
Oracle® NoSQL Database
Integrations Guide

Release 22.3
F30919-11
December 2022

Oracle NoSQL Database Integrations Guide, Release 22.3

F30919-11

Copyright © 2020, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

Part I Integration with Apache Hadoop MapReduce

2 Introduction to Integration with Apache Hadoop MapReduce

Prerequisites 2-1

A Brief Primer on Apache Hadoop 2-2

3 The CountTableRows Example

Compile, Build, and Run the CountTableRows Example 3-1

Building CountTableRows When the Store is Non-Secure 3-3

Building CountTableRows When the Store is Secure 3-3

Running CountTableRows When the Store is Non-Secure 3-4

Running CountTableRows When the Store is Secure and a Password File is Used 3-5

Running CountTableRows When the Store is Secure and an Oracle Wallet is Used 3-6

CountTableRows MapReduce Job Results 3-7

4 Appendix

Deploying a Non-Secure Store 4-1

Generate Configuration Files For Each Storage Node (SN) 4-1

Launch a Storage Node Agent (SNA) On Each Host Making Up the Store 4-2

Configure and Deploy the Non-secure Store 4-3

Deploying a Secure Store 4-4

Generate Configuration Files For Each Storage Node (SN) 4-4

Launch a Storage Node Agent (SNA) On Each Host Making Up the Store 4-6

Configure and Deploy the Secure Store 4-6

Provision the Secure Store’s Administrative User (root) 4-7

Create Non-Administrative User 4-8

Provision the Secure Store's Non-Administrative User (example-user) 4-9

iii

CountTableRows Support Programs 4-12

Schema for the vehicleTable Example 4-12

Create and Populate vehicleTable with Example Data 4-13

Run LoadVehicleTable when the Store is Non-Secure 4-13

Run LoadVehicleTable When the Store is Secure 4-14

Summary 4-15

Model For Building & Packaging Secure Clients 4-15

Programming Model For MapReduce with Oracle NoSQL Database Security 4-16

Communicating Security Credentials to the Server Side Splits 4-17

Communicating Security Credentials to the TableInputFormat 4-17

Best Practices: MapReduce Application Packaging for Oracle NoSQL Security 4-18

Application Packaging for the Non-Secure Case 4-18

Application Packaging and Execution for the Secure Case 4-20

Secure Versus Non-Secure Command Lines 4-24

Summary 4-24

Part II Integration with Apache Hive

5 Introduction to Integration with Apache Hive

Prerequisites 5-1

A Brief Primer on Apache Hive 5-2

6 Oracle NoSQL Database Hive Integration Classes

7 Mapping the Hive Data Model to the Oracle NoSQL Database Table
Model

YARN Versus MapReduce Version 1 7-2

8 Example: Hive Queries On Oracle NoSQL Database Tables

Primitive Data Types - The vehicleTable Example 8-3

Mapping a Hive External Table to vehicleTable: Non-Secure Store 8-3

Mapping a Hive External Table to vehicleTable: Secure Store 8-4

Mapping Hive to Secure vehicleTable: Password File 8-4

Mapping Hive to Secure vehicleTable: Oracle Wallet 8-4

Hive Queries on vehicleTable: Primitive Data Types 8-5

Non-Primitive Data Types - The rmvTable Example 8-8

Mapping a Hive External Table to rmvTable: Non-Secure Store 8-8

iv

Mapping a Hive External Table to rmvTable: Secure Store 8-9

Mapping Hive to Secure rmvTable: Password File 8-9

Mapping Hive to Secure rmvTable: Oracle Wallet 8-10

Hive Queries on rmvTable: Non-Primitive Data Types 8-10

NoSQL JSON Data Type - The exampleJsonTable Example 8-18

Mapping a Hive External Table to exampleJsonTable: Non-Secure Store 8-19

Mapping a Hive External Table to exampleJsonTable: Secure Store 8-19

Mapping Hive to Secure exampleJsonTable: Password File 8-20

Mapping Hive to Secure exampleJsonTable: Oracle Wallet 8-20

Hive Queries on exampleJsonTable: JSON Data Type 8-20

9 Appendix

Creating and Populating the rmvTable 9-1

Schema for the Example Table Named rmvTable 9-1

Create and Populate rmvTable with Example Data 9-3

How to Run LoadRmvTable When the Store is Non-Secure 9-3

How to Run LoadRmvTable When the Store is Secure 9-4

Summary 9-4

Creating and Populating the exampleJsonTable 9-4

Schema for the Example Table Named exampleJsonTable 9-4

Create and Populate exampleJsonTable with Example Data 9-5

How to Run LoadJsonExample When the Store is Non-Secure 9-5

How to Run LoadJsonExample When the Store is Secure 9-6

Summary 9-7

Configuring the Hive Client Environment 9-7

Copy Oracle NoSQL Database Libraries into Hive Auxiliary Directory 9-7

Set HIVE_AUX_JARS_PATH in the Hive Client’s hive-env.sh File 9-8

Set HIVE_AUX_JARS_PATH Directly on the Command Line 9-9

Hive and Oracle NoSQL Database Security 9-9

Generating the Login, Trust, and Password Artifacts 9-9

Generating the Server Side JAR File 9-10

Adding the Hive Client's Public Credentials to the Hive Environment 9-10

Summary 9-10

Predicate Pushdown 9-11

Predicate Pushdown Criteria 9-13

Part III Integration with Oracle Big Data SQL

v

10

Introduction to Integration with Oracle Big Data SQL

Prerequisites 10-1

A Brief Primer on Oracle Big Data SQL 10-1

11

Mapping the Oracle RDBMS Data Model to the Oracle NoSQL Database
Table Model

12

Executing SQL Queries Against Oracle NoSQL Database

Mapping Hive External Tables to Oracle NoSQL Database Tables 12-1

Mapping Hive Tables to Oracle NoSQL Database Tables In a Non-Secure Store 12-1

Mapping Hive Tables to Oracle NoSQL Database Tables In a Secure Store 12-2

Mapping Oracle RDBMS External Tables to Hive External Tables 12-5

Mapping Oracle RDBMS Tables to Hive Tables for Non-Secure Store 12-5

Mapping Oracle RDBMS Tables to Hive Tables for Secure Store 12-6

13

Example: SQL Queries On Oracle NoSQL Database Tables

Example Queries on the vehicleTable 13-1

Example Queries on the rmvTable 13-2

More Example Queries on the rmvTable 13-3

Example Queries Using Oracle Regular Expression Functions 13-3

Example Queries Using Oracle JSON Operators 13-5

Example Queries on the exampleJsonTable 13-6

14

Appendix

Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database 14-1

Configuring Oracle Big Data SQL For Querying Data in a Secure Store 14-2

Part IV Integration with Elastic Search for Full Text Search

15

About Full Text Search

About Full Text Search 15-1

Prerequisite to Full Text Search 15-2

vi

16

Intergrating Elasticsearch with Oracle NoSQL Database

Registering Elasticsearch with Oracle NoSQL Database 16-1

Deregistering Elasticsearch from an Oracle NoSQL Store 16-3

17

Managing Full Text Index

Creating a Full Text Index 17-1

Mapping a Full Text Index Field to an Elasticsearch Field 17-5

Handling TIMESTAMP Data Type 17-7

Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type 17-7

Full Text Search of Indexed TIMESTAMP Scalar 17-11

Handling JSON Data Type 17-14

Review: Secondary Indexes on JSON Document Content 17-14

Creating Text Indexes on JSON Document Content 17-18

Full Text Search of Indexed JSON Documents 17-20

Deleting a Full Text Index 17-23

18

Security in Full Text Search

Elasticsearch and Secure Oracle NoSQL Database 18-1

19

Appendix

Sample: Array of JSON Documents 19-1

The LoadJsonExample Program Source 19-3

Secure Elasticsearch using Sheild 19-26

Deploying and Configuring a Secure Oracle NoSQL Store 19-33

Install the Full Text Search Public Certificate in Elasticsearch 19-41

Running the Examples in Secure Mode 19-42

vii

1
Introduction

Oracle NoSQL Database can be integrated with Apache Hadoop and products in the Oracle
stack. The following parts describe more about integration.

Topics

• Part I: Integration with Apache Hadoop MapReduce

• Part II: Integration with Apache Hive

• Part III: Integration with Elastic Search for Full Text Search

1-1

Part I
Integration with Apache Hadoop MapReduce

Topics

• Introduction to Integration with Apache Hadoop MapReduce

• The CountTableRows Example

• Appendix

2
Introduction to Integration with Apache
Hadoop MapReduce

This section introduces the integration of Oracle NoSQL Database with Apache Hadoop
MapReduce. The information presented in this document describes how MapReduce jobs
can be written and run to process data in an Oracle NoSQL Database table. Besides
describing the core interfaces and classes involved in this process, this document also walks
through an example that demonstrates how to use the Table API, Hadoop integration classes
with MapReduce.

The language drivers provide the interfaces and classes that allow MapReduce jobs to be
written that retrieve and process table data written to an Oracle NoSQL Database store via
the Table API. See Developing for Oracle NoSQL Database in the Java Direct Driver
Developer's Guide.

Prerequisites
To minimize the number of non-literal text and tokens that need to be replaced when running
the examples that are presented, this document assumes that Apache Hadoop and Oracle
NoSQL Database are installed on a Big Data Appliance running Big Data SQL 4.0.
Specifically, this document assumes that Apache Hadoop is installed under the
directory /opt/cloudera/parcels/CDH, and that Oracle NoSQL Database is installed
under /opt/oracle/kv-ee. Thus, if you happen to be using commodity hardware rather than
a Big Data Appliance, then you may need to substitute various directory paths presented in
this document with values specific to the Apache Hadoop and Oracle NoSQL Database
installations on your particular system.

Whether you are using a Big Data Appliance or commodity hardware, in order to work with
the examples presented in this document, you will need to install the separate distribution
containing the Oracle NoSQL Database Examples. Although you are free to install the
example package in any location on your system, for simplicity, this document assumes the
example code is installed under the directory /opt/oracle/nosql/apps/kv/examples .

Note:

The host names and ports provided below are for demonstration purpose only. You
can provide the value as per the requirement.

Before attempting to execute the example that demonstrates the concepts presented in this
document, you should first satisfy the following prerequisites:

• Become familiar with Apache Hadoop and the MapReduce programming model.
Specifically, become familiar with how to write and deploy a MapReduce job.

• Deploy a Hadoop cluster with 3 DataNodes running on machines with sample host
names, dn-host-1, dn-host-2, and dn-host-3.

2-1

• Become familiar with Oracle NoSQL Database and then install, start, and
configure an Oracle NoSQL Database that is network reachable from the nodes of
the Hadoop cluster. The KVHOME of the store that you start should be configured as
the directory /opt/oracle/kv-ee.

• Deploy a store to 3 machines (real or virtual) with sample host names, kv-host-1,
kv-host-2, and kv-host-3. The store's name should be set to the value example-
store, and the store's KVROOT should be set to the directories /u01/nosql/sn1/
kvroot on kv-host-1, /u02/nosql/sn2/kvroot on kv-host-2, and /u03/
nosql/sn3/kvroot on kv-host-3. Finally, an Oracle NoSQL Database admin
service, listening on port 5000, should be deployed to each host making up the
store.

• Become familiar with the Oracle NoSQL Database Security model and be able to
configure the deployed store for secure access (optional). See Introducing Oracle
NoSQL Database Security in the Security Guide.

• If the deployed store is configured for secure access, start the Oracle NoSQL
Database Administrative CLI and securely connect to the store's admin service.
See Start the Administration CLI in the Administrator's Guide. Using the CLI,
create a user in the store named example-user along with the appropriate security
artifacts (login file, trust file, and either password file or Oracle Wallet [Enterprise
Edition only]).

• Obtain and install the separate distribution containing the Oracle NoSQL Database
Examples. Although you are free to install that package in any location on your
system, for simplicity this document assumes the example code is installed under
the directory /opt/oracle/nosql/apps/kv/examples.

• Be able to compile and execute a Java program and package it and any
associated resources in a JAR file.

• Install the Hadoop JAR files required to compile the example program so that they
are available for inclusion in the example program's classpath (see below).

Using specific values for items such as the KVHOME and KVROOT environment variables,
as well as the store name, host names, admin port, and example code location
described above should allow you to more easily understand and use the example
commands presented in this document. Combined with the information contained in
the Concepts Guide, along with the Administrator's Guide and Security Guide, you
should then be able to generalize and extend these examples to your particular
development scenario; substituting the values specific to the given environment where
necessary.

Detailed instructions for deploying a non-secure store are provided in the Deploying a
Non-Secure Store appendix of this document. Similarly, the Deploying a Secure Store
appendix provides instructions for deploying a store configured for security.

A Brief Primer on Apache Hadoop
Apache Hadoop can be thought of as consisting of two primary components:

• The Hadoop Distributed File System (referred to as, HDFS).

• The MapReduce programming model; which includes a Map Phase consisting of a
mapping step and a shuffle-and-sort step that together perform filtering and
sorting, followed by a Reduce Phase that performs a summary operation on the
mapped and sorted results from the Map Phase.

Chapter 2
A Brief Primer on Apache Hadoop

2-2

The various Hadoop distributions that are available (for example, Cloudera) provide an
infrastructure for orchestrating the processing performed in a MapReduce job. This includes
marshaling the distributed servers that execute job tasks in parallel, the management of all
communication and data transfers between each part of the system, and mechanisms for
providing redundancy and fault tolerance.

The Hadoop infrastructure also provides several interactive tools such as a command line
interface (the Hadoop CLI) that provide access to the data stored in HDFS. But the typical
way application developers read, write, and process data stored in HDFS is via MapReduce
jobs; which are programs that adhere to the Hadoop MapReduce programming model. For
more detailed information on Hadoop HDFS and MapReduce, see the Hadoop MapReduce
tutorial.

As indicated earlier, with the introduction of the Oracle NoSQL Table API, Oracle NoSQL
Database provides a set of interfaces and classes that satisfy the Hadoop MapReduce
programming model to allow one to write MapReduce jobs that can be run to process data
written to a table created in an Oracle NoSQL Database store. These classes are located in
the oracle.kv.hadoop.table package, and consist of the following types:

• A subclass of the Hadoop class, org.apache.hadoop.mapreduce.InputFormat, which
specifies how the associated MapReduce job uses a Hadoop RecordReader to read its
input data and splits the input data into logical sections, each referred to as an
InputSplit.

• A subclass of the Hadoop class, org.apache.hadoop.mapreduce.OutputFormat, which
specifies how the associated MapReduce job uses a Hadoop RecordWriter to write its
output data.

• A subclass of the Hadoop class, org.apache.hadoop.mapreduce.RecordReader, which
specifies how the mapped keys and values are located and retrieved during MapReduce
processing.

• A subclass of the Hadoop class, org.apache.hadoop.mapreduce.InputSplit, which
represents the data to be processed by an individual MapReduce Mapper; where there is
one Mapper per InputSplit.

For the complete list of classes, see Apache Hadoop API.

As described in the following sections, it is through the specific implementation of the
InputFormat class provided by Oracle NoSQL Database that the Hadoop MapReduce
infrastructure obtains access to a given store and the data written to the store.

Chapter 2
A Brief Primer on Apache Hadoop

2-3

3
The CountTableRows Example

Assuming you installed the separate example distribution under the directory /opt/oracle/
nosql/apps/kv/examples, the hadoop.table example package would contain the following
source files under the /opt/oracle/nosql/apps/kv/examples/hadoop/table/ directory:

• CountTableRows.java
• LoadVehicleTable.java
• KVSecurityCreation.java
• KVSecurityUtil.java
To run the MapReduce job launched by the CountTableRows example Java program, an
Oracle NoSQL Database store (secure or non-secure) must first be deployed, and a table
must be created and populated with data. Thus, before executing CountTableRows, either use
the steps outlined in the Deploying a Non-Secure Store appendix to deploy a non-secure
store, or use the Deploying a Secure Store appendix to deploy a store configured for security.

Once a store has been deployed, you should execute the standalone Java program
LoadVehicleTable provided in the example package to create and populate a table with the
name and schema expected by CountTableRows. Once the table is created and populated
with example data, CountTableRows can then be executed to run a MapReduce job that
counts the number of rows of data in the table.

In addition to the LoadVehicleTable program, the example package also contains the classes
KVSecurityCreation and KVSecurityUtil, which are provided to support running
CountTableRows against a secure store.

The standalone Java program KVSecurityCreation is provided as a convenience, and can
be run to create (or delete) a password file or Oracle Wallet along with associated client side
and server side login files that CountTableRows will need to interact with a secure store.

The KVSecurityUtil class provides convenient utility methods that CountTableRows uses to
create and process the various security artifacts needed when accessing the store securely.

The CountTableRows Support Programs appendix explains how to compile and execute the
LoadVehicleTable program to create and populate the required example table in the store
that you deploy. That appendix also explains how to compile and execute the
KVSecurityCreation program to create or delete any security credentials that may be
needed by CountTableRows.

The following sections explain how to compile, build (JAR), and execute the CountTableRows
MapReduce job on the Hadoop cluster that was deployed for this example.

Compile, Build, and Run the CountTableRows Example
After you have run the LoadVehicleTable program to create and populate the example
vehicleTable (see the CountTableRows Support Programs appendix), but before you execute

3-1

the example MapReduce job, you must first compile the CountTableRows program and
package the compiled artifacts for deployment to the Hadoop infrastructure.

To compile the CountTableRows program, several Hadoop JAR files must be installed
and available in your build environment for inclusion in the program classpath. Those
JAR files are:

• commons-logging-<version>.jar
• hadoop-common-<version>.jar
• hadoop-mapreduce-client-core-<version>.jar
• hadoop-annotations-<version>.jar
• hadoop-yarn-api-<version>.jar
The <version> token used above represents the particular version number of the
corresponding JAR file contained in the Hadoop distribution installed in your build
environment.

For example, suppose that the 3.0.0 version of Hadoop, packaged by Cloudera
version 6.3.0 (cdh6.3.0), was installed on your system via parcels; where a parcel is a
binary distribution format that Cloudera provides as an alternative to rpm/deb
packages. Additionally, suppose that the classes from that version of Hadoop use the
1.1.3 version of commons-logging. Given these assumptions, to compile the
CountTableRows program, you would then type the following at the command line:

cd /opt/oracle/nosql/apps/kv
javac -classpath \
 /opt/cloudera/parcels/CDH/jars/commons-logging-1.1.3.jar: \
 /opt/cloudera/parcels/CDH/jars/
 hadoop-common-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-mapreduce-client-core-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-annotations-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-yarn-api-3.0.0-cdh6.3.0.jar: \
 /opt/oracle/kv-ee/lib/kvclient.jar:examples \
 examples/hadoop/table/CountTableRows.java

This produces the following files:

/opt/oracle/nosql/apps/kv/examples/hadoop/table/
 CountTableRows.class
 CountTableRows$Map.class
 CountTableRows$Reduce.class

If your specific environment has a different, compatible Hadoop distribution installed,
then simply replace the paths and version references in the example command line
above with the appropriate values for your particular Hadoop installation.

Chapter 3
Compile, Build, and Run the CountTableRows Example

3-2

Building CountTableRows When the Store is Non-Secure
If you will be running CountTableRows against a non-secure store, then the class files shown
in the compilation step presented in the previous section should be placed in a JAR file so
that the program can be deployed to the example Hadoop cluster. For example, to create a
JAR file containing the class files needed to run CountTableRows against data in a non-
secure store like that deployed in the Deploying a Non-Secure Store appendix, do the
following:

cd /opt/oracle/nosql/apps/kv/examples
jar cvf CountTableRows.jar hadoop/table/CountTableRows*.class

This produces a JAR file named CountTableRows.jar, having the following content, located
in the directory /opt/oracle/nosql/apps/kv/examples:

META-INF/
META-INF/MANIFEST.MF
hadoop/table/CountTableRows.class
hadoop/table/CountTableRows$Map.class
hadoop/table/CountTableRows$Reduce.class

Building CountTableRows When the Store is Secure
This section explains how to compile all of the Java classes that should be included in the
build. If you will be running CountTableRows against a secure store like that deployed in the
Deploying a Secure Store appendix, in addition to including the CountTableRows program, the
build also needs to include security credential files as well as the KVSecurityCreation
program and KVSecurityUtil class used to perform various security related functions when
executing CountTableRows.

To compile the KVSecurityCreation and KVSecurityUtil classes needed to run the secure
version of CountTableRows, type the following at the command line:

cd /opt/oracle/nosql/apps/kv

javac -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:examples \
 examples/hadoop/table/KVSecurityCreation.java

javac -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:examples \
 examples/hadoop/table/KVSecurityUtil.java

Once KVSecurityCreation and KVSecurityUtil have been compiled, CountTableRows itself
can be compiled in the same way as that shown in the previous section; that is,

javac -classpath \
 /opt/cloudera/parcels/CDH/jars/commons-logging-1.1.3.jar: \
 /opt/cloudera/parcels/CDH/jars/
 hadoop-common-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \

Chapter 3
Compile, Build, and Run the CountTableRows Example

3-3

 hadoop-mapreduce-client-core-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-annotations-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-yarn-api-3.0.0-cdh6.3.0.jar: \
 /opt/oracle/kv-ee/lib/kvclient.jar:examples \
 examples/hadoop/table/CountTableRows.java

The command lines above will produce the following class files:

/opt/oracle/nosql/apps/kv/examples/hadoop/table/
 CountTableRows.class
 CountTableRows$Map.class
 CountTableRows$Reduce.class
 KVSecurityUtil.class
 KVSecurityCreation.class

Unlike the non-secure case, the build artifacts needed to deploy CountTableRows in a
secure environment include more than just a single JAR file containing the generated
class files. For the secure case, it is necessary to package some artifacts for
deployment to the client side of the application that communicates with the store,
whereas other artifacts will need to be packaged for deployment to the server side of
the application.

Although there are different ways to achieve this "separation of concerns" when
deploying a given application, the Model For Building & Packaging Secure Clients
appendix of this document presents one particular model you can use to package and
deploy the artifacts for applications that will interact with a secure store. With this in
mind, the sections in this document related to executing CountTableRows against a
secure store each assume that the application has been built and packaged according
to the instructions presented in the Model For Building & Packaging Secure Clients
appendix.

Running CountTableRows When the Store is Non-Secure
If you will be running CountTableRows against a non-secure store such as that
deployed in the Deploying a Non-Secure Store appendix, and you have compiled and
built CountTableRows in the manner presented in the previous section, the MapReduce
job initiated by the CountTableRows example program can be deployed by typing the
following at the command line of the Hadoop cluster's access node:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/oracle/kv-ee/lib/kvclient.jar

cd /opt/oracle/nosqlapps/kv

hadoop jar examples/CountTableRows.jar \
 hadoop.table.CountTableRows \
 -libjars \
 /opt/oracle/kv-ee/lib/kvclient.jar,\
 /opt/oracle/kv-ee/lib/kvstore-ee.jar \
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/jackson-databind.jar,\

Chapter 3
Compile, Build, and Run the CountTableRows Example

3-4

 /opt/oracle/kv-ee/lib/jackson-annotations.jar,\
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/<000N>

The Hadoop command interpreter's -libjars argument is used to include the third party
libraries kvclient.jar, kvstore-ee.jar, jackson-core.jar, jackson-databind.jar, and
jackson-annotations.jar in the classpath of each MapReduce task executing on the
cluster's DataNodes. This is necessary so that those tasks can access classes such as,
TableInputSplit and TableRecordReader, as well as various support classes that are not
available on the Hadoop platform.

The value example-store specifies the name of the store you deployed and the value kv-
host-1:5000 specifies the hostname and port to use when connecting to that store. The
value vehicleTable specifies the name of the table whose rows will be counted by the
MapReduce job. And the last argument, containing the path string, specifies where in the
Hadoop HDFS filesystem the final value for the number of rows in the vehicleTable should
be written.

Note:

The example-user component of the path value input to the last argument
corresponds to a directory under the HDFS top-level directory with base path /user,
which typically corresponds to the user who has initiated the MapReduce job. This
directory is usually created in HDFS by the Hadoop cluster administrator.
Additionally, the <000N> token at the end of the path represents a string such as
0000, 0001, 0002, etc. Although any string can be used for this token, using a
different number for "N" on each execution of the job makes it easier to keep track
of results when you run the job multiple times.

Running CountTableRows When the Store is Secure and a Password File is
Used

If you will be running CountTableRows against a secure store such as that deployed in the
Deploying a Secure Store appendix, and you have compiled, built, and packaged
CountTableRows and all the necessary artifacts in the manner described in the Model For
Building & Packaging Secure Clients appendix, then CountTableRows can be run against the
secure store by typing the following at the command line of the Hadoop cluster's access
node:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/oracle/kv-ee/lib/kvclient.jar:\
 /opt/oracle/nosql/apps/examples/CountTableRows-pwdServer.jar

cd /opt/oracle/nosqlapps/kv

hadoop jar examples/CountTableRows-pwdClient.jar \
 hadoop.table.CountTableRows \
 -libjars /opt/oracle/kv-ee/lib/kvclient.jar,\

Chapter 3
Compile, Build, and Run the CountTableRows Example

3-5

 /opt/oracle/kv-ee/lib/sklogger.jar,\
 /opt/oracle/kv-ee/lib/commonutil.jar,\
 /opt/oracle/kv-ee/lib/failureaccess.jar,\
 /opt/oracle/kv-ee/lib/antlr4-runtime-nosql-shaded.jar,\
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/lib/jackson-annotations.jar,\
 /opt/oracle/nosql/apps/examples/CountTableRows-pwdServer.jar \
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/<000N> \
 example-user-client-pwdfile.login \
 example-user-server.login

The following items in the command lines above are the client side artifacts of
CountTableRows,

examples/CountTableRows-pwdClient.jar

example-user-client-pwdfile.login

whereas the following items are the server side artifacts.

/opt/oracle/nosql/apps/examples/CountTableRows-pwdServer.jar

example-user-server.login

Rather than using an Oracle Wallet, the mechanism used for storing the user's
password is a password file, which is contained in the CountTableRows-
pwdServer.jar artifact.

Running CountTableRows When the Store is Secure and an Oracle Wallet is
Used

If you will be running CountTableRows against a secure store and you are using an
Oracle Wallet rather than a password file to store the user's password, then the
CountTableRows MapReduce job can be run by typing the following at the access
node's command line:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/oracle/kv-ee/lib/kvclient.jar:\
 /opt/oracle/nosql/apps/examples/CountTableRows-walletServer.jar

cd /opt/oracle/nosqlapps/kv

hadoop jar examples/CountTableRows-walletClient.jar \
 hadoop.table.CountTableRows \
 -libjars \
 /opt/oracle/kv-ee/lib/kvclient.jar,\
 /opt/oracle/kv-ee/lib/sklogger.jar,\

Chapter 3
Compile, Build, and Run the CountTableRows Example

3-6

 /opt/oracle/kv-ee/lib/commonutil.jar \
 /opt/oracle/kv-ee/lib/failureaccess.jar,\
 /opt/oracle/kv-ee/lib/antlr4-runtime-nosql-shaded.jar,\
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/lib/jackson-annotations.jar,\
 /opt/oracle/nosql/apps/examples/CountTableRows-walletServer.jar \
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/<000N> \
 example-user-client-wallet.login \
 example-user-server.login

Whether storing the user's password in a password file or an Oracle Wallet (available in only
the Enterprise Edition of Oracle NoSQL Database), notice that an additional JAR file artifact
(CountTableRows-pwdServer.jar or CountTableRows-walletServer.jar) is specified for
both the HADOOP_CLASSPATH environment variable and the Hadoop -libjars parameter. For a
detailed explanation of the use and purpose of those server side JAR files, as well as a
description of the client side JAR file and the two additional arguments at the end of the
command line, refer to the Model For Building & Packaging Secure Clients appendix.

CountTableRows MapReduce Job Results
Whether running against a secure or non-secure store, as the job runs, assuming no errors,
the output from the job will look like the following:

...
INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1344))
 - Running job: job_1409172332346_0024
INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1372))
 - map 0% reduce 0% INFO [main] mapreduce.Job
 (Job.java:monitorAndPrintJob(1372))
 - map 26% reduce 0%
INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1372))
 - map 56% reduce 0%
INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1372))
 - map 100% reduce 0% INFO [main] mapreduce.Job
 (Job.java:monitorAndPrintJob(1383))
 - Job job_1409172332346_0024 completed successfully
INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1390))
 - Counters: 49
 File System Counters
 FILE: Number of bytes read=2771
 FILE: Number of bytes written=644463
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=2660
 HDFS: Number of bytes written=32
 HDFS: Number of read operations=15
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2

Chapter 3
CountTableRows MapReduce Job Results

3-7

 Job Counters
 Launched map tasks=6
 Launched reduce tasks=1
 Rack-local map tasks=6
 Total time spent by all maps in occupied slots (ms)=136868
 Total time spent by all reduces in occupied slots (ms)=2103
 Total time spent by all map tasks (ms)=136868
 Total time spent by all reduce tasks (ms)=2103
 Total vcore-seconds taken by all map tasks=136868
 Total vcore-seconds taken by all reduce tasks=2103
 Total megabyte-seconds taken by all map tasks=140152832
 Total megabyte-seconds taken by all reduce tasks=2153472
 Map-Reduce Framework
 Map input records=79
 Map output bytes=2607
 Map output materialized bytes=2801
 Input split bytes=2660
 Combine input records=0
 Combine output records=0
 Reduce input groups=1
 Reduce shuffle bytes=2801
 Reduce input records=79
 Reduce output records=1
 Spilled Records=158
 Shuffled Maps =6
 Failed Shuffles=0
 Merged Map outputs=6
 GC time elapsed (ms)=549
 CPU time spent (ms)=9460
 Physical memory (bytes) snapshot=1888358400
 Virtual memory (bytes) snapshot=6424895488
 Total committed heap usage (bytes)=1409286144
 Shuffle Errors
 BAD_ID=0
 CONNECTION=0
 IO_ERROR=0
 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0
 File Input Format Counters
 Bytes Read=0
 File Output Format Counters
 Bytes Written=32

To see the results of the job and to verify that the program counted the correct number
of rows in the table, use the Hadoop CLI to display the contents of the MapReduce
results file located in HDFS. To do this, type the following at the command line of the
Hadoop cluster's access node:

hadoop fs -cat \
 /user/example-user/CountTableRows/vehicleTable/<000N>/part-r-00000

Chapter 3
CountTableRows MapReduce Job Results

3-8

where the <000N> token should be replaced with the value you used when the job was run.
Assuming the table was populated with 79 rows, if the job was successful, then the output
should look like the following:

/type/make/model/class 79

where /type/make/model/class are the names of the fields making up the PrimaryKey of the
vehicleTable, and 79 is the number of rows in the table.

Chapter 3
CountTableRows MapReduce Job Results

3-9

4
Appendix

Topics

• Deploying a Non-Secure Store

• Deploying a Secure Store

• CountTableRows Support Programs

• Model For Building & Packaging Secure Clients

Deploying a Non-Secure Store
The Concepts Guide, as well as the Administrator's Guide, each presents several different
ways to deploy and configure an Oracle NoSQL Database store that does not require secure
access. For convenience, this appendix describes one particular set of steps you can take to
deploy and configure such a store. Whether you prefer the technique presented here or one
of the techniques presented in the concepts manual and administrator's guide, a non-secure
store must be deployed and configured to run the example presented in this document in a
non-secure environment. For each of the steps presented below, assume the following:

• The Oracle NoSQL Database distribution is installed under the directory /opt/
oracle/kv-ee.

• A store named example-store is deployed to three hosts.

• The hosts are named, kv-host-1, kv-host-2, and kv-host-3, respectively.

• An admin service, listening on port 5000, is deployed on each of the three hosts.

• The contents of the shards managed by the store will be located under the storage
directory /u01/nosql/sn1/data for host kv-host-1, /u02/nosql/sn2/data for host kv-
host-2, and /u03/nosql/sn3/data for host kv-host-3.

Given the above assumptions, you can follow the steps below to deploy a non-secure store,
where each item from the given assumptions should be replaced with its comparable value
specific to your particular environment.

Generate Configuration Files For Each Storage Node (SN)
Login to each host kv-host-1, kv-host-2, kv-host-3, and, from each respective command
line, type commands like those shown.

On kv-host-1:
java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 makebootconfig \
 -root /u01/nosql/sn1/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-1 \
 -harange 5002,5007 \

4-1

 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u01/nosql/sn1/data \
 -storagedirsize 10000000 \
 -store-security none

On kv-host-2:
java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 makebootconfig \
 -root /u02/nosql/sn2/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-2 \
 -harange 5002,5007 \
 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u02/nosql/sn2/data \
 -storagedirsize 10000000 \
 -store-security none

On kv-host-3:
java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 makebootconfig \
 -root /u03/nosql/sn3/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-3 \
 -harange 5002,5007 \
 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u03/nosql/sn3/data \
 -storagedirsize 10000000 \
 -store-security none

Launch a Storage Node Agent (SNA) On Each Host Making Up the
Store

From each host’s command line, type a command like the following:

nohup java -jar /opt/oracle/kv-ee/lib/kvstore.jar start \
 -root /u0<n>/nosql/sn<n>/kvroot -config config.xml &

where the token <n> corresponds to the integer associated with the given host from
which the above command is executed.

Chapter 4
Deploying a Non-Secure Store

4-2

Configure and Deploy the Non-secure Store
From the command line of any host that has network connectivity to the nodes making up the
store type the following command to enter the store’s administrative command line interface
(Admin CLI), connected to the boot storage node agent (the boot SNA).

Note:

The node from which you execute the command only requires network connectivity
and an Oracle NoSQL Database installation. Thus, although you can execute the
command from a separate node that satisfies that requirement, you can also
execute that command from any of the nodes making up the store (kv-host-1, kv-
host-2, or kv-host-3); as those hosts, by default, satisfy the requirements for
launching the Admin CLI.

java -jar /opt/oracle/kv-ee/lib/kvstore.jar runadmin \
 -helper-hosts kv-host-1:5000,kv-host-2:5000,kv-host-3:5000

Once the Admin CLI has been launched, you can deploy the store in one of two ways. First,
you can enter the following commands, in succession, at the Admin CLI’s command prompt.

configure -name example-store
plan deploy-zone -name zn1 -rf 3 -wait

plan deploy-sn -znname zn1 -host kv-host-1 -port 5000 -wait
plan deploy-admin -sn 1 -wait
pool create -name snpool
pool join -name snpool -sn sn1

plan deploy-sn -znname zn1 -host kv-host-2 -port 5000 -wait
plan deploy-admin -sn 2 -wait
pool join -name snpool -sn sn2

plan deploy-sn -znname zn1 -host kv-host-3 -port 5000 -wait
plan deploy-admin -sn 3 -wait
pool join -name snpool -sn sn3

change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"

topology create -name store-layout -pool snpool -partitions 120
topology preview -name store-layout
plan deploy-topology -name store-layout -plan-name deploy-plan -wait

Rather than submitting each of the above commands as separate entries to the Admin CLI’s
command prompt, you may find it more convenient to instead copy each of those commands

Chapter 4
Deploying a Non-Secure Store

4-3

to a text file and then specify the single load command on the CLI’s command prompt;
for example,

load -file <path-to-command-file>

Deploying a Secure Store
The Security Guide presents several different ways to deploy and configure an Oracle
NoSQL Database store for secure access. For convenience, this section describes
one particular set of steps you can take to deploy and configure such a store. Whether
you prefer the technique presented here or one of the other techniques presented in
the Security Guide, a secure store must be deployed and configured in order to run the
secure form of the example presented in this document. For each of the steps
presented below, in addition to the assumptions made in the non-secure case, also
assume the following:

• For convenience, the password manager the store uses to store and retrieve
passwords needed for access to keystores and truststores is a password file
rather than an Oracle Wallet, which is available in only the Enterprise Edition of
Oracle NoSQL Database.

• For simplicity, all passwords are set to the value No_Sql_00.

• The name of the user that accesses the store is example-user.

Given the above assumptions, you can follow the steps below to deploy a secure
store, where each item from the given assumptions should be replaced with its
comparable value specific to your particular environment.

Generate Configuration Files For Each Storage Node (SN)
On kv-host-1, execute the following command and enter the appropriate responses
when prompted:

java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 makebootconfig \
 -root /u01/nosql/sn1/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-1 \
 -harange 5002,5007 \
 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u01/nosql/sn1/data \
 -storagedirsize 10000000 \
 -store-security configure \
 -pwdmgr pwdfile \
 -kspwd No_Sql_00

Enter a password for the Java KeyStore: No_Sql_00<RETURN>
Re-enter the KeyStore password for verification: No_Sql_00<RETURN>

Created files
 /u01/nosql/sn1/kvroot/security/store.trust

Chapter 4
Deploying a Secure Store

4-4

 /u01/nosql/sn1/kvroot/security/store.keys
 /u01/nosql/sn1/kvroot/security/store.passwd
 /u01/nosql/sn1/kvroot/security/client.trust
 /u01/nosql/sn1/kvroot/security/security.xml
 /u01/nosql/sn1/kvroot/security/client.security

Specifying the value configure for the -store-security parameter in the above command
generates the security artifacts (files) needed for the store’s nodes, as well as clients of the
store, to communicate securely. Each of the artifacts must be installed on the store’s
remaining nodes, whereas only the client.trust artifact should be installed on any client
nodes that will be accessing the store.

To install all of the artifacts listed above on each of the store’s remaining nodes, login to each
node, create the appropriate KVROOT directory, and use a utility such as scp to copy the
security directory from kv-host-1 to the given node’s KVROOT directory. That is,

On kv-host-2:
mkdir -p /u02/nosql/sn2/kvroot
cd /u02/nosql/sn2/kvroot
scp -r <username>@kv-host-1:/u01/nosql/sn1/kvroot/security .

On kv-host-3:
mkdir -p /u03/nosql/sn3/kvroot
cd /u03/nosql/sn3/kvroot
scp -r <username>@kv-host-1:/u01/nosql/sn1/kvroot/security .

To install the client.trust file on the client node, login to the client node and simply copy
the desired file from kv-host-1 node. That is,

On client-host:
scp <username>@kv-host-1:\
 /u01/nosql/sn1/kvroot/security/client.trust /tmp

Once the security artifacts generated on kv-host-1 have been installed on each of the store's
remaining nodes, the configuration files for the Storage Nodes that will be deployed to those
remaining nodes can be generated. This is accomplished by executing the following
commands on the respective node:

On kv-host-2:
java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 makebootconfig \
 -root /u02/nosql/sn2/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-1 \
 -harange 5002,5007 \
 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u02/nosql/sn2/data \
 -storagedirsize 10000000 \
 -store-security enable \
 -pwdmgr pwdfile \

Chapter 4
Deploying a Secure Store

4-5

 -kspwd No_Sql_00

On kv-host-3:
java -jar /opt/oracle/kv-ee/lib/kvstore.jar makebootconfig \
 -root /u03/nosql/sn3/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-1 \
 -harange 5002,5007 \
 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u03/nosql/sn3/data \
 -storagedirsize 10000000 \
 -store-security enable \
 -pwdmgr pwdfile \
 -kspwd No_Sql_00

For both commands above, notice that the value specified for the -store-security
parameter is enable rather than configure, which was specified when generating the
configuration on kv-host-1.

Launch a Storage Node Agent (SNA) On Each Host Making Up the
Store

From each host’s command line, type a command like the following:

nohup java -jar /opt/oracle/kv-ee/lib/kvstore.jar start \
 -root /u0<n>/nosql/sn<n>/kvroot -config config.xml &

where the token <n> corresponds to the integer associated with the given host from
which the above command is executed.

Configure and Deploy the Secure Store
From the command line of the host kv-host-1 launch the Admin CLI, connected to the
boot SNA.

java -jar /opt/oracle/kv-ee/lib/kvstore.jar runadmin \
 -helper-hosts kv-host-1:5000,kv-host-2:5000,kv-host-3:5000 \
 -security /u01/nosql/sn1/kvroot/security/client.security

Next, from the Admin CLI’s command prompt, deploy the store by either entering each
command shown below in succession or by using the load -file <file> command to
load those same commands from a file.

configure -name example-store
plan deploy-zone -name zn1 -rf 3 -wait

plan deploy-sn -znname zn1 -host kv-host-1 -port 5000 -wait
plan deploy-admin -sn 1 -wait

Chapter 4
Deploying a Secure Store

4-6

pool create -name snpool
pool join -name snpool -sn sn1

plan deploy-sn -znname zn1 -host kv-host-2 -port 5000 -wait
plan deploy-admin -sn 2 -wait
pool join -name snpool -sn sn2

plan deploy-sn -znname zn1 -host kv-host-3 -port 5000 -wait
plan deploy-admin -sn 3 -wait
pool join -name snpool -sn sn3

change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"

topology create -name store-layout -pool snpool -partitions 120
topology preview -name store-layout
plan deploy-topology -name store-layout -plan-name deploy-plan -wait

execute "CREATE USER root IDENTIFIED BY 'No_Sql_00' ADMIN";

Note:

The only difference between the set of store deployment commands presented in
the Configure and Deploy the Non-secure Store appendix for a non-secure store
and the commands above is the last command. Once the store is deployed, that
last command will create a store user named root with administrative privileges and
password equal to the value No_Sql_00.

When a secure store is deployed, before the store can be used, an initial user must be
created and then provisioned with the necessary security credentials that grant that user
privileges that allow it to administer the store. Once that user is created and provisioned, it
can then be used to create other users of the store. In a typical production scenario, tables
are generally created and populated with data by users with only user-level privileges rather
than administrative privileges.

The last command above then simply creates that initial user that will be used to create a
second user for executing the secure version of the example program presented in this
document. But before that root user can create other users of the store, it must first be
provisioned, as explained in the next section.

