1);
…}
/*---*/

IN BIND PL/SQL

/* IN param of boolean type */
bool bVal = true;

Chapter 13
Statement Class

13-226

OCCIStatement *stmt = conn->createStatement("BEGIN myproc (:1); END;");
try
{
 stmt->setBoolean(1, bVal);
 stmt->execute();
…
}

IN/OUT BIND PL/SQL

/* IN/OUT param of boolean type */
 bool bVal = true;
OCCIStatement *stmt = conn->createStatement("BEGIN myproc (:1); END;");
try
{
 stmt->setBoolean(1, bVal);

 stmt->execute();
 bool b = stmt->getBoolean (1); …
 }

Binding Boolean values in SELECT and DML statements

/*---*/
Statement *stmt = conn->createStatement(“ INSERT INTO BoolTable
(booleanColumn) VALUES (:1)");

try
{
 bool boolIn = true;
 stmt->setMaxIterations (1);

 stmt->setBoolean(1, boolIn);
 stmt->executeUpdate ();
}
/*---*/

Selecting BOOLEAN column values from tables and views

Class: ResultSet
virtual bool getBoolean(unsigned int colIndex) = 0;
This returns the selected column value as a boolean value from the ResultSet
object
/*---*/

Statement *stmt = conn->createStatement(" SELECT * from BoolTable ");

try
{
 ResultSet rs = stmt->executeQuery();
 rs->next();
 string sname = rs->getString(1);
 bool boolOut = rs->getBoolean(2);

Chapter 13
Statement Class

13-227

}
/*---*/

13.30.16 getBytes()
Returns the value of n SQL BINARY or VARBINARY parameter as Bytes; if the value is
SQL NULL, the result is NULL.

Syntax

Bytes getBytes(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.17 getCharSet()
Returns the characterset that is in effect for the specified parameter, as a string.

Syntax

string getCharSet(
 unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.18 getCharSetUString()
Returns the character set that is in effect for the specified parameter, as a UString.

Syntax

UString getCharSetUString(
 unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.19 getClob()
Get the value of a CLOB parameter as a Clob. Returns the parameter value.

Syntax

Clob getClob(
 unsigned int paramIndex);

Chapter 13
Statement Class

13-228

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.20 getConnection()
Returns the connection from which the Statement object was instantiated.

Syntax

Connection* getConnection() const;

13.30.21 getCurrentIteration()
If the prepared statement has any output Streams, this method returns the current iteration of
the statement that is being processed by OCCI. If this method is called after all the
invocations in the set of iterations has been processed, it returns 0. Returns the iteration
number of the current iteration that is being processed. The first iteration is numbered 1 and
so on. If the statement has finished execution, a 0 is returned.

Syntax

unsigned int getCurrentIteration() const;

13.30.22 getCurrentStreamIteration()
Returns the current parameter stream for which data is available.

Syntax

unsigned int getCurrentStreamIteration() const;

13.30.23 getCurrentStreamParam()
Returns the parameter index of the current output Stream parameter that must be written. If
the prepared statement has any output Stream parameters, this method returns the
parameter index of the current output Stream that must be written. If no output Stream must
be written, or there are no output Stream parameters in the prepared statement, this method
returns 0.

Syntax

unsigned int getCurrentStreamParam() const;

13.30.24 getCursor()
Gets the REF CURSOR value of an OUT parameter as a ResultSet. Data can be fetched from
this result set. The OUT parameter must be registered as CURSOR with the registerOutParam()
method. Returns a ResultSet for the OUT parameter value.

Chapter 13
Statement Class

13-229

Note that if there are multiple REF CURSORs being returned due to a batched call, data
from each cursor must be completely fetched before retrieving the next REF CURSOR
and starting fetch on it.

Syntax

ResultSet * getCursor(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.25 getDatabaseNCHARParam()
Returns whether data is in NCHAR character set or not.

Syntax

bool getDatabaseNCHARParam(
 unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.26 getDate()
Get the value of a SQL DATE parameter as a Date object. Returns the parameter value;
if the value is SQL NULL, the result is NULL.

Syntax

Date getDate(
 unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.27 getDMLRowCounts()
Returns the row counts affected by each iteration of the current DML statement when it
executes with multiple iterations.

Use this method in conjunction with getRowCountsOption() and
setRowCountsOption().

Syntax

vector<oraub8> getDMLRowCounts();

Chapter 13
Statement Class

13-230

13.30.28 getDouble()
Get the value of a DOUBLE parameter as a C++ double. Returns the parameter value; if the
value is SQL NULL, the result is 0.

Syntax

double getDouble(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.29 getFloat()
Get the value of a FLOAT parameter as a C++ float. Returns the parameter value; if the
value is SQL NULL, the result is 0.

Syntax

float getFloat(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.30 getInt()
Get the value of an INTEGER parameter as a C++ int. Returns the parameter value; if the
value is SQL NULL, the result is 0.

Syntax

unsigned int getInt(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.31 getIntervalDS()
Get the value of a parameter as a IntervalDS object.

Syntax

IntervalDS getIntervalDS(
 unsigned int paramIndex);

Chapter 13
Statement Class

13-231

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.32 getIntervalYM()
Get the value of a parameter as a IntervalYM object.

Syntax

IntervalYM getIntervalYM(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.33 getMaxIterations()
Gets the current limit on maximum number of iterations. Default is 1. Returns the
current maximum number of iterations.

Syntax

unsigned int getMaxIterations() const;

13.30.34 getMaxParamSize()
The maxParamSize limit (in bytes) is the maximum amount of data sent or returned for
any parameter value; it only applies to character and binary types. If the limit is
exceeded, the excess data is silently discarded. Returns the current max parameter
size limit.

Syntax

unsigned int getMaxParamSize(
 unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.35 getNumber()
Gets the value of a NUMERIC parameter as a Number object. Returns the parameter
value; if the value is SQL NULL, the result is NULL.

Chapter 13
Statement Class

13-232

Syntax

Number getNumber(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.36 getObject()
Gets the value of a parameter as a PObject. This method returns an PObject whose type
corresponds to the SQL type that was registered for this parameter using registerOutParam().
Returns A PObject holding the OUT parameter value.

This method may be used to read database-specific, abstract data types.

Syntax

PObject * getObject(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.37 getOCIStatement()
Get the OCI statement handle associated with the Statement.

Syntax

OCIStmt * getOCIStatement() const;

13.30.38 getRef()
Get the value of a REF parameter as RefAny. Returns the parameter value.

Syntax

RefAny getRef(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.39 getResultSet()
Returns the current result as a ResultSet.

Chapter 13
Statement Class

13-233

Syntax

ResultSet * getResultSet();

13.30.40 getRowCountsOption()
Determines if the DML row counts option is enabled.

If TRUE, DML statements can be executed to return the row counts for each iteration
using the method getDMLRowCounts().

Syntax

bool getRowCountsOption();

13.30.41 getRowid()
Get the rowid parameter value as a Bytes.

Syntax

Bytes getRowid(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.42 getSQL()
Returns the current SQL string associated with the Statement object.

Syntax

string getSQL() const;

13.30.43 getSQLUString()
Returns the current SQL UString associated with the Statement object; globalization
enabled.

Syntax

UString getSQLUString() const;

13.30.44 getStream()
Returns the value of the parameter as a stream.

Syntax

Stream * getStream(
 unsigned int paramIndex);

Chapter 13
Statement Class

13-234

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.45 getString()
Get the value of a CHAR, VARCHAR, or LONGVARCHAR parameter as an string. Returns the
parameter value; if the value is SQL NULL, the result is empty string.

Syntax

string getString(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.46 getTimestamp()
Get the value of a SQL TIMESTAMP parameter as a Timestamp object. Returns the parameter
value; if the value is SQL NULL, the result is NULL

Syntax

Timestamp getTimestamp(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.47 getUb8RowCount()
Returns the number of rows affected by the execution of a DML statement.

This method enables a return of a large number of rows than was possible before Oracle
Database Release 12c.

Syntax

oraub8 getUb8RowCount();

13.30.48 getUInt()
Get the value of a BIGINT parameter as a C++ unsigned int. Returns the parameter value; if
the value is SQL NULL, the result is 0.

Chapter 13
Statement Class

13-235

Syntax

unsigned int getUInt(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.49 getUpdateCount()
Returns the number of rows affected, if DML statement is executed.

Note: This method has been deprecated. Use getUb8RowCount() instead.

Syntax

unsigned int getUpdateCount() const;

13.30.50 getUString()
Returns the value as a UString.

This method should be called only if the environment's character set is UTF16, or if
setCharset() method has been called to explicitly retrieve UTF16 data.

Syntax

UString getUString(
 unsigned int paramIndex);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.51 getVector()
Returns the column in the current position as a vector. The column at the position,
specified by index, should be a collection type (varray or nested table). The SQL type
of the elements in the collection should be compatible with the type of the vector.

Syntax Description

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 std::vector<UString> &vect);

Used for vectors of UString Class;
globalization enabled.

Chapter 13
Statement Class

13-236

Syntax Description

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<BDouble> &vect);

Used for BDouble vectors.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<BFile> &vect);

Used for vectors of Bfile Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<BFloat> &vect);

Used for BFloat vectors.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Blob> &vect);

Used for vectors of Blob Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Bytes> &vect);

Used for vectors of Bytes Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Clob> &vect);

Used for Clob vectors.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Date> &vect);

Used for vectors of Date Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<double> &vect);

Used for vectors of double Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<float> &vect);

Used for vectors of float Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<int> &vect);

Used for vectors of int Class.

Chapter 13
Statement Class

13-237

Syntax Description

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<IntervalDS> &vect);

Used for vectors of IntervalDS Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<IntervalYM> &vect);

Used for vectors of IntervalYM Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Number> &vect);

Used for vectors of Number Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<RefAny> &vect);

Used for vectors of RefAny Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<string> &vect);

Used for vectors of string Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<T *> &vect);

Intended for use on platforms where partial
ordering of function templates is supported.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<T> &vect);

Intended for use on platforms where partial
ordering of function templates is not supported,
such as Windows NT and z/OS. For OUT binds.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Timestamp> &vect);

Used for vectors of Timestamp Class.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<u <Ref<T> > &vect);

Available only on platforms where partial
ordering of function templates is supported.

void getVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<unsigned int> &vect);

Used for on vectors of unsigned int Class.

Chapter 13
Statement Class

13-238

Parameter Description

stmt The statement.

paramIndex Parameter index.

vect Reference to the vector (OUT parameter) into which the values should be
retrieved.

13.30.52 getVectorOfRefs()
This method returns the column in the current position as a vector of REFs. The column
should be a collection type (varray or nested table) of REFs. Used with OUT binds.

Syntax

void getVectorOfRefs(
 Statement *stmt,
 unsigned int colIndex,
 vector< Ref<T> > &vect);

Parameter Description

stmt The statement object.

colIndex Column index; first column is 1, second is 2, and so on.

vect The reference to the vector of REFs (OUT parameter). It is recommended
to use getVectorOfRefs() instead of specialized getVector()
function for Ref<T>.

13.30.53 isNull()
An OUT parameter may have the value of SQL NULL; isNull() reports whether the last value
read has this special value. Note that you must first call getxxx() on a parameter to read its
value and then call isNull() to see if the value was SQL NULL. Returns TRUE if the last
parameter read was SQL NULL.

Syntax

bool isNull(
 unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Chapter 13
Statement Class

13-239

13.30.54 isTruncated()
This method checks whether the value of the parameter is truncated. If the value of the
parameter is truncated, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isTruncated(
 unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.55 preTruncationLength()
Returns the actual length of the parameter before truncation.

Syntax

int preTruncationLength(
 unsigned int paramIndex) const;

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.56 registerOutParam()
This method registers the type of each out parameter of a PL/SQL stored procedure.
Before executing a PL/SQL stored procedure, you must explicitly call this method to
register the type of each out parameter. This method should be called for out
parameters only. Use the setxxx() method for in/out parameters.

• When reading the value of an out parameter, you must use the getxxx() method
that corresponds to the parameter's registered SQL type. For example, use getInt
or getNumber when OCCIINT or OCCINumber is the type specified.

• If a PL/SQL stored procedure has an out parameter of type ROWID, the type
specified in this method should be OCCISTRING. The value of the out parameter
can then be retrieved by calling the getString() method.

• If a PL/SQL stored procedure has an in/out parameter of type ROWID, call the
methods setString() and getString() to set the type and retrieve the value of
the IN/OUT parameter.

Chapter 13
Statement Class

13-240

Syntax Description

void registerOutParam(
 unsigned int paramIndex,
 Type type,
 unsigned int maxSize=0,
 const string &sqltype="");

Registers the type of each out
parameter of a PL/SQL stored
procedure.

void registerOutParam(
 unsigned int paramIndex,
 Type type,
 unsigned int maxSize,
 const string typName,
 const string &schName);

Registers the type of each out
parameter of a PL/SQL stored
procedure; string support.

void registerOutParam(
 unsigned int paramIndex,
 Type type,
 unsigned int maxSize,
 const UString &typName,
 const UString &schName);

Registers the type of each out
parameter of a PL/SQL stored
procedure; globalization enabled, or
UString support.

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

type SQL type code defined by type; only data types corresponding to OCCI
data types such as Date, Bytes, and so on.

maxSize The maximum size of the retrieved value. For data types of OCCIBYTES
and OCCISTRING, maxSize should be greater than 0.

sqltype The name of the type in the data base (used for types which have been
created with CREATE TYPE).

typName The name of the type.

schName The schema name.

13.30.57 setAutoCommit()
A Statement can be in auto-commit mode. In this case any statement executed is also
automatically committed. By default, the auto-commit mode is turned-off.

Syntax

void setAutoCommit(
 bool autoCommit);

Parameter Description

autoCommit TRUE enables auto-commit; FALSE disables auto-commit.

Chapter 13
Statement Class

13-241

13.30.58 setBatchErrorMode()
Enables or disables the batch error processing mode.

Syntax

virtual void setBatchErrorMode(
 bool batchErrorMode);

Parameter Description

batchErrorMode TRUE enables batch error processing; FALSE disables batch error
processing.

13.30.59 setBDouble()
Sets an IEEE754 double as a bind value to a Statement object at the position
specified by paramIndex attribute.

Syntax

void setBDouble(
 unsigned int paramIndex,
 const BDouble &dval);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

dval The parameter value.

13.30.60 setBfile()
Sets a parameter to a Bfile value.

Syntax

void setBfile(
 unsigned int paramIndex,
 const Bfile &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

Chapter 13
Statement Class

13-242

13.30.61 setBFloat()
Sets an IEEE754 float as a bind value to a Statement object at the position specified by the
paramIndex attribute.

Syntax

void setBFloat(
 unsigned int paramIndex,
 const BFloat &fval);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

fval The parameter value.

13.30.62 setBinaryStreamMode()
Defines that a column is to be returned as a binary stream.

Syntax Description

void setBinaryStreamMode(
 unsigned int colIndex,
 unsigned int size);

Sets column returned to be a binary stream.

void setBinaryStreamMode(
 unsigned int colIndex,
 unsigned int size
 bool inArg);

Sets column returned to be a binary stream; used with
PL/SQL IN or IN/OUT arguments in the bind position.

