
Oracle® Database Gateway for
WebSphere MQ
Installation and User's Guide

23c
F47545-02
August 2023

Oracle Database Gateway for WebSphere MQ Installation and User's Guide, 23c

F47545-02

Copyright © 2006, 2023, Oracle and/or its affiliates.

Primary Author: Rhonda Day

Contributing Authors: Li-Te Chen

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Intended Audience xii

Documentation Accessibility xii

Product Name xii

Typographic Conventions xiii

Command Syntax xiii

Related Publications xiv

Related Documents xiv

1 Introduction to Oracle Database Gateway for WebSphere MQ

1.1 Introduction to Message Queuing 1-1

1.2 Introduction to WebSphere MQ 1-1

1.2.1 WebSphere MQ Terms 1-2

1.3 Introduction to the Gateway 1-2

1.3.1 Developing Gateway Applications 1-3

1.3.2 Gateway Terms 1-3

1.3.3 Advantages of Using the Gateway 1-4

1.3.4 Gateway Architecture 1-5

1.3.5 Component Descriptions 1-5

1.3.5.1 Oracle Applications 1-6

1.3.5.2 Oracle Database 1-6

1.3.5.3 Oracle Net 1-6

1.3.5.4 Gateway 1-6

1.3.5.5 WebSphere MQ Queue Manager 1-6

1.3.5.6 WebSphere MQ Application 1-6

1.3.6 Gateway Structure 1-7

1.3.7 Gateway Operation 1-7

1.3.8 Communication 1-7

2 Release Information for Oracle Database Gateway for WebSphere MQ

2.1 Changes and Enhancements 2-1

iii

2.1.1 Oracle Database Dependencies 2-1

2.1.2 Support for Large Data Buffers 2-1

2.1.3 DG4MQ Data Types 2-1

2.1.4 PGM_UTL Procedures 2-2

2.1.5 DG4MQ API Prototype Changes 2-2

2.1.6 DG4MQ Deployment Scripts 2-3

2.1.7 Large Payload Support 2-3

2.1.8 Database Link and Alias Library 2-3

2.2 Known Problems 2-3

2.3 Known Restrictions 2-3

3 System Requirements for Oracle Database Gateway for WebSphere MQ

3.1 Hardware Requirements for Oracle Database Gateway for WebSphere MQ 3-1

3.2 Software Requirements for Oracle Database Gateway for WebSphere MQ 3-2

3.3 Oracle Database 3-3

4 Preinstallation Information for Oracle Database Gateway for WebSphere
MQ

4.1 Preinstallation Tasks 4-1

4.1.1 WebSphere MQ Software 4-1

4.1.2 Setting Environment Variables 4-2

4.1.2.1 ORACLE_HOME 4-2

4.1.2.2 ORACLE_SID 4-3

4.1.2.3 DISPLAY 4-4

4.1.2.4 TMP 4-4

4.1.3 Using Windows User Account as Oracle Home User 4-5

4.2 About Oracle Universal Installer 4-5

4.2.1 oraInventory Directory 4-5

4.2.2 Starting Oracle Universal Installer 4-6

5 Installing Oracle Database Gateway for WebSphere MQ

5.1 Installation 5-1

5.2 Running root.sh on UNIX Based Systems 5-3

6 Removing Oracle Database Gateway for WebSphere MQ

6.1 Removing Oracle Database Gateway for WebSphere MQ 6-1

6.1.1 About the Deinstallation Tool 6-1

6.1.2 Removing Oracle Software 6-2

iv

6.2 Reinstalling Oracle Database Gateway for WebSphere MQ 6-3

7 Configuring Oracle Database Gateway for WebSphere MQ

7.1 Configuration Overview 7-1

7.2 Configuring the Gateway 7-1

7.2.1 Using the Gateway with the Default Values 7-2

7.2.2 Using the Gateway Without the Default Values 7-2

7.2.3 Changing Default Values 7-2

7.2.3.1 Step 1: Choose a System ID for the Gateway 7-2

7.2.3.2 Step 2: Customize the Gateway Initialization File 7-2

7.3 Configuring Oracle Net for the Gateway 7-4

7.3.1 Using Oracle Net with Default Gateway Values 7-4

7.3.2 Using Oracle Net When Changing the Default Gateway Values 7-4

7.3.2.1 Step 1: Configure the Oracle Net Oracle Net Listener for the Gateway 7-4

7.3.2.2 Step 2: Stop and Start the Oracle Net Listener for the Gateway 7-7

7.4 Configuring Oracle Net for Oracle Database 7-9

7.4.1 Using Default Gateway Values 7-9

7.4.2 Changing Default Gateway Values 7-10

7.4.2.1 TCP/IP Example 7-10

7.4.2.2 IPC Example 7-10

7.5 Creating a Transaction Log Queue 7-11

7.6 Administering the Database Links Alias Library 7-12

7.6.1 Using Database Links 7-12

7.6.2 Creating Database Links 7-12

7.6.3 Dropping Database Links 7-13

7.6.4 Examining Available Database Links 7-14

7.6.5 Limiting the Number of Active Database Links 7-14

7.6.6 Creating Alias Library 7-14

7.6.7 Dropping Alias Library 7-15

7.7 Installing the Oracle Visual Workbench Repository 7-15

7.7.1 Preinstallation Tasks 7-15

7.7.1.1 Step 1: Choose a Repository Server 7-15

7.7.1.2 Step 2: Locate the Installation Scripts 7-15

7.7.1.3 Step 3: Upgrade the Visual Workbench Repository 7-16

7.7.1.4 Step 4: Ensure that the UTL_RAW Package is Installed 7-16

7.7.1.5 Step 5: Ensure that the DBMS_OUTPUT Package is Enabled 7-16

7.7.1.6 Step 6: Create a Database Link 7-17

7.7.2 Visual Workbench Repository Installation Tasks 7-17

7.7.2.1 Step 1: Enter the Database Connection Information 7-17

7.7.2.2 Step 2: Check for Existing Workbench Repository 7-17

v

7.7.2.3 Step 3: Check for The Required PL/SQL Packages 7-18

7.7.2.4 Step 4: Install the UTL_PG Package 7-18

7.7.2.5 Step 5: Create the Administrative User and All Repository Tables 7-18

7.7.2.6 Step 6: Create Public Synonyms and Development Roles 7-18

7.7.3 After the Repository is Created 7-19

7.7.4 Deinstall the Visual Workbench Repository 7-19

7.7.4.1 Step 1: Enter the Database Connection Information 7-19

7.7.4.2 Step 2: Check for the Existing Workbench Repository 7-20

7.8 Preparing the Production Oracle Database 7-20

7.8.1 Introduction 7-20

7.8.2 Verifying and Installing PL/SQL Packages 7-20

7.8.3 Removing the PL/SQL Packages 7-21

8 Oracle Database Gateway for WebSphere MQ Running Environment

8.1 Security Models 8-1

8.1.1 Relaxed Model 8-1

8.1.2 Strict Model 8-2

8.1.2.1 Authorization Process for a WebSphere MQ Server Application 8-2

8.1.2.2 Authorization Process for a WebSphere MQ Client Application 8-2

8.1.3 Authorization for WebSphere MQ Objects 8-3

8.2 Transaction Support 8-3

8.2.1 Non‐Oracle Data Sources and Distributed Transactions 8-4

8.2.2 Transaction Capability Types 8-4

8.2.3 Transaction Capability Types of Oracle Database Gateway for WebSphere MQ 8-5

8.2.3.1 Single-Site Transactions 8-5

8.2.3.2 Commit-Confirm Transactions 8-6

8.3 Troubleshooting 8-6

8.3.1 Message and Error Code Processing 8-6

8.3.1.1 Interpreting Gateway Messages 8-7

8.3.2 Common Error Codes 8-8

8.3.3 Gateway Tracing 8-8

8.3.3.1 LOG_DESTINATION Parameter 8-9

8.3.4 Verifying Gateway Operation 8-9

A The PGM, PGM_UTL8, and PGM_SUP Packages

A.1 PGM Package, DG4MQ Gateway Procedures, and Data Type Definitions A-1

A.1.1 Summary of Procedures and Type Definitions A-2

A.1.2 Procedure Conventions A-2

A.1.3 MQI Calls Performed by the Gateway A-3

vi

A.1.4 Unsupported MQI Calls A-4

A.1.5 Migration Tips A-4

A.2 MQCLOSE Procedure A-7

A.3 MQGET Procedure A-7

A.3.1 PGM.MQMD Type Definition A-10

A.3.2 PGM.MQGMO Type Definition A-13

A.4 MQOPEN Procedure A-14

A.4.1 PGM.MQOD Type Definition A-15

A.5 MQPUT Procedure A-16

A.5.1 PGM.MQPMO Type Definition A-18

A.6 PGM_SUP Package A-19

A.6.1 PGM.MQGMO Values A-19

A.6.1.1 OPTIONS Field A-19

A.6.1.2 VERSION Field A-20

A.6.1.3 MATCHOPTIONS Field A-20

A.6.1.4 WAITINTERVAL A-20

A.6.2 PGM.MQMD Values A-20

A.6.2.1 CODEDCHARSETID Field A-20

A.6.2.2 ENCODING Field A-20

A.6.2.3 ENCODING Field, Values for Binary Integers A-20

A.6.2.4 ENCODING Field, Values for Floating Point Numbers A-21

A.6.2.5 ENCODING Field, Mask Values A-21

A.6.2.6 ENCODING Field, Values for Packed Decimal Integers A-21

A.6.2.7 EXPIRY Field A-21

A.6.2.8 FEEDBACK Field A-21

A.6.2.9 FORMAT Field A-21

A.6.2.10 MSGTYPE Field A-22

A.6.2.11 PERSISTENCE Field A-22

A.6.2.12 PRIORITY Field A-22

A.6.2.13 PUTAPPLTYPE Field A-22

A.6.2.14 REPORT Field A-23

A.6.2.15 VERSION Field A-23

A.6.2.16 Report Field, Mask Values A-23

A.6.3 PGM.MQOD Values A-23

A.6.3.1 OBJECTTYPE Field A-23

A.6.3.2 OBJECTTYPE Field, Extended Values A-23

A.6.3.3 VERSION Field A-24

A.6.4 PGM.MQPMO Values A-24

A.6.4.1 OPTIONS Field A-24

A.6.4.2 VERSION Field A-24

A.6.5 MQCLOSE Values A-24

vii

A.6.5.1 hobj Argument A-24

A.6.5.2 options Argument A-24

A.6.6 MQOPEN Values A-25

A.6.6.1 options Argument A-25

A.6.7 Maximum Lengths for Fields of PGM Type Definitions A-25

A.6.8 Error Code Definitions A-26

B UTL_RAW Package

B.1 Message Data Types B-1

B.2 UTL_RAW Functions B-1

B.2.1 UTL_RAW.TO_RAW B-2

B.2.2 UTL_RAW.BIT_AND B-2

B.2.3 UTL_RAW.BIT_COMPLEMENT B-2

B.2.4 UTL_RAW.BIT_OR B-3

B.2.5 UTL_RAW.BIT_XOR B-3

B.2.6 UTL_RAW.CAST_TO_RAW B-3

B.2.7 UTL_RAW.CAST_TO_VARCHAR2 B-4

B.2.8 UTL_RAW.COMPARE B-4

B.2.9 UTL_RAW.CONCAT B-4

B.2.10 UTL_RAW.CONVERT B-5

B.2.11 UTL_RAW.COPIES B-5

B.2.12 UTL_RAW.LENGTH B-6

B.2.13 UTL_RAW.OVERLAY B-6

B.2.14 UTL_RAW.REVERSE B-7

B.2.15 UTL_RAW.SUBSTR B-7

B.2.16 UTL_RAW.TRANSLATE B-7

B.2.17 UTL_RAW.TRANSLITERATE B-8

B.2.18 UTL_RAW.XRANGE B-9

C Oracle Database Gateway for WebSphere MQ Initialization Parameters

C.1 Gateway Initialization File C-1

C.2 Gateway Parameters C-1

C.2.1 LOG_DESTINATION C-1

C.2.2 AUTHORIZATION_MODEL C-1

C.2.3 QUEUE_MANAGER C-2

C.2.4 TRACE_LEVEL C-2

C.2.5 TRANSACTION_LOG_QUEUE C-3

C.2.6 TRANSACTION_MODEL C-3

C.2.7 TRANSACTION_RECOVERY_PASSWORD C-4

viii

C.2.8 TRANSACTION_RECOVERY_USER C-5

Index

ix

List of Figures

1-1 Components of the Gateway Architecture 1-5

x

List of Tables

1-1 WebSphere MQ Terms 1-2

1-2 Oracle Database Gateway Terms 1-3

3-1 Hardware Requirements for Oracle Database Gateway for WebSphere MQ 3-1

3-2 Software Requirements for Oracle Database Gateway for WebSphere MQ 3-2

4-1 Setting Environment Variables for a New ORACLE_HOME Directory 4-3

5-1 Installing Oracle Database Gateway for WebSphere MQ 5-1

8-1 WebSphere MQ Access Authorization 8-3

A-1 Procedures and Type Definitions A-2

A-2 PGM.MQMD Object Fields A-10

A-3 PGM.MQGMO Fields A-14

A-4 PGM.MQOD Object Fields A-15

A-5 PGM.MQPMO Fields A-19

xi

Preface

Oracle Database Gateway for WebSphere MQ provides access to WebSphere MQ
services. This gateway requires a system that is capable of running 64‐bit applications.

Intended Audience
This guide is intended for anyone responsible for installing, configuring, or
administering the Oracle Database Gateway for WebSphere MQ. It is also for
developers writing applications that access message queuing systems, particularly
those developers who need to access queues owned by both WebSphere MQ and
other non-Oracle message queuing systems as well as queues owned by Oracle
Advanced Queuing (AQ).

Read this guide if you are responsible for tasks such as:

• Administering the gateway

• Setting up gateway security

• Using the gateway

• Diagnosing gateway errors

Before using this guide, you must understand the fundamentals of your operating
system, the Oracle Database Gateways, PL/SQL, the Oracle database, and
WebSphere MQ software before using this guide to install, configure, or administer the
gateway.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Product Name
The complete name for this product is Oracle Database Gateway for WebSphere MQ,
also called DG4MQ.

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Typographic Conventions
The following typographic conventions are used in this guide:

Convention Description

monospace Monospace type indicates commands, directory names, user names,
path names, and file names.

italics Italic type indicates variables, including variable portions of file names.
It is also used for emphasis and for book titles.

UPPERCASE Uppercase letters indicate Structured Query Language (SQL) reserved
words, initialization parameters, and environment variables.

Bold Bold type indicates screen names and fields.

SQL*Plus prompts The SQL*Plus prompt, SQL>, appears in SQL statement and
SQL*Plus command examples. Enter your response at the prompt. Do
not enter the text of the prompt, "SQL>", in your response.

Command Syntax
Command syntax appears in monospace font. The dollar character ($), number sign (#), or
percent character (%) are UNIX command prompts. Do not enter them as part of the
command. The following command syntax conventions are used in this guide:

Convention Description

backslash \ A backslash is the UNIX command continuation character. It is used in command
examples that are too long to fit on a single line. Enter the command as displayed
(with a backslash) or enter it on a single line without a backslash:

dd if=/dev/rdsk/c0t1d0s6 of=/dev/rst0 bs=10b \
count=10000

braces { } Braces indicate required items:

.DEFINE {macro1}

brackets [] Brackets indicate optional items:

cvtcrt termname [outfile]

ellipses ... Ellipses indicate an arbitrary number of similar items:

CHKVAL fieldname value1 value2 ... valueN

italics Italic type indicates a variable. Substitute a value for the variable:

library_name

vertical line | A vertical line indicates a choice within braces or brackets:

FILE filesize [K|M]

Preface

xiii

Related Publications
See the Oracle Database Heterogeneous Connectivity User's Guide for information
common to all Oracle Database Gateways, including important information about
functions, parameters, and error messages.

Related Documents
The guide includes references to the following documents:

Oracle Call Interface Programmer's Guide

Oracle Database Administrator's Guide

Oracle Database Error Messages

Oracle Database Reference

Oracle Database Utilities

Oracle Database Heterogeneous Connectivity User's Guide

Oracle Database Net Services Administrator's Guide

Oracle Database Net Services Reference

Oracle Database Security Guide

Oracle Database SQL Language Quick Reference

Oracle Database PL/SQL Packages and Types Reference

Oracle Database PL/SQL Language Reference

Oracle Database Installation Guide

Preface

xiv

1
Introduction to Oracle Database Gateway for
WebSphere MQ

The following topics provide an overview of message queuing, WebSphere MQ, and the role
of the gateway when accessing WebSphere MQ queues.

1.1 Introduction to Message Queuing
Message queuing enables distributed applications to communicate asynchronously by
sending messages between the applications.

The messages from the sending application are stored in a queue and are retrieved by the
receiving application. The applications send or receive messages through a queue by
sending a request to the message queuing system. Sending and receiving applications can
use the same or different message queuing systems, allowing the message queuing system
to handle the forwarding of the messages from the sender queue to the recipient queue.

Queued messages can be stored at intermediate nodes until the system is ready to forward
them to the next node. At the destination node, the messages are stored in a queue until the
receiving application retrieves them from the queue. Message delivery is guaranteed even if
the network or application fails. This provides for a reliable communication channel between
applications.

The complexity and details of the underlying model (of storing and forwarding messages
between different environments) are handled by the message queuing system. By
maintaining this level of abstraction, distributed applications can be developed without the
need to worry about the details of how the information is transported.

Because the sending and receiving applications operate independently of one another, the
sending application is less dependent on the availability of the remote application, the
network between them, and the system on which the receiving application runs. This leads to
a higher level of availability for the participating applications.

Messages and message queue operations can be configured by the applications to operate
in specific modes. For example, a sending application can specify that queued messages
should survive system crashes. As another example, the receiving application can specify a
maximum waiting period for a receiving operation from a queue (in case no messages are
available yet on the receiving queue).

1.2 Introduction to WebSphere MQ
WebSphere MQ is a message queuing system based on the model of message queue clients
and message queue servers.

The applications run either on the server node where the queue manager and queues reside,
or on a remote client node. Applications can send or retrieve messages only from queues
owned by the queue manager to which they are connected.

1-1

1.2.1 WebSphere MQ Terms
This table describes WebSphere MQ terms used in this guide.

Table 1-1 WebSphere MQ Terms

Term Description

Message queues Storage areas for messages exchanged between applications.

Message queue
interface (MQI)

An application programming interface (API) for applications that want
to send or receive messages through WebSphere MQ queues.

WebSphere MQ client
configuration

A WebSphere MQ configuration where the queue manager and
message queues are located on a different (remote) system or node
than the application software. Client applications connect to the
remote queue manager using IBM software that provides the
necessary networking software to connect to the remote queue
manager.

WebSphere MQ server
configuration

A WebSphere MQ configuration where the queue manager and
message queues are located on the same (local) system or node as
the application software. Client applications connect to the local
queue manager using MQI.

Queue manager A WebSphere MQ feature that provides the message queuing
facilities that applications use. It manages the queue definitions,
configuration tables, and message queues. The queue manager also
forwards messages from the sender queue to the remote recipient
queues.

Triggers A WebSphere MQ feature that enables an application to be started
automatically when a message event, such as the arrival of a
message, occurs. Triggers can be used to invoke programs or
transactions. For example, a trigger could cause an Oracle
application to call the gateway to retrieve a WebSphere MQ message
and process it.

1.3 Introduction to the Gateway
The Oracle Database Gateway for WebSphere MQ enables Oracle applications to
integrate with other WebSphere MQ applications.

Oracle applications can send messages to other WebSphere MQ applications or
receive messages from them. With the gateway, Oracle applications access
WebSphere MQ message queues through remote procedure call (RPC) processing.

The gateway extends the RPC facilities that are available with the Oracle database
and enables any client application to use PL/SQL to access messages in WebSphere
MQ queues. The gateway provides PL/SQL procedures that are translated by the
gateway into MQI calls. These procedures resemble the calls and types of MQI, but
they are adapted to take full advantage of the transaction integration with the Oracle
database.

Through WebSphere MQ, the gateway communicates with any other WebSphere MQ
systems on various platforms, including mainframes, UNIX based systems, Microsoft
Windows, and other desktop environments. The gateway does not require any Oracle
software on the remote system. The gateway integrates with existing WebSphere MQ
applications without any changes to those applications and enables users to exploit

Chapter 1
Introduction to the Gateway

1-2

their investment in these applications while providing them with the ability to maximize on the
benefits of message-oriented systems.

The gateway also provides a way to integrate these existing WebSphere MQ applications
with new technology areas, such as network computing. Any Oracle application can invoke
PL/SQL procedures, including applications that use the Oracle Application Server 11g.

Related Topics

• The PGM, PGM_UTL8, and PGM_SUP Packages

1.3.1 Developing Gateway Applications
Using the Oracle Visual Workbench for Oracle Database Gateway for WebSphere MQ.

If you are developing applications that access WebSphere MQ through the gateway, use the
Oracle Visual Workbench for Oracle Database Gateway for WebSphere MQ. Oracle Visual
Workbench enables you to define an interface for accessing WebSphere MQ and define how
to convert message data that is sent or retrieved from WebSphere MQ queues.

Visual Workbench generates PL/SQL code for the interface and data conversion. This
generated code is called the message interface package (MIP). The MIP provides the
underlying code to interact with the gateway, performs message data conversion, and
provides an easy-to-use interface for Oracle applications to exchange messages with remote
WebSphere MQ applications.

See Also:

Refer to the Oracle Procedural Gateway Visual Workbench for WebSphere MQ
Installation and User's Guide for Microsoft Windows (32-Bit) for more information
about Oracle Visual Workbench.

When necessary, the generated MIP code can be modified to use WebSphere MQ functions
that are not supported by Visual Workbench or to enhance message data conversions.

Related Topics

• The PGM, PGM_UTL8, and PGM_SUP Packages

• UTL_RAW Package

1.3.2 Gateway Terms
This table describes gateway terms used in this guide.

Table 1-2 Oracle Database Gateway Terms

Term Description

Gateway initialization file A file containing parameters that determine the running of the
gateway.

Gateway remote procedures Remote procedures implemented by the gateway. These
procedures are used to invoke WebSphere MQ operations.

Chapter 1
Introduction to the Gateway

1-3

Table 1-2 (Cont.) Oracle Database Gateway Terms

Term Description

MIP (message interface package) An Oracle PL/SQL package generated by Oracle Visual
Workbench that serves as an interface between an existing
WebSphere MQ application and an Oracle application. The MIP
performs any necessary data conversion and invokes the
gateway RPCs to perform appropriate WebSphere MQ
operations. Refer to the Oracle Procedural Gateway Visual
Workbench for WebSphere MQ Installation and User's Guide for
Microsoft Windows (32-Bit) for more information about the
generated packages.

Oracle database Any Oracle database that communicates with the gateway.
Oracle applications do not communicate directly with the
gateway. Instead, they run PL/SQL code at an Oracle database
to invoke the gateway procedures. The Oracle database can be
on the same system as the gateway or on a different system.

Production Oracle database As used in this guide, the production database refers to any
Oracle database that you use for production, for actual business
and not for testing.

PL/SQL stored procedure A compiled PL/SQL procedure that is stored in the Oracle
database or is included with the gateway.

Remote procedure call A programming call that invokes a program on a system in
response to a request from another system.

Oracle Visual Workbench An abbreviated term for the Oracle Visual Workbench for Oracle
Database Gateway for WebSphere MQ.

1.3.3 Advantages of Using the Gateway
This is a description of the advantages of using the gateway to access WebSphere
MQ.

Using the gateway to access WebSphere MQ provides the following advantages:

• Transactional support

The gateway and the Oracle database enable WebSphere MQ operations and
Oracle database updates to be performed in a coordinated fashion. Oracle two-
phase commit protection is extended to the WebSphere MQ environment without
any special programming.

• Fast remote procedures

The remote procedures implemented by the gateway are optimized for efficient
processing of WebSphere MQ requests.

The remote procedures to the gateway and WebSphere MQ are an optimized
PL/SQL package that is precompiled in the gateway. Because there are no
additional software layers on the target system, overhead is minimized.

• Location transparency

Client applications need not be on a specific operating system. For example, your
Oracle application can send WebSphere MQ messages to an application on
IBM MVS. If the receiving application is moved to a different platform, then you do
not need to change the platform of your Oracle application.

Chapter 1
Introduction to the Gateway

1-4

• Flexible interface

Using the MIPs generated by the Visual Workbench, you can use the gateway to
interface with the existing procedural logic or to integrate new procedural logic into an
Oracle database environment.

• Oracle database integration

The integration of the Oracle database with the gateway enables you to benefit from
existing and future Oracle features.

• Wide selection of tools

The gateway supports any tool or application that supports PL/SQL. This includes
applications built with traditional Oracle tools, such as Oracle Developer, or applications
built for intranet or Internet environments supported by Oracle Application Server
11g. The gateway also works with packaged Oracle applications, such as Oracle
Financials, and with many third-party tools, such as Visual Basic, PowerBuilder, and
Lotus Notes.

• Security

The gateway is compatible with the WebSphere MQ security authorization mechanism.

1.3.4 Gateway Architecture
This is a description of the gateway architecture components in graphic format.

Figure 1-1 shows the components of the gateway architecture.

Figure 1-1 Components of the Gateway Architecture

Oracle Net

Oracle Applications

Oracle

Database

Server

Gateway Machine

Gateway
MQSeries

Application

MQSeries

Queue

Manager

Queue

Queue

Oracle Net

1.3.5 Component Descriptions
This topic describes components of the gateway architecture.

Chapter 1
Introduction to the Gateway

1-5

1.3.5.1 Oracle Applications
The Oracle applications component.

Oracle applications connect to an Oracle database. They send data to and receive
data from WebSphere MQ queues by invoking the gateway RPCs.

1.3.5.2 Oracle Database
The Oracle database component.

Oracle applications do not connect directly to the gateway, but connect indirectly
through an Oracle database. The Oracle database communicates with a gateway in
the normal Oracle server-to-server manner using Oracle Net. The gateway is a single
process and does not start background processes. On UNIX platforms, a gateway
process is started for each user session.

1.3.5.3 Oracle Net
The Oracle Net component.

Oracle Net provides client to server and server-to-gateway communication. It enables
an Oracle application to communicate with the Oracle database, and it enables the
Oracle database to communicate with the gateway.

If the Oracle database is not on the same system as the gateway, then you must install
the correct Oracle networking software on the platform where the Oracle database is
installed.

1.3.5.4 Gateway
The gateway component.

Oracle applications invoke the RPCs that are implemented by the gateway with PL/
SQL. The gateway procedures map these RPCs to WebSphere MQ MQI calls to
perform the corresponding WebSphere MQ operation.

The gateway is accessed through the Oracle database by using a database link name
created by an Oracle CREATE DATABASE LINK statement. The database link is the
construct used to identify Oracle databases.

1.3.5.5 WebSphere MQ Queue Manager
The WebSphere MQ queue manager component.

The WebSphere MQ server is where the WebSphere MQ queue manager and
message queue are located. The WebSphere MQ server might, or might not, be on the
same system as the gateway.

1.3.5.6 WebSphere MQ Application
The WebSphere MQ applications component.

Chapter 1
Introduction to the Gateway

1-6

WebSphere MQ applications connect directly to the WebSphere MQ queue manager by
using WebSphere MQ MQI calls to perform the corresponding WebSphere MQ operation.

1.3.6 Gateway Structure
The gateway has some of the same components as an Oracle database.

The following components are included:

• A directory where the gateway software is installed

• A system identifier (SID)

• An initialization file similar to the Oracle database initialization parameter file

The gateway does not have control, redo, or database files, nor does it have the full set of
subdirectories and other files associated with an Oracle database.

1.3.7 Gateway Operation
Each Oracle database user session that accesses a gateway creates an independent
process on the host system that runs the gateway.

The gateway is not started in the same way as the Oracle database. It has no background
processes and does not require a management utility such as Oracle Enterprise
Manager. Each Oracle database user session that accesses a gateway creates an
independent process on the host system that runs the gateway.

1.3.8 Communication
All communication between the Oracle database, gateway, and WebSphere MQ queues is
handled through RPC calls to the gateway.

