Oracle® NoSQL Database
Security Guide

Release 23.1
E85375-25
May 2023

ORACLE"

Oracle NoSQL Database Security Guide, Release 23.1
E85375-25
Copyright © 2011, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation,” or “limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Conventions Used in This Book Vii

1 Introducing Oracle NoSQL Database Security

2 Security Configuration

Security Configuration Overview 2-1
Configuring Security with Makebootconfig 2-3
Configuring Security with Securityconfig 2-4
Creating the security configuration 2-4
Adding the security configuration 2-7
Verifying the security configuration 2-8
Updating the security configuration 2-8
Showing the security configuration 2-9
Removing the security configuration 2-10
Merging truststore configuration 2-11
3 Performing a Secure Oracle NoSQL Database Installation
Single Node Secure Deployment 3-1
Adding Security to a New Installation 3-1
Adding Security to an Existing Installation 3-5
Multiple Node Secure Deployment 3-7
Adding Security to a New Installation 3-8
Adding Security to an Existing Installation 3-12
4 Kerberos Authentication Service
Installation Prerequisites 4-1
Kerberos Principal 4-1
Keytabs 4-2

ORACLE iii

Kadmin and kadmin.local 4-2
Kerberos Security Properties 4-2
Setting Security Properties in a security login file 4-3
Setting Security Properties through KVStoreConfig 4-4
Using Security Properties to Log In 4-4
Using credential cache 4-5
Using a keytab 4-6
JAAS programming framework integration 4-7
Performing a Secure Oracle NoSQL Database Installation with Kerberos 4-8
Adding Kerberos to a New Installation 4-9
Adding Kerberos to an Existing Secure Installation 4-13
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD) 4-16
5 External Password Storage
Oracle Wallet 5-1
Password store file 5-2
6 Security.xml Parameters
Top-level parameters 6-1
Transport parameters 6-2
7 Encryption
SSL model 7-1
SSL communication properties 7-2
Disk Encryption in a Linux Environment 7-3
8 Configuring Authentication
User Management 8-1
User Creation 8-1
User Modification 8-3
User Removal 8-4
User Status 8-4
User Login 8-5
Password Management 8-6
Sessions 8-7
ORACLE iv

O Configuring Authorization

Privileges 9-1
System Privileges 9-1
Object Privileges 9-2
Table Ownership 9-4
Privilege Hierarchy 9-4

Roles 9-5
System Built-in Roles 9-5
User-Defined Roles 9-6

Managing Roles, Privileges and Users 9-8
Role Creation 9-8
Role Removal 9-9
Role Status 9-9
Grant Roles or Privileges 9-10
Revoke Roles or Privileges 9-11
Granting Authorization Access to Namespaces 9-12

10 Security Policies

Security Policy Modifications 10-1

11 Audit Logging

Security Log Messages 11-1

12 Keeping Oracle NoSQL Database Secure

Guidelines for Securing the Configuration 12-1
Guidelines for Deploying Secure Applications 12-1
Guidelines for Securing the SSL protocol 12-1
Guidelines for Disabling TLSv1.1 and TLSv1 Protocols 12-2
Guidelines for enabling TLSV1.3 protocol 12-8
Guidelines for using JMX securely 12-15
Guidelines for using PKCS12 Java KeyStore 12-15

Default Security Configuration 12-15

Updating KeyStore Type of an Existing Security Configuration 12-16

Updating SSL Keys and Certificates 12-20
Guidelines for Updating Keystore Passwords 12-20
Guidelines for Updating Kerberos Passwords 12-22
Guidelines for Updating SSL Keys and Certificates 12-24
Guidelines for Configuring External Certificates for a new Installation 12-33

ORACLE Y

Guidelines for Configuring External Certificates for an Existing Default Secure Installation 12-35
Guidelines for Updating the External Certificates 12-38
Guidelines for Operating System Security 12-40

A Password Complexity Policies

B SSL keystore generation

C Java KeyStore Preparation

Import Key Pair to Java Keystore C-2

D KVStore Required Privileges

Privileges for Accessing CLI Commands D-1
Privileges for DDL Commands D-4
Privileges for Accessing KVStore APIs D-5
Privileges for Accessing KVStore TableAPIs D-6
Privileges for Accessing KvLargeObject APIs D-6
Privileges for Running XRegion Service D-7

E Configuring the Kerberos Administrative Utility

F Manually Registering Oracle NoSQL Database Service Principal

G Generating Certificate and Private Key for the Oracle NoSQL Database

Proxy

Guidelines for Generating Self-Signed Certificate and Private Key using OpenSSL G-1
Guidelines for Generating Certificate Chain and Private Key using OpenSSL G-3
Troubleshooting issues with self-signed certificate G-6

ORACLE" vi

Preface

This document describes how you can configure security for Oracle NoSQL Database using
the default database features.

This book is aimed at the systems administrator responsible for the security of an Oracle
NoSQL Database installation.

Conventions Used in This Book

The following typographical conventions are used within this manual:
Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVYHOME
directory."

" Note:

Finally, notes of special interest are represented using a note block such as this.

ORACLE vii

Introducing Oracle NoSQL Database Security

Oracle NoSQL Database can be configured securely. In a secure configuration, network
communications between NoSQL clients, utilities, and NoSQL server components are
encrypted using SSL/TLS, and all processes must authenticate themselves to the
components to which they connect.

There are two levels of security to be aware of. These are network security, which provides
an outer layer of protection at the network level, and user authentication/authorization.
Network security is configured at the file system level typically during the installation process,
while user authentication/authorization is managed through NoSQL utilities.

You can use the following Oracle NoSQL Database features to configure security for your
Oracle NoSQL Database installation:

* Security Configuration Utility. Allows you to configure and add security to a new or
to an existing Oracle NoSQL Database installation.

° Authentication methods. Oracle NoSQL Database provides password authentication for
users and systems. The EE version of Oracle NoSQL Database also supports Kerberos
authentication.

° Encryption. Data is encrypted on the network to prevent unauthorized access to that
data.

e External Password Storage. Oracle NoSQL Database provides two types of external
password storage methods that you can manipulate (one type for CE deployments).

e Security Policies. Oracle NoSQL Database allows you to set up behaviors in order to
ensure a secure environment.

* Role-based authorization. Oracle NoSQL Database provides predefined system roles,
privileges, and user-defined roles to users. You can set desired privileges to users by
role-granting.

In addition, Keeping Oracle NoSQL Database Secure provides guidelines that you should
follow when securing your Oracle NoSQL Database installation.

¢ Note:

Full Text Search and a secure Oracle NoSQL Database store are disjoint, that is, if
Oracle NoSQL Database is configured as a secure store, Full Text Search should
be disabled. On the other hand, if Full Text Search is enabled (that is, an external
Elasticsearch cluster is registered) in a nonsecure store, users cannot reconfigure
the nonsecure store to a secure store, unless Full Text Search is disabled before
reconfiguration. See Security in Full Text Search in the Integrations Guide.

ORACLE 1-1

Security Configuration

This chapter describes how to use either the makebootconfig or securityconfiqg tool to
perform the security configuration of your store. If you are installing a store with security for
the first time, you can skip ahead to the next chapter Performing a Secure Oracle NoSQL
Database Installation.

" Note:

For simpler use cases (lab environments) it is possible to perform a basic
installation of your store by explicitly opting out of security on the command line. If
you do this, your store loses all the security features described in this book. For
more information see Configuring Security with Makebootconfig.

Security Configuration Overview

ORACLE

To set up security, you need to create an initial security configuration. To do this, run
securityconfig before, after, or as part of the makebootconfig process before starting the
SNA on an initial node. You should not create a security configuration at each node. Instead,
you should distribute the initial security configuration across all the Storage Nodes in your
store. If the stores do not share a common security configuration they will be unable to
communicate with one another.

< Note:

The makebootconfig utility embeds the functionality of securityconfig tool.

Th securityconfig tool creates a set of security files based on the standard configuration. It
is possible to perform the same tasks manually, and advanced security configuration might
require manual setup, but using this tool helps to ensure a consistent setup. For more
information on the manual setup, see SSL keystore generation.

" Note:

It is possible to modify the security configuration after it is created in order to use a
non-standard configuration. It is recommended that you use a standard
configuration.

Those security files are generated, by default, within a directory named "security". In a secure
configuration, the bootstrap configuration file for a Storage Node includes a reference to that

2-1

Chapter 2
Security Configuration Overview

directory, which must be within the KVROOT directory for the Storage Node. The
security directory contains:

security/security.xml

security/store.keys

security/store.trust

security/store.passwd (CE or EE installations)
security/store.wallet (EE installations only)
security/store.wallet/cwallet.sso (EE installations only)
security/client.security

security/client.trust

where:

ORACLE

security.xml

A configuration file that tells the Oracle NoSQL Database server how to apply
security.

store.keys

A Java keystore file containing one or more SSL/TLS key pairs. This keystore is
protected by a keystore password, which is recorded in an accompanying
password store. The password store may be either an Oracle Wallet or a
FileStore. The password is stored under the alias "keystore" in the password store.
This file should be accessible only by the Oracle NoSQL Database server
processes, and not to Oracle NoSQL Database clients.

store.trust

A Java truststore file, which is a keystore file that contains only public certificates,
and no private keys.

store.passwd (CE or EE installations)

A password file that acts as the password store for a Community Edition (CE)
installation. It contains secret information that should be known only to the server
processes. Make sure the password file is readable and writable only by the
Oracle NoSQL Database server. The file should not be copied to client machines.

For Enterprise Edition (EE) installations, Oracle Wallet usage is preferred over the
password file option.

store.wallet (EE installations only)

An Oracle Wallet directory that acts as the password store for an Enterprise
Edition (EE) installation. It contains secret information that should be known only
to the server processes. Make sure the directory and its contents are readable and
writable only by Oracle NoSQL Database. The file should not be copied to client
machines.

cwallet.sso (EE installations only)
The wallet password storage file.
client.security

A security configuration file that captures the communication transport properties
for connecting clients to KVStore.

The generated client.security file should be copied to and used by Oracle NoSQL
Database clients when connecting to the KVStore.

2-2

Chapter 2
Configuring Security with Makebootconfig

client.trust
A truststore file used by clients is generated.

The generated client.trust file should be copied to and used by Oracle NoSQL Database
clients when connecting to the KVStore.

Note:

In a multi-host store environment, the security directory and all files contained in it
should be copied to each server that will host a Storage Node.

Configuring Security with Makebootconfig

Use the makebootconfig command with the -store-security option to set up the basic store
configuration with security:

ORACLE

java -Xmx64m -Xms64m

-jar KVHOME/lib/kvstore.jar makebootconfig
-root <kvroot> -port <port>

-host <hostname> -harange <harange>
-store-security configure -capacity <capacity>

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

-secdir <security dir>]

-pwdmgr {pwdfile | wallet | <class-name>}]
-kspwd <server key and trust store password>]
-kstype <key and trust store type>]

-ctspwd <client.trust password>]
-external-auth {kerberos}]

-krb-conf <kerberos configuration>]
-kadmin-path <kadmin utility path>]
-instance-name <database instance name>]
-admin-principal <kerberos admin principal name>]
-kadmin-keytab <keytab file>]

-kadmin-ccache <credential cache file>]
-princ-conf-param <param=value>]*
-security-param <param=value>]*

-noadmin]

where -store-security has the following options:

-store-security none

No security will be used. If a directory named "security" exists, a warning message will be
displayed. When you opt out of security, you lose all the security features in your store;
you are not able to set password authentication for users and systems, encrypt your data
to prevent unauthorized access, etc.

-store-security configure

Security will be used and the security configuration utility will be invoked as part of
the makebootconfig process. If the security directory already exists, an error message is
displayed, otherwise the directory will be created.