Provision the Secure Store’s Administrative User (root)
As described in the previous section, the last step of the secure store deployment process
simply creates the store's administrative user but does not provision it. But in order to
administer the store, that new user must be provisioned with credentials that grant
administrative privileges for the store. To provision the root user created in the previous
section, login to the store's kv-host-1 node, execute the commands shown, and enter the
appropriate responses when prompted:

java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 securityconfig pwdfile create \
 -file /u01/nosql/sn1/kvroot/security/root.passwd

Chapter 4
Deploying a Secure Store

4-7

Created

java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 securityconfig pwdfile secret \
 -file /u01/nosql/sn1/kvroot/security/root.passwd \
 -set -alias root

Enter the secret value to store: No_Sql_00<RETURN>
Re-enter the secret value for verification: No_Sql_00<RETURN>

Secret created
OK

cp /u01/nosql/sn1/kvroot/security/client.security \
 /u01/nosql/sn1/kvroot/security/root.login

echo oracle.kv.auth.username=root >> \
 /u01/nosql/sn1/kvroot/security/root.login
echo oracle.kv.auth.pwdfile.file=\
 /u01/nosql/sn1/kvroot/security/root.passwd >> \
 /u01/nosql/sn1/kvroot/security/root.login

The client.security properties file is one of the security artifacts that was generated
in the Generate Configuration Files For Each Storage Node (SN) appendix. The
contents of that file are copied to the file named root.login. The root.login file
created here is used when clients wishing to connect to the secure store must
authenticate as the user named root. For the purposes of this document, this
authentication process will be referred to as logging in to the secure store. As a result,
the properties file used in that authentication process is referred to as a login file, or
login properties file.

For convenience, the system properties oracle.kv.auth.username and
oracle.kv.auth.pwdfile.file are inserted into the root.login file. This will allow the
client to connect to the secure store as the root user without having to specify the
value of those properties on the command line.

Create Non-Administrative User
To create a user that will be provisioned with non-administrative privileges, from the
store’s kv-host-1 node, login to the Admin CLI as the newly created root user.

java -jar /opt/oracle/kv-ee/lib/kvstore.jar runadmin \
 -host kv-host-1 \
 -port 5000 \
 -security /u01/nosql/sn1/kvroot/security/root.login

Then create a custom role with the name readwritemodifytables (for example) that
consists of the privileges a user would need to create and populate a table in the store.
After creating the desired role, create a user named example-user and grant the
readwritemodifytables role to that user. To accomplish this, either enter each
command shown below in succession or copy each command to a text file and

Chapter 4
Deploying a Secure Store

4-8

execute the CLI’s load command, specifying the file you created ('load -file <file>').

execute 'CREATE ROLE readwritemodifytables'
execute 'GRANT SYSDBA TO readwritemodifytables'
execute 'GRANT READ_ANY TO readwritemodifytables'
execute 'GRANT WRITE_ANY TO readwritemodifytables'
execute 'CREATE USER example-user IDENTIFIED BY "No_Sql_00"'
execute 'GRANT readwritemodifytables TO USER example-user'

Note:

The name of the user created above is not required to be the same as the OS user
name under which the example is executed. The name above and its associated
credentials are registered with the secure store for the purpose of authenticating to
the store. Thus, the name of the user that is created here can be any value you
wish to use.

Provision the Secure Store's Non-Administrative User (example-user)
Once the user named example-user and its role have been created, use the
KVSecurityCreation convenience program to generate the public and private credentials
needed by that user to connect to the secure store. To do this, first compile
KVSecurityCreation by executing the following command from the store's kv-host-1 node:

cd /opt/oracle/nosql/apps/kv
javac -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:examples \
 examples/hadoop/table/KVSecurityCreation.java

This will produce the following class files on the kv-host-1 node:

/opt/oracle/nosql/apps/kv/examples/hadoop/table/
 KVSecurityUtil.class
 KVSecurityCreation.class

Once KVSecurityCreation has been compiled, it can then be executed to generate the
desired security artifacts for the non-administrative user. If you want to store the password in
a clear text password file, then type the following at the command line and enter the
appropriate response when prompted:

cd /opt/oracle/nosql/apps/kv
java -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 hadoop.table.KVSecurityCreation \
 -pwdfile example-user.passwd \
 -set -alias example-user

Chapter 4
Deploying a Secure Store

4-9

INFO: removed file [/tmp/example-user.passwd]
INFO: removed file [/tmp/example-user-client-pwdfile.login]
created login properties file [/tmp/example-user-client-pwdfile.login]
created login properties file [/tmp/example-user-server.login]
created credentials store [/tmp/example-user.passwd]

Enter the secret value to store: No_Sql_00<RETURN>
Re-enter the secret value for verification: No_Sql_00<RETURN>

Secret created
OK

Alternatively, if you are using an Oracle Wallet (available only in the Enterprise Edition)
to store the user's password, then type the following and again, enter the appropriate
response when prompted:

cd /opt/oracle/nosql/apps/kv
java -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 hadoop.table.KVSecurityCreation \
 -wallet example-user-wallet.dir \
 -set -alias example-user

INFO: removed file [/tmp/example-user-wallet.dir/cwallet.sso]
INFO: removed directory [/tmp/example-user-wallet.dir]
INFO: removed file [/tmp/example-user-client-wallet.login]
created login properties file [/tmp/example-user-client-wallet.login]
created login properties file [/tmp/example-user-server.login]
created credentials store [/tmp/example-user-wallet.dir]

Enter the secret value to store: No_Sql_00<RETURN>
Re-enter the secret value for verification: No_Sql_00<RETURN>

Secret created
OK

Compare the artifacts generated when a password file is specified with the artifacts
generated when a wallet is specified. When a password file is specified, you should
see the following files:

/tmp
 example-user-client-pwdfile.login
 example-user-server.login
 example-user.passwd

Whereas when wallet storage is specified, you should see:

/tmp
 example-user-client-wallet.login
 example-user-server.login

Chapter 4
Deploying a Secure Store

4-10

 /example-user-wallet.dir
 cwallet.sso

Note:

As this is an example for demonstration purposes, the credential files generated by
KVSecurityCreation are placed in the system's /tmp directory. For your
applications, you may want to place the credential files you generate in a more
permanent location that is password protected.

Note:

For both the password or wallet cases two login properties files are generated; one
for client side connections, and one for server side connections. The only difference
between the client side login file and the server side login file is that the client side
login file specifies the username (the alias) along with the location of the user's
password. For the login properties file associated with the use of a password file,
the property oracle.kv.auth.pwdfile is used to specify the location of the file in
which the user’s password is stored; whereas the property
oracle.kv.auth.wallet.dir would be used if the password is stored in an Oracle
Wallet. Although optional, the reason for using two login files is to avoid passing
private security information to the server side, as explained in more detail in the
Model For Building & Packaging Secure Clients appendix. Additionally, observe that
the server side login file (example-user-server.login) is identical for both cases.
This is because whether a password file or an Oracle Wallet is used to store the
password, both use the same publicly visible communication transport information.

At this point, the store has been deployed, configured for secure access, and provisioned
with the necessary users and credentials required for table creation and population. To
demonstrate running a MapReduce job against table data contained in a secure store, the
example presented in this document can now be executed by a user whose password is
stored either in a clear text password file or an Oracle Wallet (Enterprise Edition only).

Note:

A final, important point is that the storage mechanism used for the example
application's user password (password file or Oracle Wallet) does not depend on
the password storage mechanism used by the store. That is, although this appendix
(for convenience) deployed a secure store using a password file rather than a
wallet, the fact that the store placed the passwords it manages in a password file
does not prevent the developer/deployer of a client of that store from storing the
client's user password in an Oracle Wallet, or vice versa. You should therefore view
the use of an Oracle Wallet or a password file by any client application as simply a
"safe" place (for some value of "safe") where the user password can be stored and
accessed by only the user who owns the wallet or password file. This means that
the choice of password storage mechanism is at the discretion of the application
developer/deployer, no matter what mechanism is used by the store itself.

Chapter 4
Deploying a Secure Store

4-11

CountTableRows Support Programs
Oracle NoSQL Database provides a separate distribution in Oracle Technology
Network consisting of example programs and utility classes that you can use to
explore various aspects of interacting with an Oracle NoSQL Database system. With
respect to exploring the integration of Oracle NoSQL Database with MapReduce, in
addition to providing the CountTableRows example program presented in this
document, the Oracle NoSQL Database examples also provide the LoadTableVehicle
program that you can use to create and populate an example table in the store you
deploy.

The sections below describe the LoadVehicleTable program; including the schema
employed when creating the table, as well as how to compile and execute the
program.

Schema for the vehicleTable Example
To execute the CountTableRows MapReduce job, a table named vehicleTable having
the schema shown in the table below must be created in the Oracle NoSQL Database
store deployed for this example. The data types specified in the schema shown below
are defined by the Oracle NoSQL Database Table API (see
oracle.kv.table.FieldDef.Type) .

Table 4-1 Schema for vehicleTable

Field Name Field Type Primary Key Shard Key

type FieldDef.Type.STRING Y Y

make FieldDef.Type.STRING Y Y

model FieldDef.Type.STRING Y Y

class FieldDef.Type.STRING Y

color FieldDef.Type.STRING

price FieldDef.Type.DOUBLE

count FieldDef.Type.INTEGER

dealerid FieldDef.Type.NUMBER

delivered FieldDef.Type.TIMESTAMP

The example vehicleTable consists of rows representing a particular vehicle a dealer
might have in stock for purchase. Each such row contains fields specifying the "type"
of vehicle (for example, car, truck, SUV, etc.), the "make" of the vehicle (Ford, GM,
Chrysler, etc.), the "model" (Explorer, Camaro, Lebaron, etc.), the vehicle "class"
(4WheelDrive, FrontWheelDrive, etc.), the "color" and "price" of the vehicle, the
number of vehicles currently in stock (the "count") having those characteristics, a
number that uniquely identifies the dealership selling those vehicles (the "dealerid"),
and finally, the date and time those vehicles were "delivered" to the dealership.

Although you can enter individual commands in the store's admin CLI to create a table
with the above schema, the preferred approach is to employ the Table Data Definition
Language (DDL) to create the desired table. One way to accomplish this is to follow
the instructions presented in the next sections to compile and execute the
LoadVehicleTable program, which will populate the desired table after using the DDL
to create it.

Chapter 4
CountTableRows Support Programs

4-12

Create and Populate vehicleTable with Example Data
Assuming an Oracle NoSQL Database store (secure or non-secure) has been deployed with
KVHOME equal to /opt/oracle/kv-ee, the LoadVehicleTable program that is supplied as a
convenience with the CountTableRows example can be executed to create and populate the
table named vehicleTable. Before executing LoadVehicleTable though, that program must
first be compiled. To do this, assuming you have installed the example distribution under the
base directory /opt/oracle/nosql/apps/kv/examples, type the following from your client
node’s OS command line:

cd /opt/oracle/nosql/apps/kv
javac -classpath \
 /opt/oracle/kv-ee/lib/kvclient.jar:examples \
 examples/hadoop/table/LoadVehicleTable.java

This should produce the file:

/opt/oracle/nosql/apps/kv/examples/hadoop/table/LoadVehicleTable.class

Run LoadVehicleTable when the Store is Non-Secure
To execute LoadVehicleTable to create and populate the table named vehicleTable with
example data in a store configured for non-secure access, type the following at the command
line of the client node, which must have network connectivity with a node running the admin
service of the non-secure store you deployed (for example, kv-host-1 itself):

cd /opt/oracle/nosql/apps/kv
java -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 hadoop.table.LoadVehicleTable -store example-store \
 -host kv-host-1 -port 5000 -nops 79 [-delete]

The following parameters are required: -store, -host, -port, and -nops, whereas the -
delete parameter is optional.

In the example command line above, the argument -nops 79 requests that 79 rows be written
to the vehicleTable. If more or less than that number of rows is desired, then the value of the
-nops parameter should be changed.

If LoadVehicleTable is executed a second time and the optional -delete parameter is
specified, then all rows added by any previous executions of LoadVehicleTable are deleted
from the table prior to adding the requested new rows. Otherwise, all pre-existing rows are
left in place, and the number of rows in the table will be increased by the requested -nops
number of new rows.

Chapter 4
CountTableRows Support Programs

4-13

Note:

Because of the way LoadVehicleTable generates records, it is possible that
a given record has already been added to the table, either during a previous
call to LoadVehicleTable, or during the current call. As a result, it is not
uncommon for the number of unique rows added to be less than the number
requested. Because of this, when processing has completed,
LoadVehicleTable will display the number of unique rows that are actually
added to the table, along with the total number of rows currently in the table
(from previous runs).

Run LoadVehicleTable When the Store is Secure
To execute LoadVehicleTable against the secure store that you deployed and
provisioned with a non-administrative user according to the steps presented in the
Deploying a Secure Store appendix, an additional parameter must be added to the
command line above. In this case, type the following on the command line:

scp <username>@kv-host-<n>:\
 /u01/nosql/sn1/kvroot/security/client.trust /tmp

cd /opt/oracle/nosql/apps/kv

java -classpath \
 /opt/oracle/kv-ee/lib/kvclient.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 hadoop.table.LoadVehicleTable -store example-store \
 -host kv-host-1 -port 5000 -nops 79 \
 -security /tmp/example-user-client-pwdfile.login \
 [-delete]

The client.trust file generated when the secure store was deployed must be
installed in the /tmp directory of the client node from which LoadVehicleTable is
executed. If the client node is different than any of the store nodes (kv-host-1, kv-
host-2, kv-host-3), then the installation of client.trust is accomplished by
performing a remote copy; using the appropriate username and the number 1 in place
of the <n> token. On the other hand, if LoadVehicleTable is run from one of the nodes
making up the store itself, then a local copy operation can be used for the installation.

The additional -security parameter in the command above specifies the location of
the login properties file (associated with a password file in this case rather than an
Oracle Wallet) for the given user or alias. All other parameters are the same as for the
non-secure case.

To understand the -security parameter, recall from the Deploying a Secure Store
appendix that a non-administrative user named example-user was created, and a
number of credential files based on a password file (rather than an Oracle Wallet) were

Chapter 4
CountTableRows Support Programs

4-14

generated for that user and placed under the /tmp system directory. As a result, you should
see the following files under the /tmp directory of the client node:

/tmp
 client.trust
 example-user-client-pwdfile.login
 example-user-server.login
 example-user.passwd

For this example, the user credential files must be co-located, where it doesn't matter which
directory they are located in, as long as they all reside in the same directory accessible by the
user. It is for this reason that the shared trust file (client.trust) is copied into /tmp above.
Co-locating client.trust and example-user.passwd with the login file (example-user-
client-pwdfile.login) allows relative paths to be used for the values of the system
properties oracle.kv.ssl.trustStore and oracle.kv.auth.pwdfile.file that are specified
in the login file (or oracle.kv.auth.wallet.dir if an Oracle Wallet is used to store the user
password). If those files are not co-located with the login file, then absolute paths must be
used for those properties.

Summary
At this point, the vehicleTable created in the Oracle NoSQL Database store you deployed
whether non-secure or secure should be populated with the desired example data. And the
MapReduce job initiated by CountTableRows can be run to count the number of rows in that
table.

Model For Building & Packaging Secure Clients
With respect to running a MapReduce job against data contained in a secure store, a
particularly important issue to address is related to the communication of user credentials to
the tasks run on each of the DataNodes on which the Hadoop infrastructure executes the job.
Recall from above that when using the MapReduce programming model defined by Apache
Hadoop the tasks executed by a MapReduce job each act as a client of the store. Thus, if the
store is configured for secure access, in order to retrieve the desired data from the store,
each task must have access to the credentials of the user associated with that data. The
typical mechanism for providing the necessary credentials to a client of a secure store is to
manually install the credentials on the client's local file system; for example, by employing a
utility such as scp.

Although the manual mechanism is practical for most clients of a secure store, it is extremely
impractical for a MapReduce job. This is because a MapReduce job consists of multiple tasks
running in parallel, in separate address spaces, each with a separate file system that is
generally not under the control of the user. Assuming then, that write access is granted by the
Hadoop administrator (a problem in and of itself), this means that manual installation of the
client credentials for every possible user known to the given secure store would need to
occur on the file system of each of the many nodes in the Hadoop cluster; something that
may be very difficult to achieve.

To address this issue, a model will be presented that developers and deployers can employ
to facilitate the communication of each user's credentials to a given MapReduce job from the
client side of the job; that is, from the address space controlled by the job's client process,
owned by the user.

Chapter 4
Model For Building & Packaging Secure Clients

4-15

This model will consist of two primary components: a programming model for
executing MapReduce jobs that retrieve and process data contained in tables located
in a secure store; and a set of "best practices" for building, packaging, and deploying
those jobs. Although there is nothing preventing a user from manually installing the
necessary security credentials on all nodes in a given cluster, doing so is not only
impractical, but may result in various security vulnerabilities. Combining this
programming model with the deployment best practices that are presented here
should help developers and deployers not only avoid the need to manually pre-install
credentials on the DataNodes of the Hadoop cluster, but should also prevent the sort
of security vulnerabilities that can occur with manual installation.

Programming Model For MapReduce with Oracle NoSQL Database
Security

Recall that when executing a MapReduce job, the client application uses mechanisms
provided by the Hadoop infrastructure to initiate the job from a node (referred to as the
Hadoop cluster's access node) that has network access to the node running the
Hadoop cluster's ResourceManager. If the job will be run against a secure store, then
prior to initiating the job, the client must initialize the job's TableInputFormat with the
following three pieces of information:

• The name of the file that specifies the transport properties the client will use when
connecting to the store; which, for the purposes of this document, will be referred
to as the login properties file (or login file).

• The PasswordCredentials containing the username and password the client will
present to the store during authentication.

• The name of the file containing the public keys and/or certificates needed for
authentication; which, for the purposes of this document, will be referred to as, the
client trust file (or trust file).

To perform this initialization of the MapReduce client application, CountTableRows in
this case, invokes the setKVSecurity method defined in TableInputFormat. Once this
initialization has been performed and the job has been initiated, the job uses that
TableInputFormat to create and assign a TableInputSplit (a split) to each of the
Mapper tasks that will run on one of the DataNodes in the cluster. The
TableInputFormat needs the information initialized by the setKVSecurity method for
two reasons:

• To connect to the secure store from the access node and retrieve the information
needed to create the splits.

• To initialize each split with that same security information, so that each such split
can connect to the secure store from its DataNode host and retrieve the particular
table data the split will process.

In addition to requiring that the MapReduce application use the mechanism just
described to initialize and configure the job's TableInputFormat (and thus, its splits)
with the information listed above, the model also requires that the public and private
security credentials referenced by that information be communicated to the
TableInputFormat, as well as the splits, securely. How this is achieved depends on
whether that information is being communicated to the TableInputFormat on the client
side of the application, or to the splits on the server side.

Chapter 4
Model For Building & Packaging Secure Clients

4-16

Communicating Security Credentials to the Server Side Splits
To facilitate communication of the user's security credentials to the splits distributed to each
of the DataNodes of the cluster, the model presented here separates public security
information from the private information (the username and password), and then stores the
private information as part of each split's internal state, rather than on the local file system of
each associated DataNode; which may be vulnerable or difficult/impossible to secure. For
communication of the public contents of the login and trust files to each such split, the model
supports an (optional) mechanism that allows the application to communicate that information
as Java resources that each split retrieves from the classpath of the split's Java VM. This
avoids the need to manually transfer the contents of those files to each DataNode's local file
system, and also avoids the potential security vulnerabilities that can result from manual
installation on those nodes. Note that when an application wishes to employ this mechanism,
it will typically include the necessary information in a JAR file that is specified to the
MapReduce job via the Hadoop command line directive -libjars.

The intent of the mechanism just described is to allow applications to exploit the Hadoop
infrastructure to automatically distribute the public login and trust information to each split
belonging to the job via a JAR file added to the classpath on each remote DataNode. But it is
important to note that although this mechanism is used to distribute the application's public
credentials, it must not be used to distribute any of the private information related to
authentication; specifically, the username and password. This is important because a JAR file
that is distributed to the DataNodes in the manner described may be cached on the
associated DataNode's local file system; which might expose a vulnerability. As a result,
private authentication information is only communicated as part of each split's internal state.

The separation of public and private credentials supported by this model not only prevents
caching the private credentials on each DataNode, but also facilitates the ability to guarantee
the confidentiality of that information, via whatever external third party secure communication
mechanism the current Hadoop implementation happens to employ. This capability is also
important to support the execution of Hive queries against a secure store.

Communicating Security Credentials to the TableInputFormat
With respect to the job's TableInputFormat, the programming model supports different
options for communicating the user's security information. This is because the
TableInputFormat operates only on the access node, on the client side of the job; which
means that there is only one file system that needs to be secured. Additionally, unlike the
splits, the TableInputFormat is not sent on the wire. Thus, as long as only the user is granted
read privileges, both the public and private security information can be installed on the
access node's file system without fear of compromise. For this case, the application would
typically use system properties on the command line to specify the fully-qualified paths to the
login, trust, and password files (or Oracle Wallet); which the TableInputFormat would then
read from the local file system, retrieving the necessary public and private security
information.

A second option for communicating the user's security credentials to the TableInputFormat is
to include the public and private information as resources in the client side classpath of the
Java VM in which the TableInputFormat runs. This is the option employed by the example
presented in this document, and is similar to what was described above for the splits. This
option demonstrates how an application's build model can be exploited to simplify not only
the applications's command line, but also the deployment of secure MapReduce jobs in
general. As was the case with the splits, applications will typically communicate the
necessary security information as Java resources by including that information in a JAR file.

Chapter 4
Model For Building & Packaging Secure Clients

4-17

But rather than using the Hadoop command line directive -libjars to specify the JAR
file to the server side of the MapReduce job, in this case, because the
TableInputFormat operates on only the client side access node, the JAR file would
simply be added to the HADOOP_CLASSPATH environment variable.

Best Practices: MapReduce Application Packaging for Oracle NoSQL
Security

To help users achieve the sort of separation of public and private security information
described in previous sections, a set of (optional) best practices related to packaging
the client application and its necessary artifacts is presented in this section, and are
employed by the example featured in this document. Although the use of these
packaging practices is optional, you are encouraged to employ them when working
with any MapReduce jobs of your own that will interact with a secure store.

Rather than manually installing the necessary security artifacts (login file, trust file,
password file or Oracle Wallet) on each DataNode in the cluster, user's should instead
install those artifacts only on the cluster's single access node; the node from which the
client application is executed. The client application can then retrieve each artifact
from the local environment, repackage the necessary information, and then employ
mechanisms provided by the Hadoop infrastructure to transfer that information to the
appropriate components of the MapReduce job that will be executed.

For example, as described in the previous section, your client application can be
designed to retrieve the username and location of the password from the command
line, a configuration file, or a resource in the client classpath; where the location of the
user's password is a locally installed password file or Oracle Wallet that can only be
read by the user. After retrieving the username from the command line and the
password from the specified location, the client uses that information to create the
user's PasswordCredentials, which are transferred to each MapReduce task via the
splits that are created by the job's TableInputFormat. Using this model, the user's
PasswordCredentials, are never written to the file systems of the cluster's DataNodes.
They are only held in each task's memory. As a result, the integrity and confidentiality
of those credentials only need to be provided when on the wire, which can be
achieved by using whatever external third party secure communication mechanism the
current Hadoop implementation happens to employ.

With respect to the transfer of the public login and trust artifacts, the client application
can exploit the mechanisms provided by the Hadoop infrastructure to automatically
transfer classpath (JAR) artifacts to the job's tasks. As demonstrated by the
CountTableRows example presented in the body of this document, the client
application's build process can be designed to separate the application's class files
from its public security artifacts. Specifically, the application's class files and optionally,
the public and private credentials, can be placed in a local JAR file on the access node
for inclusion in the classpath of the client itself; while only the public login properties
and client trust information are placed in a separate JAR file that can be added to the
hadoop command line specification of -libjars for inclusion in the classpath of each
MapReduce task.

Application Packaging for the Non-Secure Case
To understand how the packaging model discussed here can be employed when
executing an application against a secure store, it may be helpful to first review how
the CountTableRows example is executed against a non-secure store. Recall from the

Chapter 4
Model For Building & Packaging Secure Clients

4-18

previous sections, for the non-secure case, the following command was executed to produce
a JAR file containing only the class files needed by CountTableRows.

cd /opt/oracle/nosql/apps/kv/examples
jar cvf CountTableRows.jar hadoop/table/CountTableRows*.class

which produced the file CountTableRows.jar, whose contents look like:

META-INF/
META-INF/MANIFEST.MF
hadoop/table/CountTableRows.class
hadoop/table/CountTableRows$Map.class
hadoop/table/CountTableRows$Reduce.class

and the following commands were then be used to execute the CountTableRows example
MapReduce job against a non-secure store:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/ondb/kv/lib/kvclient.jar

cd /opt/ondb/kv
hadoop jar examples/non_secure_CountTableRows.jar \
 hadoop.table.CountTableRows \
 -libjars \
 /opt/oracle/kv-ee/lib/kvclient.jar,\
 /opt/oracle/kv-ee/lib/sklogger.jar,\
 /opt/oracle/kv-ee/lib/commonutil.jar,\
 /opt/oracle/kv-ee/lib/failureaccess.jar,\
 /opt/oracle/kv-ee/lib/antlr4-runtime-nosql-shaded.jar,\
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/lib/jackson-annotations.jar \
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/0001

Observe that there are three classpaths that must be set when a MapReduce job is executed.
First, the jar specification to the Hadoop command interpreter makes the class files of the
main program (CountTableRows in this case) accessible to the hadoop launcher mechanism,
so that the program can be loaded and executed. Next, the HADOOP_CLASSPATH environment
variable must be set to include any third party libraries that the program or the Hadoop
framework, running on the local access node, may need to load. For the example above, only
kvclient.jar is added to HADOOP_CLASSPATH, so that the Hadoop framework's job initiation
mechanism on the access node can access TableInputFormat and its related classes.
Compare this with the specification of the -libjars argument which is the third classpath that
must be specified. As described below, the -libjars argument must include not only
kvclient.jar, but also a number of other third party libraries that may not be available in the
remote Hadoop environment.

The Hadoop command interpreter's -libjars argument is used to specify the classpath
needed by each MapReduce task executing on the Hadoop cluster's DataNodes. The -
libjars argument must include all of the libraries needed to run the desired application that

Chapter 4
Model For Building & Packaging Secure Clients

4-19

are not already available via the Hadoop platform. For the case above, kvclient.jar,
sklogger.jar, commonutil.jar, failureaccess.jar, antlr4-runtime-nosql-
shaded.jar, jackson-core.jar, jackson-databind.jar, and jackson-
annotations.jar are each specified via the -libjars argument so that each
MapReduce task can access classes such as, TableInputSplit and
TableRecordReader, as well as the logging related classes and JSON utility classes
provided by Oracle NoSQL Database and other support classes that are not generally
provided by the Hadoop platform.

Application Packaging and Execution for the Secure Case
Compare the non-secure case described in the previous section with what would be
done to run the CountTableRows MapReduce job against a secure store. For the
secure case, two JAR files are built; one for the classpath on the client side, and one
for the classpaths of the DataNodes on the server side. The first JAR file will be added
to the client side classpath and includes not only the class files for the application but
also the public and private credentials the client will need to interact with the secure
store. Including the public and private credentials in the client side JAR file avoids the
inconvenience of having to specify that information on the command line.

The second JAR file will be added to the DataNode classpaths on the server side via
the -libjars argument, and will include only the user's public credentials.

As described in the Deploying a Secure Store appendix, the user's password can be
stored in either a clear text password file or an Oracle Wallet. As a result, how the first
JAR is generated is dependent on whether a password file or an Oracle Wallet is used.

Application Packaging for the Secure Case Using a Password File
If you wish to execute CountTableRows using a password file instead of an Oracle
Wallet, and if you have used KVSecurityCreation to generate the user's security
artifacts in the manner presented in the Deploying a Secure Store appendix, then both
the client side and server side JAR files for the CountTableRows example application
are generated by typing the following on the command line:

cd /opt/oracle/nosql/apps/kv/examples
jar cvf CountTableRows-pwdClient.jar \
 hadoop/table/CountTableRows*.class \
 hadoop/table/KVSecurityUtil*.class

cd /tmp
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdClient.jar \
 client.trust
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdClient.jar \
 example-user-client-pwdfile.login
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdClient.jar \
 example-user.passwd

jar cvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdServer.jar /
 client.trust
jar uvf \

Chapter 4
Model For Building & Packaging Secure Clients

4-20

 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdServer.jar \
 example-user-server.login

The first four commands above produce the client side JAR file named CountTableRows-
pwdClient.jar, where the contents of that JAR look like:

META-INF/
META-INF/MANIFEST.MF
hadoop/table/CountTableRows.class
hadoop/table/CountTableRows$Map.class
hadoop/table/CountTableRows$Reduce.class
hadoop/table/KVSecurityUtil.class
client.trust
example-user-client-pwdfile.login
example-user.passwd

The following files in the above code correspond to security artifacts that should remain
private to the client.

example-user-client-pwdfile.login
example-user.passwd

The last two commands above produce the server side JAR file named CountTableRows-
pwdServer.jar, with contents that look like:

META-INF/
META-INF/MANIFEST.MF
client.trust
example-user-server.login

The last two files from the above list correspond to the client's security artifacts that can be
shared publicly.

Application Execution for the Secure Case Using a Password File
If you wish to execute the CountTableRows MapReduce job against a secure store where a
password file rather than an Oracle Wallet is used to store the client application's password,
then after packaging the application for password file based execution as described in the
previous section, you would then type the following on the command line:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/oracle/kv-ee/kv/lib/kvclient.jar:\
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdServer.jar

cd /opt/oracle/nosql/apps/kv

hadoop jar examples/CountTableRows-pwdClient.jar \
 hadoop.table.CountTableRows \
 -libjars \
 /opt/oracle/kv-ee/kv/lib/kvclient.jar,\
 /opt/oracle/kv-ee/kv/lib/sklogger.jar,\
 /opt/oracle/kv-ee/kv/lib/commonutil.jar,\

Chapter 4
Model For Building & Packaging Secure Clients

4-21

 /opt/oracle/kv-ee/kv/lib/failureaccess.jar,\
 /opt/oracle/kv-ee/kv/lib/antlr4-runtime-nosql-shaded.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-annotations.jar,\
 /opt/oracle/nosql/apps/examples/CountTableRows-pwdServer.jar \
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/0001 \
 example-user-client-pwdfile.login \
 example-user-server.login

Application Packaging for the Secure Case Using an Oracle Wallet
Rather than using a file in which to store the client’s password, you may choose to use
an Oracle Wallet to store the password in obfuscated form. When an Oracle Wallet will
be used and the KVSecurityCreation convenience program was used to generate the
wallet based artifacts for CountTableRows in the manner presented in the Deploying a
Secure Store appendix, then both the client side and server side JAR files for the
wallet based CountTableRows example application are generated by typing the
following on the command line:

cd /opt/oracle/nosql/apps/kv/examples
jar cvf CountTableRows-walletClient.jar \
 hadoop/table/CountTableRows*.class \
 hadoop/table/KVSecurityUtil*.class

cd /tmp
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletClient.jar
\
 client.trust
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletClient.jar
\
 example-user-client-walletfile.login
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletClient.jar
\
 example-user-wallet.dir

jar cvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-
walletServer.jar /
 client.trust
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletServer.jar
\
 example-user-server.login

Chapter 4
Model For Building & Packaging Secure Clients

4-22

The first four commands above produce the client side JAR file named CountTableRows-
walletClient.jar, where the contents of that JAR look like:

META-INF/
META-INF/MANIFEST.MF
hadoop/table/CountTableRows.class
hadoop/table/CountTableRows$Map.class
hadoop/table/CountTableRows$Reduce.class
hadoop/table/KVSecurityUtil.class
client.trust
example-user-client-wallet.login
example-user-wallet.dir/
example-user-wallet.dir/cwallet.sso

Similarly, the last two commands produce the server side JAR file named CountTableRows-
walletServer.jar, with contents:

META-INF/
META-INF/MANIFEST.MF
client.trust
example-user-server.login

Application Execution for the Secure Case Using an Oracle Wallet
If you wish to execute the CountTableRows MapReduce job against a secure store using an
Oracle Wallet to store the client application's password, then after packaging the application
for wallet based execution as described in the previous section, you would type the following
on the command line:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/oracle/kv-ee/kv/lib/kvclient.jar:\
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletServer.jar

cd /opt/oracle/nosql/apps/kv

hadoop jar examples/CountTableRows-walletClient.jar \
 hadoop.table.CountTableRows \
 -libjars \
 /opt/oracle/kv-ee/kv/lib/kvclient.jar,\
 /opt/oracle/kv-ee/kv/lib/sklogger.jar,\
 /opt/oracle/kv-ee/kv/lib/commonutil.jar,\
 /opt/oracle/kv-ee/kv/lib/failureaccess.jar,\
 /opt/oracle/kv-ee/kv/lib/antlr4-runtime-nosql-shaded.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-annotations.jar,\
 /opt/oracle/nosql/apps/examples/CountTableRows-walletServer.jar \
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/0001 \
 example-user-client-walletfile.login \
 example-user-server.login

Chapter 4
Model For Building & Packaging Secure Clients

4-23

Secure Versus Non-Secure Command Lines
When examining how the application is executed using either a wallet based or a
password file based password storage mechanism, you should first notice that, unlike
the non-secure case, the HADOOP_CLASSPATH and -libjars argument have both been
augmented with the JAR file that contains only the public credentials for login and
trust; that is, either CountTableRows-pwdServer.jar or CountTableRows-
walletServer.jar. Because those JAR files contain only public information, they can
be safely transmitted to the server side remote address spaces.

Compare this with the value to which the application's local classpath is set, via the jar
directive. Rather than including the application's server based JAR file, the local
classpath instead is set to include the application's client based JAR file; either
CountTableRows-pwdClient.jar or CountTableRows-walletClient.jar. The
application's client based JAR file includes both the application's public and private
credentials. Those JAR files contain security artifacts which should remain private to
the application's address space; that is, the client side of the application. As a result,
those JAR files must never be included in the HADOOP_CLASSPATH or -libjars
specifications. They should be included only in the client's local classpath.

Finally, the only other difference between the command lines for secure execution and
non-secure execution, is the two additional arguments at the end of the argument list
for the secure case; specifically, example-user-server.login and either example-
user-client-pwdfile.login or example-user-client-wallet.login.

The values of those arguments specify, respectively, the names of the client side and
server side login files, whose contents will be retrieved as resources from the
corresponding JAR file.

Observe that when you package and execute your MapReduce application in a
manner like that shown here, there is no need to specify the username or password
file (or wallet) on the command line; as that information is included as part of the client
side JAR file. Additionally, the server side JAR file that is transferred from the Hadoop
cluster’s access node to the job's DataNodes does not include that private information.
This is important because that transferred JAR file will be cached in the file system of
each of those DataNodes.

Summary
As the sections above demonstrate, the programming model for MapReduce and
Oracle NoSQL Database Security supports (even encourages) the best practices
presented in this section for building, packaging, and deploying any given MapReduce
job that employs the Oracle NoSQL Database Table API to retrieve and process data
in a given Oracle NoSQL Database store, either secure or non-secure. As a result,
simply generating separate JAR files a set of JAR files for the secure case, and one
for the non-secure case allows deployers to conveniently run the job with or without
security.

Chapter 4
Model For Building & Packaging Secure Clients

4-24

Note:

This model for separating public and private user credentials will also play an
important role when executing Hive queries against table data in a secure store.

Chapter 4
Model For Building & Packaging Secure Clients

4-25

Part II
Integration with Apache Hive

Topics

• Introduction to Integration with Apache Hive

• Oracle NoSQL Database Hive Integration Classes

• Mapping the Hive Data Model to the Oracle NoSQL Database Table Model

• Example: Hive Queries On Oracle NoSQL Database Tables

• Appendix

– Creating and Populating the rmvTable

– Creating and Populating the exampleJsonTable

– Configuring the Hive Client Environment

– Hive and Oracle NoSQL Database Security

– Predicate Pushdown

5
Introduction to Integration with Apache Hive

The Integration with Apache Hadoop MapReduce section describes the set of classes
provided by Oracle NoSQL Database that support running Hadoop MapReduce jobs against
data stored in an Oracle NoSQL Database table. Since a typical Hive query generally results
in the execution of a MapReduce job, it was natural for Oracle NoSQL Database to also
provide new interfaces and classes which support running Hive queries against such table
data.

In addition to describing the core interfaces and classes involved in running a Hive query
against data from a table located in a given Oracle NoSQL Database store, the information
presented in this section will also present the steps to take to execute a given set of basic
Hive queries against example table data contained in such a store, where the store can be
either secure or non-secure.

Prerequisites
Before attempting to execute the example that demonstrates the concepts presented in this
section, you should first satisfy the following prerequisites:

• Become familiar with Apache Hive 2 and its programming model. Specifically, become
familiar with how to write and execute a Hive query.

• Become familiar with Apache Hadoop 3. Specifically, become familiar with how Hive and
Hadoop interact.

• Deploy a Hadoop cluster with 3 data nodes running on machines with host names, dn-
host-1, dn-host-2, and dn-host-3.

• Become familiar with the Hive Command Line Interface (the Hive CLI), and the Hive
Query Language.

• Become familiar with Oracle NoSQL Database (see Introduction to Oracle NoSQL
Database in the Concepts Guide) and then install, start, and configure an Oracle NoSQL
Database that is network reachable from the nodes of the Hadoop cluster and any Hive
clients. The KVHOME of the store that you start should be configured as the
directory /opt/oracle/kv-ee.

• Deploy a store to 3 machines (real or virtual) with host names, kv-host-1, kv-host-2,
and kv-host-3. The store's name should be set to the value example-store, and the
store's KVROOT should be set to the directories /u01/nosql/sn1/kvroot on kv-
host-1, /u02/nosql/sn2/kvroot on kv-host-2, and /u03/nosql/sn3/kvroot on kv-
host-3. Finally, an Oracle NoSQL Database admin service, listening on port 5000, should
be deployed to each host making up the store.

• Become familiar with the Oracle NoSQL Database Security model and be able to
configure the deployed store for secure access (optional).

• If the deployed store is configured for secure access, start the Oracle NoSQL Database
Administrative CLI and then follow the steps presented in the Deploying a Secure Store
appendix to securely connect to the store and create a user named example-user, along

5-1

with the appropriate security artifacts (login file, trust file, and either password file
or Oracle Wallet).

• Obtain and install the separate distribution containing the Oracle NoSQL Database
example code (see Oracle Technology Network). Although you are free to install
that package in any location on your system, for simplicity this document assumes
the example code is installed under the directory /opt/oracle/nosql/apps/kv/
examples.

• Become familiar with the supporting Java classes presented in the Integration with
Apache Hadoop MapReduce section, and then follow the steps presented in that
document to create and populate the table named vehicleTable with example
data consisting of only primitive data types.

• Become familiar with the LoadRmvTable program provided in the Oracle NoSQL
Database example distribution, and then follow the steps presented in the Creating
and Populating the rmvTable appendix to create and populate a table named
rmvTable with example data consisting of both primitive and non-primitive data
types.

• Become familiar with the LoadJsonExample program provided in the Oracle NoSQL
Database example distribution, and then follow the steps presented in the Creating
and Populating the exampleJsonTable appendix to create and populate a table
named exampleJsonTable with rows containing valid JSON formatted data
(documents).

Using specific values for items such as the KVHOME and KVROOT environment
variables, as well as the store name, host names, admin port, and example code
location described above should allow you to more easily understand and use the
example commands. Combined with the information contained in the Concepts Guide,
along with the Administrator's Guide and Security Guide, you should then be able to
generalize and extend these examples to your own particular development scenario;
substituting the values specific to the given environment where necessary.

Detailed instructions for deploying a non-secure Oracle NoSQL Database store are
provided in the Deploying a Non-Secure Store appendix. Similarly, the Deploying a
Secure Store appendix provides instructions for deploying a store configured for
security.

A Brief Primer on Apache Hive
Paraphrasing wikipedia, Apache Hive is a data warehouse infrastructure built on top of
Apache Hadoop that facilitates querying datasets residing in distributed file systems
such as the Hadoop Distributed File System (referred to as HDFS) or in compatible file
systems. In addition to those built in features, Hive also provides a pluggable
programming model that allows you to specify custom interfaces and classes that
support querying data residing in data sources such as the Oracle NoSQL Database.

In addition to the Hive infrastructure and its pluggable programming model, Hive also
provides a convenient client-side command line interface (the Hive CLI), which allows
you to interact with the Hive infrastructure to create a Hive external table and then map
it to the data located in remote sources like those just described.

Oracle NoSQL Database provides a set of interfaces and classes that satisfy the Hive
programming model so that the Hive Query Language can be used to query data
contained in an Oracle NoSQL Database store (either secure or non-secure). The
classes that are defined for that purpose are located in the Java package

Chapter 5
A Brief Primer on Apache Hive

5-2

oracle.kv.hadoop.hive.table (see Java API), and consist of the following Hive and Hadoop
types:

• A subclass of the Hive class
org.apache.hadoop.hive.ql.metadata.HiveStorageHandler. The HiveStorageHandler
is the mechanism (the pluggable interface) Oracle NoSQL Database uses to specify the
location of the data that the Hive infrastructure should process, as well as how that data
should be processed. The HiveStorageHandler consists of the following components:

– A subclass of the Hadoop MapReduce version 1 class
org.apache.hadoop.mapred.InputFormat, where InputFormat specifies how the
associated MapReduce job reads its input data, taken from the Oracle NoSQL
Database table.

– A subclass of the Hadoop MapReduce version 1 class
org.apache.hadoop.mapred.OutputFormat, where OutputFormat specifies how the
associated MapReduce job writes its output.

– A subclass of the Hive class org.apache.hadoop.hive.serde2.AbstractSerDe. The
AbstractSerDe class and its associated subclasses are used to deserialize the table
data that is retrieved and sent to the Hive infrastructure and/or the Hadoop
MapReduce job for further processing. Although not currently supported, this
mechanism can also be used to serialize data input to Hive for writing to an Oracle
NoSQL Database table.

– Metadata hooks for keeping an external catalog in sync with the Hive Metastore
component.

– Rules for setting up the configuration properties on MapReduce jobs run against the
data being processed.

– An implementation of the interface
org.apache.hadoop.hive.ql.metadata.HiveStoragePredicateHandler. As
described in the Predicate Pushdown appendix, the implementation of
HiveStoragePredicateHandler provided by Oracle NoSQL Database supports the
decomposition of a query's WHERE clause (the predicates of the query) into
information that can be passed to the database so that some (or even all) of the
search processing can be performed in the database itself rather than on the client
side of the query.

• A subclass of the Hadoop MapReduce version 1 class
org.apache.hadoop.mapred.RecordReader, where a RecordReader is used to specify
how the mapped keys and values are located and retrieved during any MapReduce
processing performed while executing a Hive query.