The PL/SQL code to do these calls is automatically generated by the Visual Workbench. For
more information about communication between the gateway, the Oracle database, and
WebSphere MQ, refer to:

Related Topics

• The PGM, PGM_UTL8, and PGM_SUP Packages

Chapter 1
Introduction to the Gateway

1-7

2
Release Information for Oracle Database
Gateway for WebSphere MQ

The following topics contain information that is specific to this release of Oracle Database
Gateway for WebSphere MQ:

2.1 Changes and Enhancements
These topics describe the changes and enhancements included in this release.

2.1.1 Oracle Database Dependencies
This topic explains Oracle database dependencies.

This release of Oracle Database Gateway for WebSphere MQ requires the latest released
patch set for Oracle Database 12c Release 2 (12.2), or for the Oracle database release that
you are using.

2.1.2 Support for Large Data Buffers
The PL/SQL RAW data type limitation is 32 KB (32767) bytes.

For large loads, you must use the TABLE OF RAWS data type. For more information about
support for large data buffers, refer to:

Related Topics

• The PGM, PGM_UTL8, and PGM_SUP Packages

2.1.3 DG4MQ Data Types
This table provides information about Oracle Database Gateway for WebSphere MQ
(DG4MQ) data types.

Data Type V401 V804 V817 and V901 Oracle10g Release 2
and higher

MQOD PGM.MQOD@dblink PGM.MQOD PGM.MQOD PGM.MQOD
MQMD PGM.MQMD@dblink PGM.MQMD PGM.MQMD PGM.MQMD
MQPMO PGM.MQPMO@dblink PGM.MQPMO PGM.MQPMO PGM.MQPMO
MQGMO PGM.MQGMO@dblink PGM.MQGMO PGM.MQGMO PGM.MQGMO
MQODRAW NA PGM.MQODRAW PGM8.MQODRAW NA

MQMDRAW NA PGM.MQMDRAW PGM8.MQMDRAW NA

MQPMORAW NA PGM.MQPMORAW PGM8.MQPMORAW NA

MQGMORAW NA PGM.MQGMORAW PGM8.MQGMORAW NA

2-1

2.1.4 PGM_UTL Procedures
This table provides information about PGM_UTL procedures.

Procedure V401 V804 V817 and V901 Oracle10g Release 2
and higher

TO_RAW NA PGM_UTL.TO_RAW PGM_UTL8.TO_RAW PGM.TO_RAW
RAW_TO_MQMD NA PGM_UTL.RAW_TO_

MQMD
PGM_UTL8.RAW_TO_MQM
D

PGM.RAW_TO_MQMD

RAW_TO_MQPMO NA PGM_UTL.RAW_TO_
MQPMO

PGM_UTL8.RAW_TO_MQP
MO

PGM.RAW_TO_MQPMO

RAW_TO_MQGMO NA PGM_UTL.RAW_TO_
MQGMO

PGM_UTL8.RAW_TO_MQG
MO

PGM.RAW_TO_MQGMO

Note:

For Oracle10g release 10.2.0, the PGM.TO_RAW, PGM.RAW_TO_MQMD,
PGM.RAW_TO_MQPMO and PGM.RAW_TO_MQGMO procedures are added for
backward compatibility.

2.1.5 DG4MQ API Prototype Changes
This table provides information about DG4MQ application programming interface
changes.

API V401 Arguments V804 Arguments V817 & V901
Arguments

10g Release 2 and
higher Arguments

MQOPEN (MQOD,INT,INT) (RAW,INT,INT) (RAW,INT,INT) (PGM.MQOD,INT,IN
T)

MQPUT (INT,MQMD,MQPMO,RAW) (INT,RAW,RAW,RAW) (INT,RAW,RAW,RA
W)

(INT,PGM.MQMD,PG
M_MQPMO,RAW) or
(INT, PGM.MQMD,
PGM_MQPMO,
PGM.MQPUT_BUFFER
)

MQGET (INT,MQMD,MQGMO,RAW) (INT,RAW,RAW,RAW) (INT,RAW,RAW,RA
W)

(INT,PGM.MQMD,PG
M_MQGMO,RAW) or
(INT, PGM.MQMD,
PGM.MQGMO,
PGM_MQGET_BUFFER
)

MQCLOSE (INT,INT) (INT,INT) (INT,INT) (INT,INT)

Related Topics

• The PGM, PGM_UTL8, and PGM_SUP Packages

Chapter 2
Changes and Enhancements

2-2

2.1.6 DG4MQ Deployment Scripts
These DG4MQ deployment scripts are new in this release.

• pgm.sql
• pgmobj.sql
• pgmdeploy.sql
• pgmundeploy.sql
The gateway procedures in the PGM package are defined in pgm.sql and PGM_MQ* data
type definitions used by the procedures are defined in pgmobj.sql. For complete information
about PGM package, DG4MQ gateway procedures and data type definitions, refer to:

Related Topics

• The PGM, PGM_UTL8, and PGM_SUP Packages

2.1.7 Large Payload Support
DG4MQ 11g supports large payloads or messages longer than 32767 bytes.

For more information, refer to the putlongsample.sql and getlongsample.sql sample
programs installed with the DG4MQ.

2.1.8 Database Link and Alias Library
A connection to the gateway is established through a database link.

From DG4MQ 10g release 2 and later, this database link is no longer associated with each
DG4MQ gateway procedural call (for example, PGM.MQPUT@dblink). From 10g release 2 and
later, it needs to be defined only once in the MQOD data type used by MQOPEN, and this
database link is registered in the object handle returned by the MQOPEN call. Refer to the
sample programs installed with the gateway for details. By default, a public database link,
dg4mqdepdblink, is created with your default SID when DG4MQ deployment scripts are
executed.

2.2 Known Problems
This topic describes the known problems in this release.

The problems documented in this section are specific to the Oracle Database Gateway for
WebSphere MQ and are known to exist in this release of the product. These problems will be
fixed in a future gateway release. If you have any questions or concerns about these
problems, contact Oracle Support Services.

A current list of problems is available online. Contact your local Oracle office for information
about accessing this online information.

2.3 Known Restrictions
This topic describes the known restrictions in this release.

Chapter 2
Known Problems

2-3

The following restriction is known to exist for this release.

Customizing LOG_DESTINATION

There is a known issue when customizing the gateway initialization file for gateway
tracing for Microsoft Windows platform. When customizing the path name of
LOG_DESTINATION, the delimiter must be double backslashes. For example:

LOG_DESTINATION=C:\\oracle\\product\\12.2\\dg4mqs\\dg4mq\\log\\dg4mqs.log

Note:

If LOG_DESTINATION is not defined for Microsoft Windows platform, a default
name is used and the log is created in ORACLE_HOME\dg4mq\trace directory

Customizing deployment script pgmobj.sql

There is a known issue when customizing the gateway deployment script pgmobj.sql
for Microsoft Windows platform. When defining the path name of libdg4mq, the
delimiter must be backslashes. For example create or replace library libdg4mq as:

CREATE OR REPLACE LIBRARY libdg4mq as
'C:\oracle\product\12.2\dg4mqs\bin\oradg4mqs.dll' transactional

or

CREATE OR REPLACE LIBRARY libdg4mq as '$ORACLE_HOME\bin\oradg4mqs.dll'
transactional

CALLBACK links

Oracle Database Gateway for WebSphere MQ does not support CALLBACK links. Trying
a CALLBACK link with the gateway will return the following error message:

ORA-02025: All tables in the SQL statement must be at the remote database

Chapter 2
Known Restrictions

2-4

3
System Requirements for Oracle Database
Gateway for WebSphere MQ

These topics provide information about the hardware and software required for the
installation of Oracle Database Gateway for WebSphere MQ and the recommended online
documentation.

See Also:

• Oracle Database Installation Guide

• Oracle Database Installation Guide for Microsoft Windows

3.1 Hardware Requirements for Oracle Database Gateway for
WebSphere MQ

This table contains the hardware requirements for Oracle Database Gateway for WebSphere
MQ.

Table 3-1 Hardware Requirements for Oracle Database Gateway for WebSphere MQ

Hardware
Items

Required for
IBM AIX on
POWER
Systems (64-
Bit)

Required for
Linux x86 64
bit

Required for
Oracle
Solaris on
SPARC (64-
Bit)

Required for
Oracle
Solaris on
x86-64 (64-
Bit)

Required for
HP-UX
Itanium

Required for
Microsoft
Windows 64
bit

Temporary
Disk space

1 GB 1 GB 1 GB 1 GB 1 GB 2 GB

Disk space 1.5 GB 750 MB 750 MB 750 MB 1.5 GB 300 MB

Physical
Memory

512 MB 512 MB 512 MB 512 MB 512 MB 512 MB

Swap space 1 GB 1 GB 1 GB 1 GB 1 GB NA

Processor IBM RS/6000
AIX-Based
System
Processor

x86_64 Sun Solaris
Operating
System
(SPARC)
Processor

x86_64 HP Itanium
processor for
hp-ux 11

Intel Pentium
or compatible

3-1

3.2 Software Requirements for Oracle Database Gateway
for WebSphere MQ

This table contains the software requirements for Oracle Database Gateway for
WebSphere MQ.

Table 3-2 Software Requirements for Oracle Database Gateway for WebSphere MQ

Platform Requirement WebSphere MQ Server Software

IBM AIX on
POWER Systems
(64-Bit)

IBM AIX on Power Systems (64 bit)
v7.2, v7.1

OS Patches:

Check with your software vendor for
current maintenance requirements.

When the gateway resides on the same system as the
WebSphere MQ server software, then WebSphere MQ
for AIX version 6.0 or later is required. When the
gateway resides on a different system than the
WebSphere MQ server software, then WebSphere MQ
Client for AIX version 6.0 or later is required on the
gateway system.

Linux x86-64 (64
bit)

One of the following operating
system versions:

• Linux x86-64 SLES v12
• Linux x86-64 SLES v15
• Linux x86-64 Red Hat

Enterprise Linux 7
• Linux x86-64 Oracle Linux v7
OS Patches:

Check with your software vendor for
current maintenance requirements

When the gateway resides on the same system as the
WebSphere MQ server software, then WebSphere MQ
for IA Linux x 86 64 bit version 6.0 or later is required.
When the gateway resides on a different system than
the WebSphere MQ server software, then WebSphere
MQ Client for IA Linux x86 64 bit version 6.0 or later is
required on the gateway system.

Oracle Solaris on
SPARC (64-Bit)

One of the following operating
system versions:

• Oracle Solaris on SPARC (64
bit) v11

• Oracle Solaris on SPARC (64
bit) v10

OS Patches:

Check with your software vendor for
current maintenance requirements.

When the gateway resides on the same system as the
WebSphere MQ server software, then WebSphere MQ
for Sun Solaris version 6.0 or later is required. When the
gateway resides on a different system than the
WebSphere MQ server software, then WebSphere MQ
Client for Sun Solaris version 6.0 or later is required on
the gateway system.

Oracle Solaris on
x86-64 (64 Bit)

Oracle Solaris on x86-64 (64 bit) v11

OS Patches:

Check with your software vendor for
current maintenance requirements.

When the gateway resides on the same system as the
WebSphere MQ server software, then WebSphere MQ
for Sun Solaris version 6.0 or later is required. When the
gateway resides on a different system than the
WebSphere MQ server software, then WebSphere MQ
Client for Sun Solaris version 6.0 or later is required on
the gateway system.

HP-UX Itanium HP-UX Itanium v11.31 -

Chapter 3
Software Requirements for Oracle Database Gateway for WebSphere MQ

3-2

Table 3-2 (Cont.) Software Requirements for Oracle Database Gateway for WebSphere MQ

Platform Requirement WebSphere MQ Server Software

Microsoft
Windows x86-64
(64 bit)

One of the following operating
system versions:

• Microsoft Windows 10 (64 bit)
• Microsoft Windows x64 8.1 (64

bit)
• Microsoft Windows x64 7 (64

bit)
• Microsoft Windows x64 2012

R2 (64 bit)
• Microsoft Windows x64 2016

(64 bit)
• Microsoft Windows x64 2019

(64 bit)

When the gateway resides on the same system as the
WebSphere MQ server software, or when the gateway
resides on a different system than the WebSphere MQ
server software, WebSphere MQ version 7.0 or later is
required on the gateway system

Set the ulimit value for the maximum number of open files per process to 1024 or greater:

prompt> ulimit -n 1024

Note:

All IBM software must be installed before the gateway software is installed. For
example, if WebSphere MQ software is not installed before DG4MQ, then the
product link fails.

3.3 Oracle Database
The Oracle database requires the latest patch set for Oracle Database 12c.

Chapter 3
Oracle Database

3-3

4
Preinstallation Information for Oracle
Database Gateway for WebSphere MQ

The following topics guide you through the basic concepts and preinstallation steps for Oracle
Database Gateway for WebSphere MQ.

4.1 Preinstallation Tasks
The preinstallation tasks for the Oracle Database Gateway for WebSphere MQ are divided
into the following parts.

4.1.1 WebSphere MQ Software
This topic explains how to check for WebSphere MQ software.

Perform the following steps to check for WebSphere MQ software:

1. Determine where the WebSphere MQ queue manager runs.

• Local system

If the WebSphere MQ queue manager runs on a local system, then the queue
manager runs on the same system where you intend to install the gateway product
set.

• Remote system

If the WebSphere MQ queue manager runs on a remote system, then the queue
manager runs on a different system, not the system where you intend to install the
gateway product set.

2. Verify that the WebSphere MQ software is already installed. If the WebSphere MQ server
software is installed on a different system than the gateway, then the WebSphere MQ
client software must be installed on the gateway system.

3. Identify the name of the WebSphere MQ queue manager.

4. Identify the WebSphere MQ client channel definition.

If the queue manager is installed on a different system than the gateway, then the
WebSphere MQ client software is used to access the remote queue manager. A channel
definition is required for this configuration.

4-1

4.1.2 Setting Environment Variables
Before installing Oracle Database Gateway for WebSphere MQ on UNIX platforms, set
the appropriate environment variables.

Note:

Verify that the values that you assign to the environment variables, which are
listed in this topic, are less than 42 characters long. Longer values might
generate errors such as "Word too long" during installation.

4.1.2.1 ORACLE_HOME
ORACLE_HOME is the root directory in which Oracle software is installed.

Oracle Database Gateway for WebSphere MQ cannot share the same Oracle home
directory with other Oracle products. If you have installed other Oracle products, then
Oracle Database Gateway for WebSphere MQ must be installed in a different
ORACLE_HOME directory.

Note:

Do not install Oracle Database Gateway for WebSphere MQ in an
ORACLE_HOME directory containing other Oracle products, including the
database. Such an installation could overwrite shared components, causing
the products to malfunction.

Related Topics

• Preventing Conflicts Between ORACLE_HOME Directories
To prevent a conflict between the software in an existing ORACLE_HOME directory
and Oracle Database Gateway for WebSphere MQ, you must remove all
references to the existing ORACLE_HOME directory.

4.1.2.1.1 Preventing Conflicts Between ORACLE_HOME Directories
To prevent a conflict between the software in an existing ORACLE_HOME directory and
Oracle Database Gateway for WebSphere MQ, you must remove all references to the
existing ORACLE_HOME directory.

The following steps describe removing these references.

1. Unset your existing ORACLE_HOME variable using one of the following commands.

• C shell:

prompt> unsetenv ORACLE_HOME
• Bourne/Korn shell:

prompt> export ORACLE_HOME=

Chapter 4
Preinstallation Tasks

4-2

2. Edit the following environment variables so that they do not use the existing ORACLE_HOME
value:

Table 4-1 Setting Environment Variables for a New ORACLE_HOME Directory

Environment Variable Platforms

PATH Linux, AIX-based Systems, HP-UX Itanium, and Sun Solaris

CLASSPATH Linux, AIX-based Systems, HP-UX Itanium, and Sun Solaris

LD_LIBRARY_PATH Linux and Sun Solaris

LIBPATH AIX-based Systems

SHLIB_PATH HP-UX Itanium

Note:

Verify that the C compiler is in your PATH before you start the installation.

4.1.2.1.2 Setting ORACLE_HOME
This topic explain how to set the ORACLE_HOME environment variable.

Set the ORACLE_HOME environment variable by using one of the following commands:

• C shell

prompt> setenv ORACLE_HOME fullpath
• Bourne/Korn shell

prompt> ORACLE_HOME=fullpath
prompt> export ORACLE_HOME

4.1.2.2 ORACLE_SID
ORACLE_SID is used for the SID of the gateway.

4.1.2.2.1 Setting ORACLE_SID
This topic explains how to set the ORACLE_SID environment variable.

Set the ORACLE_SID environment variable by using one of the following commands:

• C shell

prompt> setenv ORACLE_SID dg4mqs

or

prompt> setenv ORACLE_SID dg4mqc
• Bourne/Korn shell

prompt> ORACLE_SID=dg4mqs
promtp> export ORACLE_SID

Chapter 4
Preinstallation Tasks

4-3

or

prompt> ORACLE_SID=dg4mqc
promtp> export ORACLE_SID

4.1.2.3 DISPLAY
Setting the DISPLAY environment variable enables you to run Oracle Universal Installer
remotely from a local work station.

On the system where you run Oracle Universal Installer, set the DISPLAY environment
variable to specify the system name or IP address of your local workstation.

If you get an Xlib error when starting Oracle Universal Installer such as "Failed to
connect to server", "Connection refused by server", or "Can't open display", then run
the commands on your local workstations as follows:

4.1.2.3.1 On Server where the Installer is Running
This topic shows examples for using DISPLAY on a server where the installer is
running.

• C shell

prompt> setenv DISPLAY hostname:0.0
• Borne or Korn shell

prompt> export DISPLAY=hostname:0.0
prompt> export DISPLAY

4.1.2.3.2 In Session on Your Workstation
This topic shows examples of in session on the workstation.

• C shell

prompt> xhost +server_name
• Borne or Korn shell

prompt> xhost +server_name

4.1.2.4 TMP
During installation, Oracle Universal Installer uses a temporary directory for swap
space.

This directory must meet the hardware requirements. The installation might fail if you
do not have sufficient space. Oracle Universal Installer checks for the TMP environment
variable to locate the temporary directory. If this environment variable does not exist,
then the installer uses the /tmp directory.

The following example demonstrates how to set the TMP environment variable.

• C shell

prompt> setenv TMP full path
• Bourne/Korn shell

Chapter 4
Preinstallation Tasks

4-4

prompt> TMP=full path
prompt> export TMP

Related Topics

• Hardware Requirements for Oracle Database Gateway for WebSphere MQ
This table contains the hardware requirements for Oracle Database Gateway for
WebSphere MQ.

4.1.3 Using Windows User Account as Oracle Home User
With Windows, you log in to a user with Administrator privileges to install the Oracle
Database software. You can also specify an Oracle Home User (based on a low-privileged,
non-administrative user account) during installation.

The following are the Windows User Accounts:

• Windows Local User account

• Windows Domain User account

• Windows Managed Services Account (MSA)

• Windows Built-in Account

See Also:

"Using Oracle Home User on Windows" in Oracle Database Platform Guide for
Microsoft Windows

4.2 About Oracle Universal Installer
Oracle Database Gateway for WebSphere MQ uses Oracle Universal Installer to configure
environment variables and install components.

Oracle Universal Installer guides you through each step of the installation process, so you
can choose configuration options for a customized product.

The Oracle Universal Installer includes features that perform the following tasks:

• Explore and provide installation options for products

• Detect preset environment variables and configuration settings

• Set environment variables and configuration during installation

• Uninstall products

4.2.1 oraInventory Directory
The Oracle Universal Installer creates the oraInventory directory the first time it is run on
your system.

The oraInventory directory keeps an inventory of the products that Oracle Universal Installer
installs on your system as well as other installation information. If you have previously
installed Oracle products, then you might already have an oraInventory directory.

Chapter 4
About Oracle Universal Installer

4-5

• When a UNIX group name is specified, it grants that group the permission to write
to the oraInventory directory. If another group attempts to run Oracle Universal
Installer, then they must have permission to write to the oraInventory directory. If
they do not have permission the installation fails.

• The user running the Oracle Universal Installer must have permission to write to
the oraInventory directory and all its files. This is required to run the installer.

• The location of oraInventory is defined in /etc/oratab/oraInst.loc for HP-UX
Inanium and AIX-Based Systems and C:\Program Files\Oracle\Inventory\ for
Microsoft Windows.

• The location of oraInventory is defined in /var/opt/oraInst.loc for Sun Solaris.

• The latest log file is oraInventory_location/logs/installActions.log On UNIX
based systems and C:\Program
Files\Oracle\Inventory\logs\installActions.log for Microsoft Windows. Log
file names of previous installation sessions are in the following format:
installActionsdatetime.log.

• Do not delete or manually alter the oraInventory directory or its contents. Doing
this can prevent the Oracle Universal Installer from locating the products that you
have installed on your system.

4.2.2 Starting Oracle Universal Installer
This topic explains how to start Oracle Universal Installer.

On UNIX based systems, perform the following steps to launch Oracle Universal
Installer, which installs Oracle Database Gateway for WebSphere MQ:

1. Stop all Oracle processes and services (for example, the Oracle database).

2. Run Oracle Universal Installer.

Note:

Be sure you are not logged in as the root user when you start Oracle
Universal Installer. If you are, only the root user will have permissions to
manage Oracle Database Gateway for WebSphere MQ.

a. Log in as the Oracle Database Gateway for WebSphere MQ user.

b. Start Oracle Universal Installer by entering:

prompt> mount_point/runInstaller
On Microsoft Windows, perform the following steps to launch Oracle Universal
Installer, which installs Oracle Database Gateway for WebSphere MQ:

1. Start your system and select MS((nbsp))Windows from the operating system
Loader option. Log in to your MS((nbsp))Windows system as a member of the
Administrators group.

2. If you are installing the gateway for the first time, ensure there is sufficient space
on the disk where you are installing the gateway.

3. Before installing the software, stop all Oracle NT Services that are running:

Chapter 4
About Oracle Universal Installer

4-6

a. From the Start menu, go to Setting, then Control Panel, and then click Services. A
list of all NT services is displayed.

b. Select an Oracle NT service (these services begin with Oracle).

c. Click Stop.

d. Continue to select and stop all Oracle NT services until all active Oracle NT Services
are stopped.

4. Load the installation media and start the Oracle Universal Installer.

This launches Oracle Universal Installer using which you can install Oracle Database
Gateway for WebSphere MQ.

Related Topics

• Hardware Requirements for Oracle Database Gateway for WebSphere MQ
This table contains the hardware requirements for Oracle Database Gateway for
WebSphere MQ.

Chapter 4
About Oracle Universal Installer

4-7

5
Installing Oracle Database Gateway for
WebSphere MQ

The following topics guide you through the installation of the Enterprise Edition of Oracle
Database Gateway for WebSphere MQ.

5.1 Installation
This table guides you through the installation process.

Table 5-1 guides you through the installation process. For each screen, perform the actions
described in the Response column.

Table 5-1 Installing Oracle Database Gateway for WebSphere MQ

Oracle Universal Installer
Screen

Response

Welcome Click Next.

File Locations The Source section of the screen is where you specify the source
location that Oracle Universal Installer uses to install Oracle Database
Gateway for WebSphere MQ. You need not edit the file specification in
the Path field - the default setting for this field points to the Oracle
Universal Installer file on your Oracle Database Gateway for
WebSphere MQ CD-ROM.

The Path field in the Destination section of the File Locations screen is
where you specify the destination for your installation. You need not
edit the path specification in the Path field. The default setting for this
field points to ORACLE_HOME. After you set the fields in the File
Locations screen, as necessary, click Next to continue. After loading
the necessary information from the CD-ROM, the installer displays the
Available Products screen.

Available Products Select Oracle Database 12.2 and click Next to continue. Oracle
Universal Installer displays the Installation Types screen.

Installation Types Select Custom and click Next to continue. Oracle Universal Installer
displays the Available Product Component screen.

Available Product Components Use the check boxes to indicate the product components that you
want to install. By default, all the available components are selected
for you. You need to de-select the components that you do not want
by clicking on the check boxes. Click Next to continue, and Oracle
Universal Installer displays the Where is the WebSphere MQ Queue
Manager Installed? screen.

Where is the WebSphere MQ
Queue Manager Installed?

Select Local if the MQM runs on the same system as the gateway, or
select Remote if the MQM runs on a different system than the
gateway. Click Next to continue.

5-1

Table 5-1 (Cont.) Installing Oracle Database Gateway for WebSphere MQ

Oracle Universal Installer
Screen

Response

Local WebSphere MQ Queue
Manager Name

If you choose Local for your MQM in the Where is the WebSphere MQ
Queue Manager Installed? screen, then the Local WebSphere MQ
Queue Manager Name screen is displayed. Type in the local
WebSphere MQ queue manager name in the Queue Manager field.
Click Next to continue, and Oracle Universal Installer displays the
Summary screen.

Remote WebSphere MQ
Queue Manager Name

If you choose Remote for your MQM in the Local WebSphere MQ
Queue Manager Name screen, then the Remote WebSphere MQ
Queue Manager Name screen is displayed. Enter the name for the
remote WebSphere MQ queue manager in the Queue Manager field,
and also enter the WebSphere MQ channel name in the Channel field.

For information about server connection channels, refer to the IBM
publication about WebSphere MQ Clients or ask your WebSphere MQ
system administrator for the channel definition of the queue manager
to which you want the gateway to connect.

The definition syntax is:

CHANNEL_NAME/PROTOCOL/server_address[(port)]

where CHANNEL_NAME and PROTOCOL must be in uppercase, and
server_address is the TCP/IP host name of the server. The port
value is optional and is the TCP/IP port number on which the server is
listening.

If you do not provide a port number, then WebSphere MQ uses the
port number that is specified in the QM.INI file. If no value is specified
in the QM.INI file, then WebSphere MQ uses the port number that is
identified in the TCP/IP services file for the WebSphere MQ services
name. If this entry in the services file does not exist, then the default
value of 1414 is used. It is important that the port number that is used
by the client and the port number that is used by the server listener
program be the same.

For example: CHANNEL1/TCP/Sales
Click Next to continue. The Oracle Universal Installer displays the
Summary screen.

Oracle Universal Installer
Summary

This screen enables you to review a tree list of options and
components for this installation. Click Install to display the Installation
Status screen.

Installation Status The Installation Status screen displays the status of the installation as
it proceeds, as well as the location of the Oracle Universal Installer log
file for this installation session.

Be patient as Oracle Universal Installer processes the software
installation. Depending on the CPU, CD-ROM drive, and hard drive on
your system, the installation process might take time to complete.

End of Installation This is the final screen of Oracle Universal Installer in the installation
process. Assuming that your installation was successful, click Exit to
exit the installer.

Chapter 5
Installation

5-2

5.2 Running root.sh on UNIX Based Systems
This topic explains how to run root.sh on UNIX based systems.

After you complete the installation, perform the following steps to run the root.sh script:

1. Log on as the root user.

2. Go to the $ORACLE_HOME/dg4mq/admin directory for your WebSphere MQ gateway.

prompt> cd $ORACLE_HOME/dg4mq/admin
3. Run the root.sh script.

prompt> ./root.sh

This script enables the WebSphere MQ gateway to operate for the strict security model.

4. Exit the root account.

Chapter 5
Running root.sh on UNIX Based Systems

5-3

6
Removing Oracle Database Gateway for
WebSphere MQ

The following topics describe how to remove Oracle Database Gateway for WebSphere MQ
from an Oracle home directory.

6.1 Removing Oracle Database Gateway for WebSphere MQ
To remove Oracle Database Gateway for WebSphere MQ, perform these steps.

6.1.1 About the Deinstallation Tool
The Deinstallation Tool (deinstall) is available in the installation media before installation,
and is available in Oracle home directories after installation.

It is located in the path $ORACLE_HOME/deinstall.

The deinstall command stops Oracle software, and removes Oracle software and
configuration files on the operating system.

The command uses the following syntax, where variable content is indicated by italics:

deinstall -home complete path of Oracle home [-silent] [-checkonly] [-local]
[-paramfile complete path of input parameter property file] [-params name1=value
name2=value . . .] [-o complete path of directory for saving files] [-help | -h]

The options are:

• -silent
Use this flag to run the command in silent or response file mode. If you use the -silent
flag, then you must use the -paramfile flag, and provide a parameter file that contains
the configuration values for the Oracle home that you want to deinstall or deconfigure.

You can generate a parameter file to use or modify by running deinstall with the -
checkonly flag. The deinstall command then discovers information from the Oracle
home that you want to deinstall and deconfigure. It generates the properties file, which
you can then use with the -silent option.

You can also modify the template file deinstall.rsp.tmpl, located in the response
folder.