2-3

Chapter 2
Configuring Security with Securityconfig

For script-based configuration you can use the -kspwd<password> option to allow
tools to specify the keystore password on the command line. If it is not specified,
the user is prompted to enter the password.

Use the -pwdmgr option to select a password manager implementation. Its usage
is introduced later in this section.

Use the -external-auth option to specify Kerberos as an external authentication
service. This option is only available in the Oracle NoSQL Database EE version. If
information for the Kerberos admin interface (e.g. password) is needed and no
keytab or credential cache has been specified on the command line, an interactive
version of securityconfig config create utility will run.

Using the -external-auth flag allows Oracle NoSQL Database to generate the
security files needed for Kerberos authentication, based on a standard
configuration. Although not recommended, it is possible to use a non-standard
configuration. To do this, see Manually Registering Oracle NoSQL Database
Service Principal.

°* -store-security enable

Security will be used. You will need to configure security either by utilizing the
security configuration utility or by copying a previously created configuration
from another system.

" Note:

The -store-security command is optional. Even if the user does not
specify -store-security, it would be enabled by default.

For more information on configuring security with makebootconfig, see Adding
Security to a New Installation.

Configuring Security with Securityconfig

You can also run the securityconfig tool before or after the makebootconfig process
by using the following command:

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar securityconfig

For more information on creating, adding, removing or merging the security
configuration using securityconfig, see the following sections.

Creating the security configuration

ORACLE

You can use the config create command to create the security configuration:

config create

-root <secroot> [-secdir <security dir>]
[-pwdmgr { pwdfile | wallet <class-name>}]
[-kspwd <server key and trust store password>]
[-kstype <key and trust store type>]

[-ctspwd <client.trust password>]

2-4

ORACLE

Chapter 2
Configuring Security with Securityconfig

[-external-auth {kerberos}]

[
[
[
[
[
[
[
[

-krb-conf <kerberos configuration>]

-kadmin-path <kadmin utility path>]
-instance-name <database instance name>]
-admin-principal <kerberos admin principal name>]
-kadmin-keytab <keytab file>]

-kadmin-ccache <credential cache file>]
-princ-conf-param <param=value>]*

-param [client:|ha:|internal:|]<param>=<value>]*

where:

-root <secroot>

Specifies the directory in which the security configuration will be created. It is not required
that this directory be a full KVROOT, but the directory must exist.

-kspwd <server key and trust store password>

Specifies the password used to create keystore and truststore needed by NoSQL
Database Server.

-kstype <key and trust store type>
Specifies the store type of keystore and truststore. It must be either JKS or PKCS12.
-ctspwd <client.trust password>

Specifies the password to create PKCS12 password-protected truststore used by client
applications to connect NoSQL Database Server.

-external-auth {kerberos} Specifies Kerberos as an external authentication service.
This option is only available in the Oracle NoSQL Database EE version. If no keytab or
credential cache has been specified on the command line, an interactive version of the
securityconfig utility will run.

Using this flag allows Oracle NoSQL Database to generate the security files needed for
Kerberos authentication, based on a standard configuration. Although not recommended,
it is possible to use a non-standard configuration. To do this, see Manually Registering
Oracle NoSQL Database Service Principal.

This flag is only permitted when the value of the -store-security flag is specified as
configure or enable.

To remove Kerberos authentication from a running store, set the value of the
userExternalAuth security.xml parameter to NONE.

where -external-auth can have the following flags:
— -admin-principal <kerberos admin principal name>

Specifies the principal used to login to the Kerberos admin interface. This is required
while using kadmin keytab or password to connect to the admin interface.

— -kadmin-ccache <credential cache file>

Specifies the complete path name to the Kerberos credentials cache file that should
contain a service ticket for the kadmin/ADMINHOST. ADMINHOST is the fully-qualified
hostname of the admin server or kadmin/admin service.

If not specified, the user is prompted to enter the password for principal while logging
to the Kerberos admin interface. This flag cannot be specified in conjunction with the
-kadmin-keytab flag.

2-5

ORACLE

Chapter 2
Configuring Security with Securityconfig

-kadmin-keytab <keytab file>

Specifies the location of a Kerberos keytab file that stores Kerberos admin
user principals and encrypted keys. The security configuration tool will use the
specified keytab file to login to the Kerberos admin interface.

The default location of the keytab file is specified by the Kerberos
configuration file. If the keytab is not specified there, then the system looks for
the file user.home/krb5.keytab.

You need to specify the -admin-principal flag when using keytab to login to
the Kerberos admin, otherwise the correct admin principal will not be
recognized. This flag cannot be specified in conjunction with the -kadmin-
ccache flag.

-kadmin-path <kadmin utility path>

Indicates the absolute path of the Kerberos kadmin utility. The default value
iS /usr/kerberos/sbin/kadmin

-krb-conf <kerberos configuration>

Specifies the location of the Kerberos configuration file that contains the
default realm and KDC information. If not specified, the default value is /etc/
krb5.conf.

-princ-conf-param <param=value>*
A repeatable argument that allows configuration defaults to be overridden.

Use the krbPrincvalidity parameter to specify the expiration date of the
Oracle NoSQL Database Kerberos service principal.

Use the krbPrincPwdExpire parameter to specify the password expiration
date of the Oracle NoSQL Database Kerberos service principal.

Use the krbKeysalt parameter to specify the keysalt list used to generate the
keytab file.

-secdir <security dir>

Specifies the name of the directory within KVROOT that will hold the security
configuration. This must be specified as a name relative to the specified secroot. If
not specified, the default value is "security".

-pwdmgr [pwdfile | wallet]

Indicates the password manager mechanism used to hold passwords that are
needed for accessing keystores, etc.

where -pwdmgr can have the following options:

-pwdmgr pwdfile

Indicates that the password store is a read-protected clear-text password file.
This is the only available option for Oracle NoSQL Database CE deployments.
You can specify an alternate implementation. For more information on pwdfile
manipulation, see Password store file.

-pwdmgr wallet

Specifies Oracle Wallet as the password storage mechanism. This option is
only available in the Oracle NoSQL Database EE version. For more
information on Oracle wallet manipulation, see Oracle Wallet.

2-6

Chapter 2
Configuring Security with Securityconfig

e -param [client:|ha:|internal:|]<param>=<value>]

A repeatable argument that allows configuration defaults to be overridden. The value may
be either a simple parameter, such as "truststore", or a qualified parameter such as
"client:serverKeyAlias". If specified in qualified form, the qualifier (for example, "client")
names a transport within the security configuration, and the assignment is specific to that
transport. If in simple form, it applies to either the securityParams structure or to all
transports within the file, depending on the type of parameter.

For more information on configuring security with securityconfig, see Performing a Secure
Oracle NoSQL Database Installation.

For more information on configuring Kerberos with securityconfig, see Kerberos
Authentication Service.

Adding the security configuration

ORACLE

You can use the config add-security command to add the security configuration you
created earlier:

config add-security
-root <kvroot> [-secdir <security dir>]
[-config <config.xml>]

Note:

When running this command, the securityconfig tool will verify the existence of
the referenced files and will update the specified bootstrap configuration file to refer
to the security configuration. This process is normally done with the KVStore
instance stopped, and must be performed on each Storage Node of the store.

where:
e -root <kvroot>

A KVStore root directory must be provided as an argument.
e -secdir <security dir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not specified,
the default value is "security".

e -config <config.xml>

Specifies the bootstrap configuration file that is to be updated. This must be specified as
a name relative to the KVROOT. If not specified, the default value is "config.xml".

When using Kerberos as an external authentication service, you can use the config add-
kerberos command to add the security configuration you created earlier:

config add-kerberos -root <secroot> [-secdir <security dir>]
[-krb-conf <Kerberos configuration>]

[-kadmin-path <kadmin utility path>]

[-instance-name <database instance name>]

2-7

Chapter 2
Configuring Security with Securityconfig

[-admin-principal <kerberos admin principal name>]
[-kadmin-keytab <keytab file>]

[-kadmin-ccache <credential cache file>]
[-princ-conf-param <param=value>]*

[-param <param=value>]*

Verifying the security configuration

You can use the config verify command to verify the consistency and correctness of
a security configuration:

config verify -secdir <security dir>

where:

e -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

For example:

security-> config verify -secdir security
Security configuration verification passed.

Updating the security configuration

ORACLE

You can use the config update command to update the security parameters of a
security configuration:

config update -secdir <security dir> [-kstype <keystore type>] [-
ctspwd <client.trust password>] [-param <param=value>]*

where:
e -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

e -kstype <keystore type>

Specify the store type to update. Only PKCS12 is allowed. This command updates
the keystore (store.keys) and truststore (store.trust) used by NoSQL Database
Server to PKCS12 password-protected store. If the Java used to run this
command supports password-less truststore, utilities create the truststore used by
client applications (client.trust) as a PKCS12 password-less store. If not, utilities
fall back to create a JKS store instead if no password specified using -ctspwd
<client.trust password>

e -ctspwd <client.trust password>

2-8

Chapter 2
Configuring Security with Securityconfig

When updating JKS keystore and truststore in a security configuration to PKCS12, you
can use this flag to specify the password to create PKCS12 password-protected
truststore used by client applications (client.trust).

e -param <param=value*>
List of security parameters to update.
For example:
security-> config update -secdir security -kstype PKCS12 -param

clientAuthRequired=false
Configuration updated.

Showing the security configuration

ORACLE

You can use the config show command to print out all security configuration information.

config show -secdir <security dir>

where:

For example:

security-> config show -secdir security

Security parameters:

certMode=shared

internalAuth=ssl

keystore=store.keys

keystorePasswordAlias=keystore
passwordClass=oracle.kv.impl.security.filestore.FileStoreManager
passwordFile=store.passwd

securityEnabled=true

truststore=store.trust

internal Transport parameters:
clientAllowProtocols=TLSvl1.2
clientAuthRequired=true
clientIdentityAllowed=dnmatch (CN=NoSQL)
clientKeyAlias=shared
serverIdentityAllowed=dnmatch (CN=NoSQL)
serverKeyAlias=shared
transportType=ssl

client Transport parameters:
clientAllowProtocols=TLSvl1.2
serverIdentityAllowed=dnmatch (CN=NoSQL)
serverKeyAlias=shared
transportType=ssl

ha Transport parameters:
allowProtocols=TLSv1.2
clientAuthRequired=true
clientIdentityAllowed=dnmatch (CN=NoSQL)
serverIdentityAllowed=dnmatch (CN=NoSQL)

2-9

Chapter 2
Configuring Security with Securityconfig

serverKeyAlias=shared
transportType=ssl

Keystore:
security/store.keys

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

shared, Jun 1, 2016, PrivateKeyEntry,
Certificate fingerprint (SHA1l): A6:54:9C:42:13:66:DC:E9:A8:62:DB:
A8:87:FD:DE:23:F7:AD:11:FB

Keystore:
security/store.trust

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

mykey, Jun 1, 2016, trustedCertEntry,
Certificate fingerprint (SHA1):A6:54:9C:42:13:66:DC:E9:A8:62:DB:
A8:87:FD:DE:23:F7:AD:11:FB

e -secdir <securitydir>

Specifies the name of the directory within the KVROOT that holds the security
configuration. This must be specified as a name relative to the KVROOT. If not
specified, the default value is "security".

Removing the security configuration

ORACLE

If you want to disable security for some reason in an existing installation, you can use
the config remove-security command:

config remove-security -root <kvroot> [-config >config.xml>]

Note:

When running this command, the securityconfig tool will update the
specified bootstrap configuration file to refer to the security configuration.
This process is normally done with the KVStore instance stopped, and must
be performed on each Storage Node of the store.

where:

. -root <kvroot>

A KVStore root directory must be provided as an argument.