• A subclass of the Hadoop MapReduce version 1 class
org.apache.hadoop.mapred.InputSplit, where an InputSplit is used to represent the
data to be processed by an individual Mapper that operates during the MapReduce
processing performed as part of executing a Hive query.

See Apache Hadoop API and Hive API for more details.

As described in the following sections, it is through the implementation of the
HiveStorageHandler provided by Oracle NoSQL Database that the Hive infrastructure
obtains access to a given Oracle NoSQL Database store and ultimately the table data on
which to run the desired Hive query.

Chapter 5
A Brief Primer on Apache Hive

5-3

6
Oracle NoSQL Database Hive Integration
Classes

To support running Hive queries against data stored in a table of an Oracle NoSQL Database
store, the following core classes are employed:

• oracle.kv.hadoop.hive.table.TableStorageHandler
• oracle.kv.hadoop.hive.table.TableHiveInputFormat
• oracle.kv.hadoop.hive.table.TableHiveInputSplit
• oracle.kv.hadoop.hive.table.TableHiveRecordReader
• oracle.kv.hadoop.hive.table.TableSerDe
• Implementations specific to Oracle NoSQL Database of the Hive

org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector interface that
support deserialization of the primitive and non-primitive data types defined by the Oracle
NoSQL Database table API.

For more detail, see oracle.kv.hadoop.hive.table API.

6-1

7
Mapping the Hive Data Model to the Oracle
NoSQL Database Table Model

As the examples presented here demonstrate, in order to execute a Hive query against data
stored in an Oracle NoSQL Database table, a Hive external table must be created with a
schema mapped from the schema of the desired Oracle NoSQL Database table. This is
accomplished by applying the mapping described here.

The following implementations of the Hive ObjectInspector interface are used in the
deserialization process to convert the associated data type defined by the Oracle NoSQL
Database table model to its corresponding type in the Hive data model. See
oracle.kv.hadoop.hive.table.

• oracle.kv.hadoop.hive.table.TableBinaryObjectInspector
• oracle.kv.hadoop.hive.table.TableBooleanObjectInspector
• oracle.kv.hadoop.hive.table.TableDoubleObjectInspector
• oracle.kv.hadoop.hive.table.TableFloatObjectorInspector
• oracle.kv.hadoop.hive.table.TableIntObjectInspector
• oracle.kv.hadoop.hive.table.TableLongObjectInspector
• oracle.kv.hadoop.hive.table.TableJsonObjectInspector
• oracle.kv.hadoop.hive.table.TableNumberObjectInspector
• oracle.kv.hadoop.hive.table.TableTimestampObjectInspector
• oracle.kv.hadoop.hive.table.TableEnumObjectInspector
• oracle.kv.hadoop.hive.table.TableArrayObjectInspector
• oracle.kv.hadoop.hive.table.TableMapObjectInspector
• oracle.kv.hadoop.hive.table.TableRecordObjectInspector
The data model defined by the Oracle NoSQL Database (see oracle.kv.table.FieldDef.Type)
is mapped to a subset of the types defined by Hive, as shown in the following table.
Specifically, when creating a Hive external table so that you can query the data in a given
Oracle NoSQL Database table, the Hive table must be created with a schema consistent with
the mappings shown in the following table:

Table 7-1 Hive Data Model

Oracle NoSQL Database Type Hive Type

FieldDef.Type.STRING STRING

CHAR

VARCHAR

FieldDef.Type.JSON STRING

FieldDef.Type.BOOLEAN BOOLEAN

7-1

Table 7-1 (Cont.) Hive Data Model

Oracle NoSQL Database Type Hive Type

FieldDef.Type.BINARY BINARY

FieldDef.Type.FIXED_BINARY BINARY

TINYINT

SMALLINT

FieldDef.Type.INTEGER INT

FieldDef.Type.LONG BIGINT

FieldDef.Type.FLOAT FLOAT

FieldDef.Type.NUMBER DECIMAL

FieldDef.Type.DOUBLE DOUBLE

FieldDef.Type.ENUM STRING

FieldDef.Type.TIMESTAMP java.sql.TIMESTAMP

DATE

FieldDef.Type.ARRAY ARRAY

FieldDef.Type.MAP MAP<STRING, data_type>

FieldDef.Type.RECORD STRUCT<col_name : data_type,…>

UNIONTYPE<data_type,data_type,…>

For more details, see FieldDef.Type.

It is important to understand that when using Hive to query data in an Oracle NoSQL
Database table, the schema of the Hive external table you create is dependent on the
schema of the corresponding Oracle NoSQL Database table you wish to query. Thus,
if you create a Hive external table with a schema that includes a Hive data type that is
not mapped from an Oracle NoSQL Database FieldDef.Type, then an error will occur
when any attempt is made to query the table.

YARN Versus MapReduce Version 1
Hadoop deployments can include two versions of MapReduce. The first version
(referred to as MRv1) is the original version of MapReduce; and consists of interfaces
and classes from the Java package org.apache.hadoop.mapred. The newer version of
MapReduce is referred to as YARN (Yet Another Resource Negotiator) or, more
generally, MRv2. Mrv2 resides in the package org.apache.hadoop.mapreduce. The
Oracle NoSQL Database API Hive integration classes addresses the existence of both
versions of MapReduce because:

• Hive currently employs MRv1

• Oracle NoSQL Database API Hadoop integration classes employ MRv2

• MRv1 and MRv2 are source incompatible

To support both MRv1 and MRv2, the Oracle NoSQL Database API Hive integration
classes have subclassed the MRv1 classes to the appropriate MRv2 classes. In
essence, the InputFormat from the org.apache.hadoop.mapred is a subclass of the
TableHiveInputFormat from oracle.kv.hadoop.hive.table.

Chapter 7
YARN Versus MapReduce Version 1

7-2

Note:

As the Oracle NoSQL Database Hadoop integration classes do not currently
support writing data from a MapReduce job into an Oracle NoSQL Database store,
the classes specified here for Hive integration do not support queries that modify
the contents of a table in a store.

For more details, see oracle.kv.hadoop.hive.table, Apache Hadoop API, and Hive API.

Chapter 7
YARN Versus MapReduce Version 1

7-3

8
Example: Hive Queries On Oracle NoSQL
Database Tables

This section presents examples of how Hive can be configured to query data stored in
different tables located in an Oracle NoSQL Database store, either non-secure or secure. The
Primitive Data Types - The vehicleTable Example contains only primitive Oracle NoSQL
Database data types, and is a good place to start when investigating basic Hive queries. The
Non-Primitive Data Types - The rmvTable Example contains a mix of primitive and non-
primitive data types, and demonstrates how to query more complex data. Finally, the NoSQL
JSON Data Type - The exampleJsonTable Example focuses on how to query JSON
documents that have been written to an Oracle NoSQL Database.

Before running any of the queries described here, you must take the following initial steps to
setup your system for Hive integration with Oracle NoSQL Database:

• Satisfy the necessary prerequisites, see Prerequisites.

• Follow the directions presented in the Deploying a Non-Secure Store appendix or
Deploying a Secure Store appendix to deploy either a non-secure or a secure Oracle
NoSQL Database store.

• Follow the instructions presented in the CountTableRows Support Programs appendix to
create and populate a table named vehicleTable in the store that you deployed.

• Follow the instructions presented in the Creating and Populating the rmvTable appendix
to create and populate a table named rmvTable in the store that you deployed.

• Follow the instructions presented in the Creating and Populating the exampleJsonTable
appendix to create and populate a table named exampleJsonTable in the store that you
deployed.

• Follow the instructions presented in the Configuring the Hive Client Environment
appendix to configure the Hive client environment so that it has access to the Oracle
NoSQL Database libraries needed to query data stored in the Oracle NoSQL Database
store you deployed.

• If the store you deployed is configured for secure access, then follow the steps provided
in the Hive and Oracle NoSQL Database Security appendix to configure Hive with the
environment and artifacts necessary to interact with a secure store.

Once these initial steps are performed, the sections that follow present Hive commands for
creating and mapping Hive external tables to the tables you created in the Oracle NoSQL
Database, and then demonstrate how to use Hive to query the data stored in those tables.

Note the following general points about the Hive commands that are presented:

• The contents of the Hive commands presented below are displayed on separate lines for
readability. In practice, because the Hive command interpreter may have trouble handling
multi-line commands, it is generally best to enter a single, continuous command with no
line breaks.

• When executing the command to create a Hive external table, the oracle.kv.tableName
property is used to indicate to Hive the name of the table in the Oracle NoSQL Database
store that will be queried; where the name specified for the Hive table is not required to

8-1

be the same as name of the corresponding Oracle NoSQL Database table. We
used a combination of both in the examples. In the cases where the names are
different, we used a name that was descriptive of the scenario.

• If the Oracle NoSQL Database store is configured with multiple administrative
hosts, then any subset of the names of those hosts can be included in the value of
the oracle.kv.hosts property specified in the command; as long as at least one
valid administrative host and port is included.

• With respect to the property named oracle.kv.hadoop.hosts:

– That property is currently optional for all systems except the Big Data SQL
system.

– The property will have no effect if specified on a system that does not require
it.

– When the property is specified on a Big Data SQL system or any other system
for which the property is required, the property's value must contain the names
of all of the data nodes making up the Hadoop cluster. See Big Data SQL
User's Guide.

It's important to understand the different scenarios in which each Hive command is
executed and how a given command differs in each scenario. This is because the
command used to create a Hive external table mapped to an Oracle NoSQL Database
table requires different parameters, where the parameters specified depend on which
of the following conditions are met:

• The Oracle NoSQL Database store is non-secure.

• The Oracle NoSQL Database store is secure and your Hive client's password is:

– Stored in a password file.

– Stored in an Oracle Wallet.

To understand the difference between the non-secure scenario and the secure
scenarios, it will help to compare the command used to map a Hive external table to a
table in a non-secure store with the commands used to map two separate Hive tables
to a single table in a secure store.

The respective commands in each scenario of a given example will apply the same
Hive data model mapping, specified in Table 7-1, to create three different Hive external
tables. Each table will have the same structure, schema, and attributes.

The only difference between the table created in the non-secure scenario, and the two
tables created in the secure scenario, is the value specified for the Hive table name
(for example, vehicleTable, vehicleTablePasswd, and vehicleTableWallet), and
whether or not security artifacts needed for communication with a secure store are
required to create the desired Hive table.

Specifically, when creating and mapping a Hive external table to a table in a secure
Oracle NoSQL Database store, the TBLPROPERTIES directive of the Hive CREATE
EXTERNAL TABLE command requires that you specify the following additional security-
related properties:

• oracle.kv.security
• oracle.kv.auth.username
• oracle.kv.auth.pwdfile.file or oracle.kv.auth.wallet.dir

Chapter 8

8-2

Each of the properties listed above corresponds to one of the artifacts Oracle NoSQL
Database requires for Hive to securely communicate with the store identified by the
remaining properties specified in the Hive TBLPROPERTIES directive.

For details on the nature of each of the additional security related properties, refer to the
Model For Building & Packaging Secure Clients appendix.

Other than the differences just described, with respect to the Hive commands presented in
the following sections, the non-secure scenario and the secure scenario are the same in all
other aspects.

Primitive Data Types - The vehicleTable Example
This example demonstrates how to execute various Hive queries on a simple Oracle NoSQL
Database table containing only primitive data types.

The Hive queries executed in this example will be applied to the table named vehicleTable
you initially created and populated in the Oracle NoSQL Database store. For more
information on that table's schema and data types, see the CountTableRows Support
Programs appendix.

Prior to executing Hive queries against the Oracle NoSQL Database vehicleTable, you must
first create an external table in Hive and map it to the table in Oracle NoSQL Database.

Mapping a Hive External Table to vehicleTable: Non-Secure Store
Assuming you have executed the initial steps to deploy a non-secure store, created and
populated the table named vehicleTable in that store, and configured the Hive client
environment for interaction with Oracle NoSQL Database, you can then create an external
Hive table that maps to that Oracle NoSQL Database table by executing the following Hive
command:

CREATE EXTERNAL TABLE IF NOT EXISTS vehicleTable
 (type STRING, make STRING, model STRING, class STRING, color STRING,
 price DOUBLE, count INT, dealerid DECIMAL, delivered TIMESTAMP)
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES ("oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts" = "kv-host-1:5000,kv-host-2:5000,kv-host-3:5000"
 "oracle.kv.tableName" = "vehicleTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3");

The command above applies the required data model mapping to create a Hive table named
vehicleTable with columns whose types are consistent with the corresponding fields of the
Oracle NoSQL Database table specified via the oracle.kv.tableName property.

Note:

Although not necessary, the Hive table that is created is given the same name as
the table to which it is mapped in the store.

Chapter 8
Primitive Data Types - The vehicleTable Example

8-3

Mapping a Hive External Table to vehicleTable: Secure Store
Assuming you have executed the initial steps to deploy a secure store, created and
populated the table named vehicleTable in that store, and configured the Hive client
environment for secure interaction with Oracle NoSQL Database, you can then create
two external Hive tables that each map to that single Oracle NoSQL Database table by
executing the Hive commands presented in both of the following sections.

When mapping a Hive external table to a table located in a secure Oracle NoSQL
Database, because the password the Hive client uses to access and communicate
with the store can be stored in either a password file or an Oracle Wallet, the following
sections present commands that take different parameters, depending on the
mechanism used to store the user's password.

Mapping Hive to Secure vehicleTable: Password File
If a password file is used for password storage, then you can create an external Hive
table that maps to the vehicleTable by executing the following Hive command:

CREATE EXTERNAL TABLE IF NOT EXISTS vehicleTablePasswd
 (type STRING, make STRING, model STRING, class STRING, color
STRING,
 price DOUBLE, count INT, dealerid DECIMAL, delivered TIMESTAMP)
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES ("oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "vehicleTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.pwdfile.file" = "/tmp/example-user.passwd");

Mapping Hive to Secure vehicleTable: Oracle Wallet
If an Oracle Wallet is used for password storage, then you can create an external Hive
table that maps to the vehicleTable by executing the following Hive command:

CREATE EXTERNAL TABLE IF NOT EXISTS vehicleTableWallet
 (type STRING, make STRING, model STRING, class STRING, color
STRING,
 price DOUBLE, count INT, dealerid DECIMAL, delivered TIMESTAMP)
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES ("oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "vehicleTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",

Chapter 8
Primitive Data Types - The vehicleTable Example

8-4

 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.wallet.dir" = "/tmp/example-user-wallet.dir");

Hive Queries on vehicleTable: Primitive Data Types
After following the directions presented in the previous sections to create and map a Hive
external table to the vehicleTable in the Oracle NoSQL Database store (either non-secure or
secure), that table can be queried via the Hive Query Language.

In the previous sections, three scenarios were presented for mapping a Hive table to a table
in a given Oracle NoSQL Database store: a non-secure store, a secure store in which the
client store's its password in a password file, and a secure store in which the client store's its
password in an Oracle Wallet. As a result, each of the following sections present three forms
of a given query, one for each scenario; specifically,

• A query on the table named vehicleTable in the non-secure scenario

• A query on vehicleTablePasswd in the secure (with password file) scenario

• A query on vehicleTableWallet in the secure (with wallet) scenario

The only difference between a given query from scenario to scenario is in the name of the
table to query.

Because the Hive table created for each separate scenario is mapped to the same underlying
Oracle NoSQL Database table, the output of each form of a given query for each scenario will
be the same. Thus, although each section presents three instances of a given query, the
query result is shown only once, and is edited for clarity.

At the Hive CLI command prompt, type the query from each section below that corresponds
to how you have configured your particular environment; non-secure or secure store and, if
secure, whether you are using a password file or an Oracle Wallet to store the client's
password.

Note:

In some cases Hive will execute a MapReduce job to satisfy the query, whereas in
other cases, the query is satisfied by simply consulting the Hive data dictionary and
so MapReduce is not employed.

List Each Row in the Oracle NoSQL Database vehicleTable

SELECT * FROM vehicleTable;
SELECT * FROM vehicleTablePasswd;
SELECT * FROM vehicleTableWallet;

OK
auto Ford Focus 4WheelDrive white 20743.94 15 3 2020-10-09
auto GM Impala 4WheelDrive black 29834.91 24 7 2019-12-11
auto GM Impala 4WheelDrive yellow 21753.53 27 8 2017-03-31
truck Ford F250 4WheelDrive blue 31115.76 14 9 2018-02-01
..........

Chapter 8
Primitive Data Types - The vehicleTable Example

8-5

Count the Rows in vehicleTable

SELECT count(type) FROM vehicleTable;
SELECT count(type) FROM vehicleTablePasswd;
SELECT count(type) FROM vehicleTableWallet;

OK
Launching Job 1 out of 1
..........
Hadoop job information for Stage-1: number of mappers: 6;
number of reducers: 1
Stage-1 map = 0%, reduce = 0%
Stage-1 map = 7%, reduce = 0%, Cumulative CPU 2.26 sec
Stage-1 map = 21%, reduce = 0%, Cumulative CPU 6.7 sec
Stage-1 map = 30%, reduce = 0%, Cumulative CPU 6.87 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 14.16 sec
Stage-1 map = 100%, reduce = 100%, Cumulative CPU 15.24 sec
..........
Job 0: Map: 6 Reduce: 1 Cumulative CPU: 15.24 sec
HDFS Read: 4532 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 15 seconds 240 msec
OK
79
Time taken: 89.359 seconds, Fetched: 1 row(s)

Find the Lowest Price On Any Vehicle in vehicleTable

SELECT min(price) FROM vehicleTable;
SELECT min(price) FROM vehicleTablePasswd;
SELECT min(price) FROM vehicleTableWallet;

OK
Launching Job 1 out of 1
..........
Hadoop job information for Stage-1: number of mappers: 6;
number of reducers: 1
Stage-1 map = 0%, reduce = 0%
Stage-1 map = 21%, reduce = 0%, Cumulative CPU 6.7 sec
Stage-1 map = 21%, reduce = 0%, Cumulative CPU 6.7 sec
Stage-1 map = 30%, reduce = 0%, Cumulative CPU 6.87 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 12.16 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 14.16 sec
..........
Job 0: Map: 6 Reduce: 1 Cumulative CPU: 15.24 sec
HDFS Read: 4532 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 15 seconds 240 msec
OK
20743.94
Time taken: 89.615 seconds, Fetched: 1 row(s)

Chapter 8
Primitive Data Types - The vehicleTable Example

8-6

List All GM Vehicles in vehicleTable

SELECT * FROM vehicleTable WHERE make LIKE "%GM";
SELECT * FROM vehicleTablePasswd WHERE make LIKE "%GM";
SELECT * FROM vehicleTableWallet WHERE make LIKE "%GM";

OK
Launching Job 1 out of 1
..........
Hadoop job information for Stage-1: number of mappers: 6;
number of reducers: 0
Stage-1 map = 0%, reduce = 0%
Stage-1 map = 9%, reduce = 0%, Cumulative CPU 2.43 sec
Stage-1 map = 26%, reduce = 0%, Cumulative CPU 4.81 sec
Stage-1 map = 79%, reduce = 0%, Cumulative CPU 13.09 sec
Stage-1 map = 100%, reduce = 100%, Cumulative CPU 16.06 sec
..........
Job 0: Map: 6 Cumulative CPU: 15.24 sec
HDFS Read: 4532 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 15 seconds 240 msec
OK

suv GM Equinox 4WheelDrive white 20743.94 3 1 2019-03-01
truck GM Sierra 4WheelDrive black 29834.91 8 3 2020-05-15
auto GM Corvette 4WheelDrive yellow 21753.53 7 5 2017-10-23
auto GM Impala AllWheelDrive blue 31115.76 4 9 2018-05-04
..........
Time taken: 89.615 seconds, Fetched: 1 row(s)

List All GM Vehicles in vehicleTable that are Red or Blue

SELECT * FROM vehicleTable WHERE color IN ('red','blue') AND make='GM';
SELECT * FROM vehicleTablePasswd WHERE color IN ('red','blue') AND make='GM';
SELECT * FROM vehicleTableWallet WHERE color IN ('red','blue') AND make='GM';

OK
auto GM Tahoe AllWheelDrive red 20743.67 28 3 2019-02-04
auto GM Sierra RearWheelDrive blue 20744.10 63 7 2018-08-04
suv GM Tahoe RearWheelDrive red 41486.74 27 5 2020-07-08
truck GM Equinox 4WheelDrive red 31115.17 31 9 2017-06-04
truck GM Blazer AllWheelDrive red 31114.83 69 2 2019-04-06
truck GM Sierra 4WheelDrive blue 31115.32 85 7 2019-02-11
..........

Query a Range of Delivery Times and Order the Results

SELECT delivered FROM vehicleTable WHERE delivered
 BETWEEN '2020-06-06 06:53:41.448643' AND '2019-09-05 15:40:22.057282'
 ORDER BY delivered;
SELECT delivered FROM vehicleTablePasswd WHERE delivered
 BETWEEN '2020-06-06 06:53:41.448643' AND '2019-09-05 15:40:22.057282'
 ORDER BY delivered;
SELECT delivered FROM vehicleTableWallet WHERE delivered

Chapter 8
Primitive Data Types - The vehicleTable Example

8-7

 BETWEEN '2020-06-06 06:53:41.448643' AND '2019-09-05
15:40:22.057282'
 ORDER BY delivered;

OK
2019-07-25 09:19:24.743
2019-10-24 00:13:29.702
2019-11-04 05:31:34.358
..........
2020-05-25 06:15:16.809
2020-07-05 12:16:03.658
2020-09-05 15:40:22.057

Non-Primitive Data Types - The rmvTable Example
This example demonstrates how to execute various Hive queries on an Oracle NoSQL
Database table defined with a complex schema. In this example, a schema is
employed that consists of a variety of Oracle NoSQL Database data types; both
primitive and non-primitive.

The Hive queries executed in this example will be applied to the table named rmvTable
you initially created and populated in the Oracle NoSQL Database store. For more
information on that table's schema and data types, see the Creating and Populating
the rmvTable appendix.

Prior to executing Hive queries against rmvTable, you must first create an external
table in Hive and map it to the table in Oracle NoSQL Database, as shown in the
following sections.

Mapping a Hive External Table to rmvTable: Non-Secure Store
Assuming you have executed the initial steps to deploy a non-secure store, created
and populated the table named rmvTable in that store, and configured the Hive client
environment for interaction with Oracle NoSQL Database, you can then create an
external Hive table that maps to that Oracle NoSQL Database table by executing the
following Hive command:

CREATE EXTERNAL TABLE IF NOT EXISTS rmvTable
 (zipcode STRING, lastname STRING, firstname STRING, ssn BIGINT,
 gender STRING, license BINARY, phoneinfo MAP<STRING, STRING>,
 address STRUCT<number:INT, street:STRING,
 unit:INT, city:STRING, zip:INT>,
 vehicleinfo ARRAY<STRUCT<type:STRING, make:STRING,
 model:STRING, class:STRING, color:STRING,
 value:FLOAT, tax:DOUBLE, paid:BOOLEAN>>)
 COMMENT 'Hive mapped to NoSQL table: rmvTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES
 ("oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "rmvTable",

Chapter 8
Non-Primitive Data Types - The rmvTable Example

8-8

 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3");

The command above applies the required data model mapping to create a Hive table named
rmvTable with columns whose types are consistent with the corresponding fields of the
Oracle NoSQL Database table specified via the oracle.kv.tableName property.

Although not necessary, the Hive table that is created is given the same name as the table to
which it is mapped in the store.

Mapping a Hive External Table to rmvTable: Secure Store
Assuming you have executed the initial steps to deploy a secure store, created and
populated the table named rmvTable in that store, and configured the Hive client environment
for secure interaction with Oracle NoSQL Database, you can then create two external Hive
tables that each map to that Oracle NoSQL Database table by executing the Hive commands
presented in the following sections.

When mapping a Hive external table to a table located in a secure Oracle NoSQL Database,
because the password the Hive client uses to access and communicate with the store can be
stored in either a password file or an Oracle Wallet, the sections below present commands
that take different parameters, depending on the mechanism used to store the user's
password.

Mapping Hive to Secure rmvTable: Password File
If a password file is used for password storage, then you can create an external Hive table
that maps to the rmvTable by executing the following Hive command:

CREATE EXTERNAL TABLE IF NOT EXISTS rmvTablePasswd
 (zipcode STRING, lastname STRING, firstname STRING, ssn BIGINT,
 gender STRING, license BINARY, phoneinfo MAP<STRING, STRING>,
 address STRUCT<number:INT street:STRING,
 unit:INT, city:STRING, zip:INT>,
 vehicleinfo ARRAY<STRUCT<type:STRING, make:STRING,
 model:STRING, class:STRING, color:STRING,
 value:FLOAT, tax:DOUBLE, paid:BOOLEAN>>)
 COMMENT 'Hive mapped to NoSQL table: rmvTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES
 ("oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "rmvTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.pwdfile.file" = "/tmp/example-user.passwd");

Chapter 8
Non-Primitive Data Types - The rmvTable Example

8-9

Mapping Hive to Secure rmvTable: Oracle Wallet
If an Oracle Wallet is used for password storage, then you can create an external Hive
table that maps to the rmvTable by executing the following Hive command:

CREATE EXTERNAL TABLE IF NOT EXISTS rmvTableWallet
 (zipcode STRING, lastname STRING, firstname STRING, ssn BIGINT,
 gender STRING, license BINARY, phoneinfo MAP<STRING, STRING>,
 address STRUCT<number:INT street:STRING,
 unit:INT, city:STRING, zip:INT>,
 vehicleinfo ARRAY<STRUCT<type:STRING, make:STRING,
 model:STRING, class:STRING, color:STRING,
 value:FLOAT, tax:DOUBLE, paid:BOOLEAN>>)
 COMMENT 'Hive mapped to NoSQL table: rmvTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES
 ("oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "rmvTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.wallet.dir" = "/tmp/example-user-
wallet.dir");

Hive Queries on rmvTable: Non-Primitive Data Types
After following the directions presented in the previous sections to create and map a
Hive external table to a table in the Oracle NoSQL Database store (either non-secure
or secure), the data in the store's table can be queried via the Hive Query Language.

In a fashion similar to the vehicleTable queries presented previously, each sub-
section below presents three instances of a given query, one for each of the three
possible scenarios: non-secure, secure with password file, or secure with Oracle
Wallet. But the query results are shown only once, in edited form.

Type the query from each sub-section below that corresponds to how you have
configured your particular environment.

List Each Row in the rmvTable Located in Oracle NoSQL Database

SELECT * FROM rmvTable;
SELECT * FROM rmvTablePasswd;
SELECT * FROM rmvTableWallet;

OK
49027 GOMEZ CHRISTOPHER 509367447 male S57428836
{"cell":"616-351-0185","home":"213-630-2419","work":"617-227-9840"}
{
 "number":88072,
 "street":"Fifth Avenue",

Chapter 8
Non-Primitive Data Types - The rmvTable Example

8-10

 "unit":6,
 "city":"Cambridge",
 "state":"OK",
 "zip":49027
}
[
 {
 "type":"auto",
 "make":"Ford",
 "model":"Taurus",
 "class":"AllWheelDrive",
 "color":"blue",
 "value":20743.234,
 "tax":566.29,
 "paid":false
 },
 {
 "type":"auto",
 "make":"Ford",
 "model":"Taurus",
 "class":"FrontWheelDrive",
 "color":"blue",
 "value":20743.559,
 "tax":566.29,
 "paid":true
 }
]

40719 ROSARIO ANNE 448406765 female S04809975
{"cell":"303-804-1660","home":"408-630-2412","work":"415-804-9515"}
{
 "number":96581,
 "street":"Third Avenue",
 "unit":7,
 "city":"Springfield",
 "state":"RI",
 "zip":40719
}
[
 {
 "type":"truck",
 "make":"Chrysler",
 "model":"Ram3500",
 "class":"RearWheelDrive",
 "color":"blue",
 "value":31115.26,
 "tax":849.44,
 "paid":true
 },
 {
 "type":"truck",
 "make":"Chrysler",
 "model":"Ram1500",
 "class":"AllWheelDrive",
 "color":"blue",

Chapter 8
Non-Primitive Data Types - The rmvTable Example

8-11

 "value":31114.87,
 "tax":849.43,
 "paid":false
 },
 {
 "type":"auto",
 "make":"Ford",
 "model":"Edge",
 "class":"RearWheelDrive",
 "color":"yellow",
 "value":20743.88,
 "tax":566.30,
 "paid":true
 }
]
..........

List Name, Gender, and Address of Each Vehicle Owner in rmvTable

SELECT lastname,firstname,gender,address FROM rmvTable;
SELECT lastname,firstname,gender,address FROM rmvTablePasswd;
SELECT lastname,firstname,gender,address FROM rmvTableWallet;

Launching Job 1 out of 1
..........
Hadoop job information for Stage-1: number of mappers: 6;
number of reducers: 1
Stage-1 map = 0%, reduce = 0%
Stage-1 map = 7%, reduce = 0%, Cumulative CPU 2.26 sec
Stage-1 map = 80%, reduce = 0%, Cumulative CPU 6.87 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 14.16 sec
..........
Job 0: Map: 6 Reduce: 1 Cumulative CPU: 14.16 sec
HDFS Read: 4760 HDFS Write: 4702 SUCCESS
Total MapReduce CPU Time Spent: 14 seconds 160 msec
OK
SNIDER FRANK male
{
 "number":33512,
 "street":"Summer Street",
 "unit":1,
 "city":"Arlington",
 "state":"TN","zip":89150
}

MILLER ROCH male
{
 "number":25698,
 "street":"Mullberry Street",
 "unit":6,
 "city":"Madison",
 "state":"VA",
 "zip":5740
}

Chapter 8
Non-Primitive Data Types - The rmvTable Example

8-12

TATE BENJAMIN male
{
 "number":2894,
 "street":"View Street",
 "unit":-1,
 "city":"Clinton",
 "state":"KY",
 "zip":57466
}

List Name and Phone Number of Each Vehicle Owner in rmvTable

SELECT firstname,lastname,phoneinfo["home"] FROM rmvTable;
SELECT firstname,lastname,phoneinfo["cell"] FROM rmvTablePasswd;
SELECT firstname,lastname,phoneinfo["work"] FROM rmvTableWallet;

Launching Job 1 out of 1
..........
Hadoop job information for Stage-1: number of mappers: 6;
number of reducers: 1
Stage-1 map = 0%, reduce = 0%
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 18.11 sec
..........
Job 0: Map: 6 Cumulative CPU: 18.11 sec
HDFS Read: 4724 HDFS Write: 2141 SUCCESS
Total MapReduce CPU Time Spent: 18 seconds 110 msec
OK

CHRISTOPHER GOMEZ 213-630-2419
ANNE ROSARIO 408-630-2412
MEGAN PHELPS 978-541-5710
MICHAEL BRADLEY 313-351-4580
..........

Count Total Number of Rows in rmvTable

SELECT count(vehicleinfo[0].type) FROM rmvTable;
SELECT count(vehicleinfo[0].type) FROM rmvTablePasswd;
SELECT count(vehicleinfo[0].type) FROM rmvTableWallet;

Launching Job 1 out of 1
..........
Hadoop job information for Stage-1: number of mappers: 6;
number of reducers: 1
Stage-1 map = 50%, reduce = 0%, Cumulative CPU 12.12 sec
Stage-1 map = 100%, reduce = 100%, Cumulative CPU 25.51 sec
..........
Job 0: Map: 6 Reduce: 1 Cumulative CPU: 25.51 sec
HDFS Read: 4760 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 25 seconds 510 msec

Chapter 8
Non-Primitive Data Types - The rmvTable Example

8-13

OK
79

For Each Owner's Primary Vehicle, Find the Minimum Assessed Value

SELECT min(vehicleinfo[0].value) FROM rmvTable;
SELECT min(vehicleinfo[0].value) FROM rmvTablePasswd;
SELECT min(vehicleinfo[0].value) FROM rmvTableWallet;

Launching Job 1 out of 1
..........
Hadoop job information for Stage-1: number of mappers: 6;
number of reducers: 1
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 14.3 sec
Stage-1 map = 100%, reduce = 100%, Cumulative CPU 15.38 sec
..........
Job 0: Map: 6 Reduce: 1 Cumulative CPU: 15.38 sec
HDFS Read: 4532 HDFS Write: 16 SUCCESS
Total MapReduce CPU Time Spent: 15 seconds 380 msec
OK
20743.24

List All Info For Each Owner's Vehicle (Primary, Secondary, Tertiary)

SELECT vehicleinfo[0] FROM rmvTable;
SELECT vehicleinfo[1] FROM rmvTablePasswd;
SELECT vehicleinfo[2] FROM rmvTableWallet;

Launching Job 1 out of 1
..........
Hadoop job information for Stage-1: number of mappers: 6;
 number of reducers: 1
Stage-1 map = 17%, reduce = 0%, Cumulative CPU 4.59 sec
Stage-1 map = 95%, reduce = 0%, Cumulative CPU 27.33 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 27.89 sec
..........
Job 0: Map: 6 Cumulative CPU: 27.89 sec
 HDFS Read: 4760 HDFS Write: 5681 SUCCESS
Total MapReduce CPU Time Spent: 27 seconds 890 msec
OK
{
 "type":"suv",
 "make":"GM",
 "model":"Tahoe",
 "class":"4WheelDrive",
 "color":"black",
 "value":41487.24,
 "tax":1132.60,
 "paid":true
}
{
 "type":"auto",
 "make":"Chrysler",
 "model":"Imperial",

Chapter 8
Non-Primitive Data Types - The rmvTable Example

8-14

 "class":"AllWheelDrive",
 "color":"red",
 "value":20743.92,
 "tax":566.30,
 "paid":true
}
{
 "type":"auto",
 "make":"Ford",
 "model":"Taurus",
 "class":"RearWheelDrive",
 "color":"blue",
 "value":20744.07,
 "tax":566.31,
 "paid":true
}
..........

List Name, Address, Vehicle Info For Owner Surnames Starting With 'H'

SELECT firstname,lastname,address,vehicleinfo[0] FROM rmvTable
 WHERE RLIKE "^[H].*";

SELECT firstname,lastname,address,vehicleinfo[0]FROM rmvTablePasswd
 WHERE RLIKE "^[H].*";

SELECT firstname,lastname,address,vehicleinfo[0] FROM rmvTableWallet
 WHERE RLIKE "^[H].*";

Launching Job 1 out of 1
..........
Hadoop job information for Stage-1: number of mappers: 6;
number of reducers: 1
Stage-1 map = 33%, reduce = 0%, Cumulative CPU 9.46 sec
Stage-1 map = 83%, reduce = 0%, Cumulative CPU 23.29 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 27.78 sec
..........
Job 0: Map: 6 Cumulative CPU: 27.78 sec
HDFS Read: 4760 HDFS Write: 1143 SUCCESS
Total MapReduce CPU Time Spent: 27 seconds 780 msec
OK

CINDY HODGES
{
 "number":56758,
 "street":"Vaughan Avenue",
 "unit":-1,
 "city":"Madison",
 "state":"NH",
 "zip":79623
}
{
 "type":"truck",
 "make":"Chrysler",

Chapter 8
Non-Primitive Data Types - The rmvTable Example

8-15

 "model":"Ram1500",
 "class":"RearWheelDrive",
 "color":"black",
 "value":31115.12,
 "tax":849.44,
 "paid":true
}
JULIA HOLDEN
{
 "number":56209,
 "street":"Main Street",
 "unit":1,"city":"Georgetown",
 "state":"CA",
 "zip":62154
}
{
 "type":"auto",
 "make":"Ford",
 "model":"Taurus",
 "class":"FrontWheelDrive",
 "color":"blue",
 "value":20743.80,
 "tax":566.30,
 "paid":true
}
..........

List Name, Address, Vehicle Info When Owner's Second Vehicle Is GM

SELECT firstname,lastname,address,vehicleinfo[1] FROM rmvTable
 WHERE vehicleinfo[1].make LIKE "%GM%";

SELECT firstname,lastname,address,vehicleinfo[1] FROM rmvTablePasswd
 WHERE vehicleinfo[1].make LIKE "%GM%";

SELECT firstname,lastname,address,vehicleinfo[1] FROM rmvTableWallet
 WHERE vehicleinfo[1].make LIKE "%GM%";

 Launching Job 1 out of 1

 Hadoop job information for Stage-1: number of mappers: 6;
 number of reducers: 1
 Stage-1 map = 50%, reduce = 0%, Cumulative CPU 9.29 sec
 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 18.8 sec

 Job 0: Map: 6 Cumulative CPU: 18.8 sec
 HDFS Read: 4724 HDFS Write: 2087 SUCCESS
 Total MapReduce CPU Time Spent: 18 seconds 800 msec
 OK

 NANCY STOUT
 {
 "number":31126,
 "street":"Cedar Street",

Chapter 8
Non-Primitive Data Types - The rmvTable Example

8-16

 "unit":8,
 "city":"Arlington",
 "state":"MO",
 "zip":73131
 }
 {
 "type":"suv",
 "make":"GM",
 "model":"Equinox",
 "class":"AllWheelDrive",
 "color":"red",
 "value":41486.43,
 "tax":1132.57,
 "paid":true
 }
 RANDY MCDOWELL
 {
 "number":18391,
 "street":"Lane Avenue",
 "unit":8,
 "city":"Concord",
 "state":"NH",
 "zip":42540
 }
 {
 "type":"auto",
 "make":"GM",
 "model":"Corvette",
 "class":"FrontWheelDrive",
 "color":"black",
 "value":20744.03,
 "tax":566.31,
 "paid":false
 }

List Name, Address, Model, Assessed Value & Registration Fee Status (Paid or Not)
When Primary Vehicle Is Chrysler

SELECT firstname, lastname, address, vehicleInfo[0].model,
 vehicleinfo[0].value, vehicleinfo[0].tax, vehicleinfo[0].paid
 FROM rmvTable WHERE vehicleinfo[0]make LIKE "%Chrysler%";

SELECT firstname,lastname,address, vehicleInfo[0].model,
 vehicleinfo[0].value, vehicleinfo[0].tax, vehicleinfo[0].paid
 FROM rmvTablePasswd WHERE vehicleinfo[0]make LIKE "%Chrysler%";

SELECT firstname,lastname,address, vehicleInfo[0].model,
 vehicleinfo[0].value, vehicleinfo[0].tax, vehicleinfo[0].paid
 FROM rmvTableWallet WHERE vehicleinfo[0]make LIKE "%Chrysler%";

 Launching Job 1 out of 1

 Hadoop job information for Stage-1: number of mappers: 6;

Chapter 8
Non-Primitive Data Types - The rmvTable Example

8-17

 number of reducers: 1
 Stage-1 map = 43%, reduce = 0%, Cumulative CPU 9.46 sec
 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 18.15 sec

 Job 0: Map: 6 Cumulative CPU: 18.15 sec
 HDFS Read: 4724 HDFS Write: 2164 SUCCESS
 Total MapReduce CPU Time Spent: 18 seconds 150 msec
 OK

 ANNE ROSARIO
 {
 "number":96581,
 "street":"Third Avenue",
 "unit":7,
 "city":"Springfield",
 "state":"RI","zip":40719
 }
 Ram3500 31115.26 849.44 true

 MEGAN PHELPS
 {
 "number":12713,
 "street":"MAC Avenue",
 "unit":4,"city":"Salem",
 "state":"MS",
 "zip":76554
 }
 Ram1500 31115.30 849.44 true

 BRIAN ROWLAND
 {
 "number":37868,
 "street":"First Street",
 "unit":3,
 "city":"Salem",
 "state":"GA",
 "zip":98106
 }
 Imperial 20744.15 566.31 true

NoSQL JSON Data Type - The exampleJsonTable Example
The exampleJsonTable is used to demonstrate Hive queries on an Oracle NoSQL
Database table in which one of the table's fields (columns) contains text in valid JSON
format; that is, a JSON document. For this example table, a schema is employed that
consists of only two fields: a field of type FieldDef.Type.INTEGER representing a
unique identifier used for the primary key, and a field of type FieldDef.Type.JSON, in
which each row in the field contains a JSON document consisting of attributes
corresponding to information about current and former members of the United States
senate; for example, a given senator's name, address, birthday, etc.

The Creating and Populating the exampleJsonTable appendix describes the
exampleJsonTable in more detail. That appendix also presents a program that can be

Chapter 8
NoSQL JSON Data Type - The exampleJsonTable Example

8-18

run to create and populate exampleJsonTable with the sort of data the queries presented in
this section expect. Before proceeding, please follow the directions provided in that appendix
to create and populate exampleJsonTable with the appropriate example data. Then, prior to
executing any Hive queries against exampleJsonTable, first create a Hive external table and
map it to the table you created in Oracle NoSQL Database, as shown in the following
sections.

Mapping a Hive External Table to exampleJsonTable: Non-Secure Store
Assuming you have executed the initial steps to deploy a non-secure store, followed the
directions presented in the Creating and Populating the exampleJsonTable appendix to
create and populate the Oracle NoSQL Database table named exampleJsonTable, and
configured the Hive client environment for interaction with Oracle NoSQL Database, you can
then create an external Hive table that maps to that Oracle NoSQL Database table by
executing the following Hive command:

CREATE EXTERNAL TABLE IF NOT EXISTS exampleJsonTable
 (id INT, jsonfield STRING)
 COMMENT 'Hive mapped to NoSQL table: exampleJsonTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-host-3:5000",
 "oracle.kv.tableName" = "exampleJsonTable",
 "oracle.kv.hadoop.hosts” = "dn-host-1,dn-host-2,dn-host-3");

The command above applies the required data model mapping to create a Hive table named
exampleJsonTable with columns whose types are consistent with the corresponding fields of
the Oracle NoSQL Database table specified via the oracle.kv.tableName property.

Although not necessary, the Hive table that is created is given the same name as the table to
which it is mapped in the store.

Mapping a Hive External Table to exampleJsonTable: Secure Store
Assuming you have executed the initial steps to deploy a secure store, followed the directions
presented in the Creating and Populating the exampleJsonTable appendix to create and
populate the NoSQL table named exampleJsonTable, and configured the Hive client
environment for secure interaction with Oracle NoSQL Database, you can then create two
external Hive tables that each map to that Oracle NoSQL Database table by executing the
Hive commands presented in the following sections.

When mapping a Hive external table to a table located in a secure Oracle NoSQL Database,
because the password the Hive client uses to access and communicate with the store can be
stored in either a password file or an Oracle Wallet, the sections below present commands
that take different parameters, depending on the mechanism used to store the user's
password.