• -checkonly
Use this flag to check the status of the Oracle software home configuration. Running the
command with the -checkonly flag does not remove the Oracle configuration. The -
checkonly flag generates a parameter file that you can use with the deinstall command.

• -local
Use this flag on a multinode environment to deconfigure Oracle software in a cluster.

6-1

When you run deconfig with this flag, it deconfigures and deinstalls the Oracle
software on the local node (the node where deconfig is run). On remote nodes, it
deconfigures Oracle software, but does not deinstall the Oracle software.

• -paramfile complete path of input parameter property file

Use this flag to run deconfig with a parameter file in a location other than the
default. When you use this flag, provide the complete path where the parameter
file is located.

The default location of the parameter file depends on the location of deconfig:

– From the installation media or stage location: $ORACLE_HOME/inventory/
response for UNIX based system and ORACLE_HOME\response for Microsoft
Windows.

– From a unzipped archive file from OTN: /ziplocation/response for UNIX
based system and ziplocation\response for Microsoft Windows.

– After installation from the installed Oracle home: $ORACLE_HOME/deinstall/
response for UNIX based system and ORACLE_HOME\deinstall\response for
Microsoft Windows.

• -params [name1=value name 2=value name3=value . . .]
Use this flag with a parameter file to override one or more values that you want to
change in a parameter file you have already created.

• -o complete path of directory for saving response files
Use this flag to provide a path other than the default location where the properties
file (deinstall.rsp.tmpl) is saved.

The default location of the parameter file depends on the location of deconfig:

– From the installation media or stage location before
installation: $ORACLE_HOME/ for UNIX based system and ORACLE_HOME\ for
Microsoft Windows

– From a unzipped archive file from OTN: /ziplocation/response/ for UNIX
based system and \ziplocation\response\ for Microsoft Windows

– After installation from the installed Oracle home: $ORACLE_HOME/deinstall/
response for UNIX based system and ORACLE_HOME\deinstall\response for
Microsoft Windows

• -help | -h
Use the help option (-help or -h) to obtain additional information about the
command option flags.

6.1.2 Removing Oracle Software
This topic explains how to remove Oracle software.

Complete the following procedure to remove Oracle software:

1. Log in as the installation owner.

2. Run the deinstall command, providing information about your servers as
prompted.

Chapter 6
Removing Oracle Database Gateway for WebSphere MQ

6-2

6.2 Reinstalling Oracle Database Gateway for WebSphere MQ
To reinstall Oracle Database Gateway for WebSphere MQ over the same version, first
remove, and then reinstall the product.

Related Topics

• Removing Oracle Database Gateway for WebSphere MQ
To remove Oracle Database Gateway for WebSphere MQ, perform these steps.

Chapter 6
Reinstalling Oracle Database Gateway for WebSphere MQ

6-3

7
Configuring Oracle Database Gateway for
WebSphere MQ

After installing Oracle Database Gateway for WebSphere MQ, follow the instructions in the
following topics to configure the gateway.

7.1 Configuration Overview
The gateway works with several components and products to communicate between the
Oracle database and WebSphere MQ queues.

For example:

• Oracle Net

The gateway and the Oracle database communicate using Oracle Net in a server-to-
server manner. You must configure both, the gateway and Oracle database to have
Oracle Net communication enabled, by configuring the tnsnames.ora and listener.ora
files.

• Gateway initialization files and parameters

The gateway has initialization files and parameters that you must customize for your
installation. For example, you must choose your gateway system identifier (SID), and
provide other information, such as the gateway log file destination.

7.2 Configuring the Gateway
The gateway is installed and preconfigured using default values for the gateway SID,
directory names, file names, and gateway parameter settings.

The default SID values are:

• dg4mqs
This is the default SID that is used when the gateway resides on the same system as the
WebSphere MQ software.

• dg4mqc
This is the default SID that is used when the gateway resides on a different system than
the WebSphere MQ software. In this case, the gateway functions as a remote
WebSphere MQ client.

A basic gateway initialization file is also installed, and values in this file are set based on the
information you entered during the installation phase.

7-1

7.2.1 Using the Gateway with the Default Values
If you are configuring one gateway instance, and if you have no need to change any of
the default values, then most of the gateway configuration process is completed by
Oracle Universal Installer.

In this case, perform the following actions:

1. Skip all steps under "Changing Default Values".

2. Skip "Step 1: Configure the Oracle Net Oracle Net Listener for the Gateway"

3. Begin with "Step 2: Stop and Start the Oracle Net Listener for the Gateway", and
continue to the end of the chapter.

7.2.2 Using the Gateway Without the Default Values
This topic explains how to modify the default values.

If multiple instances of the gateway are being configured, or to modify the default
values set during the installation phases, then begin with the steps under "Changing
Default Values" and continue to the end of the chapter.

7.2.3 Changing Default Values
When changing default values, choose a gateway SID and customize the gateway
initialization file.

7.2.3.1 Step 1: Choose a System ID for the Gateway
The gateway SID is a string of 1 to 64 alphanumeric characters that identifies a
gateway instance. The SID is used in the gateway boot file and as part of the file name
for the gateway parameter file.

Choose a SID different from the default SID and different from dg4mqs and dg4mqc.

You need a distinct gateway instance, and SID, for each queue manager you want to
access. If you want to access two different queue managers, then you need two
gateway SIDs, one for each instance of the gateway. If you have one queue manager
and want to access it sometimes with one set of gateway parameter settings and at
other times with different gateway parameter settings, then you can do this by having
multiple gateway SIDs for one queue manager.

7.2.3.2 Step 2: Customize the Gateway Initialization File
This topic explains how to customize the gateway initialization file.

The gateway initialization file (initsid.ora) supports all database gateway
initialization parameters described in Gateway Initialization Parameters. The
initialization file must be available when the gateway is started.

During installation, a default initialization file is created in
ORACLE_HOME\dg4mq\admin\initsid.ora on Microsoft Windows and $ORACLE_HOME/
dg4mq/admin/initsid.ora, on UNIX based systems where sid is the default SID of
dg4mqs or dg4mqc. If you chose an SID other than the default, then rename this file

Chapter 7
Configuring the Gateway

7-2

using the SID you chose in Step 1: Choose a System ID for the Gateway. Customize the
default initialization file as necessary.

The following entries might appear in an initialization file:

LOG_DESTINATION=log_file
QUEUE_MANAGER=manager_name
AUTHORIZATION_MODEL=auth_model
TRANSACTION_MODEL=tx_model
TRANSACTION_LOG_QUEUE=tx_queue_name
TRANSACTION_RECOVERY_USER=rec_user
TRANSACTION_RECOVERY_PASSWORD=rec_password
TRACE_LEVEL=0
MQSERVER=channel
MQCCSID=character_set

In this file:

• log_file specifies the full path name of the gateway log file.

• manager_name is the name of the WebSphere MQ queue manager to access.

• auth_model is the authorization model to use. The default value is RELAXED.

• tx_model is the transaction model to use. The default is SINGLE_SITE.

• tx_queue_name is the name of the queue for logging transaction IDs for distributed
transactions. This is used only when tx_model is set to COMMIT_CONFIRM.

• rec_user specifies the user name that the gateway uses to start recovery of a distributed
transaction. This is used only when auth_model is set to STRICT and tx_model is set to
COMMIT_CONFIRM.

• rec_password specifies the password of the user name that the gateway uses to start
recovery of a distributed transaction.

• channel specifies the location of the WebSphere MQ server and the communication
method to use. The channel format is:

channel_name/connection_type/hostname [(port_number)].

For example:

MQSERVER=CHAN9/TCP/dolphin(1425)
• character_set specifies the coded character set number used by the gateway when

communicating with the WebSphere MQ queue manager. This is an optional parameter.

This parameter is set only if the system that is running the WebSphere MQ queue
manager uses a different encoding scheme than the system that runs the gateway. When
set, the value of character_set is used by the WebSphere MQ client software on the
gateway system to convert the data.

Refer to Gateway Running Environment for more information on transaction and security
models.

See Also:

Oracle Database Net Services Administrator's Guide and Oracle Database Net
Services Reference

Chapter 7
Configuring the Gateway

7-3

7.3 Configuring Oracle Net for the Gateway
The gateway requires Oracle Net to provide transparent data access to and from the
Oracle database.

Oracle Net uses the Oracle Net Listener to receive incoming connections from an
Oracle Net client. In the case of the gateway, the Oracle Net Listener listens for
incoming requests from the Oracle database. For the Oracle Net Listener to listen for
the gateway, information about the gateway must be added to the Oracle Net Listener
configuration file (listener.ora). This file is located in the ORACLE_HOME/network/
admin directory on Microsoft Windows and ORACLE_HOME\network\admin directory on
UNIX based systems by default, where ORACLE_HOME is the directory under which the
gateway is installed. The default values in this file are set for you during the installation
process by Oracle Universal Installer.

7.3.1 Using Oracle Net with Default Gateway Values
If you are configuring one gateway instance, and if you do not need to change any of
the default values, then no further configuration is necessary for Oracle Net.

Perform only "Step 2: Stop and Start the Oracle Net Listener for the Gateway".

7.3.2 Using Oracle Net When Changing the Default Gateway Values
If you intend to use the Oracle Net listener for multiple gateway instances, or if you
need to modify some of the default values set during the installation phase, then
perform Step 1 and Step 2 in this section.

In Step 1, you add gateway information or change default information in the
listener.ora file in the gateway directory ORACLE_HOME\network\admin on Microsoft
Windows and ORACLE_HOME/network/admin on UNIX based systems.

7.3.2.1 Step 1: Configure the Oracle Net Oracle Net Listener for the Gateway
Configuring the listener.ora file.

Two entries must be added to the listener.ora file:

• A list of Oracle Net addresses for the Oracle Net Listener to listen on

• The gateway process that the Oracle Net Listener should start in response to
incoming connection requests

Chapter 7
Configuring Oracle Net for the Gateway

7-4

Note:

The Oracle Net Listener and the gateway must reside on the same node. If you
already have a Oracle Net Listener running on the node, then you must make
the changes suggested in Step 1 and 2 to your existing listener.ora and
tnsnames.ora files.

After making the changes, you can reload the changes by running the reload
subcommand in the lsnrctl utility without shutting down the Oracle Net
Listener.

Specifying Oracle Net Addresses for the Oracle Net Listener

If you are using Oracle Net and the TCP/IP protocol adapter, then the syntax of an entry in
the listener.ora file is:

LISTENER=
 (ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=host_name)
 (PORT=port_number)
)
)

In this entry:

• host_name is the name of the system where the gateway is installed.

• port_number specifies the IP port number used by the Oracle Net Listener. If you have
other listeners running on host_name, such as the listener of an Oracle database on the
same system, then the value of port_number must be different from the other listener port
numbers.

If you are using Oracle Net and the interprocess socket call (IPC) protocol adapter, the syntax
of the entry in listener.ora file is:

LISTENER=
 (ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=key_name)
)
)

In this entry:

• IPC specifies that the protocol used for connections is IPC.

• key_name is the unique user-defined service name.

Entry for the Gateway

To configure the Oracle Net Listener to listen for a gateway instance in incoming connection
requests, add an entry to the listener.ora file using the following syntax:

SID_LIST_LISTENER=
 (SID_LIST=

Chapter 7
Configuring Oracle Net for the Gateway

7-5

 (SID_DESC=
 (SID_NAME=gateway_sid)
 (ORACLE_HOME=gateway_directory)
 (PROGRAM=driver)
)
)

In this entry:

• gateway_sid specifies the SID of the gateway and matches the gateway SID
specified in the connect descriptor entry in the tnsnames.ora file.

• gateway_directory specifies the gateway directory in which the gateway software
resides.

• driver is the name of the gateway executable file. If the gateway uses a local
WebSphere MQ server, then the file name is dg4mqs. The file name is dg4mqc if the
gateway is run as a WebSphere MQ client to access a remote WebSphere MQ
server.

When you add an entry for multiple gateway instances, add the entry to the existing
SID_LIST syntax:

SID_LIST_LISTENER=
 (SID_LIST=
 (SID_DESC=.
 .
 .
)
 (SID_DESC=.
 .
 .
)
 (SID_DESC=
 (SID_NAME=gateway_sid)
 (ORACLE_HOME=gateway_directory)
 (PROGRAM=driver)
)
)

The following are examples of entry made to the listener.ora file:

For Microsoft Windows:

(SID_DESC =
 (SID_NAME=dg4mqs)
 (ORACLE_HOME=gateway_directory)
 (PROGRAM=dg4mqs)
)

For UNIX based systems:

(SID_DESC =
 (SID_NAME=dg4mqs)
 (ORACLE_HOME=/oracle/app/oracle/product/dg4mq)
 (PROGRAM=dg4mqs)
)

Chapter 7
Configuring Oracle Net for the Gateway

7-6

Related Topics

• Configuring Oracle Net for Oracle Database
You must configure the Oracle database so that it can communicate with the gateway by
using Oracle Net.

See Also:

Oracle Database Net Services Administrator's Guide and Oracle Database Net
Services Reference for additional information about changing listener.ora.

7.3.2.2 Step 2: Stop and Start the Oracle Net Listener for the Gateway
The Oracle Net Listener must be started or reloaded to initiate the new settings.

Note:

If you already have a Oracle Net Listener running on the Oracle database where the
gateway is installed, then you must change your existing listener.ora and
tnsnames.ora files. After making the changes, you can reload the changes by
running the reload subcommand in the lsnrctl utility without shutting down the
Oracle Net Listener.

Refer to the Note in Step 1: Configure the Oracle Net Oracle Net Listener for the
Gateway.

• Set the gateway directory name:

For Microsoft Windows:

set TNS_ADMIN=c:\orant\network\admin

If you are using the Bourne or Korn shell, then enter:

$ ORACLE_HOME=gateway_directory;export ORACLE_HOME

If you have the C shell, then enter:

$ setenv ORACLE_HOME gateway_directory

In this entry:

gateway_directory specifies the directory where the gateway software is installed.

• If the listener is already running, then use the lsnrctl command to reload the listener
with the new settings:

For Microsoft Windows:

c:\orant\bin> lsnrctl reload your_listener_name

For UNIX based systems:

$ cd $ORACLE_HOME/bin
$./lsnrctl reload your_listener_name

Chapter 7
Configuring Oracle Net for the Gateway

7-7

In this entry:

ORACLE_HOME specifies the directory where the gateway software is installed.

• Check the status of the listener with the new settings:

For Microsoft Windows:

c:\orant\bin> lsnrctl status your_listener_name

For UNIX based systems:

$./lsnrctl status listener_name

The following are examples of the output from a lsnrctl status check:

For Microsoft Windows:

Connecting to (ADDRESS=(PROTOCOL=IPC)(KEY=ORAIPC))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for MS Windows: version 12.2.0.1.0 - Beta
Start Date 14-Sep-16 18:16:10
Uptime 0 days 0 hr. 2 min. 19 sec
Trace Level off
Security OFF
SNMP OFF
Listener Parameter File \oracle\app\oracle\product\dg4mqs\network\admin\listener.ora
Listener Log File \oracle\app\oracle\product\dg4mqs\network\log\listener.log
Services Summary...
 dg4mqs has 1 service handler(s)
The command completed successfully

For UNIX based systems:

Connecting to (ADDRESS=(PROTOCOL=IPC)(KEY=ORAIPC))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Solaris: version 12.2.0.1.0 - Production
Start Date 14-Sep-16 10:16:10
Uptime 0 days 0 hr. 2 min. 19 sec
Trace Level off
Security OFF
SNMP OFF
Listener Parameter File /oracle/app/oracle/product/dg4mqs/network/admin/listener.ora
Listener Log File /oracle/app/oracle/product/dg4mqs/network/log/listener.log
Services Summary...
 dg4mqs has 1 service handler(s)
The command completed successfully

In the example, dg4mqs is the default SID value that was assigned during installation.
You can use any valid ID for the SID, or keep the default.

Chapter 7
Configuring Oracle Net for the Gateway

7-8

Note:

You must use the same SID value in the tnsnames.ora file, the listener.ora file,
and the GATEWAY_SID environment variable in the gateway initialization file for each
gateway instance being configured.

7.4 Configuring Oracle Net for Oracle Database
You must configure the Oracle database so that it can communicate with the gateway by
using Oracle Net.

Any Oracle application that has access to an Oracle database can also access WebSphere
MQ through the gateway. Before you use the gateway to access WebSphere MQ, you must
configure the Oracle database so that it can communicate with the gateway by using Oracle
Net. To configure the server, add connect descriptors to the tnsnames.ora file.

Any Oracle database that accesses the gateway needs a service name entry or a connect
descriptor name entry in the tnsnames.ora file on the server, to tell the Oracle database how
to make connections. This file, by default, is located in the ORACLE_HOME\network\admin
directory on Microsoft Windows and ORACLE_HOME/network/admin directory on UNIX based
systems, where ORACLE_HOME is the directory in which the Oracle database is installed. The
tnsnames.ora file is required by the Oracle database that is accessing the gateway, and not
by the gateway itself.

Related Topics

• Configuration Overview
The gateway works with several components and products to communicate between the
Oracle database and WebSphere MQ queues.

• Configuring the Gateway
The gateway is installed and preconfigured using default values for the gateway SID,
directory names, file names, and gateway parameter settings.

See Also:

Refer to Oracle Database Net Services Administrator's Guide and Oracle Database
Net Services Reference for more information about changing the tnsnames.ora file.

7.4.1 Using Default Gateway Values
Oracle Universal Installer creates and preconfigures a tnsnames.ora file where ORACLE_HOME
is the directory in which the gateway software is installed.

Oracle Universal Installer creates and preconfigures a tnsnames.ora file in the ORACLE_HOME/
network/admin directory on Microsoft Windows and ORACLE_HOME/network/admin directory
on UNIX based systems, where ORACLE_HOME is the directory in which the gateway software is
installed. If you use the default values, and if you do not need to configure additional gateway

Chapter 7
Configuring Oracle Net for Oracle Database

7-9

instances, then you can append the contents of this file to the tnsnames.ora file of
each Oracle database that accesses the gateway.

7.4.2 Changing Default Gateway Values
If you need to change some of the default settings, use the examples in this section to
guide you.

7.4.2.1 TCP/IP Example
This is an example of using the TCP/IP protocol adapter.

An Oracle database accesses the gateway using Oracle Net and the TCP/IP protocol
adapter. The syntax of the connect descriptor entry in tnsnames.ora is:

tns_name_entry=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=host_name)
 (PORT=port_number)
)
 (CONNECT_DATA=
 (SERVICE_NAME=service_name)
)
 (HS=OK)
)

In this example:

• tns_name_entry is the tns_name_entry of the CREATE DATABASE LINK statement.

• TCP specifies that the protocol used for connections is TCP/IP.

• port_number is the port number used by the Oracle Net Oracle Net Listener that
listens for the gateway. This port number can be found in the listener.ora file
that is used by the Oracle Net Listener.

• host_name specifies the system on which the gateway is running. The Oracle Net
Listener host name can be found in the listener.ora file used by the Oracle Net
Listener that is listening for the gateway.

• service_name specifies the gateway service name and matches the SID specified
in the listener.ora file of the Oracle Net Listener that listens for the gateway.

Related Topics

• Creating Database Links
To create a database link, use the CREATE DATABASE LINK statement.

• Step 1: Configure the Oracle Net Oracle Net Listener for the Gateway
Configuring the listener.ora file.

7.4.2.2 IPC Example
This is an example using the IPC protocol adapter.

An Oracle database accesses the gateway using Oracle Net and the IPC protocol
adapter. The syntax of the connect descriptor entry in tnsnames.ora is:

Chapter 7
Configuring Oracle Net for Oracle Database

7-10

tns_name_entry=
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=key_name)
)
 (CONNECT_DATA=
 (SERVICE_NAME=service_name)
)
 (HS=OK)
)

where:

• tns_name_entry is the tns_name_entry of the CREATE DATABASE LINK statement.

• IPC specifies that the protocol used for connections is IPC.

• key_name is the service name.

• service_name specifies the gateway service name and matches the SID specified in the
listener.ora file of the Oracle Net Listener that is listening for the gateway.

Related Topics

• Creating Database Links
To create a database link, use the CREATE DATABASE LINK statement.

7.5 Creating a Transaction Log Queue
When the TRANSACTION_MODEL parameter in the gateway initialization file is set to
COMMIT_CONFIRM to allow for distributed transactions, an additional configuration step is
required.

This step is required to:

• Create a WebSphere MQ queue

• Set the TRANSACTION_LOG_QUEUE, TRANSACTION_RECOVERY_USER and
TRANSACTION_RECOVERY_PASSWORD parameters in the gateway initialization file

See Also:

Refer to IBM publications for information about creating and configuring a queue.

For the gateway to recover distributed transactions, a recovery account and queue must be
set up in the queue manager by the WebSphere MQ system administrator. This account must
be a valid WebSphere MQ user, and it must have authorization to access the recovery queue.

The gateway uses the recovery queue to check the status of failed transactions that were
started at the queue manager by the gateway and were logged in this queue. The information
in this queue is vital to the recovery process and must not be used, accessed, or updated
except by the gateway.

Chapter 7
Creating a Transaction Log Queue

7-11

Related Topics

• Commit-Confirm Transactions
Commit-Confirm transactions are enhanced forms of single-site transactions and
are supported for all WebSphere MQ environments and platforms.

• Oracle Database Gateway for WebSphere MQ Initialization Parameters

• Authorization for WebSphere MQ Objects
This topic describes the access authorization for WebSphere MQ objects.

7.6 Administering the Database Links Alias Library
A connection to the gateway is established through a database link when it is first used
in an Oracle session.

In this context, connection refers to the connection between the Oracle database and
the gateway. The connection persists until the Oracle session ends. Another session
or user can access the same database link and get a distinct connection to the
gateway and the queue manager.

Database links are active for the duration of a gateway session. To close a database
link during a session, use the ALTER SESSION statement.

See Also:

For more information about using database links, refer to the Oracle
Database Administrator's Guide.

7.6.1 Using Database Links
Oracle Database Gateway for WebSphere MQ uses an alias library to access the
shared library installed with Oracle Database Gateway for WebSphere MQ.

An alias library is a schema object that represents a library in PL/SQL. To create the
alias library, you must have the CREATE LIBRARY PRIVILEGE. The alias library used by
Oracle Database Gateway for WebSphere MQ is libdg4mq and is defined in the
pgmobj.sql script, which is created when the Oracle Database Gateway for
WebSphere MQ deployment scripts are executed.

7.6.2 Creating Database Links
To create a database link, use the CREATE DATABASE LINK statement.

The USING clause points to a connect descriptor in the tnsnames.ora file. The CONNECT
TO clause specifies the WebSphere MQ user ID and password when the security
model is defined as STRICT with the AUTHORIZATION_MODEL parameter. If you do not
include the CONNECT TO clause, then the current user ID and password are used.

When the AUTHORIZATION_MODEL parameter is set to RELAXED, you need not specify an
user ID and password because the Oracle database uses the user ID and password of
the user account that started the Oracle Net Listener for the gateway. If you specify an

Chapter 7
Administering the Database Links Alias Library

7-12

user ID and password with the CONNECT TO clause, then the Oracle database and gateway
ignore those values.

The syntax of CREATE DATABASE LINK is as follows:

CREATE [PUBLIC] DATABASE LINK dblink [CONNECT TO userid IDENTIFIED
 BY password] USING 'tns_name_entry';

where:

• dblink is the database link name.

• userid is the user ID used to establish a session at the queue manager. It is only used
when AUTHORIZATION_MODEL is set to STRICT in the initsid.ora file. The user ID must be
authorized to access all WebSphere MQ objects, and use any database object
referenced in the PL/SQL commands.

The userid must be in the password file on the computer on which WebSphere MQ and
the gateway are installed. Otherwise, the userid must be published in the UNIX Network
Information Service (NIS) when WebSphere MQ and the gateway are installed on
different systems. If userid contains lowercase letters or non-alphanumeric characters,
then you must surround userid with quotation marks ("). Refer to your WebSphere MQ
documentation for more information about userid.

• password is the password used to establish a session at the queue manager. It is used
only when AUTHORIZATION_MODEL is set to STRICT in the initsid.ora file.

The password must be in the password file on the system on which WebSphere MQ and
the gateway are installed. Otherwise, the password must be published in the Windows or
UNIX Network Information Service (NIS), as the case may be when WebSphere MQ and
the gateway are installed on different systems.

If password contains lowercase letters or non alphanumeric characters, then surround
password with quotation marks (").

• tns_name_entry is the Oracle Net TNS connect descriptor name specified in the
tnsnames.ora file.

Related Topics

• Security Models
WebSphere MQ has its own authorization mechanism. Applications are allowed to
perform certain operations on queues or queue managers only when their effective
user ID has authorization for each operation.

7.6.3 Dropping Database Links
You can drop a database link with the DROP DATABASE LINK statement.

For example, to drop the database link named dblink, enter:

DROP [PUBLIC] DATABASE LINK dblink;

A database link should not be dropped if it is required to resolve a distributed transaction that
is in doubt.

Chapter 7
Administering the Database Links Alias Library

7-13

See Also:

Oracle Database SQL Language Reference for more information about
dropping database links.

7.6.4 Examining Available Database Links
The data dictionary of each database stores the definitions of all the database links in
that database.

The USER_DB_LINKS view shows the database links that are defined for a user. The
ALL_DB_LINKS data dictionary views show all the defined database links.

7.6.5 Limiting the Number of Active Database Links
You can limit the number of connections from a user process to remote databases with
the OPEN_LINKS parameter.

This parameter controls the number of remote connections that any single user
process can use with a single user session.

See Also:

Oracle Database Administrator's Guide for more information about limiting
the number of active database links.

7.6.6 Creating Alias Library
Create the Oracle Database Gateway for WebSphere MQ alias library, libdg4mq,
using the Oracle Database Gateway for WebSphere MQ deployment scripts.

During installation, the appropriate shared library name is defined in
ORACLE_HOME\dg4mq\admin\deploy\pgmobj.sql on Microsoft Windows and
ORACLE_HOME/dg4mq/admin/deploy/pgmobj.sql on UXIX based systems based on the
DG4MQ model you choose.

For a remote model, the libdg4mqc.so shared library is used. For example:

CREATE OR REPLACE LIBRARY libdg4mq AS 'ORACLE_HOME/lib/libdg4mqc.so'
TRANSACTIONAL;

For a local model, the libdg4mqs.so shared library is used. For example:

CREATE OR REPLACE LIBRARY libdg4mq AS 'ORACLE_HOME/lib/libdg4mqs.so'
TRANSACTIONAL;

Chapter 7
Administering the Database Links Alias Library

7-14

Note:

The file extension of shared libraries on HP-UX is .sl . For example, libdg4mqc.sl

7.6.7 Dropping Alias Library
Use the undeploy scripts to drop the libdg4mq Oracle Database Gateway for WebSphere MQ
alias library.

7.7 Installing the Oracle Visual Workbench Repository
Install the Oracle Visual Workbench repository following the steps in this section.

You can skip the installation of the Oracle Visual Workbench repository if you do not plan to
use Oracle Visual Workbench, or if you are preparing your production Oracle database,
where you do not need a Visual Workbench repository, but instead need a Oracle Database
Gateway for WebSphere MQ deployment.

Related Topics

• Preparing the Production Oracle Database
These preparations include preparing, installing, and removing PL/SQL packages on the
production database.

7.7.1 Preinstallation Tasks
These steps describe the preinstallation tasks.

7.7.1.1 Step 1: Choose a Repository Server
This step explains how to choose a repository server.

A repository server is an Oracle database on which the Visual Workbench repository is
installed.

7.7.1.2 Step 2: Locate the Installation Scripts
This step explains how to locate the installation scripts.

The Visual Workbench repository installation scripts are installed with the Visual Workbench.
If the repository is to be installed on the same system as Oracle Visual Workbench, then your
repository server already has all the required installation scripts. Proceed to Step 3.

1. Create a directory on the repository server to be the script directory. For example:

For Microsoft Windows:

> md %ORACLE_HOME%\dg4mqadmin\repo

For UNIX based systems:

$ mkdir $ORACLE_HOME/dg4mq/admin/repo
$ chmod 777 $ORACLE_HOME/dg4mq/admin/repo

Chapter 7
Installing the Oracle Visual Workbench Repository

7-15

2. Use a file transfer program to transfer the repository zip file (reposXXX.zip, where
XXX is the release number), or move all script files with the .sql suffix from the
script file directory (ORACLE_HOME\dg4mqvwb\server\admin on Windows) on the
Visual Workbench system to the script file directory on the repository server
system.