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

size The amount of data to be read or returned as a binary Stream. This is limited to
32KB (32,768 bytes).

inArg Pass TRUE if the bind position is a PL/SQL IN or IN/OUT argument

13.30.63 setBlob()
Sets a parameter to a Blob value.

Syntax

void setBlob(
 unsigned int paramIndex,
 const Blob &val);

Chapter 13
Statement Class

13-243

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.64 setBoolean()
Sets an input value on statement object at the given position, using the given boolean
value, for PL/SQL IN and IN/OUT BOOLEAN parameters and all BOOLEAN bind
values for SELECT and DML statements.

Syntax

virtual void setBoolean(unsigned int paramIndex, bool val) = 0;

Parameters Description

paramIndex Parameter index; first parameter is 1, second
is 2, and so on. This is the index of BOOLEAN
type parameter of the PL/SQL procedure or
function, or the bind position of the BOOLEAN
type in the SELECT or DML statement
executed.

val val is the boolean value passed.

13.30.65 setBytes()
Sets a parameter to a Bytes array.

Syntax

void setBytes(
 unsigned int paramIndex,
 const Bytes &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.66 setCharacterStreamMode()
Defines that a column is to be returned as a character stream.

Chapter 13
Statement Class

13-244

Syntax Description

void setCharacterStreamMode(
 unsigned int colIndex,
 unsigned int size);

Sets column returned to be a character stream.

void setCharacterStreamMode(
 unsigned int colIndex,
 unsigned int size,
 bool inArg);

Sets column returned to be a character stream; used with
PL/SQL IN or IN/OUT arguments in the bind position.

Parameter Description

colIndex Column index; first column is 1, second is 2, and so on.

size The amount of data to be read or returned as a character Stream.

inArg Pass TRUE if the bind position is a PL/SQL IN or IN/OUT argument

13.30.67 setCharSet()
Overrides the default character set for the specified parameter. Data is assumed to be in the
specified character set and is converted to database character set. For OUT binds, this
specifies the character set to which database characters are converted to.

Syntax

void setCharSet(
 unsigned int paramIndex,
 string &charSet);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

charSet Selected character set, as a string.

13.30.68 setCharSetUString()
Overrides the default character set for the specified parameter. Data is assumed to be in the
specified character set and is converted to database character set. For OUT binds, this
specifies the character set to which database characters are converted to.

Syntax

void setCharSetUString(
 unsigned int paramIndex,
 const UString& charSet);

Chapter 13
Statement Class

13-245

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

charSet Selected character set, as a UString.

13.30.69 setClob()
Sets a parameter to a Clob value.

Syntax

void setClob(
 unsigned int paramIndex,
 const Clob &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.70 setDate()
Sets a parameter to a Date value.

Syntax

void setDate(
 unsigned int paramIndex,
 const Date &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.71 setDatabaseNCHARParam()
If the parameter is going to be inserted in a column that contains data in the
database's NCHAR character set, then OCCI must be informed by passing a TRUE value.
A FALSE can be passed to restore the dafault.Returns returns the character set that is
in effect for the specified parameter.

Chapter 13
Statement Class

13-246

Syntax

void setDatabaseNCHARParam(
 unsigned int paramIndex,
 bool isNCHAR);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

isNCHAR TRUE if this parameter contains data in Database's NCHAR character set;
FALSE otherwise

13.30.72 setDataBuffer()
Specifies a data buffer where data would be available. Also used for OUT bind parameters of
callable statements.

The buffer parameter is a pointer to a user allocated data buffer. The current length of data
must be specified in the length parameter. The amount of data should not exceed the size
parameter. Finally, type is the data type of the data.

Note that not all types can be supplied in the buffer. For example, all OCCI allocated types
(such as Bytes, Date and so on) cannot be provided by the setDataBuffer() interface.
Similarly, C++ Standard Library strings cannot be provided with the setDataBuffer() interface
either. The type can be any of OCI data types such VARCHAR2, CSTRING, CHARZ and so on.

If setDataBuffer() is used to specify data for iterative or array executes, it should be called
only once in the first iteration only. For subsequent iterations, OCCI would assume that data
is at buffer +(i*size) location where i is the iteration number. Similarly the length of the
data would be assumed to be at (length+i).
For more information on the version of this method that uses 32K length parameter, see
Oracle Database SQL Language Reference.

Syntax Description

void setDataBuffer(
 unsigned int paramIndex,
 void *buffer,
 Type type,
 sb4 size,
 ub2 *length,
 sb2 *ind = NULL,
 ub2 *rc= NULL);

Uses ub2 length buffer. This limits VARCHAR2 and NVARCHAR2
length to 4,000 bytes, and RAW data types to 2,000 bytes.

void setDataBuffer(
 unsigned int paramIndex,
 void *buffer,
 Type type,
 sb4 size,
 ub4 *length,
 sb2 *ind = NULL,
 ub2 *rc= NULL);

Uses ub4 length buffer (32K). This increases the length of
VARCHAR2, NVARCHAR2 and RAW data types.

Chapter 13
Statement Class

13-247

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

buffer Pointer to user-allocated buffer. For iterative or array executes, it should
have numIterations() size bytes in it. For array fetches, it should have
numRows * size bytes in it. For gather or scatter binds and defines, this
structure stores the address of OCIIOVec and the number of OCIIOVec
elements that start at that address.

type Type of the data that is provided (or retrieved) in the buffer.

size Size of the data buffer; for iterative and array executes, it is the size of each
element of the data items. For gather or scatter binds and defines, it is the
size of the OCIIOVecArray to which the buffer points; the mode must be
set to IOVEC.

length Pointer to the length of data in the buffer; for iterative and array executes, it
should be an array of length data for each buffer element; the size of the
array should be equal to arrayLength().

ind Indicator. For iterative and array executes, an indicator for every buffer
element.

rc Returns code; for iterative and array executes, a return code for every buffer
element.

13.30.73 setDataBufferArray()
Specifies an array of data buffers where data would be available for reading or writing.
Used for IN, OUT, and IN/OUT bind parameters for stored procedures which read/write
array parameters.

• A stored procedure can have an array of values for IN, IN/OUT, or OUT parameters.
In this case, the parameter must be specified using the setDataBufferArray()
method. The array is specified just as for the setDataBuffer() method for iterative
or array executes, but the number of elements in the array is determined by
*arrayLength parameter.

• For OUT and IN/OUT parameters, the maximum number of elements in the array is
specified (and returned) by the arraySize parameter. The client must ensure that
it has allocated size *arraySize bytes for the buffer. For iterative prepared
statements, the number of elements in the array is determined by the number of
iterations, and for array executes the number of elements in the array is
determined by the arrayLength parameter of the executeArrayUpdate() method.
However, for array parameters of stored procedures, the number of elements in
the array must be specified in the arrayLength parameter of the
setDataBufferArray() method because each parameter may have a different size
array.

• This is different from prepared statements where for iterative and array executes,
the number of elements in the array for each parameter is the same and is
determined by the number of iterations of the statement, but a callable statement
is executed only once, and each of its parameter can be a varying length array
with possibly a different length.

Chapter 13
Statement Class

13-248

• For more information on the version of this method that uses 32K elementLength
parameter, see Oracle Database SQL Language Reference.

Syntax Description

void setDataBufferArray(
 unsigned int paramIndex,
 void *buffer,
 Type type,
 ub4 arraySize,
 ub4 *arrayLength,
 sb4 elementSize,
 ub2 *elementLength,
 sb2 *ind = NULL,
 ub2 *rc = NULL);

Uses ub2 elementLength buffer. This limits VARCHAR2 and
NVARCHAR2 length to 4,000 bytes, and RAW data types to 2,000
bytes.

void setDataBufferArray(
 unsigned int paramIndex,
 void *buffer,
 Type type,
 ub4 arraySize,
 ub4 *arrayLength,
 sb4 elementSize,
 ub4 *elementLength,
 sb2 *ind = NULL,
 ub2 *rc = NULL);

Uses ub4 elementLength buffer (32K). This increases the
length of VARCHAR2, NVARCHAR2 and RAW data types.

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

buffer Pointer to user-allocated buffer. It should have size* arraySize bytes in it.
For gather or scatter binds and defines, this structure stores the address of
OCIIOVec and the number of OCIIOVec elements that start at that address.

type Type of the data that is provided (or retrieved) in the buffer.

arraySize Maximum number of elements in the array.

arrayLength Pointer to number of current elements in the array.

elementSize Size of the data buffer for each element. For iterative and array executes, it is
the size of each element of the data items. When using gather or scatter binds
and defines, it is the size of the OCIIOVecArray; the mode must be set to
IOVEC.

elementLemgth Pointer to an array of lengths. elementLength[i] has the current length of
the ith element of the array.

ind Pointer to an array of indicators. An indicator for every buffer element.

rcs Pointer to an array of return codes.

Chapter 13
Statement Class

13-249

13.30.74 setDouble()
Sets a parameter to a C++ double value.

Syntax

void setDouble(
 unsigned int paramIndex,
 double val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.75 setErrorOnNull()
Enables/disables exceptions for reading of NULL values on paramIndex parameter of
the statement. If exceptions are enabled, calling a getxxx() on paramIndex parameter
would result in an SQLException if the parameter value is NULL. This call can also be
used to disable exceptions.

Syntax

void setErrorOnNull(
 unsigned int paramIndex,
 bool causeException);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

causeException Enable exceptions if TRUE. Disable if FALSE.

13.30.76 setErrorOnTruncate()
This method enables/disables exceptions when truncation occurs.

Syntax

void setErrorOnTruncate(
 unsigned int paramIndex,
 bool causeException);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Chapter 13
Statement Class

13-250

Parameter Description

causeException Enable exceptions if TRUE. Disable if FALSE.

13.30.77 setFloat()
Sets a parameter to a C++ float value.

Syntax

void setFloat(
 unsigned int paramIndex,
 float val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.78 setInt()
Sets a parameter to a C++ int value.

Syntax

void setInt(
 unsigned int paramIndex,
 int val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.79 setIntervalDS()
Sets a parameter to a IntervalDS value.

Syntax

void setIntervalDS(
 unsigned int paramIndex,
 const IntervalDS &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Chapter 13
Statement Class

13-251

Parameter Description

val The parameter value.

13.30.80 setIntervalYM()
Sets a parameter to a Interval value.

Syntax

void setIntervalYM(
 unsigned int paramIndex,
 const IntervalYM &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.81 setMaxIterations()
Sets the maximum number of invocations that are made for the DML statement. This
must be called before any parameters are set on the prepared statement. The larger
the iterations, the larger the numbers of parameters sent to the server in one round
trip. However, a large number causes more memory to be reserved for all the
parameters. Note that this is just the maximum limit. Actual number of iterations
depends on the number of calls to addIteration().

Syntax

void setMaxIterations(
 unsigned int maxIterations);

Parameter Description

maxIterations Maximum number of iterations allowed on this statement.

13.30.82 setMaxParamSize()
This method sets the maximum amount of data to be sent or received for the specified
parameter. It only applies to character and binary data. If the maximum amount is
exceeded, the excess data is discarded. This method can be very useful when working
with a LONG column. It can be used to truncate the LONG column by reading or writing it
into a string or Bytes data type.

If the getSQL() or setBytes() method has been called to bind a value to an IN/OUT
parameter of a PL/SQL procedure, and the size of the OUT value is expected to be
greater than the size of the IN value, then setMaxParamSize() should be called.

Chapter 13
Statement Class

13-252

Syntax

void setMaxParamSize(
 unsigned int paramIndex,
 unsigned int maxSize);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

maxSize The new maximum parameter size limit; must be >0.

13.30.83 setNull()
Sets a parameter to SQL NULL. Note that you must specify the parameter's SQL type.

Syntax Description

void setNull(
 unsigned int paramIndex,
 Type type);

Sets the value of a parameter to NULL
using an object.

void setNull(
 unsigned int paramIndex,
 Type type,
 const string &typeName,
 const string &schemaName = "")

Sets the value of a parameter to NULL
for object and collection types,
OCCIPOBJECT and OCCIVECTOR. Uses
the appropriate schema and type name
of the object or collection type. Support
for string.

void setNull(
 unsigned int paramIndex,
 Type type,
 UString &typeName,
 UString &schemaName);

Sets the value of a parameter to NULL
for object and collection types,
OCCIPOBJECT and OCCIVECTOR. Uses
the appropriate schema and type name
of the object or collection type. Support
for UString.

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

type SQL type.

typeName Type name of the object or collection.

schemaName Name of the schema where the object or collection is defined.

13.30.84 setNumber()
Sets a parameter to a Number value.

Chapter 13
Statement Class

13-253

Syntax

void setNumber(
 unsigned int paramIndex,
 const Number &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.85 setObject()
Sets the value of a parameter using an object; use the C++.lang equivalent objects for
integral values. The OCCI specification specifies a standard mapping from C++ Object
types to SQL types. The given parameter C++ object is converted to the
corresponding SQL type before being sent to the database.

Syntax

void setObject(
 unsigned int paramIndex,
 PObject* val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The object containing the input parameter value.

sqltyp The SQL type name of the object to be set.

13.30.86 setPrefetchMemorySize()
Sets the amount of memory that is used internally by OCCI to store data fetched
during each round trip to the server. A value of 0 means that the amount of data
fetched during the round trip is constrained by the FetchRowCount parameter. If both
parameters are nonzero, the smaller of the two is used.

Syntax

void setPrefetchMemorySize(
 unsigned int bytes);

Parameter Description

bytes Number of bytes used for storing data fetched during each server round trip.

Chapter 13
Statement Class

13-254

13.30.87 setPrefetchRowCount()
Sets the number of rows that are fetched internally by OCCI during each round trip to the
server. A value of 0 means that the amount of data fetched during the round trip is
constrained by the FetchMemorySize parameter. If both parameters are nonzero, the smaller
of the two is used. If both of these parameters are zero, row count internally defaults to 1 row
and that is the value returned from the getFetchRowCount() method.

Syntax

void setPrefetchRowCount(
 unsigned int rowCount);

Parameter Description

rowCount Number of rows to fetch for each round trip to the server.

13.30.88 setRef()
Sets the value of a parameter to a reference. A Ref<T> instance is implicitly converted to a
RefAny object during this call.

Syntax Description

void setRef(
 unsigned int paramIndex,
 const RefAny &refAny);

Sets the value of a parameter to a reference.

void setRef(
 unsigned int paramIndex,
 const RefAny &refAny,
 const string &typName,
 const string &schName = "");

Sets the value of a parameter to a reference. If
the Statement represents a callable PL/SQL
method, pass the schema name and type name
of the object represented by the Ref. Support for
string.

void setRef(
 unsigned int paramIndex,
 const RefAny &refAny,
 const UString &typName,
 const UString &schName);

Sets the value of a parameter to a reference. If
the Statement represents a callable PL/SQL
method, pass the schema name and type name
of the object represented by the Ref. Support for
UString.

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

refAny The reference.

typName The type of the object [optional].

Chapter 13
Statement Class

13-255

Parameter Description

schName The schema where the object type is defined [optional].

13.30.89 setRowCountsOption()
Set flag to TRUE to enable return of DML row counts per iteration when invoking
getDMLRowCounts().

This option should be set before the statement executes. By default, the DML row
counts per iteration are not returned.

Syntax

void setRowCountsOption(
 bool flag);

Parameter Description

flag TRUE to return DML row counts, FALSE otherwise

13.30.90 setRowid()
Sets a Rowid bytes array for a bind position.