Chapter 8
NoSQL JSON Data Type - The exampleJsonTable Example

8-19

Mapping Hive to Secure exampleJsonTable: Password File
If a password file is used for password storage, then you can create an external Hive
table that maps to the exampleJsonTable by executing the following Hive command:

CREATE EXTERNAL TABLE IF NOT EXISTS exampleTablePasswd
 (id INTEGER, jsonfield STRING)
 COMMENT 'Hive mapped to NoSQL table: exampleJsonTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"="kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "exampleJsonTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.pwdfile.file" = "/tmp/example-user.passwd");

Mapping Hive to Secure exampleJsonTable: Oracle Wallet
If an Oracle Wallet is used for password storage, then you can create an external Hive
table that maps to the exampleJsonTable by executing the following Hive command:

CREATE EXTERNAL TABLE IF NOT EXISTS exampleJsonTableWallet
 (int INTEGER, jsonfield STRING)
 COMMENT 'Hive mapped to NoSQL table: exampleJsonTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"="kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "exampleJsonTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.wallet.dir" = "/tmp/example-user-wallet.dir");

Hive Queries on exampleJsonTable: JSON Data Type
After following the directions presented in the previous sections to create and map a
Hive external table to the exampleJsonTable table in the Oracle NoSQL Database
store (either non-secure or secure), the data in the store's table can be queried via the
Hive Query Language.

Each sub-section below presents three instances of a given query, one for each of the
three possible scenarios: non-secure, secure with password file, or secure with Oracle
Wallet. But the query results are shown only once, in edited form.

Chapter 8
NoSQL JSON Data Type - The exampleJsonTable Example

8-20

Type the query from each sub-section below that corresponds to how you have configured
your particular environment.

List Each Senator, Ordered By Rank and State

SELECT
 get_json_object(jsonfield, '$.description')
 AS description,
 get_json_object(jsonfield, '$.personal.firstname')
 AS firstname,
 get_json_object(jsonfield, '$.personal.lastname')
 AS lastname
FROM exampleJsonTable ORDER BY description;

..........
Hadoop job information for Stage-1: number of mappers: 2;
number of reducers: 1
Stage-1 map = 50%, reduce = 0%, Cumulative CPU 16.29 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 28.8 sec
..........
Job 0: Map: 2 Cumulative CPU: 34.22 sec
HDFS Read: 16799 HDFS Write: 5490 SUCCESS
Total MapReduce CPU Time Spent: 34 seconds 220 msec
..........
OK

Junior Senator for Alabama Doug Jones
Junior Senator for Alaska Dan Sullivan
Junior Senator for Arizona Jeff Flake
Junior Senator for Arkansas Tom Cotton
Junior Senator for California Kamala Harris
Junior Senator for Colorado Cory Gardner
..........
Senior Senator for Virginia Mark Warner
Senior Senator for Washington Patty Murray
Senior Senator for West Virginia Joe Manchin
Senior Senator for Wisconsin Ron Johnson
Senior Senator for Wyoming Michael Enzi

Time taken: 29.342 seconds, Fetched: 100 row(s)

Note:

In the SELECT query, instead of the exampleJsonTable, you could use any of
exampleJsonTable, exampleJsonTablePasswd, or exampleJsonTableWallet.

List Each Senator Who Is An Independent

SELECT get_json_object(jsonfield, '$. personal.firstname’),
 get_json_object(jsonfield, '$. personal.lastname'),
 get_json_object(jsonfield, '$.party'),

Chapter 8
NoSQL JSON Data Type - The exampleJsonTable Example

8-21

 get_json_object(jsonfield, '$.description')
FROM exampleJsonTable ORDER BY description;

..........
Hadoop job information for Stage-1: number of mappers: 2;
number of reducers: 1
Stage-1 map = 50%, reduce = 0%, Cumulative CPU 11.29 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 19.67 sec
..........
Job 0: Map: 2 Cumulative CPU: 19.67 sec
HDFS Read: 13716 HDFS Write: 301 SUCCESS
Total MapReduce CPU Time Spent: 19 seconds 670 msec
..........
OK

Angus King Independent Junior Senator for Maine
Bernard Sanders Independent Junior Senator for Vermont

Time taken: 15.614 seconds, Fetched: 2 row(s)

Note:

In the SELECT query, instead of the exampleJsonTable, you could use any
of exampleJsonTable, exampleJsonTablePasswd, or
exampleJsonTableWallet.

Chapter 8
NoSQL JSON Data Type - The exampleJsonTable Example

8-22

9
Appendix

Topics

• Creating and Populating the rmvTable

• Creating and Populating the exampleJsonTable

• Configuring the Hive Client Environment

• Hive and Oracle NoSQL Database Security

• Predicate Pushdown

Creating and Populating the rmvTable
Oracle NoSQL Database provides a separate distribution consisting of example programs
and utility classes that you can use to explore various aspects of interacting with an Oracle
NoSQL Database system. With respect to exploring the integration of Oracle NoSQL
Database with Apache Hive, that separate example distribution provides a number of Java
programs that you can use to create and populate example tables in the Oracle NoSQL
Database store you deploy.

The first program is named LoadTableVehicle and is described in detail in the
CountTableRows Support Programs appendix. A second program is named LoadRmvTable,
and is described in this section, along with the schema employed when creating the table, as
well as how to compile and execute the program.

Schema for the Example Table Named rmvTable
To demonstrate how a Hive query can be applied to an Oracle NoSQL Database table
consisting of a mix of primitive and non-primitive data types, a table named rmvTable having
the schema shown in the table below must be created in the Oracle NoSQL Database store
deployed for this example. The data types specified in the schema shown below are defined
by the Oracle NoSQL Database table API (see FieldDef.Type) .

Table 9-1 Schema for rmvTable

Field Name Field Type

zipcode FieldDef.Type.STRING

lastname FieldDef.Type.STRING

first name FieldDef.Type.STRING

ssn FieldDef.Type.STRING

gender FieldDef.Type.ENUM

license FieldDef.Type.FIXED_BINARY(9)

phoneinfo FieldDef.Type.MAP(STRING)

address FieldDef.Type.RECORD

address Record Schema number FieldDef.Type.INTEGER

9-1

Table 9-1 (Cont.) Schema for rmvTable

Field Name Field Type

street FieldDef.Type.STRING

unit FieldDef.Type.INTEGER

city FieldDef.Type.STRING

state FieldDef.Type.STRING

zip FieldDef.Type.INTEGER

vehicleinfo FieldDef.Type.ARRAY
(FieldDef.Type.RECORD)

vehicleinfo Element Record
Schema

type FieldDef.Type.STRING

make FieldDef.Type.STRING

model FieldDef.Type.STRING

class FieldDef.Type.STRING

color FieldDef.Type.STRING

value FieldDef.Type.STRING

tax FieldDef.Type.STRING

paid FieldDef.Type.STRING

Table 9-2 Primary Key Field Names

Primary Key Field Names

zipcode lastname first name ssn

Table 9-3 Shard Key Field Names

Shard Key Field Names

zipcode

Upon examining this schema, one can see that the example rmvTable consists of rows
of data the Registry of Motor Vehicles might maintain about vehicle owners who have
registered a primary vehicle and (optionally) a second and maybe a third vehicle. In
addition to personal information about each owner - such as name, address, gender,
phone number(s), etc. - each row of data also contains an array in which each element
of the array is a record whose contents consists of information about each vehicle the
owner registers.

For example, in addition to vehicle attributes such as the make, model, color, etc., the
record will also contain the vehicle's assessed value, registration fee (the tax), and
whether or not the owner has paid the fee. Although the table schema presented
above may seem a bit contrived, it is intended to demonstrate a broad spectrum of
data types from the Oracle NoSQL Database table API.

To create a table with the above schema, the preferred approach is to employ the table
Data Definition Language (DDL) (see Table Data Definition Language Overview),
rather than entering individual commands in the store's admin CLI. To accomplish this,
you can follow the instructions presented in the following sections to compile and
execute the LoadRmvTable program, which will populate the desired table after using
the DDL to create it.

Chapter 9
Creating and Populating the rmvTable

9-2

Create and Populate rmvTable with Example Data
Assuming an Oracle NoSQL Database store (either non-secure or secure) has been
deployed with KVHOME equal to /opt/oracle/kv-ee, the LoadRmvTable program supplied in
the separate Oracle NoSQL Database example distribution can be executed to create and
populate the table named rmvTable. Before executing LoadRmvTable though, that program
must first be compiled. To do this, assuming you have installed the example distribution under
the directory /opt/oracle/nosql/apps/kv/examples, type the following from your client
node's command line:

cd /opt/oracle/nosql/apps/kv
javac -classpath \
 /opt/oracle/kv-ee/lib/kvclient.jar:examples \
 examples/hadoop/hive/table/LoadRmvTable.java

This should produce the file:

/opt/oracle/nosql/apps/kv/examples/hadoop/hive/table/LoadRmvTable.class

How to Run LoadRmvTable When the Store is Non-Secure
To execute LoadRmvTable to create and populate the table named rmvTable with example
data in a store configured for non-secure access, type the following at the command line of
the client node, which must have network connectivity with a node running the admin service
of the non-secure store you deployed (for example, kv-host-1 itself):

cd /opt/oracle/nosql/apps/kv
java -classpath \
 /opt/oracle/kv-ee/lib/kvclient.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 hadoop.hive.table.LoadRmvTable \
 -store example-store -host kv-host-1 -port 5000 \
 -nops 79
 [-delete]

The following parameters are required: -store, -host, -port, and -nops, whereas the -
delete parameter is optional.

In the example command line above, the argument -nops 79 requests that 79 rows be written
to rmvTable. If more or less than that number of rows is desired, then the value of the -nops
parameter should be changed.

If LoadRmvTable is executed a second time and the optional -delete parameter is specified,
then all rows added by any previous executions of LoadRmvTable are deleted from the table
prior to adding the requested new rows. Otherwise, all pre-existing rows are left in place, and
the number of rows in the table will be increased by the requested -nops number of new
rows.

Chapter 9
Creating and Populating the rmvTable

9-3

How to Run LoadRmvTable When the Store is Secure
To execute LoadRmvTable against the secure store that you deployed and provisioned
with a non-administrative user according to the steps presented in the Deploying a
Secure Store appendix, an additional parameter must be added to the command line
above. In this case, type the following on the command line:

java -classpath \
 /opt/oracle/kv-ee/lib/kvclient.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 hadoop.hive.table.LoadRmvTable \
 -store example-store -host kv-host-1 -port 5000 \
 -nops 79 \
 -security /tmp/example-user-client-pwdfile.login \
 [-delete]

As explained in the CountTableRows Support Programs appendix, the additional -
security parameter in the command above specifies the location of the login
properties file for the given user or alias. All other parameters are the same as for the
non-secure case.

Summary
At this point, a table named rmvTable, populated with the desired example data ,
should exist in the Oracle NoSQL Database store you deployed. The data in that table
can then be queried using the Hive Query Language (HQL).

Creating and Populating the exampleJsonTable
Similar to the programs that create and populate the example vehicleTable and
rmvTable, the Oracle NoSQL Database example distribution provides another
program, named LoadJsonExample, that you can use to create and populate a table
consisting of rows with a field containing a JSON document. You can use the table
created by the LoadJsonExample program to explore employing Hive to query JSON
documents stored in an Oracle NoSQL Database.

This section describes the LoadJsonExample program, along with the schema
employed when creating the desired example table, as well as how to compile and
execute that program.

Schema for the Example Table Named exampleJsonTable
To demonstrate how a Hive query can be applied to an Oracle NoSQL Database table
consisting of rows containing JSON documents, a table named exampleJsonTable
having the schema shown in the table below is created in the Oracle NoSQL Database
store deployed for this example. The data types specified in the schema shown below
are defined by the Oracle NoSQL Database table API (see FieldDef.Type)

Chapter 9
Creating and Populating the exampleJsonTable

9-4

Table 9-4 Schema for exampleJsonTable

Field Name Field Type

id FieldDef.Type.INTEGER

jsonField FieldDef.Type.JSON

Table 9-5 Primary Key Field Names

Primary Key Field Names

id

The exampleJsonTable will consist of rows with only two fields (columns). The first field
contains a unique identification number that will be used as the primary key for the table. The
rows of the second field will contain strings in valid JSON format; that is, a JSON document.
The attributes of each JSON document in a given row specify information about current and
former members of the United States senate; for example, the given senator's name, party
affiliation, contact information, etc.

To create a table with the above schema, and populate that table with the desired JSON
documents, follow the instructions presented in the next sections to compile and execute the
LoadExampleJson program.

Create and Populate exampleJsonTable with Example Data
Assuming an Oracle NoSQL Database store (either non-secure or secure) has been
deployed with KVHOME equal to /opt/oracle/kv-ee, the LoadExampleJson program
supplied in the Oracle NoSQL Database example distribution can be executed to create and
populate the table named exampleJsonTable. Before executing LoadJsonExample though,
that program must first be compiled. To do this, assuming you have installed the example
distribution under the directory /opt/oracle/nosql/apps/kv/examples, type the following
from your client node's command line:

cd /opt/oracle/nosql/apps/kv
javac -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:examples \
 examples/hadoop/hive/es/table/LoadExampleJson.java

This should produce the file:

/opt/oracle/nosql/apps/kv/examples/ \
 hadoop/hive/es/table/LoadExampleJson.class

How to Run LoadJsonExample When the Store is Non-Secure
To execute LoadExampleJson when the store to contact is configured for non-secure access,
type the following at the command line of the client node, which must have network

Chapter 9
Creating and Populating the exampleJsonTable

9-5

connectivity with a node running the admin service of the non-secure store you
deployed (for example, kv-host-1 itself):

cd /opt/oracle/nosql/apps/kv
java -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 [-Djava.util.logging.config.file=/opt/oracle/nosql/\
 apps/kv/examples/hadoop/hive/es/\
 example-logging.properties] \
 hadoop.hive.ex.table.LoadExampleJson \
 -store example-store -host kv-host-1 -port 5000 \
 -file /opt/oracle/nosql/apps/kv/examples/\
 hadoop/hive/ex/govtrack-senators-example.json \
 –table exampleJsonTable
 [-delete]

The following parameters are required: -store, -host, -port, -file, and -table,
whereas the -delete parameter is optional.

In the example command line above, the argument -file <filename> requests that
the contents of the specified file be retrieved and then written as JSON data to the
exampleJsonTable that is created in the store. For convenience, the file specified
above is provided with the example distribution. You can examine the contents of that
file to see all of the possible document attributes that you can query.

If LoadExampleJson is executed a second time and the optional -delete parameter is
specified, then all rows added by any previous executions of LoadExampleJson are
deleted from the table prior to adding the requested new rows. Otherwise, all pre-
existing rows are left in place, and duplicate rows (with new id values) will be added to
the table.

How to Run LoadJsonExample When the Store is Secure
To execute LoadExampleJson against the secure store that you deployed and
provisioned with a non-administrative user according to the steps presented in the
Deploying a Secure Store appendix, an additional parameter must be added to the
command line above. In this case, type the following on the command line:

java -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 [-Djava.util.logging.config.file=/opt/oracle/nosql/\
 apps/kv/examples/hadoop/hive/es/\
 example-logging.properties] \
 hadoop.hive.table.es.LoadExampleJson \
 -store example-store -host kv-host-1 -port 5000 \
 -file /opt/oracle/nosql/apps/kv/examples/\
 hadoop/hive/ex/govtrack-senators-example.json \
 –table exampleJsonTable \
 -security /tmp/example-user-client-pwdfile.login \
 [-delete]

Chapter 9
Creating and Populating the exampleJsonTable

9-6

As explained in the CountTableRows Support Programs appendix, the additional -security
parameter in the command above specifies the location of the login properties file for the
given user or alias. All other parameters are the same as for the non-secure case.

Summary
At this point, a table named exampleJsonTable, populated with the desired example data ,
should exist in the Oracle NoSQL Database store you deployed. The data in that table can
then be queried using the Hive Query Language (HQL).

Configuring the Hive Client Environment
In order to use Apache Hive to query data in an Oracle NoSQL Database table, the Hive
integration classes and other third party supporting classes provided by Oracle NoSQL
Database must be made available to the Java VM of the Hive client, as well as the Java VMs
of the data nodes making up the Hadoop cluster. This is accomplished by setting the value of
the Hive client's HIVE_AUX_JARS_PATH environment variable to include each of the following
JAR files provided with the Oracle NoSQL Database installation:

• kvclient.jar
• kvstore-ee.jar
• jackson-core.jar
• jackson-databind.jar
• jackson-annotations.jar
All JAR files specified by the HIVE_AUX_JARS_PATH environment variable will ultimately be
added to the classpaths of the necessary VMs. Depending on the type of system, there are
different options for adding the desired JAR files to your system's HIVE_AUX_JARS_PATH.

Copy Oracle NoSQL Database Libraries into Hive Auxiliary Directory
Some installations of Apache Hive provide a special directory to which third party libraries
can be added so that direct modification of the HIVE_AUX_JARS_PATH envrionment variable is
not necessary. Such installations employ facilities that automatically update the value of the
HIVE_AUX_JARS_PATH with the JAR files located in that special directory.

For example, if your system is an Oracle Big Data Appliance (BDA) or an Oracle Big Data
SQL system, then Hive, released by Cloudera, is installed as either packages or parcels (a
binary distribution format that Cloudera provides as an alternative to rpm/deb packages).
Assuming your system's Hive installation is parcel based, then you would see a directory like
the following:

/opt/cloudera/parcels/CDH/lib/hive/auxlib

For installations such as this, all JAR files located in the above directory will be automatically
added to the value of the HIVE_AUX_JARS_PATH environment variable whenever the Hive CLI
is launched.

Thus, one way to make the necessary Oracle NoSQL Database JAR files available to the
Hive classpath is to copy the necessary libraries into the auxiliary library provided by your

Chapter 9
Configuring the Hive Client Environment

9-7

Hive installation. For example, if your Hive installation provides a hive/auxlib
directory like that shown above, you can do something like the following:

cd /opt/cloudera/parcels/CDH/lib/hive/auxlib

cp /opt/oracle/kv-ee/lib/kvclient.jar kvclient.jar
cp /opt/oracle/kv-ee/lib/kvstore-ee.jar kvstore-ee.jar
cp /opt/oracle/kv-ee/lib/jackson-core.jar jackson-core.jar
cp /opt/oracle/kv-ee/lib/jackson-databind.jar \
 jackson-databind.jar
cp /opt/oracle/kv-ee/lib/jackson-annotations.jar \
 jackson-annotations.jar

To integrate Oracle NoSQL Database with Hive, it is important to copy the libraries
shipped with Oracle NoSQL Database rather than linking to those libraries in the
system's hive/auxlib directory. Copying the libraries shown above will prevent
possible ClassLoader conflict errors that can be caused by older versions of third party
libraries included in the system's Hadoop and Hive distributions.

Set HIVE_AUX_JARS_PATH in the Hive Client’s hive-env.sh File
When you execute the hive command to enter the Hive CLI, the initialization script
named hive-env.sh is executed; which sets the value of the HIVE_AUX_JARS_PATH
environment variable for the Hive CLI. Rather than copying the Oracle NoSQL
Database libraries in the manner described in the previous section, an alternative way
to make the necessary Oracle NoSQL Database JAR files available to the Hive
classpath would be to simply edit hive-env.sh and add those JAR files to the
specification of the HIVE_AUX_JARS_PATH environment variable. For example,

edit <HIVE_CONF_DIR>/hive-env.sh

if [-z "$HIVE_AUX_JARS_PATH"];
then
export HIVE_AUX_JARS_PATH=\
 /opt/oracle/kv-ee/lib/kvclient.jar,\
 /opt/oracle/kv-ee/lib/kvstore-ee.jar\
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/\
 jackson-databind.jar,\
 /opt/oracle/kv-ee/lib/\
 jackson-annotations.jar
else
export HIVE_AUX_JARS_PATH=$HIVE_AUX_JARS_PATH,\
 /opt/oracle/kv-ee/lib/kvclient.jar,\
 /opt/oracle/kv-ee/lib/kvstore-ee.jar \
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/\
 jackson-databind.jar,\
 /opt/oracle/kv-ee/lib/\
 jackson-annotations.jar

Chapter 9
Configuring the Hive Client Environment

9-8

Note:

Unlike setting a CLASSPATH environment variable, when setting the
HIVE_AUX_JARS_PATH variable, the separator that is used is a comma, not a colon.

Set HIVE_AUX_JARS_PATH Directly on the Command Line
Instead of copying libraries, or editing the hive-env.sh script to make the necessary Oracle
NoSQL Database JAR files available to the Hive classpath, you can always directly set the
value of the HIVE_AUX_JARS_PATH environment variable on the command line before
executing the Hive CLI. For example,

export HIVE_AUX_JARS_PATH=$HIVE_AUX_JARS_PATH \
 /opt/oracle/kv-ee/lib/kvclient.jar,\
 /opt/oracle/kv-ee/lib/kvstore-ee.jar \
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/lib/\
 jackson-annotations.jar

Hive and Oracle NoSQL Database Security
With respect to running Hive queries against table data contained in a secure Oracle NoSQL
Database store, a particularly important issue to address involves the creation and installation
of an additional set of artifacts needed to communicate user credentials to the various
components that participate in the execution of the Hive query. The additional artifacts that
must be generated for Hive to work with a secure store are described in detail in the Model
For Building & Packaging Secure Clients appendix, which describes the purpose of the
artifacts, as well as how to generate and install them. Before proceeding, make sure you are
familiar with the material presented in that section. Then employ the steps presented in the
following sections to complete the configuration for running Hive queries against a secure
store.

Generating the Login, Trust, and Password Artifacts
To execute a Hive query against a secure Oracle NoSQL Database store, the necessary
public and private credentials must be incorporated in the definition of the Hive table that will
be queried. To do this, in a fashion similar to that described in the Model For Building &
Packaging Secure Clients appendix, you must create artifacts like those shown below, and
store them on the Hive client's local system. For example, if you are using a password file to
store the user's password, then you would generate files such as:

/tmp/kv-client-security
 client.trust
 hive-nosql.login
 example-user.passwd

Chapter 9
Hive and Oracle NoSQL Database Security

9-9

Alternatively, if you are storing the user's password in an Oracle Wallet, then you
would generate artifacts like the following:

/tmp/kv-client-security
 client.trust
 hive-nosql.login
 /example-user-wallet.dir
 cwallet.sso

Note that in both instances above, the file hive-nosql.login is identical to the file
example-user-server.login that was generated in the Model For Building &
Packaging Secure Clients appendix.

Generating the Server Side JAR File
After creating the login, trust, and password artifacts, you must generate a server side
JAR file that can be added to Hive's HIVE_AUX_JARS_PATH environment variable.
Assuming you created artifacts like those described in the previous section, you would
do the following:

cd /tmp/kv-client-security
jar cvf hive-nosql-server.jar client.trust
jar uvf hive-nosql-server.jar hive-nosql.login

The command above creates a JAR file named hive-nosql-server.jar with contents
that include only public credentials which should look something like:

 0 META-INF/
 68 META-INF/MANIFEST.MF
 508 client.trust
 255 hive-nosql.login

Adding the Hive Client's Public Credentials to the Hive Environment
Afer creating the hive-nosql-server.jar file containing the Hive client's public
credentials, the contents of that file must be made available to Hive via the
HIVE_AUX_JARS_PATH environment variable. This is accomplished by following one of
the options presented in the Configuring the Hive Client Environment appendix.

Summary
Once Hive has been configured for Oracle NoSQL Database security in the manner
presented in this appendix, you can then incorporate the necessary artifacts in your
Hive external table definition in the fashion presented previously in this document; for
the vehicleTable from Primitive Data Types - The vehicleTable Example, and for the
rmvTable from Non-Primitive Data Types - The rmvTable Example, and for the
exampleJsonTable from NoSQL JSON Data Type - The exampleJsonTable Example.

Chapter 9
Hive and Oracle NoSQL Database Security

9-10

Predicate Pushdown
To improve query performance, Apache Hive supports a mechanism referred to as predicate
pushdown; in which the client side frontend processing of a given query decomposes the
WHERE clause (the predicate) of the query into column information and corresponding
comparison operators, passing (pushing) the resulting components to the database where
search processing (filtering) can be performed on the database's server side backend. To
achieve analogous performance improvements, the Oracle NoSQL Database table API Hive
integration classes support similar predicate pushdown functionality when executing Hive or
Big Data SQL queries against data in an Oracle NoSQL Database table. For example,
consider the following query executed against the example vehicleTable whose schema
was described previously in this document:

SELECT * FROM vehicleTable WHERE \
 type = 'auto' AND make = 'Chrysler' AND \
 model >= 'Imperial' AND model < 'Sebring';

This query will return all rows corresponding to automobiles (rather than trucks or SUVs)
made by Chrysler; whose model is 'Imperial', 'Lebaron', or 'PTCruiser', but not 'Sebring'. If
predicate pushdown is not employed when executing this query, then all rows from the
vehicleTable will be retrieved from the store's backend database and returned to the
frontend client, where the predicate information will be applied to search the returned rows for
the desired matches. On the other hand, if predicate pushdown is employed, then the
information in the WHERE clause is sent to the store and all filtering is performed in the
database itself, so that only the rows of the table that match the predicate are returned to the
client. The predicate pushdown, when it can be employed, can result in significant
performance improvements.

As the examples presented in this document demonstrate, the variety of predicates that can
be employed when querying a table can be virtually unlimited. So it is important to
understand that the predicates that can actually be pushed to the backend Oracle NoSQL
Database store are restricted to a finite subset of all possible predicates. This is because the
predicates that can be supported by Oracle NoSQL Database are not only dependent on
what the Hive predicate pushdown mechanism supports, but the semantics of the Oracle
NoSQL Database table API as well. As a result, the operators that are supported by the
predicate pushdown mechanism of the table API Hive integration classes are currently limited
to:

= < <= > >= AND OR IN

In addition to the above set of operators, the semantics of the table API can also affect how
the table's fields (columns) will be handled during predicate pushdown. Specifically, for a
given query's predicate, if a valid primary key, index key, and/or field range (as defined by the
table API) cannot be formed from all or a subset of that predicate's fields, and no part of the
predicate can be pushed to the server using the filter mechanism provided by SQL for Oracle
NoSQL Database (see Filtering Results in the SQL Beginner's Guide), then the query's
predicate will not be decomposed and sent to the database for backend filtering. Instead, the
system will fallback to the default mechanism, and perform all filtering on the client side,
applying the predicate to all the rows in the given table.

For example, consider the query presented above. For that query, each component of the
predicate satisfies the necessary criteria for pushdown, and so the whole predicate will be

Chapter 9
Predicate Pushdown

9-11

pushed to the database for search processing. To understand this, first observe that
the operators referenced in the query's predicate belong to the set described above;
that is, '=', 'AND', '>=', '<'.

Next, based on the schema of the vehicleTable, the fields named type and make form
a valid primary key for performing a table scan; and the predicate components
referencing the field named model form a valid field range. Compare this with a query
such as,

SELECT * FROM vehicleTable WHERE make = 'Chrysler' AND \
 model >= 'Imperial' AND model < 'Sebring';

Assuming there is no index of the form (make, model), for this query, although the
absence of the key's first field prevents the construction of a valid primary key as
required by the semantics of the table API, the predicate can still be pushed to the
backend store because it is considered valid for filtering by the SQL For Oracle
NoSQL Database filtering mechanism. Finally, consider a query such as,

SELECT * FROM vehicleTable WHERE model LIKE "%Silverado%";

For this query, predicate pushdown will be bypassed and all filtering will be performed
on the client side. This is because the predicate employs the LIKE operator, which is
not currently eligible for predicate pushdown.

Note that the initial two example queries that were presented both result in the whole
predicate being pushed and all filtering being performed on the backend. Whereas the
third example query results in no predicate pushdown and all filtering being performed
on the client side.

This does not mean that predicate pushdown will always be handled in such an all-or-
nothing manner. On the contrary, for many queries, only part of the predicate will be
pushed to the database to produce initial filtered results, which are then further filtered
on the client side using the remaining - residual - part of the predicate.

For example, consider a query that wishes to find each '4WheelDrive' vehicle in the
database that is 'blue', 'red', or 'yellow', and has a model name that begins with the
letter 'E' (that is, Equinox, Expedition, Explorer, etc.). Such a query would look like the
following:

SELECT * FROM vehicleTable WHERE \
 class = '4WheelDrive' AND \
 color IN ('blue','red','yellow') AND \
 model LIKE '%E%';

Based on the criteria presented in the next section, the only component of the query's
predicate that cannot be pushed to the backend is the component that employs the
LIKE operator (model LIKE '%E%'), whereas all other components in the query are
eligible to be pushed. Thus, when executing the given query, the part of the predicate
consisting of the components "class = '4WheelDrive' AND color IN ('blue',
'red', 'yellow')" will be pushed to the backend, producing rows referencing all four
wheel drive vehicles that are blue, red, or yellow; after which the client will apply the
residual predicate (model LIKE '%E%') to the results from the backend, to select and
return only those rows with model name including an uppercase 'E'.

Chapter 9
Predicate Pushdown

9-12

Predicate Pushdown Criteria
When processing a given query that includes a predicate, the mechanism provided by the
table API Hive integration classes will analyze the query's predicate and apply the following
criteria to determine whether all, part, or none of the predicate can be pushed to the database
for filtering on the backend.

• If the query's predicate includes components (column, operator, value) with comparison
operators from the set {=, >, >=, <, <=}, as well as zero or more combinations of the AND
conjunction, the OR conjunction, and/or one or more IN lists, then the predicate is eligible
for predicate pushdown.

• Each combination of predicate components that form a valid (as defined by the table API)
primary key, index key, or field range is eligible for predicate pushdown; using
mechanisms that optimize for scale.

• If the query's predicate is found to contain multiple combinations that are eligible for
predicate pushdown, then the combination resulting in optimal performance and scale will
be pushed to the server. If more than one of those combinations is found to be optimal,
then the first such combination will be pushed.

• Each component of the query's original predicate that is not included in the predicate to
push will be added to the residual predicate for client side filtering.

• If all of the predicate components are found to be ineligible for predicate pushdown, then
predicate pushdown will not be performed, and the system will fallback to the default
mechanism, using the original predicate to perform only client side filtering.

It is important to understand the criteria listed above in conjunction with the data model and
search patterns you expect to employ when you define the primary key, (along with any
indexes), for a given Oracle NoSQL Database table that will be queried. Although the
predicate pushdown mechanism will be employed automatically - without user intervention or
special configuration - how you define your table and indexes can affect how well the more
common queries you execute will perform and scale.

Predicate pushdown is employed automatically with no obvious indication (other than
improved performance) that it is "on and working". As a result, if you wish to verify that the
mechanism is indeed operating as described above, you can set the level of the following
Oracle NoSQL Database loggers to the DEBUG level:

• oracle.kv.hadoop.hive.table.TableStorageHandlerBase
• oracle.kv.hadoop.hive.table.TableHiveInputFormat
After setting the level of the above loggers to DEBUG, you can run a query and then observe
how the predicate pushdown mechanism processes the query's predicate by analyzing the
contents of the logger output.

Chapter 9
Predicate Pushdown

9-13

Part III
Integration with Oracle Big Data SQL

Topics

• Introduction to Integration with Oracle Big Data SQL

• Mapping the Oracle RDBMS Data Model to the Oracle NoSQL Database Table Model

• Executing SQL Queries Against Oracle NoSQL Database

• Example: SQL Queries On Oracle NoSQL Database Tables

• Appendix

– Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database

10
Introduction to Integration with Oracle Big
Data SQL

This section describes the integration of Oracle NoSQL Database with Oracle Big Data SQL
version 4.x. The goal of the Oracle Big Data SQL product is to allow users to employ the
power of the Oracle SQL SELECT statement to manage and manipulate data stored in a
number of different locations. Specifically, Oracle Big Data SQL is designed to provide SQL
access to data stored in Apache Hadoop Distributed File System (HDFS), Apache Hive,
various NoSQL databases - including Oracle NoSQL Database - as well as various relational
databases. Oracle Big Data SQL achieves this by presenting Hadoop HDFS, Apache Hive,
Oracle NoSQL Database, and the various other data sources as enhanced Oracle external
tables of the Oracle Relational Database Management System (RDBMS) (See Managing
External Tables in the Oracle Database Administrator's Guide). Oracle Big Data SQL maps
the external semantics of accessing data from those sources - horizontal parallelism,
location, and schema - to the Oracle Relational Database Management System's internal
semantics. For more information on creating external table for Oracle NoSQL Database in
Oracle Big Data SQL, see Create an External Table for Oracle NoSQL Database section in
the Oracle Big Data SQL User's Guide.

To use Oracle Big Data SQL SELECT statements to query data stored in an Oracle NoSQL
Database table, an Oracle Big Data SQL enabled external table must be created over the
Oracle NoSQL Database table via an Apache Hive external table. In addition to presenting
the steps to take to create such external tables, this document also presents a number of
Oracle Big Data SQL queries that can be run against example table data contained in an
Oracle NoSQL Database store, where the store can be either secure or non-secure.

Prerequisites
Before attempting to execute the examples that demonstrate the concepts presented in this
section, you should first satisfy all prerequisites listed in both the Integration with Apache
Hadoop MapReduce and the Integration with Apache Hive sections.

A Brief Primer on Oracle Big Data SQL
As stated in the Introduction to Integration with Oracle Big Data SQL, Oracle Big Data SQL
allows SQL access to various external data sources such as an Oracle NoSQL Database
table by presenting the data source as an Oracle external table. To achieve this, a
mechanism referred to as an access driver is employed to access data as if it were a table in
the Oracle relational database running in the Oracle Big Data SQL system. Oracle Big Data
SQL extends the access driver mechanism of external tables by specifying a new access
driver type for each data source that will be accessed. Prior to the introduction of Oracle Big
Data SQL, the Oracle Database external tables mechanism defined only two access driver
types:

• The ORACLE_LOADER access driver, for reading from flat files.

• The ORACLE_DATAPUMP access driver, for migrating data between Oracle databases in a
proprietary format.

10-1

With the introduction of Big Data SQL, the following new access driver types are
defined:

• The ORACLE_HDFS access driver, for accessing data stored in the Apache Hadoop
Distributed File System.

• The ORACLE_HIVE access driver, for accessing data stored in Apache Hive tables
or Oracle NoSQL Database tables.

• The ORACLE_BIGDATA access driver, for accessing files stored in an object store.

Both the ORACLE_HDFS and ORACLE_HIVE access drivers require the specification of a
number of classes that satisfy the Apache Hadoop MapReduce programming model.
Some of those classes are required by both access driver types, whereas some are
required by only the ORACLE_HIVE access driver. The class types required by both
ORACLE_HDFS and ORACLE_HIVE are:

• An instance of org.apache.hadoop.mapreduce.InputFormat
• An instance of org.apache.hadoop.mapreduce.OutputFormat
• An instance of org.apache.hadoop.mapreduce.RecordReader
• An instance of org.apache.hadoop.mapreduce.InputSplit
See package org.apache.hadoop.mapreduce.

The class types required by ORACLE_HIVE but not ORACLE_HDFS are:

• An instance of org.apache.hadoop.hive.ql.metadata.HiveStoarageHandler ; for
example, the Oracle NoSQL Database TableStorageHandler.

• An instance of org.apache.hadoop.hive.serde2.AbstractSerDe ; for example,
the Oracle NoSQL Database TableSerDe.

• An instance of
org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector ; for
example, the various ObjectInspector implementations defined by Oracle NoSQL
Database and described in the Integration with Apache Hive section.

• An instance of
org.apache.hadoop.hadoop.hive.ql.metadata.HiveStoragePredicateHandler .

See Hive API and package oracle.kv.hadoop.hive.table.

The ORACLE_HDFS access driver can only read data stored in HDFS files, whereas the
ORACLE_HIVE access driver can read data stored not only in HDFS files, but data
stored in other locations as well; for example an Oracle NoSQL Database table. As
explained in the following sections, the integration of Oracle NoSQL Database with
Apache Hive plays a prominent role in the integration of Oracle NoSQL Database with
Oracle Big Data SQL.

Chapter 10
A Brief Primer on Oracle Big Data SQL

10-2

11
Mapping the Oracle RDBMS Data Model to
the Oracle NoSQL Database Table Model

As the examples in this section demonstrate, in order to execute an Oracle Big Data SQL
query against data stored in an Oracle NoSQL Database table, a Hive external table must
first be created with a schema mapped from the schema of the desired Oracle NoSQL
Database table. Once that Hive external table is created, a corresponding Oracle RDBMS
external table must then be created with a schema mapped from the schema of the Hive
table. This is accomplished by applying the mappings shown in the following table:

Table 11-1 Data Type Mappings: Oracle NoSQL Database - Hive - RDBMS

Oracle NoSQL Database Type Hive Type RDBMS Type

FieldDef.Type.STRING STRING VARCHAR2(N)

CHAR

VARCHAR

FieldDef.Type.JSON STRING VARCHAR2(N)

FieldDef.Type.BOOLEAN BOOLEAN VARCHAR2(5)

FieldDef.Type.BINARY BINARY VARCHAR2(N)

FieldDef.Type.FIXED_BINARY BINARY VARCHAR2(N)

TINYINT

SMALLINT

FieldDef.Type.INTEGER INT NUMBER

FieldDef.Type.LONG BIGINT NUMBER

FieldDef.Type.FLOAT FLOAT NUMBER

FieldDef.Type.NUMBER DECIMAL NUMBER

FieldDef.Type.DOUBLE DOUBLE NUMBER

FieldDef.Type.ENUM STRING VARCHAR2(N)

FieldDef.Type.TIMESTAMP java.sql.TIMESTAMP TIMESTAMP

DATE

FieldDef.Type.ARRAY ARRAY VARCHAR2(N)

FieldDef.Type.MAP MAP<STRING, data_type> VARCHAR2(N)

FieldDef.Type.RECORD STRUCT <col_name : data_type,…> VARCHAR2(N)

UNIONTYPE <data_type, data_type,…
>

It is important to understand that when using Oracle Big Data SQL to query data in an Oracle
NoSQL Database table, the schema of the Oracle external table you create is dependent on
the schema of the corresponding Hive external table; which, in turn, is dependent on the
schema of the Oracle NoSQL Database table you wish to query. Thus, if either type of
external table is created using a schema that includes a data type that does not belong to
one of the mappings presented in the table above, then an error will occur when any attempt
is made to query the table.

11-1

Note that for fields in the Oracle external table specified as VARCHAR2(N), the value
of N is the maximum number of characters of the variable length STRING that
represents the specified field in the corresponding Hive and Oracle NoSQL Database
tables. Therefore, you should use the type, structure, and expected length or size of
the corresponding Hive and Oracle NoSQL Database fields to determine the
appropriate value to specify for N when creating the Oracle external table.

Chapter 11

11-2

12
Executing SQL Queries Against Oracle
NoSQL Database

The examples presented in this document were run using Oracle Big Data SQL 4.x and
Oracle NoSQL Database 20.x, both installed on an Oracle Big Data Appliance (BDA). The
system's Hive client environment was configured according to the directions presented in the
Configuring the Hive Client Environment appendix.

Prior to attempting the examples presented here, first make sure you have satisfied all
prerequisites described at the beginning of this document; which includes deploying an
Oracle NoSQL Database store, either secure or non-secure.

Once the necessary prerequisites have been satisfied, follow the directions presented in the
CountTableRows Support Programs appendix to create and populate the table named
vehicleTable in the Oracle NoSQL Database. Then follow the directions presented in the
Creating and Populating the rmvTable appendix and the Creating and Populating the
exampleJsonTable appendix to create and populate the tables named rmvTable and
exampleJsonTable respectively.

Finally, after satisfying all prerequisites and creating and populating each example table in the
Oracle NoSQL Database store, follow the directions presented in the Configuring Oracle Big
Data SQL For Querying Oracle NoSQL Database appendix to configure the Oracle Big Data
SQL system for executing SQL queries against data stored in the Oracle NoSQL Database
you deployed.

Mapping Hive External Tables to Oracle NoSQL Database
Tables

In order to use Oracle Big Data SQL to query table data in an Oracle NoSQL Database store,
you must first create and map a Hive external table to the desired table defined in the store.
As described below, when the store is configured for security, the command to do this
requires a few additional parameters.