7.7.1.3 Step 3: Upgrade the Visual Workbench Repository
This step explains how to upgrade your Visual Workbench repository installation
scripts.

Upgrade your existing Visual Workbench repository installation scripts by copying the
pgmxxx.sql files installed with the Oracle Database Gateway for WebSphere MQ in the
ORACLE_HOME\dg4mq\admin\deploy directory on Microsoft Windows and ORACLE_HOME/
dg4mq/admin/deploy directory on UNIX based systems to the script file directory on
the repository server system.

7.7.1.4 Step 4: Ensure that the UTL_RAW Package is Installed
The step explains how to ensure that the UTL_RAW package is installed.

All data mapping packages generated by the Visual Workbench use the UTL_RAW
package, which provides routines for manipulating raw data.

From SQL*Plus, as the SYS user, issue the following statement:

SQL> DESCRIBE UTL_RAW

If the DESCRIBE statement is successful, then your repository server already has
UTL_RAW installed, and you can proceed to Step 4.

If the DESCRIBE statement fails, then install UTL_RAW:

From SQL*Plus, as the SYS user, run the utlraw.sql and prvtrawb.plb scripts that
are in the ORACLE_HOME\rdbms\admin directory on Microsoft Windows and
ORACLE_HOME/rdbms/admin directory on UNIX based systems. You must run the
utlraw.sql script first.

SQL> @utlraw.sql
SQL> @prvtrawb.plb

7.7.1.5 Step 5: Ensure that the DBMS_OUTPUT Package is Enabled
This step explains how to ensure that the DBMS_OUTPUT package is enabled.

The sample programs and installation verification programs on the distribution CD-
ROM use the standard DBMS_OUTPUT package.

From SQL*Plus, as SYS user, issue the following statement:

SQL> DESCRIBE DBMS_OUTPUT

If the DESCRIBE statement is successful, then your repository server has DBMS_OUTPUT
installed, and you can proceed to Step 6.

If the DESCRIBE statement fails, then install DBMS_OUTPUT.

Chapter 7
Installing the Oracle Visual Workbench Repository

7-16

See Also:

Oracle Database Administrator's Guide for more information.

7.7.1.6 Step 6: Create a Database Link
This step explains how to create a database link.

Create a database link on your Oracle Production System Server to access the Oracle
Database Gateway for WebSphere MQ.

If you do not already have a database link, then refer to "Administering the Database Links
Alias Library" for more information about creating database links.

7.7.2 Visual Workbench Repository Installation Tasks
Use pgvwbrepos.sql to install the Visual Workbench Repository.

Use pgvwbrepos.sql to install the Visual Workbench Repository on Oracle10g or later. To run
pgvwbrepos.sql, ensure that you are currently in the ORACLE_HOME\dg4mq\admin\repo
directory on Microsoft Windows and ORACLE_HOME/dg4mq/admin/repo directory on UNIX
based systems, and then enter the following command:

sqlplus /nolog @pgvwbrepos.sql

Note:

If you are installing the Visual Workbench repository on Oracle8i or earlier, then you
must use pgvwbrepos8.sql. All of the examples in this section are provided with the
assumption that you are installing on Oracle9i and later.

The script takes you through the following steps:

7.7.2.1 Step 1: Enter the Database Connection Information
This step explains how to enter the database connection information.

Use the default vale of LOCAL by pressing Enter. Next, you are prompted to enter the
passwords for the SYSTEM and SYS accounts of the Oracle database. Press Enter after
entering each password.

The script stops if any information is incorrect. Verify the information before rerunning the
script.

7.7.2.2 Step 2: Check for Existing Workbench Repository
This step explains how to check for an existing Visual Workbench repository.

The script checks for an existing Visual Workbench repository and for the data dictionary. If
neither is found, then the script proceeds to Step 3 below.

Chapter 7
Installing the Oracle Visual Workbench Repository

7-17

If the data dictionary exists, then the script stops. Choose another Oracle database
and rerun the script, starting at "Step 1: Choose a Repository Server ".

If a Visual Workbench repository exists, then the script gives you the following options:

• Upgrade the existing private repository to public status and proceed to Step 3.

• Replace the existing repository with the new private repository and proceed to
Step 3.

• Stop the script.

7.7.2.3 Step 3: Check for The Required PL/SQL Packages
This step explains how to check for the required PL/SQL packages.

The script checks for the existence of UTL_RAW, DBMS_OUTPUT, and DBMS_PIPE in the
Oracle database. If this software exists, then the script proceeds to Step 4.

The script stops if this software does not exist. Refer to Oracle Database
Administrator's Guide about the missing software. After the software is installed, rerun
the script.

7.7.2.4 Step 4: Install the UTL_PG Package
This step explains how to install the UTL_PG package.

The script checks for the existence of the UTL_PG package. If it does not exist, then the
UTL_PG package is installed. The script then proceeds to Step 5.

If UTL_PG exists, then you are prompted to reinstall it. Press Return to reinstall UTL_PG.

7.7.2.5 Step 5: Create the Administrative User and All Repository Tables
This step explains how to create the administrative user for the Visual Workbench
repository as PGMADMIN with the initial password of PGMADMIN.

This user owns all objects in the repository.

After this step, a private Visual Workbench repository that includes the PGM_SUP,
PGM_BQM, and PGM_UTL8 packages, is created in the Oracle database, which only the
PGMADMIN user can access.

7.7.2.6 Step 6: Create Public Synonyms and Development Roles
This optional step explains how to change the private access privileges of the Visual
Workbench repository.

The private status enables only the PGMADMIN user to have access to the repository. If
you enter N and press Enter, then the repository retains its private status.

A public status enables the granting of access privileges to other users besides
PGMADMIN. If you want to give the repository public status, then enter Y and press
Enter.

Chapter 7
Installing the Oracle Visual Workbench Repository

7-18

7.7.3 After the Repository is Created
After creating the Visual Workbench repository, there is one optional step, granting
development privileges for the Visual Workbench repository to users.

To allow users, other than the PGMADMIN user, to perform development operations on the
Visual Workbench repository, PGMADMIN must grant them the necessary privileges. To do this,
perform the following:

1. Ensure that the repository has a public status. It has this status if you created it by using
Steps 1 to 6 of the pgvwbrepos.sql script. If you did not use Step 6, then rerun the
script. When you get to Step 2 of the script, enter A at the prompt to upgrade the private
repository to public status.

2. Use SQL*Plus to connect to the repository as the PGMADMIN user and grant the PGMDEV
role to each user. For example:

SQL> GRANT PGMDEV TO SCOTT;

7.7.4 Deinstall the Visual Workbench Repository
Use the repository script pgvwbremove.sql to deinstall a Visual Workbench.

To deinstall a Visual Workbench repository on Oracle10g, use the repository script
pgvwbremove.sql. To run this script, ensure that you are currently under the Oracle database
ORACLE_HOME\dg4mq\admin\repo directory on Microsoft Windows and ORACLE_HOME/
dg4mq/admin/repo directory on UNIX based systems (where you copied the scripts), and
then enter the following command:

sqlplus /nolog @pgvwbremove.sql

Note:

If you are deinstalling the Visual Workbench Repository on Oracle8i or earlier, then
you must use pgvwbremove8.sql. All the examples in this section are provided with
the assumption that you are installing on Oracle9i and later.

The script takes you through the following steps:

7.7.4.1 Step 1: Enter the Database Connection Information
This step explains how to enter the database connection information.

Use the default value of LOCAL by pressing Enter.

Next, you are prompted to enter the passwords for the SYSTEM, SYS, and PGMADMIN accounts
of the Oracle database. Press Enter after entering each password.

The script stops if any of the information is incorrect. Verify the information before rerunning
the script.

Chapter 7
Installing the Oracle Visual Workbench Repository

7-19

7.7.4.2 Step 2: Check for the Existing Workbench Repository
This step explains how to check for the existing Workbench repository.

Enter Y and press Enter for the prompt to remove public synonyms and development
roles. This returns the repository to private status. You can exit the script now by
entering N and pressing Enter, or you can proceed to the next prompt.

If you are certain you want to remove the private repository, then enter Y and press
Enter. The script removes all repository tables and related packages.

7.8 Preparing the Production Oracle Database
These preparations include preparing, installing, and removing PL/SQL packages on
the production database.

7.8.1 Introduction
This section describes how to run the pgmdeploy.sql and pgmundeploy.sql scripts.

Before you can compile MIPs on a production Oracle database, the following PL/SQL
packages must be present on the production Oracle database:

• DBMS_PIPE, DBMS_OUTPUT, and UTL_RAW
These packages are shipped with each Oracle database and are typically
preinstalled.

• PGM, PGM_BQM, PGM_SUP, and UTL_PG
These packages are shipped with your Oracle Database Gateway for WebSphere
MQ. They are installed during the creation process of the Visual Workbench
repository. Do not execute deployment script on the Oracle database with an
installed Visual Workbench repository. If the Oracle database used for the
repository is different from the Oracle database used in the production
environment, you must install these packages on the production Oracle database.

This section describes how to run the following scripts:

• pgmdeploy.sql,

A deployment script that is used to verify the existence of the required PL/SQL
packages and install them if they do not exist on the production Oracle database.

• pgmundeploy.sql
A script to remove the PL/SQL packages from a production Oracle database.

7.8.2 Verifying and Installing PL/SQL Packages
This topic describes verifying and installing PL/SQL packages.

1. Locate the following scripts:

• pgm.sql
• pgmbqm.sql
• pgmdeploy.sql

Chapter 7
Preparing the Production Oracle Database

7-20

• pgmsup.sql
• pgmundeploy.sql
• prvtpg.sql
• utlpg.sql
These scripts are installed with the gateway, in the ORACLE_HOME\dg4mq\admin\deploy
directory on Microsoft Windows and ORACLE_HOME/dg4mq/admin/deploy directory on
UNIX based systems, where ORACLE_HOME is the gateway home directory.

2. If your production Oracle database is on a system that is different from the gateway, then
use a file transfer method, such as FTP, to transfer files in the
ORACLE_HOME\dg4mq\admin\deploy directory on Microsoft Windows and ORACLE_HOME/
dg4mq/admin/deploy directory on UNIX based systems, where ORACLE_HOME is the
gateway home directory on your gateway system. On your production Oracle database
system, change directory to the directory containing the deployment scripts that you just
transferred and skip to Step 4.

3. If your production Oracle database is on the same system as the gateway, then change
the directory to ORACLE_HOME\dg4mq\admin\deploy directory on Microsoft Windows and
ORACLE_HOME/dg4mq/admin/deploy on UNIX based systems, where ORACLE_HOME is the
gateway home directory.

4. Run the pgmdeploy.sql script by as follows:

$ sqlplus /nolog @pgmdeploy.sql
5. At the script prompt: Enter the connect string for the Oracle

database... [LOCAL], press Enter to use the default value of LOCAL.

6. At the script prompt Enter the following required Oracle database
password, enter the password of the SYS account.

After the script verifies the SYS account password, it connects to the production Oracle
database. The script verifies and reports the PL/SQL packages that are installed there:

• If any of the Oracle database packages, DBMS_OUTPUT, DBMS_PIPE or UTL_RAW are missing,
then the script stops. Have your DBA install the missing packages and re-run the
deployment script.

• If any of the Oracle packages, PGM, PGM_BQM, PGM_SUP, and UTL_PG are missing, then the
script installs them on the production Oracle database.

7.8.3 Removing the PL/SQL Packages
This topic describes removing PL/SQL packages.

You can remove the PL/SQL packages that were installed by the pgmdeploy.sql script if, for
example, none of your applications in the production environment uses a MIP. To remove
these packages, perform the following steps:

1. On your production Oracle database, change to the directory containing the deployment
scripts by entering the following command:

For Microsoft Windows:

> cd ORACLE_HOME\dg4mq\admin\deploy

For UNIX based systems:

Chapter 7
Preparing the Production Oracle Database

7-21

$ cd $ORACLE_HOME/dg4mq/admin/deploy
2. Run the pgmundeploy.sql as follows:

$ sqlplus /nolog @pgmundeploy.sql
3. At the script prompt: Enter the connect string for the Oracle

database... [LOCAL], press [Return] to use the default of LOCAL.

4. At the script prompt, enter the required Oracle database passwords,
enter the password of the SYS account.

After the script verifies the SYS account password, it connects to the production Oracle
database and removes the packages installed by the pgmdeploy.sql script.

After the pgmundeploy.sql script completes successfully, applications on the
production Oracle database fail if they attempt to reference any of the MIPs that are
compiled there.

Chapter 7
Preparing the Production Oracle Database

7-22

8
Oracle Database Gateway for WebSphere
MQ Running Environment

The following topics describe the Oracle Database Gateway for WebSphere MQ running
environment:

8.1 Security Models
WebSphere MQ has its own authorization mechanism. Applications are allowed to perform
certain operations on queues or queue managers only when their effective user ID has
authorization for each operation.

The effective user ID, typically the operating system user, depends on the WebSphere MQ
environment and the platform it runs on.

The effective user ID in an Oracle environment is not dependent on an operating system
account or the platform. Because of this difference, the gateway provides two authorization
models for Oracle applications to work with WebSphere MQ:

• Relaxed

• Strict

Although Oracle and operating system user IDs can be longer than 12 characters, the length
of user IDs used for either model cannot exceed 12 characters. Oracle user accounts do not
have a minimum number of characters required for their passwords, but some platforms and
operating systems do. Take their requirements into consideration when deciding on a
password or user ID.

The authorization model is configured with the AUTHORIZATION_MODEL parameter in the
gateway initialization file.

Related Topics

• Oracle Database Gateway for WebSphere MQ Initialization Parameters

8.1.1 Relaxed Model
This model discards the Oracle user name and password.

The authorizations granted to the effective user ID of the gateway by the queue manager are
the only associations an Oracle application has. For example, if the gateway user ID is
granted permission to open or read messages, or place messages on a queue, then all
Oracle applications that access the gateway can request those operations.

The effective user ID is determined by how the gateway runs:

• If the gateway runs as an MQI client application, then the user ID is determined by the
MQI channel definition.

8-1

See Also:

Refer to IBM publications for more information about channel definitions

• If the gateway runs as an MQI server application, then the effective user ID of the
gateway is the user account that started the Oracle Net listener and has
authorization to all the WebSphere MQ objects that the Oracle application wants to
access.

Oracle recommends using the relaxed model only if your application has minimal
security requirements.

Related Topics

• Authorization for WebSphere MQ Objects
This topic describes the access authorization for WebSphere MQ objects.

8.1.2 Strict Model
This model uses the Oracle user ID and password provided in the CREATE DATABASE
LINK statement when a database link is created, or the current Oracle user ID and
password if none was provided with CREATE DATABASE LINK.

The Oracle user ID:

• Must match a user account for the system that runs the gateway and for the
system that runs the WebSphere MQ queue manager

• Must have authorization for all the accessed WebSphere MQ objects.

The authorization process to verify the Oracle user ID and password varies, depending
on how the gateway runs.

Related Topics

• Authorization for WebSphere MQ Objects
This topic describes the access authorization for WebSphere MQ objects.

8.1.2.1 Authorization Process for a WebSphere MQ Server Application
If the gateway runs as a WebSphere MQ server application, then the authorization
process checks the user ID and password against the local or network password file.

If they match, then the gateway performs a SET-UID for the user ID and continues to
run under this user ID. Further WebSphere MQ authorization checks happen for this
user ID.

8.1.2.2 Authorization Process for a WebSphere MQ Client Application
If the gateway runs as a WebSphere MQ client application, then the authorization
process checks the user ID and password against the local or network password file.

If they match, then the MQ_USER_ID and MQ_PASSWORD WebSphere MQ environment
variables are set to the values of the user ID and password. If the channel definition
specifies the MCAUSER WebSphere MQ environment variable as blank characters, then
WebSphere MQ authorization checks are performed for the user ID.

Chapter 8
Security Models

8-2

If MCAUSER is set, not set, or security exits are defined for the MQI channel, then these
override the gateway efforts.

See Also:

Refer to IBM publications for more information about WebSphere MQ environment
variables.

8.1.3 Authorization for WebSphere MQ Objects
This topic describes the access authorization for WebSphere MQ objects.

The effective user ID for the relaxed model and the Oracle user ID for the strict model require
the WebSphere MQ authorizations described in Table 8-1.

Table 8-1 WebSphere MQ Access Authorization

Type of Access WebSphere MQ Authorization
Keywords

Alternate WebSphere MQ
Authorization Keywords

Permission to access the
WebSphere MQ queue
manager

all or allmqi connect
setid

Permission to send messages
to a WebSphere MQ queue

all or allmqi passall
passid
put
setid

Permission to receive
messages from a WebSphere
MQ queue

all or allmqi browse
get
passall
passid
setid

See Also:

Refer to IBM publications for more information about WebSphere MQ
authorizations.

8.2 Transaction Support
Transactions from an Oracle application that use the gateway and invoke WebSphere MQ
message queue operations are managed by the transaction coordinator at the Oracle
database where the transaction originates.

Chapter 8
Transaction Support

8-3

8.2.1 Non‐Oracle Data Sources and Distributed Transactions
When an Oracle distributed database contains a gateway, the gateway must be
properly configured to take part in a distributed transaction.

The outcome of a distributed transaction involving a gateway should be that all
participating sites roll back or commit their parts of the distributed transaction. All
participating sites, including gateway sites, that are updated during a distributed
transaction must be protected against failure and must be able to take part in the two‐
phase commit mechanism.

A gateway that updates a target system as part of a distributed transaction must be
able to take part in the automatic recovery mechanism, which might require that
recovery information be recorded in transaction memory at the target system.

If a SQL‐based gateway is involved in a distributed transaction, the distributed
database must be in a consistent state after the distributed transaction is committed.

A database gateway or a SQL‐based gateway with the procedural option translates
remote procedure calls into target system calls. From the viewpoint of the Oracle
transaction model, the gateway is like an Oracle database executing a PL/SQL block
containing SQL statements that are used to access an Oracle database.

For a database gateway, it is unknown if a target system call alters data. To ensure the
consistency of a distributed database, it must be assumed that a database gateway
updates the target system. Accordingly, all remote procedure calls sent to a database
gateway take part in a distributed transaction and must be protected by the two‐phase
commit protocol. For example, you could issue the following SQL*Plus statements:

EXECUTE REMOTE_PROC@FACTORY;
INSERT INTO DEBIT@FINANCE
ROLLBACK;

In this example, REMOTE_PROC is a remote procedure call to access a database
gateway, DEBIT is an Oracle table residing in an Oracle database, and FACTORY and
FINANCE are database links used to access the remote sites.

8.2.2 Transaction Capability Types
When gateways are involved in a distributed transaction, the transaction capabilities of
the non‐Oracle data source determine whether the data source can participate in two‐
phase commit operations or distributed transactions.

Depending on the capabilities of the non‐Oracle data source, transactions can be
classified as one of the following types:

Type Description

Read‐only During a distributed transaction, the gateway provides read-only
access to the data source, so the gateway can only be queried. A
Read-only is used for target systems that use the presumed-commit
model or do not support rollback mechanisms.

Chapter 8
Transaction Support

8-4

Type Description

Single-site During a distributed transaction, the target system is either read-only
(other sites can be updated) or the only site updated (can participate
in remote transactions). Single-site is used for target systems that
support rollback, commit, and presumed-stop, but cannot prepare or
commit-confirm as they have no distributed transaction memory, the
ability to remember what happened during and after a distributed
transaction.

Commit-confirm The gateway is a partial partner in the Oracle transaction mode.
During a distributed transaction in which it is updated, the gateway
must be the commit point site. Commit-confirm is used for target
systems that support rollback, commit, presumed-stop, and commit-
confirm, but do not support prepare. The commit-confirm capability
requires distributed transaction memory.

Two-phase commit The gateway is a partial partner in the Oracle transaction model.
During a distributed transaction, the gateway cannot be the commit
point site.Two-phase commit is used for target systems that support
rollback, commit, presumed-stop, and prepare, but do not support
commit-confirm, because they have no distributed transaction
memory.

Two-phase commit-
commit confirm

The gateway is a full partner in the Oracle transaction model. During
a distributed transaction, the gateway can be the commit point site,
depending on the commit point strength defined in the gateway
initialization file.This transaction type is used for target systems that
support a full two-phased commit transaction model. That is, the
target system supports rollback, commit, presumed-stop, prepare,
and commit-confirm.

8.2.3 Transaction Capability Types of Oracle Database Gateway for
WebSphere MQ

Transactions from an Oracle application (that invoke WebSphere MQ message queue
operations and that are using the gateway) are managed by the Oracle transaction
coordinator at the Oracle database where the transaction originates.

The Oracle Database Gateway for WebSphere MQ provides the following transaction types:

8.2.3.1 Single-Site Transactions
Single-site transactions are supported for all WebSphere MQ environments and platforms.

Single-Site means that the gateway can participate in a transaction only when queues
belonging to the same WebSphere MQ queue manager are updated. An Oracle application
can select, but not update, data on any Oracle database within the same transaction that
sends to, or receives a message from, a WebSphere MQ queue. To update objects in the
Oracle database, the transaction involving the WebSphere MQ queue should first be
committed or rolled back.

This default mode of the gateway is implemented using WebSphere MQ single-phase, where
the queue manager acts as the synchronizing point coordinator.

Chapter 8
Transaction Support

8-5

8.2.3.2 Commit-Confirm Transactions
Commit-Confirm transactions are enhanced forms of single-site transactions and are
supported for all WebSphere MQ environments and platforms.

Commit-confirm means that the gateway can participate in transactions when queues
belonging to the same WebSphere MQ queue manager are updated and, at the same
time, any number of Oracle databases are updated. Only one gateway with the
commit-confirm model can join the distributed transaction because the gateway
operates as the focal point of the transaction. To apply changes to queues of more
than one queue manager, updates applied to one queue manager need to be
committed before a new transaction is started for the next queue manager.

As with single-site transactions, commit-confirm transactions are implemented using
WebSphere MQ single-phase, but it requires a dedicated recovery queue at the queue
manager to log the transaction ID. At commit time, the gateway places a message in
this queue with the message ID set to the Oracle transaction ID. After the gateway
calls the queue manager to commit the transaction, the extra message on the
transaction log queue becomes part of the overall transaction. This makes it possible
to determine the outcome of the transaction in case of system failure, allowing the
gateway to recover a failed transaction. When a transaction completes successfully,
the gateway removes the associated message from the queue.

The WebSphere MQ administrator must create a reserved queue at the queue
manager. The name of this queue is specified in the gateway initialization file with the
TRANSACTION_LOG_QUEUE parameter. All Oracle users that access WebSphere MQ
through the gateway should have full authorization for this queue. The transaction log
queue is reserved for transaction logging only and must not be used, accessed, or
updated other than by the gateway. When a system failure occurs, the Oracle recovery
process checks the transaction log queue to determine the recovery strategy.

Two gateway initialization parameters, TRANSACTION_RECOVERY_USER and
TRANSACTION_RECOVERY_PASSWORD, are set in the gateway initialization file to specify
the user ID and password for recovery purposes. When set, the gateway uses this
user ID and password combination for recovery work. The recovery user ID should
have full authorization for the transaction log queue.

Related Topics

• Oracle Database Gateway for WebSphere MQ Initialization Parameters

8.3 Troubleshooting
This section includes information about messages, error codes, gateway tracing, and
gateway operations.

8.3.1 Message and Error Code Processing
The gateway architecture includes a number of components. Any of these components
can detect and report an error condition while processing PL/SQL code.

An error condition can be complex, involving error codes and supporting data from
multiple components. In all cases, the Oracle application receives a single Oracle error
code on which to act.

Chapter 8
Troubleshooting

8-6

Error conditions are represented in the following ways:

• Errors from the Oracle database

Messages from the Oracle database are in the format ORA‐xxxxx or PLS‐xxxxx, where
xxxxx is a code number. ORA‐xxxxx is followed by text explaining the error code.

For example:

PLS‐00306: wrong number or types of arguments in call to 'MQOPEN'
ORA‐06550: line7, column 3:
PL/SQL: Statement ignored

• Gateway and WebSphere MQ errors

When possible, a WebSphere MQ error code is converted to an Oracle error code. If that
is not possible, then the Oracle error ORA‐29400 with the corresponding WebSphere MQ
error code is returned.

For Example:

ORA-29400: data cartridge error
MQI MQCONNX failed. completion code=2, reason code=2058

Note:

Because the Oracle database distinguishes only between a successful or failed
outcome of all user operations, MQI calls that return a warning are reported as
a successful operation.

Related Topics

• Common Error Codes
The error conditions that are described in this section are common error conditions that
an application might receive while using the gateway.

See Also:

Oracle Database Error Messages

8.3.1.1 Interpreting Gateway Messages
Error codes are generally accompanied by additional message text, beyond the text
associated with the Oracle message number.

The additional text includes details about the error.

Gateway messages have the following format:

ORA‐nnnnn:error_message_text
gateway_message_line

where:

• nnnn is an Oracle error number.

Chapter 8
Troubleshooting

8-7

• error_message_text is the text of the message associated with the error.

• gateway_message_line is additional message text generated by the gateway.

8.3.2 Common Error Codes
The error conditions that are described in this section are common error conditions
that an application might receive while using the gateway.

However, it does not cover all error situations.

ORA‐01017: invalid username/password; logon denied
Cause: Invalid username or password

Action: Logon denied

ORA‐29400: The MQSeries MQI call "call_name" fails with reason code
mqi_code
Cause: An MQI call to a WebSphere MQ queue manager failed. The gateway could
not complete the current operation.

Action: If call_name is MQOPEN and mqi_code is 2035, then do the following:

• If the gateway is configured for the relaxed security model, then use the
WebSphere MQ administrative command interface to grant sufficient message
privileges to the user account that started the Oracle Net listener. These privileges
allow the user to send and receive messages for the specified WebSphere MQ
queue. Refer to IBM publications for more information.

• If the gateway is configured for the strict security model, use the WebSphere MQ
administrative command interface to grant message privileges to the user name
specified in the CREATE DATABASE LINK statement. If no user name was specified
in the CREATE DATABASE LINK statement, the privileges are granted to the current
Oracle user ID. These privileges enable the user to send and receive messages
for the specified WebSphere MQ queue. Refer to IBM publications for more
information.

If call_name is MQOPEN, and if mqi_code is 2085, then verify that the queue that is
specified in the WebSphere MQ profile exists at the WebSphere MQ queue manager
that you are trying to access and that the queue name is correctly spelled and in the
correct letter case.

See Also:

Refer to IBM publications for more information on mqi_codes other than
2035 and 2085..

8.3.3 Gateway Tracing
The gateway has a trace feature for testing and debugging purposes.

The trace feature collects information about the gateway running environment, MQI
calls, and parameter values of the MQI calls. The amount of trace data to collect is
based on the tracing level selected with the TRACE_LEVEL parameter.

Chapter 8
Troubleshooting

8-8

Note:

Do not enable tracing when your application is running in a production environment
because it reduces gateway performance.

The trace data is written to the directory and file specified by the LOG_DESTINATION parameter.

Related Topics

• Oracle Database Gateway for WebSphere MQ Initialization Parameters

8.3.3.1 LOG_DESTINATION Parameter
This is a gateway initialization parameter.

8.3.3.1.1 Gateway
 SQL-based and procedural

8.3.3.1.2 Default Value
 The default value is SID_agt_PID.trc.

8.3.3.1.3 Range of Values
None

8.3.3.1.4 Syntax
 LOG_DESTINATION = log_file

Parameter Description

LOG_DESTINATION = log_file

LOG_DESTINATION specifies the file name or directory where the gateway writes logging
information. When log_file already exists, logging information is written to the end of file.

If you do not specify LOG_DESTINATION, then the default log file is created each time that the
gateway starts up.

8.3.4 Verifying Gateway Operation
If your application cannot connect to the gateway, then rerun the application with the gateway
trace feature enabled.

If no trace information is written to the log file specified by LOG_DESTINATION, or if the log file
is not created at all, then verify that:

• The Oracle Net configuration for the gateway and the Oracle database is set up properly.

• A database link exists between the Oracle database and the gateway was created.

Chapter 8
Troubleshooting

8-9

If the Oracle Net configuration and database link are set up correctly, then check the
operation of the gateway with the test.sql script:

1. Change directory to the gateway sample directory by entering:

For Microsoft Windows:

> cd %ORACLE_HOME%\dg4mq\sample

For UNIX based systems:

$ cd $ORACLE_HOME/dg4mq/sample
2. Using an editor, modify the test.sql script as follows:

a. Specify the database link name that you created for the gateway. To do this,
replace the characters @dg4mq with @dblink, where dblink is the name you
chose when the database link was created.

b. Replace the characters YOUR_QUEUE_NAME with a valid WebSphere MQ queue
name.