Syntax

void setRowid(
 unsigned int paramIndex,
 const Bytes &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.91 setSQL()
A new SQL string can be associated with a Statement object using this call.
Resources associated with the previous SQL statement are freed. In particular, a
previously obtained result set is invalidated. If an empty SQL string, "", is used when
the Statement is created, a setSQL method with the proper SQL string must be
performed first.

Syntax

void setSQL(
 const string &sql);

Chapter 13
Statement Class

13-256

Parameter Description

sql Any SQL statement.

13.30.92 setSQLUString()
Associate an SQL statement with this object. Unicode support: the client Environment should
be initialized in OCCIUTIF16 mode.

Syntax

void setSQLUString(
 const UString &sql);

Parameter Description

sql A SQL statement in same character set as the connection source of the statement.

13.30.93 setString()
Sets a parameter for a specified index.

Syntax

void setString(
 unsigned int paramIndex,
 const string &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.94 setTimestamp()
Sets a parameter to a Timestamp value.

Syntax

void setTimestamp(
 unsigned int paramIndex,
 const Timestamp &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

Chapter 13
Statement Class

13-257

Parameter Description

val The parameter value.

13.30.95 setUInt()
Sets a parameter to a C++ unsigned int value.

Syntax

void setUInt(
 unsigned int paramIndex,
 unsigned int val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.96 setUString()
Sets a parameter for a specified index; globalization enabled.

Syntax

void setUString(
 unsigned int paramIndex,
 const UString &val);

Parameter Description

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.97 setVector()
Sets a parameter to a vector. This method is necessary when the type is a collection
type, varrays or nested tables. The SQL Type of the elements in the collection should
be compatible with the type of the vector. For example, if the collection is a varray of
VARCHAR2, use vector<string>.

Chapter 13
Statement Class

13-258

Syntax Description

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector< T > &vect,
 const string &schemaName,
 const string &typeName);

Intended for use on platforms where
partial ordering of function templates
is not supported, such as Windows
NT and z/OS. Multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<T* > &vect,
 const string &schemaName,
 const string &typeName);

Intended for use on platforms where
partial ordering of function templates
is supported. Multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<BDouble> &vect
 const string &sqltype);

Sets a BDouble vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Bfile> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const Bfile vector;
multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Bfile> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const BFile vector; UTF16
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<BFloat> &vect
 const string &sqltype);

Sets a BFloat vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Blob> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const Blob vector; multibyte
support.

Chapter 13
Statement Class

13-259

Syntax Description

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Blob> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const Blob vector; UTF16
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Bytes> &vect,
 const string &sqltype);

Sets a const Bytes vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Bytes> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const Bytes vector;
multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Bytes> &vect,
 const Ustring &schemaName,
 const Ustring &typeName);

Sets a const Bytes vector; UTF16
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Clob> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const Clob vector; multibyte
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Clob> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const Clob vector; UTF16
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Date> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const Date vector; multibyte
support.

Chapter 13
Statement Class

13-260

Syntax Description

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Date> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const Date vector; UTF16
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<double> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const double vector;
multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<double> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const double vector; UTF16
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<float> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const float vector;
multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<float> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const float vector; UTF16
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<int> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const int vector; multibyte
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<int> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const int vector; UTF16
support.

Chapter 13
Statement Class

13-261

Syntax Description

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<IntervalDS> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const IntervalDS vector;
multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<IntervalDS> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const IntervalDS vector;
UTF16 support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<IntervalYM> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const IntervalYM vector;
multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<IntervalYM> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const IntervalYM vector;
UTF16 support

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Number> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const Number vector;
multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Number> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const Number vector; UTF16
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<RefAny> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const RefAny vector;
multibyte support.

Chapter 13
Statement Class

13-262

Syntax Description

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<RefAny> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const RefAny vector; UTF16
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<string> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const string vector;
multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<string> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const string vector; UTF16
support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Timestamp> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const Timestamp vector;
multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Timestamp> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const Timestamp vector;
UTF16 support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<unsigned int> &vect,
 const string &schemaName,
 const string &typeName);

Sets a const unsigned int vector;
multibyte support.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<unsigned int> &vect,
 const UString &schemaName,
 const UString &typeName);

Sets a const unsigned int vector;
UTF16 support.

Chapter 13
Statement Class

13-263

Syntax Description

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Bfile> &vect,
 string &sqltype);

Sets a Bfile vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Blob> &vect,
 string &sqltype);

Sets a Blob vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Clob> &vect,
 string &sqltype);

Sets a Clob vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Date> &vect,
 string &sqltype);

Sets a Date vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<double> &vect,
 string &sqltype);

Sets a double vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<float> &vect,
 string &sqltype);

Sets a float vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<int> &vect,
 string &sqltype);

Sets an int vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<IntervalDS> &vect,
 string &sqltype);

Sets an IntervalDS vector.

Chapter 13
Statement Class

13-264

Syntax Description

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<IntervalYM> &vect,
 string &sqltype);

Sets an IntervalYM vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Number> &vect,
 string &sqltype);

Sets a Number vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<RefAny> &vect,
 string &sqltype);

Sets a RefAny vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<string> &vect,
 string &sqltype);

Sets a string vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Timestamp> &vect,
 string &sqltype);

Sets a Timestamp vector.

void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<unsigned int> &vect,
 string &sqltype);

Sets an unsigned int vector.

template <class T>
void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector< T* > &vect,
 const string &sqltype);

Intended for use on platforms where
partial ordering of function templates
is not supported.

template <class T>
void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<T> &vect,
 const string &sqltype);

Intended for use on platforms where
partial ordering of function templates
is supported.

Chapter 13
Statement Class

13-265

Syntax Description

template <class T>
void setVector(
 Statement *stmt,
 unsigned int paramIndex,
 vector<Ref<T>> &vect,
 string &sqltype);

Available only on platforms where
partial ordering of function templates
is supported. setVectorOfRefs() can
be used instead.

Parameter Description

stmt Statement on which parameter is to be set.

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

vect The vector to be set.

sqltype Sqltype of the collection in the database. For example, CREATE TYPE
num_coll AS VARRAY OF NUMBER. And the column/parameter type is
num_coll. The sqltype would be num_coll.

schemaName Name of the schema used

typeName Type

13.30.98 setVectorOfRefs()
Sets a parameter to a vector; is necessary when the type is a collection of REFs or
nested tables of REFs.

Syntax Description

template <class T> void setVectorOfRefs(
 Statement *stmt, unsigned int paramIndex,
 const vector<Ref<T> > &vect,
 const string &sqltype);

Sets a parameter to a vector;
is necessary when the type
is a collection of REFs are
varrays or nested tables of
REFs.

template <class T> void setVectorOfRefs(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Ref<T> > &vect,
 const string &sqltype);

Used for multibyte support.

template <class T> void setVectorOfRefs(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Ref<T>> &vect,
 const string &schemaName,
 const string &typeName);

Used for multibyte support.

Chapter 13
Statement Class

13-266

Syntax Description

template <class T> void setVectorOfRefs(
 Statement *stmt,
 unsigned int paramIndex,
 const vector<Ref<T> &vect,
 const UString &schemaName,
 const UString &typeName);

Used for UTF16 support on
platforms where partial
ordering of function
templates is not supported,
such as Windows NT and
z/OS.

template <class T> void setVector(
Statement *stmt,
unsigned int paramIndex,
const vector<T* > &vect,
const UString &schemaName,
const UString &typeName);

Used for UTF16 support on
platforms where partial
ordering of function
templates is supported.

Parameter Description

stmt Statement on which parameter is to be set.

paramIndex Parameter index; first parameter is 1, second is 2, and so on.

vect Vector to be set.

sqltype Sqltype of the parameter or column. Use setVectorOfRefs() instead of
specialized function setVector() for Ref<T>.

schemaName Name of the schema used

typeName Type

13.30.99 status()
Returns the current status of the statement. Useful when there is streamed data to be written
(or read). Other methods such as getCurrentStreamParam() and getCurrentIteration() can be
called to find out the streamed parameter that must be written and the current iteration
number for an iterative or array execute. The status() method can be called repeatedly to find
out the status of the execution.

The returned value, Status, is defined in Table 13-43.

Syntax

Status status() const;

13.31 Stream Class
You use a Stream to read or write streamed data (usually LONG).

Chapter 13
Stream Class

13-267

• A read-able Stream is used to obtain streamed data from a result set or OUT bind
variable from a stored procedure call. A read-able Stream must be read completely
until the end of data is reached or it should be closed to discard any unwanted
data.

• A write-able Stream is used to provide streamed data (usually LONG) to
parameterized statements including callable statements.

Table 13-45 Enumerated Values Used by Stream Class

Attribute Options

Status • READY_FOR_READ indicates that the Stream is ready for read operations

• READY_FOR_WRITE indicates that the Stream is ready for write operations

• INACTIVE indicates that the Stream is not available for ready or write
operations

Table 13-46 Summary of Stream Methods

Method Summary

readBuffer() Reads the stream and returns the amount of data read
from the Stream object.

readLastBuffer() Reads last buffer from Stream.

writeBuffer() Writes data from buffer to the stream.

writeLastBuffer() Writes the last data from buffer to the stream.

status() Returns the current status of the stream.

13.31.1 readBuffer()
Reads data from Stream. The size parameter specifies the maximum number of byte
characters to read. Returns the amount of data read from the Stream object. -1 means
end of data on the stream.

Syntax

virtual int readBuffer(
 char *buffer,
 unsigned int size) = 0;

Parameter Description

buffer Pointer to data buffer; must be allocated and freed by caller.

size Specifies the number of bytes to be read.

13.31.2 readLastBuffer()
Reads the last buffer from the Stream. It can also be called top discard unread data.
The size parameter specifies the maximum number of byte characters to read.

Chapter 13
Stream Class

13-268

Returns the amount of data read from the Stream object; -1 means end of data on the
stream.

Syntax

virtual int readLastBuffer(
 char *buffer,
 unsigned int size) = 0;

Parameter Description

buffer Pointer to data buffer; must be allocated and freed by caller.

size Specifies the number of bytes to be read.

13.31.3 writeBuffer()
Writes data from buffer to the stream. The amount of data is determined by size.

Syntax

virtual void writeBuffer(
 char *buffer,
 unsigned int size) = 0;

Parameter Description

buffer Pointer to data buffer.

size Specifies the number of chars to be written.

13.31.4 writeLastBuffer()
This method writes the last data buffer to the stream. It can also be called to write the last
chunk of data. The amount of data written is determined by size.

Syntax

virtual void writeLastBuffer(
 char *buffer,
 unsigned int size) = 0;

Parameter Description

buffer Pointer to data buffer.

size Specifies the number of bytes to be written.

Chapter 13
Stream Class

13-269

13.31.5 status()
Returns the current Status, as defined in Table 13-45 .

Syntax

virtual Status status() const;

13.32 Subscription Class
The subscription class encapsulates the information and operations necessary for
registering a subscriber for notification.

Table 13-47 Enumerated Values Used by Subscription Class

Attribute Options

Presentation • PRES_DEFAULT indicates that the event notification should be in
default format.

• PRES_XML indicates that the event notification should be in XML
format.

Protocol • PROTO_CBK indicates that the client receives notifications through
the default system protocol.

• PROTO_MAIL indicates that the client receives notifications through
e-mail, like xyz@oracle.com. The database does not check if the
e-mail is valid.

• PROTO_SERVER indicates that the client receives notifications
through an invoked PL/SQL procedure in the database, like
schema.procedure. The subscriber must have the appropriate
permissions on the procedure.

• PROTO_HTTP indicates that the client receives notifications through
an HTTP URL, like http://www.oracle.com:80. The database
does not check if the URL is valid.

Namespace • NS_ANONYMOUS indicates that the registrations are made in an
anonymous namespace.

• NS_AQ indicates that the registrations are made in the Oracle
Database Advanced Queuing namespace.

Table 13-48 Summary of Subscription Methods

Method Summary

Subscription() Subscription class constructor.

getCallbackContext() Retrieves the callback context.

getDatabaseServersCount() Retrieves the number of database servers in which the
client is interested for the registration.

getDatabaseServerNames() Returns the names of all the database servers where the
client registered an interest for notification.

getNotifyCallback() Returns the pointer to the registered callback function.

getPayload() Retrieves the payload that has been set on the
Subscription object before posting.

Chapter 13
Subscription Class

13-270

Table 13-48 (Cont.) Summary of Subscription Methods

Method Summary

getSubscriptionName() Retrieves the name of the Subscription.

getSubscriptionNamespace() Retrieves the namespace of the Subscription.

getRecipientName() Retrieves the name of the Subscription recipient.

getPresentation() Retrieves the notification presentation mode.

getProtocol() Retrieves the notification protocol.

isNull() Determines if the Subscription is NULL.

operator=() Assignment operator for Subscription.

setCallbackContext() Registers a callback function for OCI protocol.

setDatabaseServerNames() Specifies the database server distinguished names from
which the client receives notifications.

setNotifyCallback() Specifies the context passed to user callbacks

setNull() Specifies the Subscription object to NULL and frees the
memory associated with the object.

setSubscriptionName() Specifies the name of the subscription.

setSubscriptionNamespace() Specifies the namespace in which the subscription is used.

setPayload() Specifies the buffer content of the notification.

setRecipientName() Specifies the name of the recipient of the notification.

setPresentation() Specifies the presentation mode in which the client
receives notifications.

setProtocol() Specifies the protocol in which the client receives
notifications.

setSubscriptionName() Specifies the name of the subscription.

setSubscriptionNamespace() Specifies the namespace where the subscription is used.

setRecipientName() Specifies the name of the recipient of the notification.

13.32.1 Subscription()
Subscription class constructor.

Syntax Description

Subscription (
 const Environment *env);

Creates a Subscription within a
specified Environment.

Subscription(
 const Subscription& sub);

Copy constructor.

Syntax

Subscription(const Subscription& sub);

Chapter 13
Subscription Class

13-271

Parameter Description

env The Environment.

sub The original Subscription.

13.32.2 getCallbackContext()
Retrieves the callback context.

Syntax

void* getCallbackContext() const;

13.32.3 getDatabaseServersCount()
Returns the number of database servers in which the client is interested for the
registration.

Syntax

unsigned int getDatabaseServersCount() const;

13.32.4 getDatabaseServerNames()
Returns the names of all the database servers where the client registered an interest
for notification.

Syntax

vector<string> getDatabaseServerNames() const;

13.32.5 getNotifyCallback()
Returns the pointer to the callback function registered for this Subscription.

Syntax

unsigned int (*getNotifyCallback() const)(
 Subscription& sub,
 NotifyResult *nr);

Parameter Description

sub The Subscription.

nr The NotifyResult.

Chapter 13
Subscription Class

13-272

13.32.6 getPayload()
Retrieves the payload that has been set on the Subscription object before posting.

Syntax

Bytes getCPayload() const;

13.32.7 getSubscriptionName()
Retrieves the name of the subscription.

Syntax

string getSubscriptionName() const;

13.32.8 getSubscriptionNamespace()
Retrieves the namespace of the subscription. The subscription name must be consistent with
its namespace. Valid Namespace values are NS_AQ and NS_ANONYMOUS, as defined in
Table 13-47.