Mapping Hive Tables to Oracle NoSQL Database Tables In a Non-Secure
Store

Assuming you have deployed a non-secure Oracle NoSQL Database store in the manner
described in the Deploying a Non-Secure Store appendix, login to one of the nodes of the Big
Data SQL system that can be used as a Hive client. Then, from the Hive command line
interface, execute the following command to map a Hive external table to the vehicleTable
described in the CountTableRows Support Programs appendix, where line breaks are inserted
for readability:

CREATE EXTERNAL TABLE IF NOT EXISTS vehicleTable
 (type STRING, make STRING, model STRING, class STRING, color STRING,
 price DOUBLE, count INT, dealerid DECIMAL, delivered TIMESTAMP)

12-1

 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "vehicleTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3");

Similarly, to map a Hive external table to the rmvTable described in the Creating and
Populating the rmvTable appendix:

CREATE EXTERNAL TABLE IF NOT EXISTS rmvTable
 (zipcode STRING, lastname STRING, firstname STRING, ssn BIGINT,
 gender STRING, license BINARY, phoneinfo MAP<STRING, STRING>,
 address STRUCT<number:INT street:STRING,
 unit:INT, city:STRING, zip:INT>,
 VEHICLEINFO ARRAY<STRUCT<type:STRING, make:STRING,
 model:STRING, class:STRING, color:STRING,
 value:FLOAT, tax:DOUBLE, paid:BOOLEAN>>)
 COMMENT 'Hive mapped to NoSQL table: rmvTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "rmvTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3");

Finally, to map a Hive external table to the exampleJsonTable described in Creating
and Populating the exampleJsonTable appendix:

CREATE EXTERNAL TABLE IF NOT EXISTS exampleJsonTable
 (id INT, jsonfield STRING)
 COMMENT 'Hive mapped to NoSQL table: exampleJsonTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "exampleJsonTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3");

Mapping Hive Tables to Oracle NoSQL Database Tables In a Secure
Store

Assuming you have deployed a secure Oracle NoSQL Database store in the manner
described in the Deploying a Secure Store appendix, login to one of the nodes of the
Big Data SQL system that can be used as a Hive client. Then, from the Hive command

Chapter 12
Mapping Hive External Tables to Oracle NoSQL Database Tables

12-2

line interface, execute the following command to use a password file to map a Hive external
table to the vehicleTable in the secure Oracle NoSQL Database:

CREATE EXTERNAL TABLE IF NOT EXISTS vehicleTablePasswd
 (type STRING, make STRING, model STRING, class STRING, color STRING,
 price DOUBLE, count INT, dealerid DECIMAL, delivered TIMESTAMP)
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-host-3:5000",
 "oracle.kv.tableName" = "vehicleTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.pwdfile.file" = "/tmp/example-user.passwd");

And to use an Oracle Wallet to map a Hive external table to that same vehicleTable in the
secure Oracle NoSQL Database, execute the Hive command:

CREATE EXTERNAL TABLE IF NOT EXISTS vehicleTableWallet
 (type STRING, make STRING, model STRING, class STRING, color STRING,
 price DOUBLE, count INT, dealerid DECIMAL, delivered TIMESTAMP)
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-host-3:5000",
 "oracle.kv.tableName" = "vehicleTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.wallet.dir" = "/tmp/example-user-wallet.dir");

Similarly, to use a password file to map a Hive external table to the rmvTable described in
Creating and Populating the rmvTable appendix, execute the command:

CREATE EXTERNAL TABLE IF NOT EXISTS rmvTablePasswd
 (zipcode STRING, lastname STRING, firstname STRING, ssn BIGINT,
 gender STRING, license BINARY, phoneinfo MAP<STRING, STRING>,
 address STRUCT<number:INT street:STRING,
 unit:INT, city:STRING, zip:INT>,
 vehicleinfo ARRAY<STRUCT<type:STRING, make:STRING,
 model:STRING, class:STRING, color:STRING,
 value:FLOAT, tax:DOUBLE, paid:BOOLEAN>>)
 COMMENT 'Hive mapped to NoSQL table: rmvTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-host-3:5000",
 "oracle.kv.tableName" = "rmvTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",

Chapter 12
Mapping Hive External Tables to Oracle NoSQL Database Tables

12-3

 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.pwdfile.file" = "/tmp/example-user.passwd");

And to use an Oracle Wallet to map a Hive external table to that same rmvTable in the
secure Oracle NoSQL Database, execute the command:

CREATE EXTERNAL TABLE IF NOT EXISTS rmvTableWallet
 (zipcode STRING, lastname STRING, firstname STRING, ssn BIGINT,
 gender STRING, license BINARY, phoneinfo MAP<STRING, STRING>,
 address STRUCT<number:INT street:STRING,
 unit:INT, city:STRING, zip:INT>,
 vehicleinfo ARRAY<STRUCT<type:STRING, make:STRING,
 model:STRING, class:STRING, color:STRING,
 value:FLOAT, tax:DOUBLE, paid:BOOLEAN>>)
 COMMENT 'Hive mapped to NoSQL table: rmvTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "rmvTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.wallet.dir" = "/tmp/example-user-wallet.dir");

Finally, to use a password file to map a Hive external table to the exampleJsonTable
described in the Creating and Populating the exampleJsonTable appendix, execute the
command:

CREATE EXTERNAL TABLE IF NOT EXISTS exampleTablePasswd
 (id INTEGER, jsonfield STRING)
 COMMENT 'Hive mapped to NoSQL table: exampleJsonTable'
 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-
host-3:5000",
 "oracle.kv.tableName" = "exampleJsonTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.pwdfile.file" = "/tmp/example-user.passwd");

And to use an Oracle Wallet to map a Hive external table to that same
exampleJsonTable in the secure Oracle NoSQL Database, execute the command:

CREATE EXTERNAL TABLE IF NOT EXISTS exampleJsonTableWallet
 (int INTEGER, jsonfield STRING)
 COMMENT 'Hive mapped to NoSQL table: exampleJsonTable'

Chapter 12
Mapping Hive External Tables to Oracle NoSQL Database Tables

12-4

 STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
 TBLPROPERTIES (
 "oracle.kv.kvstore" = "example-store",
 "oracle.kv.hosts"= "kv-host-1:5000,kv-host-2:5000,kv-host-3:5000",
 "oracle.kv.tableName" = "exampleJsonTable",
 "oracle.kv.hadoop.hosts" = "dn-host-1,dn-host-2,dn-host-3",
 "oracle.kv.security" = "/tmp/hive-nosql.login",
 "oracle.kv.ssl.truststore" = "/tmp/client.trust",
 "oracle.kv.auth.username" = "example-user",
 "oracle.kv.auth.wallet.dir" = "/tmp/example-user-wallet.dir");

Note that although the tables in the secure Oracle NoSQL Database store are named
vehicleTable, rmvTable, and exampleJsonTable, the names of the tables created in Hive are
not required to match the names of the corresponding Oracle NoSQL Database tables. This
allows you to create different Hive tables mapped to the same Oracle NoSQL Database table;
which allows you to query the Oracle NoSQL Database table using different security
mechanisms.

Mapping Oracle RDBMS External Tables to Hive External Tables
At this point, although Hive queries can be executed against the table data in the Oracle
NoSQL Database you deployed, you cannot yet execute SQL queries against that data. In
order to use Oracle Big Data SQL to query that data, you must apply the data model mapping
presented in the Table 11-1 table, along with the schemas defined for the Oracle NoSQL
Database vehicleTable, rmvTable, and exampleJsonTable to create and map the
corresponding Oracle Database external tables to each of the Hive tables that you created.

Assuming the Oracle Database has a pluggable database named ORCLPDB1 and a user
named NOSQL_EXAMPLE_USER with password welcome1, connect to the database via Oracle
sqlplus and execute the SQL commands presented in the following sections to create the
necessary Oracle external tables; for example,

sqlplus NOSQL_EXAMPLE_USER/welcome1@oracledb-host:1521/ORCLPDB1

Mapping Oracle RDBMS Tables to Hive Tables for Non-Secure Store
To create and map an Oracle Database external table to the Hive external table initially
mapped to the Oracle NoSQL Database vehicleTable, execute commands like the following
from the sqlplus prompt:

CREATE TABLE IF NOT EXISTS vehicleTable
 (type VARCHAR2(10), make VARCHAR2(12), model VARCHAR2(20),
 class VARCHAR2(40), color VARCHAR2(20), price NUMBER(8,2),
 count NUMBER, dealerid NUMBER, delivered TIMESTAMP)
 ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (com.oracle.bigdata.log.qc=query.log))
 REJECT LIMIT UNLIMITED;

Chapter 12
Mapping Oracle RDBMS External Tables to Hive External Tables

12-5

Similarly, to map an Oracle Database external table to the Hive external table initially
mapped to the Oracle NoSQL Database rmvTable, execute the command,

CREATE TABLE IF NOT EXISTS rmvTable
 (zipcode VARCHAR2(7), lastname VARCHAR2(20), firstname
VARCHAR2(20),
 ssn NUMBER, gender VARCHAR2(6), license VARCHAR2(9),
 phoneinfo VARCHAR2(67), address VARCHAR2(100),
 vehicleinfo VARCHAR2(1000))
 ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (com.oracle.bigdata.log.qc=query.log))
 REJECT LIMIT UNLIMITED;

Finally, to map an Oracle Database external table to the Hive external table initially
mapped to the Oracle NoSQL Database exampleJsonTable, execute the command,

CREATE TABLE IF NOT EXISTS exampleJsonTable
 (id INT, jsonfield VARCHAR2(2000))
 ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (com.oracle.bigdata.log.qc=query.log))
 REJECT LIMIT UNLIMITED;

Note that if you want the name that you specify for the Oracle Database external table
to be different than the name of the Hive external table to which it is mapped, then you
must use the com.oracle.bigdata.tablename property to specify the name of the
Hive external table in the command's ACCESS PARAMETERS; otherwise the name of the
Oracle external table will default to the name of the Hive table. For example,

CREATE TABLE IF NOT EXISTS oracleVehicleTable
 (type VARCHAR2(10), make VARCHAR2(12), model VARCHAR2(20),
 class VARCHAR2(40), color VARCHAR2(20), price NUMBER(8,2),
 count NUMBER, dealerid NUMBER, delivered TIMESTAMP)
 ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (com.oracle.bigdata.log.qc=query.log
 com.oracle.bigdata.tablename=vehicleTable))
 REJECT LIMIT UNLIMITED;

The Oracle Big Data SQL 4 User's Guide provides information on the various ACCESS
PARAMETERS that can be specified for the ORACLE_HIVE access driver.

Mapping Oracle RDBMS Tables to Hive Tables for Secure Store
To create an Oracle Database external table for querying the Oracle NoSQL Database
vehicleTable when a secure store is accessed via a password file, execute a
command like the following from the sqlplus prompt,

CREATE TABLE IF NOT EXISTS vehicleTablePasswd
 (type VARCHAR2(10), make VARCHAR2(12), model VARCHAR2(20),
 class VARCHAR2(40), color VARCHAR2(20), price NUMBER(8,2),

Chapter 12
Mapping Oracle RDBMS External Tables to Hive External Tables

12-6

 count NUMBER, dealerid NUMBER, delivered TIMESTAMP)
 ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (com.oracle.bigdata.log.qc=query.log))
 REJECT LIMIT UNLIMITED;

And when the store is accessed using an Oracle wallet execute,

CREATE TABLE IF NOT EXISTS vehicleTableWallet
 (type VARCHAR2(10), make VARCHAR2(12), model VARCHAR2(20),
 class VARCHAR2(40), color VARCHAR2(20), price NUMBER(8,2),
 count NUMBER, dealerid NUMBER, delivered TIMESTAMP)
 ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (com.oracle.bigdata.log.qc=query.log))
 REJECT LIMIT UNLIMITED;

To create an Oracle Database external table for querying the Oracle NoSQL Database
rmvTable, when a secure store is accessed via a password file, execute the command,

CREATE TABLE IF NOT EXISTS rmvTablePasswd
 (zipcode VARCHAR2(7), lastname VARCHAR2(20), firstname VARCHAR2(20),
 ssn NUMBER, gender VARCHAR2(6), license VARCHAR2(9),
 phoneinfo VARCHAR2(67), address VARCHAR2(100),
 vehicleinfo VARCHAR2(1000))
 ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (com.oracle.bigdata.log.qc=query.log))
 REJECT LIMIT UNLIMITED;

And when the store is accessed using an Oracle wallet execute,

CREATE TABLE IF NOT EXISTS rmvTableWallet
 (zipcode VARCHAR2(7), lastname VARCHAR2(20), firstname VARCHAR2(20),
 ssn NUMBER, gender VARCHAR2(6), license VARCHAR2(9),
 phoneinfo VARCHAR2(67), address VARCHAR2(100),
 vehicleinfo VARCHAR2(1000))
 ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (com.oracle.bigdata.log.qc=query.log))
 REJECT LIMIT UNLIMITED;

To create an Oracle Database external table for querying the Oracle NoSQL Database
exampleJsonTable, when a secure store is accessed via a password file, execute the
command,

CREATE TABLE IF NOT EXISTS exampleJsonTablePasswd
 (id INT, jsonfield VARCHAR2(2000))
 ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (com.oracle.bigdata.log.qc=query.log))
 REJECT LIMIT UNLIMITED;

Chapter 12
Mapping Oracle RDBMS External Tables to Hive External Tables

12-7

And when the store is accessed using an Oracle wallet execute,

CREATE TABLE IF NOT EXISTS exampleJsonTableWallet
 (id INT, jsonfield VARCHAR2(2000))
 ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (com.oracle.bigdata.log.qc=query.log))
 REJECT LIMIT UNLIMITED;

Chapter 12
Mapping Oracle RDBMS External Tables to Hive External Tables

12-8

13
Example: SQL Queries On Oracle NoSQL
Database Tables

After creating the Oracle Database external tables described in the previous sections, you
can then execute SQL SELECT queries to retrieve the data stored in the Oracle NoSQL
Database store. To execute the example queries presented in the following sections, connect
to the database via Oracle sqlplus and set the linesize to aid readability; for example,

sqlplus NOSQL_EXAMPLE_USER/welcome1@<oracledbhost>:1521/ORCLPDB1

set linesize 250;

Before executing the examples presented in the following sections, you can verify that each
Hive table you created is now accessible from the system's Oracle Database. To display
information about those tables, execute the following commands from the SQL prompt:

col cluster_id format A20;
col database_name format A15;
col owner format A10;
col table_name format A20;
col partitioned format A15;

SELECT cluster_id, database_name, owner, table_name,
 partitioned FROM all_hive_tables;

After verifying that the Hive tables you created are accessible, you can then query the
all_hive_columns view to verify the data mappings you specified.

col table_name format A20;
col column_name format A20;
col hive_column_type format A20;
col oracle_column_type format A20;

SELECT table_name, column_name, hive_column_type,
 oracle_column_type FROM all_hive_columns;

Example Queries on the vehicleTable
When using Oracle Big Data SQL to query data in the Oracle NoSQL Database
vehicleTable, simply query the Oracle external table you mapped to that table using the
SQL SELECT command. For example,

col type format A5;
col make format A8;
col model format A15;

13-1

col class format A25;
col color format A16;
col price format $99,999.90;
col count format 99999;
col dealerid format 0.999999999999999999999999999999999999990;
col delivered format A30;

set linesize 500;

SELECT * FROM vehicleTable;
SELECT count(*) FROM vehicleTable;
SELECT min(price) FROM vehicleTable;
SELECT min(dealerid) FROM vehicleTable;

SELECT * FROM vehicleTable WHERE make='GM';
SELECT * FROM vehicleTable WHERE model='Camaro';
SELECT * FROM vehicleTable WHERE model LIKE '%Silverado%';
SELECT * FROM vehicleTable WHERE color='yellow'
 AND type > 'auto' AND type < 'truck';
SELECT * FROM vehicleTable WHERE
 type > 'auto' AND type <= 'truck' AND make LIKE 'Ford';
SELECT * FROM vehicleTable WHERE dealerid > 0.7 AND dealerid < 0.75;
SELECT * FROM vehicleTable WHERE delivered
 BETWEEN '06-JUN-12 06:53:41.448643 AM' AND '05-SEP-15
03:40:22.057282 PM'
 ORDER BY delivered;

Note that if you created the Oracle Database external tables vehicleTablePasswd
and/or vehicleTableWallet for the case where the Oracle NoSQL Database store is
secure, then you would simply replace the name vehicleTable in the queries above
with vehicletablePasswd and/or vehicleTableWallet.

Example Queries on the rmvTable
To use Oracle Big Data SQL to query data in the Oracle NoSQL Database rmvTable,
you can similarly execute basic queries like the following on the Oracle Database

Chapter 13
Example Queries on the rmvTable

13-2

external table you mapped to that table in the Oracle NoSQL Database store. For example,

SELECT * FROM rmvTable;

SELECT lastname,firstname,gender,address FROM rmvTable;

SELECT min(ssn) FROM rmvTable;

SELECT count(*) FROM rmvTable;

SELECT firstname,lastname,phoneinfo FROM rmvTable;

SELECT vehicleinfo FROM rmvTable;

More Example Queries on the rmvTable
To achieve more complicated query functionality, you can employ either Oracle regular
expression functions such as REGEXP_LIKE and REGEXP_SUBSTR, or Oracle JSON operators
such as JSON_QUERY and JSON_EXISTS (or a combination).

Example Queries Using Oracle Regular Expression Functions
The example queries presented here demonstrate the use of Oracle regular expression
functions to query the Oracle NoSQL Database rmvTable.

To display the firstname, lastname, address, and vehicleinfo array from each row of the
Oracle NoSQL Database rmvTable in which the value of the lastname column begins with the
letter 'H', execute the query,

SELECT firstname,lastname,address,vehicleinfo FROM rmvTable WHERE
 REGEXP_LIKE (lastname, '^[H].*');

Recall that the vehicleinfo field of the Oracle NoSQL Database rmvTable is an array of
Oracle NoSQL Database RECORD types that are mapped to the Oracle Database STRING
type in which each element of a given RECORD is represented as name-value pairs when
mapped to the Oracle Database data model; for example, '"make":"Chrysler"', '"color":"red"',
'"paid":true', etc.

Suppose then, that you wish to list the name and address of each person in the database
whose first or "primary" vehicle matches certain criteria. Additionally, suppose that rather than
listing each element in the vehicleinfo array, you instead whish to list only the vehicle
information related to the vehicle that matched the desired criteria. That is, you do not wish to
list information about any other vehicles associated with a given owner.

For example, you might want to list all owners whose primary vehicle is made by GM, or all
owners who own a Camaro. Or maybe you want to list all owners who have not yet registered
their primary vehicle. If we assume that information about each owner's primary vehicle is
stored in the first element of the vehicleinfo array, then the queries below use Oracle regular
expression functions to match on the sort of criteria just described. Specifically,

Chapter 13
Example Queries on the rmvTable

13-3

To find all owners with a primary vehicle made by GM:

SELECT firstname,lastname,address,
 REGEXP_SUBSTR(
 VEHICLEINFO, '\{([[:alnum:]":,\.]+){1,3}\}',1,1)
 "Primary make: GM"
 FROM rmvTable WHERE
 REGEXP_LIKE (
 REGEXP_SUBSTR(
 VEHICLEINFO,'\{([[:alnum:]":,\.]+){1,3}\}',1,1),
 '"make":"GM"');

To find all owners whose primary vehicle is a Camaro:

SELECT firstname,lastname,address,
 REGEXP_SUBSTR(
 VEHICLEINFO, '\{([[:alnum:]":,\.]+){1,3}\}',1,1)
 "Primary model: Camaro"
 FROM rmvTable WHERE
 REGEXP_LIKE (
 REGEXP_SUBSTR(
 VEHICLEINFO, '\{([[:alnum:]":,\.]+){1,3}\}',1,1),
 '"model":"Camaro"');

To find all owners whose primary vehicle has not been registered:

SELECT firstname,lastname,address,
 REGEXP_SUBSTR(
 VEHICLEINFO, '\{([[:alnum:]":,\.]+){1,3}\}',1,1)
 "Primary fee NOT paid"
 FROM rmvTable WHERE
 REGEXP_LIKE (
 REGEXP_SUBSTR(
 VEHICLEINFO, '\{([[:alnum:]":,\.]+){1,3}\}',1,1),
 '"paid":false');

To find all owners whose second vehicle is a truck:

SELECT firstname,lastname,address,
 REGEXP_SUBSTR(
 VEHICLEINFO, '\{([[:alnum:]":,\.]+){1,3}\}',1,2)
 "Second vehicle type: truck"
 FROM rmvTable WHERE
 REGEXP_LIKE (
 REGEXP_SUBSTR(
 VEHICLEINFO, '\{([[:alnum:]":,\.]+){1,3}\}',1,2),
 '"type":"truck"');

Chapter 13
Example Queries on the rmvTable

13-4

Example Queries Using Oracle JSON Operators
The example queries presented in this section demonstrate the use of Oracle JSON
operators to execute queries similar to those presented in the previous section using Oracle
regular expression functions.

SELECT firstname, lastname, j.address.street, j.address.city,
 j.address.state, j.vehicleinfo.model FROM rmvTable j;

SELECT JSON_QUERY(vehicleinfo, '$[0]' WITH CONDITIONAL WRAPPER)
 FROM rmvTable;

SELECT firstname, lastname, address,
 JSON_QUERY(vehicleinfo, '$[0]' WITH CONDITIONAL WRAPPER)
 AS "Primary Vehicle is made by GM"
 FROM rmvTable WHERE
 JSON_QUERY(vehicleinfo, '$[0].make' WITH CONDITIONAL WRAPPER)
 LIKE '%GM%';

SELECT firstname, lastname, address,
 JSON_QUERY(vehicleinfo, '$[0]' WITH CONDITIONAL WRAPPER)
 AS "Primary Vehicle is a Camaro"
 FROM rmvTable WHERE
 JSON_QUERY(vehicleinfo, '$[0].model' WITH CONDITIONAL WRAPPER)
 LIKE '%Camaro%';

SELECT firstname, lastname, address,
 JSON_QUERY(vehicleinfo, '$[0].model' WITH CONDITIONAL WRAPPER)
 AS "Primary Vehicle Model",
 JSON_QUERY(vehicleinfo, '$[0].value' WITH CONDITIONAL WRAPPER)
 AS "Primary Vehicle Value",
 JSON_QUERY(vehicleinfo, '$[0].tax' WITH CONDITIONAL WRAPPER)
 AS "Tax Owed",
 JSON_QUERY(vehicleinfo, '$[0].paid' WITH CONDITIONAL WRAPPER)
 AS "Tax Paid"
 FROM rmvTable WHERE
 JSON_QUERY(vehicleinfo, '$[0].make' WITH CONDITIONAL WRAPPER)
 LIKE '%GM%';

Chapter 13
Example Queries on the rmvTable

13-5

Example Queries on the exampleJsonTable
To use Oracle Big Data SQL to query data in the Oracle NoSQL Database
exampleJsonTable, you can execute queries like the following on the Oracle Database
external table you mapped to that table in the Oracle NoSQL Database store. For
example,

set linesize 500;

col id format 9999;
col jsonfield format A1000;

SELECT * FROM exampleJsonTable WHERE ROWNUM <= 5;

The following queries use various combinations of JSON dot notation, the JSON_VALUE
operator, and the JSON_QUERY operator to query and display only specific attributes of
the JSON document in each row of the Oracle NoSQL Database table.

Query Using Only JSON Dot Notation

col personal format A15;
col party format A15;

SELECT id, j.jsonfield.personal.firstname,
 j.jsonfield.personal.lastname, j.jsonfield.party
 FROM exampleJsonTable j
 WHERE j.jsonfield.party = 'Independent'
 ORDER BY j.jsonfield.person.lastname;

Query Using JSON Dot Notation and the JSON_VALUE Operator

col firstname format A15;
col lastname format A15;
col homephone format A12;
col workphone format A12;

SELECT id,
 JSON_VALUE(j.jsonfield, '$.personal.firstname') firstname,
 JSON_VALUE(j.jsonfield, '$.personal.lastname') lastname,
 JSON_VALUE(j.jsonfield, '$.personal.party') party,
 JSON_VALUE(j.jsonfield, '$.personal.address.home.phone')
homephone,
 JSON_VALUE(j.jsonfield, '$.personal.address.work.phone') workphone
 FROM exampleJsonTable j
 ORDER BY j.jsonfield.party;

Chapter 13
Example Queries on the exampleJsonTable

13-6

Query Using JSON Dot Notation and the JSON_QUERY Operator

col committee format A25;
col caucus format A25;

SELECT id, j.jsonfield.personal.firstname,
 j.jsonfield.personal.lastname,
 JSON_QUERY(j.jsonfield, '$.duties.committee' PRETTY WITH WRAPPER)
committee,
 JSON_QUERY(j.jsonfield, '$.duties.caucus' PRETTY WITH WRAPPER) caucus
 FROM exampleJsonTable j
 WHERE j.jsonfield.party = 'Democrat' AND ROWNUM <= 5;

Query Using JSON Dot Notation With Both JSON_VALUE and JSON_QUERY

col contrib format A12;
col committee format A50;
col contrib format A50;

SELECT
 JSON_VALUE(j.jsonfield, '$.personal.firstname') firstname,
 JSON_VALUE(j.jsonfield, '$.personal.lastname') lastname,
 j.jsonfield.contrib,
 j.jsonfield.party,
 JSON_QUERY(j.jsonfield, '$.duties.committee' PRETTY WITH WRAPPER)
committee,
 JSON_QUERY(j.jsonfield, '$.duties.caucus' PRETTY WITH WRAPPER) caucus
 FROM exampleJsonTable j
 WHERE j.jsonfield.party = 'Republican' AND ROWNUM <= 5;

Chapter 13
Example Queries on the exampleJsonTable

13-7

14
Appendix

Topics

• Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database

Configuring Oracle Big Data SQL For Querying Oracle NoSQL
Database

In order to use Oracle Big Data SQL to query data in an Oracle NoSQL Database table, the
Hive integration classes and other third party supporting classes provided by Oracle NoSQL
Database must be made available to the Java VMs launched by Oracle Big Data SQL. This is
accomplished by setting the value of the java.classpath.oracle system property to include
each of the following JAR files provided with the Enterprise Edition of Oracle NoSQL
Database:

• kvclient.jar
• kvstore-ee.jar
• jackson-core.jar
• jackson-databind.jar
• jackson-annotations.jar
In an Oracle Big Data SQL system, the value of the java.classpath.oracle system property
is set in the configuration file named, bigdata.properties; which is located in a directory of
the form,

/opt/oracle/product/18c/dbhome_1/bigdatasql/databases/ORCLCDB/bigdata_config

The subdirectory ORCLCDB is the instance name of the Oracle 18c Database deployed to the
Oracle Big Data SQL system on which the examples presented here were developed. You
may need to adjust some of the path components for your particular environment.

Upon examining the contents of the bigdata.properties file, you should see an entry that
looks like,

java.classpath.oracle=\
 /opt/oracle/product/18c/dbhome_1/bigdatasql/jlib/*:\
 /opt/oracle/product/18c/dbhome_1/jlib/orai18n.jar

Although you can explicitly add the necessary Oracle NoSQL Database libraries to the
java.classpath.oracle system property by modifying the above entry in the

14-1

bigdata.properties configuration file, the recommended way is to copy those
libraries in the directory, /opt/oracle/product/18c/dbhome_1/bigdatasql/jlib ; that
is,

cd /opt/oracle/product/18c/dbhome_1/bigdatasql/jlib

cp /opt/oracle/kv-ee/lib/kvclient.jar kvclient.jar
cp /opt/oracle/kv-ee/lib/kvstore-ee.jar kvstore-ee.jar
cp /opt/oracle/kv-ee/lib/jackson-core.jar jackson-core.jar
cp /opt/oracle/kv-ee/lib/jackson-databind.jar jackson-databind.jar
cp /opt/oracle/kv-ee/lib/jackson-annotations.jar jackson-
annotations.jar

To integrate Oracle NoSQL Database with the Big Data SQL query mechanism, it is
important to copy the libraries shipped with Oracle NoSQL Database rather than
linking to those libraries in the system's bigdatasql/jlib directory. Copying the
libraries shown above will prevent possible ClassLoader conflict errors that can be
caused by older versions of third party libraries included in the system's classpath.

Note that copying the libraries in the manner shown above is required for executing
Big Data SQL queries against data in an Oracle NoSQL Database. But if you will also
be executing Hive queries from one of the Big Data SQL system's database nodes,
then in addition to copying the Oracle NoSQL Database libraries into /opt/oracle/
product/18c/dbhome_1/bigdatasql/jlib, you must also copy those same libraries
into the following directories on the database node from which the Hive queries will be
executed:

 /opt/oracle/bigdatasql/bdcell-12.1/jlib-bds
and
 /opt/oracle/bigdatasql/bdcell-12.2/jlib-bds

Configuring Oracle Big Data SQL For Querying Data in a Secure Store
The Hive and Oracle NoSQL Database Security appendix describes the additional
security artifacts that must be generated and installed to support executing queries
(both Hive and Big Data SQL) against table data stored in a secure Oracle NoSQL
Database. Those artifacts include the login, trust, and password artifacts, as well as
the server side JAR file that contains the necessary public credentials for
communication with the secure store. After generating and installing the necessary
security artifacts in the manner described in that section, add the server side JAR file
to the Big Data SQL system's java.classpath.oracle system property.

For example, if the server side JAR file is named hive-nosql-server.jar and is
installed in a directory such as /tmp/kv-client-security, then do the following:

cd /opt/oracle/product/18c/dbhome_1/bigdatasql/jlib
ln –s /tmp/kv-client-security/hive-nosql-server.jar \
 hive-nosql-server.jar

Chapter 14
Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database

14-2

Additionally, if you will also be executing Hive queries from any of the Big Data SQL system's
database nodes, then you must create the same link as that shown in the following
directories on each such node,

 /opt/oracle/bigdatasql/bdcell-12.1/jlib-bds
and
 /opt/oracle/bigdatasql/bdcell-12.2/jlib-bds

Chapter 14
Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database

14-3

Part IV
Integration with Elastic Search for Full Text
Search

Topics

• About Full Text Search

• Intergrating Elasticsearch with Oracle NoSQL Database

• Managing Full Text Index

• Security in Full Text Search

15
About Full Text Search

Topics

• About Full Text Search

• Prerequisite to Full Text Search

About Full Text Search
Full Text Search provides the capability to identify natural-language documents that satisfy a
query, and optionally to sort them by relevance to the query.

Full Text Search will find all documents containing given query terms and return them in order
of their similarity to the query. Notions of query and similarity are very flexible and depend on
the specific application. The simplest search considers query as a set of words and similarity
as the frequency of query words in the document.

In concert with the table interface, Oracle NoSQL Database integrates with the Elasticsearch
third-party open-source search engine to enable Full Text Search capability against data
stored in an Oracle NoSQL Database table. See Elasticsearch.

Full Text Search is an important aspect of any big data or database system. Users expect
that when they input text into a box and click search, they will get the relevant search results
they are looking for. Thus, besides providing high performance Full Text Search of data
stored in Oracle NoSQL tables, the mechanism described in this document also allows users
to explore a collection of information by applying multiple Elastisearch filters.

The feature described here provides a mechanism for marking fields from an Oracle NoSQL
Database table schema as being text searchable. This so-called Oracle NoSQL Text Indexing
mechanism allows one to create Elastisearch indexes on the data stored in Oracle NoSQL
Database tables. It does this by causing the data in the indexed fields to automatically be
stored in a corresponding index created in a given Elastisearch cluster. Once the data is
stored (indexed) in Elastisearch, one can then use any native Elastisearch API to search and
retrieve the data that matches the specified search criteria. References contained in the
documents returned by Elasticsearch can then be used to retrieve the original Oracle NoSQL
Database records that correspond to the indexed data.

Note:

So that the maintenance of indexes does not affect the performance of an Oracle
NoSQL Database store, the text indexes that are used for Full Text Search will not
be maintained locally by Oracle NoSQL Database components. Rather, they will
instead be maintained by a remote Elasticsearch service hosted on other nodes.

15-1

Prerequisite to Full Text Search
In order to employ the Full Text Search feature, you need a running Oracle NoSQL
Database store, and an Elasticsearch cluster. The Elasticsearch cluster must be
reachable over a network from the Oracle NoSQL Database store. For performance
reasons, when running in a production environment, the nodes making up the Oracle
NoSQL Database, as well as the nodes of the Elasticsearch cluster should be
separate hosts in a distributed environment, communicating over a network.

Currently, the Full Text Search feature of Oracle NoSQL Database will work with
Elasticsearch version 2 (example: 2.4.6), but not versions greater than or equal to
version 5. The following references can help you download, install, and start a version
of Elasticsearch compatible with Oracle NoSQL Database:

• https://www.elastic.co/downloads/past-releases/elasticsearch-2-4-6

• https://www.elastic.co/guide/en/elasticsearch/reference/2.4/index.html

Once your Elasticsearch cluster is running, it should consist of one or more nodes.
Some or all of the nodes will have services listening on two ports:

• The HTTP port, which is used for REST requests (default 9200).

• The Elasticsearch transport port, used for communication between Elasticsearch
nodes (default 9300).

Note:

As explained in the sections below, you must know the HTTP port and the
host name of at least one node in the Elasticsearch cluster. You also must
know the name of the cluster itself, which by default is elasticsearch.
This information must be provided to the Oracle NoSQL Database store so
that it can find and connect to the Elasticsearch cluster.

Chapter 15
Prerequisite to Full Text Search

15-2

https://www.elastic.co/downloads/past-releases/elasticsearch-2-4-6
https://www.elastic.co/guide/en/elasticsearch/reference/2.4/index.html

16
Intergrating Elasticsearch with Oracle NoSQL
Database

Topics

• Registering Elasticsearch with Oracle NoSQL Database

• Deregistering Elasticsearch from an Oracle NoSQL Store

Registering Elasticsearch with Oracle NoSQL Database
Before you can use Oracle NoSQL Database to create a Text Index in an Elasticsearch
cluster, you must register the desired cluster with the Oracle NoSQL Database store, using
the plan command named register-es. It is via the register-es plan that you provide
the name of the Elasticsearch cluster, the name of one of the hosts in that cluster, and the
HTTP port on which that host is listening for connection requests. Specifically, the
register-es plan command takes the following form:

plan register-es
 –clustername <name>
 -host <host|ip>
 -port <http port>
 -secure <true|false>
 [-wait]
 [-force]

For example, if your Elasticsearch cluster is named elasticsearch (the default) and
includes a node running on your local host, listening on the default HTTP port (9200), then
you would execute the following command from the Oracle NoSQL Database administrative
command line interface (Admin CLI):

kv-> plan register-es
 –clustername elasticsearch
 –host 127.0.0.1
 –port 9200
 –secure false
 -wait

Executed plan 22, waiting for completion...
Plan 22 ended successfully

16-1

Note:

When the register-es plan is executed, if the Elasticsearch cluster
specified in the command already contains indexes created under a
registration between a previous NoSQL store instance and the current
Elasticsearch cluster, then the plan will fail and display an error message.
Such indexes are referred to as stale indexes, and the plan fails in the face
of such stale indexes because the indexes currently maintained in the
Elasticsearch cluster's state are associated with the store that previously
created them under the original registration. Although those existing indexes
are part of the Elasticsearch cluster's state, they are not part of the state of
the new store instance. Allowing the new store instance to create a new
registration through which new indexes can be created in the cluster can
produce inconsistencies and possible conflicts between the state maintained
by the store and the state maintained by Elasticsearch; resulting in potential
error conditions.

To avoid such error conditions, when the new store instance receives a
request for a new registration with the Elasticsearch cluster, and that cluster
contains indexes associated with a registration created by a previous store
instance, the request is rejected; unless the force flag is specified. If the
force flag is specified in the register-es command, then the store will
request that Elasticsearch first remove all of its stale indexes; and only after
those indexes have been successfully removed, will the registration be
created between the new store instance and the Elasticsearch cluster.

During the registration process the store's Admin Service (or simply, the
Admin) verifies the existence of (as well as a network path to) the
Elasticsearch node specified in the register-es command arguments,
and then acquires from that node a complete list of connection information
for all the nodes making up that Elasticsearch cluster. This information is
stored in the Admin's state, as well as distributed to all the nodes
of the Oracle NoSQL Database store. If the Elasticsearch cluster's
population of nodes changes significantly (due to node or network failure,
cluster reconfiguration, and so on), the register-es command can be
repeated to update the Oracle NoSQL Database's list of Elasticsearch node
connections.

After successfully executing the register-es plan, you can verify that the Oracle
NoSQL Database store is indeed registered with the desired Elasticsearch cluster by
executing the show parameters command from the Admin CLI in the following way:

show parameters –service <storage node id>

The show parameters command displays a list of properties for the specified
storage node that, if the registration was successful, will include the name of the
Elasticsearch cluster, along with the host names and/or IP addresses of the nodes
making up that cluster. When you execute the show parameters command, the

Chapter 16
Registering Elasticsearch with Oracle NoSQL Database

16-2

value of the properties named searchClustername and searchClusterMembers will
provide that information for you. For example,

kv-> show parameters -service sn1

capacity=1
haHostname=localhost
haPortRange=5005,5007
hostname=localhost
memoryMB=0
mgmtClass=oracle.kv.impl.mgmt.NoOpAgent
mgmtPollPort=0

mgmtTrapPort=0

numCPUs=8

registryPort=5000

rnHeapMaxMB=0

rnHeapPercent=85

rootDirPath=./kvroot
searchClusterMembers=127.0.0.1:9200
searchClusterName=elasticsearch
serviceLogFileCount=20
serviceLogFileLimit=2000000
storageNodeId=1

systemPercent=10

Deregistering Elasticsearch from an Oracle NoSQL Store
Oracle NoSQL Database implements 'one store, one Elasticsearch cluster' policy. That is, a
given store cannot be simultaneously registered with more than one Elasticsearch cluster.
This policy is expressed through the registration model. See Registering Elasticsearch with
Oracle NoSQL Database. Thus, if your store is currently registered with one Elasticsearch
cluster, but you wish to register with a second cluster, then you must first deactivate – or
deregister – the current registration. This is accomplished by executing the following
deregister-es plan.

plan deregister-es [-wait]

Note:

Because of the one store, one cluster policy, the deregister-es command takes
no arguments.

The store cannot deactivate a registration unless all indexes created under that registration
have first been deleted from the Elasticsearch cluster. This can be accomplished by

Chapter 16
Deregistering Elasticsearch from an Oracle NoSQL Store

16-3

executing the DROP INDEX command on each of the Full Text Indexes created by the
store and located in the Elasticsearch cluster with which the store is registered. That
is, from the Admin CLI, a command with the following form should be executed for
each index:

execute 'DROP INDEX [IF EXISTS] <index> ON <table>';

Since the Elasticsearch cluster is created, maintained, and administered separate from
the Oracle NoSQL Database store, that cluster may contain indexes that were created
outside of the store's control, using the Elasticsearch API. These sort of indexes are
not known to the store (are not in the store's state), and do not need to be deleted from
the cluster in order to deactivate the store's registration with the cluster. Only the
indexes that were created in the Elasticsearch cluster via the Oracle NoSQL CREATE
FULLTEXT INDEX command must be deleted for the deregister-es command to
succeed.

If the deregister-es command fails because the cluster still contains Full Text
Indexes created by the store, the output for the command will display the names of the
indexes that must be dropped. For example,

kv-> plan deregister-es –wait
Cannot deregister ES because these text indexes exist:

mytestIndex
JokeIndex

kv-> execute 'DROP INDEX mytestIndex ON myTable';
Plan 16 completed successfully

kv-> execute 'DROP INDEX JokeIndex ON myTable';
Plan 17 completed successfully

kv-> plan deregister-es –wait
Plan 18 completed successfully

The show parameters command can then be executed again, and its output examined,
to determine if the store is indeed no longer registered with the Elasticsearch cluster.

Note:

There are two index types that can exist in Oracle NoSQL Database: a
regular or Secondary Index, and a Text Index (for Full Text Search). With
respect to index creation or deletion, although separate statements are
needed for index creation (to distinguish the type of index to create), the
same DROP INDEX statement is used to remove either type of index. When
applied to a text index, a DROP INDEX command like those shown above not
only stops the population of the index from the associated Oracle NoSQL
Database table, but also removes the mapping and all related documents
from Elasticsearch.

Chapter 16
Deregistering Elasticsearch from an Oracle NoSQL Store

16-4

17
Managing Full Text Index

Topics

• Creating a Full Text Index

• Mapping a Full Text Index Field to an Elasticsearch Field

• Handling TIMESTAMP Data Type

– Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type

– Full Text Search of Indexed TIMESTAMP Scalar

• Handling JSON Data Type

– Review: Secondary Indexes on JSON Document Content

– Creating Text Indexes on JSON Document Content

– Full Text Search of Indexed JSON Documents

• Deleting a Full Text Index

Creating a Full Text Index
Review the concepts of Oracle NoSQL Database tables and indexes for better understanding
of this section. See Indexes in the SQL Reference Guide. That chapter describes the main
type of index you can create on the fields of a given Oracle NoSQL Database table.

This section introduces a second type of index that can be created on a given table. This
second index category – separate from the Secondary Indexes described in the SQL
Reference Guide – is referred to as a Full Text Index or, simply, a Text Index on the
associated table.

As with any index, a Text Index as defined here, allows one to search for rows of an Oracle
NoSQL Database table having fields that share some common value or characteristic. The
difference between the two types of indexes is that an Oracle NoSQL Database Secondary
Index is created, maintained and queried all within the Oracle NoSQL Database store; using
the Oracle NoSQL Database Table API. On the other hand, the creation of a Text Index is
only initiated via the Table API. Although the store maintains information about the Text
Indexes that are created, such indexes are actually created, maintained, and queried in the
Elasticsearch cluster with which the store is registered (using the Elasticsearch API).

It is important to understand that when the first type of index is created, data from the indexed
fields of the associated table are written to the store itself; whereas when a Text Index is
created, that data is streamed to the Elasticsearch cluster with which the store is registered,
which stores (indexes) the data so that the Elasticsearch API can be used to execute full text
searches against that data. Whenever new data is written to, or existing data is deleted from
the table, the corresponding Text Index located in the cluster is updated accordingly.

17-1

To index one or more fields of an Oracle NoSQL table for Full Text Search in
Elasticsearch, you can use the store's Admin CLI to execute a command with the
following format:

execute 'CREATE FULLTEXT INDEX
 [IF NOT EXISTS]
 <index> ON <table>
 (<field> {<mapping-spec>},<field> {<mapping-spec>}, ...)
 [ES_SHARDS=<n>]
 [ES_REPLICAS=<n>]
 [OVERRIDE]
 [COMMENT "<comment>"]';

Each argument, flag, and directive is described as follows, where any item
encapsulated by square brackets [...] is optional, and the items encapsulated by
curly braces {...} are required only when the field's value is a JSON document, but
is optional otherwise:

• index - The name of the Text Index to create.

• table - The name of the table containing the fields to index.

• field - A comma-separated list of each field to index, encapsulated by open
parentheses.

• Each field to index can optionally be associated with a mapping specification that
specifies how Elasticsearch should handle the corresponding field. For example,
whether Elasticsearch should treat the field's value as a text, number, date type,
and so on; as well as what analyzer should be employed when indexing a text
value. As explained in the sections below, the mapping specification for a given
field must be expressed in valid JSON format.

• If the command above is executed and a Text Index with the specified name
already exists, then unless the optional directive IF NOT EXISTS is specified, or
the optional directive OVERRIDE is specified, the command will fail, displaying an
error message. Specifying IF NOT EXISTS when the named index already exists
will result in a no-op. If OVERRIDE is specified for an existing index, then the
existing index will be deleted from Elasticsearch and a new index will be created
with the same name.

• If the optional ES_SHARDS argument is specified, along with a corresponding
integer value, then the setting for the number of primary shards Elasticsearch will
use for the new index will be changed to the given value. Note that the default
value for this setting is 5, and this setting cannot be changed after the index has
been created.

• If the optional ES_REPLICAS argument is specified, along with a corresponding
integer value, then the setting for the number of copies of the indexed value each
primary shard should have will be changed to the given value. Note that the
default value for this setting is 1, and this setting can be changed on a live index at
any time.

For more information on how the value of the ES_SHARDS and ES_REPLICAS
properties are used, refer to the Elasticsearch settings named number_of_shards
and number_of_replicas described in the Elasticsearch documentation. See
Elasticsearch Index Settings.