3. Using SQL*Plus, connect to your Oracle database as a valid user.

4. Run test.sql, a script that sends and retrieves a message from a WebSphere
MQ queue. A successful completion displays the following output:

SQL> @test.sql
message put on queue = 10203040506070809000
MQPUT: CorrelId length = 24
MQPUT: MsgId length = 24
MQPUT returned with reason code 0
MQGET returned with reason code 0
message read back = 10203040506070809000

An unsuccessful test displays the following output:

SQL> @test.sql
message put on queue = 10203040506070809000
Error: Oracle Database Gateway for WebSphere MQ verification script failed.
ORA-29400: data cartridge error
MQI MQOPEN failed. completion code=2, reason code=2085

Related Topics

• Configuring Oracle Net for the Gateway
The gateway requires Oracle Net to provide transparent data access to and from
the Oracle database.

• Administering the Database Links Alias Library
A connection to the gateway is established through a database link when it is first
used in an Oracle session.

Chapter 8
Troubleshooting

8-10

A
The PGM, PGM_UTL8, and PGM_SUP
Packages

Use the Visual Workbench when developing applications that access WebSphere MQ
through the gateway. The Visual Workbench defines an interface for accessing WebSphere
MQ and automatically generates the PL/SQL code (the MIP) for Oracle applications to
interface with the gateway. Refer to the Oracle Procedural Gateway Visual Workbench for
WebSphere MQ Installation and User's Guide for Microsoft Windows (32-Bit) for more
information about Visual Workbench.

The MIP uses definitions from the PGM, PGM_UTL8, and PGM_SUP packages. When necessary,
you can alter the MIP to include WebSphere MQ functions that are not supported by Visual
Workbench. This is done with the definitions and procedures from the PGM, and PGM_UTL8, and
PGM_SUP packages.

The PGM, PGM_UTL8, and PGM_SUP packages are installed when the Visual Workbench
repository or the DG4MQ deployment environment is created.

The following topics discuss the PGM, PGM_UTL8, and PGM_SUP packages:

Related Topics

• Installing the Oracle Visual Workbench Repository
Install the Oracle Visual Workbench repository following the steps in this section.

• Preparing the Production Oracle Database
These preparations include preparing, installing, and removing PL/SQL packages on the
production database.

A.1 PGM Package, DG4MQ Gateway Procedures, and Data
Type Definitions

The gateway procedures and type definitions of the PGM package are modeled after the
WebSphere MQ MQI calls.

For all the relevant calls and structures found in MQI, a corresponding counterpart exists in
PGM and the associated data type definitions exist in pgmobj.sql. The gateway procedures
and PGM type definitions are named the same as their MQI counterparts. However, the data
types of arguments or structure fields are changed into corresponding PL/SQL data types.

Using these procedures and type definitions in an Oracle application is very similar to writing
a WebSphere MQ application. The fields of all PGM type definitions are initialized. These
initialization values are based on default values defined by MQI.

The use of gateway procedures and PGM type definitions requires extensive knowledge of
MQI and WebSphere MQ programming in general. These procedures and records follow the
MQI flowchart, semantics, and syntax rules.

The PGM package is installed when the Visual Workbench repository or the DG4MQ
deployment environment is created and is granted public access. It has no schema because

A-1

the gateway omits all schema names when describing or running a procedure. No
schema qualifiers need to be prefixed to the names of the procedures and type
definitions.

See Also:

Refer to IBM MQSeries Application Programming Reference for complete
information about writing WebSphere MQ applications and using MQI calls.

A.1.1 Summary of Procedures and Type Definitions
The gateway procedures and PGM provide the following procedures and type
definitions.

Table A-1 Procedures and Type Definitions

Procedure Procedure Purpose Type Definitions Used by the Procedure

MQOPEN Opens a queue. PGM.MQOD and PGM.MQOH
MQPUT Sends a message to the queue

that was opened by MQOPEN
PGM.MQMD
PGM.MQOH
PGM.MQPMO

MQPUT Sends a message longer than
32767 bytes to the queue

PGM.MQMD
PGM.MQOH
PGM.MQPMO
PGM.MQPUT_BFFER

MQGET Retrieves or scans a message
from the queue that was opened
by MQOPEN

PGM.MQMD
PGM.MQOH
PGM.MQGMO

MQGET Sends a message longer than
32767 bytes to the queue

PGM.MQMD
PGM.MQOH
PGM.MQGMO
PGM.MQGET_BFFER

MQCLOSE Closes the queue that was opened
by MQOPEN

Does not use a type definition.

A.1.2 Procedure Conventions
The gateway procedures are described in alphabetic order in this appendix.

The type definitions are described with the procedures that use them. Only type
definition fields that can be changed are described. Other fields equivalent to MQI
fields are left out because they are reserved for WebSphere MQ, are not supported by
the gateway, or contain values that should not be changed.

A procedure's definition is shown using the IBM argument names associated with the
equivalent MQI call. For example:

Appendix A
PGM Package, DG4MQ Gateway Procedures, and Data Type Definitions

A-2

MQGET(hobj, mqmd, mqgmo, msg)

The syntax of the MQGET call is as follows:

MQGET(handle, descript, get_options, message);

where:

• handle is your name for the first argument specified in the definition as hobj.

• descript is your name for the second argument specified in the definition as mqmd.

• get_options is your name for the third argument specified in the definition as mqgmo.

• message is your name for the fourth argument specified in the definition as msg.

You can use your own names for these arguments if you code the arguments in the order
shown in the definition.

See Also:

Oracle Database PL/SQL Language Reference

A.1.3 MQI Calls Performed by the Gateway
These MQI calls have no equivalent procedures in the gateway.

The following MQI calls have no equivalent procedures in the gateway because the Oracle
database and the gateway automatically perform the functions of these MQI calls:

• MQBACK
Transaction control is handled by the Oracle transaction coordinator. The Oracle
application does not need to invoke a separate MQBACK call to undo the changes sent to
WebSphere MQ.

• MQCONN
A connection to a queue manager is established by the Oracle database and the gateway
whenever an Oracle application refers to a gateway procedure. The database link name
that is used when calling the gateway procedure determines which queue manager the
gateway connects to.

• MQCMIT
Transaction control is handled by the Oracle transaction coordinator. An Oracle
application does not need to invoke a separate MQCMIT call to commit the changes sent to
WebSphere MQ.

• MQDISC
Connections to a queue manager are closed by the Oracle database and gateway. An
Oracle application does not need to close the connection with the queue manager.
Ending the current Oracle session or dropping the database link causes the queue
manager connection to end.

Appendix A
PGM Package, DG4MQ Gateway Procedures, and Data Type Definitions

A-3

A.1.4 Unsupported MQI Calls
These MQI calls are not supported by the gateway.

They are:

• MQINQ
• MQPUT1
• MQSET

A.1.5 Migration Tips
This section provides information about how to upgrade Oracle9i DG4MQ and existing
customized PL/SQL application programs to use Oracle Database Gateway for
WebSphere MQ features.

DG4MQ data types and RPC API prototypes are changed to meet the requirements of
the gateway infrastructure.

When upgrading DG4MQ to Oracle 10g release 2 or higher, Oracle recommends that
you install the newer version of DG4MQ on a separate development Oracle system.
After you have finished with system configuration and testing, transfer all of the
COBOL copy books and regenerate and recompile MIPs using the Oracle Visual
Workbench. For customized codes, make necessary changes and recompile.

Migrating DG4MQ Releases 8 and 9 PL/SQL Applications

To migrate DG4MQ releases 8 and 9 PL/SQL applications:

1. In the PL/SQL declarative section, remove dblink references from the following
DG4MQ data types:

• PGM8.MQOD
• PGM8.MQMD
• PGM8.MQPMO
• PGM8.MQGMO
Then remove the following PGM8.MQ*RAW data types:

• PGM8.MQODRAW
• PGM8.MQMDRAW
• PGM8.MQPMORAW
• PGM8.MQGMORAW

2. In the PL/SQL declarative section, change the data type of the handle of the
queue, the third argument of PGM.MQOPEN, from BINARY_INTEGER to PGM.MQOH and
replace the package name PGM8 with PGM.

Change the data type of the handles of the queue, the third argument of
PGM.MQOPEN, from BINARY_INTEGER to PGM.MQOH.

For example, for version 8 and 9 change the following data types to those listed for
Oracle 10g:

Appendix A
PGM Package, DG4MQ Gateway Procedures, and Data Type Definitions

A-4

objdesc PGM8.MQOD;
msgdesc PGM8.MQMD;
putmsgopts PGM8.MQPMO;
getmsgopts PGM8.MQGMO;
hobj BINARY_INTEGER;
mqodRaw PGM8.MQODRAW;
mqmdRaw PGM8.MQMDRAW;
mqpmoRaw PGM8.MQPMORAW;
mqgmoRaw PGM8.MQGMORAW;

The data types for Oracle 10g release 2 and higher:

objdesc PGM.MQOD;
msgdesc PGM.MQMD;
putmsgopts PGM.MQPMO;
getmsgopts PGM.MQGMO;
hobj PGM.MQOH;

3. In the PL/SQL executable section, remove dblink references from the following DG4MQ
procedures:

PGM8.MQOPEN@dblink()
PGM8.MQPUT@dblink()
PGM8.MQGET@dblink()
PGM8.MQCLOSE@dblink()

Then define the dblink in the new PGM.MQOD type where the object queue name is
defined.

For example, for version 8 and 9:

objdesc.objectname := 'QUEUE1';

For Oracle 10g release 2 and higher:

objdesc.objectname := 'QUEUE1';
objdesc.dblinkname := 'dblink';

4. If necessary, change the package name PGM8 of all DG4MQ procedures to PGM.

For example, for version 8 and 9:

PGM8.MQOPEN@dblink();
PGM8.MQPUT@dblink();
PGM8.MQGET@dblink();
PGM8.MQCLOSE@dblink();

For Oracle 10g release 2 and higher:

PGM.MQOPEN;
PGM.MQPUT;
PGM.MQGET;
PGM.MQCLOSE;

5. In the PL/SQL executable section, remove all statements starting with
PGM_UTL8.RAW_TO_*, remove all PGM_UTL8.TO_RAW statements, and replace all references
to the MQ*RAW data types with their matching MQ* data types in the following DG4MQ
procedures:

• PGM.MQOPEN;

• PGM.MQPU;

• PGM.MQGET;

Appendix A
PGM Package, DG4MQ Gateway Procedures, and Data Type Definitions

A-5

• PGM.MQCLOSE;

For example, for versions 8 and 9:

mqodRaw := PGM_UTL8.TO_RAW(objdesc);
PGM8.MQOPEN@dblink(mqodRaw, options, hobj);
objdesc := PGM_UTL8.RAW_TO_MQMD(mqodRaw);
mqmdRaw := PGM_UTL8.TO_RAW(msgdesc);
mqpmoRaw := PGM_UTL8.TO_RAW(putmsgopts);
PGM8.MQPUT@dblink(hobj, mqmdRaw, mqpmoRaw, putbuffer);
putmsgopts := PGM_UTL8.RAW_TO_MQPMO(mqpmoRaw);
msgdesc := PGM_UTL8.RAW_TO_MQMD(mqmdRaw);

mqmdRaw := PGM_UTL8.TO_RAW(msgdesc);
mqgmoRaw := PGM_UTL8.TO_RAW(getmsgopts);
PGM8.MQGET@dblink(hobj, mqmdRaw, mqgmoRaw, putbuffer);
getmsgopts := PGM_UTL8.RAW_TO_MQGMO(mqgmoRaw);
msgdesc := PGM_UTL8.RAW_TO_MQMD(mqmdRaw);

For Oracle 10g release 2 and higher:

PGM.MQOPEN(objdesc, options, hobj);
PGM.MQPUT(hobj, msgdesc, putmsgopts, putbuffer);
PGM.MQGET(hobj, msgdesc, getmsgopts, getbuffer);

6. In PL/SQL executable section, remove all statements that reference the old MQ*RAW
data types.

Migrating DG4MQ Release 4.0.1.*.* PL/SQL Applications

To migrate applications:

1. In the PL/SQL declarative section, remove dblink references from the following
DG4MQ data types:

• PGM.MQOD
• PGM.MQMD
• PGM.MQPMO
• PGM.MQGMO

2. In the PL/SQL executable section, remove dblink references from the following
DG4MQ procedures and define the dblink in the new PGM.MQOD object where the
object queue name is defined:

• PGM.MQOPEN@dblink()

• PGM.MQPUT@dblink()

• PGM.MQGET@dblink()

• PGM.MQCLOSE@dblink()

For example, for version 4:

PGM.MQOPEN@dblink(objdesc, options, hobj);
objdesc.objectname :='QUEUE1';
PGM.MQPUT@dblink(hobj, msgdesc, putmsgopts, putbuffer);
PGM.MQGET@dblink(hobj, msgdesc, getmsgopts, putbuffer);
PGM.MQCLOSE@dblink(hobj, options);

Appendix A
PGM Package, DG4MQ Gateway Procedures, and Data Type Definitions

A-6

A.2 MQCLOSE Procedure
MQCLOSE closes a queue.

On return, the queue handle is invalid and your application must reopen the queue with
another call to MQOPEN before issuing another MQPUT, MQGET, or MQCLOSE call to the queue.

MQCLOSE differs from MQI calls in the following ways:

• The connection handle argument is omitted from MQCLOSE because the gateway
automatically takes care of managing queue manager connections.

• The MQI completion code is not included in the procedure argument list. When a
gateway procedure fails because the corresponding MQI call failed, then an Oracle error
message is returned to the caller.

• The MQI reason code is not included in the procedure argument list. When the
corresponding MQI call for a gateway procedure returns a reason code, then the reason
code is included in the Oracle error message returned to the caller.

Definition

MQCLOSE(hobj, options)

where:

• hobj contains the handle for the queue to close. The handle is returned by a previous call
to MQOPEN. This input argument is a new PGM.MQOH object in Oracle 10g release 2.

• options specifies the close action. Use PGM_SUP.MQCO_NONE or the other PGM_SUP
constants for a close option. This input argument is of the BINARY_INTEGER PL/SQL data
type.

You can use your own variable names when arguments are in the required order as follows:

MQCLOSE(handle, close_options);

Related Topics

• MQCLOSE Values
These topics provide information about MQCLOSE values.

A.3 MQGET Procedure
The MQGET procedure retrieves a message from a queue.

The queue must already be open from a previous call to MQOPEN with the
PGM_SUP.MQOO_INPUT_AS_Q_DEF (or an equivalent option) option set. Retrieved messages for
this form of MQGET must be shorter than 32767 bytes.

MQGET differs from MQI calls in the following ways:

• The connection handle argument is omitted from MQGET because the gateway
automatically takes care of managing queue manager connections.

• The MQI completion code is not included in the procedure's argument list. When a
gateway procedure fails because the corresponding MQI call failed, then an Oracle error
message is returned to the caller.

Appendix A
MQCLOSE Procedure

A-7

• The MQI reason code is not included in the procedure's argument list. When the
corresponding MQI call for a gateway procedure returns a reason code, then the
reason code is included in the Oracle error message that was returned to the
caller.

• The msg length argument is not included in the procedure's argument list because
the Oracle database and the gateway automatically keep track of the message
data length.

Definition

MQGET(hobj, mqmd, mqgmo, msg)

where:

• hobj contains the handle for the queue to open. The handle is returned by a
previous call to MQOPEN. This input argument is a new PGM.MQOH object in Oracle
10g release 2.

• mqmd is used on input to describe the attributes of the message being retrieved.
Use the fields of the PGM.MQMD object type definition to describe these attributes.

On output, mqmd contains information about how the request was processed. The
queue manager sets some of the PGM.MQMD object fields on return.

This input and output argument is PL/SQL PGM.MQMD data type.

• mqgmois used on input to describe the option values that control the retrieve
request. Use the fields of the PGM.MQGMO object type definition to describe these
options.

On output, the queue manager sets some of the PGM.MQGMO object fields on return.

This input and output argument is PL/SQL PGM.MQGMO data type.

• msg contains the retrieved message. This output argument is PL/SQL data type
RAW or PGM.MQGET_BUFFER.

Examples

1. Using your own variable names when arguments are in the required order:

MQGET(handle, descript, opts, message);
2. The following example, which is provided as a sample with the gateway

(ORACLE_HOME\dg4mq\getsample.sql on Microsoft Windows and ORACLE_HOME/
dg4mq/sample/getsample.sql on UNIX based systems), reads all messages from
a WebSphere MQ queue. For more information, refer to the IBM publication on
WebSphere MQ Application Programming.

Example A-1 getsample.sql

---- Copyright Oracle, 2007 All Rights Reserved.
--
-- NAME
-- getsample.sql
--
-- DESCRIPTION
--
-- Specify the database link name you created for the gateway. To do this,
-- replace the database link name 'YOUR_DBLINK_NAME' with the dblink name
-- you chose when the database link was created.

Appendix A
MQGET Procedure

A-8

--
-- This script performs a test run for the MQSeries gateway. In this
-- script the queuename is 'YOUR_QUEUE_NAME', replace it with a valid
-- queue name at the queue manager the gateway is configured for.
--
-- NOTES
-- Run the script from the SQL*Plus command line.
--
-- Make the sure the user is granted 'EXECUTE' on package dbms_output
--

SET SERVEROUTPUT ON
DECLARE

 objdesc PGM.MQOD;
 msgDesc PGM.MQMD;
 getOptions PGM.MQGMO;
 objectHandle PGM.MQOH;
 message raw(32767);

BEGIN

 objdesc.OBJECTNAME := 'QUEUE1';
 objdesc.DBLINKNAME := 'dg4mqdepdblink';
 -- Open the queue 'YOUR_QUEUE_NAME' for reading.

 PGM.MQOPEN(objdesc, PGM_SUP.MQOO_INPUT_AS_Q_DEF, objectHandle);

 -- Get all messages from the queue.

 WHILE TRUE LOOP

 -- Reset msgid and correlid to get the next message.

 msgDesc.MSGID := PGM_SUP.MQMI_NONE;
 msgDesc.CORRELID := PGM_SUP.MQCI_NONE;

 PGM.MQGET(objectHandle, msgDesc, getOptions, message);

 -- Process the message....
 DBMS_OUTPUT.PUT_LINE('message read back = ' || rawtohex(message));

 END LOOP;

EXCEPTION

 WHEN PGM_SUP.NO_MORE_MESSAGES THEN

 DBMS_OUTPUT.PUT_LINE('Warning: No more message found on the queue');

 -- Close the queue again.

 PGM.MQCLOSE(objectHandle, PGM_SUP.MQCO_NONE);

 WHEN OTHERS THEN

 -- Re-raise the error;

 DBMS_OUTPUT.PUT_LINE('Error: Oracle Database Gateway for WebSphere MQ
 verification script failed.');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);

Appendix A
MQGET Procedure

A-9

 raise;

END;
/

Notes:

Note:

The PL/SQL block fails if the exception clause is left out. In that case, the
PGM_SUP.NO_MORE_MESSAGES error code is raised. The MSGID and CORRELID
fields that are used for MQGET are set after each call to MQGET. If they are not
reset at each cycle, then MQGET checks for the next message that has the
same identifiers as the last read operation, which usually do not exist. The
PL/SQL block would only read one message.

A.3.1 PGM.MQMD Type Definition
PGM.MQMD specifies the control information that accompanies a message when it travels
between the sending and receiving applications.

It also contains information about how the message is handled by the queue manager
or by the receiving application. PGM.MQMD describes the attributes of the message being
retrieved.

You can use the default values for PGM.MQMD fields or change the fields for your
application requirements. For example, to change a field value, do the following:

mqmd.field_name := field_value;

where:

• mqmd is the PGM.MQMD object data type and it describes the attributes of the
message being retrieved

• field_name is a field name of the PGM.MQMD object type definition. You can set as
many fields as necessary. Refer to Table A-2 for field names and descriptions.

• field_value is the value to assign to field_name. You can specify a value or use
a PGM_SUP constant to assign a value.

Table A-2 PGM.MQMD Object Fields

Field Name Description PL/SQL Data Type Initial Value

REPORT Allows the application that sends a
message to specify which report
message (or messages) should be
created by the queue manager when
an expected or unexpected event
occurs. Use a PGM_SUP constant to
assign a value. Refer to REPORT
Field.

RAW(4) PGM_SUP.MQRO_ NONE

Appendix A
MQGET Procedure

A-10

Table A-2 (Cont.) PGM.MQMD Object Fields

Field Name Description PL/SQL Data Type Initial Value

MSGTYPE Specifies the message type: reply
message, report message, or normal
message (datagram). Use a
PGM_SUP constant to assign a
value. Refer to MSGTYPE Field.

BINARY_INTEGER PGM_SUP.MQMT_
DATAGRAM

EXPIRY Specifies the amount of time that a
message stays in a queue. The
expiration period is in tenths of a
second, and is set by the sending
application. Use a PGM_SUP constant
to assign a value. Refer to EXPIRY
Field.

BINARY_INTEGER PGM_SUP.QMEI_
UNLIMITED

FEEDBACK Used with the REPORT field to indicate
the kind of report. Use a PGM_SUP
constant to assign a value. Refer to
FEEDBACK Field.

BINARY_INTEGER PGM_SUP.MQFB_ NONE

ENCODING Used for numeric values in the
message data. Use a PGM_SUP
constant to assign a value. Refer to
ENCODING Field.

RAW(4) PGM_SUP.MQENC_
NATIVE

CODEDCHARSETID Specifies the coded character set
identifier of the characters in the
message. Use a PGM_SUP constant to
assign a value. Refer to
CODEDCHARSETID Field.

BINARY_INTEGER PGM_SUP.MQCCSI_DEFAU
LT

FORMAT A free format name used to inform
the receiver about the contents of the
message. Specify a format or use a
PGM_SUP constant. Refer to FORMAT
Field.

CHAR(8) PGM_SUP.MQFMT_ NONE

PRIORITY Specifies message priority. Specify a
value greater than or equal to 0 (zero
is the lowest priority), or use a
PGM_SUP constant. Refer to
PRIORITY Field.

BINARY_INTEGER PGM_SUP.MQPRI_
PRIORITY_AS_Q_ DEF

PERSISTENCE An input field for the sending
application. Persistent messages
survive when a queue manager is
restarted. Non persistent messages
and messages in temporary queues
are lost when a queue manager is
restarted. Specify the desired
persistence with a PGM_SUP
constant. Refer to PERSISTENCE
Field.

BINARY_INTEGER PGM_SUP.MQPER_
PERSISTENCE_AS_
Q_DEF

Appendix A
MQGET Procedure

A-11

Table A-2 (Cont.) PGM.MQMD Object Fields

Field Name Description PL/SQL Data Type Initial Value

MSGID Specifies the message identifier of
the message to be retrieved (when
receiving a message). If no value is
specified when a sending a message
(PGM_SUP.MQMI_NONE), then the
queue manager assigns a unique
value.

RAW(24) PGM_SUP.MQMI_NONE

CORRELID Specifies the correlation identifier for
the message to retrieve when
receiving a message (refer to the
MSGID field). When sending a
message, specify any value, or use
PGM_SUP.MQCI_NONE if the message
does not require a correlation ID.

RAW(24) PGM_SUP.MQCI_NONE

BACKOUTCOUNT An output field for the MQGET
procedure. It indicates the number of
times a message was placed back on
a queue because of a rollback
operation.

BINARY_INTEGER Zero

REPLYTOQ Specifies the name of the reply-to
queue. This is an input field for MQPUT
and allows the sending application to
indicate where reply messages
should be sent.

It is also an output field for MQGET and
tells the receiving application where
to send a reply.

CHAR(48) NULL

REPLYTOQMGR Specifies the queue manager to
which the reply message or report
should be sent. This is an input field
for MQPUT and an output field for
MQGET.

CHAR(48) NULL

USERIDENTIFIER An output field for receiving
applications. It identifies the user that
sent the message. Sending
applications can specify a user on
input if the CONTEXT field for the
mqpmo argument of MQPUT was set to
PGM_SUP.MQPMO_SET_IDENTITY_CO
NTEXT or to
PGM_SUP.MQPMO_SET_ALL_CONTEXT.

CHAR(12) NULL

ACCOUNTINGTOKEN Used to transfer accounting
information between applications.
Sending applications provide
accounting information or use
PGM_SUP.MQACT_NONE to specify that
no accounting information is included.

CHAR(32) PGM_SUP.MQACT_ NONE

Appendix A
MQGET Procedure

A-12

Table A-2 (Cont.) PGM.MQMD Object Fields

Field Name Description PL/SQL Data Type Initial Value

APPLIDENTITYDATA Specifies more information to send
along with the message to help the
receiving application provide more
information about the message or its
sender.

CHAR(32) NULL

PUTAPPLTYPE Describes the kind of application that
placed the message on the queue.
Use a PGM_SUP constant to assign a
value. Refer to PUTAPPLTYPE Field.

BINARY_INTEGER PGM.MQAT_NO_ CONTEXT

PUTAPPLNAME Specifies the name of the application
that placed the message on the
queue. Sending applications specify
a name or let the queue manager fill
in this field. This is an output field for
receiving applications.

CHAR(28) NULL

PUTDATE Specifies the date on which a
message was placed on the queue.
Sending applications can set a date
or let the queue manager take care of
it. The date format used by the
queue manager is YYYYMMDD. This is
an output field for receiving
applications.

CHAR(8) NULL

PUTTIME Specifies the time that a message
was placed on the queue. Sending
applications can set a time or let the
queue manager take care of it. The
time format that is used by the queue
manager is HHMMSSTH. This is an
output field for receiving applications.

CHAR(8) NULL

APPLORIGINDATA Used by the sending application to
add information to the message
about the message origin. This is an
output field for receiving applications.

CHAR(4) NULL

A.3.2 PGM.MQGMO Type Definition
Use PGM.MQGMO to specify option and control information about how the message is retrieved
from a queue.

Use PGM.MQGMO to specify option and control information about how the message is retrieved
from a queue. You can use the default values for PGM.MQGMO fields or change the fields for
your application requirements. For example, to change a field value:

mqgmo.field_name := field_value

where:

• mqgmo is the PGM.MQGMO object data type, and it specifies option and control information
about how the message is retrieved from a queue.

Appendix A
MQGET Procedure

A-13

• field_name is a field name of the PGM.MQGMO type definition. You can set as many
fields as necessary. Refer to Table A-3 for names and field descriptions.

• field_value is the value to assign to field_name. You can specify a value or use
a PGM_SUP constant to assign a value.

Table A-3 PGM.MQGMO Fields

Field Name Description PL/SQL Data Type Initial Value

OPTIONS Specifies options to control the MQGET
procedure. Add one or more PGM_SUP
constants to set it. Refer to OPTIONS
Field.

BINARY_INTEGER PGM.MQGMO_ SYNCPOINT
(Messages that are
retrieved from the queue
are coordinated by the
Oracle transaction
coordinator.)

WAITINTERVAL Specifies the maximum time in
milliseconds that MQGET waits for a
message to arrive in the queue.
WAITINTERVAL should be equal to or
greater than 0, or set to the value of
PGM_SUP.MQWI_UNLIMITED (unlimited
wait interval).

BINARY_INTEGER Zero

RESOLVEDQNAME Contains the resolved name of the
destination queue from which the
message was retrieved. This is an
output field set by the queue manager
upon return from the call.

CHAR(48) NULL

A.4 MQOPEN Procedure
MQOPEN establishes access to a queue.

Depending on the mode selected to open the queue, an application can issue
subsequent MQPUT, MQGET, or MQCLOSE calls.

MQOPEN differs from MQI calls in the following ways:

• The connection handle argument is omitted from MQOPEN because the gateway
automatically takes care of managing queue manager connections.

• The MQI completion code is not included in the procedure argument list. When a
gateway procedure fails because the corresponding MQI call failed, then an
Oracle error message is returned to the caller.

• The MQI reason code is not included in the procedure argument list. If the
corresponding MQI call for a gateway procedure returns a reason code, then the
reason code is included in the Oracle error message that is returned to the caller.

Definition

MQOPEN(mqod, options, hobj)

where:

Appendix A
MQOPEN Procedure

A-14

• mqod specifies the queue to open. Use the fields of the PGM.MQOD type definition to
describe these attributes. On output, the queue manager sets some of the PGM.MQOD
object fields on return.