Syntax

Namespace getSubscriptionNamespace() const;

13.32.9 getRecipientName()
Retrieves the name of the recipient of the notification. Possible return values are E-mail
address, the HTTP url and the PL/SQL procedure, depending on the protocol.

Syntax

string getRecipientName() const;

13.32.10 getPresentation()
Retrieves the presentation mode in which the client receives notifications. Valid Presentation
values are defined in Table 13-47.

Syntax

Presentation getPresentation() const;

13.32.11 getProtocol()
Retrieves the protocol in which the client receives notifications. Valid Protocol values are
defined in Table 13-47.

Syntax

Protocol getProtocol() const;

Chapter 13
Subscription Class

13-273

13.32.12 isNull()
Returns TRUE if Subscription is NULL or FALSE otherwise.

Syntax

bool isNull() const;

13.32.13 operator=()
Assignment operator for Subscription.

Syntax

void operator=(
 const Subscription& sub);

Parameter Description

sub The original Subscription.

13.32.14 setCallbackContext()
Registers a notification callback function when the protocol is PROTO_CBK, as defined in
Table 13-47. Context registration is also included in this call.

Syntax

void setCallbackContext(
 void *ctx);

Parameter Description

ctx The context set.

13.32.15 setDatabaseServerNames()
Specifies the list of database server distinguished names from which the client
receives notifications.

Syntax

void setDatabaseServerNames(
 const vector<string>& dbsrv);

Parameter Description

dbsrv The list of database distinguished names

Chapter 13
Subscription Class

13-274

13.32.16 setNotifyCallback()
Sets the context that the client wants to get passed to the user callback. If the protocol is set
to PROTO_CBK or not specified, this attribute must be set before registering the subscription
handle.

Syntax

void setNotifyCallback(
 unsigned int (*callback)(
 Subscription& sub,
 NotifyResult *nr));

Parameter Description

callback The user callback function.

sub The Subscription object.

nr The NotifyResult object.

13.32.17 setNull()
Sets the Subscription object to NULL and frees the memory associated with the object.

Syntax

void setNull();

13.32.18 setPayload()
Sets the buffer content that corresponds to the payload to be posted to the Subscription.

Syntax

void setPayload(
 const Bytes& payload);

Parameter Description

payload Content of the notification.

13.32.19 setPresentation()
Sets the presentation mode in which the client receives notifications.

Syntax

void setPresentation(
 Presentation pres);

Chapter 13
Subscription Class

13-275

Parameter Description

pres Presentation mode, as defined in Table 13-47.

13.32.20 setProtocol()
Sets the Protocol in which the client receives event notifications, as defined in
Table 13-47.

Syntax

void setProtocol(
 Protocol prot);

Parameter Description

prot Protocol mode

13.32.21 setSubscriptionName()
Sets the name of the subscription. All subscriptions are identified by a subscription
name, which consists of a sequence of bytes of specified length.

If the namespace is NS_AQ, the subscription name is:

• SCHEMA.QUEUE when registering on a single consumer queue

• SCHEMA.QUEUE:CONSUMER_NAME when registering on a multiconsumer queue

Syntax

void setSubscriptionName(
 const string& name);

Parameter Description

name Subscription name.

13.32.22 setSubscriptionNamespace()
Sets the namespace where the subscription is used. The subscription name must be
consistent with its namespace. Default value is NS_AQ.

Syntax

void setSubscriptionNamespace(
 Namespace nameSpace);

Chapter 13
Subscription Class

13-276

Parameter Description

nameSpace Namespace in which the subscription is used, as defined in Table 13-47.

13.32.23 setRecipientName()
Sets the name of the recipient of the notification.

Syntax

void setRecipientName(
 const string& name);

Parameter Description

name Name of the notification recipient.

13.33 Timestamp Class
This class supports the SQL standard TIMESTAMP WITH TIME ZONE and TIMESTAMP WITHOUT
TIME ZONE types, and works with all database TIMESTAMP types: TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE.

Timestamp time components, such as hour, minute, second and fractional section are in the
time zone specified for the Timestamp. This is new behavior for the 10g release; previous
versions supported GMT values of time components. Time components were only converted
to the time zone specified by Timestamp when they were stored in the database. For
example, the following Timestamp() call constructs a Timestamp value 13-Nov 2003
17:24:30.0 in timezone +5:30.

Timestamp ts(env, 2003, 11, 13, 17, 24, 30, 0, 5, 30);

The behavior of this call in previous releases would interpret the timestamp components as
GMT, resulting in a timestamp value of 13-Nov 2003 11:54:30.0 in timezone +5:30. Users
were forced to convert the timestamps to GMT before invoking the constructor. Note that for
GMT timezone, both hour and minute equal 0.

This behavior change also applies to setDate() and setTime() methods.

The fields of Timestamp class and their legal ranges are provided in Table 13-49. An
SQLException occurs if a parameter is out of range.

Table 13-49 Fields of Timestamp and Their Legal Ranges

Field Type Minimum Value Maximum value

year int -4713 9999
month unsigned int 1 12
day unsigned int 1 31
hour unsigned int 0 23

Chapter 13
Timestamp Class

13-277

Table 13-49 (Cont.) Fields of Timestamp and Their Legal Ranges

Field Type Minimum Value Maximum value

min unsigned int 0 59
sec unsigned int 0 61
tzhour int -12 14
tzmin int -59 59

Table 13-50 Summary of Timestamp Methods

Method Summary

Timestamp() Timestamp class
constructor.

fromText() Sets the time stamp from the
values provided by the string.

getDate() Gets the date from the
Timestamp object.

getTime() Gets the time from the
TimeStamp object.

getTimeZoneOffset() Returns the time zone hour
and minute offset value.

intervalAdd() Returns a Timestamp object
with value (this + interval).

intervalSub() Returns a Timestamp object
with value (this - interval).

isNull() Checks if Timestamp is
NULL.

operator=() Simple assignment.

operator==() Checks if a and b are equal.

operator!=() Checks if a and b are not
equal.

operator>() Checks if a is greater than b.

operator>=() Checks if a is greater than or
equal to b.

operator<() Checks if a is less than b.

operator<=() Checks if a is less than or
equal to b.

setDate() Sets the year, month, day
components contained for
this timestamp.

setNull() Sets the value of Timestamp
to NULL

setTime() Sets the day, hour, minute,
second and fractional second
components for this
timestamp.

Chapter 13
Timestamp Class

13-278

Table 13-50 (Cont.) Summary of Timestamp Methods

Method Summary

setTimeZoneOffset() Sets the hour and minute
offset for time zone.

subDS() Returns a IntervalDS
representing this - val.

subYM() Returns a IntervalYM
representing this - val.

toText() Returns a string
representation for the
timestamp in the format
specified.

13.33.1 Timestamp()
Timestamp class constructor.

Syntax Description

Timestamp(
 const Environment *env,
 int year=1,
 unsigned int month=1,
 unsigned int day=1,
 unsigned int hour=0,
 unsigned int min=0,
 unsigned int sec=0,
 unsigned int fs=0,
 int tzhour=0,
 int tzmin=0);

Returns a default Timestamp object. Time
components are understood to be in the
specified time zone.

Timestamp(); Returns a NULL Timestamp object. A NULL
timestamp can be initialized by assignment or
calling the fromText() method. Methods that can
be called on NULL timestamp objects are
setNull(), isNull() and operator=() .

Timestamp(
 const Environment *env,
 int year,
 unsigned int month,
 unsigned int day,
 unsigned int hour,
 unsigned int min,
 unsigned int sec,
 unsigned int fs,
 const string &timezone);

Multibyte support. The timezone can be passed
as region, "US/Eastern", or as an offset from
GMT, "+05:30". If an empty string is passed,
then the time is considered to be in the current
session's time zone. Used for constructing
values for TIMESTAMP WITH LOCAL TIME
ZONE types.

Chapter 13
Timestamp Class

13-279

Syntax Description

Timestamp(
 const Environment *env,
 int year,
 unsigned int month,
 unsigned int day,
 unsigned int hour,
 unsigned int min,
 unsigned int sec,
 unsigned int fs,
 const UString &timezone);

UTF16 (UString) support. The timezone can be
passed as region, "US/Eastern", or as an offset
from GMT, "+05:30". If an empty string is
passed, then the time is considered to be in the
current session's time zone. Used for
constructing values for TIMESTAMP WITH
LOCAL TIME ZONE types.

Timestamp(
 const Timestamp &src);

Copy constructor.

Parameter Description

year Year component.

month Month component.

day Day component.

hour Hour component.

minute Minute component.

second Second component.

fs Fractional second component.

tzhour Time zone difference hour component.

tzmin Timezone difference minute component.

src The original Timezone.

Example 13-11 Using Default Timestamp Constructor

This example demonstrates that the default constructor creates a NULL value, and how
you can assign a non-NULL value to a Timestamp and perform operations on it:

Environment *env = Environment::createEnvironment();

//create a null timestamp
Timestamp ts;
if(ts.isNull())
 cout << "\n ts is Null";

Chapter 13
Timestamp Class

13-280

//assign a non null value to ts
Timestamp notNullTs(env, 2000, 8, 17, 12, 0, 0, 0, 5, 30);
ts = notNullTs;

//now all operations are valid on ts
int yr;
unsigned int mth, day;
ts.getDate(yr, mth, day);

Example 13-12 Using fromText() method to Initialize a NULL Timestamp Instance

The following code example demonstrates how to use the fromText() method to initialize a
NULL timestamp:

Environment *env = Environment::createEnvironment();

Timestamp ts1;
ts1.fromText("01:16:17.12 04/03/1825", "hh:mi:ssxff dd/mm/yyyy", "", env);

Example 13-13 Comparing Timestamps Stored in the Database

The following code example demonstrates how to get the timestamp column from a result
set, check whether the timestamp is NULL, get the timestamp value in string format, and
determine the difference between 2 timestamps:

Timestamp reft(env, 2001, 1, 1);
ResultSet *rs=stmt->executeQuery(
 "select order_date from orders where customer_id=1");
rs->next();

//retrieve the timestamp column from result set
Timestamp ts=rs->getTimestamp(1);

//check timestamp for null
if(!ts.isNull())
{
 string tsstr=ts.toText(//get the timestamp value in string format
 "dd/mm/yyyy hh:mi:ss [tzh:tzm]",0);
 if(reft<ts //compare timestamps
 IntervalDS ds=reft.subDS(ts); //get difference between timestamps
}

13.33.2 fromText()
Sets the timestamp value from the string. The string is expected to be in the format specified.
If nlsParam is specified, this determines the NLS parameters to be used for the conversion. If
nlsParam is not specified, the NLS parameters are picked up from the environment which has
been passed. In case environment is not passed, Globalization Support parameters are
obtained from the environment associated with the instance, if any.

Sets Timestamp object to value represented by a string or UString.

The value is interpreted based on the fmt and nlsParam parameters. In cases where
nlsParam is not passed, the Globalization Support settings of the envp parameter are used.

Chapter 13
Timestamp Class

13-281

See Also:

Oracle Database SQL Language Reference for information on TO_DATE

Syntax Description

void fromText(
 const string ×tmpStr,
 const string &fmt,
 const string &nlsParam = "",
 const Environment *env = NULL);

Sets Timestamp object to value represented
by a string.

void fromText(
 const UString ×tmpStr,
 const UString &fmt,
 const UString &nlsParam,
 const Environment *env = NULL);

Sets Timestamp object to value represented
by a UString; globalization enabled.

Parameter Description

timestmpStr The timestamp string or UString to be converted to a Timestamp
object.

fmt The format string.

nlsParam The NLS parameters string. If nlsParam is specified, this determines the
NLS parameters to be used for the conversion. If nlsParam is not
specified, the NLS parameters are picked up from envp.

env The OCCI environment. In globalization enabled version of the method,
used to determine NLS_CALENDAR for interpreting timestampStr. If env
is not passed, the environment associated with the object controls the
setting. Should be a non-NULL value if called on a NULL Timestamp
object.

13.33.3 getDate()
Returns the year, month and day values of the Timestamp.

Syntax

void getDate(
 int &year,
 unsigned int &month,
 unsigned int &day) const;

Parameter Description

year Year component.

month Month component.

Chapter 13
Timestamp Class

13-282

Parameter Description

day Day component.

13.33.4 getTime()
Returns the hour, minute, second, and fractional second components

Syntax

void getTime(
 unsigned int &hour,
 unsigned int &minute,
 unsigned int &second,
 unsigned int &fs) const;

Parameter Description

hour Hour component.

minute Minute component.

second Second component.

fs Fractional second component.

13.33.5 getTimeZoneOffset()
Returns the time zone offset in hours and minutes.

Syntax

void getTimeZoneOffset(
 int &hour,
 int &minute) const;

Parameter Description

hour Time zone hour.

minute Time zone minute.

13.33.6 intervalAdd()
Adds an interval to timestamp.

Chapter 13
Timestamp Class

13-283

Syntax Description

const Timestamp intervalAdd(
 const IntervalDS& val) const;

Adds an IntervalDS interval to the timestamp.

const Timestamp intervalAdd(
 const IntervalYM& val) const;

Adds an IntervalYM interval to the timestamp.

Parameter Description

val Interval to be added.

13.33.7 intervalSub()
Subtracts an interval from a timestamp and returns the result as a timestamp. Returns
a Timestamp with the value of this - val.

Syntax Description

const Timestamp intervalSub(
 const IntervalDS& val) const;

Subtracts an IntervalDS interval to the
timestamp.

const Timestamp intervalsUB(
 const IntervalYM& val) const;

Subtracts an IntervalYM interval to the
timestamp.

Parameter Description

val Interval to be subtracted.

13.33.8 isNull()
Returns TRUE if Timestamp is NULL or FALSE otherwise.

Syntax

bool isNull() const;

13.33.9 operator=()
Assigns a given timestamp object to this object.

Syntax

Timestamp & operator=(
 const Timestamp &src);

Chapter 13
Timestamp Class

13-284

Parameter Description

src Value to be assigned.

13.33.10 operator==()
Compares the timestamps specified. If the timestamps are equal, returns TRUE, FALSE
otherwise. If either a or b is NULL then FALSE is returned.

Syntax

bool operator==(
 const Timestamp &first,
 const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

13.33.11 operator!=()
Compares the timestamps specified. If the timestamps are not equal then TRUE is returned;
otherwise, FALSE is returned. If either timestamp is NULL then FALSE is returned.

Syntax

bool operator!=(
 const Timestamp &first,
 const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

13.33.12 operator>()
Returns TRUE if first is greater than second, FALSE otherwise. If either is NULL then FALSE is
returned.

Syntax

bool operator>(
 const Timestamp &first,
 const Timestamp &second);

Chapter 13
Timestamp Class

13-285

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

13.33.13 operator>=()
Compares the timestamps specified. If the first timestamp is greater than or equal to
the second timestamp then TRUE is returned; otherwise, FALSE is returned. If either
timestamp is NULL then FALSE is returned.

Syntax

bool operator>=(
 const Timestamp &first,
 const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

13.33.14 operator<()
Returns TRUE if first is less than second, FALSE otherwise. If either a or b is NULL then
FALSE is returned.