Chapter 17
Creating a Full Text Index

17-2

When CREATE FULLTEXT INDEX executes successfully, the Text Index name provided in
the command (along with metadata associated with that name) is stored and maintained in
the Oracle NoSQL store. Additionally, a corresponding text searchable index – the index that
is actually queried – is also created in the Elasticsearch cluster with which the store is
registered. Whereas the name associated with the index in Oracle NoSQL is the simple index
name specified in the CREATE FULLTEXT INDEX command, the name of the corresponding
index in Elasticsearch takes the following dot-separated form:

ondb.<store>.<table>.<index>

Each of the coordinates of the Elasticsearch index name will always be lowercase; even if
their counterpart in Oracle NoSQL was specified as mixed or upper case. The first coordinate
(or prefix) of the name will always be ondb; which distinguishes the indexes in Elasticsearch
that were created by the Oracle NoSQL CREATE FULLTEXT INDEX command from other
indexes created externally, via the Elasticsearch API. The store coordinate of the
Elasticsearch index name is the name of the Oracle NoSQL Database store that asked
Elasticsearch to create the index. And the table and index coordinates are the values
specified for the corresponding arguments in CREATE FULLTEXT INDEX; that is, the name
of the Oracle NoSQL table from which the values to index are taken, and the name of the
Oracle NoSQL Text Index the store should maintain. Using the coordinates of any such index
name in Elasticsearch, one should always be able to determine the origin of the data stored
in the index.

Once you have executed the CREATE FULLTEXT INDEX command described above, you
can verify that the Text Index has been successfully created in Oracle NoSQL by executing
the show indexes command from the Admin CLI; for example,

kv-> show indexes –table mytestTable

Indexes on table mytestTable mytestIndex (...), type: TEXT

You can also verify that the corresponding full text searchable index has been created in
Elasticsearch. To do this you can execute a curl command from the command line of a host
with network connectivity to one of the nodes in the Elasticsearch cluster; for example,

curl –X GET 'http://esHost:9200/_cat/indices'

yellow open ondb.kvstore._checkpoint ...
yellow open ondb.kvstore.mytesttable.mytestindex ...

Notice the entry that references the ondb.kvstore._checkpoint index. This index will be
automatically created upon the creation of the first Oracle NoSQL Text Index. Unless it is
manually deleted from the Elasticsearch cluster, it will always appear in the output of the
indices command. This so-called _checkpoint index contains internal information written by
Oracle NoSQL to support recovery operations when Oracle NoSQL is restarted. In general,
this index should never be removed or modified.

Chapter 17
Creating a Full Text Index

17-3

Note:

Throughout this document, the curl utility program is used to demonstrate
how to issue and display the results of HTTP requests to the Elasticsearch
cluster. The curl program is supported on most operating systems (linux,
Mac OS X, Microsoft Windows, and so on). It is used here because it is easy
to install and can be run from the command line. Other options you can
explore for sending queries to Elasticsearch are:

• The elasticsearch-head tool; which is a web front end for browsing,
querying, and interacting with an Elasticsearch cluster. See
elasticsearch-head.

• The Elasticsearch Java API; which can be used to query Elasticsearch
from within program control. See Elasticsearch Java API.

In addition to executing show indexes from the Oracle NoSQL Admin CLI, you can
also execute the show table command; which, in addition to the table structure, will
also list all indexes (both secondary and text) created for that table. For example,

kv-> show table –table mytestTable

{
 "json_version" : 1,
 "type" : "table",
 "name" : "mytestTable",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [
 {
 "name" : "id",

 "type" : "INTEGER",

 "nullable" : false,

 "default" : null

},
 {

 "name" : "category",

 "type" : "STRING",

 "nullable" : true,

 "default" : null

 },
 {

 "name" : "txt",

Chapter 17
Creating a Full Text Index

17-4

 "type" : "STRING",

 "nullable" : true,

 "default" : null

 }],

 "indexes" : [
 {

"name" : "mytestIndex",
 "table" : "mytestTable",
 "type" " "text",
 "fields" : ["category", "txt"],
 "annotations" : {
 "category" : "{\"type\" : \"string"\",
 \"analyzer\" : \"standard\"}",
 "txt" : "{\"type\" : \"string\",
 \"analyzer\" : \"english\"}"
 }
 }]
}

Note:

You cannot evolve a Text Index created in Elasticsearch via the CREATE
FULLTEXT INDEX mechanism. If you want to change the index definition, for
example, add more columns to the index, you must first delete the existing index
using the DROP INDEX command and then use CREATE FULLTEXT INDEX to
create a new Text Index satisfying the desired definition.

Mapping a Full Text Index Field to an Elasticsearch Field
Unlike the command used to create a secondary index on data stored in an Oracle NoSQL
table, the CREATE FULLTEXT INDEX command allows you to specify finer control over how
Elasticsearch treats the fields to be indexed. For each field that you want Elasticsearch to
handle in a non-default fashion, you can specify how you want Elasticsearch to treat that
field's values by including a mapping specification with each such field when executing the
CREATE FULLTEXT INDEX command.

If no mapping specification is provided for a given field, and if that field contains any
indexable Oracle NoSQL data type – except JSON data – then Oracle NoSQL will use that
data type to determine the appropriate type with which to map the field's values to the
Elasticsearch type system. This means that for fields containing non-JSON data, the mapping
specification can be used to enforce and/or override the data type Elasticsearch should use
when indexing the field's contents.

For example, if a field of a given table contains values stored as the Oracle NoSQL Database
string type, then the default mapping supplied to Elasticsearch will declare that values from
that field should be indexed as the Elasticsearch string type. But if you want Elasticsearch to

Chapter 17
Mapping a Full Text Index Field to an Elasticsearch Field

17-5

treat the values of that field as the Elasticsearch integer type, then you would provide
a mapping specification for the field including an explicit type declaration; that is,

{"type":"integer"}

But care must be taken when mapping incompatible data types. For the example just
described, Elasticsearch will encounter errors if any of the string values being
indexed contain non-numeric characters. See Elasticsearch Mapping.

For the case where the field to be indexed has values that are JSON documents, a
mapping specification must always be provided in the CREATE FULLTEXT INDEX
command; otherwise an error will occur. A mapping specification is necessary for such
fields because, as explained later, it is not the document itself that is indexed, but a
subset of the document's fields. When a JSON document is stored in an Oracle
NoSQL Database table, Oracle NoSQL knows only that a value of type JSON was
stored. It does not know the type intended for any of the fields (attributes) within the
document. Thus, for each of the document's fields that will be indexed, the user must
provide a corresponding mapping specification that specifies the type that
Elasticsearch should use when indexing the field's value.

In addition to specifying the data type of a given field's content, the mapping
specification can also be used to further refine how Elasticsearch processes the data
being indexed. This is accomplished by including an additional set of parameters in the
mapping specification. For example, suppose you want Elasticsearch to apply an
analyzer different than the default analyzer when indexing a field with content of type
string. In this case, you would specify a mapping specification of the form:

{"type":"string", "analyzer":"<analyzer-name>"}

To see the mapping generated by Oracle NoSQL Database for a given index created
in Elasticsearch, you can execute a command like the following from the command
line of a host with network connectivity to one of the nodes in the Elasticsearch cluster
(example: esHost):

curl –X GET 'http://esHost:9200/ondb.<store>.<table>.<index>/_mapping?
pretty'

For details on the sort of additional mapping parameters you can supply to
Elasticsearch via the mapping specification, see Elasticsearch Mapping Parameters.

As a concrete example, suppose you have a table named jokeTbl in a store named
kvstore, where the table consists of a field named category with values
representing the categories under which jokes can fall, along with a field named txt
that contains a string consisting of a joke that falls under the associated category.
Suppose that when indexing the values stored under the category field, you want to
index each word that makes up the category; but when indexing each joke, you want
the word stems (or word roots) to be stored rather than the whole words. For example,
if a joke contains the word "solipsistic", the stem of the word - "solipsist" – would
actually be indexed (stored) rather than the whole word.

Since the Elasticsearch "standard" analyzer breaks up text into whole words, and the
"english" analyzer stems words into their root form, you would use the "standard"
analyzer for the category field and the "english" analyzer for the txt field (assuming
the jokes are written in English rather than some other language). Specifically, to

Chapter 17
Mapping a Full Text Index Field to an Elasticsearch Field

17-6

create the Text Index, you would execute a command like the following from the Admin CLI:

kv-> execute 'CREATE FULLTEXT INDEX jokeIndx ON jokeTbl (
 category{"type":"string","analyzer":"standard"},
 txt{"type":"string","analyzer":"english"})';

Once the Text Index is created, you can then query the index by executing a curl command
from the command line of a host with network connectivity to one of the nodes in the
Elasticsearch cluster. For example,

curl –X GET 'http://<esHost>:9200/ondb.kvstore.jokeTbl.jokeIndx/_search?
pretty'

To see the mapping generated by Oracle NoSQL Database for the jokeIndx in the example
above, you can execute a curl command like the following:

curl –X GET 'http://<esHost>:9200/ondb.kvstore.jokeTbl.jokeIndx/_mapping?
pretty'

Note:

Text indexed fields can include non-scalar types (such as map and array), which are
specified in the same way, and with the same limitations, as those for Oracle
NoSQL Secondary Indexes.

Handling TIMESTAMP Data Type
Topics

• Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type

• Full Text Search of Indexed TIMESTAMP Scalar

Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type
When a value representing a date and time is written to a field of an Oracle NoSQL table, the
value is stored in the table as an instance of java.sql.Timestamp; which corresponds to
the Oracle NoSQL timestamp enum type. See Atomic Data Types in the SQL Reference
Guide.

When creating a table, the keyword timestamp is then used to specify such a field in the
table. Along with the timestamp keyword, an integer parameter representing the
precision to apply when storing the value must also be specified, employing a declaration
with the following form:

TIMESTAMP(<precision>)

The value input for precision must be one of ten possible integer values, from 0 to 9. In
general, the timestamp data type defined by Oracle NoSQL Database allows finer-grained

Chapter 17
Handling TIMESTAMP Data Type

17-7

time precisions to be stored in a table; up to nanosecond granularity. A value of 0 input
for precision specifies the least precise representation of a timestamp value; which
corresponds to a format of, yyyy-MM-dd'T'HH:mm:ss, with 0 decimal places in the
value's seconds component. A value of 9 specifies the finest granularity - or most
precise - representation, which includes an instant during the given day that is
accurate to the nanosecond. timestamp values with nanosecond precision correspond
to a format of yyyy-MM-dd'T'HH:mm:ss.SSSSSSSSS, with 9 decimal places in the
seconds component. All other precisions (1–8) represent a day and time granularity
falling somewhere between the least precise (0 decimal places) and the most precise
(9 decimal places).

As another concrete example, suppose you wish to create a table named tsTable
consisting of an id field containing the table's Primary Key, and a field named ts that
will contain values representing a date and a time-of-day in which the seconds
component is represented with 6 decimal point accuracy (example: date =
1998-10-26, time-of-day = 08:33:59.735978). To create such a table, one
can execute the following command from the Admin CLI:

kv-> execute 'CREATE TABLE tsTable (id INTEGER, ts TIMESTAMP(6),
PRIMARY KEY (id))';

Suppose then that you wish to store the following values in the ts field:

tsVal[0] = 1996-12-31T23:01:43.987654321
tsVal[1] = 2005-03-20T14:10:25.258
tsVal[2] = 1998-10-26T08:33:59.735978
tsVal[3] = 2001-09-15T23:01:43.55566677
tsVal[4] = 2002-04-06T17:07:38.7653459

To store those values, you could execute code like the following:

final KVStore store = KVStoreFactory.getStore
 (new KVStoreConfig(<storeName>, <host> + ":" + <port>));
final TableAPI tableAPI = store.getTableAPI();
final Tabletable = tableAPI.getTable("tsTable");
for (int i = 0; i < 5; i++) {
 final Row row = table.createRow();
 row.put(id, i);
 row.put(ts, TimestampUtils.parseString(tsVal[i]));
 tableAPI.putIfAbsent(row, null, null);
}

Because the ts field of the table was created with precision 6, each value will be
stored with 6 decimal places in the seconds component of the value. Specifically, if the
value being stored contains more than 6 decimal places, then Oracle NoSQL will store
the value with the decimal part of the seconds component rounded to 6 decimal
places. For example, tsVal[4] from the list above will be stored as,
2002-04-06T17:07:38.765346.

Similarly, if the value being stored contains fewer than 6 decimal places, then Oracle
NoSQL will pad the decimal part of the seconds component with zeros. For example,
tsVal[1] from the list above will be stored as, 2005-03-20T14:10:25.258000.

Chapter 17
Handling TIMESTAMP Data Type

17-8

When creating a Text Index on a table's field containing timestamp values, it is important to
understand how the Oracle NoSQL Database Table API handles fields such as those
described above. It is important because Elasticsearch stores values representing date and
time using the Elasticsearch date type; which does not map directly to the
java.sql.Timestamp type stored by Oracle NoSQL Database.

When indexing a timestamp field for Full Text Search, the Elasticsearch date type must be
specified in the CREATE FULLTEXT INDEX command; otherwise Elasticsearch will handle
the field's values as a string type. For example, the simplest way to index (for full text
search) the ts field from the tsTable in the example above, would be to execute the
following command:

kv-> execute 'CREATE FULLTEXT INDEX tsIndex ON tsTable (ts{"type":"date"})';

In this case, a default mapping specification will be generated that will tell Elasticsearch to
handle the broadest range of date type formats when handling the values being indexed.

When indexing values that represent date and time in Elasticsearch, whenever you specify
the date type for those values, you can also specify a format to which each indexed value
must adhere; where an error will occur if a given value does not satisfy the specified format.
See Elasticsearch Date. In a fashion similar to how one specifies an "analyzer" for a "string"
value, the Elasticsearch API defines a format parameter that can be used to specify – via
the mapping specification – the format Elasticsearch should expect when indexing a given
value of type date. Specifically,

<fieldname>{"type":"date","format":"<format>"}

where the value input for the format token can be an explicit format such as, yyyy-MM-
dd'T'HH:mm:ss, or can be a combination one or more of the Elasticsearch pre-defined
values (macros). See Elasticsearch Built In Formats.

Using the Elasticsearch API (not Oracle NoSQL), a typical Elasticsearch mapping
specification for a date type might then specify an explicit format along with one or more
values from the set of Elasticsearch built in formats; for example,

{"type":"date","format":"yyyy-MM-dd'T'HH:mm:ss.SSS||yyyy-MM-dd||
epoch_millis"}

A format like that shown tells Elasticsearch to expect values in a form such as,
1997-11-17T08:33:59.735, or 1997-11-17, or even as a number of milliseconds since
the epoch. If a value has any other format, an error will occur and Elasticsearch will not index
(store) the value.

Rather than employing an explicit format such as that shown in the example above, you can
also specify formats using some combination of only the macros from the table; for example,

{"type":"date","format":"strict_date_optional_time||epoch_millis"}

This tells Elasticsearch that although acceptable date values must include the date
(strict_date=yyyy-MM-dd), Elasticsearch should accept any values with or without a
time component (optional_time). Additionally, if the value represents the number of
milliseconds since the epoch, then such values should also be accepted by Elasticsearch.

Chapter 17
Handling TIMESTAMP Data Type

17-9

With respect to using the CREATE FULLTEXT INDEX command to index a timestamp
value for Full Text Search, although it is possible to specify the Elasticsearch format
parameter for a date field in a way similar to the Elasticsearch API examples shown
above, it may not be very practical. First, the number of valid combinations of macros
from the set of Elasticsearch built in formats is very large, and may pose a significant
burden for users.

Next, unlike other mapping parameters defined by Elasticsearch (for example the
"analyzer" parameter for "string" types), if the user specifies a valid format for an
Elasticsearch date field, but one or more of the values to be indexed do not satisfy that
format, then an error will occur (in Elasticsearch) and those values will not be indexed.
For example, if the user specifies a "french" analyzer for a string field but the value is
actually in English, although unexpected search output may result, no error will occur.
On the other hand, if the user specifies a format of yyyy-MM-dd'T'HH:mm:ss.SSS
for a date field, but the value(s) being indexed contains more than 3 decimal places in
the seconds component, although the index will be created, format errors will occur
and the non-conformant values will not be indexed;.

To provide a more convenient mechanism for specifying the format for date values, as
well as to minimize the opportunity for the sort of format errors just described, a
special "name":"value" parameter is defined for the CREATE FULLTEXT INDEX
command. When indexing Oracle NoSQL timestamp values as date values in
Elasticsearch, rather than using the Elasticsearch format parameter (and its valid
values), the specially defined precision parameter should be used instead.
Although the precision parameter is optional, when it is included with a
"type":"date" specification in the CREATE FULLTEXT INDEX command, the
value of that parameter can be either millis or nanos. Specifically, when the
CREATE FULLTEXT INDEX command is used to index NoSQL timestamp values as
date values in Elasticsearch, one of the following parameter mappings must be
specified in that command:

• {"type":"date"}
• {"type":"date","precision":"millis"}
• {"type":"date","precision":"nanos"}
Note that the default precision (that is, no precision), as well as the nanos
precision, both map - and index - the broadest range of timestamp formats as valid
date types in Elasticsearch without error; whereas the millis precision indexes
only timestamp values defined with precision 3 or less. As a result, the precision you
use should be based on the following criteria:

• If you know for sure that all values from the table field to be indexed have only
precision 3 (milliseconds) or less, and you want to index the values using 3
decimal places in all cases, then specify millis precision.

• If the field you wish to index consists of timestamp values of varying precisions
and you want to index only those values with precision 3 or less, then specify
millis precision; so that values with greater than milliseconds precision will
not be indexed.

• In all other cases, use either nanos precision or the default precision.

In summary, the special precision parameter not only minimizes the number of
possible values the user can specify for the date type, it also reduces the occurrence
of format errors by providing a way to map such values to the broadest range of

Chapter 17
Handling TIMESTAMP Data Type

17-10

possible formats; as well as allow the user to enforce milliseconds precision in the index.

Note:

As described above, a precision of nanos specified for a date type is currently
identical to specifying no precision, which translates to the default date format.
Although this may seem redundant, the nanos option is defined for two reasons.
First, it is intended to be symmetric with the millis option; so that if a user knows
the timestamp field being indexed consists of values with greater than millisecond
precision, the user can simply specify nanos and the right thing will be done when
constructing the mapping specification that will be registered with Elasticsearch.

The second reason for defining the nanos option is related to the fact that
Elasticsearch currently supports formats with precisions no greater than
milliseconds. (Notice that the Elasticsearch built in formats include macros
associated with nothing finer than millis). If a version of Elasticsearch is released
in the future that supports formats including nanoseconds precision, then a fairly
straightforward change can be made in Oracle NoSQL Database to map the current
nanos option to the new format defined by Elasticsearch; requiring no change in
the public api, and no change to user applications.

Full Text Search of Indexed TIMESTAMP Scalar
Suppose you start a store named kvstore and create the tsTable with the same
timestamp values as those presented previously, where each such value was stored in the
table with precision 6. After registering the store with your Elasticsearch cluster (running on a
host named eshost), a Text Index named tsIndex on the table's ts field is created by
executing the following command from the Admin CLI:

kv-> execute 'CREATE FULLTEXT INDEX tsIndex ON tsTable (ts{"type":"date"})';

Executing queries such as the following can then be used to perform a Full Text Search on
the data that was indexed:

List all values, sorted in ascending order

curl –X GET 'http://eshost:9200/ondb.kvstore.tstable.tsindex/_search?pretty'
 '-d {"sort":[{"ts":"asc"}]}'

{
 "took" : 4,
 "timed_out" : false,
 "_shards" : {
 "total" : 3,
 "successful" : 3,
 "failed" : 0
 },
 "hits" : {
 "total" : 5,
 "max_score" : null,

Chapter 17
Handling TIMESTAMP Data Type

17-11

 "hits" : [{
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0000",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"0"},
 "ts":"1996-12-31T23:01:43.987654"},

 "sort" : [852073303123]

}, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0002",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"2"},
 "ts":"1998-10-26T08:33:59.735978"},

 "sort" : [909435821111]

}, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0003",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"3"},
 "ts":"2001-09-15T23:01:43.555667"},

 "sort" : [995911599555]

 }, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0004",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"4"},
 "ts":"2002-04-06T17:07:38.765346"},

 "sort" : [1024765658765]

}, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0001",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"1"},
 "ts":"2005-03-20T14:10:25.258000"},

 "sort" : [1091264176173]

Chapter 17
Handling TIMESTAMP Data Type

17-12

 }]
 }
}

Perform an exact match to find a specific date and time

curl –X GET 'http://eshost:9200/ondb.kvstore.tstable.tsindex/_search?pretty'
 '-d {"query":{"term":
{"ts":"2005-03-20T14:10:25.258000"}}}'

{

 "hits" : {
 "total" : 1,
 "max_score" : null,

 "hits" : [{
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0001",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"1"},
 "ts":" 2005-03-20T14:10:25.258000},

 }]
 }
}

Find dates that fall within a specific range of dates and times

curl –X GET 'http://eshost:9200/ondb.kvstore.tstable.tsindex/_search?pretty'
 '-d {"query":{"range":{"ts":{"gte":"
1998-10-26T08:33:59.735978","lt":" 2002-04-06T17:07:38.9"}}}}'

{

 "hits" : {
 "total" : 3,
 "max_score" : null,

 "hits" : [{
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0004",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"4"},
 "ts":"2002-04-06T17:07:38.765346},

}, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0002",

Chapter 17
Handling TIMESTAMP Data Type

17-13

 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"2"},
 "ts":"1998-10-26T08:33:59.735978"},

 "sort" : [909435821111]

}, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0003",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"3"},
 "ts":"2001-09-15T23:01:43.555667"}

 }]
 }
}

Handling JSON Data Type
Topics

• Review: Secondary Indexes on JSON Document Content

• Creating Text Indexes on JSON Document Content

• Full Text Search of Indexed JSON Documents

Review: Secondary Indexes on JSON Document Content
How to index, for Full Text Search, content from JSON documents stored in an Oracle
NoSQL Database table is presented in the next section. But to help you better
understand the material in that section, you should first review the material in Indexing
JSON in the SQL Reference Guide. It describes how to store values in a field of a
NoSQL table when those values consist of strings in valid JSON format; that is, when
those values are JSON documents.

When reviewing those materials, it is important to not confuse creating a Secondary
Index on JSON content with creating a Text Index. Creating a Text Index on a field
containing JSON documents is presented in the next section of this document.

When JSON is stored in an Oracle NoSQL Database table, the data can be any valid
JSON, stored as a string; referred to as a JSON document. Each such document
stored in a field (or column) of a NoSQL table consists of elements that are referred to
as either the fields or the attributes of the document. Thus, when discussing the
elements of a given JSON document in the sections below, the term field and the term
attribute can be used interchangeably; where the context should distinguish the field
(or column) of an Oracle NoSQL table from the field (or attribute) of a JSON document
stored in the table.

Although you can create a Secondary Index on the attributes of a JSON document
stored in a given table, there are numerous restrictions on such indexes; restrictions
which may make a Text Index more attractive. First, when creating a Secondary Index,

Chapter 17
Handling JSON Data Type

17-14

you can only index the scalar attributes of the document. That is, the attributes cannot be
nested JSON objects. Additionally, only integer, long, double, number, string, and boolean
are supported Oracle NoSQL data types for JSON Secondary Indexes. Finally, you cannot
perform Full Text Search on such an index.

For example, consider the following JSON document whose content specifies information
related to a given member of the United States senate. For each senator (both current and
former), a JSON document like that shown here is created and the Oracle NoSQL Table API
can be used to store each such document in a column of a given table. Note that throughout
this section and the following section, the example JSON document shown here will be
referenced numerous times to demonstrate how such a JSON document can be indexed; in
either a Secondary Index or a Text Index.

{
 "description": "Senior Senator for Ohio",
 "party": "Democrat",
 "congress_numbers": [223,224,225],
 "state": "OH",
 "startdate": "2010-01—03T05:04:09.456",
 "enddate": "2020-11-12T03:01:02.567812359",
 "seniority": 37,
 "current": true,
 "duties": {
 "committee": ["Ways and Means","Judiciary","Steering"],
 "caucus": ["Automotive","Human Rights","SteelIndustry"]
 },
 "personal": {
 "firstname":"Sherrod",
 "lastname":"Brown",
 "birthday":"1952-11-09",
 "social_media": {
 "website":"https://www.brown.senate.gov",
 "rss_url":"http://www.brown.senate.gov/rss/feeds",
 "twittered":"SenSherrodBrown"
 },
 "address": {
 "home": {
 "number":"9115-ext",
 "street":"Vaughan",
 "apt":null,
 "city":"Columbus",
 "state":"OH",
 "zipcode":43221,
 "phone": "614-742-8331"
 },
 "work": {
 "number":"Hart Senate Office Building",
 "street":"Second Street NE",
 "apt":713,
 "city":"Washington",
 "state":"DC",
 "zipcode":20001
 "phone": "202-553-5132"
 }
 },

Chapter 17
Handling JSON Data Type

17-15

 "cspanid": 57884
 },
 "contrib": 2571354.93
}

The example JSON document above consists of a variety of JSON attributes of
different types. Some attributes are scalar fields in "name":"value" form, whereas
others are either nested objects, or arrays of scalar values. An attribute that is a
nested object is a structure, encapsulated by curly braces {...}, that contains a set
of valid JSON field types; scalars, arrays of scalars, and/or JSON objects (named or
unnamed). An array type is an ordered, comma-separated list of elements,
encapsulated by square brackets [...], where each element must be the same
scalar type; string, date, or numerical type (integer, double, number, and so on).

The value of a scalar field nested within an object is dereferenced using JSON path
notation. For example, the scalar field containing each senator's date of birth is nested
in the object named personal. Each senator's birthday can then be specified in a
search query using the JSON path, jsonFieldName.personal.birthday; where the value
of the jsonFieldName component is the name specified for the column of the table in
which each JSON document is written. Similarly, a search on each senator's home city
can be expressed using the path, jsonFieldName.personal.address.home.city.

Note that in Elasticsearch, array fields are handled in a way that may be unexpected.
When querying arrays in Elasticsearch, you cannot refer to the "first element", the "last
element", the "element at index 3", etc. Arrays are handled as a "bag of values of the
same type". For the example document above, if you wanted to search the committees
on which each senator serves, you would not construct your query using a path like,
jsonFieldName.duties.committee[0]. Such a path is not allowed. Instead, you would
specify the path to the array itself, along with the values you wish to search for that
may be elements of the array; for example,
"jsonFieldName.duties.committee":"Judiciary Steering".

As discussed previously, each attribute in a JSON document has a type; where the
type is implied by the structure of the attribute, or the value associated with the
attribute. An attribute in a JSON document whose content is encapsulated by curly
braces implies that the attribute is a JSON object type. With respect to scalar fields,
the implied data type of the value associated with such a field is dependent on the
value of the field itself. This is true whether the index is a Secondary Index or a Text
Index. For example, the scalar attributes named description and seniority from
the JSON document shown above will be handled as string and integer types
respectively.

Compare this with a value such as that specified for the JSON document's contrib
attribute (2571354.93). Such a scalar value will be handled as a NoSQL double data
type when creating a Secondary Index; and as either an Elasticsearch float or double
type when creating a Text Index for Full Text Search in an Elasticsearch cluster.
Similarly, for attributes that contain information representing date and time (example
the startdate, enddate, and birthday attributes), the value of such fields can
only be handled as an Oracle NoSQL string type when creating a Secondary Index,
but may be handled as either an Elasticsearch string or date type when creating a
Text Index.

Finally, although an attribute containing a comma-separated list of scalars
encapsulated by square brackets implies a JSON array type, the data type of the

Chapter 17
Handling JSON Data Type

17-16

array's elements (that is, the array's type) is implied by the values of the elements in the
same way as was previously described for scalar attributes.

Suppose then that you wish to create a table named jsonTable consisting of an id field
containing the table's Primary Key, and a field named jsonField that will contain values
consisting of JSON documents like the example document presented previously. To create
such a table, and examine its resulting structure, one would execute a command like the
following from the Admin CLI:

kv-> execute 'CREATE TABLE jsonTable
 (id INTEGER, jsonField JSON, PRIMARY KEY (id))';

kv-> execute 'DESCRIBE AS JSON TABLE jsonTable';
{
 "json_version" " 1,
 "type" : "table",
 "name" : "jsonTable",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER",
 "nullable" : false,
 "default" : null
 }, {
 "name": "jsonField",
 "type" : "JSON",
 "nullable" : true,
 "default" : null
 }]
}

To populate the table with JSON documents like the example document presented above,
you could execute code like the following:

final KVStore store = KVStoreFactory.getStore
 (new KVStoreConfig(<storeName>, <host> + ":" + <port>));
final tableAPI = store.getTableAPI();
final table = tableAPI.getTable("tsTable");
final List<String> listOfJsonDocs = {...};
for (int i = 0; i < listOfJsonDocs.size(); i++) {
 final Row row = table.createRow();
 row.put(id, i);
 row.putJson("jsonField", listOfJsonDocs.get(i));
 tableAPI.putIfAbsent(row, null, null);
}

After populating the table with the necessary JSON documents (using the method
row.putJson from the Table API), a Secondary Index on selected attributes of each
document stored in the table's jsonField field can be created by executing a command
like:

kv-> execute 'CREATE INDEX jsonSecIndex ON jsonTable
 (jsonField.party AS STRING,

Chapter 17
Handling JSON Data Type

17-17

 jsonField.current AS BOOLEAN,
 jsonField.contrib AS DOUBLE,
 jsonField.seniority AS INTEGER)';

In this case, queries can be performed based on various combinations of each
senator's party affiliation, seniority, total amount of money contributed to the senator's
campaign, and whether or not the senator is a currently sitting senator. For example,
to find all current democratic senators with contributions totaling between 1 million and
20 million dollars, a command like the following could be executed from the Admin
CLI:

kv-> GET TABLE –name jsonTable
 –index jsonSecIndex
 -field jsonField.party –value "Democrat"
 -field jsonField.current –value true
 -field jsonField.contrib –start 1000000.00 –end 20000000

Creating Text Indexes on JSON Document Content
Using the example presented previously, this section describes how to create a Text
Index on the contents of a JSON document stored in a NoSQL table, and then perform
various Full Text Search queries on the resulting index in Elasticsearch.

Unlike Oracle NoSQL Database Secondary Indexes, where the type of each value
stored in a field of a given table is inferred from the table schema, for Text Indexes, the
type of each attribute to be indexed cannot be inferred from the schema; and thus,
must be specified in the CREATE FULLTEXT INDEX command. Although the table's
schema tells Oracle NoSQL that the values in a given field (column) of a table is a
JSON document, it tells Oracle NoSQL nothing about the internal structure of the
document itself, other than each element is JSON formatted content. Since Oracle
NoSQL knows neither the attributes within the JSON document to be indexed, nor the
data types that should be used when indexing those attributes, that information must
be explicitly given to Oracle NoSQL via the CREATE FULLTEXT INDEX command.

Thus, to create a Text Index on a column containing JSON documents, in addition to
specifying the attributes to index, in JSON path notation, you must also always provide
a mapping specification. This tells Oracle NoSQL the attributes within the document to
index, as well as the data type to tell Elasticsearch to use when indexing each such
attribute.

For example, in the previous section a Secondary Index was created and queried to
find all current democratic senators with contributions totaling between 1 million and
20 million dollars. But suppose you want to refine that search, to find all current
democratic senators with contributions totaling between 1 million and 20 millions
dollars, who also serve on either the Judiciary or Appropriations committee (or both).
For such a search, a Text Index should be created instead of a Secondary Index; not
only because the committee information is contained in a nested array of strings, but
also so that a Full Text Search can be performed.

To do this, first create the desired Text Index by executing the following command from
the Admin CLI:

kv-> execute 'CREATE FULLTEXT INDEX jsonTxtIndex ON
 jsonTable (

Chapter 17
Handling JSON Data Type

17-18

 jsonField.current{"type":"boolean"},
 jsonField.party{"type":"string","analyzer":"standard"},
 jsonField.duties.committe{"type":"string"},
 jsonField.contrib{"type":"double"})';

Rather than creating a Secondary Index on the ts column of the table named jsonTable,
like you did in the previous section's example, the command above instead creates a Text
Index consisting of specific attributes of the documents stored in that column. Although the
previous example index allowed you to find all current democratic senators with contributions
totaling between 1 million and 20 million dollars, the Text Index created above allows the
search to be refined. With the Text Index, you can search for all current democratic senators
with contributions totaling between 1 million and 20 millions dollars, who also serve on either
the Judiciary or Appropriations committee, or both.

After creating the Text Index using the command above, you can then query Elasticsearch for
the documents that satisfy the desired search criteria by executing a curl command from a
node that has network access to the Elasticsearch cluster with which the Oracle NoSQL store
is registered. For example, from the node named esHost,

curl –X GET
'http://esHost:9200/ondb.kvstore.jsontable.jsontxtindex/_search?pretty'
'-d {query":{"bool":{
"must":{"match":{"jsonField.party":"Democrat"}},
"must":{"match":"jsonField.current":"true"}},
"must":{"range":{"jsonField.contrib":{
 "gte":"1000000.00","lte":20000000.00"}}},
"must":"match":{"jsonField.duties.committe":
 "Judiciary Apropriations"}}}}}'

As previously explained, ondb.kvstore.jsontable.jsontxtindex in the query above
is the name of the index that Oracle NoSQL creates in Elasticsearch; where kvstore is the
name of the Oracle NoSQL store, jsontable corresponds to the table (jsonTable) in that
store that contains the JSON documents being indexed, and jsontxtindex corresponds to
the Text Index metadata maintained by the store.

The output produced by the Elasticsearch query above (with some re-formatting for
readability) should look something like:

{

 "hits" : {
 "total" : 31,
 "max_score" : 1.4695805,

 "hits" : [{
 "_index" : "ondb.kvstore.jsontable.jsontindex",
 "_type" : "text_index_mapping",
 "_id" : "/w/0001",
 "_score" : 1.4695805,

 "_source":{"_pkey":{"_table":"jsontable","id":"1"},
 "jsonField":"{"description":
 "Senior Senator for Ohio"},
 "jsonField"{"current":"true"},

Chapter 17
Handling JSON Data Type

17-19

 "jsonField":{"congress_numbers":[223,224,225]},
 "jsonField":{"party":"Democrat"},
 "jsonField":{"seniority":37},
 "jsonFeld":{"personal":{"birthday":1952-11-09"}},
 "jsonField":{"personal":{"lastname":"Brown"}},
 "jsonField":{"contrib":257134.93},
 "jsonField":{"duties":{"committee":["Ways and
 Means","Judiciary","Democratic Steering"]}},
 "jsonField":{"duties":{"caucus":["Congressional
 Automotive","Human Rights","Steel Industry"]}},
 "jsonField":{"personal":{"address":{"home":{
 "state":"OH"}}}},
 "jsonField":{":"personal":{"address":{"home":{
 "city":"Columbus"}}}}}
 }],

 }
}

It is important to understand that unlike the query against the Secondary Index
presented in the previous section, this query is executed against the Elasticsearch
cluster rather than the Oracle NoSQL store. Additionally, the Text Index created here
allows one to perform a Full Text Search on the values in the nested array
jsonField.duties.committee; something that cannot be done with Secondary
Indexes.

Full Text Search of Indexed JSON Documents
This section presents the steps to execute a simple but complete example, without
security. Although in a production setting, both the Oracle NoSQL Database and the
Elasticsearch cluster should generally be run on separate nodes, for simplicity, these
steps are executed on a single node. Additionally, if you already have an Elasticsearch
version 2 cluster running in your environment, then feel free to use that cluster in place
of the Elasticsearch single-node cluster used below. Note finally, that you may have to
change some of the tokens (directory locations, version numbers, etc.) to suit your
particular environment.

1. Download, install, and run Elasticsearch, version 2.

Download the tar file https://download.elastic.co/elasticsearch/release/org/
elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz and
place it under the directory /opt/es.

cd /opt/es
tar xzvf elasticsearch-2.4.6.tar.gz
ln –s elasticsearch-2.4.6 elasticsearch
export JAVA_HOME=/usr/lib/jvm/java8
/opt/es/elasticsearch/bin/elasticsearch
 -Dnetwork.host=localhost
 --cluster.name kv-es-cluster
 --node.name localhost

Chapter 17
Handling JSON Data Type

17-20

https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz
https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz

Note:

Elasticsearch version 2 requires Java 8. Thus, you should install Java 8 and set
the JAVA_HOME environment to point to the Java 8's home directory.

2. Use KVLite to deploy an Oracle NoSQL Database store named kvstore.

Assuming that you have installed Oracle NoSQL Database under the directory /opt/
ondb, and that you have write permission for your system's /tmp directory, execute the
following command from a command line:

java –jar /opt/ondb/kv/lib/kvstore.jar kvlite
 –root /tmp/kvroot
 –host localhost
 –port 5000
 –store kvstore
 –secure-config disable

3. Start the Oracle NoSQL Database Admin CLI.

From a separate command window, execute the command:

java –jar /opt/ondb/kv/lib/kvstore.jar runadmin
 –host localhost
 –port 5000
 –store kvstore

4. Install a file containing the JSON documents to load.

Under a directory such as ~/examples/es/docs, create a file named senator-
info.json and populate it with one or more JSON documents like those shown in the
example file presented in Sample: Array of JSON Documents. Be sure to format the file
you create with the same format shown in Sample: Array of JSON Documents.

5. Compile and execute the LoadJsonExample program (or similar).

Under a directory such as ~/examples/es/src, create the sub-directory es/table,
and then create a file named LoadJsonExample.java under the directory ~/
examples/es/src/es/table. After creating the file ~/examples/es/src/es/
table/LoadJsonExample.java, add the source code presented in The
LoadJsonExample Program Source (or source with similar functionality).

Once the LoadJsonExample.java program is created, execute the following from a
separate command window:

cd ~/examples/es/src

javac –classpath /opt/ondb/kv/lib/kvstore.jar:src
 examples/es/table/LoadJsonExample.java

java –classpath /opt/ondb/kv/lib/kvstore.jar:src
 es.table.LoadJsonExample
 –store kvstore
 –host localhost
 –port 5000

Chapter 17
Handling JSON Data Type

17-21

 –file ~/examples/es/docs/senator-info.json
 -table exampleJsonTable

Note:

The source code for the LoadJsonExample program that is presented
in The LoadJsonExample Program Source is only intended to provide
a convenient mechanism for loading non-trivial JSON content into an
Oracle NoSQL table. You should feel free to write your own program to
provide similar functionality.

6. Create a Text Index on the JSON data loaded into the NoSQL table.

After verifying that the table has been successfully created and populated with the
desired table data, execute the following from the Admin CLI:

kv-> plan register-es
 –clustername kv-es-cluster
 –host localhost
 –port 9200
 –secure false
 -wait

kv-> execute 'CREATE FULLTEXT INDEX jsonTxtIndex ON
exampleJsonTable (
 jsonField.current{"type":"boolean"},
 jsonField.party{"type":"string","analyzer":"standard"},
 jsonField.duties.committe{"type":"string"},
 jsonField.contrib{"type":"double"})';

7. Execute Full Text Search queries against data indexed in Elasticsearch.

To first verify that the desired index has been created in Elasticsearch as
expected, execute the following from a command line:

curl –X GET 'http://localhost:9200/_cat/indices'

yellow open ondb.kvstore._checkpoint ...
yellow open ondb.kvstore.examplejsontable.jsontxtindex ...

Note that Elasticsearch reports the status of each index is yellow. This occurs here
because the Elasticsearch cluster was deployed as a single-node cluster.

To examine the mapping that Oracle NoSQL constructs for Elasticsearch, execute:

curl –X GET 'http://localhost:9200/
ondb.kvstore.examplejsontable.jsontxtindex/_mapping?pretty'

Chapter 17
Handling JSON Data Type

17-22

To display all documents from the exampleJsonTable that were indexed in
Elasticsearch, execute:

curl –X GET 'http://localhost:9200/
ondb.kvstore.examplejsontable.jsontxtindex/_search?pretty'

Finally, to find all current democratic senators with contributions totaling between 5 million
and 15 million dollars, who are members of either the "Progressive" caucus or the
"Human Rights" caucus, execute the following command:

curl –X GET
 'http://localhost:9200/ondb.kvstore.examplejsontable.jsontxtindex/
_search?pretty'
 '-d {query":{"bool":{
 "must":{"match":{"jsonField.party":"Democrat"}},
 "must":{"match":"jsonField.current":"true"}},
 "must":{"range":{"jsonField.contrib":
{"gte":"5000000.00","lte":15000000.00"}}},
 "must":"match":{"jsonField.duties.caucus":"Progressive Human
Rights"}}}}}'

Deleting a Full Text Index
To delete a Full Text Index created on an Oracle NoSQL table, you can use the NoSQL
store's Admin CLI to execute a command with the following format:

execute 'DROP INDEX [IF EXISTS] <index> ON <table>';

Each argument, flag, and directive is described as follows, where any item encapsulated by
square brackets [...] is optional:

• index - The name of the Text Index to delete.

• table - The name of the table containing the indexed fields.

If the command above is executed and a Text Index with the specified name does not exist,
then the command will fail, displaying an error message. Specifying IF EXISTS when the
named index does not exist will result in a no-op.

Note:

The command above, when applied to a Full Text Index, will not only remove all
metadata related to the index from the associated Oracle NoSQL store's state, but
will also remove the corresponding data indexed in Elasticsearch.

Chapter 17
Deleting a Full Text Index

17-23

18
Security in Full Text Search

Topics

• Elasticsearch and Secure Oracle NoSQL Database

Elasticsearch and Secure Oracle NoSQL Database
Up to this point, all information and examples presented in the previous sections discussed
how data stored in an Oracle NoSQL Database table is indexed in Elasticsearch when the
communication between Oracle NoSQL Database and Elasticsearch is not secure. This
section discusses how that data can be sent to the Elasticsearch cluster over a secure
communication channel.

As described previously, data sent to Elasticsearch for indexing is sent by a process running
on the master replication node of the Oracle NoSQL store's replication group (or shard).
When the system is not configured for security, the replication node communicates with
Elasticsearch over HTTP. For the replication node to send the data to Elasticsearch over a
secure communication channel, the NoSQL store must be configured to run securely. See
Introducing Oracle NoSQL Database Security in the Security Guide. When configured for
secure communication, the replication node will send the data to Elasticsearch, in encrypted
form, over HTTPS. This means that Elastisticsearch must be configured to perform the
necessary authentication and decryption before indexing the data received from a secure
Oracle NoSQL store.