2-10

Chapter 2
Configuring Security with Securityconfig

e -config <config.xml>

Specifies the bootstrap configuration file that is to be updated. This must be specified as
a name relative to the KVROOT. If not specified, the default value is "config.xml".

For example:

security-> config remove-security -secdir security
Configuration updated.

Merging truststore configuration

ORACLE

If you want to merge truststore entries from one security configuration into another security
configuration use the config merge-trust command. This command is helpful when
performing security maintenance, particularly when you need to update the SSL key/
certificate. See Guidelines for Updating SSL Keys and Certificates

config merge-trust

-root <secroot> [-secdir <security dir>]

-source-root <source secroot> [-source-secdir <source secdir>] [-ctspwd
<client.trust password>]

" Note:

When running this command, the securityconfig tool will verify the existence of
the referenced files and will combine trust entries from the source security
configuration into the primary security configuration.

where:

d -root <secroot>

Specifies the directory that contains the security configuration that will be updated. It is
not required that this directory be a full KVROOT, but the directory must exist and contain
an existing security configuration.

e -secdir <security dir>

Specifies the name of the directory within the secroot that holds the security
configuration. This must be specified as a name relative to the secroot. If not specified,
the default value is "security".

© -source-root <secroot>

Specifies the directory that contains the security configuration that will provide new trust
information. It is not required that this directory be a full KVROOT, but the directory must
exist and must contain an existing security configuration.

e -source-secdir <security dir>

Specifies the name of the security directory within the source secroot that will provide
new trust information. If not specified, the default value is "security".

e ctspwd <client.trust password>

2-11

Chapter 2
Configuring Security with Securityconfig

When merging truststore entries from a security configuration that uses PKCS12
store, utilities create a PKCS12 password-protected truststore used by client
applications (client.trust) if password specified using -ctspwd.

ORACLE 2-12

Performing a Secure Oracle NoSQL
Database Installation

It is possible to add security to a new or an existing Oracle NoSQL Database installation.

To add security to a new or an existing Oracle NoSQL Database single host deployment, see
the next section. For multiple node deployments, see Multiple Node Secure Deployment.

If you want to use Kerberos as an external authentication service, you should instead
complete the steps under Performing a Secure Oracle NoSQL Database Installation with
Kerberos.

Single Node Secure Deployment

The following examples describe how to add security to a new or an existing Oracle NoSQL
Database single host deployment.

Adding Security to a New Installation

To install Oracle NoSQL Database securely:

1.

ORACLE

Run the makebootconfig utility with the -store-security option to set up the basic store
configuration with security:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \

-root KVROOT -port 5000 \

-host node01 -harange 5010,5020 \

-store-security configure -pwdmgr pwdfile -capacity 1

In this example, -store-security configure is used, so the security configuration
utility is run as part of the makebootconfig process and you are prompted for a password
to use for your keystore file:

Enter a password for the Java KeyStore:

Enter a password for your store and then reenter it for verification. In this case, the
password file is used, and the securityconfig tool will automatically generate the
following security related files:

Enter a password for the Java KeyStore: ***xkxkkxkx

Re-enter the KeyStore password for verification: *x**kxskkxx
Created files:

security/client.trust

security/client.security

security/store.keys

security/store.trust

3-1

ORACLE

4,

Chapter 3
Single Node Secure Deployment

security/store.passwd
security/security.xml

Note:

In a multi-host store environment, the security directory and all files
contained in it should be copied to each server that will host a Storage
Node.

Start the Storage Node Agent (SNA):

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA MAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are
no user definitions available against which to authenticate access. In order to
reduce risk of unauthorized access, an admin will only allow you to connect to it
from the host on which it is running. This security measure is not a complete
safeguard against unauthorized access. It is important that you do not provide
local access to machines running KVStore. In addition, you should perform steps
5, 6 and 7 soon after this step in order to minimize the time period in which the
admin might be accessible without full authentication. For more information on
maintaining a secure store see Guidelines for Securing the Configuration.

Start runadmin in security mode on the KVStore server host (node01). To do this,
use the following command:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar \

runadmin -port 5000 -host node0l \
-security KVROOT/security/client.security
Logged in admin as anonymous

Use the configure -name command to specify the name of the KVStore that you
want to configure:

kv-> configure -name mystore
Store configured: mystore

After naming the KVStore, you can create at least one zone.

kv-> plan deploy-zone -name zone name -rf 1 -type primary -wait

3-2

ORACLE

Chapter 3
Single Node Secure Deployment

Every KVStore has an administration database. You must deploy the Storage Node first
and then deploy an Administration process on the same node to continue configuring the
database.

When you deploy the node, provide the zone ID, the node's network name, and its
registry port number.

kv-> plan deploy-sn -znname zone name -host hostname -port 5000 -wait

Having deployed the node, create the Admin process on the node that you just deployed,
using the deploy-admin command. This command requires the Storage Node ID and an
optional plan name.

" Note:

Note: You can obtain the Storage Node ID using the show topology command.
See show topology for more details.

kv-> plan deploy-admin -sn snl -wait

The final step in your configuration process is to create Replication Nodes on every node
in your store. You do this using the topology create and plan deploy-topology
commands.

kv-> topology create -name storeTopo -pool AllStorageNodes -partitions 150
kv-> plan deploy-topology -name storeTopo -wait

Your store is fully installed and configured.

Create an admin user. The password should comply with the security policies described
in Password Complexity Policies. In this case, user root is defined:

kv-> execute 'CREATE USER root IDENTIFIED BY \"password\" ADMIN
Statement completed successfully

For more information on user creation and administration, see User Management.

Create a new password file to store the credentials needed to allow clients to login as the
admin user (root):

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig \

pwdfile create -file KVROOT/security/login.passwd

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig pwdfile secret \
-file KVROOT/security/login.passwd -set -alias root

Enter the secret value to store: ***xkxxx*

Re-enter the secret value for verification: **x*kxxx

Secret created

3-3

ORACLE

Chapter 3
Single Node Secure Deployment

< Note:

The password must match the one set for the admin in the previous step.

For more information on user creation and administration, see User Management.

At this point, it is possible to connect to the store as the root user. To login, you
can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (mylogin.txt) is used. To login, use the following
command:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security mylogin

Logged in admin as root

The file mylogin. txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.pwdfile.file=KVROOT/security/login.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch (CN\=NoSQL)

Note that the hostname verifier provides a way for Oracle NoSQL Database clients
to specify the name that they expect the Oracle NoSQL Database server hosts to
use during SSL handshake (when they attempt to connect server using SSL/TLS).

For a secure store using the standard configuration, server hosts will be required
to authenticate themselves, and clients will use their SSL truststore to confirm that
the server authenticates with a trusted identity. The hostname verifier provides the
additional assurance that the server host authenticates using the expected identity,
not just any trusted identity.

This additional check is desirable if either the truststore contains multiple
certificates or if the certificate it contains is a CA certificate rather than a self-
signed or leaf certificate. In both those cases, the truststore can vouch for multiple
identities. The host verifier allows the user to specify the specific identity that is
expected.

The only hostname verifier currently supported is the dnmatch verifier, which must
be specified in the form of dnmatch (distinguished-name), where
distinguished name must be the NoSQL DB server certificate's distinguished
name. If you are using the default security configuration, then the hostname
verifier in the example specifies that the server should authenticate with a
certificate whose distinguished name is CN=NoSQL. This is the name used in the
server certificates that the system generates by default.

The verification is performed by checking if the distinguished name of server
certificate match the specified dnmatch expressions, which uses regular

3-4

Chapter 3
Single Node Secure Deployment

expressions as specified by java.util.regex.Pattern. The distinguished name
specified in dnmatch must be in RFC 1779 format, using the exact order, capitalization,
and spaces of the attribute value. RFC 1779 defines well-known attributes for
distinguished names, including CN, L, ST O, OU, C and STREET. If the distinguished
name of the external certificate contains non-standard attributes, for example,
EMAILADDRESS, then the expression used for dnmatch must replace these attribute
names with an OID that is valid in RFC 1779 form, or use special constructs of regular
expression to skip checking these attributes. If you are using a wild card to match a
certificate with a non-standard distinguished name attribute, the dnmatch expression
needs to match the attribute name in its OID format properly. See User Login.

Adding Security to an Existing Installation

To add security to an existing Oracle NoSQL Database installation:

1. Shut down the KVStore instance:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop \
-root KVROOT

2. Runthe securityconfig utility to set up the basic store configuration with security:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig

3. Usethe config create command with the -pwdmgr option to specify the mechanism
used to hold passwords that is needed for accessing the stores. In this case, Oracle
Wallet is used. Oracle Wallet is only available in the Oracle NoSQL Database EE version.
CE deployments should use the pwdfile option instead.

config create -pwdmgr wallet -root KVROOT
Enter a password for the Java KeyStore:

4. Enter a password for your store and then reenter it for verification. The configuration tool
will automatically generate some security related files:

Enter a password for the Java KeyStore: **xxkkxxkkx

Re-enter the KeyStore password for verification: ***xxxkddsx
Created files:

security/security.xml

security/store.keys

security/store.trust

security/store.wallet/cwallet.sso

security/client.security

security/client.trust

¢ Note:

In a multi-host store environment, the security directory and all files contained in
it should be copied to each server that will host a Storage Node.

ORACLE 3-5

ORACLE

6

Chapter 3
Single Node Secure Deployment

Use the config add-security command to add the security configuration you just
created:

security-> config add-security -root KVROOT
-secdir security -config config.xml
Configuration updated.

Note:

When running this command, the securityconfig tool will verify the
existence of the referenced files and will update the specified bootstrap
configuration file to refer to the security configuration. This process is
normally done with the KVStore instance stopped, and must be
performed on each Storage Node of the store.

Start the Storage Node Agent (SNA):

Note:

Before starting the SNA, set the environment variable MALLOC ARENA MAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT &

Start runadmin in security mode on the KVStore server host (node01). To do this,
use the following command:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar \

runadmin -port 5000 -host node0l1 \
-security KVROOT/security/client.security
Logged in admin as anonymous.

This command sets SSL as a connection method and names a copy of the
generated truststore file (client.security). For more information on SSL properties,
see SSL communication properties.

Create an admin user. The password should comply with the security policies
described in Password Complexity Policies. In this case, user root is defined:

kv-> execute 'CREATE USER root IDENTIFIED BY \"password\" ADMIN
Statement completed successfully

For more information on user creation and administration, see User Management.

3-6

Chapter 3
Multiple Node Secure Deployment

9. Create a new wallet file to store the credentials needed to allow clients to login as the
admin user (root):

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig \

wallet create -dir KVROOT/security/login.wallet

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root

Enter the secret value to store: ****xxkx

Re-enter the secret value for verification: #******xxx
Secret created

" Note:

The password must match the one set for the admin in the previous step.

For more information on user creation and administration, see User Management.

10. At this point, it is possible to connect to the store as the root user. To login, you can use
either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, the oracle.kv.security property is used. To login use the following
command:

java -Xmx64m -Xms64m \

-Doracle.kv.security=mylogin \

-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as root

The file mylogin. txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch (CN\=NoSQL)

For more information, see User Login.

Multiple Node Secure Deployment

The following examples describe how to add security to a new or to an existing Oracle
NoSQL Database multiple host deployment.

ORACLE 3.7

Chapter 3
Multiple Node Secure Deployment

Adding Security to a New Installation

To install an Oracle NoSQL Database three node, capacity=3 (3x3) secure
deployment:

ORACLE

1.