This input and output argument is PL/SQL PGM.MQOD data type. For details of PGM.MQOD,
refer to PGM.MQOD Type Definition.

• options specifies the kind of open. Refer to MQOPEN Values. This input argument is of
the PL/SQL BINARY_INTEGER data type.

• hobj contains the handle of the queue after the queue is opened and becomes an input
argument for subsequent PGM calls. The queue handle remains valid until one of the
following conditions occur:

– The queue is closed by a call to MQCLOSE
– The current transaction is made permanent by a COMMIT or ROLLBACK command

– The Oracle user session is ended by a DISCONNECT command. This output argument
is of the PGM.MQOH data type.

You can use your own variable names when arguments are in the required order as follows:

MQOPEN and(descript, open_options, handle);

A.4.1 PGM.MQOD Type Definition
PGM.MQOD is used to define the object to open.

You can use the default values for PGM.MQOD fields or change the fields for your application
requirements. For example, you can change a field value as follows:

mqod.field_name := field_value

where:

• mqod is the PGM.MQOD data type and specifies the object to open.

• field_name is a field name of the PGM.MQOD type definition. You can set as many fields as
necessary. Refer to Table A-4 for field names and descriptions.

• field_value is the value to assign to field_name. You can specify a value or use a
PGM_SUP constant to assign a value.

Table A-4 PGM.MQOD Object Fields

Field Name Description PL/SQL Data Type Initial Value

OBJECTTYPE Specifies the object to open. Use a
PGM_SUP constant to assign a value.
Refer to OBJECTTYPE Field.

BINARY_INTEGER PGM_SUP.MQOT_
Q(queue)

DBLINKNAME Specifies the database link name. CHAR(64) NULL
OBJECTNAME Specifies the local name of the object as

defined by the queue manager.
CHAR(48) NULL

Appendix A
MQOPEN Procedure

A-15

Table A-4 (Cont.) PGM.MQOD Object Fields

Field Name Description PL/SQL Data Type Initial Value

OBJECTQMGRNAME Specifies the name of the queue
manager for the object defined by
OBJECTNAME. Leave OBJECTQMGRNAME
set to null values because the gateway
supports only the opening of objects at
the connected queue.

CHAR(48) NULL

DYNAMICQNAME Is ignored unless the OBJECTNAME field
specifies the name of a model queue.
When a model queue is involved, then
this field specifies the name of the
dynamic queue to be created at the
queue manager to which the gateway is
connected.

CHAR(48) AMQ.*

ALTERNATEUSERID If the options argument of MQOPEN is
set to the value of
PGM_SUP.MQOO_ALTERNATE_USER_AUTH
ORITY, then this field specifies the
alternate user ID which the queue
manager uses to check the authorization
for the queue being opened.

CHAR(12) NULL

A.5 MQPUT Procedure
MQPUT sends a message to a queue.

The queue must already be open by a previous call to MQOPEN with its options
argument set to the value of PGM_SUP.MQOO_OUTPUT.

MQPUT differs from MQI calls as follows:

• The connection handle argument is omitted from MQPUT because the gateway
automatically takes care of managing queue manager connections.

• The MQI completion code is not included in the procedure argument list. When a
gateway procedure fails because the corresponding MQI call failed, then an
Oracle error message is returned to the caller.

• The MQI reason code is not included in the procedure argument list. When the
corresponding MQI call for a gateway procedure returns a reason code, then the
reason code is included in the Oracle error message returned to the caller.

• The msg length argument is not included in the procedure argument list because
the Oracle database and the gateway automatically keep track of the message
data length.

Definition

MQPUT(hobj, mqmd, mqpmo, msg)

where:

Appendix A
MQPUT Procedure

A-16

• hobj contains the handle for the queue to send the message to. The handle is returned
by a previous call to MQOPEN. This input argument is a new PGM.MQOH in Oracle10g release
2.

• mqmd is used on input to describe the attributes of the message being retrieved. Use the
fields of the PGM.MQMD type definition to describe these attributes. On output, mqmd contains
information about how the request was processed. The queue manager sets some of the
PGM.MQMD fields on return.

This input and output argument is a PGM.MQMD. For details of PGM.MQMD, refer to
PGM.MQMD Type Definition.

• mqpmo is used on input to describe the option values that control the put request. Use the
fields of the PGM.MQPMO type definition to describe these options. On output, the queue
manager sets some of the PGM.MQPMO fields on return.

This input and output argument is PGM.MQPMO. For details of PGM.MQPMO, refer to
PGM.MQPMO Type Definition.

• msg contains the message to send. This input argument is PL/SQL data type RAW or
PGM.MQPUT_BUFFER.

Example

1. You can use your own variable names when arguments are in the required order:

MQPUT(handle, descript, options, message);
2. The following sample, which is provided as a sample with the gateway

(ORACLE_HOME\dg4mq\sample\putsample.sql on Microsoft Windows and ORACLE_HOME/
dg4mq/sample/putsample.sql on UNIX based systems), sends a message shorter than
32767 bytes:

Example A-2 putsample.sql

--
-- Copyright Oracle, 2005 All Rights Reserved.
--
-- NAME
-- putsample.sql
--
-- DESCRIPTION
--
-- Specify the database link name you created for the gateway. To do this,
-- replace the database link name 'YOUR_DBLINK_NAME' with the dblink name
-- you chose when the database link was created.
--
-- This script performs a test run for the MQSeries gateway. In this
-- script the queuename is 'YOUR_QUEUE_NAME', replace it with a valid
-- queue name at the queue manager the gateway is configured for.
--
-- NOTES
-- Run the script from the SQL*Plus command line.
--
-- Make the sure the user is granted 'EXECUTE' on package dbms_output
--

SET SERVEROUTPUT ON

DECLARE
 objdesc PGM.MQOD;
 msgDesc PGM.MQMD;

Appendix A
MQPUT Procedure

A-17

 putOptions PGM.MQPMO;
 objectHandle PGM.MQOH;
 message raw(255);

BEGIN

 objdesc.OBJECTNAME := 'QUEUE1';
 objdesc.DBLINKNAME := 'dg4mqdepdblink';
 -- Open the queue 'YOUR_QUEUE_NAME' for sending.

 PGM.MQOPEN(objdesc, PGM_SUP.MQOO_OUTPUT, objectHandle);
 -- Put the message buffer on the queue.

 message := '01020304050607080900';

 PGM.MQPUT(objectHandle, msgDesc, putOptions, message);
 -- Print the message we are putting on the queue

 dbms_output.put_line('message put on queue = ' || rawtohex(message));

 -- Close the queue again.

 PGM.MQCLOSE(objectHandle, PGM_SUP.MQCO_NONE);

EXCEPTION

 -- something else went wrong.. tell the user.

 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error: Procedural Gateway for IBM MQSeries
 verification script failed.');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 PGM.MQCLOSE(objectHandle, PGM_SUP.MQCO_NONE);

END;
/

A.5.1 PGM.MQPMO Type Definition
PGM.MQPMO is used to define the mqpmo argument of MQPUT.

It specifies option and control information for processing a message.

You can use the default values for PGM.MQPMO fields or change the fields for the
application requirements. For example, to change a field value:

mqpmo.field_name := field_value

where:

• mqpmo is the PGM.MQPMO data type and specifies option and control information
about how the message is processed and put into a queue.

• field_name is a field name of the PGM.MQPMO type definition. You can set as many
fields as necessary. Refer to Table A-5 for field names and descriptions.

• field_value is the value to assign to field_name. You can specify a value or use
a PGM_SUP constant to assign a value.

Appendix A
MQPUT Procedure

A-18

Table A-5 PGM.MQPMO Fields

Field Name Description PL/SQL Data Type Initial Value

OPTIONS Specifies options to control the MQPUT
procedure. The field is set by adding one
or more of the PGM_SUP definitions.
Refer to "OPTIONS Field".

BINARY_INTEGER PGM.MQPMO_
SYNCPOINT
(Messages placed
on the queue are
coordinated by the
Oracle transaction
coordinator.)

CONTEXT Specifies the object handle of the input
queue. It is only used when the OPTIONS
field has the bit
PGM_SUP.MQPMO_PASS_IDENTITY_
CONTEXT or the bit
PGM_SUP.MQPMO_PASS_ALL_CONTEXT
set.

BINARY_INTEGER Zero

RESOLVEDQNAME Contains the resolved name of the
destination queue. This is an output field
set by the queue manager on return.

CHAR(48) NULL

RESOLVEDQMGRNAME Contains the resolved name of the
queue manager for the queue name
returned in the RESOLVEDQNAME field.
This is an output field set by the queue
manager on return.

CHAR(48) NULL

A.6 PGM_SUP Package
PGM_SUP contains constant and exception definitions to use with the gateway procedures and
PGM type definitions.

Using these values requires extensive knowledge of MQI and WebSphere MQ programming
in general. These definitions follow the MQI definition rules. For complete information about
writing WebSphere MQ applications, refer to the IBM MQSeries Application Programming
Reference.

A.6.1 PGM.MQGMO Values
These topics provide information about PGM.MQGMO values.

A.6.1.1 OPTIONS Field
MQGMO_NO_WAIT constant binary_integer := 0;
MQGMO_NONE constant binary_integer := 0;
MQGMO_WAIT constant binary_integer := 1;
MQGMO_SYNCPOINT constant binary_integer := 2;
MQGMO_NO_SYNCPOINT constant binary_integer := 4;
MQGMO_SET_SIGNAL constant binary_integer := 8;
MQGMO_BROWSE_FIRST constant binary_integer := 16;
MQGMO_BROWSE_NEXT constant binary_integer := 32;
MQGMO_ACCEPT_TRUNCATED_MSG constant binary_integer := 64;
MQGMO_MARK_SKIP_BACKOUT constant binary_integer := 128;
MQGMO_MSG_UNDER_CURSOR constant binary_integer := 256;

Appendix A
PGM_SUP Package

A-19

MQGMO_LOCK constant binary_integer := 512;
MQGMO_UNLOCK constant binary_integer := 1024;
MQGMO_BROWSE_MSG_UNDER_CURSOR constant binary_integer := 2048;
MQGMO_SYNCPOINT_IF_PERSISTENT constant binary_integer := 4096;
MQGMO_FAIL_IF_QUIESCING constant binary_integer := 8192;
MQGMO_CONVERT constant binary_integer := 16384;
MQGMO_LOGICAL_ORDER constant binary_integer := 32768;
MQGMO_COMPLETE_MSG constant binary_integer := 65536;
MQGMO_ALL_MSGS_AVAILABLE constant binary_integer := 131072;
MQGMO_ALL_SEGMENTS_AVAILABLE constant binary_integer := 262144;

A.6.1.2 VERSION Field
MQGMO_VERSION_1 constant binary_integer := 1;
MQGMO_CURRENT_VERSION constant binary_integer := 1;
MQGMO_VERSION_2 constant binary_integer := 2;
MQGMO_VERSION_3 constant binary_integer := 3;

A.6.1.3 MATCHOPTIONS Field
MQMO_DEFAULT constant binary_integer := 3;
MQMO_NONE constant binary_integer := 0;
MQMO_MATCH_MSG_ID constant binary_integer := 1;
MQMO_MATCH_CORREL_ID constant binary_integer := 2;
MQMO_MATCH_GROUP_ID constant binary_integer := 4;
MQMO_MATCH_MSG_SEQ_NUMBER constant binary_integer := 8;
MQMO_MATCH_OFFSET constant binary_integer := 16;
MQMO_MATCH_MSG_TOKEN constant binary_integer := 32;

A.6.1.4 WAITINTERVAL
PGM_SUP.MQWI_UNLIMITED CONSTANT BINARY_INTEGER := -1;
PGM_SUP.MQWI_UNITS CONSTANT BINARY_INTEGER := 1000;

A.6.2 PGM.MQMD Values
These topics provide information about PGM.MQOD values.

A.6.2.1 CODEDCHARSETID Field
PGM_SUP.MQCCSI_DEFAULT CONSTANT BINARY_INTEGER := 0;
PGM_SUP.MQCCSI_Q_MGR CONSTANT BINARY_INTEGER := 0;
PGM_SUP.MQCCSI_EMBEDDED CONSTANT BINARY_INTEGER := -1;

A.6.2.2 ENCODING Field
PGM_SUP.MQENC_NATIVE CONSTANT RAW(4) := '00000111';

A.6.2.3 ENCODING Field, Values for Binary Integers
PGM_SUP.MQENC_INTEGER_UNDEFINED CONSTANT RAW(4) := '00000000';
PGM_SUP.MQENC_INTEGER_NORMAL CONSTANT RAW(4) := '00000001';
PGM_SUP.MQENC_INTEGER_REVERSED CONSTANT RAW(4) := '00000002';

Appendix A
PGM_SUP Package

A-20

A.6.2.4 ENCODING Field, Values for Floating Point Numbers
PGM_SUP.MQENC_FLOAT_UNDEFINED CONSTANT RAW(4) := '00000000';
PGM_SUP.MQENC_FLOAT_IEEE_NORMAL CONSTANT RAW(4) := '00000100';
PGM_SUP.MQENC_FLOAT_IEEE_REVERSED CONSTANT RAW(4) := '00000200';
PGM_SUP.MQENC_FLOAT_S390 CONSTANT RAW(4) := '00000300';

A.6.2.5 ENCODING Field, Mask Values
PGM_SUP.MQENC_INTEGER_MASK CONSTANT RAW(4) := '0000000f';
PGM_SUP.MQENC_DECIMAL_MASK CONSTANT RAW(4) := '000000f0';
PGM_SUP.MQENC_FLOAT_MASK CONSTANT RAW(4) := '00000f00';
PGM_SUP.MQENC_RESERVED_MASK CONSTANT RAW(4) := 'fffff000';

A.6.2.6 ENCODING Field, Values for Packed Decimal Integers
PGM_SUP.MQENC_DECIMAL_UNDEFINED CONSTANT RAW(4) := '00000000';
PGM_SUP.MQENC_DECIMAL_NORMAL CONSTANT RAW(4) := '00000010';
PGM_SUP.MQENC_DECIMAL_REVERSED CONSTANT RAW(4) := '00000020';

A.6.2.7 EXPIRY Field
PGM_SUP.MQEI_UNLIMITED CONSTANT BINARY_INTEGER := -1;
PGM_SUP.MQEI_MIN_EXPIRY CONSTANT BINARY_INTEGER := 0;
PGM_SUP.MQEI_UNITS CONSTANT BINARY_INTEGER := 10;

A.6.2.8 FEEDBACK Field
PGM_SUP.MQFB_NONE CONSTANT BINARY_INTEGER := 0;
PGM_SUP.MQFB_SYSTEM_FIRST CONSTANT BINARY_INTEGER := 1;
PGM_SUP.MQFB_EXPIRATION CONSTANT BINARY_INTEGER := 258;
PGM_SUP.MQFB_COA CONSTANT BINARY_INTEGER := 259;
PGM_SUP.MQFB_COD CONSTANT BINARY_INTEGER := 260;
PGM_SUP.MQFB_QUIT CONSTANT BINARY_INTEGER := 256;
PGM_SUP.MQFB_CHANNEL_COMPLETED CONSTANT BINARY_INTEGER := 262;
PGM_SUP.MQFB_CHANNEL_FAIL_RETRY CONSTANT BINARY_INTEGER := 263;
PGM_SUP.MQFB_CHANNEL_FAIL CONSTANT BINARY_INTEGER := 264;
PGM_SUP.MQFB_APPL_CANNOT_BE_STARTED CONSTANT BINARY_INTEGER := 265;
PGM_SUP.MQFB_TM_ERROR CONSTANT BINARY_INTEGER := 266;
PGM_SUP.MQFB_APPL_TYPE_ERROR CONSTANT BINARY_INTEGER := 267;
PGM_SUP.MQFB_STOPPED_BY_MSG_EXIT CONSTANT BINARY_INTEGER := 268;
PGM_SUP.MQFB_XMIT_Q_MSG_ERROR CONSTANT BINARY_INTEGER := 271;
PGM_SUP.MQFB_SYSTEM_LAST CONSTANT BINARY_INTEGER := 65535;
PGM_SUP.MQFB_APPL_FIRST CONSTANT BINARY_INTEGER := 65536;
PGM_SUP.MQFB_APPL_LAST CONSTANT BINARY_INTEGER := 999999999;

A.6.2.9 FORMAT Field
MQFMT_NONE constant char(8) := ' ';
MQFMT_ADMIN constant char(8) := 'MQADMIN ';
MQFMT_CHANNEL_COMPLETED constant char(8) := 'MQCHCOM ';
MQFMT_CICS constant char(8) := 'MQCICS ';
MQFMT_COMMAND_1 constant char(8) := 'MQCMD1 ';
MQFMT_COMMAND_2 constant char(8) := 'MQCMD2 ';
MQFMT_DEAD_LETTER_HEADER constant char(8) := 'MQDEAD ';
MQFMT_DIST_HEADER constant char(8) := 'MQHDIST ';
MQFMT_EVENT constant char(8) := 'MQEVENT ';

Appendix A
PGM_SUP Package

A-21

MQFMT_IMS constant char(8) := 'MQIMS ';
MQFMT_IMS_VAR_STRING constant char(8) := 'MQIMSVS ';
MQFMT_MD_EXTENTION constant char(8) := 'MQHMDE ';
MQFMT_PCF constant char(8) := 'MQPCF ';
MQFMT_REF_MSG_HEADER constant char(8) := 'MQHREF ';
MQFMT_STRING constant char(8) := 'MQSTR ';
MQFMT_TRIGGER constant char(8) := 'MQTRIG ';
MQFMT_WORK_INFO_HEADER constant char(8) := 'MQHWIH ';
MQFMT_XMIT_Q_HEADER constant char(8) := 'MQXMIT ';

A.6.2.10 MSGTYPE Field
PGM_SUP.MQMT_SYSTEM_FIRST CONSTANT BINARY_INTEGER := 1;
PGM_SUP.MQMT_REQUEST CONSTANT BINARY_INTEGER := 1;
PGM_SUP.MQMT_REPLY CONSTANT BINARY_INTEGER := 2;
PGM_SUP.MQMT_DATAGRAM CONSTANT BINARY_INTEGER := 8;
PGM_SUP.MQMT_REPORT CONSTANT BINARY_INTEGER := 4;
PGM_SUP.MQMT_SYSTEM_LAST CONSTANT BINARY_INTEGER := 65535;
PGM_SUP.MQMT_APPL_FIRST CONSTANT BINARY_INTEGER := 65536;
PGM_SUP.MQMT_APPL_LAST CONSTANT BINARY_INTEGER := 999999999;

A.6.2.11 PERSISTENCE Field
PGM_SUP.MQPER_PERSISTENT CONSTANT BINARY_INTEGER := 1;
PGM_SUP.MQPER_NOT_PERSISTENT CONSTANT BINARY_INTEGER := 0;
PGM_SUP.MQPER_PERSISTENCE_AS_Q_DEF CONSTANT BINARY_INTEGER := 2;

A.6.2.12 PRIORITY Field
PGM_SUP.MQPRI_PRIORITY_AS_Q_DEF CONSTANT BINARY_INTEGER := -1;
PGM_SUP.MQPRI_MIN_PRIORITY CONSTANT BINARY_INTEGER := 0;
PGM_SUP.MQPRI_MAX_PRIORITY CONSTANT BINARY_INTEGER := 9;

A.6.2.13 PUTAPPLTYPE Field
MQAT_UNKNOWN constant binary_integer := -1;
MQAT_NO_CONTEXT constant binary_integer := 0;
MQAT_CICS constant binary_integer := 1;
MQAT_MVS constant binary_integer := 2;
MQAT_OS390 constant binary_integer := 2;
MQAT_IMS constant binary_integer := 3;
MQAT_OS2 constant binary_integer := 4;
MQAT_DOS constant binary_integer := 5;
MQAT_AIX constant binary_integer := 6;
MQAT_UNIX constant binary_integer := 6;
MQAT_QMGR constant binary_integer := 7;
MQAT_OS400 constant binary_integer := 8;
MQAT_WINDOWS constant binary_integer := 9;
MQAT_CICS_VSE constant binary_integer := 10;
MQAT_WINDOWS_NT constant binary_integer := 11;
MQAT_VMS constant binary_integer := 12;
MQAT_GUARDIAN constant binary_integer := 13;
MQAT_NSK constant binary_integer := 13;
MQAT_VOS constant binary_integer := 14;
MQAT_IMS_BRIDGE constant binary_integer := 19;
MQAT_XCF constant binary_integer := 20;
MQAT_CICS_BRIDGE constant binary_integer := 21;
MQAT_NOTES_AGENT constant binary_integer := 22;
MQAT_USER_FIRST constant binary_integer := 65536;

Appendix A
PGM_SUP Package

A-22

MQAT_USER_LAST constant binary_integer := 999999999;
MQAT_DEFAULT constant binary_integer := 6;

A.6.2.14 REPORT Field
MQRO_NEW_MSG_ID constant raw(4) := '00000000';
MQRO_COPY_MSG_ID_TO_CORREL_ID constant raw(4) := '00000000';
MQRO_DEAD_LETTER_Q constant raw(4) := '00000000';
MQRO_NONE constant raw(4) := '00000000';
MQRO_PAN constant raw(4) := '00000001';
MQRO_NAN constant raw(4) := '00000002';
MQRO_PASS_CORREL_ID constant raw(4) := '00000040';
MQRO_PASS_MSG_ID constant raw(4) := '00000080';
MQRO_COA constant raw(4) := '00000100';
MQRO_COA_WITH_DATA constant raw(4) := '00000300';
MQRO_COA_WITH_FULL_DATA constant raw(4) := '00000700';
MQRO_COD constant raw(4) := '00000800';
MQRO_COD_WITH_DATA constant raw(4) := '00001800';
MQRO_COD_WITH_FULL_DATA constant raw(4) := '00003800';
MQRO_EXPIRATION constant raw(4) := '00200000';
MQRO_EXPIRATION_WITH_DATA constant raw(4) := '00600000';
MQRO_EXPIRATION_WITH_FULL_DATA constant raw(4) := '00E00000';
MQRO_EXCEPTION constant raw(4) := '01000000';
MQRO_EXCEPTION_WITH_DATA constant raw(4) := '03000000';
MQRO_EXCEPTION_WITH_FULL_DATA constant raw(4) := '07000000';
MQRO_DISCARD_MSG constant raw(4) := '08000000';

A.6.2.15 VERSION Field
MQMD_VERSION_1 constant binary_integer := 1;
MQMD_VERSION_2 constant binary_integer := 2;
MQMD_CURRENT_VERSION constant binary_integer := 2;

A.6.2.16 Report Field, Mask Values
PGM_SUP.MQRO_REJECT_UNSUP_MASK CONSTANT RAW(4) := '101c0000';
PGM_SUP.MQRO_ACCEPT_UNSUP_MASK CONSTANT RAW(4) := 'efe000ff';
PGM_SUP.MQRO_ACCEPT_UNSUP_IF_XMIT_MASK CONSTANT RAW(4) := '0003ff00';

A.6.3 PGM.MQOD Values
These topics provide information about PGM.MQOD values.

A.6.3.1 OBJECTTYPE Field
PGM_SUP.MQOT_Q CONSTANT BINARY_INTEGER := 1;
PGM_SUP.MQOT_PROCESS CONSTANT BINARY_INTEGER := 3;
PGM_SUP.MQOT_Q_MGR CONSTANT BINARY_INTEGER := 5;
PGM_SUP.MQOT_CHANNEL CONSTANT BINARY_INTEGER := 6;

A.6.3.2 OBJECTTYPE Field, Extended Values
MQOT_ALL constant binary_integer := 1001;
MQOT_ALIAS_Q constant binary_integer := 1002;
MQOT_MODEL_Q constant binary_integer := 1003;
MQOT_LOCAL_Q constant binary_integer := 1004;
MQOT_REMOTE_Q constant binary_integer := 1005;

Appendix A
PGM_SUP Package

A-23

MQOT_SENDER_CHANNEL constant binary_integer := 1007;
MQOT_SERVER_CHANNEL constant binary_integer := 1008;
MQOT_REQUESTER_CHANNEL constant binary_integer := 1009;
MQOT_RECEIVER_CHANNEL constant binary_integer := 1010;
MQOT_CURRENT_CHANNEL constant binary_integer := 1011;
MQOT_SAVED_CHANNEL constant binary_integer := 1012;
MQOT_SVRCONN_CHANNEL constant binary_integer := 1013;
MQOT_CLNTCONN_CHANNEL constant binary_integer := 1014;

A.6.3.3 VERSION Field
MQOD_VERSION_1 constant binary_integer := 1;
MQOD_VERSION_2 constant binary_integer := 2;
MQOD_CURRENT_VERSION constant binary_integer := 2;

A.6.4 PGM.MQPMO Values
These topics provide information about PGM.MQPMO values.

A.6.4.1 OPTIONS Field
MQPMO_NONE constant binary_integer := 0;
MQPMO_SYNCPOINT constant binary_integer := 2;
MQPMO_NO_SYNCPOINT constant binary_integer := 4;
MQPMO_DEFAULT_CONTEXT constant binary_integer := 32;
MQPMO_NEW_MSG_ID constant binary_integer := 64;
MQPMO_NEW_CORREL_ID constant binary_integer := 128;
MQPMO_PASS_IDENTITY_CONTEXT constant binary_integer := 256;
MQPMO_PASS_ALL_CONTEXT constant binary_integer := 512;
MQPMO_SET_IDENTITY_CONTEXT constant binary_integer := 1024;
MQPMO_SET_ALL_CONTEXT constant binary_integer := 2048;
MQPMO_ALTERNATE_USER_AUTHORITY constant binary_integer := 4096;
MQPMO_FAIL_IF_QUIESCING constant binary_integer := 8192;
MQPMO_NO_CONTEXT constant binary_integer := 16384;
MQPMO_LOGICAL_ORDER constant binary_integer := 32768;

A.6.4.2 VERSION Field
MQPMO_VERSION_1 constant binary_integer := 1;
MQPMO_VERSION_2 constant binary_integer := 2;
MQPMO_CURRENT_VERSION constant binary_integer := 2;

A.6.5 MQCLOSE Values
These topics provide information about MQCLOSE values.

A.6.5.1 hobj Argument
PGM_SUP.MQHO_UNUSABLE_HOBJ CONSTANT BINARY_INTEGER := -1;

A.6.5.2 options Argument
PGM_SUP.MQCO_NONE CONSTANT BINARY_INTEGER := 0;
PGM_SUP.MQCO_DELETE CONSTANT BINARY_INTEGER := 1;
PGM_SUP.MQCO_DELETE_PURGE CONSTANT BINARY_INTEGER := 2;

Appendix A
PGM_SUP Package

A-24

A.6.6 MQOPEN Values
These topics provide information about MQOPEN values.

A.6.6.1 options Argument
MQOO_BIND_AS_Q_DEF constant binary_integer := 0;
MQOO_INPUT_AS_Q_DEF constant binary_integer := 1;
MQOO_INPUT_SHARED constant binary_integer := 2;
MQOO_INPUT_EXCLUSIVE constant binary_integer := 4;
MQOO_BROWSE constant binary_integer := 8;
MQOO_OUTPUT constant binary_integer := 16;
MQOO_INQUIRE constant binary_integer := 32;
MQOO_SET constant binary_integer := 64;
MQOO_SAVE_ALL_CONTEXT constant binary_integer := 128;
MQOO_PASS_IDENTITY_CONTEXT constant binary_integer := 256;
MQOO_PASS_ALL_CONTEXT constant binary_integer := 512;
MQOO_SET_IDENTITY_CONTEXT constant binary_integer := 1024;
MQOO_SET_ALL_CONTEXT constant binary_integer := 2048;
MQOO_ALTERNATE_USER_AUTHORITY constant binary_integer := 4096;
MQOO_FAIL_IF_QUIESCING constant binary_integer := 8192;
MQOO_BIND_ON_OPEN constant binary_integer := 16384;
MQOO_BIND_NOT_FIXED constant binary_integer := 32768;
MQOO_RESOLVE_NAMES constant binary_integer := 65536;

A.6.7 Maximum Lengths for Fields of PGM Type Definitions
These constants contain the maximum lengths allowed for fields used by the PGM Type
Definitions.

For example, the constant PGM_SUP.MQ_ACCOUNTING_TOKEN_LENGTH specifies that the
maximum length for PGM.MQMD.ACCOUNTINGTOKEN is 32 characters.