Elasticsearch version 2 does not provide a fully integrated, out-of-the-box option for
communicating with clients over a secure channel in the manner just described. For secure
communication with Elasticsearch, some users choose to run their Elasticsearch deployment
"behind" (or "wrapped" within) a secure web server. Others choose to employ one of the
commercially available plugins that support TLS (SSL) for this purpose. Oracle NoSQL
Database has chosen to support the latter model.

In order to communicate securely with the Elasticsearch cluster, Oracle NoSQL Database
recommends that the Shield proprietary plugin be used to provide a port to which clients of
the Elasticsearch cluster can connect and communicate securely over HTTPS.

Note:

Although the Shield plugin has been used when testing secure communication
between the current Oracle NoSQL Database implementation and Elasticsearch
version 2, there is nothing in the NoSQL implementation that should prevent the use
of other such Elasticsearch security plugins; as long as the plugin supports HTTPS,
and can be configured to support the Oracle NoSQL Database authentication
scheme.

Compared to the non-secure case presented previously, there are additional steps you must
take when working with the secure case. For the secure case, the Oracle NoSQL store will be

18-1

populated using the secure mode of the same example program, and the indexed data
will be queried using similar queries, as that presented for the non-secure case. The
only difference is that the Oracle NoSQL store and the Elasticsearch cluster will each
be deployed to communicate securely, and the queries will specify the necessary keys
and certificates required by the Elasticsearch cluster.

Deploying a secure Oracle NoSQL store and Elasticsearch cluster and configuring
them to communicate securely with each other requires many more steps than the
non-secure case. Appendices Secure Elasticsearch using Sheild, Deploying and
Configuring a Secure Oracle NoSQL Store, and Install the Full Text Search Public
Certificate in Elasticsearch provide detailed descriptions of all the steps necessary to
deploy such a system. And once you have successfully deployed a secure Oracle
NoSQL store and a secure Elasticsearch cluster, and you have installed the necessary
artifacts (certificates) for the store and cluster to communicate, there are only minor
differences between the commands and queries presented previously for the non-
secure case and their counterparts in the secure case.

One of the first differences to note is that when executing the LoadJsonExample
program to populate the NoSQL store with data to index in Elasticsearch, you must
specify the security parameter with the absolute path to the file containing the login
properties required by Oracle NoSQL Database Security (see Deploying and
Configuring a Secure Oracle NoSQL Store for details). For example,

java –classpath /opt/ondb/kv/lib/kvstore.jar:src
es.table.LoadJsonExample
 –store kvstore
 –host localhost
 –port 5000
 –file ~/examples/es/docs/senator-info.json
 -table exampleJsonTable
 -security /tmp/FTS-client.login

Next, when executing the register-es command to register the NoSQL store with
the secure Elasticsearch cluster, you must specify true for that command's secure
parameter. For example,

kv-> plan register-es
 –clustername escluster
 –host eshost1
 –port 29100
 –secure true
 -wait

Finally, when querying the data indexed by the secure Elasticsearch cluster, the curl
command must include the OpenSSL public certificate and private key required by the
cluster for authentication of the request. See Secure Elasticsearch using Sheild. For
example,

curl –k -E /tmp/elasticsearch-eshost1.pem
 --key /tmp/elasticsearch-eshost1.pkey
 –X GET 'http://eshost1:29100/
ondb.kvstore.jsontable.jsontxtindex/_search?pretty'
 '-d {query":{"bool":{
 "must":{"match":{"jsonField.party":"Democrat"}},

Chapter 18
Elasticsearch and Secure Oracle NoSQL Database

18-2

 "must":{"match":"jsonField.current":"true"}},
 "must":{"range":{"jsonField.contrib":
{"gte":"1000000.00","lte":20000000.00"}}},
 "must":"match":{"jsonField.duties.committe":"Judiciary
Apropriations"}}}}}'

With respect to secure Full Text Search and the example commands presented in this
document, it is assumed you have followed the directions presented in Secure Elasticsearch
using Sheild, Deploying and Configuring a Secure Oracle NoSQL Store, and Install the Full
Text Search Public Certificate in Elasticsearch appendices; which, for clarity and
convenience, organize the steps to configure and deploy a secure Elasticsearch and Oracle
NoSQL system into separate, self-contained sections.

Secure Elasticsearch using Sheild presents the steps required to configure Elasticsearch for
security. These steps must be taken whether the Elasticsearch cluster will be communicating
with a secure Oracle NoSQL store or some other service or client unrelated to Oracle
NoSQL.

Deploying and Configuring a Secure Oracle NoSQL Store describes how to deploy a secure
Oracle NoSQL store and then configure it to communicate securely with the Elasticsearch
cluster described in Secure Elasticsearch using Sheild.

The final steps required to complete the deployment of the secure Oracle NoSQL and
Elasticsearch system are presented in Install the Full Text Search Public Certificate in
Elasticsearch. Those steps will complete the security configuration of the Elasticsearch
cluster from Secure Elasticsearch using Sheild, and are required for the nodes of the cluster
to communicate with the secure Oracle NoSQL store from Deploying and Configuring a
Secure Oracle NoSQL Store. The steps presented in Install the Full Text Search Public
Certificate in Elasticsearch should be executed only after executing the steps in Secure
Elasticsearch using Sheild and Deploying and Configuring a Secure Oracle NoSQL Store.

After completing the steps presented in Secure Elasticsearch using Sheild, Deploying and
Configuring a Secure Oracle NoSQL Store and Install the Full Text Search Public Certificate
in Elasticsearch appendices, you should then be able to run the example program
LoadJsonExample to populate a table in the secure Oracle NoSQL store deployed in
Deploying and Configuring a Secure Oracle NoSQL Store, index data from that table in the
secure Elasticsearch cluster from Secure Elasticsearch using Sheild and Install the Full Text
Search Public Certificate in Elasticsearch, and finally run secure queries against the indexed
data. For convenience, the secure versions of example commands you can execute are
presented in Running the Examples in Secure Mode.

Note:

Unlike the non-secure example presented previously, instead of using KVLite to
deploy an Oracle NoSQL store on a single node, Secure Elasticsearch using
Sheild, Deploying and Configuring a Secure Oracle NoSQL Store, Install the Full
Text Search Public Certificate in Elasticsearch, and Running the Examples in
Secure Mode appendices show how to work with a secure Oracle NoSQL store and
Elasticsearch cluster where both consist of three nodes rather than a single node.
This is done to present a more realistic example, to demonstrate what one might
typically encounter in production.

Chapter 18
Elasticsearch and Secure Oracle NoSQL Database

18-3

19
Appendix

Topics

• Sample: Array of JSON Documents

• The LoadJsonExample Program Source

• Secure Elasticsearch using Sheild

• Deploying and Configuring a Secure Oracle NoSQL Store

• Install the Full Text Search Public Certificate in Elasticsearch

• Running the Examples in Secure Mode

Sample: Array of JSON Documents
The following sample file is in the format and content that is required by the
LoadJsonExample program.

{
 "meta": {
 "limit": 2,
 "total_count": 2
 },
 "objects": [
 {
 "description": "Senior Senator for Ohio",
 "party": "Democrat",
 "congress_numbers": [223,224,225],
 "state": "OH",
 "startdate": "2010-01—03T05:04:09.456",
 "enddate": "2020-11-12T03:01:02.567812359",
 "seniority": 37,
 "current": true,
 "duties": {
 "committee": ["Ways and
 Means","Judiciary","Steering"],
 "caucus": ["Automotive",
 "Human Rights","SteelIndustry"]
 },
 "personal": {
 "firstname":"Sherrod",
 "lastname":"Brown",
 "birthday":"1952-11-09",
 "social_media": {
 "website":"https://www.brown.senate.gov",
 "rss_url":"http://www.brown.senate.gov/rss/feeds",
 "twittered":"SenSherrodBrown"
 },

19-1

 "address": {
 "home": {
 "number":"9115-ext",
 "street":"Vaughan",
 "apt":null,
 "city":"Columbus",
 "state":"OH",
 "zipcode":43221,
 "phone": "614-742-8331"
 },
 "work": {
 "number":"Hart Senate Office Building",
 "street":"Second Street NE",
 "apt":713,
 "city":"Washington",
 "state":"DC",
 "zipcode":20001
 "phone": "202-553-5132"
 }
 },
 "cspanid": 57884
 },
 "contrib": 2571354.93
 },
 {
 "description": "Junior Senator for Wisconsin",
 "party": "Indpendent",
 "congress_numbers": [113,114,115],
 "state": "WI",
 "startdate": "2013-01—03T03:02:01.123",
 "enddate": "2017-01-03T01:02:03.123456789",
 "seniority": 29,
 "current": true,
 "duties": {
 "committee": ["Intelligence","Judiciary",
 "Appropriations"],
 "caucus": ["Congressional Progressive","Afterschool"]
 },
 "personal": {
 "firstname":"Tammy",
 "lastname":"Baldwin",
 "birthday":"1962-02-11",
 "social_media": {
 "website":"https://www.baldwin.senate.gov",
 "rss_url":"http://www.baldwin.senate.gov/rss/feeds",
 "twittered":"SenBaldwin"
 },
 "address": {
 "home": {
 "number":"23315",
 "street":"Wallbury Court",
 "apt":"17",
 "city":"Madison",
 "state":"WI",
 "zipcode":53779,

Chapter 19
Sample: Array of JSON Documents

19-2

 "phone": "608-742-8331"
 },
 "work": {
 "number":"Hart Senate Office Building",
 "street":"Second Street NE",
 "apt":355,
 "city":"Washington",
 "state":"DC",
 "zipcode":20001
 "phone": "202-224-2315"
 }
 },
 "cspanid": 57884
 },
 "contrib": 2571354.93
 }]
}

Note:

The meta object at the beginning of the file is required. The meta object has the
limit and total_count equal to the number of JSON object elements in the
objects array. Programs that read and load each JSON document will use the
contents of that object to determine the total number of JSON documents contained
in the file; specifically, the limit and the total_count attributes of the meta
object. If you add additional documents to this example file, then update the values
of the meta object accordingly.

The LoadJsonExample Program Source
The following LoadJsonExample java program creates and populates an Oracle NoSQL
Database table with rows whose elements are JSON documents read from a text file.

package es.table;

import java.nio.file.Path;
import java.nio.file.Files;
import java.nio.file.FileSystems;

import java.io.FileNotFoundException;
import java.io.IOException;

import java.util.List;
import java.util.ArrayList;

import oracle.kv.FaultException;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;
import oracle.kv.StatementResult;

Chapter 19
The LoadJsonExample Program Source

19-3

import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.core.JsonToken;

import oracle.kv.impl.tif.esclient.jsonContent.ESJsonUtil;

/**
 * Class that creates an example table in a given Oracle NoSQL
Database store and
 * then uses the Oracle NoSQL Database Table API to populate the table
with
 * sample records consisting of JSON documents retrieved from a file.
The
 * table that is created consists of only two Oracle NoSQL Database
data types: an
 * INTEGER type and a JSON type.
 *
 * The file from which the desired JSON documents are retrieved must
be of
 * form:
 * <pre>
 {
 "meta": {
 "limit": n,
 "offset": 0,
 "total_count": n
 },
 "objects": [
 {
 JSON DOCUMENT 1
 },
 {
 JSON DOCUMENT 2
 },

 {
 JSON DOCUMENT n
 },
]
 }
 * </pre>
 */
public final class LoadJsonExample {

 final boolean debugWithNoStore = false;
 final boolean debugAll = false;
 final boolean debugTopLevelJsonArrayObject = false;
 final boolean debugAddDoc = false;
 final boolean debugJsonToStringTop = false;
 final boolean debugJsonToStringArray = false;

Chapter 19
The LoadJsonExample Program Source

19-4

 final boolean debugDocByDoc = false;

 private final KVStore store;
 private final TableAPI tableAPI;
 private final Table table;

 private Path jsonPath;

 private boolean deleteExisting = false;

 private static final String TABLE_NAME_DEFAULT = "jsonTable";
 private static final String ID_FIELD_NAME = "id";
 private static final String JSON_FIELD_NAME = "jsonField";

 public static void main(final String[] args) {
 try {
 final LoadJsonExample loadData = new LoadJsonExample(args);
 loadData.run();
 } catch (FaultException e) {
 e.printStackTrace();
 System.out.println("Please make sure a store is running.");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Parses command line args and opens the KVStore.
 */
 private LoadJsonExample(final String[] argv) {

 String storeName = "";
 String hostName = "";
 String hostPort = "";

 final int nArgs = argv.length;
 int argc = 0;
 String tableName = null;

 if (nArgs == 0) {
 usage(null);
 }

 while (argc < nArgs) {
 final String thisArg = argv[argc++];

 if ("-store".equals(thisArg)) {
 if (argc < nArgs) {
 storeName = argv[argc++];
 } else {
 usage("-store requires an argument");
 }
 } else if ("-host".equals(thisArg)) {
 if (argc < nArgs) {
 hostName = argv[argc++];

Chapter 19
The LoadJsonExample Program Source

19-5

 } else {
 usage("-host requires an argument");
 }
 } else if ("-port".equals(thisArg)) {
 if (argc < nArgs) {
 hostPort = argv[argc++];
 } else {
 usage("-port requires an argument");
 }
 } else if ("-file".equals(thisArg)) {
 if (argc < nArgs) {
 jsonPath =
FileSystems.getDefault().getPath(argv[argc++]);
 } else {
 usage("-file requires an argument");
 }
 } else if ("-table".equals(thisArg)) {
 if (argc < nArgs) {
 tableName = argv[argc++];
 }
 } else if ("-security".equals(thisArg)) {
 if (argc < nArgs) {
 System.setProperty(
 KVSecurityConstants.SECURITY_FILE_PROPERTY,
 argv[argc++]);
 } else {
 usage(“-security requires an argument”);
 }

 } else if ("-delete".equals(thisArg)) {
 deleteExisting = true;
 } else {
 usage("Unknown argument: " + thisArg);
 }
 }

 if (storeName == null) {
 usage("Missing argument: -store <store-name>");
 }

 if (hostName == null) {
 usage("Missing argument: -host <host>");
 }

 if (hostPort == null) {
 usage("Missing argument: -port <port>");
 }

 if (jsonPath == null) {
 usage("Missing argument: -file <path-to-file>");
 }

 /* When the table name is not specified, construct the name of
 * the table from the file name, minus the suffix. That is
strip

Chapter 19
The LoadJsonExample Program Source

19-6

 * off the path and the suffix and use file name's 'base' as
 * the name of the table.
 */
 if (tableName == null) {
 final Path flnmElement = jsonPath.getFileName();
 if (flnmElement == null) {
 tableName = TABLE_NAME_DEFAULT;
 } else {
 final String tmpTblName = flnmElement.toString();
 final String suffixDelim = ".";
 if (tmpTblName.contains(suffixDelim)) {
 final int suffixIndx = tmpTblName.indexOf(suffixDelim);
 if (suffixIndx > 0) {
 tableName = tmpTblName.substring(0, suffixIndx);
 } else {
 tableName = tmpTblName;
 }
 } else {
 tableName = tmpTblName;
 }
 }
 }

 System.out.println("\n--");
 System.out.println("Table to create and load = " + tableName);
 System.out.println("--\n");

 if (debugWithNoStore) {
 store = null;
 tableAPI = null;
 table = null;
 } else {
 store = KVStoreFactory.getStore
 (new KVStoreConfig(storeName, hostName + ":" + hostPort));

 tableAPI = store.getTableAPI();
 createTable(tableName);
 table = tableAPI.getTable(tableName);
 if (table == null) {
 final String msg =
 "Store does not contain table [name=" + tableName + "]";
 throw new RuntimeException(msg);
 }
 }
 }

 private void usage(final String message) {
 if (message != null) {
 System.out.println("\n" + message + "\n");
 }

 System.out.println("usage: " + getClass().getName());
 System.out.println
 ("\t-store <instance name>\n" +
 "\t-host <host name>\n" +

Chapter 19
The LoadJsonExample Program Source

19-7

 "\t-port <port number>\n" +
 "\t[-file <path to file with json objects to add to
table> |\n" +
 "\t[-table <name of table to create and load>]\n" +
 "\t-delete (default: false) [delete all existing data
first]\n");
 System.exit(1);
 }

 private void run() throws FileNotFoundException, IOException {
 if (deleteExisting) {
 deleteExistingData();
 }
 doLoad(jsonPath);
 }

 private void createTable(final String tableName) {

 final String statement =
 "CREATE TABLE IF NOT EXISTS " + tableName +
 " (" +
 ID_FIELD_NAME + " INTEGER," +
 JSON_FIELD_NAME + " JSON," +
 "PRIMARY KEY (" + ID_FIELD_NAME + "))";

 try {
 final StatementResult result =
store.executeSync(statement);
 if (result.isSuccessful()) {
 System.out.println("table created [" + tableName +
"]");
 } else if (result.isCancelled()) {
 System.out.println("table creation CANCELLED [" +
 tableName + "]");
 } else {
 if (result.isDone()) {
 System.out.println("table creation FAILED:\n\t" +
 statement);
 System.out.println("ERROR:\n\t" +
 result.getErrorMessage());
 } else {
 System.out.println("table creation IN
PROGRESS:\n\t" +
 statement);
 System.out.println("STATUS:\n\t" +
result.getInfo());
 }
 }
 } catch (IllegalArgumentException e) {
 System.out.println("Invalid statement:");
 e.printStackTrace();
 } catch (FaultException e) {
 System.out.println("Failure on statement execution:");
 e.printStackTrace();
 }

Chapter 19
The LoadJsonExample Program Source

19-8

 }

 private void doLoad(final Path filePath)
 throws FileNotFoundException, IOException {

 try {
 loadJsonDocs(filePath);
 } finally {
 if (store != null) {
 store.close();
 }
 }
 }

 private void loadJsonDocs(final Path filePath)
 throws FileNotFoundException, IOException {

 try {
 final byte[] jsonBytes = Files.readAllBytes(filePath);
 final int nDocsToAdd = getIntFieldValue(
 "meta", "total_count", ESJsonUtil.createParser(jsonBytes));

 if (debugAll || debugTopLevelJsonArrayObject) {

 System.out.println("BEGIN Top Level Array Object:
'objects'");

 final String objectsJsonStr =
 getTopLevelJsonArrayObject(
 "objects", ESJsonUtil.createParser(jsonBytes));

 System.out.println(objectsJsonStr);
 System.out.println("END Top Level Array Object: 'objects'");
 System.out.println("\nBEGIN Top Level Array Object: 'meta'");

 final String metaJsonStr =
 getTopLevelJsonArrayObject(
 "meta", ESJsonUtil.createParser(jsonBytes));

 System.out.println(metaJsonStr);
 System.out.println("END Top Level Array Object: 'meta'");

 } /* endif (debugAll || debugTopLevelJsonArrayObject) */

 final String[] jsonArray =
 getJsonArrayElements(
 "objects", ESJsonUtil.createParser(jsonBytes),
nDocsToAdd);

 for (int i = 0; i < nDocsToAdd; i++) {

 if (debugAll || debugAddDoc) {
 System.out.println("Adding JSON Row[" + i +
 "] to table:\n" + jsonArray[i]);
 }

Chapter 19
The LoadJsonExample Program Source

19-9

 addDoc(i, jsonArray[i]);
 }
 } catch (FileNotFoundException e) {
 System.out.println("File not found [" +
 filePath.getFileName() + "]: " + e);
 throw e;
 } catch (IOException e) {
 System.out.println("IOException [file=" +
 filePath.getFileName() + "]: " + e);
 throw e;
 }
 }

 private void addDoc(final Integer id, final String jsonDoc) {

 final Row row = table.createRow();

 row.put(ID_FIELD_NAME, id);
 row.putJson(JSON_FIELD_NAME, jsonDoc);

 tableAPI.putIfAbsent(row, null, null);
 }

 private void deleteExistingData() {

 /* Get an iterator over all the primary keys in the table. */
 final TableIterator<PrimaryKey> itr =
 tableAPI.tableKeysIterator(table.createPrimaryKey(), null,
null);

 /* Delete each row from the table. */
 long cnt = 0;
 while (itr.hasNext()) {
 tableAPI.delete(itr.next(), null, null);
 cnt++;
 }
 itr.close();
 System.out.println(cnt + " records deleted");
 }

 /*
 * Convenience method for displaying output when debugging.
 */
 private void displayRow(Table tbl) {
 final TableIterator<Row> itr =
 tableAPI.tableIterator(tbl.createPrimaryKey(), null, null);
 while (itr.hasNext()) {
 System.out.println(itr.next());
 }
 itr.close();
 }

 /*
 * Supporting methods for parsing the various attributes in the

Chapter 19
The LoadJsonExample Program Source

19-10

given file.
 */

 private String[] getJsonArrayElements(final String arrayName,
 final JsonParser parser,
 final int nElements)
 throws IOException {

 final List<String> arrayList = new ArrayList<String>();

 JsonToken token = parser.nextToken();
 while (token != null) {
 final String curFieldName = parser.getCurrentName();

 if (!arrayName.equals(curFieldName)) {
 token = parser.nextToken();
 continue;
 }
 break;
 }

 if (debugAll || debugDocByDoc) {
 System.out.println(
 "getJsonArrayElements loop: curToken = " + token +
 ", curFieldName = " + parser.getCurrentName());
 }

 token = parser.nextToken();

 if (debugAll || debugDocByDoc) {
 System.out.println(
 "getJsonArrayElements loop: nextToken = " + token +
 ", nextFieldName = " + parser.getCurrentName());
 }

 if (token == null) {
 System.out.println("getJsonArrayElements loop: " +
 "*** WARNING - null first token from parser");

 return arrayList.toArray(new String[nElements]);
 }

 if (token != JsonToken.START_ARRAY) {
 System.out.println("getJsonArrayElements loop: *** WARNING - " +
 "first token from parser != " + "START_ARRAY [" + token +
"]");

 return arrayList.toArray(new String[nElements]);
 }

 for (int i = 0; i < nElements; i++) {
 final StringBuilder strBldr = new StringBuilder();
 if (i > 0) {
 strBldr.append("{\n");
 }

Chapter 19
The LoadJsonExample Program Source

19-11

 final String arrayElement =
 jsonToString(arrayName, null, parser, strBldr, false);
 arrayList.add(arrayElement);

 if (debugAll || debugDocByDoc) {
 System.out.println(
 "getJsonArrayElements loop: arrayElement[" + i +
"] =\n" +
 arrayElement);
 }

 }/* end loop */

 return arrayList.toArray(new String[nElements]);
 }

 private String getTopLevelJsonArrayObject(
 final String fieldName,
 final JsonParser parser) throws IOException {

 final StringBuilder strBldr = new StringBuilder();
 JsonToken token = parser.nextToken();
 while (token != null) {
 final String curFieldName = parser.getCurrentName();

 if (!fieldName.equals(curFieldName)) {
 token = parser.nextToken();
 continue;
 }
 break;
 }
 final String jsonStr =
 jsonToString(fieldName, null, parser, strBldr, false);
 return strBldr.toString();
 }

 private String jsonToString(final String stopField,
 final JsonToken prevToken,
 final JsonParser parser,
 final StringBuilder strBldr,
 final boolean fromObjectArray)
 throws IOException {

 JsonToken token = parser.nextToken();

 if (token == null) {

 if (debugAll || debugJsonToStringTop) {
 System.out.println("TOP of jsonToString: prevToken = "
+
 prevToken + ", curToken = " + token
+
 ", RETURNING because input token ==
null");
 }

Chapter 19
The LoadJsonExample Program Source

19-12

 return strBldr.toString();
 }

 final String curFieldName = parser.getCurrentName();

 if (debugAll || debugJsonToStringTop) {

 System.out.println("\nTOP of jsonToString");
 System.out.println("prevToken = " + prevToken +
 ", curToken = " + token +
 ", curFieldName = " + curFieldName +
 ", stopField = " + stopField + ", isScalar =
" +
 token.isScalarValue() + ", fromObjectArray =
" +
 fromObjectArray);
 }

 if (prevToken != null) {

 if (prevToken == JsonToken.END_ARRAY ||
 prevToken == JsonToken.END_OBJECT) {

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** TOP of jsonToString: prevToken != null [" +
 prevToken + "] && " + "[END_ARRAY || END_OBJECT]");
 }

 if (stopField != null && stopField.equals(curFieldName)) {

 if (token == JsonToken.END_ARRAY) {

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** STOP-BY-FIELD_NAME [END_ARRAY]: " +
 "prevToken = " + prevToken + ", curToken = "
+
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " ... RETURN string, do not recurse, " +
 "do not terminate outer array with ']' ..." +
 " RETURN STR =\n" + strBldr.toString());
 }
 return strBldr.toString();
 }

 if (token == JsonToken.END_OBJECT) {

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** STOP-BY-FIELD_NAME [END_OBJECT]: " +
 "prevToken = " + prevToken + ", curToken = "
+
 token + ", curFieldName = " + curFieldName +

Chapter 19
The LoadJsonExample Program Source

19-13

 ", stopField = " + stopField +
 " ... RETURN string, do not recurse, "
+
 "but DO terminate outer array with
'}' ..." +
 " RETURN STR =\n" +
strBldr.toString());
 }
 strBldr.append("\n}");
 return strBldr.toString();
 }
 } /* endif (STOP-BY-FIELD) */

 if (prevToken == JsonToken.END_OBJECT &&
 token == JsonToken.START_OBJECT &&
 curFieldName == null) {

 if (fromObjectArray) {
 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** END_OBJECT && START_OBJECT && " +
 "curFieldName=null && is OBJECT_ARRAY:
" +
 "prevToken = " + prevToken + ",
curToken = " +
 token + ", curFieldName = " +
curFieldName +
 ", stopField = " + stopField +
 ", fromObjectArray = " +
fromObjectArray +
 " ... add ',{' and RECURSE");
 }
 strBldr.append(",\n{\n");
 return jsonToString(
 stopField, token, parser, strBldr,
fromObjectArray);
 }

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** END_OBJECT && START_OBJECT && " +
 "curFieldName=null && not OBJECT_ARRAY: " +
 "prevToken = " + prevToken + ", curToken =
" +
 token + ", curFieldName = " + curFieldName
+
 ", stopField = " + stopField +
 ", fromObjectArray = " + fromObjectArray +
 " ... simply return string, do not
recurse");
 }
 return strBldr.toString();

 } else if (prevToken == JsonToken.END_OBJECT &&
 token == JsonToken.END_ARRAY &&

Chapter 19
The LoadJsonExample Program Source

19-14

 curFieldName != null) {

 if (fromObjectArray) {

 strBldr.append("\n]\n");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** END_OBJECT && END_ARRAY && " +
 "curFieldName != null && is OBJECT_ARRAY: " +
 "prevToken = " + prevToken + ", curToken = "
+
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " terminate OBJECT_ARRAY with ']' ... " +
 "do NOT RECURSE ... RETURN subString =\n" +
 strBldr.toString());
 }

 } else { /* NOT fromObjectArray */

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** END_OBJECT && END_ARRAY && " +
 "curFieldName != null && NOT OBJECT_ARRAY: "
+
 "prevToken = " + prevToken + ", curToken = "
+
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " do NOT terminate OBJECT_ARRAY ... " +
 "do NOT RECURSE ... RETURN subString =\n" +
 strBldr.toString());
 }

 } /* endif (fromObjectArray) */

 return strBldr.toString();

 } else if (prevToken == JsonToken.END_OBJECT &&
 token == JsonToken.END_OBJECT &&
 (curFieldName != null || fromObjectArray)) {

 strBldr.append("}\n");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** END_OBJECT && END_ARRAY && " +
 "curFieldName != null OR is OBJECT_ARRAY: " +
 "prevToken = " + prevToken + ", curToken = " +
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +
 " terminate object in OBJECT_ARRAY with '}' and
" +

Chapter 19
The LoadJsonExample Program Source

19-15

 "RECURSE ...");
 }
 return jsonToString(
 stopField, token, parser, strBldr,
fromObjectArray);

 } else if (prevToken == JsonToken.END_ARRAY &&
 token == JsonToken.END_OBJECT &&
 curFieldName != null) {

 strBldr.append("}\n");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** END_ARRAY then END_OBJECT && " +
 "curFieldName != null: " +
 "prevToken = " + prevToken + ", curToken =
" +
 token + ", curFieldName = " + curFieldName
+
 ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +
 " terminate object with '}' and
RECURSE ...");
 }
 return jsonToString(
 stopField, token, parser, strBldr,
fromObjectArray);

 } else { /* DEFAULT: all other cases */

 strBldr.append(",\n");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** ELSE BLOCK *** prevToken = " +
prevToken +
 ", curToken = " + token + ", curFieldName
= " +
 curFieldName + ", stopField = " +
stopField +
 " , fromObjectArray = " + fromObjectArray +
 " add COMMA and RECURSE ...\n" +
 strBldr.toString());
 }
 return jsonToString(
 stopField, token, parser, strBldr,
fromObjectArray);

 } /* endif (prevToken, inputToken, curFieldName */

 } /* endif (prevToken == END_ARRAY || END_OBJECT) */

 if (prevToken.isScalarValue()) {

Chapter 19
The LoadJsonExample Program Source

19-16

 if (token != JsonToken.END_ARRAY &&
 token != JsonToken.END_OBJECT) {

 strBldr.append(",\n");
 return jsonToString(
 stopField, token, parser, strBldr,
fromObjectArray);
 }

 if (stopField != null && stopField.equals(curFieldName)) {

 if (token == JsonToken.END_ARRAY) {

 strBldr.append("\n]");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** prev SCALAR && STOP-BY-FIELD_NAME " +
 "[END_ARRAY]: prevToken = " + prevToken +
 ", curToken = " + token + ", curFieldName =
" +
 curFieldName + ", stopField = " + stopField +
 " ... terminate with ']' and RETURN string");
 }
 return strBldr.toString();
 }

 if (token == JsonToken.END_OBJECT) {

 strBldr.append("\n}");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** prev SCALAR && STOP-BY-FIELD_NAME " +
 "[END_ARRAY]: prevToken = " + prevToken +
 ", curToken = " + token + ", curFieldName =
" +
 curFieldName + ", stopField = " + stopField +
 " ... terminate with '}' and RETURN string");
 }
 return strBldr.toString();
 }

 } /* endif (prevToken isScalar && STOP-BY-FIELD) */

 } /* endif (prevToken isScalar) */

 } /* endif (prevToken != null) */

 /* Done with prevToken, process current input token next */

 if (token.isScalarValue()) { /* current token is SCALAR */

 strBldr.append("\"" + curFieldName + "\": " +
objectValue(parser));

Chapter 19
The LoadJsonExample Program Source

19-17

 return jsonToString(
 stopField, token, parser, strBldr,
fromObjectArray);
 }

 if (JsonToken.START_OBJECT == token) { /* input token is
OBJECT */

 if (curFieldName != null) {
 strBldr.append("\"" + curFieldName + "\": {\n");
 } else {
 strBldr.append("{\n");
 }
 return jsonToString(
 stopField, token, parser, strBldr,
fromObjectArray);

 } else if (JsonToken.START_ARRAY == token) { /* input Token is
ARRAY */

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- START_ARRAY --- prevToken = " + prevToken +
 ", curToken = " + token + ", curFieldName = " +
 curFieldName + ", stopField = " + stopField +
 ", isScalar = " + token.isScalarValue() +
 ", fromObjectArray = " + fromObjectArray +
 " ... get NEXT TOKEN");
 }

 token = parser.nextToken();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- START_ARRAY --- nextToken = " + token +
 ", curFieldName = " + curFieldName + ", stopField
= " +
 stopField + ", isScalar = " +
token.isScalarValue() +
 ", fromObjectArray = " + fromObjectArray);
 }

 if (token == null) {
 System.out.println(
 "*** WARNING: null next token after START_ARRAY. "
+
 "Invalid json document?");
 return strBldr.toString();
 }

 /* START_ARRAY then START_OBJECT: Handle ARRAY OF OBJECTS
*/

 if (JsonToken.START_OBJECT == token) {

Chapter 19
The LoadJsonExample Program Source

19-18

 if (debugAll || debugJsonToStringArray) {
 System.out.println("--- START_ARRAY then START_OBJECT: "
+
 "Handle ARRAY_OF_OBJECTS ---");
 }

 final StringBuilder tmpBldr = new StringBuilder();
 final String curArrayName = curFieldName;

 if (curArrayName != null) {
 if (!curArrayName.equals(stopField)) {
 tmpBldr.append("\"" + curFieldName + "\": [\n");
 }
 }
 tmpBldr.append("{\n");

 while (token != null && JsonToken.END_ARRAY != token) {

 /*
 * When at the top of this loop, we know we're handling
an
 * array of objects. We know that we're done with that
 * array of objects (has already been terminated with
']')
 * and so should terminate the object containing the
 * array (with '}') if the following conditions are met:
 *
 * 1. The previous token is a FIELD_NAME.
 * 2. The current field name corresponding to the current
 * token is the same as the name of the current array.
 * 3. The current token is END_OBJECT (meaning we're at
 * the end of the object containing the array).
 */
 if (JsonToken.FIELD_NAME == prevToken &&
 JsonToken.END_OBJECT == token &&
 curFieldName != null &&
 curFieldName.equals(curArrayName)) {

 tmpBldr.append("}\n");

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "array element END_OBJECT - " +
 "terminate with '}' - prevToken = " +
 prevToken + ", curToken = " + token +
 ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +
 " ... loop to continue or end of DOC");
 }

 String nextFieldName = curFieldName;
 while(token != null) {

Chapter 19
The LoadJsonExample Program Source

19-19

 token = parser.nextToken();
 nextFieldName = parser.getCurrentName();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "array termination inner loop - " +
 "nextToken = " + token +
 ", nextFieldName = " +
nextFieldName);
 }

 if (token.isScalarValue()) {

 tmpBldr.append(",\n");
 tmpBldr.append("\"" + nextFieldName +
 "\": " +
objectValue(parser));
 break;
 }

 if (JsonToken.START_OBJECT == token) {

 tmpBldr.append(",\n");
 if (nextFieldName != null) {
 tmpBldr.append("\"" +
nextFieldName +
 "\": { kkkk\n");
 } else {
 tmpBldr.append("{ kkkk\n");
 }
 break;
 }

 if (JsonToken.START_ARRAY == token) {

 tmpBldr.append(",\n");
 if (nextFieldName != null) {
 tmpBldr.append("\"" +
nextFieldName +
 "\": [kkkk\n");
 } else {
 tmpBldr.append("[kkkk\n");
 }
 break;
 }

 if ((nextFieldName != null &&
 nextFieldName.equals(stopField)) ||
 (nextFieldName == null &&
 JsonToken.END_OBJECT == token)) {

 final String finalRetStr =

Chapter 19
The LoadJsonExample Program Source

19-20

strBldr.append(tmpBldr.toString()).toString();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "DONE - RETURN FINAL STRING =\n" +
 finalRetStr);
 }
 return finalRetStr;
 }

 } /* end loop */

 /* More tokens to process. Recurse. */

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "curToken = " + token + ", curFieldName = " +
 nextFieldName + ", stopField = " + stopField
+
 " , fromObjectArray = " + fromObjectArray +
 "- more tokens to process ... RECURSE");
 }
 jsonToString(stopField, token, parser, tmpBldr,
false);

 } else { /* Not end of outer object containing objArray
*/

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "prevToken = " + prevToken + ", curToken = "
+
 token + ", curFieldName = " +
 curFieldName + ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +
 "- NOT END OF ARRAY ... RECURSE");
 }
 jsonToString(stopField, token, parser, tmpBldr,
true);

 } /* endif (FIELD_NAME then END_OBJECT && array name) */

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "EXIT jsonToString() - prevToken = " +
 prevToken + ", curToken = " + token +
 ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +

Chapter 19
The LoadJsonExample Program Source

19-21

 " ... loop to continue or end of DOC");
 }

 if (JsonToken.FIELD_NAME == prevToken &&
 JsonToken.FIELD_NAME == token &&
 curFieldName != null) {

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then FIELD_NAME - " +
 "curToken = " + token +
 ", curFieldName = " + curFieldName +
 " ... get NEXT TOKEN");
 }

 token = parser.nextToken();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then FIELD_NAME - " +
 "nextToken = " + token + ",
nextFieldName = " +
 parser.getCurrentName());
 }

 if (JsonToken.END_OBJECT == token) {

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then FIELD_NAME - " +
 "nextToken = END_OBJECT ... BREAK "
+
 "out of loop ... subString =\n" +
 tmpBldr.toString());
 }
 break;

 } else { /* nextToken NOT END_OBJECT */

 final String finalRetStr = strBldr.append(
 tmpBldr.toString()).toString();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then FIELD_NAME - " +
 "nextToken = " + token +
 "(NOT END_OBJECT) ... DONE - " +
 "RETURN FINAL STRING = \n" +
finalRetStr);
 }

Chapter 19
The LoadJsonExample Program Source

19-22

 return finalRetStr;

 } /* endif (nextToken END_OBJECT or NOT) */

 } else if (JsonToken.FIELD_NAME == prevToken &&
 JsonToken.START_OBJECT == token &&
 curFieldName != null) {

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then START_OBJECT - " +
 "curToken = " + token + ", curFieldName = " +
 parser.getCurrentName());
 }

 token = parser.nextToken();
 final String nextFieldName = parser.getCurrentName();

 if (JsonToken.FIELD_NAME == token &&
 nextFieldName != null) {
 tmpBldr.append(",\n");

 } else if (JsonToken.END_OBJECT == token &&
 nextFieldName != null) {
 tmpBldr.append("}\n");
 }

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then START_OBJECT - " +
 "nextToken = " + token + ", nextFieldName = "
+
 nextFieldName + " ... current subString =\n" +
 tmpBldr.toString());
 }

 } else {

 token = parser.nextToken();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "*** ELSE *** nextToken = " + token +
 ", nextFieldName = " +
 parser.getCurrentName() +
 " ... current subString =\n" +
 tmpBldr.toString());
 }

 }/* endif FIELD_NAME && FIELD_NAME && fieldName != null
*/

Chapter 19
The LoadJsonExample Program Source

19-23

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "END OF LOOP - CONTINUE TO TOP OF LOOP");
 }

 } /* end ARRAY_OF_OBJECTS loop */

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- OUT ARRAY_OF_OBJECTS LOOP: " +
 "current subString = \n" + tmpBldr.toString());
 }

 final String tmpStr = tmpBldr.toString();
 final String retStr =
strBldr.append(tmpStr).toString();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- OUT ARRAY_OF_OBJECTS LOOP: " +
 "ENTER jsonToString() - BEGIN FINAL RETURN
string ...");
 }

 final String finalRetStr =
 jsonToString(stopField, token, parser, strBldr,
false);

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- OUT ARRAY_OF_OBJECTS LOOP: EXIT " +
 "jsonToString() - RETURN FINAL RETURN string =
\n" +
 finalRetStr);
 }
 return finalRetStr;

 } /* endif START_OBJECT after START_ARRAY & ARRAY OF
OBJECTS */

 /* -- START_ARRAY then NOT START_OBJECT: ARRAY OF SCALARS
-- */

 if (debugAll || debugJsonToStringArray) {
 System.out.println("--- START_ARRAY then SCALAR: " +
 "Enter ARRAY_OF_SCALARS loop ---");
 }

 strBldr.append("\"" + curFieldName + "\": [\n");
 while (token != null && JsonToken.END_ARRAY != token) {
 strBldr.append(objectValue(parser));
 token = parser.nextToken();
 if (JsonToken.END_ARRAY == token) {

Chapter 19
The LoadJsonExample Program Source

19-24

 strBldr.append("\n]");
 } else {
 strBldr.append(",\n");
 }
 }/* end loop: ARRAY_OF_SCALARS */

 return jsonToString(stopField, token, parser, strBldr, false);

 } else if(JsonToken.END_OBJECT == token) {

 strBldr.append("\n}");
 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);

 } else { /* DEFAULT: all other values of current input token */

 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);

 } /* endif (START_OBJECT else START_ARRAY else END_OBJECT) */
 }

 private Object objectValue(JsonParser parser) throws IOException {
 final JsonToken currentToken = parser.getCurrentToken();
 if (currentToken == JsonToken.VALUE_STRING) {
 return "\"" + parser.getText() + "\"";
 } else if (currentToken == JsonToken.VALUE_NUMBER_INT ||
 currentToken == JsonToken.VALUE_NUMBER_FLOAT) {
 return parser.getNumberValue();
 } else if (currentToken == JsonToken.VALUE_TRUE) {
 return Boolean.TRUE;
 } else if (currentToken == JsonToken.VALUE_FALSE) {
 return Boolean.FALSE;
 } else if (currentToken == JsonToken.VALUE_NULL) {
 return null;
 } else {
 return "\"" + parser.getText() + "\"";
 }
 }

 private int getIntFieldValue(final String objectName,
 final String fieldName,
 final JsonParser parser) throws IOException
{
 int nObjects = 0;
 JsonToken token = parser.nextToken();
 while (token != null) {
 String curFieldName = parser.getCurrentName();
 if (objectName.equals(curFieldName)) {
 token = parser.nextToken();
 while (token != null) {
 curFieldName = parser.getCurrentName();
 if (fieldName.equals(curFieldName)) {
 token = parser.nextToken();
 if (token != JsonToken.VALUE_NUMBER_INT) {

Chapter 19
The LoadJsonExample Program Source

19-25

 System.out.println("getIntFieldValue:
WARNING - " +
 "for object " + objectName + ", value
of " +
 "field " + fieldName + " is NOT an
integer [" +
 parser.getText() + "]");
 return nObjects;
 }
 nObjects = parser.getNumberValue().intValue();
 return nObjects;
 }
 token = parser.nextToken();
 }
 }
 token = parser.nextToken();
 }
 System.out.println("getIntFieldValue: WARNING - could not find
" +
 "field in given object [object=" +
objectName +
 ", field=" + fieldName + "]");
 return nObjects;
 }
}

Secure Elasticsearch using Sheild
The following are the steps to take to configure an Elasticsearch cluster to run
securely. The descriptions provided in each sub-section below are based on the
following list of assumptions and requirements:

Assumptions about the Secure Elasticsearch Cluster

• The 2.4.6 version of the Elasticsearch distribution is installed under the
directory /opt/es/elasticsearch.