Run the makebootconfig utility with the -store-security option to set up the
basic store configuration with security:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \

-root KVROOT -port 5000 \

-host node0l1 -harange 5010,5020 \

-store-security configure -pwdmgr wallet -capacity 3

In this example, -store-security configure is used, so the security
configuration utility is run as part of the makebootconfig process and you are
prompted for a password to use for your keystore file:

Enter a password for the Java KeyStore:

Enter a password for your store and then reenter it for verification. For example,
using wallet, the securityconfig tool will automatically generate the following
security related files:

Enter a password for the Java KeyStore: **xxkkxxikrx

Re-enter the KeyStore password for verification: ***xxx&sdix
Created files:

security/security.xml

security/store.keys

security/store.trust

security/store.wallet/cwallet.sso

security/client.security

security/client.trust

In a multi-host store environment, the security directory and all files contained in it
should be copied from the first node to each server that will host a Storage Node,
to setup internal cluster authentication. For example, the following commands
assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

" Note:

You may need to use a remote copying command, like scp, to do the
copying if the files for the different nodes are not visible on the current
node.

3-8

Chapter 3
Multiple Node Secure Deployment

5. Enable security on the other two nodes using the -store-security enable command:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \

-host node02 \

-port 6000 \

-harange 6010,6020 \

-capacity 3 \

-store-security enable \

-pwdmgr wallet

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \

-host node03 \

-port 7000 \

-harange 7010,7020 \

-capacity 3 \

-store-security enable \

-pwdmgr wallet

6. Start the Storage Node Agent (SNA) on each node:

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA MAX to 1.
Setting MALLOC_ARENA MAX to 1 ensures that the memory usage is restricted to
the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

7. Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar \

runadmin -port 5000 -host node(0l \
-security KVROOT/security/client.security
Logged in admin as anonymous

8. Use the configure -name command to specify the name of the KVStore that you want to
configure:

kv-> configure -name mystore
Store configured: mystore

ORACLE 3-9

ORACLE

10.

11.

Chapter 3
Multiple Node Secure Deployment

Create an admin user. The password should comply with the security policies
described in Password Complexity Policies. In this case, user root is defined:

kv-> execute 'CREATE USER root IDENTIFIED BY \"password\" ADMIN
Statement completed successfully

For more information on user creation and administration, see User Management.

Create the wallet to enable client credentials for the admin user (root):

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig \

wallet create -dir KVROOT/security/login.wallet

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root

Enter the secret value to store: ****¥¥¥x

Re-enter the secret value for verification: xxxx¥x¥x¥x*
Secret created

¢ Note:

The password must match the one set for the admin in the previous step.

At this point, it is possible to connect to the store as the root user. To login, you
can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username" property in the security file.

In this example, a security file (adminlogin.txt) is used. To login, use the following
command:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security adminlogin.txt

Logged in admin as root

The file adminlogin. txt should be a copy of the client.security file with
additional properties settings for authentication. The file would then contain
content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch (CN\=NoSQL)

For more information, see User Login.

3-10

ORACLE

12.

13.

14.

Chapter 3
Multiple Node Secure Deployment

Once logged in as admin, you can create some users:

kv-> execute 'CREATE USER userl IDENTIFIED BY \"password\"
Statement completed successfully

kv-> execute 'CREATE USER user2 IDENTIFIED BY \"password\"
Statement completed successfully

Create the wallet to enable client credentials for each user. Typically you will reuse this
wallet for all your regular users:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig \

wallet create -dir KVROOT/security/users.wallet

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/users.wallet -set -alias userl

Enter the secret value to store: ***xkxxx

Re-enter the secret value for verification: **x#kxxx
Secret created

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/users.wallet -set -alias user2

Enter the secret value to store: ***xkxxx

Re-enter the secret value for verification: **x#*kxxx
Secret created

< Note:

Each password must match the one set for each user in the previous step. This
wallet is independent from the admin one. It is possible to store admin/user
passwords using the same wallet.

At this point, it is possible to connect to the store as a user. To login, you can use either
the -username <user> runadmin argument or specify the "oracle.kv.auth.username”
property in the security file.

In this example, a security file (userlogin.txt) is used. To login, use the following
command:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar runadmin -port 5000 \
-host localhost -security userlogin

Logged in admin as userl

The file userlogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=userl
oracle.kv.auth.wallet.dir=KVROOT/security/users.wallet
oracle.kv.transport=ssl

3-11

Chapter 3
Multiple Node Secure Deployment

oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch (CN\=NoSQL)

For more information, see User Login.

Adding Security to an Existing Installation

To add security to an existing three node, capacity=3 (3x3) Oracle NoSQL Database
installation:

1.

ORACLE

Shut down the KVStore instance on each node:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop \
-root KVROOT

Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig

Use the config create command with the -pwdmgr option to specify the
mechanism used to hold passwords that is needed for accessing the stores. In this
case, Oracle Wallet is used:

config create -pwdmgr wallet -root KVROOT
Enter a password for the Java KeyStore:

Enter a password for your store and then reenter it for verification. The
configuration tool will automatically generate some security related files:

Enter a password for the Java KeyStore: **xxkkxxikix

Re-enter the KeyStore password for verification: ***xxx&sksx*
Created files:

security/security.xml

security/store.keys

security/store.trust

security/store.wallet/cwallet.sso

security/client.security

security/client.trust

In a multi-host store environment, the security directory and all files contained in it
should be copied from the first node to each server that will host a Storage Node,
to setup internal cluster authentication. For example, the following commands
assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

3-12

ORACLE

6

7

Chapter 3
Multiple Node Secure Deployment

< Note:

You may need to use a remote copying command, like scp, to do the copying if
the files for the different nodes are not visible on the current node.

Use the config add-security command on each node to add the security configuration
you just created:

security-> config add-security -root KVROOT -secdir security

Note:

When running this command, the securityconfig tool will verify the existence
of the referenced files and will update the specified bootstrap configuration file
to refer to the security configuration. This process is normally done with the
KVStore instance stopped, and must be performed on each Storage Node of
the store.

Start the Storage Node Agent (SNA) on each node:

" Note:

Before starting the SNA, set the environment variable MALLOC ARENA MAX to 1.
Setting MALLOC ARENA MAX to 1 ensures that the memory usage is restricted to
the specified heap size.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

Start runadmin in security mode on the KVStore server host (node01). To do this, use the
following command:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar \

runadmin -port 5000 -host node0l \
-security KVROOT/security/client.security

This command sets SSL as a connection method and names a copy of the generated
truststore file (client.security). For more information on SSL properties, see SSL
communication properties.

Create an admin user. The password should comply with the security policies described
in Password Complexity Policies. In this case, user root is defined:

kv-> execute 'CREATE USER root IDENTIFIED BY \"password\" ADMIN
Statement completed successfully

3-13

ORACLE

10.

11.

Chapter 3
Multiple Node Secure Deployment

For more information on user creation and administration, see User Management.

Create the wallet to enable client credentials for the admin user (root):

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig \

wallet create -dir KVROOT/security/login.wallet

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig wallet secret \
-dir KVROOT/security/login.wallet -set -alias root

Enter the secret value to store: ****xxkx

Re-enter the secret value for verification: ******xxx
Secret created

" Note:

The password must match the one set for the admin in the previous step.

At this point, it is possible to connect to the store as the root user. To login, you
can use either the -username <user> runadmin argument or specify the
"oracle.kv.auth.username” property in the security file.

In this example, the oracle.kv.security property is used. To login use the following
command:

java -Xmx64m -Xms64m \

-Doracle.kv.security=adminlogin.txt \

-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as root >

The file adminlogin.txt should be a copy of the client.security file with
additional properties settings for authentication. The file would then contain
content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=KVROOT/security/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch (CN\=NoSQL)

For more information, see User Login.

3-14

Kerberos Authentication Service

Existing or new installations of Oracle NoSQL Database can be configured to use Kerberos
as an external authentication service. Kerberos is an industry standard authentication
protocol for large client/server systems.

Setting up and configuring a Kerberos deployment is beyond the scope of this chapter. This
chapter assumes that you have a running Key Distribution Center (KDC) and realm setup.

This chapter first describes some Kerberos concepts and then shows you how to configure
existing or new installations of Oracle NoSQL Database to use Kerberos as an external
authentication service.

Installation Prerequisites

Make sure that you have Kerberos V5 installed. Oracle NoSQL Database is compatible and
tested with MIT Kerberos V5.

If your Kerberos installation/keytab is configured to use a strong encryption type - for
example, AES with 256-bit keys - the JCE Unlimited Strength Jurisdiction Policy Files must
be obtained and installed in the JDK/JRE. Be aware that these files might already exist in
your installation. If so, they must be updated.

Kerberos Principal

ORACLE

A Kerberos Principal represents a unique identity in a Kerberos system to which Kerberos
can assign tickets to access Kerberos-aware services. A service principal should be created
for each Storage Node. Oracle NoSQL Database service principals follow this naming format:
<service_name>/instance@REALM.

where:

* service name

Is a case-sensitive string that represents the Oracle NoSQL Database service. The
default value is oraclenosql.

All Oracle NoSQL Database service principals should use the same service name across
different Storage Nodes.

o instance

Represents the service principal instance name. It is recommended to use the fully
qualified domain name (FQDN) of the Storage Node where Oracle NoSQL Database is
running.

If instance is not specified, the default principal will be created as oraclenosql@REALM.
e REALM

Represents the Kerberos realm name where the database service is registered. It must
be specified in UPPERCASE and is typically the DNS domain name.

4-1

Keytabs

Chapter 4
Keytabs

If no realm is given, the service principal is assumed to belong to the default
realm, as configured in the Kerberos configuration file.

A keytab is a file containing pairs of Kerberos principals and an encrypted copy of that
principal's key.

Keytabs are used to authenticate a principal on a host to Kerberos.

" Note:

Because having access to the keytab file for a principal allows one to act as
that principal, access to the keytab files should be tightly secured.

Kadmin and kadmin.local

Kadmin and kadmin.local are command-line interfaces to the Kerberos administration
system.

In general, both interfaces provide the same functionality. When creating Kerberos
principals and keytabs, you can use kadmin.local or kadmin depending on your
access and account.

For more information, see the MIT Kerberos documentation.

Kerberos Security Properties

ORACLE

To set up the Kerberos security properties, you can set them in a login file or through
the KvStoreConfig class.

The minimal configuration needed to set up Kerberos includes the following properties:

o oracle.kv.auth.username

Specifies the Kerberos user name in Oracle NoSQL Database. It must match the
principal name in KDC and match the Kerberos user account name created in the
database. The client will use the value of this option to create the credential which
is used in the client-server authentication. If the short name of principal is specified
in this field, you must also specify oracle.kv.auth.kerberos.realm.

If KerberosCredentials is not used, this field has to be specified in the login file or
security properties field of KVStoreConfig.

o oracle.kv.auth.kerberos.services

Specifies the Kerberos principals for services associated with each helper host.
Setting this property is required if, as recommended, each host uses a different
principal that includes its own principal name. All principals should specify the
same service and realm. If this property is not set, the client will use oraclenosql
as the principal name for services on all helper hosts.

Each entry should specify the helper host name followed by the Kerberos service
name, and optionally an instance name and realm name. The entries are

4-2

Chapter 4
Kerberos Security Properties

separated by commas, ignoring spaces. If any entry does not specify a realm, each entry
will use the default realm specified in Kerberos configuration file. If any entry specifies a
realm name, then all entries must specify the same one. The syntax is:

host:service[:instance[@realm]] [, host:service[:instance[@realm]]]*

For example:

host37:nosql/host37QREXAMPLE.COM,
host53:nosql/host53@EXAMPLE . COM

e oracle.kv.auth.kerberos.keytab

The default location of the keytab file is specified by the Kerberos configuration file. If the
keytab is not specified there, then the system looks for the file user.home/krb5.keytab.

. oracle.kv.auth.kerberos.realm

Specifies the Kerberos realm for the user principal if using a short name to specify the
client login principal.