Syntax

bool operator<(
 const Timestamp &first,
 const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

13.33.15 operator<=()
Compares the timestamps specified. If the first timestamp is less than or equal to the
second timestamp then TRUE is returned; otherwise, FALSE is returned. If either
timestamp is NULL then FALSE is returned.

Chapter 13
Timestamp Class

13-286

Syntax

bool operator<=(
 const Timestamp &first,
 const Timestamp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

13.33.16 setDate()
Sets the year, month, day components contained for this timestamp

Syntax

void setDate(
 int year,
 unsigned int month,
 unsigned int day);

Parameter Description

year Year component. Valid values are -4713 through 9999.

month Month component. Valid values are 1 through 12.

day Day component. Valid values are 1 through 31.

13.33.17 setNull()
Sets the timestamp to NULL.

Syntax

void setNull();

13.33.18 setTime()
Sets the day, hour, minute, second and fractional second components for this timestamp.

Syntax

void setTime(
 unsigned int hour,
 unsigned int minute,
 unsigned int second,
 unsigned int fs);

Chapter 13
Timestamp Class

13-287

Parameter Description

hour Hour component. Valid values are 0 through 23.

minute Minute component. Valid values are 0 through 59.

second Second component. Valid values are 0 through 59.

fs Fractional second component.

13.33.19 setTimeZoneOffset()
Sets the hour and minute offset for time zone.

Syntax

void setTimeZoneOffset(
 int hour,
 int minute);

Parameter Description

hour Time zone hour. Valid values are -12 through 12.

minute Time zone minute. Valid values are -59 through 59.

13.33.20 subDS()
Computes the difference between this timestamp and the specified timestamp and
return the difference as an IntervalDS.

Syntax

const IntervalDS subDS(
 const Timestamp& val) const;

Parameter Description

val Timestamp to be subtracted.

13.33.21 subYM()
Computes the difference between timestamp values and return the difference as an
IntervalYM.

Syntax

const IntervalYM subYM(
 const Timestamp& val) const;

Parameter Description

val Timestamp to be subtracted.

Chapter 13
Timestamp Class

13-288

13.33.22 toText()
Returns a string or UString representation for the timestamp in the format specified.

If nlsParam is specified, this determines the NLS parameters used for the conversion. If
nlsParam is not specified, the NLS parameters are picked up from the environment
associated with the instance, if any.

See Also:

Oracle Database SQL Language Reference for information on TO_DATE

Syntax Description

string toText(
 const string &fmt,
 unsigned int fsprec,
 const string &nlsParam = "") const;

Returns a string representation for the
timestamp in the format specified.

UString toText(
 const UString &fmt,
 unsigned int fsprec,
 const UString &nlsParam) const;

Returns a UString representation for the
timestamp in the format specified;
globalization enabled.

Parameter Description

fmt The format string.

fsprec The precision for the fractional second component of Timestamp.

nlsParam The NLS parameters string. If nlsParam is specified, this determines the NLS
parameters to be used for the conversion. If nlsParam is not specified, the NLS
parameters are picked up from envp.

Chapter 13
Timestamp Class

13-289

Index

A
ADR, 12-16

ADRC utility, 12-18
base location, 12-16

ADR Command Interpreter, 12-16
ADRCI, 12-16, 12-18
Agent class, 13-5

methods, 13-5
AnyData class, 13-8

methods, 13-8
supported data type, 13-8
usage examples, 13-8

application managed data buffering, 12-9
application-provided serialization, 12-8
associative access

overview, 4-10
atomic null, 4-19
attributes, 1-8
automatic diagnostic repository (ADR), 12-16
automatic serialization, 12-7

B
BatchSQLException

methods, 13-17
BatchSQLException class, 13-17
Bfile class, 13-18

methods, 13-18
BFILEs

external data type, 5-9
bind operations

in bind operations, 1-7
out bind operations, 1-7

Blob class, 13-24
methods, 13-24

BLOBs
external data type, 5-10

Bytes class, 13-34
methods, 13-34

C
callable statements, 3-15

with arrays as parameters, 3-16

CASE OTT parameter, 8-6
CHAR

external data type, 5-10
classes

Agent class, 13-5
AnyData class, 13-8
BatchSQLException class, 13-17
Bfile class, 13-18
Blob class, 13-24
Bytes class, 13-34
Clob class, 13-36
Connection class, 13-48
ConnectionPool class, 13-62
Consumer class, 13-67
Date class, 13-74
Environment class, 13-85
IntervalDS class, 13-98
IntervalYM class, 13-109
Listener class, 13-118
Map class, 13-120
Message class, 13-122
Metadata class, 13-130
NotifyResult class, 13-143
Number class, 13-144
PObject class, 13-164
Producer class, 13-170
Ref class, 13-175
RefAny class, 13-180
ResultSet class, 3-21, 13-183
SQLException class, 13-204
StatelessConnectionPool class, 13-207
Statement class, 13-218
Stream class, 13-267
Subscription class, 13-270
Timestamp class, 13-277

Client Result Cache, 12-20
hint, 12-20

Clob class, 13-36
methods, 13-36

CLOBs
external data type, 5-11

CODE OTT parameter, 8-7
collections

working with, 4-17
committing a transaction, 3-28

Index-1

complex object retrieval
complex object, 4-15
depth level, 4-15
implementing, 4-15
overview, 4-15
prefetch limit, 4-15
root object, 4-15

complex objects, 4-15
prefetching, 4-17
retrieving, 4-15

CONFIG OTT parameter, 8-7
configuration files

and the OTT utility, 8-3
connecting to a database, 3-1
Connection class, 13-48

methods, 13-48
connection pool

createConnectionPool method, 3-4
creating, 3-4

connection pooling, 3-3
transparent application failover, 12-3

ConnectionPool class, 13-62
methods, 13-62

Consumer class, 13-67
methods, 13-67

control statements, 1-5

D
data buffering, 12-9
data conversion

Date, 5-23
DATE data type, 5-23
internal data type, 5-20
Interval, 5-23
INTERVAL data type, 5-23
LOB data type, 5-22
LOBs, 5-22
Timestamp, 5-23
TIMESTAMP data type, 5-23

data type
AnyData, 13-8
external data type, 5-1, 5-4
internal data type, 5-2
internal data types, 5-1
OTT mappings, 8-19
overview, 5-1

data types, 5-1
database

connecting to, 3-1
database resident connection pooling, 3-9

administration, 3-10
using, 3-11

DATE
external data type, 5-11

data conversion, 5-23
Date class, 13-74

methods, 13-74
usage examples, 13-74

DDL statements
executing, 3-12

depth level, 4-15
DML statements

executing, 3-12

E
elements, 1-4
embedded objects, 4-2

creating, 4-2
fetching, 4-18
prefetching, 4-18

Environment class, 13-85
methods, 13-85

ERRTYPE OTT parameter, 8-7
examples

Date class, 13-74
IntervalDS class, 13-98
IntervalYM class, 13-109
Number class, 13-144

exception handling, 3-30
executing SQL queries, 3-21
executing statements dynamically, 3-23
external data type, 5-8

BFILE, 5-9
BLOB, 5-10
CHAR, 5-10
CHARZ, 5-11
CLOB, 5-11
DATE, 5-11
FLOAT, 5-12
INTEGER, 5-12
INTERVAL DAY TO SECOND, 5-12
INTERVAL YEAR TO MONTH, 5-13
LONG, 5-13
LONG RAW, 5-13
LONG VARCHAR, 5-14
LONG VARRAW, 5-14
NCLOB, 5-14
NUMBER, 5-14
OCCI BFILE, 5-15
OCCI BLOB, 5-15
OCCI BYTES, 5-15
OCCI CLOB, 5-15
OCCI DATE, 5-16
OCCI INTERVALDS, 5-16
OCCI INTERVALYM, 5-16
OCCI NUMBER, 5-16

Index

Index-2

external data type (continued)
OCCI POBJECT, 5-16
OCCI REF, 5-16
OCCI REFANY, 5-17
OCCI STRING, 5-17
OCCI TIMESTAMP, 5-17
OCCI VECTOR, 5-17
RAW, 5-17
REF, 5-17
ROWID, 5-17
STRING, 5-18
TIMESTAMP, 5-18
TIMESTAMP WITH LOCAL TIME ZONE,

5-18
TIMESTAMP WITH TIME ZONE, 5-18
UNSIGNED INT, 5-19
VARCHAR, 5-19
VARCHAR2, 5-19
VARNUM, 5-19
VARRAW, 5-20

F
fault diagnosability, 12-16
Fault Diagnosability

disabling, 12-20
fields

IntervalDS class, 13-98
IntervalYM class, 13-109
Timestamp fields, 13-277

FLOAT
external data type, 5-12

H
HFILE OTT parameter, 8-8

I
identity column metadata, 6-2
index-organized table, 5-4
INTEGER

external data type, 5-12
internal data type, 5-2
INTERVAL DAY TO SECOND

external data type, 5-12
INTERVAL YEAR TO MONTH

external data type, 5-13
IntervalDS class, 13-98

fields, 13-98
methods, 13-98
usage examples, 13-98

IntervalYM class, 13-109
fields, 13-109

IntervalYM class (continued)
methods, 13-109
usage examples, 13-109

INTYPE file
structure of, 8-15

INTYPE OTT parameter, 8-8

L
Listener class, 13-118

methods, 13-118
LOBs

external data type
data conversion, 5-22

LONG
external data type, 5-13

LONG RAW
external data type, 5-13

LONG VARCHAR
external data type, 5-14

M
manipulating object attributes, 4-13
Map class, 13-120

methods, 13-120, 13-121
Message class, 13-122

methods, 13-122
metadata

argument and result attributes, 6-17
attribute groupings, 6-3

argument and result attributes, 6-3
collection attributes, 6-3
column attributes, 6-3
database attributes, 6-3
list attributes, 6-3
package attributes, 6-3
parameter attributes, 6-3
procedure, function, and subprogram

attributes, 6-3
schema attributes, 6-3
sequence attributes, 6-3
synonym attributes, 6-3
table and view attributes, 6-3
type attribute attributes, 6-3
type attributes, 6-3
type method attributes, 6-3

attributes, 6-8
code example, 6-4
collection attributes, 6-14
column attributes, 6-16
database attributes, 6-19
describing database objects, 6-3
list attributes, 6-18
overview, 6-1

Index

Index-3

metadata (continued)
package attributes, 6-11
parameter attributes, 6-8
procedure, function, and subprogram

attributes, 6-10
schema attributes, 6-19
sequence attributes, 6-16
synonym attributes, 6-15
table and view attributes, 6-9
type attribute attributes, 6-13
type attributes, 6-11
type methods attributes, 6-13

MetaData class, 13-130
methods, 13-130

methods, 1-8
Agent methods, 13-5
AnyData methods, 13-8
BatchSQLException methods, 13-17
Bfile methods, 13-18
Blob methods, 13-24
Bytes methods, 13-34
Clob methods, 13-36
Connection methods, 13-48
ConnectionPool methods, 13-62
Consumer methods, 13-67
createConnection method, 3-3
createConnectionPool method, 3-4
createEnvironment method, 3-2
createProxyConnection method, 3-5
createStatement method, 3-13
Date methods, 13-74
Environment class, 13-85
execute method, 3-13
executeArrayUpdate method, 3-13, 12-10
executeQuery method, 3-13
IntervalDS methods, 13-98
IntervalYM class, 13-109
Listener methods, 13-118
Map methods, 13-120, 13-121
Message methods, 13-122
MetaData class, 13-130
NotifyResult methods, 13-143
Number class, 13-144
PObject methods, 13-164
Producer methods, 13-170
Ref methods, 13-175
RefAny methods, 13-180
ResultSet methods, 13-183
setDataBuffer method, 12-9
SQLException methods, 13-204
StatelessConnectionPool, 13-207
Statement, 13-218
Stream methods, 13-267
Subscription methods, 13-270
terminateConnection method, 3-3

methods (continued)
terminateEnvironment method, 3-3
terminateStatement method, 3-14
Timestamp methods, 13-277

modifying rows iteratively, 12-11

N
navigational access

overview, 4-11
NCLOBs

external data type, 5-14
NEEDS_STREAM_DATA status, 3-24, 3-25
nonprocedural elements, 1-4
nonreferenceable objects, 4-2
NotifyResult class, 13-143

methods, 13-143
nullness, 4-19
NUMBER

external data type, 5-14
Number class, 13-144

methods, 13-144
usage examples, 13-144

O
object cache, 4-8, 4-9

flushing, 4-9
object mode, 4-7
object programming

overview, 4-1
using OCCI, 4-1

object references
see also REF, 4-11
using, 4-19

Object Type Translator utility
see OTT utility, 1-8

object types, 1-8
objects

access using SQL, 4-10
attributes, 1-8
client-side, 1-8
dirty, 4-13
environment, 1-9
flushing, 4-13
freeing, 4-19
in OCCI, 4-2
inserting, 4-11
interfaces, 1-9

associative, 1-9
navigational, 1-9

manipulating attributes, 4-13
marking, 4-13
Metadata Class, 1-10
methods, 1-8

Index

Index-4

objects (continued)
modifying, 4-11
object cache, 1-8
object types, 1-8
pinned, 4-12
pinning, 4-8, 4-12
recording database changes, 4-13
run-time environment, 1-9
transparent application failover, 12-3

OCCI
benefits, 1-2
building applications, 1-2
functionality, 1-3
object mode, 4-7
overview, 1-2
special SQL terms, 1-7

OCCI classes
Agent class, 13-5
AnyData class, 13-8
BatchSQLException class, 13-17
Bfile class, 13-18
Blob class, 13-24
Bytes class, 13-34
Clob class, 13-36
Connection class, 13-48
ConnectionPool class, 13-62
Consumer class, 13-67
Data class, 13-74
Environment class, 13-85
IntervalDS class, 13-98
IntervalYM class, 13-109
Listener class, 13-118
Map class, 13-120
Message class, 13-122
MetaData class, 13-130
NotifyResult class, 13-143
Number class, 13-144
PObject class, 13-164
Producer class, 13-170
Ref class, 13-175
RefAny class, 13-180
ResultSet class, 13-183
SQLException class, 13-204
StatelessConnectionPool class, 13-207
Statement class, 13-218
Stream class, 13-267
Subscription class, 13-270
Timestamp class, 13-277

OCCI environment
connection pool, 3-4
creating, 3-1
opening a connection, 3-2, 3-3
scope, 3-1, 3-2
terminating, 3-1

OCCI program
example of, 4-23

OCCI program development, 4-5
operational flow, 4-7
program structure, 4-6

OCCI types
data conversion, 5-1

optimizing performance, 3-23
setting prefetch count, 3-23

Oracle Connection Manager in Traffic Director
Mode, 12-12

OTT parameter TRANSITIVE, 8-10
OTT parameters

CASE, 8-6
CODE, 8-7
CONFIG, 8-7
ERRTYPE, 8-7
HFILE, 8-8
INTYPE, 8-8
OUTTYPE, 8-9
SCHEMA_NAMES, 8-9
USERID, 8-12
where they appear, 8-13