MQ_ABEND_CODE_LENGTH constant binary_integer := 4;
MQ_ACCOUNTING_TOKEN_LENGTH constant binary_integer := 32;
MQ_APPL_IDENTITY_DATA_LENGTH constant binary_integer := 32;
MQ_APPL_ORIGIN_DATA_LENGTH constant binary_integer := 4;
MQ_ATTENTION_ID_LENGTH constant binary_integer := 4;
MQ_AUTHENTICATOR_LENGTH constant binary_integer := 8;
MQ_CANCEL_CODE_LENGTH constant binary_integer := 4;
MQ_CLUSTER_NAME_LENGTH constant binary_integer := 48;
MQ_CORREL_ID_LENGTH constant binary_integer := 24;
MQ_CREATION_DATE_LENGTH constant binary_integer := 12;
MQ_CREATION_TIME_LENGTH constant binary_integer := 8;
MQ_DATE_LENGTH constant binary_integer := 12;
MQ_EXIT_NAME_LENGTH constant binary_integer := 128;
MQ_FACILITY_LENGTH constant binary_integer := 8;
MQ_FACILITY_LIKE_LENGTH constant binary_integer := 4;
MQ_FORMAT_LENGTH constant binary_integer := 8;
MQ_FUNCTION_LENGTH constant binary_integer := 4;
MQ_GROUP_ID_LENGTH constant binary_integer := 24;
MQ_LTERM_OVERRIDE_LENGTH constant binary_integer := 8;
MQ_MFS_MAP_NAME_LENGTH constant binary_integer := 8;
MQ_MSG_HEADER_LENGTH constant binary_integer := 4000;
MQ_MSG_ID_LENGTH constant binary_integer := 24;
MQ_MSG_TOKEN_LENGTH constant binary_integer := 16;
MQ_NAMELIST_DESC_LENGTH constant binary_integer := 64;
MQ_NAMELIST_NAME_LENGTH constant binary_integer := 48;

Appendix A
PGM_SUP Package

A-25

MQ_OBJECT_INSTANCE_ID_LENGTH constant binary_integer := 24;
MQ_NAME_LENGTH constant binary_integer := 48;
MQ_PROCESS_APPL_ID_LENGTH constant binary_integer := 256;
MQ_PROCESS_DESC_LENGTH constant binary_integer := 64;
MQ_PROCESS_ENV_DATA_LENGTH constant binary_integer := 128;
MQ_PROCESS_NAME_LENGTH constant binary_integer := 48;
MQ_PROCESS_USER_DATA_LENGTH constant binary_integer := 128;
MQ_PUT_APPL_NAME_LENGTH constant binary_integer := 28;
MQ_PUT_DATE_LENGTH constant binary_integer := 8;
MQ_PUT_TIME_LENGTH constant binary_integer := 8;
MQ_Q_DESC_LENGTH constant binary_integer := 64;
MQ_Q_MGR_DESC_LENGTH constant binary_integer := 64;
MQ_Q_MGR_IDENTIFIER_LENGTH constant binary_integer := 48;
MQ_Q_MGR_NAME_LENGTH constant binary_integer := 48;
MQ_Q_NAME_LENGTH constant binary_integer := 48;
MQ_REMOTE_SYS_ID_LENGTH constant binary_integer := 4;
MQ_SERVICE_NAME_LENGTH constant binary_integer := 32;
MQ_SERVICE_STEP_LENGTH constant binary_integer := 8;
MQ_START_CODE_LENGTH constant binary_integer := 4;
MQ_STORAGE_CLASS_LENGTH constant binary_integer := 8;
MQ_TIME_LENGTH constant binary_integer := 8;
MQ_TRAN_INSTANCE_ID_LENGTH constant binary_integer := 16;
MQ_TRANSACTION_ID_LENGTH constant binary_integer := 4;
MQ_TP_NAME_LENGTH constant binary_integer := 64;
MQ_TRIGGER_DATA_LENGTH constant binary_integer := 64;
MQ_USER_ID_LENGTH constant binary_integer := 12;

A.6.8 Error Code Definitions
This topic describes some error code definitions.

Error Code -29400: Data Cartridge Error

This error code indicates that the MQI opcode implemented in DG4MQ fails. Refer to
IBM WebSphere reference manual for information about the cause by looking up the
opcode and its completion code and reason code.

MQI opcode failed. completion code=xxxx. reason code=xxxx.

Example A-3 test.sql

--
-- Copyright Oracle, 2005 All Rights Reserved.
--
-- NAME
-- test.sql
--
-- DESCRIPTION
--
-- Specify the database link name you created for the gateway. To do this,
-- replace the database link name 'YOUR_DBLINK_NAME' with the dblink name
-- you chose when the database link was created.
--
-- This script performs a test run for the MQSeries gateway. In this
-- script the queuename is 'YOUR_QUEUE_NAME', replace queuename with
-- a valid queue name at the queue manager the gateway is configured
-- for.
--
-- First the script puts a raw message of 10 bytes on the specified
-- queue.

Appendix A
PGM_SUP Package

A-26

--
-- When successfully completed the put operation, the script does a
-- get on the same queue to read the message back.
--
-- The contents of both messages put and retrieved from the queue are
-- printed to standard out for verification by the user.
--
-- NOTES
-- Run the script from the SQL*Plus command line.
--
-- Make the sure the user is granted 'EXECUTE' on package dbms_output
--

set serveroutput on

declare

 objdesc PGM.MQOD;
 hobj PGM.MQOH;
 msgdesc PGM.MQMD;
 putmsgopts PGM.MQPMO;
 getmsgopts PGM.MQGMO;
 options binary_integer;
 putbuffer raw(10) := '10203040506070809000';
 getbuffer raw(10);

begin

 --
 -- Print the message we are putting on the queue
 --

 dbms_output.put_line('message put on queue = ' || rawtohex(putbuffer));

 --
 -- Specify queue name and dblink name (replace with proper names).
 --
 objdesc.objectname := 'YOUR_QUEUE_NAME';
 objdesc.dblinkname := 'YOUR_DBLINK_NAME';

 --
 -- Specify a put operation.
 --

 options := pgm_sup.MQOO_OUTPUT;

 --
 -- Open the queue.
 --

 PGM.MQOPEN(objdesc, options, hobj);

 --
 -- Put the message buffer on the queue.
 --

 PGM.MQPUT(hobj, msgdesc, putmsgopts, putbuffer);

 --
 -- Define close options.
 --

Appendix A
PGM_SUP Package

A-27

 options := pgm_sup.MQCO_NONE;

 --
 -- Close queue.
 --

 PGM.MQCLOSE(hobj, options);

 --
 -- Specify a get operation.
 --

 options := pgm_sup.MQOO_INPUT_AS_Q_DEF;

 --
 -- Open queue.
 --

 PGM.MQOPEN(objdesc, options, hobj);

 --
 -- Get message from the queue.
 --

 getmsgopts.msglength := 10;
 PGM.MQGET(hobj, msgdesc, getmsgopts, getbuffer);

 --
 -- Define close options.
 --

 options := pgm_sup.MQCO_NONE;

 --
 -- Close the queue again.
 --

 PGM.MQCLOSE(hobj, options);

 --
 -- Print the result
 --

 dbms_output.put_line('message read back = ' || rawtohex(getbuffer));

exception

 --
 -- When no more messages... tell the user and close the queue.
 --

 when pgm_sup.NO_MORE_MESSAGES then
 dbms_output.put_line('Warning: No message found on the queue');
 options := pgm_sup.MQCO_NONE;
 PGM.MQCLOSE(hobj, options);

 --
 -- something else went wrong.. tell the user.
 --
 when others then

Appendix A
PGM_SUP Package

A-28

 dbms_output.put_line('Error: Procedural Gateway for IBM MQSeries verification
 script failed.');
 dbms_output.put_line(SQLERRM);

end;
/

Appendix A
PGM_SUP Package

A-29

B
UTL_RAW Package

Use the Oracle Visual Workbench for developing applications that access WebSphere MQ
through the gateway. The Oracle Visual Workbench defines an interface for accessing
WebSphere MQ and automatically generates the PL/SQL code (the MIP) for Oracle
applications to interface with the gateway. Refer to the Oracle Procedural Gateway Visual
Workbench for WebSphere MQ Installation and User's Guide for Microsoft Windows (32-Bit)
for more information about Oracle Visual Workbench.

B.1 Message Data Types
Messages sent to a WebSphere MQ queue or retrieved from a WebSphere MQ queue are
transferred as untyped data by the MIP procedures.

When data profiles are defined in the MIP, the MIP converts message data from Oracle data
types to target data types that the receiving application understands. The message data is
packed into a buffer of the RAW data type before being sent to the WebSphere MQ queue. The
same conversion process applies when receiving a message. The MIP unpacks the message
from the buffer and converts it to specified Oracle data types.

The MIP uses the functions of the UTL_RAW package to perform the message data
conversions. The UTL_RAW package is a PL/SQL package that contains procedures for
converting and packing message data which is sent back and forth through the WebSphere
MQ queues using the RAW data type and PL/SQL data types.

When necessary, you can enhance the message data conversions in the generated MIP with
the UTL_RAW functions. When no data profiles are defined in the MIP, you can create your own
data conversion procedures with UTL_RAW functions, calling these functions before sending a
message and immediately after receiving a message.

The UTL_RAW package is not included with the gateway. It is shipped with each Oracle
database. Refer to your Oracle DBA for information about installing the UTL_RAW package.

B.2 UTL_RAW Functions
This topic describes the UTL_RAW functions.

The UTL_RAW functions are called with the following syntax:

UTL_RAW.function(arg1, arg2, ...)

The function name, arguments, their Oracle data types, and the return value data type are
provided with each function description in this appendix. For ease of description, the
functions are described with PL/SQL syntax that shows the resulting function value placed in
a variable as follows:

result := UTL_RAW.function(arg1, arg2, ...);

However, the function can also be used as a component in a PL/SQL expression. For
example, the function takes two characters strings, Hello and world!, converts them to raw

B-1

message data with UTL_RAW.CAST_TO_RAW, concatenates them with UTL_RAW.CONCAT,
and uses the gateway to send them to a WebSphere MQ queue. The same message
is retrieved from the queue, converted to a character data type with
UTL_RAW.CAST_TO_VARCHAR2, and then printed.

B.2.1 UTL_RAW.TO_RAW
PGM_UTL.TO_RAW converts values of the PGM.MQOD, PGM.MQMD, PGM.MQPMO and PGM.MQGMO
object to into raw values.

Syntax

result := PGM_UTL.TO_RAW(input);

where:

• result is a variable that holds the output value of the function. It is of the RAW data
type.

• input is the input value of the PGM.MQOD, PGM.MQMD, PGM.MQPMO or PGM.MQGMO data type
objects that is converted to raw data.

B.2.2 UTL_RAW.BIT_AND
UTL_RAW.BIT_AND performs a bitwise logical AND operation on two raw values. If the
values have different lengths, then the AND operation is terminated after the last byte of
the shorter of the two values. The unprocessed portion of the longer value is
appended to the partial result to produce the final result. The length of the resulting
value equals the longer of the two input values.

Syntax

result := UTL_RAW.BIT_AND(input1, input2);

where:

• result is the variable that holds the output value of the function. It is data type
RAW. The value is null if input1 or input2 is null.

• input1 is an input value of data type RAW to BIT_AND with input2.

• input2 is an input value of data type RAW to BIT_AND with input1.

B.2.3 UTL_RAW.BIT_COMPLEMENT
UTL_RAW.BIT_COMPLEMENT performs a bitwise logical COMPLEMENT operation of a raw
value. The length of the resulting value equals the length of the input value.

Syntax

result := UTL_RAW.BIT_COMPLEMENT(input);

where:

• result is the variable that holds the output value of the function. It is of RAW data
type. The value is null if input is null.

Appendix B
UTL_RAW Functions

B-2

• input is an input value of the RAW data type on which to perform the COMPLEMENT
operation.

B.2.4 UTL_RAW.BIT_OR
UTL_RAW.BIT_OR performs a bitwise logical OR operation of two raw values. If the values have
different lengths, then the OR operation is terminated after the last byte of the shorter of the
two values. The unprocessed portion of the longer value is appended to the partial result to
produce the final result. The length of the resulting value equals the length of the longer of
the two input values.

Syntax

result := UTL_RAW.BIT_OR(input1, input2);

where:

• result is the variable that holds the output value of the function. It is of the data type RAW.
The value is null if input1 or input2 is null.

• input1 is an input value of the RAW data type to BIT_OR with input2.

• input2 is an input value of the RAW data type to BIT_OR with input1.

B.2.5 UTL_RAW.BIT_XOR
UTL_RAW.BIT_XOR performs a bitwise logical EXCLUSIVE OR operation of two raw values. If the
values have different lengths, then the EXCLUSIVE OR operation is terminated after the last
byte of the shorter of the two values. The unprocessed portion of the longer value is
appended to the partial result to produce the final result. The length of the resulting value
equals the longer of the two input values.

Syntax

result := UTL_RAW.BIT_XOR(input1, input2);

where:

• result is the variable that holds the output value of the function. It is data type RAW. The
value is null if input1 or input2 is null.

• input1 is an input value of the RAW data type to EXCLUSIVE OR with input2.

• input2 is an input value of the RAW data type to EXCLUSIVE OR with input1.

B.2.6 UTL_RAW.CAST_TO_RAW
UTL_RAW.CAST_TO_RAW converts a value of data type VARCHAR2 into a raw value with the same
number of bytes. The input value is treated as if it were composed of single 8-bit bytes, not
characters. Multibyte character boundaries are ignored. The data is not modified in any way,
it is only changed to data type RAW.

Syntax

result := UTL_RAW.CAST_TO_RAW(input);

where:

Appendix B
UTL_RAW Functions

B-3

• result is the variable that holds the output value of the function. It is data type
RAW. The value is null if input is null.

• input is the input value of the VARCHAR2 data type to convert to raw data.

B.2.7 UTL_RAW.CAST_TO_VARCHAR2
UTL_RAW.CAST_TO_VARCHAR2 converts a raw value into a value of data type VARCHAR2
with the same number of data bytes. The result is treated as if it were composed of
single 8-bit bytes, not characters. Multibyte character boundaries are ignored. The
data is not modified in any way, it is only changed to data type VARCHAR2.

Syntax

result := UTL_RAW.CAST_TO_VARCHAR2(input);

where:

• result is the variable that holds the output value of the function. It is data type
VARCHAR2. The value is null if input is null.

• input is the input value of the RAW data type to convert to data type VARCHAR2.

B.2.8 UTL_RAW.COMPARE
UTL_RAW.COMPARE compares one raw value to another raw value. If they are identical,
then UTL_RAW.COMPARE returns 0. If they are not identical, then COMPARE returns the
position of the first byte that does not match. If the input values have different lengths,
then the shorter input value is padded on the right by a value that you specify.

Syntax

result := UTL_RAW.COMPARE(input1, input2[, pad]);

where:

• result is the variable that holds the output value of the function. It is of data type
NUMBER. A value of 0 is returned if the values of input1 and input2 are null or
identical or the position, numbered from 1, of the first mismatched byte.

• input1 is the first input value of the RAW data type to compare.

• input2 is the second input value of the RAW data type to compare.

• padis a single byte value used to pad the shorter input value. The default is X'00'.

B.2.9 UTL_RAW.CONCAT
UTL_RAW.CONCAT concatenates a set of up to 12 raw values into a single raw value.
The values are appended together, left to right, in the order that they appear in the
parameter list. Null input values are skipped, and the concatenation continues with the
next non-null value.

If the sum of the lengths of the input values exceeds 32 767 bytes, then a VALUE_ERROR
exception is raised.

Appendix B
UTL_RAW Functions

B-4

Syntax

result := UTL_RAW.CONCAT(input1, ... input12);

where:

• result is the variable that holds the output value of the function. It is data type RAW.

• input1 ... input12 are the input values of RAW data type to concatenate.

B.2.10 UTL_RAW.CONVERT
UTL_RAW.CONVERT converts a raw value to a different character set A VALUE_ERROR exception is
raised for any of the following conditions:

• The input value is null or 0 in length

• One or both of the specified character sets is missing, null, or 0 in length

• The character set names are invalid or unsupported by the Oracle database

Syntax

result := UTL_RAW.CONVERT(input, new_charset, old_charset);

where:

• result is the variable that holds the output value of the function. It is of the RAW data type.

• input is the input value of the RAW data type to convert.

• new_charset is the Globalization Support character set to convert input to.

• old_charset is the Globalization Support character set that input is currently using.

B.2.11 UTL_RAW.COPIES
UTL_RAW.COPIES returns one or more copies of a value. The values are concatenated
together. A VALUE_ERROR exception is raised for any of the following conditions:

• The input value is null or has a length of 0

• A negative number of copies is specified

• The length of the result exceeds 32 767 bytes

Syntax

result := UTL_RAW.COPIES(input, number);

where:

• result is the variable that holds the output value of the function. It is of the RAW data type.

• input is a value of the RAW data type to copy.

• number is the number of times to copy input. It must be a positive value.

Appendix B
UTL_RAW Functions

B-5

B.2.12 UTL_RAW.LENGTH
UTL_RAW.LENGTH returns the length, in bytes, of a raw value.

Syntax

result := UTL_RAW.LENGTH(input);

where:

• result is the output value of the function. It is of the NUMBER data type.

• input is the input value of the RAW data type to evaluate.

B.2.13 UTL_RAW.OVERLAY
UTL_RAW.OVERLAY replaces a portion of a raw value with a new string of raw data. If the
new data is shorter than the length of the overlay area, then the new data is padded to
make it long enough. If the new data is longer than the overlay area, then the extra
bytes are ignored. If you specify an overlay area that exceeds the length of the input
value, then the input value is extended according to the length specified. If you specify
a starting position for the overlay area that exceeds the length of the input value, then
the input value is padded to the position specified, and then the input value is further
extended with the new data.

A VALUE_ERROR exception is raised for any of the following conditions:

• The new data used to overlay the input value is null or has a length of 0

• The portion of the input value to overlay is not defined

• The length of the portion to overlay exceeds 32 767 bytes

• The number of bytes to overlay is defined as less than 0

• The position within the input value to begin the overlay operation is defined as less
than 1

Syntax

result := UTL_RAW.OVERLAY(new_bytes, input, position, length, pad);

where:

• result is the variable that holds the output value of the function. It is of the RAW
data type.

• new_bytes is the new value, a byte string of the RAW data type, to overlay input
with. Bytes are selected from new_bytes beginning with the leftmost byte.

• input is the input value of data type RAW to overlay.

• position is the position within input, numbered from 1, at which to begin
overlaying. This value must be greater than 0. The default is 1.

• length is the number of bytes to overlay. This must be greater than, or equal to,
0. The default is the length of new_bytes.

• pad is a single byte value used to pad when length exceeds the overlay length or
when position exceeds the length of input. The default is X'00'.

Appendix B
UTL_RAW Functions

B-6

B.2.14 UTL_RAW.REVERSE
UTL_RAW.REVERSE reverses the byte sequence of a raw value from end-to-end. For example,
this function reverses X'0102F3' to X'F30201' or xyz to zyx. The length of the resulting value
is the same length as the input value. A VALUE_ERROR exception is raised if the input value is
null or has a length of 0.

Syntax

result := UTL_RAW.REVERSE(input);

where:

• result is the output value of the function. It is of the RAW data type.

• input is the input value of the RAW data type to be reversed.

B.2.15 UTL_RAW.SUBSTR
UTL_RAW.SUBSTR removes bytes from a raw value. If you specify a positive number as the
starting point for the bytes to remove, then SUBSTR counts from the beginning of the input
value to find the first byte. If you specify a negative number, then UTL_RAW.SUBSTR counts
backwards from the end of the input value to find the first byte.

A VALUE_ERROR exception is raised for any of the following conditions:

• The position to begin the removal is specified as 0

• The number of bytes to remove is specified as less than 0

Syntax

result := UTL_RAW.SUBSTR(input, position[,length]);

where:

• result is the variable that holds the output value of the function. It is of the RAW data
type. The value is the specified byte or bytes from input, or the value is a null value if
input is null.

• input is the input value of the RAW data type from which to extract a portion of its bytes.

• position is the byte position from which to start extraction. This value cannot be 0. If the
value of position is negative, then SUBSTR counts backwards from the end of input.

• length is the number of bytes to extract from input after position. This value must be
greater than 0. When not specified, all bytes to the end of input are returned.

B.2.16 UTL_RAW.TRANSLATE
UTL_RAW.TRANSLATE changes the value of some of the bytes in a raw value according to a
scheme that you specify. Bytes in the input value are compared to a matching string, and
when found to match, the byte at the same position in the replacement string is copied to the
result. It is omitted from the result if the offset exceeds the length of the replacement
string. Bytes in the input value that do not appear in the matching string are copied to the
resulting value. Only the leftmost occurrence of a byte in the matching string is used, and
subsequent duplicate occurrences are ignored.

Appendix B
UTL_RAW Functions

B-7

If the matching string contains more bytes than the replacement string, then the extra
bytes at the end of the matching string have no corresponding bytes in the
replacement string. Any bytes in the input value that match such bytes are omitted
from the resulting value.

A VALUE_ERROR exception is raised for any of the following conditions:

• The input value is null or has a length of 0

• The matching string is null or has a length of 0

• The replacement string is null or has a length of 0

Syntax

result := UTL_RAW.TRANSLATE(input, match, replace_bytes);

where:

• result is the variable that holds the output value of the function. It is of data type
RAW.

• input is the input value of data type RAW to change.

• match specifies the byte 0codes to search for in input and to change to
replace_bytes. It is of data type RAW.

• replace_bytes specifies the byte codes that replace the codes specified by
match. It is of data type RAW.

B.2.17 UTL_RAW.TRANSLITERATE
UTL_RAW.TRANSLITERATE replaces all occurrences of any bytes in a matching string with
the corresponding bytes of a replacement string. Bytes in the input value are
compared to the matching string, and if they are not found, then they are copied
unaltered to the resulting value. If they are found, then they are replaced in the
resulting value by the byte at the same offset in the replacement string, or with the pad
byte that you specify when the offset exceeds the length of the replacement string.
Only the leftmost occurrence of a byte in the matching string is used. Subsequent
duplicate occurrences are ignored. The result value of UTL_RAW.TRANSLITERATE is
always the same length as the input value.

If the replacement string is shorter than the matching string, then the pad byte is
placed in the resulting value when a selected matching string byte has no
corresponding byte in the replacement string. A VALUE_ERROR exception is raised
when the input value is null or has a length of 0.

UTL_RAW.TRANSLITERATE differs from UTL_RAW.TRANSLATE in the following ways:

• Bytes in the input value that are undefined in the replacement string are padded
with a value that you specify

• The resulting value is always the same length as the input value

Syntax

result := UTL_RAW.TRANSLITERATE (input, replace_bytes, match, pad);

where:

Appendix B
UTL_RAW Functions

B-8

• Result is the output value of the function. It is data type RAW.

• Input is the input value of data type RAW to change.

• Replace_bytes specifies the byte codes to which corresponding bytes of match are
changed. This value can be any length that is valid for the RAW data type. The default is
a null value and effectively extends with pad to the length of match as necessary.

• Match specifies the byte codes to match in input. The value can be any length that is
valid for the RAW data type. The default is X'00' through X'FF'.

• Pad is a singe byte value that is used to extend the length of replace_bytes when
replace_bytes is shorter than match. The default is X'00'.

UTL_RAW.TRANSLATE differs from the UTL_RAW.TRANSLITERATE function in the following
ways:

– The raw values used for the matching and replacement strings have no default
values

– Bytes in the input value that are undefined in the replacement string are omitted in
the resulting value

– The resulting value can be shorter than the input value

B.2.18 UTL_RAW.XRANGE
UTL_RAW.XRANGE returns a raw value containing all valid one-byte codes within a range that
you specify. If the starting byte value is greater than the ending byte value, then the
succession of resulting bytes begin with the starting byte, wrapping from X'FF' to X'00', and
end at the ending byte.

When specified, the values for the starting and ending bytes must be single-byte raw values.

Syntax

result := UTL_RAW.XRANGE(start, end);

where:

• result is the output value of the function. It is of data type RAW.

• start is a single byte code to start with. The default is X'00'.

• end is a single byte code to end with. The default is X'FF'.

Appendix B
UTL_RAW Functions

B-9

C
Oracle Database Gateway for WebSphere
MQ Initialization Parameters

The Oracle Database Gateway for WebSphere MQ has its own initialization parameters,
which are described in this the following topics, and supports the initialization parameters for
Oracle Database Gateways.

C.1 Gateway Initialization File
The gateway initialization file is called initsid.ora.

A default initialization file is created in the directory ORACLE_HOME\dg4mq\admin on Microsoft
Windows and ORACLE_HOME/dg4mq/admin on UNIX based systems during the installation of
the Oracle Database Gateway for WebSphere MQ.

C.2 Gateway Parameters
These topics describe gateway parameters, listing the default value, range of values, and the
syntax for usage.

C.2.1 LOG_DESTINATION
The following table describes the LOG_DESTINATION parameter:

LOG_DESTINATION Use

Syntax LOG_DESTINATION = log_file

Default value SID_agt_PID.trc (PID is the process ID of the gateway)

Range of values None

LOG_DESTINATION specifies the full path name of the gateway log file.

C.2.2 AUTHORIZATION_MODEL
The following table describes how to use the AUTHORIZATION_MODEL parameter:

AUTHORIZATION_MODEL Use

Syntax AUTHORIZATION_MODEL = {RELAXED|STRICT}
Default value RELAXED
Range of values RELAXED or STRICT

C-1

AUTHORIZATION_MODEL defines the authorization model for the gateway user. The
relaxed model specifies that authorizations that are granted to the effective user ID of
the gateway by the queue manager are the only associations that an Oracle
application has.

The strict model specifies that the Oracle user ID and password (that are provided
when a database link is created), or the current user ID and password (when the
Oracle user ID and password are not provided), should be checked against the local or
network password file.

Refer to "Security Models" for more information about effective user IDs.

C.2.3 QUEUE_MANAGER
The following table describes the QUEUE_MANAGER parameter:

QUEUE_MANAGER Use

Syntax QUEUE_MANAGER = manager_name

Default value None

Range of values None

QUEUE_MANAGER, a required parameter, specifies the name of the queue manager that
the gateway connects to at logon time. The effective user ID of the gateway should
have the correct user privileges or should be authorized to connect to this queue
manager. Specify manager_name using the following rules:

• 1 to 48 alphanumeric characters in length

• No leading or embedded blank characters

• Trailing blank characters are permitted

Refer to "Security Models" for more information about effective user IDs.

C.2.4 TRACE_LEVEL
The following table describes the TRACE_LEVEL parameter:

TRACE_LEVEL Use

Syntax TRACE_LEVEL = level

Default value 0
Range of values 0 to 7

TRACE_LEVEL controls whether tracing information is collected as the gateway runs.
When set to collect information, the trace data is written to the log file that is specified
by the LOG_DESTINATION parameter. Specify level as an integer from 0 to 3, which is
the sum of the desired trace values. The following table describes the significance of
these values:

Trace Level Description

0 Specifies that no tracing is to be done.

Appendix C
Gateway Parameters

C-2

Trace Level Description

1 Specifies that general tracing is to be done. This includes the
user ID that is used to log on to the WebSphere MQ queue
manager, the name of the queue manager, the gateway
transaction mode, security mode, and so on.

2 Specifies that tracing is to be done for all MQI calls that are
issued by the gateway.

3 Specifies that tracing is to be done for all parameter values
that are passed to, or received from, the MQI calls that were
issued by the gateway.

For more information about MQI calls.

See Also:

Refer to IBM publications, for more information about MQI calls.

C.2.5 TRANSACTION_LOG_QUEUE
The following table describes how to use TRANSACTION_LOG_QUEUE.

TRANSACTION_LOG_QUEUE Description

Syntax TRANSACTION_LOG_QUEUE = tx_queue_name

Default value None

Range of values None

TRANSACTION_LOG_QUEUE specifies the name of the queue for logging transaction IDs. Specify
tx_queue_name using the following rules:

• 1 to 48 alphanumeric characters in length

• No leading or embedded blank characters

• Trailing blank characters are permitted

Refer to "Creating a Transaction Log Queue" for more information.

C.2.6 TRANSACTION_MODEL
The following table describes how to use TRANSACTION_MODEL.