. oracle.kv.auth.kerberos.ccache

Specifies the path of the Kerberos ticket cache. This field is optional. The default ticket
cache is "tmp/krbcc_<uid>". If the credential cache is not found, the system will look for
the file user.home/krb5cc_user.name. If you want to use your own ticket cache, set this
field to the path of the ticket cache.

o oracle.kv.auth.kerberos.mutualAuth

Specifies whether the client should use mutual authentication. If this value is set to true,
the client will authenticate the server's identity in the login results.

The default value is false, So mutual authentication is disabled.

Setting Security Properties in a security login file

To set the properties in a security file, specify the location of the login file by setting the
oracle.kv.security Java system property. For example:

java -Doracle.kv.security=kerberoslogin.txt HelloWorld

where the file kerberoslogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content like this:

oracle.
oracle.
oracle.
oracle.

oracle.

ORACLE

kv.
kv.
kv.
kv.

kv.

auth.
auth.
auth.
auth.

auth.

username=
.mechanism=kerberos

external

kerberos.
kerberos.

node01:
.mutualAuth=false

kerberos

krbuser@EXAMPLE.COM
keytab=/kerberos/krb5.keytab

services=
oraclenosql/node0l.example.com@EXAMPLE .COM

4-3

Chapter 4
Kerberos Security Properties

You can specify the location of the Kerberos configuration file by specifying the
java.security.krb5.conf Java system property. For example:

java -Djava.security.krb5.conf=/kerberos/krb5.conf \
-Doracle.kv.security=kerberoslogin.txt HelloWorld

You can also set the default realm using java.security.krb5.realm. To set the
default KDC, use java.security.krb5.kdc.

< Note:

Set the Java system properties for both the realm and the KDC or neither of
them. These properties override the default realm and KDC values specified
in the krb5. conf file.

Setting Security Properties through KVStoreConfig

You can also set security properties using KvStoreConfig. For example:

Properties securityProps = new Properties();
securityProps.setProperty("oracle.kv.auth.username",
"krbuser@EXAMPLE.COM") ;
securityProps.setProperty("oracle.kv.auth.external.mechanism",
"kerberos") ;
securityProps.setProperty("oracle.kv.auth.kerberos.keytab",
"/kerberos/krb5.keytab") ;
securityProps.setProperty("oracle.kv.auth.kerberos.services",
"node01:oraclenosgl/node0l.example.com@EXAMPLE.COM") ;
securityProps.setProperty("oracle.kv.auth.kerberos.ccache",
"/kerberos/krbcc 501");
securityProps.setProperty("oracle.kv.auth.kerberos.mutualAuth",
"false");

KVStoreConfig kvConfig = new KVStoreConfig("mystore", "node01:5000");
kvConfig.setSecurityProperties (securityProps);

Using Security Properties to Log In

To log in to Oracle NoSQL Database using security properties, you can use credential
cache, a keytab file or the principal password.

" Note:

When connecting through the Admin CLI, if credential cache or keytabs login
attempts fail, Oracle NoSQL Database prompts for the principal's password.

ORACLE 4-4

Chapter 4
Kerberos Security Properties

Using Credential Cache

To login to Oracle NoSQL Database using credential cache:

1.

Run the kinit Kerberos tool to save the credential in the credential cache.

For example, to authenticate the client principal krbuser@EXAMPLE . COM to KDC:

kinit krbuser@EXAMPLE.COM
Password for krbuser@EXAMPLE.COM: *****x*%%

The granted ticket-granting ticket (TGT) will be saved in the default credential cache for
later authentication.

You can also generate a separate cache. To do this run the following command:
kinit krbuser@EXAMPLE.COM -c krbcc krbuser

Perform the login by specifying oracle.kv.auth.kerberos.ccache in a security login file
or through KvStoreConfig. In this case, a security login file is used:

java -Xmx64m -Xms64m \

-Doracle.kv.security=mylogin.txt \

-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin.txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content like
this:

oracle.kv.auth.kerberos.ccache=/kerberos/krbcc_krbuser
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
node0l:oraclenosgl/node0l.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the credential cache and logins to Kerberos
without needing a password.

Using credential cache

ORACLE

To login to Oracle NoSQL Database using credential cache:

1.

Run the kinit Kerberos tool to save the credential in the credential cache.

For example, to authenticate the client principal krbuser@ EXAMPLE.COM to KDC:

kinit krbuser@EXAMPLE.COM
Password for krbuser@EXAMPLE.COM: *****x%x%

The granted ticket-granting ticket (TGT) will be saved in the default credential cache for
later authentication.

4-5

Using a keytab

ORACLE

Chapter 4
Kerberos Security Properties

You can also generate a separate cache. To do this run the following command:
kinit krbuser@EXAMPLE.COM -c krbcc krbuser

Perform the login by specifying oracle.kv.auth.kerberos.ccache in a security
login file or through KvstoreConfig. In this case, a security login file is used:

java -Xmx64m -Xms64m \

-Doracle.kv.security=mylogin.txt \

-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin. txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracle.kv.auth.kerberos.ccache=/kerberos/krbcc_krbuser
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
node0l:oraclenosqgl/node0l.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the credential cache and logins to
Kerberos without needing a password.

To login to Oracle NoSQL Database using a keytab:

1

Run the kinit Kerberos tool to extract the keytab:

kadmin.local: ktadd -k /tmp/mykeytab krbuser@EXAMPLE.COM
Entry for principal krbuser@EXAMPLE.COM added to
keytab WRFILE:/tmp/mykeytab.

Copy the keytab file to any client machine that will use the
krbuser@ EXAMPLE.COM principal to login automatically to Oracle NoSQL
Database.

Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the KvstoreConfig class.

In this example, a security file (login) is used. To login, specify the keytab location
by using oracle.kv.auth.kerberos.keytab. You must also specify the username
using oracle.kv.auth.username. For example, the login file would then contain
content like this:

oracle.kv.auth.kerberos.keytab = /kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=

4-6

Chapter 4
JAAS programming framework integration

node0l:oraclenosgl/node0l.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos without
needing a password.

For more information on Kerberos security properties, see Kerberos Security Properties.

JAAS programming framework integration

ORACLE

Oracle NoSQL Database allows client applications to integrate with programs using the Java
Authentication and Authorization Service (JAAS) programming framework.

Use the oracle.kv.jaas.login.conf.entryName Security property to specify the JAAS login
configuration.

Note:

If a JAAS login configuration file is set, you cannot specify keytab or credential
cache in security properties.

A login configuration file would then contain content like this:

oraclenosqgl {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
keyTab=test.keytab
storeKey=true
principal=krbuser
doNotPrompt=false;

}i

where oraclenosql is the value for oracle.kv.jaas.login.conf.entryName. This
configuration file can be used for Kerberos login.

In the following example, assume the client application has already obtained the Kerberos
credentials for user krbuser before it tries to connect to Oracle NoSQL Database. You do not

have to specify security properties in the login file. You can specify the credentials using the
Subject.doAs method:

final LoginContext lc =
new LoginContext ("oraclenosql", new TextCallbackHandler());

// Attempt authentication
lc.login();

// Get the authenticated Subject
final Subject subj = lc.getSubject();

// Specify configuration
final KVStoreConfig kvConfig =

4-7

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

new KVStoreConfig("mystore", "nosqll:5000");

// Set security properties SSL needed

final Properties securityProps = new Properties();

securityProps.setProperty (KVSecurityConstants.TRANSPORT PROPERTY,

KVSecurityConstants.SSL TRANSPORT NAME);

securityProps.setProperty (
KVSecurityConstants.SSL TRUSTSTORE FILE PROPERTY,
trustStore);

kvConfig.setSecurityProperties (securityProps);

// Set Kerberos properties
final Properties krbProperties = new Properties();

// Set service principal associated with helper host
krbProperties.setProperty (KVSecurityConstants.AUTH KRB SERVICES PROPERT
YI

hostName + ":" + servicePrincipal);

// Set default realm name, because the short name

// for user principal is used.

krbProperties.setProperty (KVSecurityConstants.AUTH KRB REALM PROPERTY,
"EXAMPLE.COM") ;

// Specify Kerberos principal
final KerberosCredentials krbCreds =
new KerberosCredentials ("krbuser", krbProperties);

// Get store using credentials in subject
KVStore kvstore = Subject.doAs (
subj, new PrivilegedExceptionAction<KVStore>() {
@override
public KVStore run() throws Exception {
return KVStoreFactory.getStore (kvConfig, krbCreds, null);
}
)

In this case, a KerberosCredentials instance is used to set the security properties
needed to retrieve the credentials of the specified user principal from KDC.

Performing a Secure Oracle NoSQL Database Installation
with Kerberos

ORACLE

It is possible to add Kerberos to a new or an existing Oracle NoSQL Database secure
installation.

At a high-level, to configure a Oracle NoSQL Database installation to use Kerberos,
you first need to register Oracle NoSQL Database as a service principal in KDC and
extract corresponding keytab files on each database server node. Then, to allow client
login, a user principal must be added in KDC and a mapped user account with the
same name of principal needs to be created in the database. Finally, login can be
performed through the CLI or the kvclient driver.

4-8

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Adding Kerberos to a New Installation

ORACLE

To install Oracle NoSQL Database with Kerberos authentication:

" Note:

The following example assumes you have configured an admin/admin principal on
the KDC and that you distributed its keytab (kadm5.keytab) to the Oracle NoSQL
Database Storage Nodes. For more information, see Configuring the Kerberos
Administrative Utility.

Run the makebootconfig utility with the -store-security configure and -external-
auth kerberos flags to set up the basic store configuration with Kerberos security:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \

-host node0l -harange 5010,5020 \

-capacity 3 \

-store-security configure \

-external-auth kerberos \

-instance-name node0l.example.com \
-kadmin-keytab /kerberos/kadm5.keytab \
-admin-principal admin/admin

In this example, -store-security configure is used, so the security configuration
utility is run as part of the makebootconfig process and you are prompted for a password
to use for your keystore file:

Enter a password for the Java KeyStore:

Enter a password for your store and then reenter it for verification. In this case, Oracle
Wallet is used. Oracle Wallet and Kerberos support are only available in the Oracle
NoSQL Database EE version.

Enter a password for the Java KeyStore: ***xkxkkxkx
Re-enter the KeyStore password for verification: *x#*kxskxxx

In this case, -kadmin-keytab points to the admin/admin keytab file you distributed earlier.
Once authenticated, the configuration tool will automatically generate some security
related files:

Login Kerberos admin via

keytab /kerberos/kadm5.keytab

Adding principal oraclenosql/node0l.example.com@EXAMPLE.COM
Authenticating as principal admin/admin with

keytab /kerberos/kadm5.keytab

Extracting keytab KVROOT/security/store.keytab

Created files:

security/security.xml

4-9

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

security/store.keys
security/store.trust
security/store.wallet/cwallet.sso
security/store.keytab
security/client.security
security/client.trust

5. In a multi-host store environment, the security directory and all files contained in it
should be copied from the first node to each server that will host a Storage Node,
to setup internal cluster authentication. For example, the following commands
assume that the different nodes are visible and accessible on the current node
(node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

" Note:

You may need to use a remote copying command, like Secure Copy
Protocol (SCP), to do the copying if the files for the different nodes are
not visible on the current node.

6. Run makebootconfig on the other two nodes:

e Add Kerberos and create their individual service principal and keytab:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 6000 \

-host node02 -harange 6010,6020 \

-capacity 3 \

-store-security configure \

-external-auth kerberos \

-instance-name node02.example.com \
-kadmin-keytab /kerberos/kadm5.keytab \
-admin-principal admin/admin

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 7000 \

-host node03 -harange 7010,7020 \

-capacity 3 \

-store-security configure \

-external-auth kerberos \

-instance-name node03.example.com \
-kadmin-keytab /kerberos/kadm5.keytab \
-admin-principal admin/admin

ORACLE 4-10

ORACLE

7

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

< Note:

The service principal name of node2 and node3 are using the same service
name "oraclenosql", but different instance names. Their keytab files are
different, which contains the key for principal "oraclenosql/
node2.example.com" and "oraclenosgl/node3.example.com" respectively.