OTT utility
benefits, 1-10
creating types in the database, 8-2
default name mapping, 8-24
description, 1-10
parameters, 8-5
using, 8-2

out bind variables, 1-6
OUTTYPE OTT parameter, 8-9

P
parameterized statements, 3-15
performance

optimizing
executeArrayUpdate method, 12-10
setDataBuffer method, 12-9

performance tuning, 12-1
application managed data buffering, 12-9
array fetch using next() method, 12-11
connection sharing, 12-6
data buffering, 12-9
reading and writing multiple LOBs, 7-8
shared server environments, 12-6

thread safety, 12-6
thread safety, 12-6
transparent application failover, 12-1

persistent objects, 4-2
creating, 4-4
standalone objects, 4-2
types

embedded objects, 4-2

Index

Index-5

persistent objects (continued)
types (continued)
nonreferenceable objects, 4-2
referenceable objects, 4-2
standalone objects, 4-2

pinning objects, 4-8, 4-12
PL/SQL

out bind variables, 1-6
overview, 1-6

pluggable databases
OCCI support for, 3-3

PObject class, 13-164
methods, 13-164

prefetch count
set, 3-23

prefetch limit, 4-15
PREPARED status, 3-24
procedural elements, 1-4
Producer class, 13-170

methods, 13-170
proxy connections, 3-5

using createProxyConnection method, 3-5

Q
queries, 1-6

how to specify, 3-22

R
RAW

external data type, 5-17
REF

external data type, 5-17
retrieving a reference to an object, 4-11

Ref class, 13-175
methods, 13-175

RefAny class, 13-180
methods, 13-180

referenceable objects, 4-2
relational programming

using OCCI, 3-1
RESULT_SET_AVAILABLE status, 3-24
ResultSet class, 3-21, 13-183

methods, 13-183
root object, 4-15
ROWID

external data type, 5-17
rows

iterative modification, 12-11
modify, 12-11

S
SCHEMA_NAMES OTT parameter, 8-9

shared connections
using, 12-6

shared server environments
application-provided serialization, 12-8
automatic serialization, 12-7
concurrency, 12-8
thread safety, 12-6

implementing, 12-7
SQL statements

control statements, 1-5
DML statements, 1-5
processing of, 1-4
queries, 1-6
types

callable statements, 3-14, 3-15
parameterized statements, 3-14, 3-15
standard statements, 3-14, 3-15

SQLException class, 13-204
methods, 13-204

sqlnet.ora, 12-20
standalone objects, 4-2

creating, 4-2
standard statements, 3-15
StatelessConnectionPool class, 13-207

methods, 13-207
statement caching, 3-28
Statement class, 13-218

methods, 13-218
statement handles

creating, 3-13
reusing, 3-14
terminating, 3-14

status
NEEDS_STREAM_DATA, 3-24, 3-25
PREPARED, 3-24
RESULT_SET_AVAILABLE, 3-24
STREAM_DATA_AVAILABLE, 3-24, 3-25
UNPREPARED, 3-24
UPDATE_COUNT_AVAILABLE, 3-24, 3-25

Stream class, 13-267
methods, 13-267

STREAM_DATA_AVAILABLE status, 3-24, 3-25
streamed reads, 3-17
streamed writes, 3-17
STRING

external data type, 5-18
Subscription class, 13-270

methods, 13-270
substitutability, 4-21

T
table

index-organized, 5-4

Index

Index-6

thread safety, 12-6
implementing, 12-7

TIMESTAMP
external data type, 5-18

Timestamp class
methods, 13-277

TIMESTAMP WITH LOCAL TIME ZONE
external data type, 5-18

TIMESTAMP WITH TIME ZONE
external data type, 5-18

transient objects, 4-2, 4-3
creating, 4-3, 4-4

TRANSITIVE OTT parameter, 8-10
transparent application failover, 12-1

connection pooling, 12-3
objects, 12-3
using, 12-2

type inheritance, 4-19, 4-22

U
UNPREPARED status, 3-24
UNSIGNED INT

external data type, 5-19

UPDATE_COUNT_AVAILABLE status, 3-24,
3-25

USERID OTT parameter, 8-12

V
values

in context of this document, 4-4
in object applications, 4-4

VARCHAR
external data type, 5-19

VARCHAR2
external data type, 5-19

VARNUM
external data type, 5-19

VARRAW
external data type, 5-14, 5-20

X
XA library, 11-1

Index

Index-7

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to OCCI
	1.1 Changes in This Release for Oracle C++ Call Interface Programmer's Guide
	1.2 Overview of OCCI
	1.2.1 About Benefits of OCCI
	1.2.2 About Building a C++ Application with OCCI
	1.2.3 About Functionality of OCCI
	1.2.4 About Procedural and Nonprocedural Elements

	1.3 About Processing SQL Statements
	1.3.1 About Data Definition Language Statements
	1.3.2 About Control Statements
	1.3.3 About Data Manipulation Language Statements
	1.3.4 About Queries

	1.4 Overview of PL/SQL
	1.5 About Special OCCI/SQL Terms
	1.6 About Object Support
	1.6.1 About Client-Side Object Cache
	1.6.2 About Run-time Environment for Objects
	1.6.3 About Associative and Navigational Interfaces
	1.6.4 About Interoperability with C (OCI)
	1.6.5 About the Metadata Class
	1.6.6 About the Object Type Translator Utility

	1.7 About Additional Support
	1.7.1 Building OCCI Demos
	1.7.2 About OCCI on the Oracle Technology Network

	2 Installation and Upgrading
	2.1 About Installing Oracle C++ Call Interface
	2.2 About Upgrading Considerations
	2.3 About Determining the Oracle Database Versions
	2.3.1 Determining the Oracle Client Version During Compilation
	2.3.2 About Determining the Oracle Client and Server Versions at Run Time

	2.4 Oracle Instant Client and Oracle Instant client Basic Light
	2.5 About Using OCCI with Microsoft Visual C++

	3 Accessing Oracle Database Using C++
	3.1 About Connecting to a Database
	3.1.1 Creating and Terminating an Environment
	3.1.2 Opening and Closing a Connection
	3.1.3 About Support for Pluggable Databases

	3.2 About Pooling Connections
	3.2.1 About Using Connection Pools
	3.2.1.1 Creating a Connection Pool
	3.2.1.2 Creating Proxy Connections

	3.2.2 Using Stateless Connection Pooling
	3.2.3 About Database Resident Connection Pooling
	3.2.3.1 Administrating Database Resident Connection Pools
	3.2.3.2 Using Database Resident Connection Pools

	3.3 About Executing SQL DDL and DML Statements
	3.3.1 Creating a Statement Object
	3.3.2 Creating a Statement Object that Executes SQL Commands
	3.3.2.1 Creating a Database Table
	3.3.2.2 Inserting Values into a Database Table

	3.3.3 Reusing the Statement Object
	3.3.4 Terminating a Statement Object

	3.4 About Types of SQL Statements in the OCCI Environment
	3.4.1 About Standard Statements
	3.4.2 Using Parameterized Statements
	3.4.3 Using Callable Statements
	3.4.3.1 Using Callable Statements that Use Array Parameters

	3.4.4 About Streamed Reads and Writes
	3.4.4.1 Binding Data in Streaming Mode; SELECT/DML and PL/SQL
	3.4.4.2 Fetching Data in Streaming Mode: PL/SQL
	3.4.4.3 About Fetching Data in Streaming Mode: ResultSet
	3.4.4.4 Working with Multiple Streams

	3.4.5 About Modifying Rows Iteratively
	3.4.5.1 Setting the Maximum Number of Iterations
	3.4.5.2 Setting the Maximum Parameter Size
	3.4.5.3 Executing an Iterative Operation

	3.5 About Executing SQL Queries
	3.5.1 Using the Result Set
	3.5.2 About Specifying the Query
	3.5.3 About Optimizing Performance by Setting Prefetch Count

	3.6 About Executing Statements Dynamically
	3.6.1 About Statement Status Definitions
	3.6.1.1 UNPREPARED
	3.6.1.2 PREPARED
	3.6.1.3 RESULT_SET_AVAILABLE
	3.6.1.4 UPDATE_COUNT_AVAILABLE
	3.6.1.5 NEEDS_STREAM_DATA
	3.6.1.6 STREAM_DATA_AVAILABLE

	3.7 About Using Larger Row Count and Error Code Range Data Types
	3.7.1 Using Larger Row Count in SELECT Operations
	3.7.2 Using Larger Row Count in INSERT, UPDATE, and DELETE Operations

	3.8 About Committing a Transaction
	3.9 Caching Statements
	3.10 About Handling Exceptions
	3.10.1 About Handling Null and Truncated Data

	4 Object Programming
	4.1 Overview of Object Programming
	4.2 About Working with Objects in C++ with OCCI
	4.2.1 About Persistent Objects
	4.2.2 About Transient Objects
	4.2.3 About Values

	4.3 About Representing Objects in C++ Applications
	4.3.1 Creating Persistent and Transient Objects
	4.3.2 Creating Object Representations using the OTT Utility

	4.4 About Developing a C++ Application using OCCI
	4.4.1 Developing Basic Object Program Structure
	4.4.2 About Basic Object Operational Flow
	4.4.2.1 About Initializing OCCI in Object Mode
	4.4.2.2 About Pinning anObject
	4.4.2.3 About Operating on an Object in Cache
	4.4.2.4 About Flushing Changes to the Object
	4.4.2.5 About Deletion of an Object

	4.5 Migrating C++ Applications to Oracle Using OCCI
	4.6 Overview of Associative Access
	4.6.1 Using SQL to Access Objects
	4.6.2 Inserting and Modifying Values

	4.7 Overview of Navigational Access
	4.7.1 Retrieving an Object Reference (REF) from the Database Server
	4.7.2 Pinning an Object
	4.7.3 Manipulating Object Attributes
	4.7.4 About Marking Objects and Flushing Changes
	4.7.5 Marking an Object as Modified (Dirty)
	4.7.6 About Recording Changes in the Database
	4.7.7 Collecting Garbage in the Object Cache
	4.7.8 About Ensuring Transactional Consistency of References

	4.8 Overview of Complex Object Retrieval
	4.8.1 Retrieving Complex Objects
	4.8.2 About Prefetching Complex Objects

	4.9 Working with Collections
	4.9.1 Fetching Embedded Objects
	4.9.2 About Nullness

	4.10 About Using Object References
	4.11 About Deleting Objects from the Database
	4.12 About Type Inheritance
	4.12.1 About Substitutability
	4.12.2 Declaring NOT INSTANTIABLE Types and Methods
	4.12.3 About OCCI Support for Type Inheritance
	4.12.3.1 About Connection::getMetaData()
	4.12.3.2 About Bind and Define Functions

	4.12.4 About OTT Support for Type Inheritance

	4.13 A Sample OCCI Application

	5 Data Types
	5.1 Overview of Oracle Data Types
	5.1.1 About OCCI Type and Data Conversion

	5.2 Internal Data Types
	5.2.1 Character Strings and Byte Arrays
	5.2.2 Universal Rowid (UROWID)

	5.3 External Data Types
	5.3.1 Description of External Data Types
	5.3.1.1 BFILE
	5.3.1.2 BDOUBLE
	5.3.1.3 BFLOAT
	5.3.1.4 BLOB
	5.3.1.5 CHAR
	5.3.1.6 CHARZ
	5.3.1.7 CLOB
	5.3.1.8 DATE
	5.3.1.8.1 Example 1, 01-JUN-2000, 3:17PM:
	5.3.1.8.2 Example 2, 01-JAN-4712 BCE:

	5.3.1.9 FLOAT
	5.3.1.10 INTEGER
	5.3.1.11 INTERVAL DAY TO SECOND
	5.3.1.12 INTERVAL YEAR TO MONTH
	5.3.1.13 LONG
	5.3.1.14 LONG RAW
	5.3.1.15 LONG VARCHAR
	5.3.1.16 LONG VARRAW
	5.3.1.17 NCLOB
	5.3.1.18 NUMBER
	5.3.1.19 OCCI BFILE
	5.3.1.20 OCCI BLOB
	5.3.1.21 OCCIBOOL
	5.3.1.22 OCCI BYTES
	5.3.1.23 OCCI CLOB
	5.3.1.24 OCCI DATE
	5.3.1.25 OCCI INTERVALDS
	5.3.1.26 OCCI INTERVALYM
	5.3.1.27 OCCI NUMBER
	5.3.1.28 OCCI POBJECT
	5.3.1.29 OCCI REF
	5.3.1.30 OCCI REFANY
	5.3.1.31 OCCI STRING
	5.3.1.32 OCCI TIMESTAMP
	5.3.1.33 OCCI VECTOR
	5.3.1.34 RAW
	5.3.1.35 REF
	5.3.1.36 ROWID
	5.3.1.37 STRING
	5.3.1.38 TIMESTAMP
	5.3.1.39 TIMESTAMP WITH LOCAL TIME ZONE
	5.3.1.40 TIMESTAMP WITH TIME ZONE
	5.3.1.41 UNSIGNED INT
	5.3.1.42 VARCHAR
	5.3.1.43 VARCHAR2
	5.3.1.44 VARNUM
	5.3.1.45 VARRAW
	5.3.1.46 NATIVE DOUBLE
	5.3.1.47 NATIVE FLOAT

	5.4 Data Conversions
	5.4.1 Data Conversions for LOB Data Types
	5.4.2 Data Conversions for Date, Timestamp, and Interval Data Types

	6 Metadata
	6.1 Overview of Metadata
	6.2 Using Identity Column Metadata
	6.3 About Describing Database Metadata
	6.3.1 Using Metadata (Code Examples)

	6.4 Attribute Reference Information
	6.4.1 Parameter Attributes
	6.4.2 Table and View Attributes
	6.4.3 Procedure, Function, and Subprogram Attributes
	6.4.4 Package Attributes
	6.4.5 Type Attributes
	6.4.6 Type Attribute Attributes
	6.4.7 Type Method Attributes
	6.4.8 Collection Attributes
	6.4.9 Synonym Attributes
	6.4.10 Sequence Attributes
	6.4.11 Column Attributes
	6.4.12 Argument and Result Attributes
	6.4.13 List Attributes
	6.4.14 Schema Attributes
	6.4.15 Database Attributes

	7 Programming with LOBs
	7.1 Overview of LOBs
	7.1.1 Introducing Internal LOBs
	7.1.2 Introducing External LOBs
	7.1.3 About Storing LOBs

	7.2 Creating LOBs in OCCI Applications
	7.3 Restricting the Opening and Closing of LOBs
	7.4 About Reading and Writing LOBs
	7.4.1 Reading LOBs
	7.4.2 Writing LOBs
	7.4.3 About Enhancing the Performance of LOB Reads and Writes
	7.4.3.1 About Using the getChunkSize() Method

	7.4.4 Updating LOBs
	7.4.5 About Reading and Writing Multiple LOBs
	7.4.5.1 About Using the Interfaces for Reading and Writing Multiple LOBs

	7.5 Using Objects with LOB Attributes
	7.6 About Using SecureFiles
	7.6.1 About Using SecureFile Compression
	7.6.2 About Using SecureFiles Encryption
	7.6.3 About Using SecureFiles Deduplication
	7.6.4 About Combining SecureFiles Compression, Encryption, and Deduplication
	7.6.5 SecureFiles LOB Types and Constants

	8 Object Type Translator Utility
	8.1 Overview of the Object Type Translator Utility
	8.2 Using the OTT Utility
	8.3 Creating Types in the Database
	8.4 About Invoking the OTT Utility
	8.4.1 Specifying OTT Parameters
	8.4.1.1 About Setting Parameters on the Command Line
	8.4.1.2 About Setting Parameters in the INTYPE File
	8.4.1.3 About Setting Parameters in the Configuration File