• The 2.4.6 version of the Shield adapter (and license) is installed in the
Elasticsearch configuration (see below).

• There are three nodes hosting the Elasticsearch cluster, named eshost1,
eshost2, and eshost3 respectively, each having network connectivity with the
other nodes of the Elasticsearch cluster, as well as the nodes of the Oracle
NoSQL store.

• The value used when specifying the node.name property for each node of the
Elasticsearch cluster is the hostname of the corresponding Elasticsearch node.

• The cluster that is deployed is named escluster (cluster.name).

• The port used for node-to-node communication within the cluster itself is 29000
(transport.tcp.port).

• The port used by clients of the cluster when communicating over HTTPS with any
node in the cluster (for example, to send Full Text Search queries), is 29100
(http.port).

Chapter 19
Secure Elasticsearch using Sheild

19-26

• For simplicity, all passwords are set to No_Sql_00.

• The nodes of the Elasticsearch cluster each generate a public/private keypair with an
alias that is unique relative to the aliases of the keypairs generated by the other nodes in
the cluster. This is a requirement because the public certificate from each Elasticsearch
node will be installed in the truststore of the other nodes of the cluster, as well as the
truststore of each node in the Oracle NoSQL store. This is necessary not only for secure
communication between the Oracle NoSQL store and the Elasticsearch cluster, but also
for secure communication between the nodes of the cluster itself. To achieve the required
alias uniqueness, each alias will include the hostname of the Elasticsearch node that
generates the keypair.

• Although the alias of the keypair generated by each node must be unique, all of those
keypairs share the same Distinguished Name (DN); with Common Name (CN) equal to
esuser.

Note:

The Shield security plugin used by Elasticsearch employs Public Key Infrastructure
(PKI) for user authentication. As a result, when a node in the NoSQL store attempts
to communicate with an Elasticserch node, the Elasticsearch node presents a
certificate to the store node, which the store node must trust in order for the
communication to succeed. There are two options for establishing PKI certificate
trust:

• Self-signed public certificates

• Public certificates signed by a Certificate Authority (CA)

The secure Elasticsearch cluster presented here uses self-signed certificates. As
described above, using this option, each node in the Elasticsearch cluster must
provide its own certificate with unique alias; and each such certificate must be
installed in the truststore of any service (example: the Oracle NoSQL store) or client
that wishes to communicate with the Elasticsearch cluster.

Although obtaining and installing a single CA-signed certificate is less cumbersome
than installing a self-signed certificate from each of the Elasticsearch nodes, the
use of self-signed certificates can be more instructive with respect to PKI concepts.
Once you understand how to work with self-signed certificates, changing your
deployment to employ the CA-signed option should be straightforward.

Install Elasticsearch and the Shield Plugin

You can find the 2.4.6 version of Elasticsearch, Shield, and the Shield license at the following
URLs:

• https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/
elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz

• https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/shield/2.4.6/
shield-2.4.6.zip

• https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/license/2.4.6/
license-2.4.6.zip

Chapter 19
Secure Elasticsearch using Sheild

19-27

https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz
https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/shield/2.4.6/shield-2.4.6.zip
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/shield/2.4.6/shield-2.4.6.zip
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/license/2.4.6/license-2.4.6.zip
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/license/2.4.6/license-2.4.6.zip

On each Elasticsearch node (eshost1, eshost2, and eshost3), create the
directory /opt/es, download elasticsearch-2.4.6.tar.gz to that directory, and
install the Elasticsearch software. For example, on each host do the following:

mkdir –p /opt/es/install-xfer/certs

Use curl, wget or your browser to download elasticsearch-2.4.6.tar.gz
to /opt/es, then

cd /opt/es
tar xzvf elasticsearch-2.4.6.tar.gz
ln –s elasticsearch-2.4.6 elasticsearch

Download the Shield distribution and its corresponding license to a temporary directory
on each node (example: /tmp). Do not place those zip files under the /opt/es/
elasticsearch home directory; otherwise installation errors can occur. Once you
have downloaded the Shield distributions and its corresponding license, install Shield
by doing the following:

export JAVA_HOME=/opt/java/java8 [if necessary]

cd /opt/es
bin/plugin install –v file:///tmp/elasticsearch-shield-
license-2.4.6.zip
bin/plugin install –v file:///tmp/elasticsearch-shield-2.4.6.zip

Note:

Java 8 or greater is required to install the Shield plugin, as well as to deploy
the Elasticsearch cluster itself. Thus, if the default version of Java on your
Elasticsearch nodes is less than Java 8, then you should install Java 8 or
greater on each node, and set the JAVA_HOME environment variable to point
to that installation before installing the Shield plugin or deploying the cluster.

Also, when you initially install Shield, a 30 day trial license is installed that
allows access to all Shield features. Although the 30 day trial license should
suffice to run this example, you can purchase a subscription at the end of the
trial period if you want to keep using the full functionality of Shield; otherwise,
you can use Shield in a degraded mode after expiration, where the
monitoring feature is disabled.

Create and Install a Public/Private Keypair in the Elasticsearch Keystore

On each Elasticsearch node, generate a public/private keypair that clients of
Elasticsearch can use to execute secure queries on the data indexed in the cluster.
For example, on eshost1 execute:

keytool –genkeypair
 –alias elasticsearch-eshost1
 –keystore /opt/es/elasticsearch/config/shield/elasticsearch.keys

Chapter 19
Secure Elasticsearch using Sheild

19-28

 -keyalg RSA
 –keysize 2048
 –validity 1712
 –storepass No_Sql_00
 –keypass No_Sql_00
 -dname CN=esuser,OU=es.org,L=es.city,S=es.state,C=US
 -ext san=dns:localhost,dns:eshost1,dns:eshost2,dns:eshost3,
 dns:kvhost1,dns:kvhost2,dns:kvhost3

This command will generate a keypair with alias elasticsearch-eshost1. It will place the
keypair in that node's keystore (elasticsearch.keys) if the keystore already exists;
otherwise it will create the keystore before generating the keypair.

Export the Public Certificate and Install it in the Truststore

On each Elasticsearch node, export the public certificate from the keypair generated above.
Store the resulting certificate file in a directory outside of the Shield config directory; for
example, /opt/es/install-xfer/certs. This will facilitate distribution of the certificate
to the other nodes in the cluster as well as clients of Elasticsearch (example: the Oracle
NoSql store). For example, on eshost1 execute:

keytool –export
 –alias elasticsearch-eshost1
 –keystore /opt/es/elasticsearch/config/shield/elasticsearch.keys
 -storepass No_Sql_00
 -file /opt/es/install-xfer/certs/elasticsearch-eshost1.crt

This command will retrieve the public certificate with the given alias from the keystore and
place it in the certificate file (elasticsearch-eshost1.crt) located in the separate
transfer directory (install-xfer/certs).

Once the certificate file is available, import (install) the public certificate into the node's
truststore. For example, on eshost1 execute:

keytool –importcert
 –alias elasticsearch-eshost1
 -file /opt/es/install-xfer/certs/elasticsearch-eshost1.crt
 –keystore /opt/es/elasticsearch/config/shield/elasticsearch.trust
 -storepass No_Sql_00
 -keypass No_Sql_00
 –noprompt

If the node's truststore already exists, this command will install the public certificate from the
specified file into that truststore (elasticsearch.trust); otherwise the truststore is
created prior to importing the certificate.

Convert the Public/Private Keys to OpenSSL Format (pem/key)

On each Elasticsearch node, retrieve the previously generated public/private keypair from the
node's keystore as a PKCS12 file. For example, on eshost1:

keytool –importkeystore
 -srckeystore /opt/es/install-xfer/certs/elasticsearch.keys

Chapter 19
Secure Elasticsearch using Sheild

19-29

 –srcalias elasticsearch-eshost1
 -srcstorepass No_Sql_00
 –dstkeystore /opt/es/install-xfer/certs/elasticsearch-eshost1.p12
 -deststoretype PKCS12
 -deststorepass No_Sql_00
 -destkeypass No_Sql_00

Next, retrieve the public certificate – in PEM format – from the PKCS12 file that was
just retrieved. For example:

openssl pkcs12
 -in /opt/es/install-xfer/certs/elasticsearch-eshost1.p12
 -passin pass:No_Sql_00
 –out /opt/es/install-xfer/certs/elasticsearch-eshost1.pem
 -nokeys

Finally, retrieve the private key file from that PKCS12 file. For example:

openssl pkcs12
 -in /opt/es/install-xfer/certs/elasticsearch-eshost1.p12
 -passin pass:No_Sql_00
 –out /opt/es/install-xfer/certs/elasticsearch-eshost1.pkey
 -nocerts

The commands above produce two files, elasticsearch-eshost1.pem and
elasticsearch-eshost1.pkey that can be installed on clients of Elasticsearch
and used to execute secure queries against data indexed by the cluster. In the initial
stages of cluster configuration, these files can be used to verify that Elasticsearch
security has been configured correctly.

Modify the Elasticsearch and Shield Configuration Files

To complete the configuration of Elasticsearch to run securely using the Shield plugin,
the following YAML configuration files must be modified on each Elasticsearch node:

• /opt/es/elasticsearch/config/elasticsearch.yml
• /opt/es/elasticsearch/config/shield/role_mapping.yml
On each Elasticsearch node, edit the files listed above and make the following
modifications.

1. Add the following lines to elasticsearch.yml

shield:
 enabled: true
 authc:
 realms:
 pki1:
 type: pki
 enabled: true
 order: 0
 transport:
 ssl: true
 ssl.client.auth: required

Chapter 19
Secure Elasticsearch using Sheild

19-30

 http:
 ssl: true
 ssl.client.auth: required
 ssl:
 keystore:"current": true,
 path: /opt/es/elasticsearch/config/shield/elasticsearch.keys
 password: No Sql_00
 key_password: No_Sql_00
 truststore:
 path: /opt/es/elasticsearch/config/shield/elasticsearch.trust
 password: No Sql_00

2. Add the following three lines to role_mapping.yml

admin:
 - "CN=esuser,OU=es.org.unit,O=es.org,L=es.city,ST=es.state,C=US"
 -
"CN=FTS,OU=nosql.org.unit,O=nosql.org,L=nosql.city,ST=nosql.state,C=US"

Without these additions to the Elasticsearch and Shield configurations, any attempt by you or
the Oracle NoSQL store to communicate with the secure Elasticsearch cluster will encounter
errors related to either authentication or TLS/SSL failures.

At this point, there is still more to do to configure the Elasticsearch cluster for secure
communication with an Oracle NoSQL store. But before that can be done, you must first
configure and deploy the store itself. If you are confident that your current Elasticsearch
security configuration is correct, then you can go directly to Deploying and Configuring a
Secure Oracle NoSQL Store to deploy the secure Oracle NoSQL store and configure it for
secure communication with the Elasticsearch cluster. But if you prefer to verify that what you
have done so far is correct, then execute the steps presented in the next sub-section.

[Optional] Verify Elasticsearch Security is Configured Correctly

Before moving on to deploying and configuring a secure Oracle NoSQL store, you may wish
to verify that queries can indeed be successfully (and securely) executed against the
Elasticsearch cluster with its current configuration. To do this, you must first install each
Elasticsearch node's PEM formatted public certificate and private key on any client from
which a query will be sent to Elasticsearch.

For example, suppose your client node is named clhost1. And suppose you copy the
public/private PEM files from each Elasticsearch node to the /tmp directory of clhost1.
That is, on clhost1,

scp <username>@eshost1:/opt/es/install-xfer/certs/elasticsearch-
eshost1.pem /tmp
scp <username>@eshost1:/opt/es/install-xfer/certs/elasticsearch-
eshost1.pkey /tmp

scp <username>@eshost2:/opt/es/install-xfer/certs/elasticsearch-
eshost2.pem /tmp
scp <username>@eshost2:/opt/es/install-xfer/certs/elasticsearch-
eshost2.pkey /tmp

scp <username>@eshost3:/opt/es/install-xfer/certs/elasticsearch-
eshost3.pem /tmp

Chapter 19
Secure Elasticsearch using Sheild

19-31

scp <username>@eshost3:/opt/es/install-xfer/certs/elasticsearch-
eshost3.pkey /tmp

ls /tmp

 elasticsearch-eshost1.pem
 elasticsearch-eshost1.pkey

 elasticsearch-eshost2.pem
 elasticsearch-eshost2.pkey

 elasticsearch-eshost3.pem
 elasticsearch-eshost3.pkey

Next, deploy the secure Elasticsearch cluster by logging in to each Elasticsearch node
and executing the following commands:

On eshost1

cd /scratch/es
export JAVA_HOME=/opt/java/java8 [if necessary]

./elasticsearch/bin/elasticsearch
 --cluster.name escluster
 --node.name eshost1
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts
eshost1:29000,eshost2:29000,eshost3:29000

On eshost2

cd /scratch/es
export JAVA_HOME=/opt/java/java8 [if necessary]

./elasticsearch/bin/elasticsearch
 --cluster.name escluster
 --node.name eshost2
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts
eshost1:29000,eshost2:29000,eshost3:29000

On eshost3

cd /scratch/es
export JAVA_HOME=/opt/java/java8 [if necessary]

./elasticsearch/bin/elasticsearch
 --cluster.name escluster
 --node.name eshost3
 --transport.tcp.port 29000
 --http.port 29100

Chapter 19
Secure Elasticsearch using Sheild

19-32

 --discovery.zen.ping.unicast.hosts
eshost1:29000,eshost2:29000,eshost3:29000

Once the Elasticsearch cluster has been deployed, you can send queries from the client node
to any of the nodes making up the Elasticsearch cluster. For example,

curl –k –E /tmp/elasticsearch-eshost1.pem
 –-key /tmp/elasticsearch-eshost1.pkey
 -X GET 'https://eshost1:29100/_cat/nodes'

curl –k –E /tmp/elasticsearch-eshost2.pem
 –-key /tmp/elasticsearch-eshost2.pkey
 -X PUT 'https://eshost2:29100/indices'

curl –k –E /tmp/elasticsearch-eshost3.pem
 –-key /tmp/elasticsearch-eshost3.pkey
 -X GET 'https://eshost3:29100/_cat/indices'

Be sure to use the public certificate and private key corresponding to the node to which you
send the query.

After verifying that the Elasticsearch cluster is configured correctly and can execute secure
queries, shutdown/kill [crtl-c] the Elasticsearch process on each node.

At this point, we are ready to deploy a secure Oracle NoSQL store and configure it for
communication with the secure Elasticsearch cluster from this section. See Deploying and
Configuring a Secure Oracle NoSQL Store.

Deploying and Configuring a Secure Oracle NoSQL Store
There are a number of different methods to deploy and configure an Oracle NoSQL store for
secure access. This section presents one particular set of steps you can take to deploy and
configure such a store. For other methods, see Security Configuration in the Security Guide.

Additionally, since the store that is deployed must communicate with the secure Elasticsearch
cluster from Secure Elasticsearch using Sheild, this section also shows how to generate and
install the private keys and public certificates needed by the store and cluster for secure
communication.

Whether you prefer the method presented here or one of the other methods presented in the
Security Guide, the following assumptions and requirements apply when configuring an
Oracle NoSQL store for secure deployment and communication with a secure Elasticsearch
cluster:

Assumptions about the Secure Oracle NoSQL Store

• The Oracle NoSQL Database distribution is installed under the directory /opt/ondb/kv.

• There are three nodes hosting the store, named kvhost1, kvhost2, and kvhost3
respectively.

• The store is deployed with a replication factor (rf) of 3, and is named mystore.

• An admin service, listening on port 5000, is deployed on each of the store's nodes.

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

19-33

• The range of ports used to support high availability (harange) consists of port
5002 through 5007.

• One storage node (SN) per store host will be deployed (capacity 1), with default
values for the number of cpu's and memory (num_cpus 0 and memory_mb 0).

• The contents of the shards (replication groups) managed by the store are located
under the storage directory /disk1/shard on each node of the store; where the
size specified for each storage directory is 1GB (1,000,000,000 bytes).

• For convenience, the password manager the store uses to store and retrieve
passwords for access to the store's keystore and truststore is a password file
(available in all editions of Oracle NoSQL Database), rather than the Oracle Wallet
(available in only the Enterprise Edition).

• For simplicity, all passwords are set to No_Sql_00.

• The name of the alias used in the public/private keypair generated by the store
and provided to Elasticsearch for secure communication with the store, is FTS.
Note that this is a requirement, as communication with a secure store will fail if
Elasticsearch responds to a request from the store by presenting a certificate with
an alias different than FTS.

• A user with administrative privileges is provisioned in the store's access control
list. The name given to this user is FTS; the same as the alias of the keypair the
store generates for Elasticsearch. Although the user name is not required to be the
same as the alias, it is given that value for consistency, and to avoid confusion.

Provision the Store Boot Node for Secure Deployment and Elasticsearch
Communication

All of the commands presented in this sub-section are executed on only the first (boot)
node of the store (example: kvhost1). Using the assumptions previously listed, when
provisioning the boot node of a store that will be deployed with security, the first
command to execute is:

On kvhost1

export JAVA_HOME=/opt/java/java8 [if necessary]

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig
 -root /opt/ondb/kvroot
 -config config.xml
 -port 5000
 -host kvhost1
 -harange 5002,5007
 -capacity 1
 -num_cpus 0
 -memory_mb 0
 -storagedir /disk1/shard
 -storagedirsize 1000000000
 -store-security configure
 -pwdmgr pwdfile
 -kspwd No_Sql_00

The command above creates the security directory /opt/ondb/kvroot/security
on the store's boot node kvhost1, and populates it with security artifacts such as the

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

19-34

store's keystore (store.keys) and trustore (store.trust). For convenience, it also
creates artifacts that can be distributed to clients for secure access to the store
(client.trust and client.security). After executing the command above, you should
see the following files in the security directory:

ls /opt/ondb/kvroot/security
 store.trust
 client.trust
 client.security
 security.xml
 store.keys
 store.passwd

Athough the command above is necessary to deploy a secure store, it is not sufficient for
secure communication with the Elasticsearch cluster from Secure Elasticsearch using Sheild.
To facilitate secure communication with Elasticsearch, a public/private keypair with the alias
FTS must be generated and installed in the store's keystore. For example,

On kvhost1

keytool -genkeypair
 -alias FTS
 -keystore /opt/ondb/kvroot/security/store.keys
 -keyalg RSA
 -keysize 2048
 -validity 1712
 -storepass No_Sql_00
 -keypass No_Sql_00
 -dname CN=FTS,OU=nosql.org,L=nosql.city,S=nosql.state,C=US
 -ext san=dns:localhost,dns:eshost1,dns:eshost2,dns:eshost3,
 dns:kvhost1,dns:kvhost2,dns:kvhost3

After generating the keypair above, the public certificate from that keypair must be exported
from the keystore. In order for any node of the Elasticsearch cluster to securely communicate
with the NoSQL store, the Elasticsearch node must send this certificate to the store. Thus,
the certificate produced by the following export command will ultimately be installed on each
node of the Elasticsearch cluster. See Install the Full Text Search Public Certificate in
Elasticsearch. On kvhost1,

keytool -export
 -alias FTS
 -keystore /opt/ondb/kvroot/security/store.keys
 -storepass No_Sql_00
 -file /opt/ondb/kvroot/security/FTS.crt

Whereas the FTS public certificate created by this command must be presented to the Oracle
NoSQL store by each Elasticsearch node when the node attempts to communicate with the
store, the store must also present the Elasticsearch node's public certificate. This is because
the model for secure communication between Elasticsearch and Oracle NoSQL requires
mutual authentication. As a result, the public certificates created on each of the Elasticsearch

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

19-35

nodes in Secure Elasticsearch using Sheild must be retrieved and installed in the
store's truststore. For example,

scp <username>@eshost1:/opt/es/install-xfer/certs/elasticsearch-
eshost1.crt /opt/ondb/kvroot/security
scp <username>@eshost2:/opt/es/install-xfer/certs/elasticsearch-
eshost2.crt /opt/ondb/kvroot/security
scp <username>@eshost3:/opt/es/install-xfer/certs/elasticsearch-
eshost3.crt /opt/ondb/kvroot/security

keytool -importcert
 -alias elasticsearch-eshost1
 -file /opt/ondb/kvroot/security/elasticsearch-eshost1.crt
 -keystore /opt/ondb/kvroot/security/store.trust
 -storepass No_Sql_00
 -keypass No_Sql_00
 -noprompt

keytool -importcert
 -alias elasticsearch-eshost2
 -file /opt/ondb/kvroot/security/elasticsearch-eshost2.crt
 -keystore /opt/ondb/kvroot/security/store.trust
 -storepass No_Sql_00
 -keypass No_Sql_00
 -noprompt

keytool -importcert
 -alias elasticsearch-eshost3
 -file /opt/ondb/kvroot/security/elasticsearch-eshost3.crt
 -keystore /opt/ondb/kvroot/security/store.trust
 -storepass No_Sql_00
 -keypass No_Sql_00
 -noprompt

At this point, the store's boot node is configured for secure deployment, and its
security directory has been provisioned with the necessary security artifacts for
communication with the Elasticsearch cluster from Secure Elasticsearch using Sheild.

The final step in the provisioning process is to install the same security artifacts
created on the boot node in each of the remaining nodes of the store. This is
accomplished by simply copying the boot node's security directory to each of those
other nodes. For example, if the boot node is kvhost1, then you would do something
like the following from that node:

scp -r /opt/ondb/kvroot/security <username>@kvhost2:/opt/ondb/kvroot
scp -r /opt/ondb/kvroot/security <username>@kvhost3:/opt/ondb/kvroot

Configure the Store's Remaining non-Boot Nodes for Security

Once the store's boot node is configured for security and the security directory of all of
the nodes in the store have been fully provisioned as described in the previous sub-
section, the remaining (non-boot) nodes of the store must also be configured for
security. This is accomplished by using Java 8 or greater to execute, respectively, the
following commands on each of the remaining nodes.

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

19-36

On kvhost2

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig
 -root /opt/ondb/kvroot
 -config config.xml
 -port 5000
 -host kvhost2
 -harange 5002,5007
 -capacity 1
 -num_cpus 0
 -memory_mb 0
 -storagedir /disk1/shard
 -storagedirsize 1000000000
 -store-security enable
 -pwdmgr pwdfile

On kvhost3

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig
 -root /opt/ondb/kvroot
 -config config.xml
 -port 5000
 -host kvhost3
 -harange 5002,5007
 -capacity 1
 -num_cpus 0
 -memory_mb 0
 -storagedir /disk1/shard
 -storagedirsize 1000000000
 -store-security enable
 -pwdmgr pwdfile

At this point, the store is configured and fully provisioned for secure deployment. The
following sub-sections describe how this is accomplished.

Start Each Node of the NoSQL Store

Using Java 8 or greater, execute the following command on each node of the store.

On kvhost1, kvhost2, and kvhost3

java -jar /opt/ondb/kv/lib/kvstore.jar start
 -root /opt/ondb/kvroot
 -config config.xml

Deploy the Secure NoSQL Store

To deploy an Oracle NoSQL store based on the assumptions listed previously, first create a
text file containing the following Oracle NoSQL administrative commands that can be
executed as a script from the Oracle NoSQL Admin CLI.

configure -name mystore
plan deploy-zone -name zn1 -rf 3 -wait

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

19-37

plan deploy-sn -znname zn1 -host kvhost1 -port 5000 -wait
plan deploy-admin -sn 1 -wait
pool create -name snpool
pool join -name snpool -sn sn1

plan deploy-sn -znname zn1 -host kvhost2 -port 5000 -wait
plan deploy-admin -sn 2 -wait
pool join -name snpool -sn sn2

plan deploy-sn -znname zn1 -host kvhost3 -port 5000 -wait
plan deploy-admin -sn 3 -wait
pool join -name snpool -sn sn3

change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"

topology create -name snlayout -pool snpool -partitions 300
plan deploy-topology -name snlayout -plan sndeploy -wait

execute "CREATE USER root IDENTIFIED BY 'No_Sql_00' ADMIN";

Note that a user named root with ADMIN privileges will be created when the store is
deployed. That user will be used to add other users to the store's access control list
(ACL); for example, the user named FTS described previously.

Once you have created the command file above, start the Admin CLI and deploy the
store by loading that file. For example, suppose the commands are stored in the
file, /tmp/deploy-secure-store.cmds. You would then deploy the store by doing
the following:

On kvhost1

java -jar /opt/ondb/kv/lib/kvstore.jar runadmin
 -host kvhost1
 -port 5000
 -security /opt/ondb/kvroot/security/client.security

 Logged in admin as anonymous
 Connected to Admin in read-only mode

kv-> load -file /tmp/deploy-secure-store.cmds

 Connected to Admin in read-only mode
 Store configured: mystore

 Created: snlayout
 Executed plan 13, waiting for completion...
 Plan 13 ended successfully
 Statement completed successfully

kv-> exit

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

19-38

Note:

The clocks on kvhost1, kvhost2, and kvhost3 must by synchronized (by
default, within a 2 second delta), otherwise store deployment will fail. To determine
whether a failed deployment was caused by unsynchronized clocks, check the
admin logs on the affected node /opt/ondb/kvroot/mystore/log/
adminN_0.log.

Provision the root User

To provison the user named root that was created during store deployment, do the following:

On kvhost1

java -jar /opt/ondb/kv/lib/kvstore.jar securityconfig pwdfile create
 -file /opt/ondb/kvroot/security/root.passwd

java -jar /opt/ondb/kv/lib/kvstore.jar securityconfig pwdfile secret
 -file /opt/ondb/kvroot/security/root.passwd -set -alias root

 Enter the secret value to store: No_Sql_00
 Re-enter the secret value for verification: No_Sql_00

Create a properties file that you can use to access (login to) the Admin CLI as the root user
just created. This file should contain the same entries as the default client.security file
generated when the store was initially provisioned for security, along with entries that specify
the username and password file specific to the root user. For example,

cp /opt/ondb/kvroot/security/client.security /opt/ondb/kvroot/security/
root.login

echo oracle.kv.auth.username=root >> /opt/ondb/kvroot/security/root.login
echo oracle.kv.auth.pwdfile.file=
/opt/ondb/kvroot/security/root.passwd >> /opt/ondb/kvroot/security/root.login

Create and Provision the FTS User For Indexing Data in Secure Elasticsearch

In a production system, you would not typically use the root user to create and populate
tables and Secondary Indexes in the Oracle NoSQL store or Text Indexes in the
Elasticsearch cluster. Instead, you would generally use the root user to create other client
users of the store whose roles are specific to a particular task; for example, indexing data in
Elasticsearch.

For this example, a user named FTS is created and granted the privileges needed to create
and populate a table, as well as index the table's data in Elasticsearch. To do this, you need
to first create an Admin CLI command file that contains entries such as:

execute 'CREATE ROLE ftsadmin'
execute 'GRANT SYSDBA TO ftsadmin'
execute 'GRANT READ_ANY TO ftsadmin'
execute 'GRANT WRITE_ANY TO ftsadmin'
execute 'CREATE USER FTS IDENTIFIED BY "No_Sql_00"'

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

19-39

execute 'GRANT ftsadmin TO USER FTS'
execute 'GRANT SYSADMIN TO USER FTS'

Then, assuming /tmp/create-user-FTS.cmds is the path to that command file,
you create the user by logging into the Admin CLI as the root user and then loading
the command file. For example,

On kvhost1

java -jar /opt/ondb/kv/lib/kvcli.jar runadmin
 -host kvhost1
 -port 5000
 -store mystore
 -security /opt/ondb/kvroot/security/root.login

 Logged in admin as root

kv-> load -file /tmp/create-user-FTS.cmds

 Statement completed successfully
 Statement completed successfully

kv-> exit

To complete the provisioning of the FTS user just created, you should create a
password file for that user and install it in a directory (for example, /tmp) on the client
node you will be using to load and index data. For completeness (and convenience), in
a fashion similar to what was done for the root user, you should also create a
properties file that can be used to login to the Admin CLI as the user FTS. For
example,

On kvhost1

java -jar /opt/ondb/kv/lib/kvstore.jar
 securityconfig pwdfile create
 -file /tmp/FTS.passwd

java -jar /opt/ondb/kv/lib/kvstore.jar
 securityconfig pwdfile secret
 -file /tmp/FTS.passwd
 -set
 -alias FTS

 Enter the secret value to store: No_Sql_00
 Re-enter the secret value for verification: No_Sql_00

cp /opt/ondb/kvroot/security/client.security /tmp/FTS-client.login

echo oracle.kv.auth.username=FTS >> /opt/ondb/kvroot/security/FTS-
client.login
echo oracle.kv.auth.pwdfile.file=/tmp/FTS.passwd >> /tmp/FTS-
client.login

Chapter 19
Deploying and Configuring a Secure Oracle NoSQL Store

19-40

cp /opt/ondb/kvroot/security/client.trust /tmp

Once the three artifacts above (FTS-client.login, FTS.passwd, and client.trust)
have been created and installed in the /tmp directory on kvhost1, you can install them on
any client. For example,

scp /tmp/FTS-client.login <username>@clhost1:/tmp
scp /tmp/FTS.passwd <username>@clhost1:/tmp
scp /tmp/client.trust <username>@clhost1:/tmp

At this point the store is fully deployed and ready to interact with the Elasticsearch cluster.

The only thing left to do before running the example is to install the Oracle NoSQL store's
public certificate (alias=FTS) in the truststore on each Elasticsearch node. See Install the
Full Text Search Public Certificate in Elasticsearch.

Install the Full Text Search Public Certificate in Elasticsearch
The final set of steps that must be executed to complete the deployment of the system
consisting of a secure Oracle NoSQL store and a secure Elasticsearch cluster is to retrieve
the Oracle NoSQL store’s public certificate with alias FTS, and install that certificate in the
truststore of each Elasticsearch node. For example,

On eshost1, eshost2, and eshost3,

scp <username>@kvhost1:/opt/ondb/kvroot/security/FTS.crt /opt/es/install-
xfer/certs
keytool –importcert
 –alias FTS
 -file /opt/es/install-xfer/certs/FTS.crt
 –keystore /opt/es/elasticsearch/config/shield/elasticsearch.trust
 -storepass No_Sql_00
 –keypass No_Sql_00
 –noprompt

Once the store’s FTS public certificate is installed on each Elasticsearch node, you can
deploy the Elasticsearch cluster; which should now be able to communicate with the secure
Oracle NoSQL store deployed in Deploying and Configuring a Secure Oracle NoSQL Store.
For example, using Java 8 or greater,

On eshost1

cd /scratch/es

./elasticsearch/bin/elasticsearch
 --cluster.name escluster
 --node.name eshost1
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts
eshost1:29000,eshost2:29000,eshost3:29000

Chapter 19
Install the Full Text Search Public Certificate in Elasticsearch

19-41

On eshost2

cd /scratch/es

./elasticsearch/bin/elasticsearch
 --cluster.name escluster
 --node.name eshost2
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts
eshost1:29000,eshost2:29000,eshost3:29000

On eshost3

cd /scratch/es

./elasticsearch/bin/elasticsearch
 --cluster.name escluster
 --node.name eshost3
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts
eshost1:29000,eshost2:29000,eshost3:29000

At this point you should now be able to do the following:

1. Execute the example program in secure mode to populate the store with JSON
data.

2. Run the Admin CLI as the user named FTS to both register the store with the
Elasticsearch cluster and create a Text Index on the data in the store.

3. Use curl to send secure queries to Elasticsearch to perform Full Text Search on
the indexed data. See Running the Examples in Secure Mode.

Running the Examples in Secure Mode
Assuming you have deployed a secure Oracle NoSQL store and Elasticsearch cluster
by executing the steps presented in Secure Elasticsearch using Sheild, Deploying and
Configuring a Secure Oracle NoSQL Store, and Install the Full Text Search Public
Certificate in Elasticsearch appendices, you can now execute the commands
presented in this section to:

• Create and Populate a Table in the Secure Oracle NoSQL Store

• Register the Store with the Secure Elasticsearch Cluster and Create a Full Text
Index

• Execute Secure Full Text Search Queries On Elasticsearch Indexed Data

Create and Populate a Table in the Secure Oracle NoSQL Store

Execute the program LoadJsonExample in secure mode. For example,

java –classpath /opt/ondb/kv/lib/kvstore.jar:src
es.table.LoadJsonExample

Chapter 19
Running the Examples in Secure Mode

19-42

 –store mystore
 –host kvhost1
 –port 5000
 –file ~/examples/es/docs/senator-info.json
 -table exampleJsonTable
 -security /tmp/FTS-client.login

Register the Store with the Secure Elasticsearch Cluster and Create a Full Text Index

From a client node configured for secure access to the Oracle NoSQL store, start an Admin
CLI for the store. For example, from the host named clhost1, start the CLI as the user
named FTS created and provisioned as described in Deploying and Configuring a Secure
Oracle NoSQL Store,

On clhost1

java -jar /opt/ondb/kv/lib/kvcli.jar runadmin
 –host kvhost1
 -port 5000
 –store mystore
 –security /tmp/FTS-client.login

 Logged in admin as FTS

kv-> plan register-es
 –clustername escluster
 –host eshost1
 –port 29100
 –secure true
 -wait

 Executed plan 25, waiting for completion...
 Plan 25 ended successfully

kv-> execute 'CREATE FULLTEXT INDEX jsonTxtIndex ON
 exampleJsonTable (
 jsonField.current{"type":"boolean"},
 jsonField.party{"type":"string","analyzer":"standard"},
 jsonField.duties.committe{"type":"string"},
 jsonField.contrib{"type":"double"})';

 Statement completed successfully

kv-> exit

Execute Secure Full Text Search Queries On Elasticsearch Indexed Data

From a client node configured for secure access to the Elasticsearch cluster such as the
clhost1 node presented in Secure Elasticsearch using Sheild, execute queries like the
following:

On clhost1

curl –k -E /tmp/elasticsearch-eshost1.pem
 --key /tmp/elasticsearch-eshost1.pkey

Chapter 19
Running the Examples in Secure Mode

19-43

 –X GET 'http://eshost1:29100/_cat/indices'

curl –k -E /tmp/elasticsearch-eshost2.pem
 --key /tmp/elasticsearch-eshost2.pkey
 –X GET 'http://eshost2:29100/
ondb.kvstore.examplejsontable.jsontxtindex/_mapping?pretty'

curl –k -E /tmp/elasticsearch-eshost3.pem
 --key /tmp/elasticsearch-eshost3.pkey
 –X GET 'http://eshost3:29100/
ondb.kvstore.examplejsontable.jsontxtindex/_search?pretty'

curl –k -E /tmp/elasticsearch-eshost1.pem
 --key /tmp/elasticsearch-eshost1.pkey
 –X GET 'http://eshost1:29100/
ondb.mystore.examplejsontable.jsontxtindex/_search?pretty'
 '-d {query":{"bool":{
 "must":{"match":{"jsonCol.party":"Democrat"}},
 "must":{"match":"jsonCol.current":"true"}},
 "must":{"range":{"jsonField.contrib":
{"gte":"1000000.00","lte":20000000.00"}}},
 "must":"match":{"jsonField.duties.committe":"Judiciary
Apropriations"}}}}}'

Note:

The queries above can be sent to any of the nodes in the Elasticsearch
cluster (eshost1, eshost2, or eshost3). Just be sure to specify the public
certificate and private key corresponding to the particular node to which you
send the query.

Chapter 19
Running the Examples in Secure Mode

19-44

	Contents
	1 Introduction
	Part I Integration with Apache Hadoop MapReduce
	2 Introduction to Integration with Apache Hadoop MapReduce
	Prerequisites
	A Brief Primer on Apache Hadoop

	3 The CountTableRows Example
	Compile, Build, and Run the CountTableRows Example
	Building CountTableRows When the Store is Non-Secure
	Building CountTableRows When the Store is Secure
	Running CountTableRows When the Store is Non-Secure
	Running CountTableRows When the Store is Secure and a Password File is Used
	Running CountTableRows When the Store is Secure and an Oracle Wallet is Used

	CountTableRows MapReduce Job Results

	4 Appendix
	Deploying a Non-Secure Store
	Generate Configuration Files For Each Storage Node (SN)
	Launch a Storage Node Agent (SNA) On Each Host Making Up the Store
	Configure and Deploy the Non-secure Store

	Deploying a Secure Store
	Generate Configuration Files For Each Storage Node (SN)
	Launch a Storage Node Agent (SNA) On Each Host Making Up the Store
	Configure and Deploy the Secure Store
	Provision the Secure Store’s Administrative User (root)
	Create Non-Administrative User
	Provision the Secure Store's Non-Administrative User (example-user)

	CountTableRows Support Programs
	Schema for the vehicleTable Example
	Create and Populate vehicleTable with Example Data
	Run LoadVehicleTable when the Store is Non-Secure
	Run LoadVehicleTable When the Store is Secure
	Summary

	Model For Building & Packaging Secure Clients
	Programming Model For MapReduce with Oracle NoSQL Database Security
	Communicating Security Credentials to the Server Side Splits
	Communicating Security Credentials to the TableInputFormat
	Best Practices: MapReduce Application Packaging for Oracle NoSQL Security
	Application Packaging for the Non-Secure Case
	Application Packaging and Execution for the Secure Case
	Application Packaging for the Secure Case Using a Password File
	Application Execution for the Secure Case Using a Password File
	Application Packaging for the Secure Case Using an Oracle Wallet
	Application Execution for the Secure Case Using an Oracle Wallet

	Secure Versus Non-Secure Command Lines

	Summary

	Part II Integration with Apache Hive
	5 Introduction to Integration with Apache Hive
	Prerequisites
	A Brief Primer on Apache Hive

	6 Oracle NoSQL Database Hive Integration Classes
	7 Mapping the Hive Data Model to the Oracle NoSQL Database Table Model
	YARN Versus MapReduce Version 1

	8 Example: Hive Queries On Oracle NoSQL Database Tables
	Primitive Data Types - The vehicleTable Example
	Mapping a Hive External Table to vehicleTable: Non-Secure Store
	Mapping a Hive External Table to vehicleTable: Secure Store
	Mapping Hive to Secure vehicleTable: Password File
	Mapping Hive to Secure vehicleTable: Oracle Wallet

	Hive Queries on vehicleTable: Primitive Data Types

	Non-Primitive Data Types - The rmvTable Example
	Mapping a Hive External Table to rmvTable: Non-Secure Store
	Mapping a Hive External Table to rmvTable: Secure Store
	Mapping Hive to Secure rmvTable: Password File
	Mapping Hive to Secure rmvTable: Oracle Wallet

	Hive Queries on rmvTable: Non-Primitive Data Types

	NoSQL JSON Data Type - The exampleJsonTable Example
	Mapping a Hive External Table to exampleJsonTable: Non-Secure Store
	Mapping a Hive External Table to exampleJsonTable: Secure Store
	Mapping Hive to Secure exampleJsonTable: Password File
	Mapping Hive to Secure exampleJsonTable: Oracle Wallet

	Hive Queries on exampleJsonTable: JSON Data Type

	9 Appendix
	Creating and Populating the rmvTable
	Schema for the Example Table Named rmvTable
	Create and Populate rmvTable with Example Data
	How to Run LoadRmvTable When the Store is Non-Secure
	How to Run LoadRmvTable When the Store is Secure
	Summary

	Creating and Populating the exampleJsonTable
	Schema for the Example Table Named exampleJsonTable
	Create and Populate exampleJsonTable with Example Data
	How to Run LoadJsonExample When the Store is Non-Secure
	How to Run LoadJsonExample When the Store is Secure
	Summary

	Configuring the Hive Client Environment
	Copy Oracle NoSQL Database Libraries into Hive Auxiliary Directory
	Set HIVE_AUX_JARS_PATH in the Hive Client’s hive-env.sh File
	Set HIVE_AUX_JARS_PATH Directly on the Command Line

	Hive and Oracle NoSQL Database Security
	Generating the Login, Trust, and Password Artifacts
	Generating the Server Side JAR File
	Adding the Hive Client's Public Credentials to the Hive Environment
	Summary

	Predicate Pushdown
	Predicate Pushdown Criteria

	Part III Integration with Oracle Big Data SQL
	10 Introduction to Integration with Oracle Big Data SQL
	Prerequisites
	A Brief Primer on Oracle Big Data SQL

	11 Mapping the Oracle RDBMS Data Model to the Oracle NoSQL Database Table Model
	12 Executing SQL Queries Against Oracle NoSQL Database
	Mapping Hive External Tables to Oracle NoSQL Database Tables
	Mapping Hive Tables to Oracle NoSQL Database Tables In a Non-Secure Store
	Mapping Hive Tables to Oracle NoSQL Database Tables In a Secure Store

	Mapping Oracle RDBMS External Tables to Hive External Tables
	Mapping Oracle RDBMS Tables to Hive Tables for Non-Secure Store
	Mapping Oracle RDBMS Tables to Hive Tables for Secure Store

	13 Example: SQL Queries On Oracle NoSQL Database Tables
	Example Queries on the vehicleTable
	Example Queries on the rmvTable
	More Example Queries on the rmvTable
	Example Queries Using Oracle Regular Expression Functions
	Example Queries Using Oracle JSON Operators

	Example Queries on the exampleJsonTable

	14 Appendix
	Configuring Oracle Big Data SQL For Querying Oracle NoSQL Database
	Configuring Oracle Big Data SQL For Querying Data in a Secure Store

	Part IV Integration with Elastic Search for Full Text Search
	15 About Full Text Search
	About Full Text Search
	Prerequisite to Full Text Search

	16 Intergrating Elasticsearch with Oracle NoSQL Database
	Registering Elasticsearch with Oracle NoSQL Database
	Deregistering Elasticsearch from an Oracle NoSQL Store

	17 Managing Full Text Index
	Creating a Full Text Index
	Mapping a Full Text Index Field to an Elasticsearch Field
	Handling TIMESTAMP Data Type
	Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type
	Full Text Search of Indexed TIMESTAMP Scalar

	Handling JSON Data Type
	Review: Secondary Indexes on JSON Document Content
	Creating Text Indexes on JSON Document Content
	Full Text Search of Indexed JSON Documents

	Deleting a Full Text Index

	18 Security in Full Text Search
	Elasticsearch and Secure Oracle NoSQL Database

	19 Appendix
	Sample: Array of JSON Documents
	The LoadJsonExample Program Source
	Secure Elasticsearch using Sheild
	Deploying and Configuring a Secure Oracle NoSQL Store
	Install the Full Text Search Public Certificate in Elasticsearch
	Running the Examples in Secure Mode