To enable Kerberos authentication if the store is using the same service principal on
every node:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 6000 \

-host node02 -harange 6010,6020 \

-capacity 3 \

-store-security enable

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 6000 \

-host node03 -harange 6010,6020 \

-capacity 3 \

-store-security enable

Note:

The service principal created in step one is "oraclenosqgl/
nodeOl.example.com”. The instance name can be replaced with any more
general one like "nosgl". In above example, node02 and node03 are all
using the same service principal and keytab file without creating new one
individually.

Start the Storage Node Agent (SNA) on each node:

< Note:

Before starting the SNA, set the environment variable MALLOC ARENA MAX to 1.
Setting MALLOC_ARENA MAX to 1 ensures that the memory usage is restricted to
the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are no user
definitions available against which to authenticate access. In order to reduce risk of
unauthorized access, an admin will only allow you to connect to it from the host on which

4-11

ORACLE

10.

11.

12.

13.

14.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

it is running. This security measure is not a complete safeguard against
unauthorized access. It is important that you do not provide local access to
machines running KVStore. In addition, you should perform the following steps
soon after this step in order to minimize the time period in which the admin might
be accessible without full authentication. For more information on maintaining a
secure store see Guidelines for Securing the Configuration.

Start runadmin in security mode on the KVStore server host (node01). To do this,
use the following command:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar \

runadmin -port 5000 -host node01 \
-security KVROOT/security/client.security
Logged in admin as anonymous

Use the configure -name command to specify the name of the KVStore that you
want to configure:

kv-> configure -name mystore
Store configured: mystore

Register the user principal on the KDC. To do this, use kadmin or kadmin.local:

kadmin.local: addprinc krbuser@EXAMPLE.COM
Enter password for principal: "krbuser@EXAMPLE.COM": **#**kkkxxxx
Re-enter password for principal: "krbuser@EXAMPLE.COM": ****xxx%#%x%

After user principal is registered on KDC, create the user in Oracle NoSQL
Database. The username needs to match the full principal name in the KDC
(includes realm name). In this case, user krbuser is defined:

kv-> execute 'CREATE USER "krbuser@EXAMPLE.COM" IDENTIFIED
EXTERNALLY'

For more information on user creation and administration, see User Management.

At this point, it is possible to connect to the store as the krbuser. To login, you can
use credential cache, a keytab file or enter the principal password.

In this example, a keytab file is used. To do this, first extract the keytab of principal
krbuser@EXAMPLE.COM on the KDC host by using kadmin. local.

kadmin.local: ktadd -k /tmp/mykeytab krbuser@EXAMPLE.COM
Entry for principal krbuser@EXAMPLE.COM added to
keytab WRFILE:/tmp/mykeytab.

Copy the keytab file to client machines that will use the krbuser@ EXAMPLE.COM
principal to login automatically to Oracle NoSQL Database.

Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the KvstoreConfig class.

4-12

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

In this example, a security file (mylogin.txt) is used. To login, specify the file location by
using the oracle.kv.security property. For example:

java -Xmx64m -Xms64m \

-Doracle.kv.security=mylogin.txt \

-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin. txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content like
this:

oracle.kv.auth.kerberos.keytab = kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external .mechanism=kerberos
oracle.kv.auth.kerberos.services=
node0l:oraclenosgl/node0l.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos without
needing a password.

For more information on Kerberos security properties, see Kerberos Security Properties.

Adding Kerberos to an Existing Secure Installation

ORACLE

To add Kerberos to an existing Oracle NoSQL Database secure installation:

Note:

The following example assumes you have configured an admin/admin principal on
the KDC and that you distributed its keytab (kadm5.keytab) to the Oracle NoSQL
Database Storage Nodes. For more information, see Configuring the Kerberos
Administrative Utility.

< Note:

If your Kerberos installation/keytab will be configured to use a strong encryption
type — for example, AES with 256-bit keys — the JCE Unlimited Strength
Jurisdiction Policy Files must be obtained and installed in the JDK/JRE. Be aware
that these files might already exist in your installation. If so, they must be updated.

Shut down the KVStore instance:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop \
-root KVROOT

4-13

ORACLE

3.

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Use the config add-kerberos command to add Kerberos authentication:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar securityconfig \
config add-kerberos -root KVROOT \

-secdir security \

-admin-principal admin/admin

Adding principal oraclenosql@EXAMPLE.COM
Password for admin/admin: ******%*
Created files:

security/store.keytab
Updated Kerberos configuration

Note:

When running this command, the securityconfig tool will verify the
existence of the referenced files and will update the specified bootstrap
configuration file to refer to the security configuration. This process is
normally done with the KVStore instance stopped, and must be
performed on each Storage Node of the store.

Start the Storage Node Agent (SNA) on each node:

" Note:

Before starting the SNA, set the environment variable MALLOC ARENA MAX
to 1. Setting MALLOC ARENA MAX to 1 ensures that the memory usage is
restricted to the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

Start runadmin in security mode on the KVStore server host (node01). To do this,
use the following command:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar \

runadmin -port 5000 -host node0l1 \
-security KVROOT/security/client.security
Logged in admin as anonymous.

This command sets SSL as a connection method and names a copy of the
generated truststore file (client.security). For more information on SSL properties,
see SSL communication properties.

4-14

ORACLE

Chapter 4
Performing a Secure Oracle NoSQL Database Installation with Kerberos

Register the user principal on the KDC. To do this, use kadmin or kadmin.local:

kadmin.local: addprinc krbuser@EXAMPLE.COM
Enter password for principal: "krbuser@EXAMPLE.COM": **#*kkkkxxxx
Re-enter password for principal: "krbuser@EXAMPLE.COM": ****xxx%#%x%

After user principal is registered on KDC, create the user in Oracle NoSQL Database.
The username needs to match the full principal name in the KDC (includes realm name).
In this case, user krbuser is defined:

kv-> execute 'CREATE USER "krbuser@EXAMPLE.COM" IDENTIFIED EXTERNALLY'

For more information on user creation and administration, see User Management.

At this point, it is possible to connect to the store as the krbuser. To login, you can use
credential cache, a keytab file or enter the principal password.

In this example, a keytab file is used. To do this, first extract the keytab of principal
krbuser@EXAMPLE.COM on the KDC host by using kadmin. local.

kadmin.local: ktadd -k /tmp/mykeytab krbuser@EXAMPLE.COM
Entry for principal krbuser@EXAMPLE.COM added to
keytab WRFILE:/tmp/mykeytab.

Copy the keytab file to any client machine that will use the krbuser@ EXAMPLE.COM
principal to login automatically to Oracle NoSQL Database.

Set the Kerberos security properties, including the keytab file location, on each client by
specifying them in a security file or through the KvStoreConfig class.

In this example, a security file (mylogin.txt) is used. To login, specify the file location by
using the oracle.kv.security property. For example:

java -Xmx64m -Xms64m \

-Doracle.kv.security=mylogin.txt \

-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
Logged in admin as krbuser

The file mylogin. txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content like
this:

oracle.kv.auth.kerberos.keytab = kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
node0l:oraclenosql/node0l.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

In this case, Oracle NoSQL Database reads the keytab and logins to Kerberos without

needing a password.

For more information on Kerberos security properties, see Kerberos Security Properties.

4-15

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Using Oracle NoSQL Database with Kerberos and Microsoft
Active Directory (AD)

To use Oracle NoSQL Database with Kerberos and Microsoft Active Directory:

ORACLE

1.

Update Kerberos Configuration krb5.conf with AD.

The Microsoft Guide (see here) details how to update the Kerberos configuration
file on a Unix host in step 3: Edit the file (/etc/krb5.conf) to refer to the Windows
2000 domain controller as the Kerberos KDC. After changing the Kerberos
configuration file, run kinit using a user account in AD to verify that the
configuration is correct.

For example, suppose you have user account krbuser08 on domain TEST08 of AD,
and the KDC realm name is TEST08.LOCAL:

$ kinit krbuser08QTEST08.LOCAL
Password for krbuser(08QTEST08.LOCAL

After you provide the password, the command should return without error. An error
indicates there are probably configuration issues. If the kinit command ran
successfully, then run k1ist to check that the ticket cache contains the TGT of
krbuser(8.

$ klist
Ticket cache: FILE:/tmp/krb5cc 500
Default principal: krbuser08@TEST08.LOCAL

Valid starting Expires Service principal
08/12/16 11:45:03 08/12/16 21:45:11 krbtgt/
TEST08.LOCAL@TESTO08.LOCAL

renew until 08/19/16 11:45:03

The klist shows the tickets in your ticket cache. Perform this step to check if the
ticket-granting ticket has been properly obtained using the principal krbuser08
described by "Default Principal.” The "Service Principal" describes each ticket, the
ticket-granting ticket has the primary krbtgt, and the instance name is the KDC
realm name. Also check if the lifetime indicated by "Valid Starting" and "Expires" is
correct.

Create service instance account and generate keytab on AD.

The Microsoft Guide (see https://technet.microsoft.com/en-us/library/
bb742433.aspx#EEAA) details how to support a service running on a Unix system
when using Active Directory. Follow the steps in this document to generate the
service principal and keytab file for Oracle NoSQL Database. Note that you do not
need to perform step 3 in the Microsoft Guide to merge keytab files if you plan to
use same keytab file on every host.

For example, you can set the instance name to nosqgl and use this keytab on
every node.

e Use the Active Directory Management tool to create a user account named
oraclenosql.

4-16

https://technet.microsoft.com/en-us/library/bb742433.aspx#EEAA
https://technet.microsoft.com/en-us/library/bb742433.aspx#EEAA

ORACLE

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

In the user creation interface, you can choose which Kerberos encryption type this
account can support. The user account may use Data Encryption Standard (DES)
encryption as default. To enable other encryption types for this account, you need to
manually configure in the "Properties” interface, or by using ktpass utility. Note that
you need to disable the "User must change password at next logon" setting.

Use ktpass tool on Windows Server to set up an identity mapping.

c:\ktpass -princ oraclenosql/nosql@TEST08.LOCAL
-mapuser oraclenosgl -pass "*"-cypto DES-CBC-MD5 -ptype
KRB5 NT PRINCIPAL -out c:\store.keytab

You may need to add allow weak crypto = true to the krb5.cont file on the Unix
host, as well as default tkt enctypes and default tgs enctypes, if you use the
DES decryption type. The default name of the keytab for Oracle NoSQL Database is
store.keytab and the default service name of the service principal is oraclenosql.

Copy the keytab file to your Unix hosts used by Oracle NoSQL Database.

Typically, you can use Secure Copy Protocol (scp) or PUTTY Secure Copy (PSCP) to
transfer this file securely, or upload this file to an FTP server shared by Windows
Server and Unix hosts. After creating the service principal and keytab, run kinit tests
on your Unix hosts (described next) to confirm that they are configured properly.

3. Test if the user account can acquire service tickets for the service principal, and if the
service keytab is generated correctly by running kinit:

Test if the user account can acquire service tickets for service principal oraclenosql.

$ kinit -S oraclenosql/nosql@TEST08.LOCAL krbuser08@TEST08.LOCAL
Password for krbuser08@TEST08.LOCAL:

$ klist

Ticket cache: FILE:/tmp/krb5cc 500

Default principal: krbuser0O8@TESTO08.LOCAL

Valid starting Expires Service principal
08/12/16 11:50:55 08/12/16 21:51:00 oraclenosql/nosql@TEST08.LOCAL
renew until 08/19/16 11:50:55

If the ticket cache does not contains a service ticket for oraclenosgl/nosql, or if any
errors are reported in the first command, then check if the account was created
properly.