	8.4.2 Invoking the OTT Utility on the Command Line
	8.4.2.1 Elements Used on the OTT Command Line

	8.4.3 OTT Utility Parameters
	8.4.3.1 ATTRACCESS
	8.4.3.2 CASE
	8.4.3.3 CODE
	8.4.3.4 CONFIG
	8.4.3.5 CPPFILE
	8.4.3.6 ERRTYPE
	8.4.3.7 HFILE
	8.4.3.8 INTYPE
	8.4.3.9 MAPFILE
	8.4.3.10 MAPFUNC
	8.4.3.11 OUTTYPE
	8.4.3.12 SCHEMA_NAMES
	8.4.3.13 TRANSITIVE
	8.4.3.14 UNICODE
	8.4.3.15 USE_MARKER
	8.4.3.16 USERID

	8.4.4 Where OTT Parameters Can Appear
	8.4.5 File Name Comparison Restriction
	8.4.6 Using the OTT Command on Microsoft Windows

	8.5 About Using the INTYPE File
	8.5.1 Using the INTYPE File
	8.5.2 Structure of the INTYPE File
	8.5.2.1 INTYPE File Type Specifications

	8.5.3 Using Nested include File Generation

	8.6 Using OTT Utility Data Type Mappings
	8.6.1 Default Name Mapping

	8.7 Overview of the OUTTYPE File
	8.8 Using the OTT Utility and OCCI Applications
	8.9 Generating C++ Classes Generated by the OTT Utility
	8.9.1 Map Registry Function
	8.9.2 Extending C++ Classes
	8.9.3 Carrying Forward User Added Code
	8.9.3.1 How to Use Properties of OTT Markers
	8.9.3.2 Using OTT Markers

	9 Globalization and Unicode Support
	9.1 Overview of Globalization and Unicode Support
	9.2 Specifying Charactersets
	9.3 Data Types for Globalization and Unicode Support
	9.3.1 Using the UString Data Type
	9.3.2 Using Multibyte and UTF16 data
	9.3.3 Using CLOB and NCLOB Data Types

	9.4 About Using Objects and OTT Support

	10 Oracle Database Advanced Queuing
	10.1 Overview of Oracle Database Advanced Queuing
	10.2 About AQ Implementation in OCCI
	10.2.1 Message
	10.2.2 Agent
	10.2.3 Producer
	10.2.4 Consumer
	10.2.5 Listener
	10.2.6 Subscription

	10.3 About Creating Messages
	10.3.1 About Message Payloads
	10.3.1.1 RAW
	10.3.1.2 AnyData
	10.3.1.3 Using User-defined Types as Payloads

	10.3.2 Message Properties
	10.3.2.1 Correlation
	10.3.2.2 Sender
	10.3.2.3 Delay and Expiration
	10.3.2.4 Recipients
	10.3.2.5 Priority and Ordering

	10.4 Enqueuing Messages
	10.5 Dequeuing Messages
	10.5.1 About Dequeuing Options
	10.5.1.1 Correlation
	10.5.1.2 Mode
	10.5.1.3 Navigation

	10.6 Listening for Messages
	10.7 About Registering for Notification
	10.7.1 Publish-Subscribe Notifications
	10.7.1.1 How to Use Direct Registration
	10.7.1.2 Using Open Registration

	10.7.2 About Notification Callback

	10.8 About Message Format Transformation

	11 Oracle XA Library
	11.1 Developing Applications with XA and OCCI
	11.2 APIs for XA Support

	12 Optimizing Performance of C++ Applications
	12.1 About Transparent Application Failover
	12.1.1 Using Transparent Application Failover
	12.1.2 About Objects and Transparent Application Failover
	12.1.3 Using Connection Pooling and Transparent Application Failover

	12.2 About Connection Sharing
	12.2.1 Introduction to Thread Safety
	12.2.2 Implementing Thread Safety
	12.2.3 About Serialization
	12.2.3.1 Automatic Serialization
	12.2.3.2 Application-Provided Serialization

	12.2.4 Operating System Considerations

	12.3 About Application-Managed Data Buffering
	12.3.1 Using the setDataBuffer() Method
	12.3.2 Using the executeArrayUpdate() Method

	12.4 Using the Array Fetch Using next() Method
	12.5 Modifying Rows Iteratively
	12.6 About Using Oracle Connection Manager in Traffic Director Mode
	12.7 About Run-time Load Balancing of the Stateless Connection Pool
	12.7.1 API Support

	12.8 About Fault Diagnosability
	12.8.1 Using ADR Base Location
	12.8.2 Using ADRCI
	12.8.3 Controlling ADR Creation and Disabling Fault Diagnosability

	12.9 Using Client Result Cache
	12.10 About Client-Side Deployment Parameters and Auto Tuning

	13 OCCI Application Programming Interface
	13.1 OCCI Classes and Methods
	13.1.1 Using OCCI Classes
	13.1.2 OCCI Support for Windows NT and z/OS
	13.1.2.1 Working with Collections of Refs
	13.1.2.1.1 ResultSet Class
	13.1.2.1.2 Statement Class

	13.2 Common OCCI Constants
	13.3 Agent Class
	13.3.1 Agent()
	13.3.2 getAddress()
	13.3.3 getName()
	13.3.4 getProtocol()
	13.3.5 isNull()
	13.3.6 operator=()
	13.3.7 setAddress()
	13.3.8 setName()
	13.3.9 setNull()
	13.3.10 setProtocol()

	13.4 AnyData Class
	13.4.1 AnyData()
	13.4.2 getAsBDouble()
	13.4.3 getAsBfile()
	13.4.4 getAsBFloat()
	13.4.5 getAsBytes()
	13.4.6 getAsDate()
	13.4.7 getAsIntervalDS()
	13.4.8 getAsIntervalYM()
	13.4.9 getAsNumber()
	13.4.10 getAsObject()
	13.4.11 getAsRef()
	13.4.12 getAsString()
	13.4.13 getAsTimestamp()
	13.4.14 getType()
	13.4.15 isNull()
	13.4.16 setFromBDouble()
	13.4.17 setFromBfile()
	13.4.18 setFromBFloat()
	13.4.19 setFromBytes()
	13.4.20 setFromDate()
	13.4.21 setFromIntervalDS()
	13.4.22 setFromIntervalYM()
	13.4.23 setFromNumber()
	13.4.24 setFromObject()
	13.4.25 setFromRef()
	13.4.26 setFromString()
	13.4.27 setFromTimestamp()
	13.4.28 setNull()

	13.5 BatchSQLException Class
	13.5.1 getException()
	13.5.2 getFailedRowCount()
	13.5.3 getRowNum()

	13.6 Bfile Class
	13.6.1 Bfile()
	13.6.2 close()
	13.6.3 closeStream()
	13.6.4 fileExists()
	13.6.5 getDirAlias()
	13.6.6 getFileName()
	13.6.7 getStream()
	13.6.8 getUStringDirAlias()
	13.6.9 getUStringFileName()
	13.6.10 isInitialized()
	13.6.11 isNull()
	13.6.12 isOpen()
	13.6.13 length()
	13.6.14 open()
	13.6.15 operator=()
	13.6.16 operator==()
	13.6.17 operator!=()
	13.6.18 read()
	13.6.19 setName()
	13.6.20 setNull()

	13.7 Blob Class
	13.7.1 Blob()
	13.7.2 append()
	13.7.3 close()
	13.7.4 closeStream()
	13.7.5 copy()
	13.7.6 getChunkSize()
	13.7.7 getContentType()
	13.7.8 getOptions()
	13.7.9 getStream()
	13.7.10 isInitialized()
	13.7.11 isNull()
	13.7.12 isOpen()
	13.7.13 length()
	13.7.14 open()
	13.7.15 operator=()
	13.7.16 operator==()
	13.7.17 operator!= ()
	13.7.18 read()
	13.7.19 setContentType()
	13.7.20 setEmpty()
	13.7.21 setNull()
	13.7.22 setOptions()
	13.7.23 trim()
	13.7.24 write()
	13.7.25 writeChunk()

	13.8 Bytes Class
	13.8.1 Bytes()
	13.8.2 byteAt()
	13.8.3 getBytes()
	13.8.4 isNull()
	13.8.5 length()
	13.8.6 operator=()
	13.8.7 setNull()

	13.9 Clob Class
	13.9.1 Clob()
	13.9.2 append()
	13.9.3 close()
	13.9.4 closeStream()
	13.9.5 copy()
	13.9.6 getCharSetForm()
	13.9.7 getCharSetId()
	13.9.8 getCharSetIdUString()
	13.9.9 getChunkSize()
	13.9.10 getContentType()
	13.9.11 getOptions()
	13.9.12 getStream()
	13.9.13 isInitialized()
	13.9.14 isNull()
	13.9.15 isOpen()
	13.9.16 length()
	13.9.17 open()
	13.9.18 operator=()
	13.9.19 operator==()
	13.9.20 operator!=()
	13.9.21 read()
	13.9.22 setCharSetId()
	13.9.23 setCharSetIdUString()
	13.9.24 setCharSetForm()
	13.9.25 setContentType()
	13.9.26 setEmpty()
	13.9.27 setNull()
	13.9.28 setOptions()
	13.9.29 trim()
	13.9.30 write()
	13.9.31 writeChunk()

	13.10 Connection Class
	13.10.1 changePassword()
	13.10.2 commit()
	13.10.3 createStatement()
	13.10.4 flushCache()
	13.10.5 getClientCharSet()
	13.10.6 getClientCharSetUString()
	13.10.7 getClientNCHARCharSet()
	13.10.8 getClientNCHARCharSetUString()
	13.10.9 getClientVersion()
	13.10.10 getLTXID()
	13.10.11 getMetaData()
	13.10.12 getOCIServer()
	13.10.13 getOCIServiceContext()
	13.10.14 getOCISession()
	13.10.15 getServerVersion()
	13.10.16 getServerVersionUString()
	13.10.17 getStmtCacheSize()
	13.10.18 getTag()
	13.10.19 isCached()
	13.10.20 pinVectorOfRefs()
	13.10.21 postToSubscriptions()
	13.10.22 readVectorOfBfiles()
	13.10.23 readVectorOfBlobs()
	13.10.24 readVectorOfClobs()
	13.10.25 registerSubscriptions()
	13.10.26 rollback()
	13.10.27 setStmtCacheSize()
	13.10.28 setTAFNotify()
	13.10.29 terminateStatement()
	13.10.30 unregisterSubscription()
	13.10.31 writeVectorOfBlobs()
	13.10.32 writeVectorOfClobs()

	13.11 ConnectionPool Class
	13.11.1 createConnection()
	13.11.2 createProxyConnection()
	13.11.3 getBusyConnections()
	13.11.4 getIncrConnections()
	13.11.5 getMaxConnections()
	13.11.6 getMinConnections()
	13.11.7 getOpenConnections()
	13.11.8 getPoolName()
	13.11.9 getStmtCacheSize()
	13.11.10 getTimeOut()
	13.11.11 setErrorOnBusy()
	13.11.12 setPoolSize()
	13.11.13 setStmtCacheSize()
	13.11.14 setTimeOut()
	13.11.15 terminateConnection()

	13.12 Consumer Class
	13.12.1 Consumer()
	13.12.2 getConsumerName()
	13.12.3 getCorrelationId()
	13.12.4 getDequeueMode()
	13.12.5 getMessageIdToDequeue()
	13.12.6 getPositionOfMessage()
	13.12.7 getQueueName()
	13.12.8 getTransformation()
	13.12.9 getVisibility()
	13.12.10 getWaitTime()
	13.12.11 isNull()
	13.12.12 operator=()
	13.12.13 receive()
	13.12.14 setAgent()
	13.12.15 setConsumerName()
	13.12.16 setCorrelationId()
	13.12.17 setDequeueMode()
	13.12.18 setMessageIdToDequeue()
	13.12.19 setNull()
	13.12.20 setPositionOfMessage()
	13.12.21 setQueueName()
	13.12.22 setTransformation()
	13.12.23 setVisibility()
	13.12.24 setWaitTime()

	13.13 Date Class
	13.13.1 Date()
	13.13.2 addDays()
	13.13.3 addMonths()
	13.13.4 daysBetween()
	13.13.5 fromBytes()
	13.13.6 fromText()
	13.13.7 getDate()
	13.13.8 getSystemDate()
	13.13.9 isNull()
	13.13.10 lastDay()
	13.13.11 nextDay()
	13.13.12 operator=()
	13.13.13 operator==()
	13.13.14 operator!=()
	13.13.15 operator>()
	13.13.16 operator>=()
	13.13.17 operator<()
	13.13.18 operator<=()
	13.13.19 setDate()
	13.13.20 setNull()
	13.13.21 toBytes()
	13.13.22 toText()
	13.13.23 toZone()

	13.14 Environment Class
	13.14.1 createConnection()
	13.14.2 createConnectionPool()
	13.14.3 createEnvironment()
	13.14.4 createStatelessConnectionPool()
	13.14.5 enableSubscription()
	13.14.6 disableSubscription()
	13.14.7 getCacheMaxSize()
	13.14.8 getCacheOptSize()
	13.14.9 getCacheSortedFlush()
	13.14.10 getCurrentHeapSize()
	13.14.11 getLDAPAdminContext()
	13.14.12 getLDAPAuthentication()
	13.14.13 getLDAPHost()
	13.14.14 getLDAPPort()
	13.14.15 getMap()
	13.14.16 getNLSLanguage()
	13.14.17 getNLSTerritory()
	13.14.18 getOCIEnvironment()
	13.14.19 getXAConnection()
	13.14.20 getXAEnvironment()
	13.14.21 releaseXAConnection()
	13.14.22 releaseXAEnvironment()
	13.14.23 setCacheMaxSize()
	13.14.24 setCacheOptSize()
	13.14.25 setCacheSortedFlush()
	13.14.26 setLDAPAdminContext()
	13.14.27 setLDAPAuthentication()
	13.14.28 setLDAPHostAndPort()
	13.14.29 setLDAPLoginNameAndPassword()
	13.14.30 setNLSLanguage()
	13.14.31 setNLSTerritory()
	13.14.32 terminateConnection()
	13.14.33 terminateConnectionPool()
	13.14.34 terminateEnvironment()
	13.14.35 terminateStatelessConnectionPool()

	13.15 IntervalDS Class
	13.15.1 IntervalDS()
	13.15.2 fromText()
	13.15.3 fromUText()
	13.15.4 getDay()
	13.15.5 getFracSec()
	13.15.6 getHour()
	13.15.7 getMinute()
	13.15.8 getSecond()
	13.15.9 isNull()
	13.15.10 operator*()
	13.15.11 operator*=()
	13.15.12 operator=()
	13.15.13 operator==()
	13.15.14 operator!=()
	13.15.15 operator/()
	13.15.16 operator/=()
	13.15.17 operator>()
	13.15.18 operator>=()
	13.15.19 operator<()
	13.15.20 operator<=()
	13.15.21 operator-()
	13.15.22 operator-=()
	13.15.23 operator+()
	13.15.24 operator+=()
	13.15.25 set()
	13.15.26 setNull()
	13.15.27 toText()
	13.15.28 toUText()