TRANSACTION_MODEL Description

Syntax TRANSACTION_MODEL = {COMMIT_CONFIRM|SINGLE_SITE}

Default value SINGLE_SITE
Range of values COMMIT_CONFIRM or SINGLE_SITE

Appendix C
Gateway Parameters

C-3

TRANSACTION_MODEL defines the transaction mode of the gateway. Specify a value for
TRANSACTION_MODEL as described in the following table:

Item Description

COMMIT_CONFIRM Specifies that the gateway can participate in transactions
when queues belonging to the same WebSphere queue
manager are updated. At the same time, any number of
Oracle databases are updated. Only one gateway with the
commit-confirm model can join the distributed transaction,
because the gateway operates as the focal point of the
transaction.

When this value is specified, you must also set the
RECOVERY_USER, RECOVERY_PASSWORD, and
TRANSACTION_LOG_QUEUE parameters.

SINGLE_SITE Specifies that the gateway can participate in a transaction
only when queues belonging to the same WebSphere queue
manager are updated. An Oracle application can select, but
not update, data at any Oracle database within the same
transaction that accesses WebSphere MQ.

C.2.7 TRANSACTION_RECOVERY_PASSWORD
The following table describes TRANSACTION_RECOVERY_PASSWORD.

TRANSACTION_RECOVERY_PA
SSWORD

Description

Default value *
Range of values An asterisk (*), which indicates that the parameter must be

encrypted, or any valid password

Syntax TRANSACTION_RECOVERY_PASSWORD = rec_password
or

TRANSACTION_RECOVERY_PASSWORD = *

TRANSACTION_RECOVERY_PASSWORD specifies the password of the user that the gateway
uses to start recovery of a transaction. The default value is set to an asterisk (*), and
this asterisk indicates that the value of this parameter is stored in an encrypted form in
a separate password file. To specify or change a valid password for encrypted
gateway parameters, you need to use the dg4pwd gateway utility to do the work. For
more information, refer to "Using the dg4pwd Utility".

The TRANSACTION_RECOVERY_PASSWORD parameter is required only when
TRANSACTION_MODEL is set to COMMIT_CONFIRM. Refer to "Creating a Transaction Log
Queue" for more information.

Passwords in the Gateway Initialization File

The gateway uses user IDs and passwords to access information in the remote
database on the WebSphere MQ server. Some user IDs and passwords must be
defined in the gateway initialization file to handle functions such as resource recovery.
In a security-conscious environment, plain-text passwords are regarded as insecure
when they are accessible in the initialization file. A new encryption feature has been
added to the gateway to make such passwords more secure. The dg4pwd utility can be

Appendix C
Gateway Parameters

C-4

used to encrypt passwords that would normally be stored in the gateway initialization file.
Using this feature is optional, but highly recommended by Oracle. With this feature,
passwords are no longer stored in the initialization file but are stored in a password file in an
encrypted form. This makes the password information more secure.

Using the dg4pwd Utility

The dg4pwd utility is used to encrypt passwords that would normally be stored in the gateway
initialization file. The utility works by reading the initialization file and looks for parameters
with a special value. The value is the asterisk (*). The asterisk indicates that the value of this
parameter is stored in an encrypted form in another file. The following sample is a section of
the initialization file with this value.

TRANSACTION_RECOVERY_PASSWORD=*

The initialization file is first edited to set the value of the parameter to the asterisk (*). Then
the dg4pwd utility is run, specifying the gateway SID on the command line. The utility reads
the initialization file and prompts the user to enter the values to be encrypted.

The syntax of this command is:

dg4pwd gateway_sid

In this command, gateway_sid is the SID of the gateway.

The following is an example, assuming that the gateway SID is dg4mqs:

% dg4pwd dg4mqs
ORACLE Gateway Password Utility (dg4mqseries) Constructing password file for
Gateway SID dg4mqs
Enter the value for TRANSACTION_RECOVERY_PASSWORD
welcome
%

In this example, the TRANSACTION_RECOVERY_PASSWORD parameter is identified as requiring
encryption. The user enters the value (for example, welcome) and presses the Enter key. If
more parameters require encryption, then you are prompted for their values. The encrypted
data is stored in the dg4mq\admin directory on Microsoft Windows and dg4mq/admin directory
on UNIX based systems.

Note:

It is important that the ORACLE_HOME environment variable specifies the correct
gateway home to ensure that the correct gateway initialization file is read.

C.2.8 TRANSACTION_RECOVERY_USER
The following table describes how to use the TRANSACTION_RECOVERY_USER parameter:

Item Description

Syntax TRANSACTION_RECOVERY_USER = rec_user

Default value None.

Appendix C
Gateway Parameters

C-5

Item Description

Range of values Any valid operating system user ID that is authorized by WebSphere
MQ Manager (MQM)

TRANSACTION_RECOVERY_USER specifies the user name that the gateway uses to start
the recovery of a transaction. This parameter is required only when
AUTHORIZATION_MODEL is set to STRICT, and TRANSACTION_MODEL is set to
COMMIT_CONFIRM. Refer to "Creating a Transaction Log Queue" for more information.

Appendix C
Gateway Parameters

C-6

Index

A
administrative user, creating, 7-18
authorization for WebSphere MQ objects, 8-3
AUTHORIZATION_MODEL parameter, 7-12

B
Bourne shell

DISPLAY, 4-4
ORACLE_HOME, 4-2, 4-3
TMP, 4-4

C
C shell

DISPLAY, 4-4
ORACLE_HOME, 4-2, 4-3
TMP, 4-4

changes in this release
Oracle database dependencies, 2-1

choosing a repository server, 7-15
closing a queue, A-7
commit-confirm transactions, 8-6
configuring

gateway, 7-1
Oracle Net, 7-4
with default values, 7-2
without default values, 7-2

constant definitions for PGM package, A-19
CREATE DATABASE LINK statement, 7-12

ORA-29400, 8-8
Strict model, 8-2

creating
a database link, 7-12
the administrative user, 7-18

creating alias library, 7-14

D
data dictionary

checked by pgvwbrepos.sql script, 7-18
database link

behavior, 7-12

database link (continued)
creating, 7-12
determining available links, 7-14
dropping, 7-13
limiting active links, 7-14

DBMS_OUTPUT package, 7-16, 7-18, 7-20, 7-21
DBMS_PIPE package, 7-18, 7-20, 7-21
default values

changing during configuration, 7-2
deinstall

the Visual Workbench repository, 7-19
deinstallation, 6-1

using Oracle Universal Installer, 6-3
DESCRIBE statement, 7-16
dg4pwd utility

using, C-4
directory, script file, 7-16
DISPLAY, 4-4
distributed transactions

commit-confirm, 8-6
recovery requirements, 7-11

DROP DATABASE LINK statement, 7-13
dropping a database link, 7-13
dropping alias library, 7-15

E
environment variable

MCAUSER, 8-2
MQ_PASSWORD, 8-2
MQ_USER_ID, 8-2

error
error codes, WebSphere MQ, 8-7
ORA-29400, 8-7

errors
common errors, 8-8
common WebSphere MQ errors, 8-8
from Oracle database, 8-7
from WebSphere MQ, 8-7
gateway message format, 8-7

F
file

default gateway initialization file, 7-2

Index-1

file transfer program, 7-16
function

UTL_RAW.BIT_AND, B-2
UTL_RAW.BIT_COMPLEMENT, B-2
UTL_RAW.BIT_OR, B-3
UTL_RAW.BIT_XOR, B-3
UTL_RAW.CAST_TO_RAW, B-2, B-3
UTL_RAW.CAST_TO_VARCHAR2, B-2, B-4
UTL_RAW.COMPARE, B-4
UTL_RAW.CONCAT, B-2, B-4
UTL_RAW.CONVERT, B-5
UTL_RAW.COPIES, B-5
UTL_RAW.LENGTH, B-6
UTL_RAW.OVERLAY, B-6
UTL_RAW.REVERSE, B-7
UTL_RAW.SUBSTR, B-7
UTL_RAW.TRANSLATE, B-7
UTL_RAW.TRANSLITERATE, B-8
UTL_RAW.XRANGE, B-9

G
gateway

advantages, 1-4
components, 1-5
configured with default values, 7-2
configured without default values, 7-2
default SIDs, 7-1
description, 1-2
directories, 1-7
error message format, 8-7
initialization file, 1-3, 7-1

authorization model, 8-1
default, 7-2
gateway parameters, C-1
with commit-confirm, 8-6
with transaction log queue, 7-11

known problems and restrictions, 2-3
PGM package, A-1
retrieving messages from a queue, A-7
running environment, 8-1
security models, 8-1
SID, 7-2
starting, 1-7
structure, initialization file, 1-7
terms, 1-3
tracing, 8-8, C-2
using Visual Workbench, 1-3
verifying that it works, 8-9

Gateway Ininialization File
passwords in, C-4

I
initialization file

customizing, 7-2
default file name, 7-2
gateway, 1-3, 7-1

authorization model, 8-1
default, 7-2
parameters, C-1
with commit-confirm, 8-6
with transaction log queue, 7-11

gateway structure, 1-7
initsid.ora file, C-1

customizing the gateway initialization file, 7-2
installation log files, 4-6
installation scripts, 7-15
installing

the repository, 7-15
IPC protocol, 7-5, 7-10

K
Korn shell

DISPLAY, 4-4
ORACLE_HOME, 4-2, 4-3
TMP, 4-4

L
limiting database links, 7-14
listener.ora file, 7-4

for IPC adapter, 7-5
LOG_DESTINATION parameter, 8-9, C-2

M
MCAUSER environment variable, 8-2
message queue interface

See MQI, 1-2
message queues, definition, 1-2
message queuing, description, 1-1
migration tips

PGM package and DG4MQ procedures, A-4
MIP

data profiles, B-1
description, 1-3, 1-4
PGM package, A-1
PGM_SUP package, A-1
UTL_RAW functions, B-1

MQ_PASSWORD environment variable, 8-2
MQ_USER_ID environment variable, 8-2
MQCLOSE procedure, A-24

description, A-7
MQGET procedure

retrieving short messages, A-7

Index

Index-2

MQI
definition, 1-2
gateway calls and structures, A-1
MQBACK, A-3
MQCMIT, A-3
MQCONN, A-3
MQDISC, A-3
MQINQ, A-4
MQPUT1, A-4
MQSET, A-4

MQOPEN procedure
description, A-14
opening a queue, A-14

MQPUT procedure
sending short messages, A-16

O
opening a queue, A-14
ORA-08500 error, 8-7
Oracle Application Server

preinstallation tasks, 4-1
Oracle applications, 1-6
Oracle database

connected to gateway, 1-6
error messages, 8-7

Oracle database dependencies, 2-1
Oracle Database Gateway for WebSphere MQ

reinstallation, 6-3
Oracle Developer, 1-5
Oracle Financials, 1-5
Oracle Net

configuring for Oracle database, 7-9
Oracle Net Listener, 7-4

checking status, 7-8
starting, 7-7
stopping, 7-7

Oracle Universal Installer, 4-5, 4-6
overview, 4-5
starting, 4-6

ORACLE_HOME, 4-2
Bourne shell, 4-2, 4-3
C shell, 4-2, 4-3
Korn shell, 4-2, 4-3
preventing conflicts, 4-2

oraInventory directory, 4-5, 4-6
location, 4-6

overview
Oracle Universal Installer, 4-5

P
package

DBMS_OUTPUT, 7-16, 7-18, 7-20, 7-21
DBMS_PIPE, 7-18, 7-20, 7-21

package (continued)
PGM_BQM, 7-18, 7-20, 7-21
PGM_SUP, 7-18, 7-20, 7-21, A-19
PL/SQL, 7-20, 7-21
UTL_PG, 7-18, 7-20, 7-21
UTL_RAW, 7-16, 7-18, 7-20, 7-21

parameter
AUTHORIZATION_MODEL, 7-12
LOG_DESTINATION, 8-9, C-2
QUEUE_MANAGER, C-2
TRACE_LEVEL, 8-8, C-2
TRANSACTION_LOG_QUEUE, 8-6, C-3
TRANSACTION_MODEL, 7-11, C-3
TRANSACTION_RECOVERY_PASSWORD,

8-6, C-4
TRANSACTION_RECOVERY_USER, 8-6,

C-5
PGM package

error code definitions, A-26
unsupported MQI calls, A-4

PGM_BQM package, 7-18, 7-20, 7-21
PGM_SUP package, 7-18, 7-20, 7-21

description, A-19
PGM.MQGMO type definition

description, A-13
PGM_SUP constants, A-19

PGM.MQMD type definition, A-10
PGM_SUP constants, A-20

PGM.MQOD type definition
PGM_SUP constants, A-23

PGM.MQOPEN procedure
error condition 2085, 8-8
PGM_SUP constants, A-25

PGM.MQPMO type definition
description, A-18
PGM_SUP constants, A-24

PGM8.MQOPEN procedure
error condition 2085, 8-8

PGMADMIN, 7-18, 7-19
PGMDEV role, 7-19
pgvwbrepos9.sql script, 7-19
PL/SQL

installing missing packages, 7-20
package, 7-20, 7-21
removing packages, 7-21
verifying packages exist, 7-20

preinstallation
environment variables, 4-2

DISPLAY, 4-4
TMP, 4-4

private access privileges, 7-18
private repository, 7-20
privileges, private access, 7-18
privileges, public access, 7-18

Index

Index-3

procedure
MQCLOSE, A-7, A-24
MQGET, A-7
MQOPEN, A-14
MQPUT, A-16
PGM.MQOPEN, 8-8, A-25
PGM8.MQOPEN, 8-8

program
file transfer, 7-16

protocol
IPC, 7-5, 7-10

prvtrawb.plb script, 7-16
public access privileges, 7-18

Q
queue

closing, A-7
opening, A-14

QUEUE_MANAGER parameter, C-2

R
reinstallation

Oracle Database Gateway for WebSphere
MQ, 6-3

relaxed security model, defined, 8-1
Remote Procedure Call (RPC), 1-2
repository

choosing a server, 7-15
deinstall, 7-19
development privileges, 7-19
installation scripts, 7-15
installing, 7-15
installing the repository, 7-15
private, 7-20
server, definition, 7-15

requirements
hardware, 3-1
software, 3-2

retrieving messages
shorter than 32\ 767 bytes, A-7

role
PGMDEV, 7-19

root.sh script, 5-3

S
script

file directory, 7-16
prvtrawb.plb, 7-16
test.sql, 8-10

sending messages
shorter than 32 767 bytes, A-16

setting
DISPLAY, 4-4
TMP, 4-4

SID
default values, 7-1
description, 7-1
length, 7-2

single-site transactions, 8-5
software requirements, 3-2
SQL*Net

configuring, 7-4
configuring for gateway, 7-4
purpose, 1-6

starting, 4-6
Oracle Universal Installer, 4-6

statement
CREATE DATABASE LINK, 7-12

ORA-29400, 8-8
Strict model, 8-2

DESCRIBE, 7-16
DROP DATABASE LINK, 7-13

strict security model
defined, 8-2
running root.sh, 5-3

system ID
See SID, 7-1

T
TCP/IP protocol, 7-5, 7-10
test.sql script, 8-10
TMP, 4-4
tnsnames.ora file, 7-9
trace feature, 8-8
TRACE_LEVEL parameter, 8-8, C-2
transaction capability types

description, 8-4
transaction levels

commit-confirm, 8-6
single-site, 8-5

transaction log queue
creating, 7-11

TRANSACTION_LOG_QUEUE parameter, 8-6,
C-3

TRANSACTION_MODEL parameter, 7-11, C-3
TRANSACTION_RECOVERY_PASSWORD

parameter, 8-6, C-4
TRANSACTION_RECOVERY_USER parameter,

C-5
TRANSACTION_RECOVERY_USER

parameters, 8-6
triggers

WebSphere MQ, 1-2

Index

Index-4

U
upgrade the Visual Workbench Repository, 7-16
UTL_PG package, 7-18, 7-20, 7-21
UTL_RAW package, 7-16, 7-18, 7-20, 7-21

example of using functions, B-1
function syntax, B-1

UTL_RAW.BIT_AND function, B-2
UTL_RAW.BIT_COMPLEMENT function, B-2
UTL_RAW.BIT_OR function, B-3
UTL_RAW.BIT_XOR function, B-3
UTL_RAW.CAST_TO_RAW function, B-2, B-3
UTL_RAW.CAST_TO_VARCHAR2 function, B-2,

B-4
UTL_RAW.COMPARE function, B-4
UTL_RAW.CONCAT function, B-2, B-4
UTL_RAW.CONVERT function, B-5
UTL_RAW.COPIES function, B-5
UTL_RAW.LENGTH function, B-6
UTL_RAW.OVERLAY function, B-6
UTL_RAW.REVERSE function, B-7
UTL_RAW.SUBSTR function, B-7
UTL_RAW.TRANSLATE function, B-7
UTL_RAW.TRANSLITERATE function, B-8
UTL_RAW.XRANGE function, B-9

V
variable

environment
MCAUSER, 8-2
MQ_PASSWORD, 8-2
MQ_USER_ID, 8-2

Visual Workbench
deinstall repository, 7-19
description, 1-3
development privileges for repository, 7-19
installing the repository, 7-15
MIP, A-1

Visual Workbench Repository
upgrade, 7-16

W
WebSphere MQ

access authorization, 8-3
client configuration definition, 1-2
common error messages, 8-8
description, 1-1
error codes, 8-7
queue manager definition, 1-2
triggers, 1-2
WebSphere MQ server, 1-6

Index

Index-5

	Contents
	List of Figures
	List of Tables
	Preface
	Intended Audience
	Documentation Accessibility
	Product Name
	Typographic Conventions
	Command Syntax
	Related Publications
	Related Documents

	1 Introduction to Oracle Database Gateway for WebSphere MQ
	1.1 Introduction to Message Queuing
	1.2 Introduction to WebSphere MQ
	1.2.1 WebSphere MQ Terms

	1.3 Introduction to the Gateway
	1.3.1 Developing Gateway Applications
	1.3.2 Gateway Terms
	1.3.3 Advantages of Using the Gateway
	1.3.4 Gateway Architecture
	1.3.5 Component Descriptions
	1.3.5.1 Oracle Applications
	1.3.5.2 Oracle Database
	1.3.5.3 Oracle Net
	1.3.5.4 Gateway
	1.3.5.5 WebSphere MQ Queue Manager
	1.3.5.6 WebSphere MQ Application

	1.3.6 Gateway Structure
	1.3.7 Gateway Operation
	1.3.8 Communication

	2 Release Information for Oracle Database Gateway for WebSphere MQ
	2.1 Changes and Enhancements
	2.1.1 Oracle Database Dependencies
	2.1.2 Support for Large Data Buffers
	2.1.3 DG4MQ Data Types
	2.1.4 PGM_UTL Procedures
	2.1.5 DG4MQ API Prototype Changes
	2.1.6 DG4MQ Deployment Scripts
	2.1.7 Large Payload Support
	2.1.8 Database Link and Alias Library

	2.2 Known Problems
	2.3 Known Restrictions

	3 System Requirements for Oracle Database Gateway for WebSphere MQ
	3.1 Hardware Requirements for Oracle Database Gateway for WebSphere MQ
	3.2 Software Requirements for Oracle Database Gateway for WebSphere MQ
	3.3 Oracle Database

	4 Preinstallation Information for Oracle Database Gateway for WebSphere MQ
	4.1 Preinstallation Tasks
	4.1.1 WebSphere MQ Software
	4.1.2 Setting Environment Variables
	4.1.2.1 ORACLE_HOME
	4.1.2.1.1 Preventing Conflicts Between ORACLE_HOME Directories
	4.1.2.1.2 Setting ORACLE_HOME

	4.1.2.2 ORACLE_SID
	4.1.2.2.1 Setting ORACLE_SID

	4.1.2.3 DISPLAY
	4.1.2.3.1 On Server where the Installer is Running
	4.1.2.3.2 In Session on Your Workstation

	4.1.2.4 TMP

	4.1.3 Using Windows User Account as Oracle Home User

	4.2 About Oracle Universal Installer
	4.2.1 oraInventory Directory
	4.2.2 Starting Oracle Universal Installer

	5 Installing Oracle Database Gateway for WebSphere MQ
	5.1 Installation
	5.2 Running root.sh on UNIX Based Systems

	6 Removing Oracle Database Gateway for WebSphere MQ
	6.1 Removing Oracle Database Gateway for WebSphere MQ
	6.1.1 About the Deinstallation Tool
	6.1.2 Removing Oracle Software

	6.2 Reinstalling Oracle Database Gateway for WebSphere MQ

	7 Configuring Oracle Database Gateway for WebSphere MQ
	7.1 Configuration Overview
	7.2 Configuring the Gateway
	7.2.1 Using the Gateway with the Default Values
	7.2.2 Using the Gateway Without the Default Values
	7.2.3 Changing Default Values
	7.2.3.1 Step 1: Choose a System ID for the Gateway
	7.2.3.2 Step 2: Customize the Gateway Initialization File

	7.3 Configuring Oracle Net for the Gateway
	7.3.1 Using Oracle Net with Default Gateway Values
	7.3.2 Using Oracle Net When Changing the Default Gateway Values
	7.3.2.1 Step 1: Configure the Oracle Net Oracle Net Listener for the Gateway
	7.3.2.2 Step 2: Stop and Start the Oracle Net Listener for the Gateway

	7.4 Configuring Oracle Net for Oracle Database
	7.4.1 Using Default Gateway Values
	7.4.2 Changing Default Gateway Values
	7.4.2.1 TCP/IP Example
	7.4.2.2 IPC Example

	7.5 Creating a Transaction Log Queue
	7.6 Administering the Database Links Alias Library
	7.6.1 Using Database Links
	7.6.2 Creating Database Links
	7.6.3 Dropping Database Links
	7.6.4 Examining Available Database Links
	7.6.5 Limiting the Number of Active Database Links
	7.6.6 Creating Alias Library
	7.6.7 Dropping Alias Library

	7.7 Installing the Oracle Visual Workbench Repository
	7.7.1 Preinstallation Tasks
	7.7.1.1 Step 1: Choose a Repository Server
	7.7.1.2 Step 2: Locate the Installation Scripts
	7.7.1.3 Step 3: Upgrade the Visual Workbench Repository
	7.7.1.4 Step 4: Ensure that the UTL_RAW Package is Installed
	7.7.1.5 Step 5: Ensure that the DBMS_OUTPUT Package is Enabled
	7.7.1.6 Step 6: Create a Database Link

	7.7.2 Visual Workbench Repository Installation Tasks
	7.7.2.1 Step 1: Enter the Database Connection Information
	7.7.2.2 Step 2: Check for Existing Workbench Repository
	7.7.2.3 Step 3: Check for The Required PL/SQL Packages
	7.7.2.4 Step 4: Install the UTL_PG Package
	7.7.2.5 Step 5: Create the Administrative User and All Repository Tables
	7.7.2.6 Step 6: Create Public Synonyms and Development Roles

	7.7.3 After the Repository is Created
	7.7.4 Deinstall the Visual Workbench Repository
	7.7.4.1 Step 1: Enter the Database Connection Information
	7.7.4.2 Step 2: Check for the Existing Workbench Repository

	7.8 Preparing the Production Oracle Database
	7.8.1 Introduction
	7.8.2 Verifying and Installing PL/SQL Packages
	7.8.3 Removing the PL/SQL Packages

	8 Oracle Database Gateway for WebSphere MQ Running Environment
	8.1 Security Models
	8.1.1 Relaxed Model
	8.1.2 Strict Model
	8.1.2.1 Authorization Process for a WebSphere MQ Server Application
	8.1.2.2 Authorization Process for a WebSphere MQ Client Application

	8.1.3 Authorization for WebSphere MQ Objects

	8.2 Transaction Support
	8.2.1 Non‐Oracle Data Sources and Distributed Transactions
	8.2.2 Transaction Capability Types
	8.2.3 Transaction Capability Types of Oracle Database Gateway for WebSphere MQ
	8.2.3.1 Single-Site Transactions
	8.2.3.2 Commit-Confirm Transactions

	8.3 Troubleshooting
	8.3.1 Message and Error Code Processing
	8.3.1.1 Interpreting Gateway Messages

	8.3.2 Common Error Codes
	8.3.3 Gateway Tracing
	8.3.3.1 LOG_DESTINATION Parameter
	8.3.3.1.1 Gateway
	8.3.3.1.2 Default Value
	8.3.3.1.3 Range of Values
	8.3.3.1.4 Syntax

	8.3.4 Verifying Gateway Operation

	A The PGM, PGM_UTL8, and PGM_SUP Packages
	A.1 PGM Package, DG4MQ Gateway Procedures, and Data Type Definitions
	A.1.1 Summary of Procedures and Type Definitions
	A.1.2 Procedure Conventions
	A.1.3 MQI Calls Performed by the Gateway
	A.1.4 Unsupported MQI Calls
	A.1.5 Migration Tips

	A.2 MQCLOSE Procedure
	A.3 MQGET Procedure
	A.3.1 PGM.MQMD Type Definition
	A.3.2 PGM.MQGMO Type Definition

	A.4 MQOPEN Procedure
	A.4.1 PGM.MQOD Type Definition

	A.5 MQPUT Procedure
	A.5.1 PGM.MQPMO Type Definition

	A.6 PGM_SUP Package
	A.6.1 PGM.MQGMO Values
	A.6.1.1 OPTIONS Field
	A.6.1.2 VERSION Field
	A.6.1.3 MATCHOPTIONS Field
	A.6.1.4 WAITINTERVAL

	A.6.2 PGM.MQMD Values
	A.6.2.1 CODEDCHARSETID Field
	A.6.2.2 ENCODING Field
	A.6.2.3 ENCODING Field, Values for Binary Integers
	A.6.2.4 ENCODING Field, Values for Floating Point Numbers
	A.6.2.5 ENCODING Field, Mask Values
	A.6.2.6 ENCODING Field, Values for Packed Decimal Integers
	A.6.2.7 EXPIRY Field
	A.6.2.8 FEEDBACK Field
	A.6.2.9 FORMAT Field
	A.6.2.10 MSGTYPE Field
	A.6.2.11 PERSISTENCE Field
	A.6.2.12 PRIORITY Field
	A.6.2.13 PUTAPPLTYPE Field
	A.6.2.14 REPORT Field
	A.6.2.15 VERSION Field
	A.6.2.16 Report Field, Mask Values

	A.6.3 PGM.MQOD Values
	A.6.3.1 OBJECTTYPE Field
	A.6.3.2 OBJECTTYPE Field, Extended Values
	A.6.3.3 VERSION Field

	A.6.4 PGM.MQPMO Values
	A.6.4.1 OPTIONS Field
	A.6.4.2 VERSION Field

	A.6.5 MQCLOSE Values
	A.6.5.1 hobj Argument
	A.6.5.2 options Argument

	A.6.6 MQOPEN Values
	A.6.6.1 options Argument

	A.6.7 Maximum Lengths for Fields of PGM Type Definitions
	A.6.8 Error Code Definitions

	B UTL_RAW Package
	B.1 Message Data Types
	B.2 UTL_RAW Functions
	B.2.1 UTL_RAW.TO_RAW
	B.2.2 UTL_RAW.BIT_AND
	B.2.3 UTL_RAW.BIT_COMPLEMENT
	B.2.4 UTL_RAW.BIT_OR
	B.2.5 UTL_RAW.BIT_XOR
	B.2.6 UTL_RAW.CAST_TO_RAW
	B.2.7 UTL_RAW.CAST_TO_VARCHAR2
	B.2.8 UTL_RAW.COMPARE
	B.2.9 UTL_RAW.CONCAT
	B.2.10 UTL_RAW.CONVERT
	B.2.11 UTL_RAW.COPIES
	B.2.12 UTL_RAW.LENGTH
	B.2.13 UTL_RAW.OVERLAY
	B.2.14 UTL_RAW.REVERSE
	B.2.15 UTL_RAW.SUBSTR
	B.2.16 UTL_RAW.TRANSLATE
	B.2.17 UTL_RAW.TRANSLITERATE
	B.2.18 UTL_RAW.XRANGE

	C Oracle Database Gateway for WebSphere MQ Initialization Parameters
	C.1 Gateway Initialization File
	C.2 Gateway Parameters
	C.2.1 LOG_DESTINATION
	C.2.2 AUTHORIZATION_MODEL
	C.2.3 QUEUE_MANAGER
	C.2.4 TRACE_LEVEL
	C.2.5 TRANSACTION_LOG_QUEUE
	C.2.6 TRANSACTION_MODEL
	C.2.7 TRANSACTION_RECOVERY_PASSWORD
	C.2.8 TRANSACTION_RECOVERY_USER

	Index