Test if the service keytab was generated correctly by running kinit oraclenosql.

$ kinit -k -t store.keytab oraclenosgl/nosql@TEST08.LOCAL
$ klist

Ticket cache: FILE:/tmp/krb5cc 500

Default principal: oraclenosql/nosql@TEST08.LOCAL

Valid starting Expires Service principal

08/12/16 11:51:44 08/12/16 21:51:45 krbtgt/TEST08.LOCALRTESTO8.LOCAL
renew until 08/19/16 11:51:44

As with the previous tests, any errors need to be fixed before attempting to configure
Oracle NoSQL Database. Some versions of the kinit utility may need to explicitly

4-17

ORACLE

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

specify default tkt enctypes and default tgs enctypes with the
encryption type you configured for the service account oraclenosql in Active
Directory, otherwise kinit cannot successfully obtain tickets from AD.

Begin to configure Oracle NoSQL Database.

Oracle NoSQL Database utilizes the Unix kadmin tool to help users create service
principal and generate keytab file. However, AD does not have remote admin utility
support, so it is necessary to skip this step in AD Kerberos environment.

For Oracle NoSQL Database releases prior to 4.2, you must specify none as the
value for both the -kadmin-path and -admin-principal makebootconfig
command line options.

java -Xmx64m -Xms64m \

-jar S$KVHOME/lib/kvstore.jar makebootconfig -root kvroot \

-port 5000 \

-host node0l.example.com -harange 5010,5020 \

-store-security configure -kspwd password \

-external-auth kerberos \

-kadmin-path none \

-admin-principal none \

-instance-name nosqgl

Adding principal oraclenosgl/nosqgl

I0 error encountered: Cannot run program "none": error=13,

Permission denied

Created files
KVROOT/security/client.security
KVROOT/security/client.trust
KVROOT/security/security.xml
KVROOT/security/store.wallet/cwallet.sso
KVROOT/security/store.keys
KVROOT/security/store.trust

The IO error can be ignored in this example, because we did not specify a correct
kadmin path.

For Oracle NoSQL Database 4.2 and later releases, you only need to specify none
as the value for the -kadmin-path flag:

java -Xmx64m -Xms64m \

-jar $KVHOME/lib/kvstore.jar makebootconfig -root kvroot \
-port 5000 \

-host node0Ol.example.com -harange 5010,5020 \
-store-security configure -kspwd password \

-external-auth kerberos \

-kadmin-path none \

-instance-name nosqgl

The kadmin path was specified as NONE, so this example is not creating a keytab
for the database server. The keytab must be generated and copied to the security
configuration directory manually.

Created files
KVROOT/security/client.security

4-18

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

KVROOT/security/client.trust
KVROOT/security/security.xml
KVROOT/security/store.wallet/cwallet.sso
KVROOT/security/store.keys
KVROOT/security/store.trust

After the security directory is created, it is worth checking that the Kerberos parameters
are configured as expected.

Check security.xml in kvroot/security and look for the following parameters:
* krbinstanceName
* krbRealmName

For Oracle NoSQL Database 4.2 and later releases, you can use the securityconfig
tool to view the parameters:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar securityconfig \
config show -secdir kvroot/security

krbInstanceName=nosql
krbRealmName=TEST08.LOCAL

5. Manage service principals in a multi-node environment.

e In a multi-node environment, if you want to use a single service principal
oraclenosqgl/nosqgl for all nodes, you can simply copy the contents of the first
security directory to the other nodes. For example, the following commands assume
that the different nodes are visible and accessible on the current node (node01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

You may need to use a remote copying command, like scp, to do the copying if the
files for the different nodes are not visible on the current node.

Run makebootconfig on the other two nodes to enable Kerberos authentication.

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \

-host node02 -harange 5010,5020 \
-store-security enable

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \

-host node03 -harange 5010,5020 \
-store-security enable

ORACLE 4-19

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

< Note:

The service principal for node02 and node03 will be configured as
oraclenosql/nosqgl@TEST08.LOCAL. Also they will use the same
keytab file generated in step two.

* To set up individual service principals for each node, run step two to create a
service account on AD and generate a new keytab for each node. For
example, each node uses host name as instance name of service principal
and their corresponding keytab files.

oracelnosql/node01Q@TEST08.LOCAL
oracelnosql/node02@TEST08.LOCAL
oracelnosql/node03Q@TEST08.LOCAL

Copy the security directory created on node01 to other nodes. For example,
the following commands assume that the different nodes are accessible using
ssh from the current node (host01):

cp -R node01/KVROOT/security node02/KVROOT/
cp -R node01/KVROOT/security node03/KVROOT/

< Note:

You may need to use a remote copying command, like scp, to copy
the files for the different nodes if they are not visible on the current
node.

Replace keytab files of node2 and node3 generated in step two with the one in
their security configuration directory. For example:

cp store.keytab node02/KVROOT/security
cp store.keytab node03/KVROOT/security

¢ Note:

The name of all of the keytab files generated in step two is
store.keytab by default. Make sure that you have given each node
the proper keytab file. Use the k1ist tool to check keytab file on
each node to make sure they contain the correct key of service
principal for the node.

ORACLE 4-20

ORACLE

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Run the securityconfig tool on node02 and node03 to modify instance name of
security configuration:

security -> config update -secdir KVROOT/security \
-param krbInstanceName=node(2

security -> config update -secdir KVROOT/security \
-param krbInstanceName=node(3

Run makebootconfig on the other two nodes to enable Kerberos authentication.

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \

-host node02 -harange 5010,5020 \
-store-security enable

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT -port 5000 \

-host node03 -harange 5010,5020 \
-store-security enable

Start the Storage Node Agent (SNA) on each node:

¢ Note:

Before starting the SNA, set the environment variable MALLOC ARENA MAX to 1.
Setting MALLOC_ARENA MAX to 1 ensures that the memory usage is restricted to
the specified heap size.

nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT&

When a newly created store with a secure configuration is first started, there are no user
definitions available against which to authenticate access. To reduce risk of unauthorized
access, an admin will only allow you to connect to it from the host on which it is running.
This security measure is not a complete safeguard against unauthorized access. It is
important that you do not provide local access to machines running KVStore. In addition,
perform the following steps to minimize the time period in which the admin might be
accessible without full authentication. For more information on maintaining a secure store
see Guidelines for Securing the Configuration.

Start runadmin in security mode on the KVStore server host (node01). To do this:

java -Xmx64m -Xms64m \

-jar KVHOME/lib/kvstore.jar \

runadmin -port 5000 -host node0l \
-security KVROOT/security/client.security
Logged in admin as anonymous

4-21

ORACLE

10.

11.

12.

Chapter 4
Using Oracle NoSQL Database with Kerberos and Microsoft Active Directory (AD)

Use the configure -name command to specify the name of the KVStore that you
want to configure, and then complete store deployment. For more information, see
the Oracle NoSQL Database Administrator's Guide:

kv-> configure -name mystore
Store configured: mystore

Create a user account on Microsoft Active Directory. In this example, krbuser is
created on Active Directory.

Create mapping user in Oracle NoSQL Database. The username needs to match
the full principal name in the KDC (includes realm name). In this case, user
krbuser is defined:

kv-> execute 'CREATE USER "krbuser@TEST08.LOCAL"
IDENTIFIED EXTERNALLY'

For more information on user creation and administration, see User Management.

At this point, it is possible to connect to the store as the krbuser. To login, you can
use credential cache, a keytab file or enter the principal password.

Set the Kerberos security properties, including the keytab file location, on each
client by specifying them in a security file or through the XvStoreConfig class.

In this example, a security file (mylogin.txt) is used. To login, specify the file
location by using the oracle.kv.security property. For example:

java -Xmx64m -Xms64m \

-Doracle.kv.security=mylogin.txt \

-jar KVHOME/lib/kvstore.jar runadmin -port 5000 -host localhost
krbuser@TEST08.LOCAL's kerberos password:

Logged in admin as krbuser@TESTO08.LOCAL

kv->

The file mylogin. txt should be a copy of the client.security file with additional
properties settings for Kerberos authentication. The file would then contain content
like this:

oracle.kv.auth.username = krbuser@TEST08.LOCAL
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=node0l:oraclenosqgl/
nosql@TEST08.LOCAL

oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=KVROOT/security/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch (CN\=NoSQL)

In this example, the store nodes are using the single service principal
oraclenosgl/nosqgl. Without specifying keytab or credential cache, Admin CLI
prompts for principal password.

For more information on Kerberos security properties, see Kerberos Security
Properties.

4-22

External Password Storage

Depending on the type of store deployment, there are two ways passwords can be externally
stored. For Enterprise Edition (EE) deployments, Oracle Wallet is used. For Community
Edition (CE) deployments, a simple read protected clear-text password file is used.

In the most basic mode of operation, external passwords are used only by the server to track
the keystore password. User passwords, which are stored securely within the database, can
also be supplied during client authentication.

When a password store is used as a component of a login file, the alias that is used for the
password store type should be the username to which the password applies. For example,
for a user named root, the password should be stored under the alias root.

When a password store is used as part of the server, the alias keystore is used. The user
password store should be a completely different file than the one in the security directory
located under KVROOT.

Oracle Wallet

ORACLE

The following commands provide functionality to manipulate Oracle wallet stores within the
securityconfig tool. These commands are available in EE only. For more information on the
securityconfig tool, see Configuring Security with Securityconfig.

To create a new auto-login wallet, run the wallet create command:

wallet create
-dir <wallet directory>

Auto-login wallets store passwords in an obfuscated state. Access to the wallet is secured
against reading by unauthorized users using the OS-level login.

To manipulate secrets (passwords), which are associated with a name (alias), run the wallet

secret command:

wallet secret
-dir <wallet directory>
{-set | -delete} -alias <alias>

If the -set option is specified, the user is prompted for a new password for the specified alias
and required to verify the new secret.

If the -delete option is specified, the secret is deleted from the store.

Special considerations should be taken if Oracle wallet is used and you are deploying your
Oracle NoSQL Database. For more information, see Guidelines for Deploying Secure
Applications.

Use the wallet subcommand while configuring the security of the kvstore:

5-1

Chapter 5
Password store file

Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar securityconfig

The securityconfig tool is invoked. Use the config create command with the -
pwdmgr option to specify the mechanism used to hold password that is needed for
accessing the store. In this case, Oracle Wallet is used. Oracle Wallet is only available
in the Oracle NoSQL Database Enterprise Edition version.

security-> config create -pwdmgr wallet -root kvroot
Enter a password for the Java KeyStore:

Enter a password for your store and then re-enter it for verification. The configuration
tool will automatically generate the security related files.

Password store file

ORACLE

The following commands are used to create and manipulate CE password store files
within the securityconfig tool. CE password store files managed though this
interface are never password protected. For more information on the securityconfig
tool, see Configuring Security with Securityconfig.

To create a new password store file, run the pwdfile create command:

pwdfile create
-file <password store file>

To manipulate secrets (passwords), which are associated with a name (alias), run the
pwdfile secret command:

pwdfile secret
-file <password store file>
{-set | -delete} -alias <alias>

If the user specifies the -set option, the user is prompted for a new password for the
specified alias and required to verify the new password.

If the -delete option is specified, the alias is deleted from the store.

Use the pwdfile subcommand while configuring the store security:

Run the securityconfig utility to set up the basic store configuration with security:

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar securityconfig

The securityconfig tool is invoked. Use the config create command with the -
pwdmgr option to specify the mechanism used to hold password that is needed for
accessing the store. Here the password is specified in a read-protected, clear-text

5-2

ORACLE

Chapter 5
Password store file

password file. This is the only available option for Oracle NoSQL Database Community
Edition version.

security-> config create -pwdmgr pwdfile -root kvroot
Enter a password for the Java KeyStore:
Re-enter the KeyStore password for verification:

Enter a password for your store and then re-enter it for verification. The configuration tool will
automatically generate some security related files.