	13.16 IntervalYM Class
	13.16.1 IntervalYM()
	13.16.2 fromText()
	13.16.3 fromUText()
	13.16.4 getMonth()
	13.16.5 getYear()
	13.16.6 isNull()
	13.16.7 operator*()
	13.16.8 operator*=()
	13.16.9 operator=()
	13.16.10 operator==()
	13.16.11 operator!=()
	13.16.12 operator/()
	13.16.13 operator/=()
	13.16.14 operator>()
	13.16.15 operator>=()
	13.16.16 operator<()
	13.16.17 operator<=()
	13.16.18 operator-()
	13.16.19 operator-=()
	13.16.20 operator+()
	13.16.21 operator+=()
	13.16.22 set()
	13.16.23 setNull()
	13.16.24 toText()
	13.16.25 toUText()

	13.17 Listener Class
	13.17.1 Listener()
	13.17.2 getAgentList()
	13.17.3 getTimeOutForListen()
	13.17.4 listen()
	13.17.5 setAgentList()
	13.17.6 setTimeOutForListen()

	13.18 Map Class
	13.18.1 put()

	13.19 Message Class
	13.19.1 Message()
	13.19.2 getAnyData()
	13.19.3 getAttemptsToDequeue()
	13.19.4 getBytes()
	13.19.5 getCorrelationId()
	13.19.6 getDelay()
	13.19.7 getExceptionQueueName()
	13.19.8 getExpiration()
	13.19.9 getMessageEnqueuedTime()
	13.19.10 getMessageState()
	13.19.11 getObject()
	13.19.12 getOriginalMessageId()
	13.19.13 getPayloadType()
	13.19.14 getPriority()
	13.19.15 getSenderId()
	13.19.16 isNull()
	13.19.17 operator=()
	13.19.18 setAnyData()
	13.19.19 setBytes()
	13.19.20 setCorrelationId()
	13.19.21 setDelay()
	13.19.22 setExceptionQueueName()
	13.19.23 setExpiration()
	13.19.24 setNull()
	13.19.25 setObject()
	13.19.26 setOriginalMessageId()
	13.19.27 setPriority()
	13.19.28 setRecipientList()
	13.19.29 setSenderId()

	13.20 MetaData Class
	13.20.1 MetaData()
	13.20.2 getAttributeCount()
	13.20.3 getAttributeId()
	13.20.4 getAttributeType()
	13.20.5 getBoolean()
	13.20.6 getInt()
	13.20.7 getMetaData()
	13.20.8 getNumber()
	13.20.9 getRef()
	13.20.10 getString()
	13.20.11 getTimeStamp()
	13.20.12 getUInt()
	13.20.13 getUString()
	13.20.14 getVector()
	13.20.15 operator=()

	13.21 NotifyResult Class
	13.21.1 getConsumerName()
	13.21.2 getMessage()
	13.21.3 getMessageId()
	13.21.4 getPayload()
	13.21.5 getQueueName()

	13.22 Number Class
	13.22.1 Number()
	13.22.2 abs()
	13.22.3 arcCos()
	13.22.4 arcSin()
	13.22.5 arcTan()
	13.22.6 arcTan2()
	13.22.7 ceil()
	13.22.8 cos()
	13.22.9 exp()
	13.22.10 floor()
	13.22.11 fromBytes()
	13.22.12 fromText()
	13.22.13 hypCos()
	13.22.14 hypSin()
	13.22.15 hypTan()
	13.22.16 intPower()
	13.22.17 isNull()
	13.22.18 ln()
	13.22.19 log()
	13.22.20 operator++()
	13.22.21 operator--()
	13.22.22 operator*()
	13.22.23 operator/()
	13.22.24 operator%()
	13.22.25 operator+()
	13.22.26 operator-()
	13.22.27 operator-()
	13.22.28 operator<()
	13.22.29 operator<=()
	13.22.30 operator>()
	13.22.31 operator>=()
	13.22.32 operator==()
	13.22.33 operator!=()
	13.22.34 operator=()
	13.22.35 operator*=()
	13.22.36 operator/=()
	13.22.37 operator%=()
	13.22.38 operator+=()
	13.22.39 operator-=()
	13.22.40 operator char()
	13.22.41 operator signed char()
	13.22.42 operator double()
	13.22.43 operator float()
	13.22.44 operator int()
	13.22.45 operator long()
	13.22.46 operator long double()
	13.22.47 operator short()
	13.22.48 operator unsigned char()
	13.22.49 operator unsigned int()
	13.22.50 operator unsigned long()
	13.22.51 operator unsigned short()
	13.22.52 power()
	13.22.53 prec()
	13.22.54 round()
	13.22.55 setNull()
	13.22.56 shift()
	13.22.57 sign()
	13.22.58 sin()
	13.22.59 squareroot()
	13.22.60 tan()
	13.22.61 toBytes()
	13.22.62 toText()
	13.22.63 trunc()

	13.23 PObject Class
	13.23.1 PObject()
	13.23.2 flush()
	13.23.3 getConnection()
	13.23.4 getRef()
	13.23.5 getSQLTypeName()
	13.23.6 isLocked()
	13.23.7 isNull()
	13.23.8 lock()
	13.23.9 markDelete()
	13.23.10 markModified()
	13.23.11 operator=()
	13.23.12 operator delete()
	13.23.13 operator new()
	13.23.14 pin()
	13.23.15 setNull()
	13.23.16 unmark()
	13.23.17 unpin()

	13.24 Producer Class
	13.24.1 Producer()
	13.24.2 getQueueName()
	13.24.3 getRelativeMessageId()
	13.24.4 getSequenceDeviation()
	13.24.5 getTransformation()
	13.24.6 getVisibility()
	13.24.7 isNull()
	13.24.8 operator=()
	13.24.9 send()
	13.24.10 setNull()
	13.24.11 setQueueName()
	13.24.12 setRelativeMessageId()
	13.24.13 setSequenceDeviation()
	13.24.14 setTransformation()
	13.24.15 setVisibility()

	13.25 Ref Class
	13.25.1 Ref()
	13.25.2 clear()
	13.25.3 getConnection()
	13.25.4 isClear()
	13.25.5 isNull()
	13.25.6 markDelete()
	13.25.7 operator->()
	13.25.8 operator*()
	13.25.9 operator==()
	13.25.10 operator!=()
	13.25.11 operator=()
	13.25.12 ptr()
	13.25.13 setLock()
	13.25.14 setNull()
	13.25.15 setPrefetch()
	13.25.16 unmarkDelete()

	13.26 RefAny Class
	13.26.1 RefAny()
	13.26.2 clear()
	13.26.3 getConnection()
	13.26.4 isNull()
	13.26.5 markDelete()
	13.26.6 operator=()
	13.26.7 operator==()
	13.26.8 operator!=()
	13.26.9 unmarkDelete()

	13.27 ResultSet Class
	13.27.1 cancel()
	13.27.2 closeStream()
	13.27.3 getBDouble()
	13.27.4 getBfile()
	13.27.5 getBFloat()
	13.27.6 getBlob()
	13.27.7 getBytes()
	13.27.8 getCharSet()
	13.27.9 getCharSetUString()
	13.27.10 getClob()
	13.27.11 getColumnListMetaData()
	13.27.12 getCurrentStreamColumn()
	13.27.13 getCurrentStreamRow()
	13.27.14 getCursor()
	13.27.15 getDatabaseNCHARParam()
	13.27.16 getDate()
	13.27.17 getDouble()
	13.27.18 getFloat()
	13.27.19 getInt()
	13.27.20 getIntervalDS()
	13.27.21 getIntervalYM()
	13.27.22 getMaxColumnSize()
	13.27.23 getNumArrayRows()
	13.27.24 getNumber()
	13.27.25 getObject()
	13.27.26 getRef()
	13.27.27 getRowid()
	13.27.28 getRowPosition()
	13.27.29 getStatement()
	13.27.30 getStream()
	13.27.31 getString()
	13.27.32 getTimestamp()
	13.27.33 getUInt()
	13.27.34 getUString()
	13.27.35 getVector()
	13.27.36 getVectorOfRefs()
	13.27.37 isNull()
	13.27.38 isTruncated()
	13.27.39 next()
	13.27.40 preTruncationLength()
	13.27.41 setBinaryStreamMode()
	13.27.42 setCharacterStreamMode()
	13.27.43 setCharSet()
	13.27.44 setCharSetUString()
	13.27.45 setDatabaseNCHARParam()
	13.27.46 setDataBuffer()
	13.27.47 setErrorOnNull()
	13.27.48 setErrorOnTruncate()
	13.27.49 setPrefetchMemorySize()
	13.27.50 setPrefetchRowCount()
	13.27.51 setMaxColumnSize()
	13.27.52 status()

	13.28 SQLException Class
	13.28.1 SQLException()
	13.28.2 getErrorCode()
	13.28.3 getMessage()
	13.28.4 getNLSMessage()
	13.28.5 getNLSUStringMessage()
	13.28.6 getUStringMessage()
	13.28.7 getXAErrorCode()
	13.28.8 isRecoverable()
	13.28.9 setErrorCtx()
	13.28.10 what()

	13.29 StatelessConnectionPool Class
	13.29.1 getAnyTaggedConnection()
	13.29.2 getAnyTaggedProxyConnection()
	13.29.3 getBusyConnections()
	13.29.4 getBusyOption()
	13.29.5 getConnection()
	13.29.6 getIncrConnections()
	13.29.7 getMaxConnections()
	13.29.8 getMinConnections()
	13.29.9 getOpenConnections()
	13.29.10 getPoolName()
	13.29.11 getProxyConnection()
	13.29.12 getStmtCacheSize()
	13.29.13 getTimeOut()
	13.29.14 releaseConnection()
	13.29.15 setBusyOption()
	13.29.16 setPoolSize()
	13.29.17 setTimeOut()
	13.29.18 setStmtCacheSize()
	13.29.19 terminateConnection()

	13.30 Statement Class
	13.30.1 addIteration()
	13.30.2 closeResultSet()
	13.30.3 closeStream()
	13.30.4 disableCaching()
	13.30.5 execute()
	13.30.6 executeArrayUpdate()
	13.30.7 executeQuery()
	13.30.8 executeUpdate()
	13.30.9 getAutoCommit()
	13.30.10 getBatchErrorMode()
	13.30.11 getBDouble()
	13.30.12 getBfile()
	13.30.13 getBFloat()
	13.30.14 getBlob()
	13.30.15 getBoolean()
	13.30.16 getBytes()
	13.30.17 getCharSet()
	13.30.18 getCharSetUString()
	13.30.19 getClob()
	13.30.20 getConnection()
	13.30.21 getCurrentIteration()
	13.30.22 getCurrentStreamIteration()
	13.30.23 getCurrentStreamParam()
	13.30.24 getCursor()
	13.30.25 getDatabaseNCHARParam()
	13.30.26 getDate()
	13.30.27 getDMLRowCounts()
	13.30.28 getDouble()
	13.30.29 getFloat()
	13.30.30 getInt()
	13.30.31 getIntervalDS()
	13.30.32 getIntervalYM()
	13.30.33 getMaxIterations()
	13.30.34 getMaxParamSize()
	13.30.35 getNumber()
	13.30.36 getObject()
	13.30.37 getOCIStatement()
	13.30.38 getRef()
	13.30.39 getResultSet()
	13.30.40 getRowCountsOption()
	13.30.41 getRowid()
	13.30.42 getSQL()
	13.30.43 getSQLUString()
	13.30.44 getStream()
	13.30.45 getString()
	13.30.46 getTimestamp()
	13.30.47 getUb8RowCount()
	13.30.48 getUInt()
	13.30.49 getUpdateCount()
	13.30.50 getUString()
	13.30.51 getVector()
	13.30.52 getVectorOfRefs()
	13.30.53 isNull()
	13.30.54 isTruncated()
	13.30.55 preTruncationLength()
	13.30.56 registerOutParam()
	13.30.57 setAutoCommit()
	13.30.58 setBatchErrorMode()
	13.30.59 setBDouble()
	13.30.60 setBfile()
	13.30.61 setBFloat()
	13.30.62 setBinaryStreamMode()
	13.30.63 setBlob()
	13.30.64 setBoolean()
	13.30.65 setBytes()
	13.30.66 setCharacterStreamMode()
	13.30.67 setCharSet()
	13.30.68 setCharSetUString()
	13.30.69 setClob()
	13.30.70 setDate()
	13.30.71 setDatabaseNCHARParam()
	13.30.72 setDataBuffer()
	13.30.73 setDataBufferArray()
	13.30.74 setDouble()
	13.30.75 setErrorOnNull()
	13.30.76 setErrorOnTruncate()
	13.30.77 setFloat()
	13.30.78 setInt()
	13.30.79 setIntervalDS()
	13.30.80 setIntervalYM()
	13.30.81 setMaxIterations()
	13.30.82 setMaxParamSize()
	13.30.83 setNull()
	13.30.84 setNumber()
	13.30.85 setObject()
	13.30.86 setPrefetchMemorySize()
	13.30.87 setPrefetchRowCount()
	13.30.88 setRef()
	13.30.89 setRowCountsOption()
	13.30.90 setRowid()
	13.30.91 setSQL()
	13.30.92 setSQLUString()
	13.30.93 setString()
	13.30.94 setTimestamp()
	13.30.95 setUInt()
	13.30.96 setUString()
	13.30.97 setVector()
	13.30.98 setVectorOfRefs()
	13.30.99 status()

	13.31 Stream Class
	13.31.1 readBuffer()
	13.31.2 readLastBuffer()
	13.31.3 writeBuffer()
	13.31.4 writeLastBuffer()
	13.31.5 status()

	13.32 Subscription Class
	13.32.1 Subscription()
	13.32.2 getCallbackContext()
	13.32.3 getDatabaseServersCount()
	13.32.4 getDatabaseServerNames()
	13.32.5 getNotifyCallback()
	13.32.6 getPayload()
	13.32.7 getSubscriptionName()
	13.32.8 getSubscriptionNamespace()
	13.32.9 getRecipientName()
	13.32.10 getPresentation()
	13.32.11 getProtocol()
	13.32.12 isNull()
	13.32.13 operator=()
	13.32.14 setCallbackContext()
	13.32.15 setDatabaseServerNames()
	13.32.16 setNotifyCallback()
	13.32.17 setNull()
	13.32.18 setPayload()
	13.32.19 setPresentation()
	13.32.20 setProtocol()
	13.32.21 setSubscriptionName()
	13.32.22 setSubscriptionNamespace()
	13.32.23 setRecipientName()

	13.33 Timestamp Class
	13.33.1 Timestamp()
	13.33.2 fromText()
	13.33.3 getDate()
	13.33.4 getTime()
	13.33.5 getTimeZoneOffset()
	13.33.6 intervalAdd()
	13.33.7 intervalSub()
	13.33.8 isNull()
	13.33.9 operator=()
	13.33.10 operator==()
	13.33.11 operator!=()
	13.33.12 operator>()
	13.33.13 operator>=()
	13.33.14 operator<()
	13.33.15 operator<=()
	13.33.16 setDate()
	13.33.17 setNull()
	13.33.18 setTime()
	13.33.19 setTimeZoneOffset()
	13.33.20 subDS()
	13.33.21 subYM()
	13.33.22 toText()

	Index