5-3

Security.xml Parameters

This chapter describes the parameters that can be set in the security.xml configuration file.
This file is generated by makebootconfig Or securityconfig and tells the Oracle NoSQL
Database server how to apply security.

The security.xml file specifies parameters that primarily control network communications. It
contains top-level parameters, plus nested transport parameters. A transport is a grouping of
parameter settings that are specific to a particular type of network connection.

< Note:

A subset of all the configuration options listed below related to SSL can be specified
through Java system properties, security file properties, or through the
KVStoreConfig API. For more information, see SSL communication properties.

Top-level parameters

ORACLE

The following top-level parameters can be set to the security.xml file:

e internalAuth
Specifies how internal systems authenticate. This parameter must be set to SSI.
* keystore

Identifies the keystore file within the security directory. This parameter is hormally set to
store.keys.

* keystoreType

Identifies the type of keystore that the keystore property references. If not set, the JKS
keystore type is used by default.

* keystoreSigPrivateKeyAlias

Specifies the keystore alias that identifies the keypair used by replication nodes to create
signatures. If not specified, the alias "shared" is used.

» truststoreSigPublicKeyAlias

Specifies the truststore alias that identifies the certificate used by replication nodes to
verify signatures. If not specified, the alias "mykey" is used.

e securityEnabled
To enable security this parameter must be set to true.
e certMode
Specifies the key/certificate management model in use. This must be set to "shared".

e truststore

6-1

Chapter 6
Transport parameters

Identifies the truststore file within the security directory. This is normally set to
store.trust.

truststoreType

Identifies the type of keystore that the truststore property references. If not set, the
JKS keystore type is used by default.

walletDir

Identifies a directory within the security directory that contains a wallet password
store, which in turn holds the password for the keystore.

passwordFile

Identifies a file within the security directory that contains a file password store,
which in turn holds the password for the keystore.

krbServiceName

Specifies the service hame of the Oracle NoSQL Database Kerberos service
principal.

krbInstanceName
Specifies the service principal instance name.
krbServiceKeytab

Specifies the keytab file name in the security directory that contains the KVStore
server service principal and encrypted copy of principal’s key.

krbConf

Specifies the location of the Kerberos configuration file that contains the default
realm and KDC information. If not specified, the default value is /etc/krb5.conf.

krbRealmName

Specifies the realm name of service principal. If not specified, this value is
acquired from the Kerberos configuration file.

userExternalAuth

Specifies and enables the external mechanism used for authentication. Kerberos
is supported. Set the value to KERBEROS to enable Kerberos authentication. To
remove Kerberos authentication from a running store, set the value to NONE.

Transport parameters

There are three standard transport types:

ha

Controls the communications between the data replication layer.
client

Controls most RMI communication.

internal

Controls the SSL internal authentication mechanism.

The following parameters can be set and associated to a transport type:

ORACLE

transportType

6-2

Chapter 6
Transport parameters

This parameter should be set to SSL.
* serverKeyAlias

The keystore alias that identifies the keypair used by the store services, including
Storage Nodes, Replication Nodes, Admins, and Arbiter Nodes. If not specified, the alias
"shared" is used.

* clientkeyAlias

The keystore alias that identifies the keypair used by either a direct connect Java client or
a proxy. See Configuring the Proxy for more details. If not specified, the alias "shared" is
used.

» clientAuthRequired

Should always be true for ha and internal transports and should be false for client
transports.

» clientldentityAllowed

When clientAuthRequired is true, this specifies what client identification check should be
applied. This should be set to dnmatch(XXX) where XXX is the Distinguished name from
the client certificate.

* serverldentityAllowed

This specifies what server verification should be performed. This should normally be set
to dnmatch(XXX) where XXX is the Distinguished name from the server certificate.

» allowCipherSuites

This is a comma-delimited list of SSL/TLS cipher suites that should be considered for
use. For valid options, see the Java JSSE documentation corresponding to your JDK
version. If not specified, the JDK default set of cipher suites is allowed.

* allowProtocols

This is a comma-delimited list of SSL/TLS protocols that should be considered for use.
For valid options, see the Java JSSE documentation corresponding to your JDK version.
If not specified, the JDK default set of protocols is used.

» clientAllowCipherSuites

See allowCipherSuites for a description of the format. This parameter sets the cipher
suite requirements only for the initiating side of a connection. If set, it overrides any
setting of allowCipherSuites for the connection initiator.

» clientAllowProtocols

See allowProtocols for a description of the format. This parameter sets the protocol
requirements only for the initiating side of a connection. If set, it overrides any setting of
allowProtocols for the connection initiator.

ORACLE 6-3

Encryption

Network data encryption provides data privacy so that unauthorized parties are unable to
view plain text data during transmission across the network.

Oracle NoSQL Database uses SSL-based encryption to encrypt network traffic between
applications and the server, command line-utilities and the server, as well as between server
components.

Note:

JMX access requires the use of SSL.

SSL model

ORACLE

Oracle NoSQL Database uses a simple SSL key management strategy. A single, shared,
RSA key is used to protect communication. In this shared key model, you must be sure that
there is a master copy of the security directory and that it gets copied to each server. You
should not run makebootconfig with the -store-security configure option on all servers.
Most servers should have the -store-security enable option specified in their
makebootconfig command.

The shared key has an associated self-signed certificate with a Subject Distinguished Name
that is not server-specific. The automatically-created certificates are generated with the
Distinguished Name: CN=NoSQL.

Each server component listens on SSL interfaces and presents the shared certificate to
clients and other servers that connect to it, as proof of its authenticity. Each client and server
component uses a Java truststore containing a copy of the shared certificate to validate the
certificate presented by servers.

When accessing a NoSQL instance that is secured using SSL/TLS, you must specify at least
the following information:

1. You must specify that the client will connect using SSL. This is done by setting the
security property oracle.kv.transport to "ssl".

2. You must specify the Java truststore file that is used to validate the server certificate. This
is done by setting the security property oracle.kv.ssl.trustStore.

For example, to start runadmin in security mode use the following command:

java -Xmx64m -Xms64m \
-Doracle.kv.security=mylogin.txt \
-jar KVHOME/lib/kvstore.jar runadmin

7-1

Chapter 7
SSL communication properties

where the file mylogin.txt should be a copy of the client.security file with additional
properties settings for authentication. The file would then contain content like this:

oracle.kv.auth.username=root
oracle.kv.auth.wallet.dir=login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch (CN\=NoSQL)

" Note:

If you fail to correctly specify the oracle.kv.transport property or the
truststore, the client will fail to connect to the server.

SSL communication properties

ORACLE

Assuming that the NoSQL server is secured by SSL, client connections from Oracle
NoSQL Database administrative clients will need to connect over SSL as well. This
can be achieved by providing security properties for the connection.

For Oracle-provided command line tools, a security file must be specified. The security
configuration process automatically generates a basic security file (client.security)
that can be used to connect to the store. You may wish to make a copy of this and
modify it to include additional configuration properties.

The minimal configuration needed to connect to a secure store includes setting the
following properties:

e oracle.kv.transport=ssl

Directs KVStore clients and utilities to connect to the KVStore RMI registry via
SSL.

e oracle.kv.ssl.trustStore=<path-to-ssl-truststore>

Names a copy of the truststore file generated by makebootconfig or
securityconfig to enable validation of the KVStore server SSL certificate.

Note:

You can use SSL to communicate an application with other SSL servers
without using truststore-based certification validation.

In addition to the two properties listed above, the following properties are also
supported for control of SSL communications:

e oracle.kv.ssl.ciphersuites

Specifies a comma-separated list of SSL cipher suites that should be allowed in
communication with the server.

* oracle.kv.ssl.protocols

7-2

Chapter 7
Disk Encryption in a Linux Environment

Specifies a comma-separated list of SSL protocols that should be allowed in
communication with the server.

e oracle.kv.ssl.trustStoreType

Specifies the type of truststore being used. If not specified, the default type for the Java
runtime is used.

" Note:

Applications may also set these security properties through API methods on
KVStoreConfig.

Disk Encryption in a Linux Environment

ORACLE

If you are using the Linux operating system, you can secure your data by configuring disk
encryption to encrypt whole disks (including removable media), partitions, software RAID
volumes, logical volumes, as well as your NoSQL files.

dm-crypt is the Linux kernel's device mapper crypto target which provides transparent disk
encryption subsystem in the Linux kernel using the kernel crypto API.

Cryptsetup is the command line tool to interface with dm-crypt for creating, accessing and
managing encrypted devices. The most commonly used encryption is Cryptsetup for the
Linux Unified Key Setup (LUKS) extension, which stores all of the needed setup information
for dm-crypt on the disk itself and abstracts partition and key management in an attempt to
improve ease of use.

This topic demonstrates how to convert a normal disk to a dm-crypt enabled disk and vice
versa using the command-line interface.

Assume that you have the following disks in your Linux system. The df -h command displays
the amount of available disk space for each disk.

$df -h

/dev/nvmeOnl 2.9T 76G 2.7T 3% /ons/nvmeOnl
/dev/nvmelnl 2.9T 76G 2.7T 3% /ons/nvmelnl

If you nominate disk /dev/nvme0On1 to store databases, then you should encrypt this disk to
secure the data within it.

Normal disk to a dm-crypt enabled disk:
Execute the following commands to convert a normal disk to a dm-crypt enabled disk:

1. Unmount the file system on the disk.
sudo umount -1 /dev/nvmeOnl
2. Generate the key to be used by luksFormat.

sudo dd if=/dev/urandom of=/home/opc/key0.key bs=1 count=4096

7-3

ORACLE

Chapter 7
Disk Encryption in a Linux Environment
3. Initialize a LUKS partition and set the initial key.

sudo /usr/sbin/cryptsetup -q -s 512 \
luksFormat /dev/nvmeOnl /home/opc/key0.key

4. Open the LUKS partition on disk/device and set up a mapping name.

sudo /usr/sbin/cryptsetup --allow-discards \
luksOpen -d /home/opc/key0.key /dev/nvmeOnl dm-nvmeOnl

5. Create an ext4 file system on the disk.

sudo /sbin/mkfs.ext4 /dev/mapper/dm-nvmeOnl
6. Set parameters for the ext4 file system.

sudo /usr/sbin/tune2fs -e remount-ro /dev/mapper/dm-nvmeOnl
7. Mount the file system to a specified directory.

sudo mount /dev/mapper/dm-nvmeOnl /ons/nvmeOnl

dm-crypt enabled disk to normal disk:

If you want to convert the encrypted disk back to its normal state, execute the following
steps:

1. Unmount the file system on the disk.
sudo umount -1 /ons/nvmeOnl
2. Remove luks mapping.
sudo /usr/sbin/cryptsetup luksClose /dev/mapper/dm-nvmeOnl
3. Create an ext4 file system on the disk.
sudo /sbin/mkfs.ext4 /dev/nvmeOnl
4. Mount the file system on a specified directory.

sudo mount /dev/nvmeOnl /ons/nvmeOnl

< Note:

If you convert a normal disk to a dm-crypt enabled disk or convert a dm-
crypt enabled disk to a normal disk, you cannot bring the disk back to its
previous state without losing its data. This is because the mkfs.ext4
command will format the disk. Therefore, all the data stored in the disk will be
lost.

7-4

Configuring Authentication

Authentication means verifying the identity of someone (a user, server, or other entity) who
wants to use data, resources, or applications. Validating that identity establishes a trust
relationship for further interactions. Authentication also enables accountability by making it
possible to link access and actions to specific identities.

Within a secure Oracle NoSQL Database, access to the database and internal APlIs is
gene